AgualLogic Data Services
Platform™ Tutorial: Part |

A Guide to Developing BEA Aqualogic Data Services Platform (DSP) Projects

Note: This tutorial is based in large part on a guide originally developed for enterprises
evaluating the BEA Aqualogic Data Services Platform for their specific requirements. In
some cases illustrations, directories, and paths reference Liquid Data, the previous name
of the Data Services Platform.

Version: 2.0.1
Document Date: June 2005
Revised: September 2005
“""

g /
zhea’
L/

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the
BEA Systems License Agreement and may be used or copied only in accordance with the terms of that
agreement. It is against the law to copy the software except as specifically allowed in the agreement.
This document may not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced
to any electronic medium or machine readable form without prior consent, in writing, from BEA
Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA
Systems License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-
Restricted Rights Clause at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013, subparagraph (d) of the Commercial
Computer Software--Licensing clause at NASA FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment
on the part of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS
IS” WITHOUT WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE
SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY,
RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt,
JoltBeans, SteelThread, Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems,
Inc. BEA Aqualogic, BEA Aqualogic Data Services Platform, BEA AquaLogic Enterprise Security,
BEA AquaLogic Service Bus, BEA Aqualogic Service Registry, BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise
Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for
Mainframe, BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server Process Edition, BEA WebLogic WorkGroup Edition, BEA WebLogic Workshop, and Liquid
Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support is a service mark of
BEA Systems, Inc. All other company and product names may be the subject of intellectual property
rights reserved by third parties.

All other trademarks are the property of their respective companies.

Data Services Platform: Samples Tutorial 2

Contents

AQUALOGIC DATA SERVICES PLATFORM™ TUTORIAL: PART ...t 1
Lesson 1 Introducing the Data Services Platform Environment...........cccccceeveressnncscnercscncessnsssssanne 10
Lab 1.1 Starting WebLogiC WOTKSNOPooviiiiiiiiiieiecee ettt nnees 10
Lab 1.2 Navigating the DSP Integrated Development Environment (IDE).........ccccocoeviiviininininnncicnicenn 11
Lab 1.3 Starting WebLOZIC SEIVETccviiuieriieiieieeie et ette sttt teetesee st e esteeseessessaesseesseenseenseenseensesssesseensens 16
Lab 1.4 StOPPING WEDLOZIC SEIVET....ccuiiiiiiitieiieiieie ettt ettt eteesteesteebeessessbesseesseesseesseessenssesssesssesens 17
Lab 1.5 SAVING YOUL WOTK ...ttt ettt ettt et e e e steeste e b e esseesaesseesseeseesseessensseessesseesens 18
Lesson 2 Creating a Physical Data Service......cccceerveressnercsarcsences 19
Lab 2.1 Creating @ DSP APPIICALION.....cc.eiiiieriieieeieeieeeee ettt ettt e e te st e st e st esteenseessessaessaeseensesnnennns 19
Lab2.2 Creating @ Data SEIrVICES PIOJECT......ccviiviiiiiiieeiecieeit ettt ettt et e et e e staesbaebeessesnneees 22
Lab2.3 Creating Project SUD-FOIAETS.......ccvioiiiiiiiieicceee ettt aeebe e e ees 23
Lab2.4 Importing Relational Source Metadatacceevveiieiieieiieiieieee et 24
Lab 2.5 BUIIAING & PIOJECE ...ttt ettt st b e et ae et e b e e be e bt eaeese e e e e nee 27
Lab 2.6 Viewing Physical Data Service Information............ocooeiiiiiiiieieieee e 28
Lab 2.7 Testing Physical Data Service FUNCHIONS..........coiiiiiiiiiiiiriceeeeee et 33
Lesson 3 Creating a Logical Data Service 36
Lab 3.1 Creating a Simple Logical Data SErVICE.......cccvvevrieiiieiieiecieieeie ettt ettt seeesreesseebeeseeees 37
Lab3.2 Defining the Logical Data Service Shape.........c.cooueiiiiiiiiiiieeee e 39
Lab 3.3 Adding a Function to a Logical Data SEIVICEcoeiiiiririiieieieieie sttt 41
Lab34 Mapping Source and Target EISMENSccoiiiiiiiiiiii et 42
Lab3.5 Viewing XQUETY SOUICE COUEccueeuieiieiieiieit ettt ettt ettt e tee s bt e sbe e et eeesneeeneesaeeneeenseens 44
Lab3.6 Testing a Logical Data Service FUNCHON.ooiiiiiiiiieiei et e 45
Lesson 4 Integrating Data from Multiple Data Services......ccceeruverneennen. 48
Lab 4.1 Joining Multiple Physical Data Services within a Logical Data Service.........cccceoeverenenceieieniene 49
Lab4.2 Defining a Where Clause to Join Multiple Physical Data Servicescoceeeeienienereneneeieieeee 51
Lab4.3 Creating a Parameterized FUNCHOMNc.cooiiiiiiiii ettt 55
Lesson 5 Modeling Data Services 60
Lab 5.1 Creating a Basic Model Diagram for Physical Data Services..........ccooererererieieneeneseseeeeceeeens 61
Lab5.2 Modeling Relationships Between Physical Data SOUICES........ccoeoierieieriireieeieieee e 63
Lesson 6 Accessing Data in Web Services........ccoeveressnercsarcsanes 66
Lab 6.1 Importing a Web Service Project into the Applicationc.cceeveevviiciiiienienieiecieeee e 66
Lab 6.2 Importing Web Service Metadata into @ ProOJect..........ccooiiiiiiiiiereiesie e 69

Data Services Platform: Samples Tutorial 3

Lab 6.3
Lab 6.4

Lesson 7
Lab 7.1
Lab 7.2
Lab 7.3

Lesson 8
Lab 8.1
Lab 8.2
Lab 8.3
Lab 8.4

Lesson 9
Lab 9.1
Lab 9.2

Lesson 10
Lab 10.1
Lab 10.2
Lab 10.3

Lesson 11
Lab 11.1
Lab 11.2
Lab11.3

Lesson 12
Lab 12.1
Lab 12.2
Lab 12.3

Lesson 13
Lab 13.1
Lab 13.2

Lesson 14
Lab 14.1
Lab 14.2
Lab 14.3

Testing the Web Service via @ SOAP REQUESL........ccvieiieieiiiiieiceie ettt 73
Invoking a Web Service in @ Data SEIVICEccieieiiiiieiiriieiieiieeieeie ettt 74
Consuming Data Services Using Javaccceverevcnerene 79
Running a Java Program Using the Untyped Mediator API..........ccccocvvvienieiieiieieceeeeee e 80
Running a Java Program Using the Typed Mediator APL..........ccccooviveiiiiirienieiieieceeeeeseee e 85
Resetting the Mediator APcoooviiiiiiicieeee ettt sa e sreesbaebeesbeeneeees 88
Consuming Data Services Using WebLogic Workshop Data Service Controls............. 89
Installing @ Data Service CONLIOL..........c.vciiiiirieiieiieieeieeeese ettt st ae et e eebeesaessaessaesseesseennenes 89
Defining the Data Service CONtrOL...........ccuiiiiriiriieiieiieieseese ettt et sreebe b e essesseesseesseessesnneses 90
Inserting a Data Service Control into a Page FIOWcccocvveviiiieiiiiiceeeeeeeee e 92
RUnning the Web APPIICALIONoouiiiiieiiieiieteete ettt sttt ettt sae e e bt aeesee e e e nes 94
Accessing Data Service Functions Through Web Services...... 99
Generating a Web Service from a Data Service Controlcccoveevieeiiiienienieniieieeeeceeseesie e 99
Using a Data Service Control to Generate a WSDL for a Web Servicecccovvveevieeiercieiienieieeienns 101
Updating Data Services Using Java........cceeereuee 104
Modifying and Saving Changes to the Underlying Data Sourcec..coceeveveeieieniencnincncneneenne. 104
Inserting New Data to the Underlying Data Source Using Java..........coccocevereriinienienenincncnencenes 107
Deleting Data from the Underlying Data Source Using Javaccccceevvieviiiciinienienieieeveeieeeenn 109
Filtering, Sorting, and Truncating XML Data......... 112
Filtering Data Service RESUILScccieriiiiiiiiiiecieiiee ettt sttt ebe e ssaennees 112
Sorting Data Service RESUILScccviiiiiiiiiieieieeee ettt seese e ses 115
Truncating Data Service RESUILS.........cooieriiiiiiiiicieiee ettt e nnees 117
Consuming Data Services through JDBC/SQL.... 119
RUNNING DBVISUALIZET......cutieiieiieiieiiesieete ettt ettt e sseesneesaeesseenseenseensessaesseensean 120
Integrating Crystal Reports and Data Services Platformcccoocvevieiiiiiicininieeeeeeeen 122
(Optional) Configuring JDBC Access through Crystal Reportsc.cecuevverieneeieniienieniereeieeeene 123
Consuming Data via Streaming APIcccoeervevercscnrcssercssnrescnencne 125
Stream results int0 @ flat fI1ec.oooiiiiie e 125
Consume data in streaming fAShIONccvieiiiierieriei et nees 126
Managing Data Service Metadatacceceeeeunenee. 128
Defining Customized Metadata for a Logical Data Serviceccceveereriiiiinienieeeeeeeeeeeen 129
Viewing Data Service Metadata Through the DSP Console..........ccccorieiieiieiiniiniereeee e 131
Synching a Data Service with Underlying Data Source Tables..........c.ccoooverieiiniinienieieeee e 133

Data Services Platform: Samples Tutorial 4

Lesson 15
Lab 15.1
Lab 15.2
Lab 15.3
Lab 15.4
Lab 15.5

Lesson 16
Lab 16.1
Lab 16.2
Lab 16.3
Lab 16.4
Lab 16.5
Lab 16.6

Lesson 17
Lab 17.2
Lab 17.3

Managing Data Service Caching.............. 136

Determining the Non-Cache Query EXecution Time..........cceevevierienieenieiie e 137
Configuring a Caching Policy Through the DSP Console..........cccooverieriiiiiiieiierieeeieeveeee e 137
Testing the Caching POLICYcccviiiiiiiiieii ettt sre e s e e sre e b e esbeesbeesaessaenseas 139
Determining Performance Impact of the Caching Policycccoiiiiiiiiiiiiiieee e, 139
DiSADIE CACRINE ...ttt ettt ettt es et et e sbe st e ebeesten s e s et e ebesbeebeeneeneeneenean 140
Managing Data Service Security........ce. 143
Creating NEeW USCT ACCOUNTS.......cccueiierieieeieeteettesteeteereeteessessaesseesseesesssesseesseesseesseesseessesssesseessees 144
Setting Application-Level SECUTITEY........iiiiiiiiieieieee ettt 145
Granting User Access to Read FUNCHIONSocooiiiiiiiiiiiiiiieieeeee e 147
Granting User Access t0 WIite FUNCHONS.couiviiiiiiiiiiiiiieeierieieeeee e 150
Setting Element-Level Data SECUTTLY......c.eiiiirieieieeeee ettt st 151
Testing Element-Level SECUTITLYcciiiiiiiii ettt ettt neeas 153
(Optional) Consuming Data Services through Portals and Business Processes........... 155
Installing a Data Service Control in @ Portal Projectccoceeoieieiiiiiniiieieieeee e 155
Testing the Control and RetrieVing Dataceieveriiiiiiiiiiiieeee e 158

Data Services Platform: Samples Tutorial

About This Document

Welcome to the AqualLogic Data Services Platform (DSP) Samples Tutorial. In this document, you are
provided with step-by-step instructions that show how you can use DSP to solve the types of data
integration problems frequently faced by Information Technology (IT) managers and staff. These
issues include:

What is the best way to normalize data drawn from widely divergent sources?

Having normalized the data, can you access it, ideally through a single point of access?

After you define a single point of access, can you develop reusable queries that are easily tested, stored,
and retrieved?

After you develop your query set, can you easily incorporate results into widely available applications?

Other questions may occur. Is the data-rich solution scalable? Is it reusable throughout the enterprise?
Are the original data sources largely transparent to the application — or do they become an issue each
time you want to make a minor adjustments to queries or underlying data sources?

Document Organization
This guide is organized into 35 lessons that illustrate many aspects of Data Services Platform

functionality:

Data service development. In which you specify the query functions that DSP will use to access,
aggregate, and transform distributed, disparate data into a unified view. In this stage, you also
specify the XML type that defines the data view that will be available to client-side applications.

Data modeling. In which you define a graphical representation of data resource relationships and
functions.

Client-side development. In which you define an environment for retrieving data results.

Each lesson in the tutorial consists of an overview plus “labs” that demonstrate DSP’s capabilities on a
topic-by-topic basis. Each lab is structured as a series of procedural steps that details the specific
actions needed to complete that part of the demonstration.

The lessons are divided into two parts:

Part 1: Core Training includes Lessons 1 through 16, which illustrate the DSP capabilities that are
most commonly used.

Part 2: Power-User Training includes Lessons 17 through 35; these illustrate DSP’s more
advanced capabilities.

Note: The lessons build on each other and must be completed in sequential order.

Data Services Platform: Samples Tutorial 6

Technical Prerequisites

The lessons within this guide require a familiarity with the following topics: data integration and
aggregation concepts, the BEA WebLogic® Platform™ (particularly WebLogic Server and WebLogic
Workshop), Java, query concepts, and the environment in which you will install and use DSP.

For some lessons, a background in XQuery is helpful.

System Requirements

To complete the lessons, your computer requires:

Server:

Application:

Operating System:

Memory:

Browser:

BEA WebLogic Server

BEA AquaLlogic Data Services Platform 2.01

Windows 2000 or Windows XP

512 MB RAM minimum; 1 GB RAM recommended

Internet Explorer 6 or higher

Data Sources Used Within These Lessons

The DSP Samples Tutorial builds data services that draw on a variety of underlying data sources.
These data sources, which are provided with the product, are described in the following table:

Data Source Type

Relational

Relational

Relational

Relational

Web service
Stored procedure
Java function
Java function

Java function

XML files
Flat file

Data Source

Customer Relationship Management
(CRM) RTLCUSTOMER database

Order Management System (OMS)
RTLAPPLOMS database

Order Management System (OMS)
RTLELECOMS database

RTLSERVICE database

CreditRatingW'S
GETCREDITRATING_SP
Functions. DSML
Functions.excel jcom

Functions.CreditCardClient

ProductUNSPSC.xsd

Valuation.csv

Data Source Types and Sources Utilized by the DSP Samples Tutorial

Data

Customer and credit card data

Apparel product, order, and order line
data

Electronics product, order, and order
line data

Customer service data, organized in a
single Service Case table

Credit rating data

Customer credit rating information
Java function enabling LDAP access
Excel spreadsheet data, via JCOM

Customer credit card information, via
an XMLBean

Third-party product information

Data received from an internal
department that deals with customer
scoring and valuation models

Data Services Platform: Samples Tutorial

Related Information

In addition to the material covered in this guide, you may want to review the wealth of resources
available at the BEA web site, WebLogic developer site, and third-party sites. Information at these
sites includes datasheets, product brochures, customer testimonials, product documentation, code
samples, white papers, and more.

For more information about Java and XQuery, refer to the following sources:

The Sun Microsystems, Inc. Java site at:

http://java.sun.com/

The World Wide Web Consortium XML Query section at:
http://www.w3.0org/XML/Query

For more information about BEA products, refer to the following sources:

DSP documentation site at:
http://edocs.bea.com/aldsp/docs20/index.html

BEA e-docs documentation site at:
http://e-docs.bea.com/

BEA online community for WebLogic developers at:
http://dev2dev._bea.com

Data Services Platform: Samples Tutorial

http://java.sun.com/
http://www.w3.org/XML/Query
http://edocs.bea.com/aldsp/docs20/index.html
http://e-docs.bea.com/
http://dev2dev.bea.com/

Part 1 Core Training

A Data Services Platform approaches the problem of creating integration architectures by providing
tools that let you build physical data services around individual physical data sources, and then
develop logical data services and business logic that integrate and return data from multiple physical
and logical data services. Logical data services use easily-maintained, graphically-designed XML
queries (XQueries) to access, aggregate, transform, and deliver its data results.

Developing DSP services involves three basic steps:

1. Create a unified view of information from all relevant sources. This step, which involves
development of physical data services and (optionally) data models, is typically performed by a
data services architect who understands the information available in underlying sources and can
define the unified view that different projects will use. DSP is capable of modeling relational and
non-relational sources; it includes tools for introspection and mapping of the underlying sources to
the unified data view.

2. Develop application-specific queries. This step, which involves development of logical data
services, is typically performed by application developers who write simple queries against the
unified view to get the required data. DSP provides tools to visually create robust XQueries and
also publish them as services.

3. Tie query results to client applications. This step, which involves accessing data through a
variety of consuming applications, is typically performed by application developers who execute
the queries and receive results as XML or Java objects. In addition, DSP provides an out-of- the-
box Workshop control to easily develop portal or Web applications from which to access data
retrieved by a data service.

Develop Application UI

Cuery 2.. Query 3.. Cuery 4.

Develop Application-Specific Queries

Create Unified View of All Data Sources

Web b

Data Services Platform Development Process

As part of the development process, DSP provides flexible options for updating both relational and
non-relational data sources. DSP lets you write update logic via an EJB in BEA WebLogic Server™;
via a database, JMS, or Data Services Platform Control in Workshop; or via a business process in BEA
WebLogic Integration™.

In addition, DSP provides visual tools for managing various administrative tasks, including controlling
data service metadata, caching, and security.

Within Part 1, examples are provided that illustrate DSP’s most commonly used capabilities:
developing and testing physical and logical data services, accessing data services through various

consuming applications, updating underlying data sources, and managing various administrative tasks.

Note: The lessons within Part 1 build upon one another and should be completed in sequential order.

Data Services Platform: Samples Tutorial 9

Lesson 1 Introducing the Data Services Platform Environment

Objectives

Overview

Lab1.1

The BEA AquaLogic Data Services Platform environment provides the tools and components that let
you build physical data services around individual physical data sources, and then develop the logical
data services and business logic that integrate data from multiple physical and logical data services.
The environment also lets you test the data service and manage data service metadata, caching, and
security.

The basic menus, behavior, and look-and-feel associated with the WebLogic Workshop environment
apply to DSP. However, there are several tools and components within WebLogic Workshop that are
especially relevant to DSP. In this lesson, you will learn about a few of those tools and components. In
addition, you will learn how to complete several basic tasks, such as starting and stopping WebLogic
Server, that are essential to using WebLogic Workshop.

As the first lesson within the AqualLogic Data Services Platform Samples Tutorial, there are no
dependencies on other lessons. However, your familiarity with WebLogic Workshop is assumed.
Workshop is fully described in online documentation, which you can view at:

http://e-docs.bea.com/workshop/doc82/index.html

After completing this lesson, you will be able to:

Navigate the DSP environment.
Start and stop WebLogic Server.

Save a Data Services application and associated files.

WebLogic Workshop consists of two parts: an Integrated Development Environment (IDE) and a
standards-based runtime environment. The purpose of the IDE is to remove the complexity in building
applications for the entire WebLogic platform. Applications you build in the IDE are constructed from
high-level components rather than low-level API calls. Best practices and productivity are built into
both the IDE and runtime.

Starting WebLogic Workshop

The first step is starting WebLogic Workshop and opening the RTLApp sample application, which you
will use in the next lab.

Objectives

In this lab, you will:

Start WebLogic Workshop.

Open the RTLApp application.

Instructions

1. Choose Start — Programs — BEA WebLogic Platform 8.1 — WebLogic Workshop 8.1. If this is
the first time you are starting WebLogic Workshop since it was installed, then the SamplesApp
project opens. Otherwise, the project that you last opened appears.

Data Services Platform: Samples Tutorial 10

http://e-docs.bea.com/workshop/doc82/index.html

2. Choose File — Open — Application.

3. Navigate to the <beahome> \weblogic81\samples\LiquidData\RTLApp\ directory.

4. Open the RTLApp.work file.

The RTLApp application opens.

Note: Depending on your computer settings, the .work extension may not be visible. Also, depending
on whether or not RTLApp application was previously opened, the application will open in the last

active view.

In Figure 1-1, the RTLApp application opens in Design View for the Case data service. If this is not
the view that you see, double-click Case.ds located at DataServices/ RTLServices and select the

Design View tab.

Lab 1.2

Navigating the DSP Integrated Development Environment (I1DE)

Within the WebLogic Workshop environment, there are several tools and components that are relevant
to developing DSP applications and projects. Five of the most frequently used are:

Application Pane
Design View
XQuery Editor View
Source View

Test View

Screenshots of the environment are taken from within the RTLApp application.

| [
..-‘U_ﬂ

Fle Cdt Vew Defafervice Buld Debug Took Window Hep

vl B+ |EaERYcHEEESs 2 HEBE DS

R [y et

DEFEE@ -
N o R0 T
Sy Rl - i .
S G DtaServes I
+) Acomeln R — gettme

TP OrderDotabiew. s

S i) CUSTOMES _CASE retader Type:CASE_TTPE

= | |2 MineryFunchions

|

9 () Accevior Fundions

@ om0t awdsirng &
@ CusnmelD sehistring
B Predetll axdstreg
B Caselype g
B Casbesrpton sadanrg
@ CuseDote xadidate
Data sources

el
1B StausOsts xed:date

XML Type

(L) beckean Functions.

() Contet Aooessors

31 (2] st Seeviens Aceess Control Funchions
) () Dtk Sewwiers Exmeadion Control Furetiorn
3 (2 Do, Die, aned Tine Furctions

44 () trree and Trace Functions

31 (2] Numeric Functions

(] aem Furctiors

D) Sequencs Furctions

+t (L S Functions

) LI Funetions

) (190 Dt e Furebiorns

|20 ey Commtrixts
Cyruowen
Cyfuwo
CyRwn

Ly Pw

Sy P
Sy

Saren

SFm

o
CatFrrenELsE
e

ebapp zesouree files.

esource Eiles 1n G110 milliseconds
1l

cemerols in 11838 milliseconds
32217 miliiseconds

rrr,
Ho eezoes in 4 projeces. Buile in 55967 millizeconds.

@ Server Runding

B o ezt
Dintn St Pndedtn o |
[T Destaervaces
) s [e vier WG G Wil | ScH Wobry | TAoE Wiy | Chusey Flan Vi |
1 Cuntomertt I3 - -
b [|
) Ebsctroniesws
B T S
L) vl
Bl)
pLling v
Compiled webapp £
WebippiulldTesk completed in
BUILD JUCCESIFUL
Build project RTLEe1fScevice conpl
Applicarion Build compleve.
Figure 1-1

Data Services Platform Running in WebLogic Workshop

x|

Erp
Data Service

[

Hisme Laveals
Normalized view of 5
Bob Johmes
200503 OTTIR4E2T

Deserotion
Auther
Creston Date
Type
Tyee [uarncredailer Type L
Diala Gervice Update
Allow Lipdate tre
Updatr Override Class
User delined properties =l
I Propert (1)
B PeoperLy(Z)

i Property (1)

| Description =|

Data Services Platform: Samples Tutorial

11

Objectives

In this lab, you will:

Explore five of the most frequently used development tools.

Discover the features and functions of those tools.

Application Pane

The Application pane displays a hierarchical representation of a DSP
application.

A Workshop application is a collection of all resources and
components—projects, schemas, modules, libraries, and security
roles—deployed as a unit to an instance of WebLogic Server. Only one
application can be active at a time. Open files display in boldface type.

If the Application pane is not open, complete one of the following
options:
Choose View — Application.

Press Alt+1.

Design View

Design View presents an editable, graphical representation of a data
service. It is a single point of consolidation for a data service’s query
functions and other business logic. Using Design View, you can:

View the data service’s XML type, native data types, functions, and
data source relationships.

Add functions and data source relationships.

Create an XML type definition for elements within the data service, such as xs:string or xs:date.

| Palette | Application "L Files . X
4 RTLADD

= @ DataServices
(1 ApparelDg
(£ BilingDs
() CustomerDB
(1 Dema
(] Electronicsi's
(1 META-INF
(1 MODELS
[(23 RTLServices
[Z schemas
A2 address.ds
:]E Applorder.ds
:]E ApplOrderDetailView.ds
12 applProduct.ds
i caseds
48 Caseview.ds
I8 credivcard.ds
{2 customer.ds
{8 customerview.ds
8 Elecorder.ds
{2 ElecoOrderDetailview. ds
18 ElecProduct.ds
1-3 OrderDetalUpdate.java
18 OrderDetailview. ds
18 ordersummaryiew. ds
HE Orderview.ds
I8 Productview ds
I8 Profileview. ds
(C1 ServiceDE
B sdo.xsdconfig
B Hquery-types.xsd
(Z Elecws
(E1 RTLSelService
(& 5chemas
(£ Modules
() Libraries
(i) Security Roles

Associate the data service with an XML Schema Definition (.xsd) that defines the unified view for

all retrieved data.

Data Services Platform: Samples Tutorial

12

Data Service filename and project
Case.ds - {DataServicesHRTLServices), | |

®

| |47 - Case Dats Service

Bl @ CUSTOMER_CASE retailerType:CASE_TvH
@ CaselD xsd:string
1@ CustomerID xsd:string
1@ ProductlD xsdistring
1@ CaseType xsdistring

+—b — netCase

+——b— getCaseByCustin ——|

@ CaseDescription xsd:skring
@ CaseDate xsdrdate

@ AsigneelD xsdistring

0 Status xsdistring

) StatusDate xsdrdaste

Functions

Data service

relationships XML Type
Cuskomer
K1l r

SERWICE CASE

@ ServiceDBISERYICE. ..

Data sources

|| Design View [=Query Editor Wiew | Source Yiew | Test iew | Query Plan View |

Figure 1-2 Design View of a Logical Data Service

If Design View is not open, complete the following steps:

1. Open a data service (for example, Case.ds, located in the DataServices/RTLServices project

folder).
2. Select the Design View tab.

XQuery Editor View

XQuery Editor View provides a graphical, drag-and-drop approach to constructing queries. Using this
view, you can inspect or edit the query Return type and add the data source nodes, parameters,
expressions, conditions, and source-to-target mappings that comprise data service query functions.

2] gt AmpiCrser Dt sl oK, customas il) -
f * #aFer Gl

ot

ast d g
ai= Cuiot
= APR,_ORDER " APRL_ORDER_TVFE
STE 7 sty
Crde D) st
Ot it
CrderDate dine
Shopngathod g
rdingthange decimal
SupTotd decrmal
TosdCrderamenrt decrmal

Function Name

[PiParamedes: Soi..
e et itrwag

A G

Sholo wing

shoTohirs 1y

BT sty

Teackinghiurrbes 7 cirrg

arvaiiL LB JTEM ¢ APPaiEL LB TTEM
LnainemiD sBrg

17| Paimatar Jeust ada.

e

alen 01
APPAREL LI TTEM ¥ APPRAEL LD ITI =

Parameter

Expression
x%ﬂ itar

oE ./n

g Vi | Wiy Ecitor Ve e Ve | T Wi | Cmry Pl Vi

Figure 1-3 XQuery Editor View

_ﬁ;&'nn—n

CRCER_DETAL CROER DYTAL_WIEW

% CRDER_DETAL * en)

T ? sy
Cot D) st
Ot D g
Crdorelrte dare
Shomngietiod o

A_DETAR_TVPE

<

varclogharge diimal

SubTotd decrmal
Tosskordenimount
ST el
EstrratedSholate
St iy

Teackinghimtas * v

ShoTahirs

fecrmal

Source to Target mapping

Type

Data Services Platform: Samples Tutorial

13

If XQuery Editor View is not open:

1. Open a data service (for example, Case.ds, located in the DataServices/RTLServices project

folder).
2. Select the XQuery Editor View tab.

. . Data Services Palette = X
XQuery Editor View Tools

XQuery Editor View includes several editors and palettes that simplify the
construction of queries:

Expression Editor. Lets you add where and order by conditions to parameter,
let or for nodes. The Expression Editor is only active when you select a
specific node.

Where $pk/CUSTOMER_ID eq $fkfCUSTOMER_ID

_] DataServices

) ApparelDB
(2 BilingDE

[Z] CustomerCE
1 Demo

[Z] Electramics's
I RTLServices
[C) ServiceDE

Data Services Palette. Lets you add previously-defined query functions as data sources. Each
function displays as a for node, which serves as a for clause within the FLWOR (for-let-where-

order by-return) statement that is the heart of an XQuery.

To add data sources, drag and drop an item from the Data Services Palette into the XQuery Editor
View work area. After you drop the node into XQuery Editor View, the node’s data source schema

(shape) displays in the XQuery Editor View.

If the Data Services Palette is not open, choose View — Windows — Data Services Palette.

XQuery Function Palette. Lets you add any of the more than 100 built-in
functions provided within the XQuery language. In addition, you can add any of
the special built-in functions defined by BEA.

To add a built-in function, drag and drop the selected item into the Expression
Editor.

If XQuery Function Palette is not open, choose View — Windows — XQuery
Function Palette.

Any work created in XQuery Editor View is immediately reflected in Source View,
which permits you to augment the graphical approach to constructing queries with
direct work on the XQuery syntax. Two-way editing is supported. Changes you
make in Source View are reflected in XQuery Editor View, and vice versa.

Source View

| ¥Query Function Palette ®

-] #QueryFunctions

(2 Accessor Functions
{21 Agaregate Functions
{21 Boolean Functions
(2] Context Accessars
{21 Duration, Diate, and Time Functior)
{21 Error and Trace Funchions
(22 1dfIdref Functions

{20 Liquid Data Access Control Functid
[Z7) Liquid Data Debugging Functions
(2] Liquid Data Execution Contral Fun
{2 Liguid Data 501 Functions

{21 Mode Functions

(221 Mumeric Functions

{21 9Name Functions

C] Sequence Functions

(2 String Functions

(2] URI Functions

{20 ML Data Source Functions

(K1l | [

Source View lets you view and/or modify a data service’s XQuery annotated source code. Although
DSP provides extensive visual design tools for developing a data service, sometimes you may need to

work directly with the underlying XQuery syntax.

Two-way editing is supported. Changes you make in Source View are reflected in XQuery Editor

View, and vice versa.

Data Services Platform: Samples Tutorial

14

Case.ds - {DataServicesHRTLServices|,

®

(::pragre xds <x:xds tergetType="urn:CUSTOMEE CASE" xmlns:wrn="wrn:reteilerType” xmlns:x="wrn:amotetions.ld.bea.cor"s =]

<author=Bob Johnes</authors]

=cregtionDates2005-05-07T10:49: 23« /creationlates

<documentationsNormelized view of Support Cases.< /documentation>

<property name="layer"sSecond« property>

<property name="Usage"rInternal< propertys

<property name="propertytivalue< propertys

<ugerBefinedView >

<relationshipTarget maxlccurs="1" mindccurs="i" opposite="Case™ XDS="ld:DataServices RILServices Tustomer.ds™ roleNames
</X:xds>

2]

import schema namespace nsi="urn:retailerType"” at "ld:Datadervices/RTLiervices/schemas/CustomerProfile.xsd";
declare namespace nsd="ld:Datadervices/RTLiervices/Customer"”;

declare namespace nsa="ld:Datadervices/ServiceDB/SERVICE CASE";

import schema namespace ns0="urn:retailerType"” at "ld:Datadervices/RTLiervices/schemas/Case.xsd";

declare namespace nsl="ld:DataServices/RTLServices/Case’;

declare function nsl:getCasei) as elementins0:CUSTOMER_CASE)™ |
[for $x0 in ns2:SERVICE_CASE()
return <ns0:CUSTOMER CRSE>
<CaseID> {En:data(§x0/CASE_ID}} </CaseID>
<CustomerID> {fn:data(x0/CUSTOMER_ID}} </CustomerID>
<ProductID> {fn:data($x0/PRODUCT_ID}} </ProductID:
<CaseTyper {En:data(§x0/CASE_TYPE|} </CaseTyper
<CaseDescription> {fn:data(§x(/CASE_DESC|} </CaseDescription>
<CaseDate> {En:data($x0/CASE_DATE|} </CaseDates
<hsigneeID> {in:data($x0/ASSIGHEE_ID|} </RsigneeID:
<Statuss {En:data($x0/STATUS|} </Statuss
«StatusDates {fn:data(sx0/STATUS DATE]} </StatusDates
</ns0: CUSTOMER CRSE>

¥:

(iipragme function <f:function kind="read" xmlns:f="wrn:annotations.ld.bed.com":>

=uilropertices>
«component h="1507 w="16Q7 y="34T x="14" minimized="false” identifier="cust_id"s>
A «componsnt h="160" w="160" w="40" x="40" identifier="argd"s> EE
1

[Design View [#0uery Editor View | Source View [TestView [Query Flan View

Figure 1-4 Source View

If Source View is not open, complete the following steps:

1. Open a data service (for example, Case.ds, located in the DataServices/RTLServices project
folder).

2. Select the Source View tab.

Within Source View, you can use the XQuery Construct Palette, which lets you add any of several
built-in generic FLWOR statements to the XQuery syntax. You can then customize the generic
statement to match your particular needs.

To add a FLWOR construct, drag and drop the selected item into the appropriate declare function
space.

If XQuery Construct Palette is not open, choose View — Windows — XQuery Construct Palette.

Test View

Test View provides a means of running developed query functions within the IDE. Options available in
Test View depend on the query being tested. For example, if the query supports parameters, then the
Parameters section appears, providing a field for each parameter required by the query.

Using Test View, you can select a specific function, specify appropriate parameters, and execute the
query to determine that it is functioning properly. In addition, you can edit the results of the query and
pass the modifications back to the underlying data source.

Data Services Platform: Samples Tutorial 15

Case.ds - {DataservicesHRTLServices| B3

Select Function:)) |
Data service function

-] getCaseByCustiDicust_id)

Parameters

wsistring cust_id: | | CUSTOMER1

Parameters

Number Element by path)
O N
[Start Client Transaction [Validate Results

Result BCEE

Lirnit elernents in array results ta:

<ns0:ArrayOFCUSTOMER,_CASE xmins:ns0="urniretaler Type" > E
<ns0:CLISTOMER _CASE>
<CaselD>CASE_11</CaselD>
<Customer [0 =>CUSTOMER 1 </CustomerID> "
<CaseType =DEFECT</CaseType>
<CaseDescription>FM114P CablejDSL Wireless Router with Printer has
defect, <fCaseDescription>
<CaseDate>2002-05-03</CaseDate>
<hsigneelD>SERYICE_REP_d-</AsigneelD>
<Status =OPEN <fStatus>
<StatusDate >2002-05-07 </StatusDate >
<fnsh:CLISTOMER_CASE>
<ns0:CLSTOMER _CASE:
<CaselD>CASE_12</CaselD>
<CustomerID »CLISTOMER 1 </CustomerID:»
<ProductID =Wireless Card</ProductiD>
«CaseType>NOT VET DELIVERED </CaseType >
<CaseDescription>Wireless card skl not
Jiver o< CaseDescriion =l

RQuery Editor Wiew Test Wiew | QUery Plan View

Figure 1-5 Test View

If Test View is not open, complete the following steps:

3. Open a data service (for example, Case.ds, located in the DataServices/RTLServices project
folder).

4. Select the Test View tab.

Lab 1.3 Starting WebLogic Server

WebLogic Server need not be running while you are designing a DSP project. However, before you
import source metadata or test a developed function, you must start an instance of WebLogic Server.

Any DSP projects that you create will run on your system’s installation of WebLogic Server, at least
until you deploy them.

Objectives
In this lab, you will:
Discover ways to start WebLogic Server.

Confirm that your server is running.

Instructions

There are three ways to start WebLogic Server:

Menu Command Tools — WebLogic Server — Start WebLogic Server
Shortcut Keys Ctrl + Shift + S
Procedure Right-click the red Server Stopped icon, located at the bottom

of the WebLogic Workshop window. Then click Start
WebLogic Server.

Data Services Platform: Samples Tutorial

Lab1.4

Starting the WebLogic Server may take several moments. During the server start-up sequence,
you may see the following message box:

WebLogic Workshop

n Authentication Failure when connecting to the server,
Check that your WebLogic Server username and password are
correck,
and that the user has full admin rights.

Figure 1-6 (Possible) WebLogic Server Startup Message

If this box displays, select OK.

When WebLogic Server is running, the status indicator in the lower edge of the WebLogic Workshop
development environment will turn green.

@ 3Server Running

Stopping WebLogic Server

There may be times when you want to stop WebLogic Server while still working within DSP for
WebLogic Workshop.

Objectives
In this lab, you will:
Discover how to stop WebLogic Server.

Confirm that the server is not running.

Instructions

There are three ways to stop WebLogic Server:

Menu Command Tools — WebLogic Server — Stop WebLogic Server
Shortcut Keys Ctrl + Shift + T
Procedure Right-click the green Server Running icon, located at the bottom of the

WebLogic Workshop window. Then click Stop WebLogic Server.

Check the status bar at the bottom of WebLogic Workshop to determine whether WebLogic Server is
stopped. If WebLogic Server is stopped, the following icon displays:

@ Server Stopped

Data Services Platform: Samples Tutorial

Lab 1.5 Saving Your Work

As you build your data services, you may want to save your work on a regular basis.

Objectives
In this lab, you will:
Discover three ways to save your work while working within the application.

Discover how to save one or more files when exiting the application or closing WebLogic
Workshop.

Instructions

You can save your work using the following commands:

Menu Command Icon
File — Save =
File — Save As Not Applicable
File — Save All i

Save All is generally recommended for DSP applications.
In addition, if you exit WebLogic Workshop and there are any unsaved changes, you are provided with

an option to save either specific or all edited files.

Save Files E|

The files listed below have changed, Please indicate those vou'd like to save before continuing.

Customer.ds [{DataServices}H,]
Customer.xsd [{DataServices}\schemas!,]

Select Al | | Select Mone ok | | Cancel

Figure 1-7 Save File Options on Exiting WebLogic Workshop

Lesson Summary

In this lesson, you learned how to:
Use several of the key tools within the DSP for WebLogic Workshop environment.

Start and stop the WebLogic Server.

Save files within a Data Services application.

Data Services Platform: Samples Tutorial 18

Lesson

Objectives

Overview

Lab 2.1

2 Creating a Physical Data Service

A data service is simply a file containing XQuery functions and supporting structured information.
The most basic data service is a physical data service, which models a single physical data source
residing in a relational database, Web service, flat file, XML file, or Java function.

Data Services Platform approaches the problem of creating integration architectures by building data
services around multiple physical data services. Therefore, in this lesson, you will create data services
based on relational data included in the sample PointBase database provided with DSP:

Customer Relationship Management (CRM) data, stored in the RTLCUSTOMER database.

Order Management System (OMS) data for apparel and electronic products, stored in the
RTLAPPLOMS and RTLELECOMS databases.

Customer service data, stored in the RTLSERVICE database.

After completing this lesson, you will be able to:

Create a DSP application and project.
Generate multiple physical data services, based on underlying relational data sources.

Test a physical data service.

A data service is a collection of one or several related query functions. The service typically models a
unit of enterprise information, such as customer or product data.

The shape of a data service is defined by an XML type that classifies each data element as a particular
form of information, according to its allowable contents and units of data. For example, an xs:string
type can be a sequence of alphabetic, numeric, and/or special characters, while an xs:date type can only
be numeric characters presented in a YYYY-MM-DD format. DSP uses the XML type to model and
normalize disparate data into a unified view.

The data service interface consists of public functions that enable client-based consuming applications
to retrieve data from the modeled data source.

Creating a DSP Application

Since a data service is part of a specific DSP project, and a project is part of a single WebLogic
Workshop application, you will first need to create the application, and then a project, before creating a
physical data service. (Alternatively, an existing application could be used; in that case you would
simply create a DSP project within the application.)

An application, which is deployed as a single unit to an instance of WebLogic Server, is a J2EE
enterprise application that ultimately produces a J2EE Enterprise Application Archive (EAR) file.
This, in turn, provides you with a multi-user application that is ready for Internet deployment. Except
in specific cases, such as accessing remote EJBs or web services, an application is self-contained. The
application’s components may reference each other, but may not generally reference components in
other applications. An application’s components include:

One or more projects, data services, schemas, and libraries.

Data Services Platform: Samples Tutorial 19

Zero or more modules and security roles.

An application should represent a related collection of business solutions. For example, if you are
deploying two web sites — one an e-commerce site and the other a human resources portal for
employees — you would probably create separate WebLogic applications for each.

An application is also the top-level unit of work that you manipulate within the WebLogic Workshop
environment. Only one application can be active at a time.

Objectives

In this lab, you will:

Create a DSP-enabled application.

Explore default application components.

Instructions
1. Choose File — New — Application — Data Services Application.
2. Enter Evaluation in the Name field.

3. Click Create.

.
New Application
i éﬁ Data Services Application E

21 Data Service &9 Defaulk Application
(1 Portal éﬁ Ernpty Application
() Process éﬁ Portal Application
(2 Tutarial E -

&ﬁ Process Application

éﬁ Tutorial: Enterprise JavaBeans

éﬁ Tutorial: Hella World Pracess application

@ Tukarial: Java Control Iz‘
Directary: | Ciibealuser_projectsiapplications\Evaluation | ‘ Browse. .. ‘
Mame: | Evaluation ‘
Server: | C1ibealweblogics 1 \samplesidomainsiidplatform ‘ - | ‘ Browse, .. ‘

Creates a new empty application with a Data Service project,

Figure 2-1 Creating a DSP Application

The components of the application are represented in a hierarchical tree structure in the Application
pane. When you first create a Data Services application, the following default components are
automatically generated:

Data Service project. Takes the name of your application (in this case, Evaluation). Within the
project folder, there is initially a single component, the xquery-types.xsd file. This file is an XML
Schema Definition (XSD) that describes the contents, semantics, and structure of the project.

Modules. Initially an empty folder.

Libraries. Contains the 1d-server-app.jar file. Within this file are several folders and files, as
displayed in Figure 2-2.

Security Roles. Initially an empty folder.

Figure 2-2 displays the default folders created for the Evaluation application.

Data Services Platform: Samples Tutorial 20

Application ™ Files ®

Y Evaluation
=29 EvaluationDataServices
Fj wauery-tyvpes, xsd
] Modules
=9 Libraries
= Q |d-server-app. jar
=2 com
Cbea
=128 META-INF
&%) MDEx LIST
L2 mANIFEST MF
=429 schema
£ element
[C javaname
L] namespace
O sre
[Z system
.
ﬂ sdoupdate_en.properties
(3] Security Rales

Figure 2-2 Initial Application Structure

Data Services Platform: Samples Tutorial

Lab 2.2 Creating a Data Services Project

A project groups related files—data services, models, and metadata—within an application. Each

application can support multiple projects. As you develop the application, you may want to create new
projects for the following reasons:

To separate unrelated functionality. Each project should contain closely-related components. For
example, if you want to create one or more data services that expose order status to your customers,

and also one or more web services that expose inventory status to your suppliers, you would
probably organize these two sets of unrelated web services into two projects.

To control build units. Each project produces a particular type of file when the project is built. For

example, a Java project produces a JAR file. If you want to reuse the Java classes, you would
segregate the Java classes into a separate project, and then reference the resulting JAR file from
other projects in your application.

Although a default Data Services project is created when you create a new Data Service application,

for this tutorial you will create a new project.

Objectives

In this lab, you will:

Create a new Data Service project.

Review the results.

Instructions

1. Choose File — New — Project — Data Service Project.

2. Enter DataServices in the Project name field.

3. Click Create.

Mew Project

el

[Z1) Business Logic
[C] Data Service
CIEE

[C) Partal

[C Process
(O Schema

[C) Web Services
[C) Web User Interface

@ Daka Service Projeck

Project name: | Datalervices)

Creates a new project for building Agqualogic Data services.

Figure 2-3 Creating a New Data Service Project

The components of your new Data Service project are represented in a hierarchical tree structure in the

Application pane. At present, there is only one component in the project, the xquery-types.xsd file.
This file is an XML schema definition that describes the contents, semantics, and structure of the

project.

Data Services Platform: Samples Tutorial

22

Lab 2.3 Creating Project Sub-Folders

Folders let you logically group different data services, and their associated files, within a single
project. For example, if you had three data sources — one relational database containing tables for
customer-oriented information and two Web services providing credit rating and information — you
would probably want to create two folders, one for the database and one for the Web services.

Objectives

In this lab, you will:

Create four sub-folders within the DataServices project folder.

Review the results.

Instructions

1. Right-click the DataServices project folder.
Choose New — Folder.

Enter CustomerDB in the Name field.
Click OK.

wok v

Repeat steps 1 through 4 to create data service folders for:
ApparelDB
CustomerDB
ElectronicsDB
ServiceDB

After adding these four folders, your DataServices project folder should look similar to Figure 2-4.

Application ™ Files b

3 Evaluation
= {4 Datadervices
£ ApparelDBE
() CustomerDE
(C) EletronicsDE
] ServiceDE
@ wquery-types,xsd
() EvaluationDataServices
£ Modules
) Libraries
(] Security Raoles

Figure 2-4 Project Sub-Folders

Data Services Platform: Samples Tutorial

23

Lab 2.4

Importing Relational Source Metadata

When you installed DSP, several sample data sources were also installed. One such sample data source
is the Avitek RTL PointBase database. It contains a number of relational database schemas that
provide the metadata needed to build your physical data services, including:

Customer Relationship Management (CRM) data, stored in the RTLCUSTOMER database.

Order Management System (OMS) data for apparel products, stored in the RTLAPPLOMS
database.

Order Management System (OMS) data electronic products, stored in the RTLELECOMS
database.

Customer service data, stored in the RTLSERVICE database.

A physical data service, which models physical data existing somewhere in your enterprise, is
automatically generated when you import relational source metadata. Each generated physical data
service represents a single data source that can be integrated with other physical or logical data
services.

Objectives

In this lab, you will:

Import source metadata from four RTL PointBase databases, thereby generating multiple physical
data services.

Review the results.

Instructions

Note: WebLogic Server must be running. If it is not already running, start the server (Lab 1-3) before
you begin this lab.

1. Right-click the CustomerDB folder.
2. Choose Import Source Metadata from the pop-up menu.
3. Select Relational from the Data Source Type drop-down list and click Next.

& Select data source type @

Data Source Type: ‘ FRelational | - |

‘ Next H || Cancel |

Figure 2-5 Select Data Source Type

Data Services Platform: Samples Tutorial

24

4. Specify the data source, by completing the following steps:

a. Select cgDataSource from the Data Source drop-down list.

b. Click Select All and click Next.

&= Select data source

X

Data Source: | cghatasource

][]

@) Select all

(") Selected data source objects

Catalog
Schema
Tahle/View

Procedure

() SO skatement

Dicplaye all tables, wiews, and procedures from the data source,

Displays selected tables, wiews, and procedures from the data source.

JDEC wildcard operators: _ For single charackers; % For stri.,

Allows data serwice creation from a user-provided SCL staternent.:

| Prewvious | | et | | | | Cancel |

Figure 2-6 Select Data Source

WebLogic Server fetches the specified data, and then displays the Select Database objects to import

window. The source metadata for each selected object will be used to generate a physical data service.

5. Expand the RTLCUSTOMER and RTLBILLING folders, located in the left pane.

6. Select all tables from both schemas and click Add. The selected objects display in the right pane.

1 Select database objects to import
Available database objects Selected database objects
) schemas =2 RTLE;IL;IING
() EROADEAND =0 ° Z;EDH e
Sycrm RTLC(Q)STOMER B
(CARTLAPPLOMS =0
4o B £ Tables
o © ADDRESS
_ _ @ CUSTOMER
=0 °
B0 [Rencee]
o
@
(CARTLELECOMS
(CJRTLSERVICE
() WEBLOSIC
(O WIRELESS
[Frevions | [wext_]| | [cncel |

Figure 2-7 Selected Database Objects to Import

Data Services Platform: Samples Tutorial

25

7. Click Next. A Summary window opens, displaying the following information:
XML type, for database objects whose source metadata will be imported.

Name, for each data service that will be generated from the source metadata. (Any name
conflicts appear in red; you can modify any data service name.)

Location, where the generated data services will reside.

28 Summary. &‘

The following data service{s) will be created. Edit suggested name(s) as needed.
=ML Type

Marne:

ADDRESS ADDRESS

]

CREDIT_CARD CREDIT_CARD

CUSTOMER CUSTOMER

]

Location ‘ Di\testi Testappi TestAppDataServices ‘ | Browse. .. |

‘ Previous ‘ | | ‘ Finish ‘ | cancel |

Figure 2-8 Metadata Summary

8. Click Finish.

9. Repeat steps | through 8 to import source metadata into the ApparelDB, ElectronicsDB, and
ServiceDB folders, substituting the following information for steps 1 and 5:

Step 1 Step 5
ApparelDB RTLAPPLOMS
ElectronicsDB RTLELECOMS
ServiceDB RTLSERVICE

The Application pane should appear similar to Figure 2-9. If you expand a data service’s schema
folder, you will see XSD files for each data service generated from the underlying data source.

Data Services Platform: Samples Tutorial

26

Lab 2.5

Application . Files

29 Evaluation
= @ DataServices
-2 ApparelDE
-2 schemas
|<—j CUSTOMER_ORDER. xsd
[¢}] CUSTOMER_ORDER_LINE _ITEM.xsd
[¢8] PRODUCT . x5d
S]E CUSTOMER_ORDER.ds
412 CUSTOMER _CRDER_LIME_ITEM,ds
A PRODUCT ds
-2 CustomerDE
E1- 29 schemas
[¢8] ADDRESS. sd
[£3) CREDIT_CARD. xsd
[¢3) cusTOMER. xsd
i sDDRESS.ds
HI2 CREDIT_CARD.ds
B cusTomER. ds
-9 ElectronicsDE
-2 schemas
|<—j CUSTOMER_ORDER .xsd
3] CUSTOMER _GRDER_LINE_ITEM xsd
[¢8] PRODUCT . x5d
SIB CUSTOMER_ORDER.ds
418 CUSTOMER_ORDER_LINE_ITEM.ds
A PRODUCT ds
129 ServiceDE
[C schemas
HI2 sERVICE_CASE.ds
|<—j wquery-types.xsd
@ EvaluationData Services
(£ Modules
[Libraries
(3] Security Roles

Figure 2-9 New Data Services

Building a Project

Building a project simply means that the project’s source code is compiled into machine-readable
instructions. Each project produces a particular type of file when the project is built. For example, a

Java project produces a JAR file.

Objectives

In this lab, you will:

Build the DataServices project.

Review the results in the Build window.

Instructions

1. Right-click the DataServices project folder.

2. Choose Build DataServices. It may take a few moments for the project to be built. When complete,
you will see a message in the Build window, similar to that displayed in Figure 2-10. (If the Build

window is not open, choose View — Windows — Build or press Alt+5.)

Data Services Platform: Samples Tutorial

27

Build ™. *
Building zip: D:\TEMP\wlw-temp-52Z85584wly compile3z02Z\DataServices. Jar E‘

move-jar:

Mowing 1 files to D:\bea\user_ projecta‘\applicationstdanube\Evaluation’\APP-INF\lih
update-jar:

build.prepareEAR:

build.ejb:

build. ejhdd:

Created dir: D:\bea\weblogic8liliquiddataldeploymenth tup

Copying 2 files to D:ivbhea'\weblogicSlylirmiddata)deployment) tup

Building jar: D:\bea\user_projects)applications)danube)\EvaluationiEvaluation_ejb.jar
Copying 1 file to D:tbeajuger_projectalapplicationstdanubehEvaluation\META-INF
BUILD SUCCEISFUL

Build project Datafervices complete.

[l] O

[

Figure 2-10 Build Project Information

3. Scroll through the Build window. As part of the Build process, DSP generated several files,
including the following:

Data service (.ds) files for each table within the underlying data source.
ArrayOf schema (.xsd) files for each data service.
Miscellaneous JAR, EJB, and EAR files.

Figure 2-11 displays the complete Build information for the DataServices project.

Build ™. bad
Build project DataSerwices started.
BUILD 3TARTED
build:
ServiceDB/SERVICE_CASE.ds
CustomerDE/CUSTOMER. d=
ElectronicsDE/PRODUCT. d=
ApparelDB/PRODUCT, d=
ElectronicsDE/CUSTOMER_ORDER_LINE ITEM.ds
AdpparelDB/CUSTOMER_ORDER. d=
CustomerDE/ADDRESS. d=
CustonerDE/CREDIT_CARD.ds
ElectronicsDE/CUSTOMER_ORDER. d3
ApparelDB/CUSTOMER_ORDER_LINE_ITEM.ds
Generated Schema File: \bea\user_projectsiapplications)danubetEvaluation\Datadervices\ApparelDB)schenas\Array0f
Generated Schema File bea\user_projectshapplications)danube’Evaluation)lataiervices\ApparelDB)schenastirraylf
Generated Jchema File bea\user_projectshapplications)danube’Evaluation)lataiervices)CustonerDEYschenas\Arrayl
Generated 3chema File bea‘user_projectshapplications)danube’Evaluation\Datafervices\CustonerDBYschenas\irrayl
Generated 3chema File beajuser_projectshapplications)danube’Evaluation\DataServices\ElectronicsDE\schemnas\hrr
Generated 3chema File heajuser_projectalapplicationa)danubesEvaluation\DataServices\ElectronicsDE)achenas\hrr
Generated Schema File heajuser_projectalapplicationa)danubesEvaluation\DataServices)ServiceDB\ schemas)rray0f
Generated Schema File beaj\user_projectshapplications)danube’Evaluation\Dataiervices)CustonerDEyschenas \Arrayl
Generated Schema File bea\user_projectshapplications)danube’Evaluation\Dataiervices\ApparelDB)schenasidrraylf
Generated Schema File: \bea\user_projectsiapplications)danubetEvaluationiDatadervices\ElectronicsDB\schenasiirr
enerating index for project: Datafervices
Copying 1 file to D:‘bea‘user_projectshapplications)damube’\Evaluation‘\APP-INF4\1lib
Copying 1 file to D:\beaiuser_projectsiapplications)damubelEvaluationiDataervices
build-sub:
compile:
Created dir: D:\TEMP\wlw-temp-52559%wlw _compile3z0zzyDataServices
Coupiling 45 source files to DIZTEMPA\wlw-temp-52359%wlw _compile3z0z2\DataServices

Time to compile code: 15.593 seconds

Time to build schema type systen: 1.923 seconds

Time to generate code: Z.002 seconds

Building zip: D:\TEMPA\wlw-temp-523594wlw_compile3Z022\DataServices. jar

nove-jar:

Moving 1 files to D:ybeahuser_projects’applications)danube’lEvaluationtAFP-INFY1ib
update-jar:

build.prepareEaR:

build.ejb:

build.ejbdd:

Created dir: D:\bealwehlogicGlhliguiddataldeployment! tup

Copying 2 files to D:vbea\wehlogicGlyliquiddataldeployment) tonp

Building jar: D:\bea\user_projectshapplicarionsidarube\Evaluarion\Evaluation_ejb.jar
Copying 1 file to D:‘\beatuser_projectshapplications)damube’\Evaluation\META-INF
BUILD SUCCESSFUL

Build project DatalSerwices complete.

1 bJ

Figure 2-11 Complete Build Information for the DataServices Project

4. (Optional) In the Application pane, expand the schema folder for CustomerDB. You should see a
list of the generated array schemas.

5. (Optional) Expand the Libraries folder. You should see the DataServices.jar file.

Lab 2.6 Viewing Physical Data Service Information

A physical data service is automatically generated when you import source metadata and build the
associated project. Each generated physical data service represents a single data source that can be
integrated with other physical or logical data services.

Data Services Platform: Samples Tutorial

28

When DSP generates a physical data service, it also generates XML data types, an XML Schema
Definition (.xsd file), default query and navigation functions, and pragma information.

Objectives

In this lab, you will:

View XML type, native data types, XML schema definition, generated functions, and metadata.

Use Design View and Source View to obtain information about a data service.

Viewing XML type

An XML type, which derives from the data service’s XML Schema Definition (XSD), is a structured
XML document that classifies each element within the data service as a particular form of information,
according to its allowable contents and units of data. For example, the XML type for the CUSTOMER
data service is CUSTOMER, whose elements include:

CUSTOMER _ID, whose xs:string classification indicates the element’s return data will be
formatted as a sequence of alphabetic, numeric, and/or special characters.

CUSTOMER_SINCE, whose xs:date classification indicates the element’s return data will be
formatted as numeric characters presented in a YYYY-MM-DD format.

Multiple data services can use a single XML type. DSP uses the XML type as the default superset of
data elements that will be returned by a set of queries. This superset XML type, known as the Return
type, models and normalizes data retrieved from the underlying data source, thereby transforming
disparate data into a unified view.

Instructions
1. Inthe Application pane, expand the CustomerDB folder.
2. Double-click the CUSTOMER.ds file. The data service opens in Design View.

Note: The data service automatically opens in the View workspace last used; if Design View is not
currently open, click the Design View tab.

3. In the middle of the data service representation you should see the CUSTOMER XML type for the
data service, plus the XML classification for each element in the data service. Items marked with a
question (?) mark are optional elements, which means two things: 1) if there is no data in the
underlying data source, that element will not display in the data set returned by the data service and
2) a query function can succeed without providing any value for particular element.

Data Services Platform: Samples Tutorial 29

*

CUSTOMER. ds - {DataServicesHCustomer DB}

| |42~ CUSTOMER Data Service
El-@ CUSTOMER

—p— cusTomER T CLSTOMER_ID xsistring

© FIRST_NAME xs:shing

@ LAST_NAME xsistring

© CUSTOMER_SINCE xsidate

(© EMALL_ADDRESS xsistring

© TELEPHONE_NUMBER xs:string
@ 55M T xestring

@ BIRTH. DAY ? xsedate

© DEFALLT_SHIP_METHOD ? xs:shing
@ EMAIL_NOTIFICATION ? xsishort
@ NEWS_LETTTER ? xs:short

(© ONLINE_STATEMENT ? xsishort
@ LOGIN_ID ? xsistring

ADDRESS
XML Type
< getADDRESS

Kl [

' Design Yiew [#Guary Editor View | Source Yisw | Test View | Query Plan View |

Figure 2-12 Design View of XML Type
Viewing Native Data Type

A Native Data Type classifies each data element according to the definitions specified in the
underlying data source. For relational data sources, DSP generates Native Data Type definitions based
on the underlying database’s table structure and column data definitions.

Instructions

1. Right-click the CUSTOMER Data Service header. (You can also right-click any empty space
within the data service diagram.)

2. Select Display Native Type. This will display the original data type for each element in the
underlying data source.

3. In the middle of the data service representation, you should see Native Types for each data element
in the data service.

®

CUSTOMER.ds - {DataServicesHCustomerDE)Y,

| /42" CUSTOMER. Data Service
B @ CUSTOMER.

+—L— cusTomeR @ CUSTOMER_ID VARCHAR(Z)

@ FIRST_NAME VARCHAR{54)

(@ LAST NAME VARCHAR{E4)

(@ CUSTOMER_SINCE DATE(10)

(@ EMAIL_ADDRESS VARCHAR{32)

(@ TELEPHONE_NUMBER VARCHAR{32)
(@ S5MT VARCHAR(!E)

@ BIRTH_ DAY 7 DATE{10)

(@ DEFALLT_SHIP_METHOD > VARCHAR{16)
(@ EMAIL_NOTIFICATION ? SMALLINT]S)
@ NEWS_LETTTER 7 SMALLINT(S)

(@ ONLINE_STATEMENT ? SMALLINT{S)
(@ LOGIN_ID ? WARCHAR(S0)

ADDRESS i
Native data types
< QetADDRESS

<0 0]

" Design Yiew [#Guery Editor View | Source Yiew | Test Wiew | Query Plan View |

Figure 2-13 Design View of Native Type

Data Services Platform: Samples Tutorial 30

Viewing XML Schema Definition

An XML Schema Definition file (.xsd) corresponds exactly to the XML type of a data service. It
defines the structure and content of an XML document, such as the XML type document. In other
words, it defines the vocabulary, rules, and conventions for representing information in a system.

An .xsd file is organized as a flat catalog of complex elements, any attributes, and any child elements.
For physical data services, DSP automatically generates an .xsd file from underlying data when the
underlying data source’s metadata is imported. Generated .xsd files are placed in the appropriate data
service’s schema directory.

Note: For logical data services, you must create a schema. You can use XQuery Editor View,
discussed in Lesson 3, to create such schemas (XSD files).

Instructions
1. Right-click the CUSTOMER element, located in the XML type pane. A pop-up menu opens.

2. Choose Go to Source to view the underlying schema information.

CUSTOMER, xsd - {DataServicesHCustomerDE schemash

D

<rxml wersion="1.0" encoding="UTF-8" 2>
<xz:schena targetNamespace="1d:DataServices/CustonerDB/CUSTOMER” =mlns:xs="http: /amm.wi. org/ 2001 2HMLEchens'
<xa:elenent name="CUITOMER">
<xz:conplexTypelx
“HSISEqUEnCE:
<xa:element name="CUSTOMER_ID" type="xs:string”/>
<xs:element name="FIRST NAME" type="xs:string”/>
<xz:element name="LAST NAME™ type="xs:string”/=
<xz:element nane="CUSTOMER_SINCE" type="xs:date”/>
<xa:element name="EMATL ADDRESS™ type="xs:string”/=
<xs:elenent name="TELEPHONE_NUMEER"™ type="x3:string” />
<xzielenent name="33N" type="®s:string” ninlccurs="0"/>= |
<xs:elenent name="BIRTH DAaYT" type="xs:date” minlccurs="0"/>
<xa:element name="DEFAULT SHIP METHOD" type="xg:string” minlccurs="0"7>
<xs:elenent name="EMATL NOTIFICATION" type="xs:short” minlccurs="0"/>
<xa:element name="NEWS_LETTTER" type="xs:short” minlccurs="0"/>
<usielenent name="0NLINE_STATEMENT" type="xs3:short” minlcours="0"/>
<xa:element name="LOGIN_ID" type="Xs:string” minlccurs="0"/>
< /HE 1 SRqUEnCEy
</usiconplexTypes
</xarelenent>
</®a:schema=

[D

Figure 2-14 XML Schema Definition

3. After reviewing the XSD, click the Close box (X) in the upper-right corner of the source pane to
return to Design View of your data service.

Note: Clicking the large red X will close WebLogic Workshop.
Viewing Generated Functions
The data service interface consists of public functions of the data service, which can be of several
types:

One or more read functions, which typically return data in the form of the data service XML type.

One or more navigation functions, which return data from related data services. The navigation
functions are based on any relationships defined within the underlying data source. Relationships
enhance the flexibility of data services by enabling the return of data in the shape of another data
service.

One submit() function, which allows users to persist changes back to the original data source. (The
submit() function does not appear in Design View.)

Data Services Platform: Samples Tutorial 31

In addition to public functions, a data service can include private functions that are only used within
the data service. They generally contain common processing logic that can be used by more than one
data service function. (For more information, see the Data Service Developer’s Guide.)

Instructions

1. In Design View, notice the public functions displayed in the left pane of the diagram. These
functions, which were generated for the data service, include the following:

CUSTOMER(), a read function that retrieves data from the underlying RTLCUSTOMER
database.

getADDRESS(), a navigate function that retrieves data from the ADDRESS data service. This
function is based on a relationship between the CUSTOMER and ADDRESS tables, which are
defined in the RTLCUSTOMER database.

CUSTOMER. ds - {DataServicesHCustomerDE}

| [f]7" CUSTOMER: Data Service
=@ CUSTOMER

+—p— cusTover @ CUSTOMER_ID xs:string

@ FIRST_MAME xs:string

Read function @ LAST_MAME xs:stting

© CUSTOMER_SINCE xs:date

@ EMAIL_ADDRESS xs:string

(@) TELEPHOME_MUMBER xs:string
(&) 55M 7 xsiskring

(&) BIRTH_DAY ? xsidate

@ DEFAULT_SHIP_METHOD 7 xs:skving
© EMAIL_MOTIFICATION ? xs:short
© NEWS_LETTTER ? xsishort

@ ONLINE_STATEMENT ? xsishort
@ LOGIN_ID 7 xs:skring

X

ADDRESS

Navigate function

K1l O

| Design Yiew [RQuery Editor Yiew | Source View | Test Wiew | GQuery Plan View

Figure 2-15 Design View: Generated Functions

2. (Optional) Right-click the CUSTOMER Data Service header and choose Display XML type from
the pop-up menu. (You can also right-click any empty space within the data service diagram.)

Viewing Data Service Metadata

Metadata is simply information about the structure of data; it provides facts about the data service’s
data, format, meaning, and lineage. For example, a list of tables and columns within a database is
metadata. DSP uses metadata to describe a data service: what information is provided by the data
service and the information’s lineage (that is, the source for the information.)

In addition to documenting data services for potential consumers, metadata helps you determine what
data services are affected when inevitable changes occur in the underlying data source layer. Of course
in the case of physical data services, the metadata primarily describes metadata extracted from the
physical data source.

Metadata information is contained in the data service’s META-INF folder. Normally you should not
need to refer to the contents of this folder.

Data Services Platform: Samples Tutorial 32

Lab 2.7

Instructions

1. Select the Source View tab. The metadata information used by the Customer data service appears.

(Also available in Source View are data service namespace, schema namespace, and XQuery
functions; these items are not displayed in Figure 2-16.)

2. Click the + icon to display all metadata information.
3. Notice the following:
The date the data service was created.

The data source from which the metadata was imported.

The XML type, XPath, Native Data Type, and native XPath for each element within the data

service.

The relationship target, role name, role number, XDS, and relationship parameters for each data

service associated with the active data service.

CUSTOMER.ds - {DataServicesHiCustomerDB)Y,

(rrpragma xds <x:xds rmlns:y="urniannotations.ld.bea. cor"™ fargetType="t:CUSTOMER" ymlns:t="1ld:DataServices CustonerDE CUSTOMERT>

woreationllatex2005-03-21T16:11: §3=/creationlater

<relationalDlB dbVersion="4" dbType="pointbase” name="cglataSource" >

<field type="xs:string" xpath="CUSTOMER ID™:
<extension nativeFractionalDigits="0" nativeSize="3i" nativelypelode="12" nativelype="VARCHAR" nativeXpath="CUSTOMER ID"/>
<propertias nullable="false"/> -

</ field=

<field type="ya:string" xpath="FIRST NAME":
<extension nativeFractionalDigits="0" nativeSize="éd" nativeTyperode="12" nativeType="VARCHAR" nativeXpath="FIRST NAME"/ >
<properties nullable="rfalse"/ > -

</Field>

<field type="xs:string" xpath="LAST NAME'™:
<eytension nativeFractionalligits="0" netiveSize="64" nativeTypeCode="12" nativeType="VARCHAR" nativeXpath="LAST NAME" >
<propertias nullable="false"/> -

</ field=

<field type="xardate" xpath="CUSTOMER SINCE'™:
<extension nativeFractionalDigits="0" netiveSize="10" nativeTypetode="01" nativeType="DATE™ nativeXpath="CUSTOMER SINCE" =
<properties nullable="rfalse"/ > -

</Field>

<field type="xs:string" xpath="EMATL ADDRESS">
<eytension nativeFractionalligits="0" netiveSize="32" nativelypeCode="12" nativelype="VARCHAR" nativeXpath="EMAIL ADDEESS"/ >
cproperties nullable="false"/> -

</ field=

«field type="xs:string" xpath="TELETPHONE NUMEER'":
<extension nativeFractionalDigits="0" nativeSize="32" nativeTypeCode="12" nativeType="VARCEAR" nativeXpsth="TELEDRONE NUMEER™/>
<properties nullable="rfalse"/ > -

</Field>

<fisld type="ksistring" xpath="S5N"> E‘

[« D

Design View | #Query Editor Yisw | Source Yiew [Test Yiew | Query Plan View

Figure 2-16 Source View of Metadata

Testing Physical Data Service Functions

Testing a data service’s functionality within Test View lets you determine whether the data service is

able to return the expected data results.

Objectives

In this lab, you will:

Test the CUSTOMER() function.
Review the results in Test View.

Review the results in the Output window to confirm that the data is pulled from the correct data
source.

Instructions
1. Select the Test View tab.
2. Select CUSTOMER() from the function drop-down list.

Data Services Platform: Samples Tutorial

33

3. Click Execute. You should see data returned from the RTLCUSTOMER database, formatted
according the CUSTOMER data service’s Return type, which is defined by each element’s XML

type.

4. Expand the nodes and notice the following: Each element defined by the XML type returns specific
data retrieved from the RTLCUSTOMER database. For example, the <FIRST NAME> element
returns “Jack” as an xs:string, while the <CUSTOMER_SINCE> element returns "2001-10-01" as
an xs:date.

CUSTOMER. ds - {DataServices}\Customer DB} *

Select Function:

‘@ CUSTOMER() | ~ |

Parameters

MNumber Element (hy path)
(s || -]

Limit elements in array results ta:

[5tart client Transaction [validate Results

Result Text HML

- <ns0iarrayOFCUSTOMER xrnlns:ns0="ld:DataServicesfiCustomerDE/CUSTOMER" =
- «<nsMCUSTOMER >

<CUSTOMER_ID=> CUSTOMERT </CUSTOMER _IDv
<FIRST_MAME> Jack <[FIRST_MAME:>
<LAST_NAME > Black <jLAST_MNAME >
<CUSTOMER _SIMCE> 2001-10-01 </CUSTOMER_SINCE:=
<EMAIL_ADDRESS> Jack@hotmail.com <fEMAIL_ADDRESS >
«TELEPHOMNE_MUMBER > 2145134119 </ TELEPHONE_MUMBER. >
<53N> 295-13-4119 </35M>
<BIRTH_DAY> 1970-01-01 <[BIRTH_DAY:>
<DEFAULT_SHIF_METHOD > AIR <JDEFAULT_SHIP_METHOD>
<EMAIL_NOTIFICATION: 1 </EMAIL_MOTIFICATION = E

| Design Yiew | XQuery Editor Yiew | Source Yisw | Test Yiew |Query Plan View

5]

Figure 2-17 Physical Data Service Test Results
5. Open the Output window (View — Windows — Output).
6. Confirm that the output is similar to that displayed in Figure 2-18.

Note: You can use the Output window to verify that each element in the data service is pulling data
from the correct data source. In this example, the return results are pulled from the
RTLCUSTOMER database, CUSTOMER table 1, and a specific column (c1, ¢2, ¢3, and so on) for
each element.

|| Oukput ®

time.execute=310
time.conpile=1272
return_profile_data=Time spent in XQuery engine execution: Z50ms

Datafource name: cghatajource Invocations: 1 Time: 150ms Number of rows: 10

Statement: SELECT tl."BIRTH D&AY™ A% cl, tl."CUSTOMER_ID" &% c2, tl."CUSTOMERE_ SINCE™ A% c3,
tl."DEFAULT SHIP METHOD™ 45 c4, tl."EMATL ADDRESS™ 4% o5, tl."EMAIL NOTIFICATION™ 4% c6,
t£l."FIRIT _NAME™ 43 c7, tl."LA3T NAME™ 45 cf, tl."LOGIN_ID" A3 c9, tl."NEW3S_LETTTER" &3 cld,
tl."0NLINE STATEMENT™ A% cll, tl."SSN™ 4% clz, tl."TELEPHONE NUMEER™ 45 cl3

FROM "RTLCUATOMER™."CUSTOMER™ tl

Figure 2-18 Test Results Output
Lesson Summary
In this lesson, you learned how to:

Create a DSP application and project.

Create project sub-folders to group data services.

Data Services Platform: Samples Tutorial 34

Import relational tables to create a simple physical data services.
Build a project and review the build information.
Examine a physical data service’s shape/schema definition, data types, functions, and source code.

Test a data service function.

Data Services Platform: Samples Tutorial 35

Lesson

3 Creating a Logical Data Service

As noted in Lesson 2, there are two types of data services: physical and logical. Physical data services
model a single physical data source residing in a relational database, Web service, flat file, XML file,
or Java function.

To enable the integration of data from multiple sources through Data Services Platform (DSP), you
define a logical data service. In this lesson you will create a logical data service that integrates data
from the CUSTOMER data service.

Objectives

Overview

After completing this lesson, you will be able to:

Create a simple logical data service, define its shape, and specify it query conditions.

Test the logical data service’s read, write, and limit functions.

A logical data service integrates data from two or more physical or logical data services. Its shape is
defined by an XML type schema that classifies a data element as a particular form of information,
according to its allowable contents and units of data. For example, an xs:string type can be a sequence
of alphabetic, numeric, and/or special characters, while an xs:date type can only be numeric characters
presented ina YYYY-MM-DD format.

The data service interface consists of public functions that enable client-based consuming applications
to retrieve data from the modeled data source. A data service’s functions can be of several types:

One or more read functions, which typically return data in the form of the XML type.

One or more navigate functions, which return data from related data services. Within a logical data
service, you must define relationships through modeling. Although similar to relationships in the
RDBMS context, a logical data service lets you establish relationships between data from any
source. This gives you the ability to, for example, relate an ADDRESS relational table with a
STATE look-up web service.

One submit() function, which allow users to persist changes to the back-end storage

In addition to public functions, a data service can include private functions that are only used within
the data service.

Every function within a logical data service also includes source-to-target mappings that define what
results will be returned by that function. There are four types of mappings:

A simple mapping means that you are mapping simple source node elements to simple elements in
the Return type one at a time. You can create a simple mapping by dragging and dropping any
element from the source node to its corresponding target element in the Return type. Optional
Return type elements do not need to be mapped; otherwise elements in the Return type need to be
mapped in order for your query to run.

An induced mapping means that a complex element is mapped to a complex element in the Return
type. In this gesture the top level complex element in the Return type is ignored (source node name
need not match). The editor automatically then maps any child elements (complex or simple) that
are an exact match for source node elements.

Data Services Platform: Samples Tutorial 36

Lab 3.1

An overwrite mapping replaces a Result type element and all its children (if any) with the source
node elements. As an example of the general steps needed to create an overwrite mapping, you
would press <Ctrl>, then drag and drop the source node’s complex element onto the corresponding
element in the Result type. The entire source node’s complex element is brought to the Result type,
where it completely replaces the target element with the source element.

An append mapping adds a simple or complex element (and any children or attributes) as a child of
the specified element in the Return type. To create an append mapping, select the source element,
then press <Ctrl>+<Shift> while dragging and dropping the source node’s element onto the
element in the Return type that you want to be the parent of the new element(s).

Alternatively, if you simply want to add a child element to a Return type, you can drag a source
element to a complex element in your Return type. The element will be added as a child of the
complex element and mapped accordingly.

In addition to the mappings, each function can also include parameters and variations on the basic

XQuery FLWOR (for-let-where-order by-return) statements that further define the data retrieval results.

In Figure 3-1, what you see in Design View is a logical data service that:

Uses the getAllCustomers, getCustomer, and getPaymentList, and getLatePaymentList functions to
retrieve data.

Uses the CUSTOMER.XSD schema definition to define its XML type, and thus its Return type.

Integrates data from the ApparelDB and CustomerDB physical data services, plus a CreditRating

web service.

Customer,ds - {DataServicesH *
_’atustnmer Data Service | =
B @) CUSTOMER.
| CUSTOMERS. ds
A gekallCustomers @ CUSTOMERID xsvint -a
\:) CUSTOMERMAME xa:sbving
A b CUstOTEY L@ CREDIT*
hd — PO_CUSTOMERS.ds
Read (@ CREDITSCORE xsiint
Functions (@ CREDITRATING xs:string
— «
E-@ ORDER PO_ITEMS. ds
© st
@ CUSTOMERID xs:ink
— "
B __F_‘OITEM getCustomerCredit. ..
O Wit
@ KEY xsint
@ ITEMMUMBER. ? xsuint
- @ QUANTITY 7 xstint
Navigate
FRTMENTS”el Functions Data Sources
2 XML e
At (121 P2y IEMELiSE Typ
At (1t AbePaymENELisk
| Design View [®Guery Editor Yiew | Source View | Test Yiew | Query Plan Yiew

Figure 3-1 Design View of a Logical Data Service

If you open XQuery Editor View for a particular function, you would see that function’s source-to-
target mappings.

If you open Source View, you would see each function’s parameters and FLWOR statements.

Creating a Simple Logical Data Service

A logical data service integrates and transforms data from multiple physical and logical data services.

Data Services Platform: Samples Tutorial

37

Objectives

In this lab, you will:

Create a new folder for the logical data service.

Create an empty data service that can be built into a logical data service.

Import a pre-defined XML schema definition that you will associate as the logical data service’s
XML type.

Define functions and their mappings, parameters, and FLWOR statements.

Instructions

1. Create a new folder within the DataServices project and name it CustomerManagement.

2. Create a new data service within the CustomerManagement folder by completing the following
steps:

a.
b.
c.
d.

c.

Right-click the CustomerManagement folder.

Choose New — Data Service. The New File window opens.
Confirm that Data Service — Data Service are selected.
Enter CustomerProfile in the Name field.

Click Create.

New File

oAl

[Z Business Logic 12 Data Service

|:| Data Service |<—j ¥iuery Function Library
[C) Web Services

[C) web User Interface
[Z1 Common

B8 Model Diagram

File name: CustomerProfile|. ds |

Createin: {DataServicesHCustomerManagement!,

Create a new Data Service.

Figure 3-2 New Data Service

A new data service is generated, but without any associated data services or functions. (If you open
XQuery Editor View, you will see that an empty Return type was also generated for the data service.)

Data Services Platform: Samples Tutorial

38

Lab 3.2 Defining the Logical Data Service Shape

A data service transforms received data into the shape defined by its Return type. Pragmatically, the
Return type is the "R" in a FLWOR (for-let-where-order by-return) query. A Return type, which
describes the structure or shape of data returned by the data service’s queries, serves two main
purposes:

Provide a superset of data elements that can be returned by an XQuery.

Define the unified structure, and order of the data returned by an XQuery.

The Return type is generated from the data service’s XML type. An XML type classifies a data element
as a particular form of information, according to its allowable contents and units of data. For example,
an xs:string type can be a sequence of alphabetic, numeric, and/or special characters, while an xs:date
type can only be numeric characters presented in a YYYY-MM-DD format.

Objectives

In this lab, you will:

Import a schema file, which you will associate with the data service’s XML type.

Review the results.

Instructions

Note: Although you can use DSP to graphically build a schema file, in this lab you will import a pre-
defined schema file to save time. For more information on using WebLogic Workshop to build the
return type’s .xsd file, see the Data Services Platform Data Services Developer’s Guide.

1. Create a new folder in the CustomerManagement folder and name it Schemas.

2. Import a schema file into the schema folder by completing the following steps:

a. Right-click the schema folder, located in the CustomerManagement folder.
b. Choose Import.
c. Navigate to the <beahome>\weblogic81\samples\LiquidData\EvalGuide directory.
d. Select the CustomerProfile.xsd file.
e. Click Import.
P Import Files to Project ‘DataServices’

bt []

2 storedprocs Q CreditRatingwsClient.jar r-z DML java

t| Skrearning m creditRating®Query . bxt r-z excel_jcom.java

(2] ®MLFiles @ customer . xml m index.jsp

"2 AlcerTable.java m CustormerOrder.ds @ LDExecLog. jar

[buid, i [¢¥] Custamerorder xsd 5] protectsan. java

m clientgen.crd B CustomerPrafile. xsd Q Retarget.jar

r-z CreditR.atingExit.java m Customervaluation.ds @ SDoClent.jar

"2 CreditRatingExit1.java B CustomerYaluation.xsd m setenv.cmd

‘ | | [

Mame: | CustomerProfile, xsd |

Type! |AII Files | - |

Figure 3-3 Import XML Schema Definition File

Data Services Platform: Samples Tutorial

39

Right-click the CustomerProfile Data Service header.

3

4. Choose Associate XML type.

5. Select the CustomerProfile.xsd file, located in the CustomerManagement\schemas folder.
6

Click Select.

2 Select XML type... &|

Fj CustamerProfile. xsd

[ame: | CustomerProfile.xsd |

Type: |XML Schema Files ‘ - |

Figure 3-4 Associating XML type with XSD

You should see that the CustomerProfile data service is now shaped by the CustomerProfile.xsd file.

You should also see that several of the elements are identified with a question (?) mark. This indicates
that these elements are optional. Since the schema file identifies these elements as optional, DSP will
not require the mapping of these elements to the Return type; however, if mapped to the Return type
and there is no corresponding data in the underlying data source, then the result set will not include the
empty elements.

CustomerProfile.ds* - {DataServicesHCustomerManagement|

X

| |+ . CustomerProfile Data Service 5
E-@ CustomerProfile

=@ customer +
o) customer_id xsd:string

]

first_name xsd:string

last_name xed:shing
customer_since 7 xsd:date
email_address ? xsdisking
telephone_number 7 xed:shing
ssn 7 xsd:skring

birth_day # xsd:date
default_ship_methad ? xsd:string
email_notification 7 xsd:short
news_letter ¥ xed:shork

online_statement ¥ xsd:shork

orders ?
@ order*
o) order_id xsd:skring

rgo000COCOOOO®

customer_id xed:skring
order_date xsd:dats
ship_method xsd:string Iz‘

OJolofy

K1 [

| Design View [®Guery Editor Yiew | Source View | Test Wiew | Query Flan View

Figure 3-5 Logical Data Service XML type

Data Services Platform: Samples Tutorial 40

Lab 3.3

Adding a Function to a Logical Data Service

A data service consumer — a client application or another data service — uses the data service’s
function calls to retrieve information. A logical data service includes the same types of functions that
are found in a physical data service:

One or more read functions that form the data service’s external interface, which is exposed to
consuming applications requesting data. These read functions typically return data in the form of
the data service’s XML type.

One or more navigate functions that return data from other data services. Within a logical data
service, you must define relationships through modeling. Although similar to relationships in the
RDBMS context, a logical data service lets you establish relationships between data from any
source. This gives you the ability, for example, to relate an ADDRESS relational table with a
STATE lookup web service.

One submit() function, which allows users to persist changes to the back-end storage.

Objectives

In this lab, you will:

Add a new read function, getAllCustomers, to the logical data service.

View the results in XQuery Editor View.

Instructions
1. Right-click the CustomerProfile Data Service header.
2. Choose Add Function. A new function displays in the left pane of the data service model.

3. Enter getAllCustomers as the function name.

H

CustomerProfile.ds* - {DataServicesHCustomerManagement),

E CustomerProfile Data Service

B @ CustomerProfile

B @ customer +
o customer_id xsd:string
first_name xsd:string

]

A b4 ICustomers

last_name xsd:string

customer _since 7 xsdhdate
email_address ? xsdistring
telephone_number ? xsd: skring
55N 7 xsdiskring

birth_day 7 xsd:date
default_ship_method ? xsd:string
email_notification 7 xed:short
news_letter 7 xad:short
online_statement 7 xsd:short

00000000000 0C

orders 7
= *

o}
@
-]
&

order_id xsd:string
customer _id xsd:stving
order_date xsd.dats
ship_method xsd: skring El

XL)

| Design Wiew [¥GQuery Editor View | Source Yiew | Test Wiew | Query Plan View

Figure 3-6 Design View of New Function

Data Services Platform: Samples Tutorial 41

Lab 3.4

Mapping Source and Target Elements

In the previous lab, you associated a logical data service with an XML Schema Definition (.xsd file),
which generated a Return type that includes all data elements defined within the schema. However,
there are no conditions associated with the Return type; conditions specify which source data will be
returned.

You can define conditions by mapping source and target (Return) elements.

Objectives
Add a physical data service function as a data source for the logical data service.

Create a simple map between the source node and the Result type.

Instructions

1. Click the getAllCustomers() function to open XQuery Editor View for that function. You should
see a Return type populated with the CustomerProfile schema definition. The Return type
determines what data can be made available to consuming applications, as well as the shape (string,
data, integer, and so on) that the data will take. The Return type was automatically populated when
you associated the logical data service with the CustomerProfile.xsd.

CustomerProfile.ds™ - {DataServicest\CustomerManagement), e
B getAI\CustomersO‘ -
(© Return =
7 B CustomerProfile [~]
o} [customer +

customer _d string
first_name string
last_name string
customer_since 7 date
email_address 7 string
telephone_number 7 string
s5n 7 string
birth_day 7 date
default_ship_method * string
email_notification 7 short
news_letter 7 short
online_statement 7 short
login_id string
[=-orders ?
o} = order *
order_id string
customer_id string
order_date date
ship_method string
handling_charge decimal
subkotal decimal
total_order_amount decimal
sale_tax decimal
ship_to string
ship_to_name string
bill_ta string
estimated_ship_date date
status string
data_source string
o} [=1-order_line *
line_id string
order_id string
product_id string
product string
quantity decimal
price decimal
ful status skring —
Bl creditrating
rating string
customer _id string

s &
[l []¥3l i

Design Wiew | #Query Editor View |Source View | Test View | Query Flan Yiew

Figure 3-7 XQuery Editor View of Function Return Type

Data Services Platform: Samples Tutorial 42

2. In the Data Services Palette, expand the CustomerDB\CUSTOMER.ds folders. (If the Data
Services Palette is not open, choose View — Windows — Data Services Palette.)

|| Data Services Palette % |
) DataServices
£ ApparelDE
=] CustomerDB
) ADDRESS.ds
L) CREDIT_CARD.ds
=2 CUSTOMER.ds
£ cusTOMERD)
& gatADDRESS!)
) CustomerManagement
() ElectronicsDE
() ServiceDE

Figure 3-8 Data Services Palette

3. Drag and drop CUSTOMER() into XQuery Editor View. This method call represents a root or
global element within the CUSTOMER physical data service (see Lesson 2). A for node for that
element is automatically generated and assigned a variable, such as For: SCUSTOMER. Within the
XQuery Editor View, this for node is a graphical representation of a for clause, which is an integral
part of an XQuery FLWOR expression (for-let-where-order By-return).

CAntomrFrofie v - D viom st Mg

(= | et e

i‘_‘-_lu OUSTOMEIN

rdbreg

o il
By ¥iem | gy Eoer vew | Sours Virw Tt Ve | Guery P View

Figure 3-9 Source Node and Return Type

4. Create a simple map: Drag and drop individual elements from the SCUSTOMER source node onto
the corresponding elements in the Return type. The logical data service CustomerProfile should
now be similar to what is shown in Figure 3-10.

Data Services Platform: Samples Tutorial 43

oR
Do Vo | wuery e i | s Vi | Tl Wi | Ghairy P e

Figure 3-10 Simple Mapping Between Source Node and Return Type

Lab 3.5 Viewing XQuery Source Code

When you use XQuery Editor View to construct an XQuery, source code in XQuery syntax is
automatically generated. You can view this generated source code in Source View and, if needed,
modify the code. Any changes made in Source View will be reflected in XQuery Editor View.

Objectives

In this lab, you will:

View generated XQuery source code in Source View.

Review the for and return clauses of the getAllCustomers() query function.

Instructions

1. Select the Source View tab. A portion of the generated XQuery source code is displayed in Figure
3-11.

2. Notice the for clause, which references the CUSTOMER() function.

3. Notice the return clause, which reflects the simple mapping between the SCUSTOMER source
node and the Return type. All optional elements are identified with a questionmark in the field
description as shown below (emphasis added):

<TelephoneNumber?> {fn:data($x0/TELEPHONE_NUMBER)}</Telephone number

4. Notice that the <orders> elements are empty, since order information has not yet been mapped to
the Return type. This means that a consuming application, using this query, will only see customer
information, not order information.

Data Services Platform: Samples Tutorial 44

H

CustomerProfile, ds* - {DataServicesHCustomerManagement!
declare function tns:getdllCustomers() as element(ns0:CustomerProfile)® | E
| <ns0:CustomerProfiles

{

for §CUSTOMER in nsl:COSTOMER()
return
<customer
<customer id-{fn:data(§CUSTOMER/CUSTOMER_ID) }<fcustomer id= =
<first name>{fn:data(§CUSTOMER/FIRST_NAME) }<ffirst name:
~last namex{fn:data({CUSTOMER/LAST_NAME) }</last_name>
<customer since?-{fn:data($CUSTOMER/CUSTOMER_SINCE] }</fcustomer since:
-email_address?>{fn:daca(sCUSTOMER/EMATL _ADDRESS) J<femail address>
~<telephone number?-{fn:daca(sCUSTOMER/TELEPHONE_NUMEER) }</telephone mumber:-
“ssnr={tnidata(sCUSTOMER/S3N) d</ssn>
=<birth dayz={fn:data(sCUSTOMER/BIRTH DAY) }</hirth day>
«default ship methodr>{fn:data(sCUSTOMER/DEFAULT SHIP_METHOD) }</default ship method-
<email motification®:{fn:data(§CUSTOMER/EMATL_NOTIFICATION) }</femail notificatiom-
<news_letters-{fn: data|FCUSTOMER/NEWS_LETTTER) }</fnews_letter: -
<online statement ?>{fn:data(sCUSTOMER/ONLINE_STATEMENT) }<fonline statement:-
<login_ id-{fn:data(FCUSTOMIR/LOGIN_ID) }</login dd>
<orders -
{
<order>
<order_id-—forder id-
<customer_id-—/customer id-
<order_date>—forder date-
<ship method—</ship method-
<handling charge=<fhandling charge:
<subtotal><fsubtotal>
<total order amount><ftotal order amount>
<sale_tax:<fsale_taw- N N
<ship_to><fship_to> L]
<ship to_name>-fship to_name-
<bill_to < fbill_to>
<estimated ship date-</estimated ship date>-
<status>fstatus>
<data source><fdata source:>
{

<order_line>
<1ine_id»<fline id-
—<order_id-<forder id-
=product_id-</product id-
<product><fproduct >
<guantity-<fgquantity>
<pricex<fpricex
<status></status>

<forder_linex-

}
<forder:>

i
<forders>
<creditrating:>

<rating>-/ratimg>

<customer id-—fcustomer id-
<fcreditrating-
<waluation?>

<valuation date-</valuation date:

<valuation tier><fvaluation tier>
«<fvaluation> N

<fcustomer> |z|

[0]
Design ¥iew | ®Query Editor View | Source Yiew [Test View [Query Plan Yiew

Figure 3-11 Source View of XQuery Code for CUSTOMER() Node

Lab 3.6 Testing a Logical Data Service Function

You can use Test View to validate the functionality of a logical data service.

Objectives

In this lab, you will:

Build the DataServices project.

Test the function’s retrieve and truncate capabilities.

Instructions

1. Build the DataServices project by right-clicking the DataServices folder and choosing Build
DataServices from the pop-up menu.

2. Select the Test View tab.
3. Select getAllCustomers() from the function drop-down list.

Test the function’s truncate capabilities by completing the following steps:

Data Services Platform: Samples Tutorial 45

a. Enter CustomerProfile/customer in the Parameter field. This specifies the XPath expression for

the element whose return results you want to limit to a set number of occurrences.

b. Enter 5 in the Number field. This will truncate the results to the first five customers retrieved.

c. Click Execute.

CustomerProfile.ds - {DataServicesHCustomeriManagement),

Select Function:

getalCustomers) | - |

Parameters

Mumber Elerment (by path)

Limit elements in array results to;
| 5 | | CustomerProfile fcustomer| |

[start Client Transaction

Design Yiew | ®0uery Editor Yiew | Source View | Tesk Yiew [Query Plan Yiew

Figure 3-12 Test Truncate Capabilities
4. View the results, which appear in the Result pane.

5. Expand the top-level node. There should be only five Customer Profiles listed.

6. Expand the first <customer> node. You should see a Customer Profile for Jack Black, as displayed

in Figure 3-13.

CustomerProfile, ds - {DataServices}HCustomerManagement?,

Select Function:

[aetatcustomersty -]

Parameters

Mumber Element (by path)

Limit elements in array results to:
[s | [customerprofitejcustomer

[start Client Transaction [] validate Results

Resulk

- <ns0:ArrayOfCustomerProfile =minsinst="http:jjtemp, openuri,orgiDataservices/schemas/Customer Profile, zsd” »
- 2ns0:CustomerProfile »
- <rustomer >
<rustomer_id= CUSTOMER1 <jcustomer_id>
<first_name> Jack <[first_name>
<last_name: Black </last_name
<customer_sinces 2001-10-01 </customer_since>
<email_address> Jack@hotmail.com <femai_address>
<telephone_number > 2145134119 <jtelephone_number >
<ssn> 295-13-4119 <fssn>
<hbirth_day> 1970-01-01 <jbirth_day>
<default_ship_method> AIR «/default_ship_method>
<email_notifications 1 <femail_notification s
<news_letter> 0 </news_letter>
<online_statement> 1 <fonline_statement >
<login_id> Jack <flogin_id=
+ <orders >
+ =creditrating =
+ =valuation >
<fcustomer s
- <customer >
<customer_id> CUSTOMERZ <jcustomer_id>
<first_name= Jerry <jfirst_name>
<last_name> Greenberg </last_name>
<customer_since> 2001-10-01 </customer_since>
<email_address> JOHN_2@yahoo.com <femail_address>
<telsphone_number = 3607467964 <jtelephone_number =
<ssn> 087-46-7964 <fssn>
<birth_day> 1978-08-21 <fhirth_day>
«default_ship_method> AIR </default_ship_method:

Figure 3-13 Customer Profile Test Results

Data Services Platform: Samples Tutorial

46

Lesson Summary

In this lesson, you learned how to:

Create a simple logical data service.

Associate an XML schema definition with the data service.

Create a simple function.

Use XQuery editor view to map elements from the source node to the return type.
Use Source View to examine an XQuery function’s source code.

Use Test View to test a logical data service query capabilities, limit the number of data set results
returned as part of the query, and test data service editing capabilities.

Data Services Platform: Samples Tutorial

47

Lesson 4 Integrating Data from Multiple Data Services

Objectives

Overview

The power of logical data services in the Data Services Platform (DSP) is the ability to integrate and
transform data from multiple physical and logical data services.

In the previous lesson, you created a simple logical data service that mapped to a single physical data
service. In this lesson, you will further develop the logical data service to enable data retrieval from
multiple data services.

After completing this lesson, you will be able to:

Use the Data Services Palette to add physical and logical data service functions to a logical data
service, thereby accessing data from multiple sources.

Join data services by connecting source elements, thereby integrating data from multiple sources.
Use the Expression Builder to define a parameterized where clause.

Set the context for nested elements in the source node.

Create a complex override mapping.

Test parameterized data services to verify the return of integrated data results.

How is data integration different from process integration? Most applications involve a combination of
informational interactions and transactional interactions. Examples of informational interaction
include: get customer info, review order status, get customer profile, and get customer’s case history.
Examples of transactional interactions include: place order, update customer address, and create
customer.

Informational interactions involve efficiently aggregating discrete pieces of data that are potentially
resident in multiple data sources, and potentially in multiple data formats. Developers can end up
spending inordinate amounts of time writing custom code to handle the various interface protocols and
data formats, and integrate disparate data into manageable, business-relevant information. DSP
simplifies this activity by providing a simple, declarative approach to aggregating data from
heterogeneous data sources.

Transactional interactions involve taking a piece of data (say a purchase order) and orchestrating its
propagation to the various underlying applications. This involves coordinating a business process
through a formal or informal workflow, managing long-running processes, managing human
interactions (such as a supervisor approval to an order), handling applications that have indeterminate
response times (such as batch systems), maintaining transactional integrity across applications, etc.

Both data integration and process integration are essential elements when building applications that
handle information from across multiple data sources. For functions of interest across data services,
you can use function libraries. A function library (.xfl file) contains operations that return simple types
(not the XML data type of a standard data service) that can be called from various data services. Read
functions on a data service can be defined to return information in various ways. For example, the data
service may define read functions for getting all customers, customers by region, or customers with a
minimum order amount.

Data Services Platform: Samples Tutorial 48

Lab 4.1 Joining Multiple Physical Data Services within a Logical Data Service

In the previous lab, you mapped a single physical data service to the Return type. In this lab, you will
enable data retrieval from both the CUSTOMER and CUSTOMER _ORDER physical data services.

Objectives

In this lab, you will:

Create a second for node, by adding the CUSTOMER ORDER() function.
Create a simple map between the new for node and the Return type.

Create an automatically-generated where clause, by joining the two for nodes.
Review source code.

Test the results (read and write capability)

Instructions

1.
2.
3.

Open CustomerProfile.ds in XQuery Editor View.
In the Data Services Palette, expand the AppareDB\CUSTOMER ORDER data service folders.

Drag and drop CUSTOMER ORDER() into XQuery Editor View to create a second for node,
For:3CUSTOMER ORDER.

Create a simple map: Drag and drop the individual elements from the SCUSTOMER ORDER
source node onto their corresponding elements in the Return type.

Note: Do not map the TRACKING NUMBER element.

Create a join: Drag and drop the CUSTOMER _ID element from the SCUSTOMER source node
onto the C_ID element in the SCUSTOMER_ORDER source node. This action joins the two for
nodes. By joining these two nodes, you automatically create a where clause within the FLWOR
statement.

* - Dt arvicnsi e

et ustinersl)| -

]

T For SCUSTOUER
= cLsToMER *

* [For SCUSTOMER _ORDER

ik P Wy Ehor Ve | Sinice W | Pk Wi | Sy Pl oemd

Figure 4-1 Joined Data Services

Data Services Platform: Samples Tutorial

49

6. Select the Source View tab to view the XQuery code. You should see a where clause joining
$CUSTOMER and $CUSTOMER ORDER, using the CUSTOMER _ID element. In Figure 4-2,
the where clause is:

where $CUSTOMER/CUSTOMER_ID eq $CUSTOMER_ORDER/C_ID

CustomerProfile.ds* - {DakaServicesH CustomerManagement),
declare function tns:getdllCustoners() as elementi(ns0:CustonerProfile)® { E
<ns0:CustomerProfilex
¢
for SCUSTOMER in nsl:CUSTOMER()
return
“customer>
<customer_id-{fn:data(sCUSTOMER/CUSTOMER_ID) }</customer id-
<first name>{fn:data(§CUSTOMER/FIRST _NAME) }<ffirst name>
<last_name>-{ En:data(SCOSTOMER/LAST NAME] }</last_name:-
{fn-bea: rename | SCUSTOMER/CUSTOMER,_SINCE, <customer since></customer sincex)}
{fn-hea: rename | §CUSTOMEE/EMATL_ADDRESS, <email addresss<femail address>)}
{fn-bea: rename | SCUSTOMER/TELEFHONE_NUMEER, deiep]mne mmher}(?tele'p]mne number>) }
{fn-hea: rename | SCTSTOMER/SSN, <ssnr<fssns) b - -
{fn-beai renane (SCUSTOMER/BIRTH DAY, -birth day>—/birth_day-)}
{fn-bea: renane (§CUSTOMER/DEFAULT_SHIP_METHOD, <default ship method-</default ship method=)}
{fn-bea: rename (SCUSTOMEE/EMATL_NOTIFICATION, <email notification>-<femail notification:-)}
{fn-bea: rename | SCUSTOMER/NEWS _LETTIER, <news 1etter><fnews letter>))
{fn-bea: rename (SCUSTOMER/ONLINE_STATEMENT, -<online statement><fonline statement>]}
<orders:

{

=

for SCUSTOMER ORDER in ns2: CUSTOMER_ORDER()

where sCUSTOMER/CUSTOMER_ID = §CUSTOMER ORDER/CUSTOMER_ID

return

<order>
<order id-{fn:data(FCUSTUMEE (REDEE/ORDER_ID) }<forder id-
<customer id={fn:data(§CUSTOMER ORDER/CUSTOMER_ID) }</customer id-
<order_dater{fn:data(§CUSTOMER ORDER/ORDER_DATE) }<forder datex
<ship method-{fn: data(sCUSTOMER ORDER/SHIF_METHOD) }</ship method-
<handling_charge>{fn:data| CUSTOMER ORDER/HANDLING_CHARGE) }</handling_charge>
<subtotal>{fn: data [FCUSTOMER | ORDER/SUBTOTAL) }<fsubtotal>
<total_order_ amount:{fn:data($CUSTOMEE ORDEE/TOTAL_ORDER_AMOUNT) }</total order amount: B
<sale t,ax>{fn data [FCUSTOMER | ORDER/SALE _ThX) }<isale_tax-
<ship_tox{fn:data(§CUSTOMER GEDER/SHIP_TO) }-<fship tox
<ship_to_name>{fn:data(sCOSTOMER OEDEE/SHIF TO_NANE) }</ship to_name:-
<bill to={fn:data(§CUSTOMER ORDER/BILL_TO) }-<</bill tox
<estimated ship date{fn:data(SCUSTOMER ORDER/ESTINATED SHIP_DATE) }<festimated ship dates-
<status>{fn:data(sCUSTOMER ORDER/STATUS) }</status>
<data_source><fdata source>

{

<order_line>
<1ine_id~fline_id>
<order 1d.}<{ord.er ids
<product_id>-</product_id>-
<product—fproduct >
<guantity></quantity>
<pricex=fprice>
<status></status>
<forder_line>-
)
<forder>
H
<forders:
<creditrating-
<rating><frating>
<customer id-<fcustomer id-
<jcreditrating: -
<waluation-
<valuation date></vraluation datex
<valuation_| t19r>—<fva1uat,1nn tier>
<fraluation>
<fcustomer> =

[« [l
Design View | #Query Editor View | Source Yiew |Test View | Query Plan Wiew

Figure 4-2 Source View of Joined Data Services

7. Build the DataServices project. (Right-click the DataServices project folder and choose Build
DataServices.)

8. Select the Test View tab and determine whether you can retrieve order information integrated with
the customer information, by completing the following steps:

a. Select getAllCustomers() from the function drop-down list.
b. Click Execute. (You don’t need any parameters, since you are not testing the truncate feature.)

c. Expand the nodes. The results should include order information for each customer, as displayed
in Figure 4-3.

Data Services Platform: Samples Tutorial 50

Lab 4.2

CustomerProfie.ds - {DataServicesHCustomerManagement],

Select Function:

[getalicustamerst) -]

Parameters

MNumhber Element (by path)

Lirnit elements in array results to.
[s0]

[start Client Transaction [validate Results

Result [Tex |

-~ <nsDiArrayOFCustomerProfile xmins:ns0="hktp:/ temp. openuri, org/Dakaser vices/schemas /CustamerProfils xsd” =
- «nsi:CustomerProfile >
- <customer >

<customer_jd> CUSTOMERD <fcustomer_id:>

<first_name:> Kewin <[first_name>

<last_name> Smith </last_name:>

<customer_since> 2001-10-01 =/customer_since:

«<emal_address> Kevin@aol.com «femail_address>

<telephone_number > 4088320283 </telsphons_number >

<ssn> 098-32-0284 </ssn>

<hirth_day> 1970-01-01 <[birth_day =

<default_ship_method> GROUND <[deFault_ship_method:

<emal_natification= 1 <femall_notification:

<news_letter> O <fnews_letter =

<online_statement> 1 <fonline_statement >

<login_id> Kevin <flogin_id:>

- <orders >

- <order >

<order_jd> ORDER_10_2 <jorder_id>
<customer_jd> CUSTOMERD </cuskomer_id>
<order_date> 2002-02-17 <forder_date>
<ship_method> AIR <[ship_method >
<handing_charge> 6.8 <ihandling_charge>
<subtotal> 135.85 <fsubtotal=
<total_order_amounts 142.65 <ftotal_order_amounks
<sale_tax> 0 <jsale_tax>
<ship_to> Kevin Smith </ship_to>
<ship_to_name />
<bill_to> CC_10_0 <bill_to>
<estimated_ship_date> 2002-02-20 <jestimated_ship_date>

Design View | #Query Editor View | Source Yiew | Test View [Qoery Flan View

Figure 4-3 Integrated Customer and Order Data Results

Defining a Where Clause to Join Multiple Physical Data Services

In the previous lab, you joined the CUSTOMER and CUSTOMER ORDER data services, thereby
automatically generating a where clause. In this lab, you will manually define the where clause that

joins multiple data services.

Objectives

In this lab, you will:

Add a third for node, by adding the CUSTOMER _ORDER _LINE ITEM() function.

Define a where clause, using the Expression Editor.
View the results in Design View and Source View.

Test the results.

Instructions

1. Open XQuery Editor View for the getAllCustomers() function.

2. In the Data Services Palette, expand the ApparelDB\CUSTOMER ORDER LINE ITEM data

services folders.

Data Services Platform: Samples Tutorial

51

3. Drag and drop CUSTOMER ORDER _LINE ITEM() into XQuery Editor View. This creates a

third for node: For: SCUSTOMER_ORDER_LINE_ITEM.

4. Create a simple map by dragging and dropping the individual elements from the
$CUSTOMER _ORDER_LINE ITEM source node onto the corresponding elements in the Return

type.

:-—:w‘.u\.l.'.lu-rr' -
Falar STUNTORE R
= QUG TOMER ®

QUSTOMER_IY W)
FEST_ME AT
LAST KAWL g
DUSTORER _"RET &fs
LAY ADDRESS rhrmg
TELEPHORE _WUNEER: ftring
SEN T W)
ERTH_ DAY ¥ ihi
DEFELT _ShE= W THOD 7 ity
FMAL. RICTRRCATION 7 pherd
MEWE _LETTUIER ¥ #roat
OHLENE _STATEMENT 7 ghaort
WO D oy :

efar ICAHTOMER _CRGER LsE_ITEM
CUFSTORCR _Oeres LPE [TEM =
LN st

S F e SCUNTOMH_ ORI
= CLGTOMER OFDEE *

OFDER_ID mve

L_D i

OFDIR 0T St

TP GO0 [0 wrg
NG, THRG AT sl
SUBTOTAL AT decireal
TOTaL OROER_aF decrad
S T AT cecra
0 TO_D g
S_TD_hM thrg

L TS B drng
ESTREATED _SHIP_ DT dats
STATLE s

3 etuin
Crnfrmes P
ELFTITE &
ok are il B iRl
NT_jhifre SRR,
et G
it e ¢ dife
anal_iten 7 T
{ephore_reanbsy ¥ sbrg
i ¥ g
BTy ey § dain
NIl e v oAl
wrnal_rofScaton * et
e initer ¥ et
b ot
foge i o
v
e
ordam g iy
agtome_d g
e _ietw chibe
i _rrathod 4

il chuege Secreal | |

S ol
tofel_ o ol decs

it g clita ity |

it g

Sd ERaTe v

e e
il e
e R L]
ot i B
et Hinng
iy decrrl
s decmal
LA T g]

i EG
g ity

Figure 4-4 Three Data Service Functions Mapped to the Return Type

5. Define a where clause that joins two data services, by completing the following steps:

a. Select the node header for SCUSTOMER ORDER LINE ITEM to activate the expression
editor for that node. (Note: Do not select the CUSTOMER _ORDER LINE ITEM* element.)

b. Click the Add Where Clause icon.

4

c. Click the ORDER _ID element in

$CUSTOMER ORDER _LINE ITEM source node. You should see the following in the

the

WHERE field (the variable name may be different, in your case):

$CUSTOMER_ORDER_L INE_ITEM/ORDER_ID

$CUSTOMER_ORDER_LINE_ITEM/ORDER_ID eq

$CUSTOMER_ORDER_LINE_ITEM/ORDER_ID eq
$CUSTOMER_ORDER/ORDER_ID

Select eq: Compare Single Values from the operator list (“...” icon). You should see the
following in the Where field:

Click the ORDER _ID element in the CUSTOMER_ORDER source node. You should see the
following in the where field (the variable name may be different, in your case):

Data Services Platform: Samples Tutorial

52

f. Click the green check to add the parameterized WHERE clause to the getAllCustomers()

function.

| utremewPrchle. 1 - (Dot aServices HiCu

£

(5] petalCustoness])| =

L9For: SCUSTOMER

| = custoren -
CUSTOMIR_ID streg
FIRST_NAME sring
LAST_NAME string
CUSTOMER_SINCE dotn
EMAIL_ADORESS strg
TELEPMONE_NUVEER. string
55N string
BIRTH DAY 7 date
DEFALLT_SHIP_METHCD 7 string
EMALL_NOTIFICATION 7 ghoet
NEWS_LETTIER 7 short
CMUINE_STATEMENT 7 short
LOGINID T g

* SsFar SCUSTOMER_ORDER
= CQUSTOMER (RDER:

ORCER_JD sty
i g

OROER BT date
S0°_METHOD_D15C string
HAHDLING, CHRG_AMT decmal
SUBTOTAL_ANT decimal
TOTAL_CHELR AT dacimal
SALE_Th_AMT decensl

S0P _T0ID shring
SHIP_TO_M string
BILL_TO_D atring
LSTIHATED_SP_DT date
STATUS string

TRACKING MO 7 string

> §4For SCUBTOMER_ORDER_LINE_ITEW
= CUSTOMER (RDER_LINE_[TEM*

LINEID string
CRDER_JD sty
PREC_ID string
PO strng
CUANTITY inteqer
PRICE dhecimal
STATUS. arng

& Retum

customes 4

=i CustomerProfls

antomer d st
frst_name string

st _nares string

customer _since 7 date
wenl_pekdkess 7 strivg
trbetein_pairber 7 stieg
07 gtirg

brth_day 7 date

el ship_method 7 string
erml_pekfation 7 shert
rorves et ¢ shert
onlie_stabermant 7 short
logn i #ring

orders 7

= onther *

order M string
custemer d string
order_date date

b et sy
huareleny _hugm decemal
aubbctal decmal
tokal_order_amount decmal
sale_ta decmal

g _te sriveg
ship_to_name strrg
bt ang
estmated_shp_detn date
2us strng

daky_unren sdring

i ardar_lne *

Ire_d atriey
crder i strng
prockact_id vy
okt g
quaniity decnsl
wrie decmdl
stahus string

ereiratig
18 sy
custonmer i string

wisaton ?
vakishion_ate string
wakistin i sdrigg

Figure 4-5 Where Clause Joining Two Data Services

6. View the results, by completing the following steps:

a. Open CustomerProfile.ds in Design View. The physical data services associated with the three

functions that you dropped into XQuery Editor View as for nodes are displayed in the right
pane as data sources for the logical data service.

CustomerProfils, ds* - {DataservicesHCustomerManagsment,

—th

Figure 4-6

| [{§ CustomerProfile Csta Service

= netAllCustomers

E-@ CustomerProfile
=@ customer +
@ customer_id xsdistring
@ first_name xsd:string
@ last_name xsd:string
@ customer_since 7 xsd-date
@ email_address 7 xsd:string
@ telephone_number 7 xsd:string
@ ssn? xsdistring
@ birth_day ? xsdidate
@ default_ship_method 7 xsd:string
@ email_notfication 7 xsdishort
@ rews_letter ? xsdishort
@ online_statement ? xsdishort
@ login_id xsd:skring
=@ orders ?
(=@ order *
@ order_id xsd:string
@ customer_id xsdistring
@ order_date xsdidate
@ ship_methad xsd:string
@ handing_charge xsd.decimal
@ subtotal xeddecimal
@ total_order_amount xsd:decinal
@ sale_tax xsdrdecimal
@ ship_to xsd:string
@ ship_ta_name xsdisting
@ bill_to xsdistring
@ estimated_ship_date xsd:dste
@ status xsdistring

.@ ApparelDB/CUSTO. ..
.ﬁ ApparelDE/CUSTO. ..

CustomerDB/CUST...
b

Design View of Integrated and Parameterized Data Service

Data Services Platform: Samples Tutorial

53

b.

Open CustomerProfile.ds in Source View. The XQuery code for the logical data service is
displayed.

CustomerProfile. ds* - {DataServicesHCustomerManagement),

X

Kl

declare function ths:getdllCustoners() as element (ns0:CustomerProfile)® | IZ‘

“ms0:CustomerProfile>

for FCUSTOMER im nsl:CUSTOMER()

return

<customer:>
<oustomer id-{fn:data(sCUSTOMER/CUSTOMER_ID) }</customer id=
<first_name-{fn:data(;CUSTOMER/FIRST NAME) }<ffirst name-
<last name{fn:data($CUSTOMER/LAST NAME) }<flast name
<custuner since #={fn: data(sCUSTOME R/ CUSTOMER, SINCE] }<fcustomer since
<email aﬂﬂress?}{fn data|sCUSTOMER/EMATL _ADDRESS) }<femail address>
<telep]mma mumber 2={ fn: data(§CUSTOMER/TELEPHONE _NUMBER) }<ftelep]wne number>
<ssn 7| fn: data(SCHSTAMER/ S5H) }</ssns i
<birth day2>-(fn:data(§CUSTOMER/EIRTH DAY) }</birth _day>
<default ship method:={fn:data(s(VSTOMER/DEFAULT SHIP_METHOD) }</default ship method-
<email mtlflcat.lon‘?}{fn data | sCUSTOMER/EMATL_NOTIFICATION) }<femail 3 notification>
<mews_letter?-{fn:data(sCUSTOMER/NEWS_LETTTER) }<fnews letter:
<online » statement 2={fn:data(§CUSTOMER/ONLINE_STATEMENT) }<fonline statement>-
<login_id-{fn:data(§CUSTOMER/LOGIN_ID) }<flogin id-
<orders 7>

{

for SCUSTOMER ORDER im ns3:CUSTOMER_ORDER|)
where §CUSTOMER/CUSTOMER_ID = $CUSTOMER GRDERAC_ID
return -
<order-
<order_id={fn:data($CUSTOMER ORDER/ORDER_ID) }</order id-
<customer id-|En:data|§CUSTUMER ORDER/C_ID) J<fcustomer id-
<order_date:-{fn:data(§CUSTOMER ORDER/ORDER_DT) }<forder_date:
<ship_method-!fn:data(sCUSTOMER ORDER/SHIP_METHOD_DSC) 1</ship methods=
<handling_charge:-{fn:data(§CUSTOMER ORDER/HANDLING_CHRG_ANMT) }</handling charges-
<subtotal>{fn:data(sCUSTOMER ORDER/SUETOTAL_AMT) }<fsubtotals
<total order amount:{fn:data(§CUSTOMER ORDEER/TOTAL ORDER_AMT) }<ftotal order amount:
<sale tax={fn:data(sCUSTOMER ORDER/SALE_TAX_AMT) }<fsale taxs - -
<ship_to>{fn:data(§CUSTOMER ORDER/SHIP_TO_NM) }</ship_to> L
<ship to name>/ship to name:>
<bill to>({fn:data(§CTSTOMER ORDER/BILL_TO_ID) }</bill to:
<estimated ship date>{fn:data(§CHSTOMER GRDER/ESTIMATED_SHIP_DT) }</festimated ship date>
<status>{fn:data|§CUSTOMER DRDER/STATUS) b</statuss
<data sowrce></data source>
s

for §CUSTOMER ORDER LINE ITENM im naS:CUSTOMER_ORDER_LINE_ITEM|()

where §CUSTOMER OFDEE LINE ITEM/ORDER_ID eq sCHSTOMER ORDER/ORDER_ID

return - - - -

<order linex>
<line id-({fn:data(§CUSTOMER ORDER LINE ITEM/LINE_ID)}<fline_id>-
<order_id-{fn:data|sCUSTOMER ORDER LINE ITEM/ORDER_ID) }<forder_id-
<product id-{fn:data(§CUSTOMER ORUER LINE ITEM/PROD_ID) }</product id-
<product>-{ fn: data | §CUSTOMER ORDER LINE ITEM/PROD_DSC) }</product>
<quantity>-{En: data(§CUSTOMER ORDER LINE ITEM/QUANTITY)}</ftuantity>
<price-{fn:datal§CUSTOMER ORDER LINE ITEM/PRICE)}<fprice-
<status:{fn:data(SCUSTOMER ORDER LINE ITEM/STATUS)}</statuss

<forder_linex - - -

+
<forder>

i
<jorders>
<creditrating-
<rating>-frating-
<customer id—foustomer id-
<!creditratin3> -
<valuation?>
<valuation date><fvaluation date> T =]

Design View | #Query Editor View | Source View |Test View | Query Plan Yiew

Figure 4-7 Source Code for Data Integrated with WHERE Clauses and Parameters

7. Test the results, by completing the following steps:

a.

b.

h.

Build the DataServices project.

Open CustomerProfile.ds in Test View.

Select getAllCustomers() from the function drop-down list.
Click Execute. (You do not need any parameters.)

Expand the nodes and confirm that you can retrieve order line information integrated with order
information, similar to that displayed in Figure 4-8. (You can use customer_id = CUSTOMER3
to verify this information).

Click on Edit button.

Navigate to order node for CUSTOMER3 and update handling_charge information by double
clicking on the element content (the 6.8 value).

Confirm changes by pressing Submit button.

Data Services Platform: Samples Tutorial 54

i. Verify that the update was done successfully by re-executing getAllCustomers() function and
navigating to order information for CUSTOMER3.

CustomerProfile.ds - {DataServicesHiCustomerManagementy X

Select Function:

‘B getAllCustomers() ‘ - |

Parameters

Mumber Element (by path)
(s]| -]

Lirmit elernents in array results to:

[Skark Cliznk Transackion [Yalidate Resuls

Resul: Text

- «nshArrayOFCustomerProfile xmins :ns0="http:fftemp.openuri, orgiDataservices/schemas/CustomerProfile xsd” =
- <ns0:CustomerProfile =
-+ <customer >
+ <customer >
-+ <customer >
- <custamer =
<customer_id> CUSTOMER3 <jcustomer_id=>
<first_name>= Britt <ffirst_name =
<last_name= Pierce <jlast_name:>
<customer_since> 2001-10-01 </customer_since >
<email_address:> JOHN_3@att.com <jemail_address>
<telephone_number > 9287731259 <ftelephone_number>
<ssn> 647-73-1259 </ssn>
<birth_day> 1952-05-09 <jbirth_day >
<default_ship_methad> PRIDRITY-1 </default_ship_method =
<email_naotfication> 1 <femall_notification> L]
<news_letter> 0 <fnews_lether>
<online_statement > 1 <fonline_statement >
<login_id> Britt </login_id=
- <orders >

- <order =
<order_id> ORDER_3_0 <forder_id>
<customer_id> CUSTOMER3 </customer_id>
<order_date> 2001-10-01 <forder_date>
«ship_method> PRIORITY-1 <jship_method>
<handiing_charge> 17.5 </handling_charge:>
<subtatal> 649.85 </subtotal>
<tatal_order_amount: B56.65 <ftatal_order_amounts
«sale_tax> 0 <jsale_tax>
<ship_to> Britt Pierce </ship_to>
<ship_to_name =
<hill_tax CC_3_1 </hill_tas []

Figure 4-8 Order Line Data Integrated Within Order Information

Lab 4.3 Creating a Parameterized Function

Adding a parameter to a function ensures that the consuming application can access specific user-
defined data, such as an individual customer’s profile information.

Objectives

In this lab, you will:

Add a new function, getCustomerProfile().
Add a for node based on the getAllCustomers() function.

Set the context for nested elements within the logical data service.

Instructions

1. In Design View, create a new function for the CustomerProfile data service, and name it
getCustomerProfile.

Data Services Platform: Samples Tutorial

55

2. Click the getCustomerProfile function to open XQuery Editor View for that function.

3. In the Data Services Palette, expand the CustomerManagement\CustomerProfile data service

folders.

4. Drag and drop getAllCustomers() into the XQuery Editor View. You should see a new for node.
For: $CustomerProfile, with its shape defined by the CustomerProfile logical data service’s

getAllCustomers() function.

CustomerProfile.ds - {DataServices}HCustomerManagement), b3
-B getCustomerProfiIe()| -
=4For: $CustomerProfile U (@ Return sl
= customer * = 0 ELisk =
custamer_id string] 0] [=1 CustomerProfile]
first_name string 0] [=] customer +
last_name string customer_id string
customer_since ¥ date first_name string
email_address » string last_name string
telephone_number 7 string cuskomer _since ¥ date
55n 7 string email_address ¥ string
birth_day ¥ date telephone_number 7 string
default_ship_method ? string 550 7 skring
email_notification # short birth_day 7 date
news_letter 7 shart default_ship_method 7 string
online_statement * short email_notification ¥ short
login_id string news_letter 7 short
[orders 7 online_statement ¥ short
=} order * login_id string
order_id string [} orders ¥
customer_id string v} =} order *
order_date date order_id string
ship_method string customer_id skring
handling_charge decimal order_date date
subkotal decimal ship_method string
total_order_amount decimal handling_charge decimal
sale_tax decimal subkotal decimal
ship_to string total_order_amount decim
ship_to_name string sale_tax decimal
hill_ta string ship_to string
estimated_ship_date date ship_to_name string
status string hill_ta string
data_source string estimated_ship_date date
[=1-order_line * skakus skring
line_id string data_source string
arder_id string 0] = order_line *
product_id string line_id string
product string arder_id string
quantity decimal product_id string
price decimal product string
skakus string quantity decimal
[creditrating price decimal
raking string Jul stakus skring
customer_id string | [creditrating
[waluation ¥ rating string |
waluation_date string E customer_jd string |
[valuation ?
liakimn daka ki |T|E|

Figure 4-9 Complex Element Node

Note: In a previous lab, you defined getAllCustomers() to include a complex, nested customer element

associated with the customer id element of the SCUSTOMER ORDER LINE ITEM source. Since
customer_id uses a string parameter for filtering, you must set the context of the $CustomerProfile
source node to point to the customer element.

5. Create a parameter by completing the following steps:
a. Right-click an empty space in XQuery Editor View.
b. Select Add Parameter.
c. Enter CustomerID in the Parameter Name field.

d. Select xs:string from the Primitive Type drop-down list.

Data Services Platform: Samples Tutorial 56

e. Click OK.

Add Parameter... [zl

Parameter Name | CustomerID |

Specify the bype of the parameter

() Camplex Type

Figure 4-10 Add Parameter

Note: You may need to move the $CustomerProfile node to make the parameter node visible.

6. Create a complex, overwrite mapping, by completing the following steps:
a. Press Ctrl.

b. Drag and drop the $CustomerProfile customer* element onto the customer+ element in the
Return type. (The Return type will change.)

7. Create a join: Drag and drop the parameter’s string element onto the customer_id element of the
$CustomerProfile source node. This joins the string parameter to the $CustomerProfile source node
and creates a function that will return data based on the user-specified parameter. (You will see this
in action in the next lab.)

i =
died)
= faFur. SCustomerProfile i Rutun
[?|Parametor §Customeny [B outtol* = Customarrolle
[CtomertD sorg | anitaar A g ustomer +
Fst_name string ot i #ring
last e sting frut_pame stiing
cumtorm_sien T datn fast_name strng
ansd sddess ? sty customer_since T dete
telephore_rumber ¢ string emal_sadeess T strng
san? strng tkophenn_usber 7 st
Lith iy T e sn s
defmk_shwp_fethed ¢ string Bath_duy 7 date
sl notficstion 7 shart defok_sho_method 7 string
news letter 7 shert emal_rotficaton 7 sheet
onine_statmment 7 short s lolten T short
kg il sirieny orire_statement 7 shart
=) orders T fogn_id string
o ordie ® sedees ?
order i sring order *
cstomer 14 rng erdee i shiiey
indew_slatn e customer i g
ship, pathed &G order_date date
hardling_charge decmal ship_method string
btk decind Farlieng b deximal
wbtotd deumsl
Rotal_order_smount decral
sale_tax decmel
g to streg
g _te_pewme vy
it string
astinsted_she_dute date
st string
data_supee strng
= erder_lm*
e b g
onder_d g
praduct_id string
]
quankty decmal
price descenal
stakus string
aredirating
rakirey shriey
wustorer i strrg
= wahastion 7
walustion_date string
hisbion,bus_shuina,
oR .
D Ve | ey Eufber Views [Sinrtn Viows | Tiril Vo | Cuery Plan Wiow 1

Data Services Platform: Samples Tutorial

57

Figure 4-11 Data Source Node and Parameter Joined

8. Select the Source View tab and confirm that the XQuery code for the getCustomerProfile()
function is as follows:

declare function tns:getCustomerProfile($CustomerlID as xs:string) as
element(nsO:CustomerProfile)* {

<nsO:CustomerProfile>

{
for $CustomerProfile in tns:getAllCustomers()/customer
where $CustomerlID = $CustomerProfile/customer_id
return
$CustomerProfile

}

</ns0:CustomerProfile>

9. Remove the asterisk * from the return type element(ns0:CustomerProfile)*, since this function, as
currently written, will return all customer profiles. Your source code should be similar to that
displayed in Figure 4-12.

CustomerProfile.ds - {DataServicesH CustomerManagement),

kY

<fns0: CustomerProfile El

1
</ns0:CustomerProfile>

[+ declare function tns:gechddress(sery as element(nsd:CustomerProfile)) as element(ns5:aDDRESS)*

B HE v Funcbinn fresaar@RDUTOR M1EF /s ae alamant inefls CrstomarDrafilats as ol sment fnefs SEDWTOR Chamis (U =

Kl |]

Figure 4-12 Source Code for a Parameterized and Complex Overwrite Mapped Function
10. Test the function, by completing the following steps:

a. Build your application.

b. Open CustomerProfile.ds in Test View.

c. Select getCustomerProfile(CustomerID) from the function drop-down list.

d. Enter CUSTOMERS3 in the xs:string CustomerID Parameter field. (Note: The parameter is case-
sensitive.)

e. Confirm that you retrieved the requested information — customer, orders, and order line items
for Britt Pierce.

Data Services Platform: Samples Tutorial 58

CustomerProfile.ds - {DataservicesHCustomerManagemert}, X

Select Function:

‘-B getCustomerPrafils(CustomerID) |~ |

Parameters

xs!5tring CustomerID: | CUSTOMER3 |

Mumber Element (by path)

Limit elerments in array results to: | 500 | | | - |

[Start Client Transackion Validate Results

Result | (94 Results are valid, Text Wil

- <ns0:CustomerProfile xminsins0="hktp: | ftemp openur org/DataServices/schemas| CustomerProfile.xsd” =

>

- <customer >
<customer_id> CUSTOMER3 <jcustomer _id>
<first_name: Britt <jfirst_name>=
<last_name> Pierce <flast_name:
<rustomer_since> 2001-10-01 <Jcustomer_since =
«<email_address> JOHN_3@att.com <jemail_address
<telephone_number> 9287731259 <ftelephone_numbers>
<ssn> 647-73-1259 <fssn>
<hirth_day> 1952-05-09 </birth_day >
<default_ship_method> PRIORITY-1 </default_ship_method>
<email_notification= 1 <jemail_notification
<news_letter > O =/news_|etter>
<online_statement> 1 <fonline_statement =
<login_id> Britt </login_id>

- <aorders >

- <order >
<order_d> ORDER_3_0 <forder_id>
<eustomer_id> CUSTOMER3 </customer_id:
<order_date= 2001-10-01 =forder_date>
<ship_method> PRIORITY-1 <fship_method:
<handling_charge> 17.5 </handing_charge:>
<subkotal> 649.85 </subtokal>
<kotal_order_amount> 656.65 =ftotal_order_amount >
<sale_tax> 0 <jsale_tax>
<ship_to= Britt Pierce </ship_to>
<ship_to_name =
<hill_to> €C_3_1 =/bil_to>
<estimated_ship_date> 2001-10-03 <festimated_ship_date> =

Figure 4-13 Integrated Data Results

Lesson Summary

In this lesson, you learned how to:

Use the Data Services Palette to add physical and logical data service functions to a logical data
service, thereby accessing data from multiple sources.

Join data services by connecting source elements, thereby integrating data from multiple sources.

Use the Expression Builder to define a parameterized where clause.
Set the context for nested elements in the source node.
Create a complex override mapping.

Test parameterized data services to verify the return of integrated data results.

Data Services Platform: Samples Tutorial

59

Lesson

Objectives

Overview

5 Modeling Data Services

Any data service — physical or logical — can be placed in a model diagram. Model diagrams show:
The basic structure of data returned by each data service within the model.
Any functions associated with that data service.
Any relationships between data services.

The main purpose of the diagram is to help you envision meaningful subsets of the model, but it can
also be used to define new artifacts or edit existing artifacts.

After completing this lesson, you will be able to:

Create model diagrams and add data source nodes to the diagram.
Confirm relationships inferred during the Import Source Metadata process.

Define new relationships between data services and modify relationship properties.

Model diagrams show how various data services are related. Models can represent physical data
services, logical data services, or a combination.

Each physical model entity represents a single data source. In the case of relational sources, you can
automatically generate physical models that are representative of data sources. After being generated,
physical data services can be integrated with other physical or logical sources in the same or new
models. Physical model types use a key icon to identify primary keys.

Logical data model entities, which are discussed in detail in the Data Service Developer’s Guide,
represent composite views of physical and/or logical models.

Within the model diagram, data services appear as boxes. Relationships are represented by annotated
lines between two data services. Each side of the relationship line represents the role played by the
nearest data service. The annotations for each relationship include the following:

Target Role Name. By default, the target role name reflects the name of its adjacent data service.
You can modify the target role name to better express the relationship, which is particularly useful
when there are multiple relationships between two data services.

Cardinality. A relationship can be zero-to-one (0:1 or 1:0), one-to-one (1:1), one-to-many (1:%) or
many-to-many (n:n). For example, a customer can have multiple orders, therefore, the relationship
should be 1:n (customer:orders).

Directionality. A relationship can be either unidirectional or bidirectional. If unidirectional, data
service @ can navigate to data service b but b does not navigate to a. If bidirectional, data service a
can navigate to b and b can navigate to a.

A data service’s navigation functions determine the relationship’s cardinality and directionality.
Arrowheads indicate possible navigation paths.

Data Services Platform: Samples Tutorial

60

Lab 5.1

DSP model diagrams are very flexible; they can be based on existing data services (and corresponding
underlying data sources), planned data services, or a combination. Using models you can easily
manage multiple data services as well as identify needs for new data services. You can also create and
modify data service types directly in the modeler and inspect data services.

& Evaluation - AEA WeblLogic Workahap - Apparell_Physical_ModeLmd

Bin £ Vow B Debiy Toth Wede b
DFA@ ot mller~aayd HEEEs~48EE R ItE

ol

Data Service _
L | ECUSTOMER_ORDER_LINE ...
K Sl CUSTOMIE_CRDER_LIML_ITEM
TueEm
R _ID s
PROOLCT) W PROCUCT
BROCLCT_RSC aestirg | EF £ ITE i@ oLt
CHSNTITY xnboger - T ROOUT B arateng
CATEGORY_ID xy-stving
FROCUCT U anatung
PROCUCT DESC spatring
AN ACTURER ap st
LIST_FRICE sx-decimad
AVENAGE SENVICE COST T acdevmal

Y CUSTOMER _ORDER
S @ OUSTOMIR_ORDER
T oRoen_ip rastergy
@ CUSTOMER 1D xnstring i d
(@ ORDER_DATE cedale
ST asting |
@ HADUNG CHUE sadecrdd |
@ RNIOTAL urdecresd k . LY
B TOTAL DRDER_AMOUNT sr-decma (4 =
@ 1o ardecoul RCoHYR -
@ SP_T0ssrng Target Rele
@ B_10 N aeatrig Hame
@ 0 mstng

PRICE ar vl
STATUS xx:string

v
tTeoe=

TCoTOOT

B s UE CUSTOMER

S
i TRACKING MUMEER T axisbrig
| s o)

1 PROCUCT()

T —
g @ TELIPHOMNE_NUMDER xi-string

FINST_NAME ssbeing @ SN g
S LAST AT ceating 1 DIRTH BT * ot

STREET_ADCRESS! xa:strng @ DEFMLT P METHOO Faittring
B STHEET_ADORESAT P araatrg [0 @
B T xeatnng. e @ NEWS_LETTTER 7 mecshort

L

e

o

o

=4 EMAR_MOTEFICATION 7 xemthart
@ STt msems AT @ bl ST Hast
L

=

&

v

o

]

-]

§
g
£

B IPCCEE rstring = i@ CREDIT_CARD |1 amrorg
5 COUNTRY wa:sbrirng T O apatring
S DAY_ORE 7 arttreg

[T &3
& Server Stogped e s

Figure 5-1 Model Diagram for Physical Data Services

Creating a Basic Model Diagram for Physical Data Services

Modeling data services begins by adding individual data services to a diagram.

Objectives

In this lab, you will:

Create a diagram that you will use to model relationships between physical data services.
Add the ApparelDB and CustomerDB physical data services to the model diagram.

Confirm relationships “captured” during the Import Source Metadata process.

Instructions
1. Create a new folder in the DataServices project and name it Models.
2. Create a new folder in the Models folder and name it Physical.
3. Create a blank model diagram, by completing the following steps:
a. Right-click the Physical folder.
b. Choose New — Model Diagram.

c. Select Data Service — Model Diagram.

Data Services Platform: Samples Tutorial 61

d. Enter ApparelDB_Physical Model in the File name field.

e. Click Create. A blank workspace opens, which you can use to construct the model diagram.

[T Web Services
[C) Web User Interface
[Z1 Common

Mew File
Caal 22 Model Diagram
[C) Business Logic 2 Data Service
[C) Data Service 8] #cauery Function Library

Fil game:| ApparelDE_Physical Model.md

Browse. ..,

Createin: {DataServicesHModelsiPhysicall
Creake a new Model Diagram.

Figure 5-2 Create Model Diagram

4. Add the ApparelDB and CustomerDB physical data services to the model by dragging and
dropping the following data service files from the application pane into the model:

Data Service File
CUSTOMER_ORDER.ds
CUSTOMER_ORDER-LINE_ITEM.ds
PRODUCT .ds
ADDRESS.ds
CREDITCARD.ds
CUSTOMER.ds

Located In:
DataServices\ApparelDB
DataServices\ApparelDB
DataServices\ApparelDB
DataServices\CustomerDB
DataServices\CustomerDB

DataServices\CustomerDB

Notice that relationships between the data services already exist. These relationships were
automatically generated during the Import Source Metadata process, and are based on the foreign
key relationships defined in the underlying database.

Data Services Platform: Samples Tutorial

62

Apparse_Physicl_Modsl.md” - {DataServicesH ModelsiPhyscall

A CUSTOMER_URDER 1ECUSTOMER_ORDER_LINE_I...
= i@ CUSTOMER _ORDER i CLSTOMER _CRDER_LINE_ITEM
T oroER 1D ssistrng T UNEID wsistring
S b g 1 CRLER D istring 1% PRODUCT
S ORDER DT xeddate . @ PROD_ID wssting —
& SHIP_METHOD T rsstring i@ PROD_DEC xsasining =8 PROCUCT
@ HANDLING CHRG_AMT xs:decimal @ CUANTITY x5:integer 7 IC:‘:;’:D"!;";B ’-‘--"’!"_V
o ETOTAL_AMT idecmal i PRICE asideomal b -]
S TOTAL_ORDER_SMT widacmal |- @ STATUS ssstrng 19 PRODLICT NAME xsistring
= o & PRODUCT_DESC sting
‘\j:w;_j;xf:ujs ;n.(“m' (| CUSTOMCR_ORDLR_LINE ITEM(} @ MANEACTURER xsstrrxy
B GHIP_T st DRDER_LINE ITEMH) 5
@ SHE_TONM ssistrng @ LIST_PRICE msoddocimad
S HILL_TO_ID xestng i@ AVERAGE SERVICE COST 7 xsdeomal
& ESTIMATED_SHIP T nsekater Llprobuci() .
@ STATLE xsstring
B TRACKING_ND ? awistring
4] CUSTOMER_ORDER()

'[Emnm: BR

L CUSTOMER
S @ ADORESS === cx =
"? ALOH_ID sistrng v féﬁmm D xsistring gc_RE OIT_CARD
i OUSTOMER_ID xssstorg & FIRST_NAME assting =@ CREOIT_CARD
i FIRST MAME wscsbriog B LAST_NAME xscsting T oD mstrig
@ LAST MAME strng © QUETOMER SINCE xeelite @ QSTOMER D smistring
© STREET_ADDRESS1 xisting @ EMAIL_ADDRESS ws:sting & CC_OSTOMER NAME ssistrng
© STREET_ADDRESS? ? rsistring & TELEPHONE_IMBER. xe:stig © CC_TVPE xushivg
@ CTY st 1 @ ESN? rsshieg @ CCBRAND wscsbrig
@ STATE xesting © DIMTHLDAY P xseclate & 0C_MUMEER smistring
@ ZPUE sty & DEFAULT_SHIP_METHOD 7 xs:strin @ LAST_DIGITS istng
© COUNTRY xssdirg © EMAIL_NOTIFICATION ? xsishort © EXP_DATE rsceite
@ DAY _PHONE 7 xsi5tring) HEWS LETTTER ? rothrrt @ STATLG 7 sistring
& EVE_PHONE ? xsastring | o cenme craroucir 3w [T @ [5_DEFALT xsishort
B ALRS 7 sssTog - - B ALIAS 7 sEtng
B STATUS ? asshiivg] CUSTUMER) @ ADDR_ID rscstring
@ 15 DEFAILT xsishort £ EREDIT_CARD()

4] ADDRESS()

Figure 5-3 Model Diagram for a Physical Data Service

Lab 5.2 Modeling Relationships Between Physical Data Sources

The next step in data service modeling is to define additional relationships, beyond any automatically
generated during the import source metadata process.

A relationship is a logical connection between two data services, such as the CUSTOMER and
CUSTOMER ORDER data services. A relationship exists when one data service retrieves data from
another, by invoking one or more of the other data service’s functions.

A data service’s navigation functions determine the relationship’s cardinality and directionality.
Arrowheads indicate possible navigation paths. Directionality can be either one directional or
bidirectional.

Objectives

In this lab, you will:

Define a relationship between the CUSTOMER and CUSTOMER _ORDER nodes, thereby
creating a navigational function between the two nodes.

Modify the relationship properties to enable a “1:0 or many” relationship.

Instructions

1. Drag and drop the top-level CUSTOMER element onto the top-level CUSTOMER ORDER
element. The Relationship Properties window opens.

2. In the Relationship Properties window, modify the cardinality properties for the
CUSTOMER_ORDER role, by completing the following steps:

a. Select 0 from the Min occurs drop-down list.

Data Services Platform: Samples Tutorial 63

b. Select n from the Max occurs drop-down list.

The relationship cardinality is now "1:0 or many" between the CUSTOMER and
CUSTOMER_ORDER data services. In other words, one customer can have none, one, or any
number of orders.

3. Click Finish.

Note: In subsequent lessons, you will use additional features of the Relationship Properties window
to customize relationship properties.

& Relationship Properties
7] Rekationship CUSTOMER. - CUSTOMER_CRDER. 7] Restatiorship CUSTOMER_ORODER - CUSTOMER
Dataervice CUSTOMER; - | (Dmaservice CUSTOMER_CROER; -
Torget R o | e, cpes| Target Roke rrn: | o sronien
M ocours: -] ht M0 oo 1
M gcurs: L} = Haz i !
et || Frish || Coneel

Figure 5-4 Relationship Properties — Cardinality

Note: It may take a few seconds to generate the relationship line.

@ Evaluation - BIA Weblogi Werkahep - AppareDi_Physical Modelmd

B G0 e B (e Tk Wit
DFE@ o~ 2l -~

FANEEE N~ HEE LS8

|1 cursToman_ownis sy

M SIATIMONT T srshant
| fustoeeni}

LT e i

Figure 5-5 New Customer: Customer_Order Relationship Defined
4. Save all files.

5. Open CUSTOMER.ds in Design View. (The file is located in the DataServices\CustomerDB
folder.)

6. Confirm that the CUSTOMER data service includes a new relationship with the
CUSTOMER ORDER data service, using the getCustomer Order function.

Data Services Platform: Samples Tutorial 64

CUSTOMER., ds* - {DatagervicesH CustomerDEY x
J@EUSTDMER Diata Service
=@ CUSTOMER
+—— cusTorER T CUSTOMER_ID xs:string
@ FIRST_MAME xs:string
(@ LAST_MAME xs:skring
@ CUSTOMER_SINCE xs:date
(@ EMAIL_ADDRESS xs:ghing
@ TELEPHOME_NUMEER xs.skring
(@ 55M 7 xsistring
@ BIRTH_DAY 7 xs:date
@ DEFAULT_SHIP_METHOD 7 xs:st
@ EMAIL_NOTIFICATION ? xsishort
RS @ MEWS_LETTTER 7 xs:ghovt
(@) ONLIME_STATEMENT 7 xs:short
tADDRESS (@ LOGIN_ID 7 xs:string
aetCUSTOMER ORDER.
K | [+]
(1] b
[| Design view [%Guery Editor Yiew | Source View | Test View | Query Flan View

Figure 5-6 Design View of Added Relationship Function

7. Open CUSTOMER ORDER.ds in Design View. (The file is located in the
DataServices\ApparelDB folder.)

8. Confirm that the CUSTOMER ORDER data service includes a new relationship with the
CUSTOMER data service, using the getCustomer() function.

CUSTOMER_ORDER.ds - {DataServicesH ApparelDB}

I[»

|3 CUSTOMER_ORDER Data Service

=] O CUSTOMER_ORDER.

¥ ORDER_ID xs:string
o) CUSTOMER_ID xs:skring
ORDER_DATE xs:dake
SHIP_METHOD xa:sbving
HANDLIMG _CHARGE xs:decimal
SUBTOTAL xs:dedimal
TOTAL_ORDER_AMOUNT xs:decimal
SALE_TAX xs.decimal
SHIP_TO xs:string
SHIP_TO_MAME xs:string
BILL_TO xs:shving
ESTIMATED _SHIP_DATE xs:date
STATUS xsisbring
TRACKIMNG_MUMBER. 7 xs:sbring

A——— | S TOMER_ORDER

OO HOTOTOL N YOTOL Y

ST,

CUSTO,..

8l |

QetCUSTOMER ORDER LINE ITEMs

|

Kl D

| Design Yiew [#Guery Editor Yiew | Source View | Test View | Query Plan View

Figure 5-7 Design View of Added Relationship Function

9. (Optional) Create a relationship between CUSTOMER and CREDIT_CARD data services.

10. (Optional) Close all open files.

Lesson Summary

In this lesson, you learned how to:

Create model diagrams and add data source nodes to the diagram.
Confirm relationships inferred during the Import Source Metadata process.

Define relationships between data services.

Data Services Platform: Samples Tutorial

65

Lesson 6 Accessing Data in Web Services

Objectives

Overview

Lab 6.1

One of the data sources available with the samples installed with Data Services Platform (DSP) is a
web service that provides customer credit rating information. In this lesson, you will generate a
physical data service that can be integrated into the CustomerProfile logical data service.

The process for creating a data service based on a web service is similar to importing relational
database source metadata. The difference is that DSP uses the WSDL (web services description
language) metadata to intraspect the web service’s operation and generate the data service.

After completing this lesson, you will be able to:

Import a WSDL.
Use the WSDL to generate a data service.
Test the web service by passing a SOAP request body as a query parameter.

Use a logical data service to invoke the web service and retrieve data.

A web service is a self-contained, platform-independent unit of business logic that is accessible to
other systems on a network. The network can be a corporate intranet or the Internet. Other systems can
call the web services’ functions to request data or perform an operation.

Web services are increasingly important resources for global business information. Web services can
facilitate application-to-application communication and are a useful way to provide data, like stock
quotes and weather reports, to an array of consumers over a corporate intranet or the Internet. But they
take on additional new power in the enterprise, where they offer a flexible solution for integrating
distributed systems, whether legacy systems or new technology.

WSDLs are generally publicly accessible and provide enough detail so that potential clients can figure
out how to operate the service solely from reading the WSDL file. If a web service translates English
sentences into French, the WSDL file will explain how the English sentences should be sent to the web
service, and how the French translation will be returned to the requesting client.

Importing a Web Service Project into the Application

When you want to use an external web service from within WebLogic Workshop, you should first
obtain that service’s WSDL file. In this lab, you will use the WSDL for a web service project that was
created in WebLogic Workshop.

Objectives

In this lab, you will:

Import the CreditRatingWS web service into your sample application. This web service provides
getCreditRating and setCreditRating functions for retrieving and updating a customer’s credit
rating.

Run the web service to test whether you can retrieve credit rating information.

Data Services Platform: Samples Tutorial 66

Instructions

1. Import a web service into a DSP-enabled application, by completing the following steps:

a.

b.

Choose File — Import Project. The Import Project — New Project window opens.

Select Web Service Project.

Caution: Make sure that you select a project of type web service. If you select another project type,
then the CreditRatingWS application may not work correctly.

c. Click Browse.
d. Navigate to the <beahome>\weblogic81\samples\LiquidData\EvalGuide directory.
e. Select CreditRatingWS and click Open.
f. Make sure that the Copy into Application directory checkbox is selected.
g. Click Import and Yes (when the confirmation message opens).
Import Project - New Project

i el ﬁ Datasync Projeck E

() Business Lagic @ ETB Project

g E__Téa Sl @ Java Project

) Fortal @ Portal Web Project

|:| Process @ Process Project

(] Schema @ Schema Project

] web Services @) web Project

() Web User Interface @ Web Service Project [~]

Tame:

Directory: | 3'|,weblogic81Isamples'l,LiquidData'l,EvaIGuide'l,CreditRatingWS| I Browse, ., |

Copy into Application directory,

| CreditRatinglis |

Creates a new web service project.

Figure

6-1 Import Web Services Project

2. Inthe Application pane, verify that the following items were imported:

A CreditRatingWS project folder containing:

A controls folder, within which are the CreditRatingDB.jcx control and
CreditratingDBTest.jws web service.

A credit rating folder, within which is the web service folder that contains the
CreditRating.java file.

A WEB-INF folder.

Data Services Platform: Samples Tutorial 67

|| Application X

{29 Evaluation
= (=¥ CreditRatings
=29 controls
A creditRatingDB. jox
4 CreditRatingDBTest jws
=129 creditrating
() webservice
=-zd WEE-TNF
1 -pageflow-struts-gener ated
[classes
Calb
|<__?| netui-tags-databinding. tld
|<_j netui-tags-databinding. tldx
|<_j nekui-tags-htrml. tid
I—j netui-tags-htrl. Eldx
|<—j netui-tags-template. td

=

Fj netui-tags-template. tldx

walidation_1_1.dtd

|<_j walidatar-rules. =ml

validator-rules_1_1.dtd

|<—_§| web,zml

|<—j wehlogic, xml
Fj wihw-config.xml

(] DataServices

(1) EvaluationDataServices

£ Madules

() Libraries

(3 Security Raoles

Figure 6-2 Web Service Project

3. Open CreditRatingDBTest.jws in Design View. (This file is located in the
CreditRatingWS\controls folder.) The web service diagram should be as displayed in Figure 6-3.

CreditRatingDBTest, jws - {CreditR.atingWStHcontrols| .
_@' CreditRatingDBTest Web Service
getCreditRating
_I:II>—' setiCreditRatin s TR
getCreditRating
setCreditRating
Mermber Yariables
|| Design Yiew [Source Yiew |

Figure 6-3 Design View of Credit Rating Web Service
4. Test the imported web service, by completing the following steps:
a. Click the Start icon (or press Ctrl + F5) to open the Workshop Test Browser.
b. Enter CUSTOMERS in the customer id field.
c. Click getCreditRating. The requested information displays in the Workshop Test Browser.

Data Services Platform: Samples Tutorial 68

Lab 6.2

) Workshop Test Browser

4= = @ < || hetp:lacalhost:7001/CredicRatingwscontrals/CreditR atingDBTest, is? EXPLORE=. TEST

[Owerview | [Consale] [Test Form | [TestXML]| hiip:/localhost;7001 ACreditRating/S /controls/CreditRatingDB Test, jws

Test operations

Message Lo & Refresh

Log is empt

getCreditRating

string customer_id: [CUSTOMERS
getCradiRating

setCreditRating

setCreditRating is not supparted an the Test Form page (HTTP-GET), pleass use the Test
XML page (HTTP-POST) ko ket this operation 3

Figure 6-4 Workshop Test Browser

d. Scroll down to the Service Response section and confirm that you can retrieve credit rating
information for CUSTOMER3.

% Workshop Test Browser
-+ 0 <

“o | hitpflocalhost: 7001 jCrediR stingwSjcontrols/CrediR atingDBTest jws? EXPLORE=, TESTE, LOGENTRY=D

Returned from context_onRelease on creditRatingDB
Submitted at Tuesday, March 22, 2005 12:31:20 PM PST

Context Event context_onReset on Control creditRatingDB
Submitted at Tuesday, March 22, 2005 12:31:20 PM PST
Method: com.bea.wiw.runtime. core, control, DiatabaseControlmpl. conkext_onReset
Event source: context
CallStack:
creditRatingDB context_onReset()
creditRatingDE:context.onReset()

Returned from context_onReset on creditRatingDB
Submitted at Tuesday, March 22, 2005 12:31:20 PM PST

Service Response
Submitted at Tuesday, March 22, 2005 12:31:20 PM PST
<ns: CredltRatmg zminsins=' http vanw.openuri.org”
srnlnsxsd="http: [fumm w3, org[2001 ML Schema"
xmins:xsi="http:/ i, w3, org/2001 XML Schema-instance" >
<nsiRating>600<ns:Rating>
<ns:Customer_id:>CUSTOMER3 <jns:Customer_id:
</ns:CreditRating>

< |

Figure 6-5 Web Service Results

Importing Web Service Metadata into a Project

WSDL is a standard XML document type for describing an associated web service so that other
software applications can interface with the web service. Files with the .wsdl extension contain web
service interfaces expressed in the Web Service Description Language (WSDL).

A WSDL file contains all of the information necessary for a client to invoke the methods of a web
service:

The data types used as method parameters or return values.
The individual method names and signatures (WSDL refers to methods as operations).
The protocols and message formats allowed for each method.

The URLSs used to access the web service.

Objectives

In this lab, you will:

Import the CreditRatingWS source metadata via its WSDL, into the DataServices project, thereby

generating a new data service (getCreditRatingResponse.ds).

Confirm that the new data service includes the getCreditRating function that you tested in the
previous lab.

Data Services Platform: Samples Tutorial

69

Instructions
1. In the Workshop Test Browser, scroll to the top of the window.
2. Click the Overview tab.

23 Workshop Test Browser

| [Overview | [Console | [Test Form | [Test XML]| htip:/flocalhost: 7001/CreditR ating\w'S/controls/CreditRatingDBTest. jws

Public Information See other services in this project
ahout CreditRatingDBTest, jws Wieh Service

Web Service Description Language files

This WSDL fils describes the complete public contract of CreditRatingDETest, jws, including both

operations and calbacks.
Web Service Clients

Source code fior a Service Control that can be used by a iwehLogic workshop weh service o

communicate with this service.

4 18R fils comtaining Java classes you can use t access this weh service as though it were a
local Java class.

Javapackage: [| befSutpocksgs: wablbgic jws provies)

A J4R, file containing support classes that are needed by all WebLogic web service Java Proxies,
Service Description
Thig web service implements the following operations:

getCreditRating

setCreditRating
This web service has no callbacks.
useful links

To learn how to build a client proxy that can talk to any service described by a WSDL file see "Invoking YWeb Services"
For mare detaile on WSDL, see the WSDL Specification vi.1

For mare details on SOAP, ses the SOAP Specification ¥1.1

For more details on XML namespaces, see the W3C recommendation on Namespaces in XML

For mare details on URIs, see RFC 2396

Figure 6-6 Workshop Test Browser Overview
3. Click Complete WSDL.

4. Copy the WSDL URI, located in the Address field. The URI is typically:
http://localhost:7001/CreditRatingWS/controls/CreditRatingDBTest.jws?WSDL~=

= Workshop Test Browser

+ = @ H http: /flocalhost: 7001 CreditR atingWSfcantrals/CreditR atingDETest jws?WSDL= ,r:
”~
<?uml version="1.0" encoding="utf-8" 7= =
- zdefinitions xmins="http:/ fschemas.xmlsoap.org/wsdl/"
smins:conv="http://www.openuri.org/2002/04/soap/conversation /"
smins:cw="http:/ /www.openuri.org/2002/04/wsdl/conversation/"
smins:http="http://schemas.xmlsoap.org/wsdl/http /"
swmins:jms="http:/ /www.openuri.org/2002/04/wsdl/jms /"
smins:mime="http:/ fschemas.xumlsoap.org/wsdl/mime /"
smins:s="http:/ fwww.w3.org/ 2001 /XMLSchema" =mins: s0="http:/ /www.openuri.org/"
smins: soap="http://schemas.xmlsoap.org/wsdl/soap/"
smins:soapenc="http:/ /schemas.xmlsoap.org/soap/encoding/" ~
< >

Figure 6-7 WSDL URI

5. Close Workshop Test Browser.

6. In Workshop: Close all open files.

7. Create a new folder within the DataServices project folder, and name it WebServices.

8. Import web service source metadata into the WebServices folder, by completing the following
steps:

a. Right-click on the WebServices folder.

b. Choose Import Source Metadata.

Data Services Platform: Samples Tutorial

70

http://localhost:7001/CreditRatingWS/controls/CreditRatingDBTest.jws?WSDL

¢. Choose Web Service from the Data Source Type drop-down list. Then click Next.

&% Select data source type @

[rata Source Type: | Web Service | - |

| Mext || || Cancel |

Figure 6-8
d. Paste the copied WSDL URI into the URI or WSDL File field and click Next.

4 Specify web service URI @
URT ar WSDL fle: | »:{flocalhast: 7001 {CreditRatingws controlsiCreditR atingDB Test. jws?wSDL= | | Browse. .. |

Web Service Data Source Type

| Previous | | Mext | | | | Cancel |

e. Expand the CreditRatingDBTestSoap and Operations folders.

f. Select the getCreditRating operation, then click Add to populate the Selected Web Service
Operations pane.

&= Select web service operations to import E]

Available web service operations Selected web service operations
[[sem] ks
B 1 CreditRatingDETestSoap
| Parts = () Operations
= 1 CreditRatingDETestSoap @ getcredtrating
= (£ Operations
@) setCreditRating I:l
Remove Al
| Pravious | | ek ‘ | | | Cancel |

Figure 6-9 Selected Web Service Operations

Data Services Platform: Samples Tutorial

71

g. Click Next and review the Summary information. The Summary information includes:
XML type, for web service objects whose source metadata will be imported.

Name, for each data service that will be generated from the source metadata. (Any name

conflicts appear in red and must be resolved before proceeding; however, you can modify
any data service name.)

Location, where the generated data service(s) will reside.

h. Click Finish.

ﬁSummary E|
The following data service(s) will be created. Edit suggested name(s) as needed.
[AL Type: Name
‘ getcreditRating ‘ getcraditRatingResponse |%
Location | Dritestlabifvalustion|Dataservices\WebServices | [Browse. . |
[Previous | | || Fish | [cancel |

Figure 6-10 Web Services Summary

9. Open getCreditRatingResponse.ds in Design View. (This file is located in the
DataServices\WebServices folder.)

10. Confirm that there is a function called getCreditRating().

getCreditRatingRespanse ds - {DataServicesHiwebservices),

*

[y - getCreditRatingResponse Data Servics =
@) getCreditRatingResponse
B @ getCrediRatingResult ? ape: CredtR ating
@ Rating_p v e ink
@) Customer id? _p v e rshing

M 1t &:f/ER, LTI

4][]

" Design View [#Query Editor View | Source View | Test View | Qusry Plan View |

Figure 6-11 Web Service Function Added

Data Services Platform: Samples Tutorial 72

Lab 6.3

Testing the Web Service via a SOAP Request

Extensible Markup Language (XML) messages provide a common language by which different
applications can talk to one another over a network. Most web services communicate via XML. A
client sends an XML message containing a request to the web service, and the web service responds
with an XML message containing the results of the operation. In most cases these XML messages are
formatted according to Simple Object Access Protocol (SOAP) syntax.

SOAP specifies a standard format for applications to call each other’s methods and pass data to one
another.

Note: Web services may communicate with XML messages that are not SOAP-formatted. The types of
messages supported by a particular web service are described in the service’s WSDL file.

Objectives

In this lab, you will:
Use the getCreditRating() function and a SOAP parameter to test the getCreditRatingResponse data
service.

Review the results.

Instructions
1. Build the DataServices project.

2. Open getCreditRatingResponse.ds in Test View. (This file is located in the
DataServices\WebServices folder.)

3. Select getCreditRating(x1) from the Function drop-down list.

4. Enter the following SOAP body in the Parameter field:
<getCreditRating xmlns="http://www.openuri.org/*>
<customer_id>CUSTOMER3</customer_id>

</getCreditRating>

Note: You can create a template for the input parameter by clicking Insert Template.

getCreditRatingResponse. ds - {DataServices) {WebServices, %

Select Function:

[£] setcredinatingt<t) -]

Parameters

tl:getCreditRating nl: Erowse... | | Paste Result ‘ ‘ Insert Template ‘

=getCreditRating xmins="http: /fwww, openuriorgf" = E
<cuskomer_id»>CUSTOMER 3 </custamer_id>
=/getCreditRating >

] 0]

Number Element by path)

Limit elerments in array results to:

[-]

[start Clisnt Transaction [validate Resulks

[Design View | XQuery Editor View | Source View | Test Yiew [Query Plan View |

Figure 6-12 SOAP Parameter

Data Services Platform: Samples Tutorial 73

5. Click Execute.

6. Review the results, which should be similar to those displayed in Figure 6-13. Notice that only two
data elements are returned: the customer ID and the credit rating for that customer.

getCreditRatingResponse. ds - {DataServicesHWebServices) X
Select Function:
‘B getCreditRating{x1) | - ‘
Parameters
tligetCreditRating =1 Browse ‘ | Paste Hesu\tl ‘ Insert Template |
<getCreditRating xmins="http:/ fumm, openuri. orgf" > E

=customer_jd=CUSTOMER S <jcustomer_id>
<getCreditRating >

K| 0]

Number Element {by path)

Limit elernents in array results to
EZH -]

[start Client Transaction Validate Resuls

Result | [W4 Results are valid. Text ML

- <nsigetCreditRatingResponse xminsins="http:) fvwvw openuri,org/" =

- =ns:getCreditRatingResult xminsins="http: fvwvew,openuri.org” >
<nsiRating xmins:ns="http:{fwww.openuri.org/* = 600 <(ns:Rating>
<nsiCustomer_id xmins:ns="http: /jvww openuriorg” > CUSTOMER3 </ns:Customer_id>
= [nsigetCreditRatingResult >
<jns:getCreditRatingResponse >

Design Yiew | XQuery Editor View | Source View | Test view [Query Plan View

Figure 6-13 Web Service Results

Lab 6.4 Invoking a Web Service in a Data Service

You are now ready to use the web service to provide the data that populates the CustomerProfile
logical data service.

Objectives
In this lab, you will:

Use the getCreditRatingResponse data service to populate the credit rating element in the
CustomerProfile data service.

Test the invocation.

Review the results.

Instructions

1. Open CustomerProfile.ds file in Source View. (The file is located in the
DataServices\CustomerManagement folder.)

2. Add the following namespace definitions, in addition to the ones already defined for the
CustomerProfile data service:

declare namespace
wsl=""lId:DataServices/WebServices/getCreditRatingResponse";

declare namespace ws2 = "http://www.openuri.org/";

Data Services Platform: Samples Tutorial 74

3. In a Windows browser, open the creditRatingXQuery.txt file, located in the
<beahome>\weblogic8 1\samples\LiquidData\EvalGuide directory.

4. Copy the following code from the creditRatingXQuery.txt file:
{
for $rating in wsl:getCreditRating(
<ws2:getCreditRating>

<ws2:customer_id>{data($CUSTOMER/CUSTOMER_ID)}</ws2:customer_id>
</ws2:getCreditRating>)
return

<creditrating>
<rating>{data($rating/ws2:getCreditRatingResult/ws2:Rating)}</rating>

<customer_id>{data($rating/ws2:getCreditRatingResult/ws2:Customer_id)
}</customer_id>

</creditrating>
}
5. In the CustomerProfile.ds file, expand the getAllCustomers function.

6. Insert the copied text into the section where the empty CreditRating complex element is located.
The empty complex element is as follows:

<creditrating>
<rating/>
<customer_id/>

</creditrating>

7. Confirm that the <creditrating> code is as displayed in Figure 6-14.

CustomerProfile. ds* - {DataservicesPCustomerManagement,

S

for srating im wsl:getCreditRating(E
<ws2: getCredi tRating-
=ws2:customer id-{data($CUSTOMER/CUSTOMER_ID) }<fws2:customer id-
<fws2:getCreditRating>)
return
<creditrating-
<ratimg-{data|§rating/us2: getCreditRatingResult/ws2:Rating) J<srating>
<customer id>{data(§rating/ws2:getCreditRatingResult/ws2: Customer_id) }</customer id>
[/creditrating-

<valuation>
<valuation datei</valuation date>
<raluation_tier></valuation_tierx>
<fvaluation>-
<fcustomer:

</ns0:CustomerProfile>
}i

o
declare function tns:getCustomerProfilelsiustoserIl as xs:string) as element(ns0:CustomerProfile}® |
<ns0:CustomerProfiles
{
for SCustomerProfile in tns:gethllCustonersi)/customer
where sCustomerllD = §CustomerProfilefcustomer_id
return
stustomerfrofile

<fns0:CustomerProfile>

}i
O O]
¥Cuery Editor View | Source View [Test View | GQuery Plan view

Figure 6-14 Credit Rating Source Code
8. View the results, by completing the following steps:

a. Open CustomerProfile.ds in XQuery Editor View.

Data Services Platform: Samples Tutorial 75

b. Select getAllCustomers() from the Function dropdown list. The function should be similar to
that displayed in Figure 6-15.

i ey £
o] grtatuntomersi)
&For: SCUSTOMER] @ Return
= CUSTOMIR ¢ = CustomernFrofie
CUSTOMER D string = Qo+
FIRST_NAME string customes i srng
LEST_MAME siring frst_name srg
CUSTOMER_SINCE date. Lvct_pim slring
[MAR_ADORESS string Cuttoner_gnce 7 date
TELEPHONE _NUMBER: sring T emal_sddress 7 gtrng
SENT srng sbephane_number 1 stieg
RIRTH DAY T clabe w7 g
DEFALLT_SHIF_METHOD 7 sring Binth_day 7 date
EMARL_NOTIFICATION 7 short defadk_gho method ? string
NEWSE LETTTER ¥ short emal_notficstion * short
ONUINE_STATEMENT 7 altert rews letter 7 short
LOGIN_I T atring erdee_sdaberend T sdurt
ogr_id strig
" = arders 7
’_ﬁr-n. BCUBTOMER_ORDER | & -order ®
B CUSTOMER_ORDER * =~} order il string
, Rk CRDER_ID sirng cubimare) shiieg
(§Far Srating €10 strirg rder_date date
(TE o 1 CHDER DT dte he_ethod string
= getCrediiatng SHIP_METHOO DSC string handing_charge decimal
customer M} Aring HANDLING (CHRG_AMT decmal sibotal decmal
=] Ol SUBTOTAL_AMT decimal bkl _imnad el
eCrodiRatigoipran TOTAL_CRDER_AMT decimal sas_tae decinal
S getCradthatngiend | CrediRang SALE_TAX_AMT decmal #o_to string
Rang It SilP_T0_10 string g _bo_name string
Cuntomes i string THIP_TO_NM siring t bl to string
HiLL_TO_ID strig edtimated_sho_date date
LSTIMATED _SHIP DT date Aatus string
STATUS st dsta_souree streg
TRACKING NG T string = = erder e *
e 4 st
oeder_id string
*|%For: SCUSTOMER_ORDER_LINE_ITEM product i iy
- CUSTOMIR_DRDCH LN ITEM * product string
LINE 3D string quentky decimal
CRDER_ID string price deceal
PROD_ID string { statu sbrieg
PROD_DEC string = credtr g
QUANTITY inbeger - retng sing
PRICE il Y wuiberner i slriveg
STATUS string & vakastion ¥
2 wduston_date Sting
L& vihushion e string
Exgrossion Eiftor |
g View | ey Edin views [Sexate Wiow | Tk Views | Cpanry Pl Viows | 1

Figure 6-15 XQuery Editor View of a Web Service Being Invoked

c. Open CustomerProfile.ds in Design View. The web service is listed as a data source, in the right
pane of the diagram.

CustomerProfile, ds* - {DataServicesHCustomeranagement|,

3

‘ B

| [{2". CustomerProfile Data Service

= @ CustomerProfile -
ApparelDE{CLSTO. .
= QetAlCustomers
+——B— getalicustomers 5-@ customer +
@ customer_id xsd:skring CUSTOMER OR,
+——— getCustomerProfile

@ First_name xsdistring
@ last_name xsd:strimg
@ customer_since ? xsd:date
@ emal_address ? xsdsstring

CUSTOMER OR

E ApparelDB{CLISTO ..
E CustomerDBICUIST...

EE WebServicesigetCr. .

@ telephone_number ? xsdistring
@) ssn 7 xsdisting

© birth_day 7 xsdidabe

@ default_ship_method ? xsd:string CLSTOMER
@ email_natification ? xsdrshork
@ news_letter 7 xsd:short

@ online_skatement ? xsdrshork

@ logn_id xsdistring aetCreditRiating
E @ orders?
=@ order *

© order_id xsdistring
@ customer_id xsdistring
@ order_date xsd:date =

Design View [Reuery Editor View | Source Wiev | Test Yiew | Query Plan Yiew |

Figure 6-16 Design View of a Web Service Invoked in a Data Service
9. Test the data service by completing the following steps:

a. Build the DataServices project.

b. Open CustomerProfile.ds in Test View.

c. Select getCustomerProfile(CustomerID) from the Function drop-down list.

Data Services Platform: Samples Tutorial 76

d. Enter CUSTOMERS in the xs:string CustomerID field.
e. Click Execute.

f. Confirm that you can retrieve the credit rating for Customer 3.

CustomerProfile. ds - {DataServices}\CustomerManagement)

Select Function:

[$5) aetCustomerPrafile{Customer D) [-]

Parameters

xsistring CustomerID: | CUSTOMERS

Mumber Element (by path)
Limit elements in array results to:

[so0]

[Start Client Transaction Walidate Resuls

Result | [+ Results are valid,

Text

ML

- <ns0:CustomerProfile xmins:ns0="http: //temp.openuri arg/DakaServicesischemas/CustomerProfile. xsd" =
- <customer >
<rustomer_id> CUSTOMERS <fcustomer_id >
<first_name> Britt </first_name:>
<last_name> Pierce <flast_name>
<cuskomer_since> 2001-10-01 <jcuskamer_since >
<emal_address > JOHN_3@att.com <femai_address>
<telephane_numbsr> 9287731259 < telephane_number s
<ssn> B47-T3-1259 <fssn=
<hirth_day> 1952-05-09 <fhirth_day>
«default_ship_method> PRIODRITY-1 <fdefault_ship_method>
<emall_natification> 1 </email_natification>
<news_letters 0 <jnews_lstter:
<online_statement> 1 <fonline_statement >
<login_id> Britt <flogin_id>
+ <orders »
- <creditrating >
<rating> BO0 <rating:
<rustomer_id> CUSTOMER3 </customer_id=
<Jereditrating:=
+ <valuation >
<fruskomer >
<fns0: CustomerPrafile =

| Design View | ¥Query Editar View | Source View | Test Yiew [Query Plan View |

Figure 6-17 Customer Profile Data Integrated with Web Service Credit Rating Data

10. Import CreditRatingExitl jar file from lab folder:
a. Right-click the WebServices folder.

b. Select Import option.

c¢. Navigate to the <beahome>\weblogic81\samples\LiquidData\EvalGuide directory and select file

CreditRatingExit1.java for import.

d. Build the DataServices project.

e. Open getCreditRatingResponse.ds; click on the header and change the UpdateOverride Class
property in the Property Editor to WebServices.CreditRatingExit1. (If the Property Editor is not

open, you can select it using the View menu Property Editor option.

Data Services Platform: Samples Tutorial

77

T e —

e iR

11. (Optional) Open the Output window to view the data sources used to generate the Test View
results. You should see the following statement, which indicates that data was pulled from the
invoked web service:

DataSource name: ld:DataServices/WebServices/getCreditRatingResponse
Invocations: 1 Time: 2344ms

Statement: getCreditRating

Lesson Summary

In this lesson, you learned how to:

Import a web service project, locate its WSDL, and use that WSDL to generate a data source.
Test the web service by passing a SOAP request body as a query parameter.

Use a logical data service to invoke a web service and retrieve data.

Data Services Platform: Samples Tutorial

78

Lesson

Objectives

Overview

7 Consuming Data Services Using Java

After a Data Services Platform (DSP) application is deployed to a WebLogic Server, clients can use it
to access real-time data. DSP supports a services-oriented approach to data access, using several
technologies:

Mediator API. The Java-based Mediator API instantiates DSP information as data objects, which
are defined by the Service Data Objects (SDO) specification. SDO is a proposed standard that
defines a language and architecture intended to simplify and unify the way applications handle
data.

Data Services Workshop Control. The Data Services Workshop control is a wizard-generated
Java file that exposes a user-specified data service function to WebLogic Workshop client
applications (such as page flows, portals, or web services). You can add functions to the control
from data services deployed on any WebLogic server that is accessible to the client application,
whether it is on the same WebLogic Server as the client application or on a remote WebLogic
Server.

WSDL. WSDL-based web services can act as wrappers for data services.

SQL. The Data Services Platform JDBC driver gives SQL clients (such as reporting and database
tools) and JDBC applications a traditional, database-oriented view of the data layer. To users of the
JDBC driver, the set of data served by DSP appears as a single virtual database, with each service
appearing as a table.

In this lesson, you will enable DSP to consume data through the SDO Mediator API.

After completing this lesson, you will be able to:

Use SDO in a Java application.
Invoke a data service function using the untyped SDO Mediator API interface.

Access data services from Java, using the typed SDO Mediator API.

SDO is a joint specification of BEA and IBM that defines a Java-based programming architecture and
API for data access. A central goal of SDO is to provide client applications with a unified interface for
accessing and updating data, regardless of its physical source or format.

SDO has similarities with other data access technologies, such as JDBC, Java Data Objects (JDO), and
XMLBeans. However, what distinguishes SDO from other technologies is that SDO gives applications
both static programming and a dynamic API for accessing data, along with a disconnected model for
accessing externally persisted data. Disconnected data access means that when DSP gets data from a
source, such as a database, it opens a connection to the source only long enough to retrieve the data.
The connection is closed while the client operates on the data locally. When the client submits changes
to apply to the source, the connection is reopened.

DSP implements the SDO specification as its client programming model. In concrete terms, this means
that when a client application invokes a read function on a data service residing on a server, any data is
returned as a data object. A data object is a fundamental component of the SDO programming model.
It represents a unit of structured information, with static and dynamic interfaces for getting and setting
its properties.

Data Services Platform: Samples Tutorial 79

Lab 7.1

In addition to static calls, SDO, like RowSets in JDBC, has a dynamic Mediator API for accessing data
through untyped calls (for example, getString("CUSTOMER_NAME'")). An untyped Mediator API is
useful if you do not know the data service to run at development time.

The Mediator API gives client applications full access to data services deployed on a WebLogic server.
The application can invoke read functions, get the results as Service Data Objects, and pass changes
back to the source. To use the Mediator API, a client program must first establish an initial context
with the server that hosts the data services. The client can then invoke data service queries and operate
on the results as Service Data Objects.

Running a Java Program Using the Untyped Mediator API

An untyped Mediator API is useful if, at development time, you do not know the data service to run.

Objectives

In this lab, you will:

Add the ld-client.jar file to your application library.
Add a Java project to your application.
Add the method calls necessary to use the Mediator API.

Review the results in the Output window and a standalone Java application.

Instructions

1. Add the Data Services client library (Id-client.jar) to your Libraries folder by completing the
following steps:

a. Right-click the Libraries folder.
b. Choose Add Library.

c. Navigate to <BEA HOME>\weblogic81\liquiddata\lib, where BEA_ HOME is the directory
where you installed DSP.

d. Select ld-client.jar and click Open. The file is added to the Libraries folder.

Lok

(2] binwml-danube jar 2] didbewaclient_no_diert_libs. jar
[z] Id-client.jar [2] wisda.jar

(2] d-server-app.jar 2] =pp3_1_1_2.jar

(2] W-server-core.jar

=] Mdidbe.jar

Mame: | d-cliertt. jar| |

Type: |Java archives | hd |

Figure 7-1 Add Library
2. Add aJava project to your application by completing the following steps:
a. Right-click the Evaluation application folder.

b. Choose Import Project.

Data Services Platform: Samples Tutorial 80

c. Select Java Project.

d. Click Browse and navigate to the <beahome>\weblogic81\samples\LiquidData\EvalGuide

directory.
e. Select DataServiceClient, click Open, and then click Import.

('] WebLogic Workshop &
LookIn: | Evaliuide ;-iim'iﬁ'ld':g:g:lg:'
.ll AkerTable) Java
[) ldap

] MyPortal
] Creditw's] MyQueries

E;| CustomerManagementWebApp) OrderManagement
| CustormerPageFlowstreamn] Samplews

] storedprocs

] Streaming

|0 excel] XMLFiles

|0 FlatFiles

MName: :.c:'Lhea'hwehloch!\samples\,L|quidDeta\EvalGuide\DataSerwcecliem

Type: [all Fies

Open Cancel

Figure 7-2 Importing Java Project

The Java project is added to the application, in the DataServiceClient folder. To use the Mediator API,

you need to add the method calls to instantiate the data service, invoke the getCustomerProfile()
method and assign the return value of the function to the CustomerProfileDocument SDO/XML bean.

3. Open the DataServiceClient.java file, located in the DataServiceClient folder.
4. Insert the method calls necessary to use the Mediator API, by completing the following steps:

a. Locate the main method. You will see a declaration of the data service, a String params [],

plus the CustomerProfileDocument variable.

DataserviceClisnt. java® - {DataserviceClient}|

D]

import com.bea. ld. dsmediator.client.DataService;
import. com.bea. 1d. dsnediator.client. DataferviceFactory:

import javax.nawing. Context;

import javax.nawing. InitialContest;

import javax.nawing. NaningException:

import. org.openuri.temp.datafervices.schenas.custonerProfile. CustomerProfileDocument;

import org.cpenuri.tewp.datafervices.schewas.customerProfile.CustomerProfileDocument, CustonerProfile, Custoner;

import ory.openuri.tenp.dataServices.schemas.customerProfile.CustomerProfileDoCument. CustomerProfile. Custoner. Drders:
inport. org.openuri.temp.datafervices.schenas.custonerProfile. CustomerProfileDocument, CustomerProfile. Custoner. Orders.Order;
import org.openuri.tewp.dataServices.schewas.custonerProfile.CustomerProfileDocvuent, CustonerProfile, Custoner. Orders. Order. Order]

import weblogic. jndi.Enviromment:

public class DataferviceClient

public static InitialContext getInitialContext(] throws NamingException {
Environment env = mew Enviromment();
env.setProviderlrl('t3: f/localhost: 7001") ;
env. setInitialContextFactory (" Jndi.WLIniti v [
enw. setsecurityPrincipal ("weblogic') :
env. setdecurityCredentials (' weblogic') ;
retwrn new InitialContext|env.getInitialContext().getEnviromment());

}

public static void main (String args[1} {
System.out.println('————o __ pata Service Client — 0o o)
String customer_id = "CUSTOMER3"
if {args.length > 0)
customer_id = args[0];
try {

String paraws[] = {customer_id}.;

DataService ds = null;

CustomerProfileDocument doc = null;

System. out.println("Connected to Liquid Data 8.2 : CustomerProfile Data Service ..."):

System. out.println(Customer i
Customer customer = doc.getCustomerProfile().getCustomerArray(0);
#¥Stem. out.printin('Customer Hame : ' + customer.getlastName() + ', " + customer.getFiratHame()); =

K

Figure 7-3 Java Source Code

b. Confirm that the String params [], which is an object array consisting of arguments to be

passed to the function, is set as follows:

String params[] = {customer_id};

Data Services Platform: Samples Tutorial

81

c. Construct a new data service instance, by modifying the DataService ds = null line. The
Mediator API provides a class called DataServiceFactory, which can be used to construct the
new data service instance. Using the newDataService method, you can pass in the initial JNDI
context, the application name, and the data service name as parameters. For example:

DataService ds = DataServiceFactory.newDataService(
getinitialContext(), // Initial Context
"Evaluation", // Application Name
"Id:DataServices/CustomerManagement/CustomerProfile"™ // Data Service Name
):

Note: You must have removed
the CustomerProfile data service.

2232

in the return type in the getCustomerProfile() function inside

d. Invoke the data service, by modifying the CustomerProfileDocument doc = null line. For
example:

CustomerProfileDocument doc = (CustomerProfileDocument)
ds. invoke(*'getCustomerProfile",params);

e. Review the inserted code and verify that it is similar to that displayed in Figure 7-4.

DataserviceClient, java - {DataserviceClient}H, b3
THPOrt web [0g1e, JAdT . EMVT FOfments =

public class Dataserviceclient

public static InitialContext getInitialContext() throws NamingException {
EMvironment emv = new Emvironment();
emv. setProviderur1 (" t3: /flocalhost=7001");
env. setInitialContextFactory("weblogic. jndi.vwiInitialContextFactory™);
emv,setsecurityPrincipal ("weblogic™);
ey, setSecurityCredentials ("weblogic™];
return new InitialContext(env.getInitialContext().getEmiranment(]);

3

public static void main [String args[]) {
System.out. println("'=———————— Data Service Client —————————-—o="];
String customer_id = "CUSTOMER3I™;
if (args.length = 0)
customer_id = args[0];
try {

string params[] = {customer_id};

System.out.printin("Connected to Liquid Data 8.2 : CustomerProfile Data Serwice .

=
K] 3

Figure 7-4 Untyped Mediator APl Code Added

5. Review the code included in the /Show Customer Data and //Show Order Data sections. This code
will be used to retrieve customer information, all orders of that customer (order ID, order date, and
total amount) and the line items of each order (product ID, price and quantity). The code should be
similar to that displayed in Figure 7-5.

Data Services Platform: Samples Tutorial 82

DataServiceClient. java - {DataServiceClient}, b3
string params[] = {customer_id}; E
Dataservice ds = DataserviceFactory.newbataserwvicel
getInitialContext(],
"Evaluation",
"1d: pataservi ces,/Cus tomerManagement,/Cus tomerpProtile”
2
CustomerProtilepocument doc = [CustomerpProTileDocument)
ds.inwvoke("getCustomerProfile”, params); —
System.out.printin("Connected to Liquid Data 8.2 : CustomerProfile Data Service .|
1
} catch (Exception el {
e.printstackTrace(]);
1
¥ A
£l 0

Figure 7-5 Customer and Order Code

6. Click the Start icon (or press Ctrl + F5) to compile your program (if a Confirmation message
displays, then click OK). It may take a few moments to compile the program.

Note: WebLogic Server must be running. Confirm that the program return the specified results by

viewing the results in the Output window (if the Output window is not open, choose View —

Windows — Output).

s

Build *{ Output ™.
Trying to create process and attach to 1825...
Ciwbeavjrockiti&lspd_142_05%hiny javaw. exe -Xdebug -xnoagent -Djawa.compiler=NONE -Xrunjdwp: transpor|
Frocess started
Attached successfully.
=———————————— Data Service Client —m———r
Connected to Liguid Data 2.2 : CustomerProfile Data Service ...
Customer
Customer Name : Pierce, Britt
orders
order # ORDER_3_0O bDate z001-10-01 Total F656.65
Product # APPA_SH_4 Frice $z435.55 qQuantity: 1
Product # APPA_SH_S Price $zs9.98 Quantity: 1
Product # APPA_BA_1 Price $93.35 Quantity: 1
order # ORDER_3_1 bDate z001-11-1¢& Total $732.65
Product # APPA_SH_S Price $z59.985 Quantity: 1
Product # APPA_BA_L Price $93.9% Quantity: 1
Product # APPA_BA_L Price $225.95 Quantity: 1
order # ORDER_3_10 bDare 2002-01-0%9 Total $105.65
Product # APPA_GL_3 Price $3c5.95 Quantity: 1
Product # APPA_MM_3 Price $43,39% auantity: 1
Product # APPA_MM_4 Price $1z.9% auantity: 1
order # ORDER_3_11 Dare 2003-02-24 Total $119.65
Product # APPA_MN_3 Price $42.95 auantity: 1
Product # APPA_MM_4 Price $1z.95 Quantity: 1
Product # APPA_MN_S Price $49,95 Quantity: 1
drder # ORDER_3_12 Date 2003-04-12 Total $109.65
Product # APPA_MN_4 Price $1z.95 Quantity: 1
K1/ D]

-

Figure 7-6 Results: Output Window

7. (Optional) View the results in a standalone Java environment of your choice.

Note: If you want to use the Mediator API outside of WebLogic Workshop, you need to add the

following files to your classpath:

WebLogic Libraries:
%\bea\weblogic81\server\lib\weblogic.jar

XML Bean:

Data Services Platform: Samples Tutorial

83

%\bea\weblogic8l\server\lib\xbean.jar

CustomerProfile classes:

%\bea\user_projects\applications\Evaluation\APP-
INF\lib\DataServices.jar

DSP Server Libraries:
%\bea\weblogic81\liquiddata\lib\ld-server-core.jar

DSP Client Libraries (including Mediator API):
%\bea\weblogic81\liquiddata\lib\ld-client._jar

Service Data Object:
%\bea\weblogic81\liquiddata\lib\wlsdo.jar

Microsoft Windows XP [Version 5.1.26881
{C> Copyright 1985-2881 Microsoft Corp.

C:“Documents and Settings‘mblancha>D:
D:>cd beasuser_projectshapplicationssdanubesEvaluationsDataServiceClient

D:vbeasuser_projectshapplicationssdanubes\Evaluation~DatafServiceClient>javac —d .
DatafServiceClient. java

Mote: DataServiceClient.java uses or overrides a deprecated API.

Mote: Recompile with —deprecation for details.

D:“beasuser_projectshapplicationssdanubesEvaluation~DatafServiceClient>java DataS
erviceClient
= = Data Service Client
Connected to Liguid Data 8.2 - CustomerProfile Data Service ...
== = Customers ===
Connected to Liguid Dataosc.lZ = CustomerProfile Data Service ...
= Orders = =
Order # ORDER_3 8 —@1 Total 5656.65
8 Price $299.95

Quantity: 1
1

Price Quantity:
Product # APPA_SH_4 Price - Quantity: 1
Product # APPA_BA_: Price 59.95 Quantity: 15
Order # ORDER_3_1 Date 2881-11-16 Total $732.65

Product # APPA_SH_S Price 5299.95 Quantity: 1
Product # APPA_BA_1 $99.95 Quantity:z 1
Product # APPA_BA_1 $325.95 Quantity: 1
Order # ORDER_3_18 Date Total $185.65
Product # APPA_GL_3 $35.95 Quantit
Product # APPA_MN_3 549 .95 Quantit
Product # APPA_MN_4 i $12.95 Quantit
Order # ORDER_3_11 Date 4 Total $119.65
Product # APPA_MN_3 Pri 9.95
Product # APPA_MN_4
Product # APPA_MN_S
Order # ORDER_3_12 Date 2883-B4-12
Product # APPA_MN_4 Price
Product # APPA_MN_S Price
Product # APPA_MN_6 Price
Order # ORDER_3_13 Date 2883-B5-28
Product # APPA_MN_S Price % 25 Quantity:
Product # APPA_MN_6 Price Quantity
Product # APPA_MN_7? Price 25 Quantity:
Order # ORDER_3_14 Date 2883-87-14 Total $221.65
Product # APPA_MN_6 Pri 25 Quantit
Product # APPA_MN_? Quantity:z 1
Product # APPA_MN_8 95 Quantity: 1
Order # ORDER_3_2 Date 2882-81 Total $1283.65
Product # APPA_BA_1 $99.95 Quantit
Product # APPA_BA_1 $325.95 Quantity
Product # APPA_BA_3 Price S850.95 Quantit

R e e

Figure 7-7 Results: Standalone Java Environment

Data Services Platform: Samples Tutorial

84

Lab 7.2 Running a Java Program Using the Typed Mediator API

With the typed mediator interface, you instantiate a typed data service proxy in the client, instead of

using the generic data service interface. The typed data service interface may be easier to program and
it improves code readability.

In this lab, you will access data services from a Java client, using the typed SDO Mediator API. You

will be provided with a generated API for your data service, which lets you directly invoke the actual
functions as methods (for example, ds.getCustomerProfile(customer _id).

Objectives

In this lab, you will:

Build your application as an EAR file.

Build the SDO mediator client.

Add the SDO mediator client’s generated JAR file to your libraries folder.

Construct a DataServices instance and invoke the data service.

View the results in the Output window.

View the results in a standalone Java application.

Instructions

1. Build your application as an EAR file by completing the following steps:

a. Choose Tools — Application Properties and click Build.
b. In the Project build order section, place DataServices as the first project.
c. Clear the Project: DataServiceClient checkbox, since this is not required for the EAR file.
d. Click OK.
4 Application Properties X
j :"'j:mg‘(server Project build order
- e Dataerces
Hees i

Project: EvaluationDataServices

Selected projects are buik during an application buid,
deployed o the server, and included in a bulk EAR file.

EAR

File name; | Evaluation.ear |

Directory: | Dr\beaiuser_projectstapplicationsidanube\Evaluation, | \ Browse. . \

Export

Export ko Ant file

Figure 7-8 Project Build Order

2. Build the SDO Mediator Client, by completing the following steps:

Data Services Platform: Samples Tutorial

85

a. Right-click the Evaluation application and select Build Application from the pop-up menu.

b. Right-click the Evaluation application again and select Build SDO Mediator Client. A message
displays notifying you that an EAR file will be created.

c. Click Yes when asked whether you want to build an EAR file.

d. Confirm that you see the following text in the Build window (if not open, choose View —
Windows — Build):

Generating SDO client api jar
Browsing Data Service jars

SDO client api jar generated successfully as
<beahome>/user_projects/applications/Evaluation\Evaluation-ld-client.jar

Note: The drive information may be different for your application.

3. Add the generated SDO mediator client file into your Libraries folder by completing the following
steps:

a. Right-click the Libraries folder.
b. Choose Add Library.

c. Navigate to the <beahome>\user projects\applications\Evaluation directory and click the
Evaluation-ld-client.jar file to select it.

d. Click Open to add the jar to the Libraries.

4. Construct a new data service instance and invoke the data service, by completing the following
steps:

a. Open the DataServiceClient.java file.

b. Replace the declaration of the DataService and CustomerProfileDocument objects with the
following (modified code is displayed in boldface type):

CustomerProfile ds = CustomerProfile_getlnstance(

getlnitialContext(), // Initial Context
"Evaluation™ // Application Name
):

CustomerProfileDocument doc = ds.getCustomerProfile(customer_id);

c. Note: Edit getlnitialContext () to suit your environment. Click Alt + Enter and select
dataservices.customermanagement.CustomerProfile. This imports the specified element.

DataServiceClient java®* - {DataServiceClient}, Y

String params[] = {customer_id}; B

CustomerProfile ds = CustomerProfile. getInstance |

getInitialContext(),

"Evaluation" |:|
):

CustomerProfilebocument doc = ds.getfustomerProfile(customer_id);

S¥stel.out.println("Connected to Liguid Data 8.2 : CustomerProfile Data Service ..."):

Sy¥stem. out.println(" Customers —————) ;
Customer customer = doc.getCustomerProfile().getCustonerdrray(0);
System. out.println("Connected to Liguid Data $.2 : CustomerProfile Data Service ...");

Kl |]

Figure 7-9 Source View of Code for Typed Mediator API

Data Services Platform: Samples Tutorial 86

5. View the results in the Output window, by completing the following steps:
a. Click the Start icon (or press Ctrl + F5) to compile your program.

b. Confirm that the program return the specified results by viewing the results in the Output
window (if not open, choose View — Windows — Output).

Build | Cutput bl
Trying to create process and attach to 1317... &
Divbeatjdikl4Z 05vbin' javaw.exe -Xdebug -Xnoagent -Djava.conpiler=NONE -Xrunjdwp:transport=do_
Process started
Attached successfully.

= Data Service Client
Connected to Liguid Data 8.2 : CustomerProfile Data Serwvice ...
=============s========= [UFLOLerS =s===================
Connected to Ligquid Data &§.2 : CustomerProfile Data Service ...
==== 0Orders ======z=======z====z====
Order # ORDER_3_0 Date 2001-10-01 Total §656.65
Product # APPA ZH % Price £2599.95 Quantity: 1
Froduct # APPA Ei 1 Frice $99.95 Quantity: 1
Product # APPA SH_4 Price £249.95 Quantity: 1
Product # APPA EA 1 Price £9.595 Quantity: 15
Order # ORDER_3_1 Date 2001-11-16 Total §732.65
Product # APPA_SH_5 Price £299.95 Quantity: 1
Product # APPA EA 1 Price §99.595 Quantity: 1
Product # APPA Bi 1 Price §325.95 Quantity: 1
Order # ORDER_3_10 Date 2003-01-09 Total §105.65
Product # APPA GL_3 Price §35.595 Quantity: 1
Product # APPA MN 3 Price £49.95 Quantity: 1
ED Prorant # APPA MN 4 Prine £12.95 Miantitaw: 1 mlz‘

Figure 7-10 Results—Output Window

6. (Optional) Run your program in a standalone Java application to list customer orders. Note that you
must add the generated file (the typed data-service proxy, Evaluation-ld-client.jar) to the classpath,
along with the other libraries listed for Lab 7.1, (optional) step 7.

Command Prompt

Microsoft Windows XP [Uersion 5.1.26801
(C>» Copyright 1785-2881 Microsoft Corp.

IC=“Documents and Settingszsmblancha>D:
D:~>cd beasuser_projectssapplicationssdanubesEvaluationsDataServiceClient

D:=“hea*user_projectssapplications~danube~Evaluation~DataServiceClient>javac —d .
DatalServiceClient. java

Mote: DataServiceClient.java uses or overrides a deprecated API.

Mote: Recompile with —deprecation for details.

D:=“hea“user_projectssapplications~danube~Evaluation~DataServiceClient>java Datas
erviceClient
== Data Serwvice Client
Connected to Liguid Data 8.2 : CustomerProfile Data Service
==== Customers ====
Connected to Liguid Data 8.2 = CustomerProfile Data Service
=== Qrders
Order # ORDER_3_@ Date Z2001-16-81 Total 5656.65
Froduct # APPA_EH_ & Price 5$299.95% Quantity: 1
Product # APPA_BA_1 Price
Product # APPA_SH_4 Price y:
Product # APPA_BA_1 Price Quantity: 15
Order # ORDER_3_1 Date 2801-11-16
Froduct # APPA_EH_ & Price 79.95 Quantity: 1
Product # APPA_BA_1 Price Guantity: 1
Product # APPA_BA_1 Price 25 Quantity: 1
Order # ORDER_3_18 Date 2003-81-89 Total $185.65
Product # APPA_GL_3 Price %35.95 Quantity:
Product # APPA_MH_3 Price Quantity:
Product # APPA_MN_4 Price Quantity:
Order # ORDER_3_11 Date 2003-B2-24 Total $119.65
Froduct # APPA_MH_3 Price 549.9% Quantity:
Product # APPA_MH_4 Price 512.9% Quantity:
Product # APPA_MN_S Price 547.95 Quantity:
Order # ORDER_3_12 Date 2003-84-12 Total $189.65
Product # APPA_MH_4 Price Quantity:
Product # APPA_MN_5 Price Quantity:

1

N L

Figure 7-11 Results—Standalone Java Application

Data Services Platform: Samples Tutorial 87

Lab 7.3 Resetting the Mediator API

After Lab 7.2, you must remove the Evaluation_ld-client.jar file from your Libraries folder, since this
JAR file will create inconsistencies in future lessons. You must also revert the method calls to use the
Untyped Mediator API.

Objectives

In this lab, you will:

Remove the Evaluation_ld-client.jar file from the Libraries folder.

Revert the method calls to use the untyped Mediator API.

Instructions
1. Delete the Evaluation-ld-client.jar file by completing the following steps:
a. Expand the Libraries folder.
b. Right-click the Evaluation-1d-client.jar file.
c. Choose Delete from the pop-up menu.
d. Click Yes, when the confirmation message displays.
2. Revert the method calls to use the untyped mediator API, by completing the following steps:
a. Open the DataServiceClient.java file.

b. Replace the declaration of the DataService and CustomerProfileDocument objects with the
following (code as modified is displayed in boldface):

DataService ds = DataServiceFactory.newDataService(

getinitialContext(), // Initial Context
"Evaluation", // Application Name
"Id:DataServices/CustomerManagement/CustomerProfile" // Data Service Name
);

CustomerProfileDocument doc = (CustomerProfileDocument)

ds.invoke("'getCustomerProfile",params);

System.out.printin(*Connected to Liquid Data 8.2 : CustomerProfile Data Service

Note: If your application name is different from Evaluation, locate “Evaluation” in the
newDataService() call and rename it to reflect the name of your application.

c. Remove the import CustomerProfile statement.

d. Save your work.

Lesson Summary

In this lesson, you learned how to:

Set the classpath environment to use the SDO Mediator API.
Use the untyped and typed SDO Mediator API to access data services from Java.

Generate the specific client-side Mediator API for your data service.

Data Services Platform: Samples Tutorial 88

Lesson 8 Consuming Data Services Using WebLogic Workshop

Objectives

Overview

Lab 8.1

Data Service Controls

A Data Service control provides WebLogic Workshop applications with easy access to data service
functions.

After completing this lesson, you will be able to:

Create a Java page flow (.jpf) web application file, using WebLogic Workshop.

Use the WebLogic Workshop NetUI data binding context to display customer profile information
on the web.

Use the Data Service control to access data services from a Java page flow.

A convenient way to quickly access DSP from a WebLogic Workshop application, such as page flows,
process definitions, portals, or web services, is through the Data Service control.

The Data Service control is a wizard-generated Java file that exposes to WebLogic Workshop client
applications only those data service function you choose. You can add functions to a control from data
services deployed on any WebLogic Server that is accessible to the client application, whether it is on
the same WebLogic Server as the client application or on a remote WebLogic Server.

If accessing data services on a remote server, information regarding the information that the service
functions return (in the form of XML schema files) are first downloaded from the remote server into
the current application. The schema files are placed in a schema project named after the remote
application. The directory structure within the project mirrors the directory structure of the remote
server.

When you create a Data Service control, WebLogic Workshop generates interface files for the target
schemas associated with the queries and then a Java Control Extension (.jcx) file. The .jex file contains
the methods included from the data services when the control was created and a commented method
that, when uncommented, allows you to pass any XQuery statement to the server in the form of an ad-
hoc query.

Installing a Data Service Control

Data Service controls let you easily access data from page flows, process definitions, portals, or web
services.

Objectives
In this lab, you will:
Import a Web project that will be used to demonstrate Data Service control capabilities.

Install a Data Service control.

Instructions

1. Right-click the Evaluation application folder.

Data Services Platform: Samples Tutorial 89

®© N kWD

Choose Import Project.

Choose Web Project.

Navigate to the <beahome>\weblogic81\samples\LiquidData\EvalGuide directory.
Select the CustomerManagementWebApp project and click Open.

Click Import, and then click Yes when asked whether you want to install project files.
Right-click the Evaluation application folder.

Choose Install — Controls — Data Service.

Note: The Data Service option will not display, if you previously installed a Data Service control.

9. Expand the Libraries folder and confirm that the LiquidDataControl.jar file is installed.
|| Application X
(Y Ewaluation

[&] CreditRating'w's

EI CustomerManagement webapp
DakaserviceClisnk

L] DataServices

[C1) EvaluationDatagervices

[C 1 Modules

=1-{_9 Libraries

[z] DataServiceClient. jar

[z] Datazervices jar

[ﬂ EvaluationDataServices, jar
@ |d-server-app.jar

[z LiguidDataContral. jar

(3] Security Roles

Figure 8-1 Data Service Control

Lab 8.2 Defining the Data Service Control

1.
2.

Create a new folder in the CustomerManagementWebApp web project, and name it controls.
Define a new Java control as a Data Service control by completing the following steps:

a. Right-click the controls folder.

b. Choose New — Java Control.

c. Select Data Service.

d. Enter CustomerData in the File Name field.

e. Click Next.

Data Services Platform: Samples Tutorial

90

-

New Java Control

Select a control bo extend or select Cuskom to create a new custom control:

Wb Service [+]

EIE Contral

G Ms [
o Data Service

Tuxedo
B4 ApplicationYiew
Gl Dynamic Transformation

=] Email =]

File namne: CustomerData |
{CustomerManagementwebapp, .

| Mexk | | || Cancel |

Figure 8-2 Creating a New Java Control
f. Click Create.

Note: Do not change any default settings.

—

New Java Control - Data Service

STEP 1

SIERS Data Services Application (w) Current () Other

[|

|Previ0us || | | Create || Cancel |

Figure 8-3 Creating a New Data Service Control

g. Inthe Select Data Service functions... window: Expand the CustomerManagement and
CustomerProfile folders.

h. Select getCustomerProfile().
i. Press Ctrl.
j- Select submitCustomerProfile().

k. Click Add and then click Finish.

Data Services Platform: Samples Tutorial

& Select Data Service functions...

Select one or more functions to add to the contral,

|- DataServices submitCustomerProfile
(] ApparelDE getCustomerProfile
(Z) CustomerDE
-] CustomerManagement
B C CustomerProfile.ds
-B getallCustomersi)
-B getCustomerProfiled)
J submitArrayOFCustomerProfilel)

J submitCustomerProfiled)

(Z) ElectranicsDE

(C) ServiceDB Remove Al

[C) WebServices

Figure 8-4 Selecting Functions for the Data Service Control

It will take a few moments for the project to compile. After compilation, you should see a Java-based
Data Service Control called CustomerData. jcx, with the following signatures:

getCustomerProfile() is a data service read function.

getCustomerProfileWithFilter() is a data service read function that uses the XQuery filter for
dynamic filtering and sorting.

submitCustomerProfile() is a submit function for all the changes (inserts, updates, and deletes)
done to the customer profile and persisting the data to the data sources involved.

CustomerData.jox - §CustomerManagementwebAppticontrols) X

(4]

r_ -2 ., CustomerData
et

¥ getCustomerProfile

¥ getCustometProfile\WithFilker

¥ subrikCustomerProfile

|| Design Yiew [Source View |

Figure 8-5 Data Service Control

Lab 8.3 Inserting a Data Service Control into a Page Flow

At this point, you have created a Data Service Control and specified which data service functions
(getCustomerProfile() and submitCustomerProfile()) you want to want to use in this control. However,
the control is not yet associated with a page flow, from which end-users can retrieve data.

Objectives

In this lab, you will:

Use Flow View to add the CustomerData control to the CustomerPageFlowController.jpf file.

Use Source View to confirm the addition.

Data Services Platform: Samples Tutorial 92

Instructions

1. Open CustomerPageFlowController.jpf in Flow View. (The file is located in the
CustomerManagementWebApp\CustomerPageFlow folder.)

Note: There are two “errors” in the file, indicated by the two red marks in the scrollbar. This is because
the getCustomer() and submitCustomer() functions are not yet associated with a Data Services Control.

CustomerPageFlowContraller, jpf - {CustomerManagement'webApptCustomerPageFlow), Y
_ [«]
> B wrcers ()]
Indau gz how_cuslamarFarm
D " g e
< > |] = —
Y . cuamerhalFaund zp iramar
bagln D B surcesst Gy D
P — T —
cumamerDaallzp el cumlamerBadlaezn
| =
D s |'\?j bad dae
cusamarFarm y3p Zubm 2 rstamarFarm
cuslamarSubm KSucoazs 3 e -
—m:;é' 'l?."
D _zbmIC e
BOCREE gy
cuslamarSubmbErargs | =y '\"’,'
— la=/ sa0ndarFlhar
zhaw_ardarLInclarm
b S— |'\":",‘|
arderLineFarm ;3p updale_arderLIneFarm
success
— ?)
sumkOrderLIngFarm
success
— | ?)
delietinderLine
Couccass ey
1 1]
- -]
1] [F7o% 1~
|| Flow View [Ackion Yiew | Source Yiew |

Figure 8-6 Page Flow View

2. In Data Palette, go to Controls. (If Data Palette is not open, choose View — Windows — Data
Palette.)

3. Choose Add — Local Controls — CustomerData, and name it LDControl.

4. Click Create.

Insert Control - CustomerData

Wariable name For this control: | LDContral |

[]Maks this a control Factory that can create mulkiple instances at runtime

Figure 8-7 Insert Custom Data Service Control

5. Open the CustomerPageFlowController.jpf in Source View.

Data Services Platform: Samples Tutorial 93

Lab 8.4

6. Confirm that the page flow now includes the control as an instance variable:

private controls.CustomerData LDControl;

CustomerPageFlowController . jpf - {CustomerManagementWebApptCustomerPageFlow!

12 tomerPageFlow;

Bipf:controller
== Thiz data 15 auto-generated. Hand-editing this section 13 not recommended. -5

public class CustomerPageFlowController extends PageFlowController
i

[Fromnmon: control

private controls.CustomerData LDControl;

public CustomerProfileDocument customerDocument;

public Customer customer;

public String customeriince;

public String birthDay;

private static SimpleDateFormat df = mew SimpleDateFormat (" yyyy-Me-dd")
public Orderline orderLine;

public FilterX(uery filter = new FilterXQuery():

hoolean sortdscending = true;

public int linic = 5;

[«

—

[Flow View [Action Yiew | Source View |

Figure 8-8 Source View of a Data Service Control

Running the Web Application

In this lab you will see the Data Service Control in action.

Objectives

In this lab, you will:

Run the Web application, which now contains a Data Service Control.
Use getCustomerProfile() to retrieve data about a specific customer.
Use submitCustomerProfile()to update customer data.

Use DSP Test View to confirm that changes were persisted.

Instructions

Note: The WebLogic Server must be running.

1. Build the CustomerManagementWebApp project.

2. Open CustomerPageFlowController.jpf in Flow View.

3. Click the Start icon (or press Ctrl + F5) to run the web application. The Workshop Test Browser

opens after a few moments.

4. Enter CUSTOMERS in the customer ID field and click Submit. The profile and order information

for Britt Pierce should be returned.

Data Services Platform: Samples Tutorial

94

% Workshop Test Browser

- |
BEA WebLogic Workshop™]
Version 8.1
Customer Profile
O Name Srmith, Joe 3
| Customer Since 200110401
| Email Address JOHN 3@att.com
Telephone Number 5287731250
. ssN 647-73-1259
| BithDay 19620509
| CreditRating 600 U
Update Profile
Orders
Filters:
Order Amount | > =] |0 Apply filter MNurmber of Orders [5 | _ Set Limit
LINE OAPPA_SH 4 Sancsl at 1249 85Remove
Mordstrom
2001- ey
EREER 1 Yo | 5585 | e | appa s s He”'fm 11299 55 Remove
Farragamo,
CLCci
LINE 2APPA_BA_1 Dejavu 1] 99.95Femove
Hoba
Iewy Order ttem >
< i | >

Figure 8-9 Java Page Flow Results
Modify the customer information by completing the following steps:

a. Click Update Profile.
b. Modify Email Address to the following:

JOHN_3@yahoo.com
c. Click Submit.

) Workshop Test Browser

« = @ < || hprpiocahost:7ooia agementiehapp/CustomerPageFion fiag-
|
— BEA Weblogic Workshop™
g Version 8.1
First Name oe
Last Name: Srnith

Customer Since 2001-10-01
Email Address: JOHN_3@yahoo. com
Telephone Mumber 9287731253

SSN: [poeoggmes
Birthday: [ios2os0s
Default Shipping Method: [PRIORTY-1
Credit Rating GO0

Submit

ST,

[E3

fm; >

Figure 8-10 Updating a Customer Profile
d. Click Submit All Changes. (The link is at the bottom of the Workshop Test Browser page.)

Data Services Platform: Samples Tutorial

95

5. Add a new order line item by completing the following steps:

a. InOrder 3 0, click New Order Item. (The link is located at the bottom of all line items for
Order 3 0.)

b. Enter the new order information, as displayed in Figure 8-11, and then click Submit.

) Warkshop Test Browser

BEA Weblogic Warkshop™ |

Version 8.1

LinelD ol
ProductID [aPPA_BAT
Product |5|m—
Quantty [0
Frice pes
Status |opEN—

Back

_— s

Figure 8-11 Adding New Order Information

The new order information displays in the Workshop Test Browser.

%) Workshop Test Browser

=8 % || hittp:f flacalhost: 7001 CustamerManagementwebApp)CustomerPageriow/submitOrderLineForm.do |§'|;’a
-~
BEA Weblogic Workshop™ o—
Version 8.1

Customer Profile

Smith, Joe
2001-10-01
JOHM_3i@ratt.com
92687731259
E47-73-1260
1952-05-09

PRIORITY-1

500
Update Profile

Crders

Filters:

OrderAmount|> '”D Apply filter | NumberufOrders|5 'l 59”—“’”“'

LIKE DW&PP&_SH 4| Sandal &t 1249.95Femove
Mordstrom
Buacrey

ORDER_3.0 20| epgs LiE 1lappa_sHs| HePRun 1299 85 Femove
10-01 from
Farragamo
Cucci

LIME 2APPA_BA, 1 Dejavu 1| 99.895Remove
Habo

LIME B&PPS_ B 1 Shirt 10| 9.85Remove

Mewy Srder tem =
£ 1l 2

Data Services Platform: Samples Tutorial

Figure 8-12 Updated Data

6. Modify an existing order by completing the following steps:

a.
b.

C.

In Order 3 0, click Line 6.
Enter 15 in the Quantity field.

Click Submit to close the Order Information window.

7. Click Submit All Changes. (The link is at the bottom of the Workshop Test Browser page.)

8. Close Workshop Test Browser.

9. Test whether the changes were persisted by completing the following steps:

a.
b.

C.

In WebLogic Workshop, open CustomerProfile.ds in Test View.

Select getCustomerProfile(CustomerID) from the Function drop-down list.
Enter CUSTOMER3 in the Parameter field.

Click Execute.

Expand the <creditrating>, <order> and <order line> nodes to confirm that the changes
persisted.

Data Services Platform: Samples Tutorial

97

CustomerProfile,ds - {DataServicesH CustomerManagement), ps

Select Funckion:

|E getCustomerProfile(CustomerID) | - |

Parameters

xs:string CustomerID: | | CUSTOMER3 |

Mumber Element (by path)

Limit elerments in array results to:
[0 || [~]

[start Clierk Transaction Validate Results

Result | (94 Results are valid.

imated shin dates 2 (=]

<estimated_ship_date> 2001-10-03 <jestimated_ship_date=
<status > CLOSED <fstatus>
=data_source | =

- <order_line =
=line_id= 0 <fline_id=
<order_jd> ORDER_3_0 <forder_id>
<product_jd> APPA_SH_4 </product_id=
=product> Debra Sandal at Nodstrom =/product >
=<quantity> 1 </quantity >
<price> 249.95 </pricex
=status> CLOSED <)status=
<forder_line>
+ <order_line =
+ <order_line =
- <order_line =
=line_id= & <fline_id=
<order_id> ORDER_3_0 <forder_id>
<product_jd> APPA_BA_1 </product_id=
=product> Shirt </product=>
<quantity> 15 </quantity >
<price> 9.95 </pricex
<skatus> OPEN </statusi>
<forder_line=
<jorder >
- <order =
<order_id>= ORDER_3_1 <jorder_id=

ormer_id IZl

| Design View | ¥Query Editar View |Source View | Test View [Query Plan Yiew |

Figure 8-13 Test View—Confirm Changes

Lesson Summary

In this lesson, you learned how to:

Install the Data Service Control in your application.

Create a Data Service Control for a web project, and then add functions from your data service into
the Data Service Control.

Add the Data Service Control into a Java Page Flow.
Use the Data Service Control to access data services from a web application.

(Optional) Pass data service results to the JSP, using NetUI.

Data Services Platform: Samples Tutorial 98

Lesson 9 Accessing Data Service Functions Through Web
Services

A Data Service Control can be used to access data through a page flow, web service, or business logic.
In the previous lesson, you created a Data Service Control and used it within a web application’s page
flow. In this lesson, you will use that same Data Service Control to generate a .wsdl for a web service
that can invoke data service functions.

Objectives

After completing this lesson, you will be able to:

Use a Data Service Control to generate a web service for a data service.
Test the generated web service and invoke data service functions through the web service interface.

Generate a .wsdl file for web service clients.

Overview

A web service is a set of functions packaged into a single entity that is available to other systems on a
network. The network can be a corporate intranet or the Internet. Other systems can call these
functions to request data or perform an operation.

Web services are a useful way to provide data to an array of consumers over the Internet, like stock
quotes and weather reports. But they take on a new power in the enterprise, where they offer a flexible
solution for integrating distributed systems, whether legacy systems or new technology.

Lab 9.1 Generating a Web Service from a Data Service Control

In the previous lesson, you created a Data Service Control, which enabled WebLogic Workshop to
generate a Java Control Extension (.jcx) file. This file contains the underlying data service’s method
calls. In this lab, you will use that Data Service Control to generate a web service.

Objectives

In this lab, you will:

Generate a stateless web service interface, through which you can access the Data Service Control.

Test the web service to determine that it returns customer profile and order information.

Instructions
1. Expand the CustomerManagementWebApp and controls folders.
2. Right-click the CustomerData.jcx control.

3. Choose Generate Test JWS (Stateless). A new file, CustomerDataTest.jws, is generated. With this
Java Web Service (.jws) file, the Data Service Control methods are now available through a web
service interface.

Data Services Platform: Samples Tutorial 99

|| Application

23 Evaluation
(22 AlterTable
(30 CreditRatingws
=) 33 CustomerManagementWebApp
=23 cantrals
A CustomerData.jox
«£ CustomerDataTest.jws
() CustomerPageFiow
(] resources
(1) WEB-INF
Contrallsr jpf
[error.jsp
[E] index.jsp
(2] DataserviceClient
() Dataservices
(2 EvaluationDataservices
(£ Modules
() Libraries
{30 Security Roles

Figure 9-1 Java Web Service File

4. Open the CustomerDataTest.jws file in Source View.

5. Click the Start icon (or press Ctrl+F5). The Workshop Test Browser opens.

6. Enter CUSTOMERS3 in the string p0 field.

= Workshop Test Browser
+ =+ 8 < ”http:fﬂn(alhnst:7EIEIl,iCu5tDmErManagEmEntWEhApDf(nntrnlsf[ustDmErDataTest‘]ws7‘E><PLORE=‘TEST

CustomerDataTest.jws Web Service

hitp: Hflocalhost: 7001 /CustormerManage rentieb App /contrals/
Overview | [Console | [Test Farm | [Test ML | CustomerDataTest, jws
Test operations

Message Lo £l Refresh

Log is empt:

Created by

submitCustomerProfile
submitCustomerProfile is nat supported on the Test Form page (HTTP-GET), plaase use the
Test XML page (HTTP-FOST) to test this operation

getCustomerProfile

string p0: |CUSTOMER3
getCustomerPrafile

getCustomerProfileWithFilter
getCustomerProfileWithFilter is nat supported on the Test Form page (HTTP-GET), please
Use the Test ¥ML page (HTTP-POST) ko test this operation

| {hear
~

v

Figure 9-2 Workshop Test Browser: Web Service

7. Click getCustomerProfile. The customer profile and order information for Customer 3 is retrieved.

8. View both the "Returned from" and "Service Response" results, which should be similar to that

displayed in Figure 9-3.

Data Services Platform: Samples Tutorial

100

i Workshop Test Browser Q@J

+ = @ ",4‘ Hlocalhost: 7001 /CustomerManagementWebAppicontrols/CustomerDataTest jws? EXPLORE=, TEST&.LOGENTRY=0

—¥ getCustomerProfile Submitted at Manday, March 21, 2005 10:25:54 AM PST
Ed Clear Lo

p0 = CUSTOMER3

Operation getCustomerProfile
Submitted at Morday, March 21, 2005 10:25:54 AM PST
Method: contrals. CustomerDataTest. getCustamerPrafile
Arguments:

pi : CUSTOMERS
CallStack:

getCustomerProfile)

DOperation getCustomerProfile on Control customerData
Submitted at Monday, March 21, 2005 10:25:54 AM PST
Method: controls, Customer Data, getCustomerProfile
Arguments:

p0 : CUSTOMERS
Callstack:

customerData, getCustomerProfilel)

getCustomerProfile()

Returned from getCustomerProfile on customerData
Submitted at Monday, March 21, 2005 10:26:05 AM PST
Return value: <nsi:CustamerProfile
srmlns:ns0="http:ftemp. openuri.org/Dataservices/schemas/CustomerProfile xsd"s
<customer >

<customer_id>CUSTOMER </customer_ids
«firsk_name =Britt <first_nams>

<last_name>Pierce <ilast_name:

<customer_since >2001-10-01<fcustomer_since»
«<emai_address=JOHN_3@att.com<femail_address>>
<telephone_number >9287731259 < telephone_number >
55N >B47-73-1259 <fssn >

<hirth_day 1952-05-09<birth_day =
<defaill_ship_method =PRIORITY-1</deFault_ship_method:
<email_notification:>1 </email_notification>

<news_letter >0<news_letter:>

<online_statement =1 <fonling_statement:>

<orderss

<orderz

<order_id=ORDER_3_0<forder_id>
<customer_id>CUSTOMERS <fcustomer_id>
<order_date>2001-10-01 <forder_date>

<ship_method =PRIORITY-1</ship_method:
<handling_charge >6.8</handiing_charge >
<subtotal>649,85<fsubtotal»

<tatal_order_smount >656,65<(tokal_order_amounk:
<sale_tax=O</sale_tax>

<ship_to=ADDR_3_0</ship_to:>

<ship_to_name>Britt Pierce</ship_ta_name >
<hill_to=>CC_3_1</bil_to=

<estimated_ship_date >2001-10-03</sstimated_ship_date:
<status »CLOSED < status>

<data_source/=

<order_line>

line_d>LINE_D</line_id>
<order_jd=ORDER_3_0<forder_id>
<product_id=APPA_SH_d</product_id=

<product=Debra Sandal at Modstrom</product >
<quantity =1 < quantity>

<price>249,95</price’>

<stabus >CLOSED < fstatus>

<forder_line>

<order_line>

<line_id=LINE_1 </line_id=>
<order_jd>ORDER_3_0<jorder_id>
<product_id=APPA_SH_S</product_id>

<product>Audrey Hepbun From Farragama </product > hd

Figure 9-3 Web Service Test Results

9. Close the Workshop Test Browser.

Lab 9.2 Using a Data Service Control to Generate a WSDL for a Web Service

You can use the Java Web Service file to generate a WSDL. A WSDL file contains all of the
information necessary for a client to invoke the methods of a web service:

The data types used as method parameters or return values.
The individual methods names and signatures (WSDL refers to methods as operations).
The protocols and message formats allowed for each method.

The URLs used to access the web service.
Objectives
In this lab, you will:
Generate a .wsdl file, based on the Data Service Control.

(Optional) View the .wsdl file’s structure and source code.

Instructions

1. Right-click the CustomerDataTest.jws control.

Data Services Platform: Samples Tutorial

101

2. Choose Generate WSDL File. The CustomerDataTestContract.wsdl is generated, which can be
used by other web service clients.

|| Application

23 Evaluation
2] AlterTable
(3] CreditRatingw's
= @ CustomerManagement'webapp
-2 contrals
J4A customerData.jex
0-@ CustomerDataTest. jws
[5] CustomerDataTestCantract vsdl
D CustomerDataTestContract.wsdl.bak
{21 CustamerPageFlaw
L resources
(30 WEB-INF
Controller. jpf
E Brror.jsp
[E] index.jsp
2] DataserviceClient
{01 DataServices
{2 EvaluationDataServices
£ Madules
L Libraries
{3 Fecurity Roles

s

Figure 9-4 New WSDL File

3. (Optional) Open the CustomerDataTestContract.wsdl file and explore the document structure and
source code.

Data Services Platform: Samples Tutorial 102

|| Document Structure ®

[=1-definitions
= types

[l schema
import
element @ submitCustomerProfile
element : submitCustomerProfileResponse
element : getCustomerProfile
element : getCustomerProfileResponse
element : getCustaomerProfile'withFilker
element 1 getCustomerProfilewithFilterRes)
complexType : FilkersQuery
complexType ¢ ArrayOfFilkerContainer
complexType : FilterContainer
complexType : Filker
complexType : FieldLevelFilker
complexType : CompoundFilker
complexType ¢ ArrayOfOrderByContainer
complexType : OrderByContainer
complexType : OrderByw
complexType ¢ ArrayOFOrderByField
complexType @ OrderByField
complexType : ArrayOfLimitData
complexType : LimitData

schema

= message ! submitCustomerProfileSoapIn

part : parameters
= message : submitCustomerProfileSoapOut

part : parameters

HHEHHBEHBEEEBEBHEEHBEHE®

= message @ getCustomerProfileSoapln
park : parameters
= message @ getCustomerProfileSoapOut
part : parameters
message : getCustomerProfileWwithFilter SoapIn

i

partk : parameters
message ¢ getCustomerProfilewithFilter SoapOut
message : getCustomerProfileHttpGetin
message : getCustomerProfileHtpGetOut
message : getCustomerProfileHtpPostIn
message : getCustomerProfileHttpPostOut
portType @ CustomerDataTestSoap
portType @ CustomerDataTestHEkpiet
portType | CuskomerDataTestHEkpPost
binding : CustomerDataTestSoap
binding : CustomerDataTestHttpGet
binding : CustomerDataTestHttpPost
service | CustomerDataTest

HEHEHEEEEEHNEF

K | [

Figure 9-5 Document Structure

Lesson Summary

In this lesson, you learned how to:

Use a Data Service Control to generate a web service for a data service.
Test the generated web service and invoke data service functions through the web service interface.

Generate a .wsdl file for web service clients.

Data Services Platform: Samples Tutorial 103

Lesson 10 Updating Data Services Using Java

One of the features introduced with Data Services Platform (DSP) is the ability to write data back to
the underlying data sources. This write service is built on top of the Service Data Object (SDO)
specification, and provides the ability to update, insert, and delete results returned by a data service. It
also provides the ability to submit all changes to the SDO (inserts, deletes, and updates) to the
underlying data sources for persisting.

Objectives

After completing this lesson, you will be able to:

Update, add to, and delete data from data service objects.

Submit changes to the underlying data sources, using the Mediator API.

Overview

When you update, add, or delete from data service objects, all changes are logged in the SDO’s change
summary. When the change is submitted, items indicated in the Change Summary log are applied in a
transactionally-safe manner, and then persisted to the underlying data source. Changes to relational
data sources are automatically applied, while changes to other data services, such as web services and
portals, are applied using a DSP update framework.

Lab 10.1 Modifying and Saving Changes to the Underlying Data Source

Although the steps in the next three labs are different, the underlying principle is the same: When you
update, add, or delete from data service objects, all changes are logged in the SDO’s change summary.
When the change is submitted, items indicated in the Change Summary log are applied in a
transactionally-safe manner, and then persisted to the underlying data source. Changes to relational
data sources are automatically applied, while changes to other data services, such as web services and
portals, are applied using a DSP update framework.

Objectives

In this lab, you will:

Modify customer data and save the changes to the SDO Change Summary log.
View the results in the Output window.
Invoke the submit() method of the Mediator API to save the changes to the underlying data source.

View the results in a web service.

Data Services Platform: Samples Tutorial 104

Instructions

1. Open the DataServiceClient.java file, located in the DataServiceClient project folder.

2. Change the first and last name of CUSTOMERS3 to Joe Smith (it’s currently Brett Pierce), by using
the set() methods of the Customer data object instance. You do this by adding the set() method to
the //Show Customer Data section (new code is displayed in boldface type):

Customer customer = doc.getCustomerProfile().getCustomerArray(0);
customer.setLastName(**Smith™);
customer.setFirstName(''Joe");
System.out.printIn(*’Customer Name : ™" + customer.getLastName() +
", " + customer.getFirstName());
DataServiceClient java® - {DataServiceClient}, bl

DataService ds = DataServiceFactory.newXnlService |
getInitialContext(),
"Evaluation' ,

"1d:DataServi file"
1:

CustomerProfileDocument doc = |CustomerProfileDocument) ds.invoke('getCustomerProfile’ paraus):
$ystem. out.printin('Connected to Liguid Data 8.2 : CustomerProfile Data Service ..."):

SYSTEN. OUT., println{ Customers 1

Customer customer = doc.getCustomerProfile().getCustomerArray(0):
customer. setlastame ' Smith' | »
custoner. secFirstlame (" Joe') ;

System. out.printin{'Customer Hame : ' + customer.getlastieme(j + ", " + customer.getFirstiane(]);

System. out. println(Orders 1
Ozder[] order = customer.getOrders(].getOrderArray():
for [imt x=0: x<order.length; x++) {
Sysren. out. println(” Order # " + order[x].gecOrderId() +
v Date ' + order[x].gecOrderbate() +
Total §' + order[x].getTotalOrderimount{));
Orderline[] orderline = order[x].getOrderLineirrayi);
for (int y=0; y<orderline.length; y++) {
SysStem. out. printin(’ Product. # " + orderline[y].getProductld(] +
" Price §" + orderline[y].getPrice() +
" Quantity: " + orderline[y].gecuanticyi(]
i

i

} catch (Exception e} {
e.printitackTrace();
+
}

[D]

Figure 10-1 set() Method Specified

3. Save your work.

Right-click the DataServiceClient project folder and choose Build DataServiceClient.

4
5. Click the DataServiceClient.java file’s Start icon (or press Ctrl + F5).
6

Confirm that the changes were submitted, by viewing the results in the Output window. (If the

window is not open, choose View — Windows — Output.)

Note: At this point, the changes only exist as entries in the SDO Change Summary Log, not in the data
source. You must complete the remaining steps in this lab to ensure that the underlying data source is

updated.

Build | Cukput

=

Trying to create process and attach to 2056...

C:\beahjrockit8lspd 142 05\binhjavaw.exe -Xdebuy -Xnoagent -Djava.compiler=NONE -Xrunjdwp:transport=dt_soc
Process started

Attached successfully.

==================== Data Service Client ====================

Connected to Data Services Platform 2.0.1 : CustomerProfile Data Service ...

O
U

====================== [ustomer
Customer Name : Smith, Joe
Orders
Order # ORDER_3_0 Date 2001-10-01 Total §656.65
Product # APPA SH 4 Price £249.35 Quanticy: 1 |Z|
Dyrachii-+ # ADDG 2H C Tvima ¢200 OC Maawvtd e 1
[N/ O]

Figure 10-2 Change Results in Output Window

Data Services Platform: Samples Tutorial

105

7. Invoke the Mediator API’s submit() method and save the changes to the data source, by using the
data service instance. The submit() method takes two parameters: the document to submit and the
data service name. You do this by adding the following code into the //Show Customer Data

section of the file:
ds.submit(doc,

"Id:DataServices/CustomerManagement/CustomerProfile.ds");

8. Change the output code, as follows:
System.out.printIn(*’*Change Submitted");

DataServicetlient. java™ - {DataServiceClientH %
=]
Datafervice ds = DataServiceFactory.newXmlService(
gerInitialContexti),
"Evaluation’,
"1d:DataServices/ ic ilen
1z
CustomerProfileDocument doc = (CustomerProfileDocument) ds.inwoke (' getCustomerProfile’ ,parauns);
System. out.println('Connected to Liquid Data 8.2 : CustomerProfile Data Service ..."):
§ystem. out.println(" Customers 1:
Customer customer = doc.getCustomerProfile(). gerCustomerirray(0);
customer. setLastName (" Smith') ;
customer. setFirsthame (' Joe') ;
ds. submit(doc, " i ile.ds"):
SYSTem. DUt.println(’Change Submitted');
System. out.printin(" Orders)
Order[] order = customer.getOrders().getOrderdrray();
for (imt x=0; x<order.length: x++) {
Systew, out. printing Order # " + order[x].getOrderId() +
Date " + order[x].getOrderDate(] +
Total §' + order[x].getTotalOrderAmounti() }:
Orderline[] orderline = order[x].getOrderlineirray():
for (int y=0; y<orderline.length; y++] {
S¥stem. out.printin(" Product # " + orderline[y].getProductId() +
" Price §" + orderline[y].gecPrice() +
" Quantity: ' + orderline[y].getuantity(]
1
i
+
} catch (Exception e} {
e.printStackTrace()
}
i
'
[bl

Figure 10-3 submit() and Output Method Specified

9. Click the DataServiceClient.java file’s Start icon (or press Ctrl + F5).

10. Confirm that the changes persisted to the underlying data source by completing the following steps:

a. Click the CustomerPageFlowController.jpf application’s

the Workshop Test Browser.

Close the Workshop Test Browser.

Figure 10-4 Change Results in Test Browser

Start icon (or press Ctrl + F5) to open

In the Workshop Test Browser, enter CUSTOMER3 in the Customer ID field and click Submit.
Confirm that the CUSTOMER3 name is now Smith, Joe.

Data Services Platform: Samples Tutorial

106

Lab 10.2 Inserting New Data to the Underlying Data Source Using Java

You can use the Mediator API to add new information to the underlying data source, thereby reducing
the need to know a variety of data source APIs.

Objectives

In this lab, you will:

Add new data and save the changes to the SDO Change Summary log.
Invoke the submit() method of the Mediator API to save the changes to the underlying data source.

View the results in a web service.

Instructions
1. In WebLogic Workshop open the DataServiceClient.java file.

2. Add anew item to ORDER 3 0 (the first order placed by CUSTOMER3), by using the
addNewOrderLine()method of the Order Item data object instance. You do this by inserting the
following code into the /Show Customer Data section, after System.out.println("Change
Submitted"):

// Get the order
Order myorder = customer.getOrders().getOrderArray(0);
// Create a new order item

OrderLine newitem = myorder.addNewOrderLine();

3. Set the values of the new order item, including values for all required columns. (You can check the
physical or logical .xsd file to determine what elements are required.) All foreign keys must be
valid; therefore, use APPA_GL _3 as the Product ID.

Since the item will be added as a child of ORDER 3 0, you do not need to setOrderID(); the SDO
update will automatically set the foreign key to match its parent.

To set the values, insert the following code above the /Show Order Data section of the Java file:
// Fill the values of the new order item
newitem.setLineld(*'8");
newitem.setProductld("'APPA_GL_3");
newitem.setProduct(*'Shirt');
newitem.setQuantity(new BigDecimal (10));
newitem.setPrice(new BigDecimal (10));

newitem.setStatus("'OPEN');

4. Press Alt + Enter to enable java.math.BigDecimal.

Data Services Platform: Samples Tutorial 107

5. Invoke the Mediator API’s submit method and save the changes to the data source, by using the
data service instance. (The submit() method takes two parameters: the document to submit and the
data service name.)

You do this by inserting the following code into the /Show Order Data section of the java file:
// Submit new order item
ds.submit(doc, "ld:DataServices/CustomerManagement/CustomerProfile.ds");
System.out.printIn(*'‘Change Submitted");

6. Comment out the code where customer first name and last name were set, including call to submit
method

7. Confirm that the /Show Order Data section of your java file is as displayed in Figure 10-5.

DataServiceClient., java® - {DataServiceClisnt}H, e
"ld:DataServicesfCust FCust Profile" -
System. out. println (' ———m——o——o— Customers ————1'|
System, out.println("Connected to Liguid Data 8.2 : CustomerProfile Data Service ..."):
CustomerProfileDocunent doc = (CustomerProfileDocument) ds.invoke ("getCustomerProfile’ params);

Customer customer = doc.getCustomerProfile(). getCustonerdrray(0):

£ customer. setlastNane ("Snith") ;

£ customer. setFirs tNape ("Joe")

£ ds. submit (doc, "ldiDataServices/CustomerManiagepent CustomerProfile.ds™);
Aystem.out.println("Customer Hame : " + customer.getlastName() +

", " + custoner,getFirstName ()] :

£ Get the order
Order myorder = customer.getlrders().getlrderdrray(0);
4 Create @ new order item
Orderline newitem = myorder.addNewOrderLine(]:
/7 Fill the walues of the new order item
hewiten.seclineId("8");
newiten. setProductId("APPR GL 3"):
newiten. setProduct("Shirt"y: ~
newiten.setQuantity (mew BigDecimal(10));
newiten. secPrice (new BigDecimal (10)):
newiten.setitatus ("OPEH") ;

ds.subnit(doc, "ld:DataServices/Cust fCust, Profile.ds") ;
Aystem,out.println('Change Submitted"):

System.out.printlng" Orders 1
Order[] order = customer.getlrders().getOrderfrray();
for (int x=0; x<order.length; x+H) {
System.out.printlni(" Order # " + order[x].getOrderId() + lz‘

[0]

Figure 10-5 Java Code to Add Line Item
8. Click the DataServiceClient.java file’s Start icon (or press Ctrl + F5).
9. Confirm that the changes persisted to the underlying data source by completing the following steps:

a. Click the CustomerPageFlowController.jpf application’s Start icon (or press Ctrl + F5) to open
the Workshop Test Browser.

b. In the Workshop Test Browser, enter CUSTOMER3 in the Customer ID field and click Submit.
c. Find ORDER 3 0 and verify that the new item (8) exists.

Data Services Platform: Samples Tutorial 108

2 Workshop Test Browser

+«~ = 3 ‘G| 3Flow,|’getCustomer.do,'jsessionid=CQDv?pwn1MdeI5L3meDPZBthKDTxQZTDzecXJanTT1DQ4hT!3?3838308| @

BEA Weblogic Workshop™ re—

Version 8.1

Customer Profile

Smith, Joe
2001-10-01
JOHM_3@att.com
GAETT31258
G47-73-1259
1952-05-09

PRIORITY-1

600
Update Profile

Crders

Filters:

OrderAmount|> vIID Apply filter | Numherngrderle <] Set Limit|

LIKE DAPPA_SH 4 Sandal at 1249 95 Remove
Mardstrom
Aacrey
Hepbun

ORDER_3_0 123_031_ 65665 LIME 18PPA_SH_S i 1299 95 Remove
Farragamo
Cucci

LIME ZaPPA_BA 1 Drejareut 1| 99.95Remove
Hobao

LIME GAaPPA_BA 1 Shirt 13| 9.95Femove

LIME 5APPA_GL_3 Shirt 10 10Remove

ey Order tem w
£ 1} 2

Figure 10-6 New Order Item Added

Lab 10.3 Deleting Data from the Underlying Data Source Using Java

You can use the Mediator API to delete information to the underlying data source, thereby reducing
the need to know a variety of data source APIs.

Objectives

In this lab, you will:

Delete data and save the changes to the SDO Change Summary log.
Invoke the submit() method of the Mediator API to save the changes to the underlying data source.

View the results in a web service.

Instructions

1. In the Workshop Test Browser, determine the new item’s placement in the array and subtract 1. For
example, if line item with line_id = 8 is the fifth item for ORDER_3 0, its order placement is 4.

2. Close the Workshop Test Browser.

Data Services Platform: Samples Tutorial 109

3. In the DataServicesClient.java file delete or comment out the code that added a new order line
item.

4. Add an instance of the item that you want to delete, by inserting the following code file:

// Get the order item

OrderLine myltem = customer.getOrders().getOrderArray(0).getOrderLineArray(4);

Note: The getOrderLineArray() is based on the item’s placement in the array. As displayed in
Figure 10-6, 8 is the fifth item, making the variable 4. You should use the variable that is correct
for your situation.

5. Call the delete method by inserting the following code:
// Delete the order item
myltem.delete();
6. Submit the changes, using the Mediator API’s submit() method.
// Submit delete order item

ds.submit(doc, "ld:DataServices/CustomerManagement/CustomerProfile.ds");

System.out.printIn(*'‘Change Submitted™);

7. Confirm that the code is as displayed in Figure 10-7.

ES

DataServicedlient, java - {DataServiceClientH,
T T IO =

"ld:DataServices/fCust fCust Profile"

Vi

System. out.println(" Customers —— vy
System.out.println("Connected to Liguid Data $.2 : CustomerProfile Data Service ..."];

CustomerProfilelocument doc = (CustomerProfilellocument) ds.inwvoke("getCustomerProfile" params);

Customer customer = doc.getCustomerProfile().getCustonerdrrayi0);

S¥stem. out.println("Customer Hame : " + customer.getlLastName () +
", " 4+ custoner.getFirstName());

SF Get the order item
Orderline myltem = customer.getlrders().geclrderdrray(0).gecirderlinedrray(2);
wyltem,delete (]
dz.zubnitidoc, "ld:DataSerwvices/{Cust t FCust Profile.ds");
S¥stem. out.println("Change Submitted");

System. out.println(" Orders 1:
Order[] order = customer.getlrdersi().getOrderdrray():
for (imt x=0: x<order.length; =x+) {
S¥stem. out.println(” Order # " + order[x].gecOrderId() +
" Date " + order[x].getOrderDate() +
i Total §" + order[x].getTotalOrderdmount()):
OrderLine[] orderline = order[x].getOrderLinedrray():
for [(int ¥=0; y<orderline.length; ¥++) {
Fysten.out. println(" Product # " + orderline[v].getProductId() +
" Price 5" + orderline[y].getPricei) +
" Quantity: " + orderline[¥].getQuancity()

\ 1 &
K1 |]

Figure 10-7 Java Code to Delete Line Item

8. Build the DataServiceClient project.

9. Click the DataServiceClient.java file’s Start icon (or press Ctrl + F5).

10. Confirm that the changes persisted to the underlying data source by completing the following steps:

a. Click the CustomerPageFlowController.jpf application’s Start icon (or press Ctrl+F5) to open
the Workshop Test Browser.

b. In the Workshop Test Browser, enter CUSTOMER3 in the Customer ID field and click Submit.

c. Find ORDER 3 0 and verify that Line 8 is no longer present.

Data Services Platform: Samples Tutorial 110

d. Close the Workshop Test Browser.
Lesson Summary
In this lesson, you learned how to:

Update, add to, and delete data from data service objects.

Submit changes to the underlying data sources, using the Mediator API.

Data Services Platform: Samples Tutorial

111

Lesson

Objectives

Overview

Lab 11.1

11 Filtering, Sorting, and Truncating XML Data

When designing your data service, you can specify read functions that filter data service return values.
However, instead of trying to create a read function for every possible client requirement, you can
create generalized read functions to which client applications can apply custom filtering or ordering
criteria at runtime.

After completing this lesson, you will be able to:

Use the FilterXQuery class to create dynamic filter, sort, and truncate data service results.

Apply the FilterXQuery class to a data service, using the Mediator API or Data Service Control.

Data users often want to access information in ways that are not anticipated in the design of a data
service. The filtering and ordering API allow client applications to control what data is returned by a
data service read function call based on conditions specified at runtime.

Although you can specify read functions that filter data service return values, it may be difficult to
anticipate all the ways that client applications may want to filter return values. To deal with this
contingency, DSP lets client applications specify dynamic filtering, sorting, and truncating criteria
against the data service. These criteria are evaluated on the Server, before being transmitted on the
network, thereby reducing the data set results to items matching the criteria. Where possible, these
instances are “pushed down” to the underlying data source, thereby reducing the data set returned to
the user.

The advantage of the FilterXQuery class is that you can define client-side filtering operations, without
modifying or re-deploying your data services.

Filtering Data Service Results

With the FilterXQuery class addFilter() method, filtering criteria are specified as Boolean condition
statements (for example, ORDER_AMOUNT > 1000). Only items that meet the condition are included
in the return set.

The addFilter() method also lets you create compound filters that provide significant flexibility, given
the hierarchical structure of the data service return type. In other words, given a condition on a nested
element, compound filters let you control the effects of the condition in relation to the parent element.

For example, consider a multi-level data hierarchy for CUSTOMERS/CUSTOMER/ORDER, in which
CUSTOMERS is the top level document element, and CUSTOMER and ORDER are sequences within
CUSTOMERS and CUSTOMER respectively. Finally, ORDER_AMOUNT is an element within
ORDER.

An ORDER_AMOUNT condition (for example, CUSTOMER/ORDER/ORDER_AMOUNT > 1000)
can affect what values are returned in several ways:

It can cause all CUSTOMER objects to be returned, but filter ORDERS that have an amount less
than 1000.

It can cause only CUSTOMER objects to be returned that have at least one large order. All
ORDER objects are returned for every CUSTOMER.

Data Services Platform: Samples Tutorial 112

It can cause only CUSTOMER objects to be returned that have at least one large order along with
only large ORDER objects.

It can cause only CUSTOMER objects to be returned for which every ORDER is greater than
1000.

Instead of writing XQuery functions for each case, you just pass the filter object as a parameter when
executing a data service function, either using the Data Service Control or Mediator API.

Objectives

In this lab, you will:

Import the FilterXQuery class, which enables filtering, truncating, and sorting of data.
Add a condition filter.

View the results through the Mediator API.

Instructions
1. Open the DataServiceClient.java file.
2. Delete the code that removed the line item with line_id = 8 order item delete code.

3. Delete the invoke and println code from the //Insert Code section:

CustomerProfileDocument doc = (CustomerProfileDocument)
ds. invoke("'getCustomerProfile",params);

System.out.printIn(’’Connected to Liquid Data 8.2 : CustomerProfile
Data Service ...");

4. Import the FilterXQuery class by adding the following code:
import com.bea.ld.filter.FilterXQuery;

5. Create a filter instance of the FilterXQuery, plus specify a condition to filter orders greater than
$1,000, by adding the following code:

//Create a filter and condition
FilterXQuery Ffilter = new FilterXQuery(Q);
filter.addFilter(

""CustomerProfile/customer/orders/order",
""CustomerProfile/customer/orders/order/total_order_amount",

">, "1000™);

6. Apply the filter to the data service, by adding the following code:

// Apply the filter
ds.setFilterCondition(filter);

CustomerProfileDocument doc = (CustomerProfileDocument)
ds. invoke("'getCustomerProfile",params);

7. Change the //Show Customer Data code so that it is as follows:
// Show Customer Data

System.out._printin(" Customers ");

Customer customer = doc.getCustomerProfile().getCustomerArray(0);

Data Services Platform: Samples Tutorial 113

System.out.printIn(*'*Connected to Liquid Data 8.2 : CustomerProfile Data Service ...");

b

System.out.printini™
Customer customer = doc.getCustomerProfilell. getlustomerarray(00;
SysTem. out.printin("Customer Hame : " + cCustamer.getLastMame(l + ™,

System.out.printinl™
Order[] order = customer.getOrders().getOrderArray(];
for (int ==0; x<order.length; =++3) {

System.out.println®

"1d: pataservi Ces fCus tomerManagement A ACus tonerProtile™

System.out.printin(“Connected to Liquid Data §.2 - CustomerProfile Data

Servi

+

"3

CLsTL

[]]

Oorder # " + order[x].getOrderId(] +
Date * + order[=].getorderbDatel) +

"3

DataServiceilient.java - {DataServiceClient}), ¥
OdLdoETWILE O = UdidSEryY TLErFdL LUr Y. TIEWDd LS ET W TLET
getInitialCantext(], E
"Evaluation",

Figure 11-1 Filter Code

8. Click the DataServiceClient.java file’s Start icon (or press Ctrl + F5).

9. Use the Mediator API to view the results in the Output window and/or a standalone Java
environment. The return results should be similar to those displayed in Figure 11-2.

Cutput

Y

Process started
Attached successTully.

Data service Client
Connected to Ligquid Data 8.2 : CustomerProfile Data Service ...

Trying to create process and attach to 1900...
CivbeasjrockitElspd_142_05%binsjavaw. exe -xdebug -xnoagent -Djava.compiler=HONE -Xrunjdwp: transg

Debugging Finished

[

CLUs tamer
Customer MName @ Pierce, Britt
orders
Order # ORDER_3_2 Date 200z-01-02 Total $1zs3
Froduct # APPA_BA_1 Frice $39.95
Product # APPA_BA_1 Frice $325.55
Froduct # APPA_BA_Z FPrice $250.95
Order # ORDER_2_3 Date 2002-02-17 Total $1679.
Product # APPA_BA_1 Price $325.9%
Froduct # AFPA_BA_Z Frice $350.3%
Froduct # APPA_BA_4 Frice $495.395
Order # ORDER_3_4 Date 2002-04-05 Total $1344.
Froduct # APPA_BA_Z FPrice $250.95
Product # APPA_BA_4 Price $49c5.9¢
Froduct # AFPA_EBA_S Frice $530.3%
oOrder # ORDER_3_S Date z00z-05-21 Total $1ilo0é.
Product # APPA_BA_4 Frice $435.55
Froduct # APPA_BA_S FPrice $590.95
Product # APPA_WN_1 Price $12.9C

[

auantity:

Ouantitws:
Quanti oy

Quanti ty:
guantity:
Ouanti tw:

Quanti oy
Quanti ty:
Quanti ty:

Ouantitws:
Quanti oy

Quantity:

1

1

Figure 11-2 Filtered Data Results

Data Services Platform: Samples Tutorial

114

Lab 11.2 Sorting Data Service Results

With the FilterXQuery class sortfilter.addOrderBy() method, you can specify criteria for organizing the

data service return results. For example, to sort the order amount results in ascending order, you would

use a sort condition similar to the following:
("'CustomerProfile/customer/orders/order","total_order_amount",

FilterXQuery.ASCENDING) ;

Objectives

In this lab, you will:

Add a sort condition.

View the results through the Mediator APIL.

Instructions
1. Open the DataServiceClient.java file.

2. Create a sort instance of the FilterXQuery, by adding the following code before the //Apply Filter
section:

// Create a sort

FilterXQuery sortfilter = new FilterXQuery(Q);

3. Add a sort condition, using the addOrderBy() method, to sort orders based on total order amount
ascending. An example of the code is as follows:

sortfilter.addOrderBy(
""CustomerProfile/customer/orders/order",
""total_order_amount",
FilterXQuery.ASCENDING) ;
4. Apply the sort filter to the data service by adding the following code:
// Apply the sort
Ffilter._.setOrderByList(sortfilter._getOrderByList());

Data Services Platform: Samples Tutorial 115

#

DataServiceClient.java - {DataServiceClient}H,

DataSerwvice ds = DataServiceFactory.newbataServicel
getInitiallontext(],
"Evaluation",
"1d: Dataservi ces /Cus tomerflanagement /Cus tomerProtile"

Filterxguery Tilter = new Filter=Query(];

filter.addrilter(
"'Cus tomerProfile/cus tomer forders forder”,
"'Cus tomerProtile/cus tomer forders forder /total _order_amount",
nyn mi000tY;

ds.setFilterCondition(filter);
CustomerProfilebocument doc = (CustomerProfilebocument)
ds.invoke("getCustomerProfile”, params);

System.out.printin(™Connected to Ligquid Data 8.2 : CustomerProfile Data Serwvi

System.out.printinl™ Cus tomer 2
Customer customer = doc.getCustomerProfile().getCustomerarray(0]; IE‘
cwetem At krdintTar s rener a4 S ramer Aastl Actramer o+ o et

[l |

Figure 11-3 Sort Code
5. Click the Start icon (or press Ctrl + F5) for the DataServiceClient.java file.

6. Use the Mediator API to view the results in the Output window and/or a standalone Java
environment. The data results should be similar to those displayed in Figure 11-4.

Build | Outpuk =
Trying to create process and attach to 1505... [a]
Civbeayjrockitslspd_142_05%binsjavaw. exe —<debug -xnoagent -0java.compiler=NONE -xrunjdwp:tral |
Process started
attached successTully.

Data sSerwice Client
Connected to Liquid Data .2 : CustomerProfile Data Serwvice ...
CuUs tomer
Customer Mame : Pierce, Britt
orders

arder # ORDER_3_& bate z002-05-21 Total $1106.65
Froduct # AFFA_EA_4 Frice $495,985 quantity: 1
Product # AFPPA_BEA S Frice $590.35 Quantity: 1
Froduct # AFPA_WH_1 Frice $1z.95 Quantity: 1

Order # ORDER_3_2 bate z002-01-02 Total $1283.65
Froduct # AFFPA_EA_1 Frice $99.95 Quantity: 1
Froduct # APPA_EA_1 Frice $325.855 Quantity: 1
Product # AFPPA_BEA 3 Frice $350.35 Quantity: 1

arder # ORDER_3_3 Date 2002-02-17 Total $1e79.65
Product # AFPPA_EA 1 Frice $325.35 Quantity: 1
Froduct # AFPA_BA_3Z Price $850.985 quantity: 1
Product # AFPA_EA_ 4 Frice $435.35 Quantity: 1

arder # ORDER_3_4 Date 2002-04-05 Total $1944.65
Product # AFPPA_BEA 3 Frice $350.35 Quantity: 1
Froduct # AFFA_EA_4 Frice $495,985 quantity: 1 —
Product # AFPPA_BEA S Frice $590.35 Quantity: 1 E

] []

Figure 11-4 Filtered and Sorted Data Results

Data Services Platform: Samples Tutorial 116

Lab 11.3 Truncating Data Service Results

The FilterXQuery class also provides the filter.setLimit() method, which lets you limit the number of
return results. For example, to limit the return results to two line items, you would use a truncate
condition similar to the following:

("'CustomerProfile/customer/orders/order/order_line",”2”);

The filter.setLimit method is based on the following:

public void setLimit(Java.lang.String appliesTo, String max)

Objectives

In this lab, you will:

Truncate the data result set.

View the results in through the Mediator API.

Instructions
1. Open the DataServiceClient.java file.

2. Add a truncate condition, using the setLimit() method to limit the result set to a maximum of two
order lines for each order. An example of the code is as follows:
// Truncate result set

Filter.setLimit("'CustomerProfile/customer/orders/order/order_line",”2”);

*

DataserviceClient.java - {DataServiceClisntlH,
Datacervice ds = DataServiCeFactory.newlataservicel E
getInitialContext(]l,
“"Evaluation”,
“1d: pataservi ces fCus tomeriflanagement/Cus tomerProftile™
bH

Filter#guery filter = new Filter:Query(];

filter.addFilter(
“Cus tomerpProti 1e/cus tomer forders forder”,
"Cus tomerProfi 1e/cus tomer forders forder ftotal _order_amount",
wm 000" ;

Filterzguery sortfilter = new FilterxQuery();
sortfilter. addorderey(
"Cus tomerProti 1e/cus tomer forders forder”,
"total_order_amount", FilterxQuery.ASCENDING
bH

Tilter.setOrderByList(sortfilter.getorderByList(l);
Tilter.setLimi t("Cus tomerProfi1e/cus tomer forders forderforder_1line™, "2"];

ds.setFiltercCondition(filter);
CustomerProfilebocument doc = (CustomerProfilebocument])
ds.invoke("getCustomerProfile™, params);

System.out. printin(™Connected to Ligwid Data £.2 : CustomerProfile Data Ser

System. aout. printlnl™ Cus tomer H
Customer customer = doc.getfustomerProfile().getCustomerarray(0);
System.out. printlnC"Customer Name = " + customer.getlLastName() + ", " + cus
System.out. printlnl™ orders H E
| " arderl1 order = customer.aetdrders ﬁ.uetDr‘de_r‘lAr'r*a\.rﬁ: |I|
4

Figure 11-5 Truncate Code

3. Click the Start icon (or press Ctrl + F5) for the DataServiceClient.java file.

Data Services Platform: Samples Tutorial 117

4. Use the Mediator API to view the results in the Output window and/or a standalone Java
environment.

Lesson Summary
In this lesson, you learned how to:

Use the FilterXQuery class to filter, sort, and truncate data service results.

Apply the FilterXQuery class to a data service, using the Mediator API or Data Service Control.

Data Services Platform: Samples Tutorial 118

Lesson 12 Consuming Data Services through JDBC/SQL

Data Services Platform JDBC driver gives JDBC clients read-only access to the information supplied
by data services. With the Data Services Platform JDBC driver, DSP acts as a virtual database. The
driver allows you to invoke data service functions from any JDBC client, from custom Java
applications to database, and from reporting tools, including Crystal Reports.

Objectives

After completing this lesson, you will be able to:

Access DSP via JDBC.

Integrate a Crystal Report file, populated by DSP, into your web application.

Overview

Data services built into DSP can be accessed using a Data Services Platform JDBC driver, which
provides access to the DSP-enabled Server via JDBC APIs. With this functionality, JDBC clients —
including business intelligence and reporting tools such as Business Objects and Crystal Reports — are
granted read-only access to the information supplied by DSP services. The main features of the Data
Services Platform JDBC driver are:

Supports most SQL-92 SELECT statements.

Provides error handling; if an error is detected in SQL query, then the error will be reported along
with an error code.

Performs metadata validation; the translator checks SQL syntax and validates it against the data
service schema.

When communicating with DSP via a JDBC/ODBC interface, standard SQL-92 query language is
supported. The Data Services Platform JDBC driver implements components of the java.sql.*
interface, as specified in JDK 1.4x.

Note: The Data Services Platform JDBC driver needs to be in your computer’s CLASSPATH variable
within System variables:

$BEA_HOME\weblogic81\liquiddata\lib\ldjdbc. jar

Data Services Platform: Samples Tutorial 119

Lab 12.1 Running DBVisualizer

WebLogic Platform includes DBVisualizer, which is a third-party database tool designed to simplify
database development and management.

Before you start:

The Data Services Platform JDBC driver needs to be in your computer’s CLASSPATH variable:

$BEA_HOME\weblogic81\liquiddata\lib\ldjdbc. jar
The WebLogic Server needs to be running.

Make sure that your Evaluation application is deployed correctly to WebLogic Server.

Objectives

In this lab, you will:

Create a database connection that enables DBVisualizer to access your Evaluation application as if
it were a database.

Use DBVisualizer to explore your Evaluation application.

Instructions

1. Choose Start — Programs — BEA WebLogic Platform8.1 — Other Development Tools —
DBVisualizer. The DBVisualizer tool opens.

E.DbYisualizer Free 4.0.2 for WebLogic Workshop - C:\Documents and ... [Z B

ObVisualizer

The Universal Database Tool

Figure 12-1 DBVisualizer Interface

2. Choose Database — Add Database Connection.

3. Enter the following parameters:
Connection Alias: LD
JDBC Driver: com.bea.ld.jdbc.LiquidDataJDBCDriver
Database URL: jdbc:ld@localhost:7001:Evaluation
Userid: weblogic
Password: weblogic

4. Click Connect.

Data Services Platform: Samples Tutorial 120

B DbVisualizer Free 4.0.2 for WeblLogic Werkshop - C:\Documents and ..
Fin Fdi View Database fookmarks Window lelp

ol dHEB B0 &

2, Datsvase Gejects | B 500 Commander |

> B @ <> PO

2} Mondor |

2. d @B ¥ Database Connection; LD
?i;’:‘:‘;ﬂﬁn | | connection | patahase o | DaaTypes | Tabie Tmes | Taties | Resrences | |

[Show Tabls Row Count

Connaeson Dats

Connoct Wothod: | 8107 -

Connection Aies LD
JDBC Ditver. |
Databuse URL

usend: [srstam

P [~

| Fetonnect || Disconnact |

Impertint noe about She LFL
T LIL b cortans sirmm Cormman UKL Ieplates Hipince
e n

o "

Connaction Massagn

Iquid Data

2
M e 52 10DeLiguislats DBCDifvet
I

Connaction Tene: 000014

tion_[Fropenes |

Figure 12-2 New Database Connection Parameters

5.

Use DBVisualizer to explore your DSP application as if it were a database. Data service projects
display as database schemas. Functions within a project display as a database view; functions with
parameters display as database functions.

Select a tab (Database Info, Data Types, Table Types, Tables, and References) to view that
category of information for all data services within your application. For example, selecting the
Tables tab displays each data service as a table.

& DbVisualizer Free 4.0.2 for WebLogic Workshop - C:\Documents and Settings\mblancha\... \:HEWZ\

File Edit View Database Bookmarks Window Help
4 3 T £
e JHR LBE L5

@ Database Objects | [S0L Commander

B @ <> PO a9

4 Monitor

|%_CP"“EE“°“5 Connection | Databaselnio | DataTwpes | Tahle Types | Tables | References
810 TABLE_CAT TABLE_SCHEM | TABLE_MNAME

anubeTraining | DataServices~ApparelDB CUSTOMER_ORDER_LINE_ITEM#CUSTOMER_ORDER_LINE_ITEM
anubeTraining |DataServices~-ApparelDB PRODUGCT#PRODUCT
anubeTraining DataServices~Appare| DB CUSTOMER_ORDER#CUSTOMER_ORDER
anubeTraining DataServices~CustomerDB CUSTOMER#CUSTOMER
anubeTraining DataServiceg~CustomerDB CREDIT_CARDRFCREDIT_CARD
anubeTraining | DataServices~CustamerDB ADDRESS#ADDRESS
anubeTraining |DataServices~ElectronicsDB PRODUGCT#PRODUCT

DataServices~ElactranicsDB
DataServices~ElectranicsDB
DataServices~Orderanagement

anubeTraining
anubeTraining
anubeTraining

CUSTOMER_ORDER#CUSTOMER_ORDER
CUSTOMER_ORDER_LINE_ITEM#FCUSTOMER_ORDER_LINE_ITEM
CugtomerOrdeRCUSTOMER_ORDER

anubeTraining | DataServices~OrderManagement ProducttPRODUCT
anubeTraining |DataServices~Orderianagement Cuslomer#CUSTOMER
anubeTraining DataServices~OrderManagement Address#ADDRESS

anubeTraining
anubeTraining

DataServices~Orderdanagement
DataServices~SeniceDB

CustomerOrderLineltern#CUSTOMER_ORDER_LINE_ITEM
SERYICE_CASE#SERYICE_CASE

[

[Show Table Row Gount 4377 sec/.010 sec |15 10 [1-15

Figure 12-3 Tables

7.

Double-click an element to view the values for a specific data service. For example, double-
clicking the DataServices~CustomerDB element from the Table Schema column displays that data
services values.

Browse Column Values
Browse Column Values

Note: This is & read-anily view
of the column values in 8 row.

TABLE_CAT: [DanubeTraining]
TABLE_SCHEM: [DataSemices~CustomerDE]
TABLE_NAME: [CUSTOMER#CUSTOMER]]
TABLE_TYPE: fVIEW |
REMARKS: ld.DataServices/CustomerDB/schemas/CUSTOMER xsdwld.DataSemces/Cu31umErDEtCUE‘.TOMERwCUSTOMER\
|

J

J

J

J

TYPE_CAT:

TYPE_SCHEM:

TYPE_NAME: [CUSTOMER
SELF_REFERENCING_COL_NAME: [nul
REF_GENERATION: fnull

DanubeTraining

DataServices~CustornerDB

Figure 12-4 Table Column Values

Data Services Platform: Samples Tutorial

121

Lab12.2

Integrating Crystal Reports and Data Services Platform

The Data Services Platform JDBC driver makes data services accessible from business intelligence and
reporting tools, such as Crystal Reports, Business Objects, Cognos, and so on. In this lab, you will
learn how to use the Date Service Platform JDBC driver in conjunction with Crystal Reports. (For
ODBC applications, you can use JDBC to ODBC Bridge Drivers provided by vendors such as
OpenLink, available as of this writing at http://www.openlinksw.com.)

Objectives

In this lab, you will:

Install Crystal Reports View in a web application.
Import a saved Crystal Report file and JSP into the web application.

View the report from the web application.

Instructions

1. Install Crystal Reports Viewer in the CustomerManagementWebApp by completing the following
steps:

a. Right-click CustomerManagementWebApp.
b. Choose Install — Crystal Reports.

2. Import a saved Crystal Reports file and JSP that displays the report by completing the following
steps:

a. Right-click CustomerManagementWebApp.
b. Choose Import.

c. Navigate to the <beahome>\weblogic81\samples\LiquidData\EvalGuide directory and select the
following files:

SpendByCustomers.rpt
showCrystal.jsp

d. Click Import. You should see showCrystal.jsp and SpendByCustomers.rpt files within the
CustomerManagementWebApp.

e. Right-click the CustomerPageFlow folder.
f. Choose Import.

g. Select index.jsp, located in the <beahome>\weblogic81\samples\LiquidData\EvalGuide
directory.

h. Click Import and choose Yes when asked if you want to overwrite the existing index.jsp file.

3. Open CustomerPageFlowController.jpf, located in the folder:

CustomerManagementWebApp\CustomerPageFlow
4. Click the Start icon (or press Ctrl + F5) to run the Workshop Test Browser.

5. In the Workshop Test Browser, click Customer Report to test the report. (The first invocation may
take time to display.)

Data Services Platform: Samples Tutorial 122

http://www.openlinksw.com/

T Warbahap Test Browsor

=+ 0 4 I

Hew We
5 i TRV P 8 S N I |

CUSTOMERD
CUSTOMIRE
CUSTOMERZ
CUSTOMERS
CUSTOMERS
CUSTOMERS
CUSTOMERE
CUSTOMERT
CUSTOMIRD
CUSTOMERS

[Pritod Date: 3G Last mebfiod: 1277504

Feport Des<ription:

100% = “EryEtals

Spend By Customers

d by
“'Crystal oge

USTOMER_ID
CUSTONERD

Total for CUSTOMERD:

150950

LISTOMER I FIRST_NAME LAST_NAME
CUSTOMER1 Jack Bk
Total for CUSTOMERY: 152625
LIS TOMLR_ID FIHST_NAML LAST_NAML
CUSTOMER? Jery Graunbing
Total for CUSTOMERE: 129300
LS TOMER_ID FIHS1_NAML LAST_NAML
CUSTOMERY i Piaree
Total for CUSTOMER3: 900975 o

Figure 12-5 Crystal Report

Lab 12.3 (Optional) Configuring JDBC Access through Crystal Reports

Crystal Reports 10.0 comes with a direct JDBC interface, which can be used to interact with the Data
Services Platform JDBC driver.

Objectives

In this lab, you will:

Install Crystal Reports software, JDBC driver, and Java server files.
Add environment variables.

Create a new JDBC data source in Crystal Reports.

Instructions

1. Install the Crystal Reports software, per the vendor’s installation instructions.

2. Install the JDBC driver files and Java Server, available from Crystal Reports.
You can download the files from:
http://www.businessobjects.com/products/downloadcenter/ceprofessional .asp

3. Select Windows JDBC, XML and DB@ Unicode—all languages.

4. Navigate to where you installed the driver and server files.

5. Addthe JAVA HOME variable to your environment variable. For example:

JAVA_HOME=C:\j2sdk1.4.2_06

Data Services Platform: Samples Tutorial 123

http://www.businessobjects.com/products/downloadcenter/ceprofessional.asp

where

C:\J2sdk1.4.2_06
identifies the Java SDK location on your computer.

6. Make sure that the jvm.dll is in the path variable for your computer. For example:
$BEA _HOME\jdk142_04\jre\bin\server

7. Open CRDB_JavaServer.ini and make the following changes:

Move $classpath to the beginning of the line. It should be like this:
CLASSPATH = ${CLASSPATH};C:\Program Files\Common Files\Crystal
Decisions\2._5\bin\CRDBJavaServer.jar;C:\Program Files\Common
Files\Crystal Decisions\2.5\java\lib\external\CRDBXMLExternal.jar
Modify the following entries:
JDBCUserName = weblogic
JDBCDriverName = com.bea.ld.jdbc.LiquidDataJDBCDriver

GenericJDBCDriverBehavior = SQLServer

8. Create a new JDBC data source in Crystal Reports, by providing the following parameters:

JDBC Driver: com.bea.ld.jdbc.LiquidDataJDBCDriver
URL string: jdbe:ld@localhost:7001:Evaluation
Provide a user name and password

9. Login to Crystal Reports. Once authenticated, Crystal Reports will show you a view of the
Evaluation application.

Lesson Summary

In this lesson, you learned how to:

Access DSP via JDBC.

Integrate a Crystal Reports file, populated by DSP, into your web application.

Data Services Platform: Samples Tutorial

124

Lesson

Objectives

Overview

Lab 13.1

13 Consuming Data via Streaming API

Streaming API allows developers to retrieve Data Services Platform (DSP) results in a streaming
fashion.

After completing this lesson, you will be able to:

Stream results returned from Aqualogic Data Services Platform into a flat file.

Test the results.

There are situations where you need to extract large amounts of data from operational systems using
DSP. For those cases, DSP provides a data streaming API. Large data sets can be retrieved to
application in a streaming fashion or be streamed directly to a file on server. All security enforcements
previously defined will still be relevant in case of the streaming APIL.

When working with streaming API keep the following things in mind:

The ability to get results as streams will be only available on the Server; there will not be any
client-server support for this API.

Only the Generic Data Service Interface is available for getting streaming results.
Stream results into a flat file

Objectives

In this lab, you will:

Create a new function that streams CustomerProfile information into a flat file.
Import a new jsp file to access a streaming function.

Test streaming data into a file.

Instructions
1) Import new index page into your application
a. Right-click CustomerPageFlow located in CustomerManagementWebApp .-
b. Choose Import.
c. Navigate to the <beahome>\weblogic81\samples\LiquidData\EvalGuide\Streaming folder.
d. Select index.jsp as the page to be imported.
e. Click on Import button.

f. Open index.jsp and verify that you have a new link called “Export All Data”.

2) Insert streaming function into your page flow

Data Services Platform: Samples Tutorial 125

a. Open CustomerPageFlowController.jpf located in CustomerManagementWebApp\
CustomerPageFlow

b. Go to Source View.
c. Add two additional methods into the page flow.

d. Open Streaming.txt file located in
<beahome>\weblogic81\samples\LiquidData\EvalGuide\Streaming folder

e. Copy and paste both functions found in Streaming.txt file immediately after method
submitChanges in the CustomerPageFlowController.jpf java page flow.

f. Press four times the key combination of Alt + Enter keys to import missing packages or type
the following in import section of page flow:

- import com.bea.ld.dsmediator.client.StreamingDataService;
- import javax.naming.InitialContext;

- import javax.naming.NamingException;

- import com.bea.ld.dsmediator.client.DataServiceFactory;

- import weblogic.jndi.Environment;

Note: If your application name is different from “Evaluation”, locate “Evaluation” in
newStreamingDataService method and rename it to reflect the name of your application.

g. Save your changes.

3) Start your CustomerPageFlowController.jpf
4) Once the application is started, click on the Export All Data link

5) Verify that data is exported successfully by opening customerexport.txt, located in:

<BEAHOME>\weblogic81\samples\domains\ldplatform
Lab 13.2 Consume data in streaming fashion

Objectives

In this lab, you will:

Import a new version of CustomerPageFlow.
Instantiate a new Streaming Data Service.
Retrieve results into XMLInputStream object by calling getCustomerProfile function.

Test fetching data from DSP in a streaming fashion.

Instructions

1) Import a new folder into your application
a. Right-click CustomerManagementWebApp located in your Evaluation application.
b. Choose Import.
c. Navigate to the <beahome>\weblogic81\samples\LiquidData\EvalGuide folder.

Data Services Platform: Samples Tutorial 126

d. Select CustomerPageFlowStream folder to be imported.
e. Click on Import button.
f. Open CustomerPageFlowController.jpf file in Source View.

g- Locate stream method and the following comments:

//instantiate and initialize your streaming data service here
h. Place the following code after the comments
sds = DataServiceFactory.newStreamingDataService(
new InitialContext(), // Initial Context
"Evaluation', // Application Name

""1d:DataServices/CustomerManagement/CustomerProfile’ // Data
Service Name

);
i. The DataServiceFactory class contains a method to create a streaming data service.
j- Replace stream = null with following code:
stream = sds. invoke(''getCustomerProfile’”, new String[]{""CUSTOMER3"})

For reference, your code should look similar to that shown below:

#

CustomerPageFlowController. jpf* - {CustomertdanagementiebApp HCustomerPrageF owhewy

protected Forward streaw(] throws Exception E
{

StreamingDatafervice sds = null:

Alinstanciate and initielize your stresming data service here

sds = DataferviceFactory.newitreaningDataiervicel

new InitialContext(), / Initiazl Context

"Evaluation", // Applicaticn Name

"1d:DataServices fCustomerManagement fCustomerProfile" .~ Data Service Name
Iz

Ffeall getCustomerProfile function and store results into stream object
stream = =2ds.invoke ("getCustomerProfile", mew Ztring[]{"CUSTOMER3" 1) :

return nextitream(); =

: &
[« |]

k. Test running your CustomerPageFlowController.jpf. You can use CUSTOMER3 as a
parameter to retrieve results. This time, data is fetched in streaming fashion.

Data Services Platform: Samples Tutorial

127

Lesson 14 Managing Data Service Metadata

DSP uses a set of descriptors (or metadata) to provide information about data services. The metadata
describes the data services: what information they provide and where the information derives from
(that is, its lineage). In addition to documenting services for potential consumers, metadata helps
administrators determine what services are affected when inevitable changes occur in the data source
layer. If a database changes, you can easily tell which data services are affected by the change.

Objectives

After completing this lesson, you will be able to:

Synchronize physical data service metadata with changes made to the physical data source.
Analyze impacts and dependencies.

Create custom metadata for a logical data service.

Overview

DSP metadata information is stored as annotations at the data service and function levels. The
metadata is openly structured as XML fragments for easy export and import. At deployment time, the
metadata is incorporated into a compiled data service, and then deployed as part of the data service
application in WebLogic Server.

Stored metadata includes:

Physical data service metadata:
Relational data source, type, and version
Column names, native data types, size, and scale
XML schema types
Web service WSDL URI

User-defined metadata:
Description
Custom properties at the data service level
Custom properties at the function level

Relationships created through data modeling

The Data Services Platform Console lets you access metadata stored within the DSP metadata
repository. The DSP Console supports the following functionality:

Searching the metadata repository
Exploring where and how a given data service or function is consumed

Analyzing data service lineage and dependencies (all data service objects dependent on a given
data service)

Imported physical data service metadata can be re-synchronized to capture changes at the data source.

Data Services Platform: Samples Tutorial 128

Lab 14.1 Defining Customized Metadata for a Logical Data Service

There may be times when you need to modify the generated metadata descriptions to provide more
detailed information to others who will be working with the data service.

Objectives
In this lab, you will:
Create customized metadata for the CustomerProfile logical data service, at both the data service

and function levels.

Build the DataServices project to enable persistence of the new metadata.

Instructions
1. Add customized metadata at the data service level, by completing the following steps:

a. Open CustomerProfile.ds in Design View. (The file is located in the
DataServices\CustomerManagement folder.)

b. Click the data service header to open the Property Editor at the data service level. (If the
Property Editor is not open, choose View — Windows — Property Editor, or press Alt + 6)

c. In Property Editor, click the Description field, located in the General section. This activates
the Description field.

d. Click the "... "icon for the Description field. The Property Text Editor opens.

e. In Property Text Editor, enter the following text:

Unified Customer Profile View — contains CRM, order information, credit rating, and valuation
information.

f. Click OK. The specified text is added to the Description field.

4 Property Text Editor @

Unified Customer Profile View — contains
CRM, arder infarmation, credit rating, and
waluation information,

Figure 14-1 Property Text Editor
g. In Property Editor, click the + icon for the User-Defined Properties section.
h. Click the + icon for the Property(1) field. This actives the Property(1) field.
i. Add a user-defined property, using the following values:
Name = Owner

Value = <your name>

Data Services Platform: Samples Tutorial 129

Draln Service
General
Harme CustomerProtile s
Dascrpticn snilied € View - sank BM, [wredit ki,
Buthex
Cregtion Date G- 1 TVOES01
Type
Dt Service Upndate
v Update true

Decompertion Function
Lpstat Crevaricin Claes.

User Defined Properties =
[EEEE -]
Narre Dhraer
Walue Maril Rianaa
Description @

Diata Service Propertics

Figure 14-2 User-Defined Property for a Logical Data Service
2. Add customized metadata at the function level, by completing the following steps:

a. In Design View, click the getCustomerProfile function arrow to open that function’s Property
Editor. (Note: Do not click the function, which will open XQuery Editor View.)

b. In Property Editor, click the + icon, located in the User-Defined Properties section.
c. Add a user-defined property, using the following values:
Name = Notes

Value = This function is consumed by the Customer Management Portal.

|| Property Editar *

XQuery Function
General

MName getCustomerProfile
User Defined Properties
(] Property(1) |E|
Mame Notes
Yalue This function is consumed by the Customer Management Portal.
Cache
Enabled true
Description W

Walue of the user defined property

Figure 14-3 User-Defined Property for a Function
3. Save the file.

4. Build the DataServices project.

Data Services Platform: Samples Tutorial 130

Lab 14.2 Viewing Data Service Metadata Through the DSP Console

All data service metadata, whether automatically generated or user-defined, can be viewed through the
DSP Console.

Objectives
In this lab, you will:
Use the DSP Console to view both generated and customized metadata.

Use the console’s Search feature to locate metadata for a specific data service.

Instructions

1. Open the DSP Console, typically located at http://localhost:7001/ldconsole/.

Note: WebLogic Server must be running.
2. Log in using the following credentials:
User = weblogic
Password = weblogic

3. Open the CustomerProfile data service, located in the
ldplatform\Evaluation\DataServices\CustomerManagement folder using the left-hand menu.

8 Nqual o Data Srvices Platfm Cansole - ozl Firabex =IOk
B D Vew G0 fooimads Joch Hel Q

x| 0 G

Figure 14-4 DSP Console

4. Select the Metadata tab. The general metadata for the CustomerProfile data service displays. Notice

that the Description attribute contains the customized metadata added in the previous lab.
[@ Wquatogic Dot Sarvices Platarm Consols - Mozl Firex [% |

[0% o G0 pooearls Tk bee X8

P) tetetcabost 7000 kel ¥ 0 G

-l S

|
o ey

Thes page shows the general configuation of thes data samce

Hami

Disclptin
Owrne

Ciwatian Date
Last Hodified Date
Return Type

Data Service Type

Dirta Sourca Typn

Figure 14-5 CustomerProfile General Metadata

Data Services Platform: Samples Tutorial 131

http://localhost:7001/ldconsole/

5. Click the Properties tab and verify that user-defined properties for the data service display. The
property should be similar to that displayed in Figure 14-6, except that it will be your name in the
Value field.

| o ogic Gurta Sarvices Platfarm Camate - Mazilia irsdas ek

2 0= G

BT T Cher

Gasgew | Bead Faruians | Eom Tups | Fvtiesaingy | Propenien | Qapmstances | ohese Uned
This g shows the usee delees progertas of s £4ta samice

Figure 14-6 CustomerProfile Properties Metadata
6. Explore the CustomerProfile data service metadata by completing the following steps:

a. Select the Dependencies tab. All data sources used by the CustomerProfile data service
displays. The CUSTOMER, CUSTOMER_ORDER, and
CUSTOMER_ORDER _LINE ITEM links indicate that these are physical data sources.

& Wl agic Data Servios Platform Comele - darilla Fietes e
)

B DR e 0 Gieeis Dok e

» 0w G

#T? T Cher

Gaoerw | Bend Fincions | Bmes Toas | Bnimaninan | Pogsninn | oepensencien | i vaed

This e ahows i1 dupesduscien of s duth Liece

£ | v |
—] .I'w\-. »ll
i
|

Figure 14-7 Metadata—Dependencies
b. Select the Read Functions tab.
c. Click the getCustomerProfile function.

d. Click the Properties tab. The Note that you created for the getCustomerProfile function should
be visible.

@ Aol ol Bota Services Pl Hezita Firefo)
Be (0 Yew (2 fookewls [1

Figure 14-8 Metadata—Read Function Properties

e. (Optional) Select the Return Type, Relationships, Properties, and Where Used tabs to view
other metadata.

7. Search the DataServices folder for metadata by completing the following steps:

Data Services Platform: Samples Tutorial 132

a. Right-click the Evaluation folder, located in the left-most pane.

b. Select Search. (A search can be on data service name, function name, description, or return
type.)
c. Enter CustomerProfile in the Data Service Name search box and click Search. The data

service name, path, and type of data service are displayed for the CustomerProfile data
service. Clicking the data service name displays the Admin page for the data service.

& Wablagic Sarver Consata: Liquid Data Metadata Bravwsee oo - Marilla Firnfax B %
[2 vmr G mnah Gk b e |
I‘_ -5p - @ a1 | 1) it fhocshost 001 dcorscesearchrnai.upaerversebecedt .o ahest: 1001 Sbisppimekectede vabastion R =

.!mam: locahonEvalusion

HEusiomadProhis Dana Sarace Momas v

i o . —
1 CustomaiPratis da 4 CalaSames e uslomannianagament Lagieal 1

| |
| A e |
|

| Pt 5o Koy | Dnic Saarch | Agdvancad Samch

Figure 14-9 Search Results

Lab 14.3 Synching a Data Service with Underlying Data Source Tables

Sometimes the underlying data source changes; for example, a new table is added to a database. For
those inevitable situations, DSP provides an easy way to update a data service.

Objectives

In this lab, you will:

Import a Java project that contains additional CUSTOMER_ORDER database columns.
Synchronize the information in the Java project with the CUSTOMER ORDER data service.

Confirm the addition of a new element in the CUSTOMER_ORDER data service schema.

Instructions

1. In WebLogic Workshop, choose File — Import Project.

2. Select Java Project.

3. Navigate to the <beahome>\weblogic81\samples\LiquidData\EvalGuide directory.
4. Select the AlterTable folder, click Open, and then click Import.

| Import Project - Hew Praject
=]] Cordrud Parsct
i busrets Logt 2 Data Service Profect
=) Detia Service I Cutamyre Pregect
= o E36 Project
) Poeral L
ki 51 Java Project
=) Schama] Portad ks Prerect

] Wb Services] Procass Projact
) 'Web Liser Interface 4] sechema Presect

i - [or-]

7 Copy int Applcston deectory.

Mame: | AlverTable

| Creates & s Jiva projec.

Figure 14-10 Importing Java Project

5. Open AlterTable.java. (The file is located in the AlterTable project folder).

Data Services Platform: Samples Tutorial 133

6. Click the Start icon, and then click OK when a Confirmation message displays. Compiling the file
adds a new column to the CUSTOMER ORDER table.

7. Open the Output window and confirm that you see the CUSTOMER ORDER TABLE altered
message.

|| Oukput x
Trying to create process and attach to 4540...
D:ivbeatjdkldz 05%bind javaw. exe -Xdebuy -Xnoagent -Djava.c
Process started
Attached successfully.

CUSTOMEE, ORDER TAELE altered.
Debugging Finished

0 0

Figure 14-11 Altered Table Message
8. Right-click the ElectronicsDB folder, located in the DataServices project folder.

9. Select Update Source Metadata. The Metadata Update Targets wizard opens, displaying a list of all
new columns.

Ced Metivdata Update Targets @

[ebatasoares
4 18 Dataseraces [BectronesDEPAODUCT. &
S leDstabervioss DectoncOW OUSTOMLR_CRDR LML [TTM.ds
4 12 DitaService BieckronkaDBJCUSTOMEN,_CRDER: ds

Figure 14-12 Physical Data Sources

10. Click Next. The Metadata Update Preview window opens, which provides details on the data to be
synchronized.

(ol Matadata Updats Praview Ei

Folowing eh b tha el & and ez
Sk W DstatervicesiDiactronsid/PROCUCT ds-
Juptodun
I e DokaservicesiElectroncs OB/ CLSTOMER_CRDER LINE_JTEM d5
= 0 Scheras
| Schmenn texbfimd kDt i Fimchrrracaasachenan CLISTOMER,_OREY
£E WDetaServces Elecuronc D8/ CUSTOMER,_ORDER. &
= T feid Added
]
) setemas
|| Sctema Modfied :DataServiossDectronsce0f)schemas| CUSTOMER_ORD|

0n Finesh, thes update -

[Fewh | | coucdd

Figure 14-13 Synchronization Preview
11. Click Finish.
12. Open CUSTOMER ORDER.ds in Source View. (The file is located in the ElectronicsDB.)

13. Expand the data service annotation, located on the first line of the file, to view the captured

metadata for the relational data source (type, version, column names, native data types, size, scale,
and XML schema types).

Data Services Platform: Samples Tutorial 134

14. Scroll down until you locate the following code, which represents the customized metadata that
you define in Lab 14.1:

<field type="xs:string"” xpath="OWNER">

<extension nativeFractionalDigits="0" nativeSize="50"
nativeTypeCode="12" nativeType="VARCHAR" nativeXpath="OWNER"/>

<properties nullable="true"/>
</field>

CUSTOMER,_ORDER. ds - {DataServicesHElectronicsDE} %

<field type="xs:string” spath="BILL_T0">
<extension nativeFractionalDigits="0" nativeSize="i2" nativeTypeCode="12" nativeType="VARCHAR" nativeX;
<propertiss nullabls="ralse" />

/field>

<field type="xs:date" xpath="ESTIMATED SHIP DATE">
<extension nativeFractionalDigits="07 nativeSize="10" nativelypeCode="91" nativeType="DATE" nativeXpatl
<properties nullzble="false"/>

</ficlds

<field type="ks:string" xpath="STATUS">
cextension nativeFractionalDigits="0" nativeSize="10" nativeTypeCode="12" nativeType="VARCHAR" nativeX;
<propertiss nullabls="ralse" >

/field>

<field type="xs:string" xpath="TRACKING NUMEERV>
<extension nativeFractionalDigits="0" nativeSize="3z" nativelypeCode="12" nativeType="VARCHAR" nativeX)

<properties nullable="true"/x
</fieldr
|efield type="xs:string™ xpath="OUNERT>
cextension nativeFractionalDigits="0" nativeSize="60" nativeTypeCode="12" nativeType="VARCHAR" nativeXy
cproperties nullable="trus" =
< /field=

<key name="CUSTOMER ORDER 0 SYSTEMNAMEDCONSTRAINT PRIMARYEEY™>
<field ¥path="ORDER ID'>
<extension nativelpath="GEDER ID"/>
</fislds
</keyr

crelati i roleNane="CUSTOMER GRDER LINE ITEM" roleumber="2" XDS="1d:DataServices/ElectronicsDl
</xixdsE)

declare namespace Ll = "ld:Dataiervices/ElectronicsDE/CUSTOMER_ORDER™

import schema namespace t3 = "ld:Datajervices/ElectronicsDB/CUSTONER DRDER” at "ld:DataServices/Electrond]
0 |

Design Yiew | ¥Query Editor Yiew | Source View | Test View | Query Plan View

Figure 14-14 Source View of Updated Metadata

15. Select the Design View tab, and verify that an Owner element exists in the XML type for the
CUSTOMER_ORDER data service.

CUSTOMER_ORDER Dist» Sevsacn.
= i CUSTOMER_ORDER.
T oRER_ID westring
@ CUSTOMER_ID rx:string
- c
@ ww
- o
o SEm L
@ TOTAL_CROER_AMOLNT rsideckond
o AL TAY abdecmad
@ P10 xestring
@ SHIP_TO_NAME vxstring
@ BIL_TO by
@ ESTIMATED_SHIP_DATE aidete
@ STATLS xestrng
B TRADKONG NUMEER } apstring
& CWHER Y wxsbrigg

+————— CUSTCHER_CRDER

CUSTO...

A e OUSTCMER ORDER LINE ITEM

B Vowe | Wigorry Bl Wiews | Snrcn Vivwr | Tk Vs | Qi M Views

Figure 14-15 Design View

16. Right-click the CUSTOMER ORDER Data Service header and select Display Native Type.
Confirm that there is a new element, called OWNER VARCHAR(50).

Lesson Summary

In this lesson, you learned how to:

Synchronize physical data service metadata with changes made to the physical data source.
Analyze impacts and dependencies.

Create custom metadata for a logical data service.

Data Services Platform: Samples Tutorial 135

Lesson

Objectives

Overview

15 Managing Data Service Caching

Caching enables the use of previously obtained results for queries that are repeatedly executed with the
same parameters. This helps reduce processing time and enhance overall system performance.

After completing this lesson, you will be able to:

Use the DSP Console to configure a DSP cache.
Enable the cache for a data service function and define its time-to-live (TTL).
Check the database to verify whether a cache is used.

Determine the performance impact of the cache, by checking the query response time.

When DSP executes a query, it returns to the client the data that resulted from the query execution. If
DSP caching is enabled, then DSP saves its results into a query results cache the first time a query is
executed. The next time the query is run with the same parameters, DSP checks the cache
configuration and, if the results are not expired, quickly retrieves the results from the cache, rather than
re-running the query. Using the previously obtained results for queries that are repeatedly executed
with the same parameters reduces processing time and enhances overall system performance.

By default, the query results cache is disabled. Once enabled, you can configure the cache for
individual stored queries as needed, specifying how long query results are stored in the cache before
they expire (time out), and explicitly flushing the query cache.

In general, the results cache should be periodically refreshed to reflect data changes in the underlying
data stores. The more dynamic the underlying data, the more frequently the cache should expire. For
queries on static data (data that never changes), you can configure the results cache so that it never
expires. For extremely dynamic data, you would never enable caching.

If the cache policy expires for a particular query, DSP automatically flushes the cache result on the
next invocation. In the event of a Server shutdown, the contents of the results cache are retained. On
the server restart, the Server resumes caching as before. On the first invocation of a cached query,
DSP checks the results cache to determine whether the cached results for that query are valid or
expired, and then proceeds accordingly.

Data Services Platform: Samples Tutorial 136

Lab 15.1 Determining the Non-Cache Query Execution Time

To understand whether caching improves query execution time, you first need to know how long it
takes to execute a non-cached query.

Objectives

In this lab, you will:

Execute a query function.

Determine the query execution time.

Instructions

1. Open CustomerProfile.ds in Test View.
Select getCustomerProfile(CustomerID) from the function drop-down menu.
Enter CUSTOMER3 in the Parameter field.

2
3
4. Click Execute. The Output window displays the cache’s execution time.
5. Open the Output window.

6

Locate the query execution time.

OLtpuE ™ X
Trying to create process and attach to 1557... =
D:ibea\jdkl4z 05\binyjavaw.exe -Xdebug -Xnoagent -Diava.compiler=NONE -Xrunjdup:transport=dr_socket,address=1557,suspend=y, serversy D
Process started
httached successfully.

CUSTOMER_CRDER TABLE altered.

Debugging Finished

time.execute=7741

time.coupile=3636

reourn profile data=Overall query execution time: 743lms

DataSource name: cgDataSource Invocations: 1 Time: S0ms
Statement: SELECT tl."BIRTH_DAY" A5 cl, tl."CUSTOMER_ID" AS c2, tl."CUSTOMER_SINCE" A3 c3,
tl."DEFAULT_SHIP_METHOD" AS cd, tl."EMATL_ADDRESS™ AS o5, tl."EMATL_MOTIFICATION™ AS c6, IZ‘

Y - 0]

Figure 15-1 Query Execution Time

Lab 15.2 Configuring a Caching Policy Through the DSP Console

By default, DSP results caching is disabled. You must explicitly enable caching. In this lab, you will
learn how to enable caching.

Objectives

In this lab, you will:

Enable caching at the application level.

Enable caching at the function level.

Instructions

1. Inthe DSP Console (http://localhost:7001/1dconsole/), using the + icon, expand the
ldplatform directory. (Note: If you click the Idplatform name, the Application List page opens. You
do not want this page for this lesson.)

2. Enable caching at the application level, by completing the following steps:

a. Click Evaluation. The DSP Console’s General page opens.

Data Services Platform: Samples Tutorial 137

http://localhost:7001/ldconsole/

b. In the Cache section, select Enable Cache.

c. Select cgDataSource from the Cache data source name drop-down list.
d. Enter MYLDCACHE in the Cache table name field.

e. Click Apply.

[Q_ncw_panwmnm;om-muunmn |= %
B [few @ [ooimwis Jook e L]
|- - & F0 [oot 01 fkormok. x| @ w |G

[LT —— o= P
|» @ sapisiorm _— #5? T i bea

[i RTLAnp
i Evanaton

RN st | ot Pt o oty | Ao Prge |

This page akigws you fo detne condguration peopertass of a data serce applcation

Actrs Contral
Chack Access Cantral)
Albow dafault anonymns seeess o

Export access cortol rasources

This exports atcess contsol resources 1o 3 test Sle
A thind paty Security Provider tan wie this resource slarmation

Cache

Enable Cache 5]
Pilzxsa chack 1he hox 1o Grebia ha cachs = Evalustin Applestion
Cachy data source namy ealotaiuuicy »
Pleate salect data source JNDI rame from the list
Cachu table mame Evnluntian_WTACHE
Plessa anfor the &illy qualiied table name, (Defaut: Evabyation_CACHE)
B Cache
Sarvur Rusnsices

Max numbar of query plass cachud 100

B M threads far application o
& Max thieads for v query 5
Log Level
Logging Ernor

Figure 15-2 DSP Console General Page

3. Enable caching at the function level, by completing the following steps (you can cache both logical
and physical data service functions):

a. Open the CustomerProfile folder, located in the
Evaluation\DataServices\CustomerManagement folder. The list of data service functions page
opens.

b. For the getCustomerProfile function, select Enable Cache.
c. Enter 300 in the TTL (sec) field.
d. Click Apply.

Note: Application level cache should be enabled.

Figure 15-3 Setting TTL

Data Services Platform: Samples Tutorial 138

Lab 15.3 Testing the Caching Policy

Testing the caching policy helps you determine whether the specified query results are being cached.

Objectives

In this lab, you will:

Use WebLogic Workshop to test the caching policy for the getCustomerProfile function.

Use the DSP Console to verify that the cache is populated.

Instructions

1. In WebLogic Workshop, open the CustomerProfile data service in Test View.

2. Select getCustomerProfile(CustomerID) from the Function drop-down list.

3. Enter CUSTOMERS in the Parameter field.

4. Click Execute.

5. Inthe DSP Console, verify that the cache is populated by completing the following steps:

a. Go to the CustomerProfile folder.

b. Confirm that there are entries in the Number of Cache Entries field for the
getCustomerProfile() function.

e, Yau ean enshle £aching ef the data sbsdce funclions bare and ybu can sef tha Tim To Live [TTL) &2

m jumshar 0 Cachn [nirins Furge Cachs

Figure 15-4 Cache Test Results in the Metadata Browser

Lab 15.4 Determining Performance Impact of the Caching Policy

A caching policy can reduces processing time and enhance overall system performance.

Objectives

In this lab, you will:

Use the PointBase Console to confirm that the cache was populated.

Use WebLogic Workshop to determine caching performance.

Instructions

1. Use the PointBase Console to verify that the cache was populated, by completing the following
steps:

Data Services Platform: Samples Tutorial 139

a. Start the PointBase Console, by entering the following command in a Command Prompt
window:

$BEA_HOME\weblogic81\common\bin\startPointBaseConsole.cmd
b. Enter the following configuration parameters to connect to your local PointBase Console:
Driver: com.pointbase.jdbc.jdbcUniversalDriver
URL.: jdbc:pointbase:server://localhost:9093/workshop
User: weblogic

Password: weblogic

c. Click OK.
d. Enter the SQL command SELECT * FROM MYLDCACHE to check whether the cache is
populated.

e. Click Execute.

T

- o X b B L3 » i L] = & & 7

Cpm fam. G4 Coy P Ewods Bscssdl Uplsmcuial Comed Mol Bmon kpel e fases
e —

[T st wstmaten | (b

o0y EELECTPROM MYLCACHE

-

Figure 15-5 PointBase Console
2. In WebLogic Workshop, open the CustomerProfile data service in Test View.
3. Select getCustomerProfile(CustomerID) from the Function drop-down menu.

Enter CUSTOMER3 in the Parameter field.

wo s

Click Execute. The Output window displays the cache’s execution time.

a

Use the Output window to determine whether caching helped reduce the query execution time.

Lab 15.5 Disable Caching

Important: For the purposes of these lessons, you must disable the cache to avoid problems with data
updates in future lessons!

Objectives

In this lab, you will:

Data Services Platform: Samples Tutorial 140

Disable caching at the application.

Disable caching at the function level.

Instructions

1. In the DSP Console using the + icon, expand the Idplatform directory. (Note: If you click the
Idplatform name, the Application List page opens. You do not want this page for this lab.)

2. Disable application-level caching, by completing the following steps:
a. Click Evaluation. The DSP Console’s General page opens.
b. In the Cache section, select Enable Cache to clear the checkbox.

c. Click Apply.

Data Services Platform: Samples Tutorial 141

3. Disable function-level caching, by completing the following steps:

a. Open the CustomerProfile folder, located in

Evaluation\DataServices\CustomerManagement

The list of data service functions page opens.
b. For the getCustomerProfile function, select Enable Cache to clear the checkbox.
c. Click Apply.

Lesson Summary

In this lesson, you learned how to:

Use the DSP Console to configure the DSP cache.
Enable the cache for a data service function and define its time-to-live (TTL).
Check the database to verify whether a cache is used.

Determine the performance impact of the cache, by checking the query response time.

Data Services Platform: Samples Tutorial 142

Lesson

Objectives

Overview

16 Managing Data Service Security

The Data Services Platform (DSP) leverages the security features of the underlying WebLogic
platform. Specifically, it uses resource authorization to control access to DSP resources based on user
identity or other information.

Note: WebLogic Server must be running.

After completing this lesson, you will be able to:

Enable application-level security.
Set function-level read and write access security.

Set element-level security.

DSP’s security infrastructure extends WebLogic Server’s security policies to include DSP objects such
as data sources and stored queries, as well as security roles, groups, and users. These security policies
allow DSP administrators to set up rules that dynamically determine whether a given user:

Can access a particular object.
Holds read/write/execute permissions on a DSP object or a subset of those permissions.

By default data services do not have any security policies configured. Therefore data is generally
accessible unless a more restrictive policy for the information is configured. Security policies can
apply at various levels of granularity, including:

Application level. The policy applies to all data services within the deployed DSP application.

Data service level. The policy applies to individual data services within the application.

Element level. A policy can apply to individual items of information within a return type, such as a
salary node in a customer object. If blocked by insufficient credentials at this level, the rest of the
returned information is provided without the blocked element.

Implementing DSP access control involves using the WebLogic Server Console to configure user
groups and roles. You can then use the DSP Console to create policies for DSP, including data services
and their functions.

Data Services Platform: Samples Tutorial 143

Lab 16.1 Creating New User Accounts

The first step in creating data service security policies is to create user accounts and either assign the
user account to a default group or configure a new group. There are 12 default authenticator groups.

Objectives

In this lab, you will:

Open the WebLogic Server Console.
Create two user accounts that use a default user group.

View the user list.

Instructions

1. Open the WebLogic Server Console (http://localhost:7001/console/), using the following

credentials:
User Name = weblogic
Password = weblogic

2. Choose Security — Realms — myrealm — Users.

3 WeblLogic Server Console - Microsoft Internet Explorer

witewl_cornol_kame amoid=e » [Go

This Uners page iaplays by informatien abeut each wier that has Been confund n This secarty ks,
O/ Configuie i o User
Fitar By Filwe |

User Description Provider
run) | Ademin fof portal domain DetautAunenticator | [
Dutauthunantcator | 8
Dalettuhonticator | @
o | Defeatiuhonticator |

S Local ranwt

] Aot g vt

Figure 16-1 User Security

3. Select Configure New User.

ey
myrealm> Create User s BEA ‘::‘ne.ﬂ'

This page allows you 1o define & user in this secunty realm

Hame: nw_user

The logn name for this user

Dascription:

A& shont descnption of this user. For example, the weer's full name
Passwonk

Confirm
Passwonl:

The passwornd sssociated wiih the login name for this uset

Figure 16-2 Define User in Security Realm

Data Services Platform: Samples Tutorial

144

http://localhost:7001/console/

Lab 16.2

4. Create a new user account by completing the following steps:
d. Enter Joe in the Name field.
e. Enter password in the Password field.
f. Enter password in the Confirm Password field.
g. Click Apply.
5. Repeat step 3 and step 4, entering Bob in the Name field (step 4a).

6. (Optional) Choose Security — Realms — myrealm — Users to view the results.

a000aa

Figure 16-3 New Users Added

Setting Application-Level Security

Application-level security applies to all data services within the deployed DSP domain, regardless of
user permission or group. By default, when you turn on access control for an application, access to any
of its resources is blocked, except for users who comply with policies configured for the resources.

Alternatively, by allowing default anonymous access, you can grant access to its resources by default.
You can enable default anonymous access level by navigating to Application level General tab under
Access Control (application Name — General). In this case, a resource is restricted only if a more
specific security policy for it exists; for example, a security policy at the data service function level.

Objectives

In this lab, you will:

Use the AquaLogic Data Services Platform Console to enable application-level security.

Use WebLogic Workshop to test the security policy.

Instructions

1. Inthe DSP Console (http://localhost:7001/ldconsole/), using the + icon, expand the Idplatform
directory.

Note: If you click the ldplatform name, the Application List page opens. You do not want this page
for this lesson.

2. Click Evaluation. The application’s General page opens.
3. Select Check Access Control.
4. Click Apply.

Data Services Platform: Samples Tutorial 145

http://localhost:7001/ldconsole/

[gDt Sries P Coot. ot o S
|B= = P o [odmwiz Josk b

| . :
|€-%-& A ey | @ w G

|® # consale Access Cormrel
= @ mpiatiom
E i Evation
50 Datasbarvicns

& il R

General

This page alows you to define configration prapenies of a dita serace applicaton.

Access Control
Check Actess Control =
Miow defaull snusymous accuss o

I Export access control resoues

This erperts access conol msowces fo a fon file,
A third party Seturty Provider can use this reseurce infsrmation.

Cacho

Enable Cacho o

Finase chack (ha box 1o anahle the cache in Evaluation Appiicatan

Cache da1a snurce name calatnScerca -
Finage selact dala source SNO! name fom the st

Cache table name Evaleaton_MTCACHE

Finace erée: tha fuly quattad fable name. [Defsull: Evaluston_CACHE)

Burge Cache

Sanear itessurces

Figure 16-4 Set General Security

5. Test the security policy by completing the following steps:
a. In WebLogic Workshop, open CustomerProfile.ds in Test View.
b. Select getCustomerProfile from the Function drop-down list.
c. Enter CUSTOMER3 in the Parameters field.

d. Click Execute. The test should return an Access Denied error. With the current security
settings, no one can access the application’s functions. You must grant user access to read and
write functions.

CustomerProfile,ds - {Dataservi |

Select Function:

~
)
\-a getCustomerProfile(CustomerID) | VT‘

Parameters

wststring CustomerIDs | CUSTOMERS |

Mumber Element by path)

Limit elements in array results to

[s00] -]

[start Client Transaction [] Validate Results

Result I I |

at java lang. Thread run(Thread. java: 5341 [=]
aused by: com.bea.ld.QueryException: Access denied

at com bea.ld EJEReq inivakeFunction(E JBRer favai470)

at com.beald EJERequestHandler. executsFunction(E JBRequestHandler java: 180)

at com.beald.Ser uteFunction(Ser javaida)

at com.beald Server_ydmdie_EQImpl executeFunction(Server_ydmdie_EOImpl.java:532)

at com.beald,Server_ydmeie_EoTmpl_LSkel.invoke(Urknown Source)

at weblagic rmi.internal, Basi rRef rvetRef javaid?T)

at weblogic,rmi.cluster Replic inake{Replic Jjava:108)

&t weblagic rmi.internal, BasicServerRef§ Lrun(BasicServerRef. java:420)

at weblagic, security acl internal AuthenticatedSubject, dofs(AuthenticatedSubject. java: 363)

at weblogic security service SecurityManager runfs(SecuribyManager. java: 147)

i L

e]

[Dissign view | RQuery Editar View | Saurce Vien | Test Yiew | Query Plan Yiew

Figure 16-5 Access Denied

Data Services Platform: Samples Tutorial 146

Lab 16.3 Granting User Access to Read Functions

DSP security policies can be set at the function level, which applies to specific functions within
specific data services. Function-level security can be read and/or write permissions. A policy may
include any number of restrictions; for example, limiting access based on the role of the user or on the
time of access. Specifically, policies can be based on the following criteria:

User Name of the Caller. Creates a condition for a security policy based on a user name. For
example, you might create a condition indicating that only the user John can access the Customer
data service.

Caller is a Member of the Group. Creates a condition for a security policy based on a group.

Caller is Granted the Role. Creates a condition based on a security role. A security role is a
special type of user group specifically for applying and managing common security needs of a
group of users.

Hours of Access are Between. Creates a condition for a security policy based on a specified time
period.

Server is in Development Mode. Creates a condition for a security policy based on whether the
server is running in development mode.

Objectives

In this lab, you will:

Use the DSP Console to grant Joe read access permissions, based on user name.

Use WebLogic Workshop to test the new security policy.

Instructions

1. Inthe DSP Console, open the CustomerProfile data service. (The data service is located in the
ldplatform\Evaluation\DataServices\CustomerManagement folder.)

2. Click the Security tab. The Security Policy window opens.

1 i Dot Servis Ploiform Consol - il Frefoe]

K on the action 30 as3ign a securmy poicy B the
Sacurity by clicking the ¥Ouery Functions for
applicaton node

Xdunry Functhons for Security

Figure 16-6 Data Service-Level Security Policy

3. Click the Action icon for the getCustomerProfile resource. The Configure window opens.

Data Services Platform: Samples Tutorial 147

| 8 Wqual g Dot Services Platiorm Camote - Maziile Firetus =06
e Gh B G Bodnee ok b o

Palicy Statement

Iahmrited Pelicy Sttamest:

Ouiete | Fuset | Agoly |

Figure 16-7 Configure Security

4. Set read access for a specific user, by completing the following steps:
a. Select User name of the caller.
b. Click Add. The Users window opens.
c. Enter Joe in the Name field.

d. Click Add.

& http://localhost: 7001 - Users - Mozilla Firefox ==

Type one hame at a time and click Add.

Enter User Hame :

Users :

Username ofthe calleris [~ Move Up
Joe
Move Down
Change
™ Remove

Ok | Cancel

Figure 16-8 Adding User
e. Click OK. The Configure window re-opens.
f. Click Apply.
5. Login to the now-secure application, by completing the following steps:
a. In WebLogic Workshop, choose Tools — Application Properties — WebLogic Server.
b. Select Use Credentials Below.
c. Enter Joe and password in the Use Credentials Below fields.

d. Click OK.

Data Services Platform: Samples Tutorial 148

& Application Properties

[

‘weblagic Server
1l L Server Home Directory:

j:“"d cont [Citbeaiweblogicstamples|domalnsidlatfor, [-]
aurce Cartra

|| Debug sourcepath

|_]Encading Save server home directory in:
[porta @ Personal settings

(O Shared application settings (.wark file)

Paths
JDK Home:
| Cbeatirockiatsnt 142 05i | romse... |

‘WebLogic Home:
| C/\bealweblogics1 | [Brawse.. |

Start Command:

2 &1}samp formistartWebLogic ‘ ‘ Browse. . |

Stop Command:
| Cibeatweblogicat lsaml farm|stopWebLogic | romse... |

settings

Hostname: [locakhost

Part: ‘ 7001

WebLagic domain: | dplatfarm

WebLogic server: ‘ cqerver

Authentication options:

O Use domain's boot properties file

® Use aredentials below:

vz B |

pa— = |

Default server classpath:

C:\bealweblogicsilserveriliolknex. jar B
€ {bealweblogics1commonyibilogd;.jar

Cr{bealweblogicaserverilin|debugaing. jar

C:\bealweblogica1tjavelinyib\javelin.jar

Cr{bealweblogica | serverilislnbw-lang jar

C:\bealweblogicsilserveriliblweblogic.jar

€ {bealweblogicB1commonevalipaintbasellib\phserver+4 jar =

Figure 16-9 Logging Into Secure Application

6.

a.

b.

Test the security policy by completing the following steps:
Open CustomerProfile.ds in Test View.
Select getCustomerProfile from the Function drop-down list.
Enter CUSTOMER3 in the Parameters field.
Click Execute. The test should permit access and return the requested data.

Click Edit, modify an item, and then click Submit. An error message will display, since Joe is
only granted read access.

Data Services P

latform: Samples Tutorial

149

Lab 16.4 Granting User Access to Write Functions

As noted in the previous lab, security policies at the function level can allow either read and/or write
permissions.

Objectives

In this lab, you will:

Use the DSP Console to grant Joe write access permissions.

Use WebLogic Workshop to test the new security policy.

Instructions
1. In the DSP Console, open the CustomerProfile data service.
2. Select the Security tab. The Security Policy window opens.
3. Click the Action icon for the submit resource. The Configure window opens.
4. Set write access to a user, by completing the following steps:

a. Select User name of the caller.

b. Click Add.

c. Enter Joe in the Name field.

d. Click Add.

e. Click OK.

f. Click Apply.
5. Test the security policy, by completing the following steps:

a. In WebLogic Workshop, open CustomerProfile.ds in Test View. (The file is located in the
DataServices\CustomerManagement folder.)

o

Select getCustomerProfile from the Function drop-down list.
c. Enter CUSTOMERS in the Parameters field.
d. Click Execute. The test should permit access and return the specified results.

e. Click Edit. Since Joe is granted both read and write access, you can now edit the results.

Data Services Platform: Samples Tutorial 150

Lab 16.5 Setting Element-Level Data Security

A policy can apply to individual items of information within a return type, such as a salary node in a
customer object. If blocked by insufficient credentials at this level, the rest of the returned information
is provided without the blocked element.

Objectives

In this lab, you will:

Enable element-level security.

Set a security policy for specific elements.

Instructions

1. In the DSP Console, open the CustomerProfile data service.

2. Select the Security tab.

3. Set element-level security, by completing the following steps:

a. Select the Secured Elements tab.
b. Expand the CustomerProfile and customer+ nodes.
c. Select the checkbox for the ssn simple element.
d. Expand the orders ? and orders * nodes.
e. Select the checkbox for the order line * complex element.
f. Click Apply.
[e B T P o o T B %]

th Gh B G B)]

Figure 16-10 Setting Element-Level Security

4. Return to the Security Policy window for CustomerProfile. You should see two new resources:
CustomerProfile/customer/ssn and CustomerProfile/customer/orders/order/order line.

Data Services Platform: Samples Tutorial

151

I Webdogic Server Liquid data Comsle - Microsslt Infernet [xplorer

Fie Bl Vew Foudes Tods Heb
Q- 0 (¥ @ POuen e @ G- 2-JH 3
ot |) berp i st o1 et il I
W 4 Conmoe Access Contro -)
e s #22 i

Fnu Mitadats]
Cache | Security

m Sacued Elemris |

This page allows y0u 1o view all IRSOUITIES as5ociated with this Data Senice Click on the action ts assgn securty policy
for the lsted fesoutce.
sigrad with socunty XOuery fnctians by chcking secunty XOuery functons won Admin can Creste
Siong ot
Tont Aesion Sacimity XOuary functisns
iordir_srue | shimeet a &
eloment) &
wwd @ L)
wwd @ L)
bt wpdatn @ L
4] Aot rresplet stirted o Lol et

Figure 16-11 New Secured Element Resources
5. Set the security policy for the complex order line element, by completing the following steps:
a. Return to the Security Policy window for CustomerProfile.

b. Click the Action icon for the CustomerProfile/customer/orders/order/order line resource. The
Configure window opens.

c. Select User name of the caller.
d. Click Add.
e. Enter Joe in the Name field.
f. Click Add.
g. Click OK.
h. Click Apply.
6. Set the security policy for the simple ssn element, by completing the following steps:

a. Click the Action icon for the CustomerProfile/customer/ssn resource. The Configure window
opens.

b. Select User name of the caller.

c. Click Add.
d. Enter Bob in the Name field.
e. Click Add.
f. Click OK.

g. Click Apply.

Data Services Platform: Samples Tutorial 152

Lab 16.6 Testing Element-Level Security

At this point, element-level security policies are defined for both Bob and Joe. Testing the policy
within WebLogic Workshop lets you determine what data results these two users will be able to
access.

Objectives

In this lab, you will:

Test the security policy for Bob and Joe.

Change the security policy for Bob and test the new security policy.

Instructions
1. Test element-level security for Joe, by completing the following steps:

a. In WebLogic Workshop, open CustomerProfile.ds in Test View.

<

Select getCustomerProfile from the Function drop-down list.

Enter CUSTOMERS3 in the Parameters field.

e

d. Click Execute. The test should permit access and return all results except SSN.

e. Click Edit, modify an order line value, click Submit, and click OK. The specified change is
submitted.

f. Click Execute to refresh the data set.
g. Verify that changes have been saved.
2. Test the element-level security policy for Bob, by completing the following steps:
a. Choose Tools — Application Properties — WebLogic Server.
b. Select Use Credentials Below.
c. Enter Bob and password in the Use Credentials Below fields.

d. Click OK.

o

Open CustomerProfile.ds in Test View.

=

Select getCustomerProfile(CustomerID) from the Function drop-down list.
Enter CUSTOMER3 in the Parameters field.

g
h. Click Execute. The test should fail. Although Bob can access the SSN element, he does not
have read access to the getCustomerProfile() function.

3. Change the security policy for Bob, by completing the following steps:
a. Inthe DSP Console, open the CustomerProfile data service.
b. Select the Security tab.
c. Click the Action icon for the getCustomerProfile resource. The Configure window opens.
d. Set read access for Bob, by completing the following steps:
1) Select User name of the caller.

2) Click Add.

Data Services Platform: Samples Tutorial 153

3) Enter Bob in the Name field.
4) Click Add.
5) Click OK.

6) Click the "and User name of the caller" line, located in the Policy Statement section
of the window.

7) Click Change, which changes the line to an "or User name of the caller" condition.

8) Click Apply.

Dets | Fven | gy

Figure 16-12 Enabling read Access for Two Users

4. In WebLogic Workshop, test the getCustomerProfile() function again. This time, user Bob can
view all elements except order line information.

5. Try modifying data by clicking on Edit button and changing SSN. Submit changes by clicking on
Submit button. An error message will display since Bob does not have write privileges.

6. Reset the application-level security, by completing the following steps:

a. Inthe DSP Console (http://localhost:7001/ldconsole/), using the + icon, expand the Idplatform
directory.

Note: If you click the ldplatform name, the Application List page opens. You do not want this
page for this lesson.

b. Click Evaluation. The Administration Control’s General page opens.
c. Select Check Access Control to clear the checkbox.

d. Click Apply.

Lesson Summary

In this lesson, you learned how to:

Activate application level security.
Set security permissions on both read and write function access.

Set security permissions on simple and complex elements.

Data Services Platform: Samples Tutorial 154

http://localhost:7001/ldconsole/

Lesson 17 (Optional) Consuming Data Services through Portals
and Business Processes

The previous lessons demonstrated how DSP provides a convenient way to quickly access DSP from a

WebLogic Workshop application such as page flows, process definitions, or portals. This optional
lesson details the steps you take to use a portal to access data services.

Note: WebLogic Portal must be installed.
Objectives
After completing this lesson, you will be able to:

Import a WebLogic Portal project that contains portals and business processes.

Install the Data Service Control in the project, thereby making data services available from

the portal and business processes.

Recognize how a Data Service Control is used from a portal and business process.

Overview

At its most basic level, a portal is a Web site that simplifies and personalizes access to content,

applications, and processes. Technically speaking, a portal is a container of resources and functionality
that can be made available to end-users. These portal views, which are called Desktops in WebLogic

Portal, provide the uniform resource location (URL) that end users access.

Employees Customer Service Order Management
Portal Portal Portal
- > [Client APT _ |)
Datqlsiew Administration
Builder | Security Console
[esign Tool far I] Caching, Security,
Unifiad Model & — \ Bdire } Mang -;uamemzt"I
Queries - -
| J s . = 4
N Distributed Query Processing
" Model 4
Repository
—_— | | Data Source API | |
L 5 A
e S T S T T v
ec || JoBC | [_ Web 2L | [Inflight | [Custom | | A
| 5ewitﬁ5| Bl l "ML | FuncHions BEA WebLogic Adapters
Businass File Packaged Custom Legacy
| ROBMS Dl DM Fartmer | | Sustem | .Messages Crther Apps Apps Bpps

Figure 17-1 Consuming Data Services from Portals

Lab 17.2 Installing a Data Service Control in a Portal Project

The steps within this lab are similar to those detailed in Lab 8.1.

Data Services Platform: Samples Tutorial

155

Objectives

In this lab, you will:

Import a portal web project’s files and libraries, which you will use to create a new portal
project.

Create a new portal project.

Add a control to the portal project.

Instructions

1. Right-click the Evaluation application.

2. Choose Install — Portal. DSP installs the necessary portal files and libraries.

3. Create a new portal web project by completing the following steps:

a. Right-click the Evaluation application.
b. Choose Import Project.
c. Select Portal Web Project.
d. Select MyPortal, located in the <beahome>\weblogic81\samples\ liquiddata\EvalGuide
directory.
e. Click Open and then click Import.
Import Project - New Project

Al 2] Canitrol Project -

(L) Business Logic 18] Data Service Project

() Data Service [Datasync Project

% Eiia‘ @ EB Project

) Frocess <& Java Froject

) 5chema @] Portal Web Praject

|0 Wb Servicss @] Pracess Project

T Web User Interface | (] Schema Project =

Directory: | & ics Lysamples|LiguidD | [Bromse... |

Hame:

Copy into Application directory.

‘ MyPortal ‘

A new Wel

Framework Files, You must add a Portal Web Project ko a Portal Application,

b Project that includes WebLogic Portal ISP tags, APTs, and default portsl

Figure 17-2 Importing a Portal Web Project

Data Services Platform: Samples Tutorial

156

4. Create a new folder in the MyPortal folder, and name it controls.

5.
a. Right-click the MyPortal project.

b. Choose New — Java Control.

Create a Data Service Control within the portal by completing the following steps:

c. Select Data Service Control and name it CustomerData.

New Java Contral

Select a control to extend or select Custom to creake a new custam contral;

) Custorn

[Database
& Web Service
42/ E38 Control
8 ms

0> Data Service

) Tuxedo

2 Applicationiiew

:

I

File name: CustomerData

AMyPortalty

(o] (o]

Browse, ..

Figure 17-3 Creating a New Data Service Control

d. Click Next and then click Yes at the Message window.

e. Select MyPortal\controls as the subfolder in which to locate the new control.

f. Click Select. The New Java Control — DSP window opens.

MNew Java Control - Data Service

STEP 1

SIEFE e ey ©@Eme @k

[Eze=]

[Previous | | | [[create || cancel |

Figure 17-4 Setting Data Service Control Specifications

g. Click Create to accept the default settings. A list containing available data service queries

displays.

Data Services Platform: Samples Tutorial

157

6.

h. Open CustomerProfile.ds (located in DataServices/CustomerManagement) and select the
following methods:

o getCustomerProfile()

0 submitCustomerProfile()

Click Add and then Finish.

& Select Data Service functions...

Select one or more functions ko add ko the contral,

[C) DataServices

[C1 ApparelDE getCustomerProfile
{2 CustomerDE

) CustomerManagement
=1 CustomerProfile.ds

(22 ElectronicsDE

(21 ServiceDB Remove Al

(2] webServices

submitCustomerProfile

-B getallCustomers()
-B getCustomerProfiled)
J submitArrayOfCustomerProfilel)

J submitCustomerProfile()

Figure 17-5 Selecting Query Functions

Lab 17.3 Testing the Control and Retrieving Data

As with all data services, you should test functionality before you deploy the application.

Objectives

In this lab, you will:

Run the CustomerManagement.portal application.

Retrieve data.

Review the results.

Instructions

1. Open CustomerManagement.portal.

a.

Click the Start icon to open the Workshop Test Browser and run the portal application

containing the CustomerManagementWebApp and the CustomerReport that were used in
carlier lessons.

Enter CUSTOMER3 in the Customer ID field and press Enter. The Customer Profile
Information page opens.

Data Services Platform: Samples Tutorial

158

Warkshop
=0 %

customer Profile Roports

Customer Profile Information

—

Customer Profile

o Neme Smith, Joo
JOHN_3pate.cam
LoseN 647-73-1256
1952-05-09
PRICRITY=1
| Credit Rating 600
Update Profie

Orders

Filtars:

order amount [* =] B Aoyt | e of orgers [5 =] _Satuma |

Dichra
LINE QAPPA_SH_4| Sandal st 124%.958 2mous
Nordstroen.

Tusdray
2001- L e o Hesbun e
ORDER_3_0 Jn g E5EESLINC JAPPA_SH_S froen| 1259958 emove]
Farragamo
ueei
LINE ZAPPA_BA1 Deyavu 1| 99.95R e
Wb
LIHE_GAPPA_BA_ 15/ 9.952smos
i
LINE CIAPPA_GH_§| Hestun 1299955 2move
Farragamo
2001~ Cuex
OROERID i-6| "% nie sarpa Bal Dravu 1| 9998 R e
Habo
Burberry]

Figure 17-6 Portal Access to Web Application Data

c. Click the Reports link. For the Reports page, the first invocation may take a few moments
before displaying.

Gustamer Profile Reports

showCrystal

E Main gt = ﬂdq 1/ b |}u I a “ [75m - W'ﬁ'
CUSTOMERD
CUSTOMERL
CUSTOMERZ
CUSTOMERY
CUSTOMER4
CUSTOMERS.
CUSTOMERE

: Spend By Customers

-

gusRgRes

@ g b g b & b D &
.
S

L L
cusmomens ™ =
Tots foe CUSTOMIRD: 160080
cummen: a ™
Totst for CUSTOMERY: 043638
cusmoness . Gnrery
Toas toe CURTOMERZ: 129230
cusmomens e e
Toas toe CURTOMERS: 33875
cummomens ™
Tobi lie CURTONERS. 534470
cumomens s e
Tobi lie CURTONERS. 708750
e 1ot
-
< >

Figure 17-7 Portal Access to Crystal Reports Data

Data Services Platform: Samples Tutorial

159

d. Open the process.jpd file, located in the MyPortal\processes folder. You will see the Design

View of the process definition that accepts a CUSTOMER _ID String, invokes the Data
Service Control, and returns the customer information in an XML document.

process.jpd - {MyPortal}|processest

®

K1}

®e

process

-

@

getCustomerPy

=

Clierk Request with Return

Finish

=

&

]
=
rofile

Ol
[1003l ~

Design view [Source View

Figure 17-8 Design View of process.jpd File

e. Click the Start icon to test the process definition.

f. Enter CUSTOMER3 in the Customer ID field and then click clientRequestwithReturn.

g. Scroll through the page to view customer information included in the “Returned from

getCustomerProfile on LDControl” section.

& Workshop Test Browser

+ = @ = Hhttp:;’,ﬂﬂcalhnst:?ﬂﬂl)’MyPnrta\fpmcessesfprncass‘jpd7.EXPL0RE=.TEST&.LOGENTR\"=D|

Returned from getCustomerProfile on LDControl
Submitted at Fri Mar 25 03:26:32 PST 2005

Return value: <nsD:CustomerProfile
smins:ns0="http:j/temp.openuri.org/DataSer vices/schemas)CustomerProfile xsd" =
<customer
<customer_id=»CUSTOMER3 </ customer _jd=>
<first_name >Joe<ifirst_name

<last_name=Smith </last_name >
<customer_since >2001-10-01 </customer_since =
<gmail_address»JOHN_3@att,com</email_address>
<telephone_number »9287731259 <telephone_number >
<55n =647-73-1259 <jssn
<hirth_day>1952-05-09</birth_day>
<default_ship_method =PRIORITY-1 < fdefault_ship_methad>
«<email_notification =1 «/email_notifications
<news_letter >0</news_letters
<online_statement =1 <fonline_statement:=

<orders=

<order=

<order_id=0ORDER_3_0</order_id>
<customer_id=»CUSTOMER3 </ customer _jd»
<order_date=2001-10-01 <forder_date>
<ship_method »PRICRITY-1 =/ship_method:>
<handling_charge>&.5</handling_charge >
<subtotal»649,85</subtotal >
<total_order_amount »656.65 <jtotal_order_amount >
<sale_tax=0</sale_taxs
«ship_to=ADDR_3_0</ship_tox

<ship_to_namme=Britt Pierce </ship_to_name>
<bill_to=CC_3_1 «<jbill_to>
<estimated_ship_date>2001-10-03 </estimated_ship_date
<skatus>CLOSED <jskatus>

<data_source/=

<order_line>

<line_id>LINE_1</line_id>
<order_jd=CORDER_3_0=</order_id=>
<product_id=APPa_SH_S</product_id=

<product »Audrey Hepbun From Farragamo</product =
<quantity1 «fquantity >

<price =299, 95<price >

«status>CLOSED «/status»

<forder_line>

<order_linex

<line_id=LINE_2</line_id>
<order_jd=CORDER_3_0</order_id=>
<produck_id=APPA_BA_1</product_id=>

<produck »Cucc Dejavu Hobo=/product >
<quantity =1 <fquantity =

<price »99,95</price>

<status>CLOSED <jstatus

sforder line>

Figure 17-9 Business Process View of Customer Data

Data Services Platform: Samples Tutorial

160

Lesson Summary

In this lesson you learned how to:

Import a WebLogic Portal project that contains portals and business processes.

Install the Data Service Control in the project, thereby making data services available from
the portal and business processes.

Recognize how a Data Service Control is used from a portal and business process.

Data Services Platform: Samples Tutorial 161

Data Services Platform: Samples Tutorial 162

Glossary

ad-hoc query. A hand-coded or generated query that is passes to Data Services Platform on the fly, rather than
stored in the DSP repository.

administration console. A web-based administration tool that an administrator uses to configure and monitor
WebLogic Servers. DSP provides a console to help manage instances of Data Services Platform.

application. A collection of all resources and components deployed as a unit to an instance of WebLogic Server.
The application contains one or more projects, which in turn contain the folders and files that make up your
application. Only one application can be open at a time.

cache. The location where DSP stores information about commonly executed stored queries for subsequent,
efficient retrieval, thereby enhancing overall system performance. DSP provides query plan cache and result set
cache.

cache policy. In the result set cache, configuration settings determine when the cached results expire for individual
stored queries.

data model. A visual representation of data resources.
data object. In SDO, a complex type that holds atomic values and references to other data objects.

data service. A modeled object that describes a data shape and functions used to retrieve and update the data, as
well as functions to navigate to other related data services.

data service mediator. The SDO mediator that uses data services to retrieve and update data.
data service update. The engine responsible for handling submits of changes to SDOs

data source. Any structured, semi-structured, or unstructured information that can be queried. The types of data
sources that DSP can query include relational databases, Web services, flat files (delimited and fixed width), XML
files, Java functions, application views via web applications (business-level interfaces to the data in packaged
applications such as Siebel, PeopleSoft, or SAP), data views (dynamic results of DSP queries).

data source schema. An XML schema that defines the content, semantics, and physical structure of a data source.

function. A uniquely named portion of an XQuery that performs a specific action. In the case of DSP the function
would typically query physical or logical data.

java server page (JSP). A J2EE component that extends the Servlet class, and allows for rapid server-side
development of HTML interfaces that can be co-mingled with Java.

logical data service. A data service that integrates data from multiple physical and/or logical data services.
mapping. The process of connecting data source schemas to a target (result) schema.
metadata. Descriptors about a data service’s information, format, meaning, and lineage.

physical data service. The leaf-level data services that expose external data. For relational sources, this would be a
data service representing tables or stored procedures. For functional sources, this would be the functions that are
considered to be the initial source of data operated on by XQuery.

project. Groups related files within an application.

query. In the Data Services Platform an XQuery function that retrieves data from a data source. Functions define
what tasks the query will perform, while expressions define what data to extract.

query operation. Operation that a query performs, such as a join, aggregation, union, or minus.

query plan. A compiled query. Before a query is run, DSP compiles the XQuery code into an executable query
plan. When the query executes, the query plan is sent to the data source for processing.

Data Services Platform: Samples Tutorial 163

http://bernal.bea.com/stage/liquiddata/docs82/gloss/index.html#54450
http://bernal.bea.com/stage/liquiddata/docs82/gloss/index.html#57806
http://bernal.bea.com/stage/liquiddata/docs82/gloss/index.html#59865
http://bernal.bea.com/stage/liquiddata/docs82/gloss/index.html#57092

repository. File-based metadata maintained in a DSP project.

result set. The data returned from an executed query. There are two types of result sets: intermediate result sets are
temporary result sets that the query processor generates while processing an analytical query; final result sets are
returned to the client application that requested the query in the form of XML data.

return type. A type of XML schema that defines the shape of data returned by a query.
schema. A model for representing the data types, structure, and relationships of data sets and queries.

security. Set of mechanisms available to prevent access to, corruption of, or theft of data. DSP extends the
WebLogic Server compatibility security mechanisms to define groups, users, and access control to DSP resources.

service data object (SDQO). Defines a Java-based programming architecture and API for data access.

simple object access protocol (SOAP). An extensible, platform-independent, XML-based protocol that allows
disparate applications to exchange messages over the Web. SOAP can be used to invoke methods on servers, Web
services, application components, and objects in a distributed, heterogeneous environment. SOAP-based Web
services are one of the data sources DSP supports.

source schema. XML schema that describes the shape (structure and legal elements) of the source data — that is,
the data to be queried. The DSP-enabled server runs queries against source data and returns query results in the form
of the source schema.

stored query. A query that has been saved to the DSP repository. There is a performance benefit to using a stored
query because its query plan is always cached in memory, optionally along with query result. With an ad-hoc query,
however, the query plan and result are not cached. In addition, caching of query results for a stored query is
configurable through the Cache tab on the DSP node in the Administration Console.

structured query language (SQL). The standard, structured language used for communicating with relational
databases. Database programmers use SQL queries to retrieve information and modify information in relational
databases. In order to be able to access different types of data sources dynamically, DSP employs the XML-based
XQuery language as a layer on top of platform-dependent query systems such as SQL.

target schema. See return type.
weblogic server. The platform upon which DSP is built.
weblogic workshop. The IDE in which DSP runs as an application.

web service. Business functionality made available by one company, usually through an Internet connection, for use
by another company or software program. Web services are a type of service that can be shared by, and used as
components of, distributed Web-based applications. Web services communicate with clients (both end-user
applications or other Web services) through XML messages that are transmitted by standard Internet protocols, such
as HTTP. Web services endorse standards-based distributed computing. Currently, popular Web Service standards
are Simple Object Access Protocol (SOAP), Web services description language (WSDL), and Universal
Description, Discovery, and Integration (UDDI).

web services description language (WSDL). Specification for an XML-based grammar that defines and describes
a Web service. A WSDL is necessary if two different online systems need to communicate without human
intervention.

xml schema. A structured model for describing the structure, content, and semantics of XML documents based on
custom rules. Unlike DTDs, XML schemas are written in XML data syntax and provide more support for standard
data types and other data-specific features. When metadata about a data source is obtained, it is stored in an XML
schema in the DSP repository.

xquery. An XML query language, which represents a query as an expression which is used to query relational,
semi-structured, and structured data.

xsd. An abbreviation for XML Schema Definition. An XSD file describes the contents, semantics, and structure of
data within an XML document.

Data Services Platform: Samples Tutorial 164

Data Services Platform: Samples Tutorial 165

	 Copyright
	Restricted Rights Legend
	Trademarks or Service Marks
	About This Document
	Document Organization
	 Technical Prerequisites
	System Requirements
	Data Sources Used Within These Lessons
	Related Information
	Part 1 Core Training

	Lesson 1 Introducing the Data Services Platform Environment
	Objectives
	Overview

	Lab 1.1 Starting WebLogic Workshop
	Objectives
	Instructions

	Lab 1.2 Navigating the DSP Integrated Development Environment (IDE)
	Objectives
	Application Pane
	Design View
	XQuery Editor View
	XQuery Editor View Tools

	Source View
	Test View

	Lab 1.3 Starting WebLogic Server
	Objectives
	Instructions

	Lab 1.4 Stopping WebLogic Server
	Objectives
	Instructions

	Lab 1.5 Saving Your Work
	Objectives
	Instructions

	Lesson Summary

	Lesson 2 Creating a Physical Data Service
	Objectives
	Overview

	Lab 2.1 Creating a DSP Application
	Objectives
	Instructions

	Lab 2.2 Creating a Data Services Project
	Objectives
	Instructions

	Lab 2.3 Creating Project Sub-Folders
	Objectives
	Instructions

	Lab 2.4 Importing Relational Source Metadata
	Objectives
	Instructions

	Lab 2.5 Building a Project
	Objectives
	Instructions

	Lab 2.6 Viewing Physical Data Service Information
	Objectives
	Viewing XML type
	Instructions
	Instructions
	Instructions
	Instructions
	Viewing Data Service Metadata
	Instructions

	Lab 2.7 Testing Physical Data Service Functions
	Objectives
	Instructions

	Lesson Summary

	Lesson 3 Creating a Logical Data Service
	Objectives
	Overview

	Lab 3.1 Creating a Simple Logical Data Service
	Objectives
	Instructions

	Lab 3.2 Defining the Logical Data Service Shape
	Objectives
	Instructions

	Lab 3.3 Adding a Function to a Logical Data Service
	Objectives
	Instructions

	Lab 3.4 Mapping Source and Target Elements
	Objectives
	Instructions

	Lab 3.5 Viewing XQuery Source Code
	Objectives
	Instructions

	Lab 3.6 Testing a Logical Data Service Function
	Objectives
	Instructions

	
	Lesson Summary

	Lesson 4 Integrating Data from Multiple Data Services
	Objectives
	Overview

	Lab 4.1 Joining Multiple Physical Data Services within a Logical Data Service
	Objectives
	Instructions

	Lab 4.2 Defining a Where Clause to Join Multiple Physical Data Services
	Objectives
	Instructions

	Lab 4.3 Creating a Parameterized Function
	Objectives
	Instructions

	Lesson Summary

	Lesson 5 Modeling Data Services
	Objectives
	Overview

	Lab 5.1 Creating a Basic Model Diagram for Physical Data Services
	Objectives
	Instructions

	Lab 5.2 Modeling Relationships Between Physical Data Sources
	Objectives
	Instructions

	Lesson Summary

	Lesson 6 Accessing Data in Web Services
	Objectives
	Overview

	Lab 6.1 Importing a Web Service Project into the Application
	Objectives
	Instructions

	Lab 6.2 Importing Web Service Metadata into a Project
	Objectives
	Instructions

	Lab 6.3 Testing the Web Service via a SOAP Request
	Objectives
	Instructions

	Lab 6.4 Invoking a Web Service in a Data Service
	Objectives
	Instructions

	Lesson Summary

	Lesson 7 Consuming Data Services Using Java
	Objectives
	Overview

	Lab 7.1 Running a Java Program Using the Untyped Mediator API
	Objectives
	Instructions

	Lab 7.2 Running a Java Program Using the Typed Mediator API
	Objectives
	Instructions

	Lab 7.3 Resetting the Mediator API
	Objectives
	Instructions

	Lesson Summary

	Lesson 8 Consuming Data Services Using WebLogic Workshop Data Service Controls
	Objectives
	Overview

	Lab 8.1 Installing a Data Service Control
	Objectives
	Instructions

	Lab 8.2 Defining the Data Service Control
	Lab 8.3 Inserting a Data Service Control into a Page Flow
	Objectives
	Instructions

	Lab 8.4 Running the Web Application
	Objectives
	Instructions

	Lesson Summary

	Lesson 9 Accessing Data Service Functions Through Web Services
	Objectives
	Overview

	Lab 9.1 Generating a Web Service from a Data Service Control
	Objectives
	Instructions

	Lab 9.2 Using a Data Service Control to Generate a WSDL for a Web Service
	Objectives
	Instructions

	Lesson Summary

	Lesson 10 Updating Data Services Using Java
	Objectives
	Overview

	Lab 10.1 Modifying and Saving Changes to the Underlying Data Source
	Objectives
	 Instructions

	Lab 10.2 Inserting New Data to the Underlying Data Source Using Java
	Objectives
	Instructions

	Lab 10.3 Deleting Data from the Underlying Data Source Using Java
	Objectives
	Instructions

	Lesson Summary

	Lesson 11 Filtering, Sorting, and Truncating XML Data
	Objectives
	Overview

	Lab 11.1 Filtering Data Service Results
	Objectives
	Instructions

	Lab 11.2 Sorting Data Service Results
	Objectives
	Instructions

	Lab 11.3 Truncating Data Service Results
	Objectives
	Instructions

	Lesson Summary

	Lesson 12 Consuming Data Services through JDBC/SQL
	Objectives
	Overview

	Lab 12.1 Running DBVisualizer
	Objectives
	Instructions

	Lab 12.2 Integrating Crystal Reports and Data Services Platform
	Objectives
	Instructions

	Lab 12.3 (Optional) Configuring JDBC Access through Crystal Reports
	Objectives
	Instructions

	Lesson Summary

	Lesson 13 Consuming Data via Streaming API
	Objectives
	Overview

	Lab 13.1 Stream results into a flat file
	Objectives
	Instructions

	Lab 13.2 Consume data in streaming fashion
	Objectives
	Instructions

	Lesson 14 Managing Data Service Metadata
	Objectives
	Overview

	Lab 14.1 Defining Customized Metadata for a Logical Data Service
	Objectives
	Instructions

	Lab 14.2 Viewing Data Service Metadata Through the DSP Console
	Objectives
	Instructions

	Lab 14.3 Synching a Data Service with Underlying Data Source Tables
	Objectives
	Instructions

	Lesson Summary

	Lesson 15 Managing Data Service Caching
	Objectives
	Overview

	Lab 15.1 Determining the Non-Cache Query Execution Time
	Objectives
	Instructions

	Lab 15.2 Configuring a Caching Policy Through the DSP Console
	Objectives
	Instructions

	Lab 15.3 Testing the Caching Policy
	Objectives
	Instructions

	Lab 15.4 Determining Performance Impact of the Caching Policy
	Objectives
	Instructions

	Lab 15.5 Disable Caching
	Objectives
	Instructions

	Lesson Summary

	Lesson 16 Managing Data Service Security
	Objectives
	Overview

	Lab 16.1 Creating New User Accounts
	Objectives
	Instructions

	Lab 16.2 Setting Application-Level Security
	Objectives
	Instructions

	Lab 16.3 Granting User Access to Read Functions
	Objectives
	Instructions

	Lab 16.4 Granting User Access to Write Functions
	Objectives
	Instructions

	Lab 16.5 Setting Element-Level Data Security
	Objectives
	Instructions

	Lab 16.6 Testing Element-Level Security
	Objectives
	Instructions

	Lesson Summary

	Lesson 17 (Optional) Consuming Data Services through Portals and Business Processes
	Objectives
	Overview

	Lab 17.2 Installing a Data Service Control in a Portal Project
	Objectives
	Instructions

	Lab 17.3 Testing the Control and Retrieving Data
	Objectives
	Instructions

	Lesson Summary
	 Glossary

