Aqualogic Data Services
Platform™ Tutorial: Part 11

A Guide to Developing BEA Aqualogic Data Services Platform (DSP) Projects

Note: This tutorial is based in large part on a guide originally developed for enterprises
evaluating Data Services Platform for specific requirements. In some cases illustrations,
directories, and paths reference Liquid Data, the previous name of the Data Services
Platform.

Version: 2.0.1
Document Date: June 2005

o9,
Revised: September 2005 o?7%

g /
zhea’
L/

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the
BEA Systems License Agreement and may be used or copied only in accordance with the terms of that
agreement. It is against the law to copy the software except as specifically allowed in the agreement.
This document may not, in whole or in part, be copied photocopied, reproduced, translated, or reduced
to any electronic medium or machine readable form without prior consent, in writing, from BEA
Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA
Systems License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-
Restricted Rights Clause at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013, subparagraph (d) of the Commercial
Computer Software--Licensing clause at NASA FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment
on the part of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS
IS” WITHOUT WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE
SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY,
RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans,
SteelThread, Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA
Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA
WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log
Central, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal,
BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup Edition, BEA WebLogic
Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support
is a service mark of BEA Systems, Inc. All other company and product names may be the subject of
intellectual property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Data Services Platform: Samples Tutorial 2

Contents

AQUALOGIC DATA SERVICES PLATFORM™ TUTORIAL: PART Il ...t 1
A Guide to Developing BEA Aqualogic Data Services Platform (DSP) Projectsccccceoceveveeennene. 1
Lesson 18 Building XQueries in XQuery EItOr VIEW ..o 10
Lab 18.1 Importing Schemas for Query Developmentccceccuieiiiieiienieiieiieee e sieese e eveeeeseesseesseenseens 11
Lab 18.2 Creating Source-t0-Target MapPINgS........cceeuerierieerieiriieie e steenteete et eetesttesteesbe e besteseeeseeesbeeneeeneeens 11
Lab 18.3 Creating a Basic Parameterized FUNCHIONocooiiiiiiiiiiiiiieee e 14
Lab 18.4 Creating a String Function with a Built-In XQuery Function.............ccocooceevieieienenineninceeeeeee 18
Lab 18.5 Creating a Date FUNCHIONcoiiiiieiieieee ettt sttt ee et e st esaeeneeeeeens 21
Lab 18.6 Creating Outer Joins and Order By EXPressions.ccccveeeiierieniesieiieieeie e ns 23
Lab 18.7 Creating Group By and Aggregate EXPreSSIONSceeruieeirierieniieiiieieeieeie st eee et see e ens 28
Lab 18.8 Creating Constant EXPreSSIONSccuieruieiiirierieriierieeteetestesteessteseessesssesseessaesseesessesssesseesseesseenseans 32
Lesson 19 Building XQUEKIES iN SOUICE VIBWcciiiiiiiiiiiiiiiie e 35
Lab 19.1 Creating @ NEeW XIML TYPE - ccueeruierieiieiieieeiteetieetee sttt et site st et ete e teeneeeseesseesseeseeaaesneeeneesseenseeneeans 36
Lab 19.2 Creating a Basic Parameterized XQUETYc.coieiuieiiiiiiie ettt s ene 37
Lab 19.3 Creating a String FUNCHONcccoiiiiiiieee ettt ettt et s e e e see e e ens 40
Lab 19.4 Building an Outer Join and Using Order BYcccooiiviiiiiiiiinieieieeeeeee et 43
Lab 19.5 Creating an Inner Join and @ TOP N.......ooooirieieieeeee et 46
Lab 19.6 Creating a Multi-Level Group Bycooieiiiiiiieiee ettt s 51
Lab 19.7 USING H=TREN-EISE ...coutiiiiiii ettt ettt ettt et este e te e e eneesneesseeneeeneeens 55
Lab 19.8 Creating a Union and CONCAtENATIONcueeverrieriieriieieeiestesetesseeteeseeaesssessaesseessessesssesseesseesseensenns 58
Lesson 20 Implementing Relationship Functions and Logical Modelingcccccoocevoviieiviiennne. 63
Lab20.1 Implementing and Testing a Relationship FUnctioncoocoiieiieiiiiiieieee e 64
Lab20.2 Creating a Model Diagram for Logical Data Services..........ccovieruieriieiiieiiniesiereeie e 67
Lesson 21 Running Ad HOC QUETIES...........coiiiiiiiiiiiice e 70
Lab21.1 Creating an Instance of the PreparedEXpression Classccceoueriririiiniinieieesese e 70
Lab21.2 Defining Ad HOC QUErY Parametersccocueeuieiuieiiiiieie ettt s ene 73
Lab21.3 Testing the Ad HOC QUETYcceiiiiiiieiieiiee ettt ettt ettt e et e s bt e st e teeneeeneesneesseenseeneeans 73
Lesson 22 Creating Data Services Based on SQL Statementsccccccoiiiiiiiiiiiicicni 76
Lab22.1 Creating a Data Service from a User-Defined SQL Statement...........ccccecuevienieniininnciieiieeneeneeees 76
Lab22.2 Testing YOUr SQL Data SEIVICEceruiiiiiiiriiiitieniieie ettt sttt ettt sttt et s st e e e sbeeneeeneeens 77

Data Services Platform: Samples Tutorial 3

Lesson 23
Lab 23.1
Lab 23.2
Lab 23.3

Lesson 24
Lab 24.1
Lab 24.2
Lab 24.3
Lab 24.4

Lesson 25
Lab 25.1
Lab 25.2
Lab 25.3

Lesson 26
Lab 26.1
Lab 26.2
Lab 26.3

Lesson 27
Lab 27.1
Lab27.2

Lesson 28
Lab 28.1
Lab 28.2
Lab 28.3

Lesson 29
Lab 29.1
Lab 29.2
Lab 29.3

Lesson 30
Lab 30.2
Lab 30.3
Lab 30.4
Lab 30.5

Performing Custom Data Manipulation Using Update Override.........c...ccccevevvenennnne. 79

Creating an Update OVEITIAEccueevieiieiiiieceecie ettt beete e e saeeseesbeesseessesssessaeseessessnenens 80
Associating an Update Override to a Logical Data Service.........ceovveviiierienieriieieeieseesieeie e 82
Testing the Update OVEITIAC........ccuvevvieiiiieeieeiecie ettt ettt esae e seesbeesseessesseessaeseensesnsenens 82
Updating Web Services Using Update OVErridecccoevviieiiiieie e 84
Creating an Update Override for a Physical Data Service........ccocveevireeirierienieieeieeieseesieesie e 85
Writing Web Service Update Logic in the Update OVerrideccocvvveerienieniieiieieciesieeie e 86
Testing the Update OVEITIAC........ccueevieeiiiieiieeeesie ettt ettt st e sreese b e esseessessaessaeseensesnsenens 86
Checking for Change ReqUITEIMENTScooieriiiiiiiiiieiieeieee ettt 88
Overriding SQL Updates Using Update OVEITides.........cccoveveiiiiieiiiieiese e 89
Adding SQL Update Statements to an Update Override Filecccoeivviivienieniieiieieeieeeeeee e 89
Associating an SQL-Based Data Service and Update Override.............ccevverieviieciincienienieieeve e 90
TESING UPAALES ...eevvieeiieiiieiecieciteeieee ettt ettt et e st e be e beesbeesbesseesseesseesseesseessesssessaesseensenssennns 90
Understanding QUENY PIaNScouiiiiiiiiiie ettt s re e 92
Viewing the QUETY PIAN........ccoiiiiiiiiiee ettt et e s e sseenseenseenneens 92
Locating the SQL Statement in @ QUery Planc.ccoeiiriiiiiniiiccceeeeeee e 95
Locating XIML ELSIMENLSccceciiriieiieiieieeieeeesteete e etesteesteesteesseesaesseesseesseessesssesssesssessesssesssesssenses 96
Reusing XQuery Code through Vertical View Unfoldingccccoevvniniiiiiiicnens 97
UNfolding VErtiCal VIEWccceiiuiiriieiieiieie ettt ettt sttt ettt et e s eaessee s e esseensesnnesneesseenseenseans 97
Testing a Vertical File Unfoldingccooiioiiiiiiiiiieiiciictecteceese ettt ae e s 100
Configuring Alternatives for Unavailable Data SOUICESccocovviiiiiciiciinennns 101
Setting the Demonstration CONAItIONSccveriieriieiiieieeiesiene et eee ettt sae e sseeseeseennesees 102
Configuring AIEINAtIVE SOUICEScc.eervierieeieeieeiertieieeteeteetesseesteesseessesseseesseesseenseenseensesssesseenses 104
Testing an AItEINAtIVE SOUICE.ccuveriierieeieeieeteeieste et eteeteesaesseesseesseesesnsesseesseenseenseenseensensaesseensen 105
Enabling Fine-Grained CacChingccccoiiiiiiiiieie e 107
Enabling Function-Level Caching for a Physical Data Service...........cceccevoiiieiienieiieieeeeeee 107
Testing the Caching POLICYocviiieiieiieie ettt ettt et e nee e ssaesseennees 109
Testing Performance IMPACEocveviriieiiiiiiecieeeie ettt sttt eensessaesseenneas 110
Creating XQuery Filters to Implement Conditional-Logic Security...........c.cccceeveunne. 112
CTEAtING USET GIOUPSnvieutieuieetietiesteeste et e tesetestee et enteeaeeeseeestessee st eseeeesmeesaeesseenseenseenseenseeneesseesean 112
Writing the XQuery Security FUNCHION.........c.oooiiiiiiiei e 114
Activating the XQuery Security FUNCHONccoeieiieiiiiieieee et 116
Testing the XQuery Security FUNCLIONc.cocveriirieiieiieiecteeeeee ettt eees 117

Data Services Platform: Samples Tutorial 4

Lesson 31
Lab 31.1
Lab31.2

Lesson 32
Lab 32.1
Lab 32.2
Lab 32.3

Lesson 33
Lab 33.1
Lab 33.2

Lesson 34
Lab 34.1
Lab 34.2
Lab 34.3
Lab 34.4

Lesson 35
Lab 35.1
Lab 35.2

Accessing Data in Stored ProCedUIEScooviieieii i 118

Importing a Stored Procedure into the APpliCAtioNnc.cccveeverierieniierieeie et 119
Importing Stored Procedure Metadata into @ Data SeIviCe.........ccuevverierierriiiiieiienienieeve e eeee e 120
Accessing Data With Java FUNCLIONS..........cccooiiiiiiiieeeees e 122
Accessing Data Using WebLogic’s Embedded LDAP Function...........ccccoecvveeveeienienieeneeseeie e 124
Accessing Excel Spreadsheet Data Using JCOMcocoviviieieiienieniieie e eve e esaesseenaees 126
(Optional) Accessing Data Using an Enterprise Java Bean...........cccccooceeiiieieieviiniinieecceieeeienns 126
Accessing Data in XML FIlES ... 129
Importing XML Metadata and XML Schema Definitioncc.cccevevirinirieiiincnencnenenceieeeen 129
Testing the XIML Data SEIVICEccverirrieeiieiieeiertieie et ete ettt esreesteseeseesseesseeseenseensesssesseensees 132
Accessing Data in FIat FIleS..........ccoooviiiiiiiieeee e 134
Importing Flat File Metadatacccooiiiiiiiieeee ettt 134
Testing Your Flat File Data SEIVICEc.cecveeeiiiierierieiieie e etesiee st esieeseesee e seee st enseeneeensessaesseenseas 136
Integrating Flat File Valuation with a Logical Data Servicec.cccccverenereeienienenenenenceieeene 137
Testing an Integrated Flat File Data ServiCe.........ccoocieriieiiiriiieieeiesiesieee e 138
Creating an XQuery FUNCLion LiDrary ... 140
Creating an XQuery FUnction Libraryccooceeieriiriieiieieeieeieseeeese et 140
Using the XQuery Function Library in an XQUETYccceeruirrieriierienieireieeee et sne e e 142

Data Services Platform: Samples Tutorial 5

About This Document

Welcome to the AqualLogic Data Services Platform (DSP) Samples Tutorial. In this document, you are
provided with step-by-step instructions that show how you can use DSP to solve the types of data
integration problems frequently faced by Information Technology (IT) managers and staff. These
issues include:

What is the best way to normalize data drawn from widely divergent sources?

Having normalized the data, can you access it, ideally through a single point of access?

After you define a single point of access, can you develop reusable queries that are easily
tested, stored, and retrieved?

After you develop your query set, can you easily incorporate results into widely available
applications?

Other questions may occur. s the data-rich solution scalable? Is it reusable throughout the enterprise?
Are the original data sources largely transparent to the application — or do they become an issue each
time you want to make a minor adjustments to queries or underlying data sources?

Document Organization
This guide is organized into 35 lessons that illustrate several Data Services Platform capabilities:
Data service development. In which you specify the query functions that DSP will use to
access, aggregate, and transform distributed, disparate data into a unified view. In this stage,

you also specify the XML type that defines the data view that will be available to client-side
applications.

Data modeling. In which you define a graphical representation of data resource relationships
and functions.

Client-side development. In which you define an environment for retrieving data results.

Each lesson in the tutorial consists of an overview plus “labs” that demonstrate DSP’s capabilities on a
topic-by-topic basis. Each lab is structured as a series of procedural steps that details the specific
actions needed to complete that part of the demonstration.

The lessons are divided into two parts:

Part 1: Core Training. Includes Lessons 1 through 16, which illustrate the DSP capabilities
that are most commonly used.

Part 2: Power-User Training. Includes Lessons 17 through 35; these illustrate DSP's more
advanced capabilities.

Note: The lessons build on each other and must be completed in sequential order.

Data Services Platform: Samples Tutorial 6

Technical Prerequisites

The lessons within this guide require a familiarity with the following topics: data integration and
aggregation concepts, the BEA WebLogic® Platform™ (particularly WebLogic Server and WebLogic
Workshop), Java, query concepts, and the environment in which you will install and use DSP.

For some lessons, an ability to understand XQuery is helpful.

System Requirements

To complete the lessons, your computer requires:

Server:

Application:

Operating System:

Memory:

Browser:

BEA WebLogic Server

AquaLogic Data Services Platform 2.01

Windows 2000 or Windows XP

512 MB RAM minimum; 1 GB RAM recommended

Internet Explorer 6 or higher

Data Sources Used Within These Lessons

The Data Services Platform Samples Tutorial builds data services that draw on a variety of underlying
data sources. These data sources, which are provided with the product, are described in the following

table:

Data Source Types and Sources Utilized by the DSP Samples Tutorial

Data Type

Relational

Relational

Relational

Relational

Web service
Stored procedure
Java function
Java function

Java function

XML files
Flat file

Data Source

Customer Relationship Management
(CRM) RTLCUSTOMER database

Order Management System (OMS)
RTLAPPLOMS database

Order Management System (OMS)
RTLELECOMS database

RTLSERVICE database

CreditRatingWs
GETCREDITRATING_SP
Functions. DSML
Functions.excel jcom

Functions.CreditCardClient

ProductUNSPSC.xsd

Valuation.csv

Data

Customer and credit card data

Apparel product, order, and order line data

Electronics product, order, and order line data

Customer service data, organized in a single
Service Case table

Credit rating data

Customer credit rating information
Java function enabling LDAP access
Excel spreadsheet data, via JCOM

Customer credit card information, via an
XMLBean

Third-party product information

Data received from an internal department that

deals with customer scoring and valuation models

Data Services Platform: Samples Tutorial

Related Information

In addition to the material covered in this guide, you may want to review the wealth of resources
available at the BEA web site, WebLogic developer site, and third-party sites. Information at these
sites includes datasheets, product brochures, customer testimonials, product documentation, code
samples, white papers, and more.

For more information about Java and XQuery, refer to the following sources:

The Sun Microsystems, Inc. Java site at:

http://java.sun.com/

The World Wide Web Consortium XML Query section at:
http://www.w3.0org/XML/Query

For more information about BEA products, refer to the following sources:

DSP documentation site at:

http://edocs.bea.com/aldsp/docs20/index.html

BEA e-docs documentation site at:
http://e-docs.bea.com/

BEA online community for WebLogic developers at:
http://dev2dev._bea.com

Data Services Platform: Samples Tutorial

http://java.sun.com/
http://www.w3.org/XML/Query
http://edocs.bea.com/aldsp/docs20/index.html/
http://e-docs.bea.com/
http://dev2dev.bea.com/

Part 2: Power-User Training

In the DSP Samples Tutorial Part I (Core Training), you were introduced to the features, functions,
and tools necessary to build, cache, and secure data services within a DSP application. In Part 2, you
will build upon that knowledge to:

Build queries in both XQuery Editor View and Source View.
Create models for logical data services.
Run ad hoc queries.

Use update overrides to perform custom data manipulations, update web services, and
overwrite SQL updates.

Use the automatically generated Query Plan.

Re-use XQuery code.

Configure alternative sources for unavailable data sources.

Use SQL Exits to enable retrieving data from an SQL statement.

Enable fine-grained caching.

Enable element-level security.

Access data in stored procedures, Java functions, XML files, and flat files.

Create an XQuery function library.

Data Services Platform: Samples Tutorial

Lesson 18 Building XQueries in XQuery Editor View

In concrete terms, a data service is simply a file that contains XML Query (XQuery) instructions for
retrieving, aggregating, and transforming data. Essentially you create a query function by:

Integrating physical and logical data sources into the query.
Mapping data sources to the data service's Return type.
Creating XQuery statements that include conditions, parameters, functions, and expressions.

You can also modify the Return type, either within XQuery Editor View or using an external tool.

In this lesson, you will use XQuery Editor View to develop a variety of XQuery instructions.

Objectives

After completing this lesson, you will be able to:

Use the graphical XQuery Editor View to create parameterized, string, and date functions;
outer joins, aggregate, and order by and constant expressions.

Use the XQuery Function Palette to add built-in XQuery functions to a query.

Overview

XQuery Editor View provides a graphical, drag-and-drop approach to constructing queries. Using
XQuery Editor View, you can:

View and modify the data service's Return type, whose shape is defined by the data service's
XML Type.

View, add, modify, and delete the function calls from other physical and logical data services
that define which data source(s) will be queried.

View, add, and delete the source-to-target mappings that define which data will be made
available to consuming applications.

View, add, modify, and delete the parameters, expressions, and conditions that define how the
data will be processed.

Changes that you make in XQuery Editor View are immediately reflected in Source View. Similarly,
changes you make in Source View will be immediately effective in XQuery Editor View.

Data Services Platform: Samples Tutorial 10

Lab 18.1

Lab 18.2

Importing Schemas for Query Development

To simplify development time in this lesson you will use ready-made schemas that define a data
service's Return type.

Objectives

In this lab, you will:

Create a folder to organize all the queries that you will create in this lesson and the next.

Import the schemas that you will use in those queries.

Instructions

1.

Create a new folder in the DataServices project folder, and name it MyQueries.

a.

b.

Right-click the MyQueries folder and choose Import.

Navigate to the <beahome>\weblogic81\samples\LiquidData\EvalGuide\MyQueries folder,
select the schemas folder, and click Import. This will automatically create a folder named
schemas, and appropriate .xsd files, within the MyQueries directory. These .xsd files will be
used to determine the Return type for all queries developed in this lesson.

Creating Source-to-Target Mappings

Every function within a logical data service includes source-to-target mappings that define what results
will be returned by the function. As described in Part I, there are several types of mappings:

A simple mapping means that you are mapping simple source node elements to simple
elements in the Return type one at a time. You can create a simple mapping by dragging and
dropping any element from the source node to its corresponding target element in the Return
type. Optional Return type elements do not need to be mapped; otherwise elements in the
Return type need to be mapped in order for your query to run.

An induced mapping means that a complex element is mapped to a complex element in the
Return type. In this gesture the top level complex element in the Return type is ignored
(source node name need not match). The editor automatically then maps any child elements
(complex or simple) that are an exact match for source node elements.

An overwrite mapping replaces a Result type element and all its children (if any) with the
source node elements. As an example of the general steps needed to create an overwrite
mapping, you would press <Ctrl>, then drag and drop the source node's complex element onto
the corresponding element in the Result type. The entire source node's complex element is
brought to the Result type, where it completely replaces the target element with the source
element.

An append mapping adds a simple or complex element (and any children or attributes) as a
child of the specified element in the Return type. To create an append mapping, select the
source element, then press <Ctrl>+<Shift> while dragging and dropping the source node’s
element onto the element in the Return type that you want to be the parent of the new
element(s).

Alternatively, if you simply want to add a child element to a Return type, you can drag a
source element to a complex element in your Return type. The element will be added as a
child of the complex element and mapped accordingly.

Data Services Platform: Samples Tutorial 11

Objectives

In this lab, you will:

Create four types of mappings.

Review the results.

Instructions

1. Right-click the MyQueries folder, choose New — Data Service, and use CustomerInfo.ds in the
Name field.

1. In Design View, associate the CustomerInfo data service with the CUSTOMER .xsd schema.
(The schema is located in the MyQueries\schemas folder.)

2. Add a new function to the CustomerInfo data service and name it getAllCustomers.

Hity Qi 3|

= CUSTOMER

) CUSTOMER_ID xstring

@ FIRST_NAME xualrig

@ LAST MANE waatring

@ CUSTEMER_SINCE xredote

@ EMAL ADORLSS xg:strng

S TELEPHONE NUMBER vo:sting

@ SN T sty

& BIRTH_DGY 7 vadate

—_— s stomers

) DEFULLT_SHIF_METHOD 7 epstring
) LAl NOTIFBCATION 7 osishort
@ NEWS_LETTTLR 7 xe-short

2 CNUINE_STATEMENT 7 asvstorl

Diecsagn View [ichusry Eibon Wi | Source Miew | Tast View | Query FIan Visw

Figure 18-1 Design View of Customerinfo Data Service
3. Click the getAllCustomers() function to open XQuery Editor View.
4. Add a for node to the work area by completing the following steps:

a. Inthe Data Services Palette, open the CUSTOMER.ds folder, located in the
DataServices\CustomerDB folder.

b. Drag and drop CUSTOMER()into XQuery Editor View. This creates a
For:$CUSTOMER source node.

5. Create a simple mapping. Drag and drop each element in the CUSTOMER source node onto
the corresponding element in the Return type.

Data Services Platform: Samples Tutorial 12

petAlustome ()| =

_ﬁ' For: SCUSTOMER
CLISTOMER

SN sting

NEWS LETTTER

Figure 18-2

Dinsign Views | usery Ecltoe View [S0orce View | Test Viow | Gusry FLan View

| Customernfe iy -) e x]

& Retumn
= CUSTOHER

CUSTOMER ID #tring
FIRST_NAME sring
LAST_NAME s
CUSTOMER _SINCE date
EMANL_ALORESS string
TILEPHONE WUMILR ftring
ST sring
BIRTH DAY 7 date
CEFART _SHIF_MLTHOD * streg
EMATL_NOTIFICATION ? short
HEWS_LETTTER 7 ahued
ORLINE STATEMENT 7 short

CUSTOHER [T strimg
FIRST MAME string
LAST_NAME stri
CUSTOMIR_SINCE. dite
EMAIL_ADCRESS string
TELEPHCNE_MUMBER strirey

0

BIATH_DAY 7 dste
DEFALLT_SHIP_METHOO 7 string
EMALL_NOTIFICATION 7 shart

% shoet
OMLUINE_STATEMENT 7 short.

Simple Mapping

6. Create an induced mapping, by completing the following steps:

a.

Delete all the simple mappings. (Right-click a map line and select Delete from the pop-
up menu.)

Drag and drop the CUSTOMER¥* element (source node) onto the CUSTOMER element
in the Return type.

Notice that the mappings are automatically generated for each element, since the source and target
element names are the same.

oo] #tyQuerie, %]

etaaCustomensl)| =

2 For, sCUSTOMER

= CATSTOMER *

SN 7 sting

MEWS_LETTTER ¥

o8| |

CUSTOMER_ID
FIRST_HAME st
LAST_HAME string
QUSTOMER_SINCE dafe
EMAR_AOORESS sing
TELEPHONE_NUMBER. string

WETH_DAY 7 date
DEFALLT_SHIP_METHOD 7 string
MR NOTIFICATION ¢ shest

(E Raturn
= CUSTOMER:

CUSTOMIR_ID #trrg
FIRST_HAML string
LAST_NANE sring
CUBTOMER_SINCE date
EMAR_ADONESS. streey
TELEPHONE_MUMEEN siring
ST sting
ERTH DAY T date
BEPALLT_SHIP_METHEO ? string
EMAR_NOTIFICATION T short
MUWS METTIER 7 shart
ONUING_STATEMINT 7 shart

g

o

CHLINE_STATEMENT 7 shert

Figure 18-3

iy i | ey Ecltor Ve [SERTR Wobon | Tl Vi | Cimry P Voo

Induced Mapping

7. Create an overwrite mapping, by completing the following steps:

a.

b.

In the Return type right-click the CUSTOMER element and choose Add Child Element.
Double-click the NewChildElement, enter Addresses, and press Enter.

In the Data Services Palette, open the ADDRESS.ds icon, which is located in the
DataServices\CustomerDB folder.

Drag and drop ADDRESS() into XQuery Editor View.

Press Ctrl, and then drag and drop ADDRESS* element (source node) onto the
Addresses element in the Return type.

Data Services Platform: Samples Tutorial 13

Notice that the entire complex ADDRESS* element is brought to the target, where it overwrites the
element, instead of adding it as a child.

ol 0.ds* - {DataServicesH MyQueries, *

getalCustomers))| ~

I

@Relurn

) = CUSTOMER

[For: SCUSTOMER 0 CUSTOMER_ID string

[} CUSTOMER * E;P;Ti:ﬂ::f :tmg

CUSTOMER _ID string Py 551;1‘22 -
FIRST_NAME string S iste
e TELEPHONE NUMESE:”gt
CLISTOMER _SINCE date il string

H
EMAIL_ADDRESS string S5M 7 string

:
TELEPHONE_NUMBER. string e

DEFALLT_SHIP_METHOD'? string
SSN? string

?
BIRTH_DAY 7 date EMAIL_NOTIFICATION ? shart

B
DEFAULT_SHIP_METHOD 7 string gmiﬁ?;f;&:?t ot
EMAIL_NOTIFICATION ? short B Pl short
NEWS_LETTTER ? short i e

ONLINE_STATEMENT 7 short ADDRID string
CUSTOMER_ID string

FIRST_NAME string
LAST_NAME string
STREET_ADDRESS1 string
STREET_ADDRESSZ ? string

[For: SADDRESS 0 CITY string
E ADDRESS * [=] STATE string
ADDR_ID string ZIPCODE string
CUSTOMER: ID string COUNTRY string
FIRST_NAME string DAY_PHONE? string
LAST_NAME string EVE_PHONE ? string
STREET_ADDRESS! string ALIAS 7 string
STREET_ADDRESSZ 7 strir STATUS ? string
CITY string [15_DEFALLT short
STATE string
ZIPCODE string
COUNTRY string
DAY_PHONE ? string
EVE_PHONE ? string
ALIAS ? string = L
2 — |
[]
Ll | [

B A -
[lem[v 5
#Query Editar View Query Plan Vizw

Figure 18-4 Overwrite Mapping

Lab 18.3 Creating a Basic Parameterized Function

A parameterized query lets you filter returned data based on specific criteria, such as a particular order
number, customer name, or customer number.

Objectives

In this lab, you will:

Create a parameterized function that returns all orders for a particular customer.
Test the function.

Review the XQuery source code.

Instructions

In Design View: Add a new function to the CustomerInfo data service and name it
getCustomerByName.

1. Click getCustomerByName to open XQuery Editor View for that function.
2. Add a for node, by completing the following steps:

a. Inthe Data Services Palette, open the CUSTOMER.ds folder, which is located in the
DataServices\CustomerDB folder.

Data Services Platform: Samples Tutorial 14

b. Drag and drop CUSTOMER()into XQuery Editor View. This creates a
For:$CUSTOMER source node.

3. Create an induced mapping. Drag and drop the CUSTOMER* element (source node) onto the
CUSTOMER element in the Return type.

4. Add a parameter, by completing the following steps:
a. Right-click on a empty spot in XQuery Editor View.
b. Choose Add Parameter.
c. Enter FirstName in the Parameter Name field.
d. Select xs:string as the Primitive Type.

e. Click OK. (Since the new parameter node may be placed behind the CUSTOMER
node, you will need to move the nodes until all are visible.)

5. Add a where clause, by completing the following steps:

a. Drag and drop the parameter's string element onto FIRST NAME element (source
node). Make sure that you release the mouse button when the FIRST NAME
element is highlighted. This action creates a filter for the FIRST NAME element
based on the parameter that is passed to the function.

b. Confirm that the where clause is correctly set by clicking the SCUSTOMER source
node's header. The Expression Editor will open and you should see the following
where clause:

$FirstName = $CUSTOMER/FIRST_NAME

Customering.d5* - otz ceasy e]
[eTapTp——r— |
(& Relurn
- S ; |17 & cusTome
[#]Parametor $FirsiMam: CUSTOMER D string
g 1 * {2 Far: SCUSTOMER o FIRST_NANE sting
= CLSTOMER: * LAST_NANE sbirg

CLSTOMER_SINCE date
LMAL ADDRLYS streg
TELEPHOME_NUMEER sbring
SENT string

LIHIN DAY 7 dete

CLETOMER [0 shring
FIRST_NAMC stnng
LAST_HAME stiirg
CLSTCMER_SINCE date
LMAIL ADCRLESS strng

TELEPHONE_NUMEER. sbring DEFALLT_SHIF_METHCO © string
EMAIL_NOTIFICATION ? shurk

NEWS_LETTTER 7 short

SENT sty
LRI DAY ¢ date
DEFALLT_SHIP_METHCD 7 sl LU, STATEMI #: St
FMARL_NOTIFICATION 7 shorty
NEWS LETTTCR 7 short
OMUINE_STATEMENT 7 shurt

[Tem[]v2
| W 4754 N = 4CLISTOMERFIRST_HANE |
il

Figure 18-5 First Name Parameter and WHERE Clause
6. Add a second where clause, by completing the following steps:

a. Add a new parameter, entering LastName, and selecting xs:string as the Primitive
Type.
b. Click the SCUSTOMER node's header. The Expression Editor opens.

c. Triple-click inside the where field and place your cursor at the very end, after
FIRST NAME.

[T 2]

d. Select the “and” logical conjunction from the pop-up operator list (the “...” icon).
You can now define the where clause to filter data by last name.

Note: An alternative method is to simply enter “and” in the field.

Data Services Platform: Samples Tutorial 15

e. Click the string element in the second parameter. The variable name $LastName
appears at the end of the where clause.

f. Choose eq: Compare Single Values from the popup operator list.
Note: An alternative method is to simply enter eq in the field.

g. Click the LAST NAME element in the For:SCUSTOMER node. You should see the
following in the where clause field:

$FirstName = $CUSTOMER/FIRST_NAME and $LastName eq $CUSTOMER/LAST_NAME

h. Click the green check button to accept the changes.

CustomerInfo.ds® - {DataServicesHMyQueries 2

getCustUmerByNamE()l -

@Return (]
i L] CUSTOMER.
{?]Parameter: $FirstName =
- . CUSTOMER_ID string
e .~ "|[2 For: SCUSTOMER U FIRST_NAME string
= CUSTOMER * LAST_MAME string
CUSTOMER_ID string CUSTOMER_SINCE date
FIRST, NF\ME string EMAIL_ADDRESS string
{?]Parameter: $LastMame g LAST_NAME string TELEPHONE_NUMBER. string
string CUSTOMER_SINCE date 55N 7 string

EMAIL_ADDRESS string GG CE
e e g DEFALLT_SHIP_METHOD ? string

SEN T string EMAIL_MOTIFICATION ¥ short
MNEMW'S_LETTTER ? short
£ QMLINE_STATEMENT ? shart

BIRTH_DAY 7 date
DEFALLT_SHIP_METHOD ? sty
EMAIL_NOTIFICATION 7 short]
NEWS_LETTTER ? shork
OMLINE_STATEMENT ? shart

1 [

(K1 D
] A %
OB[v =
Where $FirstMame = $CUSTOMERSFIRST _MAME and $LastMame eq $CUSTOMERLAST_MNAME
1L
Design Yiew | XQuery Editor View [Source Yiew | Test View | Query Plan Yiew

Figure 18-6 XQuery Editor View of Parameterized Query
7. Test the function, by completing the following steps:
a. Open CustomerInfo.ds in Test View.
b. Select getCustomerByName(FirstName, LastName) from the drop-down list.
c. Enter Jack in $FirstName field.
d. Enter Black in the $LastName field.
e. Click Execute.

Confirm the results, which should be as displayed in Figure 18-7.

Data Services Platform: Samples Tutorial 16

CustamerInfo.ds - {DataServicesHMyQueries) b3

Select Function:

|-B getCustomerByMNamelFirstName, LastName)l - |

Parameters

xs5:skring FirstName: | dack |

xs:string LastName: | Elack |

Mumber Element iby path)

Limit elements in array results to:
E) -]

[Start Client: Transaction Validate Results

=

Resulk

- <ns0iArrayOFCUSTOMER xmins:ns0="ld: Dataservices/MyQueries/ CUSTOMER" =
- <ns0:CUSTOMER =

=CUSTOMER_ID> CUSTOMER1 </CUSTOMER_ID =
<FIRST_MAME> Jack </FIRST_NAME=
<LAST_MAME> Black <[LAST_MAME>
“CUSTOMER _SINCE> 2001-10-01 </CUSTOMER _SINCE >
<EMAIL_ADDRESS> Jack@hotmail.com </EMAIL_ADDRESS >
<TELEPHOME_MUMBER > 2145134119 <TELEPHOME _MUMBER =
<55M> 295-13-4119 </S5M=
<BIRTH_DéY:> 1970-01-01 <[BIRTH_DAY>
<DEFALULT_SHIP_METHOD > AIR <[DEFAULT_SHIP_METHOD=
<EMAIL_MOTIFICATION= 1 </EMAIL_MOTIFICATION:>
<MEWS_LETTTER> O </NEWS_LETTTER:= ad

Design View | #Query Editor View | Source View | Test View [Query Plan View

Figure 18-7 Parameterized Query Results

8. Open CustomerInfo.ds in Source View to view the generated XQuery. The query should be
similar to that displayed in Figure 18-8. (Note: The automatic namespace assignments may
not match).

CuskomerInfo.ds - {DakaServices}H\MyCueries,

]

declare namespace nsd="ld:Datafervices/CustonerDE/ADDRESS™;

declare namespace ns3="ld:Datalervices/CustonerDE/ADDRESS™;
declare namespace nsZ="ld:Datalervices/CustonerDE/CUSTOMER™; .

declare namespace nsl="ld:Datalervices/CustonerDE/CUSTOMER";
import schema namespace ns0="ld:Datafervices/MyQueries/CUITOMER” at "ld:DataServices/MyQuerie
declare namespace tns="ld:Datalervices/MyQueries/CustomerInfo”;

declare functiom tns:getdllCustomers() as element (ns0:CUITOMER)®

declare functiom tns:getCustomerByName(§FirstNazme as xs:string, $LastName as xs:string) as el

for §CUSTOMER im ns2:CUSTOMER()

where §FirsiName = §CUSTOMER/FIRST NAME amd §Lastlame eq SCUSTOMER/LAST NAME

return

=n=0: CUSTOMER -
<CUSTOMER,_TD-{fn:data(sCUSTOMER/CUSTOMER,_ID) }<fCUSTOMER ID:-
=<FIRST_HAME:-{fn:data(sCUSTOMER/FIRST HANE) }-</FIRST HAME:-
<LAST HAME:|fn:data($CUSTOMER/LAST NAME] |-</LAST HAHE>
<CUSTOMER,_STHCE:-{fn:data(sCUSTOMER/CUSTOMER_SINCE) }-</CUSTOMER STHCE:-
~EMATL_ADDRESS:-{fn:data(§CUSTOMER/EMATL ADDRESS) }</EMATL. ADDRESS:-
=<TELEPHOHE HUMBER>-{fn:data | CUSTOMER/TELEPHONE NUMBER) }<fTELEFHOHE HUMBER-
<SSH > { fn: data (SOTSTOMER/SSH) b= FSSH>
=<BIRTH DAY ?-{fn:data(sCUSTOMER/BIRTH DAY }<fBIRTH DRY:-
=DEFAULT_SHIP_METHOD 2>-{fn:data(FCUSTOMER/DEFAULT SHIP METHOD) }</DEFAULT SHIF METHOD-
=<EMATL_HOTTFICATION?>-{fn:data(§CUSTOMER/EMATL NOTIFICATION) }</EMATL HOTIFICATION:-
=HEWS_LETTTER ?>-{fn:data (§CUSTOMER/NEWS LETTTER) }<fHEWS LETTTER>-
=<DHLIHE_STATEMENT 2-{fn:data(§CUSTOMER/ONLINE STATEMENT) }<f0HLINE STATEMENT -

< fns0: CUSTOMER

3

U D]
Design Wiew | XQuery Editor Yiew | Source View [Test Yiew [Query Plan Yiew

Figure 18-8 Parameterized Function Source Code

Data Services Platform: Samples Tutorial

Lab 18.4 Creating a String Function with a Built-In XQuery Function

The XQuery language provides more than 100 functions. BEA provides some additional, special
purpose functions. In this lab, you will build a query that uses the built-in XQuery startWith() function
to create business logic sufficient to retrieve records based on an OR condition.

Objectives

In this lab, you will:

Create a string function that will find customers by their social security number.
Test the function.

Review the XQuery source code.

Instructions

1.
2.
3.

Add a new function to the CustomerInfo data service and name it getCustomerBySSN.

Click getCustomerBySSN() to open XQuery Editor View to that function.

Add a for clause, by completing the following steps:

a.

In the Data Services Palette, open the CUSTOMER.ds folder, which is located in the
DataServices\CustomerDB folder.

Drag and drop CUSTOMER()into XQuery Editor View. This creates a For:3CUSTOMER
node.

Click getCustomerBySSN() to open XQuery Editor View to that function.

Create an induced map. Drag and drop the CUSTOMER* element (source) onto the CUSTOMER
element in the Return type.

Add a new parameter, entering SSN as the Parameter Name, and selecting xs:string as the
Primitive Type.

Add a where clause that uses a built-in XQuery function, by completing the following steps:

a.
b.

C.

o

Click the $SCUSTOMER node's header. The Expression Editor opens.
Click the Add Where Clause icon. &
In XQuery Function Palette, expand the String Functions folder.

Drag and drop the following function into the where clause field.

fn:starts-with($argl as xs:string?, $arg2 as xs:string?) as xs:boolean

Confirm that the where clause now includes the following built-in function:
fn:starts-with($argl, $arg2)

Edit the where clause, so that it reads as follows:
fn:starts-with($CUSTOMER/SSN, $SSN)

Click the green check button to accept the changes.

Data Services Platform: Samples Tutorial 18

Customerlnfo.ds* - {DataServiceshiMyGueries| ®

getCustomerBySSN() | ~

D

@Relurn

1 = CUSTOMER
CUSTOMER ID string

For: $CUSTOMER 0 FIRST_MAME string

e = o e e
CUSTOMER_ID string = ate

e remone preen
LAST_MAME string | string

- i

CUSTOMER_SINCE date ZIS:TH 5[;::\'{@? dt

g e DEFALLT_SHIP EM:THOD? i

TELEPHOME_HUMBER. string _SHIP. string L]
EMAIL_NOTIFICATION ? short

SSNT string

?
SiTLoAT? dte i Lonane sttt wee
DEFALILT _SHIP_METHOD ? skri -
EMAIL_MNOTIFICATION ? short
MEWS_LETTTER ? shart
OMLINE_STATEMENT ? shark

{?|Parameter: $SSN

[N O

£l |
OB [[V :

Where Fristarts-with($CUSTOMER (S5N, $55M)

¥ruery Editor Yiew

ety Plan Wigw

Figure 18-9 Built-In Function Where Clause
8. Test the function, by completing the following steps:
a. Open CustomerInfo.ds in Test View.
b. Select getCustomerBySSN from the Function drop-down list.
c. Enter 647 in the xs:string SSN field.
d. Click Execute.

e. Confirm the results, which should be as displayed in Figure 18-10.

CusktamerInfio.ds - {DakaServicest|MyQueries) F

Seleck Function:

[astcustomersyssuissny I~]

Parameters

ssistring S6M: | | 647 |

Mumber Element (hy path)

Limit elements in array results fo:
[so]| I-]

[start Client Transaction [] Validate Resulks

Result

- cnsii:ArrayOF CUSTOMER. xmins:nsD="ld:DataServices{MyQueries/CUSTOMER
- <nsO:CUSTOMER. »
<CUSTOMER_ID> CUSTOMER3 </CUSTOMER_ID>
<FIRST_NAME> Joe <jFIRST_NAME:>
<LAST_NAME: Smith <[LAST_NAME=
<CUSTOMER_SINCE> 2001-10-01 </CUSTOMER_SINCE>
<EMAIL_ADDRESS> JOHN_3@yahoo.com </EMAIL_ADDRESS>
<TELEPHOME_MUMBER> 9287731259 </TELEPHONE_NUMBER >
<S5N> 647-T3-1259 <SS
<BIRTH_DAY> 1952-05-09 </BIRTH_DAY>
<DEFAULT_SHIP_METHOD> PRIORITY-1 </DEFAULT_SHIP_METHOD:
<EMALL_NOTIFICATION> 1 </EMALL_NOTIFICATION:
<MEWS_LETTTER> O </NEWS_LETTTER>
SOMLINE_STATEMENT> 1 </ONLINE_STATEMENT >
<JnsO:CUSTOMER >
<fns:ArrayOFCLSTOMER. >

Desian View | sQuery Edior View | Source Wiew | Test Yiew [Query Plan View |

Figure 18-10 Built-In Function Test Results

Data Services Platform: Samples Tutorial

9. Open CustomerInfo.ds in Source View to view the generated XQuery. The query should be
similar to that displayed in Figure 18-11. (Note: The automatic namespace assignments may
not match).

CustomerInfo.ds - {DataServicesHMyQueries)

X
declare namespace nsd="ld:Datafervices/CustonerDB/ADDEESS™;

declare namespace ns3="ld:Datafervicess/CustonerDB/ADDREESS™;
declare namespace nsZ="ld:Datafervicess/CustonerDB/CUSTOMER™; .

declare namespace nsl="ld:Datafervices/CustonerDB/CUSTOMER™;
import schema namespace nsl="ld:Datafervices/Mylueries/CUSTOMER" at "ld:Datalferwvices/MyQuerie
declare namespace tns="ld:DataierviceasMyluerieasCustomerInfo™;

clare function tns:getdllCustomers() as element(ns0:CUSTOMER)*

lare function tns:getCustomerByName(§FirstNazme as xs:string, $lastiName as xs:string) as el

lare function tns:getCustonerEy35HN (755N as xs:s5tring) as element (ns0: CUSTOMER)*

for SCUSTOMER dn nsz2:CUSTOMER()

where fn:starts-with(sCUSTOMER/SEN, $55N)

return

=ns0 : CUSTOMER:-
<CUSTOMER TD>-{fn:data(§CUSTOMER/CUSTOMER ID) }-<fCUSTOMER ID>-
<FIRST HWAME>{fn:datai§CUSTOMER/FIRST NAME) }</FIRST HAME-
<LAST HAME:-{fn:data|sCUSTOMER/LAST NAME) }</LAST HAME:-
<CUSTOMER STHCE>-{fn:data(sCUSTOMER/CUSTOMER_SINCE) }</CUSTOMER SIHCE:-
~<EMATL, ADDRESS>-{fn:data(sCUSTOMER/EMATL ADDRESS) }</EMATL ADDRESS:
<TELEPHOHE HUMBER:-{fn:data(sCUSTOMER/TELEPHONE _NUMEER) }</TELEPHOHE HUMBER:-
=8SH7=-{fn:data(§CUSTOMER/35N) L < FSSH-
=<BIRTH DIY¥ 7={fn:data(sCUSTOMER/BIRTH DAY) }</BIRTH DAY
=“DEFAULT SHIP METHOD 7-{fn:data(sCUSTOMER/DEFAULT SHIP_METHOD) }</DEFAULT SHIP METHOD-
<EMATL, HOTTFICATION #={fn: data | §CUSTOMER/EMATL NOTIFICATION) }</EMATL, HOTIFICATION:-
=<HEWS LETTTER?>-{fn:data(sCUSTOMER/HEWS _LETTTER) }</HEWS LETTTER-
~<DHLINE STRTEMEHT 7={fn:data(sCUSTOMER/ONLINE STATEMENT) }-</0HLIHE STATEMEHT-

< fns0: CUSTOMER:~

Kl | 0]
Design Yiew | #Query Editor View | Source View [Test View [Query Flan View

Figure 18-11 Source View of Built-In String Function

Data Services Platform: Samples Tutorial 20

Lab 18.5 Creating a Date Function

A date function lets you retrieve data based on date parameters.

Objectives

In this lab, you will:

Create a date function that will find customers by the year that they were born.
Test the function.

Review the XQuery source code.

Instructions

1. Add anew function to the CustomerInfo data service and name it getCustomerByBirthYear.
2. Click getCustomerByBirthYear() to open XQuery Editor View to that function.

3. Add a for clause, by completing the following steps:

a. Inthe Data Services Palette, open the CUSTOMER.ds folder, which is located in the
DataServices\CustomerDB folder.

b. Drag and drop CUSTOMER()into XQuery Editor View. This creates a for node for the
CUSTOMER() function.

4. Create an induced mapping. Drag and drop the CUSTOMER¥* element (source) onto the
CUSTOMER element (Return).

5. Create a new parameter, enter BirthYear as the Parameter Name, and select xs:integer as the
Primitive Type.

6. Add a where clause, by completing the following steps:
a. Click the SCUSTOMER node's header. The Expression Editor opens.
b. Click the Add Where Clause icon.
c. In XQuery Function Palette, expand the Duration, Date, and Time Functions folder.

d. Drag and drop the built-in following function into the where clause field.
fn:year-from-date($arg as xs:date?) as xs:integer?
e. Confirm that the where clause is as follows:

fn:year-from-date($arg)

f. Edit the built-in function, so that it reads as:
fn:year-from-date ($CUSTOMER/BIRTH_DAY) eq $BirthYear

g. Click the green check button to accept the changes.

Data Services Platform: Samples Tutorial

CustomerInfo.ds” - {DataServicesH\MyQueries) B3
getCustomerByBirthrear()| ~
@Relum 2]
0 = CUSTOMER.
{?|Parameter: $BirthYear | CUSTOMER_ID string
nteger FIRST_NAME string
- - CEUEEER LAST_NAME string
l"r: CUSTOMER,_SINCE date
(= CUSTOMER * EMAIL_ADDRESS string
CUSTOMER_ID string TELEPHOME_MUMEER. string
FIRST_MAME string SSM? string
LAST_NAME string BIRTH_DAY 7 date
CUSTOMER _SINCE date DEFALLT_SHIP_METHOD ? string
EMAIL_ADDRESS string EMAIL_MOTIFICATION 7 shart
TELEPHOME_NUMBER: string NEWS LETTTER shart
55M? string £ OMLINE_STATEMENT ? shork L
BIRTH_DAY 7 date
DEFAULT_SHIF_METHOD ? stri
EMAIL_NOTIFICATION ? short
NEWS_LETTTER ? short
ONLINE_STATEMENT ? short
< 0
K| 1 D]
om[v :
Where Frryear-from-date(§CUSTOMER,/SSH eq fBirthYear)

m—‘_XQuery Editor View Query Plan Yiew

Figure 18-12 Where Clause Using a Built-In Date Function

7. Test the function, by completing the following steps:
a. Open CustomerInfo.ds in Test View.
b. Select getCustomerByBirthYear() from the function drop-down list.
c. Enter 1970 in the $arg0 field.
d. Click Execute.

e. Confirm the results, which should be as displayed in Figure 18-13. There should be five
customer profiles returned.

CustomerInfo.ds - {DataServicesHMyQueries) ®

Select Function:

|-B gebCustomerByBirthyear(Birthear) ‘ - |

Parameters

xsiinteger BirthYear: ‘ 1970 ‘

Murnber Element (by path)

Limit elements in array results to
) -]

[start Client Transaction [Validate Resulks

Result

- <nsiArrayOFCUSTOMER xminsins0="ld:DataServices/MyQueriesfCUSTOMER" =

- =nsOiCUSTOMER. =
<CUSTOMER_ID> CUSTOMERL <{CUSTOMER ID=
<FIRST_MNAME> Jack <{FIRST_NAME:
<LAST_NAME> Black </LAST_MAME:>
<CUSTOMER._SINCE> 2001-10-01 </CUSTOMER_SIMCE =
<EMAIL_ADDRESS > Jack@hotmail.com <jEMAIL_ADDRESS >
<TELEPHOME_MUMEBER:> 2145134119 </TELEPHONE_MUMBER >
<55N> 295-13-4119 <j55M>
<BIRTH_DAY> 1970-01-01 </BIRTH_DAY:=
<DEFAULT_SHIP_METHOD> AIR </DEFAULT_SHIP_METHOD >
<EMAIL_NOTIFICATION: 1 <[EMAIL_NOTIFICATION:
<MEWS_LETTTER> 0 </MEWS_LETTTER>
<OMLINE_STATEMEMT = 1 <fOMLINE_STATEMEMT =

2fnsD: CUSTOMER >

- =nsOi CUSTOMER. =
<CUSTOMER._ID> CUSTOMERS <{CUSTOMER _ID =
<FIRST_NAME> Michael </FIRST_MAME:
<LAST_NAME> Snow </LAST_MAME:>
<CUSTOMER_SINCE> 2001-10-01 </CUSTOMER_SIMCE > |z|

Design Yiew | XGuery Editor Yiew | Source View | Test View [Query Plan View

o

Figure 18-13 Date Function Test Results

Data Services Platform: Samples Tutorial

8. Open CustomerInfo.ds in Source View to view the generated XQuery. The query should be
similar to that displayed in Figure 18-14. (Note: The automatic namespace assignments may not
match).

CustomerInfo.ds - {DataServicesHMyQueries), 4

]

declare namespace nsl="ld:Datafervices/CustomerDE/CTSTOMER™ ;
import schema namespace nsl="ld:Datalervices/MyQueries/CUSTOMER" at "ld:Dataferwvices/MyQuerie
declare namespace tns="ld:Datafervicezs/MNylueries/CustonerInfo”;

declare function thns:gethAllCustomers() as element(ns0:CUSTOMER)*

[declare function tns:getCustonerByName [sFirstName as xs:istring, slastName as xs:string) as el

¥ declare function tns:getCustouerBy3sN(55N as xs:string) as element (ns0:CUSTOMER)® L. .G

declare function thns:getCustomerByEirchVear (sBirth¥esr as xs:integer) as element(ns0:CUSTOMER
for FCUSTOMER im nsi:CUSTOMER()
where fn:year-from-date(sCUSTOMER/BIRTH DAY) eq §Eirth¥ear

return

<m0 CUSTOMER:-
<CUSTOMER ID{fn: data|§CUSTOMER/CUSTOMER_ID) }</CUSTOMER ID:
<FIRST HAME>{fn:data(sCUSTOMER/FIRST_NAME))< /FIRST HAME>
<LAST_WAME-{fn:data(§CUSTOMER/LAST _NAME) }</LAST_ HAME:
<CUSTOMER_STHCE>{fn:data($CUSTOMER/CUSTOMER_SINCE) }</CUSTOMER STHCE:-
<EMATL._ADDRESS:>{fn:data(§CUSTOMEE/EMATL_ADDRESS) }</EMATL ADDRESS>
<TELEPHOHE_HWUMBER:-{fn: data | §CUSTOMER/TELEFHONE _NUMEER) |-/ TELEPHOHE HUMBER:-
<SSH 7> { fr: datal §CUSTOMER/S5N) 1 </SSH-
<BIRTH DAY >-{fn: data (§CUSTOMER/BIRTH DAY) }</BIRTH DAY
<DEFAULT SHIP METHOD #-{fn:data($CUSTOMER/DEFAULT SHIP_METHOD) }</DEFRULT SHIP METHOD:-
<EMATL, HOTIFICARTION 7={fn:data| §CUSTOMER/EMATL _NOTIFICATION) }</EMATL HOTIFICATION-
<HEWS_LETTTER ! fn: data | sCUSTOMEE/HEWS _LETTTER) 1< /HEWS LETTTER:=
<OMLIHE_STATEMENT 7>-{fn:data(§CUSTOMER/ONLINE_STATEMENT) }</OHLIHE STATEMENT:

<fn50: CUSTOMER-

}:
[l
Design View | ¥Query Editor View | Source View [Test View | Query Plan Yiew

Figure 18-14 Date Function Source View

Lab 18.6 Creating Outer Joins and Order By Expressions

Outer joins return all records from one table even it doesn’t contain values that match those in the other
table. For example, an outer join of customers and orders reports all customers — even those without
orders.

Objectives

In this lab, you will:

Create a function that:

0 Returns customer information and their addresses (there may be more than 1).
0 Nests address information inside customer information.

0 Orders customers by first name and last name, in ascending order.

0 Orders addresses by zip code, in descending order.

Test the function.

Review the XQuery source code.

Instructions
1. Add anew data service to the MyQueries folder and name it CustomerAddresses.

2. Associate the CustomerAddresses() data service with the CUSTOMERADDRESS .xsd schema.
The schema is located in the MyQueries\schemas folder.

Data Services Platform: Samples Tutorial 23

3. Add a new function to the CustomerAddresses data service and name it getCustomerAddresses.

[Fer " Customerfidresses Dl Srvie

o CUsTOmER
) CUSTOMER 1D xe-sting
B PIRST_NAME Nt
) LAST_NOME i:sting
B OUSTOMUR_SINCE wovdate
@) FMaD_anOness eeatring
@ TEIEPHONE_NUMEFT vastring
@ 55N T enting
@) RIATH_DWY 7 wndabe
@) DEFULT_SHIP_METHOD 7 waistring
@ FMan_NOTIFICATION T wpshast
@) NEWS_LETTTER 7 wnshart
@ OMUINE_STATEMENT 7 wrishart

B @ ApoRESSES
@ anoRpss*

S pilustomeriddesee:

) LAST_MANE wavstring -

ADCR_ID wp:string
CUSTOMER_ID iepistring
FIRST_NAME ea:string

Figure 18-15 Design View of CustomerAddresses Data Service

4. Click getCustomerAddresses to open XQuery Editor View for that function.

5. Add two for nodes to the work area, by completing the following steps:

a. Inthe Data Services Palette, expand the DataServices\CustomerDB folders.

b. Open the CUSTOMER.ds folder (located in the CustomerDB folder), and then drag and
drop CUSTOMER ()into XQuery Editor View.

c. Open the ADDRESS.ds folder (located in the CustomerDB folder), and then drag and drop
ADDRESS()into XQuery Editor View.

et Cstomer e wetel)|

(2 ror SADORL
= ADCRES
Anod

T Wiy ey Edtr View | Vi | Tk Vs | Qi PR Wi

Figure 18-16 Source Nodes

6. Create an induced mapping for the CUSTOMER node. Drag and drop the CUSTOMER* element
(source) onto the CUSTOMER element (Return).

7. Create an induced mapping for the ADDRESS node. Drag and drop the ADDRESS* element
(source) onto the ADDRESS element (Return).

Note: Do not drop the source element onto the ADDRESSES element.

Data Services Platform: Samples Tutorial

24

8. Create a source node relationship. Drag and drop the CUSTOMER _ID element in the
$CUSTOMER node onto the corresponding element in the SADDRESS node.

CustomerAddresses. ds* - {DataServicesHMyQueries) x
getCustomerAddressest)
@ Return =
[For: §CUSTOMER o 7 3 B CUSTOMER
E CUSTOMER * 4 CUSTOMER_ID string
CUSTOMER_ID string FIRST_MNAME string
FIRST_MAME string LAST_NAME string
LAST_MAME string CUSTOMER_SINCE date
CUSTOMER _SINCE date EMAIL_ADDRESS string
EMAIL_ADDRESS string TELEPHOMNE_MUMBER string
TELEPHOME_MUMBER. string SSM? string
S5M 7 string BIRTH_DAY ? date
BIRTH_DAY ? date DEFAULT_SHIP_METHOD ? string
DEFAULT_SHIP_METHOD 7 string EMAIL_MOTIFICATION ? shart
EMATL_NOTIFICATION 7 shart MEWS _LETTTER 7 short
NEWS_LETTTER ? short ONLINE_STATEMENT 7 short
ONLIME_STATEMENT ? shart: =} ADDRESSES
0] = ADDRESS *
ADDR_ID string

7 CUSTOMER_ID string
- [For: SADDRESS 0 FIRST_NAME string
(=} ADDRESS * LAST_MAME string
ADDR_ID sty STREET_ADDRESSL string
e STREET_ADDRESSZ 7 string
CUSTOMER_ID string

CITV string
FIRST_MAME string STATE string
LAST_MAME string ZIPCODE string
STREET_ADDRESS1 string

STREET_ADDRESS2 ? sh COUNTRY string
= o DiY_PHONE ? string
CITY string

EVE_PHONE ? string
STATE string

ALIAS 7 string
ZIPCODE string STATUS ? string
COUNTRY string & 15_DEFAULT short
DAY_PHONE ? string

EVE_PHONE ? string
ALIAS T string
STATUS 7 string
15_DEFAULT shart

<] O
[esL] S
|

XQuery Editor view

Figure 18-17 Mapped and Joined Source Nodes

iy Cpumries])
[rararr——r—
B Retum =
|7 5 custoren
CUBTONER_ID streg
FIRST_NAVE stri
FIRST_HAME 4210 LAST AL ey
LAST_HAVE sty . CUSTOMER_SINE date
CUSTONIR_SICL date | MASL_ADORESS 417y
EMAIL_ACCRESE v TELEPHOHE MUMEER. strems
TELLPHONL NI g 1 s sty
SN string BIRTH DAY T dite
DIRTH DAY ? date | DEFALLT_SHIP_METHEO * sting
CEFALT_SHP_ METHOO 7 strong EMAL_WOTIFICATION ? shert
CMAIL_NOTIFICATION S short | HEWSAETTIER ? shart
NEWS LETTTER 7 shert CHLINE_STATEMENT 1 shest
CHLINE_STATEMENT short = ADORESSES
S *
Acce 0 sirng
CUSTOMER D i
»/[Far: sADDRESS o | FIRSTNAHE strng
} | | LAST i strvg
= ADORESS*

STREET_ADORE35L strig

ALOR_ID sty STREET_ACORESSI T strivey
CUSTOHER I g CITY sty

FIRST_NAME string STATE ey

LAST_NAME string TIPCOCE string
STREET_ADCRESSL strig pip——

SINEET_ADDRESSE T iy
DY_PHONE 7 g

sk FVE_peon 7 sty
STATE strng s s
EPOO0E Sekm, STATUS 7 ring

COUNTRY g
DAY_PHONE T string
EVE_PHONE | e

15 DEFAAT st

ALIAS T sting
StANS 7 areg
IS_DEFMLT shoet
T |
((om[|v |
|
m B coneabl POUSTOMERIFIRST_MAME, *°, SOUSTOMERLAST_NAML) =

[oesian e | #paery Ecto Vi [Sourca Vs | Tesk View | Qusey Pl Yo |

Figure 18-18 Where Clause
9. Add an OrderBy clause, by completing the following steps:
a. Click the ADDRESS node's header. The Expression Editor opens.
b. Click the Order By Clause %l icon.

Data Services Platform: Samples Tutorial

25

c. Click inside the Order By Clause field.

d. Enter SADDRESS/ZIPCODE descending in the field.

e. Click the green check button to accept the changes.

| amustomer dressest)]| =

2 For: scUBTOMER
CUSTOMER *

AUBTOME_D string
FIRET_NAME streg
LAGT_NAML string
QUETOMER _SINCE dete
AL _AOORLSS stivg
TELEPHONE _NUMBET. vy
SN sing
EMTH DAY T dobe
OEFAMAT S0P METHOD ? sting
EMAL_HOTIFICATION T shoat
NEWS_LETTTER + short
CHLPE_STATEVENT 1 sbort

(& Retum
e

CUSTOMEN 1D string
FIRST_NAME string
LAST_NAYE srig
CUSTOMER_SINCE date
EMAR_ADORESS. sirrg
TELEPHONE_MUMEES: stri
SN g
DIRTH DAY 7 date
DEFALLT_SHIR_pETI00 7 strig
EMAR_NOTIFICATION 7 short
NEWS_LETITER 7 short
CMLINE _STATEMENT 7 shert

= ADORESSES

ApORESS*

aoxe 0 streg
! CUSTOMER D strng
N Ty 1 FIRSTHAML strng
12 For SADDRERE LAST_HAHE st
1 ADCRESS ® STRLLT_ACCRLSSL string
KOOI strng STEET_ADORESST T shrieey
CUSTOMER 1D sirng T sring
FRST_WAME string STATE string
LAST_NANE sty FPCOCE string

STREET_ADORESS! string

COUNTRY siree
STEEET_ADONESSE T tring

DAY_PHONE T string

£ITY sting EVE_raeg ¢ strng
STATE g ALIS? sring
TPCO0E g STANS T g
COUNTRY sirirey 15 DEFRIAT sttt

DAY PHOKE 7 sting
EVE_PHONE T st
1057 sting
STATLS 7 wtreg

15 DEFRILT shert

ol [|[v3l |
WS $USTOMERICUSTOMER, D = $ADDRESS/CLSTOMER [
Crderlty MCORLETIFCODE descandng

0T

| o s | #Cnuery Eckoe Yiews | Surce Vi | Teek Viewy | Geiy Flan Y | i

Figure 18-19 OrderBy Clause
10. Test the function, by completing the following steps:
a. Open CustomerAddresses.ds in Test View.
b. Select getCustomerAddresses() from the function drop-down list.

c. Click Execute.

d. Confirm the results. Addresses should be nested after the customer's information.

Data Services Platform: Samples Tutorial

26

Customeraddresses. ds - {DataServicesHMyQueries)

Seleck Function:

‘@ getCustomerAddresses() | ~ |

Parameters

Mumber Element (by path)

Limit elements in array results to:
[s0

[Start Client: Transaction [Yalidate Results

Result

- <ns0iArrayOFCUSTOMER xmins:ns0="d:DataServices/MyQueries/CLSTOMERADDRESS" >
- <ns0iCUSTOMER >
<CUSTOMER_ID> CUSTOMERD </CLUSTOMER_ID>
<FIRST_MAME > Kevin <{FIRST_NAME:
<LAST_NAME> Smith <[LAST_NAME >
<CUSTOMER _SINCE> 2001-10-01 <[CUSTOMER_SINCE>
<EMAIL_ADDRESS> Kevin@aol.com </EMAIL_ADDRESS:>
<TELEPHOME_WUMBER > 4088320283 </TELEPHOME_MNUMEBER =
<350 098-32-0284 </55h>
<BIRTH_DAY:> 1970-01-01 </BIRTH_DAY:>
<DEFALLT_SHIP_METHOD> GROUND <{DEFAULT_SHIP_METHOD >
<EMAIL_NOTIFICATION > 1 </EMAIL_MOTIFICATION:
<NEWS_LETTTER> O <[NEWS_LETTTER:
<OMLINE_STATEMENT > L <JONLINE_STATEMENT =
- <ADDRESSES >
- <ADDRESS »
<ADDR_ID> ADDR_10_0 <{ADDR_ID>
<CUSTOMER_ID:> CUSTOMERD </CUSTOMER _ID>
<FIRST_NAME> Kevin <[FIRST_NAME:>
<LAST_MAME= Smith </LAST_MAME>
<STREET_ADDRESS1:> 2284 Zanker Blvd </STREET_ADDRESS1>
<CITY> San Jose <[CITV>
<STATE> CA <[STATE>
<ZIPCODE> 95131 </ZIPCODE
<COUNTRY> USA <[COUNTRY>
<DAV_PHOME> 4088320284 </DAY_PHOME >
<EVE_PHONE= 4080216109 <JEVE_PHONE >
<ALIAS= Work <fALIAS:
<STATUS= ACTIVE <jSTATUS:

Desian Yiew | #Query Editar Yiew | Source Yiew | Test View [Guery Plan Yiew |

Figure 18-20 Order By Test Results

11. Open CustomerAddresses.ds in Source View to view the generated XQuery. (Note: The automatic

namespace assignments may not match.)

Data Services Platform: Samples Tutorial

27

*

Customerdddresses.ds - {DataServicesHMyQueries!,

declare function tns:getCustomerdddresses() as element(ns5:CUSTOMER)* [|z|

for FCUSTOMER inm ns6: CUITOMER ()

return

“ms3: CUSTOMER:-
<CUSTOMER. TD:-{fn:data|sCUSTOMER/CUSTOMER_ID) }<</CUSTOMER ID:-
<FIRST HAME-{fn:data(fCUSTOMER/FIRST _NAME) }-</FIRST HWAME:
<LAST WAME:>{fn:data($CUSTOMER/LAST NAME) }</LAST HAME:-
<CUSTOMER STHCE-{Efn:data(sCUSTOMER/CUSTOMER_SINCE) 1< /CUSTOMER STHCE- ﬁ
<EMATL. ADDRESS>{fn:data(sCUSTOMER/EMATL_ADDEESS) }</EMATL. ADDRESS:-
<TELEPHOHE_HUMBER:-{fn: data(§CUSTOMER/TELEPHONE _NUMEER) | </ TELEFHONE HUMBER:-
<SSH7-{fn: data | sCHSTOMER/SSN) }<FSSH-
<BIRTH DAY 7>={fn:data(sCUVSTOMER/BIRTH_DAY) }</BIRTH DAY
<DEFRULT SHIP METHOD 2>-{fn:dataisCUSTOMER/DEFAULT_SHIP METHOD| }</DEFAULT SHIP METHOD:-
<EMATL N'I]T]I‘IC]'uTII]lI‘?}{ frn:data(FCUSTOMER/EMATL _NOTIFICATION) }-</EMATL | HOTTFTCATION:-
<HEWS LETTTER?>{fn:data(sCUSTOMER/NEWS_LETTTER) }<fHEWS LETTTER-=
<OHLTHE STATEMEHT ?>-{fn:data(sCUSTOMER/ONLINE_STATEMENT) }</OHLIHE STATEMEHT -
<ADDRESSES:> -

{

for FADDEESS inm nsd:ADDRESS()
where sCUSTOMER/CUSTOMER ID = §ADDRESS/CUSTOMER_ID
order by FADDEESS/ZIFCODE descending
return
“ADDRESS- L
<EDDR_ID>-{fn:data|§ANDEESS/ADDR_ID) }</ADDR_ID:>
<CUSTOMER. ID>{fn:data($ADDRESS/CUSTOMER_ID] }</CUSTOMER. ID>
<FIRST WAME:-{fn:data(5ADDRESS/FIRST_NAME) }</FIRST HAME>-
<LAST HAME>{fn:data($ADDRESS/LAST NAME) }</LAST HAME-
<5STREET ADDRESS1-{fn:data(sADDERESS/STREET_ADDRESSL) }</STREET ADDRESS1:-
<STREET | ' ADDRESS?22={fn:data(FADDEESS/STREET . ADDRESSZ]}(ISTREET ADDRESS 2
<CITY>{fn:data(§ADDEESS/CITY) b</CITY>
<STATE> | fn: data| $ADDEESS,/STATE) }-</STATE>
<ZIPCODE={fn:data(fANDEESS/EIPCODE) 1< fZIPCODE>
<COUHTRY:={ fn:data | §AIDEESS /COUNTRY) | </ COUNTRY >
<DAY_PHOME 7>-{£n: data | SADDRESS/DAT_PHONE) }</DAY_PHOHE:>
<EVE_PHOME 7>-{ £r1: data (§ADDRESS/EVE_PHONE) }</EVE_PHOHE:>
<ALIAS ?={fn:data(sADDEESSFALTAS) V< fALIAS>
<STATUS 2-{ fn: data | §AIDEESS /STATUS) }</STATUS>
<15 DEFRULT-{fn:data(fADDRESS /IS _DEFAULT) }<fI5 DEFAULTZ
</ADDRESS >

}
< /ADDRESSES:>
<fns5: CUSTOMER - =l

Kl [+]
Design View [BQuery Editor Yiew | Source View | Test Yiew | Query Plan Yiew

Figure 18-21 CustomerAddresses() Source View

Lab 18.7 Creating Group By and Aggregate Expressions

Sometimes, you may want to group data according to particular data elements, such as grouping
customers by state and country.

Objectives

In this lab, you will:

Create a query using the group by operator and sum() function that generates a report of
customers grouped by state and city, showing total sales by city.

Test the function.

Review the XQuery source code.

Instructions
1. Create a new data service in the MyQueries folder and name it CustomerOrders.

2. Associate the CustomerOrders data service with the CUSTOMER ORDER .xsd schema. The
schema is located in the MyQueries\schemas folder.

3. Create a new function and name it getCustomerOrderAmount.

Data Services Platform: Samples Tutorial 28

CustomerOrders, ds* - {DataServicesHMyQueriesl *

Ty, CustomerOrders Data Service

E O CUSTOMER _ORDER
@ CUSTOMER_ID xs:shring
@ TOTAL_ORDER_AMOUNT xs:desimal

A eCustomerDrder Amount:

Design Wiew [RQuery Editor Tiew Query Plan Wiew

Figure 18-22 Design View of Customer Orders Data Service
4. Click getCustomerOrderAmount to open XQuery Editor View for that function.
5. Add a for node, by completing the following steps:

a. In the Data Services Palette, open the CUSTOMER ORDER.ds folder, which is located in
the DataServices\ApparelDB folder.

b. Drag and drop CUSTOMER ORDER()into XQuery Editor View.

6. Create a GroupBy clause, by completing the following steps:
a. Right-click the C_ID element in the SCUSTOMER ORDER source node.
b. Choose Create Group By. A GroupBy node is created.

7. Create a simple mapping. Drag and drop the TOTAL ORDER_AMT from the Group section of
the GroupBy node onto the corresponding element in the Return type.

8. Create a simple mapping. Drag and drop the C_ID element in the By section of the GroupBy node

to the corresponding element in the Return type.

CustamerOrders.ds™ - {DataServices HMyQueries] X
@ newFunction) | -
EaFer: SCUSTOMER_ORD... * U {2 GroupBy: $CUSTOMER_ORDER_grou... =
CORDER_ID string lz‘ [=I%=| Group
C_ID string] - CUSTOMER_ORDER *
ORDER_DT date CORDER_ID string (@ Return
SHIP_METHOD_DSC string C_ID string B CUSTOMER_GRDER
HANDLING_CHRG_AMT decim ORDER_DT date CUSTOMER_ID string
SUBTOTAL_AMT derimal SHIP_METHOD_DSC string & TOTAL ORDER AMOLNT decimal
TOTAL_ORDER_AMT decimal HAMDLING_CHRG_AMT decimal - -
SALE_TAX_AMT dedmal SUBTOTAL_AMT decimal
SHIP_TO_ID string TOTAL_ORDER_&MT decimal
SHIP_TO_MM string SALE_TAR_AMT decimal
BILL_TO_ID string SHIP_TO_ID string
ESTIMATED_SHIP_DT date SHIP_TO_MM skring [
STATUS string | BILL_TO_ID string
TRACKING_NO 7 string |z| ESTIMATED_SHIP_DT date
[« STATUS string
TRACKING MO ? string
= By
C_ID string
=
K1l] [
[[em[]+¥3l ¢
| [Desian Yiew | XQuery Editar View [Source View | Test Yiew | Query Plan Yiew

Figure 18-23 GroupBy Node Added and Mapped

Data Services Platform: Samples Tutorial

29

Modify a Return expression, by completing the following steps:

a. Click the TOTAL ORDER_AMOUNT, located in the Return node. The Expression Editor
opens. Every element in a Return type has an underlying expression. In this case the

expression is:

{fn:data($CUSTOMER_ORDER_group/TOTAL_ORDER_AMT)}}

b. Edit the expression so that it changes fn:data() to fn:sum(), as follows:

{fn:sum($CUSTOMER_ORDER_group/TOTAL_ORDER_AMT)}

c. Click the green check button to accept the changes.

CustomerOrders.ds - {DataServicesHMyQueries)

X
-B niewFunction() ‘ - |
-
S4For: §CUSTOMER_ORD... # U
= — {E GroupBy: $CUSTOMER_ORDER_grou_._ #
CRDER_ID string |Z| [=1%=| Group
C_ID string [] - CUSTOMER_ORDER *
ORDER_DT date ORDER_ID string @ Return
SHIP_METHOD_DaC string C_ID string 01 = CUSTOMER _ORDER.
HAMDLING_CHRG_AMT decim ORDER_DT date CUSTOMER_ID string
SUBTOTAL_AMT decimal SHIP_METHOD_DSC skring i TOTAL ORDER_AMOUNT decimal L]
TOTAL_ORDER_AMT decimal HAMDLING _CHRG_AMT decimal - b
SALE_TAX_AMT decimal SUBTOTAL_AMT decimal
SHIP_TO_ID string TOTAL_ORDER_AMT decimal
SHIP_TiO MM skring SALE_TAX_AMT decimal
BILL_TO_ID skring SHIP_T2_ID skring
ESTIMATED_SHIP_DT date SHIP_TO MM string
STATUS string BILL_TO_ID string
TRACKIMG_MC ? string E ESTIMATED _SHIP_DT date
< STATUS string
TRACKING_NG 7 string =]
<l | [
QN[| ¢

Expression {fr:sum{$CUSTOMER _ORDER_grouplTOTAL_CRDER_AMT)}

Design Yiew | %Guery Editor View [Source View | Test Yiew | Query Plan View

Figure 18-24 Aggregate Expression

9. Test the function, by completing the following steps:

a. Open CustomerOrders.ds in Test View.

b. Select getCustomerOrderAmount() from the Function drop-down list.

c. Click Execute.

d. Confirm the results.

Data Services Platform: Samples Tutorial

30

CustomerOrders.ds - {DataServicest My Queries',
Select Function:

|-B getCustomerOrderamount() | - |

Parameters

Mumher Element (by path)
Limit elements in array results to

EE -]
[1 start Client Transaction [Validate Results
Result

- <ns:ArrayOfCUSTOMER_ORDER xmins:ns0="ld: Data3ervices/MyQueries/CRDERS" =
- =nsliCUSTOMER _ORDER. =

<CUSTOMER_ID> CUSTOMERO </CLISTOMER D>

<TOTAL_ORDER_AMOUNT> 1609.5 </TOTAL_ORDER_AMOUNT >
<[ns0iCUSTOMER_DRDER =

- =ns CUSTOMER _ORDER =
<CUSTOMER_ID= CUSTOMER1 </CLISTOMER _ID>

<TOTAL_CRDER_AMOUNT> 3626.25 </TOTAL_ORDER_AMOUMNT >
</ns0:CUSTOMER_ORDER >

- <ns CUSTOMER _ORDER. =
<CUSTOMER_ID> CUSTOMER2 </CLISTOMER _ID >

<TOTAL_ORDER_AMOUNT= 1253.3 «/TOTAL_ORDER_AMOUNT >
</ns0iCUSTOMER_DRDER =

- <nslCUSTOMER_ORDER. =

<CUSTOMER_ID:= CUSTOMER3 </CUSTOMER _ID=

<TOTAL_CRDER_AMOUNT: 9039.75 </TOTAL_ORDER_AMOUNT >
<[/ns0iCUSTOMER_DORDER >

- =nsCUSTOMER _ORDER =
<CUSTOMER_ID> CUSTOMER4 </CLISTOMER D>
TOTAL ORDER AMOUNT > 9587.3 </TOTAL ORDER AMOUNT.

&
=

Design Yiew | XQuery Editor View | Source Wisw | Test Yiew |[Query Plan View

Figure 18-25 Aggregate Test Results

10. Open CustomerOrders.ds in Source View to view the generated XQuery. (Note: The automatic
namespace assignments may not match that shown in the lab.)

CustomerOrders,ds - {DataServicesHMyQueries)
OMEPOTrT SCIENA B IS0 1O DdCdaeErvVITE MY UUELTE UFUEFS

X
dr I THCHAELVITE
declare namespace tns="ld:Datalervices/Mylueries/CustomerOrders";

CIIEIH lE

T JUELLE

declare function ths:getCustomerOrderdmount() as element(nsl0:CUSTOMEE_OFDER)* {
for SCUSTOMER QRDEER im nslzZ:CUSTOMEE ORDER()

group $CU§TGME‘R_ORDER as $CUSTGJ‘ER_OR_DER_g’roup by CUSTOMER ORDER/C_ID as §C ID group
return
=mns10: CUSTOMER. ORDER-

<CUSTOMER TD:-{ fn:datai §C_ID group) }<fCUSTOMER ID>

<TOTAL ORDER AMOUNT>{fr:zum(§CUSTOMER ORDER group/TOTAL_ORDER_ANT) }</TOTAL ORDER AMOUNT:
</n510: CUSTOMER ORDER:

[«

Design View | #Guery Editor View | Source View |[Test Yiew | Query Flan View

Figure 18-26 Source View of the CustomerOrders Data Service

Data Services Platform: Samples Tutorial

31

Lab 18.8 Creating Constant Expressions

Creating a data service query that uses a constant expression enables a quick and easy way to locate
specific information. For example, you can use a constant expression to identify all customers who
ship by Ground method.

Objectives

In this lab, you will:

Create a non-parameterized function that will return all customers whose default shipping
method is GROUND.

Test the function.

View the XQuery source code.

Instructions

1. Add anew function to the CustomerInfo data service and name it getGroundCustomers.
2. Click the getGroundCustomers() function to open the XQuery Editor View.

3. Add a for node, by completing the following steps:

a. In the Data Services Palette, open the CUSTOMER.ds folder, which is located in the
DataServices\CustomerDB folder.

b. Drag and drop CUSTOMER()into XQuery Editor View.

4. Create an induced mapping. Drag and drop the entirce CUSTOMER* element (source node) onto
the CUSTOMER element (Return).

5. Add a where clause, by completing the following steps:
a. Click the CUSTOMER node's header. The Expression Editor opens.
b. Click the Add Where Clause icon.

c. Enter the following expression as a where clause:
$CUSTOMER/DEFAULT_SHIP_METHOD eq '""GROUND"

d. Click the green check mark icon to accept the where clause for the customer object.

Data Services Platform: Samples Tutorial

CustomerInfo.ds* - {DataServicesH\MyQueries) ES

getGroundCustomers() |v

(@ Return 12|

or: §CUSTOMER 0 7 B CUSTOMER
CUSTOMER_ID string
FIRST_MAME string
LAST_MAME string
CUSTOMER _SINCE date
EMAIL_ADDRESS string
TELEPHOME _MUMBER. string
SN ? shring
BIRTH_DAY ? date L
DEFAULT _SHIP_METHCD ¥ string
EMAIL_MOTIFICATION ? short
MNEWS_LETTTER 7 shart

£ OMLIME _STATEMENT ¥ short

= CUSTOMER *
CUSTOMER _ID string
FIRST_NAME string
LAST_MAME string
CUSTOMER _SIMCE date
EMAIL_ADDRESS string
TELEPHOME _MUMBER. string
55N 7 string
BIRTH_DéY ? date
DEFALT_SHIP_METHOD 7 string
EMAIL_MOTIFICATION ? short
MEWS_LETTTER ? short
ONLINE_STATEMEMT # short

[[]
B[| ¢

Design View | ¥Query Editor View [Source View | Test View [Query Plan Yiew

Figure 18-27 Constant Function with Default Expression

6. Test the function. The results should be as displayed in Figure 18-28.

CustomerInfo.ds - {DataServicesHMyQueries),

Select Function:

|-B gebGroundCustomers() | - |

Parameters

Mumber Element {by path)
Limit elements in array results ta:

[s00]

[start Client Transaction [validate Results

Resul

- =nsDiArrayOFCUSTOMER xmins:ns0="|d:Dat aServices My Queries/CUSTOMER" =

- =nsiCUSTOMER =
<CUSTOMER_ID> CUSTOMERS </CUSTOMER_ID=
<FIRST_MAME:= Michael </FIRST_MNAME:=
LAST_MAME> Snow </LAST_MAME>
<CUSTOMER_SINCE= 2001-10-01 </CUSTOMER_SINCE =
<EMAIL_ADDRESS> JOHN_S5@aol.com </EMAIL_ADDRESS:
<TELEFHOME_MUMBER. > 4150460017 </TELEPHONE_MUMEER =
£55N> T30-46-0017 <[55M>
<BIRTH_DAY> 1970-01-01 </BIRTH_DAY>=
<DEFAULT_SHIP_METHOD= GROUND </DEFAULT_SHIP_METHOD =
<EMAIL_MOTIFICATION= 1 </EMAIL_MOTIFICATION>
<MEWS_LETTTER > O </MEWS_LETTTER =
<OMLIME_STATEMENT = 1 </OMLINE_STATEMEMT >

«fns0:CUSTOMER >

+ =ns0:CUSTOMER. =

+ =nsiCUSTOMER =

+ =ns0:CUSTOMER. =

+ =ns0:CUSTOMER. =

+ =ns CUSTOMER

Figure 18-28 Test Results of a Constant Expression

7. Open CustomerInfo.ds in Source View. The code should be as displayed in Figure 18-29.

Data Services Platform: Samples Tutorial

33

CustomerInfo,ds - {DataServices HMyQueriest

s

lare function thns:getGroundCustomers() as element(ns0: CUSTOMER)* [

for SCUSTOMER in ns2:CUSTOMER()
where SCUSTOMER/DEFAULT SHIP METHOD eq "GROUND'™
return
<ns0: CUSTOMER:-
<CUSTOMER, ID-{fr:data|§CUSTOMER/CUSTOMER_ID) }</CUSTOMER ID-
<FIRST HAME>{fn:data(§CUSTOMER/FIRST NAME) }</FTRST HAME-
<LAST HAME>{fn:data|$CUSTOMER/LAST NAME) 1</LAST HAME>
<CUSTOMER. STHCE:={fn:data($CUSTOMER/CUSTOMER_SINCE) }</CUSTOMER STHCE:-
<EMATL ADDRESS:-{fn:data(§CUSTOMER/EMAIL_ADDRESS) }</EMATL ADDRESS:-
<TELEPHORE_WUMBER:-{ f1: data [§CUSTOMER/TELEPHONE_NUMBER) }</TELEPHOHE HUMBER:-
<BEW2+{ fn:data | sCUSTOMER/S5N) 1< /S5H>
<BIRTH DAY #-{ fn: data | sCUSTOMER/BIRTH_DAY) }</BIRTH DRY:>
<DEFAULT SHIF METHOD #-{fn:data(§CUSTOMER/DEFAULT SHIP_METHOD) !</DEFAULT SHIP
<EMATL,_HOTIFICATION ¢ {fn:data($CUSTOMER/EMATL_NOTIFICATION) }</EMATL HOTIFICAT
<HEWS LETTTER ?>{fn: data(sCUSTOMER/NEWS LETTTER) }</HEWS LETTTER:
<OHLIHE STATEMENT »>{fn:data($CHSTOMER/ONLINE_STATEMENT) §</OHLIHE STATEMEHT:
</ns0: CUSTOMER~

[«

| D]

]

| Design Wiew | =Query Editor View | Source View | Test View [Query Plan View |

Figure 18-29 Source Code

Lesson Summary

In this lesson you learned how to:

Use the graphical XQuery Editor View to create parameterized, string, and date functions;

outer joins, aggregate, and order by and constant expressions.

Use the XQuery Function Palette to add built-in XQuery functions to a query.

Data Services Platform: Samples Tutorial

34

Lesson 19 Building XQueries in Source View

In the previous lesson, you built XQueries using XQuery Editor View. Sometimes, it is necessary to
programmatically build a query or modify its code. In this lesson, you will learn how to use Source

View to create and edit query functions.

Objectives

After completing this lesson, you will be able to:

Use Source View to add, edit, or delete XQuery code that defines a data service's query

functions.
Compare the coded query with the XQuery Editor View.

Test the results.

Overview

Source View lets you view and/or modify the data service’s XQuery source code. In general, a data
service is simply a file that contains XQuery code. Although DSP provides extensive visual design
tools for developing a data service, sometimes you may need to work directly with XQuery syntax.

Two-way editing is supported — changes you make in Source View are reflected in XQuery Editor

View, and vice versa. The source code is commented to help you edit the source correctly.

| Cuntome 00 - it aricns) | |

dnclarn " £1
declar manespacn £2
deciare w £

doclare saespace 10

rpurt sehem nanespace tl -

Impart schem Ranespace

| e e ey ki | Sorce e Tt Vi | umry Pl Yooy

Figure 19-1 Source View

) || ®Cuery Construct Palette *
Source View Tools =] #Query Constructs
Within Source View, you can use the XQuery Construct Palette, which L FLweR
lets you add any of several built-in generic FLWOR statements to the g Etx?
XQuery syntax. You can then customize the generic statement to match B FWGR
your particular needs. £ FWOR
CaFwR
To add a FLWOR construct, drag and drop the selected item into the CQFer
appropriate declare function space. CaFoR
CaFr
If XQuery Construct Palette is not open, choose View — Windows — () IFTHENELSE
XQuery Construct Palette. L FTHENELSEIR
Data Services Platform: Samples Tutorial 35

Lab 19.1 Creating a New XML Type

For each of the queries created in this lesson, you will define a function that returns results nested
within the Return type. To enable that, you need to create a data service with an undefined XML type.
By leaving the XML type's schema undefined, you can modify the Return type on an ad hoc basic,
without a need to be concerned about synchronizing the XML and Return types.

Objectives

In this lab, you will:

Create a new data service, called XQueries.ds.

Create a new, but undefined, XML type.

Instructions

Create a new data service in the MyQueries folder and name it XQueries.

Create a new XML type by completing the following steps:

a.
b.

C.

d.

2 Create New Schema File @

Schema File | Evaluatlon'LDataSerwceslMyQuerles)’xQuerles.xsd| l:‘
Return type | Results |

Target Mamespace | Id:DataServices My QueriesEQueries |

Right-click the XQueries Data Service header.
Select Create XML Type.

Enter Results in the Return Type field.

Note: Do not change the default settings for the Schema File and Target Namespace fields.

Click OK.

Figure 19-2 Create New XML Type

3.

Confirm that the data service diagram is as displayed in Figure 19-3.

EQueries ds* - {DataServicesHMyQueries!

]

[Tize ~ XOQueries Data Service

@ Resuls

<

| Design Yiew [XGQuery Editor iew | Source Yiew | Test View | Query Plan View |

Figure 19-3 Design View: Undefined Results Type

Data Services Platform: Samples Tutorial

36

Lab 19.2 Creating a Basic Parameterized XQuery

There are two basic types of queries: those without parameters and those with parameters. In the
previous lesson, you used XQuery Editor View's graphical tools to define a query with parameters. In
this lab, you will use Source Editor to programmatically define a parameterized query.

Objectives

In this lab, you will:

Build a query that retrieves customer information based on first and last names.
View the results in XQuery Editor View.

Test the function.

Instructions

Note: Namespaces may differ for your application.

1. Add a new function to XQueries.ds and name it getCustomerByName.
2. Open Source View.
3. Define the function declaration, by completing the following steps:
a. Add the following parameter to the first parenthesis:
$p_Firstname as xs:string, $p_lastname as xs:string
b. Remove the asterisk (*), since you want this function to only return a single result.

The code should be similar to the following :

declare function tns:getCustomerByName($p_firstname as xs:string,
$p_lastname as xs:string) as element(nsO:Results) {

4. Click the + symbol next to the getCustomerByName() function. This opens the function body.

5. Split the <nsO:RESULTS/> element into open and end tags, with curly braces in between for the
XQuery. The code should be as follows (ignore the error indicator):

<nsO:Results>

{
}
</nsO:Results>
6. Open XQuery Construct Palette.
7. Drag and drop the FWR construct between the curly braces. The code should be as follows:
for $var in O
where true()

return

O

Data Services Platform: Samples Tutorial 37

8. Define the for clause by completing the following steps:
a. Change the variable to $customer.
b. In the Data Services Palette, expand the CustomerDB\CUSTOMER .ds folders.

c. Drag and drop CUSTOMER() into the for clause's first empty parenthesis. The code should
be similar to the following:

for $customer in (ns1l:CUSTOMERQ))
where true()

return

O

9. Replace the where clause true() code with the following:

$customer/FIRST_NAME eq $p_firstname and $customer/LAST_NAME eq
$p_lastname

10. Set the return clause, by adding $customer between the parenthesis.

11. Confirm that the source code is as displayed in Figure 19-4; namespaces may be different for your

application.
¥Queries,ds® - {DataServicesHMyQueries) *
declare namespace nsl="1d:DataSerwvices/CustomsrDB/CUSTOMER™; -

import schema namespace ns0="ld:DataServices /MyQueries/xQueries” at "ld:DataServices/MyQueries/xQueries.xsd":
declare namespace tns="ld:DataServices/My(ueries/x(ueries";

(i:pragma function <f:function kind="read" xmlns:f="urn:amnotations.ld.bea.com"x
<ui Propertiess
coomponent h="280" W="ZEOT F="OT x="30§" identifier="returnNode" >
</uiPropertiesx>
/1 functions
RS
Jdeclare function tns:getCustomerByName(§p firstname as xs:string, §p lastneme as xs:string) as element(nsO:Results) {
<ns0:Results>
{
for Scustomer in (nsl:CUSTOMER(])
where (scustomer/FIRST MAME eq sp firstname and Scustomer/LAST NAME eq sp lastnams)
return
(Scustoner)

}

_ <fns0:Results:-
}

[« D]
[Design Wiew | XQuery Editor View | Source View [Test View | Query Plan View

Figure 19-4 Parameterized Query Source Code

12. Build the DataServices project.

13. Open XQueries.ds in XQuery Editor View and review the graphical version of the XQuery code.
It should be as displayed in Figure 19-5.

ueries. ds - {DataServicesy|MyQueries|, X

getCustomerByHame{p_firstriame, p_lastname)| ‘

Return

{?}Parameter: §p_firstname |- (©)

U B Resuls anyType

o = CUSTOMER
CUSTOMER_ID string

[E1CUSTOMER * FIRST_MAME string
CUSTOMER_ID string LAST_MAME string

string

— P|[2 For: Seustomer 0

T —m—— FIRST_MAME string CUSTOMER_SINCE date
= LAST_NAME string EMAIL_ADDRESS string
string CUSTOMER_SINCE date TELEPHOME_NUMEER string
EMAIL_ADDRESS string S5N? string
TELEPHOME_HUMBER string EIRTH_DAY 7 date
S5N 7 string DEFALLT_SHIP_METHOD 7 string
BIRTH_DAY 7 date EMAIL_NOTIFICATION ? short
DEFALLT_SHIP_METHOD ? string MEWS_LETTTER ? short
EMATL_NOTIFICATION 7 shart 4 ONLINE_STATEMENT 7 short
NEWS_LETTTER ? short
OHLINE_STATEMENT ? short
Kl 10]

[JeE[]v4il o

HQuery Editor View Query Plan Yiew

Figure 19-5 XQuery Editor View of Parameterized Function

Data Services Platform: Samples Tutorial 38

14. Test the function, by completing the following steps:
a. Open XQueries.ds in Test View.
b. Select getCustomersByName from the Function drop-down list.
c. Enter the following parameters:
Firstname: Jack
Lastname: Black

d. Confirm the results.

¥Queries.ds - {DataServicesH My Queries), 4

Select Function:

|-B getCustomerByMamedp_firstname, D_Iastname)| - |

Parameters

xsistring p_firstname: | Jack |

xs:string p_lastname: | Black |

Mumber Element (by path)
Limit elements in array results to:

ECI -]

[start Client Transaction [] Validate Results

Result Text KWL

- zns0:Resulks xmins:ns0="ld:DataServices/MyQueries|¥Queries” >
- =ns1:CUSTOMER xmilns:ns1="ld:DataServices/CustomerDE/CIUSTOMER" =

<CUSTOMER_ID:> CUSTOMER1 </CUSTOMER_ID >
<FIRST_MAME:> Jack </FIRST_NAME:=
<LAST_NAME= Black </LAST_MAME>
<CUSTOMER _SINCE> 2001-10-01 </CUSTOMER _SINCE >
<EMAIL_ADDRESS> Jack@hotmail.com </EMAIL_ADDRESS =
<TELEPHOME_NUMBER. > 2145134119 </TELEPHOMNE_MUMEER >
<55N> 295-13-4119 </55M>
<BIRTH_DAY:> 1970-01-01 </BIRTH_DAY>
<DEFAULT_SHIP_METHOD= AIR </DEFAULT_SHIP_METHOD:>
<EMAIL_MOTIFICATION= 1 </EMAIL_MCTIFICATION:=
<MEWS_LETTTER> O =/MEWS_LETTTER:=
<OMLIME_STATEMENT > 1 </OMLINE_STATEMEMT =

| Thl T L ! 1. 1 ThI T E

Desian Yiew | #0uery Editor Yiew | Source Yiew | Test view [Query Plan View

[

Figure 19-6 Test Results of a Parameterized Function

15. (Optional) Open CustomerInfo.ds in XQuery Editor View and compare the diagrams for the two
data services.

XQuery Code Reference for a Parameterized Function

declare function tns:getCustomerByName($p_firstname as xs:string, $p_lastname as
xs:string) as element(nsO:Results) {
<nsO:Results>

for $customer in (ns1l:CUSTOMERQ))
where ($customer/FIRST_NAME eq $p_fFfirstname and $customer/LAST_NAME eq
$p_lastname)
return
($customer)

</ns0:Results>

Data Services Platform: Samples Tutorial 39

Lab 19.3 Creating a String Function

XQuery provides numerous string functions that can be incorporated into your business logic.
Objectives
In this lab, you will:

Create a startwith() function that retrieves customer information by name or SSN.

Test the function.

Instructions

1. Open XQueries.ds in Design View.

2. Click the getCustomerByName function's arrow, select Rename, and change the function name to

getCustomerByNameOrSSN().
3. Open XQueries.ds in Source View.

4. Define the function declaration, by changing the parameter as follows:

$fullname as xs:string, $ssn as xs:string

5. Replace the contents of the where clause with the following:
fn:contains(fn:upper-case(fn:concat($customer/FIRST_NAME,"
" ,$customer/LAST_NAME)), fn:upper-case($fullname)) or
fn:starts-with($customer/SSN, $ssn)

Note: You can either type the code in or build the clause by using the following built-in functions,
located in the XQuery Function Palette:

fn:concat fn:starts-with
fn:contains fn:upper-case

Note: The full name is created “on-the-spot” by concatenating FIRST NAME and LAST NAME
elements to the local (XQuery engine internal) variable such as $p_name. Upper case is used to
normalize names.

6. Leave the return clause as $customer so that all elements in the type are returned.

7. Confirm that the code is as follows (namespaces may be different for your application):

¥Queries,ds* - {DataservicesHMyQueries ®

declare namespace nsl="ld:DataSerwices/CustomerDE/CUSTOMER™; E
import. schema namespace ns(="ld:DataServices/Myueries/X(Jueries”™ at "ld:DataServices/My(ueriessxueries.xsd”;
declare mamespace tns="ld:DataSerwices/MyfJueries/X(ueries™;

(::pragme function <fifunction kind="read" xmlns:f="urn:annotations.ld.bea.com">
«cuilropertiess
<ccomponent h="
<ccomponent
<ccomponent h=
<ccomponent h="
< /uiPropertiess
/£ function>

32" identifier="customer’ >
identifier irstname’ >

" identifier="p lastname"/
5" identifier="returnNode"/>

declare functfion tns:getCustomerByNane0rSSN(§fullnane as xs:sString, §sso as xs:string) as element(ns0:Results) {
<ns0:Results>
{
for scustomer in (nsl:CUSTOMER())
where ([fn:contains(fn:upper-case (fn:concat{$custonsr/FIRST _NAME,"
", §custower/LAST NAME)), En:upper-case(§fullnsme)) or
fn:starts-with|§custoner/SsN, §ssn) |
return
(§cus tomer)

}

<fns0:Results>
b

[« [+
[Design View | ¥Query Ediar Wiew | Source Yiew |Test View | Query Plan View

Data Services Platform: Samples Tutorial

40

Figure 19-7 Source View of String Function

8. Open XQueries.ds in XQuery Editor View.

¥Queries.ds - {DataServices My Queries| B3
getCustomerBylame0rS3Mfullname, ssn)| - ‘
T @Relum
9 .
{?}Parameter: §fullname i T rp————
string — ™ [2For: $customer 0 P CUSTOMER
EECUSIOMERLE CUSTOMER_ID string
CUSTOMER_ID string R 5t_””9
FIRST_NAME string eyt
= LAST_NAME string CUSTOMER _SINCE c!ate
{. jParameter: §ssn CUSTOMER_SINCE date EMAIL_ADDRESS string
g EMALL_ADDRESS string TELEPHONE_NUMBER string
7
TELEPHOME_NUMBER. string i
?
S514? string BIRTH_DAY 7 date
»
BIRTH_DAY ? date DEFAULT_SHIP_METHOD ? string
B
T) R EMALL_NOTIFICATION ? short
7
EMATL_NOTIFICATION ® short e S”D?’t
NEWS_LETTTER 7 short [u] OMLINE_STATEMENT 7 short
OMLINE_STATEMENT 7 short
| D
— = -
[T IMEET ¢
T
Design Wiew | ¥Query Editor View [Source View | Test View | Query Flan Yiew |

Figure 19-8 XQuery Editor View of String Function
9. Test the query by completing the following steps:
a. Open XQueries.ds in Test View.

b. Enter a value in both Parameter fields. Neither field can be blank; however, because of the
query logic, only one parameter needs to be matched.

c. Click Execute. The query should return results based on your keyword search parameters.
See below for results in Test View and the underlying code.

Data Services Platform: Samples Tutorial

¥Queries,ds - {DataServicesHMyQueries) b4

Select Function:

|-B gekCustamerByMameOrsshifullname, ssn)l - |

Parameters

wsistring fullname: | Jack, |

x515kring ssn:

)

Mumber Element iby path)

Limit elements in array results to:
[s0] [~]

[start Clienk Transaction [Yalidate Results

Resul Text HhL

- <ns0iResults xmins:ns0="ld:DataServices/MyQueries/<Queries" =
- =ns1iCUSTOMER xmins:ns1="ld:DataServices/CustomerDB/CUSTOMER" =

<CUSTOMER_ID> CUSTOMER1 </CUSTOMER_ID>
<FIRST_MAME> Jack </FIRST_MAME:=
LAST_MAME> Black </LAST_MAME:>
<CUSTOMER_SINCE= 2001-10-01 </CUSTOMER_SINCE:
<EMAIL_ADDRESS > Jack@hotmail.com </EMAIL_ADDRESS >
<TELEPHOME_MUMBER > 2145134119 </TELEPHOMNE_MUMBER. =
€35N> 295-13-4119 /55N>
<BIRTH_DAY> 1970-01-01 </BIRTH_DAY>
<DEFAULT_SHIP_METHOD> AIR </DEFAULT_SHIP_METHOD =
<EMAIL_NOTIFICATION:= 1 </EMAIL_NOTIFICATION:
<MEWS_LETTTER> O «fMEWS_LETTTER =
<OMLIME_STATEMEMT = 1 </OMLIME_STATEMEMT =

1 ThI_TM a 1. K ThI_T B

Design View | ¥Query Editor Wiew | Source View | Test Wiew [Query Plan Yiew

]

Figure 19-9 Test Results of String Function

XQuery Code Reference for a String Function

declare function tns:getCustomerByNameOrSSN($fullname as xs:string, $ssn as xs:string)
as element(nsO:Results) {
<nsO:Results>

for $customer in (ns1l:CUSTOMER(Q))

where (fn:contains(fn:upper-case(fn:concat($customer/FIRST_NAME,"
" ,$customer/LAST_NAME)), fn:upper-case($fullname)) or
fn:starts-with($customer/SSN, $ssn))

return

($customer)

}

</ns0:Results>

Data Services Platform: Samples Tutorial 42

Lab 19.4 Building an Outer Join and Using Order By

Outer joins allow you to get results from the joined objects even if the primary key is not represented
in both objects. For example, an outer join of customers and orders reports all customers — even those
without orders.

Objectives

In this lab, you will:

Build a query that retrieves all customers and lists their addresses, if any.
Shape the return data to include:

0 All customers, even those without known addresses.

0 Nest addresses with customers (there may be more than 1).

0 Order customers by first name and last name.

0 Order the addresses by zip code.

Test the function.

Instructions

Note: Namespaces may differ for your application.

1. Add a new function to XQueries.ds and name it getCustomerAddresses.
2. Open XQueries.ds in Source View.

3. Define the function declaration by removing the asterisk (*). The code should be as:

declare function tns:getCustomerAddresses() as element(nsO:Results) {
4. Click the + symbol next to the getCustomerAddresses() function. This opens the function body.

5. Split the <nsO:RESULTS/> element into open and end tags, with curly braces in between for the
XQuery.

6. Open XQuery Construct Palette, and then drag and drop the FOR construct between the curly
braces. The code should be as follows:

for $var in
order by O

return

O

7. Set the for clause, using a $customer variable that is associated with CUSTOMER() located in the
CustomerDB\CUSTOMER.ds folder within the Data Services Palette.

for $customer in (ns1:CUSTOMERQ))

8. Set the order by clause, by replacing the (), as follows:
$customer/FIRST_NAME, $customer/LAST_NAME

Data Services Platform: Samples Tutorial 43

9. Set the return clause, by replacing the (), as follows:

return
<CUSTOMER>
<FIRST_NAME>{fn:data($customer/FIRST_NAME) }</FIRST_NAME>
<LAST_NAME>{fn:data($customer/LAST_NAME)}</LAST NAME>
{
for $address in
where ($address/CUSTOMER_ID eq $customer/CUSTOMER_ID)
order by $address/ZIPCODE ascending
return
$address
}
</CUSTOMER>

Note: You can either type the code in, or use the XQuery Function Palette and XQuery Construct
Palette to build up your query function.

10. Set the $address clause by associating it with ADDRESS(), which is located in
CustomerDB\ADDRESS.ds folder within Data Services Palette.

for $address in (ns2:ADDRESS())

11. Confirm that the query is as shown in Figure 19-10; namespaces may be different for your
application.

%Queries,ds* - {DataservicesHMyQueries|
<component h="J6" w="ZOL" y="ST y="4" identifier="p firstname"ss
woomponent h="90" p="IO4T p=r110" x="E" identifier="p lastnane"s-
coomponent h="3FLT w=TIA4T y="Or x=UA4T" identifier="retwrnNode" s
</ /uilropertics>
</Fi functions

[+ declare function tns:getCustomerByNameOr3sSN(sfullneme as xs:string, $ssn as ®s:string) as element(ns0:Results)

(:ipragma function <f:function xmlns:f="wrn:annotations.ld.bea.cor" Kind="read"/ =:i:)
declare function ths:getCustomerdddresses() as element(ns0:Results) |

“msl:Results>

i

for fFcoustomer im (nsl:CUSTOMER())

order by Scustomer/FIRST NAME, fcoustomer/LAST NAME

return

< CUSTOMER:
<FIRST WAME-{ fn:data(gcustomer/FIRIT NANE) }</FIRST WAME-
<LAST WRME-{fn:data(§customer/LAST NAME) }</LAST HAME-
{
for saddress in (na2:ADDREIS())
where (Faddress/CUSTOMER_ID eqg §customer/CUSTOMER_ID)
order by faddress/ZIPCODE ascending
return
gaddress
}
= FCUSTOMER:~
+
<fns0:Results:-
b =

K [
Design View | ¥Query Edibor Yiew | Source View [Test Yiew | Query Plan View

Figure 19-10 Source View of Outer View and Order By Function

Data Services Platform: Samples Tutorial

44

12. Open XQueries.ds in XQuery Editor View.

%Queries.ds* - {DataservicesHMyQueriesl ®
getCustamerAddresses() | hd ‘
@Relum =
7 = Resls anyType
f} For: $customer D o] B CLUSTOMER *
B} CUSTOMEF. * \ FIRST_NAME string
CUSTOMER_ID string \ LAST_NAME string
FIRST_NAME string B [ADDRESS
LAST_MAME string ! ADDR_ID string
CUSTOMER_SINCE date \ CUSTOMER_ID' string
EMALL_ADDRESS string \ FIRST_NAME string
TELEPHOKE_NLMEER sting RIS = LAST_NAME string
S5M? string = STREET_ADDRESS1 string
BIRTH_DAY ? date I ADDRESS STREET_ADDRESSZ 7 string
DEFAULT _SHIP_METHOD ? string e CITY string
EMAIL_NOTIFICATION ? short CUSTOMER_ID string STATE string

NEWS_LETTTER 7 short RECISHATE s ZIPCODE string

ONLINE_STATEMENT ? short SIS 3 B COUNTRY string
STREET_ADDRESS1 string DAY_PHONE ? string

STREET_ADDRESSZ 7 string EVE_PHOME 7 string

CITY string ALIAS ? string
STATE string STATUS ? string

ZIPCODE string ol 15_DEFAULT short |
COUNTRY string

DAY_PHONE 7 string
EVE_PHONE ? string
ALIAS 7 string
STATUS 7 string
15_DEFALLT short

[+ |
T em[]v3l g
="

Design View | ¥Query Editor isw [Source Wiew | Test View | Query Flan View |

Figure 19-11 XQuery Editor View of Outer Join and Order By Function

13. Open XQueries.ds in Test View and test the query; no parameters are required. The XQuery
function appears below.

¥Queries,ds - {DataservicesHMyQueries) b4

Select Function:

|-B getCustomeraddresses() | - |

Parameters

Mumber Element {by path)
(s] [-]

Limit elements in array results ta:

[start Client Transaction [] Yalidake Results

Result

<LAST_MAME> Johnson </LAST_NAME =

- «=ns1:ADDRESS xmins:ns1="ld:DataServicesCustomerDBfADDRESS" =
<ADDR_ID> ADDR_6_0 </ADDR_ID=
<CUSTOMER_ID> CUSTOMERG </CUSTOMER _ID:=
<FIRST_MAME > Don </FIRST_MNAME:=
<LAST_MAME> Johnson </LAST_NAME =
<5TREET_ADDRESS1:> 334 Sixth Street. </STREET_ADDRESS1:=
<CITY > Austin <[CITY>
<STATE> TX «/STATE=
<ZIPCODE= 78701 </ZIPCODE>
<COUMTRY > USA </COUNTRY >
<DAY_PHOME=> 5128937204 =[DAY_PHOME>
<EVE_PHOME> 5129419616 </EVE_PHOME >
<ALIAS> Home <ALIAS:
<5TATUS> ACTIVE </STATUS:=
<IS_DEFAULT> 1 </I5_DEFALLT=

<fns1:ADDRESS >
- «=ns1:ADDRESS xmins:ns1="ld:DataServicesCustomerDBfADDRESS" =

<ADDR_ID> ADDR_6_1 </ADDR_ID> [7]

D]

Figure 19-12 Test Results of Outer Join and Order By Function

Data Services Platform: Samples Tutorial

XQuery Code Reference for an Outer Join and Order By Function

declare function tns:getCustomerAddresses() as element(nsO:Results) {
<nsO:Results>

{
for $customer in (ns1:CUSTOMERQ))
order by $customer/FIRST_NAME, $customer/LAST_NAME

return
<CUSTOMER>
<FIRST_NAME>{ fn:data($customer/FIRST_NAME) }</FIRST_NAME>
<LAST_NAME>{fn:data($customer/LAST_NAME)}</LAST_NAME>
{
for $address in (ns2:ADDRESS())
where ($address/CUSTOMER_ID eq $customer/CUSTOMER_ID)
order by $address/ZIPCODE ascending
return
$address
}
</CUSTOMER>

</ns0:Results>

Lab 19.5 Creating an Inner Join and a Top N

Inner joins mandate that the only items that are returned are with a corresponding entry (such as a
primary key in the relational world) in another data source. The following are introduced:

let clauses.
Nested for clauses.

Concat() and subsequent() XQuery functions.

Objectives

In this lab, you will:

Build a query that retrieves the top 10 customers who have placed orders with the company.
Define the shape of the returned data to include:

0 Total order amount.

0 Items returned ordered by total order amount, from the highest to the lowest.

0 Customer’s full name, order ID, and order amount.

Test the function.

Instructions

Note: Namespaces may differ for your application.

1. Add anew function to XQueries.ds and name it getTop10Customers.
2. Open XQueries.ds in Source View.

3. Define the function declaration by removing the asterisk (*). The code should be as follows:

declare function tns:getToplOCustomers() as element(nsO:Results) {
4. Click the + symbol next to the getTop10Customers function. This opens the function body.

5. Add curly braces between the two tags.

Data Services Platform: Samples Tutorial 46

6. After the opening curly brace, add the following let clause, which will hold the results of
subsequent for clauses:

let $toplO:=

7. Open XQuery Construct Palette, and then drag and drop the FWOR construct after the let clause.
The code should be as follows:

for $var in
where true()
order by O

return

O

Data Services Platform: Samples Tutorial 47

8. Set the for clause using a $customer variable that is associated with CUSTOMER() located in the
CustomerDB\CUSTOMER.ds folder within Data Services Palette.

for $customer in (ns1:CUSTOMERQ))

9. Create a second for clause, using a $order variable that is associated with CUSTOMER ORDER()
located in the ElectronicsDB\CUSTOMER ORDER.ds folder within Data Services Palette.

for $order in (ns3:CUSTOMER_ORDERQ))

10. Set the where clause, by replacing the true() with the following code:
where ($customer/CUSTOMER 1D eq $order/CUSTOMER_ID)

11. Set the order by clause, by entering the following code in the ():
order by $order/TOTAL_ORDER_AMOUNT descending

12. Set the return clause, by entering the following code:
return
<CUSTOMER>
<CUSTOMER_NAME>
{fn:concat($customer/FIRST_NAME,"™ ', $customer/LAST_NAME)}
</CUSTOMER_NAME>
<ORDER_1D>{fn:data($order/ORDER_ID)}</ORDER_I1D>
<TOTAL_ORDERS>{fn:data($order/TOTAL_ORDER_AMOUNT)}</TOTAL_ORDERS>
</CUSTOMER>
return fn:subsequence($topl10, 1, 10)

Note: You can either type the code in, or use the XQuery Function Palette and XQuery Construct
Palette to build up your query.

13. Confirm that the source code is similar to that displayed in Figure 19-13; namespaces may vary.

¥Queries.ds - {DataServicesHMyQueries) b4

[+

[+ declare function tns:getCustomerdddresses() as element(ns0:Results)

(ripragme Tunction <If:function kind="read™ xmlxs:r="wrn:ammotations.ld.bea.com™:
«uilropertiess
woomponent h="Ti2T p=U2EOT p="0T x="Ee2" identifier="retwrnNode" =
< /uilropertiess
</ functions

declare function ths:getToplOCustoners() as element (ns0:Results) [
=ns0;:Results>
i
let stopii:=
for Scustomer in (nsl: CUSTOMER())
for sordsr im (ns3:CUSTOMER_ORDER ())
where (Scustomer/CUSTOMER_ID eq forder/CUSTOMER_ID)
order by forder/TOTAL_ORDER_AMOUNT descending
return
<CUSTOMER:-
<CUSTOMER HAME-
{fn:cEncat,[$customerfFIRST_Nm," ", foustomer/LAST NAME))
< fCUSTOMER. HAME:=
<OFDER._TD>7fn: data|$ordsr /ORDER_ID) }</0RDER ID>
<TOTAL_ORDERS>{fn:data(§order/TOTAL_ORDER_AMOUNT) }</TOTAL ORDERS:
<FCUSTOMER- -
return fn:subsecquence(stopld, 1, 10}

}
<fns0:Results-
)z

Kl L]
Design Yiew | ¥Query Editor Yiew | Source Wiew [Test Wiew [Query Plan View

Figure 19-13 Source Code for Inner Join and Top N Function

14. Open XQueries.ds in XQuery Editor View.

Data Services Platform: Samples Tutorial 48

£

Ii# For; Scustomer [
| = customer + -
CUSTCMER_ID string
FIRST_NAME string
LAST_NAME string
CUSTOMER_SINCE date
EMALL_ADORESS sty
TELEFHOHE_MUMEER: string

SINT st [#] Let: stop10 |
BIRTH DAY 7 date | = CUSTOMER * 1
CEFALLT_SHIP_METHCD? string CUSTOMER_NAVE striey
EMAL_MOTIFICATION T short. CROCR_ID #ring
HEWS_LETTTER 7 shrt TOTAL_ORDERS decensl

CALINE STATEMEAT 3 chewt |

[For: Sorder

CLISTOMER_ORDER * -
CHOER D string
CUSTOMER D string
OROER_DATE date
TH_METHOD sting
MANDUING CHMARGE decinal
SBTOTAL docimal
TOTAL_DRDER_AMOUNT decimal
SAF_TAE decanad
210 sting
THIP_TO_NAME strig
L0 stng
ESTIMATED_SHIP_DATE dater
STATUS streg
TRACKING_NUMBER ? siring
OWHER 7 string

Figure 19-14 XQuery Editor View of Inner Join and Top N Function

15. Open XQueries.ds in Test View; no parameters are required to run your query. You should see a

document containing the top 10 orders will appear, ordered by total amount. The XQuery function

appears below.

X¥Queries.ds - {DataServicesHMyQueries)

Select Function;

et Topl 0Customers() [|

Paramneters

MNumber Element (by path)
Limit elements in array results to:

EC

[Start Client Transaction

Result | Text | e

- =nsO:Results xmins:ns0="ld:DataServicesiMyQueries/<Queries” =

- <CUSTOMER =
<CUSTOMER_MAME> Tiny Floyd </CUSTOMER_NAME =
<ORDER_ID> ORDER_7_8 «/ORDER_ID>
<TOTAL_ORDERS> 3282.5 «<[TOTAL_ORDERS>

</CUSTOMER >

- «CUSTOMER >
<CUSTOMER_MAME> Tim Floyd </CUSTOMER_MNAME >
<ORDER_ID> ORDER_7_T </ORDER_ID>
<TOTAL_ORDERS> 3012.5 </TOTAL_ORDERS>

<[CUSTOMER >

+ <CUSTOMER. =

+ <CUSTOMER, =

+ <CUSTOMER. =

+ <CUSTOMER, =

+ <CUSTOMER >

+ <CUSTOMER, =

+ <CUSTOMER >

+ <CUSTOMER, =

«fnsiiResults>

| Design Wiew | XQuery Editor View | Source View | Test View [Guery Plan Yiew

Figure 19-15 Test View for Inner Join and Top N Function

Data Services Platform: Samples Tutorial

49

XQuery Code Reference for Inner Join and Top N Function

declare function tns:getToplOCustomers() as element(nsO:Results) {
<nsO:Results>

let $topl0:=
for $customer in (ns1l:CUSTOMERQ))
for $order in (ns3:CUSTOMER_ORDER(Q))
where ($customer/CUSTOMER_ID eq $order/CUSTOMER_ID)

order by $order/TOTAL_ORDER_AMOUNT descending
return

<CUSTOMER>
<CUSTOMER_NAME>

{fn:concat($customer/FIRST_NAME," ", $customer/LAST_NAME)}
</CUSTOMER_NAME>

<ORDER_ID>{fn:data($order/ORDER_ID)}</ORDER_ID>

<TOTAL_ORDERS>{fn:data($order/TOTAL_ORDER_AMOUNT)}</TOTAL_ORDERS>
</CUSTOMER>

return fn:subsequence($topl0, 1, 10)

</nsO:Results>

Data Services Platform: Samples Tutorial

50

Lab 19.6 Creating a Multi-Level Group By

Retrieving customers grouped by states and cities is not only often needed; it is also a classic database
exercise. The following are introduced:

Group by clause.

count() function.

Objectives

In this lab, you will:

Create a query that determines the number of customers, by state and by city.

Test the function.

Instructions
1. Add a function to XQueries.ds and name it getNumCustomersByState().
Open XQueries.ds in Source View.

Define the function declaration, by removing the asterisk *.

2

3

4. Click the + symbol next to the getNumCustomersByState() function.

5. Split the <ns0O:Results/> element into open and end tags, with curly braces in between.
6

Open XQuery Construct Palette and then drag and drop the for-group-return (FGR) construct
between the curly braces:

for $var in
group $var as $varGroup by () as $var2

return
O

7. Set the for and group clauses as follows:

for $address in ns2:ADDRESS()
group $address as $stateGroup by $address/STATE as $state

Note: Your source is invalid until you complete the next step.

8. Associate the for clause with ADDRESS() located in the CustomerDB\Address.ds folder within
the Data Services Palette as follows:

for $address in ns2:ADDRESS()

9. Set the return clause, as follows:
return
<state>
<name>{$state}</name>
<number>{fn:count($stateGroup/CUSTOMER_ID)}</number>

{

Note: The clause includes the fn:count() built-in function, available from the XQuery Function Palette.

Data Services Platform: Samples Tutorial 51

10. Open XQuery Construct Palette and then drag and drop the FWGR construct after the return
clause's open curlie brace:

for $addressl in ns2:ADDRESS()
where $addressl1/STATE eq $state
group $addressl as $cityGroup by $addressl/CITY as S$city
return
<cities>
<city>{$city}</city>
<number>{fn:count($cityGroup/CUSTOMER_ID)}</number>

</cities>

</state>

11. Make sure that the namespace in the second for clause is the same as the namespace in the first for
clause.

12. Confirm that the code is as displayed in Figure 19-16 (namespaces may be different for your
application).

H

X¥Queries.ds* - {DataServicesHMyQueries),
=

Fldeclare function tns:getToplOCustoners() as element(ns0:Results)

declare function tns:getlumCustomersByitate(] as elementi(nsl:Results) {
“nsl:Results>
{
for saddress in nsZ:ADDRESS()
group Faddress as fstatebroup by Saddress/STATE as fstate
return
<state
“namex{§state}< fname-
<mumber>{fn: count(§statebfroup/CUSTOMER ID) }</fnumber’-
i
for faddressl in nsZ:ADDRESS ()
where faddressi/3TATE eq fstate
group Saddressl as ScityFroup by Saddressi/CITY as §city
return
<citiesc-
<ocitys{gcityl<foity>
<mumber’{fn: count (§ci tyGroup /CUSTOMER_ID) }</mmber>
=fcities>
'
<fstatex
}
</nsl:Results>

bi 5
Kl | [+

[Design Yiew [=Query Editor View | Source View |Test View [Query Plan View

Figure 19-16 Source Code for Multi-Level Group By Function

Data Services Platform: Samples Tutorial 52

13. Open XQueries.ds in XQuery Editor View.

R ey S ate])

[Far. Saddrusy

| e aoemas s ——
ApOR_ID strng
Customen 5 areg
FIRST_NAME strrg
LAST_NRE e
STREET_ADCAESSE string
STREET _ADDRESSZ } sirirey
CirY sing
STATE string

|2 Groupty: $stateGroup
=
HOORESE
ADOH_ID strig
CLGTOMER 1D string
FIRST e, sireny
LAST_NAVE string
STREET_ADDRESSY seing
STRINT_ADOHLSSS * strng

CITY sty -
TRCOOE st STATE strng {2 Broupby: scityGroup
COUNTIT. ikt IIPCOCE sirng = '
DAY BCNLT sy COUNTRY strrg ADDRESS

EVE_PHONE 7 string
AL T sty
STATUS + string

DAY_PHONE 7 string
EVE_PHOME T i

R D streny
CUSTOMER D st1ing

(] Retuim
= Rasuks amType
st
= e ereg
sireg
[
B s *
= oty wring
g
naber g

d ALK stirg FIRST_ A string
FS.DERMAT shert STATUS T siriey LAST_RAME string
5 DOFMALT shert STREET_ACCRESS! s
- SIRELT_ACCRLSS T #ring
STATE areq T ey
SIATE atreg
< *[EFor sagamss1 E ::.ﬁvt":,
ArceEss e DAY PHONE T string

ADOR_ID strng EVE_prane ¢ e
CUSTOMER IO siring MINS ? strig
FIRST_NAME streg STATE Y g
LAST_NAVE sting 15 DEFALLT short
STNEET_ADORESSY wevg =
STREET_ADCRESEZ T string CITY g
CITY sarig
STATE string
TPCO0E s
CONMIRY streg
TR _PHONE ? sreg
EVE_IONE T g
AT stng
STATUS P stri = L
15 CEPALLT short

Llem[v

m Where faddress[STATL 2q ftate 5;;

or i | ey Edtor Ve | Souaron w1 Tk Virs 1 e Pl Vi |

Figure 19-17 XQuery Editor View of Multi-Level Group By Function

14. Open XQueries.ds in Test View and test the function; no parameters are required. You should see

the state name, followed by the number of customers residing in that state, followed by the city

name and number of customers residing in that city. The underlying XQuery also appears below.

XCueries,ds - {DataServicest My Queriest

ks

Select Function:

|@ getMumCustonmersByStates) | - ‘

Parameters

Mumher Element hy path)

Limit elements in array results to
EX

[start Clisnt Transaction [] Yalidate Results

Result

Text

AML

- <nsh:Resulks xmins:ns0="d: DataServices/MyQueries/“Queries” =
- «state >
<name= A2 <fname:
<number> 4 </number=
- <cities >
<city> Phoenix <[ty >
<number> 2 <frumber >
<jcitiess=
- <cities =
<city> Tucson <jcity>
<number> 2 <jnumber >
<jcities=
<[state=
+ <state =
+ <state »
+ <state >
+ <state >
<fns0:Results>

[Design View [=Query Editar Yiew | Source View | Test View [Query Plan Yiew

Figure 19-18 Test View of Multi-Level Group

By Function

Data Services Platform: Samples Tutorial

53

XQuery Code Reference for Multi-Level Group By Function

declare function tns:getNumCustomersByState() as element(nsO:Results) {
<nsO:Results>
{
for $address in ns2:ADDRESS()
group $address as $stateGroup by $address/STATE as $state
return
<state>
<name>{$state}</name>
<number>{fn:count($stateGroup/CUSTOMER_ID)}</number>
{
for $addressl in ns2:ADDRESS()
where $address1/STATE eq $state
group $addressl as $cityGroup by $addressl/CITY as $city
return
<cities>
<city>{$city}</city>
<number>{fn:count($cityGroup/CUSTOMER_ID)}</number>
</cities>

</state>

}

</nsO:Results>

¥

Data Services Platform: Samples Tutorial

54

Lab 19.7 Using If-Then-Else

This example shows how you can create switch-like conditions when building your query. The If-
Then-Else concept is introduced.

Objectives

In this lab, you will:

Create a function that returns different achievement levels as strings for a set of customers,
based on their total order amount.

Test the function.

Instructions

Note: Namespaces may differ for your application.

1.

wok v

Add a new function to XQueries.ds and name it getCustomerLevels.

Open XQueries.ds in Source View.

Define the function declaration, by removing the asterisk (*).

Split the <ns0:Results/> element into open and end tags, with curly braces ({}) in between.

Add a for clause, using a $customer variable that is associated with CUSTOMER() located in the
CustomerDB\CUSTOMER.ds folder within Data Services Palette.

for $customer in nsl:CUSTOMERQ)

Add a second for clause, using an $orders variable that is associated with CUSTOMER ORDER()
located in the ElectronicsDB\CUSTOMER_ORDER.ds folder within Data Services Palette.

for $orders in ns3:CUSTOMER_ORDER(Q)

Add where, let, and return clause code, placing it immediately after the second for clause:
where $customer/CUSTOMER_ID eq $orders/CUSTOMER_ID

group $orders as $orderGroup by fn:concat($customer/FIRST_NAME,"
", $customer/LAST_NAME) as $customer_name

let $sum := fn:sum($orderGroup/TOTAL_ORDER_AMOUNT)
return
<CUSTOMER_RATING>
<CUSTOMER_ 1D>{$customer_name}</CUSTOMER_1D>
<RATING> {
if ($sum>=10000) then
"'GOLD""
else if ($sum<5000) then
"REGULAR"
else
"SILVER"
}
</RATING>
</CUSTOMER_RAT ING>

Data Services Platform: Samples Tutorial 55

8. Confirm that the code is as displayed in Figure 19-19; namespaces may be different in your
application.

X

¥Queties, ds - {DataServicesHMyQueries|

[# declare function tns:getimCusconersEyitate () as element(ns0:Results

(Hipragme function <f:function xmlns:f="wrn!annotations,ld. bea.cor™ kind="read"/ /=i:)

: declare function tns:getCustomerlewels() as element(ns0:Results) [
{ <ms0:Results:

!
: for scustomer im nsl:CUSTOMER ()
for forders in ns3:CUSTOMER_ORDER()
vhere scustomer/CUSTOMER ID eq Sorders/CUSTOMER_ID
group sorders as jorderGroup by fniconcat($oustomer/FIRST MNAME,™ ", Scustoner/LAST_NAME) as soustomer name
let fsum 1= fn:sumifordersroup/TOTAL_ORDER_AMOUNT)
return
<CUSTOMER. RATTHG:-
<CUSTOMER_ID:>{ §cus tomer_name}</CUSTOMER ID:
<RATING: {]
if (§sum=10000) then
"GOLDT
else if (Fsum<5000) then
"REGULAR™
else
"SILVER"
} </RATING-
. =<fCUSTOMER RATTHG-
iy

. <fns0:Results>
S

[«
Design Wiew | %Guery Editor Wiew | Source View |Test View | Query Plan Wiew

Figure 19-19 Source View of If-Then-Else Function

9. Open XQueries.ds in XQuery Editor View.

(& Relurm =
 Hesuts anyTyps |

i For: Seustamer

S OETOMER® = el Sloptn - QL STOHER ¥
CUSTOMER D gtrng | ST | pslEpistabity
FIRST RAML strng I CUSTONMER_NapL string Sty
LasT NamML sting | CRDCR [0 strng |
CLBTOMLR, SINCE date TOTAL ORDERS dsamal

LMAZL ADORESS $tring
TELEFMONE_NUMUER, String
ST fnng
DIRTM DAY date
DEFAILT S0P METHOD 7 strng
LA NOTIFICATION 7 shert |
MEWS LETTTCR 7 shert

eI STATEMINT ¢ shert

*;ﬂl‘nr Sorder a|

|75 cusTomer_croen =
OREER_ID siring
CUSTEMER_ID string
OREER_DATE detn
SHIP_METHED string
HAHEL NG _CHAAGE decimal
SETOTAL decimal
TOTAL_CRDER_AMOUNT decimal
SALE_TAX decmal
SIP_T0) sreg
SHIP_TC_NAME string
BILL_TE siring
ESTIMATED_SHIP_DaTE date
STATUS string
TRACKING MIMEER: strig
CWNER ? g

]
| T Diesher Vi | %Gy Exblon Yers [Scamce Wiew | Test Wew [Suery Plan Yrew |

Figure 19-20 XQuery Editor View of I1f-Then-Else Function

Data Services Platform: Samples Tutorial

10. Open XQueries.ds in Test View and test the function; no parameters are required. When you run
the query you will see results organized according to the following levels of purchases:

Gold for total orders >= 10000
Silver for total orders >= 5000 and <10000
Regular for total orders below 5000

The customer’s full name and level are also shown. The XQuery function appears below.

¥Queties,ds - {DataServicesH\MyQueries! B3

Select Function:

|@ getCustamerLevels() | - ‘

Parameters

Nurmber Element (by path)

Limit elements in array results to
N -]

[start Client Transackion [] Yalidate Resuls

Result Text Hdl

| [+]

- <CUSTOMER_RATING =
«CUSTOMER_ID> Don Johnson </CUSTOMER _ID>
<RATING> SILVER </RATING:>
«/CUSTOMER _RATING>
- <CUSTOMER_RATING =
<CUSTOMER_ID> Hommer Simpson </CUSTOMER 1D
“RATING> SILVER </RATING:
<[CUSTOMER _RATING:>
- <CUSTOMER_RATING >
«CUSTOMER_ID > Jack Black </CUSTOMER_ID>=
“RATING> SILYER </RATING>
<[CUSTOMER _RATING>
- <CUSTOMER_RATING = %
<CUSTOMER_ID> Jerry Greenberg </CUSTOMER_ID>
<RATING> GOLD </RATING>
«/CUSTOMER_RATING>
- <CUSTOMER_RATIMNG >
«CUSTOMER_ID > Joe Smith </CUSTOMER_ID:>
“RATING> REGULAR «</RATING> E

[Design View | ®Query Editor Wiew | Source View | Test View [Query Plan Yiew

Figure 19-21 Test View of If-Then-Else Function

Data Services Platform: Samples Tutorial 57

XQuery Code Reference for If-Then-Else Function

declare function tns:getCustomerLevels() as element(nsO:Results) {
<nsO:Results>

{
for $customer in nsl:CUSTOMERQ)
for $orders in ns3:CUSTOMER_ORDER(Q)
where $customer/CUSTOMER_ID eq $orders/CUSTOMER_ID
group $orders as $orderGroup by fn:concat($customer/FIRST_NAME,"
", $customer/LAST_NAME) as $customer_name
let $sum := fn:sum($orderGroup/TOTAL_ORDER_AMOUNT)
return
<CUSTOMER_RATING>
<CUSTOMER_ 1D>{$customer_name}</CUSTOMER_I1D>
<RATING> {
if ($sum>=10000) then
"'GOLD™
else if ($sum<5000) then
""REGULAR"
else
"SILVER"

}
</RATING>
</CUSTOMER_RATING>

</ns0:Results>

¥

Lab 19.8 Creating a Union and Concatenation

This example demonstrates how to integrate data from two different data sources and present the
results in a single report that lets you view the data source information as two separate variables.

Objectives

In this lab, you will:

Create a function that gathers results from two order entry systems: RTLAPPLOMS and
RTLELECOMS.

Test the function.

Instructions
1. Add anew function to XQueries.ds and name it getCombinedOrders.
2. Open XQueries.ds in Source View.

3. Define the function declaration, by removing the asterisk * and adding the following parameter:

$customer_id as xs:string
4. Split the <ns0:Results/> element into open and end tags, with curly braces ({}) in between.

5. Open XQuery Construct Palette and then drag and drop the FLWR construct between the curly
braces.

6. Set the for clause using a $customer variable that is associated with CUSTOMER() located in the
CustomerDB\CUSTOMER.ds folder within Data Services Palette.

for $customer in ns1l:CUSTOMER(Q)

7. Set the let clause, using a $applOrder variable that is associated with CUSTOMER ORDER(),
which is located in the AppareDB\CUSTOMER ORDER.ds folder within Data Services Palette.

Data Services Platform: Samples Tutorial 58

let $applOrder:= for $orderl in ns4:CUSTOMER_ORDER()

8. Set the where clause as follows:
where $customer/CUSTOMER_ID = $orderl/C_ID

Data Services Platform: Samples Tutorial

59

9. Set the return clause, as follows:
return
$orderil

let $elecOrder := for $order2 in ns3:CUSTOMER_ORDER()
where ($order2/CUSTOMER_ID eq $customer/CUSTOMER_ID)

return
$order?2

where ($customer/CUSTOMER_ID eq $customer_id)

return
<CUSTOMER>
{$customer}
<Orders>
{$applOrder, $elecOrder }
</Orders>

</CUSTOMER>

Note: ns3:CUSTOMER_ORDER() refers to CUSTOMER ORDER.ds in ElectronicsDB folder

10. Confirm that the code is as displayed in Figure 19-22; the namespaces may be vary in your

application.

¥Oueries.ds* - {DataServicesHMyQueries)

s

T
“<fns0:Results>
bi

:

“nz0:Results>
{
for §customer in nsl;CUSTOMER()
let sapplirder:= for Sorderi im nzad: CUSTOMER_ORDER)
where Forderi/C_ID eq §oustomer/CUSTOMER_ID
return
Forderi
let selecOrder := for forderZ im ns3:CUSTOMER_ORDER ()
where [Forderi/CUITOMER_ID eq $custiomer/CUSTOMER_ID)
return
sorders
where (§customer/CUSTOMER ID eq Scustomer id)
return -
<CUSTOMER-~
{§ous tomer}
“Orders:
{ FapplOrder, SelecOrder }
<f0rders>
< fCUSTOMER -

}
<ins0:Results

:dec'::lare function tns:getCombinedlrders|foustomer id as x3:string) as element(ns0:Results) |

M

Design Yiew | ¥Query Editor View | Source Yiew [Test View [Query Plan View

Figure 19-22 Source View for Union and Concatenation Function

Data Services Platform: Samples Tutorial

60

11. Open XQueries.ds in XQuery Editor View.

etk dery st e i

[7|Paameter ewstomar i
g

el
| Bt ey T e e Wi | Tt Vo | iy Pl Vi

Figure 19-23 XQuery Editor View of Union and Concatenation Function

12. Open XQueries.ds in Test View, and then test the getCombinedOrders() function using
CUSTOMERS3 as the parameter. The XQuery function appears below.

¥Queties,ds - {DataServicesH\MyQueries! B3

Select Function:

|@ getCombinedOrders{tustomer_id) | - ‘

Parameters

xs:string customer _id: ‘ CUSTOMER3 ‘

Nurmber Element (by path)

Limit elements in array results to
N -]

[start Client Transackion [] Yalidate Resuls

Result

+ =ns2: CUSTOMER _ORDER xmins:ns2="ld:DataServices/ApparelDBfCUSTOMER _ORDER" = E
+ <ns2: CUSTOMER_ORDER. xmins:ns2="ld: DataServices/ApparelDE/CIUSTOMER _ORDER" > [%
+ <ns2: CUSTOMER _ORDER, xmins;ns2="ld:DataServices/ApparelDEfCUSTOMER _ORDER" =

+ =ns2: CUSTOMER _ORDER xmins:ns2="ld: DataServices/ApparelDBfZUSTOMER _ORDER" =

+ =nsZ; CUSTOMER _ORDER, xmins:ns2="ld: DataServices/ApparelDEfCIUSTOMER _ORDER" =

+ =ns2: CUSTOMER _ORDER xmins:ns2="ld:DataServices/ApparelDBfCUSTOMER _ORDER" =

+ <ns2: CUSTOMER_ORDER. xmins:ns2="ld: DataServices/ApparelDE/CIUSTOMER _ORDER" >

+ <ns2: CUSTOMER _ORDER, xmins;ns2="ld:DataServices/ApparelDEfCUSTOMER _ORDER" =

+ =ns2: CUSTOMER _ORDER. xmlns:ns2="ld: DataServices/ ApparelDBfCUSTOMER _ORDER" =

+ =ns2: CUSTOMER _ORDER, xmins:ns2="ld: DataServices/ ApparelDEfCIUSTOMER _ORDER" =

+ =ns2: CUSTOMER _ORDER xmins:ns2="ld:DataServices/ApparelDBfCUSTOMER _ORDER" =

+ <ns2: CUSTOMER_ORDER. xmins:ns2="ld: DataServices/ApparelDE/CIUSTOMER _ORDER" >

+ <ns2: CUSTOMER _ORDER, xmins;ns2="ld:DataServices/ApparelDEfCUSTOMER _ORDER" =

+ =nsh CUSTOMER _ORDER. xmlns:ns3="ld: DataServices/EleckronicsDBfCUSTOMER _ORDER" >

+ =ns3 CUSTOMER _ORDER, xmins:ns3="ld: DataServices /ElectronicsDE/CUSTOMER _ORDER" >

+ <ns3 CUSTOMER _ORDER xmins:ns3="ld: DataServices/ElectronicsDB/CUSTOMER _ORDER" >

I0rder: []

[Design View | ®Query Editor Wiew | Source View | Test View [Query Plan Yiew

Figure 19-24 Test View of Union and Concatenation Function

XQuery Reference Code for Union and Concatenation Function

declare function tns:getCombinedOrders($customer_id as xs:string) as
element(nsO:Results) {

<nsO:Results>

Data Services Platform: Samples Tutorial

61

for $customer in nsl:CUSTOMERQ)
let $applOrder:= for $orderl in ns4:CUSTOMER_ORDER()
where ($orderl/C_ID eq $customer/CUSTOMER_ID)
return
$orderl
let $elecOrder := for $order2 in ns3:CUSTOMER_ORDER()
where ($order2/CUSTOMER_ID eq $customer/CUSTOMER_ID)
return
$order2
where ($customer/CUSTOMER_ID eq $customer_id)
return
<CUSTOMER>
{$customer}
<Orders>
{ $applOrder, $elecOrder }
</Orders>
</CUSTOMER>
}

</ns0:Results>

Lesson Summary

In this lesson you, learned how to:

Use Source View to add, edit, or delete XQuery code that defines a data service's query
functions.

Compare the coded query with the XQuery Editor View.

Data Services Platform: Samples Tutorial

62

Lesson 20 Implementing Relationship Functions and Logical
Modeling

Relationship functions return data combined from two or more data services. For example, by creating
a relationship between the Address and Customer data services, you can obtain the address for a given
customer. Or by creating a relationship between the Customer and Order Management data services,
you can receive data that identifies all orders returned by a particular customer.

Model diagrams are used to view a selected set of data services and the relationships between them.
The model shows the basic structure of the data returned by the data service. The main purpose of the
diagram is to help you envision meaningful subsets of your enterprise data relationships, but it can also
be used to define new artifacts or edit existing artifacts.

Logical modeling is an extension of the physical modeling that you learned about in Lesson 5. There
are three labs in this lesson, which are to be completed in sequential order. The labs in this lesson are
dependent on the work completed in the previous lessons.

Objectives

After completing this lesson, you will be able to:

Create model diagrams for a logical data service.
Define relationships between data services.
View and implement multiple relationship functions.

Test multiple relationship functions.

Overview

To help you get from a complex, distributed physical data landscape to a more holistic view of
enterprise information, DSP supports a visual, model-driven approach to developing data services.
Modeling provides a graphical representation of the data resources in your environment, providing a
bird’s-eye view of a large system or giving you a way to create “zoomed” views of enterprise areas. In
a model diagram data services appear as boxes, while relationships appear as annotated lines
connection the data service representations. A relationship is only visible if both end points are also on
the diagram.

The result is real-time access to externally persisted data through a logical data model.

Data Services Platform: Samples Tutorial 63

Lab 20.1 Implementing and Testing a Relationship Function

The getCustomer Order() function that is intended to return customer order information for a specific
customer. However, to accomplish that you need to add the ApparelDB data service’s
CUSTOMER _ORDER as a source schema, and then create a relationship with the target schema.

Objectives

In this lab you will:

Implement a relationship function, using XQuery Editor View to define the return data

service, by:

0 Identifying the data source.

0 Creating an overwrite map between source and target elements.

0 Creating a simple map between a parameter and a source element.

Test the relationship function created as a result of the mappings.

Instructions

1. Open CUSTOMER.ds in XQuery Editor View. (The file is located in the

DataServices\CustomerDB folder.)

2. Select getCustomer_Order(arg) from the Function drop-down list.

CUSTOMER. ds* - {DataServicesHiCustomerDE),

kS

getCUSTOMER_ORDER(arg)| ~ |

@Retum

-

= CUSTOMER
CUSTOMER_ID string
FIRST_MAME string
LAST_MAME string
CUSTOMER_SIMCE date
EMAIL_ADDRESS string
TELEPHOME_MUMBER. string
53N ¥ string
BIRTH_DAY ? date
DEFAULT_SHIP_METHOD ? skring
EMAIL_MOTIFICATION ? shart
MEWS_LETTTER ? short
OMLIME _STATEMEMT ? short

{?Parameter: $arg 0 = CUSTOMER_ORDER

ORDER_ID string
CUSTOMER_ID string
ORDER_DATE date
SHIP_METHOD string
HAMDLING_CHARGE decimal
SUBTOTAL decimal

TOTAL_ORDER_AMOUNT decimal | |

SALE_TAY decimal

SHIP_TCr string
SHIP_TO_MAME string
BILL_TO string

ESTIMATED _SHIP_DATE date
STATUS string
TRACKING_MUMBER. 7 string

K

Y INLEY

Design View | XQuery Editor View [Source View | Test View | Query Plan View

Figure 20-1 XQuery Editor View of getCustomer_Order Function
3. In Data Services Palette, expand the Appare]lDB and CUSTOMER ORDER.ds folders.

4. Drag and drop CUSTOMER_ORDER() into XQuery Editor View.

5. In XQuery Editor View, create an overwrite mapping between the CUSTOMER _ORDER source
and Return elements by completing the following steps:

a. Press Ctrl.

b. Drag and drop the source node's CUSTOMER ORDER* element onto the Return
type's CUSTOMER ORDER element.

Data Services Platform: Samples Tutorial

64

6. Drag and drop the parameter’s CUSTOMER _ID element onto the source node's C_ID element.
Confirm that the getCustomer Order function is as displayed in Figure 20-2.

CUSTOMER. ds* - {DataServicesHCustomerDE] k3
gerCUSTOMER_ORDER(arg)| =
@ Return L2
{?]Parameter: $arg — 7 5 CUSTOMER_GRDER
Bl CUSTOMER, 4 ORDER_ID string
CUSTOMER._ID string CUSTOMER_ID string
FIRST_MNAME string ORDER_DATE date
LAST_MAME string SHIP_METHOD string
CUSTOMER_SINCE date HANDLING_CHARGE decimal
EMAIL_ADDRESS string SUBTOTAL decimal
TELEPHOME_MUMBER string TOTAL_ORDER_AMOUNT decimal
S5M? string SALE_TAY decimal
BIRTH_DAY ? date SHIP_TO string
DEFALLT_SHIP_METHOD ? string SHIP_TO_NAME string
EMAIL_MOTIFICATION 7 shart BILL_TO string
NEWS_LETTTER 7 short ESTIMATED_SHIP_DATE date
OMLINE_STATEMENT ? shart STATUS string
0 TRACKING_NUMEER 7 string

“ »|[For: SCUSTOMER_ORDER U
[CUSTOMER_ORDER * [+]
ORDER_ID string

CUSTOMER_ID string
ORDER_DATE date
SHIP_METHGD string
HANDLING_CHARGE decimel
SUBTOTAL decimal
TOTAL_ORDER _AMOUMT decimal
SALE_TAX decimal

SHIP_TO string

SHIP_TO_MAME string

BILL_TO string
ESTIMATED_SHIP_DATE date N (-
stri

] — D)
£] Dl
rew[]v3 v

! Where $arg/CUSTOMER _ID = $CUSTOMER_ORDER/CUSTOMER _ID

Diesign Wiew | #Query Editor View [Sodrce Wiew | Test iew | Query Plan View

[=]

Figure 20-2 Joined and Mapped Function

7. Save your work and then build the DataServices project.

8. Open CUSTOMER.ds in Test View and run a test by completing the following steps:
Select getCUSTOMER_ORDER(arg) from the Function drop-down list.

Click Browse, navigate to, and open the
<beahome>\weblogic81\samples\LiquidData\EvalGuide directory.

Select the customer.xml file.

¥ Select XML File... K
k. o
(2] AlterTable [MyPartal
0] CreditRatingw/s (£ MyQueries
2 CustomerManagementvwebapp] schemas
=) DataserviceClient s
Casb [T #MLFiles
0] excel [¢2) eustomer.xml
IC) FlatFiles
T dap
hame: | customer, xml ‘
Type: |><ML Files ‘ - ‘

Figure 20-3 Select XML File

9. Click Select. The contents of the file are inserted into the Parameters field.

Data Services Platform: Samples Tutorial

CUSTOMER. ds* - {DataServicesHCustomerDE) X

Select Function:

getCLUSTOMER _ORDER({arg) |~ |
Parameters
tRCUSTOMER. arg: | Erowse.‘.l | Paste Result | | Insert Template |

<ns0:CUSTOMER, xmins:ns0="ld:DataServices/CustomerDECLUSTOMER" = <CUSTOMER_ID>CUSTOMER3<,KCUS1|Z|
MER_ID>= <FIRST_MAME =Britt<jFIRST_NAME> <LAST_MAME >Pierce<[LAST_MAME> <CUSTOMER _SINCE =20

1-10-01 </CUSTOMER _SIMCE = <EMAIL_ADDRESS »J0HN_3@att. com </EMAIL_ADDRESS > <TELEPHOM
E_WUMBER. >9267731259 </TELEFHOME_NUMBER > <S55N=>647-73-1259</35M> <BIRTH_DéY =1952-05-0
9 <BIRTH_Day > <DEFAULT_SHIP_METHOD =PRICRITY-1</DEFALLT_SHIP_METHOD > <EMAIL_MNC
[TIFICATION =1 <JEMAIL_MOTIFICATION: <MEWS_LETTTER >0 <MNEWS_LETTTER > <OMLIME_S
[TATEMEMT =1 <fOMLIME_STATEMENT = < jns0:CUSTOMER =
[
K [

Mumber Element by path)

Lirnit elements in array results to;
EXNN |

[Start Client Transaction

| Design Yiew | XCQuery Editor View | Source Wiew | Test Yiew [Query Flan Yiew

Figure 20-4 Select XML File

10. Click Execute. The order information for CUSTOMER3 should appear.

CUSTOMER..ds - {DataServicesH CustomerDEL Y

Select Function:

QetCUSTOMER _ORDER{arg) |- ‘
Parameters
t3:CUSTOMER arg: Browse. .. | | Paste Result ‘ ‘ Insert Template |

<nsCUSTOMER xmins:ns0="ld:DataServices/CustomerDB/CUSTOMER" > “CUSTOMER _ID=CIUSTOMERS <1CUS1|E|
MER_ID: <FIRST_MAME =Britt </FIRST_MAME=> <LAST_MAME =Pierce <JLAST_MAME> <CUSTOMER _SINCE=20

1-10-01 </CUSTOMER _SINCE > <EMAIL_ADDRESS>IOHN_3@att.com</EMAIL_ADDRESS > <TELEPHOM
_MUMBER >0287731 250 < TELEPHOME_NUMBER > «S5M»647-73-1259</55M = <BIRTH_Dd¥ = 1952-05-0
<(BIRTH_D&Y > <DEFALULT_SHIP_METHOD>PRICRITY-1<{DEFALLT_SHIP_METHCD> <EMAIL_NC
TFICATION 1 </EMAIL_NOTIFICATION: <MEWS_LETTTER=0</NEWS_LETTTER > <ONLINE_S
ATEMENT 31 </ OMLINE_STATEMENT = <fns0: CUSTOMER =

Number Element (by path)

Lirit elements in array results to:
(s] |
[start Client Transaction
Result | text | e

- <aArrayOfCUSTOMER _ORDER xmins:a="ld: DataServices/ApparelDB/CUSTOMER _ORDER" »
- «nsMCUSTOMER _ORDER xmins:ns0="ld:DataServicesjApparelDB/CUSTOMER _ORDER" >
<ORDER_ID:> ORDER_3_0 </ORDER_ID>
<CUSTOMER_ID> CUSTOMER3 </CUSTOMER _ID=
“ORDER_DATE= 2001-10-01 </ORDER_DATE>
<SHIF_METHOD > PRIORITY-1 </SHIP_METHOD:
“HAMDLING_CHARGE> 6.8 </HAMDLING_CHARGE>
«SUBTOTAL> 649.85 </SUBTOTAL>
«TOTAL_ORDER_AMOUMT > 656,65 </TOTAL_ORDER _AMOUNT =
<SALE_Tax> 0 </SALE_TAX=
<SHIP_TO» ADDR_3_0 «/SHIP_TO>
«SHIP_TO_MAME > Britt Pierce </SHIP_TO_MAME:
CBILL_TO®= OC_3_1 <[BILL_TO:
«ESTIMATED_SHIP_DATE> 2001-10-03 </ESTIMATED_SHIP_DATE>
«STATUS> CLOSED </STATUS:
<TRACKING_MUMBER > ORDER_3_00379624444 < [TRACKING_MUMBER >
<fns:CUSTOMER _ORDER =
+ £nsMCUSTOMER _ORDER xmins:ns0="ld:DataServicesjApparelDB/CUSTOMER _ORDER" = Izl

[Desion View |¥Query Editor Yiew |Source View | Test View [Query Plan Yiew

Figure 20-5 Relationship Test Results

Data Services Platform: Samples Tutorial

Lab 20.2 Creating a Model Diagram for Logical Data Services

Model diagrams display the basic structure of the data returned by a data service. A model diagram lets
you view a selected set of data services and the relationships between them. The main purpose of the
diagram is to help you envision meaningful subsets of the model, but it can also be used to define new
artifacts or edit existing artifacts.

Objectives

In this lab, you will:

Import a schema that provides a logical and unified representation of two separate physical
data sources.

Create a basic model diagram by adding data services to the imported logical data service.

Create relationship functions between the modeled data services.

Instructions

1. Import the OrderManagement schema into the DataServices project folder by completing the
following steps:

Right-click the DataServices project folder.
a. Choose Import.
b. Navigate to and open the <beahome>\weblogic81\samples\LiquidData\EvalGuide directory.
c. Select the OrderManagement folder.

d. Click Import. A new folder, OrderManagement, is created in the DataServices project. The
imported schema contains logical representations of the two Order Management Systems
(Apparel and Electronics), which make the two systems appear as if they are a single Order
Management System.

2. Create a sub-folder within the Models folder by completing the following steps:
a. Right-click the MODELS folder, located in the DataServices folder.
b. Choose New — Folder.
c. Enter Logical in the Name field.
d. Click OK.
3. Create a new logical model diagram by completing the following steps:
a. Right-click the Logical folder.
b. Choose New — Model Diagram.
c. Enter OrderManagement Logical Model.md in the Name field.
d. Click Create.
4. Create a model for the OrderManagement data services by completing the following steps:
a. Expand the CustomerManagement, OrderManagement, and ServiceDB folders.

b. Drag and drop the following .ds files into the model:

Data Services Platform: Samples Tutorial 67

Data Service File Located In:

customerProfile.ds CustomerManagement
address.ds OrderManagement
customer.ds OrderManagement
customerOrder.ds OrderManagement

customerOrderLineltem.ds | OrderManagement

orders.ds OrderManagement
product.ds OrderManagement
service_case.ds ServiceDB

Y our model diagram should be similar to that displayed in Figure 20-6. Notice that relationships
between data services already exist. These relationships were generated during the Import Source
Metadata process, and are based on the foreign key relationship defined in the underlying relational
data.

[i vauation - BLA Webd ngic Warkahap - Or derMansgemed_Lsgical Medelmid

7 [——
e [
[————.

T Ordre

| s CAs

| Csroeen_moen i 1)
L ————t

@ Serv Burrng T

Figure 20-6 Model Diagram for Logical Data Services

5. Create a relationship between the CustomerProfile and ADDRESS data services by completing the
following steps:

a. Drag and drop the customer id element (CustomerProfile) onto the CustomerID element
(Address).

b. Click Finish in the Relationship Properties window.

6. Create a relationship between CustomerProfile and SERVICE CASE data services by completing
the following steps:

a. Drag and drop the customer_id (CustomerProfile) onto the CUSTOMER _ID element
(SERVICE_CASE).

b. Click Finish in the Relationship Properties window.

Data Services Platform: Samples Tutorial 68

Lo il b

B s

DERD| o

T TR L 11

4 CuslomerProfils E s < Customer
B Catnadvelis - S g AR E
5@ ostomer + @ e
19 cutom i g @ @
= —— @ @
bt ey = Lo @
[T ———— @ ¢ Al -8
@ emal_abben T cndtrg] » @
[Ep——— @ a @
@ ey @ @
@ ey T wntdee @ o @
& dubnik_sho st el ® @
o e bt | et] @
: - 1 — i
1 nekARCustsmenst) . P | customuniy
1 uettustimertrobiel) T ADORESS()
x Ordurs
= —
. S "
L4 @
E SERACH_CAS @
B 3
LT |= @ erocucr S
@ CUSTOMR D ety @ Pl cering
& MOOUCT_ID asbirg @ CotagenyD astong :
& AT g & Froductiiame sty
B CAE DO g L s
S CAE DATE adare @ Marbschn sy s
B AN _ID g B Ltirice aacdecrd L
@ STATS sty @ dvwageerioacont 7 rdeceal - -] mm.m_uu-cm:r
& STATLS PATE sxdaty & Dutaseure g 3
[oot Apparitintorsd)
| oettectromtiders()
§ SERVICE_CASE() T it
1 PRODUCT))

@

o

o

]

L]

-

| b4
* & ST e decmal -

-

o

]

@

@

]

(-]

CLLT LT
§
T

DataSource vrang
1 CUSTOMER_OADER_LINE TTEMG) <

Figure 20-7

7. Open CustomerProfile.ds in Design View. You should see two new relationship functions,

New Relationships Defined

@ Server Ry Lo

getAddress1 (which navigates to the Address logical data service, located in OrderManagement)

and getSERVICE CASEI (which navigates to the SERVICE CASE physical data service,

located in ServiceDB).

CustamerPrafile ds* - {DataServicesHCustomerManagement),

E

| s CustomerProfile Data Service

= getAllCustomers

N

e 51 LSk OMmeEr Profile

Address

)

= getiiddress

SERMIC...

] |

e QctSERVICE CASE

—

=@ CustomerProfile «
B @ custamer +

custamer_id xsdistring
first_name xsd:string
last_name xsdistring
customer_since 7 xsd:date
emal_address ? xsdisking
telephone_number ? xed:string
55N 7 xsd:string

birth_day ? xsdidate
default_ship_method 7 xsd:sting
email_notification ? xed:short
news_letter ¥ xsd:short
online_statement ? xsd:short

000 OCTOTOTOOTO

arders

=@ order*

@ order_id xsdrstring

@ customer_id xsd:string

@ order_date ? xsddate

@ ship_methad xsd:string [=]

.a ApparelDB/CUSTO...
.ﬁ ApparelDBICUSTO. .
.a CustamerDBfCUST. ..
.ﬁ ‘WebServices/getCr. .,

‘ B

Design View | ¥Query Editar View | Source Yiew | Test Yiew | Query Plan Yiew |

Figure 20-8 New Functions

8. Save your work.

Data Services Platform: Samples Tutorial

69

Lesson 21 Running Ad Hoc Queries

Sometimes it is necessary to execute a query on functions associated with an application that is already
deployed. Rather than take the application offline to create a new query, DSP provides the
PreparedExpression class, which lets you create and run ad hoc queries on deployed applications.

Objectives

After completing this lesson, you will be able to:

Create an ad hoc query from within a DSP application.

Run an ad hoc query.

Overview

DSP includes a PreparedExpression class that lets you build an ad hoc query using remote data
sources, and then execute it via the Mediator API or DSP Control. Using the methods within the
PreparedExpression class, you can build queries on top of existing XDS functions belonging to
applications already deployed on an active local or remote server domain.

The process for running an ad hoc query is as follows:

1. Create a StringBuffer to hold the query.

2. Create an instance of the PreparedExpression class, using the prepareExpression method.
3. Create parameters for the ad hoc query, using the bind<DataType> methods.
4

Submit the query and review the results, using the Mediator API or DSP Control.

Lab 21.1 Creating an Instance of the PreparedExpression Class
The first steps in creating an ad hoc query are to instantiate a StringBuffer and the PreparedExpression
class. For the latter instance, you use the prepareExpression method of the DataServiceFactory class,
which accepts three parameters:
Initial Context
Application Name
XQuery String

For example:

PreparedExpression pe = DataServiceFactory.prepareExpression(
getlnitialContext(),
"Evaluation',

xquery.toString(Q)
):

Objectives

In this lab, you will:

Data Services Platform: Samples Tutorial 70

Build a StringBuffer instance to hold the ad hoc query.

Create an instance of the PreparedExpression class.

Instructions

1.

2
3.
4

Create a new Java project in the Evaluation application, and name it AdHocClient.
Create a new Java class in the AdHocClient project, and name it AdHocQuery.

Open AdHocQuery java.

Import the following Java classes:

import com._bea.ld.dsmediator.client_DataServiceFactory;
import com.bea.ld.dsmediator.client.PreparedExpression;
import com._bea.xml_XmlObject;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import javax.xml_namespace.QName;

import weblogic.jndi.Environment;

Note: You can also import the necessary Java classes by first adding the code specified below, and
then pressing Alt + Enter.

Data Services Platform: Samples Tutorial

71

5. Specify the initial context for the query, by adding the following code after the first curly brace:
public static InitialContext getlnitialContext() throws NamingException {
Environment env = new Environment();
env._setProviderUrl (*'t3://1ocalhost:7001");
env.setlnitialContextFactory(""weblogic.jndi.WLInitialContextFactory');
env._setSecurityPrincipal ("'weblogic™);
env.setSecurityCredentials(""weblogic™);

return new InitialContext(env.getinitialContext().getEnvironment());
¥

6. Add the main argument, by adding the following code after the initial context:
public static void main (String args[]) {

System.out.printin(” Ad Hoc Client

try {
} catch (Exception e) {
e_printStackTrace();

}
}

7. Build a StringBuffer instance to hold your query. For example, add the following code after the
line: try {:
StringBuffer xquery = new StringBuffer();

xquery.append(‘'declare variable $p_firstname as xs:string external;
\n"");

xquery.append(*'declare variable $p_lastname as xs:string external;
\n");

xquery.append(‘'declare namespace
ns1=\"1d:DataServices/MyQueries/XQueries\"; \n'");

xquery.append(‘'declare namespace
nsO=\"1d:DataServices/CustomerDB/CUSTOMER\"; \n\n'");

xquery.append(*'<ns1:RESULTS> \n");
xquery.append(*'{ \n");
xquery.append(*” for $customer in ns0:CUSTOMER(Q) \n");
xquery.append(** where ($customer/FIRST_NAME eq $p_firstname \n');
xquery.append(** and $customer/LAST_NAME eq $p_lastname) \n');
xquery.append(** return \n');
xquery.append(** $customer \n");
xquery.append(*" } \n');
xquery.append(*'</ns1:RESULTS> \n™);

8. Use the prepareExpression method of the Mediator API’s DataServiceFactory class to create an
instance of the PreparedExpression class, by adding the following code:

PreparedExpression pe = DataServiceFactory.prepareExpression(

getilnitialContext(), "Evaluation™, xquery.toString());

Data Services Platform: Samples Tutorial 72

Lab 21.2 Defining Ad Hoc Query Parameters

After you create an instance of the PreparedExpression class, you need to specify the parameters that
will be passed when the ad hoc query is submitted. To pass parameters, you use one or more
bind<DataType> methods, such as bindString and bindInt.

Objectives

In this lab, you will:

Use the bind<DataType> methods of the PreparedExpression instance to pass parameters.
Invoke the query.
Display the query’s XML results.

Instructions

1. Pass parameters by using the bindString method of the PreparedExpression instance. For example,
add the following code to the AdHocQuery.java file:

pe.bindString(new QName("'p_Ffirstname'), "Jack');
pe.bindString(new QName("'p_lastname™), "Black'™);

2. Invoke the executeQuery method to return the query results in an XmlObject.

XmlObject obj = pe.executeQuery();

3. Enter the code necessary to return the XmlObject and display the XML. For example:
System.out._printin(obj.toString());

Lab 21.3 Testing the Ad Hoc Query

You are now ready to test the ad hoc query, which is set to return information for Jack Black.

Objectives

In this lab, you will: T T X

Trying to create process and attach to 1981...
. . . D:tbeatjdkl4Z 05%bintjavaw.exe -Xdebug -kRnoagent -Djava.compiler=NONE
Build the AdHocClient project. Process started
Attached successfully.
==================== Data fervice Client ====================
Run the AdHocQuery.java <na0:RESULTS xmlns:ns0="1d:Datalervices/Mylueries /Xlueries™
«n31:COSTOMER xmlns:nsl="ld:Datadervices/CustonerDE/COSTOMER >

<CUSTOMER_IDC:Jack</CUSTOMER_IDC

<FIRST_NAME:Jack</FIRST NAME>

<LAST NAME>Elack</LAST NAME:
Instructions <CUSTOMER_STHCE>2001-10-01</COSTOMER_STHCE:
<EMATL_ADDRE3S>Jackfhormail.com</EMATL_ ADDRESS>
<TELEPHONE_MITMEER>»2145134119</TELEPHONE _NUMBER:

1 1 1 <5EN=205-13-4119< /55N>

1. Build the AdHocClient project. e TRTH, DAT>
<DEFAULT_3HIP_METHOD>AIR</DEFAULT SHIP_METHOD:

2. Inthe AdHocQuery.java application, click the hEn TrTITERO N e derr
1 <ONLINE STATEMENT:1</ONLINE STATEMENT>
Start icon (or press Ctrl + F5). T =

</ns0:RESULTS>

3. Confirm that you can retrieve customer profile
information for Jack Black.

Debugying Finished

[0 0

Data Services Platform: Samples Tutorial 73

Code Reference for an Ad Hoc Query

import com.bea.ld.dsmediator.client.DataServiceFactory;
import com.bea.ld.dsmediator.client.PreparedExpression;
import com.bea.xml._XmlObject;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.xml.namespace.QName;
import weblogic.jndi.Environment;

public class AdHocQuery

public static InitialContext getlnitialContext() throws NamingException {
Environment env = new Environment();
env.setProviderUrl (*'t3://1ocalhost:7001");
env._setlnitialContextFactory("'weblogic.jndi _WLInitialContextFactory');
env.setSecurityPrincipal ("'weblogic™);
env.setSecurityCredentials("'weblogic™);
return new
InitialContext(env.getlnitialContext().getEnvironment());

public static void main (String args[]) {
System.out._printin(" Ad Hoc Client

Y

StringBuffer xquery = new StringBuffer();

try {

xquery.append(“‘declare variable $p_firstname as xs:string external; \n");
xquery.append(“'declare variable $p_lastname as xs:string external; \n");

xquery.append(*'declare namespace nsl=\"ld:DataServices/MyQueries/XQueries\"; \n");

xquery.append(*'declare namespace ns0=\"ld:DataServices/CustomerDB/CUSTOMER\"; \n\n'");

xquery.append(*'<ns1:RESULTS> \n");
xquery .append(*'{ \n");
xquery .append (™ for $customer in nsO:CUSTOMERQ) \n");
xquery .append (™ where ($customer/FIRST_NAME eq $p_Ffirstname \n');
xquery .append (™ and $customer/LAST_NAME eq $p_lastname) \n*);
xquery .append (™ return \n");
xquery .append (™ $customer \n");
xquery.append(*" } \n");
xquery .append(*'</ns1:RESULTS> \n*);

PreparedeExpression pe = DataServiceFactory.prepareExpression(getinitialContext(),
"Evaluation', xquery.toString());

pe.bindString(new QName(*'p_firstname'™), "Jack');

pe.bindString(new QName(*'p_lastname'), *"Black');

XmlObject results = pe.executeQuery();

System.out._printin(results);

} catch (Exception e) {
e.printStackTrace();
3

Lesson Summary

In this lesson, you learned how to:

Create a StringBuffer instance to hold the ad hoc query.

Create an instance of the PreparedExpression class, using the prepareExpression method of
the Mediator API’s DataServiceFactory class.

Create parameters for the ad hoc query, using the bindString method of the
PreparedExpression class.

Submit the query and review the results, using the Mediator APIL.

Data Services Platform: Samples Tutorial

74

Review the XML output.

Data Services Platform: Samples Tutorial

75

Lesson 22 Creating Data Services Based on SQL Statements

The SQL-Exit feature lets developers re-use SQL statements that are currently available in the source
system. These user-defined SQL statements are bound in XQuery as external functions, in the same
manner as all DSP sources.

Objectives

After completing this lesson, you will be able to:

Create data service based on a user-defined SQL statement.

Use that data service to retrieve customer and address information together.

Overview

Configuring the SQL-exit data source involves the following steps:

1. Create the .xsd schema that describes the SQL results.
2. Create the data service, including annotations, describing the result set.
3. Associate an XML Type for the data service to the schema previously created.

When a user-defined SQL statement is used within other functions, the DSP engine will bind the SQL
statement as a sub-query in a new SQL statement. To disable this functionality, the metadata property
isSubquery, stored in the function's pragma, can be set to value false.

Lab 22.1 Creating a Data Service from a User-Defined SQL Statement

The SQL statement that will be used to create a new data service involves a join between the
CUSTOMER and ADDRESS data services. You need to manually add all the necessary metadata to
the new data service, before this query can execute. To do so, you will use metadata previously
imported from the CUSTOMER and ADDRESS tables.

Objectives

In this lab, you will:

Import an SQL statement as source metadata for a physical data service.

Generate a new data service.

Instructions

1. Open the SQL_Statement.txt file, located in the
<beahome>\weblogic8 1\samples\LiquidData\EvalGuide folder.

2. Copy the text within the file. The text is:

select "A"_."CUSTOMER_ID™", "A"_."FIRST_NAME"™, "A"_"LAST_NAME",
“B"_"ADDR_ID", “B"."CITY", "B"."STATE", "B"."ZIPCODE", "B"."COUNTRY"
from "RTLCUSTOMER™".'"CUSTOMER" "A", "RTLCUSTOMER'.'"ADDRESS" "B" where
"A"_""CUSTOMER_ID"™ = "B'"_.""CUSTOMER_ID'" AND "B'"_."STATE"™ = ?

3. Create a new folder in the DataServices project and name it SQL. You will use this folder to store
a new data service based on user-defined SQL statements.

Data Services Platform: Samples Tutorial 76

Right-click the SQL folder and select Import Source Metadata.

Select Relational from the Data Source Type and click Next.

Select the SQL statement radio button and click Next. The SQL Statement page opens.
Paste the copied text into the SQL Statement field.

© N v ok

Select VARCHAR from the Type column for Position 1 and click Next. The Summary page
opens.

9. Rename the data service to MySQL.

Following Data Service will be created. Edit name if needed.

ML Type Marne
salGuery MySOL

[] Generate Model Diagram Aukomatically

Model Diagram Name |

Location | D:'tbea'tuserjrojectslappI\cations'tdanube\EvaIuatiDnlDataS| ‘ Browse. .. |

| Previous | | | | Firish | | Cancel ‘

Figure 22-1 Summary for SQL-Based Data Service

10. Click Finish. The MySQL data service and associated schema files are added to the SQL folder.

Lab 22.2 Testing Your SQL Data Service

You are now ready to test whether the MySQL data service can retrieve all customers who reside in
California.

Objectives

In this lab, you will:

Test the MySQL data service.

View the results.

Instructions

1. Open MySQL.ds in Test View.

2. Select MySQL(x1) from the Function drop-down list.
3. In the parameter box enter CA
4

Click Execute. The result set will show customer and address information for the state of
California.

Data Services Platform: Samples Tutorial

77

Myt s - atasenaces) (58] Ed

Solct Furction:

MSAL) -

Paramotons

mdisurgal | CA

Wb Ederrenit {by path)
Lirmit, derments in array results to;

[St Cherk Transaction
Execute
Rosul

© AT APOIMYSOL i e T DOEASEACES SO MY 3
= M SO srvle: ol Dk A it SO SCL”
<CUSTOMER ID> Steve </CUSTCMER D>
FIHST_HRL Steve <[TIRST NAMD>
SLAST MAMES Ling </LAST Mamis
<ADOR_J0> ADDR_4_1 <JA00R_ID>
<CITFs San Jose <fCITYs
<STATES CA ¢/STATE>
<TIPCCOES W11 <[TICO0ES
<COUNTRY > USA <JCOUNTRY >
Alretiy s>
sl My SO e nsteid: Dt aSenvioes [SOLMYSOL >
<CUSTOMER_ID> CUSTOMIRS </CUSTOMER [Dn
AFINST WAME > Michael ofFIRST NaME>
CLAST_MAME > Snow <JLAST_MAME S
<ADOR_F ADDR_S_0 <{ADOR_ID>
<CITY > San Francises </CITY >
<STATLS CA 4/5TATE>
CIIPCODES 4104 <[ZPCO0ES
SCOUNTRY > USA </COUNTRY >
afrgliyS QL
+ CnslMySOL e sl T DaEASArACRS[SOUMYEOL 3
+ oM SO vl Dk e e[SOU MBI &
oAy OiHySOL>

[]

| Diesign Vinw | Sy Editor Viow [Source View | Test View | Guery Flan View |

Figure 22-2 Test Results for an SQL-Based Data Service

Lesson Summary

In this lesson, you learned how to:

Manually create a data service out of an SQL statement.

Test the SQL-based data service.

Data Services Platform: Samples Tutorial

78

Lesson 23 Performing Custom Data Manipulation Using Update

Objectives

Overview

Override

DSP permits customized updates through the use of the update override feature. The update override
logic, which is triggered prior to submitting data, can be used for custom data manipulation, update
overrides, logging, debugging, or other custom logic needs.

In this lesson, you will write an update override that computes total orders, based on the quantity and
price of each order.

After completing this lesson, you will be able to:

Write customized data manipulation through an update override.

Associate an update override with a data service.

An update override, which you assign to a data service, performs custom logic prior to submitting data.
The update override is a Java class that implements the com.bea.sdo.mediator.UpdateOverride class.
Using that class’s performChange (DataGraph graph) method, a Data Graph instance of the current
data service is returned. The Data Graph can then be manipulated in via the update override logic.

For example, you can get the CustomerProfileDocument DataObject through the data graph
(CustomerProfileDocument) graph.getRootObject();
You could also get the Change Logging summary through graph.getChangeSummary()

On return of the Data Graph, the following conditions apply:

Return true: Proceed with the rest of update.
Return false: Stop the update.

Throw Exception: Rollback.

Data Services Platform: Samples Tutorial 79

Lab 23.1 Creating an Update Override

An update override enables custom manipulation of data within data service.

Objectives

In this lab, you will:

Create a new Java class that will serve as the basis for an update override.
Import and implement an update override class.
Implement the performChange method.

Write customized update logic.

Instructions

1.

5.

6.

Create a new Java class by completing the following steps:

a.
b.
C.

d.

Right-click the CustomerManagement folder, located in the DataServices folder.
Choose New — Java Class.

Enter CustomerProfileExit in the File Name field.

Click Create.

Build the DataServices project.

Open the CustomerProfileExit.java file.

Import and implement the update override, by completing the following steps:

a.

Import the update override by entering the following code:

import com.bea.ld.dsmediator.update.UpdateOverride;

Implement the update override by modifying the public class CustomerProfileExit code, as
follows:

public class CustomerProfileExit implements UpdateOverride
Press Alt + Enter, and then click OK to add the performChange(DataGraph) signature.

Implement the performChange(DataGraph graph) method by modifying the code to read as
follows:

public boolean performChange(DataGraph graph)

The DataGraph passed in the argument contains the current SDO instance with all changes,
including the change summary.

Access the update override by casting the root object of the data graph to your SDO. Add the
following code, after the opening braces:

CustomerProfileDocument customerDocument =
(CustomerProfileDocument) graph.getRootObject();

Press Alt+Enter. With this CustomerProfileDocument instance, you can get and set values that
will be applied to the SDO before it is submitted.

Data Services Platform: Samples Tutorial

80

7. Write update logic to compute the total order amount, based on the sum of each order item’s
quantity multiplied by its price (sum of price*qty). You can use this to get the total of each item’s
quantity*price and to set the total order amount to this value. (Note: Use BigDecimals for
computations.) For example:

Order[] orders =
customerDocument._getCustomerProfile() .getCustomerArray(0).getOrders()
.getOrderArray();

for (int x=0; x<orders.length; x++) {

BigDecimal total = new BigDecimal (0);

OrderLine[] items = orders[x].getOrderLineArray();
for (int y=0; y < items.length; y++) {

total =
total .add(items[y]-getQuantity() .multiply(items[y].getPrice())):

}
orders[x] -setTotalOrderAmount(total);

}
8. Press Alt + Enter, for all flagged items.
9. Enter the code necessary to return the results. For example:

System.out.printIn(’'’>>> CustomerProfile.ds Exit completed");

return true;

}
}

10. Confirm that your code is as displayed in Figure 23-1.

11. Build DataServices project.

CustomerProfilsExit java* - {DataServices)| CustomarManagement}

]

package CustomerManagenent;

import cow.bea.ld. dswediator.update, Updatelverride;

import commonj.sdo.Databraph;

import java.math.BigDecinal ;

import org.opemuri. temp.datafervices. schenas, custonerProfile. CustonerProfilebocument;

import org.openuri.temp.datadervices.schemas.customerProfile.CustomerFrofilelocunent, CustonerProfile, Customer.Orders. Order;

import org.openuri.temp.dataSerwvices.schemnas.customerProfile. CustomerProfilebocument. CustomerProfile. Customer.Orders. Order. Orderline;

public class CustomerProfileExit implements UpdateOverride
{
I public boolean performChange (DataGraph graph)
{

CustomerProfilebDocunent customerDocument = (CustomerProfileDocument) graph.getRootObiecti);
Order[] orders = customerlocument.getCustomerProfile().getCustonerirray(0).getlrders().getlrdechirray();
for (imt x=0; x<orders.length; x++) {
BigDecimal total = mew BigDecimal (0):
Orderline[] items = orders[x].getlrderLineirray();
for (int ¥=0; v < itews.length; v+ {
total = total.add(items[y].getQuantity().mulciply(icens[y]. getPrice())):

orders[x].setTotalOrderdmount(total) »

return true;

Figure 23-1 Update Override Code

Data Services Platform: Samples Tutorial 81

Lab 23.2

Lab 23.3

Associating an Update Override to a Logical Data Service

Before you can use the update override, you must associate it with a specific data service.

Objectives

In this lab you will:

Use the Property Editor to associate an update override with a specific data service.

Build the data service to include the update override.

Instructions
1. Open the CustomerProfile data service in Design View.

2. Click the CustomerProfile header to activate the Property Editor. (If the Property Editor is not
open, press Alt + 6.)

3. Click the update override class field.
4. Navigate to the DataServices.jar\CustomerManagement folder.

5. Select CustomerProfileExit.class and click Open. The update override class field is now populated
with the CustomerManagement.CustomerProfileExit.

6. Build the DataServices project.

Testing the Update Override

As with any other data service, you should test the update override to ensure that it works properly.

Objectives

In this lab you will:

Change order information from within your CustomerManagementWebApp application.

Confirm update override results.

Instructions

1. Open CustomerPageFlowController.jpf, which is located in the
CustomerManagementWebApp\CustomerPageFlow folder.

2. Click the Start icon. The Workshop Test Browser opens.

3. Enter CUSTOMERS3 in the CUSTOMER ID field and click Submit.

Note: It may take a few seconds before the information is returned.
Change the order information by adding, modifying or deleting order lines.
Click Submit All Changes.

Click Back to return to the CUSTOMER ID page.

Enter CUSTOMER3 in the CUSTOMER ID field and click Submit.

® NN bk

Confirm if the updated total order information was computed.

Data Services Platform: Samples Tutorial 82

Update Override Reference Code

package CustomerManagement;

import com.bea.ld.dsmediator.update.UpdateOverride;

import commonj.sdo.DataGraph;

import java.math.BigDecimal;

import org.openuri.temp.dataServices.schemas.customerProfile.CustomerProfileDocument;

import org.openuri.temp.dataServices.schemas.customerProfile.CustomerProfileDocument.CustomerProfile.C

import
‘g-openuri.temp.dataServices.schemas.customerProfile.CustomerProfileDocument.CustomerProfile.Customer.Or

public class CustomerProfileExit implements UpdateOverride
{
public boolean performChange(DataGraph graph)
{
CustomerProfileDocument customerDocument = (CustomerProfileDocument) graph.getRootObject();
Order[] orders = customerDocument.getCustomerProfile() .getCustomerArray(0).getOrders() -getOrderAr
for (int x=0; x<orders.length; x++) {
BigDecimal total = new BigDecimal(0);
OrderLine[] items = orders[x]-getOrderLineArray();
for (int y=0; y < items.length; y++) {
total = total.add(items[y].getQuantity().multiply(items[y].getPrice()));
3
orders[x].setTotalOrderAmount(total);
¥

return true;

Lesson Summary

In this lesson, you learned how to:

Create an update override for a logical data service.

Write logic in the update override to access the XML bean and perform custom data
manipulation prior to submitting.

Associate an update override to the data service.

Data Services Platform: Samples Tutorial 83

Lesson 24 Updating Web Services Using Update Override

You can also use update overrides to update a Web service.

Objectives

After completing this lesson, you will be able to:

Write an update override function for performing manual updates.

View your results.

Overview

Unlike relational data sources, Web service updates are not automated, since DSP is unable to
determine how to decompose a read function into a corresponding write. To enable DSP to perform the
necessary writes, you must create an update override for the physical data service, and then implement
the necessary writes in that update override. For example:

public class CreditRatingExit implements UpdateOverride {
public boolean performChange(DataGraph datagraph){

// don"t do anything if there are no changes
ChangeSummary cs = datagraph.getChangeSummary();
if (cs.getChangedDataObjects().size()==0)

return true;

// get changed values from SDO

GetCreditRatingResponseDocument creditRating =
(GetCreditRatingResponseDocument) datagraph.getRootObject();

int newRating =
creditRating.getGetCreditRatingResponse() .getGetCreditRatingResult().getRating();

String customerld =
creditRating.getGetCreditRatingResponse() .getGetCreditRatingResult().getCustomerld();

// update CreditRating web service

try {

CreditRatingDBTestSoap ratingWS = new
CreditRatingDBTest_Impl().getCreditRatingDBTestSoap();

CreditRating rating = new CreditRating(newRating,customerld);
ratingWS.setCreditRating(rating);
} catch (Exception e) {
e.printStackTrace();
return false;
}
System.out.printIn(*WEB SERVICE EXIT COMPLETE!');
return true;

Data Services Platform: Samples Tutorial 84

Lab 24.1 Creating an Update Override for a Physical Data Service

WebLogic’s clientgen utility generates a Web Service-specific client .jar file that client applications
can use to invoke Web Services. You simply need to specify the WSDL URI, the name and
location of the client jar file to generate and a package structure. Clientgen is available as an ant
task as well as a Java application that can be invoked from the command line.

For more information on clientgen see:

http://e-docs.bea.com/wls/docs81/webserv/anttasks.html

Objectives

In this lab, you will:

Edit the WebLogic clientgen command to point to your WebLogic Server.
Run the clientgen utility.

Add the generated client .jar file to your application Library.

Instructions

Set WebLogic’s clientgen command line utility to generate a web service client .jar file by completing
the following steps:

1. Edit the setenv.cmd (located in the <beahome>\weblogic81\samples\LiquidData\EvalGuide
folder) to point to your WebLogic Server installation. This will set the environment for running
clientgen. For example:

call d:\bea\weblogic81l\server\bin\setWLSEnv.cmd
set CLASSPATH=d:\bea\weblogic81l\server\lib\webservices.jar;%CLASSPATH%
echo %CLASSPATH%

Open a command prompt.
Navigate to the <beahome>\weblogic81\samples\LiquidData\EvalGuide folder.
Run setenv.cmd.

Run clientgen.cmd to generate CreditRatingWSClient.jar.

A

In WebLogic Workshop add CreditRatingWSClient.jar to your application’s Libraries folder. (The
Jjar file should be located in the <beahome>\weblogic81\samples\LiquidData\EvalGuide folder.)

Data Services Platform: Samples Tutorial 85

http://e-docs.bea.com/wls/docs81/webserv/anttasks.html

Lab 24.2

Lab 24.3

Writing Web Service Update Logic in the Update Override

You now should set the update override class to the CreditRatingExit. This will let you get any updated
credit rating information, invoke the CreditRating web service, and pass in the new value.

Objectives

In this lab, you will:

Import the CreditRatingExit.java file into the WebServices folder.

Set the update override class to the CreditRatingExit.

Instructions
1. Right-click the WebServices folder, located in the DataServices folder.

2. Choose Import.

W

Navigate to the <beahome>\weblogic81\samples\LiquidData\EvalGuide folder and select
CreditRatingExit.java.

Click Import.
Build the DataServices project.

Open getCreditRatingResponse.ds in Design View. (The file is located in the WebServices folder.)

N »n s

In the Property Editor, set the update override class by selecting CreditRatingExit from the
DataServices\WebServices folder.

8. Build the DataServices project.

Testing the Update Override

You are now ready to test whether the update override functions correctly.

Objectives

In this lab, you will:

Change a customer's credit rating.

View the results.

Instructions

1. Open CreditRatingDBTest.jws, located in the CreditRatingWS folder.
Click the Start icon. The Workshop Test Browser opens.

Enter CUSTOMER3 in the customer _id field and click getCreditRating.
Click the Test XML tab.

wok wn

Copy the SOAP body for the getCreditRating function.
<getCreditRating xmlns="http://www.openuri.org/'>
<I--QOptional :-->

<customer_id>string</customer_id>

Data Services Platform: Samples Tutorial 86

</getCreditRating>
Close the Workshop Test Browser.
Open getCreditRatingResponse.ds in Test View.
Paste the SOAP body into the Parameter field.

e

Change <customer_id>string</customer id> to <customer id>CUSTOMER3</customer id>.

10. Click Execute.

11. Click Edit and modify the credit rating. The update override is functioning correctly if you can
update the credit rating.

getCreditRatingResponse.ds - {DataServicesHWebServices! =
Select Function:
igetCreditRatingx1) ‘ - |
Parameters
tligetCreditRating ®IL: Browse... | ‘ Paste Result ‘ | Tnsert Template |
getCreditRating xmins="http: fiwwe, openur, orgl” > E
<!--Optional: -z
<customer_jd =CUSTOMERS </customer _id=>
= fgetCreditRating =
Mumber Element (by path)
Lirnit elerments in array results to:
[|
[start Clignt Transaction
Result [Text |
- <ns:getCreditRatingResponse xmins:ns="http: | /v .openuri.orgf" =
- =ns:getCreditRatingResult xmins:ns="http: /v, openuri.org)" =
=ns:Rating xminsins="http: /fwww, openuri.org” > 700 </ns:Rating>
=nsiCustomer_id xmins:ns="http: {fwwe, openari,orgl” = CUSTOMER3 <fnsiCustomer_id>
<fns:getCreditRatingResult =
<jns:getCreditRatingResponse >
[Design Yiew [®Query Editor View |Source View | Test View [Query Plan View

Figure 24-1 Test View of Update Override for a Web Service

Data Services Platform: Samples Tutorial

Lab 24.4 Checking for Change Requirements

You can now use the web service to perform update overrides.

Objectives

In this lab you will:
Change credit rating information from within your CustomerManagementWebApp
application.

Confirm update override results.

Instructions

1. Open CustomerPageFlowController.jpf, which is located in the CustomerManagementWebApp
folder. The Workshop Test Browser opens.

2. Click the Start icon.
3. Enter CUSTOMER3 in the CUSTOMER ID field and click Submit.

4. Click Update Profile, change the credit rating information, click Submit, and then click Submit All
Changes.

5. Confirm if the credit rating was updated, by clicking Back, entering CUSTOMER3 in the
CUSTOMER ID field, and clicking Submit.

2 Workshop Test Browser

& = @ < || niCustomerPageFlougetCustomer. dojisessionid=CHOIE1 SwkmTwWhm2ITYORGT TorhniMexhk1 Ky ditadagzoh0n2y W1 L 357547305 | /fiag-

-~

|J\ BEA Weblogic Workshop™ __
L/ Version 8.1

Custarer Profile

Name Smith, Joe
Customer Since 2001-10-01
Email Address JOHM_3@att.com
Telephone Number 9287731259
SSN 647-73-1259
Birth Day 1952-05-09
Default Shippin
TR PRIORITY-1
Credit Rating 650

Update Profile

Orders

Figure 24-2 Workshop Test Browser View of Update Override Functionality

Lesson Summary

In this lesson, you learned how to:

Create an update override for a physical data service (Web service)

Associate the update override with a Web service client and write logic to invoke Web service
update operations.

Use the change summary to check whether there are changes needing to be written.

Data Services Platform: Samples Tutorial 88

Lesson 25 Overriding SQL Updates Using Update Overrides

So far you have completed a few lessons on how update override functionality can be used for custom
data manipulation and web service updates.

In this lesson you will learn how custom SQL updates can be used for performing manual updates to a
relational source (table, view, stored procedure, or SQL Exit), using update overrides and JDBC.

Objectives

After completing this lesson, you will be able to:

Add update functionality to a previously created update override.

Write an update override for performing manual updates to a relational source (table, view,
stored procedure, or update override) via JDBC.

Create an update override for a physical data service.

Setup the update override to be a JDBC client and write logic to update the database table.

Overview

Update overrides are useful in situations where you need to perform some custom updates or create a
custom query.

In this particular case, since the previous update override lacks update functionality, you can add an
update statement to the override.

Lab 25.1 Adding SQL Update Statements to an Update Override File

You can add SQL update statements to an update override file, thereby enabling custom data
manipulations in relational databases.

Objectives

In this lab, you will:

Import the Java folder, which contains the MySQLEXit.java file.

Add SQL update statements to the Java file.

Instructions

1. Right-click the SQL folder located in DataServices project, choose Import, and select the Java
folder from the <beahome>\weblogic81\samples\LiquidData\EvalGuide folder.

Click Import and verify that the Java folder is added to the SQL folder.
Open MySQLEXxit.java, located in the DataServices\SQL\Java folder.
Locate the line “Type in your UPDATE SQL statements here”.

A

Enter the two following SQL statements and store them into updateStr and updateStr1l
respectively:

"UPDATE RTLCUSTOMER.CUSTOMER SET FIRST_NAME=?, LAST_NAME=? WHERE
CUSTOMER_ID=?"";

Data Services Platform: Samples Tutorial 89

Lab 25.2

Lab 25.3

"UPDATE RTLCUSTOMER.ADDRESS SET CITY=?, STATE=?, ZIPCODE=?, COUNTRY=?

WHERE ADDR_I1D=?"";

Your code should look like the following:

String updateStr = "UPDATE RTLCUSTOMER.CUSTOMER SET FIRST_NAME=?,

LAST_NAME=? WHERE CUSTOMER_ID=?"";

String updateStrl = "UPDATE RTLCUSTOMER.ADDRESS SET CITY=?, STATE=?,

ZIPCODE=?, COUNTRY=? WHERE ADDR_ID=?";

My3QLExit. java® - {DataServicesHSQL Javal

package S0L.Javar
HRBEETTIT

public class MyS(LExit implements UpdateOwerride
i
3 public boolean perfornChange {DataGraph graph)
{

if (graph.getChangeSumwary().getChangedbatalbiects().isEnpty()) |
return false:;
¥
else |
Connection mw_conn = null;
Prepareditatement m_stmt = null;
Prepareditatement m_stmtl = null:

String updateStr = "UPDATE RTLCUSTOMER.CUSTOMER SET FIRST HAME=2?, LAST HAME=? WHERE CUSTOMER TD=2";
String updateStrl = "UPDATE RTLCUSTOMER.ADDRESS SET CITY=?, STATE=?, ZIPCODE=?, COUNTRY=? WHERE RDDR ID=?";

DataferviceMediator dsm = (DataServiceMediator) Mediator.getInstance();

RelationalMetaData rmd = (RelationalMetaData) dsw.getDataderviceMetaData("ld:DataServices/SOL/MyS0L.ds");

String dsNawe = rmd.getDataSourceNames();

try {
My3QlDocument custhoc = (MySO0LDocument) graph.getRootObject():
Syatem. out.println("GRAPH —>>>" + custDoc. toScring()):

6. Save MySQLExit.java and close the file.

7. Build DataServices project.

Associating an SQL-Based Data Service and Update Override

You must now set the update override class to the MySQLEXit. This will let you get any updated

changes and pass the new value.

Objectives

In this lab, you will:

Associate the update override class with the MySQLEXit.

Confirm the settings in the Property Editor.

Instructions

1. Open MySQL.ds in Design View. (The file is located in the DataServices\SQL folder.

2. Click the MySQL Data Service header. The Property Editor opens.

3. In the Property Editor, set the update override class by selecting MySQLEXit from the

DataServices\SQL\Java folder.
4. Save the MySQL.ds file.

5. Build your DataServices project.

Testing Updates

You are now ready to test whether the update override functions correctly.

Data Services Platform: Samples Tutorial

90

Objectives

In this lab, you will:

Test the update override, by using the MySQL data service to make changes to the underlying
relational data source.

View the results.

Instructions
1. Open MySQL.ds in Test View.

2. Select MySQL(x1) from the Function drop-down list, enter CA, and click Execute.
3. Click Edit.
4

Test if updates are getting propagated to the database, by completing the following steps:

a. Select any Customer node.
b. Modify City and Zip Code elements.

c. Click Submit to issue the update override commit command and propagate changes to the
database.

5. Select MySQL(x1) from the function drop-down list, enter CA, and click Execute to confirm that

your database is updated.

Lesson Summary

In this lesson, you learned how to:

Create an update override for a physical data service.

Setup the update override to be a JDBC client and write logic to update the database table.

Data Services Platform: Samples Tutorial 91

Lesson 26 Understanding Query Plans

A query plan contains detailed, functional-level information about an XQuery. Reviewing the Query
Plan is the first step in troubleshooting a data service function's performance bottlenecks, since it lets
you view the query's construction.

Objectives

After completing this lesson, you will be able to:

Examine a query plan in three different views: tree, XML, and text.
Locate the SQL statement created to retrieve data from the underlying database.

Locate XML elements.

Overview

The most common reason for viewing a query plan is to review the SQL statement generated by the
DSP query engine. However, the query plan also displays the following information for the physical
data sources to be called during the query:

Physical Data Source Information Provided
Relational Data source name, actual SQL

calls, and join parameters.

Web Services Data source name, operation(s)
called, and join parameters.

Custom Functions Function name and join
parameters.
XML and Delimited Files Filename.

In addition, the following information is displayed for all functions:

Number of invocations.

Order in which the data source calls are made.

Compilation time.

Areas where calls are made in parallel.

Areas where there are Cartesian joins.

Areas where join algorithms are used, including parameter passing and index joins.

Any calls to a middle-tier cache.

Lab 26.1 Viewing the Query Plan

A query plan is generated for each data service function, when a DSP project is built.

Data Services Platform: Samples Tutorial 92

Objectives

In this lab, you will:

Get the query plan for the getCustomerProfile() function.

View the results in tree, XML, and text views.

Instructions
1. Open XQueries.ds in Query Plan View.
2. Select getTop10Customers() from the function drop down list.

3. Click show query plan. The query plan opens in tree view, as displayed in Figure 26-1.

xQueries.ds - {DatasServices HMyQueries), X

<Function:

|getTop10Customers() | - |

Show Query Plan

Query Plan | Treg " XL " Text

[El =Resulks=
= fr:subsequencel)
=1 FLWOR
return
= [[2 for $f15123
relational source ; cgDataSource :
SELECT {k1."FIRST_MAME" || "' || t1."LAST_MAME" A5 cl, t2,"ORDER_ID" AS c2,
b2 "TOTAL_CRDER_AMOUNT" AS 3
FROM "RTLCUSTOMER", "CUSTOMER" £1
JOIN "RTLELECOMS" "CUSTOMER _ORDER" £2
OM kL "CUSTOMER_ID" = t2."CUSTOMER_ID")
ORDER BY 12,"TOTAL_ORDER _AMOUNT" DESC
constant : [double 1.0]
constant : [double 10.0]

Diesign View | WQuery Editor Yiew [Source Yiew | Test Wiew | Query Plan View |

Figure 26-1 Query Plan as a Tree Structure

4. Click the XML button to view the Query Plan as an XML document.

¥Queties.ds - {DataServicesHMyQueaties) ¥

[

<Function:> |

|getTop10Customers() | - |

Shaw Query Plan

Guuery Flan [tree || x| et |

- <elementConstructor name="Results" tip="{ld:Dataservices/MyQuearies/xQueries R esulks" =

- <operator name="subsequence” ns="fn" tip="{hktp: M, w3, org/2004/07 fxpath-functionssubsequence” =
+ <FLWOR =

+ <constant =

~+ <constant =
=foperator =

<felement Constructar >

Design Wiew | »Ouery Editor View | Source View | Test View | Query Plan Yiew |

Figure 26-2 Query Plan as an XML Document

Data Services Platform: Samples Tutorial

5. Click the Text button to view the Query Plan as a text document.

$0ueries.ds - {DataServices HMyQueries!

<Function:=

|getT0p10Customers() |+ |

Shaw Query Plan

Query Plan | Tree | wa | Test

<glementConstructor name="Results" tip="{ld:Dataservices/MyQueries/ Cueries FResults" =

<operakor name="subsequence” ns="fn" tip="{htkp: /v w3, org/2004/07/xpath-funckions subsequence" =
<FLWOR=>

<return
<elementConstruckar name="CUSTOMER" =
<elementConstructor field="c1" from="f15123" name="CUSTCMER_MNAME" >
<felernentConstructor =
<elementConstructor field="c2" from="f15123" name="0ORDER_ID">
<lelernentCanstructor =
<elementConstructor field="c3" from="f15123" name="TOTAL_ORDERS">
<lelernentConstructor =
«elementonstructar =
<freturnz=
<far name="f15123"=>
=source kind="relational" name="cglataSource" ns="fn-bea" tip="cgDataSource" =
[#cdata-section: SELECT (t1."FIRST_MAME" || ' || t1."LAST_MAME") AS cl, t2."ORDER_ID" A5 c2,
£2 "TOTAL_ORDER_AMOUNT" AS c3
FROM "RTLCUSTOMER". "CUSTOMER" 1
JOIN "RTLELECOMS" "CIUSTOMER _ORDER" £2
Of (£1."CUSTOMER_ID" = £2,"CUSTOMER,_ID")
ORDER BY b2, "TOTAL_ORDER _AMOLINT" DESC]
<[sources
<fforz
<JFLWOR >
<rconstant>
[#cdata-section: [double 1,0]]
<fconstant =
<constant >
[#cdata-section: [double 10.0]]
<fconstant =
«Joperator =
</elementConstructor =

[Design Yiew | #Query Editor Yiew | Source Yiew | Test ¥iew | Query Plan Yiew |

Figure 26-3 Query Plan as a Text Document

Data Services Platform: Samples Tutorial

94

Lab 26.2 Locating the SQL Statement in a Query Plan

SQL statements are generated for functions that call relational databases.

Objectives

In this lab, you will:

Locate an SQL statement within the query.

Review the contents of the SQL statement.

Instructions
1. Open the Query Plan as an XML document.

2. Expand the FLWOR nodes until you see the #cdata-section. This is the SQL statement for the
query.

¥Queries ds - {DataServicesHMyQueries)

<Function:=

|getTanDCustnmers() ‘ - ‘

Shows Query Plan

Cuery Plan

[tree | e [Tem

- «elementCanstructar name="Resulks" tip="{ld:DataServices/MyQueriesf¥Queries FResults" =
- <operator name="subsequence" ns="fn" tip="{http: { usm.w3.orgf2004 07 fxpath-functionssubsequence” =
- <FLWOR =
- <return =
+ «elementConstruckor name="CUSTOMER"
<freturnz
- <for name="15123" >
- <source kind="relational" name="cgDataSource" ns="fn-bea" tip="cglataSource" =
[#cdata-section: SELECT (E1."FIRST_MAME" || ' || t1 "LAST_MAME") AS c1, t2,"ORDER_ID" AS 2, t2,"TOTAL_ORDER_AMOLNT'
<fsource =
<ffar=
<FLWOR >
+ <constant =
+ <constant =
<foperator =
<felementConstructor =

K1 | bJ

Diesign Yiew | RQuery Edibor View | Source Yiew | Test Wiew | Query Plan View |

Figure 26-4 Query Plan View of SQL Statements

3. Scroll through the SQL statement. As a demonstration of DSP’s push-down framework, notice
that the SQL statement contains the “order by” clause. This means that the database will do the
majority of work, since it is already optimized to do such sorting operations.

As a reminder, this function retrieves customer and order amount information. In addition, the result
set is ordered in descending order by order amount.

Data Services Platform: Samples Tutorial 95

Lab 26.3 Locating XML Elements
XML elements identify the data that will be returned by the query function. Each XML element is
identified with a QName.

Objectives

In this lab, you will:

Locate all XML elements within the query.

Review the contents of the XML element lines.

Instructions
1. In Query Plan View, expand the return node.

2. Notice all the XML elements that will be returned when the function is executed.

%Queries,ds - {DataservicesHMyQueries), S

<Function:

‘getToplDCustDmers() | - |

Show Query Plan

Cuery Plan

[tee | o || et

- <elementConstructor name="results" tip="{ld: Dataservices/MyQueries/xQueriesResuUlts” =
- <operator name="subsequence" ns="fn" tip="{http:/ v, w3, org/2004)07/xpath-functions}subsequence" >
- <FLWOR =
- <return =
- <elementConstructor name="CUSTOMER" >

<elementConstructor fisld="c1" from="f15123" name="CUSTOMER _MANME" > <felementConstructor =
<elementConstructor field="cz" from="F15123" name="0ORDER_ID" > <[elementConstructor =
<elementConstructor field="c3" from="f15123" name="TOTAL_ORDERS" = <felementConstructor =
</elementConstructor =
<frekurn>
+ «for name="f15123" »
2{FLWOR >

+ <ronstant =
+ <conskant =
<Joperator >
<jelementCanstructar=

Design Yiew | ¥Query Editor Wiew | Source Yiew | Test View | Query Plan View |

Figure 26-5 Query Plan View of XML Elements

Lesson Summary

In this lesson, you learned how to:

Examine a query plan as tree, XML, and text documents.

Locate the SQL statement that was created to retrieve data from the underlying database.

Locate XML elements.

Data Services Platform: Samples Tutorial

Lesson 27 Reusing XQuery Code through Vertical View Unfolding

DSP enables powerful data service code reusability.

Objectives

After completing this lesson, you will be able to:

Re-use code.

Unfold vertical file view.

Overview

DSP enables powerful data service code reusability. You can develop your logic once, and then re-use
it later when building other data services. This feature is called view unfolding.

In addition to code reuse, DSP is smart enough to optimize your output and only query sources and
elements that you request in your data service (vertical view unfolding).

Lab 27.1 Unfolding Vertical View

You will reuse the CustomerProfile data service previously built to retrieve Customer Order
information. The CustomerProfile data service is built from three different tables in the underlying
PointBase database: CUSTOMER, CUSTOMER_ORDER and CUSTOMER_ORDER_LINE ITEM.

Objectives

In this lab, you will:

Import the CustomerOrder data service into the CustomerManagement folder.

Import the CustomerOrder.xsd, and then associate the schema with the CustomerOrder data
service.

Implement a query function, and define its conditions.

Instructions

1. Import CustomerOrder.ds into the DataServices\CustomerManagement folder. (The file is located
in the <beahome>\weblogic81\samples\LiquidData\EvalGuide folder.)

2. Import CustomerOrder.xsd into the DataServices\CustomerManagement\schemas folder. (The file
is also located in the <beahome>\weblogic81\samples\LiquidData\EvalGuide folder.)

3. Implement the getCustomerOrder() function in the CustomerOrder data service, by completing the
following steps:

a. Open CustomerOrder.ds in XQuery Editor View.

b. In Data Services Palette, drag and drop getAllCustomers() into XQuery Editor View. (The
method call is located in the folder:

DataServices\CustomerManagement\CustomerProfile

4. Set the conditions for the function, by completing the following steps:

Data Services Platform: Samples Tutorial 97

a. Select the Customer* element. This will activate the Expression Editor and make visible the

ns2:getAllCustomers() expression. You will use the Expression Editor to scope the data

returned in the getAllCustomers() function.

CustomerOrder.ds* - {DataServices} CustomerManagement)

qetcustomerorder(ﬂ -

|f__:$Fnr: §CustomerProfile lv)

[CustometProfils * =
[=}-customer +
customer_id string
first_name string
last_name string
custamer_since 7 date
email_address ? string
telephane_number ? string
ssn 7 skring
birth_day ? date
default_ship_method 7 string
email_notification # short
news._letter 7 shart
online_statement ? shark E

KT 1 0]

@ Return

W B List

o = CUSTOMER _ORDER.
ORDER_ID string
CUSTOMER_ID string
ORDER_DATE date
SHIP_METHOD string
SUBTOTAL decimal
TOTAL_ORDER_AMOUNT
SALE_TA% decimal
BILL_TO string
STATUS string

B empty

=

o[|

Expression ns2:getAllCustomers()

Design View | XQuery Editor Yiew [Source View | Test iew | Query Flan View

Figure 27-1 Default Expression

b. Triple-click the Expression field.

¢. Modify the expression by adding the following code:

ns2:getAllCustomers()/customer/orders/order

d. Click the green checkmark icon to accept the changes. The CustomerProfile* element
changes to the order* element, and the For:$CustomerProfile schema now includes the

order elements.

CustomerOrder, ds* - {DataServicesHCustomerManagement!,

getCustUmerrdsr()l -

|T_°‘ For: §CustomerProfile

[=I-order *
order_id string

e

customer_id string
order_date 7 date
ship_method string
handling_charge decimal
subkotal decimal
tatal_order_amount decimal
sale_tax decimal

ship_to string
ship_to_name string

bill _to string
estimated_ship_date date
status skring

data_source string
= order_line *

(@ Return

0 = List

Q = CUSTOMER _ORDER.
CRDER_ID string
CUSTOMER_ID string
ORDER_DATE date
SHIP_METHOD string
SUBTOTAL decimal
TOTAL_ORDER_AMOUMT
SALE_TAY decimal
BILL_TO skring
STATUS string

2] empty

=

line_id string
0N |

Expression nsz:getallCustomers()/customerforders/arder

Design View | #GQuery Editor Yiew [Source View Query Plan Yiew

Figure 27-2 Modified Expression

5. Create a simple mapping: Drag and drop all order* elements (source node) to the corresponding

CUSTOMER_ORDER elements in the Return type.

Data Services Platform: Samples Tutorial

98

CuskomerCrder ds™* - {DataServices}\CustomeriManagement), b3

getCustomerOrder()l -

|T__—}Fnr: $CustomerProfile v} @Relum
[=lorder * - B CUSTOMER _ORDER
arder_id string] ORDER_ID string
customer _id string CUSTOMER_ID string
order_date 7 date QRDER_DATE date
ship_methad string SHIF_METHOD string
handling_rharge decimal SUBTOTAL decimal
subtotal decimal TOTAL_ORDER_AMOUNT dec
tokal_order_amount decimal SALE_TAX decimal
sale_tax decimal BILL_TO string
ship_to string £ STATUS string
ship_to_name string
bill_to string
estimated_ship_date date
skatus string .
data_source string
[l order_line *
line_id string El I | m
order_id string Iz‘
e[| v

Desian Wiew | ¥GQuery Editor Yiew [Source Yiew | Test Wiew | Quary Plan iew

Figure 27-3 XQuery Editor View—Mappings

6. Save the data service file.

7. Open CustomerOrders.ds in Source View and notice that the function is using the CustomerProfile

file as its data source.

CustomerOrder .ds* - {Dataservices}CustomeriManagementy,

s

(rrpragma xds <x:xds targetType="cus:CUSTOMER ORDER™ xmlns:cus="http://temp. openuri.org/DataServices s+ |

declare namespace nz3="http://tewp.openuri.org/Datafervices/schenas/CustonerProfile.xad”;

declare namespace ns2="ld:Datafervices/CustomerManagement/CustomerProfile™;
declare namespace nzl="ld:DataServices/CustonerManagement/Custonerirder™;
import schema namespace ns0="http:/ temp.openuri.org/Datalervices/schenas/Custonerlrder.xad” at "ld:Dat

declare function nsl:getCustomerOrder() as elementins0: CUSTOMEER_ORDER)* {

for §CustomerProfile in ns2:getallCustomers () /custoner/orders/order

return

<ns0: CUSTOMER. ORDER>-
<OEDER._ID>-{fn:data(slus tomerProfileforder_id) }<fORDER._ ID>
<CUSTOMER. TD-{fn:data(sCus tomerProfilefoustoner_id) }<fCUSTOMER._TD:-
<0BDER_DATE>{fn:data(sCustomerfrofileforder_date) }<f0RDER_DATE>
<SHIF_METHOD>{fn:data(sCustomerProrile/ship_method) }<fSHIP METHOD:-
<SUBTOTHL-{ fni:data(sCustoper Drofilessubtotal) =/ SUBTOTAL >
<TOTAL DRDER AMOUNT:-{fn:data(§CustomerProfile/total order_amount) }<fTOTAL ORDER AMOUHT:-
<SHLE_TRO-{fn:data(§CustorerProfile/sale_tax) }</SHLE TRC- - -
<BILL TO>{fn:data(sCustonerbrofile/bill_to) }<fBILL TO>
<STATUS>{fn:data | §Custoperlrofile/status) }</STATUS:

<fn=0: CUSTOMER ORDER:-

Kl | [

Design Yiew | #Query Editor Yiew | Source View |[Test View | Query Plan Yiew

Figure 27-4 Source View of Vertical File Unfolding Function

Data Services Platform: Samples Tutorial

99

Lab 27.2 Testing a Vertical File Unfolding

Testing a vertical file unfolding is similar to testing any other data service function.

Objectives

In this lab, you will:

Test the CustomerOrder data service.

Review the results.

Instructions

1. Open CustomerOrders.ds in Test View.

2. Select getCustomerOrder() from the function drop-down list.
3. Click Execute.

4. Confirm that you can retrieve customer order information.

CustomerOrder.ds - {DataServicesHCustamerManagement! b3
Select Function:
getCustomerOrder]) | - |
Parameters
Murnber Element (by path)
Limit elements in array results to:
E2E
[start Client Transaction
Result [Text | wa
- <aArrayOfCUSTOMER _ORDER xmins:a="http:/ftemp. openuri.org/DataServices/schemas) CustomerOrder, xsd” = E

- =ns0:CUSTOMER_ORDER xmins:ns0="http:/ftemp.openuri.org/DataServices/schemas/Custamer Order xsd” =
<ORDER_ID= DRDER_10_0 </ORDER_ID>
<CUSTOMER_ID> CUSTOMERD </CUSTOMER _ID>
<ORDER_DATE> 2001-10-01 </ORDER_DATE:=
<5HIP_METHOD = GROUND <{SHIF_METHOD =
<SUBTOTAL> 76.85 </SUBTOTAL=
<TOTAL_ORDER_AMOUNT > 83.65 </TOTAL_ORDER_AMOUNT =
<SALE_TAX= 0 </SALE_TAx:=
<BILL_To> CC_10_1 </BILL_TO=
<5TATUS> CLOSED <[STATUS:

<fns0:CUSTOMER _ORDER =
+ <ns0: CUSTOMER _ORDER xmins:ns0="http: }/temp.openuri,orgfDataServices/schemasCustomer Order, xsd" =

i

Design Yiew | ®Query Editor Yiew | Source View | Test View [Query Plan View

Figure 27-5 Vertical File Unfolding Test Results

Lesson Summary

In this lesson, you learned how to:

Build a data service based on another data service (view unfolding)

Re-use code (vertical file unfolding).

Data Services Platform: Samples Tutorial

100

Lesson 28 Configuring Alternatives for Unavailable Data Sources

Objectives

Overview

Sometimes a particular data source is either temporarily unavailable or very slow to send a response
back to a consuming application. In such cases, you need to be able to run an alternative data source.
DSP enables you create an alternative data source that will be called if the primary data source does

not respond within a specified timeframe.

After completing this lesson, you will be able to:

Invoke, configure, and test an alternative data source.
Use the fn-bea:timeout() function for configuring alternative sources.

Review WebLogic Server output.

Enabling an alternative data source is implemented by calling the fn-bea:timeout() function. The
syntax for the function is as follows:

fn-bea:timeout($seq as item()*, $millis as xs:int, $alt as item()*)
as itemQ*

where:

$seq is the primary expression.
$millis in the timeout in milliseconds.
$alt is the alternate expression.

To implement this functionality, the return types of both the primary and alternative expression should
be available when the project is compiled. This ensures that the function's return type is correctly
inferred. In other words, the source metadata must be available at compile time, since the alternative
source function provides only runtime failover capability.

Data Services Platform: Samples Tutorial 101

Lab 28.1 Setting the Demonstration Conditions

You will import a slow web service into your application, thereby enabling the demonstration of
configuring alternatives for unavailable data sources.

Objectives

In this lab, you will:

Import and test a "slow" web for demonstration purposes.

Create a physical data service that is based on an alternative data source.

Instructions

1. Right-click the Evaluation folder and then import the
<beahome>\weblogic81\samples\LiquidData\EvalGuide\CreditWS file as a Web Service Project.
This will import a simple web service that does nothing but sleep for 3 seconds. Click ‘Yes’ when
asked for “Files required for Web Services are not in the project. Do you wish to add them?”

2. Build the CreditWS project.

3. Test the slow web service by completing the following steps:
a. Open the NewCreditReport.jws, located in the CreditWS folder.
b. Click the Start icon (or press Ctrl + F5). The Workshop test browser opens.
c. Enter CUSTOMER3 in the cid field and click NewLookupCredit.

d. Confirm that you can get credit rating information.

Created by

NewCreditReport.jws Web Service

[Overview | [Console] [Test Form | [Test xhiL | hittp:/localhost: 7001 /Creditivis MNewCrediReport, jws

Test operations

Message Lo &l Refresh Service Request Newl ookupCredit

=+ NewLookupCredit Submitted at Monday, March 28, 2005 1:31:08 PM PST
R

Operation NewlLookupCredit
Submitted ak Monday, March 28, 2005 1:31:08 PM PST
Method: NewCreditReport, NewLookupCredit
Arguments:

cid : CISTOMERS
Callskack:

HewlLookupCredit()

Returned from Newl ookupCredit

Submitted at Monday, March 28, 2005 1:31:11 PM PST

Return value: demo.NewCreditReportData@bédeds

Service Response

Submitted ak Monday, March 28, 2005 1:31:11 PM PST

<nisiNewCreditReportData xmins:ns="http://www, apenuri.org)”
saming: xsd="hetp: | fumivy w3, 0r g 2001 XMLSchema” xmins:xsi="http: f i, w3,0rg/200 1 /XMLSchema-
instance">
<nsiCreditCode »9</ns CreditCode>

<fns:HewCreditReportData s

Figure 28-1 Test Browser View of the Slow Web Service

4. Create a physical data service for the slow web service, by completing the following steps:
a. Select the Overview tab in the Workshop Test Browser.
b. Click Complete WSDL.

c. Copy the WSDL URI, which you will use to import an alternative data service. The URI
typically is:
http://localhost:7001/CreditWS/NewCreditReport. jws?WSDL=

Data Services Platform: Samples Tutorial 102

d. In the Application pane of WebLogic Workshop, right-click the WebServices folder (located
in DataServices).

e. Choose Import Source Metadata.
f. Select Web Service from the Data Source Type drop-down list and click Next.
Paste the WSDL URI into the URI field, then click Next.

5w

Expand the folders and select the NewLookupCredit operation.
i. Click Add to populate the Selected Web Service Operations pane and click Next.
j- Review the Summary information and click Finish.

5. Check the Application pane. There should be a new physical data service called
NewLookupCreditResponse.ds.

6. Open NewLookupCreditResponse.ds in Design View. There should be a function called
NewLookupCredit.

NewlLookupCreditRespanse.ds - {DataServicesHWwebServices!

0 1

JE\ NewlLookupCreditResponse Data Service
= O MewLookupCreditResponse
= O MesLookupCreditResult ? opeNewCredibtReportats
@ credicode _p_r_e_sint

4————— MewlookupCredit

4 D]

| Design View [®Query Editar View | Source Yiew | Test View | Query Plan Yiew |

Figure 28-2 Design View of Web Service-Based Data Service

Data Services Platform: Samples Tutorial 103

Lab 28.2 Configuring Alternative Sources

Since the CreditWS web service is slow, you need to configure an alternative source to obtain the
credit rating information in a timely manner.

Objectives

In this lab, you will:

Configure an alternative data source.

Use the fn:bea:timeout() function.

Instructions

1. Open CustomerProfile.ds in Source View. (The file is located in the
DataServices\CustomerManagement folder.

2. Add the following code to the namespace declaration:

declare namespace
ws3=""ld:DataServices/WebServices/NewLookupCreditResponse™;

declare namespace ws4 = "http://www.openuri.org/";
3. Locate the getAllCustomers() function.

4. Locate the following entry:
{
for $rating in wsl:getCreditRating(
<ws2:getCreditRating>
<ws2:customer_id>{data($CUSTOMER/CUSTOMER_ID)}</ws2:customer_id>
</ws2:getCreditRating>)
return
<creditrating>
<rating>{data($rating/ws2:getCreditRatingResult/ws2:Rating)}</rating>

<customer_id>{data($rating/ws2:getCreditRatingResult/ws2:Customer_id)}</cu
stomer_id>
</creditrating>

Data Services Platform: Samples Tutorial 104

Lab 28.3

5. Replace that entry with the following code:
{
<creditrating>
<rating>
{
fn-bea:timeout(
data(
ws3:NewLookupCredit(
<ws4:NewLookupCredit>
<ws4:cid>{data($CUSTOMER/CUSTOMER_ID)}</ws4:cid>
</ws4:NewLookupCredit>
)/ws4:NewLookupCreditResult/ws4:CreditCode
)
, 2000,
data(
wsl:getCreditRating(
<ws2:getCreditRating>
<ws2:customer_id>{data($CUSTOMER/CUSTOMER_ID)}</ws2:customer_id>
</ws2:getCreditRating>
)/ws2:getCreditRatingResult/ws2:Rating)
)
3
</rating>
<customer_id>{data($CUSTOMER/CUSTOMER_1D)}</customer_id>
</creditrating>
¥
Note the use of the fn-bea:timeout() function.
CustomerPrafile, ds* - {DataServi L L X

<0rder_id-{fn:data(sCUSTOMER ORDER LINE ITEM/ORDER_ID))<forder id-

<quantity:-{fn:data(3CUSTOMER ORDER LINE ITEM/QUANTITY))<fquantity:

<pricex{fn:data(§CUSTOMER OEDER LINE ITEM/PRICE)}</pricer

<status:-({£n: data(FCUSTOMER ORDER LINE ITEM/STATUS))</status:-
<forder_line> - -7

}
<forder>
)
<forders>

{
<creditrating-
<rating-
{
fri-bea: timesut |
data
wa3:NewLaakupCredic|
<wsd :NeviookupCredit>
w54 cid>{datal SCUSTOMER/ CUSTOMER_ID))< fwrsd : cid-
<#wsd :HesLookupCredi t:
y fusd:NewLookupCredi tResult /wsd: CreditCade
1
. zooo,
data(
wsl:getCreditRating(
<wrs2: getCreditRating>
<ws2:customer_id>{data(§CUSTOMER/CUSTOMER_ID) j</ws2:customer_id>
<fws2:getCreditRating- | /ws2:getCreditRatingResult/vs2: Rating)
1
)
<frating>
<customer_id>-{data(§CUSTGMER/CUSTOMER_ID) }</fcustomer id>-
<fcreditrating> -
+

<valuation>
<valuation date:-<fvaluation date:-
<valuation tier><fvaluation tier:
<fvaluation> -
<fcustomer>

b
</ns0: CustomerProfilex

]

<product_id>{fn:data(§CUSTOMER_ORDER L INE_ITEM/ PRODUCT_ID) }<fproduct_id>
<product’{fn: datal sCUSTOMER OXDER LINE ITEM/PRODUCT_DESC) }</product:

RQUery Edtor Wiew | Source View Query Plan View

Figure 28-3 Source View of Configured Alternative

Testing an Alternative Source

Testing getAllCustomers function will let you confirm that the query is retrieving data from the

alternative source, rather than the CreditWS.

Data Services Platform: Samples Tutorial

105

Objectives

In this lab, you will:

Test the CustomerProfile data service, using the getAllCustomers function.

Review the results in the Output window.

Instructions

1. Build the DataServices project.
2. Open CustomerProfile.ds located in CustomerManagement folder in Test View.
3. Select getAllCustomers from the function drop-down list.

4. Click Execute.
5

Open the Output window, scroll to the bottom, and then confirm that the following is happening
for each customer profile:

WebLogic Server calls the CreditWS web service.

The server waits 155501 ms, and then calls the CreditRating web service.

Ll Output *
Datafource name: ld:EvaluationDatafiervices/Weblervices/NewlLookupCreditResponse Invocations: 0 Time: Ouns
Statemnent: NewlLookupCredit
DataSource name: ld:EvaluationDataServices/WebServices/getCreditRatingResponse Invocations: 10 Time: 2057ms
Sratement: getCreditRating %

Figure 28-4 Output Window

The invocation of the first Web service NewLookupCreditResponse fails due to the thread itself timing
out. Since this Web service has failed it will not be invoked again. Instead, the alternate web service is
invoked.

Lesson Summary

In this lesson, you learned how to:

Invoke, configure, and test an alternative data source.
Use the fn-bea:timeout() function for configuring alternative sources.

Review WebLogic Server output.

Data Services Platform: Samples Tutorial 106

Lesson 29 Enabling Fine-Grained Caching

Fine-grained caching lets you cache a data subset, such as information that does not frequently change.
Fine-grained caching is at the function level, since a function's role is to retrieve specific information.

Objectives

After completing this lesson, you will be able to:

Define a cache policy for the slow credit rating web service.

Testing caching performance.

Overview

DSP provides a flexible caching mechanism to manage caching of data service functions. In Part 1,
you learned how to cache a function in a logical data service. However, there are situations where you
may want to cache only a sub-set of information available in a particular logical data service. For
example, the CustomerProfile data service includes information about each customer's profile and
order information. The profile information does not change often, whereas order information
constantly changes. In this situation users would like to cache the profile information for a given
customer but retrieve the most recent order information from the operational system.

By defining different caching policies for the underlying customer and order physical data services,
you can cache only the CUSTOMER physical data service. As a result, any request made to the logical
CustomerProfile data service will be partly answered from the DSP Cache for customer information
and partly answered from the operational system for order information.

Lab 29.1 Enabling Function-Level Caching for a Physical Data Service

Caching of a function in an underlying data service provides you with the ability to cache a sub-set of
data within a data service function.

Objectives
In this lab, you will:
Enable application-level caching and function-level caching.

Instructions

1. Login to the DSP Console (http://localhost:7001/Idconsole/), using the following credentials:

0 User Name = weblogic
0 Password = weblogic

2. Using the + icon, expand the ldplatform directory. (Note: If you click the Idplatform name, the
Application List page opens. This is not the page you want for this lesson.)

Click Evaluation. The Administration Control’s General page opens.
In the Cache section, select Enable Cache.
Select cgDataSource from the Cache data source name drop-down list.

Enter WSCACHE in the Cache table name field.

A

Data Services Platform: Samples Tutorial 107

http://localhost:7001/ldconsole/

7. Click Apply.

[N b | Socurty dumy Foncions | A Erspri |

Thes e hon e 16 reanige Ly Dt anatied Apsbesten
Arewm Camesl

Enabls Aecons Control

Allre anvaymens axien

Satvet Resmimees

o mussbes of query plans cached 100
M himads by application]

[T p——

Lag Lowed

Aoy |

| O S Lo e
Figure 29-1 Enable Caching

8. Expand the Evaluation folder and navigate to the getCreditRatingResponse data service, located in
the DataServices\WebServices\ folder.

Data Services Platform: Samples Tutorial

108

9. For the getCreditRating() function, set a caching policy by completing the following steps:

a.

C.

Select Enable Cache.
b. Enter 300 in the TTL field.

Click Apply.

Figure 29-2

Enable Function-Level Caching

Lab 29.2 Testing the Caching Policy

You are now ready to test your new fine-grained caching policy.

Objectives

In this lab, you will:

Instructions

Test the function-level caching policy.

Determine whether the cache was populated.

1. In WebLogic Workshop, execute a test query by completing the following steps:

a.

Open CustomerProfile.ds in Test View. (The file is located in the CustomerManagement
folder.)

Select getCustomerProfile(CustomerID) from the function drop-down list.

Enter CUSTOMER3 in the Parameter field.

Click Execute.

In the Output window, note the number of invocations and the times for the
NewLookupCreditResponse and getCreditRatingResponse data sources.

2. In the PointBase Console, check whether the cache database table was populated by completing
the following steps:

a.

Start the PointBase Console, using the following command in a command prompt window:

<beahome>\weblogic8l1\common\bin\startPointBaseConsole.cmd

b. Use the following configuration to connect to your local PointBase database:

C.

0 Driver: com.pointbase.jdbc.jdbcUniversalDriver
0 URL: jdbc:pointbase:server://localhost:9093/workshop
0 User: weblogic
0 Password: weblogic
Click OK.

Data Services Platform: Samples Tutorial 109

d. Enter the SQL command: SELECT * FROM WSCACHE

e. Click Execute to check whether the cache was populated.

oF Palritlase) Comnale 4.4 [CF futhd 714 b pobntiass:sesver: lacalbwst: 307 1weris oy

e gm N (B4 Red e faie e
a (L] X o 0] ")] = a &]
pm. Tew. O oy P Dicds ocie il e Oups Ceet Rbed Dpnt mpot tepTos

e]
BALECT * PRom LI

Figure 29-3 PointBase Console Cache Information

Lab 29.3 Testing Performance Impact

The next step is to determine whether the caching policy improves query performance.

Objectives

In this lab, you will:

Execute a data service test.

Determine whether the caching policy improved query performance time.

Instructions
1. In WebLogic Workshop, execute a test query by completing the following steps:

a. Open CustomerProfile.ds in Test View. (The file is located in the CustomerManagement
folder.)

b. Select getCustomerProfile() from the function drop-down list.
c. Enter CUSTOMER3 in the Parameter field.
d. Click Execute.

2. Confirm the following performance results in the Output window:

a. Confirm that the slow web service (NewLookupCreditRatingResponse) was never invoked

due to alternate path execution.

b. Determine whether caching the Web service helped to reduce the query execution time.

Lesson Summary

In this lesson, you learned how to:

Data Services Platform: Samples Tutorial

110

Enable the cache for a physical data service function and define the cache's TTL.

Determine the performance impact of the physical data service cache on a function in a
logical data service by checking the query response time and whether the physical data
service (original data source) was invoked.

Data Services Platform: Samples Tutorial

111

Lesson 30 Creating XQuery Filters to Implement Conditional-Logic
Security

Data Services Platform can enable security based on the results of conditional logic.

Objectives

After completing this lesson, you will be able to:

Activate security XQuery functions.

Write security XQuery functions.

Overview

Conditional logic can be used to establish very specific security restrictions. For example, users in an
employee role can see only orders less than $1,000, while users in a manager role can see all orders,
regardless of total amount. This feature is implemented through the DSP Console.

Lab 30.2 Creating User Groups

The first step in setting conditional-logic security is establishing security groups.

Objectives

In this lab, you will:

Create new user groups.

Assign user accounts to user groups.

Instructions

1. Login to the WebLogic Server Console (http://localhost:7001/console/), using the following
credentials:

User Name = weblogic
Password = weblogic
2. Create two new user groups by completing the following steps:
a. Choose Security — Realms — myrealm — Groups.
b. Select Configure a New Group.
c. Enter LD _Emp in the Name field.
d. (Optional) Enter “Employee Group” in the Description field.
e. Click Apply.
f. Repeat steps 2b through 2e to create a new group for LD Mgr.

Data Services Platform: Samples Tutorial 112

http://localhost:7001/console/

myrealm> Create Group

001

| Youar

Logout

Details |

This page allows you ta define a group in this security realm

Name: LD_Ernp

The name for this group

Description: |Employse Groug|

A shart description of this group

Figure 30-1 Configuring a New User Group
3. Create a new user in the LD_Emp group, by completing the following steps:
a. Choose Security — Realms — myrealm — Users.

b. Click Bob in the User column. The User page for Bob opens.

e

L hon:
2 hea

myrealm> User p= |t BEA

Connected o - localhost 7001 | You are logged in a

| Logout

B/ Configure a new User

This page allows you to define a user in this security realm

Name: Eob

The login name for this uzer.

Description: [|

A short description of this user. Far example, the user's full name
Password: Change.

Apply

Figure 30-2 User Page for Bob
c. Click the Groups tab. The Groups page opens.
d. Select LD Emp from the Possible Groups pane.

e. Click the arrow (—) to add the group to the Current Groups pane.
f. Click Apply.

myreaim> User

B Caonfigure 3 new Lisar,,

General | m Ditails |

Thés page allows you ta select the groups 1o which this user belongs.

Possible Graups Cumrent Graups
Adiminshators a
Diaployers

i

Wtoration Doplaysre

Group Membership: Intagrationtanitors

EnlcgahenOporatons

Intagrationl lzars

L0 My

Moniors

Opesateon ~

[

Figure 30-3 Group Assignment Page for Bob

Data Services Platform: Samples Tutorial 113

4. Create a new user in the LD Mgr group, by completing the following steps:
a. Choose Security — Realms — myrealm — users.
b. Click Joe in the User column. The User page for Joe opens.
c. Click the Groups tab. The Groups page opens.
d. Select LD _Mgr from the Possible Groups pane.
e. Click the arrow (—) to add the group to the Current Groups pane.
f. Click Apply.

Lab 30.3 Writing the XQuery Security Function

You can specify a security function using XQuery syntax.

Objectives

In this lab, you will:

Set security access control.

Set a security XQuery function.

Instructions

1. Login to the DSP Console (http://localhost:7001/1dconsole/), using the following
credentials:

A. User Name = weblogic
B. Password = weblogic
2. Click the Security tab.

3. Using the plus (+) icon, expand the ldplatform directory. (Note: If you click the ldplatform name,
the Application List page opens. You do not want this page for this lesson.)

4. Click Evaluation. The Administration Control’s General page opens.
5. Select Check Access Control.

6. Select Allow Default Anonymous Access.

Data Services Platform: Samples Tutorial 114

http://localhost:7001/ldconsole/

Figure 30-4 Setting Access Control
7. Select Security Xquery Functions and enter the following function.
Note: Namespaces may be different for your application.

declare namespace demo=""lib:mydemo";

declare namespace

itemns="http://temp.openuri.org/DataServices/schemas/CustomerProfile.xsd"

declare function demo:secureCustomer($ssn as xs:string) as xs:boolean {

if (fn-bea:is-user-in-group(*'LD_Mgr')) then fn:true()

else fn:false()
}:
8. Click Apply. You should now have the following:

am.uli Mnnilnri_ X0uery Functions BRI =my.nl

This page allows admin to create securty ¥Duery fnttions

declare namespace dema="l
deel,

emp-cpenus i, oog/ Patalec v,
e[= wmimtring) am
-user-in-group ("LD_MgrTj| cthen fn:crue(]

Sacueny ¥usry
functions:

Compés || Agply |

omp1lacion

Cutpat

Figure 30-5 Specifying Security XQuery Function Code

Data Services Platform: Samples Tutorial

115

Lab 30.4 Activating the XQuery Security Function

The next step in setting an XQuery security function is to set security at the element level.

Objectives

In this lab, you will:

Secure data source elements.

Set a security policy.

Instructions

1. In the DSP Console expand the Evaluation folder and navigate to the CustomerProfile data
service, located in the DataServices\CustomerManagement folder.

2. Click Security Policy.

3. Click the icon in the Security XQuery function column for the CustomerProfile/customer/ssn
resource. The QName window opens.

< Dialog Buttons - Microsoft Internet ExplL... E|@|g|

Add the Gname of the security function

Click Add to add functions.
Provide namespace URl and local name.

Sample namespace:"lib:dataServices/myservice” and local
name: "ishyFunction”

Namespace URI Local Name

Add| Remove | Suhmit| Cluse|

Figure 30-6 QName Window
4. Set the Namespace URI and Local Name, by completing the following steps:
a. Click Add and enter the following values:
0 Namespace URI: lib:mydemo;
0 Local Name: secureCustomer
b. Click Submit.
c. Click Close.

‘A Dialog Buttons - Microsoft Internet Expl... E|@|E|

Add the Gname of the security function

Click Add to add functions.
Pravide namespace URI and local name.

Sample namespace:"lib:dataServices/mysemrice” and
local name:"isMyFunction”

Namespace URI Local Name
1 |DataServices/CustomerManagement| |secureCustome

M Rermove | Submit | Clnse|

Figure 30-7 QName Information

Data Services Platform: Samples Tutorial

116

Lab 30.5 Testing the XQuery Security Function

Using the security credentials for Bob and Joe, you can now test the XQuery security function.

Objectives

In this lab, you will:

Test access control, using two different user logins.

View the results.

Instructions
1. Set the login properties to Bob and run a test, by completing the following steps:

a. In the DSP-enabled Workshop application, choose Tools — Application Properties —
WebLogic Server.

b. Select Use Credentials Below.
c. Enter “Bob” and “password” in the Use Credentials Below fields.
d. Click OK.

e. Open CustomerProfile.ds in Test View. (The file is located in the CustomerManagement
folder.)

f. Select getAllCustomers from the function drop-down list.
g. Click Execute. All customer data, except SSNs, should be returned.

Note: In order to deploy from WorkShop User/Group you should have permission to deploy
applications.

2. Change the login properties to Joe and run a test. All customer data, including SSNs, should be
returned.

3. Inthe DSP Console expand the Evaluation folder and navigate to the CustomerProfile data
service, located in the DataServices\CustomerManagement folder.

4. Click Security Policy.

5. Click the icon in the Security XQuery function column for the CustomerProfile/customer/ssn
resource. The QName window opens.

6. Click Remove, click Submit, and then click Close to remove the following:
Namespace URI: lib:mydemo;
Local Name: secureCustomer

Important: You must remove the Namespace/Local Name information before you can proceed with the
following lessons.

Lesson Summary
In this lesson, you learned how to:

Establish security based on XQuery functions.

Write security XQuery functions.

Data Services Platform: Samples Tutorial 117

Lesson 31 Accessing Data in Stored Procedures

Enterprise databases utilize stored procedures to improve query performance, manage and schedule
data operations, enhance security, and so forth. Stored procedures are essentially database objects that
logically group a set of SQL and native database programming language statements together to
perform a specific task.

You can import stored procedure metadata from any relational data available to the BEA WebLogic
Server. DSP then uses that metadata to generate a physical data service that you can then use in logical
data services.

Objectives

After completing this lesson, you will be able to:

Import stored procedures as a Java project within an application.

Import stored procedure metadata into a data service.

Overview

Imported stored procedure metadata is quite similar to imported metadata for relational tables and
views. Stored procedure metadata generally contains:

A data service file with a pragma that describe the parameters of the stored procedure.
A schema file with the same primary name as the procedure name.

Note: If a stored procedure includes only one return value and the value is either simple type or a row
set that is mapping to an existing schema, no schema file is created.

Handling Stored Procedure Row Sets

A row set type is a complex type, whose name can include:

The parameter name, if there is an input/output or output only parameter.

An assigned name such as RETURN_VALUE, if there is a return value.

The referenced element name (result rowsets) in a user-specified schema.
The row set type contains a repeatable element sequence (for example, called CUSTOMER) with the
fields of the row set.

Notes:

All row set-type definitions must conform to the structure in the stored procedure itself. In some
cases the Metadata Import Wizard will be able to automatically detect the structure of a row set
and create an element structure. However, if the structure cannot be determined, you will need to
provide it through the wizard.

Each database vendor approaches stored procedures differently. Refer to your database
documentation for details on managing stored procedures.

XQuery support limitations are, in general, due to JDBC driver limitations.

Data Services Platform: Samples Tutorial 118

DSP does not support rowset as an input parameter.

Lab 31.1 Importing a Stored Procedure into the Application

The first step in demonstrating DSP's ability to access data through a stored procedure is to import the
procedure into the application.

Objectives

In this lab, you will:

Import stored procedures as a Java project.

Test the results.

Instructions

1.

o ® =N

Import storedprocs as a Java project, adding it to the Evaluation application. (The project is
located in the <beahome>\weblogic81\samples\LiquidData\EvalGuide folder.)

Build the storedprocs project. The storedprocs.jar file will be added to the Libraries folder.

Shutdown the PointBase database, by stopping WebLogic Server. (Stopping WebLogic Server
calls the PointBase shutdown script.)

Open the startPointBase.cmd in a text editor such as Notepad. The file is located in
<BEAHOME=>\weblogic81\common\bin.

Add the complete path of the storedprocs.jar file to the startPointBase.cmd script. For example,
add the line:

set CLASSPATH=<beahome>\user_porjects\applications\Evaluation\APP-
INF\lib\storedprocs. jar;%CLASSPATH%

Notes:

For reference, the modified startPointBase.cmd is included in the samples\liquiddata
folder.

The CLASSPATH depends on your WebLogic Server installation. User can copy correct path
from the Output window of Workshop.

Start WebLogic Server, which in turn starts the PointBase database.
Run CreditRatingStoredProcedure.java to define the stored procedures in PointBase.
Click OK at the pop-up message.

Confirm that the stored procedure executed, by reviewing the contents in the Output window. You
should see the credit rating for CUSTOMER3.

Note: Your credit rating may be different, based on the changes that you made in Lab 24.3.

Data Services Platform: Samples Tutorial 119

|| Cutput *
Trying to create process and attach to 2152...
Divbeayjdieldd 05%bhin' javaw. exe -kdebuyg -knoagent -Djava.compiler=NONE -
Process started
Attached successfully.

Credit Rating from 5P for COSTOMERZ : OO0
BEST Credit Bating from 3P : 850
Debugging Finished

[0 []

Figure 31-1 Output Window View of Stored Procedures Compilation

Lab 31.2 Importing Stored Procedure Metadata into a Data Service

Importing a stored procedure's source metadata enables the generation of a stored procedure data
service.

Objectives

In this lab, you will:

Import source metadata into a new data service.

Test the stored procedure data service.

Instructions
1. Create a new folder in the DataServices project and name it StoredProcedures.
2. Import stored procedures metadata, by completing the following steps:
a. Right-click the StoredProcedures folder.
b. Choose Import Source Metadata.
c. Select Relational from the Data Source Type drop-down list, then click Next.
d. Select cgDataSource from the Data Source drop-down list, then click Next.
e. Expand the WEBLOGIC\Procedures folders.
f. Select GETCREDITRATING _SP, click Add, and click Next.
g. Accept the default settings displayed in the Configure Procedure window, then click Next.
h. Accept the default settings displayed in the Summary window and click Finish.
3. Build the DataServices project.

4. In the Application pane, confirm that there is a new data service, GETCREDITRATING_SP.ds,
located in the StoredProcedures folder.

5. Test the data service, by completing the following steps:
a. Open GETCREDITRATING_SP.ds in Test View.
b. Select GETCREDITRATING_SP(x1) from the Function drop-down list.
c. Enter CUSTOMER3 in the Parameter field.
d. Click Execute. You should see the credit rating for Customer3

6. Review the results.

Data Services Platform: Samples Tutorial 120

Lesson Summary

In this lesson, you learned how to:

Import stored procedures into an application.

Import stored procedure source metadata into a data service.

Data Services Platform: Samples Tutorial 121

Lesson 32 Accessing Data with Java Functions

Objectives

Overview

A Java function is another form of metadata that DSP can use as a data source. This is perhaps the
most powerful one, since this allows DSP to basically utilize any data source that can be accessed from
Java, such as Enterprise Java Beans, JIMS/messaging applications, LDAP and other directory services,
text/binary files that can be read through Java I/O, and even DCOM-based applications like Microsoft
Excel.

In this lesson, you will access three data sources through Java functions:

WebLogic’s embedded LDAP, by importing a Directory Service Markup Language (DSML)-
based Java application as a Java function.

Data in a Microsoft Excel spreadsheet, by importing a Java application that uses JCOM to
access the MS Excel spreadsheet.

An Enterprise Java Bean, that returns customer credit card information using a Java function.

After completing this lesson, you will be able to:

Write Java functions and access them from data services.

When you use DSP's Import Source Metadata feature to import user-defined Java functions, the
functions are introspected to create the necessary method signatures and parameter metadata. At the
same time, a prologue is created that defines the function's signatures and relevant schema type for
complex elements such as Java classes and arrays.

In DSP, user-defined functions are treated as Java classes. The following are supported:

Java primitive types and single-dimension arrays, such as Boolean, byte, and char.

XMLBean classes corresponding to global elements, complex types, and arrays. The classes
generated by XMLBeans can be used as parameters or Return types. The advantage of using
XMLBean-generated classes is that you do not need to define a schema for the references
complex type or element.

The Metadata Import Wizard supports marshalling and unmarshalling that converts Java token
iterators into XML, and vice versa. For example, you start with a Java function,
getListGivenMixed, defined as follows:

public static float[] getListGivenMixed(float[] fpList, int size) {
int listLen = ((fpList.length > size) ? size : fpList.length);
float fpListop = new float[listLen];

for (int i =0; i < listLen; i++)

fpListop[i]=fpList[i];

return fpListop;

}

After the function is processed through the Metadata Import Wizard, the following XML-based
metadata is generated:

Data Services Platform: Samples Tutorial 122

(::pragma xds <x:xds xmlns:x="urn:annotations.ld.bea.com"
targetType=""t:float" xmlns:t="http://www.w3.0rg/2001/XMLSchema"">
<javaFunction

classpath=""D:\jf\build\jar\jfTest. jar;D:\jF\xbeanTests\xbeangen\
Customer . jar;D:\wls82\weblogic81\server\lib\xbean.jar"
class=""jfTest.Customer'/>

</x:Ixds>::)

declare namespace fl1 = "ld:javaFunc/float";

(::pragma function <f:function xmIns:f="urn:annotations.ld_bea.com"
kind="datasource'" access="public">

<params>

<param nativeType="[F"/>

<param nativeType="int"/>

</params>

</f:function>::)

declare function fl:getListGivenMixed($x1l as xsd:float*, $x2 as
xsd:int)

as xsd:float* external;
The corresponding XQuery for the imported Java function would be as follows:
declare namespace fl1 = "ld:javaFunc/float";

let $y := (2.0, 4.0, 6.0, 8.0, 10.0)
let $x := fl:getListGivenMixed($y, 2)

return $x

Note: To ensure successful importation and usage within DSP, the Java function should be static
functions and its package and class names should be defined in its namespace. DSP recognizes the
Java method name as the XQuery function name qualified with the Java function namespace.

For detailed information about using Java functions within DSP see the Data Services Developer’s
Guide.

Data Services Platform: Samples Tutorial 123

Lab 32.1 Accessing Data Using WebLogic’'s Embedded LDAP Function

DSP enables access to data services, using WebLogic's embedded LDAP function. You will learn how
to use this functionality by importing a Directory Service Markup Language (DSML)-based Java
application as a Java function.

Objectives

In this lab, you will:

Set the LDAP security credential for WebLogic’s Embedded LDAP.
Create a new user account.
Import JAR files and Java applications that will be used to generate a data service.

Test the data service.

Instructions

1. In the DataServices project, create a folder and name it Functions. This is where you will place the
Java functions that you want to import.

2. Set the LDAP security credential for WebLogic’s Embedded LDAP, by completing the following
steps:

a. Open the WebLogic Server Console from your browser:

http://localhost:7001/console.

b. Login using the following credentials:
User Name = weblogic
Password = weblogic
c. Select the Security folder, located under the ldplatform domain.
d. Select Embedded LDAP.
e. Enter security in the Credential and Confirm Credential fields.

f. Click Apply. This allows access to the WebLogic Server LDAP.

i ———

Data Services Platform: Samples Tutorial 124

http://localhost:7001/console

Figure 32-1 Setting LDAP Access Credentials

3.

9.

You will need to restart the WebLogic Server now as change to this property does not take effect
until the Server is restarted.

Create a new user, by completing the following steps:
a. Expand the Security — Realms — myrealm — Users folders.
b. Click Configure a New User, using your name and a password of your choice.
c. Click Apply.

In WebLogic Workshop right-click the Libraries folder and import all the JAR files located in the
samples\ligiddata\EvalGuide\ldap\lib folder into the Libraries folder in Workshop.

Right-click the Functions folder and import DSML.java from the samples\liquiddata folder.
Build the DataServices project.

Import the Java function metadata for the DSML Java application into the Functions folder by
completing the following steps:

a. Right click the functions project and choose Import Source Metadata.
b. Select Java Function for the Data Source Type and click Next.

c. Enter Functions. DSML in the Class Name field and click Next.

d. Select the calIDSML function, click Add, and then click Next.

e. Accept the default settings in the Summary window and click Finish.

The dsml.ds file and schemas folder are added to the Functions folder.

Build the DataServices project.

10. Test the DSML data service by completing the following steps:

a. Open dsml.ds in Test View.
b. Select calDSML() from the Function drop-down list.

c. Enter the following arguments (for more information on LDAP arguments and access,
see http://dev2dev.bea.com/codelibrary/code/ld _Idap.jsp):

Description Argument

LDAP URL Idap://l1ocalhost:7001
Principal (Directory Manager) cn=Admin

Credentials (Password) security

INDI (true: use JNDI to access Jndi

LDAP; false: use native LDAP

connection

Base domain name to search dc=ldplatform

Filter used to search cn=<your user name>

d. Click Execute.

e. View the results.

Data Services Platform: Samples Tutorial 125

http://dev2dev.bea.com/codelibrary/code/ld_ldap.jsp

Lab 32.2 Accessing Excel Spreadsheet Data Using JCOM

Data in a Microsoft Excel spreadsheet can be accessed through JCOM.

Objectives

In this lab, you will:

Import JAR and Java files appropriate that will be used to generate a data service for using
JCOM.

Test the results.

Instructions

1. Right-click the Libraries folder and import all the JAR files located in the
samples\ligiddata\EvalGuide\excel\lib folder.

2. Right-click the Functions folder and import excel jcom.java from the
<beahome>\weblogic8 1\samples\LiquidData\EvalGuide folder.

3. Build the DataServices project.

4. TImport the Java function metadata for the Excel JCOM Java application into the Functions folder,
by completing the following steps:

a.
b.
c.
d.

C.

Right click the Functions project and choose Import Source Metadata.
Select Java Function for the Data Source Type and click Next.

Enter Functions.excel jcom in the Class Name field and click Next.
Select the getExcel function, click Add, and then click Next.

Accept the default settings in the Summary window and click Finish. The excel.ds and
associated schema files are added to the Functions folder.

5. Build the DataServices project.

6. Test the Excel data service, by completing the following steps:

a.

b.

Open excel.ds in Test View.

Enter the following arguments:

Description Argument
XLS File <beahome>\weblogic81\samples\LiquidData\EvalGuide\excel\
N test.xls

ame
Worksheet Customers
Name

Review the results.

For more information on Excel access:
http://dev2dev.bea.com/codelibrary/code/liquiddata Excel.jsp

Lab 32.3 (Optional) Accessing Data Using an Enterprise Java Bean

Create an Enterprise Java Bean that returns customer credit card information using a Java function.

Data Services Platform: Samples Tutorial 126

http://dev2dev.bea.com/codelibrary/code/liquiddata_Excel.jsp

Objectives

In this lab, you will:

Import the schemas needed to define an EJB-based data service.
Generate an EJB-based data service.

Test the results.

Instructions
1. Create a Schemas Project, by completing the following steps:

a. Right-click the Evaluation application folder and import the Schemas folder as a
Schema Project. (The folder is located in the
<beahome>\weblogic81\samples\LiquidData\EvalGuide\ejb folder.)

This schema will be used for the EJB results, which returns an XML document
containing credit card information for a customer.

b. Build the Schemas project.
2. Create an EJB Project, by completing the following steps:

a. Right-click the Evaluation application folder and import the EJB folder as an EJB
Project. (The folder is located in the
<beahome>\weblogic81\samples\LiquidData\EvalGuide\ejb folder.) This contains:

a container-managed entity bean that maps to the credit card database table and

a stateless session bean that invokes the entity bean finder method returning a
list of credit cards for a given customer in the shape of the CREDIT CARDS
XML schema.

b. Build the EJB project.
3. Create a Java project, by completing the following steps:

a. Right-click the Evaluation application folder and import the EJBClient folder as a Java
Project. (The folder is located in
<beahome>\weblogic81\samples\LiquidData\EvalGuide\ejb folder. This project
contains the Java client that connects remotely to the stateless session bean. This will
be used as the custom function.

b. Build the EJBClient project.
4. Run CreditCardClient.java, which is located in the EJBClient project folder. (Note: Click OK for
the pop-up message.)
A list of credit cards for CUSTOMER3 should display in the Output window.
5. Drag and drop the CreditCardClient.java into the Functions folder.
6. Build the DataServices project.

7. Import the Java function metadata for the EJB Client into the DataServices project by completing
the following steps.

a. Right-click the Functions folder and select Import Source Metadata.
b. Select Java Function as the Data Source Type and click Next.

c. Enter Functions.CreditCardClient as the Class Name and click Next.

Data Services Platform: Samples Tutorial 127

d. Select getCreditCards, click Add, and then click Next.

e. Accept the default settings in the Summary window and click Finish. The
CREDIT _CARDS.ds file is added to the Functions folder.

(Note: Do not confuse this data service with the CREDIT _CARD.ds created from the
relationship database.)

f. Build the DataServices project.

8. Test the getcreditCard() function within the CREDIT CARDS data service. Use CUSTOMER3 as
the argument. Confirm that you can retrieve credit card information for Britt Pierce.

Lesson Summary
In this lesson, you learned how to import the following sources as Java functions:
WebLogic’s embedded LDAP through a Directory Service Markup Language (DSML)-based Java
application

Data in a Microsoft Excel spreadsheet through a Java application that uses JCOM to access the
MS Excel spreadsheet.

An Enterprise Java Bean that returns customer credit card information.

Data Services Platform: Samples Tutorial 128

Lesson 33 Accessing Data in XML Files

XML documents are a convenient means for handling hierarchical data. DSP enables the creation of
data services that read data stored in XML files.

Objectives

After completing this lesson, you will be able to:

Import XML metadata and query XML files.

Confirm that the results conform to the XML file specifications.

Overview

Contents of an XML file can be turned into a data service and used as a data source.

In this lab you will create a data service that queries data stored in an XML file. The XML file contains
UNSPSC product category received from third-party vendor.

Lab 33.1 Importing XML Metadata and XML Schema Definition

Importing XML metadata ad schema definitions is similar to importing relational and web service
metadata, with some differences.

Objectives

In this lab, you will:

Import XML metadata.
Associate a schema and XML source file with the data service.

Generate a data service that reads XML data for the UNSPSC product category.

Instructions

1. Import the XMLFiles folder into the DataServices project. (The folder is located in the
<beahome>\weblogic8 1\samples\LiquidData\EvalGuide folder.)

2. Right click the XMLFiles folder and select Import Source Metadata.
3. Select XML Data from the Data Source Type drop-down list, then click Next.

¥ Select data source type @

Data Source Type: | #ML Data | - |

| ek || || Cancel |

Figure 33-1 Import XML Data

The Select XML Source window opens.

Data Services Platform: Samples Tutorial 129

4 Select XML Source E]

~Specify a schema file and {optional) =ML document name

Schema File

Browse. ..

¥ML Docurment {optional)

Browse. ..

| Previous | I Mext I |

|| Cancel |

Figure 33-2 Select XML Source Window

4. Associate a schema file with the data service, by completing the following steps:

a. Click Browse, next to the Schema File field. The XMLFiles directory opens in the Select

Schema Files window.

b. Expand the Schemas folder.

c. Select ProductUNSPSC.xsd and click Select.

-]

Laok In: ||:| schemas

<7 ProductUMSPSC, xsd

Mame: | ProductUNSPSC, xsd |

-]

Type: |Schema Files

Figure 33-3 Select Schema File

5. Associate the XML Document with the data service, by completing the following steps:

a. Click Browse, next to the XML Document field. The XMLFiles directory opens in the Select

XML Source File window.

b. Select unspsc.xml and click Select.

[C1 schemas
|<—j unspsc,xml

Tame: | unspse, sl |

-]

Type: |><ML Source Files

Figure 33-4 Select XML Source File

The Select XML Source window is now populated with file information.

Data Services Platform: Samples Tutorial

130

¥ Select XML Source @

~Specify a schema file and {optional) XML document nam
Schema File D:ibeatuser_projectsiapplicationsidanube)\Evaluation|DataServicesi¥MLFilesischemas\Product UNSPSC. xsd Browse. ..
¥ML Document {optional) | Di\bealuser_projects\applications|danube! Evaluation|DataServicesiXMLFilesiunspse. xml Browse. ..
| Previous | ‘ Nest | ‘ | ‘ Cancel |

Figure 33-5 Populated Select XML Source Window

6. Click Next. The Summary window opens.

Following Data Service will be created. Edit name if needed.

AML Type Marne:
ProductUNSPSC | ProductUMSPSC

[] Generate Model Diagram &utomatically

Model Diagram Name

Location | D:ibealuser_projectsiapplications\danubeEvaluation\DataservicesisMLFiles | | Browse... |

| Previous | | | | Finish | | Cancel |

Figure 33-6 Summary Window

The Summary information includes the following details:

XML Type, for XML objects whose source metadata will be imported.

Name, for each data service that will be generated from the source metadata. (Any name
conflicts appear in red; you can modify any data service name to correct an error condition or
to change to a different project-unique name.)

Location, where the generated data service(s) will reside.

7. Click Finish. A new data service, called ProductUNSPSC.ds, is created in the
DataServices\XMLFiles folder.

Data Services Platform: Samples Tutorial 131

Lab 33.2 Testing the XML Data Service

After creating an XML data service, you need to confirm that the service is able to return data, based

on the associated XML source file.

Objectives

In this lab, you will:

Build the DataService project.
Execute the productUNSPSC() function.

Compare the test results with the unspsc.xml file.

Instructions
1. Open ProductUNSPSC.ds in Test View.

2. Test the data service by completing the following steps:
a. Select productUNSPSC() from the Function drop-down list.

b. Click Execute.

c. Confirm that you can retrieve data, as displayed in Figure 33-7.

ProductUNSPSC. ds - {DataServicesH sMLFiles) X
Select Function:
ProductUNSPSC() [+ |
Parameters
Number Element (by path)
Limit elements in array results to:
E
[start Client Transaction
Result | Text |
- «ns:ProductUNSPSC xmins:ns0="ld:DataServicesxMLFiles/ProductUNSPSC" = =]
- «rcakegories >
<rateqary_id> CAT_2 <[category_id:>
<cateqory_class» CLASS_1 </cateqory_class>
<cateqory_family> FAMILY_1 <jcategory_Family =
<categary_segment = SEGMENT_2 <[category_segment >
<lcategories >
+ «cakegories > LI
+ <rakegories > E
| Design View [#%Query Editor Yiew | Source Wiew | Test View [Query Plan Yiew |

Figure 33-7 XML Data Service Test Results

3. Inthe Application pane expand the XMLFiles folder and open the unspsc.xml file.

4. Confirm that the test results conform to the specifications in the XML file.

Data Services Platform: Samples Tutorial

132

unspsc.xml - {DataServices HEXMLFles)

; |=CnsD: ProductUN3P3C xmlns:ns0="1ld:Datalfervices/XMLFiles/ProductUN3P3C">
<categoriess
<category 1id=CAT Z< /cateqory ide
<category classxCLATY_l<//category_classs
<category family>FAMILY l</category family>
<oategory sequentx>JEGMENT Z</catedory_Segments
< /categories>
<categoriess
<category id=CAT 3</category ids
<category classxCLATS_E</category_classs
<category familyr>FAMILY 2</category familyx
<oategory sequentx>JEGMENT 3</catedory_sSegment>
</categoriess
<categoriess
<category_id=CAT 4</category_ids
<category classxCLATI _3</category_classsx
<category_familyrFAMILY 5</category_familwyx
<category sequent>IEGMENT 4</category_segment>
</categoriess
</msl: ProductUNSPSCE

IO

Figure 33-8 XML Elements

Lesson Summary

In this lesson, you learned how to:

Access data in an XML file.

Confirm that the results conform with the contents of the XML file.

Data Services Platform: Samples Tutorial

133

Lesson 34 Accessing Data in Flat Files

Flat files, such as spreadsheets, offer a highly adaptable means of storing and manipulating data,
especially data that needs to be quickly changed. Flat files are simply treated as another data source
that DSP can use to generate metadata and create a data service.

Objectives

After completing this lesson, you will be able to:

Create a data service that can access data stored in a flat file.

Associate the flat file data service with a logical data service.

Overview

Flat files, such as spreadsheets, often support a text format called CSV or Comma Separated Values.
Such file formats typically have a .csv extension.

Lab 34.1 Importing Flat File Metadata

The flat file must be in a DSP project, before a data service can be generated. As part of the import
process, you must provide a schema name, a file name, or both.

Objectives

In this lab, you will:

Create a data service that queries data stored in a flat file. The flat file contains customer
valuation data received from an internal department that deals with customer scoring and
valuation models. The file contains the following fields:

Customer_id

Valuation_date

Valuation_score

Instructions

1. Right-click the DataServices folder and import the FlatFiles folder, which is located in the
<beahome>\weblogic8 1\samples\LiquidData\EvalGuide folder.

2. Import source metadata by completing the following steps:

a.

b.

Right-click the FlatFiles folder and select Import Source Metadata.

Select Delimited Data from the Data Source Type drop-down list, then click Next.
Ignore the Schema field.

Click Browse, next to the Delimited Source field.

Select Valuation.csv and click Select.

Confirm that the Has Header checkbox is enabled.

Data Services Platform: Samples Tutorial

134

By selecting this option, you specify that the header data, which is usually located in the
first row of the spreadsheet, will not be treated as data within the generated data service.

g. Confirm that the Delimited radio button is enabled. By enabling this option, you specify
that the data is separated by a specific character, rather than a fixed width such as 10
spaces.

h. Confirm that a comma (,) is in the Delimiter field. If data is delimited, then you must
specify what character is used to delimit the data. Although the default is a comma, any
ASCII character is supported.

i. Click Next. A summary window opens.

j. Click Finish. A new data service called Valuation.ds is created in the
DataServices\FlatFiles folder.

3. Open the Valuation.ds file in Design View.

4. Open Valuation.ds in Design View and confirm that there is a Valuation function. This function
will retrieve all data from the flat file.

Yaluation.ds - {DataServicesHFlatFilesy x
=]
| ls . ¥aluation Data Service W
=@ row
Yaluation @ CUSTOMER_ID xs:string

C) WALUATION_DATE xs:string

(:J YALUATION_TIER. xs:string
4

|| Design View [XGuery Editar View | Source View | Test View | Query Plan View

Figure 34-1 Design View of the Data Service Based on a Flat File

Data Services Platform: Samples Tutorial 135

Lab 34.2 Testing Your Flat File Data Service

After creating the data service, you need to confirm that the service is able to return data, based on the
associated delimited source file.

Objectives

In this lab, you will:

Build the DataService project.

Execute the Valuation function.

Instructions

1. Right-click the DataServices folder.

Choose Build DataServices.

2
3. Open Valuation.ds in Test View.
4

Test the data service by completing the following steps:

a. Select Valuation() from the Function drop-down list.

b. Click Execute.

Yaluation.ds - {DataServicesH\FlatFiles)

kS

Select Function:

aluationd) | -

Parametears

Number Elernent (by path)

Limit elerments in array results to: | p— | |

[start Client Transaction

Result | Text

|| e

- <aifrrayOfrow xmins:a="ld:Data3ervices|FlatFiles/Yaluation” =
- <nsDirow xmins:ns0="ld:DataServices|FlatFiles/aluation” =
<CUSTOMER_ID> CUSTOMER1 </CUSTOMER_ID=
<VALUATION_DATE> 12/25/2004 </VALUATION_DATE>
<VALUATION_TIER> SILWER <[VALUATION_TIER >
<fns0iroms
- =nsDirow xmins:nsi="ld:DataServices/FlatFilesfyaluation” =
<CUSTOMER_ID> CUSTOMERZ </CUSTOMER_ID >
<VALUATION_DATE> 12/25/2004 <[VALUATION_DATE=
<VALUATION_TIER> GOLD <MALUATION_TIER >
= [ns0iroms
- «nsirow xminsins0="Id:Data3ervices/FlatFiles/Yaluation” =
<CUSTOMER_ID> CUSTOMER3 </CUSTOMER _ID >
<VALUATION_DATE> 12/25/2004 </VALUATION_DATE>
<VALUATION_TIER> BRONZE <[vALUATION_TIER>
= fnsOirow>
+ <ns:row xmins:ns0="ld:DataServices|FlatFiles/valuation”

+ «nsDirow xminsinsO="Id:DataservicesFlatFilesfvaluation”

+ <ns:row xmins:ns0="ld:DataServices|FlatFiles/valuation”
+ <nsirow xmins:nsi DataServices|FlatFiles/valuation”
+ <nsDirow xmins:ns! DataServices|FlatFiles/valuation”

+ =nsirow xmins:nsi="ld:DataServices/FlatFilesfyaluation”

VoWV W W W W

+ <nsirow xminsins0="Id:Data3ervices|FlatFiles/Yaluation”
<lathrrayOfrows

| Design Wiew | XQuery Editor View |Source View | Test view [Query Plan View

Figure 34-2

Test Results—Flat File Data Service

Confirm that you can retrieve data, as displayed in Figure 34-2. Notice that the return element is
introspected. That is based on the header information in the Valuation.csv file.

Data Services Platform: Samples Tutorial

136

Lab 34.3

Integrating Flat File Valuation with a Logical Data Service

At this point, you are able to pull data from the flat file. However, integrating the flat file data service
into a logical data service lets you retrieve multiple sources of information.

Objectives

In this lab, you will:

Modify a function to retrieve data from a flat file physical data service.

View the results in both XQuery Editor View and Source View.

Instructions

1. Open CustomerProfile.ds under DataServices/CustomerManagement/CustomerProfile in XQuery

Editor View.

wok v

type.

6. Create a join. Drag and drop the CUSTOMER _ID element (Customer node) onto the

Drag and drop Valuation() into XQuery Editor View.

Select getAllCustomers() from the Function drop-down list.

In the Data Services Palette, expand the FlatFiles and Valuation.ds folders.

Create a simple mapping by dragging and dropping the VALUATION DATE and
VALUATION_TIER elements (valuation node) onto the corresponding elements in the Return

corresponding element in the Valuation node. The final layout should be similar to that shown in

Figure 34-3:

CustomerProfile ds* - {DataservicesH\CustomerManagement}

getAllCustomers) |~

< “F‘ For: §CUSTOMER o

=} CUSTOMER *
CUSTOMER_ID string
FIRST_NAME string
LAST_NAME string
CUSTOMER_SINCE date
EMAIL_ADDRESS string
TELEPHONE_NUMBER string
SSN 7 string
EIRTH_DAY 7 date
DEFAULT_SHIP_METHOD * string
EMAIL_NOTIFICATION ? short
NEWS_LETTTER 7 short
ONLINE_STATEMENT ? short

@Relurn

IT_“ For: §CUSTOMER_ORDER_L .U

E} CUSTOMER_ORDER_LINE_ITEM *
LINE_ID string
ORDER_ID string
FRODUCT_ID string
PRODUCT_DESC string
QUANTITY integer
PRICE decimal
STATUS string

= CUSTOMER_ORDER *
ORDER_ID string
CUSTOMER_ID string
ORDER_DATE date
SHIP_METHOD string
HANDLING_CHARGE decimal
SUBTOTAL decimal
TOTAL_ORDER_AMOUNT decimal
SALE_TAx dedimal
SHIP_TO string
SHIP_TO_MAME string
BILL_TC string
ESTIMATED_SHIP_DATE date
STATUS string E

[—]

> [@ For: $CUSTOMER_ORDER U

Bl row*
CUSTOMER_ID string
YALUATION_DATE string
YALUATION_TIER. string

f_" For: $row U=

TOSLOMEr _Since 7 oate
email_address ? string
telephone_number 7 string
ssn 7 string
birth_day 7 date
default_ship_method ? string
email_notification ? shart
news_letker ¥ short
online_statement ? short,

[orders
[=-order *

order_id string
custamer_id string
order_date 7 date
ship_method string
handling_charge decimal
subkotal decimal
total_order_amount decimal
sale_tax decimal
ship_ta string
ship_to_name string
bill_to string
estimated_ship_date date
status string
data_source string
= order_ling *
line_id string
order_id string
product_id string
product string
quantity decimal
price decimal
status string
[creditrating 7
rating string
customer_id string

[valuation ?

valuation_date string
valuation_tier string

Kl

[l

[lem[.]~3l

Design Wiew | 2Query Editor View [Source View | Test Yiew | Query Plan ¥iew |

Data Services Platform: Samples Tutorial

137

Figure 34-3 XQuery Editor View of Flat File Data Service Integrated with Logical Data Service

7. Open CustomerProfile.ds in Source View and confirm that the following mapping have been

created:

o h (D ST Mo g

leclars Emmctism rondiprrdliTustes=rnii am =lewsntinel:fustoasgFeafliej® |
¥ O Eowwn Fawlil=
[

i TIATE e e CETONERG
FEEETR
=
imzimmer ol | Encdafai T EACESTRALE_ QDY v emer jadl
Flis? e - [Cf1i falai SO EST_MARES | < SRl
Jaat moww | P daTa) s I FLATE HalE | o flasi mame
imafser miE® o | En: dacad SEEACUTTONER SOHCE) o dvma b e o L
svmil L celeliens ® | B darkai TP IVERALE ADDFESSH] femwiil _swillr=
Pl wplame waneny 10| Bk L TEFTELE T EPSER | e leplene mmdern
gt P | Iy | T i TR
Srix B dlay [Em: daig SIAT LR IFETH DT oot days
fafanld ship ssElesds|En: dakai PETIATTSTEFANLT SHEF FETHEN |« fee LamlE akigs sedbesi
eogi] | B Clesd bon P | IndaTai TP PR I E T FECATIGH [fmed]l meljiicsd ion
e W LA T e (TR LT 1 ¥ IR _LETTTERI i+ fee o1 D
ealins shalsswni o |Endaral =1 MIML T STATENENT) |« foid s plill el
Jewpin_dall v Emc dlafa d FOTTUAT RALOGE LN _ LD - Lepiim_dal
sl ¥
|
L[] Tl B D0 um gesd: CDSTOREER CROER i
e T = T EfCITSTORLE_ED = TEET SIDENMC_ID
relmw
[)
aifsbed Beks | EXLi fRaEAT sinld Ly OFRER TR) ragses i

D Ve[Edics e | S vare Tk Vit T i

Figure 34-4 Source View of Flat File Data Service Integrated with Logical Data Service

Lab 34.4 Testing an Integrated Flat File Data Service

Testing the function lets you confirm that the data is correctly retrieved.

Objectives

In this lab, you will:

Test the getAllCustomers function.

View the results.

Instructions

1. Open CustomerProfile.ds in Test View.

2. Select getAllCustomers() from the Function drop-down list.
3. Click Execute.
4

Confirm that you can retrieve valuation information.

Data Services Platform: Samples Tutorial

138

il -

CustomerProfile.ds - {DataservicestH CustomerManagement], >

Select Function:

getallCustomers() ‘ - |

Parameters

Mumber Element (by path)

Limit elements in array results to:
[son]

[start Client Transaction

Resul [Tet |

- <arArrayOFCustomerProfile xmins:a="http: j/temp . openuri. orgfDataServices/schemas/CustomerProfile xsd" =
- =ns0:CustomerProfile xmins:ns0="http:j/temp openuri.orgiDataServices/schemas/CustomerProfile xsd" =

- <customer >
<ustomer_id> CUSTOMER3 <jcustomer_id>
<first_name> Joe <ffirst_name>
<last_name> Smith <flast_name >
<customer_since> 2001-10-01 =fcustomer_since:>
<email_address> JOHN_3@att.com <femail_address=
<telephone_number> 9287731259 <jtelephane_number >
<ssnz 647-73-1259 <fssnx
<hirth_day> 1952-05-09 =/birth_day>
<default_ship_method> PRIDRITY-1 <jfdefault_ship_method>
<emall_notification= 1 <email_notification >
<news_letter> 0 </news_letter>
<anline_statement> 1 </online_statements
+ «<orders =
+ zereditrating =
- =valuation >

<yaluation_date> 12/25/2004 <Jvaluation_date>
<valuation_tier> BRONZE </valuation_tier>
<fvaluation=
<jcustomer
+ <customer >
+ <customer >
<ins0iCustomerProfile =
<jaarrayOfCustomerProfiles

[Design ¥iew | XGuery Editor View | Source View | Test Yiew [Guery Plan View

Figure 34-5 Test View of Integrated Flat File Data Service

5. (Optional) Use the getCustomerProfile function, enter CUSTOMER3 in the Parameter field, and

click Execute.

Lesson Summary

In this lesson, you learned how to:

Import a CSV file containing valuation information.
Create a flat file physical data service.

Integrate the flat file physical data service with a logical data service.

Data Services Platform: Samples Tutorial

139

Lesson 35 Creating an XQuery Function Library

In any DSP project you can create XQuery libraries containing functions which can be used by any
data service in your application. An XQuery function library is ideal for containing transformation and
other types of functions without the overhead of having to build a data service. An XQuery function
library can also be used to hold security functions which, in turn, can be used by any data service.

Objectives

After completing this lesson, you will be able to:

Create and use XFL functions.

View the results.

Overview

An XQuery Function Library (XFL) contains user functions that return discrete values, such as string,
integer, or calendar. These functions are useful for data manipulation at query execution time.

Lab 35.1 Creating an XQuery Function Library

In this lesson, you will “encrypt” a customer's SSN to hide its value. As part of this process you will be
modifying the getCustomerProfile() query function.

Objectives

In this lab, you will:

Import a Java file into the DataServices project.
Import source metadata.

Test the function

Instructions
1. Create a new folder in the DataServices project and name it xfl.
2. Import protectSSN.java into the XFL folder. (The file is located in samples\liquiddata folder.)
3. Build the DataServices project.
4. Import source metadata into the xfl folder by completing the following steps:
a. Right-click the xfl folder and choose Import Source Metadata.
b. Select Java Function from the Data Source Type drop-down list and click Next.

c. Enter xfl.protectSSN in the Class Name field and click Next.

Data Services Platform: Samples Tutorial 140

¥ Select Java File fgl

-Specify Class Mame:

Class Mame | f), protectssh | | Browse. . |

| Previous | | Mext | | | | Cancel |

Figure 35-1 Selecting the Java File
d. Select the protectSSN function, and then click Add.

&2 Select Java Functions @

Available Java Fu... Selected Java Fun...
|:| protectSSh
I Previous | | Mexk | | | | Cancel |

Figure 35-2 Selecting the Java Function

e. Click Next. The Summary window opens.

These function(s) will be saved in the library file:

protect35H | library |

[Generate Maodel Diagram Automatically

Model Diagram Name

Location | s'l,applications\danube'l,EvaIuation'l,DataServices\,xﬂ| | Browise. .. |

‘ Previous ‘ | ‘ | Finish ‘ I Cancel |

Figure 35-3 Imported Java Metadata Summary
f. Click Finish.
5. Test the function, by completing the following steps:
a. Open library.xfl in Test View.
b. Select protectSSN from the Function drop-down list.
c. Insert any number in the Parameter field; for example, 3.

d. Click Execute. The test should return 999-99-9999, regardless of the input parameter.

Data Services Platform: Samples Tutorial 141

library xfl - {DakaServicesHxfl, 4

Select Function:

proktectSSHix1) | -

Parameters

wsdistring w1z | | 3

[start Client Transaction

Result | ||

[H99-99-9999

=

Source View | ¥Query Editor Yiew | Test View | Query Plan View

Figure 35-4 XQuery Function Library Test

Lab 35.2 Using the XQuery Function Library in an XQuery
Adding an XQuery Function Library file to an XQuery.

Objectives

In this lab, you will:

Add the protectSSN.xf] file to an XQuery.
Test the query.

View the results.

Instructions
1. Build the DataServices project.

2. Test the getCustomerProfile() function without the protectSSN function by completing the
following steps:

a. Open CustomerProfile.ds in Test View.
b. Select getCustomerProfile from the function drop-down list.
c. Enter CUSTOMERS3 in the Parameter field.
d. Confirm that the query returns a valid SSN.
3. Set SSN protection, by completing the following steps:
a. Open CustomerProfile.ds in Source View.
b. Expand the getAllCustomers node.

c. Locate the SSN return code within the getAllCustomers() function. It should be as follows:
<ssn?>{fn:data($CUSTOMER/SSN)}</ssn>

d. In Data Services Palette, expand the xfl and library.xfl folders.

Data Services Platform: Samples Tutorial 142

e. Drag and drop protectSSN() to the SSN return value.

f. Modify the remaining code, so that it is as follows:
{ssn?{ns9:protectSSN($CUSTOMER/SSN)}</ssn>)}

Note: <a> is the renamed element. You can use any name for the element, but for the sake

of clarity, we used the simple <a> name.

4. Test the getCustomerProfile() function with the protectSSN function, by completing the following

steps:

a. Open CustomerProfile.ds in Test View.

b. Select getCustomerProfile from the function drop-down list.

c. Enter CUSTOMER3 in the parameter field. The query should return an invalid social

security number.

CustomerProfile. ds - {DataservicesHCustomerManagement!, ¥
Select Function:
getCustomerProfile{Customer ID) | - |
Parameters
xsistring CustomerID: | | CUSTOMERS |
Number Elerment (by path)
Limit elements in array results to:
w0 || |
[start: Client Transaction
Result [Text |
- «ns0iCustomerProfile xmins:ns0="http://temp.openuri.org/Dataservices/schemas/CustomerProfile, xsd" = Z
- <custamer
=<customer_jd> CUSTOMER3 </customer_id:>
=first_name> Joe </first_name>
<last_name > Smith =/last_name:=
=<customer_since> 2001-10-01 </customer_since =
«<email_address> JOHN_3@att.com </email_address =
=telephone_number > 9287731259 </telephone_number =
=55n> 999-99-9999 <jssn>
=hirth_day= 1952-05-09 </birth_day=
=default_ship_method> PRIODRITY-1 </default_ship_method =
=email_notification= 1 <femail_notification =
=news_letter= 0 <fnews_letter=
=online_statement> 1 <fonline_statement =
+ <orders = L
+ <ereditrating =
+ <valuation = [=]
Design View | #Query Editor View [Source Wiew | Test Wiew [Query Flan Wiew

Figure 35-5 Test View of Protected SSN

Lesson Summary

In this lesson, you learned how to:

Create a XFL function.

Use the XFL function within a query.

Data Services Platform: Samples Tutorial

143

Data Services Platform: Samples Tutorial 144

Glossary

ad-hoc query. A hand-coded or generated query that is passes to Data Services Platform on the fly, rather than
stored in the DSP repository.

administration console. A web-based administration tool that an administrator uses to configure and monitor
WebLogic Servers. DSP provides a console to help manage instances of Data Services Platform.

application. A collection of all resources and components deployed as a unit to an instance of WebLogic Server.
The application contains one or more projects, which in turn contain the folders and files that make up your
application. Only one application can be open at a time.

cache. The location where DSP stores information about commonly executed stored queries for subsequent,
efficient retrieval, thereby enhancing overall system performance. DSP provides query plan cache and result set
cache.

cache policy. In the result set cache, configuration settings determine when the cached results expire for individual
stored queries.

data model. A visual representation of data resources.
data object. In SDO, a complex type that holds atomic values and references to other data objects.

data service. A modeled object that describes a data shape and functions used to retrieve and update the data, as
well as functions to navigate to other related data services.

data service mediator. The SDO mediator that uses data services to retrieve and update data.
data service update. The engine responsible for handling submits of changes to SDOs

data source. Any structured, semi-structured, or unstructured information that can be queried. The types of data
sources that DSP can query include relational databases, Web services, flat files (delimited and fixed width), XML
files, Java functions, application views via web applications (business-level interfaces to the data in packaged
applications such as Siebel, PeopleSoft, or SAP), data views (dynamic results of DSP queries).

data source schema. An XML schema that defines the content, semantics, and physical structure of a data source.

function. A uniquely named portion of an XQuery that performs a specific action. In the case of DSP the function
would typically query physical or logical data.

java server page (JSP). A J2EE component that extends the Servlet class, and allows for rapid server-side
development of HTML interfaces that can be co-mingled with Java.

logical data service. A data service that integrates data from multiple physical and/or logical data services.
mapping. The process of connecting data source schemas to a target (result) schema.
metadata. Descriptors about a data service’s information, format, meaning, and lineage.

physical data service. The leaf-level data services that expose external data. For relational sources, this would be a
data service representing tables or stored procedures. For functional sources, this would be the functions that are
considered to be the initial source of data operated on by XQuery.

project. Groups related files within an application.

query. In DSP an XQuery function that retrieves data from a data source. Functions define what tasks the query will
perform, while expressions define what data to extract.

query operation. Operation that a query performs, such as a join, aggregation, union, or minus.

guery plan. A compiled query. Before a query is run, DSP compiles the XQuery code into an executable query
plan. When the query executes, the query plan is sent to the data source for processing.

Data Services Platform: Samples Tutorial 145

http://bernal.bea.com/stage/liquiddata/docs82/gloss/index.html#54450
http://bernal.bea.com/stage/liquiddata/docs82/gloss/index.html#57806
http://bernal.bea.com/stage/liquiddata/docs82/gloss/index.html#59865
http://bernal.bea.com/stage/liquiddata/docs82/gloss/index.html#57092

repository. File-based metadata maintained in a DSP project.

result set. The data returned from an executed query. There are two types of result sets: intermediate result sets are
temporary result sets that the query processor generates while processing an analytical query; final result sets are
returned to the client application that requested the query in the form of XML data.

return type. A type of XML schema that defines the shape of data returned by a query.
schema. A model for representing the data types, structure, and relationships of data sets and queries.

security. Set of mechanisms available to prevent access to, corruption of, or theft of data. DSP extends the
WebLogic Server compatibility security mechanisms to define groups, users, and access control to DSP resources.

service data object (SDO). Defines a Java-based programming architecture and API for data access.

simple object access protocol (SOAP). An extensible, platform-independent, XML-based protocol that allows
disparate applications to exchange messages over the Web. SOAP can be used to invoke methods on servers, Web
services, application components, and objects in a distributed, heterogeneous environment. SOAP-based Web
services are one of the data sources DSP supports.

source schema. XML schema that describes the shape (structure and legal elements) of the source data — that is,
the data to be queried. The DSP-enabled server runs queries against source data and returns query results in the form
of the source schema.

stored query. A query that has been saved to the DSP repository. There is a performance benefit to using a stored
query because its query plan is always cached in memory, optionally along with query result. With an ad-hoc query,
however, the query plan and result are not cached. In addition, caching of query results for a stored query is
configurable through the Cache tab on the DSP node in the Administration Console.

structured query language (SQL). The standard, structured language used for communicating with relational
databases. Database programmers use SQL queries to retrieve information and modify information in relational
databases. In order to be able to access different types of data sources dynamically, DSP employs the XML-based
XQuery language as a layer on top of platform-dependent query systems such as SQL.

target schema. See return type.
weblogic server. The platform upon which DSP is built.
weblogic workshop. The IDE in which DSP runs as an application.

web service. Business functionality made available by one company, usually through an Internet connection, for use
by another company or software program. Web services are a type of service that can be shared by, and used as
components of, distributed Web-based applications. Web services communicate with clients (both end-user
applications or other Web services) through XML messages that are transmitted by standard Internet protocols, such
as HTTP. Web services endorse standards-based distributed computing. Currently, popular Web Service standards
are Simple Object Access Protocol (SOAP), Web services description language (WSDL), and Universal
Description, Discovery, and Integration (UDDI).

web services description language (WSDL). Specification for an XML-based grammar that defines and describes
a Web service. A WSDL is necessary if two different online systems need to communicate without human
intervention.

xml schema. A structured model for describing the structure, content, and semantics of XML documents based on
custom rules. Unlike DTDs, XML schemas are written in XML data syntax and provide more support for standard
data types and other data-specific features. When metadata about a data source is obtained, it is stored in an XML
schema in the DSP repository.

xquery. An XML query language, which represents a query as an expression which is used to query relational,
semi-structured, and structured data.

xsd. An abbreviation for XML Schema Definition. An XSD file describes the contents, semantics, and structure of
data within an XML document.

Data Services Platform: Samples Tutorial 146

Data Services Platform: Samples Tutorial 147

	 Copyright
	Restricted Rights Legend
	Trademarks or Service Marks
	About This Document
	Document Organization
	 Technical Prerequisites
	System Requirements
	Data Sources Used Within These Lessons
	Related Information
	Part 2: Power-User Training

	Lesson 18 Building XQueries in XQuery Editor View
	Objectives
	Overview

	Lab 18.1 Importing Schemas for Query Development
	Objectives
	Instructions

	Lab 18.2 Creating Source-to-Target Mappings
	Objectives
	Instructions

	Lab 18.3 Creating a Basic Parameterized Function
	Objectives
	Instructions

	Lab 18.4 Creating a String Function with a Built-In XQuery Function
	Objectives
	Instructions

	Lab 18.5 Creating a Date Function
	Objectives
	Instructions

	Lab 18.6 Creating Outer Joins and Order By Expressions
	Objectives
	Instructions

	Lab 18.7 Creating Group By and Aggregate Expressions
	Objectives
	Instructions

	Lab 18.8 Creating Constant Expressions
	Objectives
	Instructions

	Lesson Summary

	Lesson 19 Building XQueries in Source View
	Objectives
	Overview
	Source View Tools

	Lab 19.1 Creating a New XML Type
	Objectives
	Instructions

	Lab 19.2 Creating a Basic Parameterized XQuery
	Objectives
	Instructions
	XQuery Code Reference for a Parameterized Function

	Lab 19.3 Creating a String Function
	Objectives
	Instructions
	XQuery Code Reference for a String Function

	Lab 19.4 Building an Outer Join and Using Order By
	Objectives
	Instructions
	XQuery Code Reference for an Outer Join and Order By Function

	Lab 19.5 Creating an Inner Join and a Top N
	Objectives
	Instructions
	XQuery Code Reference for Inner Join and Top N Function

	Lab 19.6 Creating a Multi-Level Group By
	Objectives
	Instructions
	XQuery Code Reference for Multi-Level Group By Function

	Lab 19.7 Using If-Then-Else
	Objectives
	Instructions
	 XQuery Code Reference for If-Then-Else Function

	Lab 19.8 Creating a Union and Concatenation
	Objectives
	Instructions
	XQuery Reference Code for Union and Concatenation Function

	Lesson Summary

	Lesson 20 Implementing Relationship Functions and Logical Modeling
	Objectives
	Overview

	Lab 20.1 Implementing and Testing a Relationship Function
	Objectives
	Instructions

	Lab 20.2 Creating a Model Diagram for Logical Data Services
	Objectives
	Instructions

	Lesson 21 Running Ad Hoc Queries
	Objectives
	Overview

	Lab 21.1 Creating an Instance of the PreparedExpression Class
	Objectives
	Instructions

	Lab 21.2 Defining Ad Hoc Query Parameters
	Objectives
	Instructions

	Lab 21.3 Testing the Ad Hoc Query
	Objectives
	Instructions
	 Code Reference for an Ad Hoc Query

	Lesson Summary

	Lesson 22 Creating Data Services Based on SQL Statements
	Objectives
	Overview

	Lab 22.1 Creating a Data Service from a User-Defined SQL Statement
	Objectives
	Instructions

	Lab 22.2 Testing Your SQL Data Service
	Objectives
	Instructions

	Lesson Summary

	Lesson 23 Performing Custom Data Manipulation Using Update Override
	Objectives
	Overview

	Lab 23.1 Creating an Update Override
	Objectives
	Instructions

	Lab 23.2 Associating an Update Override to a Logical Data Service
	Objectives
	Instructions

	Lab 23.3 Testing the Update Override
	Objectives
	Instructions
	Update Override Reference Code

	Lesson Summary

	Lesson 24 Updating Web Services Using Update Override
	Objectives
	Overview

	Lab 24.1 Creating an Update Override for a Physical Data Service
	Objectives
	Instructions

	Lab 24.2 Writing Web Service Update Logic in the Update Override
	Objectives
	Instructions

	Lab 24.3 Testing the Update Override
	Objectives
	Instructions

	Lab 24.4 Checking for Change Requirements
	Objectives
	Instructions

	Lesson Summary

	Lesson 25 Overriding SQL Updates Using Update Overrides
	Objectives
	Overview

	Lab 25.1 Adding SQL Update Statements to an Update Override File
	Objectives
	Instructions

	Lab 25.2 Associating an SQL-Based Data Service and Update Override
	Objectives
	Instructions

	Lab 25.3 Testing Updates
	Objectives
	Instructions

	Lesson Summary

	Lesson 26 Understanding Query Plans
	Objectives
	Overview

	Lab 26.1 Viewing the Query Plan
	Objectives
	Instructions

	Lab 26.2 Locating the SQL Statement in a Query Plan
	Objectives
	Instructions

	Lab 26.3 Locating XML Elements
	Objectives
	Instructions

	Lesson Summary

	Lesson 27 Reusing XQuery Code through Vertical View Unfolding
	Objectives
	Overview

	Lab 27.1 Unfolding Vertical View
	Objectives
	Instructions

	Lab 27.2 Testing a Vertical File Unfolding
	Objectives
	Instructions

	Lesson Summary

	Lesson 28 Configuring Alternatives for Unavailable Data Sources
	Objectives
	Overview

	Lab 28.1 Setting the Demonstration Conditions
	Objectives
	Instructions

	Lab 28.2 Configuring Alternative Sources
	Objectives
	Instructions

	Lab 28.3 Testing an Alternative Source
	Objectives
	Instructions
	The invocation of the first Web service NewLookupCreditResponse fails due to the thread itself timing out. Since this Web service has failed it will not be invoked again. Instead, the alternate web service is invoked.

	Lesson Summary

	Lesson 29 Enabling Fine-Grained Caching
	Objectives
	Overview

	Lab 29.1 Enabling Function-Level Caching for a Physical Data Service
	Objectives
	Instructions

	Lab 29.2 Testing the Caching Policy
	Objectives
	Instructions

	Lab 29.3 Testing Performance Impact
	Objectives
	Instructions

	Lesson Summary

	Lesson 30 Creating XQuery Filters to Implement Conditional-Logic Security
	Objectives
	Overview

	Lab 30.2 Creating User Groups
	Objectives
	Instructions

	Lab 30.3 Writing the XQuery Security Function
	Objectives
	Instructions

	Lab 30.4 Activating the XQuery Security Function
	Objectives
	Instructions

	Lab 30.5 Testing the XQuery Security Function
	Objectives
	Instructions

	Lesson Summary

	Lesson 31 Accessing Data in Stored Procedures
	Objectives
	Overview
	Handling Stored Procedure Row Sets

	Lab 31.1 Importing a Stored Procedure into the Application
	Objectives
	Instructions

	Lab 31.2 Importing Stored Procedure Metadata into a Data Service
	Objectives
	Instructions

	Lesson Summary

	Lesson 32 Accessing Data with Java Functions
	Objectives
	Overview

	Lab 32.1 Accessing Data Using WebLogic’s Embedded LDAP Function
	Objectives
	Instructions

	Lab 32.2 Accessing Excel Spreadsheet Data Using JCOM
	Objectives
	Instructions

	Lab 32.3 (Optional) Accessing Data Using an Enterprise Java Bean
	Objectives
	Instructions

	Lesson Summary

	Lesson 33 Accessing Data in XML Files
	Objectives
	Overview

	Lab 33.1 Importing XML Metadata and XML Schema Definition
	Objectives
	Instructions

	Lab 33.2 Testing the XML Data Service
	Objectives
	Instructions

	Lesson Summary

	Lesson 34 Accessing Data in Flat Files
	Objectives
	Overview

	Lab 34.1 Importing Flat File Metadata
	Objectives
	Instructions

	Lab 34.2 Testing Your Flat File Data Service
	Objectives
	Instructions

	Lab 34.3 Integrating Flat File Valuation with a Logical Data Service
	Objectives
	Instructions

	Lab 34.4 Testing an Integrated Flat File Data Service
	Objectives
	Instructions

	Lesson Summary

	Lesson 35 Creating an XQuery Function Library
	Objectives
	Overview

	Lab 35.1 Creating an XQuery Function Library
	Objectives
	Instructions

	Lab 35.2 Using the XQuery Function Library in an XQuery
	Objectives
	Instructions

	Lesson Summary
	 Glossary

