
Oracle® Enterprise Repository
Configuring and Managing Advanced Registration Flows

10g Release 3 (10.3)

July 2009

Oracle Enterprise Repository Configuring and Managing Advanced Registration Flows, 10g Release 3 (10.3)

Copyright © 2008, 2009, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents
1. Overview of Advanced Registration Flows
What are Advanced Registration Flows?. 1-2

Prerequisites . 1-3

Example “Community Flow” Use Case. 1-3

Software Components . 1-3

Oracle Enterprise Repository Event Manager . 1-3

Subscription Manager . 1-4

JMS Server. 1-4

Event Monitor . 1-4

Oracle Business Process Management . 1-4

Advanced Registration Flows. 1-4

Event Management Tools . 1-5

Web-based Process Administrator . 1-5

Log Viewer . 1-6

Email Notification Templates . 1-6

Workflow Configuration Tools . 1-6

Generating a New Config File. 1-6

Refreshing an Existing Config File . 1-6

Encrypting Config File Passwords . 1-6

2. Getting Started with Advanced Registration Flows
Overview . 2-2
Configuring and Managing Advanced Repository Flows iii

Steps to Configure the Oracle Enterprise Repository Event Manager 2-2

Use Cases . 2-3

Configuring the Event Manager. 2-3

Triggering an Asset Event . 2-4

Steps to Configure and Run the Oracle Business Process Management Process Engine . 2-6

Use Cases . 2-6

Configuring the Advanced Registration Flows to Process a Submission Event 2-6

Triggering an Asset Submission Event . 2-8

3. Configuring the Oracle Enterprise Repository Event Manager
What is the Oracle Enterprise Repository Event Manager? . 3-2

Configuring the Event Manager’s System Settings . 3-2

Enabling the Event Manager . 3-3

Configuring Optional Event Manager Settings . 3-3

Eventing Manager Notifier Thread Sleep (seconds). 3-3

Eventing Manager Store Thread Sleep (seconds) . 3-3

Eventing Manager Store Delivery Sleep (seconds) . 3-4

Batch Size for Event Manager Deliveries. 3-4

Configuring the Subscription Manager . 3-4

Configuring Web Service Endpoints . 3-4

Setting the Expression to Filter Events . 3-5

Delivering all Events to an Endpoint . 3-5

Delivering Events to an Endpoint Filtered by Event Type 3-5

Delivering Events to an Endpoint Filtered Using a JMS Message Selector. . . . 3-6

JMS Message Selector Examples . 3-7

Configuring Logging of Event Manager Events . 3-8
iv Configuring and Managing Advanced Repository Flows

4. Administrating Oracle Business Process Management
Processes

Overview . 4-2

Administering Oracle Business Process Management Web Applications 4-2

Starting the Oracle Business Process Management Admin Center 4-2

Starting the Oracle Business Process Management Process Engine 4-3

Defining the Oracle Business Process Management Participants 4-4

Oracle Business Process Management Administrators . 4-4

Advanced Registration Flow Participant. 4-4

Tuning the Oracle Business Process Management Process Engine 4-6

Advanced Properties. 4-6

Database Runtime Properties . 4-6

Memory and Execution Thread Properties. 4-6

Configuring a Standalone Process Engine for Failover. 4-7

Using The Oracle Business Process Management Log Viewer . 4-8

Filtering Event Log Messages for Oracle Enterprise Repository Flows 4-8

5. Configuring Advanced Registration Flows
Overview of Advanced Registration Flows. 5-2

Creating and Customizing a Workflow Configuration File . 5-2

Generating a Workflow Configuration File . 5-2

Defining the Oracle Enterprise Repository Connection and Registrar 5-3

Encrypting the Registrar User Password . 5-3

Wiring Asset Events to Flows . 5-4

Automatic Asset Registration Flows . 5-6

Configuring Community Flows . 5-6

Setting the Community for an Oracle Enterprise Repository Project 5-9

Setting the Community for an Asset Type . 5-9
Configuring and Managing Advanced Repository Flows v

Setting the Community for an Asset using the Type Manager and Asset Editor 5-9

Configuring a Community to Automatically Accept an Asset 5-11

Configuring a Community to Assign Assets for Tab Approval 5-12

Configuring a Community to Assign Assets for Tab Approval Using Multi-tier5-12

Configuring a Community to Automatically Register an Asset 5-12

Configuring a Community to Have a Dedicated Registrar. 5-12

Configuring Automated Acceptance and Automated Registration Flows. 5-13

Asset Type. 5-13

Categorization Settings . 5-13

Submitter Role . 5-14

Conflict Resolution and Precedence . 5-14

Multi-tier Automatic Assignment Flows. 5-14

Use Cases . 5-15

Using an <alerid> for Tab Approvals . 5-16

Setting Up a Community for Multi-tier Tab Approval . 5-17

Setting Up an Asset Type for Multi-tier Tab Approval . 5-18

Metadata Change Flows . 5-19

Use Cases . 5-19

Configuring Metadata Change Flows . 5-20

Available Metadata Change Events/States . 5-20

Available Flows That Can Be Wired to Actions. 5-21

Example Metadata Change Configuration . 5-22

Example Metadata Change Configuration That Checks for Metadata Value . . 5-23

ChangeClassification . 5-24

ChangeCAS . 5-24

ChangeAssetLifecycle . 5-24

ApproveTabAction . 5-24

UnapproveTabAction . 5-25
vi Configuring and Managing Advanced Repository Flows

AutoApproveTabAction . 5-25

UnapproveChangeManagementTab . 5-26

ResetChangeManagementTab . 5-26

NotifyCustomUser . 5-27

Invoking Flows Based on Approval of Named Tabs . 5-27

Time-based Escalation Flows . 5-27

Tracking Unsubmitted Assets. 5-29

Tracking Unaccepted Assets . 5-30

Tracking Unapproved Assets . 5-30

Tracking Unregistered Assets. 5-31

Validation Expiration Flows . 5-31

Asset Expiration Warning Notification . 5-34

Unregister Assets After Expiration . 5-34

Inactivate After Expiration . 5-34

Delete Assets After Expiration. 5-34

Customizing Email Notification Templates . 5-35

6. Configuring JMS Servers for Oracle Enterprise Repository
Overview of JMS for the Event Manager . 6-2

Configuring Connectivity Properties for External JMS Servers . 6-2

Enabling and Configuring an External JMS Server . 6-2

Configuring JMS Message Header Properties . 6-3

Miscellaneous JMS Properties . 6-4

Configuring External JMS Jar Files . 6-4

Configuring the Embedded ActiveMQ JMS Server to Use a Database 6-4

Configuring JMS Durable Subscribers for Web Service Endpoints 6-5

Configuring JMS Servers in an Oracle Enterprise Repository Cluster 6-6

Enabling JMS Clustering Mode . 6-6
Configuring and Managing Advanced Repository Flows vii

Configuring Embedded JMS Servers for Clustering . 6-6

Configuring External JMS Servers for Clustering . 6-7

Configuring a JMS Provider In WebSphere 6.1.0.5 . 6-7

7. Monitoring and Managing Events
Overview . 7-2

Monitoring Events. 7-3

Prerequisites . 7-3

Usage . 7-3

Cleaning Up Stored Events . 7-4

Prerequisites . 7-4

Usage . 7-5

Sample Event Cleanup . 7-5

Generating the Workflow Config File . 7-6

Refreshing the Workflow Config File. 7-7

Encrypting Your Passwords . 7-8

8. Extending the Event Manager for Web Service Endpoints
Overview . 8-2

Developing a Web Service Endpoint . 8-2

Web Service Operations . 8-3

Available Web Service Operations. 8-4

newEventRequestResponse . 8-4

newEventRequestResponseString. 8-4

newEventRequest . 8-4

newEventRequestString . 8-4

newEvent . 8-4

Selecting a Web Service Operation . 8-4
viii Configuring and Managing Advanced Repository Flows

Developing a Notifier Plug-in . 8-5

Developing an Endpoint with an Incompatible Contract . 8-6
Configuring and Managing Advanced Repository Flows ix

x Configuring and Managing Advanced Repository Flows

C H A P T E R 1
Overview of Advanced Registration
Flows
This section contains information on the following subjects:

“What are Advanced Registration Flows?” on page 1-2

“Example “Community Flow” Use Case” on page 1-3

“Software Components” on page 1-3
Configuring and Managing Advanced Registration Flows 1-1

Overv iew o f Advanced Reg is t ra t ion F lows
What are Advanced Registration Flows?
In releases of Oracle Enterprise Repository prior to Oracle Enterprise Repository release 3.0, the
asset registration process required the registrar or advanced submitter to manually initiate and
monitor the registration process. The required information was gathered and entered on the
appropriate tabs in the Asset Editor. The registrar examined each tab and monitored the
workflow. When information for a specific stage of the workflow was acceptable, the registrar
approved the data on the appropriate tab. The registrar also had the option to edit any of the
information for any stage of the process. The manual process of registering assets is described in
the Oracle Enterprise Repository Registrar Guide.

The introduction of Advanced Registration Flows in Oracle Enterprise Repository 3.0 automated
the manual asset registration process by providing a set of predefined flows designed to automate
a set of common Oracle Enterprise Repository asset registration tasks, such as asset submission,
acceptance, registration, and other governance processes.

In this release, the synchronization of Oracle Enterprise Repository and Oracle Service Registry
using the Oracle Registry Repository Exchange Utility has also been automated. To learn more
about the Oracle Registry Repository Exchange Utility, refer to the Oracle Enterprise Repository
Oracle Registry Repository Exchange Utility manual.

To accomplish this, Oracle Enterprise Repository includes an embedded, JMS-based event
engine that manages the flow of Oracle Enterprise Repository asset registration events, in the
form of Web Service events. These events trigger the pre-defined flows. Once installed, the
Advanced Registration Flows can be run out-of-the box or can be tailored to suit your
environment.

Note: The flows do not have their own user interface, but will automate certain asset metadata
and state changes in the background based on particular Oracle Enterprise Repository
events.

For ease of use, Oracle Business Process Management is included with your purchase of Oracle
Enterprise Repository. You can use Oracle Business Process Management to modify existing
workflows that are supplied with Oracle Enterprise Repository and implment new
Repository-centric workflows. You can use the predefined Oracle Business Process Management
endpoint or create your own Web Service endpoints to subscribe to Oracle Enterprise Repository
events. There are also event monitoring and logging tools for troubleshooting and tuning
purposes.
1-2 Configuring and Managing Advanced Registration Flows

http://download.oracle.com/docs/cd/E13164_01/oer/docs10134/pdf/OER103-CORE_Registrar_Guide.pdf
http://download.oracle.com/docs/cd/E13164_01/oer/docs10134/regman/index.html
http://download.oracle.com/docs/cd/E13164_01/oer/docs10134/regman/index.html

Example “Communi t y F low” Use Case
Prerequisites
You install the Advanced Registration Flows during an Oracle Business Process Management
installation. After installing the Advanced Registration Flows, you manually deploy them by
following the steps in “Installing Oracle Business Process Management for Advanced
Registration Flows” in the Oracle Enterprise Repository Installation Guide.

Example “Community Flow” Use Case
In previous releases, the asset acceptance, assignment, registration processes required multiple
registrars to manually initiate and monitor the process from end-to-end via numerous emails. In
some cases, there was only one registrar that was notified about the newly submitted assets, and
as a result, the registrar could be overloaded with emails about new assets.

The Community flow provides a way to automate the asset acceptance, assignment, and
registration process by allowing the configuration of automated assignment rules and also
introduces the notion of federated registrars among different authorities. Rather than spamming
many registrars across all communities (through the system registrar notification), you can limit
the system registrar to one or a few individuals, and let the Automatic Acceptance flow accept
assets on behalf of a registrar-of-record for the community. The Community flow feature can
distribute asset submissions to those with the authority to approve them for the community.

For example, you can add two communities and configure two different registrars responsible for
each community. Then, depending on the producing projects or asset types, certain assets can
belong to a community. The Community flow automatically accepts such assets in the same way
it would be manually accepted by a registrar.

Software Components
Advanced Registration Flows includes the following software components:

Oracle Enterprise Repository Event Manager
The Event Manager emits asset registration events in the form of Web Service messages. These
events trigger pre-built flows that automate Oracle Enterprise Repository asset submission,
acceptance, registration, and other governance processes. See Chapter 3, “Configuring the Oracle
Enterprise Repository Event Manager.”
Configuring and Managing Advanced Registration Flows 1-3

http://download.oracle.com/docs/cd/E13164_01/oer/docs10134/install/troubleshoot.html

Overv iew o f Advanced Reg is t ra t ion F lows
Subscription Manager
The Subscription Manager is XML-based configuration file that is responsible for managing the
event subscriptions by the Web Service endpoints (either the predefined ALPBM endpoint or
user-defined endpoints) where matched events will be delivered. The Event Manager uses the
EndPointEventSubscription.xml file to load information about the endpoints where events
need to be delivered. See Chapter 3, “Configuring the Oracle Enterprise Repository Event
Manager.”

JMS Server
The Event Manager uses an embedded version of Apache ActiveMQ JMS Server that is enabled
by default. The embedded JMS server is configured to run out-of-the-box without any additional
configuration. However, you can also configure the Event Manager to use an external JMS
server, such as Weblogic Server JMS or IBM MQSeries. See Chapter 6, “Configuring JMS
Servers for Oracle Enterprise Repository.”

Event Monitor
A tool to monitor the events that are generated by the Event Manager. The Event Monitor peeks
into the event traffic and prints information, such as the event body and event properties. See
Chapter 7, “Monitoring and Managing Events.”

Oracle Business Process Management
Oracle Business Process Management is included with your purchase of Oracle Enterprise
Repository. You may use Oracle Business Process Management to modify existing workflows
that are supplied with Oracle Enterprise Repository and implement new Repository-centric
workflows.

Advanced Registration Flows
The Advanced Registration Flows can be run out-of-the box or can be tailored to suit your
environment. See Chapter 5, “Configuring Advanced Registration Flows.”

Community Assignment Flow – provides a way to automate the asset acceptance,
assignment, and registration process by allowing the configuration of automated
assignment rules and also provides the notion of federated registrars among different
authorities. See “Configuring Community Flows” on page 5-6.
1-4 Configuring and Managing Advanced Registration Flows

So f tware Components
Automated Acceptance and Automated Registration Flow – in addition to using the
Community Flows to automatically accept and register the assets, a number of user roles
can be used to accept and register assets. See “Configuring Automated Acceptance and
Automated Registration Flows” on page 5-13.

Multi-tier Approval Flow – structures the tab approval process in multiple steps called
tiers. Asset approval tabs can be grouped in tiers, and the Mult-tier Approval flow tracks
each tier to verify whether all the tabs are approved by the designated approvers. As soon
as the last tab in a tier is approved, the flow starts the next tier by assigning the asset to the
next level of designated approvers. See “Multi-tier Automatic Assignment Flows” on
page 5-14.

Metadata Change Flow – exposes a flexible framework where state changes or metadata
changes can be wired to actions. The Metadata Change flows come with the a set of
pre-bundled actions. New actions can be developed in the form of Oracle Enterprise
Repository flows and can be plugged in. See “Metadata Change Flows” on page 5-19.

Time-based Escalation Flow –track assets in various states and notifies all interested
parties. There are four different kinds of Time-based Escalation flows and each one can be
configured individually. See “Time-based Escalation Flows” on page 5-27.

Validation Expiration Flow – tracks expired assets prior to the specified expiration date, as
well as at the day of expiration, and sends warning notifications to all interested parties.
See “Validation Expiration Flows” on page 5-31.

AutoSyncAlerToUddi Flow - moves a service from Oracle Enterprise Repository to Oracle
Service Registry when the Asset Lifecycle Stage is changed from Stage 4 - Build to Stage
5 - Production. See the “Invoking the Oracle Registry Repository Exchange Utility Using
Workflows” section of the Oracle Enterprise Repository Oracle Registry Repository
Exchange Utility manual.

Event Management Tools
There are event monitoring and logging tools for troubleshooting and tuning purposes.

Web-based Process Administrator
The Oracle Business Process Management Process Execution Administrator actively manages
the orchestration of asset registration events in the form of Web Service messages. For more
information, see “Administering Oracle Business Process Management Web Applications” on
page 4-2.
Configuring and Managing Advanced Registration Flows 1-5

http://download.oracle.com/docs/cd/E13164_01/oer/docs10134/regman/using#workflows
http://download.oracle.com/docs/cd/E13164_01/oer/docs10134/regman/using#workflows

Overv iew o f Advanced Reg is t ra t ion F lows
Log Viewer
The Oracle Business Process Management Log Viewer enables you to read information logged
by the Process Execution Engine. A set of log files is created for each project you define. The
Studio Log Viewer reads the files and displays them to help you monitor and trace Engine
execution. For more information, see “Using The Oracle Business Process Management Log
Viewer” on page 4-8.

Email Notification Templates
The Automated Registration Flows automatically send email notifications under many
circumstances. Administrators can customize the email subject, body, etc., the same way as other
email templates. See “Customizing Email Notification Templates” on page 5-35.

Workflow Configuration Tools
There are workflow configuration tools for generating new configuration file, refreshing exisiting
files, and encrypting passwords. For more information, see Chapter 7, “Monitoring and
Managing Events.”

Generating a New Config File
Oracle Enterprise Repository administrators may need to configure and customize flows because
there will be new asset types, projects, categorizations, etc. The Generate Config XML tool
connects to Oracle Enterprise Repository and creates a new file that can be customized.

Refreshing an Existing Config File
The Refresh Config XML tool lets you to refresh a Config XML file without restarting the Event
Manager.

Encrypting Config File Passwords
The security Encrypt Password tool lets you to encrypt the passwords for security reasons.
1-6 Configuring and Managing Advanced Registration Flows

C H A P T E R 2
Getting Started with Advanced
Registration Flows
This section contains information on the following subjects:

“Overview” on page 2-2

“Steps to Configure the Oracle Enterprise Repository Event Manager” on page 2-2

“Steps to Configure and Run the Oracle Business Process Management Process Engine” on
page 2-6
Configuring and Managing Advanced Registration Flows 2-1

Get t ing Star ted w i th Advanced Reg is t ra t ion F l ows
Overview
This section will help you to quickly get started using the Advanced Registration Flow feature
using the bundled Oracle Business Process Management Web Service endpoint that is configured
to work with the Oracle Business Process Management Process Engine. However, this feature is
highly extensible and can be tailored to suit your environment.

Steps to Configure the Oracle Enterprise Repository
Event Manager

The Event Manager is a component embedded within Oracle Enterprise Repository that manages
event subscriptions, event persistence, event filtering, and event delivery. Web Service endpoints
can subscribe to the Event Manager’s Subscription Manager and the events that are generated
within Oracle Enterprise Repository are delivered to the Web Service endpoints.

The following diagram shows the different components that are involved.

Figure 2-1 Advanced Registration Flow Components

The Event Manager uses an embedded version of Apache ActiveMQ JMS Server that is enabled
by default. The embedded JMS server is configured to run out-of-the-box without any additional
configuration. However, you can also configure the Event Manager to use an external Java-based
message broker, such as Weblogic Server JMS or IBM MQSeries.
2-2 Configuring and Managing Advanced Registration Flows

Steps to Conf igure the Orac l e Ente rpr i se Repos i to r y Event Manager
For more information on configuring the Event Manager, see Chapter 3, “Configuring the Oracle
Enterprise Repository Event Manager.”

Use Cases
Oracle Enterprise Repository features pre-bundled Oracle Business Process Management
flows and a Web Service endpoint that is by default registered with the Event Manager’s
Subscription Manager. All the triggered events are delivered to this Oracle Business
Process Management endpoint, which then attempts to automate Oracle Enterprise
Repository processes, such as the asset registration process, tracking metadata changes, and
taking pre-defined actions.

You can also write your own Web Service endpoints, subscribe them with the Event
Manager, and start getting the events to solve your specific business needs.

Configuring the Event Manager
After Oracle Enterprise Repository is installed, configure the Event Manager as follows.

1. The Event Manager needs to be enabled in Oracle Enterprise Repository to allow the Event
Manager to send events to external Web Service endpoints. You can either:

– Enable the cmee.eventframework.enabled=true property in the
eventing.properties file in the <OER Domain>\WEB-INF\classes directory.

or

– This property can also be enabled using the Oracle Enterprise Repository Web-based
console’s System Settings, as explained in “Configuring the Event Manager’s System
Settings” on page 3-2.

2. The default Eventing cmee.eventframework.delivery.sleep and
cmee.eventframework.store.sleep property values can also be tuned to control the
overall performance of Oracle Enterprise Repository and the Web Service endpoints. These
properties directly impact the number of events that get triggered per second by the Event
Manager. For example, If a faster response is required for testing purposes, the default
cmee.eventframework.store.sleep value of 7200 seconds should be changed to a
reasonable testing amount.

3. The Event Manager uses the same logging framework as Oracle Enterprise Repository. By
default, logging is enabled to go to a file, but you direct the debug statements to go to the
console by appending the following categories to the log4fl.properties file in the <OER
Domain>\WEB-INF\classes directory.
Configuring and Managing Advanced Registration Flows 2-3

Get t ing Star ted w i th Advanced Reg is t ra t ion F l ows
eventing subsystem
log4j.category.com.bea.infra.event.core= debug,eventingLog,stdout
log4j.category.com.bea.infra.event.dm= debug,eventingLog,stdout
log4j.category.com.bea.infra.event.facade= debug,eventingLog,stdout
log4j.category.com.bea.infra.event.notifier= debug,eventingLog,stdout
log4j.category.com.bea.infra.event.store= debug,eventingLog,stdout
log4j.category.com.bea.infra.event.sub= debug,eventingLog,stdout

4. Configure the Web Service subscriptions with the Event Manager’s Subscription Manager.

Note: By default the Subscription Manager is configured to work out-of-the-box with the
Oracle Business Process Management Process Engine if the Oracle Business Process
Management Process Engine is running on the same machine as Oracle Enterprise
Repository. You can skip this step if this is the case because the default settings are
ready to run.

As shown below, the following information may need to be changed within the
EndPointEventSubscription.xml file under <OER Domain>\WEB-INF\classes
directory, depending on the requirement:

– Host – If the Web Service Endpoint is running in a host other than Oracle Enterprise
Repository. If it'’ the same host, leave the default unchanged

– Port – Specify the port of the Web Service Endpoint. If Oracle Business Process
Management is used as the Process Engine, leave the default unchanged.

– URI – Specify the URI of the Web Service. If Oracle Business Process Management is
used as the Process Engine, leave the default unchanged.

– Operation Name – If Oracle Business Process Management is used as the Process
Engine, leave the default unchanged. Please refer to the WSDL within the
eventNotifier.jar located in <OER Webapp path>/WEB-INF/lib for the available
operations.

– User Name/Password – Used only if Oracle Business Process Management is used as
the Process Engine. Default user name and password are “admin” and “admin”.

– Expression – Default is empty, which means all the events are delivered.

5. Restart Oracle Enterprise Repository for the configuration changes to take effect.

Triggering an Asset Event
Follow these steps to make sure that events are triggered after the configuring the Event Manager.
2-4 Configuring and Managing Advanced Registration Flows

Steps to Conf igure the Orac l e Ente rpr i se Repos i to r y Event Manager
1. Launch the Oracle Enterprise Repository Asset Editor from the Web-based console.

For information on using the Oracle Enterprise Repository Asset Editor, refer to the Oracle
Enterprise Repository Registrar Guide.

2. Create a new asset, as shown here.

Figure 2-2 Oracle Enterprise Repository Asset Editor - Create New Asset

Note: The Asset Type should be Service.

3. Click OK to submit the asset.

4. After the asset is submitted, switch to the Oracle Enterprise Repository console to verify the
following logging statements printed to the console.

Figure 2-3 Event Monitoring Console

5. The Event Monitoring tool can be used to view the payload of the event that will be delivered.
For more information about monitoring events, see “Monitoring Events” on page 7-3.
Configuring and Managing Advanced Registration Flows 2-5

http://download.oracle.com/docs/cd/E13164_01/oer/docs10134/pdf/OER103-CORE_Registrar_Guide.pdf
http://download.oracle.com/docs/cd/E13164_01/oer/docs10134/pdf/OER103-CORE_Registrar_Guide.pdf

Get t ing Star ted w i th Advanced Reg is t ra t ion F l ows
Steps to Configure and Run the Oracle Business Process
Management Process Engine

When Oracle Enterprise Repository is installed, you will be directed to install and configure
Oracle Business Process Management. This section assumes that Oracle Business Process
Management was successfully installed.

After the Event Manager is ready to send events, the Oracle Business Process Management
Process Engine needs to be configured and be ready to process the events. When Oracle
Enterprise Repository is installed, it provides an option to install and configure the Process
Engine. This section assumes that the Process Engine was successfully installed before following
these steps.

To launch the Oracle Business Process Management Admin Center, double-click the
albpmadmcenter file in the <OBPM Enterprise Home>\bin directory.

Use Cases
Oracle Enterprise Repository features pre-bundled Advanced Registration Flows that are
deployed to the Process Engine. When events are triggered within Oracle Enterprise Repository,
they are delivered to the Process Engine and execute the Advanced Registration Flows that
attempt to automate Oracle Enterprise Repository processes, such as asset submission,
acceptance, registration, and other governance process.

For more information about the available Advanced Registration Flows, see Chapter 5,
“Configuring Advanced Registration Flows.”

Configuring the Advanced Registration Flows to Process a
Submission Event
Follow these steps after the Oracle Business Process Management Process Engine is installed.

1. Generate the Workflow Configuration (workflow.xml) file using the Generate Workflow
Config tool (config_gen.bat). This tool connects to Oracle Enterprise Repository and
creates a bootstrapping file that can be customized. For more information about generating
the workflow.xml file, see “Generating the Workflow Config File” on page 7-6.

2. Copy the newly generated workflow.xml file to the <OBPM Enterprise
Edition>/enterprise/server/aler_engine directory.

3. Open the workflow.xml file using the XML editor of choice.
2-6 Configuring and Managing Advanced Registration Flows

Steps to Conf igure and Run the Orac l e Bus iness P rocess Management P rocess Eng ine
4. Make sure that the Oracle Enterprise Repository Connection information, such as the URI and
the registrar user name/password, are configured correctly as shown here.

 <alerconnection>

<uri>http://server01.amer.bea.com:7005/aler/services/FlashlineRegistry

</uri>
 <registrar>
 <user>admin</user>
 <password>admin</password>
 </registrar>
 </alerconnection>

The URI must use the following format:
http://<host>:<port>/<oer web app name>/services/FlashlineRegistry

5. Within the workflow.xml file, locate the assetType settings for the “Service” asset type, as
shown here.

 <assetType name=”Service” community=”_CHANGE_COMMUNITY_” id=”154”>
 <allTabs>
 <allTabs>
 <tab name=”Oveview”/>
 <tab name=”UDDI: Business Entity”/>
 <tab name=”Taxonomy”/>
 <tab name=”Architecture”/>
 </allTabs>

6. Add the autoAccept attribute and set the value to true, as shown here.
 <assetType name=”Application” community=”_CHANGE_COMMUNITY_” id=”154”

autoAccept=”true”>
 <allTabs>
 <allTabs>
 <tab name=”Oveview”/>
 <tab name=”UDDI: Business Entity”/>
 <tab name=”Taxonomy”/>
 <tab name=”Architecture”/>
 </allTabs>

Now the Oracle Business Process Management Process Engine is configured to
automatically accept any asset of type “Service.”
Configuring and Managing Advanced Registration Flows 2-7

Get t ing Star ted w i th Advanced Reg is t ra t ion F l ows
7. If the Oracle Business Process Management Process Engine is running, stop it and then restart
it to load the latest workflow.xml changes.

8. The Refresh Workflow Configuration tool can be used to refresh the workflow.xml file
without restarting the Oracle Business Process Management Process Engine. For more
information about refreshing the workflow.xml file, see “Refreshing the Workflow Config
File” on page 7-7.

Triggering an Asset Submission Event
Once the Oracle Business Process Management Process Engine is configured and running, follow
these steps to process an asset submission event.

1. Launch the Oracle Enterprise Repository Asset Editor from the Web console.

For information on using the Oracle Enterprise Repository Asset Editor, refer to the Oracle
Enterprise Repository Registrar Guide.

2. Create a new asset from File ->New as shown below.

Figure 2-4 Oracle Enterprise Repository Asset Editor - Create New Asset

Note: The Asset Type should be Service.

3. Click OK to submit the asset.

4. After the asset is submitted, switch to the Oracle Business Process Management Log Viewer
to make sure that the event is processed. To launch the Log Viewer, double-click the
albpmlogviewer file in the <OBPM Enterprise Home>\bin directory.

5. Turn on the “Debug” level on the Log page of the Process Engine using the Process
Administrator preference settings. By default, the level is set to “Warning.”
2-8 Configuring and Managing Advanced Registration Flows

http://download.oracle.com/docs/cd/E13164_01/oer/docs10134/pdf/OER103-CORE_Registrar_Guide.pdf
http://download.oracle.com/docs/cd/E13164_01/oer/docs10134/pdf/OER103-CORE_Registrar_Guide.pdf

Steps to Conf igure and Run the Orac l e Bus iness P rocess Management P rocess Eng ine
Figure 2-5 Oracle Business Process Management Process Administrator - Logging Preferences

6. When you turn on the Debug level though you will notice that the Process Engine prints a lot
of information, not just for the Oracle Enterprise Repository Advanced Registration Flows,
but other Process Engine information as well. To filter the Oracle Enterprise Repository
logging, follow these steps:

a. Within the Log viewer, select Message in the left-most list box.

b. Select Begins With in the next list box.

c. Type ALER: in the text box

d. Click the Apply Filter button.

Figure 2-6 Oracle Business Process Management Log Viewer
Configuring and Managing Advanced Registration Flows 2-9

Get t ing Star ted w i th Advanced Reg is t ra t ion F l ows
7. After the “ALER: Done accepting the asset” message is displayed in the Log Viewer, switch
back to the Asset Editor, and then refresh the Administration tab using the View -> Refresh
Tree command

8. Verify that the “Accepted” section is updated with the latest data, as shown here.

Figure 2-7 Oracle Enterprise Repository Asset Editor - Administration Tab

9. Also verify that the Audit Log on the Administration tab is updated, as shown here.
2-10 Configuring and Managing Advanced Registration Flows

Steps to Conf igure and Run the Orac l e Bus iness P rocess Management P rocess Eng ine
Figure 2-8 Oracle Enterprise Repository Asset Editor - Audit Log
Configuring and Managing Advanced Registration Flows 2-11

Get t ing Star ted w i th Advanced Reg is t ra t ion F l ows
2-12 Configuring and Managing Advanced Registration Flows

C H A P T E R 3
Configuring the Oracle Enterprise
Repository Event Manager
This section discusses the Event Manager configuration that needs to be completed before using
the Advanced Registration Flows. It contains information on the following subjects:

“What is the Oracle Enterprise Repository Event Manager?” on page 3-2

“Configuring the Event Manager’s System Settings” on page 3-2

“Configuring the Subscription Manager” on page 3-4

“Configuring Logging of Event Manager Events” on page 3-8
Configuring and Managing Advanced Registration Flows 3-1

Conf igur ing the Orac le Ente rpr ise Repos i to r y Event Manage r
What is the Oracle Enterprise Repository Event Manager?
The Event Manager is a component embedded within Oracle Enterprise Repository that manages
event subscriptions, event persistence, event filtering, and event delivery. Web Service endpoints
can subscribe to the Event Manager’s Subscription Manager and the asset registration events that
are generated within Oracle Enterprise Repository are delivered to the Web Service endpoints.

The following diagram shows the different components that are involved.

Figure 3-1 Advanced Registration Flow Components

The Event Manager uses an embedded version of Apache ActiveMQ JMS Server that is enabled
by default. The embedded JMS server is configured to run out-of-the-box without any additional
configuration. However, you can also configure the Event Manager to use an external JMS
server, such as WebLogic Server or IBM WebSphere.

This section discusses the Event Manager configuration that needs to be completed before using
the Advanced Registration Flows. For information on configuring the Advanced Registration
Flows, see Chapter 5, “Configuring Advanced Registration Flows.”

Configuring the Event Manager’s System Settings
Oracle Enterprise Repository’s System Settings section allows administrators to configure the
basic Oracle Enterprise Repository operation and to enable/disable specific features. The Event
3-2 Configuring and Managing Advanced Registration Flows

Conf igur ing the Event Manager ’s Sys tem Set t ings
Manager-related settings are under the “Eventing” group under the main “External Integrations”
category. For more information about System Settings, see the Oracle Enterprise Repository
Administration Guide.

Additional “Eventing” properties are available for configuring an external JMS server, such as
WebLogic Server and IBM WebSphere, and are described in Chapter 6, “Configuring JMS
Servers for Oracle Enterprise Repository.”

Enabling the Event Manager
The Event Manager needs to be enabled in Oracle Enterprise Repository to allow the Event
Manager to send events to external Web Service endpoints.

1. Click System Settings in the sidebar on the Oracle Enterprise Repository Admin screen.

2. Enter Event in the System Settings Search box to view all the Event Manager related settings.

3. Click True next to the Enable Event Manager property.

4. Click Save.

5. Restart Oracle Enterprise Repository for the configuration changes to take effect.

Configuring Optional Event Manager Settings
There are some optional “Eventing” properties that you can use to tune the Event Manager
performance.

Note: You must restart Oracle Enterprise Repository after changing any Eventing property in
order for the changes to take effect.

Eventing Manager Notifier Thread Sleep (seconds)
If an endpoint is not unavailable when one or more events should be delivered to that endpoint,
the Event Manager notifier will retry delivering the event until the endpoint is available. The
cmee.eventframework.notifier.sleep property configures in seconds how long the notifier
should wait before trying to redeliver an event.

Eventing Manager Store Thread Sleep (seconds)
As soon as an event is triggered, the Event Manager stores the event in memory before pushing
it to the JMS server so that the Oracle Enterprise Repository thread is not blocked. The
cmee.eventframework.store.sleep property specifies how long the Event Manager’s Store
Configuring and Managing Advanced Registration Flows 3-3

Conf igur ing the Orac le Ente rpr ise Repos i to r y Event Manage r
Manager thread should sleep before polling for the next event stored in memory. The default
polling delay is 60 seconds.

Eventing Manager Store Delivery Sleep (seconds)
By default, the Event Manager delivers events in batches. The
cmee.eventframework.delivery.sleep property specifies how long the Event Manager’s
Delivery Manager thread should sleep before selecting the next available batch of events from
the JMS server. The default delay between each batch is 7200 seconds (two hours).

Tip: The default cmee.eventframework.store.sleep and
cmee.eventframework.delivery.sleep property values can be tuned to control the
overall performance of Oracle Enterprise Repository and the Web Service endpoints.
These properties directly impact the number of events that get triggered per second by
the Event Manager. For example, If a faster response is required for testing purposes, the
default cmee.eventframework.delivery.sleep value of 7200 seconds should be
changed to a reasonable testing amount.

Batch Size for Event Manager Deliveries
When the Event Manager delivers events in batches, the delivered batch size can be configured
using the cmee.eventframework.delivery.batch.size property. The default batch size is
100 events. If the Event Manager finds less number of events to deliver, it will deliver the
available events and then sleep for the time configured in the
cmee.eventframework.delivery.sleep property.

Configuring the Subscription Manager
The Subscription Manager is responsible for managing the event subscriptions by the Web
Service endpoints where the matched events will be delivered.

The Subscription Manager configuration file is located in <oer webapp
name>\WEB-INF\classes\EndPointEventSubscription.xml.

Configuring Web Service Endpoints
The Event Manager uses the EndPointEventSubscription.xml file to load information about
the Web Service endpoints where events need to be delivered. The host, port, URI, user and
3-4 Configuring and Managing Advanced Registration Flows

Conf igur ing the Subscr ip t i on Manager
password of the predefined ALPBM endpoint, or user-defined Web Service endpoint, need to be
configured, as shown in this example snippet:

<sub:EventSubscriptionData
xmlns:sub=”http://www.bea.com/infra/events/subscription” xmlns:xsi=???
 <sub:eventSubscription>
 <sub:endPoint name=”ALBPMEndpoint”>
 <sub:host>maplanis01.amer.bea.com</sub:host>
 <sub:port>9000</sub:port>
 <sub:uri>fuegoServices/ws/StatusChangeEnpointServiceListener</sub:uri>
 <sub:targetNamespace>StatusChangeEndpoint</sub:targetNamespace>
 <sub:operationName>newEvent</sub:operationName>
 <sub:authenticationData>
 <sub:basicAuthentication>
 <sub:username>aler_workflow_user</sub:username>
 <sub:username>aler_workflow_user</sub:username>
 </sub:basicAuthentication>
 </sub:authenticationData>
 </sub:endPoint>
 <sub:notifierClass>com.bea.infra.event.notifier.help.AlbpmHTTPEventNotifier
</sub:notifierClass>
 <sub:expression>id > 500</sub:expression>
 </sub:eventSubscription>
</sub:EventSubscriptionData>

As many endpoints can be added as desired and the endpoints can be located in different hosts or
ports and the events can be load balanced. The pre-defined Advanced Registration Flow has just
one endpoint called “StatusChangeEndpoint”.

Setting the Expression to Filter Events
Events can be filtered based on the value entered in the expression element.

Delivering all Events to an Endpoint
The default setting is to deliver all events to an endpoint. All the events that are triggered within
Oracle Enterprise Repository are delivered to the OOTB endpoint when the expression element
is empty.
 <sub:expression></sub:expression>

Delivering Events to an Endpoint Filtered by Event Type
The following XML snippet shows how to deliver an event of type AssetSubmission to an
endpoint:
Configuring and Managing Advanced Registration Flows 3-5

Conf igur ing the Orac le Ente rpr ise Repos i to r y Event Manage r
<sub:expression> eventdata_name
=”urn:com:bea.aler:events:type:AssetSubmission”</sub:expression>

You can also use the “OR” operator to filter more than one event type:
eventdata_name =”urn:com:bea.aler:events:type:AssetSubmission” OR
eventdata_name =”urn:com:bea.aler:events:type:AssetAccepted”

These are the event types that are supported:

urn:com:bea:aler:events:type:AssetSubmission

urn:com:bea:aler:events:type:AssetAccepted

urn:com:bea:aler:events:type:AssetTabApproved

urn:com:bea:aler:events:type:AssetAllTabApproved

urn:com:bea:aler:events:type:AssetRegister

urn:com:bea:aler:events:type:PolicyAssertionChanged

urn:com:bea:aler:events:type:MetaDataChange:name

urn:com:bea:aler:events:type:AssetUnSubmission

urn:com:bea:aler:events:type:AssetUnAccept

urn:com:bea:aler:events:type:AssetUnregister

urn:com:bea:aler:events:type:AssetStatusChanged

urn:com:bea:aler:events:type:MetaDataChange:version

urn:com:bea:aler:events:type:MetaDataChange:description

urn:com:bea:aler:events:type:CategorizationChanged:assetLifecycleStage

urn:com:bea:aler:events:type:CategorizationChanged:classification

urn:com:bea:aler:events:type:MetaDataChange:supported

urn:com:bea:aler:events:type:MetaDataChange:organizational ownership

urn:com:bea:aler:events:type:MetaDataChange:usagefee

Delivering Events to an Endpoint Filtered Using a JMS Message Selector
Selectors are a way of attaching a filter to a subscription to perform content-based routing.
Selectors are defined using SQL 92 syntax. The following is a complete list of fields that can be
used to write a filter expression to filter the events. These fields are added to the JMS message as
properties by the Event Manager and a JMS Message Selector that accesses the fields can be
written to filter the events.
3-6 Configuring and Managing Advanced Registration Flows

Conf igur ing the Subscr ip t i on Manager
submittedby_emailaddress = mrsmith@bea.com
asset_description = Test Asset
submittedby_name = aler_workflow_user
submittedby_id = 99
asset_community = Java
eventdata_description = new aler event
eventsource_componentname = Aqualogic ALER
asset_name = TestAsset
eventsource_componenttype = ALER3.0
asset_typeid = 154
eventdata_eventid = d0cdac55-c78f-4a29-8aec-6ea9ba8d31f1
eventdata_name = urn:com:bea:aler:events:type:MetaDataChange:name
asset_activestatus = ACTIVE
eventsource_location = ALERCore
asset_id = 50100
eventdata_version = ver1.0
asset_version = 1

For more information about JMS Message Selectors, refer to the following web sites:

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

http://activemq.apache.org/selectors.html

JMS Message Selector Examples
Here are some sample usages of JMS message selectors:

asset_id BETWEEN 50000 AND 50100

eventdata_name = 'urn:com:bea:aler:events:type:AssetSubmission' AND
asset_id BETWEEN 50000 AND 50100

asset_name LIKE 'Inventory'

asset_id > 500

Tip: Symbols, such as “< >” used for less than/greater than, are not valid XML content. This
is because the expression is written in an XML file and parsed by the Event Manager, the
XML unfriendly characters need to be managed using the XML Rules. For example, you
must use “id > 500”, which is equivalent to “asset_id > 500”.
Configuring and Managing Advanced Registration Flows 3-7

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html
http://activemq.apache.org/selectors.html

Conf igur ing the Orac le Ente rpr ise Repos i to r y Event Manage r
Configuring Logging of Event Manager Events
The Event Manager uses the same logging framework as Oracle Enterprise Repository. By
default, logging is enabled to go to a file, but you direct the debug statements to go to the console
by appending the following categories to the log4fl.properties file in the <OER
Domain>\WEB-INF\classes directory.

eventing subsystem
log4j.category.com.bea.infra.event.core= debug,eventingLog,stdout
log4j.category.com.bea.infra.event.dm= debug,eventingLog,stdout
log4j.category.com.bea.infra.event.facade= debug,eventingLog,stdout
log4j.category.com.bea.infra.event.notifier= debug,eventingLog,stdout
log4j.category.com.bea.infra.event.store= debug,eventingLog,stdout
log4j.category.com.bea.infra.event.sub= debug,eventingLog,stdout
3-8 Configuring and Managing Advanced Registration Flows

C H A P T E R 4
Administrating Oracle Business
Process Management Processes
This section contains information on the following subjects:

“Overview” on page 4-2

“Administering Oracle Business Process Management Web Applications” on page 4-2

“Tuning the Oracle Business Process Management Process Engine” on page 4-6

“Configuring a Standalone Process Engine for Failover” on page 4-7

“Using The Oracle Business Process Management Log Viewer” on page 4-8
Configuring and Managing Advanced Registration Flows 4-1

Admin is t ra t ing Orac l e Bus iness P rocess Management P rocesses
Overview
After the Event Manager is ready to send events, the Process Engine needs to be configured in
order to be ready to process the Events. When Oracle Enterprise Repository is installed, it
provides an option to install and configure the Oracle Business Process Management Process
Engine. This section assumes that the Oracle Business Process Management Process Engine was
successfully installed.

Administering Oracle Business Process Management
Web Applications

To start the Oracle Business Process Management Process engine and define the participants, you
must launch the Oracle Business Process Management Admin Center.

Starting the Oracle Business Process Management Admin
Center
Follow these steps to launch the Oracle Business Process Management Admin Center:

1. Navigate to the <BEA_HOME>\albpm65\enterprise\bin directory and double-click one of
the following files:

– albpmadmcenter (Windows or UNIX GUI-based)

– ./startwebconsole.sh (UNIX console-based). Then point your browser to
http://<host>:8585/webconsole (e.g., http://localhost:8585/webconsole).

2. On the Admin Center page, click the Start BPM Web Applications option.
4-2 Configuring and Managing Advanced Registration Flows

Admin is te r ing Orac l e Bus iness P rocess Management Web App l icat ions
Figure 4-1 Oracle Business Process Management Admin Center

3. When it becomes available, click the Launch Process Administrator option to launch the
Process Administrator.

4. When prompted to enter the required credentials, enter the BPM admin user name and
password that was used on the FDI User Credentials panel during the installation process. The
recommended example for these credentials is bpm_admin for the user name and password.

Starting the Oracle Business Process Management Process
Engine
Follow these steps to start the Oracle Business Process Management Process Engine.

1. On the Oracle Business Process Management Process Administrator page, open the
aler_engine Process Engine by clicking the Engine link on the left side of the page.
Configuring and Managing Advanced Registration Flows 4-3

Admin is t ra t ing Orac l e Bus iness P rocess Management P rocesses
Figure 4-2 Oracle Business Process Management Process Administrator - Start / Stop

2. Start the aler_engine by clicking the Start icon under Engine Actions on the right side of
the page. Starting the engine may take several minutes to complete. Make sure that the status
of the engine is Ready.

Once you the Oracle Business Process Management Process Engine is running, you can stop it
and then restart it to load your latest workflow.xml changes.

Defining the Oracle Business Process Management
Participants
This section explains how to define the Oracle Business Process Management Process Engine
participants.

Oracle Business Process Management Administrators
Using the FDI User Credentials, Oracle Business Process Management Process Administrator
can log into the Process Administrator, start/stop the process engine, and create other users.

Advanced Registration Flow Participant
When the Oracle Business Process Management Process Engine is installed by Oracle’s BEA
Products installer, it creates aler_workflow_user as the Advanced Registration Flow user. By
default, the password is also set as aler_workflow_user, but the password can be changed in
the Process Administrator by selecting Participants in the navigator and clicking Change the
password in the Advanced Properties section, as shown in Figure 4-3.
4-4 Configuring and Managing Advanced Registration Flows

Admin is te r ing Orac l e Bus iness P rocess Management Web App l icat ions
Figure 4-3 Oracle Business Process Management Process Administrator - Change Password

A new participant can also be created for the role of “administrator” and this new participant can
be configured in the Event Manager’s Subscription Manager file. For more information, see
“Configuring the Subscription Manager” on page 3-4.
Configuring and Managing Advanced Registration Flows 4-5

Admin is t ra t ing Orac l e Bus iness P rocess Management P rocesses
Tuning the Oracle Business Process Management
Process Engine

The following parameters need to be tuned using the Oracle Business Process Management
Process Administrator.

Advanced Properties
Go to the Engines > <Engine Name> > Engine Nodes > Advanced Properties page.

Figure 4-4 Oracle Business Process Management Process Administrator - Advanced Properties

Database Runtime Properties
Go to the Engines > <Engine Name> > Edit Engine Database Configuration page.

Figure 4-5 Oracle Business Process Management Process Administrator - Database Runtime

Memory and Execution Thread Properties
Go to the Engines > <Engine Name> > Execution page.
4-6 Configuring and Managing Advanced Registration Flows

Conf igur ing a S tanda lone P rocess Eng ine fo r Fa i l ove r
Figure 4-6 Oracle Business Process Management Process Administrator - Memory and Threads

Configuring a Standalone Process Engine for Failover
To support failover of Oracle Business Process Management standalone process engines, you can
configure a backup engine(s) in your environment. One of the engines in this federation is marked
as PRIMARY and the others assume to be backups for this primary engine. Multiple engines can
be configured to serve as backups. Any of these backup engines will take the role of the primary
if the designated primary fails. When the server that has failed comes back online, it will join in
as a backup to the one acting as primary.

For detailed instructions on configuring backup engines, see the section on configuring engine
failover in the Oracle Business Process Management Administration Guide at:
http://download.oracle.com/docs/cd/E13165_01/bpm/docs65/admin_guide/index.
html
Configuring and Managing Advanced Registration Flows 4-7

http://download.oracle.com/docs/cd/E13165_01/bpm/docs65/admin_guide/index.html
http://download.oracle.com/docs/cd/E13165_01/bpm/docs65/admin_guide/index.html

Admin is t ra t ing Orac l e Bus iness P rocess Management P rocesses
Using The Oracle Business Process Management Log
Viewer

The Oracle Business Process Management Log Viewer enables you to read information logged
by the Process Execution Engine. A set of log files is created for each project you define. The
Studio Log Viewer reads the files and displays them to help you monitor and trace Engine
execution.

To launch the Log Viewer, double-click the albpmlogviewer file in the <Oracle Business
Process Management Enterprise Home>\bin directory.

Filtering Event Log Messages for Oracle Enterprise
Repository Flows
You can filter log messages so that the Advanced Registration Flows log Info, Debug, and Fatal
messages.

Turn on the “Debug” level on the Log page of the Process Engine using the Process Administrator
preference settings. By default, the level is set to “Warning”.

Go to the Engines > <Engine Name> > Log page.

Figure 4-7 Oracle Business Process Management Process Administrator - Logging Preferences

When you turn on the Debug level though you will notice that the Process Engine prints a lot of
information, not just for the Oracle Enterprise Repository Advanced Registration Flows, but
other Process Engine information as well. To filter the debug logging to show only the Oracle
Enterprise Repository flow-related information, follow these steps:
4-8 Configuring and Managing Advanced Registration Flows

Using The Orac le Bus iness P rocess Management Log V i ewer
1. Within the Log viewer, select Message in the left-most list box.

2. Select Begins With in the next list box.

3. Type ALER: in the text box

4. Click the Apply Filter button.

The Oracle Enterprise Repository Event Logging prints a prefix of ALER: for all logged event
messages, as shown here.

Figure 4-8 Log Viewer With ALER Filter
Configuring and Managing Advanced Registration Flows 4-9

Admin is t ra t ing Orac l e Bus iness P rocess Management P rocesses
4-10 Configuring and Managing Advanced Registration Flows

C H A P T E R 5
Configuring Advanced Registration
Flows
This section contains information on the following subjects:

“Overview of Advanced Registration Flows” on page 5-2

“Creating and Customizing a Workflow Configuration File” on page 5-2

“Wiring Asset Events to Flows” on page 5-4

“Automatic Asset Registration Flows” on page 5-6

“Multi-tier Automatic Assignment Flows” on page 5-14

“Metadata Change Flows” on page 5-19

“Time-based Escalation Flows” on page 5-27

“Validation Expiration Flows” on page 5-31

“Customizing Email Notification Templates” on page 5-35
Configuring and Managing Advanced Registration Flows 5-1

Conf igur ing Advanced Reg is t ra t ion F l ows
Overview of Advanced Registration Flows
Tip: Before you begin, you should read Chapter 2, “Getting Started with Advanced

Registration Flows” to quickly get started using the Advanced Registration Flow feature
using the bundled Oracle Business Process Management Web Service endpoint that is
configured to work with the Oracle Business Process Management Process Engine.

Oracle Enterprise Repository bundles pre-built Oracle Business Process Management flows that
attempt to automate Oracle Enterprise Repository asset submission, acceptance, registration and
other governance process. This section discusses the configuration that is required before starting
the Oracle Business Process Management Process Engine to process the asset events that are
triggered by Oracle Enterprise Repository. For more information about configuring the Process
Engine to trigger flows, see Chapter 3, “Configuring the Oracle Enterprise Repository Event
Manager.”

The flows are also designed to be flexible and can be customized using either the Workflow
Configuration file (workflow.xml) or Oracle Business Process Management. This section also
discusses each flow in detail and gives examples of how they can be tailored to suit your
environment.

This chapter describes how to configure an advanced registration flow. To create a new
workflow, follow these steps:

1. Open an existing Oracle Business Process Management project in an IDE.

2. Add a new workflow. See the Oracle Business Process Management documentation for
details on this step.

3. Undeploy and deploy the project.

4. Wire the workflow to the events by following the instructions in “Wiring Asset Events to
Flows” on page 5-4.

Creating and Customizing a Workflow Configuration File
This section explains how to create and customize a Workflow Configuration XML file.

Generating a Workflow Configuration File
Generate the workflow.xml file using the Generate Workflow Config tool (config_gen.bat).
This tool connects to Oracle Enterprise Repository and creates a bootstrapping file that can be
5-2 Configuring and Managing Advanced Registration Flows

Creat ing and Customiz ing a Work f l ow Conf igurat i on F i l e
customized. For more information about generating the workflow.xml file, see “Generating the
Workflow Config File” on page 7-6.

1. From a command prompt, run the Generate Workflow Config tool as follows:

 > config_gen.bat URI User Password ConfigDir

where:

– URI = OER URI, using the following format:
http://<host>:<port>/<oer web app name>/services/FlashlineRegistry
For example: http://localhost:7001/alerbuild/services/FlashlineRegistry

– User = Oracle Enterprise Repository user name

– Password = Oracle Enterprise Repository password

– ConfigDir = the directory where the workflow.xml file will be created

Note: If a file already exists, it will be renamed to workflow.xml.bak.

2. Copy the newly generated workflow.xml file to the <Oracle Business Process
Management Enterprise Edition>/enterprise/server/aler_engine directory.

3. Open the workflow.xml file using the XML editor of choice.

Defining the Oracle Enterprise Repository Connection and
Registrar
The Workflow Configuration file will load the Oracle Enterprise Repository connection and
registrar information from the following XML data.

<alerconnection>
 <uri>http://localhost.7001/aler/services/FlashlineRegistry</uri>
 <registrar>
 <user>admin</user>
 <password>n0pa55w0rd</password>
 </registrar>
</alerconnection>

Encrypting the Registrar User Password
The Security Encrypt Password tool (runWfSecurity.bat) allows you to encrypt the registrar
passwords that are stored in the Workflow Config file. The tool recursively scans the file and
encrypts all the password elements it encounters.
Configuring and Managing Advanced Registration Flows 5-3

Conf igur ing Advanced Reg is t ra t ion F l ows
For more information see “Encrypting Your Passwords” on page 7-8.

Wiring Asset Events to Flows
The Advanced Registration Flows are designed with a flexible framework where asset events can
be wired to one or more flows that will be executed when an event is triggered, as illustrated in
Figure 5-1.

Figure 5-1 Wiring Asset Events to Flows

Note: All the events are wired to pre-defined flows out-of-the-box. The wirings only need to be
changed if customizations or new flows are designed.

The wiring of asset events to flows is configured within the Workflow Configuration file. For
example, the following configuration snippet shows that when an “Asset Submitted” event is
triggered, it in turn triggers a flow to automatically accept the asset based on rules that are
configured in the Workflow Configuration file.
5-4 Configuring and Managing Advanced Registration Flows

Wir ing Asse t Events to F l ows
 <!--Community Flows-->
 <state name="urn:com:bea:aler:events:type:AssetSubmission">
 <action>CommunityAccept</action>
 </state>

 <!--The Multi_tier Flows-->
 <state name="urn:com:bea:aler:events:type:AssetAccepted">
 <action>MultiTier_Tier1_Assign</action>
 </state>
 <state name="urn:com:bea:aler:events:type:AssetTabApproved">
 <action>MultiTier_NextTier_Assign</action>
 </state>

 <!--Asset Registration Status Flows-->
 <state name="urn:com:bea:aler:events:type:AssetAllTabApproved">
 <action>AllTabApproved_Register</action>
 </state>

This example configuration wires the following events to various flows. The <action> element
contains the name of the flow that will be executed.

1. When an asset “submitted” event is triggered, execute the Community Accept flow.

2. When an asset “accepted” event is triggered, execute the MultiTier1 flow.

3. When a tab “approved” event is triggered, execute the Multi-Tier Next Tier flow.

4. When “all the tabs approved” event is triggered, execute the Automatic Registration flow.

Some of the flows take parameters that are needed as input. Different parameters are passed to
different flows. For example, the ChangeCAS (Change Custom Access Settings) flow takes
<customAccessSettings> as a parameter. Here is a sample wiring when an asset is registered,
where the flow automatically assigns MyCAS and MyCAS2 custom access settings.

 <state name="urn:com:bea:aler:events:type:AssetRegister">
 <action>ChangeCAS</action>
 <customAccessSettings>
 <customAccessSetting>MyCAS</customAccessSetting>
 <customAccessSetting>MyCAS2</customAccessSetting>
 </customAccessSettings>
 </state>
Configuring and Managing Advanced Registration Flows 5-5

Conf igur ing Advanced Reg is t ra t ion F l ows
Automatic Asset Registration Flows
This section describes how the Advanced Registration flows can automate the manual asset
acceptance and registration process done using the Oracle Enterprise Repository Asset Editor.
For information on using the Oracle Enterprise Repository Asset Editor and the asset registration
process, refer to the Oracle Enterprise Repository Registrar Guide.

Note: Do not enable the “Community Acceptance” or the “Automated Acceptance” flows if
repository users submit assets via the “Submit an Asset” link. This configuration is not
currently supported in Oracle Enterprise Repository.

Configuring Community Flows
The Community flow provides a way to automate the asset acceptance, assignment, and
registration process by allowing the configuration of automated assignment rules and also
introduces the notion of federated registrars among different authorities. Rather than spamming
many registrars across all communities (through the system registrar notification), you could
limit the system registrar to one or a few individuals, and let the Automatic Acceptance flow
accept assets on behalf of a registrar-of-record for the community. The Community flow feature
can distribute asset submissions to those with the authority to approve them for the community.

The Community flow can be used to address the following scenarios:

Automatic federated registrars support for acceptance as opposed to a single registrar
getting many notifications about newly submitted assets.

Even if asset acceptance is manual, the Community flow can be used to automate the
assignment of the asset approvals to pre-defined approvers. Creating pre-defined approvers
can be achieved in two ways:

– Creating a list of pre-defined approvers for all the tabs in that asset.

– Using multi-tier assignment (this is the same as the Multi-Tier flow but it operates
within the Community).

Automation of the registration process. The flows will automatically register the assets if
the following conditions happen:

a. When all the tabs approved

b. When the last tier in a Multi-tier process is completed

c. Or whichever happens first.
5-6 Configuring and Managing Advanced Registration Flows

http://download.oracle.com/docs/cd/E13164_01/oer/docs10134/pdf/OER103-CORE_Registrar_Guide.pdf

Automat ic Asset Reg is t ra t i on F lows
The Communities are configured within the flow configuration and Asset Types, Producing
Projects, etc., can point to a Community.

Figure 5-2 demonstrates how a Community for an asset is located by the flow, as well as how the
rules for automatic acceptance are located by the flow.
Configuring and Managing Advanced Registration Flows 5-7

Conf igur ing Advanced Reg is t ra t ion F l ows
Figure 5-2 Automatic Asset Acceptance Flowchart

Note: The same flowchart applies for automatic Registration. Simply substitute autoRegister
for autoAccept.
5-8 Configuring and Managing Advanced Registration Flows

Automat ic Asset Reg is t ra t i on F lows
Setting the Community for an Oracle Enterprise Repository Project
Define the community for a project using the <producingProjectSettings> element. The
following example demonstrates creating a project named “Registry” for the “SOA Center of
Excellence” community, and with an ID of “40000”.

<producingProjectSettings>
 <producingProject name=”Registry” community=”SOA Center of Excellence
 id=”40000”/>
</producingProjectSettings>

Setting the Community for an Asset Type
Define the community for an Asset Type using the <assetType> element. The following
example demonstrates creating an asset type named “Application” for the “SOA Center of
Excellence” community, and with an ID of “158”.

 <assetType name=”Application” community=”SOA Center of Excellence
 id=”158”>
 <allTabs>

Setting the Community for an Asset using the Type Manager and Asset Editor
Instead of setting the community for an Asset in workflow.xml, you can set the community for
the Asset Type using the Type Manager and Asset Editor.

In the Type Manager, follow these steps:

1. Select the Asset Type for which you want to enable the Community field, and click the Viewer
tab.

2. Click the Display in Group button, as shown in Figure 5-3.
Configuring and Managing Advanced Registration Flows 5-9

Conf igur ing Advanced Reg is t ra t ion F l ows
Figure 5-3 Setting the Community for an Asset Type in Type Manager

Then, in Asset Editor, follow these steps:

1. Select an asset of the Asset Type you selected in the Type Manager.

2. Set the community name to use for that asset in the Community field of the Overview tab, as
shown in Figure 5-4.
5-10 Configuring and Managing Advanced Registration Flows

Automat ic Asset Reg is t ra t i on F lows
Figure 5-4 Setting the Community Name in the Community Field in Asset Editor

If you followed the instructions for setting a community in “Setting the Community for an Asset
Type” on page 5-9 and you then set a Community name for an asset in Asset Editor, the
Community name you set for the asset in Asset Editor overrides the Community name set in the
workflows.xml file.

Configuring a Community to Automatically Accept an Asset
The following example demonstrates how to set the “SOA Center of Excellence” community to
automatically accept assets.

 <communities name=”SOA Center of Excellence autoAccept=”true”>

Note: Do not enable the “Community Acceptance” or the “Automated Acceptance” flows if
repository users submit assets via the “Submit an Asset” link. This configuration is not
currently supported in Oracle Enterprise Repository.
Configuring and Managing Advanced Registration Flows 5-11

Conf igur ing Advanced Reg is t ra t ion F l ows
Configuring a Community to Assign Assets for Tab Approval
If the AssetSubmitted event is wired to the Community flow, then the <approvers> element lists
the approvers that will be assigned by the Community flow automatically.

 <communities name=”Java” autoAccept=”true”>
 <approvers>
 <alerid>5003</alerid>
 <alerid>5004</alerid>
 </approvers>

For instructions on using the <alerid> in Tab Approval flows, see “Using an <alerid> for Tab
Approvals” on page 5-16.

Configuring a Community to Assign Assets for Tab Approval Using Multi-tier
Multi-tier assignment is the same as the Multi-Tier flow but it operates within the Community.
For more information on the Multi-tier flow, see “Multi-tier Automatic Assignment Flows” on
page 5-14.

Note: The tabs that are provided within the Multi-tier configuration of a community should be
the common tabs that exist in all the asset types.

Configuring a Community to Automatically Register an Asset
The following example demonstrates how to set the “SOA Center of Excellence” community to
automatically accept and register assets.

 <communities name=”SOA Center of Excellence autoAccept=”true”
 autoRegister=”true”>

Configuring a Community to Have a Dedicated Registrar
The Registrar user name and password is required to accept, assign, and register assets. The
Community flow will load the registrar information from the Community that the asset belongs
to. If an asset does not belong to a community or if the registrar information is not found in the
community, then the global registrar will be used by the Community flow.

The following is the order of precedence in getting the Community tag by the Community flows,
as illustrated in Figure 5-1:

Community Tag in the incoming event

Community Tag in the Asset Type that the incoming asset belongs to
5-12 Configuring and Managing Advanced Registration Flows

Automat ic Asset Reg is t ra t i on F lows
Community Tag in the Producing Project that the incoming asset belongs to

Configuring Automated Acceptance and Automated
Registration Flows
Besides using the Community flows to automatically accept and register assets, the following
rules can be used to accept and register assets, as illustrated in Figure 5-1.

Note: Do not enable the “Community Acceptance” or the “Automated Acceptance” flows if
repository users submit assets via the “Submit an Asset” link. This configuration is not
currently supported in Oracle Enterprise Repository.

Asset Type
The autoAccept and autoRegister flag within the AssetType element can be used to
automatically accept or register assets.

 <assetType name=”Application” autoAccept=”true” autoRegister=”true”
 id=”158”>
 <allTabs>
 <tab name=”Overview”/>
 <tab name=”Application Lifecycle”/>
 </allTabs>

Categorization Settings
By default the flows do not look for the autoAccept and autoRegister flags, since the look-up
may affect performance. However, this can be enabled by using the <action> flag.

As shown in this example, the <action> flag must be set to true if the flows should use the
Categorization settings. If not, the Categorization settings will be ignored.

 <catgorizationTypeSettings action=”true”>
 <catgorizationType name=”AssetFunction” type “100”>
 <catgorizations name=”Application Adapters” autoAccept=”false”/>
 <catgorizations name=”Customer Information Acquisition”

autoAccept=”false”/>
 <catgorizations name=”eCommerce Frameworks” autoAccept=”false”/>
 </catgorizationType>
Configuring and Managing Advanced Registration Flows 5-13

Conf igur ing Advanced Reg is t ra t ion F l ows
Submitter Role
The submitter role can be used to automatically accept or register the asset. If the role specified
in the following configuration matches the submitter role, then the asset will be automatically
accepted.

 <automation>
 <autoRoles>
 <role>admin</role>
 <role>accesAdminstrator</role>
 </autoRoles>
 <autoApprovalTabs>
 <tab name=”Documentation”/>
 </autoApprovalTabs>
 </automation>

Conflict Resolution and Precedence
In some cases, there will be more than one rule that matches for a given event trigger, so there is
a hierarchy for how each rule is evaluated by the Automated Acceptance and Automated
Registration flows for acceptance, registration, etc., as illustrated in Figure 5-1. The flow will
scan for the following piece of metadata and as soon as it encounters the one in the following
precedence, it will break and use the settings in that metadata.

AssetType settings in the Flow configuration file

Community Tag found in the incoming asset

Community Tag found in the AssetType settings in the Flow configuration file

Community Tag found in the ProducingProject settings in the Flow configuration file

Categorization settings in the Flow configuration file

SubmitterRole settings in the Flow configuration file

Multi-tier Automatic Assignment Flows
Multi-tier flows structure the asset tab approval process in multiple steps called tiers. Asset
approval tabs can be grouped in tiers, and the Mult-tier flow tracks each tier to verify whether all
the tabs are approved by the designated approvers. As soon as the last tab in a tier is approved,
5-14 Configuring and Managing Advanced Registration Flows

Mul t i - t i e r Automat ic Ass ignment F lows
the Mult-tier flow starts the next tier by assigning the asset to the next level of designated
approvers.

Use Cases
In some cases, it may be desired to assign tabs for Tab Approval in multiple steps called
Tiers. For example, it may be desirable to approve the Architecture tab first before
approving the Documentation tab. This is because any architectural issue needs to be
corrected first before it comes to the attention of the Documentation expert.

In previous releases, Tab Approval was done manually by the registrar by manually
tracking the status of each tab approval and then assigning the tabs for the next tier level
approvals. With the Multi-tier flows, this process is automated by the flows.

Figure 5-5 demonstrates the flow of the Mult-tier process.
Configuring and Managing Advanced Registration Flows 5-15

Conf igur ing Advanced Reg is t ra t ion F l ows
Figure 5-5 Multi-tier Automatic Assignment Flowchart

Using an <alerid> for Tab Approvals
When the workflow.xml file is generated, the following XML section is created under the
<allAssetSettings> section. These are all the users that are created in Oracle Enterprise
Repository.
5-16 Configuring and Managing Advanced Registration Flows

Mul t i - t i e r Automat ic Ass ignment F lows
 <alerUsers>
 <user name="admin" alerid="99"/>
 <user name="allpriv" alerid="50000"/>
 <user name="nopriv" alerid="50001"/>
 <user name="tier1" alerid="50002"/>
 <user name="tier2" alerid="50003"/>
 <user name="mrsmith" alerid="50004"/>
 </alerUsers>

As the Workflow Administrator, you need to identify the user(s) by name that you want to use
for approving the asset tabs and use the corresponding <alerid>. Then you can use that
<alerid> in the Workflow XML, such as in the following Multi-tier approval flow:

 <tiers>
 <tier name="Tier1">
 <approvers>
 <alerid>50001</alerid>
 </approvers>
 <tabs>
 <tab name="Overview"/>
 <tab name="Technical"/>
 <tab name="Documentation"/>
 </tabs>
 </tier>

Setting Up a Community for Multi-tier Tab Approval
The following example demonstrates how the Multi-tier flow is configured for tab approvers in
the “SOA Center of Excellence” community to automatically accept tabs.

 <communities name=”SOA Center of Excellence autoAccept=”true”>
 <tiers>
 <tier name=”Tier1”>
 <approvers>
 <alerid>5002</alerid>
 </approvers>
 <tabs>
 <tab name=”Overview”>
 <tab name=”Taxonomy”>
 </tabs>
Configuring and Managing Advanced Registration Flows 5-17

Conf igur ing Advanced Reg is t ra t ion F l ows
 </tier>
 <tier name=”Tier2”>
 <approvers>
 <alerid>5003</alerid>
 </approvers>
 <tabs>
 <tab name=”Architecture”>
 </tabs>
 </tier>
 </tiers>
 </communities>

Note: Tabs that are provided within the Multi-tier configuration of a Community should be the
common tabs that exist in all the Asset Types.

Setting Up an Asset Type for Multi-tier Tab Approval
The following example demonstrates how the tabs of an asset type of “Application” are
configured for multi-tier approval.

 <assetType name=”Application” id=”158”>
 <allTabs>
 <tab name=”Oveview”/>
 <tab name=”Application Lifecycle”/>
 <tab name=”License Information”/>
 <tab name=”Certification Tracking”/>
 <tab name=”Taxonomy”/>
 <tab name=”Documentation”/>
 <tab name=”Relationships”/>
 <tab name=”Support”/>
 <tab name=”Cost Categories”/>
 <tab name=”Ownership”/>
 <tab name=”Technology Stack”/>
 <tab name=”Operational Information”/>
 <tab name=”Miscellaneous”/>
 </allTabs>
 <tiers>
 <!--Please change “_CHANGE_TIER1_NAME_” to the name of the Tier-->
 <!--Example:- “Tier1”-->
5-18 Configuring and Managing Advanced Registration Flows

Metadata Change F lows
 <tier name=”Tier1”>
 <approvers>
 <alerid>99</alerid>
 </approvers>
 <tabs>
 <!--Please change “_CHANGE_TABNAME_” to the name of the Tab-->
 <!--Example:- “Documentation”-->
 <tab name=”Overview”>
 <tab name=”Taxonomy”>
 </tabs>
 </tier>
 </tiers>

Metadata Change Flows
Metadata flows are a group of flows that take one or more actions when a metadata element of an
asset changes. The Metadata element that changes will trigger an event that is wired to one or
more flows. For instructions on how to wire an event to a flow, see “Wiring Asset Events to
Flows” on page 5-4.

Use Cases
These are some of the use cases where Metadata Change Flows may apply:

When the “Asset Lifecycle Stage” metadata element of an asset changes from “Build” to
“Release,”, you may want to change Custom Access Settings to have more restricted
access control to the asset.

When the “Name” of an asset changes, you may want to notify the subscribers.

When any metadata element of an element changes, you may want the asset to go through
a “Change Management” approval process. The “Change Management” will involve the
following:

– Unapprove a tab named “Change Management.” The Change Management tab in Asset
Editor is shown in Figure 5-6.
Configuring and Managing Advanced Registration Flows 5-19

Conf igur ing Advanced Reg is t ra t ion F l ows
Figure 5-6 The Asset Editor Change Management Tab

– Assign the asset to the registrar

– Append the kind of change to a field called “Reason for reassignment” to assist the
registrar

Configuring Metadata Change Flows

Available Metadata Change Events/States
Following are the states that are available that can be wired to Metadata Change flows.

Note: Besides these events, any categorization changes can be wired, including the custom
categorization.

 <state name=”urn:com:bea:aler:events:type:MetaDataChange:name”>
 <state name=”urn:com:bea:aler:events:type:MetaDataChange:version”>
 <state name=”urn:com:bea:aler:events:type:MetaDataChange:description”>
 <state name=”urn:com:bea:aler:events:type:CategorizationChanged:
 assetLifecycleStage”/>
 <state
name=”urn:com:bea:aler:events:type:CategorizationChanged:classification”>
 <state name=”urn:com:bea:aler:events:type:MetaDataChange:supported”>
 <state
5-20 Configuring and Managing Advanced Registration Flows

Metadata Change F lows
name=”urn:com:bea:aler:events:type:MetaDataChange:organizationalOwnership”>
 <state name=”urn:com:bea:aler:events:type:MetaDataChange:usageFee”>

For most asset types, the usageFee field will be found on the Miscellaneous tab of the Asset
Editor.

Available Flows That Can Be Wired to Actions
These are the pre-defined flows that can be wired to actions. These flow names should appear as
content inside the <action> element to indicate that this is the action that should take place when
the event occurs. Note that any element other than <action> are parameters used by specific
flows.

ChangeCAS – applies one or more Custom Access settings to an asset

ChangeAssetLifecycle – sets the Asset Lifecycle Stage of an asset

ChangeClassification – sets the classification of an asset

ReAssignAssetToRegistrar – assigns the asset to Registrar

AddCommunityTag – saves the “Community” of an asset to Oracle Enterprise Repository

NotifySubscriber – notifies the Subscribers about the Metadata Change

NotifyRegistrationActors – notifies the Registrar, Subscribers, Owners, etc., about
the Metadata Change

NotifyCustomUser – notifies configured custom users about the Metadata Change

UnapproveChangeManagementTab – triggers the Change Management process

ResetChangeManagementTab – resets the “Reason for reassignment” field in the Change
Management tab as soon as the Change Management tab is approved

CommunityAccept – invokes the Community Accept Flow used when an asset is
submitted

CommunityAssign – invokes the Community Assign Flow used when an asset is accepted

MultiTier_Tier1_Assign – invokes the Multi-Tier Flow used when an asset is accepted

MultiTier_NextTier_Assign – invokes the Multi-Tier Flow used when a tab is
approved

ApproveTabAction – approves one or more tab
Configuring and Managing Advanced Registration Flows 5-21

Conf igur ing Advanced Reg is t ra t ion F l ows
UnapproveTabAction – unapproves one or more tab

AutoApproveTabAction – approves one or more configured tab based on the role of the
submitter

AllTabsApproval_Register – invokes the flow to register the asset when all the tabs are
approved

ReAssignAssetToRegistrar – Assigns the asset to the Registrar for approval. The flow
uses the Community Registrar if one is configured. If not, it uses the Global Registrar.

ResetFlowState – Resets the State information used by the Timer based flows. This is
useful in cases where a Timer flow is tracking the Unsubmitted assets and when the state
changes from Unsubmitted to submitted, so the State information can be reset. If not reset,
then if the asset goes back to Unsubmitted, the workflows use the same state that was
previously set. This is not always desirable and the ResetFlowState action can be used in
appropriate events or states to reset the state information.

UnRegisterAssetAction – Unregisters the Asset if the asset is in registered state.

autoSyncAlerToUddi – Timer-based workflow that moves services from Oracle
Enterprise Repository to Oracle Service Registry. See the “Invoking the Oracle Registry
Repository Exchange Utility Using Workflows” section of the Oracle Enterprise
Repository Oracle Registry Repository Exchange Utility manual for more information
about this workflow.

autoSyncUddiToAler – Timer-based workflow that moves services from Oracle Service
Registry to Oracle Enterprise Repository. See the “Invoking the Oracle Registry Repository
Exchange Utility Using Workflows” section of the Oracle Enterprise Repository Oracle
Registry Repository Exchange Utility manual for more information about this workflow.

PublishAssetToUddi – Moves individual services and their metadata to Oracle Service
Registry by wiring the events that get triggered when these services are registered or a
lifecycle of a service is changed. See the “Invoking the Oracle Registry Repository
Exchange Utility Using Workflows” section of the Oracle Enterprise Repository Oracle
Registry Repository Exchange Utility manual for more information about this workflow.

Example Metadata Change Configuration
This sample configuration specifies that when an asset is registered, it invokes two flows by the
names of “NotifySubscriber” and “ChangeCAS.” Note that the element
<customAccessSettings> is a parameter to the flow ChangeCAS, which tells the flows the
names of the CAS that should be applied.
5-22 Configuring and Managing Advanced Registration Flows

http://download.oracle.com/docs/cd/E13164_01/oer/docs10134/regman/using.html#workflows
http://download.oracle.com/docs/cd/E13164_01/oer/docs10134/regman/using.html#workflows
http://download.oracle.com/docs/cd/E13164_01/oer/docs10134/regman/using.html#workflows
http://download.oracle.com/docs/cd/E13164_01/oer/docs10134/regman/using.html#workflows
http://download.oracle.com/docs/cd/E13164_01/oer/docs10134/regman/using.html#workflows
http://download.oracle.com/docs/cd/E13164_01/oer/docs10134/regman/using.html#workflows

Metadata Change F lows
 <state name=”urn:com:bea:aler:events:type:AssetRegister”>
 <action>NotifySubscriber</action>
 <action>ChangeCAS</action>
 <customAccessSettings>
 <customAccessSetting>MyCAS</customAccessSetting>
 <customAccessSetting>MyCAS2</customAccessSetting>
 </customAccessSettings>
 </state>
 <state name=”urn:com:bea:aler:events:type:AssetUnAccept”>
 <action>NotifySubscriber</action>
 <action>ChangeClassification</action>
 <classification>Approved</classification>
 </state>

Example Metadata Change Configuration That Checks for Metadata Value
It is also possible to invoke a flow not only when a metadata element changes, but also when it
takes a specific value. For example, when the “Asset Lifecycle Stage” metadata element of an
asset changes from “Build” to “Release,” you may want to apply one set of Custom Access
Settings, where as when the value changes from “Plan” to “Build,” you may want to apply a
different set. Here is an example:

 <state

name=”urn:com:bea:aler:events:type:CategorizationChanged:AssetLifecycleSta

ge” value=”Stage 4 - Release”>
 <action>ChangeCAS</action>
 <customAccessSettings>
 <customAccessSetting>MyCAS</customAccessSetting>
 </customAccessSettings>
 </state>
 <state

name=”urn:com:bea:aler:events:type:CategorizationChanged:AssetLifecycleSta

ge” value=”Stage 3 - Build”>
 <action>ChangeCAS</action>
 <customAccessSettings>
 <customAccessSetting>MyCAS2</customAccessSetting>
 </customAccessSettings>
 </state>
Configuring and Managing Advanced Registration Flows 5-23

Conf igur ing Advanced Reg is t ra t ion F l ows
ChangeClassification
Sets the classification of an asset. ChangeClassification uses the following element to set the
classification.

 <state name=”urn:com:bea:aler:events:type:AssetRegister”>
 <action>ChangeClassification</action>
 <classification>Approved</classification>
 </state>

ChangeCAS
Applies one or more Custom Access Settings to an asset. ChangeCAS uses the following element
to set the custom access settings.

 <state name=”urn:com:bea:aler:events:type:AssetRegister”>
 <action>ChangeCAS</action>
 <customAccessSettings>
 <customAccessSetting>MyCAS</customAccessSetting>
 <customAccessSetting>MyCAS2</customAccessSetting>
 </customAccessSettings>
 </state>

ChangeAssetLifecycle
Sets the Asset Lifecycle stage of an asset. ChangeAssetLifeCycle uses the following element to
set the asset life cycle.

 <state name=”urn:com:bea:aler:events:type:AssetRegister”>
 <action>ChangeAssetLifeCycle</action>
 <assetLifeCycle>Stage 3 - Build</assetLifeCycle>
 </state>

ApproveTabAction
The ApproveTabAction flow approves one or more tabs of an asset. The following configuration
approves the “Overview” and “Taxonomy” tabs.

 <state name=?urn:com:bea:aler:events:type:MetaDataChange:name?>
 <action>ApproveTabAction</action>
 <approveTabs>
 <tab name=?Overview?>
 <tab name=?Taxonomy?>
5-24 Configuring and Managing Advanced Registration Flows

Metadata Change F lows
 </approveTabs>
 </state>

UnapproveTabAction
The following element configures the list of tabs to be unapproved by the UnapproveTabAction
flow.

 <state name=”urn:com:bea:aler:events:type:MetaDataChange:name”>
 <action>UnApproveTabAction</action>
 <unapproveTabs>
 <Tab name=”Overview”>
 <Tab name=”Taxonomy”>
 </unapproveTabs>
 </state>

AutoApproveTabAction
The AutoApproveTabAction flow approves tabs based on the role of the submitter. For example,
the following element under <allAssetSettings> configures the list of tabs that need to be
automatically approved based on the role of the submitter. The roles that are acceptable are also
configured.

 <automation>
 <autoRoles>
 <role>admin</role>
 <role>accesAdminstrator</role>
 </autoRoles>
 <autoApprovalTabs>
 <tab name=”Documentation”/>
 </autoApprovalTabs>
 </automation>

Here is the configuration for invoking the flow:

 <state name=”urn:com:bea:aler:events:type:AssetRegister”>
 <action>AutoApproveTabAction</action>
 </state>
Configuring and Managing Advanced Registration Flows 5-25

Conf igur ing Advanced Reg is t ra t ion F l ows
UnapproveChangeManagementTab
When any metadata element of an element changes, you may want the asset to go through a
“Change Management” approval process, which involves following.

Unapprove a tab by name “Change Management.” The Change Management tab in Asset
Editor is shown in Figure 5-7.

Figure 5-7 The Change Management Tab in Asset Editor

Assign the asset to the registrar.

Append the kind of change to a field called “Reason for reassignment” to assist the
registrar

 <state name=”urn:com:bea:aler:events:type:MetaDataChange:name”>
 <action>UnApproveChangeManagementTab</action>
 </state>

ResetChangeManagementTab
This flow resets the “Reason for reassignment” field in the Change Management tab as soon as
the Change Management tab is approved.
5-26 Configuring and Managing Advanced Registration Flows

T ime-based Esca lat i on F lows
 <state name=”urn:com:bea:aler:events:type:AssetTabApproved”>
 <action>MultiTier_NextTier_Assign</action>
 <action>ResetChangeManagementTab</action>
 </state>

NotifyCustomUser
Notifies configured custom users about the metadata change. The email addresses of the users are
configured inside the <customNotification> element under <allAssetSettings>, as shown
below:

 <allAssetSettings>
 <notification timerInterval=”id”>
 <customNotification>
 <emailAddress>smith@bea.com</emailAddress>
 </customNotification>
 </notification>

Invoking Flows Based on Approval of Named Tabs
A metadata change flow can be executed based on the approval of a specific tabs, as follows:

 <state name="urn:com:bea:aler:events:type:AssetTabApproved" value

="Overview">
 <action>MultiTier_NextTier_Assign</action>
 <action>ChangeAssetLifecycle</action>
 <assetLifecycle>Stage 3 - Build</assetLifecycle>
 </state>

Time-based Escalation Flows
The Time-based Escalation flows track assets in various states and notifies all interested parties.
The following section explains how to configure the Time-based Escalation flows. There are four
different kinds of Time-based Escalation flows and each one can be configured individually, as
described in the following sections.

Open the workflow.xml configuration file and locate the <notification> element.
Configuring and Managing Advanced Registration Flows 5-27

Conf igur ing Advanced Reg is t ra t ion F l ows
 <notification timerInterval=”1d”>
 <numTimesNotify>10</numTimesNotify>
 <daysBeforeNextNotification>2</daysBeforeNextNotification>

The timerInterval element specifies the time interval after which the flows will be
triggered. In a production environment, this should be set to "1d", which means the flows
will be triggered once a day. However for testing purposes, you can set it to "1m" or "5m"
to trigger the flows every minute or every five minutes. Also, each time this field is
changed, the Event Engine needs to be restarted, unlike the other field changes that can be
refreshed using the refresh tool.

The numTimesNotify element specifies how many times the notifications should be sent
by the Time-based Escalation flows.

The daysBeforeNextNotification element specifies how many days need to elapse in
between the notifications.

Note: If the timerInterval element is configured in minutes to trigger flows in minute
intervals for testing purposes, then the specified interval for
daysBeforeNextNotification will also be interpreted in minutes.

Figure 5-8 demonstrates the flow of the Time-based Escalation flows.
5-28 Configuring and Managing Advanced Registration Flows

T ime-based Esca lat i on F lows
Figure 5-8 Time-based Escalation Flowchart

Tracking Unsubmitted Assets
This flow tracks assets that are in an “unsubmitted” status and sends notification to the owners to
take action.

 <owner_resubmit action=”false” days=”0” regressOnInaction=”true”

queryOperator=”eq”/>
Configuring and Managing Advanced Registration Flows 5-29

Conf igur ing Advanced Reg is t ra t ion F l ows
action="true" enables the flow and action="false" disables the flow.

days="10" tracks the assets that reached unsubmitted status 10 days ago. The Time-based
Escalation flows use the current date and subtracts the value from this attribute.

regressOnInaction="true" regresses the asset on inaction. For example, unsubmitted
assets may be deleted.

queryOperator="eq" uses the equals operator when the date is used for querying. Other
possible values are "lte", "gte", etc.

Tracking Unaccepted Assets
This flow tracks assets that are in an “unaccepted” status and sends notification to the registrar to
take action.

 <registrar_accept action=”false” days=”0” regressOnInaction=”true”

queryOperator=”eq”/>

action="true" enables the flow and action="false" disables the flow.

days="10" tracks the assets that reached unsubmitted status 10 days ago. The Time-based
Escalation flow use the current date and subtracts the value from this attribute.

regressOnInaction="true" regresses the asset on inaction. For example, submitted
assets may be unsubmitted.

queryOperator="eq" uses the equals operator when the date is used for querying. Other
possible values are "lte", "gte", etc.

Tracking Unapproved Assets
This flow tracks assets that are in an “unapproved” status and sends notification to the approvers
to take action.

 <assignees_approve action=”false” days=”0” regressOnInaction=”true”
queryOperator=”eq”/>

action="true" enables the flow and action="false" disables the flow.

days="10" tracks the assets that reached unsubmitted status 10 days ago. The Time-based
Escalation flow use the current date and subtracts the value from this attribute.

regressOnInaction="true" regresses the asset on inaction. For example, accepted
assets may be unaccepted.
5-30 Configuring and Managing Advanced Registration Flows

Val ida t ion Exp i ra t i on F lows
queryOperator="eq" uses the equals operator when the date is used for querying. Other
possible values are "lte", "gte", etc.

Tracking Unregistered Assets
This flow tracks the assets that are in an “unregistered” status and sends notification to the
approvers to take action.

 <registrar_register action=”false” days=”0” regressOnInaction=”true”
queryOperator=”eq”/>

action="true" enables the flow and action="false" disables the flow.

days="10" tracks the assets that reached unsubmitted status 10 days ago. The Time-based
Escalation flow use the current date and subtracts the value from this attribute.

regressOnInaction="true" regresses the asset on inaction. For example, accepted
assets may be unaccepted.

queryOperator="eq" uses the equals operator when the date is used for querying. Other
possible values are "lte", "gte", etc.

Validation Expiration Flows
The Validation Expiration flows track the expired assets prior to the expiration date, as well as
on the date of expiration, and sends warning notifications to all interested parties. After X number
of days of expiration, the flows unregister the assets. After Y number of days of expiration, the
flows deactivate the assets. After Z number of days of expiration, the flows delete the assets.

 <notification timerInterval=”1d”>
 <numTimesNotify>10</numTimesNotify>
 <daysBeforeNextNotification>2</daysBeforeNextNotification>

The timerInterval attribute configure the time interval that the flows will be triggered.
This should be set to "1d", which means the interval is one day. However for testing, this
can be set to "1m" or "5m" to trigger every minute or every 5 minutes. Also, every time
this field is changed, the Event Engine needs to be restarted, unlike the other field changes
that can be refreshed using the refresh tool.

The numTimesNotify element specifies how many times the notifications should be sent
by the Validation Expiration flow.
Configuring and Managing Advanced Registration Flows 5-31

Conf igur ing Advanced Reg is t ra t ion F l ows
The daysBeforeNextNotification element specifies how many days need to elapse in
between the notifications.

 <expiration>
 <expiration_warning action=”false” days=”10” owner=”false”

subscriber=”false” contact=”99”/>
 <unregister_after_expire action=”true” days=”10” queryOperator=”eq”/>
 <inactive_after_expire action=”true” days=”10” queryOperator=”eq”/>
 <delete_after_expire action=”true” days=”10” queryOperator=”eq”/>
 </expiration>

Figure 5-9 demonstrates the flow of the Validation Expiration flows.
5-32 Configuring and Managing Advanced Registration Flows

Val ida t ion Exp i ra t i on F lows
Figure 5-9 Validation Expiration Flowchart

To set the expiration date for an asset, specify the date in the Expiration Date (YYYY-MM-DD)
field on the Miscellaneous tab of the Asset Editor, as shown in Figure 5-10.
Configuring and Managing Advanced Registration Flows 5-33

Conf igur ing Advanced Reg is t ra t ion F l ows
Figure 5-10 The Expiration Date (YYYY-MM-DD) Field on the Asset Editor Miscellaneous Tab

Asset Expiration Warning Notification
The following line enables the warning notification and determines who should receive the
notifications.
 <expiration_warning action=”false” days=”10” owner=”false”
subscriber=”false” contact=”99”/

Note: The days element configures the number of days prior to the expiration that the warning
should be sent.

Unregister Assets After Expiration
The following line enables the Metadata Change flow to unregister the asset after 10 days of
expiration.

 <unregister_after_expire action=”true” days=”10” queryOperator=”eq”/>

Inactivate After Expiration
The following line enables the Metadata Change flow to inactivate the asset after 10 days of
expiration

 <inactive_after_expire action=”true” days=”10” queryOperator=”eq”/>

Delete Assets After Expiration
The following line enables the Metadata Change flow to delete the asset after 10 days of
expiration:

 <delete_after_expire action=”true” days=”10” queryOperator=”eq”/>
5-34 Configuring and Managing Advanced Registration Flows

Customiz ing Emai l No t i f i cat ion Templates
Customizing Email Notification Templates
The Automated Registration Flows automatically send email notifications under many
circumstances. There are five new email templates for the new flows. The email templates are
stored within Oracle Enterprise Repository and the flows invoke an Oracle Enterprise Repository
API by passing name/value pairs that are then substituted by Oracle Enterprise Repository.

Administrators can customize the email subject, body, etc., the same way as other email
templates. The following are the templates that are used by the Advanced Registration Flows:

Metadata of asset has changed – Notifies the registrar and the users assigned to the asset
that the metadata has changed.

Registration status unchanged – Notifies the registrar and the users assigned to the asset
that the registration status <%asset.reg.status%> has remained unchanged for more
than <%action.pending.days%> days.

Status of expired asset has changed – Notifies the registrar and the users assigned to the
expired asset that the status has changed.

Prior to expiration – Notifies the registrar and the users assigned to the asset that it is due
for expiration.

Asset has been expired – Notifies the registrar and the users assigned to the asset that it has
been expired.

For more information about email templates, refer to the Oracle Enterprise Repository
Administration Guide.
Configuring and Managing Advanced Registration Flows 5-35

http://download.oracle.com/docs/cd/E13164_01/oer/docs10134/pdf/OER103-CORE_Admin_Guide.pdf
http://download.oracle.com/docs/cd/E13164_01/oer/docs10134/pdf/OER103-CORE_Admin_Guide.pdf

Conf igur ing Advanced Reg is t ra t ion F l ows
5-36 Configuring and Managing Advanced Registration Flows

C H A P T E R 6
Configuring JMS Servers for Oracle
Enterprise Repository
This section contains information on the following subjects:

“Overview of JMS for the Event Manager” on page 6-2

“Configuring Connectivity Properties for External JMS Servers” on page 6-2

“Configuring the Embedded ActiveMQ JMS Server to Use a Database” on page 6-4

“Configuring JMS Durable Subscribers for Web Service Endpoints” on page 6-5

“Configuring JMS Servers in an Oracle Enterprise Repository Cluster” on page 6-6

“Configuring a JMS Provider In WebSphere 6.1.0.5” on page 6-7
Configuring and Managing Advanced Repository Flows 6-1

Conf igur ing JMS Servers fo r Orac le En te rp r ise Repos i to r y
Overview of JMS for the Event Manager
The Event Manager uses an embedded version of Apache ActiveMQ JMS Server that is enabled
by default. The embedded JMS Server is configured to run out-of-the-box without any additional
configuration. However, if an external JMS server is preferred, such as Oracle’s BEA Weblogic
Server JMS or IBM WebSphere Application Server, then a number of Oracle Enterprise
Repository system settings must be configured.

Note: When Oracle Enterprise Repository is deployed on WebSphere 6.x, the embedded
Apache ActiveMQ JMS Server cannot be used due to conflicts in the classes used by
ActiveMQ and Oracle Enterprise Repository. Therefore, WebSphere 6.x customers
should use the default JMS implementation that comes with WebSphere 6.x. See
“Configuring a JMS Provider In WebSphere 6.1.0.5” on page 6-7.

Configuring Connectivity Properties for External JMS
Servers

Oracle Enterprise Repository’s System Settings section allows administrators to configure the
basic Oracle Enterprise Repository operation and to enable/disable specific features. The Event
Manager’s JMS-related settings are under the “Eventing” group under the main “External
Integrations” category. For more information about System Settings, see the Oracle Enterprise
Repository Administration Guide. Additional “Eventing” properties are described in Chapter 3,
“Configuring the Oracle Enterprise Repository Event Manager.”

Enabling and Configuring an External JMS Server
The internal Apache ActiveMQ JMS Server needs to be disabled in order to configure an external
JMS product. You must also configure JNDI and JMS properties for the external JMS.

Note: These steps are for configuring a single external JMS server. For instructions on
configuring multiple JMS servers in a cluster, see “Configuring JMS Servers in an Oracle
Enterprise Repository Cluster” on page 6-6.

1. Click System Settings in the sidebar on the Oracle Enterprise Repository Admin screen.

2. Enter Event in the System Settings Search box to view all the Event Manager related settings.

3. Disable the internal JMS server by clicking False next to the Event Manager Embedded
JMS Enable property. This forces the Event Manager to use an external JMS server.

4. Configure the required JNDI properties:
6-2 Configuring and Managing Advanced Repository Flows

http://download.oracle.com/docs/cd/E13164_01/oer/docs10134/pdf/OER103-CORE_Admin_Guide.pdf
http://download.oracle.com/docs/cd/E13164_01/oer/docs10134/pdf/OER103-CORE_Admin_Guide.pdf

Conf igur ing Connect i v i t y P roper t i es fo r Ex te rna l JMS Se rve rs
– JNDI URL – Specifies the JNDI URL. For example, t3://localhost:7001.

– JNDI User Name – Specifies the JNDI user name.

– JNDI Password – Specifies the password for the JNDI User Name.

– JNDI Context Factory – Specifies the JNDI initial context factory. For example,
weblogic.jndi.WLInitialContextFactory.

5. Configure the following JMS properties:

– JMS Connection Factory – Specifies the JMS connection factory to enable JMS
clients to create JMS connections. For example,
weblogic.examples.jms.TopicConnectionFactory.

– JMS Topic – Specifies the JMS topic, which is a publish/subscribe destination type for
a JMS server. For example, weblogic.examples.jms.TopicConnectionFactory.

6. Click Save.

7. Restart Oracle Enterprise Repository for the configuration changes to take effect.

Configuring JMS Message Header Properties
Every JMS message contains a standard set of header fields that is included by default and
available to message consumers. The Message Expiration and Delivery Mode headers can be
configured using the Oracle Enterprise Repository System Settings.

1. Access the “Eventing” System Settings, as described in “Enabling and Configuring an
External JMS Server” on page 6-2.

2. Configure the JMS message header properties:

– JMS Message Expiration – Sets the JMS message expiration time in seconds. If set,
unprocessed events will expire in the specified number of seconds. The default is 0
seconds, which means that messages will never expire. However, some environments
have policies that require that JMS messages cannot be stored forever if they are not
selected for some reason.

– JMS Delivery Mode – Sets the JMS message delivery mode to either PERSISTENT or
NON-PERSISTENT values. If set to PERSISTENT, the JMS server will write the
events to the underlying store. Although more reliable, persisting events to a store can
affect performance. The default is PERSISTENT.

3. Click Save.
Configuring and Managing Advanced Repository Flows 6-3

Conf igur ing JMS Servers fo r Orac le En te rp r ise Repos i to r y
4. Restart Oracle Enterprise Repository for the configuration changes to take effect.

Miscellaneous JMS Properties
Note: You must restart Oracle Enterprise Repository after changing any Eventing property in

order for the changes to take effect.

The following miscellaneous System Settings can also be configured.

Event Manager JMS Subscribers Enabled – If set to False, then the internal JMS
subscribers will not be enabled. This is to make sure that the embedded JMS server is
started, but an external tool can be used to connect to the embedded server using the given
durable subscriber name and the stored events can be cleaned up.

JMS Subscribers Client ID – Specifies the JMS durable subscriber ID.
For example, ALER_JmsSubscriber.

JMS Producers Client ID – Specifies the JMS producer’s client ID.
For example, ALER_DeliveryManager.

Lazy Initialize Event Engine – When enabled, the Event Manager will be initialized
when an event is produced for the first time. This property should be enabled for either of
the following reasons:

– If there is a large number of events stored by the JMS server and if it is required that
these events should not be processed as soon as Oracle Enterprise Repository is started.

– There are startup issues that occur because of the timing of initializing the embedded
JMS server.

Configuring External JMS Jar Files
If an external JMS server is being used, then the external JMS server-related JAR files should be
copied to the WEB-INF\lib directory.

Configuring the Embedded ActiveMQ JMS Server to Use a
Database

By default, the ActiveMQ JMS server uses a file-based store to store events. However, you can
specify to have events stored in a database. Simply, configure the activemq.xml file in the
WEB-INF\classes directory to use your database parameters.

For example:
6-4 Configuring and Managing Advanced Repository Flows

Conf igur ing JMS Durab le Subscr ibers f o r Web Serv ice Endpo ints
 <persistenceAdapter>
 <journaledJDBC journalLogFiles="5" dataDirectory="../activemq-data"
dataSource="#oracle-ds" />
 <!-- To use a different datasource, use the following syntax : -->
 <!-- <journaledJDBC journalLogFiles="5" dataDirectory="../activemq-data"
dataSource="#postgres-ds"/> -->

 <!-- Oracle DataSource Sample Setup -->
- <bean id="oracle-ds" class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close">
 <property name="driverClassName" value="oracle.jdbc.driver.OracleDriver" />
 <property name="url" value="jdbc:oracle:thin:@localhost:1521:AMQDB" />
 <property name="username" value="scott" />
 <property name="password" value="tiger" />
 <property name="poolPreparedStatements" value="true" />
 </bean>

Configuring JMS Durable Subscribers for Web Service
Endpoints

The Event Manager creates one durable subscriber for each Web Service endpoint it encounters
in the Subscription Manager XML file. This ensures that events are stored if the endpoints are not
online and that they can be reliably delivered once the endpoints are online again. As per the JMS
Specification, the durable subscriber name should be unique across the JMS server. The Event
Manager gets the durable subscriber name from the name field found in the
EndPointEventSubscription.xml file, as shown in this example:

<sub:EventSubscriptionData
xmlns:sub=”http://www.bea.com/infra/events/subscription”
 <sub:eventSubscription>
 <sub:endPoint name=”ALBPMEndpoint”>

Note: JMS servers associate the durable subscriber name with the message selectors. Therefore,
if the message selector is changed, either a new durable subscriber name should be
provided or the existing one should be deleted. You can use the Oracle Enterprise
Repository “Event Cleanup” tool, as described in “Cleaning Up Stored Events” on
page 7-4. You can also use a JMS-specific tool to accomplish this.
Configuring and Managing Advanced Repository Flows 6-5

Conf igur ing JMS Servers fo r Orac le En te rp r ise Repos i to r y
Configuring JMS Servers in an Oracle Enterprise
Repository Cluster

Note: Before you begin, refer to the Oracle Enterprise Repository Clustering Guide for
information on configuring Oracle Enterprise Repository in a clustered environment.

Enabling JMS Clustering Mode
If Oracle Enterprise Repository is deployed on cluster mode, you must enable clustering on each
Oracle Enterprise Repository instance regardless of which type of JMS server being used
(embedded or external).

1. Click System Settings in the sidebar on the Oracle Enterprise Repository Admin screen.

2. Enter cmee.eventframework.clustering.enabled in the Enable New System Setting box and
click Enable to reveal this hidden property.

3. Set the Clustering Enabled property to True.

4. Set other required properties based on the type of JMS server, as described in the following
sections.

Configuring Embedded JMS Servers for Clustering
In a clustered environment, each member Oracle Enterprise Repository instance in the cluster will
have one embedded JMS server. For example, in case of two-node cluster, there will be two
Oracle Enterprise Repository instances, such as server01 and server02, with each having one
embedded JMS server. Once clustering is enabled for the embedded JMS servers, you then need
to specify the connection URL information for the embedded JMS servers on server01 and
server02.

1. Click System Settings in the sidebar on the Oracle Enterprise Repository Admin screen.

2. Enter cmee.eventframework.embedded.jms.url in the Enable New System Setting box and
click Enable to reveal this hidden property.

3. In the Embedded JMS Server URL property, supply the connection URL for the embedded
JMS servers on the clustered Oracle Enterprise Repository servers, using the following
format.

failover:(tcp://
$SERVER_DNS_NAME_OR_IP$:61700,tcp://$SERVER_DNS_NAME_OR_IP$:61700, …)
6-6 Configuring and Managing Advanced Repository Flows

http://download.oracle.com/docs/cd/E13164_01/oer/docs10134/pdf/OER103-CLUS_Clustering_Guide.pdf

Conf igur ing a JMS P rov ider In WebSphere 6 .1 .0 .5
where:

$SERVER_DNS_NAME_OR_IP$ are replaced by actual server DNS name or IP address. The
entries should be repeated for each Oracle Enterprise Repository server in a given cluster.

Using the example above, this could be set to:
failover:(tcp://server01:61700,tcp://server02:61700)

Caution: Port 61700 is the default port for the embedded JMS server, and therefore should not
be used by any other application on the Oracle Enterprise Repository server unless
another port is configured for the embedded JSM server.

4. Click Save.

5. Repeat steps 1-4 for each Oracle Enterprise Repository instance in a given cluster. Using the
example above, the Embedded Broker URLs could be set to:
failover:(tcp://server01:61700,tcp://server02:61700)

Tip: Make sure that each embedded JMS server is enabled by setting the
cmee.eventframework.embedded.jms.enabled property to True.

Configuring External JMS Servers for Clustering
For external JMS servers, no additional configuration is required. However, you must make sure
that the embedded JMS server is disabled, as follows:

1. Click System Settings in the sidebar on the Oracle Enterprise Repository Admin screen.

2. Set the Event Manager Embedded JMS Enable property to False (i.e.,
cmee.eventframework.embedded.jms.enabled is False.

Configuring a JMS Provider In WebSphere 6.1.0.5
When Oracle Enterprise Repository is deployed on WebSphere Application Server 6.1.0.5, the
embedded Apache ActiveMQ JMS server cannot be used. Therefore, WebSphere 6.1.0.5
implementations must use the default JMS provider that comes with WebSphere 6.1.0.5.

To configure a JMS provider for Oracle Enterprise Repository in WebSphere 6.1.0.5, complete
the following steps in the WebSphere administration console and in your Oracle Enterprise
Repository application.

1. Create a new Service Integration Bus:
Configuring and Managing Advanced Repository Flows 6-7

Conf igur ing JMS Servers fo r Orac le En te rp r ise Repos i to r y
a. In the navigation pane, expand Service Integration, and then click Buses.

b. On the Buses page, click New.

c. On the Create a new bus page, enter alerbus as the name for the new bus.

d. Clear the Bus security check box.

e. Click Next, and then click Finish.

2. Add a Bus member to the newly created alerbus:

a. On the Buses page, click the alerbus link.

b. Under the Topology category, click Bus members.

c. On the Bus members page, click Add.

d. On the Add a new bus member > Select Server, Cluster or WebSphere MQ server page,
accept the default Server option and click Next.

e. On the Add a new bus member > Select the type of message store page, accept the default
File store option and click Next.

f. On the Add a new bus member > Provide the message store properties page, accept the
default values and click Next.

g. On the Add a new bus member > Confirmation page, click Finish.

h. On the Buses page, click Save.

3. Create a JMS Topic Connection Factory in the default message provider:

a. In the navigation pane, expand JMS, and then click JMS providers.

b. Click the Default messaging provider option, with a Scope of Node=<nodename>,
server=server1.

c. On the JMS providers > Default messaging provider page, click the Topic connection
factories option under Additional Properties.

d. On the JMS providers > Default messaging provider > Topic connection factories page,
click New.

e. On the Administration page, configure the topic connection factory as follows:

• Name – alerEventingTopicCFDefault
6-8 Configuring and Managing Advanced Repository Flows

Conf igur ing a JMS P rov ider In WebSphere 6 .1 .0 .5
• JNDI name – jms.alerEventingTopicCFDefault

• Bus name – alerbus

• Client identifier – ALER_JmsProducer

• Durable subscription home – <nodename>.server1-alerbus

f. Click Apply, and then click Save.

4. Create a JMS Topic in the default message provider:

a. Re-navigate to the JMS providers > Default messaging provider page.

b. Click the Topics option under Additional Properties.

c. On the JMS providers > Default messaging provider > Topics page, click New.

d. On the Administration page, configure the topic as follows:

• Name – alerEventingTopicDefault

• JNDI name – jms.alerEventingTopicDefault

• Topic name – alerEventingTopicDefault

• Bus name – alerbus

• Topic space – Default.Topic.Space

e. Click Apply, and then click Save to save your changes.

5. Deploy the aler.ear application file, as follows:

a. In the navigation pane, expand Applications, and then click Enterprise Applications.

b. On the Enterprise Applications page, click Install.

c. On the Preparing for the application install page, click Browse, specify the aler.ear file
in the path, and then click Next.

d. Click Next on the Select installation options page.

e. Click Next on the Map modules to servers page.

f. On the Map resources to resource references page, click Browse in the Target Resource
JNDI Name column.

g. On the Enterprise application > Available resources page, select
alerEventingTopicCFDefault, and then click Apply.
Configuring and Managing Advanced Repository Flows 6-9

Conf igur ing JMS Servers fo r Orac le En te rp r ise Repos i to r y
h. Click Next on the ensuing Map resources to resource references page.

i. On the Map resource environment entry references to resources page, enter
jms/aler/alerEventingTopicDefault in Target Resource JNDI Name and then click
Next.

j. Click Finish on the Summary page.

k. After the application is installed, click Save to save it to the Master Configuration.

6. Follow the “Manually Installing the Oracle Business Process Management Process Engine
and Advanced Registration Flows” steps in the Oracle Enterprise Repository Installation
Guide to deploy additional files in the web-inf/classes directory and the database drivers
required by the Oracle Enterprise Repository application.

7. Configure the Oracle Enterprise Repository eventing.properties file for the WebSphere
settings:

a. Navigate to the <OER Domain>\WEB-INF\classes directory.

b. Use a text editor to modify the eventing.properties file as follows:

• cmee.eventframework.jms.topic=jms.alerEventingTopicDefault

• cmee.eventframework.jndi.provider.url=iiop\://localhost:2809

• cmee.eventframework.embedded.jms.enabled=false

• cmee.eventframework.jndi.context.factory=com.ibm.websphere.naming.W
snInitialContextFactory

• cmee.eventframework.jms.connection.factory=jms.alerEventingTopicCFD
efault

c. Save the file.

8. Restart the WebSphere application server to enable the modified settings.

9. Check the WebSphere logs for possible errors:
\WebSphere\AppServer\profiles\AppSrv01\logs\server1
6-10 Configuring and Managing Advanced Repository Flows

http://download.oracle.com/docs/cd/E13164_01/oer/docs10134/install/troubleshoot.html#manual_albpm_install
http://download.oracle.com/docs/cd/E13164_01/oer/docs10134/install/troubleshoot.html#manual_albpm_install

C H A P T E R 7
Monitoring and Managing Events
This section contains information on the following subjects:

“Overview” on page 7-2

“Monitoring Events” on page 7-3

“Cleaning Up Stored Events” on page 7-4

“Generating the Workflow Config File” on page 7-6

“Refreshing the Workflow Config File” on page 7-7

“Encrypting Your Passwords” on page 7-8
Configuring and Managing Advanced Registration Flows 7-1

Moni to r ing and Manag ing Events
Overview
This document discusses how to use the administrative tools that are shipped as part of Oracle
Enterprise Repository. The Advanced Registration Flow administrative tools are used to

Monitor events using a command-line interface

Clean up the events and unsubscribe the JMS durable subscriber

Generate the Workflow Configuration file

Refresh the Oracle Business Process Management Engine with the latest Workflow
Configuration file

Encrypt the passwords stored in the Workflow Configuration and Subscription Manager
files

The administrative tools are installed under the following directory:

<BEA Home>/repository103/core/workflow-tools

Figure 7-1 Location of Workflow Tools
7-2 Configuring and Managing Advanced Registration Flows

Moni to r ing Events
Monitoring Events
The Event Manager has a tool for monitoring the events that are generated by the Event Manager.
The tool peeks into the event traffic and prints information, such as the Event Body and Event
Properties, as shown in this section.

Prerequisites
The following prerequisites apply before starting the monitoring tool:

If the default embedded JMS server is used, then Oracle Enterprise Repository needs to be
running with the cmee.eventframework.enabled system setting set to true. This is to
make sure that the JMS broker that is embedded within Oracle Enterprise Repository is
running so that the monitoring tool can connect to it and monitor the events.

 If an external JMS server is used, then the external JMS Server needs to be running and
the JNDI-related eventing.properties that are required to connect to the external JMS server
must be configured.

For more information, see “Configuring Connectivity Properties for External JMS Servers” on
page 6-2.

Usage
From a command prompt, run the Event Monitoring tool as follows:

 > event_monitor.bat <Path of WEB-INF\classes>

For example, if Oracle Enterprise Repository is deployed to a domain named oerdomain under:
D:\bea816\user_projects\domains\oerdomain

Then the <Path of WEB-INF\classes> is:
D:\bea816\user_projects\domains\oerdomain\applications\oer\oer-app\WEB-INF

\classes

This path is needed to get the JMS configuration from the eventing.properties file so that
the tool can connect to the JMS server.
Configuring and Managing Advanced Registration Flows 7-3

Moni to r ing and Manag ing Events
Figure 7-2 Event Monitor Console

Cleaning Up Stored Events
Sometimes it may be required to remove all the events that are stored by the Event Engine and
also unsubscribe the durable subscription. The Event Cleanup tool can be used for this purpose.

Prerequisites
The following prerequisites apply before starting this tool:

Set the Oracle Enterprise Repository
cmee.eventframework.jms.subscribers.enabled system setting to false so that the
Oracle Enterprise Repository Event Manager does not start the durable subscriber because
this will be unsubscribed by the Clean Event tool.
7-4 Configuring and Managing Advanced Registration Flows

Clean ing Up Sto red Events
Restart Oracle Enterprise Repository with the
cmee.eventframework.jms.subscribers.enabled property set to false.

Usage
From a command prompt, run the Event Cleanup tool as follows:

 > event_clean.bat <Path of WEB-INF\classes> <Name of Durable Subscriber>

<Message Selector>

For example, if Oracle Enterprise Repository is deployed to a domain named oerdomain under:
D:\bea816\user_projects\domains\oerdomain

Then the <Path of WEB-INF\classes> is:
D:\bea816\user_projects\domains\oerdomain\applications\oer\oer-app\WEB-INF

\classes

This path is needed to get the JMS configuration from eventing.properties so that the tool can
connect to the JMS Server.

The <Name of Durable Subscriber> can be found in the name attribute inside the endpoint
that requires event cleanup within the EndPointEventSubscription.xml as follows:

 <sub:eventSubscription>
 <!--The name should be unique within this file since
 <sub:endPoint name=”ALBPMEndpoint”>

The <Message Selector> can be found in the expression attribute inside the endpoint that
requires cleanup within the EndPointEventSubscription.xml

Note: The parameter can be omitted if the Message selector is not set or empty.

Sample Event Cleanup
Using the example above, navigate to the workflow-tools directory:

 > cd D:\bea816\repository103\core\workflow-tools>

From the command prompt, type:

 > event_clean.bat D:\aler\alerbuild2\aler-app\WEB-INF\classes

ALBPMEndpoint

The following is the output printed by the Event Cleanup tool to the console.
Configuring and Managing Advanced Registration Flows 7-5

Moni to r ing and Manag ing Events
Figure 7-3 Event Cleanup Console

Generating the Workflow Config File
The Generate Workflow Config tool is used to generate the Workflow Configuration file
(workflow.xml) by connecting to Oracle Enterprise Repository. The tool populates the
workflow.xml with configuration for asset types, categorizations, etc. by reading these entities
from Oracle Enterprise Repository. The Workflow Config file can then be customized as per your
requirements. For example, you may need to configure and customize flows to add new asset
types, projects, categorizations, etc.

For more information about configuring Advanced Registration Flows, see Chapter 5,
“Configuring Advanced Registration Flows.”

From a command prompt, run the Generate Workflow Config tool as follows:

 > config_gen.bat URI User Password ConfigDir

where:

 URI = ALER URI (for example: http://localhost:7001/alerbuild/services/FlashlineRegistry)
 User = ALER user name
 Password = ALER password
 ConfigDir = the directory where the Config XML file will be created. If the file exists, it will
be renamed to workflow.xml.bak.
7-6 Configuring and Managing Advanced Registration Flows

Ref resh ing the Work f low Conf ig F i l e
Figure 7-4 Generate Workflow Configuration Tool

The workflow.xml file needs to be generated to the following directory:
 <OER Enterprise Edition Path>/server/<OER Workflows Project>/workflow.xml

Refreshing the Workflow Config File
The Refresh Workflow Config XML tool lets you to refresh a Workflow Config file without
restarting the Oracle Business Process Management Engine. For example, if the Workflow
Config XML file is updated during development, running this tool allows the Oracle Business
Process Management Engine to use the updated version without restarting the engine.

Note: The Oracle Business Process Management Engine must be running when running this
tool.

From a command prompt, run the Refresh Workflow Configuration tool as follows:

 > refresh_workflows.bat URI User Password

where:

 URI = Oracle Business Process Managment URI (for example,
http://localhost:9000/fuegoServices/ws/RefreshConfigServiceListener)
 User = Oracle Business Process Managment user name (for example, aler_workflow_user)
Configuring and Managing Advanced Registration Flows 7-7

Moni to r ing and Manag ing Events
 Password = Oracle Business Process Managment password (for example,
aler_workflow_user)

Note: aler_workflow_user is created by Oracle’s BEA Products Installer and is the default
user that can be used with this tool.

Figure 7-5 Refresh Workflow Configuration Tool

Encrypting Your Passwords
For enhanced security, the Security Encrypt Password tool (runWfSecurity.bat) allows you to
encrypt passwords that are stored in the Workflow Configuration and Subscription Service files.

From a command prompt, run the Security Encrypt Password tool as follows:

 > runWfSecurity.bat srcFileName destFileName

where:

 srcFileName = source config file with clear password.

 destFileName = destination config file with decrypted password.
7-8 Configuring and Managing Advanced Registration Flows

Encrypt ing Your Passwords
Figure 7-6 Security Encrypt Password Tool
Configuring and Managing Advanced Registration Flows 7-9

Moni to r ing and Manag ing Events
7-10 Configuring and Managing Advanced Registration Flows

C H A P T E R 8
Extending the Event Manager for Web
Service Endpoints
This section contains information on the following subjects:

“Overview” on page 8-2

“Developing a Web Service Endpoint” on page 8-2

“Web Service Operations” on page 8-3

“Developing a Notifier Plug-in” on page 8-5

“Developing an Endpoint with an Incompatible Contract” on page 8-6
Configuring and Managing Advanced Registration Flows 8-1

Extending the Event Manage r f o r Web Se rv ice Endpo in ts
Overview
This document explains how to develop a new Web Service endpoint to consume the events that
are emitted by the Event Manager and also explains how to extend the Event Manager to use other
notifier plug-ins.

For information about configuring the Event Manager, see Chapter 3, “Configuring the Oracle
Enterprise Repository Event Manager.”

Developing a Web Service Endpoint
The following figure shows how a Web Service endpoint can be plugged-in to receive the Events
emitted by the Oracle Enterprise Repository Event Manager.

Figure 8-1 Web Service Endpoint Plug-in

Following these steps to create a new Web Service endpoint and start getting events.

1. Pick up the WSDL contract defined by the Event Manager. This is bundled with the
eventNotifier.jar located in the <oer Webapp path>/WEB-INF/lib directory.

2. Open the jar file and locate a WSDL named “EventListener.WSDL” and extract the WSDL
to the file system. This WSDL is the abstract contract defined by the Event Manager and the
new Web Service endpoint needs to implement the operation defined in the WSDL.

Here is a snapshot of the WSDL file
8-2 Configuring and Managing Advanced Registration Flows

Web Serv ice Operat ions
Figure 8-2 Sample WSDL File

3. Complete the Web Service endpoint development using the tool or technology, as per the
requirement. For example, you could develop a Proxy Service using Oracle Service Bus,
which provides a feature where you can create a Web Service-based proxy service by pointing
to a WSDL file. Make the Web Service running by completing the development of the Web
Service.

4. Configure the Event Manager so that the Web Service endpoint’s host, port, and URI, etc., are
entered in the Subscription Manager file. For more information about configuring the Event
Manager, see Chapter 3, “Configuring the Oracle Enterprise Repository Event Manager.”

5. Start Oracle Enterprise Repository and trigger events using the Asset Editor and the Web
Service endpoint will start getting the Events.

6. You can use the Event Monitoring tool that is bundled with Oracle Enterprise Repository for
debugging and monitoring the Events that are generated by the Event Manager.

Web Service Operations
This section describes the available operation for a new Web Service endpoint, and how to
specify operations in the Event Manager.
Configuring and Managing Advanced Registration Flows 8-3

Extending the Event Manage r f o r Web Se rv ice Endpo in ts
Available Web Service Operations
The Oracle Enterprise Repository Event Manager supports the following operations.

newEventRequestResponse
This operation takes the event object that is defined in the XML schema section as an input and
returns the status as the output. The status is defined as string type. Additionally, if the status
string starts with Failure, then the Event Manager will throw an exception and will try to
re-deliver the event until it succeeds. If not, it will log the response and will deliver the next event
unless there is a transport exception.

newEventRequestResponseString
This operation takes the event data in string form as an input and returns the status as the output.
The status is defined as string type. Additionally, if the status string starts with Failure, then the
Event Manager will throw an exception and will try to re-deliver the event until it succeeds. If
not, it will log the response and will deliver the next event unless there is a transport exception.

newEventRequest
This operation takes the event object that is defined in the XML schema section as an input and
is defined as a one-way operation.

newEventRequestString
This operation takes the event data in string form as an input and is defined as a one-way
operation.

newEvent
This operation should be used only if the Process Engine is Oracle Business Process
Management. This operation internally invokes the startSession operation to start session to
authenticate with Oracle Business Process Management. It will also call discardSession after
the invocation.

Selecting a Web Service Operation
The preferred Web Service operation can be selected by configuring the Event Manager’s
Subscription Manager the following way, as specified in the operationName element.
8-4 Configuring and Managing Advanced Registration Flows

Deve lop ing a No t i f i e r P lug- in
<sub:EventSubscriptionData
xmlns:sub=”http://www.bea.com/infra/events/subscription”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
 <sub:eventSubscription>
 <sub:endPoint name=”ALBPMEndpoint3”>
 <sub:host>localhostt>
 <sub:port>9000</sub:port>
 <sub:uri>fuegoServices/ws/StatusChangeEnpointServiceListener</sub:uri>
 <sub:targetNamespace>http://www.bea.com/infra/events</sub:targetNamespace>
 <sub:operationName>newEvent</sub:operationName>
 <sub:authenticationData>
 <sub:basicAuthentication>
 <sub:username>admin</sub:username>
 <sub:username>admin</sub:username>
 </sub:basicAuthentication>
 </sub:authenticationData>
 </sub:endPoint>

<sub:notifierClass>com.bea.infra.event.notifier.plugin.http.DefaultHTTPEventNo
tifier </sub:notifierClass>
 <sub:expression></sub:expression>
 </sub:eventSubscription>
</sub:EventSubscriptionData>

Developing a Notifier Plug-in
The Oracle Enterprise Repository Event Manager includes a default SOAP/HTTP notifier. A new
plug-in can be developed and plugged in if there are additional requirements, as illustrated here.

Figure 8-3 Notifier Plug-in

Follow these steps to make the new plug-in work with the Event Manager.
Configuring and Managing Advanced Registration Flows 8-5

Extending the Event Manage r f o r Web Se rv ice Endpo in ts
1. Develop a new Notifier Plug-in by extending the Java Class AbstractEventNotifier that
is bundled with the Oracle Enterprise Repository Event Manager. This class is bundled with
the eventNotifier.jar located in the <oer Webapp path>/WEB-INF/lib directory. The
init() and sendNotification() methods need to be overridden. Refer to the Javadoc for
more information about these methods. The handle() method passes the event data in an
XML Beans format, which can be used to send it to an external Web Service.

2. Configure the Subscription Manager file to point to the developed class. Modify the
notifierClass element as follows:

<sub:EventSubscriptionData
xmlns:sub=”http://www.bea.com/infra/events/subscription”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
 <sub:eventSubscription>
 <sub:endPoint name=”ALBPMEndpoint3”>
 <sub:host>localhost</sub:host>
 <sub:port>9000</sub:port>
 <sub:uri>fuegoServices/ws/StatusChangeEnpointServiceListener</sub:uri>
 <sub:targetNamespace>StuatusChangeEndpoint</sub:targetNamespace>
 <sub:operationName>newEvent</sub:operationName>
 <sub:authenticationData>
 <sub:basicAuthentication>
 <sub:username>admin</sub:username>
 <sub:username>admin</sub:username>
 </sub:basicAuthentication>
 </sub:authenticationData>
 </sub:endPoint>

<sub:notifierClass>com.bea.infra.event.notifier.plugin.http.DefaultHTTPEventNo
tifier</sub:notifierClass>
 <sub:expression>id > 500</sub:expression>
 </sub:eventSubscription>
</sub:EventSubscriptionData>

3. Bundle the classes in a JAR file and copy it to <oer Webapp path>/WEB-INF/lib directory
so that it is picked up by the classpath.

4. Restart the Event Manager and trigger an event using the Asset Editor.

5. The Event Manager will call the init() and handle() methods of the new notifier plug-in.

Developing an Endpoint with an Incompatible Contract
It is possible that there may be an endpoint with an Interface or Contract that is not compatible
with Oracle Enterprise Repository Event Manager. This is because the tool that is used to develop
the endpoint may have restrictions to use the WSDL provided by Oracle Enterprise Repository
8-6 Configuring and Managing Advanced Registration Flows

Deve lop ing an Endpo int w i th an Incompat ib le Cont ract
Event Manager, or there may be other inter-operability issues. The following approach can be
used under those circumstances:

Develop an event notifier plug-in to receive the event XML data and register with the
Subscription Manager.

Write the code in the new notifier plug-in that transforms the event data into the format
that the remote Web Service expects.

Invoke the remote Web Service by whatever API is supported by the remote endpoint.
Configuring and Managing Advanced Registration Flows 8-7

Extending the Event Manage r f o r Web Se rv ice Endpo in ts
8-8 Configuring and Managing Advanced Registration Flows

	Oracle® Enterprise Repository
	10g Release 3 (10.3)

	Oracle Enterprise Repository Configuring and Managing Advanced Registration Flows, 10g Release 3 (10.3)
	Overview of Advanced Registration Flows
	What are Advanced Registration Flows?
	Prerequisites

	Example “Community Flow” Use Case
	Software Components
	Oracle Enterprise Repository Event Manager
	Subscription Manager
	JMS Server
	Event Monitor
	Oracle Business Process Management

	Advanced Registration Flows
	Event Management Tools
	Web-based Process Administrator
	Log Viewer
	Email Notification Templates

	Workflow Configuration Tools
	Generating a New Config File
	Refreshing an Existing Config File
	Encrypting Config File Passwords

	Getting Started with Advanced Registration Flows
	Overview
	Steps to Configure the Oracle Enterprise Repository Event Manager
	Use Cases
	Configuring the Event Manager
	Triggering an Asset Event

	Steps to Configure and Run the Oracle Business Process Management Process Engine
	Use Cases
	Configuring the Advanced Registration Flows to Process a Submission Event
	Triggering an Asset Submission Event

	Configuring the Oracle Enterprise Repository Event Manager
	What is the Oracle Enterprise Repository Event Manager?
	Configuring the Event Manager’s System Settings
	Enabling the Event Manager
	Configuring Optional Event Manager Settings
	Eventing Manager Notifier Thread Sleep (seconds)
	Eventing Manager Store Thread Sleep (seconds)
	Eventing Manager Store Delivery Sleep (seconds)
	Batch Size for Event Manager Deliveries

	Configuring the Subscription Manager
	Configuring Web Service Endpoints
	Setting the Expression to Filter Events
	Delivering all Events to an Endpoint
	Delivering Events to an Endpoint Filtered by Event Type
	Delivering Events to an Endpoint Filtered Using a JMS Message Selector
	JMS Message Selector Examples

	Configuring Logging of Event Manager Events

	Administrating Oracle Business Process Management Processes
	Overview
	Administering Oracle Business Process Management Web Applications
	Starting the Oracle Business Process Management Admin Center
	Starting the Oracle Business Process Management Process Engine
	Defining the Oracle Business Process Management Participants
	Oracle Business Process Management Administrators
	Advanced Registration Flow Participant

	Tuning the Oracle Business Process Management Process Engine
	Advanced Properties
	Database Runtime Properties
	Memory and Execution Thread Properties

	Configuring a Standalone Process Engine for Failover
	Using The Oracle Business Process Management Log Viewer
	Filtering Event Log Messages for Oracle Enterprise Repository Flows

	Configuring Advanced Registration Flows
	Overview of Advanced Registration Flows
	Creating and Customizing a Workflow Configuration File
	Generating a Workflow Configuration File
	Defining the Oracle Enterprise Repository Connection and Registrar
	Encrypting the Registrar User Password

	Wiring Asset Events to Flows
	Automatic Asset Registration Flows
	Configuring Community Flows
	Setting the Community for an Oracle Enterprise Repository Project
	Setting the Community for an Asset Type
	Setting the Community for an Asset using the Type Manager and Asset Editor
	Configuring a Community to Automatically Accept an Asset
	Configuring a Community to Assign Assets for Tab Approval
	Configuring a Community to Assign Assets for Tab Approval Using Multi-tier
	Configuring a Community to Automatically Register an Asset
	Configuring a Community to Have a Dedicated Registrar

	Configuring Automated Acceptance and Automated Registration Flows
	Asset Type
	Categorization Settings
	Submitter Role
	Conflict Resolution and Precedence

	Multi-tier Automatic Assignment Flows
	Use Cases
	Using an <alerid> for Tab Approvals
	Setting Up a Community for Multi-tier Tab Approval
	Setting Up an Asset Type for Multi-tier Tab Approval

	Metadata Change Flows
	Use Cases
	Configuring Metadata Change Flows
	Available Metadata Change Events/States
	Available Flows That Can Be Wired to Actions
	Example Metadata Change Configuration
	Example Metadata Change Configuration That Checks for Metadata Value
	ChangeClassification
	ChangeCAS
	ChangeAssetLifecycle
	ApproveTabAction
	UnapproveTabAction
	AutoApproveTabAction
	UnapproveChangeManagementTab
	ResetChangeManagementTab
	NotifyCustomUser
	Invoking Flows Based on Approval of Named Tabs

	Time-based Escalation Flows
	Tracking Unsubmitted Assets
	Tracking Unaccepted Assets
	Tracking Unapproved Assets
	Tracking Unregistered Assets

	Validation Expiration Flows
	Asset Expiration Warning Notification
	Unregister Assets After Expiration
	Inactivate After Expiration
	Delete Assets After Expiration

	Customizing Email Notification Templates

	Configuring JMS Servers for Oracle Enterprise Repository
	Overview of JMS for the Event Manager
	Configuring Connectivity Properties for External JMS Servers
	Enabling and Configuring an External JMS Server
	Configuring JMS Message Header Properties
	Miscellaneous JMS Properties
	Configuring External JMS Jar Files

	Configuring the Embedded ActiveMQ JMS Server to Use a Database
	Configuring JMS Durable Subscribers for Web Service Endpoints
	Configuring JMS Servers in an Oracle Enterprise Repository Cluster
	Enabling JMS Clustering Mode
	Configuring Embedded JMS Servers for Clustering
	Configuring External JMS Servers for Clustering

	Configuring a JMS Provider In WebSphere 6.1.0.5

	Monitoring and Managing Events
	Overview
	Monitoring Events
	Prerequisites
	Usage

	Cleaning Up Stored Events
	Prerequisites
	Usage
	Sample Event Cleanup

	Generating the Workflow Config File
	Refreshing the Workflow Config File
	Encrypting Your Passwords

	Extending the Event Manager for Web Service Endpoints
	Overview
	Developing a Web Service Endpoint
	Web Service Operations
	Available Web Service Operations
	newEventRequestResponse
	newEventRequestResponseString
	newEventRequest
	newEventRequestString
	newEvent

	Selecting a Web Service Operation

	Developing a Notifier Plug-in
	Developing an Endpoint with an Incompatible Contract

