
BEAAquaLogic
Data Services
Platform™

XQuery Developer’s
Guide
Note: Product documentation may be revised post-release and
made available from the following BEA e-docs site:

http://e-docs.bea.com/aldsp/docs21/index.html

Version: 2.1
Document Date: June 2005
Revised: March 2006

http://e-docs.bea.com/aldsp/docs21/index.html

Copyright
Copyright © 2005-2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
Copyright © 1995-2005 BEA Systems, Inc. All Rights Reserved.BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service Registry, BEA Builder,
BEA Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA MessageQ,
BEA WebLogic Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA
WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA
WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API, BEA
WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Server Process Edition, BEA
WebLogic SIP Server, BEA WebLogic WorkGroup Edition, Dev2Dev, Liquid Computing, and Think Liquid are
trademarks of BEA Systems, Inc. BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA
SOA Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

March 16, 2006 3:40 pm

XQuery Developer’s Guide v

Contents

Introducing the Data Services Platform XQuery Engine
XML and XQuery . 1-2

XQuery Use in Data Services Platform . 1-2

Supported XQuery Specifications . 1-2

Learning More About the XQuery Language . 1-3

BEA’s XQuery Implementation
BEA XQuery Function Implementation . 2-2

Function Overview . 2-3

Access Control Functions. 2-5

Duration, Date, and Time Functions. 2-7

Execution Control Functions . 2-12

Numeric Functions . 2-15

Other Functions . 2-16

QName Functions . 2-18

Sequence Functions . 2-19

String Functions . 2-19

Unsupported XQuery Functions . 2-24

Implementation-Specific Functions and Operators . 2-24

BEA XQuery Language Implementation. 2-26

XQuery Language Support (and Unsupported Features) . 2-26

Extensions to the XQuery Language in the DSP XQuery Engine . 2-26

vi XQuery Developer’s Guide

Implementation-Defined Values for XQuery Language Processing2-30

XQuery Engine and SQL
Introduction .3-2

Base and Core RDBMS Support .3-2

How it Works—XQuery Engine’s Support for SQL .3-3

XQuery-SQL Data Type Mappings .3-5

SQL Pushdown: Performance Optimization .3-8

Common Query Patterns. .3-13

Grouping and Aggregation .3-21

Direct SQL Data Services and Pushdown .3-29

Distributed Query Pushdown .3-31

Preventing SQL Pushdown .3-32

Understanding XML Namespaces
Introducing XML Namespaces .4-2

Exploring XML Schema Namespaces .4-3

Using XML Namespaces in Data Services Platform Queries and Schemas4-4

Best Practices Using XQuery
Introducing Data Service Design .5-1

Understanding Data Service Design Principles .5-3

Applying Data Service Implementation Guidelines .5-5

Understanding Data Services Platform Annotations
XDS Annotations .6-2

General Properties .6-4

Data Access Properties .6-5

Target Type Properties .6-11

XQuery Developer’s Guide vii

Key Properties. 6-13

Relationship Properties . 6-13

Update Properties. 6-15

Security Properties . 6-17

Function Annotations. 6-18

General Properties . 6-20

UI Properties . 6-20

Cache Properties. 6-21

Behavioral Properties. 6-21

Signature Properties. 6-24

Native Properties . 6-25

XFL Annotations . 6-26

General Properties . 6-26

Data Access Properties . 6-27

Annotations Reference
XML Schema for Annotations .A-1

XQuery-SQL Mapping Reference
IBM DB2/NT 8 .B-2

Data Type Mapping .B-2

Function and Operator Pushdown .B-3

Cast Operation Pushdown .B-4

Other SQL Generation Capabilities .B-5

Microsoft SQL Server 2000. .B-6

Data Type Mapping .B-6

Function and Operator Pushdown .B-7

Cast Operation Pushdown .B-9

viii XQuery Developer’s Guide

Other SQL Generation Capabilities . B-10

Oracle 8.1.x . B-12

Data Type Mapping . B-13

Function and Operator Pushdown . B-14

Cast Operation Pushdown. B-15

Other SQL Generation Capabilities . B-16

Oracle 9.x, 10.x . B-18

Data Type Mapping . B-19

Function and Operator Pushdown . B-20

Cast Operation Pushdown. B-22

Other SQL Generation Capabilities . B-22

Pointbase 4.4 (and higher) . B-23

Data Type Mapping . B-24

Function and Operator Pushdown . B-24

Cast Operation Pushdown. B-25

Other SQL Generation Capabilities . B-26

Sybase 12.5.2 (and higher) . B-27

Data Type Mapping . B-27

Function and Operator Pushdown . B-29

Cast Operation Pushdown. B-31

Other SQL Generation Capabilities . B-31

Base (Generic) RDBMS Support . B-32

Database Capabilities Information . B-32

Data Type Mapping . B-34

Function and Operator Pushdown . B-36

Cast Operation Pushdown. B-36

Other SQL Generation Capabilities . B-37

XQuery Developer’s Guide 1-1

C H A P T E R 1

Introducing the Data Services Platform
XQuery Engine

This chapter briefly introduces the BEA AquaLogic Data Services Platform XQuery language and
describes the version of the XQuery specification implemented in Data Services Platform (DSP). Links
to more information about XQuery are also provided.

The following topics are covered:

XML and XQuery

XQuery Use in Data Services Platform

Supported XQuery Specifications

Learning More About the XQuery Language

Note: Data Services Platform was initially named Liquid Data. Some artifacts of the original name
remain in the product, installation path, and components.

I n t roduc ing the Data Se rv ices P la t fo rm XQuery Eng ine

1-2 XQuery Developer’s Guide

XML and XQuery
XML is an increasingly popular markup language that can be used to label content in a variety of data
sources including structured and semi-structured documents, relational databases, and object
repositories. XQuery is a query language that uses the structure of XML to express queries against
data, including data physically stored in XML or transformed into XML using additional software.
XQuery is therefore a language for querying XML-based information.

The relationship between XQuery and XML-based information is similar to the relationship between
SQL and relational databases. Developers who are familiar with SQL will find XQuery to be
conceptually a natural next step.

The W3C Query Working Group used a formal approach by defining a data model as the basis for
XQuery. XQuery uses a type system and supports query optimization. It is statically typed, which
supports compile-time type checking.

However, unlike SQL, which always returns two-dimensional result sets (rows and columns), XQuery
results can conform to a complex XML schema. An XML schema can represent a hierarchy of nested
elements that represent very detailed and complicated business data and information.

XQuery Use in Data Services Platform
Data Services Platform models the contents of various types of data sources as XML schemas. Once
you have configured Data Services Platform access to the data sources you want to use, such as
relational databases, Web Services, application views, data views, and so on, you can issue queries
written in XQuery to Data Services Platform. Data Services Platform evaluates the query, fetches the
data from the underlying data sources, and returns the query results.

For more information on developing data service XQueries see the Data Services Developer’s Guide.

Supported XQuery Specifications
Table 1-1 lists the XQuery and XML specifications with which the BEA implementation complies.

Table 1-1 Supported XQuery and XML Standards

Topic Specification

XQuery 1.0 and XPath 2.0
Data Model

The XQuery and XPath data model implementation is based on the following
specification:

http://www.w3.org/TR/2004/WD-xpath-datamodel-20040723/

http://www.w3.org/TR/2004/WD-xpath-datamodel-20040723/
../datasrvc/index.html

Learn ing More About the XQue ry Language

XQuery Developer’s Guide 1-3

Learning More About the XQuery Language
You can learn more about XQuery and related technologies at the following locations:

XQuery

– http://www.w3.org/XML/Query

XML Schema

– http://www.w3.org/XML/Schema

XQuery 1.0 Specification The BEA XQuery engine implements XQuery 1.0 based on the following specification:

http://www.w3.org/TR/2004/WD-xquery-20040723/

XQuery 1.0 and XPath 2.0
Functions and Operators

The BEA XQuery engine implements functions and operators based on the following
specification:

http://www.w3.org/TR/2004/WD-xpath-functions-20040723/

For information about BEA extensions implemented in Data Services Platform, see
“BEA XQuery Language Implementation” on page 2-26.

Table 1-1 Supported XQuery and XML Standards

http://www.w3.org/XML/Query
http://www.w3.org/XML/Schema
http://www.w3.org/TR/2004/WD-xpath-functions-20040723/
http://www.w3.org/TR/2004/WD-xquery-20040723/

I n t roduc ing the Data Se rv ices P la t fo rm XQuery Eng ine

1-4 XQuery Developer’s Guide

XQuery Developer’s Guide 2-1

C H A P T E R 2

BEA’s XQuery Implementation

The World Wide Web Consortium (W3C) defines a set of language features and functions for XQuery.
The BEA AquaLogic Data Services Platform XQuery engine fully supports language features with one
exception (modules) and also supports a robust subset of functions and adds a number of
implementation-specific functions and language keywords.

This chapter describes the function and language implementation and extensions in the XQuery
engine.

The chapter includes the following topics:

BEA XQuery Function Implementation

BEA XQuery Language Implementation

BEA’s XQue ry Implementat i on

2-2 XQuery Developer’s Guide

BEA XQuery Function Implementation
Data Services Platform (DSP) supports the W3C Working Draft “XQuery 1.0 and XPath 2.0 Functions
and Operators” dated 23 July 2004 (http://www.w3.org/TR/2004/WD-xpath-functions-20040723/). In
addition, DSP supports a number of functions that are enhancements to the XQuery specification,
which you can recognize by their extended function prefix fn-bea:. For example, the full XQuery
notation for an extended function is: fn-bea:function_name.

This section describes the BEA XQuery function extensions, and contains the following topics:

Function Overview

Access Control Functions

Duration, Date, and Time Functions

Execution Control Functions

Numeric Functions

Other Functions

QName Functions

Sequence Functions

String Functions

Unsupported XQuery Functions

Implementation-Specific Functions and Operators

http://www.w3.org/TR/2004/WD-xpath-functions-20040723/
http://www.w3.org/TR/2004/WD-xpath-functions-20040723/

BEA XQuery Funct i on Implementat i on

XQuery Developer’s Guide 2-3

Function Overview
Table 2-1 provides an overview of the BEA XQuery function extensions.

Table 2-1 BEA XQuery Function Extensions

Category Function Description

Access Control
Functions

fn-bea:is-access-allowed Checks whether a user associated with the current
request context can access the specified resource.

fn-bea:is-user-in-group Checks whether the current user is in the specified
group.

fn-bea:is-user-in-role Checks whether the current user is in the specified
role.

fn-bea:userid Returns the identifier of the user making the
request for the protected resource.

fn-bea:rename Renames a sequence of elements.

Duration, Date,
and Time
Functions

fn-bea:date-from-dateTime Returns the date part of a dateTime value.

fn-bea:date-from-string-with-format Returns a new date value from a string source
value according to the specified pattern.

fn-bea:date-to-string-with-format Returns a date string with the specified pattern.

fn-bea:dateTime-from-string-with-format Returns a new dateTime value from a string
source value according to the specified pattern.

fn-bea:dateTime-to-string-with-format Returns a date and time string with the specified
pattern.

fn-bea:time-from-dateTime Returns the time part of a dateTime value.

fn-bea:time-from-string-with-format Returns a new time value from a string source value
according to the specified pattern.

fn-bea:time-to-string-with-format Returns a time string with the specified pattern.

BEA’s XQue ry Implementat i on

2-4 XQuery Developer’s Guide

Execution
Control
Functions

fn-bea:async Evaluates an XQuery expression asynchronously,
depositing the result of the evaluation into a buffer.

fn-bea:fence Enables you to define optimization boundaries,
dividing queries into islands within which
optimizations should occur.

fn-bea:if-then-else Accepts the value of a Boolean parameter to select
one of two other input parameters.

fn-bea:timeout Returns either the full result of the primary
expression, or the full result of the alternate
expression in cases when the primary XQuery
expression times out.

Numeric
Functions

fn-bea:decimal-round Returns a decimal value rounded to the specified
precision or whole number.

fn-bea:decimal-truncate Returns a decimal value truncated to the specified
precision or whole number.

Other Functions fn-bea:get-property Enables you to write data services that can change
behavior based on external influence.

fn-bea:inlinedXML Parses textual XML and returns an instance of the
XQuery 1.0 Data Model.

fn-bea:format-number Converts a double to a string using the specified
format pattern.

QName
Functions

fn-bea:QName-from-string Creates an xs:QName and uses the value of
specified argument as its local name without a
namespace.

Sequence
Functions

fn-bea:interleave Interleaves items specified in the arguments.

Table 2-1 BEA XQuery Function Extensions (Continued)

BEA XQuery Funct i on Implementat i on

XQuery Developer’s Guide 2-5

Access Control Functions
Data Services Platform (DSP) uses the role-base security policies of the underlying WebLogic platform
to control access to data resources. A security policy is a condition that must be met for a secured
resource to be accessed. If the outcome of condition evaluation is false — given the policy, requested
resource, and user context — access to the resource is blocked and associated data is not returned.

Once the security policies have been configured using the Data Services Platform Console, you can use
the security function extensions described in this section to determine:

Whether a user associated with the current request context can access a specified resource.

Whether the current user is in a specified role.

Whether the current user is in a specified group.

String Functions fn-bea:match Returns a list of integers (either an empty list with
0 integers or a list with 2 integers) specifying which
characters in the string input matches the input
regular expression.

fn-bea:sql-like Searches a string using a pattern, specified using
the syntax of the SQL LIKE clause. The function
optionally enables you to escape wildcards in the
pattern.

fn-bea:trim Removes the leading and trailing white space.

fn-bea:trim-left Removes the leading white space.

fn-bea:trim-right Removes the trailing white space.

Table 2-1 BEA XQuery Function Extensions (Continued)

BEA’s XQue ry Implementat i on

2-6 XQuery Developer’s Guide

This section describes the following DSP access control function extensions to the BEA
implementation of XQuery:

fn-bea:is-access-allowed

fn-bea:is-user-in-group

fn-bea:is-user-in-role

fn-bea:userid

fn-bea:is-access-allowed
The fn-bea:is-access-allowed function checks whether a user associated with the current
request context can access the specified resource, which is denoted by a resource name and a data
service identifier.

The function has the following signature:

fn-bea:is-access-allowed($resource as xs:string, $data_service as
xs:string) as xs:boolean

where $resource is the name of the resource, and $data_service is the resource identifier.

This function makes a call to the WebLogic security framework to check access for the specified
resource. An example is shown below.

if (fn-bea:is-access-allowed("ssn", "ld:DataServices/CustomerProfile.ds"))

 then fn:true()

fn-bea:is-user-in-group
The fn-bea:is-user-in-group function checks whether the current user is in the specified
group. This function analyzes the WebLogic authenticated subject for appropriate group membership.

This function has the following signature:

fn-bea:is-user-in-group($group as xs:string) as xs:boolean

where $group is the group to test against the current user.

Note: This operation is not automatically authenticated.

fn-bea:is-user-in-role
The fn-bea:is-user-in-role function checks whether the current user is in the specified global
role.This function obtains a list of roles from the WebLogic security framework.

BEA XQuery Funct i on Implementat i on

XQuery Developer’s Guide 2-7

The function has the following signature:

fn-bea:is-user-in-role($role as xs:string) as xs:boolean

where $role is the role to test against the current user.

Note: This operation is not automatically authenticated.

fn-bea:userid
The fn-bea:userid() function returns the identifier of the user making the request for the
protected resource.

The function has the following signature:

fn-bea:userid() as xs:string

Duration, Date, and Time Functions
This section describes the following duration, date, and time function extensions to the BEA
implementation of XQuery:

fn-bea:date-from-dateTime

fn-bea:date-from-string-with-format

fn-bea:date-to-string-with-format

fn-bea:dateTime-from-string-with-format

fn-bea:dateTime-to-string-with-format

fn-bea:time-from-dateTime

fn-bea:time-from-string-with-format

fn-bea:time-to-string-with-format

fn-bea:date-from-dateTime
The fn-bea:date-from-dateTime function converts a dateTime to a date, and returns the date
part of the dateTime value.

The function has the following signature:

fn-bea:date-from-dateTime($dateTime as xs:dateTime?) as xs:date?

where $dateTime is the date and time.

BEA’s XQue ry Implementat i on

2-8 XQuery Developer’s Guide

Examples:

fn-bea:date-from-dateTime(fn:dateTime("2005-07-15T21:09:44")) returns a
date value corresponding to July 15th, 2005 in the current time zone.

fn-bea:date-from-dateTime(()) returns an empty sequence.

fn-bea:date-from-string-with-format
The fn-bea:date-from-string-with-format function returns a new date value from a string
source value according to the specified pattern.

The function has the following signature:

fn-bea:date-from-string-with-format($format as xs:string?, $dateString
as xs:string?) as xs:date?

where $format is the pattern and $dateString is the date. For more information about specifying
patterns, see “Date and Time Patterns” on page 2-11.

Examples:

fn-bea:date-from-string-with-format("yyyy-MM-dd G", "2005-06-22 AD")
returns the specified date in the current time zone.

fn-bea:date-from-string-with-format("yyyy-MM-dd", "2002-July-22")
generates an error because the date string does not match the specified format.

fn-bea:date-from-string-with-format(“yyyy-MMM-dd”, “2005-JUL-22”) returns
the specified date in the current time zone.

fn-bea:date-to-string-with-format
The fn-bea:date-to-string-with-format function returns a date string with the specified
pattern.

The function has the following signature:

fn-bea:date-to-string-with-format($format as xs:string?, $date as
xs:date?) as xs:string?

where $format is the pattern and $date is the date. For more information about specifying patterns,
see “Date and Time Patterns” on page 2-11.

Examples:

fn-bea:date-to-string-with-format(“by-dd-mm”, xf:date(“2005-07-15”))
returns the string “05-15-07”.

BEA XQuery Funct i on Implementat i on

XQuery Developer’s Guide 2-9

fn-bea:date-to-string-with-format(“yyyy-mm-dd”, xf:date(“2005-07-15”))
returns the string “2005-07-15”.

fn-bea:dateTime-from-string-with-format
The fn-bea:dateTime-from-string-with-format function returns a new dateTime value
from a string source value according to the specified pattern.

The function has the following signature:

fn-bea:dateTime-from-string-with-format($format as xs:string?,
$dateTimeString as xs:string?) as xs:dateTime?

where $format is the pattern and $dateTimeString is the date and time. For more information
about specifying patterns, see “Date and Time Patterns” on page 2-11.

Examples:

fn-bea:dateTime-from-string-with-format("yyyy-MM-dd G", "2005-06-22

AD") returns the specified date, 12:00:00AM in the current time zone.

fn-bea:dateTime-from-string-with-format("yyyy-MM-dd 'at' hh:mm",

"2005-06-22 at 11:04") returns the specified date, 11:04:00AM in the current time zone.

fn-bea:dateTime-from-string-with-format("yyyy-MM-dd", "2005-July-22")
generates an error because the date string does not match the specified format.

fn-bea:dateTime-from-string-with-format(“yyyy-MMM-dd”, “2005-JUL-22”)
returns 12:00:00AM in the current time zone.

fn-bea:dateTime-to-string-with-format
The fn-bea:dateTime-to-string-with-format function returns a date and time string with
the specified pattern.

The function has the following signature:

fn-bea:dateTime-to-string-with-format($format as xs:string?, $dateTime
as xs:dateTime?) as xs:string?

where $format is the pattern and $dateTime is the date and time. For more information about
specifying patterns, see “Date and Time Patterns” on page 2-11.

Examples:

fn-bea:dateTime-to-string-with-format(“dd MMM yyyy hh:mm a G”,

xf:dateTime(“2005-01-07T22:09:44”)) returns the string “07 JAN 2005 10:09 PM AD”.

BEA’s XQue ry Implementat i on

2-10 XQuery Developer’s Guide

fn-bea:dateTime-to-string-with-format(“MM-dd-yyyy”,

xf:dateTime(“2005-01-07T22:09:44”)) returns the string “01-07-2005”.

fn-bea:time-from-dateTime
The fn-bea:time-from-dateTime function returns the time from a dateTime value.

The function has the following signature:

fn-bea:time-from-dateTime($dateTime as xs:dateTime?) as xs:time?

where $dateTime is the date and time.

Examples:

fn-bea:time-from-dateTime(fn:dateTime("2005-07-15T21:09:44")) returns a
time value corresponding to 9:09:44PM in the current time zone.

fn-bea:time-from-dateTime(()) returns an empty sequence.

fn-bea:time-from-string-with-format
The fn-bea:time-from-string-with-format function returns a new time value from a string
source value according to the specified pattern.

The function has the following signature:

fn-bea:time-from-string-with-format($format as xs:string?, $timeString
as xs:string?) as xs:time?

where $format is the pattern and $timeString is the time. For more information about specifying
patterns, see “Date and Time Patterns” on page 2-11.

Examples:

fn-bea:time-from-string-with-format("HH.mm.ss", "21.45.22") returns the
time 9:45:22PM in the current time zone.

fn-bea:time-from-string-with-format("hh:mm:ss a", "8:07:22 PM") returns
the time 8:07:22PM in the current time zone.

BEA XQuery Funct i on Implementat i on

XQuery Developer’s Guide 2-11

fn-bea:time-to-string-with-format
The fn-bea:time-to-string-with-format function returns a time string with the specified
pattern.

The function has the following signature:

fn-bea:time-to-string-with-format($format as xs:string?, $time as
xs:time?) as xs:string?

where $format is the pattern and $time is the time. For more information about specifying patterns,
see “Date and Time Patterns” on page 2-11.

Examples:

fn-bea:time-to-string-with-format(“hh:mm a”, xf:time(“22:09:44”)) returns
the string “10:09 PM”.

fn-bea:time-to-string-with-format(“HH:mm a”, xf:time(“22:09:44”)) returns
the string “22:09 PM”.

Date and Time Patterns
You can construct date and time patterns using standard Java class symbols. Table 2-2 outlines the
pattern symbols you can use.

Table 2-2 Date and Time Patterns

This Symbol Represents This Data Produces This Result

G Era AD

y Year 1996

M Month of year July, 07

d Day of the month 19

h Hour of the day (1–12) 10

H Hour of the day (0–23) 22

m Minute of the hour 30

s Second of the minute 55

S Millisecond 978

BEA’s XQue ry Implementat i on

2-12 XQuery Developer’s Guide

Repeat each symbol to match the maximum number of characters required to represent the actual
value. For example, to represent 4 July 2002, the pattern is d MMMM yyyy. To represent 12:43 PM, the
pattern is hh:mm a.

Execution Control Functions
This section describes the following DSP execution control function extensions to the BEA
implementation of XQuery:

fn-bea:async

fn-bea:fence

fn-bea:if-then-else

fn-bea:timeout

fn-bea:async
The fn-bea:async function evaluates an XQuery expression asynchronously, using a buffer to
control data flow between threads of execution.

The function has the following signature:

fn-bea:async($expression as item()*, $cap as xs:integer) as item()*

E Day of the week Tuesday

D Day of the year 27

w Week in the year 27

W Week in the month 2

a am/pm marker AM, PM

k Hour of the day (1–24) 24

K Hour of the day (0–11) 0

z Time zone Pacific Standard Time

Pacific Daylight Time

Table 2-2 Date and Time Patterns (Continued)

BEA XQuery Funct i on Implementat i on

XQuery Developer’s Guide 2-13

where $expression is the XQuery expression to evaluate asynchronously and $cap is the size of the
buffer.

The fn-bea:async function enables asynchronous execution of Web services to reduce problems
caused by the latency of these services. When used in this manner, a very small buffer size such as 1
or 2 is sufficient, as the time to produce the first token can be long while the production of subsequent
tokens should be quicker.

Example:

In the following example, CUSTOMER is a database table while the getCreditScore functions are
Web services offered by two credit rating agencies.

for $cust in db:CUSTOMER()
where $cust/ID eq $param
return

let $score1:= fn-bea:async(exper:getCreditScore($cust/SSN), 2),
$score2:= fn-bea:async(equi:getCreditScore($cust/SSN), 2)

return
if (fn:abs($score1 - $score2) < $threshold)
then fn:avg(($score1, $score2))
else fn:max(($score1, $score2))

fn-bea:fence
The fn-bea:fence function enables you to define optimization boundaries, dividing queries into
islands within which optimizations should occur while preventing optimizations across boundaries.
You might consider using the fn-bea:fence function when building a query incrementally.

The function has the following signature:

fn-bea:fence($expression as item()*) as item()*

where $expression is the input expression.

The fn-bea:fence function is a pass-through function that does not change the input stream, but
indicates to the optimizer that global rewritings should not occur across itself. Specifically, the
fn-bea:fence function stops the following rewritings: view unfolding, loop unrolling, constant
folding, and Boolean optimizations.

fn-bea:if-then-else
The fn-bea:if-then-else function examines the value of the first parameter. If the condition is
true, DSP returns the value of the second parameter (then). If the condition is false, DSP returns the
value of the third parameter (else). If the returned condition is not a Boolean value, DSP generates
an error.

BEA’s XQue ry Implementat i on

2-14 XQuery Developer’s Guide

The function has the following signature:

fn-bea:if-then-else($condition as xs:boolean?, $ifValue as
xdt:anyAtomicType, $elseValue as xdt:anyAtomicType)as
xdt:anyAtomicType

where $condition is the condition to test, $ifValue is the value to return when the condition
evaluates to true, and $elseValue is the value to return when the condition evaluates to false.

Examples:

fn-bea:if-then-else (xf:true(), 3, "10") returns the value 3.

fn-bea:if-then-else (xf:false(), 3, "10") returns the string value 10.

fn-bea:if-then-else (“true”, 3, “10”) generates a compile-time error because the
condition is a string value and not a Boolean value.

fn-bea:timeout
The fn-bea:timeout function returns either the full result of the primary expression, or the full
result of the alternate expression in cases when the primary XQuery expression times out.

The function has the following signature:

fn-bea:timeout($expression as item()*, $millisec as xs:integer, $alt
as item()*) as item()*

where $expression is the primary XQuery expression to evaluate, $millisec is the time out value
in milliseconds, and $alt is an alternative XQuery expression to evaluate after a time out has
occurred.

You can use the fn-bea:timeout function in the following ways:

Around a region of an XQuery result which is optional, such as when you want the rest of the
answer in any case.

To select an available data source from among a set of possibly (very) heterogeneous sources
that can provide the information of interest.

Note that the fn-bea:timeout function immediately returns the alternative expression in cases
when accessing the data source causes an error. Also, an instance of fn-bea:timeout that has failed
over to the alternate expression once will not re-evaluate the original expression during the same
query evaluation.

BEA XQuery Funct i on Implementat i on

XQuery Developer’s Guide 2-15

Example:

$param is a external parameter

for $cust in db:CUSTOMER()
where $cust/ID eq $param
return

fn-bea:timeout(exper:getCreditScore($cust/SSN), 200,
fn-bea:timeout(equi:getCreditScore($cust/SSN), 200,

fn:error()
)

)

Numeric Functions
This section describes the following numeric function extensions to the BEA implementation of
XQuery:

fn-bea:format-number

fn-bea:decimal-round

fn-bea:decimal-truncate

fn-bea:format-number
The fn-bea:format-number function converts a double to a string using the specified format
pattern.

The function has the following signature:

fn-bea:format-number($number as xs:double, $pattern as xs:string) as
xs:string

where $number represents the double number to be converted to a string, and $pattern represents
the pattern string. The format of this pattern is specified by the JDK 1.4.2 DecimalFormat class. (For
information on DecimalFormat and other JDK 1.4.2 Java classes see: http://java.sun.com/j2se/1.4.2.)

http://java.sun.com/j2se/1.4.2/

BEA’s XQue ry Implementat i on

2-16 XQuery Developer’s Guide

fn-bea:decimal-round
The fn-bea:decimal-round function returns a decimal value rounded to the specified precision
(scale) or to the nearest whole number.

The function has the following signatures:

fn-bea:decimal-round($value as xs:decimal?, $scale as xs:integer?) as
xs:decimal?

fn-bea:decimal-round($value as xs:decimal?) as xs:decimal?

where $value is the decimal value to round and $scale is the precision with which to round the
decimal input. A scale value of 1 rounds the input to tenths, a scale value of 2 rounds it to hundreths,
and so on.

Examples:

fn-bea:decimal-round(127.444, 2) returns 127.44.

fn-bea:decimal-round(0.1234567, 6) returns 0.123457.

fn-bea:decimal-truncate
The fn-bea:decimal-truncate function returns a decimal value truncated to the specified
precision (scale) or to the nearest whole number.

The function has the following signatures:

fn-bea:decimal-truncate($value as xs:decimal?, $scale as xs:integer?)
as xs:decimal?

fn-bea:decimal-truncate($value as xs:decimal?) as xs:decimal?

where $value is the decimal value to truncate and $scale is the precision with which to truncate
the decimal input. A scale value of 1 truncates the input to tenths, a scale value of 2 truncates it to
hundreths, and so on.

Examples:

fn-bea:decimal-truncate(192.454, 2) returns 192.45.

fn-bea:decimal-truncate(192.454) returns 192.

fn-bea:decimal-truncate(0.1234567, 6) returns 0.123456.

Other Functions
This section describes the following function extensions to the BEA implementation of XQuery:

BEA XQuery Funct i on Implementat i on

XQuery Developer’s Guide 2-17

fn-bea:get-property

fn-bea:inlinedXML

fn-bea:rename

fn-bea:get-property
The fn-bea:get-property function enables you to write data services that can change behavior
based on external influence. This is an implicit way to parameterize functions.

The function first checks whether the property has been defined using the DSP Console. If so, it
returns this value as a string. In cases when the property is not defined, the function returns the
default value.

The function has the following signature:

fn-bea:get-property($propertyName as xs:string, $defaultValue as
xs:string) as xs:string

where $propertyName is the name of the property, and $defaultValue is the default value
returned by the function.

fn-bea:inlinedXML
The fn-bea:inlinedXML function parses textual XML and returns an instance of the XQuery 1.0 Data
Model.

The function has the following signature:

fn-bea:inlinedXML($text as xs:string) as node()*

where $text is the textual XML to parse.

Examples:

fn-bea:inlinedXML(“<text</e>”) returns element “e”.

fn-bea:inlinedXML(“<?xml version=”1.0”><e>text</e>”) returns a document with
root element “e”.

fn-bea:rename
The fn-bea:rename function renames an element or a sequence of elements.

The function has the following signature:

BEA’s XQue ry Implementat i on

2-18 XQuery Developer’s Guide

fn-bea:rename($oldelements as element()*, $newname as element()) as
element()*)

where $oldelements is the sequence of elements to rename, and $newname is an element from
which the new name and type are extracted.

For each element in the original sequence, the fn-bea:rename function returns a new element with
the following:

The same name and type as $newname

The same content as the old element

Example:

for $c in CUSTOMER()
return
<CUSTOMER>

{fn-bea:rename($c/FIRST_NAME, <FNAME/>)}
{fn-bea:rename($c/LAST_NAME, <LNAME/>)}

</CUSTOMER>

In the above, if CUSTOMER() returns:

<CUST><FIRST_NAME>John</FIRST_NAME><LAST_NAME>Jones</LAST_NAME></CUST>

The output value would be:

<CUSTOMER><FNAME>John</FNAME><LNAME>Jones</LNAME></CUSTOMER>

QName Functions
This section describes the following QName function extensions to the BEA implementation of
XQuery:

fn-bea:QName-from-string
The fn-bea:QName-from-string function creates an xs:QName and uses the value of $param
as its local name without a namespace.

The function has the following signature:

fn-bea:QName-from-string($name as xs:string) as xs:QName

where $name is the local name.

BEA XQuery Funct i on Implementat i on

XQuery Developer’s Guide 2-19

Sequence Functions
This section describes the following sequence function extensions to the BEA implementation of
XQuery:

fn-bea:interleave

fn-bea:interleave
The fn-bea:interleave function interleaves the specified arguments. The function has the
following signature:

fn-bea:interleave($item1 as item()*, $item2 as xdt:anyAtomicType) as
item()*

where $item1 and $item2 are the items to interleave.

For example, fn-bea:interleave((<a/>, , </c>), " ") returns the following sequence:

(<a/>, " ", , " ", </c>)

String Functions
This section describes the following string function extensions to the BEA implementation of XQuery:

fn-bea:match

fn-bea:sql-like

fn-bea:trim

fn-bea:trim-left

fn-bea:trim-right

fn-bea:match
The fn-bea:match function returns a list of two integers specifying the characters in the string
input that match the input regular expression (or an empty list, if none found). When the function
returns a match, the first integer represents the index of (the position of) the first character of the
matching substring and the second integer represents the number of matching characters starting at
the first match. The function has the following signature:

fn-bea:match($source as xs:string?, $regularExp as xs:string?) as
xs:int*

where $source is the input string and $regularExp uses the standard regular expression language.

BEA’s XQue ry Implementat i on

2-20 XQuery Developer’s Guide

Table 2-3 presents regular expression syntax examples.

Table 2-3 Regular Expression Syntax Examples

Category Syntax Example Description

Characters unicode Matches the specified unicode character.

\ Used to escape metacharacters such as *, +, and ?.

\\ Matches a single backslash (\) character.

\0nnn Matches the specified octal character.

\0xhh Matches the specified 8-bit hexidecimal character.

\\uxhhh Matches the specified 16-bit hexidecimal character.

\t Matches an ASCII tab character.

Characters \n Matches an ASCII new line character.

\r Matches an ASCII return character.

\f Matches an ASCII form feed character.

Simple Character
Classes

[bc] Matches the characters b or c.

[a-f] Matches any character between a and f.

[^bc] Matches any character except b and c.

Predefined Character
Classes

. Matches any character except the new line character.

\w Matches a word character: an alphanumeric character or the
underscore (_) character.

\W Matches a non-word character.

\s Matches a white space character.

\S Matches a non-white space character.

\d Matches a digit.

\D Matches a non-digit.

BEA XQuery Funct i on Implementat i on

XQuery Developer’s Guide 2-21

Examples:

fn-bea:match("abcde", "bcd") evaluates to the sequence (2,3).

fn-bea:match("abcde", ()) evaluates to the empty sequence ().

fn-bea:match((), "bcd") evaluates to the empty sequence ().

fn-bea:match("abc", 4) generates an error at compile time because the second
parameter is not a string.

fn-bea:match("abcccdee", "[bc]") evaluates to the sequence (2,1).

Greedy Closures
(Match as many
characters as possible)

A* Matches expression A zero or more times.

A+ Matches expression A one or more times.

A? Matches expression A zero or one times.

A(n) Matches expression A exactly n times.

A(n,) Matches expression A at least n times.

A(n, m) Matches expression A between n and m times.

Reluctant Closures

(Match as few
characters as possible,
and stops when a match
is found)

A*? Matches expression A zero or more times.

A+? Matches expression A one or more times.

A?? Matches expression A zero or one times.

Logical Operators AB Matches expression A followed by expression B.

A|B Matches expression A or expression B.

(A) Used for grouping expressions.

Table 2-3 Regular Expression Syntax Examples (Continued)

BEA’s XQue ry Implementat i on

2-22 XQuery Developer’s Guide

fn-bea:sql-like
The fn-bea:sql-like function tests whether a string contains the specified pattern. Typically, you
can use this function as a condition for a query, similar to the SQL LIKE operator used in a predicate
of SQL queries. The function returns TRUE if the pattern is matched in the source expression,
otherwise the function returns FALSE.

The function has the following signatures:

fn-bea:sql-like($source as xs:string?, $pattern as xs:string?, $escape
as xs:string?) as xs:boolean?

fn-bea:sql-like($source as xs:string?, $pattern as xs:string?) as
xs:boolean?

where $source is the string to search, $pattern is the pattern specified using the syntax of the SQL
LIKE clause, and $escape is the character to use to escape a wildcard character in the pattern.

You can use the following wildcard characters to specify the pattern:

Percent character (%). Represents a string of zero or more characters.

Underscore character (_). Represents any single character.

You can include the % or _ characters in the pattern by specifying an escape character and preceding
the % or _ characters in the pattern with this escape character. The function then reads the character
literally, instead of interpreting it as a special pattern-matching character.

Examples:

fn-bea:sql-like($RTL_CUSTOMER.ADDRESS_1/FIRST_NAME,"H%","\") returns TRUE
for all FIRST_NAME elements in $RTL_CUSTOMER.ADDRESS that start with the character H.

fn-bea:sql-like($RTL_CUSTOMER.ADDRESS_1/FIRST_NAME,"_a%","\") returns
TRUE for all FIRST_NAME elements in $RTL_CUSTOMER.ADDRESS that start with any
character and have a second character of the letter a.

fn-bea:sql-like($RTL_CUSTOMER.ADDRESS_1/FIRST_NAME,"H\%%","\") returns
TRUE for all FIRST_NAME elements in $RTL_CUSTOMER.ADDRESS that start with the
characters H%.

BEA XQuery Funct i on Implementat i on

XQuery Developer’s Guide 2-23

fn-bea:trim
The fn-bea:trim function removes the leading and trailing white space.

The function has the following signature:

fn-bea:trim($source as xs:string?) as xs:string?

where $source is the string to trim. In cases when $source is an empty sequence, the function
returns an empty sequence. DSP generates an error when the parameter is not a string.

Examples:

fn-bea:trim("abc") returns the string value "abc".

fn-bea:trim(" abc ") returns the string value "abc".

fn-bea:trim(()) returns the empty sequence.

fn-bea:trim(5) generates a compile-time error because the parameter is not a string.

fn-bea:trim-left
The fn-bea:trim-left function removes the leading white space.

The function has the following signature:

fn-bea:trim-left($input as xs:string?) as xs:string?

where $input is the string to trim.

Examples:

fn-bea:trim-left(" abc ") removes leading spaces and returns the string
"abc ".

fn-bea:trim-left(()) outputs an error. The input is the empty sequence (similar to a SQL
null) which is a sequence containing zero items.

BEA’s XQue ry Implementat i on

2-24 XQuery Developer’s Guide

fn-bea:trim-right
The fn-bea:trim-right function removes the trailing white space.

The function has the following signature:

fn-bea:trim-right($input as xs:string?) as xs:string?

where $input is the string to trim.

Examples:

fn-bea:trim-right(" abc ") removes trailing spaces and returns the string
" abc".

fn-bea:trim-right(()) outputs an error. The input is the empty sequence (similar to a
SQL null) which is a sequence containing zero items.

Unsupported XQuery Functions
The following functions from the XQuery 1.0 specification are not supported in current BEA XQuery
engine implementation:

fn:base-uri

fn:normalize-unicode

fn:id

fn:idref

fn:collection

Implementation-Specific Functions and Operators
In addition to the support for XQuery functions and operators and the BEA extensions described
previously, the W3C Working Draft “XQuery 1.0 and XPath 2.0 Functions and Operators” dated 23 July
2004 (http://www.w3.org/TR/2004/WD-xpath-functions-20040723/) allows implementors to use their
discretion in implementing various aspects of the specification, as listed in Table 2-4.

http://www.w3.org/TR/2004/WD-xpath-functions-20040723/
http://www.w3.org/TR/2004/WD-xpath-functions-20040723/

BEA XQuery Funct i on Implementat i on

XQuery Developer’s Guide 2-25

Table 2-4 Implementation-Defined Values

Section Description DSP XQuery Engine

6.2—Operators on
Numeric Values [Overflow
and Underflow during
Arithmetic Operations]

Choice between raising an error and
other options for overflow or
underflow of numeric operations.

Arithmetic overflow and
underflow follows behavior of
the underlying Application
Server’s JVM (Java Virtual
Machine).

6.2—Operators on
Numeric Values
[xs:decimal value digit
precision]

Number of digits of precision for
xs:decimal results

18 digits.

7.4.6—
fn:normalize-unicode

In addition to supporting required
normalization form “NFC”,
conforming implementations may
also support implementation-defined
semantics.

Not supported.

7.5—Functions Based on
Substring Matching

Ability to decompose strings into
collation units.

No collations supporting this
feature are available.

10.1.1—Limits and
Precision

Limits and precision for Durations,
Dates and Times larger then those
specified in XML Schema Part 2: Data
Types

Fractional seconds are
supported for more than 3 digits
of accuracy: seven digits for
serialized data (binXML
package), 18 digits during
computations.

15.5.4—Functions and
Operators on Sequences
[fn:doc]

Processing or document URI, usage of
DTD or Schema for validation,
handling of non-XML media types and
construction of data model instances
from non-XML resources and error
handling for document processing.

fn:doc() function does not
validate. DSP uses predefined
external functions for access to
external XML and non-XML data
sources.

BEA’s XQue ry Implementat i on

2-26 XQuery Developer’s Guide

BEA XQuery Language Implementation
This section describes the BEA XQuery language implementation, and contains the following topics:

XQuery Language Support (and Unsupported Features)

Extensions to the XQuery Language in the DSP XQuery Engine

Implementation-Defined Values for XQuery Language Processing

XQuery Language Support (and Unsupported Features)
The Data Services Platform (Version: 2.0.1) conforms to the W3C Working Draft “XQuery 1.0: An XML
Query Language” dated 23 July 2004 (http://www.w3.org/TR/2004/WD-xquery-20040723/), with these
exceptions:

Modules are not supported

xs:integer is represented by 64-bit values

Extensions to the XQuery Language in the DSP XQuery Engine
Beyond compliance with the specification, BEA AquaLogic Data Services Platform’s XQuery language
implementation (the DSP XQuery engine) extends the XQuery language via the following:

Generalized FLWGOR (group by)

Optional Indicator in Direct Element and Attribute Constructors

Generalized FLWGOR (group by)
BEA offers a group by clause extension to standard FLWOR expressions. The following EBNF shows
the syntax of the general FLWGDOR:

flwgdorExpression := (forClause | letClause) (forClause
| letClause
| whereClause
| groupbyClause
| orderbyClause)* returnClause

groupbyClause := "group" [variable "as" variable] "by" (expression
["as" variable]) ("," (expression ["as" variable]))*

The remaining clauses referenced in the EBNF fragment follow the standard definition, as presented
in the XQuery specification.

http://www.w3.org/TR/2004/WD-xquery-20040723/
http://www.w3.org/TR/2004/WD-xquery-20040723/
http://www.w3.org/TR/2004/WD-xquery-20040723/
http://www.w3.org/TR/2004/WD-xquery-20040723/

BEA XQue ry Language Implementat ion

XQuery Developer’s Guide 2-27

As an example, consider the case of grouping books by year, without loosing books that do not have a
year attribute. Using standard XQuery, you would need to perform a self-join with the result of the
fn:distinct-values function, concatenating the result of the self-join with the result for books
without a year attribute.

The following illustrates the XQuery expression to accomplish this:

let $books := document("bib.xml")/bib/book return (
for $year in fn:distinct-values($books/@year)
return

<g>
<year>{ $year }</year>
<titles>{ $books[@year eq $year]/title }</titles>

</g>,
<g>

<year/>
<titles>{ $books[fn:empty(@year)]/title }

</g>
)

Using the BEA group by extension, you could write the same query as follows:

for $book in document("bib.xml")/bib/book
group $book as $partition by $book/@year as $year
return

<g>
<year>{ $year }</year>
<titles>{ $partition/title }</titles>

</g>

Table 2-5 Bindings Before Group By Clause is Applied

$book

<book year=”1994” ISBN=”147...”>...</book>

<book year=”1994” ISBN=”198...”> ...</book>

<book year=”2000” ISBN=”123...”> ...</book>

BEA’s XQue ry Implementat i on

2-28 XQuery Developer’s Guide

Table 2-6 Bindings After Group By Clause is Applied

The FLWGOR expression conceptually builds a sequence of binding tuples, where the size of the tuple
is the number of variables in scope at that point in the FLWGOR. In the example, the tuple at the
group by clause consists of a single variable binding $book which binds to each book in the
bib.xml document, one book at a time (Table 1).

The group by creates a new sequence of binding tuples with each output tuple containing variables
defined in the group by clause. After the group by, all variables there were previously in-scope go
out of scope.

In the example, the output tuple from the group by clause is of size two with the variable bindings
being for $year and $partition (Table 2).

The number of output tuples is equal to the number of unique group by value bindings. In the above
example, this is the number of unique book/@year values: 2. The variable introduced in the group
clause ($partition in the example above) binds to the sequence of all matching input values.

Optional Indicator in Direct Element and Attribute Constructors
This extension enables external consumers of XML generated by XQuery to have certain empty
elements and attributes omitted. You can specify this using optional indicators, instead of employing
computed constructors, conditional statements, and custom functions.

For example, consider the following query:

<a>{()}<c foo="{()}"/>,

The extension enables the following to be returned:

<a><c/>

instead of:

<a><c foo=""/>

The extension uses the optional indicator '?' with direct element and attribute constructors. This
mean that in the following you could change the production DirElemConstructor to the following:

$year $partition

1994 (<book year=”1994” ISBN=”147...”>...</book>,
<book year=”1994” ISBN=”198...”> ...</book>)

2000 <book year=”2000” ISBN=”123...”> ...</book>

BEA XQue ry Language Implementat ion

XQuery Developer’s Guide 2-29

[94] DirElemConstructor ::= "<" QName "?"? DirAttributeList
("/>" | (">" DirElemContent* "</" QName S? ">")) /* ws: explicit */

Likewise, you could change the DirAttributeList to the following:

[95] DirAttributeList ::= (S (QName "?"? S? "=" S?
DirAttributeValue)?)*

When ? is present, elements with no children and attributes with the value "" are omitted. The query
in the example could then be written as:

<a><b?>{()}<c foo?="{()}"/>

which produces the following result:

<a><c/>

In another example, consider the case of constructing a new customer element with different tags.
One requirement is that you do not want a phone element in the resulting customer when the phone
number does not exist in the original customer. Using standard XQuery, you would have to write:

for $cust in CUSTOMER()
return

<customer>
<id>{ fn:data($cust/C_ID) }</id>
{

if (fn:exists($cust/PHONE))
then <phone>{ fn:data($cust/PHONE) }</phone>
else ()

}
...

</customer>

Using the optional element constructor, you could instead write the following:

for $cust in CUSTOMER()
return

<customer>
<id>{ fn:data($cust/C_ID) }</id>
<phone?>{ fn:data($cust/PHONE) }</phone>
...

</customer>

Similarly, when you want the resulting customer element to use attributes instead of elements, you
would need to employ computed attribute constructors using standard XQuery, as illustrated by the
following:

for $cust in CUSTOMER()
return

<customer

BEA’s XQue ry Implementat i on

2-30 XQuery Developer’s Guide

id="{ fn:data($cust/C_ID) }"
{

if (fn:exists($cust/PHONE))
then attribute { "phone" } { fn:data($cust/PHONE) }
else ()

}
...

/>

Using the optional attribute constructor, the query becomes:

for $cust in CUSTOMER()
return

<customer
id="{ fn:data($cust/C_ID) }"
phone?="{ fn:data($cust/PHONE) }"
...

/>

Implementation-Defined Values for XQuery Language
Processing
In addition, for some aspects of language processing, the W3C working draft document leaves the
details to the implementor’s discretion, but requires each implementor to specify and document the

implementation details. All such “implementation defined1” language features of the XQuery language
as implemented in BEA AquaLogic Data Services Platform Version: 2.0.1 are listed in Table 2-7.

Table 2-7 Implementation-Defined Values

1. “Possibly differing between implementations, but specified and documented by the imple-
mentor for each particular implementation.”

Section Description DSP XQuery Engine

2.1.2—Dynamic Context Implicit timezone (value of type
xdt:dayTimeDuration) that will be
used when a date, time, or dateTime
value that does not have a timezone is
used in a comparison (or any other
operation).

Timezone of the JVM of the
underlying application server.

BEA XQue ry Language Implementat ion

XQuery Developer’s Guide 2-31

2.5.1—Kinds of Errors—
Static Error

Mechanism for reporting static errors
(errors that must be detected during
the analysis phase, such as syntax
errors).

Parser and compiler APIs throw
Java exceptions

2.5.1—Kinds of Errors—
Warnings

In addition to static, dynamic, and
type errors, an XQuery
implementation can (optionally)
raise warnings during the analsyis or
evaluation phases, in response to
specific conditions.

Provides a WarningListener API,
but has no special warnings
defined for the core XQuery
language implementation

2.6.3—Full Axis Feature Set of optional axes when Full Axis
Feature is not supported

None.

2.6.6.1—Must-Understand
Extensions—XQuery
Flagger

Mechanism by which the XQuery
Flagger (which flags queries
containing ‘must understand’
extensions) is enabled, if at all—by
default, it is disabled.

XQuery Flagger is not supported.

2.6.7.1—Static Typing
Extensions—XQuery
Static Flagger

Mechanism by which the XQuery
Static Flagger is provided, if at all.

XQuery Static Flagger is not
supported.

3.1.1—Literals Choice of XML 1.0 or XML 1.1 for
character references (the XML-style
references for Unicode characters,
such as — for an em-dash).

XML 1.0

3.7.1.2—Namespace
Declaration Attributes

Support for XML Names 1.1 No

3.8.3—Order By and
Return Clauses

Ordering specification (orderspec)
can be implemented as empty least
or empty greatest (for evaluating
greater-than relationship between
two orderspec values in an order by
clause of an XQuery).

Empty least.

BEA’s XQue ry Implementat i on

2-32 XQuery Developer’s Guide

4.10—Module Import String literals following the at
keyword are optional location hints
in module import statements that
can be interpreted (or disregarded)
by the implementor.

Not applicable—Since the DSP
XQuery engine does not support
modules, there is no
implementation.

4.13—Function
Declaration

Protocol by which parameters are
passed to an external function and
the result of the function is returned
to the invoking query.

Set of Java APIs provided.

A.2—Lexical structure Lexical rules can follow XML 1.0 and
XML Names, or XML 1.1 and XML
Names 1.1.

XML 1.0 and XML Names

XQuery Developer’s Guide 3-1

C H A P T E R 3

XQuery Engine and SQL

This chapter provides an overview of how Data Services Platform works with relational data, especially
focusing on many of the translations that must occur between XQuery and SQL: What happens when
a relational data source is imported into DSP? How are SQL data types mapped to XQuery data types,
and vice versa? What happens at runtime, after you have deployed a data-service-enabled
application—how are the various types of queries handled, and what kind of performance can you
expect?

Although the graphical-user interface tools component of BEA AquaLogic Data Services Platform
available in WebLogic Workshop in many ways obviates the need for developers to get mired in many
of these details, SQL developers and application-performance tuning experts should understand how
DSP works with relational data so that they can:

Create well-designed canonical data services that are potentially re-usable throughout an
organization;

Test and tune alternative query approaches;

Validate execution paths for queries and identify opportunities to improve overall performance.

To facilitate developer’s efforts with these tasks, this chapter includes these topics:

Introduction

XQuery-SQL Data Type Mappings

SQL Pushdown: Performance Optimization

Preventing SQL Pushdown

XQuery Engine and SQL

3-2 XQuery Developer’s Guide

Note: For simplicity’s sake, this chapter refers to the XQuery engine throughout when in fact some
of the specific functionality is handled by other, ancillary sub-systems (for example, the Data
Source API or other system components depicted in the “Data Services Platform Components
Architecture” figure in the Concepts Guide).

Introduction
At the core of BEA AquaLogic Data Services Platform (DSP) is the data processing engine, often
referred to as simply the XQuery engine—the robust, enterprise-class implementation of the XQuery
language based on the standards listed in “Supported XQuery Specifications” on page 1-2, with
additional enhancements as detailed in “BEA’s XQuery Implementation” on page 2-1.

In addition to compliance with XQuery and XML recommendations, DSP XQuery engine also complies
with the ANSI/ISO standard that bridges the SQL and XML worlds (the “SQL/XML (ISO-ANSI Working
Draft) XML-Related Specifications” WD 9075-14 (SQL/XML), August, 2002). As a Java application
(J2EE server application), Data Services Platform uses JDBC to generate SQL queries and submit
them to the appropriate RDBMSs that comprise a data service, which means DSP must accommodate
differences in both SQL and JDBC, as follows:

SQL Language. The SQL standard has evolved over time, and vendor implementations (in their
respective RDBMS products) may be at any number of stages of compliance with the standard
(SQL-89, SQL-92, SQL:1999, and SQL:2003, for example). Furthermore, vendors implement
various extensions to SQL in their respective RDBMS products. In short, DSP’s support for SQL
is not a “one-size-fits-all” exercise: achieving optimal integration with relational data sources
requires DSP to generate vendor-specific SQL code at times.

JDBC API. Drivers are provided by RDBMS vendors as well as third-parties; various drivers for
each RDBMS can have different levels of JDBC compatibility.

Given these factors, BEA AquaLogic Data Services Platform (DSP) provides two different levels of SQL
support for relational database management systems (RDBMS): base support and core support, as
defined in the next section.

Base and Core RDBMS Support
DSP provides two different levels of support for relational data sources:

Base support. Data Services Platform generates standard SQL code that is minimally required
to be supported by any SQL RDBMS. Some examples of base platforms would include Oracle 7,
Informix, IDMS, MySQL, and Teradata.

In t roduct ion

XQuery Developer’s Guide 3-3

Core support. Data Services Platform supports the native SQL dialect of specific versions of
several leading commercial RDBMSs using the RDBMS-specific-JDBC of the vendor’s JDBC
driver or BEA’s JDBC driver (see Table 3-1).

Table 3-1 Core Data Services Platform RDBMS Support

How it Works—XQuery Engine’s Support for SQL
BEA AquaLogic Data Services Platform supports SQL (relational) data sources throughout the
life-cycle of a data services project, from metadata import, through query plan optimization, through
runtime execution of queries and delivery of data to an end-user (or other) application. Specifically,
the XQuery engine provides:

Metadata Mapping. Importing metadata from relational data sources is the first step in
creating a data service.

Data Type Mapping. Upon import of metadata, DSP maps data types from the RDBMS data
source into XQuery atomic data types, disregarding length and other constraints. If the data
source tables or views include unsupported data types—an array, for example—the column is
ignored (the GUI tool alerts the person performing the import if this issue arises, and enables
the person to map the data type of the source table or view to a specific XQuery data type).

Query Optimization. The XQuery processing engine is fast and efficient, and uses several
optimizing strategies, including:

RDBMS and Versions Vendor Driver BEA WebLogic Driver

IBM DB2/NT 8 IBM DB2 JDBC thin driver, version 8.01 BEA (DataDirect) JDBC driver for
DB2, version 3.4.

Microsoft SQL Server 2000 Microsoft SQLServer JDBC driver,
version 2.2

BEA (DataDirect) JDBC driver for
SQLServer, version 3.4

Oracle 8.1.x, 9.x, 10.x Oracle JDBC Thin driver, version 10.1 BEA (DataDirect) JDBC driver for
Oracle, version 3.4

Pointbase 4.4 (and higher) Pointbase JDBC driver, version 4.4 N/A

Sybase Adaptive Server
Enterprise 12.5.2 (and
higher)

Sybase jConnect driver, version 5.5 BEA (DataDirect) JDBC driver for
Sybase, version 3.4

XQuery Engine and SQL

3-4 XQuery Developer’s Guide

– SQL pushdown. As much as possible, processing is shifted from the XQuery engine to the
native RDBMS so that smallest practical result set is actually processed by the XQuery
engine.

– Lazy evaluation. Queries are executed against the physical data sources only as far as
necessary to obtain results.

– Connection-sharing. Multiple active queries can run over a single connection (assuming the
data source RDBMS allows; see Table 3-2, “Runtime Connection Management,” on page 3-5).

Metadata and Data Type Mappings Get Stored in Annotated Files
For each of the tables and views whose metadata is imported into DSP (using Import Source Metadata
feature of the GUI), two files are generated:

Data service (.ds) file that defines the main access function (an external XQuery function
with annotations that specify the RDBMS catalog or schema name and other properties) to
access to the table or view data and return a sequence of elements corresponding to the rows of
the underlying table. The .ds file includes numerous annotations to handle metadata about the
data service, including:

– Database configuration information, including RDBMS brand name and version information
(Oracle 9.x.x and Sybase 12.x.x., for example).

– Table structure information, including column names (field names), SQL data types and
corresponding XQuery data types, primary key, and foreign key information.

– Relationship functions that provide access to related tables or views.

– Relationship annotations.

– JNDI lookup information. The <relationalDB> annotation in the data service file provides
the JNDI name that will be used at runtime to obtain a connection to the data source and
execute queries.

XML Schema definition (.xsd) file that includes information about all the columns of the
table (or view) and the data types for those columns, as mapped into the XQuery data types.

Runtime Connection Management—Connection Sharing
At runtime, the XQuery engine:

Obtains a connection to the RDBMS.

Prepares SQL statements, setting up parameters if necessary.

XQuery-SQL Data Type Mapp ings

XQuery Developer’s Guide 3-5

Executes the SQL statements and releases the connection.

Handles errors and exceptions.

Translates the result of the query to the XML model used by XQuery engine.

Database connections (connection pools) are registered in the JNDI (Java naming and directory
interface) tree of the WebLogic Server (an administrator with privileges on the server can configure
connection pool, data source, and JNDI name by which connection pools are accessible).

When sub-plan execution completes, connections are typically not released back to the WebLogic
Server. The XQuery engine holds the connection for the duration of the entire XQuery—not just the
duration of the SQL—enabling subsequent queries to the same relational data source to be executed
using an already obtained connection (which also improves performance). Whether the XQuery
engine can share connections or not depends on the underlying data source and JDBC driver (see
Table 3-2).

If the data source RDBMS or JDBC driver does not support connection sharing, and if the DSP has
opened multiple connections to the same data source, the XQuery engine keeps the initial connection
to a data source open during XQuery execution but releases any subsequent connections to the same
data source once the SQL result is received in its entirety by the XQuery engine. The initial connection
will be re-used subsequent SQL queries when the connection becomes available.

XQuery-SQL Data Type Mappings
XQuery-SQL data type mappings are specific to the RDBMS version and the JDBC driver, as discussed
in “Base and Core RDBMS Support” on page 3-2. The specific data type mappings for each core RDBMS

Table 3-2 Runtime Connection Management

RDBMS Support

Base RDBMS No connection sharing.

IBM DB2/NT 8

Microsoft SQL Server 2000

Oracle 8.1.x, 9.x, 10.x

Sybase Adaptive Server Enterprise
12.5.2 (and higher)

Single shared connection for each JNDI data source; each
connection supports multiple active SQL queries.

Pointbase 4.4 (and higher) No connection sharing. Each access requires dedicated
connection.

XQuery Engine and SQL

3-6 XQuery Developer’s Guide

and the general mappings for any base RDBMS are detailed in the “XQuery-SQL Mapping Reference.”
However, XQuery and SQL differ in some respects that may affect XQuery-to-SQL translation; these
differences apply to all RDBMSs:

Date and Time Data Type Differences: Timezones and Time Precision

Scope Differences for Expressions and Data Types

Date and Time Data Type Differences: Timezones and Time Precision
The XQuery language defines richer data types than SQL for handling date and time information
(temporal data). These data types provide more information (timezone data, for instance) or greater
degree of precision (unlimited number of fractional seconds as part of a time or date, for example).
The three built-in XQuery data types for data and time information are:

xs:dateTime

xs:date

xs:time

Minimally, every RDBMS has a single datatype that conveys both date and time data. This datatype
maps to XQuery’s xs:dateTime data type. Some RDBMSs offer additional SQL data types for storing
date and time data separately (see Table 3-3)

(Of all the RDBMSs supported by DSP, only Oracle 9.x (and higher) offers data types with timezone
data (TIMESTAMP WITH TIMEZONE, TIMESTAMP WITH LOCAL TIMEZONE).

Table 3-3 Temporal Data Type Mappings

xs:date xs:dateTime xs:time

Base RDBMS Reported by JDBC driver for the specific RDBMS.

IBM DB2/NT 8 DATE TIMESTAMP TIME

Microsoft SQL Server 2000 DATETIME1,

SMALLDATETIME2

Oracle 8.1.x DATE3

XQuery-SQL Data Type Mapp ings

XQuery Developer’s Guide 3-7

DSP XQuery engine maps all SQL date and time data types to XQuery data types (for example, during
metadata import of a new data source) without loss of data or precision.

However, the converse is not true: depending on the specific RDBMS (and JDBC driver) for a specific
data source, the XQuery engine may need to perform additional processing to minimize data loss and
to handle the timezone information when mapping XQuery temporal data types to SQL.

How DSP Handles Timezone Information
When a query is being pushed down to an RDBMS that does not support timezone data, the DSP
XQuery engine converts date and time data into the local time of the underlying application server and
removes the timezone information. The conversion occurs each time a date or time value that includes
timezone data is sent to the data source, as follows:

During compile time, when SQL is generated for constant date or time expressions.

During query run time, when executing parameterized SQL with parameters bound to date/time
values.

During SDO update, when a date or time value must be stored in the RDBMS.

How DSP Handles Fractional Seconds
The XQuery language supports unlimited precision for fractional seconds, while the DSP XQuery
engine supports up to 7 digits only (for fractional seconds). However, depending on the specific

Oracle 9.x, 10.x DATE, TIMESTAMP,
TIMESTAMP WITH
LOCAL TIMEZONE,
TIMESTAMPWITH
TIMEZONE

Pointbase 4.4 (and higher) DATE TIMESTAMP TIME

Sybase Adaptive Server
Enterprise 12.5.2 (and
higher)

DATE SMALLDATETIME,2

DATETIME1

TIME

1. Supports fractional seconds up to 3 digits (miliseconds).
2. Accuracy of 1 minute.
3. Provides both date and time data, but supports neither fractional seconds nor timezone data
(fractional-second data is truncated).

Table 3-3 Temporal Data Type Mappings

XQuery Engine and SQL

3-8 XQuery Developer’s Guide

RDBMS, fractional second support may be far less than 7 digits — or may not be supported at all
(Oracle 8.1.x, for example). In translating from XQuery to SQL, DSP truncates fractional seconds to
the precision supported by that RDBMS.

For example, since Microsoft’s DATETIME data type supports up to 3 digits (milliseconds) for
fractional time precision, when DSP sends a datetime value to Microsoft SQL Server 2000, the value is
first converted into the local time zone and then any fractional seconds are converted to the
3-digit-milliseconds allowed.

If fractional-second-precision is required (but the data source does not support it appropriately), use
the fn-bea:fence() function to disable pushdown of date and time data types and operations, so that
the XQuery engine processes the time- and date-related queries. (See “Preventing SQL Pushdown” on
page 3-32 for more information.)

See “XQuery-SQL Mapping Reference” for more information about time and date data types for core
and base RDBMS.

Scope Differences for Expressions and Data Types
The XQuery language is less restrictive than the SQL language in terms of the scope of expressions and
data types. For example, for most all RDBMSs, an SQL query that returns a boolean can only be used
inside a WHERE clause. XQuery does not have such restrictions, and as a result, in some cases, valid
XQuery expressions cannot be pushed down. Expressions and data types that cannot be pushed
include:

expressions returning boolean type can only be used in the WHERE clause (all RDBMSs)

some data types, such as CLOB, can be returned in the project list but cannot be grouped on or
sorted on (depending on the RDBMS’s SQL dialect; see “XQuery-SQL Mapping Reference” for
details).

aggregate functions inside an ordering expression, such as in ORDER BY clauses, are not
pushed down for any base RDBMS or Pointbase or (but is supported by all other RDBMSs. See
“XQuery-SQL Mapping Reference” for more information.

SQL Pushdown: Performance Optimization
Data Services Platform achieves optimal performance for queries by performing SQL pushdown—an
optimization technique that offloads processing from the XQuery engine by sending native SQL
queries to the data source so that minimal result sets necessary to answer the query get processed by
the XQuery engine.

SQL Pushdown: Pe r fo rmance Opt imizat ion

XQuery Developer’s Guide 3-9

SQL pushdown reduces the amount of data transported and processed by DSP XQuery processing
engine. This technique dramatically improves overall performance, especially when joining tables.

For example, a JOIN operation on two tables can be done by the underlying RDBMS, returning only
the final result, rather than delivering all the data to the XQuery engine for processing the JOIN
condition. Sorting criteria are also handled by the data source, eliminating the need to re-sort the data
inside the XQuery engine.

For all core RDBMSs, the XQuery engine identifies the XQuery constructs and operations that can be
translated into equivalent SQL operations. These include:

Basic language constructs, including constants, variables, path expressions, functions and
operators, and cast operations.

Common query patterns, such as selections and projections (where clauses), joins (inner, outer,
semi-join, anti-semi-join), ordering clauses, groupings and aggregations.

Not all queries can (or should) get pushed down. The XQuery engine does not pushdown:

Cross-joins. Any join without a condition (any join that results in a Cartesian product)

Expressions tagged with the fn-bea:fence() function.

The remainder of this section covers SQL pushdown in more detail, providing syntax samples based
on the table structures shown in Figure 3-4. (For ease of reading, namespace references are not shown
in the example queries.) In some cases, the query may not get pushed down as SQL, but the fragments
of the query—names of columns, for example—may get pushed to the project list.

XQuery Engine and SQL

3-10 XQuery Developer’s Guide

Figure 3-4 Table Structures for SQL Pushdown Examples

Function and Operator Pushdown
XQuery functions and operators are translated into SQL only when:

all arguments can be pushed down directly (or as parameters)

at least one of the argument expressions uses a value from the relational data source

the XQuery function or operator has an equivalent SQL expression with equivalent semantics

data type of the result is supported

Table 3-5 Function Pushdown Example

If some arguments to a function or operator are not directly pushable, but can be replaced with
parameters, the XQuery engine will replace the arguments with parameters and pushdown the SQL.
For example, since the XQuery’s string-join() function has no explicit SQL equivalent, it is replaced
with a parameter (see Table 3-6).

XQuery Statement SQL Translation (Oracle Syntax)

for $c in CUSTOMER()

return lower-case($c/LAST_NAME)

SELECT LOWER(t1."LAST_NAME") AS c1

FROM "CUSTOMER" t1

SQL Pushdown: Pe r fo rmance Opt imizat ion

XQuery Developer’s Guide 3-11

Table 3-6 External Variable Pushdown

Aggregate Functions
DSP translates XQuery 1.0 and XPath 2.0 aggregate functions into corresponding SQL aggregate
functions (Table 3-7).

Table 3-7 Aggregate Functions

Note that the distinct-values() XQuery aggregate function in conjunction with the fn:count() function
is further translated into an SQL COUNT(DISTINCT...) operation, as shown in Table 3-7. See
“Grouping and Aggregation” on page 3-21 for some examples of how aggregate functions in
conjunction with other expressions affect the outcome of SQL pushdown.

XQuery Statement SQL Statement

declare variable $p as xs:string external;

...

for $c in CUSTOMER()

where starts-with($c/LAST_NAME, string-join(
("a", "b"), $p))

return $c/FIRST_NAME

SELECT t1."FIRST_NAME" AS c1

FROM "CUSTOMER" t1

WHERE t1."LAST_NAME" LIKE ?

XQuery Aggregate Function SQL Aggregate Function

fn:avg() AVG()

fn:count() COUNT()

fn:max() MAX()

fn:min() MIN()

fn:sum() SUM()

fn:count(fn:distinct-values() COUNT(DISTINCT …)

XQuery Engine and SQL

3-12 XQuery Developer’s Guide

Parameters in Generated SQL Statements
The DSP XQuery engine generates parameters from variables, functions, operators, and cast
operations as needed for use by the SQL engine. If all arguments to a function are parameters, the
entire function gets pushed as a parameter.

The functions that can be pushed down depend on the database. See the “XQuery-SQL Mapping
Reference” on page B-1 for details.

Cast Operation Pushdown
As with functions and operators, support for cast operation pushdown is RDBMS-specific, although
cast pushdown is available only for core (not base) RDBMSs. The XQuery engine can pushdown cast
operations if the data source RDBMS:

has equivalent SQL data types for both source and target of the cast XQuery data types (see the
“XQuery Engine and SQL” appendix for details).

has a semantically equivalent SQL operation to convert from source data type to target data
type.

Table 3-8 shows an example of how a cast in XQuery would get pushed down to a Microsoft SQL Server
2000 data source.

Table 3-8 Cast Operation Pushdown

Path Expressions Pushdown
The XQuery engine maps table columns to XML elements that are children of the corresponding row
elements. Simple XQuery path expressions are recognized by the XQuery engine as column accessors.
For example, $c/ZIP_CODE and $c/LAST_NAME (see Table 3-9) provide access to ZIP_CODE and
LAST_NAME columns.

XQuery Statement SQL Statement (Microsoft SQL Server 2000
Syntax)

for $c in CUSTOMER()

where xs:string($c/ZIP_CODE) eq "95131"

return $c/CUSTOMER_ID

SELECT t1."CUSTOMER_ID" AS c1

FROM "CUSTOMER" t1

WHERE CAST(t1."ZIP_CODE" AS VARCHAR) =
'95131'

SQL Pushdown: Pe r fo rmance Opt imizat ion

XQuery Developer’s Guide 3-13

Constant Pushdown
The DSP XQuery engine translates XQuery constants into SQL constants only if the data source has an
equivalent SQL data type. Table 3-9 shows an example of a constant used in a FLWOR expression and
how that constant gets translated in the SQL statement.

Table 3-9 SQL Pushdown for Constants

Variable Pushdown
Both external and internal variables in XQuery expressions can be translated into SQL parameters (in
generated SQL statements) when the variable’s data type is supported by the XQuery engine and:

is atomic (static data type).

can be translated into equivalent SQL type.

Table 3-10 Variable Pushdown

Common Query Patterns
For each relational data source, the precise set of expressions pushed down depends on the
capabilities of the underlying RDBMS; for details, see “XQuery Engine and SQL” on page 3-1.

XQuery Statement SQL Statement

for $c in CUSTOMER()

where $c/ZIP_CODE eq 95131

return $c/LAST_NAME

SELECT t1."LAST_NAME" AS c1

FROM "CUSTOMER" t1

WHERE t1."ZIP_CODE" = 95131

XQuery Statement SQL Statement

declare variable $extVar
as xs:string external;

for $c in CUSTOMER()
where $c/CUSTOMER_ID eq $extVar
return $c/LAST_NAME

SELECT t1."LAST_NAME" as c1

FROM "CUSTOMER" t1

WHERE t1."CUSTOMER_ID" = ?

XQuery Engine and SQL

3-14 XQuery Developer’s Guide

Simple Projection Queries
Each of the example XQueries shown in Table 3-11 returns elements containing values of LAST_NAME
columns from a CUSTOMER table. In all cases, the SQL statement generated by the DSP XQuery
engine is the same (see Table 3-11).

The difference between the first two queries and the last two queries is that the fn:data() function is
used in the query to limit the results to values only. Without the fn:data() function, the result is a list
of <LAST_NAME> elements containing corresponding column values. If a column value is NULL, the
element is skipped. With the fn:data() function, the result is the actual values.

Where Clause Pushdown
An XQuery where clause is usually translated into an SQL WHERE clause. An XQuery where clause
gets pushed down as SQL when:

the where expression uses at least one value from a relational source.

the where expression is pushable (using parameters if needed). See “SQL Pushdown:
Performance Optimization” on page 3-8 for more information.

Table 3-12 Where Clause Pushdown

Table 3-11 Projection Query

XQuery Statements SQL Statement

for $c in CUSTOMER() return $c/LAST_NAME

SELECT t1."LAST_NAME" AS

c1 FROM "CUSTOMER" t1
CUSTOMER()/LAST_NAME

for $c in CUSTOMER() return data($c/LAST_NAME)

data(CUSTOMER()/LAST_NAME)

XQuery Statements SQL Statements

SQL Pushdown: Pe r fo rmance Opt imizat ion

XQuery Developer’s Guide 3-15

However, note that if the WHERE clause follows a group by clause, the WHERE clause is translated
into a HAVING clause. See “Group-By with a Nested Where Clause Translates to SQL HAVING Clause”
on page 3-23).

Order By Clause Pushdown
An XQuery order by expression comprises:

ordering expression

direction property for each ordering expression; that is, ascending or descending

empty ordering property for each ordering expression; that is, empty least or empty greatest

The XQuery engine can pushdown SQL for ordering expressions, including properties, only when the
ordering expression:

is pushable and uses data from the database.

is of the kind supported by the underlying data source (some RDBMSs can only support order
by columns, not arbitrary expressions; some RDBMSs support non-column expressions in order
by clause only if they do not contain aggregate functions.

when an empty expression can result in empty sequence, the RDBMS must support the same
NULL order as the empty order specified by the XQuery. (Some RDBMSs have fixed NULL order,
some allow NULL order to be specified—see “XQuery Engine and SQL” for details).

for $c in CUSTOMER()

where $c/CUSTOMER_ID eq “CUSTOMER01”

return $c/LAST_NAME

SELECT t1.”LAST_NAME” AS c1

FROM “CUSTOMER” t1

WHERE t1.”CUSTOMER_ID” =
‘CUSTOMER01’

for $c in CUSTOMER()

where year-from-dateTime($c/BIRTH_DAY)

eq

 year-from-date(current-date())

return

 $c/LAST_NAME

(DB2 syntax)
SELECT t1.”LAST_NAME” AS c1

FROM “CUSTOMER” t1

WHERE

 YEAR(t1.”BIRTH_DAY”) = ?

XQuery Engine and SQL

3-16 XQuery Developer’s Guide

Table 3-13 Order By Pushdown

Table 3-14 shows an example of the SQL pushdown that occurs when ordering by a NULLable column
(ADDRESS2) in the XQuery clause and the RDBMS supports dynamic setting of NULL order.

Table 3-14 Order By Query, Setting NULL Order Dyanmically

If the data source RDBMS does not support the required empty (NULL) order, the order by will not be
pushed down.

As another optimization, the DSP XQuery engine can insert order by clauses into generated SQL
statements—even when the original XQuery statement does not include them—to offload expensive
sorting operations to the RDBMS. They are automatically inserted by the XQuery optimizer prior to
execution. You cansee these as well in the Query Plan View.

Inner Join Pushdown
Joining data from multiple sources is a very common data integration task. In SQL terms, an inner join
relates each row in one table (or view) to one or more corresponding rows in another table or view. In
XQuery, an inner join is expressed as a FLWR expression comprising several for clauses that iterate
over the data sources, where clauses that specify the join predicates, and a return clause returning
data values.

XQuery Statement SQL Statement

for $c in CUSTOMER()

order by $c/CUSTOMER_ID descending

return $c/CUSTOMER_ID

SELECT t1."CUSTOMER_ID" AS c1

FROM "CUSTOMER" t1

ORDER BY t1."CUSTOMER_ID" DESC

XQuery Statement SQL Statement (Oracle Syntax)

for $c in CUSTOMER()

order by $c/ADDRESS2 ascending

 empty greatest

return $c/CUSTOMER_ID, $c/ADDRESS2

SELECT t1."CUSTOMER_ID" AS c1,

 t1."ADDRESS2" AS c2

FROM "CUSTOMER" t1

ORDER BY t1."ADDRESS2" ASC NULLS LAST

SQL Pushdown: Pe r fo rmance Opt imizat ion

XQuery Developer’s Guide 3-17

If two relational sources are located in the same database, the inner join can sometimes be pushed
down as a single SQL statement using either SQL-92 or SQL-89 syntax, depending on the RDBMS of
the data source.

An inner join can be pushed down when:

the condition itself is pushable.

both join branches belong to the same RDBMS and can be addressed from a single SQL
statement (both branches are in the same JNDI data source).

join condition exists and uses values from both branches (cross joins are not pushed down).

Figure 3-15 XQuery Inner Join Pattern

Although the example in Figure 3-15 shows a simple inner join between two branches, the XQuery
engine also supports n-way joins, with each branch comprising a different for statement.

Table 3-16 Rendering of XQuery Inner-Join as SQL-92 and SQL-89 Syntax

Outer Join Pushdown
The XQuery engine interprets nested FLWR expressions (see Figure 3-17) as an outer join and can
generate SQL for a data source when:

SQL-92 Syntax SQL-89 Syntax

SELECT t1."LAST_NAME" AS c1, t2."ORDER_ID"
AS c2

FROM "CUSTOMER" t1 JOIN "CUST_ORDER" t2

ON t1."CUSTOMER_ID" = t2."CUSTOMER_ID"

SELECT t1."LAST_NAME" AS c1, t2."ORDER_ID"
AS c2

FROM "CUSTOMER" t1, "CUST_ORDER" t2

WHERE t1."CUSTOMER_ID" =
t2."CUSTOMER_ID"

XQuery Engine and SQL

3-18 XQuery Developer’s Guide

both join branches belong to the same database and are addressable from a single SQL
statement (both branches must come from the same JNDI datasource), and

join condition is present and uses values from both branches, and

join condition is pushable, and

the underlying RDBMS supports outer join syntax using either SQL-92 or proprietary syntax in
its SQL language

Figure 3-17 Outer Join Pattern

The SQL code generated by the XQuery engine depends on the SQL dialect supported by the source
database (see “XQuery-SQL Mapping Reference” for details). Table 3-18 shows example SQL-92 and
proprietary syntax for the query shown in Figure 3-17.

Table 3-18 SQL-92 and Proprietary Outer Join Syntax Comparison

Variations of the outer-join pattern are obtained from the original query by using equivalent XQuery
expressions. Figure 3-19 is an example of a query equivalent to that shown in Figure 3-17 that will also
result in a SQL statement with an outer join.

SQL-92 Syntax Oracle 8 Syntax

SELECT t1."LAST_NAME" AS c1, t2."ORDER_ID"
AS c2

FROM "CUSTOMER" t1 OUTER JOIN
"CUST_ORDER" t2

ON t1."CUSTOMER_ID" = t2."CUSTOMER_ID"

SELECT t1."LAST_NAME" AS c1, t2."ORDER_ID"
AS c2

FROM "CUSTOMER" t1, "CUST_ORDER" t2

WHERE t1."CUSTOMER_ID" =
t2."CUSTOMER_ID" (+)

SQL Pushdown: Pe r fo rmance Opt imizat ion

XQuery Developer’s Guide 3-19

Figure 3-19 Outer Join Pattern

Semi-Joins and Anti-Semi-Joins
A semi-join returns data from a single branch of the join condition, when the join condition is satisfied.
An anti-semi-join returns data from a single branch when the join condition is false. Although the
XQuery language does not have specific constructs for semi-joins and anti-semi-joins, the XQuery
engine translates several specific FLWR patterns into SQL semi-join or anti-semi-join patterns,
assuming that:

both sides (outer and inner) belong to the same database and are addressable from a single
SQL statement (both branches must come from the same JNDI datasource).

the join condition exists.

the join condition is pushable.

the RDBMS supports the EXISTS function and subqueries (see “XQuery-SQL Mapping
Reference” on page B-1 for details).

The XQuery interprets a FLWR query containing an inner existential quantified expression as a
semi-join, translating the expression into an SQL query with the EXISTS check in the WHERE clause.

XQuery Engine and SQL

3-20 XQuery Developer’s Guide

Universal quantified expressions are also supported, but their SQL generation is slightly more
complicated. The XQuery engine translates FLWRs with exist() or empty() predicates in the where
clause into semi-joins. Table 3-20 shows several examples of such patterns.

Table 3-20 Various XQuery Patterns that Can Generate Semi-Join and Anti-Semi-Join SQL

XQuery Statement SQL Statement

FLWR with
existential
(“some”)
quantifer
[semi-join]

for $customer in CUSTOMER()

where

 some $c_order in CUST_ORDER()

 satisfies ($customer/CUSTOMER_ID eq
$c_order/ORDER_ID)

and

($c_order/STATUS eq "OPEN")

return

 $customer/CUSTOMER_ID

SELECT t1."CUSTOMER_ID" AS c1

FROM "CUSTOMER" t1

WHERE EXISTS(

 SELECT 1

 FROM "CUST_ORDER" t2

 WHERE t1."CUSTOMER_ID" =
t2."CUSTOMER_ID" AND t2."STATUS" = 'OPEN'

)

FLWR with
negation of
existential
quantifier
[anti-semi
join]

for $customer in CUSTOMER()

where not(

 some $c_order in CUST_ORDER()

satisfies ($customer/CUSTOMER_ID eq
$c_order/ORDER_ID)

and

($c_order/STATUS eq "OPEN")

)

 return

 $customer/CUSTOMER_ID

SELECT t1."CUSTOMER_ID" AS c1

FROM "CUSTOMER" t1

WHERE NOT EXISTS(

 SELECT 1

 FROM "CUST_ORDER" t2

 WHERE t1."CUSTOMER_ID" =
t2."CUSTOMER_ID" AND t2."STATUS" = 'OPEN'

)

FLWR with
universal
(“every”)
quantified
expression

for $customer in CUSTOMER()

where

 every $c_order in CUST_ORDER()

satisfies ($customer/CUSTOMER_ID eq
$c_order/ORDER_ID) and

 ($c_order/STATUS eq "OPEN")

return

 $customer/CUSTOMER_ID

SELECT t1."CUSTOMER_ID" AS c1

FROM "CUSTOMER" t1

WHERE NOT EXISTS(

 SELECT 1

 FROM "CUST_ORDER" t2

 WHERE NOT(t1."CUSTOMER_ID" =
t2."CUSTOMER_ID" AND t2."STATUS" = 'OPEN')

)

SQL Pushdown: Pe r fo rmance Opt imizat ion

XQuery Developer’s Guide 3-21

Grouping and Aggregation
The DSP XQuery engine supports several patterns for group by pushdown and aggregate function
pushdown.

Group By Pushdown
The Group By clause is a BEA extension to the XQuery language (see “Generalized FLWGOR (group
by)” on page 2-26 for more information). The XQuery engine implicitly adds a group by expression to
some patterns to enable more efficient pushdown and query execution.

FLWR with
exists()
predicate

or $customer in CUSTOMER()

where exists(

 for $c_order in CUST_ORDER()

where ($customer/CUSTOMER_ID eq
$c_order/ORDER_ID) and

 ($c_order/STATUS eq "OPEN")

 return $c_order

)

 return

 $customer/CUSTOMER_ID

SELECT t1."CUSTOMER_ID" AS c1

FROM "CUSTOMER" t1

WHERE EXISTS(

 SELECT 1

 FROM "CUST_ORDER" t2

 WHERE t1."CUSTOMER_ID" =
t2."CUSTOMER_ID" AND t2."STATUS" = 'OPEN'

)

FLWR with
empty()
predicate

for $customer in CUSTOMER()

 where empty(

 for $c_order in CUST_ORDER()

 where ($customer/CUSTOMER_ID eq
$c_order/ORDER_ID) and

 ($c_order/STATUS eq "OPEN")

 return $c_order

)

 return

 $customer/CUSTOMER_ID

SELECT t1."CUSTOMER_ID" AS c1

FROM "CUSTOMER" t1

WHERE NOT(EXISTS(

 SELECT 1

 FROM "CUST_ORDER" t2

 WHERE t1."CUSTOMER_ID" =
t2."CUSTOMER_ID" AND t2."STATUS" = 'OPEN'

))

Table 3-20 Various XQuery Patterns that Can Generate Semi-Join and Anti-Semi-Join SQL

XQuery Engine and SQL

3-22 XQuery Developer’s Guide

Figure 3-21 XQuery Containing a Group By

The XQuery engine translates group-by clauses into equivalent SQL GROUP BY clauses if:

the expressions defining grouping variables are pushable

the partition variable is used by an aggregate function only

Since the query shown in Figure 3-21 meets these requirements, the following SQL statement is
generated:

SELECT t1."CATEGORY" AS c1, COUNT(*) AS c2

FROM "PRODUCT" t1

GROUP BY t1."CATEGORY"

The group-by pushdown is closely related to the Distinct-by Pushdown: When a group-by clause does
not include a partition variable, the XQuery engine generates SQL that includes the DISTINCT
keyword, as described in the next section.

Distinct-by Pushdown
An XQuery containing a Group By clause (without a partition definition), can be generated into SQL
query that uses SQL’s DISTINCT keyword to eliminate duplicates in the result. For example, the
XQuery statement in Table 3-22 uses a group-by clause but has no partition defined, and the SQL
statement created by DSP refines the result by using the DISTINCT keyword.

SQL Pushdown: Pe r fo rmance Opt imizat ion

XQuery Developer’s Guide 3-23

Table 3-22 Distinct By Pushdown

Trivial Aggregate Pattern
An aggregate function operating on a single column from a data source is one of the simplest aggregate
patterns that the XQuery engine supports, although it does so in a slightly non-intuitive way. It uses a
constant as a single grouping expression (...GROUP ...BY n). The XQuery engine can pushdown the
SQL if the RDBMS supports either a GROUP BY operation on a constant or supports sub-queries in the
sub-clause (see Table 3-23).

Table 3-23 Aggregate Pushdown

Group-By with a Nested Where Clause Translates to SQL HAVING Clause
If a relational data source supports nested WHERE clauses, the XQuery engine can translate a where
clause after a group-by clause into a SQL HAVING clause provided that the where clause meets other
requirements for XQuery-SQL translation.

XQuery Statement SQL Statement

for $product in PRODUCT()

group by $product/CATEGORY_ID as $category

return $category

SELECT DISTINCT t1."CATEGORY_ID" AS c1

FROM "PRODUCT" t1

XQuery Statement SQL Statement1

1. RDBMS supports GROUP BY constant

SQL Statement2

2. RDBMS does not support GROUP BY, but does support sub-queries in the FROM clause

for $product in PRODUCT()

group $product/LIST_PRICE

as $price_group

by 1

return min($price_group)

SELECT MIN(t1."LIST_PRICE")
AS c1

FROM "PRODUCT" t1

GROUP BY 1

SELECT MIN(t2.c2) AS c3

FROM (

 SELECT 1 AS c1,
t1."LIST_PRICE" AS c2

 FROM "PRODUCT" t1

) t2

GROUP BY t2.c1

XQuery Engine and SQL

3-24 XQuery Developer’s Guide

Table 3-24 Nested WHERE Clauses

Outer Join with Aggregate Pattern
Another common pattern supported by the DSP XQuery engine is outer join with aggregation of the
right branch, which is expressed in XQuery as nested FLWR expressions with aggregate functions in
the inner level (Table 3-25).

XQuery Statement SQL Statement

for $product in PRODUCT()

group $product/LIST_PRICE as $price_group

by $product/CATEGORY as $category

where max($price_group) gt 1000

return

<t>

{

 $category,

 min($price_group)

}

</t>

SELECT t1."CATEGORY" AS c1,
MIN(t1."LIST_PRICE") AS c2

FROM "PRODUCT" t1

GROUP BY t1."CATEGORY"

HAVING MAX(t1."LIST_PRICE") > 1000

SQL Pushdown: Pe r fo rmance Opt imizat ion

XQuery Developer’s Guide 3-25

Table 3-25 Outer Join with Aggregate

With this type of query, in order to fully push as much of the query as possible to the data source
RDBMS, the XQuery engine evaluates the outer join first and then performs the group-by on the left
branch’s primary key column, to compute the aggregate. The XQuery engine can perform this
optimization only if the left branch of the query has a key column. As shown in Table 3-25, the
CUSTOMER does, so the optimization will be performed.

The net effect is that only the XML creation is performed in the XQuery engine.

If-Then-Else Pattern
The CASE expression, introduced in SQL:1992, provides a way to use if-then-else logic in SQL
statements without having to invoke procedures. The CASE expression correlates a list of values and
alternatives.

An XQuery if-then-else pattern can be translated into an SQL CASE expression if:

the underlying data source (RDBMS) supports CASE expressions.

XQuery Statement SQL Statement

for $customer in CUSTOMER()

return

<customer>

 <name>{ data($customer/LAST_NAME)
}</name>

 <order-amount>

 {

 sum(

 for $c_order in CUST_ORDER()

 where $customer/CUSTOMER_ID eq
$c_order/CUSTOMER_ID

 return $c_order/ORDER_AMOUNT

)

 }

 </order-amount>

</customer>

SELECT t1."LAST_NAME" AS c1,
SUM(t2."ORDER_AMOUNT") AS c2

FROM "CUSTOMER" t1

LEFT OUTER JOIN "CUST_ORDER" t2

ON (t2."CUSTOMER_ID" = t1."CUSTOMER_ID")

GROUP BY t1."CUSTOMER_ID"

XQuery Engine and SQL

3-26 XQuery Developer’s Guide

the XQuery data type result is not an xs:boolean.

the data types associated with the then and else expresssions are the same (quantifiers are
disregarded).

The then and else expressions can contain (or fully consist of) parameters. If the if-then-else
expression does not depend on the data source, the entire expression is pushed as a parameter.

Table 3-26 If-Then-Else Pushdown

Subsequence Pushdown
In the typical RDBMS application, it is quite common to paginate the results—output just 20 customer
records per page, for example, for printing or other purposes. XQuery meets this need with its
subsequence() function. XQuery provides two different subsequence functions, shown in Table 3-27.

Table 3-27 Two- and three-argument Variants of XQuery Subsequence Function

The two-argument variant returns the remaining items of an input sequence, starting from the
$startingLoc. The three-argument variant returns $length items of the input sequence starting from
the $startingLoc. Table 3-28 shows several different examples of the subsequence function in the
context of specific queries.

XQuery Statement SQL Statement

for $i in CUST_ORDER()

return

 if ($i/STATUS eq "SHIPPED")

 then data($i/STATUS)

 else data($i/CUSTOMER_ID)

SELECT

 CASE WHEN (t1."STATUS" = 'SHIPPED')

 THEN t1."STATUS"

 ELSE t1."CUSTOMER_ID" END AS c1

FROM "CUST_ORDER" t1

Two-argument variant Three-argument variant

fn:subsequence(

$sourceSeq as item()*,

$startingLoc as xs:double

) as item()*

fn:subsequence(

$sourceSeq as item()*,

$startingLoc as xs:double,

$length as xs:double

) as item()*

SQL Pushdown: Pe r fo rmance Opt imizat ion

XQuery Developer’s Guide 3-27

Table 3-28 Examples of XQuery Expressions using Subsequence Function

Query statement XQuery Expression

Return the 10 most
expensive products only.

let $s :=
for $i in PRODUCT()
order by $i/LIST_PRICE descending
return $i

for $p in subsequence($s, 1, 10)
return <product>

<name> { data($p/PRODUCT_NAME) } </name>
<price> { data($p/LIST_PRICE) } </price>

</product>

XQuery Engine and SQL

3-28 XQuery Developer’s Guide

An XQuery subsequence pattern can be translated into an SQL subsequence expression if:

the fn:subsequence() operates on a FLWR expression that returns items from the RDBMS

the return expression in the inner FLWR must always return a single item (it can be a row
element or column element)

the underlying data source (RDBMS) supports subsequence

DSP can pushdown the subsequence pattern to the underlying RDBMS, thereby enhancing
performance, as long as the underlying RDBMS supports it.

Return all service cases
opened against each of the
10 most expensive products
(outer join).

let $s :=
for $i in PRODUCT()
order by $i/LIST_PRICE descending
return $i

for $p in subsequence($s, 1, 10)
return <product>
<name> { data($p/PRODUCT_NAME) } </name>
{

for $sc in SERVICE_CASE()
where $p/PRODUCT_ID eq $sc/PRODUCT_ID and

$sc/STATUS = ‘Open’
return <case>{ data($sc/CASE_ID) }</case>

}
</product>

Return the total number of
service cases opened against
each of the 10 most
expensive products
(aggregation).

let $s :=
for $i in PRODUCT()
order by $i/LIST_PRICE descending
return $i

for $p in subsequence($s, 1, 10)
return
<product>
<name> { data($p/PRODUCT_NAME) } </name>
{

let $scs :=
for $sc in SERVICE_CASE()
where $p/PRODUCT_ID eq $sc/PRODUCT_ID and $sc/STATUS = ‘Open’
return $sc

return <case_count>{ count($scs) }</case_count>
}
</product>

SQL Pushdown: Pe r fo rmance Opt imizat ion

XQuery Developer’s Guide 3-29

IBM DB2/8 supports both variants of the subsequence function. However, if the $startingLoc or
$length are typed as xs:double, pushdown does not occur.

Oracle 8i, Oracle 9i, and Oracle Database 10g support both versions of the subsequence
function, without restriction.

Microsoft SQL Server 2000 supports the three-argument version only, and requires that
$startingLoc must be 1 (a constant) and $length must be an xs:integer constant.

Subsequence pushdown is not supported for Pointbase, Sybase, or any base RDBMS (see “XQuery-SQL
Mapping Reference” on page B-1 for other core and base RDBMS information.)

Table 3-29 Subsequence Pushdown

Direct SQL Data Services and Pushdown
Data Services Platform lets you create data services not only from relational tables and views, but also
from SQL queries. These direct SQL data services, as they are called, can also be composed by the DSP
XQuery engine, and pushed down as native SQL to the target RDBMS, if:

the RDBMS supports sub-queries in the FROM clause.

for outer join pushdown, key information must be specified in the Direct SQL data service
configuration (see “XQuery-SQL Mapping Reference” on page B-1).

XQuery Statement SQL Statement (Oracle)

let $s :=

 for $i in t2:PRODUCT()

 order by $i/LIST_PRICE descending

 return $i

for $p in subsequence($s, 1, 10)

return <product>

<name>
{ data($p/PRODUCT_NAME) }

</name>
<price>

{ data($p/LIST_PRICE) }
</price>

</product>
};

SELECT t3.c1, t3.c2 FROM(
SELECT ROWNUM as c3, t2.c1, t2.c2

FROM(
SELECT t1.”LIST_PRICE” as c1,

t1.“PRODUCT_NAME” as c2
FROM “RTLALL”.”PRODUCT” t1
ORDER BY t1.”LIST_PRICE” DESC

)t2
)t3

WHERE(t3.c3 <11)

XQuery Engine and SQL

3-30 XQuery Developer’s Guide

If the RDBMS does not support sub-queries (the FROM clause), the pushdown will not occur.

For example, a user-defined SQL query, “recent_order” is configured as a relational source:

SELECT * from RECENT_ORDER

The XQuery that gets created in the data service and the resulting generated SQL that gets pushed
down by the XQuery engine are shown in Table 3-30.

Table 3-30 Direct SQL Data Service Example

SQL pushdown on top of direct SQL is not limited to simple select-project queries. Any operation for
which pushdown is supported for table and view sources is also supported for data services created for
direct SQL queries. For example, Table 3-31 shows a join query and its generated result.

Table 3-31 Direct SQL Data Service with Join Condition

XQuery Statement SQL Statement

declare variable

$external_variable as xs:string external;

for $recent_order in RECENT_ORDER()

where $recent_order/ORDER_ID eq
$external_variable

return $recent_order/ORDER_AMOUNT

SELECT t1."ORDER_AMOUNT" AS c1

FROM (

 SELECT * FROM RECENT_ORDER

) t1

WHERE t1."ORDER_ID" = ?

XQuery Statement SQL Statement

for $customer in CUSTOMER()

for $recent_order in RECENT_ORDER()

where $customer/CUSTOMER_ID eq
$recent_order/CUSTOMER_ID

return

<t>{ $customer/CUSTOMER_ID,
$recent_order/ORDER_ID }</t>

SELECT t1."CUSTOMER_ID" AS c1,
t2."ORDER_ID" AS c2

FROM "CUSTOMER" t1

JOIN (

 SELECT * FROM RECENT_ORDER

) t2

ON t1."CUSTOMER_ID" = t2."CUSTOMER_ID"

SQL Pushdown: Pe r fo rmance Opt imizat ion

XQuery Developer’s Guide 3-31

Distributed Query Pushdown
Data Services Platform uses SQL pushdown to off-load query processing to the underlying data source
RDBMS whenever possible. However, as mentioned in “How it Works—XQuery Engine’s Support for
SQL” on page 3-3, SQL pushdown is not always possible, nor beneficial. For example, when two data
sources are running on two different systems, or when a query combines relational data with
non-relational data, SQL pushdown may not provide any performance benefit.

In cases such as these, DSP uses special techniques to batch-process the outside portion of a query
(the left branch) and send a cluster (or chunk) of data to the right branch as parameters (see
Table 3-32). The XQuery engine chooses this optimization technique (a “clustered parameter passing
join,” also known as PPK) for a distributed query when:

join pattern is recognized by the compiler, and

the join cannot be pushed down in its entirety for any reason, and

join condition is pushable to either branch when all expressions operating on another branch
are treated as parameters in the generated SQL.

Table 3-32 Distributed Query Pushdown—PPK Join Example

Unless all these conditions are met, the XQuery engine cannot use this optimization technique but will
instead use the single parameter join instead (PP1 join).

XQuery Statement SQL Statement

for $customer in CUSTOMER()

for $order in ORDER()

where

$customer/CUSTOMER_ID eq

$recent_order/CUSTOMER_ID

return

<t>{ $customer/CUSTOMER_ID,
$order/ORDER_ID }</t>

SELECT t1."CUSTOMER_ID" AS c1,

t1.”ORDER_ID” as c2

from “ORDER” t1

WHERE t1.”CUSTOMER_ID” = ? OR

t1.”CUSTOMER_ID” = ?

...

OR

t1.”CUSTOMER_ID” =?

XQuery Engine and SQL

3-32 XQuery Developer’s Guide

Preventing SQL Pushdown
Developers can exercise control over SQL pushdown by using the fn-bea:fence() function (a BEA
extension to XQuery functions and operations) to demarcate sections of XQuery code that the XQuery
engine should ignore when it is evaluating query fragments for SQL pushdown.

For the example shown in Table 3-33, even though the upper-case function could be pushed down to
the RDBMS, its pushdown is blocked by the fence() function and the upper-case function will be
executed by the XQuery engine. Only the fragment comprising the lower-case function is included in
the query plan as SQL pushdown. The result of the SQL will be returned to the XQuery engine, which
will use the XQuery upper-case function on the result.

Use the fence() function whenever you want SQL to be sent as is, to the RDBMS. For example, if you
are accessing an Oracle 8.5.x RDBMS that uses hints and Oracle’s rule-based optimizer, you should
send the hinted SQL queries to the data source by wrapping them in the fence() function.

Table 3-33 Using the fn-bea:fence() Function

To circumvent SQL pushdown for specific clauses, extract those clauses into separate FLWOR
expressions with the fence() function at the top of the clause, as shown here:

for $x in

 fn-bea:fence

 (

 for $c in CUSTOMER()

 return $c/LAST_NAME

)

XQuery Statement SQL Statement

for $c in CUSTOMER()

return

 upper-case(

 fn-bea:fence(

 lower-case($c/LAST_NAME)

)

)

SELECT LOWER(t1."LAST_NAME") AS c1

FROM "CUSTOMER" t1

Prevent ing SQL Pushdown

XQuery Developer’s Guide 3-33

order by $x

return $x

As you develop data services that use relational data sources, use the Query Plan View of WebLogic
Workshop to see the results of using the fence() function (Figure 3-34). In this example, the order by
clause will be executed by the XQuery engine rather than pushed down as SQL.

Figure 3-34 Example of an XQuery Plan without (l) and with (r) the fn-bea:fence() Function

Note that the red triangles displayed in the SQL portions of Figure 3-34 are alerts calling attention to
the fact that a where clause is missing from the XQuery statement.

XQuery Engine and SQL

3-34 XQuery Developer’s Guide

XQuery Developer’s Guide 4-1

C H A P T E R 4

Understanding XML Namespaces

XML namespaces are a mechanism that ensures that there are no name conflicts (or ambiguity) when
combining XML documents or referencing an XML element. BEA AquaLogic Data Services Platform
(DSP) fully supports XML namespaces and includes namespaces in the queries generated in
WebLogic Workshop.

This section includes the following topics:

Introducing XML Namespaces

Using XML Namespaces in Data Services Platform Queries and Schemas

Unders tanding XML Namespaces

4-2 XQuery Developer’s Guide

Introducing XML Namespaces
Namespaces provide a mechanism to uniquely distinguish names used in XML documents. XML
namespaces appear in queries as a namespace string followed by a colon. The W3C uses specific
namespace prefixes to identity W3C XQuery data types and functions. In addition, BEA has defined
the fn-bea: namespace to uniquely identify BEA-supplied functions and data types.

Table 4-1 lists the predefined XQuery namespaces used in Data Services Platform queries.

For example, the xs:integer data type uses the XML namespace xs. Actually, xs is an alias (called
a prefix) for the namespace URI.

XML namespaces ensure that names do not collide when combining data from heterogeneous XML
documents. As an example, consider a document related to automobile manufacturers that contains
the element <tires>. A similar document related to bicycle tire manufacturers could also contain a
<tires> element. Combining these documents would be problematic under most circumstances.
XML namespaces easily avoid these types of name collisions by referring to the elements as
<automobile:tires> and <bicycle:tires>.

Table 4-1 Predefined Namespaces in XQuery

Namespace Prefix Description Examples

fn The prefix for XQuery functions. fn:data()

fn:sum()

fn:substring()

fn-bea: The prefix for DSP-specific
extensions to the standard set of
XQuery functions.

fn-bea:rename()

fn-bea:is-access-allo
wed()

xs The prefix for XML schema types. xs:string

In t roduc ing XML Namespaces

XQuery Developer’s Guide 4-3

Exploring XML Schema Namespaces
XML schema namespaces—including the target namespace—are declared in the schema tag. The
following is an example using a schema created during metadata import:

<xsd:schema
targetNamespace="http://temp.openuri.org/SampleApp/CustOrder.xsd"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:bea="http://www.bea.com/public/schemas"
elementFormDefault="unqualified" attributeFormDefault="unqualified">

...

The second line declares the target namespace using the targetNamespace attribute. It this case,
the target namespace is bound to the namespace declared on the fourth line, meaning that all element
and attribute names declared in this document belong to:

http://www.bea.com/public/schemas

The third line of the schema contains the default namespace, which is the namespace of all the
elements that do not have an explicit prefix in the schema.

For example, if you see the following element in a schema document:

<element name="appliance" type="string"/>

the element element belongs to the default namespace, as do unprefixed types such as string.

The fifth line of the schema contains a namespace declaration (bea) which is simply an association
of a URI with a prefix. There can be any number of these declarations in a schema.

References to types declared in this schema document must be prefixed, as illustrated by the following
example:

<complexType name="AddressType">
<sequence>
<element name="street_address" type="string"/>

...

</sequence>
</complexType>

<element name="address" type="bea:AddressType"/>

It is recommended that you create schemas with elementFormDefault="unqualified" and
attributeFormDefault="unqualified". This enables you to rename a namespace by renaming
a single complex element, instead of having to explicitly map every element.

Unders tanding XML Namespaces

4-4 XQuery Developer’s Guide

Using XML Namespaces in Data Services Platform Queries and
Schemas

Data Services Platform (DSP) automatically generates the namespace declarations when generating
a query. Liquid Data employs a simple scheme using labels ns0, ns1, ns2, and so forth. Although it is
easy to change assigned namespace names, care must be taken to make sure that all uses of that
particular namespace are changed.

When a return type is created, by default it is qualified, meaning that the namespace of complex
elements appear in the schema.

Figure 4-2 Schema with Unqualified Attributes and Elements

If you want simple elements or attributes to appear as qualified, you need to use an editor outside
WebLogic Workshop to modify the generated schema for either or both attributeFormDefault
and elementFormDefault to be set to qualified.

XQuery Developer’s Guide 5-1

C H A P T E R 5

Best Practices Using XQuery

This chapter offers a series of best practices for creating data services using XQuery. The chapter
introduces a data service design model, and describes a conceptual model for layering data services
to maximize management, maintainability, and reusability.

This chapter includes the following topics:

Introducing Data Service Design

Understanding Data Service Design Principles

Applying Data Service Implementation Guidelines

Introducing Data Service Design
When designing data services, you should strive to maximize the ability to maintain, manage, and
reuse queries. One approach is to adopt a layered design model that partitions services into the
following levels:

Application Services. Data services at the Application Services level are defined by client
application requirements. Functions defined in this layer can additionally be used to constraint
queries and to aggregate data, among other tasks.

Logical Services. The Logical Services contain functions that perform general purpose logical
operations and transformations on data accessed through Canonical and Physical Services.

Canonical Services. Data services defined at the Canonical Services level normalize data
obtained from the Physical Services level.

Best P ract ices Us ing XQuery

5-2 XQuery Developer’s Guide

Physical Services. The Physical Services are defined by the system based on introspection of
physical data sources. The system creates data service functions that retrieve all rows in a
table, offering the greatest flexibility for data service functions defined in higher layers. The
system also defines relationships between data services, as required.

Figure 5-1 illustrates the data service design model.

Figure 5-1 Data Service Design Model

Using this design model, you can design and develop data services in the following manner:

1. Develop the Physical Services based on introspection of physical data sources.

2. Define the Application Services based on precise client application requirements.

3. Design the Canonical Services to normalize and create relationships between data accessed
using the Physical Services.

4. Design the Logical Services to manipulate and transform data accessed through the Canonical
and Physical Services, providing general purpose reusable services to the Application Services
layer.

5. Work through the layers from the top down, determining optimal functions for each level and
factoring our reusable queries.

Customer Order, Itemfcredit()

Physical
Services

Canonical
Services

Logical
Services

Application
Services

Customer
Help Center

Shipping
Center

CA CB

C’A C’B

C O-I

O I

O’ I’

C-O O-C
Get C-0 by
— email
— name
— phone
— lastcall

Get O-C by
— orderno
— name
— city/state

Unders tanding Data Serv ice Des ign P r inc ip l es

XQuery Developer’s Guide 5-3

Understanding Data Service Design Principles
This section describes best practices for designing and developing services at each layer of the data
service design model. Table 5-2 describes the data service design principles.

Table 5-2 Data Service Design Principles

Level Design Principle Description

Application
Services

Base design on client needs Design data services and queries at the Application Services
level specifically tuned to client needs, using functions defined
at the Logical and Canonical Service levels.

Nest or relate information, as
required by the application

Use the XML practice of nesting related information in a single
XML structure. Alternatively, use navigation functions to relate
associated information, as required by the application.

Introduce constraints at the
highest level

DSP propagates constraints down function levels when
generating queries. By keeping constraints, such as function
parameters, at the highest level, you encourage reuse of lower
level functions and permit the system to efficiently optimize the
final generated query.

Aggregate data at the highest
level

Aggregate data in functions at the highest level possible,
preferably at the Application Services level.

Logical Services Create common functions to
serve multiple applications

Design functions that provide common services required by
applications. Base function design at the Logical Services level
on requirements already established at the Application Services
level, based on client needs.

Refactor to reduce the number
of functions

Refactor the functions, as necessary, to reduce the overall
number of functions to as few as possible. This reduces
complexity, simplifies documentation, and eases future
maintenance.

Canonical
Services

Use function defined in the
Physical Services level

Create (public) read functions can then all be expressed in
terms of the main “get all instances” function.

Best P ract ices Us ing XQuery

5-4 XQuery Developer’s Guide

Canonical
Services

Create navigation functions to
represent relationships

Use separate data services with relationships (implemented
through navigation functions) rather than nesting data. For
example, create navigation functions to relate customers and
orders or customers and addresses instead of nesting this
information.

This keeps data services and their queries small, making them
more manageable, maintainable, and reusable.

Define keys to improve
performance

Defining keys enables the system to use this information when
optimizing queries.

Establish relationships
between unique identifiers
and primary keys

Establish relationships between unique identifiers or primary
keys that refer to the same data (such as Customer ID or SSN)
but vary across multiple data sources. You can use either of the
following methods:

• Create navigation functions to create relationships between
the data.

• Create a new table in the database to relate the unique
identifiers and primary keys.

Physical
Services

Employ functions that get all
records

Using private functions that get all records at the Physical
Services level provides the system with the most flexibility to
optimize data access based on constraints specified in higher
level functions.

Do not perform data type
transformations

The system is unable to generate optimizations based on
constraints specified at higher levels when data type
transformations are performed at the Physical Services level.

Do not aggregate Use aggregates at the highest level possible to enable the system
to optimize data access.

Table 5-2 Data Service Design Principles (Continued)

App l y ing Data Se rv ice Implementat ion Guide l ines

XQuery Developer’s Guide 5-5

Applying Data Service Implementation Guidelines
Table 5-3 describes implementation guidelines to apply when designing and developing data services.

Best P ract ices Us ing XQuery

5-6 XQuery Developer’s Guide

Table 5-3 Data Service Implementation Guidelines

Level Design Principle Description

Application
Services

Use the group clause to
aggregate

When performing a simple aggregate operation (such as count,
min, max, and so forth) over data stored in a relational source,
use a group clause as illustrated by the following:

for $x in f1:CUSTOMER()
group $x as $g by 1
return count($g)

instead of:

count(f1:CUSTOMER())

in order to enable pushdown of the aggregation operation to the
underlying relational data source.

Note that the two formulations are semantically equivalent
except for the case where the sequence returned by
f1:CUSTOMER() is the empty sequence. Of course performance
will be better for the pushed down statement.

Use element(foo) instead of
schema-element(foo)

Define function arguments and return types in data services as
element(foo) instead of schema-element(foo). Using
schema-element instead of element causes DSP to perform
validation, potentially blocking certain optimizations.

Use xs:string to cast data Use xs:string when casting data instead of fn:string(). The two
approaches are not equivalent when handling empty input, and
the use of xs:string enables cast operations to be executed by the
database.

Be aware of Oracle treating
empty strings as NULL, and
how this affects XQuery
semantics

The Oracle RDBMS treats empty strings as NULL, without
providing a method of distinguishing between the two. This can
affect the semantics of certain XQuery functions and operations.

For example, the fn:lower-case() function is pushed
down to the database as LOWER, though the two have different
semantics when handling an empty string, as summarized by the
following:

• fn:lower-case() returns an empty string

• LOWER in Oracle returns NULL

When using Oracle, consider using the fn-bea:fence()
function and performing additional computation if precise
XQuery semantics are required.

App l y ing Data Se rv ice Implementat ion Guide l ines

XQuery Developer’s Guide 5-7

Application
Services

Return plural for functions
that contain FLWOR
expressions

When a function body contains a FLWOR expression, or
references to functions that contains FLWOR, the function
should return plural.

For example, consider the following XQuery expression:

For $c in CUSTOMER()
Return

<CUSTOMER>
<LAST_NAME>$c/LAST_NAME</LAST_NAME>
<FIRST_NAME>$c/FIRST_NAME

</FIRST_NAME>
<ADDRESS>{
For $a in ADDRESS()
Where $a/CUSTOMER_ID =

$c/CUSTOMER_ID
Return

$a
}</ADDRESS>

</CUSTOMER>

Defining a one-to-one relationship between a CUSTOMER and an
ADDRESS, as in the following, can block optimizations.

<element name=CUSTOMER>
<element name=LAST_NAME/>
<element name=FIRST_NAME/>
<element name=ADDRESS/>

</element>

This is because DSP determines that there can be multiple
addresses for one CUSTOMER. This leads the system to insert a
TypeMatch operation to ensure that there is exactly one
ADDRESS. The TypeMatch operation blocks optimizations, thus
producing a less efficient query plan.

The Query Plan Viewer shows TypeMatch operations in red
and should be avoided. Instead, the schema definition for
ADDRESS should indicate that there could be zero or more
ADDRESSes.

<element name=CUSTOMER>
<element name=LAST_NAME/>
<element name=FIRST_NAME/>
<element name=ADDRESS minOccurs=”0”

maxOccurs=”unbounded”/>
</element>

Table 5-3 Data Service Implementation Guidelines (Continued)

Best P ract ices Us ing XQuery

5-8 XQuery Developer’s Guide

Application
Services

Avoid cross product
situations

Avoid cross product (Cartesian Product) situations when
including conditions. For example, the following XQuery sample
results in poor performance due to a cross product situation:

define fn ($p string)
for $c in CUSTOMER()
for $o in ORDER()
where $c/id eq $p
and $o/id eq $p

Instead, use the following form to specify the same query:

define fn ($p string)
for $c in CUSTOMER()
for $o in ORDER()
where $c/id eq $o/id
and $c/id eq $p

Table 5-3 Data Service Implementation Guidelines (Continued)

XQuery Developer’s Guide 6-1

C H A P T E R 6

Understanding Data Services Platform
Annotations

This chapter describes the syntax and semantics of BEA AquaLogic Data Services Platform (DSP)
annotations in data service and XQuery function library (XFL) documents. Data service and XQuery
function library documents define collections of XQuery functions. Annotations are XML fragments
comprising the character content of XQuery pragmas.

There are two types of annotations:

Global annotations. These pertain to the entire data service or XFL document. Global
annotations are also referred to as XDS or XFL annotations respectively.

Local annotations. These pertain to a particular function. Local annotations are also referred
to as function annotations.

This chapter includes the following topics:

XDS Annotations

XFL Annotations

Function Annotations

See Appendix A, “Annotations Reference,” for a listing of the XML Schema for annotations.

Unders tanding Data Se rv ices P la t fo rm Annota t ions

6-2 XQuery Developer’s Guide

XDS Annotations
There is a single XDS annotation per data service document, which appears before all function
annotations. The identifier for the pragma carrying the XDS annotation is xds. The qualified name of
the top level element of the XML fragment corresponding to an XDS annotation has the local name
xds and the namespace URI urn:annotations.ld.bea.com.

Each data service is associated with a unique target type. The prime type of the return type of every
read function must match its target type. The target type of a data service is an element type whose
qualified name is specified by the targetType attribute of the xds element. It is defined in a schema
file associated with that data service.

The contents of the top-level xds element is a sequence of the following blocks of properties:

General Properties

Data Access Properties

Target Type Properties

Key Properties

Relationship Properties

Update Properties

Security Properties

The following excerpt provides an example of an XDS annotation. In this case, the target type
t:CUSTOMER associates the data service with a t:CUSTOMER type in a schema file.

(::pragma xds <x:xds xmlns:x="urn:annotations.ld.bea.com"
targetType="t:CUSTOMER" xmlns:t="ld:oracleDS/CUSTOMER">

<author>Joe Public</author>
<relationalDB name="OracleDS"/>

<field type="xs:string" xpath="FIRST_NAME">
<extension nativeFractionalDigits="0" nativeSize="64"

nativeTypeCode="12" nativeType="VARCHAR2"
nativeXpath="FIRST_NAME"/>
<properties nullable="false"/>

</field>

XDS Annotat i ons

XQuery Developer’s Guide 6-3

<field type="xs:string" xpath="LAST_NAME">
<extension nativeFractionalDigits="0" nativeSize="64"

nativeTypeCode="12" nativeType="VARCHAR2"
nativeXpath="LAST_NAME"/>

<properties nullable="false"/>
</field>

<field type="xs:string" xpath="CUSTOMER_ID">
<extension nativeFractionalDigits="0" nativeSize="64"

nativeTypeCode="12" nativeType="VARCHAR2"
nativeXpath="CUSTOMER_ID"/>

<properties nullable="false"/>
</field>

<field type="xs:dateTime" xpath="CUSTOMER_SINCE">
<extension nativeFractionalDigits="0" nativeSize="7"

nativeTypeCode="93" nativeType="DATE"
nativeXpath="CUSTOMER_SINCE"/>

<properties nullable="false"/>
</field>

<field type="xs:string" xpath="EMAIL_ADDRESS">
<extension nativeFractionalDigits="0" nativeSize="32"

nativeTypeCode="12" nativeType="VARCHAR2"
nativeXpath="EMAIL_ADDRESS"/>

<properties nullable="false"/>
</field>

<key name="CUSTOMER_PK11015727676593">
<field xpath="CUSTOMER_ID">

<extension nativeXpath="CUSTOMER_ID"/>
</field>

</key>

<relationshipTarget roleName="CUSTOMER_ORDER" roleNumber="2"
XDS="ld:oracleDS/CUSTOMER_ORDER.xds" minOccurs="0"
maxOccurs="unbounded" opposite="CUSTOMER"/>

</x:xds>::)

Unders tanding Data Se rv ices P la t fo rm Annota t ions

6-4 XQuery Developer’s Guide

General Properties
There are two types of general XDS properties:

Standard Document Properties

User-Defined Properties

Standard Document Properties
You can specify a set of standard document properties consisting of optional XML elements containing
information pertaining to the author, creation date, or version of the document. You can also use the
optional element named “documentation” to specify related documentation. The names and types of
the elements in the standard document properties block, as well as examples of their use, are shown
in Table 6-1.

User-Defined Properties
In addition to the standard properties, you can specify custom properties pertaining to the entire data
service document using a sequence of zero (0) or more “property” elements. Each property element
must be named using its “name” attribute and may contain any string content. For example:

<property name=”data-refresh-rate”>week</property>

Table 6-1 Standard Document Properties

Element Name Element Type Optional Example Instance

author xs:string Yes <author>J. Public</author>

creationDate xs:date Yes <creationDate>2004-05-31</creat
ionDate>

version xs:decimal Yes <version>2.2<version>

documentation xs:string Yes <documentation> Models an
online Customer
</documentation>

XDS Annotat i ons

XQuery Developer’s Guide 6-5

Data Access Properties
Each data service document defines one or more XQuery functions that act as either data providers or
data transducers. A data provider, or data source, is a function that is declared as external; its
invocation causes data from an external source to be brought into the system. A data transducer, or
data view, is defined in XQuery and it typically performs transformations on data derived from data
sources or other data views.

The block of data access properties allows each data service to define whether its read functions
include data sources or not. When data sources are included, the data access annotation describes the
type of the external source being accessed by the external functions (there may be a single external
source per data service) and its connection properties. When data sources are not included, the data
service is designated as a user-defined view, and no connection information is required.

A data service may also define another form of XQuery functions known as private functions. The
following types of data source data services are supported:

Relational

Web service

Java function

Delimited content

XML content

The following sections describe the data access annotation for the data service types, as well as for
data services that are designated as user-defined views. You can specify only one of the annotations in
each data service. If no annotation is provided, the data service is considered a user-defined view.

Unders tanding Data Se rv ices P la t fo rm Annota t ions

6-6 XQuery Developer’s Guide

Relational Data Service Annotations
The data access annotation for a relational data service consists of the empty element relationalDB
with a single required attribute, “name”, whose value should be set to the JNDI name by which the
external relational source has been registered with the application server. For example:

<relationalDB name="OracleDS"/>

In addition, the relationalDB element can contain the following optional parts:

An optional element, named “properties”, that exposes the values of specific settings of the
Relational Database Management System (RDBMS) represented by the relational source.

An optional attribute, named sourceBindingProviderClassName, that specifies the
transformation used to determine the relational source that should be used at system runtime
in the place of the statically defined source.

Native Relational Properties
The “properties” element is an empty element with several attributes. All attributes are required
unless otherwise specified in Table 6-2.

Table 6-2 Attributes for the properties Element

Attribute Description

catalogSeparator Specifies the string used by the RDBMS as a
separator between a catalog and a table name.
Required.

identifierQuote Specifies the string used by the RDBMS to quote
SQL identifiers. Required.

catalogQuote Specifies the string used by the RDBMS to quote
database catalog identifiers. Optional.

schemaQuote Specifies the string used by the RDBMS to quote
database schema identifiers. Optional.

tableQuote Specifies the string used by the RDBMS to quote
table identifiers. Optional.

columnQuote Specifies the string used by the RDBMS to quote
column identifiers. Optional.

XDS Annotat i ons

XQuery Developer’s Guide 6-7

nullSortOrder A string specifying how null values are sorted by the
RDBMS, from among the following values: high,
low, or unknown. Required.

supportsCatalogsInDataManipulation A Boolean specifying whether the RDBMS supports
catalog names in Data Manipulation Language
(DML) SQL statements. Required.

supportsLikeEscapeClause A Boolean specifying whether the RDBMS supports
LIKE escape clauses. Required.

supportsSchemasInDataManipulation A Boolean specifying whether the RDBMS supports
schema names in DML SQL statements. Required.

Table 6-2 Attributes for the properties Element (Continued)

Attribute Description

Unders tanding Data Se rv ices P la t fo rm Annota t ions

6-8 XQuery Developer’s Guide

Source Binding Provider
The value of the optional sourceBindingProviderClassName attribute should be bound to the
fully-qualified name of a user-defined Java class implementing the
com.bea.ld.bindings.SourceBindingProvider interface, defined by the following:

package com.bea.ld.bindings;
public interface SourceBindingProvider
{

public String getBinding(String genericLocator, boolean isUpdate);
}

The user-defined implementation should provide the transformation that, given the statically
configured relational source name (parameter genericLocator) and a Boolean flag indicating whether
the relational source is accessed in query or update mode (parameter isUpdate), determines the name
of the relational source name used by the system at runtime.

Note that you can use this transformation mechanism to perform credential mapping. In this case, a
single set of query or update operations to be performed in the name of two distinct users U1 and U2
against the same statically-configured relational source R0, is executed against two distinct relational
sources R1 and R2 respectively (where all sources R0, R1, R2 represent the same RDBMS and the
security policies applied to the connection credentials used for R1 and R2 correspond to the security
policies applied to the application credentials of user U1 and U2 respectively).

Note: You should set the source binding provider name uniformly across all relational data services
sharing the same relational source JNDI name. Although this restriction is not enforced, its
violation could result in unpredictable behavior at runtime.

XDS Annotat i ons

XQuery Developer’s Guide 6-9

Web Service Data Service Annotations
The data access annotation for a data service based on a Web service consists of the empty element
webService with two required attributes, described in Table 6-3.

For example:

<webService targetNamespace="urn:GoogleSearch"
wsdl="ld:google/GoogleSearch.wsdl"/>

Java Function Data Service Annotations
The data access annotation for a Java function data service consists of the empty element
javaFunction with a single required attribute named class, whose value should be set to the fully
qualified name of the Java class serving as the external source. For example:

<javaFunction class="com.example.Test"/>

Delimited Content Data Service Annotations
The data access annotation for a delimited content data service is the empty element delimitedFile,
accepting the optional attributes described in Table 6-4.

Table 6-3 Required Attributes for the webService Element

Attribute Description

wsdl A valid http: or ld: URI pointing to the location of the WSDL file containing the
definition of the external Web service source.

targetNamespace A valid URI that is identical to the targetNamespace URI of the WSDL.

Table 6-4 Optional Attributes for the delimitedFile Element

Attribute Description

file A valid URI pointing to the location of the delimited file.

schema A valid URI pointing to the location of the XML schema file defining the type
(structure) of the delimited contents. If absent, the schema is derived based on
the contents.

inferredSchema Specifies whether the schema was inferred or provided by the user. The default
value is false.

Unders tanding Data Se rv ices P la t fo rm Annota t ions

6-10 XQuery Developer’s Guide

For example:

<delimitedFile schema="ld:df/schemas/ALL_TYPES.xsd" hasHeader="true"
delimiter="," file="ld:df/ALL_TYPES.csv"/>

XML Content Data Service Annotations
The data access annotation for an XML content data service is the empty element xmlFile accepting
the attributes described in Table 6-5.

For example:

<xmlFile schema="ld:xml/somewhere/CUSTOMER.xsd"
file="ld:xml/CUSTOMER_NESTED.xml"/>

User Defined View XDS Annotations
The data access annotation for a user-defined view data service is also known as a logical data service.
It consists of the single empty element userDefinedView. For example:

<userDefinedView/>

delimiter The string used as the delimiter. If absent, the fixedLength attribute should be
present.

fixedLength The fixed length of the tokens contained in fixed length content. If absent, the
delimiter attribute should be present.

hasHeader A Boolean flag indicating whether the first line of the content should be
interpreted as a header. The default value is false.

Table 6-5 Attributes for the xmlFile Element

Attribute Description

file (Optional) A valid URI pointing to the location of the XML file.

schema A valid URI pointing to the location of the XML schema file defining the type
(structure) of the XML contents.

Table 6-4 Optional Attributes for the delimitedFile Element (Continued)

Attribute Description

XDS Annotat i ons

XQuery Developer’s Guide 6-11

Target Type Properties
The optional block of target type properties enables you to annotate simple valued fields in the target
type of the data service with native type information pertaining to the following:

The type of the corresponding field in the underlying external source (applicable only to data
source data services)

Information about the field’s properties with respect to its update behavior. Each annotated
field is represented by the element named “field” with two required attributes, described in
Table 6-6.

The following excerpt provides an example of a field element definition:

<field type="xs:string" xpath="FIRST_NAME">
<extension nativeSize="64" nativeTypeCode="12" nativeType="VARCHAR2"

nativeXpath="FIRST_NAME"/>
<properties nullable="false"/>

</field>

Native Type Properties
Each “field” element can contain an optional “extension” element that accepts the optional attributes
described in Table 6-7.

Table 6-6 Required Attributes for the field Element

Attribute Description

xpath An XPath value pointing to the field

type The qualified name of the field’s simple XML schema or XQuery type.

Table 6-7 Optional Attributes for the extension Element

Attribute Description

nativeXpath A native XPath value pointing to the corresponding native field in
the external source.

nativeType The native name of the native type of the corresponding native field,
as it is known to the external source.

Unders tanding Data Se rv ices P la t fo rm Annota t ions

6-12 XQuery Developer’s Guide

Update-related Type Properties
Each “field” element can also contain an optional “properties” element that accepts the optional
attributes described in Table 6-8.

nativeTypeCode The native type code of the native type of the corresponding native
field, as it is known to the external source. In the case of relational
sources, this is the type code as reported by JDBC.

nativeSize The native size of the native type of the corresponding native field,
as it is known to the external source. In the case of relational
sources, this is the size as reported by JDBC.

nativeFractionalDigits The native scale of the native type of the corresponding native field,
as it is known to the external source. In the case of relational
sources, this is the scale as reported by JDBC.

Table 6-8 properties element Optional Attributes

Attribute Description

immutable A Boolean value specifying whether the field is immutable (read-only) or not.
The default value is false.

nullable A Boolean value specifying whether the field accepts null values or not. The
default value is false.

Table 6-7 Optional Attributes for the extension Element (Continued)

Attribute Description

XDS Annotat i ons

XQuery Developer’s Guide 6-13

Key Properties
The optional block of key properties enables you to specify a set of identity constraints (keys) on the
data service target type. Each key is represented by the element “key” that accepts an optional
attribute, named “name”, whose value should serve as an identifier for the key.

Each “key” element contains a sequence of one or more “field” elements that collectively specify the
simple-valued target type fields that the key comprises. Keys may be simple (having one field) or
compound (having multiple fields). Each “field” element is identified by the value of its required
xpath attribute (behaving similarly to the xpath attribute described in “Target Type Properties” on
page 6-11).

Furthermore, each “field” element may optionally contain an extension element carrying a
nativeXpath attribute that behaves similarly to the nativeXpath attribute described in “Native
Properties” on page 6-25.

The following excerpt provides an example of a “key” element definition:

<key name="CUSTOMER_PK11015727676593">
<field xpath="CUSTOMER_ID">

<extension nativeXpath="CUSTOMER_ID"/>
</field>

</key>

Relationship Properties
The optional block of relationship properties enables you to specify a set of relationship targets. A
relationship target of a data service is a data service with which first service maintains a
unidirectional or bidirectional relationship. Unidirectional relationships are realized through one or
more navigate functions in the first data service that returns one or more instances of objects of the
second service target type. Bidirectional relationships require that reciprocal functions are present
in the second data service as well.

A relationship target is represented by the element relationshipTarget that accepts the attributes
described in Table 6-9.

Unders tanding Data Se rv ices P la t fo rm Annota t ions

6-14 XQuery Developer’s Guide

Additionally, the relationshipTarget element can itself contain the element “relationship” which in
turn contains the nested element “description” that contains a human readable description about the
relationship.

The following excerpt provides an example of a relationshipTarget element definition:

<relationshipTarget roleName="CUSTOMER_ORDER" roleNumber="2"
XDS="ld:oracleDS/CUSTOMER_ORDER.xds" minOccurs="0"
maxOccurs="unbounded" opposite="CUSTOMER"/>

Table 6-9 Attributes for the relationshipTarget Element

Attribute Description

roleName A string that uniquely identifies the relationship target inside the data service.

roleNumber (Optional) Either 1 or 2 (default is 1). The roleNumber specifies the index of
the relationship target within the relationship.

XDS The Data Services Platform URI of the data service serving as the relationship
target.

minOccurs (Optional) The minimum cardinality of relationship target instances
participating in this relationship. Possible values are all non-negative integers
and the empty string. The default value is the empty string.

maxOccurs (Optional) The maximum cardinality of relationship target instances
participating in this relationship. Possible values are all positive integers, the
string unbounded, and the empty string. The default is the empty string.

opposite (Optional) String attribute that indicates the reciprocal relationship target in
the case of bidirectional relationships. The value of this attribute is the
identifier used to identify this data service as a relationship target in the data
service identified by the value of the XDS attribute.

XDS Annotat i ons

XQuery Developer’s Guide 6-15

Update Properties
The optional block of update properties enables you to specify a set of properties that establish certain
policies about updating a data service’s underlying sources. In particular, you can specify the following
policies:

The data service function that should be analyzed in order to build the plan for update
decomposition.

The external Java function to use as an update exit.

The fields to use for optimistic locking purposes.

Whether the data service is updateable or not.

Function for Update Decomposition
You can expose data obtained through data service read functions as SDO objects that can later be
updated. In order for the changes to be persisted in the original data sources, the data service should
specify which read function are to be used to perform data lineage analysis. The result of this analysis
is a plan that allows the update to be decomposed into subplans that can be applied on each of the
underlying sources. This feature is primarily used by logical data services.

The function for update decomposition is represented by the element functionForDecomposition that
accepts the required attributes described in Table 6-10.

When the functionForDecomposition element is not present, the first read function in the data service
document is designated as the function for the update decomposition.

The following excerpt provides an example of a functionForDecomposition element definition:

<functionForDecomposition xmlns:f="ld:view/myView"
name="f:firstNameFilter" arity="0"/>

Table 6-10 Required Attributes for the functionForDecomposition Element

Attribute Description

name The qualified name of the read function to be used for update
decomposition.

parity The number of parameters of the read function specified in the “name”
attribute.

Unders tanding Data Se rv ices P la t fo rm Annota t ions

6-16 XQuery Developer’s Guide

Java Update Exit
A data source data service that is not automatically updateable (all non-relational XDS), or a data view
XDS may specify an external mechanism to use for update. Supported external mechanisms include
Java classes that implement a particular interface specified in the SDO update specification.

The Java class to use as update exit is represented by the empty element javaUpdateExit that accepts
the attributes described in Table 6-11.

The following excerpt provides an example of a functionForDecomposition element definition:

<javaUpdateExit className="com.example.Exit"/>

Optimistic Locking Fields
SDO update assumes optimistic locking transactional semantics. The data service being updated can
specify the fields that should be checked for updates during the interim using the empty element
optimisticLockingFields that accepts one of the following as its content:

An empty element, named updated, to specify only updated fields.

An empty element, named projected, to specify all projected fields.

One or more elements, named “field”, that accept a required string-valued attribute named
name to specify user-specified fields.

The following excerpt provides an example of a functionForDecomposition element definition:

<optimisticLockingFields>
<updated/>

</optimisticLockingFields>

Read-Only Data Service
You can designate a data service as read-only, in which case no updates will be allowed against the
results obtained from the read functions of the service. You can use the empty element readOnly to
designate a data service as read-only. For example:

Table 6-11 Attributes for the javaUpdateExit Element

Attribute Description

className The fully qualified name of the Java class.

classFile (Optional) The LD URI to the Java file for the class.

XDS Annotat i ons

XQuery Developer’s Guide 6-17

<readOnly/>

Security Properties
You can use a data service to define one or more user-defined, logical protected resources. The
element secureResources, containing one or more string-valued elements named
secureResource, can be used for this purpose.

For example:

<secureResources>
<secureResource>MyResource</secureResource/>
<secureResource>MyOtherResource</secureResource/>

</secureResources>

You can link a logical resource defined using this syntax to a user-provided security policy using the
DSP Console. Query content can inquire about a user’s ability to access a logical resource using the
built-in function isAccessAllowed().

Unders tanding Data Se rv ices P la t fo rm Annota t ions

6-18 XQuery Developer’s Guide

Function Annotations
There is a single function annotation per data service or XFL function, which appears before the
function declaration in the document. The identifier for the pragma carrying the function annotation
is function. The qualified name of the top level element of the XML fragment corresponding to an XDS
or XFL annotation has the local name function and the namespace URI
urn:annotations.ld.bea.com.

Each data service function is classified using one of the following categories:

Read function

Navigate function

Private function

Procedure (side-effecting function)

The classification of an data service function is determined by the value of a required attribute kind
in the function element, which accepts the values read, navigate, private, or hasSideEffects to denote
the corresponding categories. Each XFL function is considered to be a library function.

The prime type of the return type of a read function must match the target type of the data service. In
addition, the function element for a navigate function must carry a string-valued attribute returns
whose value must match the role name of a relationship target defined in the data service. Moreover,
the prime type of the return type of a navigate function must match the target type of the data service
serving as the relationship target.

A private function may be used only be the data service in which it has been defined.

A function designated as a procedure has in the general case side-effects. In other words, the
invocation of the function entails modifications of the state of the affected data sources. Therefore, a
procedure may only be directly invoked by Data Services Platform mediator clients. In particular,
procedures may not be referenced by other DSP functions or ad hoc queries.

Finally, the namespace URIs of the qualified names of all the functions in a data service or XFL must
specify the location of the data service or XFL document in the LD repository. For example:

ld:{directory path to data service folder}/{data service file name
without extension}

or

lib:{directory path to XFL folder}/{XFL file name without extension}

Funct ion Annotat i ons

XQuery Developer’s Guide 6-19

The function element accepts the additional optional attributes described in Table 6-12.

Table 6-12 Optional Attributes for the function Element

Attribute Description

nativeName Applicable to data source functions, nativeName is the name of the
function as it is known to the external source. In the case of relational
sources, for example, it corresponds to the table name.

nativeLevel1Container Applicable to data source functions that represent external sources
employing hierarchical containment schemes;
nativeLevel1Container is the name of the top-level native container,
as it is known to the external source.

In the case of relational sources, for example, it corresponds to the catalog
name, whereas, in the case of Web service sources, it corresponds to the
service name.

nativeLevel2Container Applicable to data source functions that represent external sources
employing hierarchical containment schemes;
nativeLevel2Container is the name of the second-level native
container, as it is known to the external source. In the case of relational
sources, for example, it corresponds to the schema name. In the case of Web
service sources, it corresponds to the port name.

nativeLevel3Container Applicable to data source functions that represent external sources
employing hierarchical containment schemes;
nativeLevel3Container is the name of the top-level native container,
as it is known to the external source. In the case of relational sources, for
example, it corresponds to the stored procedure package name.

style Applicable to data source functions, style is a native qualifier by which the
function is known to the external source (e.g. table, view, storedProcedure,
or sqlQuery for relational sources; rpc or document for Web services).

roleName Applicable to navigate functions, roleName should match the value of the
roleName attribute of the relationshipTarget implemented by the function.

Unders tanding Data Se rv ices P la t fo rm Annota t ions

6-20 XQuery Developer’s Guide

The content of the top-level function element is a sequence of the following blocks of properties:

General Properties

UI Properties

Cache Properties

Behavioral Properties

Signature Properties

Native Properties

The following excerpt provides an example of a function annotation:

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"
kind="read" nativeName="CUSTOMER" nativeLevel2Container="RTL"
style="table">
<nonCacheable/>
</f:function>::)

General Properties
All standard document properties and user-defined properties defined in “Standard Document
Properties” on page 6-4 and “User-Defined Properties” on page 6-4 are applicable to function
annotations.

UI Properties
A set of user interface properties may be introduced by the XQuery Editor to persist location
information about the graphical components representing the expression in the function body. UI
properties are represented by the element uiProperties which accepts a sequence of one or more
elements, named component, as its content. Each “component” element accepts the attributes
described in Table 6-13

Table 6-13 Attributes for the component Element

Attribute Description

identifier An identifier for the UI component.

minimized A Boolean flag indicating whether the UI component has been minimized or
not.

Funct ion Annotat i ons

XQuery Developer’s Guide 6-21

In addition, each “component” element may optionally contain one or more treeInfo elements
containing information about the tree representation of the types pertaining to the component. In the
absence of the above property, the query editor uses the default layout.

Cache Properties
You can use the optional block of cache properties to specify whether a function can be cached or not.
You should specify a function whose results for the same set of arguments are intrinsically highly
volatile as non-cached. On the other hand, you should specify a function whose results for the same
set of arguments are either fixed or remain unchanged for a period of time as cacheable.

This property of a function is represented by the empty element nonCacheable. In the absence of the
nonCacheable element, a function is considered to be potentially cacheable. The following excerpt
provides an example:

<nonCacheable/>

Behavioral Properties
The optional block of behavioral properties allows you to provide information related to known
associations between a function's input and its output, or across two or more functions. In particular,
the user may specify the following:

Inverse Functions

Equivalent Transforms

x The x-coordinate for the UI component.

y The y-coordinate for the UI component.

w The width of the UI component.

h The height of the UI component.

viewPosX The x-coordinate of the scrollbar position of the component.

viewPosY The y-coordinate of the scrollbar position of the component.

Table 6-13 Attributes for the component Element (Continued)

Attribute Description

Unders tanding Data Se rv ices P la t fo rm Annota t ions

6-22 XQuery Developer’s Guide

Inverse Functions
Given an XQuery function f, the optional block of inverse functions may be used in order to denote a
function g, defined over the range of f, that, when composed with f (i.e. g(f)), renders one of the
parameters of f. If f has multiple parameters, an inverse function may be defined for each one of its
parameters.

The inverse functions block is represented by an optional element, named inverseFunctions, which
accepts as its content a sequence of empty elements, named inverseFunction. Each inverseFunction
element accepts the following attributes:

"parameterIndex. Optional attribute denoting the index of the parameter for which the inverse
function is defined. The index of the first parameter is assumed to be 1. It may be omitted if the
function being annotated has a single parameter.

"name. Required attribute denoting the fully-qualified name of the inverse function.

Note: Both the annotated and the inverse function must be either built-in or external XQuery
functions.

The following excerpt provides an example of an inverseFunctions element definition:

<inverseFunctions>
<inverseFunction index="2" name="p:MyInverse" xmlns:p="urn:test"/>

</inverseFunctions>

Equivalent Transforms
Given an XQuery function f, the optional block of equivalent transforms may be used in order to denote
a pair of functions C and C' with identical signatures and equivalent semantics, that accept f as one of
their parameters. In simple terms, the equivalence is perceived to mean that each occurrence of
C(…,f,…) may be safely substituted with C'(…,f,…).

The equivalent transforms block is represented by an optional element, named equivalentTransforms,
which accepts as its content a sequence of empty elements, named pair. Each pair element accepts
the following required attributes:

"source. Denotes the fully qualified name of the source transform (i.e.: C).

"target. Denotes the fully qualified name of the target transform (i.e.: C').

"arity. Denotes the (common) arity of the source and target transforms.

Note: The source transform may be either a built-in or external function. Both source and target
transforms must not be defined as invertible functions.

Funct ion Annotat i ons

XQuery Developer’s Guide 6-23

The following excerpt provides an example of an equivalentTransforms element definition:

<equivalentTransforms>
<pair source="p:sourceFunction_1" target="p:targetFunction_1"
arity="1" xmlns:p="urn:test1"/>

<pair source="q:sourceFunction_2" target="q:targetFunction_2"
arity="3" xmlns:q="urn:test2"/>

</equivalentTransforms>

Unders tanding Data Se rv ices P la t fo rm Annota t ions

6-24 XQuery Developer’s Guide

Signature Properties
You can use the optional block of signature properties to annotate the parameters of a data service or
XFL function with additional information to that provided by the function signature. These properties
are applicable to data source (data service or XFL) functions.

The signature properties block is represented by the element params which accepts a sequence of one
or more elements, named param, as its content. Each param element is an empty element that accepts
the optional attributes described in Table 6-14.

The following excerpt provides an example of a params element definition:

<params>
<param nativeType="java.lang.String"/>
<param nativeType="java.lang.int"/>

</params>

Table 6-14 param element Optional Attributes

Attribute Description

name The name of the parameter, as it is known to the external source.

nativeType The native type of the parameter, as it is known to the external source.

nativeTypeCode The native type code of the parameter, as it is known to the external source.

xqueryType The qualified name of the XML Schema or XQuery type used for the parameter.

kind One of the following values: unknown, in, inout, out, return or result (applicable
to stored procedures).

Funct ion Annotat i ons

XQuery Developer’s Guide 6-25

Native Properties
You can use native properties to further annotate a data source function based on the type of the
external source that it represents. There are two types of native properties pertaining to relational and
Web service sources respectively:

SQL query properties

SOAP handler properties

SQL Query Properties
The function annotation element of a function that represents a user-defined SQL query has its
style attribute set to sqlQuery and accepts a nested element, named “sql”. The sql element accepts
string content that corresponds to the statement of the (possibly parameterized) SQL query that the
function represents.

If required, the statement can be escaped inside a CDATA section to account for reserved XML
characters (e.g. <, >, &). The sql element also accepts the optional attribute isSubquery whose
boolean value indicates whether the SQL statement may be used as a nested SQL sub-query. If the
attribute is absent, its value defaults to true.

The following excerpt provides an example of a sqlQuery element definition:

<sql isSubquery="true">
SELECT t.FIRST_NAME FROM RTLALL.dbo.CUSTOMER t</sql>

SOAP Handler Properties
The “function” annotation element of a function that represents a Web service call accepts a nested
element, named interceptorConfiguration. The interceptorConfiguration element accepts two
required attributes, as described in Table 6-15.

Table 6-15 Required Attributes for the interceptorConfiguration Element

Attribute Description

fileName The location of the file containing the configuration of the SOAP handler chains
that are applicable to the Web service.

aliasName The alias name by which the SOAP handler chain has been configured.

Unders tanding Data Se rv ices P la t fo rm Annota t ions

6-26 XQuery Developer’s Guide

XFL Annotations
There is a single XFL annotation per XFL document, which appears before any function annotation in
the document. The identifier for the pragma carrying the XFL annotation is “xfl”. The qualified name
of the top level element of the XML fragment corresponding to an XFL annotation has the local name
xfl and the namespace URI urn:annotations.ld.bea.com.

The contents of the top-level xfl element is a sequence of the following blocks of properties.

General Properties

Data Access Properties

The following sections provide detailed descriptions of each block of properties, while the following
excerpt provides an example of a XFL annotation, which may serve as a reference.

(::pragma xfl <x:xfl xmlns:x="urn:annotations.ld.bea.com">
<creationDate>2005-03-09T17:48:58</creationDate>
<webService targetNamespace="urn:GoogleSearch"

wsdl="ld:google/GoogleSearch.wsdl"/>
</x:xfl>::)

General Properties
The general properties applicable to an XFL document are identical to the general properties for a
data service document, as described in “General Properties” on page 6-4.

XFL Annotat i ons

XQuery Developer’s Guide 6-27

Data Access Properties
Each XFL document defines one or more XQuery functions that serve as library functions that can be
used either inside data service documents to define read navigate or private functions, or inside other
XFL documents to specify other library functions.

Since XFL documents do not have a target type, the return types of the library functions found inside
these document may differ from each other. In particular, a function inside an XFL document may
return a value having a simple type (or any other type). XFL functions can be external data source
functions or user-defined.

The following types of XFL documents are supported:

Relational (logical)

Web service (logical)

Java function (logical)

User-defined view (logical)

You can specify only one of the annotations in each XFL. If no annotation is provided, the XFL is
considered a user-defined view.

The data access properties for Relational, Web service, Java function, and user-defined view XFL
documents are the same as the corresponding properties for data service documents, as described
above.

Unders tanding Data Se rv ices P la t fo rm Annota t ions

6-28 XQuery Developer’s Guide

XQuery Developer’s Guide A-1

A P P E N D I X A

Annotations Reference

XML Schema for Annotations
This appendix contains the entire XML Schema definition file (XSD) that BEA AquaLogic Data
Services Platform (DSP) uses for annotations. This file constitutes the complete grammer of the
pragma annotations contained in data service source files.

For information about the syntax and semantics of Data Services Platform annotations in data service
and XQuery function library (XFL) documents, see Chapter 6, “Understanding Data Services Platform
Annotations.”

Listing A-1 XML Schema for Annotations

<?xml version="1.0"?>
<xs:schema targetNamespace="urn:annotations.ld.bea.com"
xmlns:tns="urn:annotations.ld.bea.com"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="unqualified"
attributeFormDefault="unqualified">
 <!--==================-->
 <!-- XDS annotation -->
 <!--==================-->
 <xs:element name="xds">
 <xs:complexType>
 <xs:sequence>
 <!-- document properties -->
 <xs:element name="author" type="xs:string" minOccurs="0"/>
 <xs:element name="comment" type="xs:string" minOccurs="0"/>
 <xs:element name="creationDate" type="xs:dateTime" minOccurs="0"/>
 <xs:element name="documentation" type="xs:string" minOccurs="0"/>

Anno ta t i ons Refe rence

A-2 XQuery Developer’s Guide

 <xs:element name="version" type="xs:decimal" minOccurs="0"/>
 <!-- user defined properties -->
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="property">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <!-- data access properties -->
 <xs:choice>
 <!-- choice 1: java functions -->
 <xs:element name="javaFunction">
 <xs:complexType>
 <xs:attribute name="class" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 <!-- choice 2: web services -->
 <xs:element name="webService">
 <xs:complexType>
 <xs:attribute name="wsdl" type="xs:anyURI" use="required"/>
 <xs:attribute name="targetNamespace" type="xs:anyURI"
use="required"/>
 </xs:complexType>
 </xs:element>
 <!-- choice 3: relational sources -->
 <xs:element name="relationalDB">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="properties" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="catalogSeparator" type="xs:string"
use="required"/>
 <xs:attribute name="identifierQuote" type="xs:string"
use="required"/>
 <xs:attribute name="catalogQuote" type="xs:string"/>
 <xs:attribute name="schemaQuote" type="xs:string"/>
 <xs:attribute name="tableQuote" type="xs:string"/>
 <xs:attribute name="columnQuote" type="xs:string"/>
 <xs:attribute name="nullSortOrder" type="tns:nullSortOrderType"
use="required"/>
 <xs:attribute name="supportsCatalogsInDataManipulation"
type="xs:boolean" use="required"/>
 <xs:attribute name="supportsLikeEscapeClause" type="xs:boolean"
use="required"/>

XML Schema fo r Annotat i ons

XQuery Developer’s Guide A-3

 <xs:attribute name="supportsSchemasInDataManipulation"
type="xs:boolean" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="dbType" type="xs:string"/>
 <xs:attribute name="dbVersion" type="xs:string"/>
 <xs:attribute name="driver" type="xs:string"/>
 <xs:attribute name="uri" type="xs:string"/>
 <xs:attribute name="username" type="xs:string"/>
 <xs:attribute name="password" type="xs:string"/>
 <xs:attribute name="SID" type="xs:string"/>
 <xs:attribute name="sourceBindingProviderClassName"
type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <!-- choice 4: delimited files -->
 <xs:element name="delimitedFile">
 <xs:complexType>
 <xs:attribute name="file" type="xs:anyURI"/>
 <xs:attribute name="schema" type="xs:anyURI"/>
 <xs:attribute name="inferredSchema" type="xs:boolean"
default="false"/>
 <xs:attribute name="delimiter" type="xs:string"/>
 <xs:attribute name="fixedLength" type="xs:positiveInteger"/>
 <xs:attribute name="hasHeader" type="xs:boolean" default="false"/>
 </xs:complexType>
 </xs:element>
 <!-- choice 5: XML files -->
 <xs:element name="xmlFile">
 <xs:complexType>
 <xs:attribute name="file" type="xs:anyURI"/>
 <xs:attribute name="schema" type="xs:anyURI" use="required"/>
 </xs:complexType>
 </xs:element>
 <!-- choice 6: user defined view -->
 <xs:element name="userDefinedView" minOccurs="0"/>
 <!-- choice 7: nothing, defaults to userDefinedView -->
 <xs:sequence/>
 </xs:choice>
 <!-- field annotations -->
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="field">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="extension" minOccurs="0">
 <xs:complexType>
 <xs:sequence minOccurs="0">

Anno ta t i ons Refe rence

A-4 XQuery Developer’s Guide

 <xs:element name="autoNumber">
 <xs:complexType>
 <xs:attribute name="type" type="tns:autoNumberType"
use="required"/>
 <xs:attribute name="sequenceObjectName" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="nativeXpath" type="xs:string"/>
 <xs:attribute name="nativeType" type="xs:string"/>
 <xs:attribute name="nativeTypeCode" type="xs:int"/>
 <xs:attribute name="nativeSize" type="xs:int"/>
 <xs:attribute name="nativeFractionalDigits"
type="tns:scaleType"/>
 <!-- relational: autoNumber -->
 <!-- relational: native column names and types -->
 </xs:complexType>
 </xs:element>
 <xs:element name="properties">
 <xs:complexType>
 <xs:attribute name="immutable" type="xs:boolean"
default="false"/>
 <xs:attribute name="nullable" type="xs:boolean"
default="false"/>
 <xs:attribute name="transient" type="xs:boolean"
default="false"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="xpath" type="xs:string" use="required"/>
 <xs:attribute name="type" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <!-- keys -->
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="key">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="field" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="extension" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="nativeXpath" type="xs:string"
use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>

XML Schema fo r Annotat i ons

XQuery Developer’s Guide A-5

 <xs:attribute name="xpath" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <!-- relationships -->
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="relationshipTarget">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="relationship" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="description" type="xs:string"
minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="roleName" type="xs:string" use="required"/>
 <xs:attribute name="roleNumber" type="tns:roleType" default="1"/>
 <xs:attribute name="XDS" type="xs:string" use="required"/>
 <xs:attribute name="minOccurs" type="tns:allNNI" default="1"/>
 <xs:attribute name="maxOccurs" type="tns:allNNI" default="1"/>
 <xs:attribute name="opposite" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <!-- SDO elements -->
 <xs:element name="functionForDecomposition" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="name" type="xs:QName" use="required"/>
 <xs:attribute name="arity" type="xs:int" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="javaUpdateExit" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="className" type="xs:string" use="required"/>
 <xs:attribute name="classFile" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="optimisticLockingFields" minOccurs="0">
 <xs:complexType>
 <xs:choice>
 <xs:element name="updated">
 <xs:complexType/>

Anno ta t i ons Refe rence

A-6 XQuery Developer’s Guide

 </xs:element>
 <xs:element name="projected">
 <xs:complexType/>
 </xs:element>
 <xs:element name="field" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 <!-- security -->
 <xs:element name="secureResources" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="secureResource" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="readOnly" minOccurs="0">
 <xs:complexType/>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="targetType" type="xs:QName" use="required"/>
 </xs:complexType>
 </xs:element>
 <!--==================-->
 <!-- XFL annotation -->
 <!--==================-->
 <xs:element name="xfl">
 <xs:complexType>
 <xs:sequence>
 <!-- document properties -->
 <xs:element name="author" type="xs:string" minOccurs="0"/>
 <xs:element name="comment" type="xs:string" minOccurs="0"/>
 <xs:element name="creationDate" type="xs:dateTime" minOccurs="0"/>
 <xs:element name="documentation" type="xs:string" minOccurs="0"/>
 <xs:element name="version" type="xs:decimal" minOccurs="0"/>
 <!-- user defined properties -->
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="property">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>

XML Schema fo r Annotat i ons

XQuery Developer’s Guide A-7

 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <!-- data access properties -->
 <xs:choice>
 <!-- choice 1: java functions -->
 <xs:element name="javaFunction">
 <xs:complexType>
 <xs:attribute name="class" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 <!-- choice 2: web services -->
 <xs:element name="webService">
 <xs:complexType>
 <xs:attribute name="wsdl" type="xs:anyURI" use="required"/>
 <xs:attribute name="targetNamespace" type="xs:anyURI"
use="required"/>
 </xs:complexType>
 </xs:element>
 <!-- choice 3: relational sources -->
 <xs:element name="relationalDB">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="properties" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="catalogSeparator" type="xs:string"
use="required"/>
 <xs:attribute name="identifierQuote" type="xs:string"
use="required"/>
 <xs:attribute name="catalogQuote" type="xs:string"/>
 <xs:attribute name="schemaQuote" type="xs:string"/>
 <xs:attribute name="tableQuote" type="xs:string"/>
 <xs:attribute name="columnQuote" type="xs:string"/>
 <xs:attribute name="nullSortOrder" type="tns:nullSortOrderType"
use="required"/>
 <xs:attribute name="supportsCatalogsInDataManipulation"
type="xs:boolean" use="required"/>
 <xs:attribute name="supportsLikeEscapeClause" type="xs:boolean"
use="required"/>
 <xs:attribute name="supportsSchemasInDataManipulation"
type="xs:boolean" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="dbType" type="xs:string"/>
 <xs:attribute name="dbVersion" type="xs:string"/>
 <xs:attribute name="driver" type="xs:string"/>
 <xs:attribute name="uri" type="xs:string"/>

Anno ta t i ons Refe rence

A-8 XQuery Developer’s Guide

 <xs:attribute name="username" type="xs:string"/>
 <xs:attribute name="password" type="xs:string"/>
 <xs:attribute name="SID" type="xs:string"/>
 <xs:attribute name="sourceBindingProviderClassName"
type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <!-- choice 6: user defined view -->
 <xs:element name="userDefinedView" minOccurs="0"/>
 <!-- choice 7: nothing, defaults to userDefinedView -->
 <xs:sequence/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <!--=======================-->
 <!-- function annotation -->
 <!--=======================-->
 <xs:element name="function">
 <xs:complexType>
 <xs:sequence>
 <!-- standard properties -->
 <xs:element name="author" type="xs:string" minOccurs="0"/>
 <xs:element name="comment" type="xs:string" minOccurs="0"/>
 <xs:element name="version" type="xs:decimal" minOccurs="0"/>
 <xs:element name="documentation" type="xs:string" minOccurs="0"/>
 <!-- user defined properties -->
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="property">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <!-- UI properties -->
 <xs:element name="uiProperties" minOccurs="0">
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="component">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="treeInfo" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="collapsedNodes" minOccurs="0">

XML Schema fo r Annotat i ons

XQuery Developer’s Guide A-9

 <xs:complexType>
 <xs:sequence>
 <xs:element name="collapsedNode" type="xs:string"
minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="identifier" type="xs:string"/>
 <xs:attribute name="minimized" type="xs:boolean"
default="false"/>
 <xs:attribute name="x" type="xs:int"/>
 <xs:attribute name="y" type="xs:int"/>
 <xs:attribute name="w" type="xs:int"/>
 <xs:attribute name="h" type="xs:int"/>
 <xs:attribute name="viewPosX" type="xs:int"/>
 <xs:attribute name="viewPosY" type="xs:int"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <!-- sql statement -->
 <xs:element name="sql" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="isSubquery" type="xs:boolean" default="true"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <!-- cache -->
 <xs:element name="nonCacheable" minOccurs="0">
 <xs:complexType/>
 </xs:element>
 <!-- optimization -->
 <xs:element name="outputIsOrderedBy" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <!-- absent for parameters whose order in the function signature
 coincides with their order in the order by list -->
 <xs:element name="parameter" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <!-- 1, 2, ... -->

Anno ta t i ons Refe rence

A-10 XQuery Developer’s Guide

 <xs:attribute name="index" type="xs:int" use="required"/>
 <!-- overrides default -->
 <xs:attribute name="mode" type="tns:orderingModeType"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="mode" type="tns:orderingModeType" use="required"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="inverseFunctions" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="inverseFunction" minOccurs="1"
maxOccurs="unbounded">
 <xs:complexType>
 <!-- 1, 2, ... -->
 <xs:attribute name="parameterIndex" type="xs:int"/>
 <xs:attribute name="name" type="xs:QName" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="equivalentTransforms" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="pair" minOccurs="1" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="source" type="xs:QName" use="required"/>
 <xs:attribute name="target" type="xs:QName" use="required"/>
 <xs:attribute name="arity" type="xs:int" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <!-- signature: used by java functions and stored procedures -->
 <xs:element name="params" minOccurs="0">
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="param">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string"/>
 <xs:attribute name="nativeType" type="xs:string"/>
 <xs:attribute name="nativeTypeCode" type="xs:int"/>
 <xs:attribute name="xqueryType" type="xs:QName"/>
 <xs:attribute name="kind" type="tns:paramKindType"/>
 </xs:complexType>

XML Schema fo r Annotat i ons

XQuery Developer’s Guide A-11

 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <!-- interceptor configuration: used by webservice SOAP interceptors -->
 <xs:element name="interceptorConfiguration" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="aliasName" type="xs:string" use="required"/>
 <xs:attribute name="fileName" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="kind" type="tns:functionKindType"/>
 <xs:attribute name="roleName" type="xs:string"/>
 <xs:attribute name="nativeName" type="xs:string"/>
 <xs:attribute name="nativeLevel1Container" type="xs:string"/>
 <xs:attribute name="nativeLevel2Container" type="xs:string"/>
 <xs:attribute name="nativeLevel3Container" type="xs:string"/>
 <xs:attribute name="style" type="tns:functionStyleType"/>
 </xs:complexType>
 </xs:element>
 <!--================-->
 <!-- common types -->
 <!--================-->
 <xs:simpleType name="functionKindType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="read"/>
 <xs:enumeration value="navigate"/>
 <xs:enumeration value="private"/>
 <xs:enumeration value="library"/>
 <xs:enumeration value="hasSideEffects"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="functionStyleType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="table"/>
 <xs:enumeration value="view"/>
 <xs:enumeration value="storedProcedure"/>
 <xs:enumeration value="sqlQuery"/>
 <xs:enumeration value="document"/>
 <xs:enumeration value="rpc"/>
 </xs:restriction>
 </xs:simpleType>
 <!-- used by stored procedures -->
 <xs:simpleType name="paramKindType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="unknown"/>
 <xs:enumeration value="in"/>
 <xs:enumeration value="inout"/>

Anno ta t i ons Refe rence

A-12 XQuery Developer’s Guide

 <xs:enumeration value="out"/>
 <xs:enumeration value="return"/>
 <xs:enumeration value="result"/>
 </xs:restriction>
 </xs:simpleType>
 <!-- used by maxOccurs in relationship -->
 <xs:simpleType name="allNNI">
 <xs:union memberTypes="xs:nonNegativeInteger">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="unbounded"/>
 <xs:enumeration value=""/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 <!-- used by relationships -->
 <xs:simpleType name="roleType">
 <xs:restriction base="xs:nonNegativeInteger">
 <xs:enumeration value="1"/>
 <xs:enumeration value="2"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="autoNumberType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="identity"/>
 <xs:enumeration value="sequence"/>
 <xs:enumeration value="userComputed"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="nullSortOrderType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="high"/>
 <xs:enumeration value="low"/>
 <xs:enumeration value="unknown"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="scaleType">
 <xs:union memberTypes="xs:int">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="null"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 <xs:simpleType name="orderingModeType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="ascending"/>

XML Schema fo r Annotat i ons

XQuery Developer’s Guide A-13

 <xs:enumeration value="descending"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

Anno ta t i ons Refe rence

A-14 XQuery Developer’s Guide

XQuery Developer’s Guide B-1

A P P E N D I X B

XQuery-SQL Mapping Reference

This appendix provides the details of BEA AquaLogic Data Services Platform (DSP) core support and
base support for relational data, and includes these topics:

Core RDBMS Support:

– IBM DB2/NT 8

– Microsoft SQL Server 2000

– Oracle 8.1.x

– Oracle 9.x, 10.x

– Pointbase 4.4 (and higher)

– Sybase 12.5.2 (and higher)

Base (Generic) RDBMS Support

Each section that follows includes information about:

Database Capabilities Information

Native RDBMS Data Type Support and XQuery Mappings

Function and Operator Pushdown

Cast Operation Pushdown

Other SQL Generation Capabilities (including join pushdown support and SQL syntax for joins)

XQuery-SQL Mapping Refe rence

B-2 XQuery Developer’s Guide

IBM DB2/NT 8
The tables in this section identify all data type and other mappings that the XQuery engine generates
or supports for IBM DB2/NT 8.

Data Type Mapping
The following table lists supported data type mappings.

Table B-1 Data Type Mappings

DB2 Data Type XQuery Type

BIGINT xs:long

BLOB xs:hexBinary

CHAR xs:string

CHAR() FOR BIT DATA xs:hexBinary

CLOB1 xs:string

DATE xs:date

DOUBLE xs:double

DECIMAL(p,s)2 (NUMERIC) xs:decimal (if s > 0), xs:integer (if s = 0)

INTEGER xs:int

LONG VARCHAR1 xs:string

LONG VARCHAR FOR BIT DATA xs:hexBinary

REAL xs:float

SMALLINT xs:short

TIME3 xs:time4

TIMESTAMP5 xs:dateTime4

IBM DB2/NT 8

XQuery Developer’s Guide B-3

Function and Operator Pushdown
The following table lists functions and operators that are pushed down to IBM DB2/NT8 RDBMSs. See
“fn-bea:sql-like” on page 2-22 for details about two-argument and three-argument versions of the
fn-bea:sql-like() function.

Table B-2 Functions and Operators

VARCHAR xs:string4

VARCHAR() FOR BIT DATA xs:hexBinary

1. Pushed down in project list only.
2. Where p is precision (total number of digits, both to the right and left of decimal point) and
s is scale (total number of digits to the right of decimal point).
3. Accurate to 1 second.
4. Values converted to local time zone (timezone information removed) due to TIME and
TIMESTAMP limitations. See “Date and Time Data Type Differences: Timezones and Time
Precision” on page 3-6 for more information.
5. Precision limited to milliseconds.

Group Functions and operators

Logical operators and, or, not

Numeric arithmetic +, -, *, div, idiv1

mod2

Numeric comparisons1 =, !=, <, <=, >, >=, eq, ne, lt, le, gt, ge

Numeric functions abs, ceiling, floor, round

String comparisons3 =, !=, <, <=, >, >=, eq, ne, lt, le, gt, ge

String functions concat, upper-case, lower-case, substring(2,3)4,

string-length, contains5, starts-with5, ends-with5,

fn-bea:sql-like(2,3) fn-bea:trim6, fn-bea:trim-left6,

fn-bea:trim-right6

Datetime comparisons =, !=, <, <=, >, >=, eq, ne, lt, le, gt, ge on xs:dateTime,
xs:date, xs:time

XQuery-SQL Mapping Refe rence

B-4 XQuery Developer’s Guide

Cast Operation Pushdown
The following table lists supported cast operations.

Table B-3 Cast Operations

Datetime functions year-from-dateTime, year-from-date, month-from-dateTime,
month-from-date, day-from-dateTime, day-from-date,
hours-from-dateTime, hours-from-time,
minutes-from-dateTime, minutes-from-time,
seconds-from-dateTime, seconds-from-time,
fn-bea:date-from-dateTime, fn-bea:time-from-dateTime

Aggregate min, max, sum, avg, count, count(distinct-values)

Other empty, exists, subsequence7

1. All numeric types.
2. xs:integer (and subtypes) only.
3. Arguments must have SQL data type CHAR or VARCHAR.
4. If second and third arguments are types xs:double or xs:float, they cannot be
parameters.
5. Second argument must be a constant or a parameter.
6. Argument must be SQL data type CHAR or VARCHAR.
7. Both two- and three-argument variants supported, with the restriction that no
pushdown occurs when $startingLoc or $length are typed as xs:double.

Source XQuery Type Target XQuery Type

numeric xs:double

numeric xs:float

numeric xs:int

numeric xs:integer

numeric xs:short

xs:decimal (and subtypes) xs:string

xs:integer (and subtypes) xs:decimal

xs:string xs:double

IBM DB2/NT 8

XQuery Developer’s Guide B-5

Other SQL Generation Capabilities
The following table lists common query patterns that can be pushed down. See “Common Query
Patterns” for details.

Table B-4 Other SQL Generation Capabilities

xs:string xs:float

xs:string xs:int

xs:string xs:integer

xs:string xs:short

xs:dateTime xs:time

Feature Description

If-then-else yes

Inner joins yes, SQL-92 syntax

Outer joins yes, SQL-92 syntax

Semi joins, Anti semi joins yes

Order by yes

Order by: Empty (NULL) order
supported

Fixed (always sorts NULLs high).
Order-bys with “empty least” modifier
(the XQuery default) are not pushed
down.

Order by: Aggregate function in
ordering expression

yes

Group by yes

Distinct pattern yes

Trivial aggregate pattern yes (using GROUP BY constant)

Direct SQL composition yes

XQuery-SQL Mapping Refe rence

B-6 XQuery Developer’s Guide

Microsoft SQL Server 2000
The tables in this section identify all data type and other mappings that the XQuery engine generates
or supports for Microsoft SQL Server 2000.

Data Type Mapping
The following table lists supported data type mappings for Microsoft SQL Server 2000.

Table B-5 Data Type Mapping

SQL Data Type XQuery Type

BIGINT xs:long

BINARY xs:hexBinary

BIT xs:boolean

CHAR xs:string

DATETIME1 xs:dateTime2

DECIMAL(p,s)3 (NUMERIC) xs:decimal (if s > 0), xs:integer (if s = 0)

FLOAT xs:double

IMAGE xs:hexBinary

INTEGER xs:int

MONEY xs:decimal

NCHAR xs:string

NTEXT4 xs:string

NVARCHAR xs:string

REAL xs:float

SMALLDATETIME5 xs:dateTime

SMALLINT xs:short

SMALLMONEY xs:decimal

Microso f t SQL Se rve r 2000

XQuery Developer’s Guide B-7

Additionally, the following XQuery data types can be passed as parameters or returned by pushed
functions:

xs:date (see Table B-6 for functions and operators that use xs:date). When xs:date is sent to the
database, it is converted to local time zone. See “Date and Time Data Type Differences:
Timezones and Time Precision” on page 3-6 for more information.

xdt:dayTimeDuration (see “Datetime Arithmetic” functions in Table B-6 for details).

xdt:yearMonthDuration (see “Datetime Arithmetic” functions in Table B-6 for details).

Function and Operator Pushdown
The following table lists functions and operators that are pushed down to Microsoft SQL Server 2000.
See “fn-bea:sql-like” on page 2-22 for details about two-argument and three-argument versions of the
fn-bea:sql-like() function.

SQL_VARIANT xs:string

TEXT4 xs:string

TIMESTAMP xs:hexBinary

TINYINT xs:short

VARBINARY xs:hexBinary

VARCHAR xs:string

UNIQUIDENTIFIER xs:string

1. Fractional-second-precision up to 3 digits (milliseconds). No timezone.
2. Values converted to local time zone (timezone information removed) and fractional seconds
truncated to milliseconds due to DATETIME limitations. See “Date and Time Data Type
Differences: Timezones and Time Precision” on page 3-6 for more information.
3. Where p is precision (total number of digits, both to the right and left of decimal point) and
s is scale (total number of digits to the right of decimal point).
4. Pushed down in project list only.
5. Accuracy of 1 minute.

Table B-5 Data Type Mapping

XQuery-SQL Mapping Refe rence

B-8 XQuery Developer’s Guide

Table B-6 Function and Operator Pushdown

Group Functions and Operators

Logical operators and, or, not

Numeric arithmetic +, -, *, div, idiv1

mod2

Numeric comparisons1 =, !=, <, <=, >, >=, eq, ne, lt, le, gt, ge

Numeric functions abs, ceiling, floor, round

String comparisons3 =, !=, <, <=, >, >=, eq, ne, lt, le, gt, ge

String functions concat, upper-case, lower-case, substring(2,3)4,

string-length, contains5, starts-with5, ends-with5,

fn-bea:sql-like(2,3)4, fn-bea:trim, fn-bea:trim-left,
fn-bea:trim-right

Datetime comparisons =, !=, <, <=, >, >=, eq, ne, lt, le, gt, ge on xs:dateTime,
xs:date, xdt:yearMonthDuration, xdt:dayTimeDuration

Datetime functions year-from-dateTime, year-from-date, years-from-duration,
month-from-dateTime, month-from-date,
months-from-duration, day-from-dateTime, day-from-date,
days-from-duration, hours-from-dateTime,
hours-from-duration, minutes-from-dateTime,
minutes-from-duration, seconds-from-dateTime,
seconds-from-duration, fn-bea:date-from-dateTime

Microso f t SQL Se rve r 2000

XQuery Developer’s Guide B-9

Cast Operation Pushdown
The following table lists supported cast operations.

Table B-7 Cast Operations

Datetime arithmetic op:add-yearMonthDurations, op:add-dayTimeDurations,
op:subtract-yearMonthDurations,
op:subtract-dayTimeDurations,
op:multiply-yearMonthDuration,
op:multiply-dayTimeDuration,
op:divide-yearMonthDuration, op:divide-dayTimeDuration,
subtract-dateTimes-yielding-yearMonthDuration,
subtract-dateTimes-yielding-dayTimeDuration,
op:add-yearMonthDuration-to-dateTime,
op:add-dayTimeDuration-to-dateTime,
op:subtract-yearMonthDuration-from-dateTime,
op:subtract-dayTimeDuration-from-dateTime,
subtract-dates-yielding-yearMonthDuration,
subtract-dates-yielding-dayTimeDuration,
op:add-yearMonthDuration-to-date,
op:add-dayTimeDuration-to-date,
op:subtract-yearMonthDuration-from-date,
op:subtract-dayTimeDuration-from-date

Aggregate min, max, sum, avg, count, count(distinct-values)

Other empty, exists, subsequence6

1. For all numeric types
2. For xs:integer and its subtypes only.
3. Arguments must be of SQL data type CHAR, NCHAR, VARCHAR, or NVARCHAR.
4. Both the 2-argument and 3-argument versions of function supported.
5. Second argument must be SQL data type CHAR, NCHAR, VARCHAR, or
NVARCHAR.
6. Only the three-argument variant of fn:subsequence is supported, with the additionl
requirement that the $startingLoc must be 1 (constant) and $length must be
xs:integer type.

Source XQuery Data Type Target XQuery Data Type

numeric xs:string

XQuery-SQL Mapping Refe rence

B-10 XQuery Developer’s Guide

Other SQL Generation Capabilities
The following table lists common query patterns that can be pushed down. See “Common Query
Patterns” for details.

Table B-8 Other SQL Generation Capabilities

numeric xs:double

numeric xs:float

numeric xs:integer

numeric xs:long

numeric xs:int

numeric xs:short

xs:integer (and subtypes) xs:decimal

xs:string xs:double1

xs:string xs:float

xs:string xs:integer

xs:string xs:long

xs:string xs:int

xs:string xs:short

xs:dateTime xs:date

xs:dateTime xs:string

1. Source SQL type must be CHAR, NCHAR, VARCHAR, or NVARCHAR.

Feature Description

If-then-else yes

Inner joins yes, SQL-92 syntax

Microso f t SQL Se rve r 2000

XQuery Developer’s Guide B-11

Outer joins yes, SQL-92 syntax

Semi joins, Anti semi joins yes

Order by yes

Order by: Empty order (NULL order) fixed (always sorts NULLs low). Order-bys with "empty
greatest" modifier are not pushed down.

Order by: Aggregate function in
ordering expression

yes

Group by yes

Distinct pattern yes

Trivial aggregate pattern yes (using subquery)

Direct SQL composition yes

XQuery-SQL Mapping Refe rence

B-12 XQuery Developer’s Guide

Oracle 8.1.x
The tables in this section identify all data type and other mappings that the XQuery engine generates
or supports for Oracle 8.1.x (Oracle 8i).

Data Type Mapp ing

XQuery Developer’s Guide B-13

Data Type Mapping

Additionally, the following XQuery data types can be passed as parameters or returned by pushed
functions:

Table B-9 Data Type Mapping

Oracle 8 Data Type XQuery Type

BFILE not supported

BLOB xs:hexBinary

CHAR xs:string

CLOB1

1. Pushed down in project list only.

xs:string

DATE2

2. Does not support fractional seconds.

xs:dateTime

FLOAT xs:double

LONG1 xs:string

LONG RAW xs:hexBinary

NCHAR xs:string

NCLOB1 xs:string

NUMBER xs:double

NUMBER(p,s)3

3. Where p is precision (total number of digits, both to the right and left of decimal point) and
s is scale (total number of digits to the right of decimal point).

xs:decimal (if s > 0), xs:integer (if s <=0)

NVARCHAR2 xs:string

RAW xs:hexBinary

ROWID xs:string

UROWID xs:string

XQuery-SQL Mapping Refe rence

B-14 XQuery Developer’s Guide

xs:date (see Table B-10 for functions and operators that use xs:date)

xdt:yearMonthDuration (see “Datetime Arithmetic” in Table B-10 for details)

xs:integer subtypes (see “Numeric ...” functions and operators in Table B-10 for details)

Function and Operator Pushdown
The following table lists functions and operators that are pushed down. See “fn-bea:sql-like” on
page 2-22 for details about two-argument and three-argument versions of the fn-bea:sql-like()
function.

Table B-10 Function and Operator Pushdown

Group Functions and operators

Logical operators and, or, not

Numeric arithmetic1 +, -, *, div, idiv, mod

Numeric comparisons1 =, !=, <, <=, >, >=, eq, ne, lt, le, gt, ge

Numeric functions abs, ceiling, floor, round

String comparisons2 =, !=, <, <=, >, >=, eq, ne, lt, le, gt, ge

String functions concat, upper-case3, lower-case3, substring(2,3)3,

string-length4, contains5, starts-with5, ends-with5,
fn-bea:sql-like(2,3), fn-bea:trim, fn-bea:trim-left,
fn-bea:trim-right

Datetime comparisons =, !=, <, <=, >, >=, eq, ne, lt, le, gt, ge on xs:dateTime,
xs:date, xdt:yearMonthDuration

Datetime functions year-from-dateTime, year-from-date, years-from-duration,
month-from-dateTime, month-from-date,
months-from-duration, day-from-dateTime, day-from-date,
days-from-duration, hours-from-dateTime,
minutes-from-dateTime, seconds-from-dateTime,
fn-bea:date-from-dateTime

Data Type Mapp ing

XQuery Developer’s Guide B-15

Cast Operation Pushdown
The followingtable lists supported cast operations.

Table B-11 Cast Operation Pushdown

Datetime arithmetic op:add-yearMonthDurations,
op:subtract-yearMonthDurations,
op:multiply-yearMonthDuration,
op:divide-yearMonthDuration,
subtract-dateTimes-yielding-yearMonthDuration,
op:add-yearMonthDuration-to-dateTime,
op:subtract-yearMonthDuration-from-dateTime,
subtract-dates-yielding-yearMonthDuration,
op:add-yearMonthDuration-to-date,
op:subtract-yearMonthDuration-from-date

Aggregate min, max, sum, avg, count, count(distinct-values)

Other empty, exists, subsequence6

1. For all numeric types.
2. Arguments must be of SQL data type CHAR, NCHAR, NVARCHAR2, or VARCHAR2.
3. Empty input (NULL) handling deviates from XQuery semantics—returns empty
sequence (instead of empty string).
4. Argument must be data type CHAR, NCHAR, NVARCHAR2, or VARCHAR2.
5. Second argument must be data type CHAR, NCHAR, NVARCHAR2, or VARCHAR2.
6. Both two- and three-argument variants of fn:subsequence() are supported without
restriction.

Source XQuery Type Target XQuery Type

numeric xs:string

numeric xs:decimal

numeric xs:integer

numeric xs:float

numeric xs:double

Table B-10 Function and Operator Pushdown

XQuery-SQL Mapping Refe rence

B-16 XQuery Developer’s Guide

Other SQL Generation Capabilities
The following table lists common query patterns that can be pushed down. See “Common Query
Patterns” for details.

Table B-12 Other SQL Generation Capabilities

xs:string xs:decimal1

xs:string xs:integer1

xs:string xs:float1

xs:string xs:double1

xs:dateTime xs:date

xs:date xs:dateTime

1. Source data type must be CHAR, NCHAR, NVARCHAR2, or VARCHAR2.

Feature Description

If-then-else yes

Inner joins yes, SQL-89 syntax

Outer joins yes, Oracle proprietary syntax

Semi joins, Anti semi joins yes

Order by yes

Order by: Empty order (NULL order) dynamic, no restriction on order by
pushdown

Order by: Aggregate function in
ordering expression

yes

Group by yes

Distinct pattern yes

Data Type Mapp ing

XQuery Developer’s Guide B-17

Trivial aggregate pattern yes (using GROUP BY constant)

Direct SQL composition yes

XQuery-SQL Mapping Refe rence

B-18 XQuery Developer’s Guide

Oracle 9.x, 10.x
The tables in this section identify all data type and other mappings that the XQuery engine generates
or supports for Oracle 9.x (Oracle 9i) and Oracle 10.x (Oracle 10g). Note that Oracle treats empty
strings as NULLs, which deviates from XQuery semantics and may lead to unexpected results for
expressions that are pushed down.

Orac le 9 . x , 10 . x

XQuery Developer’s Guide B-19

Data Type Mapping
Table B-13 Data Type Mapping

Oracle 9 Data Type XQuery Type

BFILE not supported

BLOB xs:hexBinary

CHAR xs:string

CLOB1 xs:string

DATE xs:dateTime2

FLOAT xs:double

INTERVAL DAY TO SECOND xdt:dayTimeDuration

INTERVAL YEAR TO MONTH xdt:yearMonthDuration

LONG1 xs:string

LONG RAW xs:hexBinary

NCHAR xs:string

NCLOB1 xs:string

NUMBER xs:double

NUMBER(p,s) xs:decimal (if s > 0), xs:integer (if s <=0)

NVARCHAR2 xs:string

RAW xs:hexBinary

ROWID xs:string

TIMESTAMP xs:dateTime3

TIMESTAMP WITH LOCAL TIMEZONE xs:dateTime

TIMESTAMP WITH TIMEZONE xs:dateTime

XQuery-SQL Mapping Refe rence

B-20 XQuery Developer’s Guide

Additionally, these XQuery data types can be passed as parameters or returned by pushed functions:

xs:date (see Table B-14 for functions and operators that use xs:date)

xs:integer subtypes (see “Numeric ...” functions and operators in Table B-14 for details)

Function and Operator Pushdown
The following table lists functions and operators that are pushed down to Oracle 9.x and 10.x. See
“fn-bea:sql-like” on page 2-22 for details about two-argument and three-argument versions of the
fn-bea:sql-like() function.

Table B-14 Function and Operator Pushdown

VARCHAR2 xs:string

UROWID xs:string

1. Pushed down in project list only.
2. When SDO stores xs:dateTime value in Oracle DATE type, it is converted to local time zone
and fractional seconds are truncated due to DATE limitations. See “Date and Time Data Type
Differences: Timezones and Time Precision” on page 3-6 for more information.
3. XQuery engine maps XQuery xs:dateTime to either TIMESTAMP or TIMESTAMP WITH
TIMEZONE data type, depending on presence of timezone information. Storing xs:dateTime
using SDO may result in loss of precision for fractional seconds, depending on the SQL type
definition.

Group Functions and Operators

Logical operators and, or, not

Numeric arithmetic1 +, -, *, div, idiv, mod

Numeric comparisons1 =, !=, <, <=, >, >=, eq, ne, lt, le, gt, ge

Numeric functions abs, ceiling, floor, round

String comparisons2 =, !=, <, <=, >, >=, eq, ne, lt, le, gt, ge

Table B-13 Data Type Mapping

Orac le 9 . x , 10 . x

XQuery Developer’s Guide B-21

String functions concat, upper-case3, lower-case3, substring(2,3)3,

string-length4, contains5, starts-with5, ends-with5,
fn-bea:sql-like(2,3), fn-bea:trim, fn-bea:trim-left,
fn-bea:trim-right

Datetime comparisons =, !=, <, <=, >, >=, eq, ne, lt, le, gt, ge on xs:dateTime,
xs:date, xdt:yearMonthDuration, xdt:dayTimeDuration

Datetime functions year-from-dateTime, year-from-date, years-from-duration,
month-from-dateTime, month-from-date,
months-from-duration, day-from-dateTime, day-from-date,
days-from-duration, hours-from-dateTime,
hours-from-duration, minutes-from-dateTime,
minutes-from-duration, seconds-from-dateTime,
seconds-from-duration, fn-bea:date-from-dateTime

Datetime arithmetic op:add-yearMonthDurations, op:add-dayTimeDurations,
op:subtract-yearMonthDurations,
op:subtract-dayTimeDurations,
op:multiply-yearMonthDuration,
op:multiply-dayTimeDuration,
op:divide-yearMonthDuration, op:divide-dayTimeDuration,
subtract-dateTimes-yielding-yearMonthDuration,
subtract-dateTimes-yielding-dayTimeDuration,
op:add-yearMonthDuration-to-dateTime,
op:add-dayTimeDuration-to-dateTime,
op:subtract-yearMonthDuration-from-dateTime,
op:subtract-dayTimeDuration-from-dateTime,
subtract-dates-yielding-yearMonthDuration,
subtract-dates-yielding-dayTimeDuration,
op:add-yearMonthDuration-to-date,
op:add-dayTimeDuration-to-date,
op:subtract-yearMonthDuration-from-date,
op:subtract-dayTimeDuration-from-date

Aggregate min, max, sum, avg, count, count(distinct-values)

Other empty, exists, subsequence6

1. For all numeric types
2. Arguments must be of SQL type (N)CHAR or (N)VARCHAR2
3. Empty input (NULL) handling deviates from XQuery semantics—returns empty
sequence (instead of empty string).
4. Argument must be CHAR, CLOB, NCHAR, NVARCHAR2, or VARCHAR2 data type.

XQuery-SQL Mapping Refe rence

B-22 XQuery Developer’s Guide

Cast Operation Pushdown
The following table lists cast operations that can be pushed down.

Table B-15 Cast Operation

Other SQL Generation Capabilities
The following table lists common query patterns that can be pushed down. See “Common Query
Patterns” for details.

5. Second argument must be CHAR, NCHAR, NVARCHAR2, or VARCHAR2 data type.
6. Both two- and three-argument variants of fn:subsequence() are supported without
restriction.

Source XQuery Type Target XQuery Type

numeric xs:string

numeric xs:decimal

numeric xs:integer

numeric xs:float

numeric xs:double

xs:string xs:decimal1

1. Source SQL type must be CHAR, NCHAR, VARCHAR2, or NVARCHAR2.

xs:string xs:integer

xs:string xs:float

xs:string xs:double

xs:dateTime xs:date

xs:date xs:dateTime2

2. Source SQL type must be DATE or TIMESTAMP to achieve this mapping.

Po intbase 4 .4 (and h igher)

XQuery Developer’s Guide B-23

Table B-16 Other SQL Generation Capabilities

Pointbase 4.4 (and higher)
The tables in this section identify all data type and other mappings that the XQuery engine generates
or supports for Pointbase.

Feature Description

If-then-else yes

Inner joins yes, SQL-92 syntax

Outer joins yes, SQL-92 syntax

Semi joins, Anti semi joins yes

Order by yes

Order by: Empty order (NULL order) dynamic, no restriction on order by pushdown

Order by: Aggregate function in
ordering expression

yes

Group by yes

Distinct pattern yes

Trivial aggregate pattern pushdown yes (using GROUP BY constant)

Direct SQL composition yes

XQuery-SQL Mapping Refe rence

B-24 XQuery Developer’s Guide

Data Type Mapping

Function and Operator Pushdown
The following table lists functions and operators that are pushed down to Pointbase. See
“fn-bea:sql-like” on page 2-22 for details about two-argument and three-argument versions of the
fn-bea:sql-like() function.

Table B-17 Data Type Mapping

Pointbase Data Type XQuery Type

BIGINT xs:long

BLOB xs:hexBinary

BOOLEAN xs:boolean

CHAR (CHARACTER) xs:string

CLOB xs:string

DATE xs:date

DECIMAL(p,s)1 (NUMERIC)

1. Where p is precision (total number of digits, both to the right and left of decimal point) and s
is scale (total number of digits to the right of decimal point).

xs:decimal (if s > 0), xs:integer (if s == 0)

DOUBLE PRECISION xs:double

FLOAT xs:double

INTEGER (INT) xs:int

SMALLINT xs:short

REAL xs:float

TIME xs:time

TIMESTAMP xs:dateTime

VARCHAR xs:string

Po intbase 4 .4 (and h igher)

XQuery Developer’s Guide B-25

Table B-18 Function and Operator Pushdown

Cast Operation Pushdown
The following table lists supported cast operations.

Table B-19 Cast Operation Pushdown

Group Functions and operators

Logical operators and, or, not

Numeric arithmetic1

1. All numeric types

+, -, *, div, idiv

Numeric comparisons1 =, !=, <, <=, >, >=, eq, ne, lt, le, gt, ge

String comparisons2

2. CHAR or VARCHAR SQL data types only for arguments

=, !=, <, <=, >, >=, eq, ne, lt, le, gt, ge

String functions concat,upper-case, lower-case, substring(2,3), string-length,

contains3, starts-with3, ends-with3, fn-bea:sql-like(2,3)
fn-bea:trim, fn-bea:trim-left, fn-bea:trim-right

3. Second argument must be constant or parameter.

Datetime comparisons =, !=, <, <=, >, >=, eq, ne, lt, le, gt, ge on xs:dateTime,
xs:date, xs:time

Datetime functions year-from-dateTime, year-from-date, month-from-dateTime,
month-from-date, day-from-dateTime, day-from-date,
hours-from-dateTime, hours-from-time,
minutes-from-dateTime, minutes-from-time,
seconds-from-dateTime, seconds-from-time,
fn-bea:date-from-dateTime

Aggregate min, max, sum, avg, count, count(distinct-values)

Other empty, exists

Source XQuery Type Target XQuery Type

numeric xs:decimal

XQuery-SQL Mapping Refe rence

B-26 XQuery Developer’s Guide

Other SQL Generation Capabilities
The following table lists common query patterns that can be pushed down. See “Common Query
Patterns” for details.

Table B-20 Other SQL Generation Capabilities

numeric xs:double

numeric xs:float

numeric xs:int

numeric xs:short

numeric xs:string

xs:integer and its subtypes xs:integer

xs:integer and its subtypes xs:long

xs:string xs:decimal1

xs:string xs:double1

xs:string xs:float1

xs:string xs:integer1

xs:string xs:long1

xs:string xs:int1

xs:string xs:short1

xs:dateTime xs:date

1. Source SQL data type must be CHAR or VARCHAR

Feature Description

If-then-else no

Inner joins yes, SQL-92 syntax

Sybase 12 .5 .2 (and h igher)

XQuery Developer’s Guide B-27

Sybase 12.5.2 (and higher)
The tables in this section identify all data type and other mappings that the XQuery engine generates
or supports for Sybase 12.5.2 (and higher).

As you read through the tables in this section, be aware that Sybase deviates from XQuery semantics (which
ignores empty strings) and treats empty strings as a single-space string.

Data Type Mapping
This table defines all data type mappings supported.

Outer joins yes (partially), SQL-92 syntax. Only simple outer joins are
pushed, the ones that require subquery don't (e.g. when right
branch has a where clause)

Semi joins, Anti semi joins yes

Order by yes

Order by: Empty order (NULL order) fixed (always sorts NULLs low). Order-bys with "empty
greatest" modifier are not pushed down.

Order by: Aggregate function in
ordering expression

no

Group by yes (Group by function expression is not supported, only
group by column is pushed

Distinct pattern yes

Trivial aggregate pattern pushdown no

Direct SQL composition no

Feature Description

Table B-21 Data Type Mapping

Sybase Data Type XQuery Type

BINARY xs:hexBinary

BIT xs:boolean

XQuery-SQL Mapping Refe rence

B-28 XQuery Developer’s Guide

CHAR xs:string

DATE xs:date

DATETIME1 xs:dateTime2

DECIMAL(p,s)3 (NUMERIC) xs:decimal (if s > 0), xs:integer (if s == 0)

DOUBLE PRECISION xs:double

FLOAT xs:double

IMAGE xs:hexBinary

INT (INTEGER) xs:int

MONEY xs:decimal

NCHAR xs:string

NVARCHAR xs:string

REAL xs:float

SMALLDATETIME4 xs:dateTime

SMALLINT xs:short

SMALLMONEY xs:decimal

SYSNAME xs:string

TEXT5 xs:string

TIME xs:time

TINYINT xs:short

VARBINARY xs:hexBinary

VARCHAR xs:string

1. Supports fractional seconds up to 3 digits (milliseconds) precision; no timezone information.
2. Values converted to local time zone (timezone information removed) and fractional seconds
truncated to milliseconds due to DATETIME limitations. See “Date and Time Data Type
Differences: Timezones and Time Precision” on page 3-6 for more information.

Table B-21 Data Type Mapping

Sybase 12 .5 .2 (and h igher)

XQuery Developer’s Guide B-29

Additionally, the following data types can be passed as parameters or returned by pushed functions:

xdt:dayTimeDuration

xdt:yearMonthDuration

See “Datetime arithmetic” in Table for details.

Function and Operator Pushdown
The following table lists functions and operators that are pushed down to base RDBMSs. See
“fn-bea:sql-like” on page 2-22 for details about two-argument and three-argument versions of the
fn-bea:sql-like() function.

Table B-22 Function and Operator Pushdown

3. Where p is precision (total number of digits, both to the right and left of decimal point) and
s is scale (total number of digits to the right of decimal point).
4. Accurate to 1 minute.
5. Expressions returning text are pushed down in the project list only.

Group Functions and operators

Logical operators and, or, not

Numeric arithmetic +, -, *, div 1

idiv2

mod3

Numeric comparisons1 =, !=, <, <=, >, >=, eq, ne, lt, le, gt, ge

Numeric functions abs, ceiling, floor, round

String comparisons4 =, !=, <, <=, >, >=, eq, ne, lt, le, gt, ge

String functions concat5, upper-case, lower-case, substring(2,3),

string-length, contains6, starts-with6, ends-with6,
fn-bea:sql-like(2,3), fn-bea:trim, fn-bea:trim-left,
fn-bea:trim-right

XQuery-SQL Mapping Refe rence

B-30 XQuery Developer’s Guide

Datetime comparisons =, !=, <, <=, >, >=, eq, ne, lt, le, gt, ge on xs:dateTime,
xs:date, xs:time, xdt:yearMonthDuration,
xdt:dayTimeDuration

Datetime functions year-from-dateTime, year-from-date, years-from-duration,
month-from-dateTime, month-from-date,
months-from-duration, day-from-dateTime, day-from-date,
days-from-duration, hours-from-dateTime, hours-from-time,
hours-from-duration, minutes-from-dateTime,
minutes-from-time, minutes-from-duration,
seconds-from-dateTime, seconds-from-time,
seconds-from-duration, fn-bea:date-from-dateTime,
fn-bea:time-from-dateTime

Datetime arithmetic op:add-yearMonthDurations,
op:subtract-yearMonthDurations,
op:multiply-yearMonthDuration,
op:divide-yearMonthDuration, op:add-dayTimeDurations,
op:subtract-dayTimeDurations,
op:multiply-dayTimeDuration, op:divide-dayTimeDuration,
op:add-yearMonthDuration-to-dateTime,
op:add-yearMonthDuration-to-date,
op:subtract-yearMonthDuration-from-dateTime,
op:subtract-yearMonthDuration-from-date,
op:add-dayTimeDuration-to-dateTime,
op:add-dayTimeDuration-to-date,
op:subtract-dayTimeDuration-from-dateTime,
op:subtract-dayTimeDuration-from-date,
fn:subtract-dateTimes-yielding-yearMonthDuration,
fn:subtract-dates-yielding-yearMonthDuration,
fn:subtract-dateTimes-yielding-dayTimeDuration,
fn:subtract-dates-yielding-dayTimeDuration

Aggregate min, max, sum, avg, count, count(distinct-values)

Other empty, exists

1. All numeric types (+, -, *, div operators are pushed down for all numeric types).
2. xs:decimal (and subtypes) only
3. xs:integer (and subtypes) only
4. Arguments must be SQL data type CHAR, NCHAR, NVARCHAR, or VARCHAR.
5. Each argument must be SQL data type CHAR, NCHAR, NVARCHAR, or VARCHAR.
6. Second argument must be constant or SQL parameter.

Sybase 12 .5 .2 (and h igher)

XQuery Developer’s Guide B-31

Cast Operation Pushdown
The following table lists supported cast operations.

Table B-23 Cast Operation Pushdown

Other SQL Generation Capabilities
The following table lists common query patterns that can be pushed down. See “Common Query
Patterns” for details.

Source XQuery Type Target XQuery Type

numeric xs:double

numeric xs:float

numeric xs:int

numeric xs:short

numeric xs:string

xs:decimal (and subtypes) xs:integer

xs:integer (and subtypes) xs:decimal

xs:string xs:double1

1. Source SQL type must be (N)CHAR or (N)VARCHAR

xs:string xs:float

xs:string xs:int

xs:string xs:integer

xs:string xs:short

xs:dateTime xs:date

xs:dateTime xs:time

XQuery-SQL Mapping Refe rence

B-32 XQuery Developer’s Guide

Table B-24 Other SQL Generation Capabilities

Base (Generic) RDBMS Support
Each JDBC drivers provide information about inherent properties and capabilities of the RDBMS with
which it is associated. During the metadata import process, DSP queries a configured data source’s
JDBC driver for basic properties and capabilities information. Much of the information obtained is
stored in the metadata section of the data service definition file (.ds). See “Understanding Data
Services Platform Annotations” on page 6-1 for more information.

Database Capabilities Information
These database capabilities are obtained from the JDBC driver and stored as properties in the .ds
(data service) definition file.

Feature Description

If-then-else yes

Inner joins yes, SQL-92 syntax

Outer joins yes, SQL-92 syntax

Semi joins, Anti semi joins yes

Order by yes

Order by: Empty order (NULL order) fixed (always sorts NULLs low). Order-bys with "empty
greatest" modifier are not pushed down.

Order by: Aggregate function in
ordering expression

yes

Group by yes

Distinct pattern yes

Trivial aggregate pattern yes (using subquery)

Direct SQL composition yes

Base (Gener ic) RDBMS Suppor t

XQuery Developer’s Guide B-33

Table B-25 Database Properties for Capabilities

The Data Services Platform XQuery engine typically quotes the names (identifiers) of object names to
properly handle any special characters. The identifierQuote property (see Table) is obtained from the
JDBC driver. However, different RDBMSs may use different identifiers for different database object
names:

catalogs

schemas

tables

columns

If necessary, you can manually override the identifier quote property for each type of identifier (see
Table).

Typically, the identifierQuote property obtained from the JDBC driver is used. However, if the specific
quote property is available and the RDBMS uses it, you can modify the annotation settings in the .ds
file (see “Relational Data Service Annotations” on page 6-6 for more information about these
properties). The XQuery engine (metadata importer sub-system) uses the specific quote property (see
Table) if it is available, otherwise, it uses the “identifierQuote” property provided by the JDBC driver.

Property Description Possible Values

supportsSchemasInDataManipulation Boolean that identifies whether SQL
statements can include schema names

true, false

supportsCatalogsInDataManipulation Boolean that identifies whether database
catalogs can be addressed by SQL

true, false

supportsLikeEscapeClause Boolean that identifies if the database
supports ESCAPE clause in LIKE expression

true, false

nullSortOrder Order in which NULLs are sorted low, high, unknown

identifierQuote String used as delimiter to denote (offset)
identifier labels

String value (can
be empty)

catalogSeparator String used as delimiter (separator) between
catalog (or schema) and table name

String value

XQuery-SQL Mapping Refe rence

B-34 XQuery Developer’s Guide

The only exception to this rule is for Sybase versions below Sybase 12.5.2, which is treated as a base
platform. Sybase does not use quotes for catalogs even though JDBC drivers return double quote ('"')
for “identifierQuote” property. The XQuery engine accommodates this mismatch by automatically
setting “catalogQuote” property to the empty string.

Table B-26 Optional Quote Properties for Database Objects

Data Type Mapping
When mapping SQL to XQuery datatypes, DSP XQuery engine first checks the JDBC typecode. If the
typecode has a corresponding XQuery type, DSP uses the matching native type name. If no matching
typecode or type name is available, the column is ignored.

Table B-27 Data Type Mapping (JDBC<–>XQuery Equivalents)

Property Description Possible Values

catalogQuote Special character used as quote to denote name of
catalog

string

schemaQuote Special character used as quote to denote name of
schema

string

tableQuote Special character used as quote to denote name of table string

columnQuote Special character used as quote to denote name of
column

string

JDBC Data Type Typecode XQuery Data Type

BIGINT -5 xs:long

BINARY -2 xs:string

BIT -7 xs:boolean

BLOB 2004 xs:hexBinary

BOOLEAN 16 xs:boolean

CHAR 1 xs:string

CLOB1 2005 xs:string

Base (Gener ic) RDBMS Suppor t

XQuery Developer’s Guide B-35

DATE 91 xs:date2

DECIMAL (p,s)3 3 xs:decimal (if s > 0), xs:integer (if s =0)

DOUBLE 8 xs:double

FLOAT 6 xs:double

INTEGER 4 xs:int

LONGVARBINARY -4 xs:hexBinary

LONGVARCHAR1 -1 xs:string

NUMERIC (p,s)3 2 xs:decimal (if s > 0), xs:integer (if s =0)

REAL 7 xs:float

SMALLINT 5 xs:short

TIME4 92 xs:time4

TIMESTAMP4 93 xs:dateTime2

TINYINT -6 xs:short

VARBINARY -3 xs:hexBinary

VARCHAR 12 xs:string

OTHER 1111 DSP uses native data type name to map to an
appropriate XQuery data type.

Other vendor-specific JDBC type codes

1. Pushed down in project list only.
2. Values converted to local time zone (timezone information removed) due to DATE limitations. See
“Date and Time Data Type Differences: Timezones and Time Precision” on page 3-6 for more
information.
3. Where p is precision (total number of digits, both to the right and left of decimal point) and s is
scale (total number of digits to the right of decimal point).
4. Precision of underlying RDBMS determines the precision of TIME data type and how much
truncation, if any, will occur in translating xs:time to TIME.

JDBC Data Type Typecode XQuery Data Type

XQuery-SQL Mapping Refe rence

B-36 XQuery Developer’s Guide

Function and Operator Pushdown
The following table lists functions and operators that are pushed down to base RDBMSs. See
“fn-bea:sql-like” on page 2-22 for details about two-argument and three-argument versions of the
fn-bea:sql-like() function.

Table B-28 Functions and Operators

Cast Operation Pushdown
For base RDBMS, cast operations are not pushed down.

Group Functions and Operators

Logical operators and, or, not

Numeric arithmetic +, -, *1

1. All numeric types

div2

2. Support for xs:decimal, xs:float, and xs:double data types only.

Numeric comparisons1 =, !=, <, <=, >, >=, eq, ne, lt, le, gt, ge

String comparisons3

3. Arguments must be CHAR or VARCHAR SQL data types.

=, !=, <, <=, >, >=, eq, ne, lt, le, gt, ge

String functions contains4, starts-with4, ends-with4, fn-bea:sql-like(2),

fn-bea:sql-like(3),4 upper-case, lower-case

4. First argument must be SQL data type CHAR or VARCHAR; second argument must
be a constant or parameter; and RDBMS must support LIKE (with ESCAPE) clause.

Datetime comparisons =, !=, <, <=, >, >=, eq, ne, lt, le, gt, ge on xs:dateTime,
xs:date, xs:time

Other empty, exists

Base (Gener ic) RDBMS Suppor t

XQuery Developer’s Guide B-37

Other SQL Generation Capabilities
The following table shows other SQL Pushdown capabilities, as discussed in “Common Query
Patterns” on page 3-13.

Table B-29 SQL Generation Capabilities

Query Supported

If-Then-Else no

Inner joins yes (SQL-89 syntax)

Outer joins no

Semi-joins, Anti-semi-joins no

Order by yes

Order by: Empty (NULL) order supported Database-dependent

Order by: Aggregate function in ordering
expression

no

Group by yes (by column only)

Distinct pattern yes

Trivial aggregate pattern no

Direct SQL composition no

XQuery-SQL Mapping Refe rence

B-38 XQuery Developer’s Guide

	Introducing the Data Services Platform XQuery Engine
	XML and XQuery
	XQuery Use in Data Services Platform
	Supported XQuery Specifications
	Learning More About the XQuery Language

	BEA’s XQuery Implementation
	Function Overview
	Access Control Functions
	fn-bea:is-access-allowed
	fn-bea:is-user-in-group
	fn-bea:is-user-in-role
	fn-bea:userid

	Duration, Date, and Time Functions
	fn-bea:date-from-dateTime
	fn-bea:date-from-string-with-format
	fn-bea:date-to-string-with-format
	fn-bea:dateTime-from-string-with-format
	fn-bea:dateTime-to-string-with-format
	fn-bea:time-from-dateTime
	fn-bea:time-from-string-with-format
	fn-bea:time-to-string-with-format
	Date and Time Patterns

	Execution Control Functions
	fn-bea:async
	fn-bea:fence
	fn-bea:if-then-else
	fn-bea:timeout

	Numeric Functions
	fn-bea:format-number
	fn-bea:decimal-round
	fn-bea:decimal-truncate

	Other Functions
	fn-bea:get-property
	fn-bea:inlinedXML
	fn-bea:rename

	QName Functions
	fn-bea:QName-from-string

	Sequence Functions
	fn-bea:interleave

	String Functions
	fn-bea:match
	fn-bea:sql-like
	fn-bea:trim
	fn-bea:trim-left
	fn-bea:trim-right

	Unsupported XQuery Functions
	Implementation-Specific Functions and Operators
	BEA XQuery Language Implementation
	XQuery Language Support (and Unsupported Features)
	Extensions to the XQuery Language in the DSP XQuery Engine
	Generalized FLWGOR (group by)
	Optional Indicator in Direct Element and Attribute Constructors

	Implementation-Defined Values for XQuery Language Processing

	XQuery Engine and SQL
	Introduction
	Base and Core RDBMS Support
	How it Works—XQuery Engine’s Support for SQL
	Metadata and Data Type Mappings Get Stored in Annotated Files
	Runtime Connection Management—Connection Sharing

	XQuery-SQL Data Type Mappings
	Date and Time Data Type Differences: Timezones and Time Precision
	Scope Differences for Expressions and Data Types

	SQL Pushdown: Performance Optimization
	Function and Operator Pushdown
	Parameters in Generated SQL Statements
	Cast Operation Pushdown
	Path Expressions Pushdown
	Constant Pushdown
	Variable Pushdown
	Common Query Patterns
	Simple Projection Queries
	Where Clause Pushdown
	Order By Clause Pushdown
	Inner Join Pushdown
	Outer Join Pushdown
	Semi-Joins and Anti-Semi-Joins

	Grouping and Aggregation
	Group By Pushdown
	Distinct-by Pushdown
	Trivial Aggregate Pattern
	Group-By with a Nested Where Clause Translates to SQL HAVING Clause
	Outer Join with Aggregate Pattern
	If-Then-Else Pattern
	Subsequence Pushdown

	Direct SQL Data Services and Pushdown
	Distributed Query Pushdown

	Preventing SQL Pushdown

	Understanding XML Namespaces
	Introducing XML Namespaces
	Exploring XML Schema Namespaces

	Using XML Namespaces in Data Services Platform Queries and Schemas

	Best Practices Using XQuery
	Introducing Data Service Design
	Understanding Data Service Design Principles
	Applying Data Service Implementation Guidelines

	Understanding Data Services Platform Annotations
	XDS Annotations
	General Properties
	Standard Document Properties
	User-Defined Properties

	Data Access Properties
	Relational Data Service Annotations
	Web Service Data Service Annotations
	Java Function Data Service Annotations
	Delimited Content Data Service Annotations
	XML Content Data Service Annotations
	User Defined View XDS Annotations

	Target Type Properties
	Native Type Properties
	Update-related Type Properties

	Key Properties
	Relationship Properties
	Update Properties
	Function for Update Decomposition
	Java Update Exit
	Optimistic Locking Fields
	Read-Only Data Service

	Security Properties

	Function Annotations
	General Properties
	UI Properties
	Cache Properties
	Behavioral Properties
	Inverse Functions
	Equivalent Transforms

	Signature Properties
	Native Properties
	SQL Query Properties
	SOAP Handler Properties

	XFL Annotations
	General Properties
	Data Access Properties

	Annotations Reference
	XML Schema for Annotations

	XQuery-SQL Mapping Reference
	IBM DB2/NT 8
	Data Type Mapping
	Function and Operator Pushdown
	Cast Operation Pushdown
	Other SQL Generation Capabilities

	Microsoft SQL Server 2000
	Data Type Mapping
	Function and Operator Pushdown
	Cast Operation Pushdown
	Other SQL Generation Capabilities

	Oracle 8.1.x
	Data Type Mapping
	Function and Operator Pushdown
	Cast Operation Pushdown
	Other SQL Generation Capabilities

	Oracle 9.x, 10.x
	Data Type Mapping
	Function and Operator Pushdown
	Cast Operation Pushdown
	Other SQL Generation Capabilities

	Pointbase 4.4 (and higher)
	Data Type Mapping
	Function and Operator Pushdown
	Cast Operation Pushdown
	Other SQL Generation Capabilities

	Sybase 12.5.2 (and higher)
	Data Type Mapping
	Function and Operator Pushdown
	Cast Operation Pushdown
	Other SQL Generation Capabilities

	Base (Generic) RDBMS Support
	Database Capabilities Information
	Data Type Mapping
	Function and Operator Pushdown
	Cast Operation Pushdown
	Other SQL Generation Capabilities

