
Oracle Enterprise Repository

Repository Extensibility Framework Guide (REX)

● A Note on Product Rebranding
�❍ As a result of Oracle's acquisition of BEA/Flashline, Inc., the product Flashline Registry has

been rebranded as Oracle Enterprise Repository. The bulk of the REX documentation has
been revised to reflect this change. However, in order to avoid confusion, certain instances of
the words "flashline" and "registry" are unchanged in this documentation, particularly where
they appear in the java package structure and in the REX class names.

Overview

REX is a Web Services API for programmatic integration into Oracle Enterprise Repository. It is based on
accepted industry standards, and designed with a focus on interoperability and platform independence. REX
uses Remote Procedure Call (RPC) Web Services described by the Web Services Description Language
(WSDL v1.1). This allows clients to interact with Oracle Enterprise Repository using any platform and any
implementation language that supports Web Services. For example, while Oracle Enterprise Repository is a
J2EE application, REX allows programmatic interaction with a .NET client.

If your Oracle Enterprise Repository is or will be configured to be secured by Siteminder, you will need to
configure the policy server to ignore (or unprotect) the following URL to allow OpenAPI integration to function
properly

�❍ http://appserver.example.com/oer/services/

Note: Every example provided in the documentation is provided for illustrative purposes and will not
necessarily compile due to package structure changes between versions of the Oracle Enterprise Repository
WSDL. The user is expected to change the package structure to appropriately target their version of Oracle
Enterprise Repository. Full sample code for your version of Oracle Enterprise Repository is provided as part of
the install media.

REX Architecture

Copyright (c) 2008, 2009, Oracle and/or its affiliates. All rights reserved. 1 of 17

http://docwiki.flashline.com/index.php/HomePage

The high-level architecture of Oracle Enterprise Repository and REX is designed with several high-level goals
in mind:

● Flexibility
�❍ Any client platform that conforms to accepted industry standards, such as SOAP, WSDL, and

HTTP, can interact with Oracle Enterprise Repository through the REX interface. Proper
functioning of the API with the most common client platforms has been validated.

● Extensibility
�❍ Oracle Enterprise Repository's layered architecture simplifies the process of adding

subsystems to provide access to new features as they are added to Oracle Enterprise
Repository. For more information see the section on Versioning Considerations for REX,
below.

● Simplicity
�❍ End users will find it easy to take advantage of the extensive feature set available in REX.

Subsystems Overview

Oracle Enterprise Repository's REX provides access to a variety of subsystems. These subsystems loosely
group system functionality into logical categories roughly equivalent to the type of entity on which they operate.

Copyright (c) 2008, 2009, Oracle and/or its affiliates. All rights reserved. 2 of 17

Much of this document is organized into sections related to these subsystems.

REX methods are named using a scheme based on the various subsystems. See the section on the CRUD-Q
Naming Convention for a description of the algorithm used in this process. The subsystems defined in REX
include:

● acceptableValue
● asset
● assetType
● authToken
● categorization
● categorizationType
● department
● extraction
● import/export
● project
● relationship
● role
● user
● vendor

CRUD-Q Naming Convention

The scheme used in naming the Open API methods is based on the CRUD-Q mnemonic. CRUD-Q represents
five operations:

● C - Create
● R - Read
● U - Update
● D - Delete
● Q - Query

Each method starts with the name of the subsystem to which it belongs, followed by a description of the
operation to be performed within that subsystem, as in the following example:

<subsystem><Operation>

For example, the method to perform a create operation in the asset subsystem would be:

assetCreate(...)

Copyright (c) 2008, 2009, Oracle and/or its affiliates. All rights reserved. 3 of 17

This naming convention would also produce:

assetRead(...)
assetUpdate(...)
assetDelete(...)
assetQuery(...)

Subsystems are likely to have operations beyond the CRUD-Q set, and may not include all of CRUD-Q. For
example, since it is impossible to delete a user, there is no userDelete method. There is, however, a
userDeactivate method. The following chart provides greater detail.

 Create Read Update Delete Query Other Features

 Acceptable Value List Yes Yes Yes Yes Yes

 Accept, Activate, Assign,
Deactivate, Register, Retire, Submit,
Unaccept, Unassign, Unregister,
Unsubmit, Modify Custom Access
Settings

 Asset Yes Yes Yes Yes Yes
 Asset Type Yes Yes Yes Yes Yes
 Categoriazation Type Yes Yes Yes Yes Yes
 Department Yes Yes Yes No Yes
 Extraction Yes Yes Yes No Yes

 Project Yes Yes Yes Yes Yes Close, Open, Reassign extractions,
Remove user

 Relationship Yes Yes Yes No Yes
 Role Yes Yes Yes Yes Yes

 User Yes Yes Yes No Yes Activate, Deactivate, Lockout,
Unapprove

 Vendor Yes Yes Yes Yes Yes
 Contact Yes Yes Yes Yes Yes

Atomicity of Method Calls

Unless otherwise noted, every call to REX is atomic. That is, each call either succeeds completely, or fails
completely.

For example, one version of the categorizationUpdate method takes as an argument an array of
categorization updates. In this case, if one categorization update fails, all categorization updates fail.

No Inter-call Transaction Support

Copyright (c) 2008, 2009, Oracle and/or its affiliates. All rights reserved. 4 of 17

REX does not currently support inter-call transactions. For example, in the event of an error it is impossible to
roll back operations associated with a series of REX calls.

Technical Details

Fundamental WSDL Data Types

REX uses the following fundamental WSDL data types, in addition to the complex types defined in the WSDL.
Arrays of any of these types may be returned:

● xsd:int
● xsd:long
● xsd:string
● xsd:boolean
● xsd:dateTime
● xsd:base64Binary

Users can dynamically generate API Stubs by consuming the REX WSDL by pointing their IDEs or Web
services toolkits at the following URL:

http://appserver/oer/services/FlashlineRegistry?WSDL

For example, Java stubs for the Oracle Enterprise Repository REX WSDL may be created using the AXIS
WSDL2java utility:

java -cp .;axis.jar; xerces.jar; commons-discovery.jar; commons-logging.jar; jaxen-full.jar; jaxrpc.jar; saaj.jar;
wsdl4j.jar; xalan.jar org.apache.axis.wsdl.WSDL2Java http://appserver/oer/services/?FlashlineRegistry?WSDL

The JAR files required to complete this conversion process are:

● axis.jar
● xerces.jar
● commons-discovery.jar
● commons-logging.jar
● jaxen-full.jar
● jaxrpc.jar
● saaj.jar
● wsdl4j.jar
● xalan.jar

● Note

Copyright (c) 2008, 2009, Oracle and/or its affiliates. All rights reserved. 5 of 17

http://docwiki.flashline.com/index.php/FlashlineRegistry?action=create

�❍ Replace "appserver" in the URL with the name of the server on which Oracle Enterprise
Repository is installed.

Versioning Considerations for the Oracle Enterprise Repository REX

Naturally, the evolution of the Oracle Enterprise Repository REX will parallel the evolution of Oracle Enterprise
Repository. However, as a result of this process, incompatibilities may emerge between older and newer
versions of REX. While full version compatibility is our goal, backwards-compatibility is subject to unpredictable
and therefore potentially unavoidable limitations. In future, Oracle Enterprise Repository releases REX will
include the following backwards-compatible enhancements:

● Addition of new methods to the Oracle Enterprise Repository Web service

● Definition of new complex types in the WSDL

With regard to these backwards-compatible changes, the regeneration of client proxies will be necessary only
when the need arises to take advantage of new features and functionality.

The namespace of the service will change only when incompatible changes are unavoidable. Examples of
such a change would include the modification of an existing complex type, or a change in the signature of a
method in the service. In this event, client proxy regeneration will be necessary, as will minimal code changes.
Client proxies generated from prior versions of REX will be unable to connect to the new service.

The namespace of complex types will never change.

Basic Concepts

Getting Started - Enabling the OpenAPI within the Oracle Enterprise Repository

The procedure is performed on the Oracle Enterprise Repository Admin screen.

1. Click System Settings.

2. Enter the property cmee.extframework.enabled in the Enable New System Setting text box.

Copyright (c) 2008, 2009, Oracle and/or its affiliates. All rights reserved. 6 of 17

3. Click Enable.

The Open API section opens.

4. Make sure the cmee.extframework.enabled property is set to True.

5. Click Save.

REX is now enabled within your instance of Oracle Enterprise Repository.

Getting Started - Consuming the WSDL

The first step in using REX is to generate the client-side stubs necessary to communicate with the Oracle
Enterprise Repository server. This is generally accomplished using the automated tools provided by the
specific Web services toolkit in use. This section describes how to generate client stubs using a variety of
integrated development environments and toolkits.

Visual Studio .NET

1. Right-click on the Web References node in the Solution Explorer tree.

2. Select Add Web Reference

Copyright (c) 2008, 2009, Oracle and/or its affiliates. All rights reserved. 7 of 17

3. Specify the name of the Web reference.

Copyright (c) 2008, 2009, Oracle and/or its affiliates. All rights reserved. 8 of 17

You may load the Oracle Enterprise Repository WSDL file directly from the application server (if it is
running) by specifying the proper URL, or from a static file local to your Eclipse project. If you wish to
use a URL, it can be found in the following location (replace "yourserver" and "appname" with the
appropriate values):

http://yourserver:port/appname/services/FlashlineRegistry?wsdl

4. Connect to the service endpoint. Once the Web reference has been created, your application can use it
by establishing an instance of the client service proxy:

flashline.FlashlineRegistryService registry = new flashline.FlashlineRegistryService();

5. If the default URL of the service (as contained in the WSDL file used to establish the Web reference) is
not the actual address of the Web service, the endpoint address can be changed as follows:

registry.Url = "http://appserver/oer/services/FlashlineRegistry";

Your application is ready to interact with Oracle Enterprise Repository via REX.

Eclipse - Lomboz plugin

The Lomboz plugin will work with Eclipse but any type of Eclipse plugin that provides support for Web Services
should work. Most of these tools/plugins will usually ask for:

● The location of the WSDL file

● The source directory from your project in which generated code should live

● The WSDL version with which the WSDL file complies.

The Oracle Enterprise Repository WSDL file can be loaded directly from the application server (if it is running)
by specifying the proper URL, or from a static file local to your Eclipse project. The WSDL URL can be found in
the following location (replace "www.example.com" and "appname" with the appropriate values):

http://www.example.com/appname/services/FlashlineRegistry?wsdl

Choose a source directory on your project's build path as the target of the generated client proxy classes.

Oracle Enterprise Repository WSDL conforms to version 1.1 of the WSDL standard.

Copyright (c) 2008, 2009, Oracle and/or its affiliates. All rights reserved. 9 of 17

Authentication and Authorization

Authentication

The first step in using REX is authenticating with the server. Authentication is performed using the
authTokenCreate method. This method takes a user ID and password as arguments to be used in
authenticating with Oracle Enterprise Repository. If the ID and password are successfully authenticated, an
authentication token is returned. This token must be used in every subsequent call to REX.

If a valid AuthToken is not included for every REX method, an OpenAPIException will be thrown. The
applies to all methods except authTokenCreate and authTokenDelete.

The following example shows how to retrieve an AuthToken and use it in subsequent REX calls.

package com.example.flashlineclient;

//The imports below are assumed for any of the included examples
import javax.xml.rpc.ServiceException;
import java.net.MalformedURLException;
import java.net.URL;
import java.rmi.RemoteException;
import com.flashline.registry.openapi.service.v300.FlashlineRegistry;
import com.flashline.registry.openapi.service.v300.FlashlineRegistryServiceLocator;
import com.flashline.registry.openapi.base.OpenAPIException;
import com.flashline.registry.openapi.entity.AuthToken;
import com.flashline.registry.openapi.entity.Asset;

public class FlexTest {

 public FlexTest () {

 }

 public static void main(String[] pArgs)throws OpenAPIException, RemoteException, ServiceException {
 try {
 FlashlineRegistry lRegistry = null;
 AuthToken lAuthToken = null;

 URL lURL = null;
 lURL = new URL("http://www.example.com/appname/services/FlashlineRegistry");
 //"www.example.com" should be your server address
 //"appname" is the application name of the location that the Registry is running on
 //These two things must be changed to the proper values in every example

 lRegistry = new FlashlineRegistryServiceLocator().getFlashlineRegistry(lURL);
 lAuthToken = lRegistry.authTokenCreate("username", "password");
 System.out.println(lAuthToken.getToken());

Copyright (c) 2008, 2009, Oracle and/or its affiliates. All rights reserved. 10 of 17

 //displaying the authtoken as a string to the screen
 Asset lAsset = lRegistry.assetRead(lAuthToken, 559);
 //reading asset number 559
 System.out.println(lAsset.getName());
 //displaying the name of asset 559 to the screen

 } catch(OpenAPIException lEx) {
 System.out.println("ServerCode = "+ lEx.getServerErrorCode());
 System.out.println("Message = "+ lEx.getMessage());
 System.out.println("StackTrace:");
 lEx.printStackTrace();
 } catch (RemoteException lEx) {
 lEx.printStackTrace();
 } catch (ServiceException lEx) {
 lEx.printStackTrace();
 } catch (MalformedURLException lEx) {
 lEx.printStackTrace();
 }

 System.out.println("execution completed");

 System.exit(0);
 }

}

Authorization

REX enforces the same authorization rules as the Oracle Enterprise Repository application. The user ID and
password used to authenticate will determine the privileges available to the user via REX. For example, if the
authenticated user does not have EDIT privileges assigned for projects, and attempts to create a project using
the projectCreate REX method, an OpenAPIException will be thrown.

Exception Handling

Open API communicates server errors to the client via a SOAP Fault. The manner in which SOAP Faults are
handled varies according the language and SOAP toolkit in use.

This section suggests ways to detect and deal with exceptions generated by the Open API within client code,
using the most common platform/toolkit combinations.

Java and AXIS

Exceptions thrown by the Open API are transferred as SOAP Faults, and then de-erialized by the AXIS client
toolkit as Java Exceptions. That is, AXIS makes an attempt to map the SOAP Fault to a corresponding client-

Copyright (c) 2008, 2009, Oracle and/or its affiliates. All rights reserved. 11 of 17

side OpenAPIException class. Server-side errors are represented to the client as com.flashline.
registry.openapi.OpenAPIException instances. Consequently, client code can catch exceptions with
the code listed below which is from the code above:

try {

 lAsset = lRegistry.assetCreate(..);

 } catch(OpenAPIException lEx) {
 System.out.println("ServerCode = "+ lEx.getServerErrorCode());
 System.out.println("Message = "+ lEx.getMessage());
 System.out.println("StackTrace:");
 lEx.printStackTrace();
 } catch (RemoteException lEx) {
 lEx.printStackTrace();
 } catch (ServiceException lEx) {
 lEx.printStackTrace();
 } catch (MalformedURLException lEx) {
 lEx.printStackTrace();
 }

.NET

Using a consumed Web service in .NET is a bit more complicated. All service exceptions are caught on the
client side as exceptions of type System.Web.Services.Protocols.SoapException. This makes it
somewhat tricky to retrieve the extended information available in the OpenAPIException thrown by the
Open API.

The .NET SoapException property represents the SOAP Fault message. However, the additional fields
provided by the OpenAPIException, beyond what is explicitly mapped to the standard SOAP Fault, must be
obtained by manually parsing the XML Detail property of the .NET SoapException. For example, code
similar to the following could be used to view the server-side error code and stack trace returned with an
OpenAPIException:

 try
 {
 registry.testException();
 }
 catch(SoapException exc)
 {
 XmlNode lNode = null;

 lNode = exc.Detail.SelectSingleNode("*/serverErrorCode");
 if(lNode != null)
 Console.Out.WriteLine("Error Code: "+lNode.InnerText);

Copyright (c) 2008, 2009, Oracle and/or its affiliates. All rights reserved. 12 of 17

 lNode = exc.Detail.SelectSingleNode("*/serverStackTrace");
 if(lNode != null)
 Console.Out.WriteLine("Server Stack Trace: \n"+lNode.InnerText);

 }

It's a good idea to use a more explicit XPath expression than */serverErrorCode in order to eliminate the
chance that the returned SOAP Fault includes more than one XML Element with the name
serverErrorCode.

The following SOAP response illustrates an OpenAPIException represented as a SOAP Fault message:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <soapenv:Fault>
 <faultcode>soapenv:Server.userException</faultcode>
 <faultstring>Error [100], Severity [SEVERE]:An unkown server-side error occured.
 Please record stack trace (if available) and contact technical support.</faultstring>
 <detail>
 <com.flashline.cmee.openapi.OpenAPIException xsi:type="ns1:OpenAPIException"
 xmlns:ns1="http://base.openapi.registry.flashline.com">
 <message xsi:type="xsd:string">Error [100],
 Severity [SEVERE]:An unkown server-side error occured.
 Please record stack trace (if available) and contact technical support.</message>
 <serverErrorCode xsi:type="xsd:int">100</serverErrorCode>
 <serverStackTrace xsi:type="xsd:string">java.lang.NullPointerException
 at java.util.HashMap.<init>(HashMap.java:214)
 ...
 at java.lang.Thread.run(Thread.java:534)
</serverStackTrace>
 <severity xsi:type="xsd:string">SEVERE</severity>
 </com.flashline.cmee.openapi.OpenAPIException>
 </detail>
 </soapenv:Fault>
 </soapenv:Body>
</soapenv:Envelope>

Validation

When attempting to save an entity in Oracle Enterprise Repository, the system will attempt to validate the
input. Any missing or invalid data will cause the server to throw an OpenAPIException containing a list of

Copyright (c) 2008, 2009, Oracle and/or its affiliates. All rights reserved. 13 of 17

fields and their respective errors. See documentation above regarding exception handling.

Query Considerations in REX

The criteria object model is currently moving to a more flexible representation of terms and grouping. As they
occur, these changes will affect the availability of certain API features when executing a query using a criteria
object. The subsystems only directly evaluate their corresponding criteria objects, and do not make use of the
extended capabilities of the underlying SearchTermGroup, unless otherwise noted in this documentation.

Sending Binary Data (Attachments)

Various REX methods require sending or receiving potentially large sets of binary data between the client and
server. For example, the import/export subsystem provides methods for sending a payload from which to
import, and methods for retrieving a payload representing a set of exported assets.

Typically, binary data is transferred via Web services RPC invocations through Dynamic Internet Message
Exchange (DIME); SOAP with Attachments (SwA); or Base-64 Encoding. Each has its advantages and
disadvantages, but few client toolkits directly support all three.

The Oracle Enterprise Repository OpenAPI supports all three mechanisms for transferring binary data. Details
are provided in the following sections.

Any method that provides for the binary transfer of data will have three versions, each one supporting a
different transfer mechanism. For example, to retrieve the results of an export, a user can select any one of the
following methods:

● importGetResultsB64
�❍ Retrieve results of export in base-64 encoded format. This is the lowest common denominator,

and can be used on any platform, provided that the client can encode/decode base-64 data.

● importGetResultsDIME
�❍ Retrieve export results as an attached file, using the DIME protocol. This is the preferred option

for most .NET clients.

● importGetResultsSwA
�❍ Retrieve export results as an attached file, using the SOAP with Attachments (SwA) protocol

(MIME-based)

Using DIME attachments with .NET and the Microsoft Web Services Enhancement (WSE) Kit

Microsoft provides an extension to the standard .Net Web service toolkit. The Microsoft Web Services
Enhancement (WSE) kit provides advanced functionality, such as sending and receiving attachments via Web

Copyright (c) 2008, 2009, Oracle and/or its affiliates. All rights reserved. 14 of 17

services using the Dynamic Internet Messaging Exchange (DIME) protocol.

The following code snippet gives an example of sending data via a DIME attachment:

 // relax the requirement for the server to understand ALL headers. This MUST be
 // done, or the call with the attachment will fail. After the call, if you wish,
 // you can set this back to "true"
 registry.RequestSoapContext.Path.EncodedMustUnderstand= "false";

 // clear the attachments queue
 registry.RequestSoapContext.Attachments.Clear();
 registry.RequestSoapContext.Attachments.Add(
 new Microsoft.Web.Services.Dime.DimeAttachment("0", "application/zip",
 Microsoft.Web.Services.Dime.TypeFormatEnum.MediaType, "c:\\tmp\\import.zip"));

 // start an import running on the server
 registry.importExecute(lAuthToken, "flashline", null, "FEA Flashpack Import",
 null);

 // do some polling (calls to importStatus) to monitor the import progress,
 // if you wish

The following code snippet gives an example of receiving data via a DIME attachment:

 // relax the requirement for the server to understand ALL headers. This MUST be
 // done, or the call with the attachment will fail. After the call, if you wish,
 // you can set this back to "true"
registry.RequestSoapContext.Path.EncodedMustUnderstand= "false";

 // clear the attachments queue
 registry.RequestSoapContext.Attachments.Clear();

 // start an export
 flashline.ImpExpJob lJob =
 registry.exportExecute(lAuthToken, "flashline", null, "Complete Export", "flashline",
"<entitytypes>
 <entitytype type=\"acceptableValueList\">
 <entities>
 <entity id=\"100\"/>
 </entities>
 </entitytype>
 </entitytypes>");

 // do some polling (calls to exportStatus) to watch the progress of the
 // export, if you wish...

Copyright (c) 2008, 2009, Oracle and/or its affiliates. All rights reserved. 15 of 17

 // this call will block until either the method returns (or an exception is thrown),
 // or the call times out.
 registry.exportGetResultsDIME(lAuthToken, lJob);

 // check to see if the call resulted in attachments being returned...
 if(registry.ResponseSoapContext.Attachments.Count > 0)
 {
 Stream lStream = registry.ResponseSoapContext.Attachments[0].Stream;

 // write the data out somewhere...
 }

Using SOAP with Attachments and Java AXIS clients

The Axis client provides functions to handle SOAP attachments in Java. For more information
see: http://www-106.ibm.com/developerworks/webservices/library/ws-soapatt/

The following code snippet gives an example of receiving data:

 byte[] lResults = null;

 ImpExpJob lExportJob =
 mFlashlineRegistrySrc.exportExecute(mAuthTokenSrc,"flashline",null,
 "Export Assets","default", createAssetQuery().toString());

 lExportJob =
 mFlashlineRegistrySrc.exportStatus(mAuthTokenSrc, lExportJob);
 lResults =
 mFlashlineRegistrySrc.exportGetResultsB64(mAuthTokenSrc, lExportJob);

 // write the results out to disk in a temp file
 File lFile = null;

 String lTempDirectory =
 System.getProperty("java.io.tmpdir");
 lFile = new File(lTempDirectory + File.separator + "impexp.zip");

 FileOutputStream lOS = new FileOutputStream(lFile);
 BufferedOutputStream lBOS = new BufferedOutputStream(lOS);

 lBOS.write(lResults);
 lBOS.flush();
 lBOS.close();
 lOS.close();

The following code snippet gives an example of sending data via a DIME attachment:

Copyright (c) 2008, 2009, Oracle and/or its affiliates. All rights reserved. 16 of 17

http://www-106.ibm.com/developerworks/webservices/library/ws-soapatt/
http://www-106.ibm.com/developerworks/webservices/library/ws-soapatt/

 // open file and attach as data source
 InputStream lIS = new FileInputStream(lFile);
 ((Stub)mFlashlineRegistryDest)._setProperty
 (Call.ATTACHMENT_ENCAPSULATION_FORMAT, Call.ATTACHMENT_ENCAPSULATION_FORMAT_DIME);
 ByteArrayDataSource lDataSource = new ByteArrayDataSource(lIS, "application/x-zip-compressed");
 DataHandler lDH = new DataHandler(lDataSource);

 // add the attachment
 ((Stub)mFlashlineRegistryDest).addAttachment(lDH);
 ImpExpJob lJob =
 mFlashlineRegistryDest.importExecute(mAuthTokenDest, "flashline", null, "Import Assets Test", null);

Copyright (c) 2008, 2009, Oracle and/or its affiliates. All rights reserved. 17 of 17

	Oracle Enterprise Repository
	Repository Extensibility Framework Guide (REX)

