
BEAAquaLogic
Data Services
Platform™

Samples Tutorial
Note: In some cases illustrations, directories, and paths
reference Liquid Data (“ld”), the original name of the Data
Services Platform.

Product version: 2.5
Document Date: June 2005
Revised: March 2007

Data Services Samples Tutorial iii

About This Document
Document Organization . 1-1

Technical Prerequisites . 1-2

System Requirements. 1-2

Core (Tutorials 1-17) . 1-4

Advanced (Tutorials 18-35) . 1-6

1. Introducing the Data Services Environment
1.1 Starting WebLogic Workshop. 1-2

1.2 Navigating the ALDSP Integrated Development Environment (IDE) 1-3

1.3 Starting WebLogic Server. 1-11

1.4 Stopping WebLogic Server . 1-12

1.5 Saving Your Work . 1-13

2. Creating a Physical Data Service
2.1 Creating an ALDSP Application . 2-2

2.2 Creating a Data Services Project. 2-4

2.3 Creating Project Sub-Folders . 2-6

2.4 Importing Relational Source Metadata . 2-7

2.5 Building a Project . 2-12

2.6 Viewing Physical Data Service Information . 2-14

2.7 Testing Physical Data Service Functions . 2-21

3. Creating a Logical Data Service
3.1 Creating a Simple Logical Data Service . 3-4

3.2 Defining the Logical Data Service Shape . 3-5

3.3 Adding a Function to a Logical Data Service . 3-8

3.4 Mapping Source and Target Elements . 3-9

3.5 Viewing XQuery Source Code. 3-13

iv Data Services Samples Tutorial

3.6 Testing a Logical Data Service Function. .3-14

4. Integrating Data from Multiple Data Sources
4.1 Joining Multiple Physical Data Services within a Logical Data Service 4-2

4.2 Defining a Where Clause to Join Multiple Physical Data Services. .4-6

4.3 Creating a Parameterized Function .4-13

5. Modeling Data Services
5.1 Creating a Basic Model Diagram for Physical Data Services .5-3

5.2 Modeling Relationships Between Physical Data Sources .5-5

6. Accessing Data Services
6.1 Importing a Web Service Project into the Application .6-2

6.2 Importing Web Service Metadata into a Project .6-6

6.3 Testing the Web Service via a SOAP Request .6-13

6.4 Invoking a Web Service in a Data Service .6-15

7. Consuming Data Services Using Java
7.1 Running a Java Program Using the Untyped Mediator API. .7-3

7.2 Running a Java Program Using the Typed Mediator API. .7-9

7.3 Resetting the Mediator API .7-14

8. Consuming Data Services using Data Service Controls
8.1 Installing a Data Service Control .8-2

8.2 Defining the Data Service Control .8-3

8.3 Inserting a Data Service Control into a Page Flow .8-7

8.4 Running the Web Application. .8-10

9. Accessing Data Services Through Web Services
9.1 Generating a Web Service from a Data Service Control .9-2

Data Services Samples Tutorial v

9.2 Using a Data Service Control to Generate a WSDL for a Web Service 9-6

10.Updating Data Services Using Java
10.1 Modifying and Saving Changes to the Underlying Data Source . 10-1

10.2 Inserting New Data to the Underlying Data Source Using Java. 10-5

10.3 Deleting Data from the Underlying Data Source Using Java . 10-7

11.Filtering, Sorting, and Truncating XML Data
11.1 Filtering Data Service Results . 11-2

11.2 Sorting Data Service Results . 11-5

11.3 Truncating Data Service Results . 11-8

12.Consuming Data Services through JDBC/SQL
12.1 Running DBVisualizer . 11-2

12.2 Integrating Crystal Reports and Data Services Platform . 11-6

12.3 (Optional) Configuring JDBC Access through Crystal Reports . 11-8

13.Consuming Data via Streaming API
13.1 Stream results into a flat file . 13-2

13.2 Consume data in streaming fashion . 13-3

14.Managing Data Service Metadata
14.1 Defining Customized Metadata for a Logical Data Service . 14-2

14.2 Viewing Data Service Metadata Using the ALDSP Console . 14-5

14.3 Synching a Data Service with Underlying Data Source Tables . 14-8

15.Managing Data Service Caching
15.1 Determining the Non-Cache Query Execution Time. 15-2

15.2 Configuring a Caching Policy Through the ALDSP Console. 15-3

15.3 Testing the Caching Policy. 15-5

vi Data Services Samples Tutorial

15.4 Determining Performance Impact of the Caching Policy .15-6

15.5 Disable Caching .15-8

16.Managing Data Service Security
16.1 Creating New User Accounts .16-2

16.2 Setting Application-Level Security .16-5

16.3 Granting User Access to Read Functions .16-7

16.4 Granting User Access to Write Functions .16-12

16.5 Setting Element-Level Data Security .16-13

16.6 Testing Element-Level Security .16-16

17.(Optional) Consuming Data Services through Portals &
Business Processes

17.1 Installing a Data Service Control in a Portal Project. .17-2

17.2 Testing the Control and Retrieving Data .17-6

18.Building XQueries in XQuery Editor View
18.1 Importing Schemas for Query Development. .18-2

18.2 Creating Source-to-Target Mappings .18-3

18.3 Creating a Basic Parameterized Function .18-7

18.4: Creating a String Function with a Built-In XQuery Function .18-12

18.5: Creating a Date Function. .18-16

18.6: Creating Outer Joins and Order By Expressions .18-20

18.7: Creating Group By and Aggregate Expressions .18-26

18.8: Creating Constant Expressions .18-31

19.Building XQueries in Source View
19.1 Creating a New XML Type. .19-3

19.2 Creating a Basic Parameterized XQuery .19-5

Data Services Samples Tutorial vii

19.3 Creating a String Function . 19-10

19.4 Building an Outer Join and Using Order By . 19-14

19.5 Creating an Inner Join and a Top N . 19-19

19.6 Creating a Multi-Level Group By . 19-24

19.7 Using If-Then-Else If. 19-29

19.8 Creating a Union and Concatenation . 19-34

20.Implementing Relationship Functions and Logical Modeling
20.1 Implementing and Testing a Relationship Function. 20-2

20.2 Creating a Model Diagram for Logical Data Services . 20-6

21.Running Ad Hoc Queries
21.1 Creating an Instance of the PreparedExpression Class . 21-2

21.2 Defining Ad Hoc Query Parameters . 21-4

21.3 Testing the Ad Hoc Query . 21-5

22.Creating Data Services Based on SQL Statements
22.1 Creating a Data Service from a User-Defined SQL Statement . 22-2

22.2 Testing Your SQL Data Service . 22-4

23.Performing Custom Data Manipulation Using Update Override
23.2 Creating an Update Override . 23-2

23.3 Associating an Update Override to a Logical Data Service . 23-4

23.4 Testing the Update Override . 23-5

24.Updating Web Services Using Update Override
24.1 Creating an Update Override for a Physical Data Service . 24-3

24.2 Writing Web Service Update Logic in the Update Override . 24-4

24.3 Testing the Update Override . 24-4

24.4 Checking for Change Requirements . 24-6

viii Data Services Samples Tutorial

25.Overriding SQL Updates Using Update Overrides
25.1 Adding SQL Update Statements to an Update Override File .25-2

25.2 Associating an SQL-Based Data Service and Update Override .25-3

25.3 Testing Updates .25-4

26.Understanding Query Plans
26.1 Viewing the Query Plan .26-2

26.2 Locating the SQL Statement in a Query Plan .26-5

26.3 Locating XML Elements .26-6

27.Reusing XQuery Code through Vertical View Unfolding
27.1 Unfolding Vertical View. .27-1

 27.2 Testing a Vertical File Unfolding. .27-6

28.Configuring Alternatives for Unavailable Data Sources
 28.1 Setting the Demonstration Conditions. .28-2

 28.2 Configuring Alternative Sources .28-4

28.3 Testing an Alternative Source .28-6

29.Enabling Fine Grained Caching
29.1 Enabling Function-Level Caching for a Physical Data Service. .29-2

29.2 Testing the Caching Policy .29-4

29.3 Testing Performance Impact .29-6

30.CreatingXQueryFilters to Implement Conditional Logic Security
30.1 Creating User Groups .30-1

30.2 Writing the XQuery Security Function .30-4

 30.3 Activating the XQuery Function for Security. .30-6

30.4 Testing the XQuery Security Function. .30-7

Data Services Samples Tutorial ix

31.Creating Data Services from Stored Procedures
31.1 Importing a Stored Procedure into the Application . 31-2

31.2 Importing Stored Procedure Metadata into a Data Service . 31-4

32.Creating Data Services from Java Functions
32.1 Accessing Data Using WebLogic’s Embedded LDAP Function . 32-3

32.2 Accessing Excel Spreadsheet Data Using JCOM . 32-7

32.3 (Optional) Accessing Data Using an Enterprise Java Bean . 32-9

33.Creating Data Services from XML Files
33.1 Importing XML Metadata and XML Schema Definition . 33-1

33.2 Testing the XML Data Service . 33-5

34.Creating Data Services from Flat Files
34.1 Importing Flat File Metadata . 34-1

 34.2 Testing Your Flat File Data Service . 34-3

34.3 Integrating Flat File Valuation with a Logical Data Service . 34-5

34.4 Testing an Integrated Flat File Data Service. 34-7

35.Creating an XQuery Function Library
35.1 Creating an XQuery Function Library. 35-1

35.2 Using the XQuery Function Library in an XQuery . 35-5

Glossary

Copyright
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA
AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data
Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic
Interaction Publisher, BEA AquaLogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for
WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo, BEA WebLogic
Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise
Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API,
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA
WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server,
BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA
Workshop for WebLogic Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA
Workshop Studio, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated
Knowledge Transfer, AKT, BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA
Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Data Services Samples Tutorial 1-1

About This Document

Welcome to the AquaLogic Data Services Platform Samples Tutorial. In this document, you are
provided with step-by-step instructions that show how you can solve many of the types of data
integration problems frequently faced by Information Technology (IT) managers and staff. These
issues include:

What is the best way to normalize data drawn from widely divergent sources?

Having normalized the data, can you access it, ideally through a single point of access?

After you define a single point of access, can you develop reusable queries that are easily
tested, stored, and retrieved?

After you develop your query set, can you easily incorporate results into widely available
applications?

Other questions may occur. Is the data-rich solution scalable? Is it reusable throughout the
enterprise? Are the original data sources largely transparent to the application — or do they become
an issue each time you want to make a minor adjustments to queries or underlying data sources?

Document Organization
This guide is organized into 35 tutorials that illustrate many aspects of Data Services Platform
functionality:

Data service development. In which you specify the query functions that you will use to access,
aggregate, and transform distributed, disparate data into a unified view. In this stage, you also
specify the XML type that defines the data view that will be available to client-side applications.

About Th i s Document

1-2 Data Services Samples Tutorial

Data modeling. In which you define a graphical representation of data resource relationships
and functions.

Client-side development. In which you define an environment for retrieving data results.

Each tutorial consists of an overview plus lessons that demonstrate AquaLogic Data Services Platform
capabilities on a topic-by-topic basis. Each tutorial is structured as a series of procedural steps that
details the specific actions needed to complete that part of the demonstration.

Note: The tutorials build on each other and must be completed in sequential order. Unless a step
or lesson is labeled as optional it should be completed. Otherwise you may not be able to
successfully complete a subsequent, dependent lesson.

Technical Prerequisites
The lessons within this guide require a familiarity with the following topics: data integration and
aggregation concepts, the BEA WebLogic® Platform™ (particularly WebLogic Server and WebLogic
Workshop), Java, query concepts, and the environment in which you will install and use AquaLogic
Data Services Platform.

For some lessons, a background in XQuery is helpful.

System Requirements
To complete the lessons, your computer requires:

Server BEA WebLogic Server 8.1 Service Pack 5

Domain dplatform

Application BEA AquaLogic Data Services Platform 2.5

Operating
System

Windows 2000 or Windows XP

Memory 512 MB RAM minimum; 1 GB RAM recommende

Browser Internet Explorer 6 or higher or equivilent

System Requ i rements

Data Services Samples Tutorial 1-3

Data Sources Used Within These Tutorials
The Samples Tutorial builds data services that draw on a variety of underlying data sources. These
data sources, which are provided with the product, are described in the following table:

Data Source Type Data Source Data

Relational Customer Relationship
Management (CRM)
RTLCUSTOMER database

Customer and credit card data

Relational Order Management System (OMS)
RTLAPPLOMS database

Apparel product, order, and order
line data

Relational Order Management System (OMS)
RTLELECOMS database

Electronics product, order, and
order line data

Relational RTLSERVICE database Customer service data, organized in
a single Service Case table

Web service CreditRatingWS Credit rating data

Stored procedure GETCREDITRATING_SP Customer credit rating information

Java function Functions.DSML Java function enabling LDAP
access

Java function Functions.excel_jcom Excel spreadsheet data, via JCOM

Java function Functions.CreditCardClient Customer credit card information,
via an XMLBean

XML files ProductUNSPSC.xsd Third-party product information

Flat file Valuation.csv Data received from an internal
department that deals with
customer scoring and valuation
model

About Th i s Document

1-4 Data Services Samples Tutorial

Related Information
In addition to the material covered in this guide, you may want to review the wealth of resources
available at the BEA Web site, WebLogic developer site, and third-party sites. Information at these
sites includes datasheets, product brochures, customer testimonials, product documentation, code
samples, white papers, and more.

For more information about Java and XQuery, refer to the following sources:

The Sun Microsystems, Inc. Java site at:

http://java.sun.com/

The World Wide Web Consortium XML Query section at:

http://www.w3.org/XML/Query

For more information about BEA products, refer to the following sources:

ALDSP documentation site at:

http://edocs.bea.com/aldsp/docs25/

BEA e-docs documentation site at:

http://e-docs.bea.com/

BEA online community for WebLogic developers at:

http://dev2dev.bea.com

Core (Tutorials 1-17)
BEA AquaLogic Data Services Platform approaches the problem of creating integration architectures
by providing tools that let you build physical data services around individual physical data sources, and
then develop logical data services and business logic that integrate and return data from multiple
physical and logical data services. Logical data services use easily-maintained, graphically-designed
XML queries (XQueries) to access, aggregate, transform, and deliver its data results.

Developing ALDSP services involves three basic steps:

1. Create a unified view of information from all relevant sources. This step, which involves
development of physical data services and (optionally) data models, is typically performed by a
data services architect who understands the information available in underlying sources and can
define the unified view that different projects will use. ALDSP is capable of modeling relational

Core (Tu to r ia ls 1-17)

Data Services Samples Tutorial 1-5

and non-relational sources; it includes tools for introspection and mapping of the underlying
sources to the unified data view.

2. Develop application-specific queries. This step, which involves development of logical data
services, is typically performed by application developers who write simple queries against the
unified view to get the required data. ALDSP provides tools to visually create robust XQueries and
also publish them as services.

3. Tie query results to client applications. This step, which involves accessing data through a
variety of consuming applications, is typically performed by application developers who execute
the queries and receive results as XML or Java objects. In addition, ALDSP provides an out-of-
the-box Workshop control to easily develop portal or Web applications from which to access data
retrieved by a data service.

Figure 0-1 Data Services Platform Development Process

Data Services Platform Development Process
As part of the development process, ALDSP provides flexible options for updating both relational and
non-relational data sources. ALDSP lets you write update logic via an EJB in BEA WebLogic Server™;
via a database, JMS, or Data Services Platform Control in Workshop; or via a business process in BEA
WebLogic Integration™.

About Th i s Document

1-6 Data Services Samples Tutorial

In addition, ALDSP provides visual tools for managing various administrative tasks, including
controlling data service metadata, caching, and security.

The initial 17 tutorials illustrate ALDSP’s most commonly used capabilities: developing and testing
physical and logical data services, accessing data services through various consuming applications,
updating underlying data sources, and managing various administrative tasks.

Note: The lessons build upon one another and should be completed in sequential order.

Advanced (Tutorials 18-35)
In advanced totorials you will build upon that knowledge to:

Build queries in both XQuery Editor View and Source View.

Create models for logical data services.

Run ad hoc queries.

Use update overrides to perform custom data manipulations, update Web services, and
overwrite SQL updates.

Use the automatically generated Query Plan.

Re-use XQuery code.

Configure alternative sources for unavailable data sources.

Use SQL Exits to enable retrieving data from an SQL statement.

Enable fine-grained caching.

Enable element-level security.

Create data services from stored procedures, Java functions, XML files, and flat files.

Create an XQuery function library.

2/9 14:10

Data Services Samples Tutorial 1-1

T U T O R I A L 1

Introducing the Data Services
Environment

BEA AquaLogic Data Services Platform provides the tools and components that let you build physical
data services around individual physical data sources, and then develop the logical data services and
business logic that integrate data from multiple physical and logical data services. The environment
also lets you test the data service and manage data service metadata, caching, and security.

The basic menus, behavior, and look-and-feel associated with the WebLogic Workshop environment
apply to ALDSP. However, there are several tools and components within WebLogic Workshop that are
especially relevant to ALDSP. In this lesson, you will learn about a few of those tools and components.
In addition, you will learn how to complete several basic tasks, such as starting and stopping WebLogic
Server, that are essential to using WebLogic Workshop.

As the first lesson within the AquaLogic Data Services Platform Samples Tutorial, there are no
dependencies on other lessons. However, your familiarity with WebLogic Workshop is assumed.
Workshop is fully described in online documentation, which you can view at:

http://edocs.bea.com/workshop/docs81/index.html

Objectives
After completing this exercise, you will be able to:

Navigate the ALDSP environment.

Start and stop WebLogic Server.

Save a Data Services application and associated files.

I n t roduc ing the Data Se rv ices Env i ronment

1-2 Data Services Samples Tutorial

Overview
WebLogic Workshop consists of two parts: an Integrated Development Environment (IDE) and a
standards-based runtime environment. The purpose of the IDE is to remove the complexity in building
applications for the entire WebLogic platform. Applications you build in the IDE are constructed from
high-level components rather than low-level API calls. Best practices and productivity are built into
both the IDE and runtime.

1.1 Starting WebLogic Workshop
The first step is starting WebLogic Workshop and opening the RTLApp sample application, which you
will use in the next lesson.

Objectives
In this exercise, you will:

Start WebLogic Workshop.

Open the RTLApp application.

Instructions
1. Choose Start → Programs → BEA WebLogic Platform 8.1 → Examples → WebLogic Workshop

→ Start Workshop with Sample Applications.

If this is the first time you are starting WebLogic Workshop, then the SamplesApp project opens.
Otherwise, the project that you last opened appears.

2. Choose File → Open → Application

3. Open the RTLApp.work file from the following location:

<beahome>\weblogic81\samples\liquiddata\RTLApp\

Note: Depending on your computer settings, the .work extension may not be visible.

In Listing 1-1 RTLApp in Design View for Case.ds, the RTLApp application opens in Design View
for the Case data service. If this is not the view that you see, double-click Case.ds located at
DataServices/RTLServices and select the Design View tab.

1.2 Nav igat ing the ALDSP In tegra ted Deve lopment Env i ronment (IDE)

Data Services Samples Tutorial 1-3

Figure 1-1 RTLApp in Design View for Case.ds

Note: The RTLApp application opens in the last active view. This action also resets the default
WebLogic server home directory instance to the ldplatform sample domain.

1.2 Navigating the ALDSP Integrated Development
Environment (IDE)

Within the WebLogic Workshop environment, there are several tools and components that are
relevant to developing ALDSP applications and projects. Five of the most frequently used are:

Application Pane

Design View

XQuery Editor View

Source View

Test View

Screenshots of the environment are taken from within the RTLApp application.

I n t roduc ing the Data Se rv ices Env i ronment

1-4 Data Services Samples Tutorial

Figure 1-2 Data Services Platform Running in WebLogic Workshop

Objectives
In this exercise, you will:

Explore five of the most frequently used development tools.

Discover the features and functions of these tools.

Application Pane
The Application pane displays a hierarchical representation of a ALDSP application.

1.2 Nav igat ing the ALDSP In tegra ted Deve lopment Env i ronment (IDE)

Data Services Samples Tutorial 1-5

Figure 1-3 Application Pane

A Workshop application is a collection of all resources and components—projects, schemas, modules,
libraries, and security roles—deployed as a unit to an instance of WebLogic Server. Only one
application can be active at a time. Open files display in boldface type.

If the Application pane is not open, complete one of the following options:

1. Choose View → Application.

2. Press Alt+1.

Design View
Design View presents an editable, graphical representation of a data service. It is a single point of
consolidation for a data service’s query functions and other business logic. Using Design View, you can:

View the data service’s XML type, native data types, functions, and data source relationships.

Add functions and data source relationships.

Create an XML type definition for elements within the data service, such as xs:string or xs:date.

I n t roduc ing the Data Se rv ices Env i ronment

1-6 Data Services Samples Tutorial

Associate the data service with an XML Schema Definition (.xsd) that defines the unified view
for all retrieved data.

Figure 1-4 Design View of a Logical Data Service

If Design View is not open, complete the following steps:

1. Open a data service such as Case.ds located in DataServices/RTLServices.

2. Select the Design View tab.

XQuery Editor View
XQuery Editor View provides a graphical, drag-and-drop approach to constructing queries. Using this
view, you can inspect or edit the query Return type and add the data source nodes, parameters,
expressions, conditions, and source-to-target mappings that comprise data service query functions.

1.2 Nav igat ing the ALDSP In tegra ted Deve lopment Env i ronment (IDE)

Data Services Samples Tutorial 1-7

Figure 1-5 Sample XQuery Editor View

If XQuery Editor View is not open:

1. Open a data service such as Case.ds located in DataServices/RTLServices

2. Select the XQuery Editor View tab.

XQuery Editor View Tools
XQuery Editor View includes several editors and palettes that simplify the construction of queries:

Expression Editor. Lets you add where and order by conditions to let or for nodes. The
Expression Editor is only active when you click on the specific node header.

Figure 1-6 Expression Editor

I n t roduc ing the Data Se rv ices Env i ronment

1-8 Data Services Samples Tutorial

Data Services Palette. Lets you add previously-defined query functions as data sources. Each
function displays as a for node, which serves as a for clause within the FLWOR
(for-let-where-order by-return) statement that is the heart of an XQuery.

Figure 1-7 Data Services Palette

To add data sources, drag and drop an item from the Data Services Palette into the XQuery
Editor View work area. After you drop the node into XQuery Editor View, the node’s data source
schema (shape) displays in the XQuery Editor View.

If the Data Services Palette is not open, choose View → Windows → Data Services Palette.

XQuery Function Palette. Lets you add any of the more than 100 built-in functions provided
within the XQuery language. In addition, you can add any of the special built-in functions
defined by BEA.

To add a built-in function, drag and drop the selected item into the Expression Editor.

If XQuery Function Palette is not open, choose View → Windows → XQuery Function Palette.

Figure 1-8 XQuery Function Palette

1.2 Nav igat ing the ALDSP In tegra ted Deve lopment Env i ronment (IDE)

Data Services Samples Tutorial 1-9

Any work created in XQuery Editor View is immediately reflected in Source View, which permits you
to augment the graphical approach to constructing queries with direct work on the XQuery syntax.
Two-way editing is supported. Changes you make in Source View are reflected in XQuery Editor View,
and vice versa.

Source View
Source View lets you view and/or modify a data service’s XQuery annotated source code. Although
ALDSP provides extensive visual design tools for developing a data service, sometimes you may need
to work directly with the underlying XQuery syntax.

Two-way editing is supported. Changes you make in Source View are reflected in XQuery Editor View,
and vice versa.

Figure 1-9 Source View

If Source View is not open, complete the following steps:

1. Open a data service such as Case.ds located in DataServices/RTLServices.

I n t roduc ing the Data Se rv ices Env i ronment

1-10 Data Services Samples Tutorial

2. Select the Source View tab.

Within Source View, you can use the XQuery Construct Palette, which lets you add any of several
built-in generic FLWOR statements to the XQuery syntax. You can then customize the generic
statement to match your particular needs.

To add a FLWOR construct, drag and drop the selected item into the appropriate declare function
space.

If XQuery Construct Palette is not open, choose View → Windows → XQuery Construct Palette.

Test View
Test View provides a means of running developed query functions within the IDE. Options available in
Test View depend on the query being tested. For example, if the query supports parameters, then the
Parameters section appears, providing a field for each parameter required by the query.

Using Test View, you can select a specific function, specify appropriate parameters, and execute the
query to determine that it is functioning properly. In addition, you can edit the results of the query
and pass the modifications back to the underlying data source.

1 .3 Sta r t ing WebLog ic Se rve r

Data Services Samples Tutorial 1-11

Figure 1-10 Test View

If Test View is not open, complete the following steps:

1. Open a data service such as Case.ds located in DataServices/RTLServices.

2. Select the Test View tab.

1.3 Starting WebLogic Server
WebLogic Server need not be running while you are designing a ALDSP project. However, before you
import source metadata or test a developed function, you must start an instance of WebLogic Server.

Any ALDSP projects that you create will run on your system’s installation of WebLogic Server, at least
until you deploy them.

Note: Multiple versions of WebLogic Server can exist, even on local, sample systems. If you have
previously run an instance of WebLogic Server you should shut down that server and change
your WebLogic Workshop server settings. This can be done through the Workshop
ToolsApplication Properties dialog box.

I n t roduc ing the Data Se rv ices Env i ronment

1-12 Data Services Samples Tutorial

Objectives
In this exercise, you will:

Discover ways to start WebLogic Server.

Confirm that your server is running.

Instructions
There are three ways to start WebLogic Server. Start the server using one of the following ways:

Starting the WebLogic Server may take some time. During the server startup sequence, you may see
the following message box:

Figure 1-11 (Possible) WebLogic Server Startup Message

If this box displays, click OK.

When WebLogic Server is running, the WebLogic server icon, which appears on the WebLogic

Workshop status bar, will turn green.

1.4 Stopping WebLogic Server
There may be times when you want to stop WebLogic Server while still working within ALDSP for
WebLogic Workshop.

Menu Command WebLogic Workshop → Tools → WebLogic Server → Start
WebLogic Server

Shortcut Keys Ctrl + Shift + S

From Status Bar Right-click the red Server Stopped icon, located at the bottom
of the WebLogic Workshop window. Then click Start WebLogic
Server.

1.5 Sav ing Your Work

Data Services Samples Tutorial 1-13

Objectives
In this exercise, you will:

Discover how to stop WebLogic Server.

Confirm that the server is not running.

Instructions
You can stop WebLogic Server using any one of the following ways:

Check the WebLogic Server icon of WebLogic Workshop to determine whether WebLogic Server is

stopped. If WebLogic Server is stopped, the icon will turn red.

1.5 Saving Your Work
As you build your data services, you may want to save your work on a regular basis.

Objectives
In this exercise, you will:

Discover three ways to save your work while working within the application.

Discover how to save one or more files when exiting the application or closing WebLogic
Workshop.

Instructions
You can save your work using the following commands:

Menu Command WebLogic Workshop → Tools → WebLogic Server → Stop
WebLogic Server

Shortcut Keys Ctrl + Shift + T

Procedure Right-click the green Server Running icon, located at the
bottom of the WebLogic Workshop window. Then click Stop
WebLogic Server.

Menu Command Icon
File → Save

I n t roduc ing the Data Se rv ices Env i ronment

1-14 Data Services Samples Tutorial

Save All is generally recommended for ALDSP applications. The Save As and Save All options are only
available if you have made changes to your application.

In addition, if you exit WebLogic Workshop and there are any unsaved changes, you are provided with
an option to save either specific or all edited files.

Figure 1-12 Save File Options on Exiting WebLogic Workshop

Lesson Summary
In this lesson, you learned how to:

Use several of the key tools within ALDSP for WebLogic Workshop environment.

Start and stop the WebLogic Server.

Save files within a Data Services application.

File → Save As Not Applicable

File → Save All

Data Services Samples Tutorial 2-1

T U T O R I A L 2

Creating a Physical Data Service

A data service is simply a file containing XQuery functions and supporting structured information. The
most basic data service is a physical data service, which models a single physical data source residing
in a relational database, Web service, flat file, XML file, or Java function.

Data Services Platform approaches the problem of creating integration architectures by building data
services around multiple physical data services. Therefore, in this lesson, you will create data services
based on relational data included in the sample PointBase database provided with ALDSP:

Customer Relationship Management (CRM) data, stored in the RTLCUSTOMER database.

Order Management System (OMS) data for apparel and electronic products, stored in the
RTLAPPLOMS and RTLELECOMS databases.

Customer service data, stored in the RTLSERVICE database.

Objectives
After completing this lesson, you will be able to:

Create a ALDSP application and project.

Generate multiple physical data services, based on underlying relational data sources.

Test a physical data service.

Creat ing a Phys ica l Data Serv ice

2-2 Data Services Samples Tutorial

Overview
A data service is a collection of one or several related query functions. The service typically models a
unit of enterprise information, such as customer or product data.

The shape of a data service is defined by an XML type that classifies each data element as a particular
form of information, according to its allowable contents and units of data. For example, an xs:string
type can be a sequence of alphabetic, numeric, and/or special characters, while an xs:date type can
only be numeric characters presented in a YYYY-MM-DD format. ALDSP uses the XML type to model
and normalize disparate data into a unified view.

The data service interface consists of public functions that enable client-based consuming
applications to retrieve data from the modeled data source.

2.1 Creating an ALDSP Application
Because a data service is part of a specific ALDSP project, and a project is part of a single WebLogic
Workshop application, you will first need to create the application, and then a project, before creating
a physical data service. (Alternatively, an existing application could be used; in that case you would
simply create a ALDSP project within the application.)

An application, which is deployed as a single unit to an instance of WebLogic Server, is a J2EE
enterprise application that ultimately produces a J2EE Enterprise Application Archive (EAR) file.
This, in turn, provides you with a multi-user application that is ready for Internet deployment. Except
in specific cases, such as accessing remote EJBs or Web services, an application is self-contained. The
application’s components may reference each other, but may not generally reference components in
other applications. An application’s components include:

One or more projects, data services, schemas, and libraries.

Zero or more modules and security roles.

An application should represent a related collection of business solutions. For example, if you are
deploying two Web sites — one an e-commerce site and the other a human resources portal for
employees — you would probably create separate WebLogic applications for each.

An application is also the top-level unit of work that you manipulate within the WebLogic Workshop
environment. Only one application can be active at a time.

Objectives
In this exercise, you will:

2 .1 Creat ing an ALDSP Appl i cat ion

Data Services Samples Tutorial 2-3

Create a ALDSP-enabled application.

Explore default application components.

Instructions
1. Choose File → New → Application

2. In the New Application dialog box, select Data Services Application.

3. Enter Evaluation in the Name field.

Note: The sample code used to work on this tutorial uses Evaluation as the application name.
Ensure that you name the ALDSP application as Evaluation so that the sample works
successfully with your application.

4. Click Create.

Figure 2-1 Creating a ALDSP Application

The components of the application are represented in a hierarchical tree structure in the Application
pane. When you first create a Data Services application, the following default components are
automatically generated:

Creat ing a Phys ica l Data Serv ice

2-4 Data Services Samples Tutorial

Data Service project. Takes the name of your application (in this case, Evaluation). Within the project
folder, there is initially a single component, the xquery-types.xsd file. This file is an XML
Schema Definition (XSD) that describes the contents, semantics, and structure of the project.

Modules. Initially an empty folder.

Libraries. Contains the ld-server-app.jar file. This file contains various folders and files, as
displayed in Figure 2-2.

Note: Initially, the Libraries folder is empty. The ld-server-app.jar file is imported
only after you build the Evaluation project.

Security Roles. Initially an empty folder.

Figure 2-2 displays the default folders created for the Evaluation application.

Figure 2-2 Initial Application Structure

2.2 Creating a Data Services Project
A project groups related files—data services, models, and metadata—within an application. Each
application can support multiple projects. As you develop the application, you may want to create new
projects for the following reasons:

To separate unrelated functionality. Each project should contain closely-related components. For
example, if you want to create one or more data services that expose order status to your customers,

2.2 Creat ing a Data Se rv ices P ro jec t

Data Services Samples Tutorial 2-5

and also one or more Web services that expose inventory status to your suppliers, you would probably
organize these two sets of unrelated Web services into two projects.

To control build units. Each project produces a particular type of file when the project is built. For
example, a Java project produces a JAR file. If you want to reuse the Java classes, you would segregate
the Java classes into a separate project, and then reference the resulting JAR file from other projects
in your application.

Although a default Data Services project is created when you create a new Data Service application,
for this tutorial you will create a new project.

Objectives
In this exercise, you will:

Create a new Data Service project.

Review the results.

Instructions
1. Choose File → New → Project

2. In the New Project dialog box, select Data Service Project.

3. Enter DataServices in the Project name field.

4. Click Create.

Creat ing a Phys ica l Data Serv ice

2-6 Data Services Samples Tutorial

Figure 2-3 Creating a New Data Service Project

The components of your new Data Service project are represented in a hierarchical tree structure in
the Application pane. At present, there is only one component in the project, the xquery-types .xsd file.
This file is an XML schema definition that describes the contents, semantics, and structure of the
project.

2.3 Creating Project Sub-Folders
Folders let you logically group different data services, and their associated files, within a single
project. For example, if you had three data sources — one relational database containing tables for
customer-oriented information and two Web services providing credit rating and information — you
would probably want to create two folders, one for the database and one for the Web services.

Objectives
In this exercise, you will:

Create four sub-folders within the DataServices project folder.

Review the results.

2 .4 Impor t ing Re la t iona l Source Metadata

Data Services Samples Tutorial 2-7

Instructions
1. Right-click the DataServices project folder.

2. Choose New → Folder.

3. Enter CustomerDB in the Name field.

4. Click OK.

5. Repeat steps 1 through 4 to create additional data service folders for:

ApparelDB

ElectronicsDB

ServiceDB

After adding these four folders, your DataServices project folder should look similar to Figure 2-4.

Figure 2-4 Project Sub-Folders

2.4 Importing Relational Source Metadata
When you installed DSP, several sample data sources were also installed. One such sample data source
is the Avitek RTL PointBase database. It contains a number of relational database schemas that
provide the metadata needed to build your physical data services, including:

Customer Relationship Management (CRM) data, stored in the RTLCUSTOMER database.

Order Management System (OMS) data for apparel products, stored in the RTLAPPLOMS
database.

Creat ing a Phys ica l Data Serv ice

2-8 Data Services Samples Tutorial

Order Management System (OMS) data electronic products, stored in the RTLELECOMS
database.

Customer service data, stored in the RTLSERVICE database.

A physical data service, which models physical data existing somewhere in your enterprise, is
automatically generated when you import relational source metadata. Each generated physical data
service represents a single data source that can be integrated with other physical or logical data
services.

Objectives
In this exercise, you will:

Import source metadata from four RTL PointBase databases, thereby generating multiple
physical data services.

Review the results.

Instructions
Note: WebLogic Server must be running. If it is not already running, start the server (see 1.3

Starting WebLogic Server) before you begin this exercise.

1. Right-click the CustomerDB folder.

2. Choose Import Source Metadata from the pop-up menu.

3. Select Relational from the Data Source Type drop-down list and click Next.

Figure 2-5 Select Data Source

4. Specify the data source, by completing the following steps:

2 .4 Impor t ing Re la t iona l Source Metadata

Data Services Samples Tutorial 2-9

a. Select cgDataSource from the Data Source drop-down list.

b. Click Select All and then click Next.

Figure 2-6 Select Data Source

WebLogic Server fetches the specified data, and then displays the Select Database Objects to
Import dialog box. The source metadata for each selected object will be used to generate a
physical data service.

5. Expand the RTLCUSTOMER and RTLBILLING folders, located in the left pane.

6. Select all tables from both schemas and click Add. The selected objects display in the right pane.

Creat ing a Phys ica l Data Serv ice

2-10 Data Services Samples Tutorial

Figure 2-7 Selected Database Objects to Import

7. Click Next. A Summary dialog box opens, displaying the following information:

XML type, for database objects whose source metadata will be imported.

Data Service Name, for each data service that will be generated from the source metadata. (Any
name conflicts appear in red; you can modify any data service name.)

Target Namespace, for the data service being generated. This is optional.

Location, where the generated data services will reside.

2 .4 Impor t ing Re la t iona l Source Metadata

Data Services Samples Tutorial 2-11

Figure 2-8 Summary

8. Click Finish.

9. Repeat steps 1 through 8 to import source metadata into the ApparelDB, ElectronicsDB, and
ServiceDB folders, substituting the following information for steps 1 and 5:

Table 2-9 Data Service Objects and Data Source

The Application pane should appear similar to Figure 2-10. If you expand a data service’s schema
folder, you will see XSD files for each data service generated from the underlying data source.

Data Service Objects Data Source
ApparelDB RTLAPPLOMS

ElectronicsDB RTLELECOMS

ServiceDB RTLSERVICE

Creat ing a Phys ica l Data Serv ice

2-12 Data Services Samples Tutorial

Figure 2-10 New Data Services

2.5 Building a Project
Building a project simply means that the project’s source code is compiled into machine-readable
instructions. Each project produces a particular type of file when the project is built. For example, a
Java project produces a JAR file.

Objectives
In this exercise, you will:

2.5 Bu i ld ing a P ro jec t

Data Services Samples Tutorial 2-13

Build the DataServices project.

Review the results in the Build window.

Instructions
1. Right-click the DataServices project folder.

2. Choose Build DataServices. It may take a few moments for the project to be built. When complete,
you will see a message in the Build window, similar to that displayed in Figure 2-11. (If the Build
window is not open, choose View → Windows → Build or press Alt+5.)

Figure 2-11 Build Project Information

3. Scroll through the Build window. As part of the Build process, ALDSP generates a number of files,
including the following:

Data service (.ds) files for each table within the underlying data source.

Miscellaneous JAR and EJB files.

Figure 2-12 displays the complete Build information for the DataServices project.

Creat ing a Phys ica l Data Serv ice

2-14 Data Services Samples Tutorial

Figure 2-12 Complete Build Information for the DataServices Project

4. (Optional) Expand the Libraries folder. You should see the DataServices.jar file.

2.6 Viewing Physical Data Service Information
A physical data service is automatically generated when you import source metadata and build the
associated project. Each generated physical data service represents a single data source that can be
integrated with other physical or logical data services.

When ALDSP generates a physical data service, it also generates XML data types, an XML Schema
Definition (.xsd file), default query and navigation functions, and pragma information.

Objectives
In this exercise, you will:

View XML type, native data types, XML schema definition, generated functions, and metadata.

Use Design View and Source View to obtain information about a data service.

Viewing XML type
An XML type, which derives from the data service’s XML Schema Definition (XSD), is a structured
XML document that classifies each element within the data service as a particular form of

2.6 V iewing Phys ica l Data Se rv ice In fo rmat ion

Data Services Samples Tutorial 2-15

information, according to its allowable contents and units of data. For example, the XML type for the
CUSTOMER data service is CUSTOMER, whose elements include:

CUSTOMER_ID, whose xs:string classification indicates the element’s return data will be
formatted as a sequence of alphabetic, numeric, and/or special characters.

CUSTOMER_SINCE, whose xs:date classification indicates the element’s return data will be
formatted as numeric characters presented in a YYYY-MM-DD format.

Multiple data services can use a single XML type. ALDSP uses the XML type as the default superset of
data elements that will be returned by a set of queries. This superset XML type, known as the Return
type, models and normalizes data retrieved from the underlying data source, thereby transforming
disparate data into a unified view.

Instructions
1. In the Application pane, expand the CustomerDB folder.

2. Double-click the CUSTOMER.ds file. The data service opens in Design View.

Note: The data service automatically opens in the View workspace last used; if Design View is
not currently open, click the Design View tab.

3. In the middle of the data service representation you should see the CUSTOMER XML (also
known as schemas) type for the data service, plus the XML classification for each element in the
data service. Items marked with a question mark (?) are optional elements, which indicates: 1) if
there is no data in the underlying data source, that element will not display in the data set
returned by the data service and 2) a query function can succeed without providing any value for
that particular element.

Creat ing a Phys ica l Data Serv ice

2-16 Data Services Samples Tutorial

Figure 2-13 Design View of XML Type

Viewing Native Data Type
A Native Data Type classifies each data element according to the definitions specified in the
underlying data source. For relational data sources, ALDSP generates Native Data Type definitions
based on the underlying database’s table structure and column data definitions.

Instructions
1. Right-click the CUSTOMER Data Service header on the Design View tab. (You can also right-click

any empty space within the data service diagram.)

2. Select Display Native Type. This will display the original data type for each element in the
underlying data source.

3. In the middle of the data service representation, you should see Native Types for each data
element in the data service.

2.6 V iewing Phys ica l Data Se rv ice In fo rmat ion

Data Services Samples Tutorial 2-17

Figure 2-14 Design View of Native Type

Viewing XML Schema Definition
An XML Schema Definition file (.xsd) corresponds exactly to the XML type of a data service. It
defines the structure and content of an XML document, such as the XML type document. In other
words, it defines the vocabulary, rules, and conventions for representing information in a system.

An .xsd file is organized as a flat catalog of complex elements, any attributes, and any child elements.
For physical data services, ALDSP automatically generates a .xsd file from underlying data when the
underlying data source’s metadata is imported. Generated .xsd files are placed in the appropriate data
service’s schema directory.

Note: For logical data services, you must create a schema. You can use XQuery Editor View,
discussed in Tutorial 3, “Creating a Logical Data Service”, to create such schemas (XSD files).

Instructions
1. Right-click the CUSTOMER element, located in the XML type pane. A pop-up menu opens.

2. Choose Go to Source to view the underlying schema information.

Creat ing a Phys ica l Data Serv ice

2-18 Data Services Samples Tutorial

Figure 2-15 XML Schema Definition

3. After reviewing the XSD, click the Close box (X) in the upper-right corner of the source pane to
return to Design View of your data service.

Note: Clicking the large red X will close WebLogic Workshop.

Viewing Generated Functions
The data service interface consists of public functions of the data service, which can be of several
types:

One or more read functions, which typically return data in the form of the data service XML
type.

One or more navigation functions, which return data from related data services. The navigation
functions are based on any relationships defined within the underlying data source.
Relationships enhance the flexibility of data services by enabling the return of data in the
shape of another data service.

One submit() function, which allows users to persist changes to the original data source. The
submit() function does not appear in Design View.

In addition to public functions, a data service can include private functions and side effect functions.
Private functions are only used within the data service. They generally contain common processing
logic that can be used by more than one data service function. Side effect functions can be invoked
from the client side. For example, a side effect function can contain code to update a non-RDBMS data

2.6 V iewing Phys ica l Data Se rv ice In fo rmat ion

Data Services Samples Tutorial 2-19

source, such as xml, flat files, and Web services, and clients can invoke this function to perform
updates. (For more information, see the Data Service Developer’s Guide.)

Instructions
1. In Design View, notice the public functions displayed in the left pane of the diagram. These

functions, which were generated for the data service, include the following:

CUSTOMER(), a read function that retrieves data from the underlying RTLCUSTOMER
database.

getADDRESS(), a navigate function that retrieves data from the ADDRESS data service.
This function is based on a relationship between the CUSTOMER and ADDRESS tables, which
are defined in the RTLCUSTOMER database.

Figure 2-16 Design View: Generated Functions

2. (Optional) Right-click the CUSTOMER Data Service header and choose Display XML type from the
pop-up menu. (You can also right-click any empty space within the data service diagram.)

Viewing Data Service Metadata
Metadata is simply information about the structure of data; it provides facts about the data service’s
data, format, meaning, and lineage. For example, a list of tables and columns within a database is

../datasrvc/index.html

Creat ing a Phys ica l Data Serv ice

2-20 Data Services Samples Tutorial

metadata. ALDSP uses metadata to describe a data service: what information is provided by the data
service and the information’s lineage (that is, the source for the information.)

In addition to documenting data services for potential consumers, metadata helps you determine what
data services are affected when inevitable changes occur in the underlying data source layer. Of
course in the case of physical data services, the metadata primarily describes metadata extracted
from the physical data source.

Metadata information is contained in the data service’s META-INF folder. Normally you should not
need to refer to the contents of this folder.

Instructions
1. Select the Source View tab. The metadata information used by the Customer data service appears.

(Also available in Source View are data service namespace, schema namespace, and XQuery
functions.)

2. Click the + icon to display all metadata information.

3. Notice the following:

The date the data service was created.

The data source from which the metadata was imported.

The XML type, XPath, Native Data Type, and native XPath for each element within the data
service.

The relationship target, role name, role number, XDS, and relationship parameters for each
data service associated with the active data service.

2.7 Test ing Phys i ca l Data Se rv ice Funct ions

Data Services Samples Tutorial 2-21

Figure 2-17 Source View of Metadata

Note: Before you test any function or data service, you should ideally clean and redeploy the
application, so that the data is updated on the WebLogic server also.

4. To clean the application, right-click Evaluation and select Clean Application.

5. To redeploy the application, right-click Evaluation and select Deployment → Redeploy.

2.7 Testing Physical Data Service Functions
Testing a data service’s functionality within Test View lets you determine whether the data service is
able to return the expected data results.

Objectives
In this exercise, you will:

Test the CUSTOMER() function.

Review the results in Test View.

Review the results in the Output window to confirm that the data is pulled from the correct
data source.

Instructions
1. Select the Test View tab.

Creat ing a Phys ica l Data Serv ice

2-22 Data Services Samples Tutorial

2. Select CUSTOMER() from the function drop-down list.

3. Click Execute. You should see data returned from the RTLCUSTOMER database, formatted
according to the CUSTOMER data service’s Return type, which is defined by each element’s XML
type.

Note: At times the WebLogic server may not get updated automatically. In that case, you may get
some validation errors when you execute the function. To fix this, try cleaning and
redeploying the application.

4. Expand the nodes and notice the following:

Each element defined by the XML type returns specific data retrieved from the RTLCUSTOMER
database. For example, the <FIRST_NAME> element returns “Jack” as an xs:string, while the
<CUSTOMER_SINCE> element returns "2001-10-01" as an xs:date.

Figure 2-18 Physical Data Service Test Results

5. To view the results in the Output window, you need to enable auditing in the ALDSP console. To
enable auditing:

a. Open the ALDSP console, typically located at
http://localhost:7001/ldconsole.

b. Log on using the following credentials:

• User = weblogic

• Password = weblogic

2.7 Test ing Phys i ca l Data Se rv ice Funct ions

Data Services Samples Tutorial 2-23

c. Expand ldplatform in the left-hand menu and click Evaluation.

d. Click the Audit tab.

e. Select the following options in the Global Settings section: Enable Auditing, Audit Queries,
Audit Administrative Actions, Audit Updates, Send Audit Events Asynchronously, and Enable
Logging of Audit Events (Figure 2-19).

f. Select the At Default Level option from the Configure all Properties list in Audit Properties.

g. Click Apply.

Figure 2-19 Audit Tab in the ALDSP Console

h. In the left-hand menu, expand Evaluation, DataServices, and then CustomerDB as shown in
Figure 2-20.

i. Click Customer and select the Admin tab.

j. Click the Audit tab.

k. Select the check box in the Enable Audit column for the CUSTOMER function.

Creat ing a Phys ica l Data Serv ice

2-24 Data Services Samples Tutorial

Figure 2-20 Enabling Function-Level Auditing

l. Click Apply. This enables auditing for the CUSTOMER () function.

Notes:

To enable auditing for any other function in this tutorial, repeat the steps h to l.

Ensure that you keep auditing enabled in the ALDSP console throughout this tutorial. For
details about auditing, refer to the Administration Guide.

6. In WebLogic Workshop → Test View, click Execute again.

7. Open the Output window (View → Windows → Output).

8. Confirm that the output is similar to that displayed in Figure 2-21.

Note: You can use the Output window to verify that each element in the data service is pulling data
from the correct data source. In this example, the return results are pulled from the
RTLCUSTOMER database, CUSTOMER table 1, and a specific column (c1, c2, c3, and so on)
for each element.

http://edocs.bea.com/aldsp/docs21/admin/monitor.html

2.7 Test ing Phys i ca l Data Se rv ice Funct ions

Data Services Samples Tutorial 2-25

Figure 2-21 Test Results Output

Lesson Summary
In this lesson, you learned how to:

Create a DSP application and project.

Create project sub-folders to group data services.

Import relational tables to create a simple physical data services.

Build a project and review the build information.

Examine a physical data service’s shape/schema definition, data types, functions, and source
code.

Test a data service function.

Creat ing a Phys ica l Data Serv ice

2-26 Data Services Samples Tutorial

Data Services Samples Tutorial 3-1

T U T O R I A L 3

Creating a Logical Data Service

As noted in Tutorial 2, there are two types of data services: physical and logical. Physical data services
model a single physical data source residing in a relational database, Web service, flat file, XML file,
or Java function.

To enable the integration of data from multiple sources through Data Services Platform (ALDSP), you
define a logical data service. In this lesson you will create a logical data service that integrates data
from the CUSTOMER data service.

Objectives
After completing this lesson, you will be able to:

Create a simple logical data service, define its shape, and specify its query conditions

Test the logical data service’s read, write, and limit functions

Overview
A logical data service integrates data from two or more physical or logical data services. Its shape is
defined by an XML type schema that classifies a data element as a particular form of information,
according to its allowable contents and units of data. For example, an xs:string type can be a sequence
of alphabetic, numeric, and/or special characters, while an xs:date type can only be numeric
characters presented in a YYYY-MM-DD format.

Creat ing a Log ica l Data Se rv ice

3-2 Data Services Samples Tutorial

The data service interface consists of public functions that enable client-based consuming
applications to retrieve data from the modeled data source. A data service’s functions can be of several
types:

One or more read functions, which typically return data in the form of the XML type.

One or more navigate functions, which return data from related data services. Within a logical
data service, you must define relationships through modeling. Although similar to relationships
in the RDBMS context, a logical data service lets you establish relationships between data from
any source. This gives you the ability to, for example, relate an ADDRESS relational table with a
-STATE look-up Web service.

One submit() function, which allow users to persist changes to the back-end storage

In addition to public functions, a data service can include private functions and side effect functions.
Private functions are only used within the data service. They generally contain common processing
logic that can be used by more than one data service function. Side effect functions can be invoked
from the client side. For example, a side effect function can contain code to update a non-RDBMS data
source, such as xml, flat files, and Web services, and clients can invoke this function to perform
updates. (For more information, see the Data Service Developer’s Guide.)

Every function within a logical data service also includes source-to-target mappings that define what
results will be returned by that function. There are four types of mappings:

A simple mapping means that you are mapping simple source node elements to simple
elements in the Return type one at a time. You can create a simple mapping by dragging and
dropping any element from the source node to its corresponding target element in the Return
type. Optional Return type elements do not need to be mapped; otherwise elements in the
Return type need to be mapped to run your query.

An induced mapping means that a complex element is mapped to a complex element in the
Return type. In this gesture, the top level complex element in the Return type is ignored
(source node name need not match). The editor then automatically maps any child elements
(complex or simple) that are an exact match for source node elements.

An overwrite mapping replaces a Result type element and all its children (if any) with the
source node elements. As an example of the general steps needed to create an overwrite
mapping, you would press <Ctrl>, then drag and drop the source node’s complex element onto
the corresponding element in the Result type. The entire source node’s complex element is
brought to the Result type, where it completely replaces the target element with the source
element.

../datasrvc/index.html

Data Services Samples Tutorial 3-3

An append mapping adds a simple or complex element (and any children or attributes) as a
child of the specified element in the Return type. To create an append mapping, select the
source element, then press <Ctrl>+<Shift> while dragging and dropping the source node’s
element onto the element in the Return type that you want to be the parent of the new
element(s).

Alternatively, if you simply want to add a child element to a Return type, you can drag a source
element to a complex element in your Return type. The element will be added as a child of the
complex element and mapped accordingly.

In addition to the mappings, each function can also include parameters and variations on the basic
XQuery FLWOR (for-let-where-order by-return) statements that further define the data retrieval
results.

When you click on the name of a data service in the Application pane (Figure 2-10), your data service
will open in Design View (Figure 3-1). In the Customer data service, what you see in Design View is a
logical data service that:

Uses the getAllCustomers(), getCustomer(), getPaymentList(), and
getLatePaymentList() functions to retrieve data.

Uses the customer.xsd schema definition to define its XML type, and thus its Return type.

Integrates data from the ApparelDB and CustomerDB physical data services, plus a
CreditRating Web service.

Creat ing a Log ica l Data Se rv ice

3-4 Data Services Samples Tutorial

Figure 3-1 Design View of a Logical Data Service

If you open XQuery Editor View for a particular function, you would see the function’s source-to-target
mappings.

If you open Source View, you would see each function’s parameters and FLWOR statements.

3.1 Creating a Simple Logical Data Service
A logical data service integrates and transforms data from multiple physical and logical data services.

Objectives
In this exercise, you will:

Create a new folder for the logical data service.

Create an empty data service that can be built into a logical data service.

Import a pre-defined XML schema definition that you will associate as the logical data service’s
XML type.

Define functions and their mappings, parameters, and FLWOR statements.

3 .2 Def in ing the Log ica l Data Se rv ice Shape

Data Services Samples Tutorial 3-5

Instructions
1. Create a new folder within the DataServices project and name it CustomerManagement.

2. Create a new data service within the CustomerManagement folder by completing the following
steps:

a. Right-click the CustomerManagement folder.

b. Choose New → Data Service. The New File dialog box opens.

c. Confirm that Data Service → Data Service are selected.

d. Enter CustomerProfile in the Name field.

e. Click Create.

Figure 3-2 New Data Service

A new data service is generated, but without any associated data services or XML type.

3.2 Defining the Logical Data Service Shape
A data service transforms received data into the shape defined by its Return type. Pragmatically, the
Return type is the "R" in a FLWOR (for-let-where-order by-return) query. A Return type, which

Creat ing a Log ica l Data Se rv ice

3-6 Data Services Samples Tutorial

describes the structure or shape of data returned by the data service’s queries, serves two main
purposes:

Provides a superset of data elements that can be returned by an XQuery.

Defines the unified structure, and order of the data returned by an XQuery.

The Return type is generated from the data service’s XML type. An XML type classifies a data element
as a particular form of information, according to its allowable contents and units of data. For example,
an xs:string type can be a sequence of alphabetic, numeric, and/or special characters, while an xs:date
type can only be numeric characters presented in a YYYY-MM-DD format.

Objectives
In this exercise, you will:

Import a schema file, which you will associate with the data service’s XML type.

Review the results.

Instructions
Note: Although you can use ALDSP to graphically build a schema file, in this exercise you will

import a pre-defined schema file to save time. For more information on using WebLogic
Workshop to create the XML types, see the Data Service Developer’s Guide.

1. Create a new folder in the CustomerManagement folder and name it schemas.

2. Import a schema file into the schema folder by completing the following steps:

a. Right-click the schema folder, located in the CustomerManagement folder.

b. Choose Import.

c. Navigate to:

<beahome>\weblogic81\samples\liquiddata\EvalGuide

d. Select the CustomerProfile.xsd file.

e. Click Import.

../datasrvc/index.html

3 .2 Def in ing the Log ica l Data Se rv ice Shape

Data Services Samples Tutorial 3-7

Figure 3-3 Import XML Schema Definition File

3. Right-click the CustomerProfile Data Service header on the Design View tab.

4. Choose Associate XML Type.

5. Select the CustomerProfile.xsd file, located in:

CustomerManagement\schemas

6. Click Select.

Figure 3-4 Associating XML type with XSD

You should see that the CustomerProfile data service is now shaped by the
CustomerProfile.xsd file.

Creat ing a Log ica l Data Se rv ice

3-8 Data Services Samples Tutorial

You should also see that several of the elements are identified with a question (?) mark. This indicates
that these elements are optional. Because the schema file identifies these elements as optional,
ALDSP will not require the mapping of these elements to the Return type; however, if mapped to the
Return type and there is no corresponding data in the underlying data source, then the result set will
not include the empty elements.

Figure 3-5 Logical Data Service XML type

3.3 Adding a Function to a Logical Data Service
A data service consumer—a client application or another data service—uses the data service’s
function calls to retrieve information. A logical data service includes the same types of functions that
are found in a physical data service:

One or more read functions that form the data service’s external interface, which is exposed to
consuming applications requesting data. These read functions typically return data in the form
of the data service’s XML type.

One or more navigate functions that return data from other data services. Within a logical data
service, you must define relationships through modeling. Although similar to relationships in
the RDBMS context, a logical data service lets you establish relationships between data from
any source. This gives you the ability, for example, to relate an ADDRESS relational table with a
STATE lookup Web service.

3.4 Mapping Source and Targe t E lements

Data Services Samples Tutorial 3-9

One submit() function, which allows users to persist changes to the back-end storage.

Objectives
In this exercise, you will:

Add a new read function, getAllCustomers(), to the logical data service.

View the results in XQuery Editor View.

Instructions
1. Right-click the CustomerProfile Data Service header.

2. Choose Add Function. A new function displays in the left pane of the data service model.

3. Enter getAllCustomers as the function name.

Figure 3-6 Design View of New Function

3.4 Mapping Source and Target Elements
In the previous exercise, you associated a logical data service with an XML Schema Definition (.xsd
file), which generated a Return type that includes all data elements defined within the schema.

Creat ing a Log ica l Data Se rv ice

3-10 Data Services Samples Tutorial

However, there are no conditions associated with the Return type; conditions specify which source
data will be returned.

You can define conditions by mapping source and target (Return) elements.

Objectives
Add a physical data service function as a data source for the logical data service.

Create a simple map between the source node and the Result type.

Instructions
1. Click the getAllCustomers() function to open XQuery Editor View. You should see a

Return type populated with the CustomerProfile schema definition. The Return type determines
what data can be made available to consuming applications, as well as the shape (string, data,
integer, and so on) that the data will take. The Return type was automatically populated when you
associated the logical data service with the CustomerProfile.xsd.

3.4 Mapping Source and Targe t E lements

Data Services Samples Tutorial 3-11

Figure 3-7 XQuery Editor View of Function Return Type

2. In the Data Services Palette, expand CustomerDB\CUSTOMER.ds. If the Data Services
Palette is not open, choose View → Windows → Data Services Palette.

Creat ing a Log ica l Data Se rv ice

3-12 Data Services Samples Tutorial

Figure 3-8 Data Services Palette

3. Drag and drop CUSTOMER() into XQuery Editor View. This method call represents a root or
global element within the CUSTOMER physical data service (see 3.2 Defining the Logical Data
Service Shape). A for node for that element is automatically generated and assigned a variable,
such as For: $CUSTOMER. Within the XQuery Editor View, this for node is a graphical
representation of a for clause, which is an integral part of an XQuery FLWOR expression
(for-let-where-order by-return).

Figure 3-9 Source Node and Return Type

4. Create a simple map by dragging and dropping individual elements from the $CUSTOMER source
node onto the corresponding elements in the Return type. The logical data service
CustomerProfile should now be similar to what is shown in Figure 3-10.

3 .5 V iewing XQue ry Source Code

Data Services Samples Tutorial 3-13

Note: There are alternatives to mapping elements instead of using the slow simple mapping
technique. Faster mapping techniques are described in exercises that follow.

Figure 3-10 Simple Mapping Between Source Node and Return Type

3.5 Viewing XQuery Source Code
When you use XQuery Editor View to construct an XQuery, source code in XQuery syntax is
automatically generated. You can view this generated source code in Source View and, if needed,
modify the code. Any changes made in Source View will be reflected in XQuery Editor View.

Objectives
In this exercise, you will:

View generated XQuery source code in Source View.

Review the for and return clauses of the getAllCustomers() query function.

Instructions
1. Select the Source View tab. A portion of the generated XQuery source code is displayed in

Figure 3-11.

2. Notice the for clause, which references the CUSTOMER() function.

Creat ing a Log ica l Data Se rv ice

3-14 Data Services Samples Tutorial

3. Notice the return clause, which reflects the simple mapping between the $CUSTOMER source
node and the Return type. All optional elements are identified with a question mark in the field
description, as shown (emphasis added):

<TelephoneNumber?> {fn:data(CUSTOMER/TELEPHONE_NUMBER)}</Telephone number

4. Also, notice that the <orders> elements are empty because order information has not yet been
mapped to the Return type. This means that a consuming application, using this query, will only
see customer information, not order information.

Figure 3-11 Source View of XQuery Code for CUSTOMER() Node

3.6 Testing a Logical Data Service Function
You can use Test View to validate the functionality of a logical data service.

3 .6 Tes t ing a Log ica l Data Se rv ice Funct ion

Data Services Samples Tutorial 3-15

Objectives
In this exercise, you will:

Build the DataServices project.

Test the function’s retrieve and limit result capabilities.

Instructions
1. Build the DataServices project by right-clicking the DataServices folder and choosing Build

DataServices from the pop-up menu.

2. After the build completes successfully, select the Test View tab.

3. Select getAllCustomers() from the function drop-down list.

Test the ability to specify the number of tuples returned by completing the following steps:

a. Uncheck the Validate Result option. This feature is not mandatory to complete this exercise.

b. Enter CustomerProfile/customer in the Parameter field (or select from the drop-down list).
This parameter specifies the XPath expression for the element whose return results you want
to limit to a set number of occurrences (such as customer).

c. Enter 5 in the Number field. This will limit the results to the first five customers retrieved.

d. Click Execute.

Figure 3-12 Test Truncate Capabilities

4. View the results, which appear in the Result pane.

5. Expand the top-level node. There should be only five Customer Profiles listed.

Creat ing a Log ica l Data Se rv ice

3-16 Data Services Samples Tutorial

6. Expand the first <customer> node. You should see a Customer Profile for Jack Black, as displayed
in Figure 3-13.

Figure 3-13 Customer Profile Test Results

Lesson Summary
In this lesson, you learned how to:

Create a simple logical data service.

Associate an XML schema definition with the data service.

Create a simple function.

Use XQuery editor view to map elements from the source node to the return type.

3 .6 Tes t ing a Log ica l Data Se rv ice Funct ion

Data Services Samples Tutorial 3-17

Use Source View to examine an XQuery function’s source code.

Use Test View to test a logical data service query capabilities, limit the number of data set
results returned as part of the query, and test data service editing capabilities.

Creat ing a Log ica l Data Se rv ice

3-18 Data Services Samples Tutorial

Data Services Samples Tutorial 4-1

T U T O R I A L 4

Integrating Data from Multiple Data
Sources

The power of logical data services in Data Services Platform (ALDSP) is the ability to integrate and
transform data from multiple physical and logical data services.

In the previous lesson, you created a simple logical data service that mapped to a single physical data
service. In this lesson, you will further develop the logical data service to enable data retrieval from
multiple data services.

Objectives
After completing this lesson, you will be able to:

Use the Data Services Palette to add physical and logical data service functions to a logical data
service, thereby accessing data from multiple sources.

Join data services by connecting source elements, thereby integrating data from multiple
sources.

Use the Expression Builder to define a parameterized where clause.

Create a complex overwrite mapping.

Test parameterized data services to verify the return of integrated data results.

Overview
How is data integration different from process integration? Most applications involve a combination
of informational interactions and transactional interactions. Examples of informational interaction

In tegrat ing Data f rom Mul t ip le Data Sources

4-2 Data Services Samples Tutorial

include: get customer info, review order status, get customer profile, and get customer’s case history.
Examples of transactional interactions include: place order, update customer address, and create
customer.

Informational interactions involve efficiently aggregating discrete pieces of data that are potentially
resident in multiple data sources, and potentially in multiple data formats. Developers can end up
spending inordinate amounts of time writing custom code to handle the various interface protocols
and data formats, and integrate disparate data into manageable, business-relevant information.
ALDSP simplifies this activity by providing a simple, declarative approach to aggregating data from
heterogeneous data sources.

Transactional interactions involve taking a piece of data (say a purchase order) and orchestrating its
propagation to the various underlying applications. This involves coordinating a business process
through a formal or informal workflow, managing long-running processes, managing human
interactions (such as a supervisor approval to an order), handling applications that have
indeterminate response times (such as batch systems), maintaining transactional integrity across
applications, etc.

Both data integration and process integration are essential elements when building applications that
handle information from across multiple data sources. For functions of interest across data services,
you can use function libraries. A function library (.xfl file) contains operations that return simple
types (not the XML data type of a standard data service) that can be called from various data services.
Read functions on a data service can be defined to return information in various ways. For example,
the data service may define read functions for getting all customers, customers by region, or customers
with a minimum order amount.

4.1 Joining Multiple Physical Data Services within a
Logical Data Service

In the previous exercise, you mapped a single physical data service to the Return type. In this exercise,
you will enable data retrieval from both the CUSTOMER and CUSTOMER_ORDER physical data
services.

Objectives
In this exercise, you will:

Create a second for node, by adding the CUSTOMER_ORDER() function to the XQuery Editor
View.

4.1 Jo in ing Mul t ip l e Phys i ca l Data Se rv i ces w i th in a Log ica l Data Serv i ce

Data Services Samples Tutorial 4-3

Create a simple map between the new for node and the Return type.

Create an automatically-generated where clause, by joining the two for nodes.

Review source code.

Test the results (read and write capability)

Instructions
1. Open CustomerProfile.ds in XQuery Editor View.

2. Select the getAllCustomer() function.

3. In the Data Services Palette, expand ApparelDB\CUSTOMER_ORDER data service.

4. Drag and drop the data service’s CUSTOMER_ORDER() function into XQuery Editor View to
create a second for node, For:$CUSTOMER_ORDER.

5. Create a simple map: Drag and drop the individual elements from the $CUSTOMER_ORDER
source node onto their corresponding elements in the Return type.

Note: Do not map the TRACKING_NUMBER and DATE_INT elements.

6. Create a join: Drag and drop the CUSTOMER_ID element from the $CUSTOMER source node onto
the C_ID element in the $CUSTOMER_ORDER source node. This action joins the two for nodes.
By joining these two nodes, you automatically create a where clause within the FLWOR statement.

In tegrat ing Data f rom Mul t ip le Data Sources

4-4 Data Services Samples Tutorial

Figure 4-1 Joined Data Services

7. Select the Source View tab to view the XQuery code. You should see a where clause joining
$CUSTOMER and $CUSTOMER_ORDER, using CUSTOMER_ID and C_ID as join elements. In
Figure 4-2, the where clause is:

where $CUSTOMER/CUSTOMER_ID = $CUSTOMER_ORDER/C_ID

4.1 Jo in ing Mul t ip l e Phys i ca l Data Se rv i ces w i th in a Log ica l Data Serv i ce

Data Services Samples Tutorial 4-5

Figure 4-2 Source View of Joined Data Services

8. Build the DataServices project. Right-click the DataServices project folder and choose Build
DataServices.

9. After the build is successful, select the Test View tab in order to retrieve order information
integrated with the customer information. You can do this by completing the following steps:

a. Select getAllCustomers() from the function drop-down list.

b. Click Execute. (You don’t need any parameters, because you are not testing the limit returned
tuples feature.)

c. Expand the nodes. The results should include order information for each customer, as
displayed in Figure 4-3.

Note: If the Validate Results option is selected, you will see a warning indicating that results do not
conform to the associated XML type. The warning can be ignored.

In tegrat ing Data f rom Mul t ip le Data Sources

4-6 Data Services Samples Tutorial

Figure 4-3 Integrated Customer and Order Data Results

4.2 Defining a Where Clause to Join Multiple Physical
Data Services

In the previous exercise, you joined the CUSTOMER and CUSTOMER_ORDER data services, thereby
automatically generating a where clause. In this exercise, you will manually define the where clause
that joins multiple data services.

Objectives
In this exercise, you will:

4 .2 Def in ing a Where C lause to J o in Mul t ip le Phys ica l Data Se rv ices

Data Services Samples Tutorial 4-7

Add a third for node, by adding the CUSTOMER_ORDER_LINE_ITEM() function.

Define a where clause, using the Expression Editor.

View the results in Design View and Source View.

Test the results.

Instructions
1. Switch to XQuery Editor View for the getAllCustomers() function.

2. In the Data Services Palette, expand ApparelDB\CUSTOMER_ORDER_LINE_ITEM data services.

3. Drag and drop the CUSTOMER_ORDER_LINE_ITEM() function from the Data Service
palette into the data service’s XQuery Editor View. This creates a third for node:

For: $CUSTOMER_ORDER_LINE_ITEM.

4. Create simple mappings by dragging and dropping the individual elements from the
$CUSTOMER_ORDER_LINE_ITEM source node onto the corresponding elements in the Return
type.

Figure 4-4 Three Data Service Functions Mapped to the Return Type

5. Define a where clause for CUSTOMER_ORDER and CUSTOMER_ORDER_LINE_ITEM, by
completing the following steps:

In tegrat ing Data f rom Mul t ip le Data Sources

4-8 Data Services Samples Tutorial

a. Select the node header (For: $CUSTOMER_ORDER_LINE_ITEM) to activate the expression
editor for that node. (Note: Do not select the CUSTOMER_ORDER_LINE_ITEM* element.)

b. Click the Where clause icon.

c. Put your cursor into the where expression line editor.

d. Click the ORDER_ID element in the $CUSTOMER_ORDER_LINE_ITEM source node. You
should see the following in the WHERE field (the variable name may be different, in your
case):

 $CUSTOMER_ORDER_LINE_ITEM/ORDER_ID

e. Select eq: Compare Single Values from the operator list (“…” icon). Since the Where clause is
incomplete, the text will go red. The Where field now appears as:

$CUSTOMER_ORDER_LINE_ITEM/ORDER_ID eq

f. Click the ORDER_ID element in the CUSTOMER_ORDER source node. The Where clause
becomes valid and you should see the following in the where field (the variable name may be
different, in your case):

$CUSTOMER_ORDER_LINE_ITEM/ORDER_ID eq $CUSTOMER_ORDER/ORDER_ID

g. Click the Accept box (green checkmark icon) to add the parameterized WHERE clause to the
getAllCustomers() function.

4 .2 Def in ing a Where C lause to J o in Mul t ip le Phys ica l Data Se rv ices

Data Services Samples Tutorial 4-9

Figure 4-5 Where Clause Joining Two Data Services

6. Verify the joins you created and view the results by completing the following steps:

a. Open CustomerProfile.ds in Design View. The physical data services associated with the three
functions that you dropped into XQuery Editor View as for nodes are displayed in the right
pane as data sources for the logical data service.

In tegrat ing Data f rom Mul t ip le Data Sources

4-10 Data Services Samples Tutorial

Figure 4-6 Design View of Integrated and Parameterized Data Service

b. Open CustomerProfile.ds in Source View. The XQuery code for the logical data service
is displayed.

4 .2 Def in ing a Where C lause to J o in Mul t ip le Phys ica l Data Se rv ices

Data Services Samples Tutorial 4-11

Figure 4-7 Source Code for Data Integrated with WHERE Clauses and Parameters

7. Test the results, by completing the following steps:

a. Build the DataServices project.

b. Open CustomerProfile.ds in Test View.

c. Select getAllCustomers() from the function drop-down list.

d. Set the element (by path) option to CustomerProfile/customer.

In tegrat ing Data f rom Mul t ip le Data Sources

4-12 Data Services Samples Tutorial

e. Click Execute. (You do not need any parameters.)

f. Expand the nodes and confirm that you can retrieve order line information integrated with
order information, similar to that displayed in Figure 4-8. (You can use customer_id =
CUSTOMER3 to verify this information).

g. Click Edit.

h. Navigate to the Orders node for CUSTOMER3 and update handling_charge information for
ORDER_3_0 by double clicking the element content (the 6.8 value).

i. Change to any value other than the current value.

j. Confirm your new value by pressing Submit button.

k. Verify that the update was done successfully by re-executing getAllCustomers()
function and navigating to order information for CUSTOMER3.

4.3 Crea t ing a Parameter i zed Funct ion

Data Services Samples Tutorial 4-13

Figure 4-8 Order Line Data Integrated Withing Order Information

4.3 Creating a Parameterized Function
Adding a parameter to a function ensures that the consuming application can access specific
user-defined data, such as an individual customer’s profile information.

Objectives
In this exercise, you will:

In tegrat ing Data f rom Mul t ip le Data Sources

4-14 Data Services Samples Tutorial

Add a new function, getCustomerProfile().

Add a for node based on the getAllCustomers() function.

Set the context for nested elements within the logical data service.

Instructions
1. In Design View, create a new function for the CustomerProfile data service, and name it

getCustomerProfile().

2. Click getCustomerProfile() to open XQuery Editor View for that function.

3. In the Data Services Palette, expand CustomerManagement\CustomerProfile data service.

4. Drag and drop getAllCustomers() into the XQuery Editor View. You should see a new for
node. For: $CustomerProfile, with its shape defined by the CustomerProfile logical data service’s
getAllCustomers() function.

4.3 Crea t ing a Parameter i zed Funct ion

Data Services Samples Tutorial 4-15

Figure 4-9 Complex Element Node

Note: In a previous exercise, you defined getAllCustomers() to include a complex, nested
customer element associated with the customer_id element of the
$CUSTOMER_ORDER_LINE_ITEM source. You must set the context of the $CustomerProfile
source node to point to the customer element because customer_id uses a string parameter
for filtering.

5. Create a parameter by completing the following steps:

a. Right-click an empty space in XQuery Editor View.

b. Select Add Parameter.

In tegrat ing Data f rom Mul t ip le Data Sources

4-16 Data Services Samples Tutorial

c. Enter CustomerID in the Parameter Name field.

d. Select xs:string from the Primitive Type drop-down list.

e. Click OK.

Figure 4-10 Add Parameter

Note: You may need to move the $CustomerProfile node to make the parameter node visible.

6. Create a complex, overwrite mapping, by completing the following steps:

a. Press Ctrl.

b. Drag and drop the $CustomerProfile customer* element onto the customer+ element in the
Return type.

7. Create a join: Drag and drop the parameter’s string element onto the customer_id element of the
$CustomerProfile source node. This joins the string parameter to the $CustomerProfile source
node and creates a function that will return data based on the user-specified parameter. (You will
see this in action in the next exercise.)

4.3 Crea t ing a Parameter i zed Funct ion

Data Services Samples Tutorial 4-17

Figure 4-11 Data Source Node and Parameter Joined

8. Select the Source View tab and confirm that the XQuery code for the
getCustomerProfile() function is as follows:

declare function tns:getCustomerProfile($CustomerID as xs:string) as

element(ns0:CustomerProfile)* {

 <ns0:CustomerProfile>

 {

In tegrat ing Data f rom Mul t ip le Data Sources

4-18 Data Services Samples Tutorial

 for $CustomerProfile in tns:getAllCustomers()/customer

 where $CustomerID = $CustomerProfile/customer_id

 return

 $CustomerProfile

 }

 </ns0:CustomerProfile>

9. Remove the asterisk * from the return type element(ns0:CustomerProfile)*, because this function,
as currently written, will return all customer profiles. The exercise calls for returning a single
customer profile. Thus your source should be similar to that displayed in Figure 4-12.

Figure 4-12 Source Code for a Parameterized and Complex Overwrite Mapped Function

10. Test the function, by completing the following steps:

a. Build your project.

b. Open CustomerProfile.ds in Test View.

c. Select getCustomerProfile(CustomerID) from the function drop-down list.

d. Enter CUSTOMER3 in the xs:string CustomerID Parameter field. (Note: The parameter is
case-sensitive.)

e. Press Execute.

f. Confirm that you retrieved the requested information — customer, orders, and order line
items for Britt Pierce.

4.3 Crea t ing a Parameter i zed Funct ion

Data Services Samples Tutorial 4-19

Figure 4-13 Integrated Data Results

Lesson Summary
In this lesson, you learned how to:

Use the Data Services Palette to add physical and logical data service functions to a logical data
service, thereby accessing data from multiple sources.

Join data services by connecting source elements, thereby integrating data from multiple
sources.

In tegrat ing Data f rom Mul t ip le Data Sources

4-20 Data Services Samples Tutorial

Use the Expression Builder to define a parameterized where clause.

Set the context for nested elements in the source node.

Create a complex overwrite mapping.

Test parameterized data service function to verify the return of integrated data results.

Data Services Samples Tutorial 5-1

T U T O R I A L 5

Modeling Data Services

Any data service — physical or logical — can be placed in a model diagram. Model diagrams show:

The basic structure of data returned by each data service within the model.

Any functions associated with that data service.

Any relationships between data services.

The main purpose of the diagram is to help you envision meaningful subsets of the model, but it can
also be used to define new artifacts or edit existing artifacts.

Objectives
After completing this lesson, you will be able to:

Create model diagrams and add data source nodes to the diagram.

Confirm relationships inferred during the Import Source Metadata process.

Define new relationships between data services and modify relationship properties.

Overview
Model diagrams show how various data services are related. Models can represent physical data
services, logical data services, or a combination.

Each physical model entity represents a single data source. In the case of relational sources, you can
automatically generate physical models that are representative of data sources. After being

Model ing Data Se rv ices

5-2 Data Services Samples Tutorial

generated, physical data services can be integrated with other physical or logical sources in the same
or new models. Physical model types use a key icon to identify primary keys.

Logical data model entities, which are discussed in detail in the Data Service Developer’s Guide,
represent composite views of physical and/or logical models.

Within the model diagram, data services appear as boxes. Relationships are represented by annotated
lines between two data services. Each side of the relationship line represents the role played by the
nearest data service. The annotations for each relationship include the following:

Target Role Name. By default, the target role name reflects the name of its adjacent data
service. You can modify the target role name to better express the relationship, which is
particularly useful when there are multiple relationships between two data services.

Cardinality. A relationship can be zero-to-one (0:1 or 1:0), one-to-one (1:1), one-to-many (1:n)
or many-to-many (n:n). For example, a customer can have multiple orders, therefore, the
relationship should be 1:n (customer:orders).

Directionality. A relationship can be either unidirectional or bidirectional. If unidirectional,
data service a can navigate to data service b but b does not navigate to a. If bidirectional, data
service a can navigate to b and b can navigate to a.

A data service’s navigation functions determine the relationship’s cardinality and directionality.
Arrowheads indicate possible navigation paths.

ALDSP model diagrams are very flexible; they can be based on existing data services (and
corresponding underlying data sources), planned data services, or a combination. Using models you
can easily manage multiple data services as well as identify needs for new data services. You can also
create and modify data service types directly in the modeler and inspect data services.

5 .1 Creat ing a Bas ic Mode l D iag ram fo r Phys ica l Data Se rv ices

Data Services Samples Tutorial 5-3

Figure 5-1 Model Diagram for Physical Data Services

5.1 Creating a Basic Model Diagram for Physical Data
Services

Modeling data services begins by adding individual data services to a diagram.

Objectives
In this exercise, you will:

Create a diagram that you will use to model relationships between physical data services.

Add the ApparelDB and CustomerDB physical data services to the model diagram.

Confirm relationships “captured” during the Import Source Metadata process.

Model ing Data Se rv ices

5-4 Data Services Samples Tutorial

Instructions
1. Create a new folder in the DataServices project and name it Models.

2. Create a new folder in the Models folder and name it Physical.

3. Create a blank model diagram, by completing the following steps:

a. Right-click the Physical folder.

b. Choose New → Model Diagram.

c. Select Data Service → Model Diagram as shown in Figure 5-2.

Figure 5-2 Create Model Diagram

d. Enter ApparelDB_Physical_Model in the File name field.

e. Click Create. A blank workspace opens. You can use that workspace to construct your model
diagram.

4. Add the ApparelDB and CustomerDB physical data services to the model by dragging and dropping
the following data service files from the Application pane into the model:

Data Service File Location

5.2 Mode l ing Re la t i onsh ips Be tween Phys ica l Data Sources

Data Services Samples Tutorial 5-5

Notice that relationships between some data services already exist. These relationships were
automatically generated during the Import Source Metadata process, and are based on the
foreign key relationships defined in the underlying database.

Figure 5-3 Physcial Data Services Model Diagram

5.2 Modeling Relationships Between Physical Data
Sources

The next step in data service modeling is to define additional relationships, beyond any relationship
that was automatically generated during the import source metadata process.

CUSTOMER_ORDER.ds DataServices\ApparelDB

CUSTOMER_ORDER-LINE_ITEM.ds DataServices\ApparelDB

PRODUCT.ds DataServices\ApparelDB

ADDRESS.ds DataServices\CustomerDB

CREDIT_CARD.ds DataServices\CustomerDB

CUSTOMER.ds DataServices\CustomerDB

Model ing Data Se rv ices

5-6 Data Services Samples Tutorial

A relationship is a logical connection between two data services, such as the CUSTOMER and
CUSTOMER_ORDER data services. A relationship exists when one data service retrieves data from
another, by invoking one or more of the other data service’s functions.

A data service’s navigation functions determine the relationship’s cardinality and directionality.
Arrowheads indicate possible navigation paths. Directionality can be either one directional or
bidirectional.

Objectives
In this exercise, you will:

Define a relationship between the CUSTOMER and CUSTOMER_ORDER nodes, thereby
creating a navigational function between the two nodes.

Modify the relationship properties to enable a “1:0 or many” relationship.

Instructions
1. Drag and drop the top-level CUSTOMER element onto the top-level CUSTOMER_ORDER element.

The Relationship Properties dialog box opens.

2. In the Relationship Properties dialog box, modify the cardinality properties of the CUSTOMER and
CUSTOMER_ORDER data services, by completing the following steps for the CUSTOMER node:

a. Select 0 from the Min occurs drop-down list.

b. Select n from the Max occurs drop-down list.

The relationship cardinality is now "1:0 or many" between the CUSTOMER and
CUSTOMER_ORDER data services. In other words, one customer can have none, one, or any
number of orders.

3. Click Finish.

Note: In subsequent lessons, you will use additional features of the Relationship Properties dialog
box to customize relationship properties.

5.2 Mode l ing Re la t i onsh ips Be tween Phys ica l Data Sources

Data Services Samples Tutorial 5-7

Figure 5-4 Relationship Properties -- Cardinality

Note: It may take a few seconds to generate the relationship line.

Model ing Data Se rv ices

5-8 Data Services Samples Tutorial

Figure 5-5 New Relationship Between Customer and Customer_Order Data Services Defined

4. Save all your files using the File → Save All command.

5. Open CUSTOMER.ds in Design View. The file is located in the DataServices\CustomerDB folder.

6. Confirm that the CUSTOMER data service includes a new relationship with the
CUSTOMER_ORDER data service, using the getCustomer_Order() function.

5.2 Mode l ing Re la t i onsh ips Be tween Phys ica l Data Sources

Data Services Samples Tutorial 5-9

Figure 5-6 CUSTOMER Data Service Showing Added Relationship Function

7. Open CUSTOMER_ORDER.ds in Design View. The file is located in DataServices\ApparelDB.

8. Confirm that the CUSTOMER_ORDER data service includes a new relationship with the
CUSTOMER data service, using the getCustomer() function.

Model ing Data Se rv ices

5-10 Data Services Samples Tutorial

Figure 5-7 CUSTOMER_ORDER Data Service Showing Added Relationship Function

9. (Optional) Create a relationship between CUSTOMER and CREDIT_CARD data services.

10. (Optional) Close all open files.

Lesson Summary
In this lesson, you learned how to:

Create model diagrams and add data source nodes to the diagram.

Confirm relationships inferred during the Import Source Metadata process.

Define relationships between data services.

Data Services Samples Tutorial 6-1

T U T O R I A L 6

Accessing Data Services

One of the data sources available with the samples installed with ALDSP is a Web service that provides
customer credit rating information. In this lesson, you will generate a physical data service that can
be integrated into the CustomerProfile logical data service.

The process for creating a data service based on a Web service is similar to importing relational
database source metadata. The difference is that ALDSP uses the WSDL (Web services description
language) metadata to introspect the Web service’s operation and generate the data service.

Objectives
After completing this lesson, you will be able to:

Import a WSDL.

Use the WSDL to generate a data service.

Test the Web service by passing a SOAP request body as a query parameter.

Use a logical data service to invoke the Web service and retrieve data.

Overview
A Web service is a self-contained, platform-independent unit of business logic that is accessible to
other systems on a network. The network can be a corporate intranet or the Internet. Other systems
can call the Web services’ functions to request data or perform an operation.

Access ing Data Se rv ices

6-2 Data Services Samples Tutorial

Web services are increasingly important resources for global business information. Web services can
facilitate application-to-application communication and are a useful way to provide data, like stock
quotes and weather reports, to an array of consumers over a corporate intranet or the Internet. But
they take on additional new power in the enterprise, where they offer a flexible solution for integrating
distributed systems, whether legacy systems or new technology.

WSDLs are generally publicly accessible and provide enough detail so that potential clients can figure
out how to operate the service solely from reading the WSDL file. If a Web service translates English
sentences into French, the WSDL file will explain how the English sentences should be sent to the Web
service, and how the French translation will be returned to the requesting client.

6.1 Importing a Web Service Project into the Application
When you want to use an external Web service from within WebLogic Workshop, you should first obtain
that service’s WSDL file. In this exercise, you will use the WSDL for a Web service project that was
created in WebLogic Workshop.

Objectives
In this exercise, you will:

Import the CreditRatingWS Web service into your sample application. This Web service provides
getCreditRating() and setCreditRating() functions for retrieving and updating
a customer’s credit rating.

Run the Web service to test whether you can retrieve credit rating information.

Instructions
1. Import a Web service into the ALDSP-enabled application, by completing the following steps:

a. Choose File → Import Project. The Import Project - New Project dialog box opens.

b. Select Web Service Project.

Caution: Make sure that you select a project of type Web service. If you select another project type,
then the CreditRatingWS application may not work correctly.

c. In the directory field, click Browse.

d. Navigate to <beahome>\weblogic81\samples\liquiddata\EvalGuide

6.1 Impor t ing a Web Serv ice P ro j ec t in to the Appl i cat ion

Data Services Samples Tutorial 6-3

e. Select CreditRatingWS and click Open.

f. Make sure that the Copy into Application directory checkbox is selected.

g. Click Import and then click Yes when the confirmation message to update your project
appears.

Figure 6-1 Import Web Services Project

2. In the Application pane, verify that the following items were imported:

A CreditRatingWS project folder containing:

• A controls folder, within which are the CreditRatingDB.jcx control and
CreditratingDBTest.jws Web service.

• A credit rating folder, within which is the Web service folder that contains the
CreditRating.java file.

• A WEB-INF folder.

Access ing Data Se rv ices

6-4 Data Services Samples Tutorial

Figure 6-2 Web Service Project

3. Open CreditRatingDBTest.jws in Design View. This file is located in
CreditRatingWS\controls. The Web service diagram should be as displayed in Figure 6-3.

6.1 Impor t ing a Web Serv ice P ro j ec t in to the Appl i cat ion

Data Services Samples Tutorial 6-5

Figure 6-3 Design View of Credit Rating Web Service

4. Test the imported Web service, by completing the following steps:

a. Click the Start icon, or press Ctrl + F5, to open Workshop Test Browser.

b. Enter CUSTOMER3 in the customer_id field.

c. Click getCreditRating. The requested information displays in Workshop Test Browser.

Figure 6-4 Workshop Test Browser

d. Scroll down to the Service Response section and confirm that you can retrieve credit rating
information for CUSTOMER3.

Access ing Data Se rv ices

6-6 Data Services Samples Tutorial

Figure 6-5 Web Service Results

6.2 Importing Web Service Metadata into a Project
WSDL is a standard XML document type for describing an associated Web service so that other
software applications can interface with the Web service. Files with the .wsdl extension contain
Web service interfaces expressed in the Web Service Description Language (WSDL).

A WSDL file contains all the information necessary for a client to invoke the methods of a Web service:

The data types used as method parameters or return values.

The individual method names and signatures (WSDL refers to methods as operations).

The protocols and message formats allowed for each method.

The URLs used to access the Web service.

Objectives
In this exercise, you will:

Import the CreditRatingWS source metadata via its WSDL, into the DataServices project,
thereby generating a new data service (getCreditRatingResponse.ds).

6.2 Impor t ing Web Se rv ice Metadata in to a P ro jec t

Data Services Samples Tutorial 6-7

Confirm that the new data service includes the getCreditRating() function that you
tested in the previous exercise.

Instructions
1. In Workshop Test Browser, scroll to the top of the window.

2. Click the Overview tab.

Access ing Data Se rv ices

6-8 Data Services Samples Tutorial

Figure 6-6 Workshop Test Browser Overview

3. Click Complete WSDL.

4. Copy the WSDL URI, located in the Address field. The URI is typically:
http://localhost:7001/CreditRatingWS/controls/CreditRatingDBT
est.jws?WSDL=

6.2 Impor t ing Web Se rv ice Metadata in to a P ro jec t

Data Services Samples Tutorial 6-9

Figure 6-7 WSDL URI

5. Close Workshop Test Browser.

6. In Workshop: Close all open files (File → Close All Files).

7. Create a new folder within the DataServices project folder, and name it WebServices.

8. Import Web service source metadata into the WebServices folder, by completing the following
steps:

a. Right-click the WebServices folder.

b. Choose Import Source Metadata.

c. Choose Web Service from the Data Source Type drop-down list. Then click Next.

Figure 6-8 Web Service Data Source Type

d. Paste the copied WSDL URI into the URI or WSDL File box and click Next.

Access ing Data Se rv ices

6-10 Data Services Samples Tutorial

Figure 6-9 Paste the URI

e. Expand the CreditRatingDBTestSoap and Operations folders.

f. Select getCreditRating operation, and click Add to populate the Selected Web Service
Operations pane.

g. Click Next.

Figure 6-10 Selected Web Service Operations

h. Do not select the getCreditRating procedure as the side effect procedure in the Select Side
Effect Procedures dialog box. Click Next.

6.2 Impor t ing Web Se rv ice Metadata in to a P ro jec t

Data Services Samples Tutorial 6-11

Figure 6-11 Data Service Procedure Option (Unselected)

i. Review the Summary information, which includes:

• Function name.

• XML type, for Web service objects whose source metadata will be imported.

• Name, for each data service that will be generated from the source metadata. (Any
name conflicts appear in red and must be resolved before proceeding. However, you
can modify any data service name.)

• Add to Existing Data Service, to add the function to an existing data service.

• Location, where the generated data service(s) will reside.

j. Click Finish.

Access ing Data Se rv ices

6-12 Data Services Samples Tutorial

Figure 6-12 Web Services Summary

9. Open getCreditRatingResponse.ds in Design View. This file is located in
DataServices\WebServices.

10. Confirm that there is a function called getCreditRating().

6 .3 Tes t ing the Web Se rv ice v ia a SOAP Request

Data Services Samples Tutorial 6-13

Figure 6-13 Web Service Function Added

6.3 Testing the Web Service via a SOAP Request
Extensible Markup Language (XML) messages provide a common language by which different
applications can talk to one another over a network. Most Web services communicate via XML. A client
sends an XML message containing a request to the Web service, and the Web service responds with an
XML message containing the results of the operation. In most cases these XML messages are
formatted according to Simple Object Access Protocol (SOAP) syntax. SOAP specifies a standard
format for applications to call each other’s methods and pass data to one another.

Note: Web services may communicate with XML messages that are not SOAP-formatted. The types
of messages supported by a particular Web service are described in the service’s WSDL file.

Objectives
In this exercise, you will:

Use the getCreditRating() function and a SOAP parameter to test
getCreditRatingResponse.ds.

Review the results.

Access ing Data Se rv ices

6-14 Data Services Samples Tutorial

Instructions
1. Build the DataServices project.

2. Open getCreditRatingResponse.ds in Test View. (This file is located in
DataServices\WebServices.)

3. Select getCreditRating(x1) from the Function drop-down list.

4. Enter the following SOAP body in the Parameter field:

<getCreditRating xmlns="http://www.openuri.org/">

 <customer_id>CUSTOMER3</customer_id>

</getCreditRating>

Note: An alternative to adding the SOAP body in the parameter field is to use a template for the
input parameter by clicking Insert Template.

Figure 6-14 SOAP Parameter

5. Click Execute.

6. Review the results, which should be similar to those displayed in Figure 6-15 (Rating:600,
CustomerID: CUSTOMER3). Notice that only two data elements are returned: the customer ID and
the credit rating for that customer.

6.4 Invok ing a Web Serv ice in a Data Se rv i ce

Data Services Samples Tutorial 6-15

Figure 6-15 Web Service Results

6.4 Invoking a Web Service in a Data Service
You are now ready to use the Web service to provide the data that populates the CustomerProfile
logical data service.

Objectives
In this exercise, you will:

Use the getCreditRatingResponse data service to populate the credit rating element in the
CustomerProfile data service.

Test the invocation.

Review the results.

Access ing Data Se rv ices

6-16 Data Services Samples Tutorial

Instructions
1. Open CustomerProfile.ds file in Source View. The file is located in

DataServices\CustomerManagement.

2. In the Source View, add the following namespace definitions, in addition to the ones already
defined for the CustomerProfile data service:

declare namespace

ws1="ld:DataServices/WebServices/getCreditRatingResponse";

declare namespace ws2 = "http://www.openuri.org/";

Note: The “1” in “ws1” is a numeral.

3. Open the creditRatingXQuery.txt file, located in
<beahome>\weblogic81\samples\LiquidData\EvalGuide in a text editor.

4. Copy all the code from the creditRatingXQuery.txt file.

5. In the CustomerProfile.ds file, expand the getAllCustomers() function.

6. Insert the copied text into the section where the empty CreditRating complex element is located.
The empty complex element is as follows:

<creditrating>

 <rating></rating/>

 <customer_id></customer_id>

</creditrating>

Note: The copied code replaces everything after: </orders> and before <valuation>.

7. Confirm that the <creditrating> code is as displayed in Figure 6-16.

6.4 Invok ing a Web Serv ice in a Data Se rv i ce

Data Services Samples Tutorial 6-17

Figure 6-16 Credit Rating Source Code

8. View the results, by completing the following steps:

a. Open CustomerProfile.ds in XQuery Editor View.

b. Select getAllCustomers() from the Function dropdown list. The function should be
similar to that displayed in Figure 6-17.

Access ing Data Se rv ices

6-18 Data Services Samples Tutorial

Figure 6-17 XQuery Editor View of a Web Service Being Invoked

c. Open CustomerProfile.ds in Design View. The Web service is listed as a data source,
in the right pane of the diagram.

6.4 Invok ing a Web Serv ice in a Data Se rv i ce

Data Services Samples Tutorial 6-19

Figure 6-18 Design View of a Web Service Invoked in a Data Service

9. Test the data service by completing the following steps:

a. Build the DataServices project.

b. Open CustomerProfile.ds in Test View.

c. Select getCustomerProfile(CustomerID) from the Function drop-down list.

d. Enter CUSTOMER3 in the xs:string CustomerID field.

e. Click Execute.

f. Confirm that you can retrieve the credit rating for Customer 3.

Access ing Data Se rv ices

6-20 Data Services Samples Tutorial

Figure 6-19 Customer Profile Data Integrated with Web Service Credit Rating Data

10. Import the CreditRatingExit1.java file from the EvalGuide folder:

a. Right-click the WebServices folder.

b. Select Import option.

c. Navigate to <beahome>\weblogic81\samples\LiquidData\EvalGuide and select file
CreditRatingExit1.java for import. Click Import.

d. Build the DataServices project.

e. Open getCreditRatingResponse.ds in Design View. Set the UpdateOverride Class
property in the Property Editor to WebServices.CreditRatingExit1. (If the
Property Editor is not open, you can select it using the View menu Property Editor option.)

6.4 Invok ing a Web Serv ice in a Data Se rv i ce

Data Services Samples Tutorial 6-21

f. Click the browser symbol in the Update Override Class field.

g. Navigate to the DataServices.jar -> WebServices folder.

h. Select the CreditRatingExit1.class file. Click open.

Figure 6-20 Selecting the Update Override Class

11. (Optional) Open the Output window to view the data sources used to generate the Test View
results. You should see the following statement, which indicates that data was pulled from the
invoked Web service:

Note: To perform this step, you need to enable auditing in the ALDSP Console.

Access ing Data Se rv ices

6-22 Data Services Samples Tutorial

Figure 6-21 Viewing the Data Sources in the Output Window

Lesson Summary
In this lesson, you learned how to:

Import a Web service project, locate its WSDL, and use that WSDL to generate a data source.

Test the Web service by passing a SOAP request body as a query parameter.

Use a logical data service to invoke a Web service and retrieve data.

Data Services Samples Tutorial 7-1

T U T O R I A L 7

Consuming Data Services Using Java

After a Data Services Platform (ALDSP) application is deployed to a WebLogic Server, clients can use
it to access real-time data. ALDSP supports a services-oriented approach to data access, using several
technologies:

Mediator API. The Java-based Mediator API instantiates ALDSP information as data objects,
which are defined by the Service Data Objects (SDO) specification. SDO is a proposed standard
that defines a language and architecture intended to simplify and unify the way applications
handle data.

Data Services Workshop Control. The Data Services Workshop control is a wizard-generated
Java file that exposes a user-specified data service function to WebLogic Workshop client
applications (such as page flows, portals, or Web services). You can add functions to the control
from data services deployed on any WebLogic server that is accessible to the client application,
whether it is on the same WebLogic Server as the client application or on a remote WebLogic
Server.

WSDL. WSDL-based Web services can act as wrappers for data services.

SQL. The Data Services Platform JDBC driver gives SQL clients (such as reporting and
database tools) and JDBC applications a traditional, database-oriented view of the data layer.
To users of the JDBC driver, the set of data served by ALDSP appears as a single virtual
database, with each service appearing as a table.

 In this lesson, you will enable ALDSP to consume data through the SDO Mediator API.

Consuming Data Serv ices Us ing Java

7-2 Data Services Samples Tutorial

Objectives
After completing this lesson, you will be able to:

Use SDO in a Java application.

Invoke a data service function using the untyped SDO Mediator API interface.

Access data services from Java, using the typed SDO Mediator API.

Overview
SDO is a joint specification of BEA and IBM that defines a Java-based programming architecture and
API for data access. A central goal of SDO is to provide client applications with a unified interface for
accessing and updating data, regardless of its physical source or format.

SDO has similarities with other data access technologies, such as JDBC, Java Data Objects (JDO), and
XMLBeans. However, what distinguishes SDO from other technologies is that SDO gives applications
both static programming and a dynamic API for accessing data, along with a disconnected model for
accessing externally persisted data. Disconnected data access means that when ALDSP gets data from
a source, such as a database, it opens a connection to the source only long enough to retrieve the data.
The connection is closed while the client operates on the data locally. When the client submits
changes to apply to the source, the connection is reopened.

ALDSP implements the SDO specification as its client programming model. In concrete terms, this
means that when a client application invokes a read function on a data service residing on a server,
any data is returned as a data object. A data object is a fundamental component of the SDO
programming model. It represents a unit of structured information, with static and dynamic interfaces
for getting and setting its properties.

In addition to static calls, SDO, like RowSets in JDBC, has a dynamic Mediator API for accessing data
through untyped calls (for example, getString("CUSTOMER_NAME")). An untyped Mediator
API is useful if you do not know the data service to run at development time.

The Mediator API gives client applications full access to data services deployed on a WebLogic server.
The application can invoke read functions, get the results as Service Data Objects, and pass changes
back to the source. To use the Mediator API, a client program must first establish an initial context
with the server that hosts the data services. The client can then invoke data service queries and
operate on the results as Service Data Objects.

7 .1 Running a Java Program Us ing the Untyped Media to r AP I

Data Services Samples Tutorial 7-3

7.1 Running a Java Program Using the Untyped Mediator
API

An untyped Mediator API is useful if, at development time, you do not know the data service to run.

Objectives
In this exercise, you will:

Add a Java project to your application.

Add the method calls necessary to use the Mediator API.

Review the results in the Output window and a standalone Java application.

Instructions
1. Add a Java project to your application by completing the following steps:

a. Right-click the Evaluation application folder.

b. Select Import Project.

c. Select Java Project.

d. Click Browse and navigate to:

 <beahome>\weblogic81\samples\liquiddata\EvalGuide

e. Select DataServiceClient, click Open, and then click Import.

Consuming Data Serv ices Us ing Java

7-4 Data Services Samples Tutorial

Figure 7-1 Importing Java Project

The Java project is added to the application, in the DataServiceClient folder. To use the
Mediator API, you need to add the method calls to instantiate the data service, invoke the
getCustomerProfile() method and assign the return value of the function to the
CustomerProfileDocument SDO/XML bean.

2. Open the DataServiceClient.java file, located in the DataServiceClient folder.

3. Insert the method calls necessary to use the Mediator API, by completing the following steps:

a. Add the following import statements at the beginning of the file:

import com.bea.dsp.dsmediator.client.DataService;

import com.bea.dsp.dsmediator.client.DataServiceFactory;

b. Locate the main method. You will see a declaration of the data service, a String params[], plus
the CustomerProfileDocument variable.

7 .1 Running a Java Program Us ing the Untyped Media to r AP I

Data Services Samples Tutorial 7-5

Figure 7-2 Java Source Code

c. Confirm that the String params[], which is an object array consisting of arguments to be
passed to the function, is set as follows:

String params[] = {customer_id};

d. Construct a new data service instance, by modifying the DataService ds = null line. The
Mediator API provides a class called DataServiceFactory, which can be used to construct the
new data service instance. Using the newDataService method, you can pass in the initial JNDI
context, the application name, and the data service name as parameters. For example:

DataService ds = DataServiceFactory.newDataService(

getInitialContext(), // Initial Context

"Evaluation", // Application Name

"ld:DataServices/CustomerManagement/CustomerProfile" // Data Service Name

);

Consuming Data Serv ices Us ing Java

7-6 Data Services Samples Tutorial

e. Change the invocation of the data service by modifying the CustomerProfileDocument doc =
null line, as shown in the following code:

CustomerProfileDocument[] doc = (CustomerProfileDocument[])

ds.invoke("getCustomerProfile",params);

f. Specify the first element of the customer profile array by changing the following code:

Customer customer = doc.getCustomerProfile().getCustomerArray(0);

to:

Customer customer = doc[0].getCustomerProfile().getCustomerArray(0);

g. Review the inserted code and verify that it is similar to that displayed in Figure 7-3.

Figure 7-3 Untyped Mediator API Code Added

4. Review the code included in the //Show Customer Data and //Show Order Data sections. This code
will be used to retrieve customer information, all orders of that customer (order ID, order date,
and total amount) and the line items of each order (product ID, price and quantity). The code
should be similar to that displayed in Figure 7-4.

7 .1 Running a Java Program Us ing the Untyped Media to r AP I

Data Services Samples Tutorial 7-7

Figure 7-4 Customer and Order Code

5. Click the Start icon (or press Ctrl + F5) to compile your program (if a Confirmation message
regarding debugging properties appears, then click OK). It may take a few moments to compile the
program.

Note: WebLogic Server must be running. Confirm that the program returns the specified results by
viewing the results in the Output window (if the Output window is not open, choose View →
Windows → Output).

Consuming Data Serv ices Us ing Java

7-8 Data Services Samples Tutorial

Figure 7-5 Results: Output Window

6. (Optional) View the results in a standalone Java environment of your choice.

Note: To use the Mediator API outside of WebLogic Workshop, you need to add the following files to
your classpath:

WebLogic Libraries:

%\bea\weblogic81\server\lib\weblogic.jar

XML Bean:

%\bea\weblogic81\server\lib\xbean.jar

CustomerProfile classes:

%\bea\user_projects\applications\Evaluation\APP-INF\lib\DataServices.jar

ALDSP Server Libraries:

%\bea\weblogic81\liquiddata\lib\ld-server-core.jar

ALDSP Client Libraries (including Mediator API):

%\bea\weblogic81\liquiddata\lib\ld-client.jar

Service Data Object:

7 .2 Running a Java Prog ram Us ing the Typed Media to r AP I

Data Services Samples Tutorial 7-9

%\bea\weblogic81\liquiddata\lib\wlsdo.jar

Figure 7-6 Results: Standalone Java Environment

7.2 Running a Java Program Using the Typed Mediator API
With the typed mediator interface, you instantiate a typed data service proxy in the client, instead of
using the generic data service interface. The typed data service interface may be easier to program
and it improves code readability.

In this exercise, you will access data services from a Java client, using the typed SDO Mediator API.
You will be provided with a generated API for your data service, which lets you directly invoke the
actual functions as methods (for example, ds.getCustomerProfile(customer_id)).

Consuming Data Serv ices Us ing Java

7-10 Data Services Samples Tutorial

Objectives
In this exercise, you will:

Build your application as an EAR file.

Build the SDO mediator client.

Add the SDO mediator client’s generated JAR file to your libraries folder.

Construct a DataServices instance and invoke the data service.

View the results in the Output window.

View the results in a standalone Java application.

Instructions
1. Build your application as an EAR file by completing the following steps:

a. Choose Tools → Application Properties and click Build.

b. In the Project build order section, place DataServices as the first project.

c. Clear the Project: DataServiceClient checkbox, because this is not required for the EAR file.

d. Click OK.

7 .2 Running a Java Prog ram Us ing the Typed Media to r AP I

Data Services Samples Tutorial 7-11

Figure 7-7 Project Build Order

2. Build the SDO Mediator Client, by completing the following steps:

a. Right-click the Evaluation application and select Build Application from the pop-up menu.

b. Right-click the Evaluation application again and select Build SDO Mediator Client. A message
displays notifying you that an EAR file will be created.

c. Click Yes when asked whether you want to build an EAR file.

Note: This confirmation box appears only the first time you build the SDO Mediator Client.
However, to ensure that the latest EAR file is used while building the SDO Mediator Client,
you must build the EAR before you build the SDO Mediator Client.

d. Confirm that you see the following text in the Build window (if not open, choose View →
Windows → Build):

Consuming Data Serv ices Us ing Java

7-12 Data Services Samples Tutorial

Generating SDO client API jar...

clean:

de-ear:

build:

[delete] Deleting:
C:\bea\user_projects\applications\Evaluation\Evaluation-ld-client.jar

[mkdir] Created dir: C:\Documents and Settings\jsmith\Local
Settings\Temp\wlw-temp-53911\sdo_compile42918\client\src

[java] May 2, 2006 6:41:26 PM com.bea.ld.context.MetadataContext
getRepositoryRoot

[java] INFO: 30 (ms)

[java] May 2, 2006 6:41:27 PM
com.bea.ld.wrappers.ws.JAXRPCWebserviceAdapter <clinit>

[java] WARNING: Unable to instantiate ServiceFactory. Please ensure that
javax.xml.rpc.ServiceFactory property has been properly set.

[mkdir] Created dir: C:\Documents and Settings\jsmith\Local
Settings\Temp\wlw-temp-53911\sdo_compile42918\client\classes

[javac] Compiling 12 source files to C:\Documents and
Settings\jsmith\Local
Settings\Temp\wlw-temp-53911\sdo_compile42918\client\classes

[jar] Updating jar:
C:\bea\user_projects\applications\Evaluation\Evaluation-ld-client.jar

all:

Importing SDO client API jar into application...

SDO client API jar available as
C:\bea\user_projects\applications\Evaluation\Evaluation-ld-client.jar

Note: The drive information may be different for your application.

3. Construct a new data service instance and invoke the data service, by completing the following
steps:

a. Open the DataServiceClient.java file (if it is not already open).

b. Replace the declaration of the DataService and CustomerProfileDocument objects with the
following (modified code is displayed in boldface type):

CustomerProfile ds = CustomerProfile.getInstance(

getInitialContext(), // Initial Context

7 .2 Running a Java Prog ram Us ing the Typed Media to r AP I

Data Services Samples Tutorial 7-13

"Evaluation" // Application Name

);

CustomerProfileDocument doc = ds.getCustomerProfile(customer_id);

Note: In the case of typed mediator APIs, you specify whether you are retrieving a single object
or an array based on the data service function declaration. In the preceding example, to
retrieve a single object in the output, the doc object is used instead of doc[0].

c. Click Alt + Enter and select dataservices.customermanagement.CustomerProfile. This creates
an import statement at the beginning of the file for the specified data service.

d. Edit getInitialContext () to suit your environment. Typically no changes are needed when
working through the tutorial on your local computer.

4. View the results in the Output window, by completing the following steps:

a. Click the Start icon (or press Ctrl + F5) to compile your program.

b. Click OK if a confirmation message asking if you would like to run DataServiceClient.

c. Confirm that the program return the specified results by viewing the results in the Output
window (if not open, choose View → Windows → Output).

Figure 7-8 Results -- Output Window

5. (Optional) Run your program in a standalone Java application to list customer orders. Note that
you must add the generated file (the typed data-service proxy,

Consuming Data Serv ices Us ing Java

7-14 Data Services Samples Tutorial

Evaluation-ld-client.jar) to the classpath, along with the other libraries listed for
Excercise 7.1 Running a Java Program Using the Untyped Mediator API, (optional) step 7.

Figure 7-9 Results-- Standalone Java Application

7.3 Resetting the Mediator API
After Excercise 7.2 Running a Java Program Using the Typed Mediator API, you must remove the
Evaluation_ld-client.jar file from your Libraries folder because this JAR file will create
inconsistencies in future lessons. You must also revert the method calls to use the Untyped Mediator
API.

Objectives
In this exercise, you will:

Remove the Evaluation_ld-client.jar file from the Libraries folder.

Revert the method calls to use the untyped Mediator API.

7 .3 Reset t ing the Media to r AP I

Data Services Samples Tutorial 7-15

Instructions
1. Delete the Evaluation-ld-client.jar file by completing the following steps:

a. Expand the Libraries folder.

b. Right-click the Evaluation-ld-client.jar file.

c. Choose Delete from the pop-up menu.

d. Click Yes, when the confirmation message displays.

2. Revert the method calls to use the untyped mediator API, by completing the following steps:

a. Open the DataServiceClient.java file.

b. Replace the declaration of the DataService and CustomerProfileDocument objects with the
following (modified code is displayed in bold):

DataService ds = DataServiceFactory.newDataService(

getInitialContext(), // Initial Context

"Evaluation", // Application Name

"ld:DataServices/CustomerManagement/CustomerProfile" // Data Service
Name

);

CustomerProfileDocument[] doc = (CustomerProfileDocument[])

ds.invoke("getCustomerProfile", params);

System.out.println("Connected to DSP 2.x : CustomerProfile Data
Service...");

Note: If your application name is different from Evaluation, locate “Evaluation” in the
newDataService() call and rename it to reflect the name of your application.

c. Remove the import CustomerProfile statement.

d. Save your work.

Lesson Summary
In this lesson, you learned how to:

Set the classpath environment to use the SDO Mediator API.

Consuming Data Serv ices Us ing Java

7-16 Data Services Samples Tutorial

Use the untyped and typed SDO Mediator API to access data services from Java.

Generate the specific client-side Mediator API for your data service.

Data Services Samples Tutorial 8-1

T U T O R I A L 8

Consuming Data Services using Data
Service Controls

A Data Service control provides WebLogic Workshop applications with easy access to data service
functions.

Objectives
After completing this lesson, you will be able to:

Install the Data Service Control in your application.

Create a Java page flow (.jpf) Web application file, using WebLogic Workshop.

Overview
A convenient way to quickly access ALDSP from a WebLogic Workshop application, such as page flows,
process definitions, portals, or Web services, is through the Data Service control.

The Data Service control is a wizard-generated Java file that exposes to WebLogic Workshop client
applications only those data service function that you choose. You can add functions to a control from
data services deployed on any WebLogic Server that is accessible to the client application, whether it
is on the same WebLogic Server as the client application or on a remote WebLogic Server.

If accessing data services on a remote server, information regarding the information that the service
functions return (in the form of XML schema files) are first downloaded from the remote server into
the current application. The schema files are placed in a schema project named after the remote
application. The directory structure within the project mirrors the directory structure of the remote
server.

Consuming Data Serv ices us ing Data Serv i ce Cont ro ls

8-2 Data Services Samples Tutorial

When you create a Data Service control, WebLogic Workshop generates interface files for the target
schemas associated with the queries and then a Java Control Extension (.jcx) file. The .jcx file
contains the methods included from the data services when the control was created and a commented
method that, when uncommented, allows you to pass any XQuery statement to the server in the form
of an ad-hoc query.

8.1 Installing a Data Service Control
Data Service controls let you easily access data from page flows, process definitions, portals, or Web
services.

Objectives
In this exercise, you will:

Import a Web project that will be used to demonstrate Data Service control capabilities.

Install a Data Service control.

Instructions
1. Right-click the Evaluation application folder.

2. Choose Import Project.

3. Choose Web Project.

4. Navigate to <beahome>\weblogic81\samples\LiquidData\EvalGuide

5. Select the CustomerManagementWebApp project and click Open.

6. Click Import, and then click Yes when asked whether you want to install project files.

7. Right-click the Evaluation application folder.

8. Choose Install → Controls → Data Service.

Note: The Data Service option will not display if you previously installed a Data Service control.

9. Expand the Libraries folder and confirm that the LiquidDataControl.jar file is
installed.

8.2 Def in ing the Data Se rv ice Cont ro l

Data Services Samples Tutorial 8-3

Figure 8-1 Data Service Control

8.2 Defining the Data Service Control
1. Create a new folder in the CustomerManagementWebApp Web project, and name it controls.

2. Define a new Java control as a Data Service control by completing the following steps:

a. Right-click the controls folder.

b. Choose New → Java Control.

c. Select Data Service.

d. Enter CustomerData in the File name field.

e. Click Next.

Consuming Data Serv ices us ing Data Serv i ce Cont ro ls

8-4 Data Services Samples Tutorial

Figure 8-2 Creating a New Java Control

f. In the New Java Control – Data Service dialog box, click Create.

Note: Do not change any default settings.

Figure 8-3 Creating a New Data Service Control

g. In the Select Data Service Functions box, expand the CustomerManagement and then the
CustomerProfile.ds folders.

h. Select getCustomerProfile().

8.2 Def in ing the Data Se rv ice Cont ro l

Data Services Samples Tutorial 8-5

i. Press Ctrl.

j. Select submitCustomerProfile().

k. Click Add and then click Finish.

Figure 8-4 Selecting Functions for the Data Service Control

It will take a few moments for the project to compile. After compilation, you should see a
Java-based Data Service Control called CustomerData.jcx, with the following signatures:

• getCustomerProfile() is a data service read function.

• submitCustomerProfile() is a submit function for all the changes (inserts,
updates, and deletes) done to the customer profile and persisting the data to the data
sources involved.

Note: You can use the data service control that you define as any WebLogic Workshop control in a
workflow, a JPF, or a portal.

3. Open the CustomerData.jcx file in Source View. This file is located in
CustomerManagementWebApp\controls.

4. Add an import statement for the filterXquery class:

import com.bea.ld.filter.FilterXQuery;

Consuming Data Serv ices us ing Data Serv i ce Cont ro ls

8-6 Data Services Samples Tutorial

5. Select and copy the comments and definition for the getCustomerProfile() function. It
looks like this:

 /**

 *

 * @jc:XDS
functionURI="ld:DataServices/CustomerManagement/CustomerProfile"
functionName="getCustomerProfile"
schemaURI="http://temp.openuri.org/DataServices/schemas/CustomerProfile
.xsd" schemaRootElement="CustomerProfile"

 */

org.openuri.temp.dataServices.schemas.customerProfile.CustomerProfileDo
cument getCustomerProfile(java.lang.String CustomerID);

6. Paste the copy on a new line and rename it getCustomerProfileWithFilter in the function
definition.

 /**

 *

 * @jc:XDS
functionURI="ld:DataServices/CustomerManagement/CustomerProfile"
functionName="getCustomerProfile"
schemaURI="http://temp.openuri.org/DataServices/schemas/CustomerProfile
.xsd" schemaRootElement="CustomerProfile"

 */
org.openuri.temp.dataServices.schemas.customerProfile.CustomerProfileDo
cument getCustomerProfileWithFilter(java.lang.String CustomerID,
FilterXQuery filter);

7. Add the following parameter to the getCustomerProfileWithFilter() function:

FilterXQuery filter

After adding this parameter, the function signature will display as:

 /**

 *

 * @jc:XDS
functionURI="ld:DataServices/CustomerManagement/CustomerProfile"
functionName="getCustomerProfile"
schemaURI="http://temp.openuri.org/DataServices/schemas/CustomerProfile
.xsd" schemaRootElement="CustomerProfile"

8.3 Inser t ing a Data Se rv i ce Cont ro l in to a Page F l ow

Data Services Samples Tutorial 8-7

 */
org.openuri.temp.dataServices.schemas.customerProfile.CustomerProfileDo
cument getCustomerProfileWithFilter(java.lang.String CustomerID,
FilterXQuery filter);

8.3 Inserting a Data Service Control into a Page Flow
At this point, you have created a Data Service Control and specified which data service functions
(getCustomerProfile() and submitCustomerProfile()) you want to want to use in
this control. However, the control is not yet associated with a page flow, from which end-users can
retrieve data.

Objectives
In this exercise, you will:

Use Flow View to add the CustomerData control to the
CustomerPageFlowController.jpf file.

Use Source View to confirm the addition.

Instructions
1. Open CustomerPageFlowController.jpf in Flow View. (The file is located in the

CustomerManagementWebApp\CustomerPageFlow folder.)

Note: There are two “errors” in the file, indicated by the two red marks in the scrollbar. This is
because the getCustomer() and submitCustomer() functions are not yet
associated with a Data Services Control.

Consuming Data Serv ices us ing Data Serv i ce Cont ro ls

8-8 Data Services Samples Tutorial

Figure 8-5 Page Flow View

2. In Data Palette, go to Controls. (If Data Palette is not open, choose View → Windows → Data
Palette.)

3. Choose Add → Local Controls → CustomerData, and name it LDControl.

4. Click Create.

8.3 Inser t ing a Data Se rv i ce Cont ro l in to a Page F l ow

Data Services Samples Tutorial 8-9

Figure 8-6 Insert Custom Data Service Control
l

5. Open the CustomerPageFlowController.jpf in Source View.

6. Change the line:

customerDocument =
LDControl.gCustomerProfileWithFilter(form.getCustomerID(),filter);

to:

customerDocument = LDControl.getCustomerProfile(form.getcustomerID());

7. Confirm that the page flow now includes the control as an instance variable:

 private controls.CustomerData LDControl;

Consuming Data Serv ices us ing Data Serv i ce Cont ro ls

8-10 Data Services Samples Tutorial

Figure 8-7 Source View of a Data Service Control

8.4 Running the Web Application
In this exercise you will see the Data Service Control in action.

Objectives
In this exercise, you will:

Run the Web application, which now contains a Data Service Control.

Use getCustomerProfile() to retrieve data about a specific customer.

Use submitCustomerProfile() to update customer data.

Use ALDSP Test View to confirm that changes were persisted.

8.4 Runn ing the Web Appl i cat ion

Data Services Samples Tutorial 8-11

Instructions
Note: The WebLogic Server must be running.

1. Build the CustomerManagementWebApp project.

2. Open CustomerPageFlowController.jpf in Flow View.

3. Click the Start icon (or press Ctrl + F5) to run the web application. The Workshop Test Browser
opens after a few moments.

4. Enter CUSTOMER3 in the customer ID field and click Submit. The profile and order information
for Britt Pierce should be returned.

Consuming Data Serv ices us ing Data Serv i ce Cont ro ls

8-12 Data Services Samples Tutorial

Figure 8-8 Java Page Flow Results

Modify the customer information by completing the following steps:

5. Click Update Profile.

a. Modify Email Address to the following:

JOHN_3@yahoo.com

b. Click Submit.

8.4 Runn ing the Web Appl i cat ion

Data Services Samples Tutorial 8-13

Figure 8-9 Updating a Customer Profile

c. Click Submit All Changes. (The link is at the bottom of the Workshop Test Browser page.)

6. Add a new order line item by completing the following steps:

a. In Order_3_0, click New Order Item. (The link is located at the bottom of all line items for
Order_3_0.)

b. Enter the new order information, as displayed in Figure 8-10, and then click Submit.

Consuming Data Serv ices us ing Data Serv i ce Cont ro ls

8-14 Data Services Samples Tutorial

Figure 8-10 Adding New Order Information

 The new order information displays in the Workshop Test Browser.

8.4 Runn ing the Web Appl i cat ion

Data Services Samples Tutorial 8-15

Figure 8-11 Updated Data

7. Modify an existing order by completing the following steps:

a. In Order_3_0, click Line 6.

b. Enter 15 in the Quantity field.

c. Click Submit to close the Order Information window.

Consuming Data Serv ices us ing Data Serv i ce Cont ro ls

8-16 Data Services Samples Tutorial

8. Click Submit All Changes. (The link is at the bottom of the Workshop Test Browser page.)

9. Close Workshop Test Browser.

10. Test whether the changes were persisted by completing the following steps:

a. In WebLogic Workshop, open CustomerProfile.ds in Test View.

b. Select getCustomerProfile(CustomerID) from the Function drop-down list.

c. Enter CUSTOMER3 in the Parameter field.

d. Click Execute.

e. Expand the <creditrating>, <order> and <order_line> nodes to confirm that the changes
persisted.

8.4 Runn ing the Web Appl i cat ion

Data Services Samples Tutorial 8-17

Figure 8-12 Test View -- Confirm Changes

Consuming Data Serv ices us ing Data Serv i ce Cont ro ls

8-18 Data Services Samples Tutorial

Lesson Summary
In this lesson, you learned how to:

Install the Data Service Control in your application.

Create a Data Service Control for a web project, and then add functions from your data service
into the Data Service Control.

Add the Data Service Control into a Java Page Flow.

Use the Data Service Control to access data services from a web application.

(Optional) Pass data service results to the JSP, using NetUI

Data Services Samples Tutorial 9-1

T U T O R I A L 9

Accessing Data Services Through Web
Services

A Data Service Control can be used to access data through a page flow, Web service, or business logic.
In the previous lesson, you created a Data Service Control and used it within a Web application’s page
flow. In this lesson, you will use that same Data Service Control to generate a .wsdl for a Web service
that can invoke data service functions.

Objectives
After completing this lesson, you will be able to:

Use a Data Service Control to generate a Web service for a data service.

Test the generated Web service and invoke data service functions through the Web service
interface.

Generate a .wsdl file for Web service clients.

Overview
A Web service is a set of functions packaged into a single entity that is available to other systems on a
network. The network can be a corporate intranet or the Internet. Other systems can call these
functions to request data or perform an operation.

Web services are a useful way to provide data to an array of consumers over the Internet, like stock
quotes and weather reports. But they take on a new power in the enterprise, where they offer a flexible
solution for integrating distributed systems, whether legacy systems or new technology.

Access ing Data Se rv ices Through Web Serv ices

9-2 Data Services Samples Tutorial

9.1 Generating a Web Service from a Data Service
Control

In the previous lesson, you created a Data Service Control, which enabled WebLogic Workshop to
generate a Java Control Extension (.jcx) file. This file contains the underlying data service’s
method calls. In this exercise, you will use that Data Service Control to generate a Web service.

Objectives
In this exercise, you will:

Generate a stateless Web service interface, through which you can access the Data Service
Control.

Test the Web service to determine that it returns customer profile and order information.

Instructions
1. Expand the CustomerManagementWebApp and controls folders.

2. Right-click the CustomerData.jcx control.

3. Choose Generate Test JWS (Stateless). A new file, CustomerDataTest.jws, is generated. With this
Java Web Service (.jws) file, the Data Service Control methods are now available through a Web
service interface.

9.1 Generat ing a Web Se rv ice f r om a Data Se rv ice Cont ro l

Data Services Samples Tutorial 9-3

Figure 9-1 Java Web Service File

4. Open the CustomerDataTest.jws file in Source View.

5. Click the Start icon (or press Ctrl+F5). Workshop Test Browser opens.

6. Enter CUSTOMER3 in the string CUSTOMER ID field.

Access ing Data Se rv ices Through Web Serv ices

9-4 Data Services Samples Tutorial

Figure 9-2 Workshop Test Browser: Web Service

7. Click getCustomerProfile. The customer profile and order information for Customer 3 is retrieved.

8. View both the "Returned from" and "Service Response" results, which should be similar to that
displayed in Figure 9-3.

9.1 Generat ing a Web Se rv ice f r om a Data Se rv ice Cont ro l

Data Services Samples Tutorial 9-5

Figure 9-3 Web Service Test Results

9. Close Workshop Test Browser.

Access ing Data Se rv ices Through Web Serv ices

9-6 Data Services Samples Tutorial

9.2 Using a Data Service Control to Generate a WSDL for
a Web Service

You can use the Java Web Service file to generate a WSDL. A WSDL file contains all of the information
necessary for a client to invoke the methods of a Web service:

The data types used as method parameters or return values.

The individual methods names and signatures (WSDL refers to methods as operations).

The protocols and message formats allowed for each method.

The URLs used to access the Web service.

Objectives
In this exercise, you will:

Generate a .wsdl file, based on the Data Service Control.

(Optional) View the .wsdl file’s structure and source code.

Instructions
1. Right-click the CustomerDataTest.jws control.

2. Choose Generate WSDL File. The CustomerDataTestContract.wsdl is generated, which can be
used by other Web service clients.

9.2 Us ing a Data Serv ice Cont ro l to Generate a WSDL fo r a Web Serv ice

Data Services Samples Tutorial 9-7

Figure 9-4 New WSDL File

3. (Optional) Open the CustomerDataTestContract.wsdl file and explore the
document structure and source code.

Access ing Data Se rv ices Through Web Serv ices

9-8 Data Services Samples Tutorial

Figure 9-5 Document Structure

Lesson Summary
In this lesson, you learned how to:

Use a Data Service Control to generate a Web service for a data service.

Test the generated Web service and invoke data service functions through the Web service
interface.

Generate a .wsdl file for Web service clients.

Data Services Samples Tutorial 10-1

T U T O R I A L 10

Updating Data Services Using Java

One of the features introduced with Data Services Platform (ALDSP) is the ability to write data back
to the underlying data sources. This write service is built on top of the Service Data Object (SDO)
specification, and provides the ability to update, insert, and delete results returned by a data service.
It also provides the ability to submit all changes to the SDO (inserts, deletes, and updates) to the
underlying data sources for persisting.

Objectives
After completing this lesson, you will be able to:

Update, add to, and delete data from data service objects.

Submit changes to the underlying data sources, using the Mediator API.

Overview
When you update, add, or delete from data service objects, all changes are logged in the SDO’s change
summary.

10.1 Modifying and Saving Changes to the Underlying
Data Source

Although the steps in the next three exercises are different, the underlying principle is the same:
When you update, add, or delete from data service objects, all changes are logged in the SDO’s change

Updat ing Data Se rv ices Us ing Java

10-2 Data Services Samples Tutorial

summary. When the change is submitted, items indicated in the Change Summary log are applied in
a transactionally-safe manner, and then persisted to the underlying data source. Changes to relational
data sources are automatically applied, while changes to other data services, such as Web services and
portals, are applied using a ALDSP update framework.

Objectives
In this exercise, you will:

Modify customer data and save the changes to the SDO Change Summary log.

View the results in the Output window.

Invoke the submit() method of the Mediator API to save the changes to the underlying data
source.

Verify the results in Test View.

Instructions
1. Open the DataServiceClient.java file, located in the DataServiceClient project folder.

2. Change the first and last name of CUSTOMER3 from Brett Pierce to Joe Smith, by using the
set() methods of the Customer data object instance. You do this by adding the set() method
to the //Show Customer Data section (new code is displayed in boldface type):

Customer customer = doc[0].getCustomerProfile().getCustomerArray(0);

customer.setLastName("Smith");

customer.setFirstName("Joe");

System.out.println("Customer Name: " + customer.getLastName() +

", " + customer.getFirstName());

Note: The Array of function has been deprecated. Ensure that you modify
doc.getCustomerProfile().getCustomerArray(0) to
doc[0].getCustomerProfile().getCustomerArray(0):

10 .1 Mod i f y ing and Sav ing Changes to the Under l y ing Data Source

Data Services Samples Tutorial 10-3

Figure 10-1 Set() Method Specified

3. Save your work.

4. Right-click the DataServiceClient project folder and choose Build DataServiceClient.

5. Click the DataServiceClient.java file’s Start icon (or press Ctrl + F5).

6. Confirm that the changes were submitted, by viewing the results in the Output window. (If the
window is not open, choose View → Windows → Output.)

Note: At this point, the changes only exist as entries in the SDO Change Summary Log, not in
the data source. You must complete the remaining steps in this exercise to ensure that
the underlying data source is updated.

Figure 10-2 Change Results in Output Window

Updat ing Data Se rv ices Us ing Java

10-4 Data Services Samples Tutorial

7. Invoke the Mediator API’s submit() method and save the changes to the data source, by using
the data service instance. The submit() method takes two parameters: the document to submit
and the data service name. You do this by adding the following code into the //Show Customer Data
section of the file:

ds.submit(doc);

8. Change the output code, as follows:

System.out.println("Change Submitted");

Figure 10-3 submit() and Output Method Specified

9. Click the DataServiceClient.java file’s Start icon (or press Ctrl + F5).

10. Open DataServices\CustomerManagement\CustomerProfile.ds in Test
View.

11. Select the getCustomerProfile(CustomerID) function.

12. Enter CUSTOMER3 in the xs:string CustomerID field.

13. Click Execute. The results should show the customer name as Joe Smith.

10 .2 Inser t ing New Data to the Unde r l y ing Data Source Us ing Java

Data Services Samples Tutorial 10-5

10.2 Inserting New Data to the Underlying Data Source
Using Java

You can use the Mediator API to add new information to the underlying data source, thereby reducing
the need to know a variety of data source APIs.

Objectives
In this exercise, you will:

Add new data and save the changes to the SDO Change Summary log.

Invoke the submit() method of the Mediator API to save the changes to the underlying data
source.

Verify the results in Test View.

Instructions
1. In WebLogic Workshop open the DataServiceClient.java file.

2. Add a new item to ORDER_3_0 (the first order placed by CUSTOMER3), by using the
addNewOrderLine() method of the Order Item data object instance. You do this by inserting
the following code into the //Show Customer Data section, after
System.out.println("Change Submitted"):

 // Get the order

 Order myorder = customer.getOrders().getOrderArray(0);

// Create a new order item

 OrderLine newitem = myorder.addNewOrderLine();

3. Set the values of the new order item, including values for all required columns. (You can check the
physical or logical .xsd file to determine what elements are required.) All foreign keys must be
valid; therefore, use APPA_GL_3 as the Product ID.

You do not need to setOrderID(); the SDO update will automatically set the foreign key to
match its parent because the item will be added as a child of ORDER_3_0.

To set the values, insert the following code above the //Show Order Data section of the Java file:

// Fill the values of the new order item

 newitem.setLineId("8");

Updat ing Data Se rv ices Us ing Java

10-6 Data Services Samples Tutorial

 newitem.setProductId("APPA_GL_3");

 newitem.setProduct("Shirt");

 newitem.setQuantity(new BigDecimal(10));

 newitem.setPrice(new BigDecimal(10));

 newitem.setStatus("OPEN");

4. Press Alt + Enter to enable java.math.BigDecimal.

5. Invoke the Mediator API’s submit method and save the changes to the data source, by using the
data service instance. (The submit() method takes: the document to submit as a parameter)

You do this by inserting the following code before the //Show Order Data section of the java file:

// Submit new order item

 ds.submit(doc,
"ld:DataServices/CustomerManagement/CustomerProfile.ds");

 System.out.println("Change Submitted");

6. Comment out the code where customer first name and last name were set, including call to submit
method

7. Confirm that the //Show Customer Data section of your java file is as displayed in Figure 10-4.

10 .3 De le t ing Data f rom the Unde r l y ing Data Source Us ing Java

Data Services Samples Tutorial 10-7

Figure 10-4 xJava Code to Add Line Item

8. Open DataServices\CustomerManagement\ CustomerProfile.ds in
TestView.

9. Enter CUSTOMER3 in the xs:string CustomerID field.

10. Click Execute. The result should contain the new order information.

10.3 Deleting Data from the Underlying Data Source
Using Java

You can use the Mediator API to delete information to the underlying data source, thereby reducing
the need to know a variety of data source APIs.

Objectives
In this exercise, you will:

Updat ing Data Se rv ices Us ing Java

10-8 Data Services Samples Tutorial

Delete data and save the changes to the SDO Change Summary log.

Invoke the submit() method of the Mediator API to save the changes to the underlying data
source.

Verify the results in Test View.

Instructions
1. In Workshop Test Browser, determine the new item’s placement in the array and subtract 1. For

example, if line item with line_id = 8 is the fifth item for ORDER_3_0, its order placement is 4.

2. Close Workshop Test Browser.

3. In the DataServicesClient.java file delete or comment out the code that added a new
order line item.

4. Add an instance of the item that you want to delete, by inserting the following code file:

// Get the order item

 OrderLine myItem =
customer.getOrders().getOrderArray(0).getOrderLineArray(4);

Note: The getOrderLineArray() is based on the item’s placement in the array. In this
case, 8 is the fifth item, making the variable 4. You should use the variable that is correct
for your situation.

5. Call the delete method by inserting the following code:

// Delete the order item

myItem.delete();

6. Submit the changes, using the Mediator API’s submit() method.

// Submit delete order item

" ds.submit(doc);

 System.out.println("Change Submitted");

7. Confirm that the code is as displayed in Figure 10-5.

10 .3 De le t ing Data f rom the Unde r l y ing Data Source Us ing Java

Data Services Samples Tutorial 10-9

Figure 10-5 Java Code to Delete Line Item

8. Build the DataServiceClient project.

9. Click the DataServiceClient.java file’s Start icon (or press Ctrl + F5) to run the
program.

10. Confirm that the changes persisted to the underlying data source by completing the following
steps:

a. Click the CustomerPageFlowController.jpf application’s Start icon (or press
Ctrl+F5) to open the Workshop Test Browser.

b. In the Workshop Test Browser, enter CUSTOMER3 in the Customer ID field and click Submit.

c. Find ORDER_3_0 and verify that Line 8 is no longer present.

d. Close the Workshop Test Browser

Lesson Summary
In this lesson, you learned how to:

Update, add to, and delete data from data service objects.

Submit changes to the underlying data sources, using the Mediator API.

Updat ing Data Se rv ices Us ing Java

10-10 Data Services Samples Tutorial

Data Services Samples Tutorial 11-1

T U T O R I A L 11

Filtering, Sorting, and Truncating XML
Data

When designing your data service, you can specify read functions that filter data service return values.
However, instead of trying to create a read function for every possible client requirement, you can
create generalized read functions to which client applications can apply custom filtering or ordering
criteria at runtime.

Objectives
After completing this lesson, you will be able to:

Use the FilterXQuery class to create dynamic filter, sort, and truncate data service results.

Apply the FilterXQuery class to a data service, using the Mediator API or Data Service Control.

Overview
Data users often want to access information in ways that are not anticipated in the design of a data
service. The filtering and ordering API allow client applications to control what data is returned by a
data service read function call based on conditions specified at runtime.

Although you can specify read functions that filter data service return values, it may be difficult to
anticipate all the ways that client applications may want to filter return values. To deal with this
contingency, ALDSP lets client applications specify dynamic filtering, sorting, and truncating criteria
against the data service. These criteria are evaluated on the Server, before being transmitted on the
network, thereby reducing the data set results to items matching the criteria. Where possible, these

F i l te r ing , So r t ing , and T runcat ing XML Data

11-2 Data Services Samples Tutorial

instances are “pushed down” to the underlying data source, thereby reducing the data set returned to
the user.

The advantage of the FilterXQuery class is that you can define client-side filtering operations, without
modifying or re-deploying your data services.

11.1 Filtering Data Service Results
With the FilterXQuery class addFilter() method, filtering criteria are specified as Boolean condition
statements (for example, ORDER_AMOUNT > 1000). Only items that meet the condition are included
in the return set.

The addFilter() method also lets you create compound filters that provide significant flexibility,
given the hierarchical structure of the data service return type. In other words, given a condition on a
nested element, compound filters let you control the effects of the condition in relation to the parent
element.

For example, consider a multi-level data hierarchy for CUSTOMERS/CUSTOMER/ORDER, in which
CUSTOMERS is the top level document element, and CUSTOMER and ORDER are sequences within
CUSTOMERS and CUSTOMER respectively. Finally, ORDER_AMOUNT is an element within ORDER.

An ORDER_AMOUNT condition (for example, CUSTOMER/ORDER/ORDER_AMOUNT > 1000) can
affect what values are returned in several ways:

It can cause all CUSTOMER objects to be returned, but filter ORDERS that have an amount less
than 1000.

It can cause only CUSTOMER objects to be returned that have at least one large order. All
ORDER objects are returned for every CUSTOMER.

It can cause only CUSTOMER objects to be returned that have at least one large order along
with only large ORDER objects.

It can cause only CUSTOMER objects to be returned for which every ORDER is greater than
1000.

Instead of writing XQuery functions for each case, you just pass the filter object as a parameter when
executing a data service function, either using the Data Service Control or Mediator API.

Objectives
In this exercise, you will:

Import the FilterXQuery class, which enables filtering, truncating, and sorting of data.

11.1 F i l t e r ing Data Se rv ice Resu l ts

Data Services Samples Tutorial 11-3

Add a condition filter.

View the results through the Mediator API.

Instructions
1. Open the DataServiceClient.java file.

2. Delete the code that removed the line item with line_id = 8 order item delete code.

3. Delete the invoke and println code from the //Insert Code section:

CustomerProfileDocument[] doc = (CustomerProfileDocument[])

ds.invoke("getCustomerProfile",params);

System.out.println("Connected to Liquid Data 8.2 : CustomerProfile Data

Service ...");

4. Import the FilterXQuery class by adding the following code:

import com.bea.ld.filter.FilterXQuery;

import com.bea.dsp.RequestConfig;

5. Create a filter instance of the FilterXQuery, plus specify a condition to filter orders greater than
$1,000, by adding the following code:

//Create a filter and condition

FilterXQuery filter = new FilterXQuery();

filter.addFilter(

"CustomerProfile/customer/orders/order",

"CustomerProfile/customer/orders/order/total_order_amount",

">", "1000");

6. Apply the filter to the data service, by adding the following code:

// Apply the filter

 RequestConfig config = new RequestConfig();

 config.setFilter(filter);

 CustomerProfileDocument doc[] = (CustomerProfileDocument[])

ds.invoke("getCustomerProfile",params, config);

F i l te r ing , So r t ing , and T runcat ing XML Data

11-4 Data Services Samples Tutorial

7. Change the //Show Customer Data code to the following:

// Show Customer Data

 System.out.println("======================= Customers

=====================");

 Customer customer = doc[0].getCustomerProfile().getCustomerArray(0);

 System.out.println("Connected to ALDSP: CustomerProfile Data Service

...");

Figure 11-1 Filter Code

8. Click the DataServiceClient.java file’s Start icon (or press Ctrl + F5).

9. Use the Mediator API to view the results in the Output window and/or a standalone Java
environment. The return results should be similar to those displayed in Figure 11-2.

11 .2 So r t ing Data Se rv ice Resu l ts

Data Services Samples Tutorial 11-5

Figure 11-2 Filtered Data Results

11.2 Sorting Data Service Results
With the FilterXQuery class sortfilter.addOrderBy() method, you can specify criteria
for organizing the data service return results. For example, to sort the order amount results in
ascending order, you would use a sort condition similar to the following:

("CustomerProfile/customer/orders/order","total_order_amount",

FilterXQuery.ASCENDING);

Objectives
In this exercise, you will:

Add a sort condition.

View the results using the Mediator API.

F i l te r ing , So r t ing , and T runcat ing XML Data

11-6 Data Services Samples Tutorial

Instructions
1. Open the DataServiceClient.java file.

2. Create a sort instance of the FilterXQuery, by adding the following code before the //Apply Filter
section:

// Create a sort

FilterXQuery sortfilter = new FilterXQuery();

3. Add a sort condition, using the addOrderBy() method, to sort orders based on
total_order_amount (ascending) as shown:

sortfilter.addOrderBy(

"CustomerProfile/customer/orders/order",

"total_order_amount",

FilterXQuery.ASCENDING);

4. Apply the sort filter to the data service by adding the following code:

// Apply the sort

filter.setOrderByList(sortfilter.getOrderByList());

11 .2 So r t ing Data Se rv ice Resu l ts

Data Services Samples Tutorial 11-7

Figure 11-3 Sort Code

5. Click the Start icon (or press Ctrl + F5) for the DataServiceClient.java file.

6. Use the Mediator API to view the results in the Output window and/or a standalone Java
environment. The data results should be similar to those displayed in Figure 11-4.

F i l te r ing , So r t ing , and T runcat ing XML Data

11-8 Data Services Samples Tutorial

Figure 11-4 Filtered and Sorted Data Results

11.3 Truncating Data Service Results
The FilterXQuery class also provides the filter.setLimit() method, which lets you limit the number of
return results. For example, to limit the return results to two line items, you would use a truncate
condition similar to the following:

("CustomerProfile/customer/orders/order/order_line",”2”);

The filter.setLimit method is based on the following:

public void setLimit(java.lang.String appliesTo, String max)

Objectives
In this exercise, you will:

Truncate the data result set.

View the results using the Mediator API.

11 .3 T runcat ing Data Se rv ice Resu l ts

Data Services Samples Tutorial 11-9

Instructions
1. Open the DataServiceClient.java file.

2. Add a truncate condition, using the setLimit() method to limit the result set to a maximum
of two order lines for each order, as shown:

// Truncate result set

 filter.setLimit("CustomerProfile/customer/orders/order/order_line",”2”);

Figure 11-5 Truncate Code

3. Click the Start icon (or press Ctrl + F5) for the DataServiceClient.java file.

4. Use the Mediator API to view the results in the Output window and/or a standalone Java
environment. The data results should be similar to those displayed in Figure 11-6.

F i l te r ing , So r t ing , and T runcat ing XML Data

11-10 Data Services Samples Tutorial

Figure 11-6 Truncated Result Set

Lesson Summary
In this lesson, you learned how to:

Use the FilterXQuery class to filter, sort, and truncate data service results.

Apply the FilterXQuery class to a data service, using the Mediator API or Data Service Control.

Data Services Samples Tutorial 12-1

T U T O R I A L 12

Consuming Data Services through
JDBC/SQL

Data Services Platform JDBC driver gives JDBC clients read-only access to the information supplied
by data services. With the Data Services Platform JDBC driver, ALDSP acts as a virtual database. The
driver allows you to invoke data service functions from any JDBC client, from custom Java applications
to database, and from reporting tools, including Crystal Reports.

Objectives
After completing this lesson, you will be able to:

Access ALDSP via JDBC.

Integrate a Crystal Report file, populated by ALDSP, into your Web application.

Access ALDSP via Crystal Reports 11.

Overview
Data services built into ALDSP can be accessed using the Data Services Platform JDBC driver, which
provides access to the ALDSP-enabled Server via JDBC APIs. With this functionality, JDBC clients—
including business intelligence and reporting tools such as Business Objects and Crystal Reports—
are granted read-only access to the information supplied by ALDSP services. The main features of the
Data Services Platform JDBC driver are:

Supports SQL-92 SELECT statements.

Consuming Data Serv ices th rough JDBC/SQL

11-2 Data Services Samples Tutorial

Provides error handling; if an error is detected in SQL query, then the error will be reported
along with an error code.

Performs metadata validation; the translator checks SQL syntax and validates it against the
data service schema.

When communicating with ALDSP via a JDBC/ODBC interface, standard SQL-92 query language is
supported. The Data Services Platform JDBC driver implements components of the java.sql.*
interface, as specified in JDK 1.4x.

Data Services Platform JDBC driver gives JDBC clients read-only access to the information supplied
by data services. With the Data Services Platform JDBC driver, ALDSP acts as a virtual database. The
driver allows you to invoke data service functions from any JDBC client, from custom Java applications
to database, and from reporting tools, including Crystal Reports.

12.1 Running DBVisualizer
WebLogic Platform includes DBVisualizer, which is a third-party database tool designed to simplify
database development and management.

Before you start:

The Data Services Platform JDBC driver needs to be in your computer’s CLASSPATH:

$BEA_HOME\weblogic81\liquiddata\lib\ldjdbc.jar

Similarly, the WebLogic JAR file needs to be in your computer’s CLASSPATH:

$BEA_HOME\weblogic81\server\lib\weblogic.jar

The WebLogic Server needs to be running.

Make sure that your Evaluation application is deployed correctly to WebLogic Server.

Objectives
In this exercise, you will:

Create a database connection that enables DBVisualizer to access your Evaluation application
as if it were a database.

Use DBVisualizer to explore your Evaluation application.

12.1 Running DBVisua l i ze r

Data Services Samples Tutorial 11-3

Instructions
1. Publish your Evaluation data service functions for SQL use. For details see “Publishing Data

Service Functions for SQL Use” in the Designing Data Services chapter of the Data Services
Developer’s Guide.

http://edocs.bea.com/aldsp/docs25/datasrvc/xds.html#wp1111244

2. Build your application.

3. Choose Start → Programs → BEA WebLogic Platform8.1→ Other Development Tools →
DBVisualizer. The DBVisualizer tool opens.

Figure 12-1 DBVisualizer Interface

4. Choose Database → Add Database Connection.

5. Select the JDBC Driver tab from the Connection Data section.

../datasrvc/xds.html

Consuming Data Serv ices th rough JDBC/SQL

11-4 Data Services Samples Tutorial

6. Enter the following parameters:

• Connection Alias: LD

• JDBC Driver: com.bea.dsp.jdbc.DSPJDBCDriver

• Database URL: jdbc:dsp@localhost:7001/Evaluation

• Userid: weblogic

• Password: weblogic

7. Click Connect.

Figure 12-2 New Database Connection Parameters

8. Use DBVisualizer to explore your ALDSP application as if it were a database. Data service projects
display as database schemas. Functions within a project display as a database view; functions with
parameters display as database functions.

12.1 Running DBVisua l i ze r

Data Services Samples Tutorial 11-5

9. Select a tab (Database Info, Data Types, Table Types, Tables, and References) to view that
category of information for all data services within your application. For example, selecting the
Tables tab displays each data service as a table.

Figure 12-3 Tables

10. Double-click an element to view the values for a specific data service. For example,
double-clicking the DataServices~CustomerDB element from the Table Schema column displays
that data services values.

Figure 12-4 Table Column Values

Consuming Data Serv ices th rough JDBC/SQL

11-6 Data Services Samples Tutorial

12.2 Integrating Crystal Reports and Data Services
Platform

The Data Services Platform JDBC driver makes data services accessible from business intelligence
and reporting tools, such as Crystal Reports, Business Objects, Cognos, and so on. In this exercise, you
will learn how to use the Date Service Platform JDBC driver in conjunction with Crystal Reports. (For
ODBC applications, you can use JDBC to ODBC Bridge Drivers provided by vendors such as OpenLink,
available as of this writing at http://www.openlinksw.com.)

Objectives
In this exercise, you will:

Install Crystal Reports View in a Web application.

Import a saved Crystal Report file and JSP into the Web application.

View the report from the Web application.

Instructions
1. Install Crystal Reports Viewer in the CustomerManagementWebApp by completing the following

steps:

a. Right-click CustomerManagementWebApp.

b. Choose Install → Crystal Reports.

2. Import a saved Crystal Reports file and JSP that displays the report by completing the following
steps:

a. Right-click CustomerManagementWebApp.

b. Choose Import.

c. Navigate to <beahome>\weblogic81\samples\LiquidData\EvalGuide and select the
SpendByCustomers.rpt and showCrystal.jsp files:

d. Click Import. You should see showCrystal.jsp and SpendByCustomers.rpt files
within CustomerManagementWebApp.

e. Right-click the CustomerPageFlow folder.

http://www.openlinksw.com

12.2 In tegrat ing Crys ta l Repor ts and Data Serv i ces P la t fo rm

Data Services Samples Tutorial 11-7

f. Choose Import.

g. Select index.jsp, located in <beahome>\weblogic81\samples\LiquidData\EvalGuide.

h. Click Import and choose Yes when asked if you want to overwrite the existing index.jsp file.

3. Open CustomerPageFlowController.jpf, located in
CustomerManagementWebApp\CustomerPageFlow.

4. Click the Start icon (or press Ctrl + F5) to run Workshop Test Browser.

5. In Workshop Test Browser, click Customer Report to test the report. The first invocation may take
time to display.

Consuming Data Serv ices th rough JDBC/SQL

11-8 Data Services Samples Tutorial

Figure 12-5 Crystal Report

12.3 (Optional) Configuring JDBC Access through Crystal
Reports

Crystal Reports 11 comes with a direct JDBC interface, which can be used to interact with the Data
Services Platform JDBC driver.

Objectives
In this exercise, you will:

12.3 (Opt iona l) Conf igur ing JDBC Access th rough Crys ta l Repor ts

Data Services Samples Tutorial 11-9

Install Crystal Reports software, JDBC driver, and Java server files.

Add environment variables.

Create a new JDBC data source in Crystal Reports.

Instructions
1. Install the Crystal Reports software, per the vendor’s installation instructions.

2. Add the JAVA_HOME as an environment variable. For example:

JAVA_HOME=C:\j2sdk1.4.2_06

where:

C:\j2sdk1.4.2_06

identifies the Java SDK location on your computer.

3. Make sure that the jvm.dll is in the path variable for your computer. For example:

<$BEA_HOME>\jdk142_04\jre\bin\server

4. Locate the Crystal Reports configuration file (CRConfig.xml). By default it is located on your
Windows system in the following directory:

Program Files/Common Files/Business Objects/3.0/java

5. Make the following changes to the file:

In the <Classpath> element add the location of ldjdbc.jar and weblogic.jar to the
classpath element. For example:

C:\81sp5sql\weblogic81\server\lib\weblogic.jar;

C:\81sp5sql\weblogic81\liquiddata\lib\ldjdbc.jar;

In the < JDBCURL> element to point to the application that you want to connect to. For
example:

jdbc:dsp@localhost:7001/Evaluation

In the <JDBCClassName> element point to the ALDSP JDBC driver class name:

com.bea.dsp.jdbc.Driver.DSPJDBCDriver

Set the <JDBCUserName> element to the user. For the Evaluation sample application the user
is:

weblogic

Consuming Data Serv ices th rough JDBC/SQL

11-10 Data Services Samples Tutorial

Set the GenericJDBCDriver <Option> element to Yes.

Change the <DatabaseStructure> element from the default:

catalogs,tables

to:

catalogs,schemas,tables

Set the <LogonStyle> element to:

Standard

6. Create a new connection to a JDBC data source in Crystal Reports:

Select JDBC as the connection type in the Connection Standard Report Creation wizard.

Set the JDBC Driver to:

com.bea.dsp.jdbc.Driver.DSPJDBCDriver

Set the URL string to:

jdbc:dsp@localhost:7001/Evaluation

Provide a user name and password. For the Evaluation application that would be weblogic and
weblogic.

7. Login to Crystal Reports. Once authenticated, Crystal Reports will display a view of the Evaluation
application.

Lesson Summary
In this lesson, you learned how to:

Access ALDSP via JDBC.

Integrate a Crystal Reports file, populated by ALDSP, into your Web application.

Access ALDSP via Crystal Reports 11.

Data Services Samples Tutorial 13-1

T U T O R I A L 13

Consuming Data via Streaming API

Streaming API allows developers to retrieve Aqualogic Data Services Platform (ALDSP) results in a
streaming fashion.

Objectives
After completing this lesson, you will be able to:

Stream results returned from AquaLogic Data Services Platform into a flat file.

Test the results.

Overview
There are situations where you need to extract large amounts of data from operational systems using
ALDSP. For those cases, ALDSP provides a data streaming API. Large data sets can be retrieved to
application in a streaming fashion or be streamed directly to a file on server. All security enforcements
previously defined will still be relevant in case of the streaming API.

When working with streaming API keep the following things in mind:

The ability to get results as streams will be only available on the Server; there will not be any
client-server support for this API.

Only the Generic Data Service Interface is available for getting streaming results.

Consuming Data v ia S t reaming AP I

13-2 Data Services Samples Tutorial

13.1 Stream results into a flat file

Objectives
In this exercise, you will:

Create a new function that streams CustomerProfile information into a flat file.

Import a new jsp file to access a streaming function.

Test streaming data into a file.

Instructions
1. Import new index page into your application

a. Right-click CustomerPageFlow located in CustomerManagementWebApp.

b. Choose Import.

c. Navigate to <beahome>\weblogic81\samples\LiquidData\EvalGuide\Streaming.

d. Select index.jsp as the page to be imported.

e. Click on Import button.

f. Open index.jsp in the streaming folder and verify that you have a new link called “Export
All Data”.

2. Insert streaming function into your page flow

a. Open CustomerPageFlowController.jpf located in
CustomerManagementWebApp\ CustomerPageFlow

b. Go to Source View.

c. Add two additional methods into the page flow.

d. Open Streaming.txt file located in
<beahome>\weblogic81\samples\LiquidData\EvalGuide\Streaming.

e. Copy and paste both functions found in Streaming.txt file immediately after method
submitChanges() in the CustomerPageFlowController.jpf java page flow.

13.2 Consume data in s t reaming fash ion

Data Services Samples Tutorial 13-3

f. Press four times the key combination of Alt + Enter keys to import missing packages or type
the following in import section of page flow:

import com.bea.ld.dsmediator.client.StreamingDataService;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import com.bea.ld.dsmediator.client.DataServiceFactory;

import weblogic.jndi.Environment;

Note: If your application name is different from “Evaluation”, locate “Evaluation” in
newStreamingDataService method and rename it to reflect the name of your application.

g. Save your changes.

3. Start your CustomerPageFlowController.jpf

4. Once the application is started, click the Export All Data link

5. Verify that data is exported successfully by opening customerexport.txt, located in:

<BEAHOME>\weblogic81\samples\domains\ldplatform

13.2 Consume data in streaming fashion

Objectives
In this exercise, you will:

Import a new version of CustomerPageFlow.

Instantiate a new Streaming Data Service.

Retrieve results into XMLInputStream object by calling getCustomerProfile function.

Test fetching data from ALDSP in a streaming fashion.

Instructions
1. Import a new folder into your application

a. Right-click CustomerManagementWebApp located in your Evaluation application.

b. Choose Import.

Consuming Data v ia S t reaming AP I

13-4 Data Services Samples Tutorial

c. Navigate to <beahome>\weblogic81\samples\LiquidData\EvalGuide.

d. Select CustomerPageFlowStream folder to be imported.

e. Click Import.

f. Open CustomerPageFlowController.jpf file in Source View.

g. Locate stream method and the following comments:

//instantiate and initialize your streaming data service here

h. Add the following code:

com.bea.dsp.dsmediator.client.StreamingDataService sds = null;

 //instantiate and initialize your streaming data service here

 sds =

com.bea.dsp.dsmediator.client.DataServiceFactory.newStreamingDataService(g

etInitialContext(), "Evaluation",

"ld:DataServices/CustomerManagement/CustomerProfile");

i. The DataServiceFactory class contains a method to create a streaming data service.

j. Replace stream = null with following code:

stream = sds.invoke("getCustomerProfile", new String[]{"CUSTOMER3"});

For reference, your code should look similar to that shown below:

Figure 13-1 Instantiating and Initializing Streaming Data

13.2 Consume data in s t reaming fash ion

Data Services Samples Tutorial 13-5

k. Test running your CustomerPageFlowController.jpf. You can use CUSTOMER3
as a parameter to retrieve results. This time, data is fetched in streaming fashion as shown in
Figure 13-2.

Figure 13-2 Data in Streaming Format

Lesson Summary
In this lesson, you learned to:

Stream results returned from AquaLogic Data Services Platform into a flat file.

Test the results.

Consuming Data v ia S t reaming AP I

13-6 Data Services Samples Tutorial

Data Services Samples Tutorial 14-1

T U T O R I A L 14

Managing Data Service Metadata

ALDSP uses a set of descriptors (or metadata) to provide information about data services. The
metadata describes the data services: what information they provide and where the information
derives from (that is, its lineage). In addition to documenting services for potential consumers,
metadata helps administrators determine what services are affected when inevitable changes occur
in the data source layer. If a database changes, you can easily tell which data services are affected by
the change.

Objectives
After completing this lesson, you will be able to:

Synchronize physical data service metadata with changes made to the physical data source.

Analyze impacts and dependencies.

Create custom metadata for a logical data service.

Overview
ALDSP metadata information is stored as annotations at the data service and function levels. The
metadata is openly structured as XML fragments for easy export and import. At deployment time, the
metadata is incorporated into a compiled data service, and then deployed as part of the data service
application in WebLogic Server.

Stored metadata includes:

Managing Data Serv i ce Metadata

14-2 Data Services Samples Tutorial

Physical data service metadata:

• Relational data source, type, and version

• Column names, native data types, size, and scale

• XML schema types

• Web service WSDL URI

User-defined metadata:

• Description

• Custom properties at the data service level

• Custom properties at the function level

• Relationships created through data modeling

The Data Services Platform Console lets you access metadata stored within the ALDSP metadata
repository. The ALDSP Console supports the following functionality:

Searching the metadata repository

Exploring where and how a given data service or function is consumed

Analyzing data service lineage and dependencies (all data service objects dependent on a given
data service)

Imported physical data service metadata can be re-synchronized to capture changes at the data
source.

14.1 Defining Customized Metadata for a Logical Data
Service

There may be times when you need to modify the generated metadata descriptions to provide more
detailed information to others who will be working with the data service.

Objectives
In this exercise, you will:

Create customized metadata for the CustomerProfile logical data service, at both the data
service and function levels.

Build the DataServices project to enable persistence of the new metadata.

14.1 De f in ing Customized Metadata fo r a Log ica l Data Serv i ce

Data Services Samples Tutorial 14-3

Instructions
1. Add customized metadata at the data service level, by completing the following steps:

a. Open CustomerProfile.ds in Design View. The file is located in the
DataServices\CustomerManagement.

b. Click the data service header to open the Property Editor at the data service level. (If the
Property Editor is not open, choose View → Property Editor, or press Alt + 6.)

c. In Property Editor, click the Description field, located in the General section. This activates
the Description field.

d. Click the "…" icon for the Description field. The Property Text Editor opens.

e. In Property Text Editor, enter the following text:

f. Unified Customer Profile View – contains CRM, order information, credit rating, and valuation
information.

g. Click OK. The specified text is added to the Description field.

Figure 14-1 Property Text Editor

h. In Property Editor, click the + icon for the User-Defined Properties section.

i. Click the + icon for the Property(1) field. This activates the Property(1) field.

j. Add a user-defined property, using the following values:

• Name = Owner

• Value = <your name>

Managing Data Serv i ce Metadata

14-4 Data Services Samples Tutorial

Figure 14-2 User-Defined Property for a Logical Data Service

2. Add customized metadata at the function level, by completing the following steps:

a. In Design View, click the getCustomerProfile() function arrow to open that
function’s Property Editor.

Note: Do not click the function, which will open XQuery Editor View.

b. In Property Editor, click the + icon, located in the User-Defined Properties section.

c. Add a user-defined property, using the following values:

• Name = Notes

• Value = This function is consumed by the Customer Management Portal.

Figure 14-3 User-Defined Property for a Function

3. Save the file.

4. Build the DataServices project.

14.2 V iew ing Data Se rv ice Metadata Us ing the ALDSP Conso le

Data Services Samples Tutorial 14-5

14.2 Viewing Data Service Metadata Using the ALDSP
Console

All data service metadata, whether automatically generated or user-defined, can be viewed using the
ALDSP Console.

Objectives
In this exercise, you will:

Use the ALDSP Console to view both generated and customized metadata.

Use the console’s Search feature to locate metadata for a specific data service.

Instructions
1. Open the ALDSP Console, typically located at http://localhost:7001/ldconsole/.

Note: WebLogic Server must be running.

2. Log in using the following credentials:

User = weblogic

Password = weblogic

3. Open the CustomerProfile data service, located in
ldplatform\Evaluation\DataServices\CustomerManagement using the left-hand menu.

Managing Data Serv i ce Metadata

14-6 Data Services Samples Tutorial

Figure 14-4 ALDSP Console

4. Click the Properties tab and verify that user-defined properties for the data service display. The
property should be similar to that displayed in Figure 14-5, except that it will be your name in the
Value field.

Figure 14-5 Customer Profile Properties Metadata

14.2 V iew ing Data Se rv ice Metadata Us ing the ALDSP Conso le

Data Services Samples Tutorial 14-7

5. Explore the CustomerProfile data service metadata by completing the following steps:

a. Select the Read Functions tab.

b. Click getCustomerProfile().

c. Click the Properties tab. The Note that you created for getCustomerProfile() should
be visible.

Figure 14-6 Metadata -- Read Function Properties

d. (Optional) Select the Return Type, Relationships, Properties, and Where Used tabs to view
other metadata.

6. Search the DataServices folder for metadata by completing the following steps:

a. Right-click the Evaluation folder and click Search. (A search can be on data service name,
function name, description, or return type.)

b. Enter CustomerProfile in the Data Service Name search box and click Search. The data service
name, path, and type of data service are displayed for the CustomerProfile data service.
Clicking the data service name displays the Admin page for the data service.

Managing Data Serv i ce Metadata

14-8 Data Services Samples Tutorial

Figure 14-7 Search Results

14.3 Synching a Data Service with Underlying Data
Source Tables

Sometimes the underlying data source changes; for example, a new table is added to a database. For
those inevitable situations, ALDSP provides an easy way to update a data service.

Objectives
In this exercise, you will:

Import a Java project that contains additional CUSTOMER_ORDER database columns.

Synchronize the information in the Java project with the CUSTOMER_ORDER data service.

Confirm the addition of a new element in the CUSTOMER_ORDER data service schema.

Instructions
1. In WebLogic Workshop, choose File → Import Project.

2. Select Java Project.

3. Navigate to <beahome>\weblogic81\samples\LiquidData\EvalGuide.

4. Select the AlterTable folder, click Open, and then click Import.

14.3 Synching a Data Se rv ice w i th Under l y ing Data Source Tables

Data Services Samples Tutorial 14-9

Figure 14-8 Importing Java Project

5. Open AlterTable.java. (The file is located in the AlterTable project folder).

6. Click the Start icon, and then click OK when a Confirmation message displays. Compiling the file
adds a new column to the CUSTOMER_ORDER table.

7. Open the Output window and confirm that you see the CUSTOMER_ORDER_TABLE altered
message.

Figure 14-9 Altered Table Message

8. Right-click the ElectronicsDB folder, located in the DataServices project folder.

9. Select Update Source Metadata. The Metadata Update Targets wizard opens, displaying a list of all
new columns.

Managing Data Serv i ce Metadata

14-10 Data Services Samples Tutorial

Figure 14-10 Physical Data Sources

10. Click Next. The Metadata Update Preview dialog box opens, which provides details on the data to
be synchronized.

14.3 Synching a Data Se rv ice w i th Under l y ing Data Source Tables

Data Services Samples Tutorial 14-11

Figure 14-11 Synchronization Preview

11. Click Finish.

12. Open CUSTOMER_ORDER.ds in Source View. The file is located in the ElectronicsDB.

13. Expand the data service annotation, located on the first line of the file, to view the captured
metadata for the relational data source (type, version, column names, native data types, size,
scale, and XML schema types).

14. Scroll down until you locate the following code, which represents the customized metadata that
you define in Exercise 14.1 Defining Customized Metadata for a Logical Data Service:

<field type="xs:string" xpath="OWNER">

 <extension nativeFractionalDigits="0" nativeSize="50"
nativeTypeCode="12" nativeType="VARCHAR" nativeXpath="OWNER"/>

 <properties nullable="true"/>

</field>

Managing Data Serv i ce Metadata

14-12 Data Services Samples Tutorial

Figure 14-12 Source View of Updated Metadata

15. Select the Design View tab, and verify that an Owner element exists in the XML type for the
CUSTOMER_ORDER data service.

14.3 Synching a Data Se rv ice w i th Under l y ing Data Source Tables

Data Services Samples Tutorial 14-13

Figure 14-13 Design View

16. Right-click the CUSTOMER_ORDER Data Service header and select Display Native Type. Confirm
that there is a new element, called OWNER VARCHAR(50).

Lesson Summary
In this lesson, you learned how to:

Synchronize physical data service metadata with changes made to the physical data source.

Analyze impacts and dependencies.

Create custom metadata for a logical data service.

Managing Data Serv i ce Metadata

14-14 Data Services Samples Tutorial

Data Services Samples Tutorial 15-1

T U T O R I A L 15

Managing Data Service Caching

Caching enables the use of previously obtained results for queries that are repeatedly executed with
the same parameters. This helps reduce processing time and enhance overall system performance.

Objectives
After completing this lesson, you will be able to:

Use the ALDSP Console to configure a ALDSP cache.

Enable the cache for a data service function and define its time-to-live (TTL).

Check the database to verify whether a cache is used.

Determine the performance impact of the cache, by checking the query response time.

Disable caching.

Overview
When ALDSP executes a query, it returns to the client the data that resulted from the query execution.
If ALDSP caching is enabled, then ALDSP saves its results into a query results cache the first time a
query is executed. The next time the query is run with the same parameters, ALDSP checks the cache
configuration and, if the results are not expired, quickly retrieves the results from the cache, rather
than re-running the query. Using the previously obtained results for queries that are repeatedly
executed with the same parameters reduces processing time and enhances overall system
performance.

Managing Data Serv i ce Cach ing

15-2 Data Services Samples Tutorial

By default, the query results cache is disabled. Once enabled, you can configure the cache for
individual stored queries as needed, specifying how long query results are stored in the cache before
they expire (time out), and explicitly flushing the query cache.

In general, the results cache should be periodically refreshed to reflect data changes in the underlying
data stores. The more dynamic the underlying data, the more frequently the cache should expire. For
queries on static data (data that never changes), you can configure the results cache so that it never
expires. For extremely dynamic data, you would never enable caching.

If the cache policy expires for a particular query, ALDSP automatically flushes the cache result on the
next invocation. In the event of a Server shutdown, the contents of the results cache are retained. On
the server restart, the Server resumes caching as before. On the first invocation of a cached query,
ALDSP checks the results cache to determine whether the cached results for that query are valid or
expired, and then proceeds accordingly.

15.1 Determining the Non-Cache Query Execution Time
To understand whether caching improves query execution time, you first need to know how long it
takes to execute a non-cached query.

Objectives
In this exercise, you will:

Execute a query function.

Determine the query execution time.

Instructions
1. Open CustomerProfile.ds in Test View.

2. Select getCustomerProfile(CustomerID) from the function drop-down menu.

3. Enter CUSTOMER3 in the Parameter field.

4. Click Execute. The Output window displays the cache’s execution time.

Note: Ensure that auditing is enabled in the ALDSP console, to view results in the Output window.
For details about auditing, refer to the Administrator’s Guide.

5. Open the Output window.

../admin/index.html

15.2 Conf igur ing a Cach ing Po l i c y Th rough the ALDSP Conso le

Data Services Samples Tutorial 15-3

6. Search for query/performance evaltime for the value of query execution time.

Figure 15-1 Query Execution Time

15.2 Configuring a Caching Policy Through the ALDSP
Console

By default, ALDSP results caching is disabled. You must explicitly enable caching. In this exercise, you
will learn how to enable caching.

Objectives
In this exercise, you will:

Enable caching at the application level.

Enable caching at the function level.

Instructions
1. In the ALDSP Console (http://localhost:7001/ldconsole/), using the + icon,

expand the ldplatform directory. (Note: If you click the ldplatform name, the Application List page
opens. You do not want this page for this lesson.)

2. Enable caching at the application level, by completing the following steps:

a. Click Evaluation. The ALDSP Console’s General page opens.

Managing Data Serv i ce Cach ing

15-4 Data Services Samples Tutorial

b. In the Data Cache section, select Enable Data Cache.

c. Select cgDataSource from the Data Cache data source name drop-down list.

d. Enter MYLDCACHE in the Data Cache table name field.

e. Click Apply.

Figure 15-2 ALDSP Console General Page

3. Enable caching at the function level, by completing the following steps (you can cache both logical
and physical data service functions):

a. Open the CustomerProfile folder, located in Evaluation\DataServices\CustomerManagement.
The list of data service functions page opens.

b. For the getCustomerProfile() function, select Enable Cache.

c. Enter 300 in the TTL (sec) field.

d. Click Apply.

15.3 Tes t ing the Caching Po l i cy

Data Services Samples Tutorial 15-5

Note: Application level cache should be enabled.

Figure 15-3 Setting TTL

15.3 Testing the Caching Policy
Testing the caching policy helps you determine whether the specified query results are being cached.

Objectives
In this exercise, you will:

Use WebLogic Workshop to test the caching policy for the getCustomerProfile()
function.

Use the ALDSP Console to verify that the cache is populated.

Instructions
1. In WebLogic Workshop, open the CustomerProfile data service in Test View.

2. Select getCustomerProfile(CustomerID) from the Function drop-down list.

3. Enter CUSTOMER3 in the Parameter field.

4. Click Execute.

5. In the ALDSP Console, verify that the cache is populated by completing the following steps:

Managing Data Serv i ce Cach ing

15-6 Data Services Samples Tutorial

a. Go to the CustomerProfile folder.

b. Confirm that there are entries in the Number of Cache Entries field for the
getCustomerProfile() function.

Figure 15-4 Cache Test Results in the Metadata Browser

15.4 Determining Performance Impact of the Caching
Policy

A caching policy can reduces processing time and enhance overall system performance.

Objectives
In this exercise, you will:

Use the PointBase Console to confirm that the cache was populated.

Use WebLogic Workshop to determine caching performance.

Instructions
1. Use the PointBase Console to verify that the cache was populated, by completing the following

steps:

a. Start the PointBase Console, by entering the following command at the command prompt:

15.4 Dete rmin ing Pe r fo rmance Impact o f the Caching Po l i cy

Data Services Samples Tutorial 15-7

$BEA_HOME\weblogic81\common\bin\startPointBaseConsole.cmd

b. Enter the following configuration parameters to connect to your local PointBase Console:

• Driver: com.pointbase.jdbc.jdbcUniversalDriver

• URL: jdbc:pointbase:server://localhost:9093/workshop

• User: weblogic

• Password: weblogic

c. Click OK.

d. Enter the SQL command SELECT * FROM MYLDCACHE to check whether the cache is
populated.

e. Click Execute.

Figure 15-5 PointBase Console

2. In WebLogic Workshop, open the CustomerProfile data service in Test View.

Managing Data Serv i ce Cach ing

15-8 Data Services Samples Tutorial

3. Select getCustomerProfile(CustomerID) from the Function drop-down menu.

4. Enter CUSTOMER3 in the Parameter field.

5. Click Execute. The Output window displays the cache’s execution time.

6. Use the Output window to determine whether caching helped reduce the query execution time.

15.5 Disable Caching
Caution: For the purposes of the following lessons, you must disable the cache to avoid problems

with data updates.

Objectives
In this exercise, you will:

Disable caching at the application.

Disable caching at the function level.

Instructions
1. In the ALDSP Console using the + icon, expand the ldplatform directory. (Note: If you click the

ldplatform name, the Application List page opens. You do not want this page for this exercise.)

2. Disable application-level caching, by completing the following steps:

a. Click Evaluation. The ALDSP Console’s General page opens.

b. In the Data Cache section, clear Enable Data Cache.

c. Click Apply.

3. Disable function-level caching, by completing the following steps:

a. Open the CustomerProfile folder, located in

Evaluation\DataServices\CustomerManagement

The list of data service functions page opens.

b. For the getCustomerProfile() function, clear Enable Data Cache.

c. Click Apply.

15.5 D isab le Cach ing

Data Services Samples Tutorial 15-9

Lesson Summary
In this lesson, you learned how to:

Use the ALDSP Console to configure the ALDSP cache.

Enable the cache for a data service function and define its time-to-live (TTL).

Check the database to verify whether a cache is used.

Determine the performance impact of the cache, by checking the query response time.

Disable caching.

Managing Data Serv i ce Cach ing

15-10 Data Services Samples Tutorial

Data Services Samples Tutorial 16-1

T U T O R I A L 16

Managing Data Service Security

The Data Services Platform (ALDSP) leverages the security features of the underlying WebLogic
platform. Specifically, it uses resource authorization to control access to ALDSP resources based on
user identity or other information.

Note: WebLogic Server must be running.

Objectives
After completing this lesson, you will be able to:

Enable application-level security.

Set function-level read and write access security.

Set element-level security.

Overview
ALDSP’s security infrastructure extends WebLogic Server’s security policies to include ALDSP objects
such as data sources and stored queries, as well as security roles, groups, and users. These security
policies allow ALDSP administrators to set up rules that dynamically determine whether a given user:

Can access a particular object.

Holds read/write/execute permissions on a ALDSP object or a subset of those permissions.

Managing Data Serv i ce Secur i t y

16-2 Data Services Samples Tutorial

By default data services do not have any security policies configured. Therefore data is generally
accessible unless a more restrictive policy for the information is configured. Security policies can
apply at various levels of granularity, including:

Application level. The policy applies to all data services within the deployed ALDSP
application.

Data service level. The policy applies to individual data services within the application.

Element level. A policy can apply to individual items of information within a return type, such
as a salary node in a customer object. If blocked by insufficient credentials at this level, the
rest of the returned information is provided without the blocked element.

Implementing ALDSP access control involves using the WebLogic Server Console to configure user
groups and roles. You can then use the ALDSP Console to create policies for ALDSP, including data
services and their functions.

16.1 Creating New User Accounts
The first step in creating data service security policies is to create user accounts and either assign the
user account to a default group or configure a new group. There are 12 default authenticator groups.

Objectives
In this exercise, you will:

Open the WebLogic Server Console.

Create two user accounts that use a default user group.

View the user list.

Instructions
1. Open the WebLogic Server Console (http://localhost:7001/console/), using the

following credentials:

• User Name = weblogic

• Password = weblogic

2. Choose Security → Realms → myrealm → Users.

16.1 Creat ing New User Accounts

Data Services Samples Tutorial 16-3

Figure 16-1 User Security

3. Select Configure New User.

Managing Data Serv i ce Secur i t y

16-4 Data Services Samples Tutorial

Figure 16-2 Define User in Security Realm

4. Create a new user account by completing the following steps:

a. Enter Joe in the Name field.

b. Enter password in the Password field.

c. Enter password in the Confirm Password field.

d. Click Apply.

5. Repeat step 3 and step 4, entering Bob in the Name field (step 4a).

6. (Optional) Choose Security → Realms → myrealm → Users to view the results.

16 .2 Set t ing App l i ca t i on-Leve l Secur i t y

Data Services Samples Tutorial 16-5

Figure 16-3 New Users Added

16.2 Setting Application-Level Security
Application-level security applies to all data services within the deployed ALDSP domain, regardless
of user permission or group. By default, when you turn on access control for an application, access to
any of its resources is blocked, except for users who comply with policies configured for the resources.

Alternatively, by allowing default anonymous access, you can grant access to its resources by default.
You can enable default anonymous access level by navigating to Application level General tab under
Access Control (application Name → General). In this case, a resource is restricted only if a more
specific security policy for it exists; for example, a security policy at the data service function level.

Objectives
In this exercise, you will:

Use the AquaLogic Data Services Platform Console to enable application-level security.

Use WebLogic Workshop to test the security policy.

Instructions
1. In the ALDSP Console (http://localhost:7001/ldconsole/), using the + icon,

expand the ldplatform directory.

Managing Data Serv i ce Secur i t y

16-6 Data Services Samples Tutorial

Note: If you click the ldplatform name, the Application List page opens. You do not want this
page for this lesson.

2. Click Evaluation. The application’s General page opens.

3. Select Check Access Control.

4. Click Apply.

Figure 16-4 Set General Security

5. Test the security policy by completing the following steps:

a. In WebLogic Workshop, open CustomerProfile.ds in Test View.

b. Select getCustomerProfile() from the Function drop-down list.

c. Enter CUSTOMER3 in the Parameters field.

d. Click Execute. The test should return an Access Denied error. With the current security
settings, no one can access the application’s functions. You must grant user access to read and
write functions.

16.3 Grant ing User Access to Read Funct ions

Data Services Samples Tutorial 16-7

Figure 16-5 Access Denied

16.3 Granting User Access to Read Functions
ALDSP security policies can be set at the function level, which applies to specific functions within
specific data services. Function-level security can be read and/or write permissions. A policy may
include any number of restrictions; for example, limiting access based on the role of the user or on the
time of access. Specifically, policies can be based on the following criteria:

User Name of the Caller. Creates a condition for a security policy based on a user name. For
example, you might create a condition indicating that only the user John can access the
Customer data service.

Caller is a Member of the Group. Creates a condition for a security policy based on a group.

Caller is Granted the Role. Creates a condition based on a security role. A security role is a
special type of user group specifically for applying and managing common security needs of a
group of users.

Hours of Access are Between. Creates a condition for a security policy based on a specified
time period.

Managing Data Serv i ce Secur i t y

16-8 Data Services Samples Tutorial

Server is in Development Mode. Creates a condition for a security policy based on whether the
server is running in development mode.

Objectives
In this exercise, you will:

Use the ALDSP Console to grant Joe read access permissions, based on user name.

Use WebLogic Workshop to test the new security policy.

Instructions
1. In the ALDSP Console, open the CustomerProfile data service. (The data service is located in

ldplatform\Evaluation\DataServices\CustomerManagement.)

2. Click the Security tab. The Security Policy tab opens.

Figure 16-6 Data Service-Level Security Policy

3. Click the Action Policy icon for the getCustomerProfile resource to open the Access Control Policy
window.

16.3 Grant ing User Access to Read Funct ions

Data Services Samples Tutorial 16-9

Figure 16-7 Configure Security

4. Set read access for a specific user, by completing the following steps:

a. Select User name of the caller.

b. Click Add. The Users dialog box opens.

c. Enter Joe in the Name field.

d. Click Add.

Managing Data Serv i ce Secur i t y

16-10 Data Services Samples Tutorial

Figure 16-8 Adding User

e. Click OK and move back to the Access Control Policy window.

f. Click Apply.

5. Login to the now-secure application, by completing the following steps:

a. In WebLogic Workshop, choose Tools → Application Properties → WebLogic Server.

b. Select Use Credentials Below.

c. Enter Joe and password in the Use Credentials Below fields.

d. Click OK.

16.3 Grant ing User Access to Read Funct ions

Data Services Samples Tutorial 16-11

Figure 16-9 Logging Into Secure Application

6. Test the security policy by completing the following steps:

a. Open CustomerProfile.ds in Test View.

b. Select getCustomerProfile() from the Function drop-down list.

c. Enter CUSTOMER3 in the Parameters field.

d. Click Execute. The test should permit access and return the requested data.

Managing Data Serv i ce Secur i t y

16-12 Data Services Samples Tutorial

e. Click Edit, modify an item, and then click Submit. An error message will display because Joe
is granted only read access.

16.4 Granting User Access to Write Functions
As noted in the previous exercise, security policies at the function level can allow either read and/or
write permissions.

Objectives
In this exercise, you will:

Use the ALDSP Console to grant Joe write access permissions.

Use WebLogic Workshop to test the new security policy.

Instructions
1. In the ALDSP Console, open the CustomerProfile data service.

2. Select the Security tab. The Security Policy tab opens.

3. Click the Action Policy icon for the submit resource. The Access Control Policy window opens.

4. Set write access to a user, by completing the following steps:

a. Select User name of the caller.

b. Click Add.

c. Enter Joe in the Name field.

d. Click Add.

e. Click OK.

f. Click Apply.

5. Test the security policy, by completing the following steps:

a. In WebLogic Workshop, open CustomerProfile.ds in Test View. The file is located in
DataServices\CustomerManagement.

b. Select getCustomerProfile() from the Function drop-down list.

16.5 Se t t ing E lement-Leve l Data Secur i t y

Data Services Samples Tutorial 16-13

c. Enter CUSTOMER3 in the Parameters field.

d. Click Execute. The test should permit access and return the specified results.

e. Click Edit. Because Joe is granted both read and write access, you can now edit the results.

16.5 Setting Element-Level Data Security
A policy can apply to individual items of information within a return type, such as a salary node in a
customer object. If blocked by insufficient credentials at this level, the rest of the returned
information is provided without the blocked element.

Objectives
In this exercise, you will:

Enable element-level security.

Set a security policy for specific elements.

Instructions
1. In the ALDSP Console, open the CustomerProfile data service.

2. Select the Security tab.

3. Set element-level security, by completing the following steps:

a. Select the Secured Elements tab.

b. Expand the CustomerProfile and customer+ nodes.

c. Select the checkbox for the ssn simple element.

d. Expand the orders ? and orders * nodes.

e. Select the checkbox for the order_line * complex element.

f. Click Apply.

Managing Data Serv i ce Secur i t y

16-14 Data Services Samples Tutorial

Figure 16-10 Setting Element-Level Security

4. Return to the Security Policy tab for CustomerProfile. You should see two new resources:
CustomerProfile/customer/ssn and CustomerProfile/customer/orders/order/order_line.

16.5 Se t t ing E lement-Leve l Data Secur i t y

Data Services Samples Tutorial 16-15

Figure 16-11 New Secured Element Resources

5. Set the security policy for the complex order_line element, by completing the following steps:

a. Return to the Security Policy tab for CustomerProfile.

b. Click the Action Policy icon for the CustomerProfile/customer/orders/order/order_line
resource. The Access Control Policy window opens.

c. Select User name of the caller.

d. Click Add.

e. Enter Joe in the Name field.

f. Click Add.

g. Click OK.

h. Click Apply.

6. Set the security policy for the simple ssn element, by completing the following steps:

a. Click the Action Policy icon for the CustomerProfile/customer/ssn resource. The Access
Control Policy window opens.

Managing Data Serv i ce Secur i t y

16-16 Data Services Samples Tutorial

b. Select User name of the caller.

c. Click Add.

d. Enter Bob in the Name field.

e. Click Add.

f. Click OK.

g. Click Apply.

16.6 Testing Element-Level Security
At this point, element-level security policies are defined for both Bob and Joe. Testing the policy
within WebLogic Workshop lets you determine what data results these two users will be able to access.

Objectives
In this exercise, you will:

Test the security policy for Bob and Joe.

Change the security policy for Bob and test the new security policy.

Instructions
1. Test element-level security for Joe, by completing the following steps:

a. In WebLogic Workshop, open CustomerProfile.ds in Test View.

b. Select getCustomerProfile() from the Function drop-down list.

c. Enter CUSTOMER3 in the Parameters field.

d. Click Execute. The test should permit access and return all results except SSN.

e. Click Edit, modify an order_line value, click Submit, and click OK. The specified change is
submitted.

f. Click Execute to refresh the data set.

g. Verify that changes have been saved.

2. Test the element-level security policy for Bob, by completing the following steps:

16.6 Tes t ing E lement-Leve l Secur i t y

Data Services Samples Tutorial 16-17

a. Choose Tools → Application Properties → WebLogic Server.

b. Select Use Credentials Below.

c. Enter Bob and password in the Use Credentials Below fields.

d. Click OK.

e. Open CustomerProfile.ds in Test View.

f. Select getCustomerProfile(CustomerID) from the Function drop-down list.

g. Enter CUSTOMER3 in the Parameters field.

h. Click Execute. The test should fail. Although Bob can access the SSN element, he does not
have read access to the getCustomerProfile() function.

3. Change the security policy for Bob, by completing the following steps:

a. In the ALDSP Console, open the CustomerProfile data service.

b. Select the Security tab.

c. Click the Action Policy icon for the getCustomerProfile resource. The Access Control Policy
window opens.

d. Set read access for Bob, by completing the following steps:

- Select the caller’s User name.Click Add.

- Enter Bob in the Name field. Click Add, then Ok.

- Click the "and User name of the caller" line, located in the Policy Statement section of
the window.

- Click Change, which changes the line to an "or User name of the caller" condition.

- Click Apply.

Managing Data Serv i ce Secur i t y

16-18 Data Services Samples Tutorial

Figure 16-12 Enabling read Access for Two Users

4. In WebLogic Workshop, test the getCustomerProfile() function again. This time, user
Bob can view all elements except order_line information.

5. Try modifying data by clicking on Edit button and changing SSN. Submit changes by clicking on
Submit button. An error message will display because Bob does not have write privileges.

6. Reset the application-level security, by completing the following steps:

a. Reset the WebLogic Workshop → Tools → Application Properties → WebLogic Server
authentication options back to user: weblogic, password: weblogic.

b. In the ALDSP Console (http://localhost:7001/ldconsole/), using the + icon,
expand the ldplatform directory.

16.6 Tes t ing E lement-Leve l Secur i t y

Data Services Samples Tutorial 16-19

Note: If you click the ldplatform name, the Application List page opens. You do not need this
page for this lesson.

c. Click Evaluation. The Administration Control’s General page opens.

d. Clear Check Access Control.

e. Click Apply.

Lesson Summary
In this lesson, you learned how to:

Activate application level security.

Set security permissions on both read and write function access.

Set security permissions on simple and complex elements.

Managing Data Serv i ce Secur i t y

16-20 Data Services Samples Tutorial

Data Services Samples Tutorial 17-1

T U T O R I A L 17

(Optional) Consuming Data Services
through Portals & Business Processes

The previous lessons demonstrated how ALDSP provides a convenient way to quickly access ALDSP
from a WebLogic Workshop application such as page flows, process definitions, or portals. This
optional lesson details the steps you take to use a portal to access data services.

Note: WebLogic Portal must be installed.

Objectives
After completing this lesson, you will be able to:

Import a WebLogic Portal project that contains portals and business processes.

Install the Data Service Control in the project, thereby making data services available from the
portal and business processes.

Recognize how a Data Service Control is used from a portal and business process.

Overview
At its most basic level, a portal is a Web site that simplifies and personalizes access to content,
applications, and processes. Technically speaking, a portal is a container of resources and
functionality that can be made available to end-users. These portal views, which are called Desktops
in WebLogic Portal, provide the uniform resource location (URL) that end users access.

(Opt i ona l) Consuming Data Se rv ices th rough Po r ta l s & Bus iness Processes

17-2 Data Services Samples Tutorial

Figure 17-1 Consuming Data Services from Portals

17.1 Installing a Data Service Control in a Portal Project
The steps within this exercise are similar to those detailed in Installing a Data Service Control.

Objectives
In this exercise, you will:

Import a portal web project’s files and libraries, which you will use to create a new portal
project.

Create a new portal project.

Add a control to the portal project.

Instructions
1. Right-click the Evaluation application.

2. Choose Install → Portal. ALDSP installs the necessary portal files and libraries.

3. Create a new portal web project by completing the following steps:

a. Right-click the Evaluation application.

17.1 Ins ta l l ing a Data Se rv i ce Cont ro l in a Po r ta l P ro jec t

Data Services Samples Tutorial 17-3

b. Choose Import Project.

c. Select Portal Web Project.

d. Select MyPortal, located in the <beahome>\weblogic81\samples\ liquiddata\EvalGuide
directory.

e. Click Open and then click Import.

Figure 17-2 Importing a Portal Web Project

4. Create a new folder in the MyPortal folder, and name it controls.

5. Create a Data Service Control within the portal by completing the following steps:

a. Right-click the MyPortal project.

b. Choose New → Java Control.

c. Select Data Service Control and name it CustomerData.

(Opt i ona l) Consuming Data Se rv ices th rough Po r ta l s & Bus iness Processes

17-4 Data Services Samples Tutorial

Figure 17-3 Creating a New Data Service Control

d. Click Next and then click Yes at the Message window.

e. Select MyPortal\controls as the subfolder in which to locate the new control.

f. Click Select. The New Java Control → ALDSP window opens.

Figure 17-4 Setting Data Service Control Specifications

17.1 Ins ta l l ing a Data Se rv i ce Cont ro l in a Po r ta l P ro jec t

Data Services Samples Tutorial 17-5

g. Click Create to accept the default settings. A list containing available data service queries
displays.

h. Open CustomerProfile.ds (located in DataServices\CustomerManagement) and select the
following methods:

• getCustomerProfile()

• submitCustomerProfile()

6. Click Add and then Finish.

Figure 17-5 Selecting Query Functions

7. After creating the ALDSP control, perform the following steps:

a. Open the CustomerData.jcx control in Source View.

b. Add a new function with the same signature as the getCustomerProfile() function
and name it getCustomerProfileWithFilter.

c. Add the following parameter to the getCustomerProfileWithFilter() function:

FilterXQuery filter

d. After adding this parameter, the function signature will display as follows:

getCustomerProfileWithFilter (CustomerID String, filterXQuery filter)

(Opt i ona l) Consuming Data Se rv ices th rough Po r ta l s & Bus iness Processes

17-6 Data Services Samples Tutorial

17.2 Testing the Control and Retrieving Data
As with all data services, you should test functionality before you deploy the application.

Objectives
In this exercise, you will:

Run the CustomerManagement.portal application.

Retrieve data.

Review the results.

Instructions
1. Open CustomerManagement.portal.

a. Click the Start icon to open the Workshop Test Browser and run the portal application
containing the CustomerManagementWebApp and the CustomerReport that were used in
earlier lessons.

b. Enter CUSTOMER3 in the Customer ID field and press Submit. The Customer Profile
Information page opens.

17.2 Tes t ing the Cont ro l and Ret r i ev ing Data

Data Services Samples Tutorial 17-7

Figure 17-6 Portal Access to Web Application Data

c. Click the Reports link. For the Reports page, the first invocation may take a few moments
before displaying.

(Opt i ona l) Consuming Data Se rv ices th rough Po r ta l s & Bus iness Processes

17-8 Data Services Samples Tutorial

Figure 17-7 Portal Access to Crystal Reports Data

d. Open the process.jpd file, located in the MyPortal\processes folder. You will see the
Design View of the process definition that accepts a CUSTOMER_ID String, invokes the Data
Service Control, and returns the customer information in an XML document.

17.2 Tes t ing the Cont ro l and Ret r i ev ing Data

Data Services Samples Tutorial 17-9

Figure 17-8 Design View of process.jpd File

e. Click the Start icon to test the process definition.

f. Enter CUSTOMER3 in the Customer ID field and then click clientRequestwithReturn.

g. Scroll through the page to view customer information included in the “Returned from
getCustomerProfile on LDControl” section.

(Opt i ona l) Consuming Data Se rv ices th rough Po r ta l s & Bus iness Processes

17-10 Data Services Samples Tutorial

Figure 17-9 Business Process View of Customer Data

Lesson Summary
In this lesson you learned how to:

Import a WebLogic Portal project that contains portals and business processes.

Install the Data Service Control in the project, thereby making data services available from the
portal and business processes.

Recognize how a Data Service Control is used from a portal and business process.

Data Services Samples Tutorial 18-1

T U T O R I A L 18

Building XQueries in XQuery Editor View

In concrete terms, a data service is simply a file that contains XML Query (XQuery) instructions for
retrieving, aggregating, and transforming data. Essentially you create a query function by:

Integrating physical and logical data sources into the query.

Mapping data sources to the data service's Return type.

Creating XQuery statements that include conditions, parameters, functions, and expressions.

You can also modify the Return type, either within XQuery Editor View or using an external tool.

In this lesson, you will use XQuery Editor View to develop a variety of XQuery instructions.

Objectives
After completing this lesson, you will be able to:

Use the graphical XQuery Editor View to create parameterized, string, and date functions; outer
joins, aggregate, and order by and constant expressions.

Use the XQuery Function Palette to add built-in XQuery functions to a query.

Overview
XQuery Editor View provides a graphical, drag-and-drop approach to constructing queries. Using
XQuery Editor View, you can:

Bui ld ing XQuer ies in XQuery Ed i to r V iew

18-2 Data Services Samples Tutorial

View and modify the data service's Return type, whose shape is defined by the data service's
XML Type.

View, add, modify, and delete the function calls from other physical and logical data services
that define which data source(s) will be queried.

View, add, and delete the source-to-target mappings that define which data will be made
available to consuming applications.

View, add, modify, and delete the parameters, expressions, and conditions that define how the
data will be processed.

Changes that you make in XQuery Editor View are immediately reflected in Source View. Similarly,
changes you make in Source View will be immediately effective in XQuery Editor View.

18.1 Importing Schemas for Query Development
To simplify development time in this lesson you will use ready-made schemas that define a data
service's Return type.

Objectives
In this exercise, you will:

Create a folder to organize all the queries that you will create in this lesson and the next.

Import the schemas that you will use in those queries.

Instructions
1. Create a new folder in the DataServices project folder, and name it MyQueries.

a. Right-click the MyQueries folder and choose Import.

b. Navigate to
<beahome>\weblogic81\samples\LiquidData\EvalGuide\MyQueries, select
the schemas folder, and click Import. This will automatically create a folder named
schemas, and appropriate .xsd files, within the MyQueries directory. These .xsd files
will be used to determine the Return type for all queries developed in this lesson.

18 .2 C reat ing Source- to-Targe t Mapp ings

Data Services Samples Tutorial 18-3

18.2 Creating Source-to-Target Mappings
Every function within a logical data service includes source-to-target mappings that define what
results will be returned by the function. As described in Part I, there are several types of mappings:

A simple mapping means that you are mapping simple source node elements to simple elements
in the Return type one at a time. You can create a simple mapping by dragging and dropping
any element from the source node to its corresponding target element in the Return type.
Optional Return type elements do not need to be mapped; otherwise elements in the Return
type need to be mapped in order for your query to run.

An induced mapping means that a complex element is mapped to a complex element in the
Return type. In this gesture the top level complex element in the Return type is ignored (source
node name need not match). The editor automatically then maps any child elements (complex
or simple) that are an exact match for source node elements.

An overwrite mapping replaces a Result type element and all its children (if any) with the
source node elements. As an example of the general steps needed to create an overwrite
mapping, you would press <Ctrl>, then drag and drop the source node's complex element onto
the corresponding element in the Result type. The entire source node's complex element is
brought to the Result type, where it completely replaces the target element with the source
element.

An append mapping adds a simple or complex element (and any children or attributes) as a
child of the specified element in the Return type. To create an append mapping, select the
source element, then press <Ctrl>+<Shift> while dragging and dropping the source node’s
element onto the element in the Return type that you want to be the parent of the new
element(s).

Alternatively, if you simply want to add a child element to a Return type, you can drag a source element
to a complex element in your Return type. The element will be added as a child of the complex element
and mapped accordingly.

Objectives
In this exercise, you will:

Create four types of mappings.

Review the results.

Bui ld ing XQuer ies in XQuery Ed i to r V iew

18-4 Data Services Samples Tutorial

Instructions
1. Right-click the MyQueries folder, choose New → Data Service, and use

CustomerInfo.ds in the Name field.

2. In Design View, associate the CustomerInfo data service with the CUSTOMER.xsd schema. The
schema is located in MyQueries\schemas.

3. Add a new function to the CustomerInfo data service and name it getAllCustomers.

Figure 18-1 Design View of CustomerInfo Data Service

4. Click the getAllCustomers() function to open XQuery Editor View.

5. Add a for node to the work area by completing the following steps:

a. In the Data Services Palette, open the CUSTOMER.ds folder, located in
DataServices\CustomerDB.

b. Drag and drop CUSTOMER() into XQuery Editor View. This creates a For:$CUSTOMER
source node.

18 .2 C reat ing Source- to-Targe t Mapp ings

Data Services Samples Tutorial 18-5

6. Create a simple mapping. Drag and drop each element in the CUSTOMER source node onto the
corresponding element in the Return type.

Note: You do not need to map the LOGIN_ID element.

Figure 18-2 Simple Mapping

7. Create an induced mapping, by completing the following steps:

a. Delete all the simple mappings. (Right-click a map line and select Delete from the pop-up
menu.)

b. Drag and drop the CUSTOMER* element (source node) onto the CUSTOMER element in the
Return type.

Notice that the mappings are automatically generated for each element, because the source
and target element names are the same.

Bui ld ing XQuer ies in XQuery Ed i to r V iew

18-6 Data Services Samples Tutorial

Figure 18-3 Induced Mapping

8. Create an overwrite mapping, by completing the following steps:

a. In the Return type right-click the CUSTOMER element and choose Add Child Element.

b. Double-click the NewChildElement, enter Addresses, and press Enter.

c. In the Data Services Palette, open the ADDRESS.ds icon, which is located in the
DataServices\CustomerDB folder.

d. Drag and drop ADDRESS() into XQuery Editor View.

e. Press Ctrl, and then drag and drop ADDRESS* element (source node) onto the Addresses
element in the Return type.

Notice that the entire complex ADDRESS* element is brought to the target, where it overwrites
the element, instead of adding it as a child.

18.3 Creat ing a Bas ic Pa ramete r i zed Funct i on

Data Services Samples Tutorial 18-7

Figure 18-4 Overwrite Mapping

18.3 Creating a Basic Parameterized Function
A parameterized query lets you filter returned data based on specific criteria, such as a particular
order number, customer name, or customer number.

Objectives
In this exercise, you will:

Create a parameterized function that returns all orders for a particular customer.

Test the function.

Bui ld ing XQuer ies in XQuery Ed i to r V iew

18-8 Data Services Samples Tutorial

Review the XQuery source code.

Instructions
In Design View: Add a new function to the CustomerInfo data service and name it
getCustomerByName.

1. Click getCustomerByName() to open XQuery Editor View for that function.

2. Add a for node, by completing the following steps:

a. In the Data Services Palette, open the CUSTOMER.ds folder, which is located in the
DataServices\CustomerDB folder.

b. Drag and drop CUSTOMER() into XQuery Editor View. This creates a For:$CUSTOMER
source node.

3. Create an induced mapping. Drag and drop the CUSTOMER* element (source node) onto the
CUSTOMER element in the Return type.

4. Add a parameter, by completing the following steps:

a. Right-click an empty spot in XQuery Editor View.

b. Choose Add Parameter.

c. Enter FirstName in the Parameter Name field.

d. Select xs:string as the Primitive Type.

e. Click OK. (You will need to move the nodes until all are visible because the new parameter
node may be placed behind the CUSTOMER node.)

5. Add a where clause, by completing the following steps:

a. Drag and drop the parameter's string element onto FIRST_NAME element (source node).
Make sure that you release the mouse button when the FIRST_NAME element is highlighted.
This action creates a filter for the FIRST_NAME element based on the parameter that is
passed to the function.

b. Confirm that the where clause is correctly set by clicking the $CUSTOMER source node's
header. The Expression Editor will open and you should see the following where clause:

$FirstName = $CUSTOMER0/FIRST_NAME

18.3 Creat ing a Bas ic Pa ramete r i zed Funct i on

Data Services Samples Tutorial 18-9

Figure 18-5 First Name Parameter and WHERE Clause

6. Add a second where clause, by completing the following steps:

a. Add a new parameter, entering LastName, and selecting xs:string as the Primitive Type.

b. Click the $CUSTOMER node's header. The Expression Editor opens.

c. Triple-click inside the where field and place your cursor at the very end, after FIRST_NAME.

d. Select the “and” logical conjunction from the pop-up operator list (the “...” icon). You can now
define the where clause to filter data by last name.

Note: An alternative method is to simply enter “and” in the field.

e. Click the string element in the second parameter. The variable name $LastName appears at
the end of the where clause.

f. Choose eq: Compare Single Values from the popup operator list.

Note: An alternative method is to simply enter eq in the field.

Bui ld ing XQuer ies in XQuery Ed i to r V iew

18-10 Data Services Samples Tutorial

g. Click the LAST_NAME element in the For:$CUSTOMER node. You should see the following in
the where clause field:

$FirstName = $CUSTOMER/FIRST_NAME and $LastName = $CUSTOMER/LAST_NAME

h. Click the green check button to accept the changes.

Figure 18-6 Query Editor View of Parameterized Query

7. Test the function, by completing the following steps:

a. Open CustomerInfo.ds in Test View.

b. Select getCustomerByName(FirstName, LastName) from the drop-down list.

c. Enter Jack in $FirstName field.

d. Enter Black in the $LastName field.

e. Click Execute.

Confirm the results, which should be as displayed in Figure 18-7.

18.3 Creat ing a Bas ic Pa ramete r i zed Funct i on

Data Services Samples Tutorial 18-11

Figure 18-7 Parameterized Query Results

8. Open CustomerInfo.ds in Source View to view the generated XQuery. The query should be
similar to that displayed in Figure 18-8.

Note: The automatic namespace assignments may not match.

Bui ld ing XQuer ies in XQuery Ed i to r V iew

18-12 Data Services Samples Tutorial

Figure 18-8 Parameterized Function Source Code

18.4: Creating a String Function with a Built-In XQuery
Function

The XQuery language provides more than 100 functions. BEA provides some additional, special
purpose functions. In this exercise, you will build a query that uses the built-in XQuery
startWith() function to create business logic sufficient to retrieve records based on an OR
condition.

Objectives
In this exercise, you will:

Create a string function that will find customers by their social security number.

18.4 : C reat ing a St r ing Funct i on wi th a Bu i l t - In XQuer y Funct ion

Data Services Samples Tutorial 18-13

Test the function.

Review the XQuery source code.

Instructions
1. Add a new function to the CustomerInfo data service and name it getCustomerBySSN.

2. Click getCustomerBySSN() to open XQuery Editor View to that function.

3. Add a for clause, by completing the following steps:

a. In the Data Services Palette, open the CUSTOMER.ds folder, which is located in
DataServices\CustomerDB.

b. Drag and drop CUSTOMER() into XQuery Editor View. This creates a For:$CUSTOMER node.

4. 4.Create an induced map. Drag and drop the CUSTOMER* element (source) onto the CUSTOMER
element in the Return type.

5. Add a new parameter, entering SSN as the Parameter Name, and selecting xs:string as the
Primitive Type.

6. Add a where clause that uses a built-in XQuery function, by completing the following steps:

a. Click the $CUSTOMER node's header. The Expression Editor opens.

b. Click the Add Where Clause icon.

c. In XQuery Function Palette, expand the String Functions folder.

d. Drag and drop the following function into the where clause field.

fn:starts-with($arg1 as xs:string?, $arg2 as xs:string?) as xs:boolean

e. Confirm that the where clause now includes the following built-in function:

 fn:starts-with($arg1, $arg2)

f. Edit the where clause, so that it reads as follows:

fn:starts-with($CUSTOMER/SSN, $SSN)

g. Click the green check button to accept the changes.

Bui ld ing XQuer ies in XQuery Ed i to r V iew

18-14 Data Services Samples Tutorial

Figure 18-9 Built-In Function Where Clause

7. Test the function, by completing the following steps:

a. Open CustomerInfo.ds in Test View.

b. Select getCustomerBySSN() from the Function drop-down list.

c. Enter 647 in the xs:string SSN field.

d. Click Execute.

e. Confirm the results, which should be as displayed in Figure 18-10.

18.4 : C reat ing a St r ing Funct i on wi th a Bu i l t - In XQuer y Funct ion

Data Services Samples Tutorial 18-15

Figure 18-10 Built-In Function Test Results

8. Open CustomerInfo.ds in Source View to view the generated XQuery. The query should be similar
to that displayed in Figure 18-11.

Note: The automatic namespace assignments may not match.

Bui ld ing XQuer ies in XQuery Ed i to r V iew

18-16 Data Services Samples Tutorial

Figure 18-11 Source View of Built-In String Function

18.5: Creating a Date Function
A date function lets you retrieve data based on date parameters.

Objectives
In this exercise, you will:

Create a date function that will find customers by the year that they were born.

Test the function.

Review the XQuery source code.

18 .5 : C reat ing a Date Funct i on

Data Services Samples Tutorial 18-17

Instructions
1. Add a new function to the CustomerInfo data service and name it getCustomerByBirthYear.

2. Click getCustomerByBirthYear() to open XQuery Editor View to that function.

3. Add a for clause, by completing the following steps:

a. In the Data Services Palette, open the CUSTOMER.ds folder, which is located in
DataServices\CustomerDB.

b. Drag and drop CUSTOMER() into XQuery Editor View. This creates a for node for the
CUSTOMER() function.

4. Create an induced mapping. Drag and drop the CUSTOMER* element (source) onto the
CUSTOMER element (Return).

5. Create a new parameter, enter BirthYear as the Parameter Name, and select xs:integer as the
Primitive Type.

6. Add a where clause, by completing the following steps:

a. Click the $CUSTOMER node's header. The Expression Editor opens.

b. Click the Add Where Clause icon.

c. In XQuery Function Palette, expand the Duration, Date, and Time Functions folder.

d. Drag and drop the built-in following function into the where clause field.

fn:year-from-date($arg as xs:date?) as xs:integer?

e. Confirm that the where clause is as follows:

fn:year-from-date($arg)

f. Edit the built-in function, so that it reads as:

fn:year-from-date($CUSTOMER/BIRTH_DAY) eq $BirthYear

g. Click the green check button to accept the changes.

Bui ld ing XQuer ies in XQuery Ed i to r V iew

18-18 Data Services Samples Tutorial

Figure 18-12 Where Clause Using a Built-In Date Function

7. Test the function, by completing the following steps:

a. Open CustomerInfo.ds in Test View.

b. Select getCustomerByBirthYear() from the function drop-down list.

c. Enter 1970 in the $arg0 field.

d. Click Execute.

e. Confirm the results, which should be as displayed in Figure 18-13. There should be five
customer profiles returned.

18 .5 : C reat ing a Date Funct i on

Data Services Samples Tutorial 18-19

Figure 18-13 Date Function Test Results

8. Open CustomerInfo.ds in Source View to view the generated XQuery. The query should be
similar to that displayed in Figure 18-14.

Note: The automatic namespace assignments may not match.

Bui ld ing XQuer ies in XQuery Ed i to r V iew

18-20 Data Services Samples Tutorial

Figure 18-14 Date Function Source View

18.6: Creating Outer Joins and Order By Expressions
Outer joins return all records from one table even it doesn’t contain values that match those in the
other table. For example, an outer join of customers and orders reports all customers—even those
without orders.

Objectives
In this exercise, you will:

Create a function that:

– Returns customer information and their addresses (there may be more than 1).

– Nests address information inside customer information.

18.6 : C reat ing Oute r Jo ins and Order By Express ions

Data Services Samples Tutorial 18-21

– Orders customers by first name and last name, in ascending order.

– Orders addresses by zip code, in descending order.

Test the function.

Review the XQuery source code.

Instructions
1. Add a new data service to the MyQueries folder and name it CustomerAddresses.

2. Associate the CustomerAddresses() data service with the CUSTOMERADDRESS.xsd
schema. The schema is located in MyQueries\schemas.

3. Add a new function to the CustomerAddresses data service and name it getCustomerAddresses.

Figure 18-15 Design View of CustomerAddresses Data Service

4. Click getCustomerAddresses() to open XQuery Editor View for that function.

5. Add two for nodes to the work area, by completing the following steps:

a. In the Data Services Palette, expand DataServices\CustomerDB.

Bui ld ing XQuer ies in XQuery Ed i to r V iew

18-22 Data Services Samples Tutorial

b. Open the CUSTOMER.ds folder (located in the CustomerDB folder), and then drag and drop
CUSTOMER() into XQuery Editor View.

c. Open the ADDRESS.ds folder (located in the CustomerDB folder), and then drag and drop
ADDRESS() into XQuery Editor View.

Figure 18-16 Source Nodes

6. Create an induced mapping for the CUSTOMER node. Drag and drop the CUSTOMER* element
(source) onto the CUSTOMER element (Return).

7. Create an induced mapping for the ADDRESS node. Drag and drop the ADDRESS* element
(source) onto the ADDRESS element (Return).

18.6 : C reat ing Oute r Jo ins and Order By Express ions

Data Services Samples Tutorial 18-23

Note: Do not drop the source element onto the ADDRESSES element.

8. Create a source node relationship. Drag and drop the CUSTOMER_ID element in the $CUSTOMER
node onto the corresponding element in the $ADDRESS node.

Figure 18-17 Mapped and Joined Source Nodes

9. Add an OrderBy clause, by completing the following steps:

a. Click the ADDRESS node's header. The Expression Editor opens.

b. Click the Order By Clause icon.

Bui ld ing XQuer ies in XQuery Ed i to r V iew

18-24 Data Services Samples Tutorial

c. Click inside the Order By Clause field.

d. Enter $ADDRESS/ZIPCODE descending in the field.

e. Click the green check button to accept the changes.

Figure 18-18 OrderBy Clause

10. Test the function, by completing the following steps:

a. Open CustomerAddresses.ds in Test View.

b. Select getCustomerAddresses() from the function drop-down list.

18.6 : C reat ing Oute r Jo ins and Order By Express ions

Data Services Samples Tutorial 18-25

c. Click Execute.

d. Confirm the results. Addresses should be nested after the customer's information.

Figure 18-19 Order By Test Results

11. Open CustomerAddresses.ds in Source View to view the generated XQuery.

Note: The automatic namespace assignments may not match.

Bui ld ing XQuer ies in XQuery Ed i to r V iew

18-26 Data Services Samples Tutorial

Figure 18-20 CustomerAddresses() Source View

18.7: Creating Group By and Aggregate Expressions
Sometimes, you may want to group data according to particular data elements, such as grouping
customers by state and country.

Objectives
In this exercise, you will:

Create a query using the group by operator and sum() function that generates a report of
customers grouped by state and city, showing total sales by city.

Test the function.

18.7 : C reat ing Group By and Aggregate Express ions

Data Services Samples Tutorial 18-27

Review the XQuery source code.

Instructions
1. Create a new data service in the MyQueries folder and name it CustomerOrders.

2. Associate the CustomerOrders data service with the CUSTOMER_ORDER.xsd schema. The
schema is located in MyQueries\schemas.

3. Create a new function and name it getCustomerOrderAmount.

Figure 18-21 Design View of Customer Orders Data Service

4. Click getCustomerOrderAmount to open XQuery Editor View for that function.

5. Add a for node, by completing the following steps:

Bui ld ing XQuer ies in XQuery Ed i to r V iew

18-28 Data Services Samples Tutorial

a. In the Data Services Palette, open the CUSTOMER_ORDER.ds folder, which is located in
DataServices\ApparelDB.

b. Drag and drop CUSTOMER_ORDER() into XQuery Editor View.

6. Create a GroupBy clause, by completing the following steps:

a. Right-click the C_ID element in the $CUSTOMER_ORDER source node.

b. Choose Create Group By. A GroupBy node is created.

7. Create a simple mapping. Drag and drop the TOTAL_ORDER_AMT from the Group section of the
GroupBy node onto the corresponding element in the Return type.

8. Create a simple mapping. Drag and drop the C_ID element in the By section of the GroupBy node
to the corresponding element in the Return type.

Figure 18-22 GroupBy Node Added and Mapped

Modify a Return expression, by completing the following steps:

a. Click the TOTAL_ORDER_AMOUNT, located in the Return node. The Expression Editor opens.
Every element in a Return type has an underlying expression. In this case the expression is:

{fn:data($CUSTOMER_ORDER_group/TOTAL_ORDER_AMT)}

18.7 : C reat ing Group By and Aggregate Express ions

Data Services Samples Tutorial 18-29

b. Edit the expression so that it changes fn:data() to fn:sum(), as follows:

{fn:sum($CUSTOMER_ORDER_group/TOTAL_ORDER_AMT)}

c. Click the green check button to accept the changes.

Figure 18-23 Aggregate Expression

9. Test the function, by completing the following steps:

a. Open CustomerOrders.ds in Test View.

b. Select getCustomerOrderAmount() from the Function drop-down list.

c. Click Execute.

d. Confirm the results.

Bui ld ing XQuer ies in XQuery Ed i to r V iew

18-30 Data Services Samples Tutorial

Figure 18-24 Aggregate Test Results

10. Open CustomerOrders.ds in Source View to view the generated XQuery.

Note: The automatic namespace assignments may not match that shown in the exercise.

18.8 : C reat ing Constant Express ions

Data Services Samples Tutorial 18-31

Figure 18-25 Source View of the CustomerOrders Data Service

18.8: Creating Constant Expressions
Creating a data service query that uses a constant expression enables a quick and easy way to locate
specific information. For example, you can use a constant expression to identify all customers who
ship by Ground method.

Objectives
In this exercise, you will:

Create a non-parameterized function that will return all customers whose default shipping
method is GROUND.

Test the function.

View the XQuery source code.

Instructions
1. Add a new function to the CustomerInfo data service and name it getGroundCustomers.

2. Click the getGroundCustomers() function to open the XQuery Editor View.

3. Add a for node, by completing the following steps:

Bui ld ing XQuer ies in XQuery Ed i to r V iew

18-32 Data Services Samples Tutorial

a. In the Data Services Palette, open the CUSTOMER.ds folder, which is located in the
DataServices\CustomerDB folder.

b. Drag and drop CUSTOMER() into XQuery Editor View.

4. Create an induced mapping. Drag and drop the entire CUSTOMER* element (source node) onto
the CUSTOMER element (Return).

5. Add a where clause, by completing the following steps:

a. Click the CUSTOMER node's header. The Expression Editor opens.

b. Click the Add Where Clause icon.

c. Enter the following expression as a where clause:

$CUSTOMER/DEFAULT_SHIP_METHOD eq "GROUND"

d. Click the green check mark icon to accept the where clause for the customer object.

Figure 18-26 Constant Function with Default Expression

6. Test the function. The results should be as displayed in Figure 18-27.

18.8 : C reat ing Constant Express ions

Data Services Samples Tutorial 18-33

Figure 18-27 Test Results of a Constant Expression

7. Open CustomerInfo.ds in Source View. The code should be as displayed in Figure 18-28.

Bui ld ing XQuer ies in XQuery Ed i to r V iew

18-34 Data Services Samples Tutorial

Figure 18-28 Source Code

Lesson Summary
In this lesson you learned how to:

Use the graphical XQuery Editor View to create parameterized, string, and date functions; outer
joins, aggregate, and order by and constant expressions.

Use the XQuery Function Palette to add built-in XQuery functions to a query.

Data Services Samples Tutorial 19-1

T U T O R I A L 19

Building XQueries in Source View

In the previous lesson, you built XQueries using XQuery Editor View. Sometimes, it is necessary to
programmatically build a query or modify its code. In this lesson, you will learn how to use Source View
to create and edit query functions.

Objectives
After completing this lesson, you will be able to:

Use Source View to add, edit, or delete XQuery code that defines a data service's query
functions including creating:

– A new XML type

– A parameterized Xquery

– Inner and outer joins

– A multi-level group by

– If-then-else if constructs

– A union and concatenation operation

Compare the coded query with the XQuery Editor View.

Bui ld ing XQuer ies in Source V iew

19-2 Data Services Samples Tutorial

Overview
Source View lets you view and/or modify the data service’s XQuery source code. In general, a data
service is simply a file that contains XQuery code. Although ALDSP provides extensive visual design
tools for developing a data service, sometimes you may need to work directly with XQuery syntax.

Two-way editing is supported—changes you make in Source View are reflected in XQuery Editor View,
and vice versa. The source code is commented to help you edit the source correctly.

Figure 19-1 Source View Sample

Source View Tools
Within Source View, you can use the XQuery Construct Palette, which lets you add any of several
built-in generic FLWOR statements to the XQuery syntax. You can then customize the generic
statement to match your particular needs.

19 .1 Crea t ing a New XML Type

Data Services Samples Tutorial 19-3

Figure 19-2 Query Construct Palette

To add a FLWOR construct, drag and drop the selected item into the appropriate declare function
space.

If XQuery Construct Palette is not open, choose View → Windows → XQuery Construct Palette.

19.1 Creating a New XML Type
For each of the queries created in this lesson, you will define a function that returns results nested
within the Return type. To enable that, you need to create a data service with an undefined XML type.
By leaving the XML type's schema undefined, you can modify the Return type on an ad hoc basis,
without a need to be concerned about synchronizing the XML and Return types.

Objectives
In this exercise, you will:

Create a new data service, called XQueries.ds.

Create a new, but undefined, XML type.

Instructions
1. Create a new data service in the MyQueries folder and name it XQueries.

2. Create a new XML type by completing the following steps:

a. Right-click the XQueries Data Service header.

b. Select Create XML Type.

Bui ld ing XQuer ies in Source V iew

19-4 Data Services Samples Tutorial

c. Enter Results in the Return Type field.

Note: Do not change the default settings for the Schema File and Target Namespace fields.

d. Click OK.

Figure 19-3 Create New XML Type

3. Confirm that the data service diagram is as displayed in Figure 19-4.

Figure 19-4 Design View: Undefined Results Type

19 .2 Crea t ing a Bas ic Paramete r i zed XQue ry

Data Services Samples Tutorial 19-5

19.2 Creating a Basic Parameterized XQuery
There are two basic types of queries: those without parameters and those with parameters. In the
previous lesson, you used XQuery Editor View's graphical tools to define a query with parameters. In
this exercise, you will use Source Editor to programmatically define a parameterized query.

Objectives
In this exercise, you will:

Build a query that retrieves customer information based on first and last names.

View the results in XQuery Editor View.

Test the function.

Instructions
Note: Namespaces may differ for your application.

1. Add a new function to XQueries.ds and name it getCustomerByName.

2. Open Source View.

3. Define the function declaration, by completing the following steps:

a. Add the following parameter to the first parenthesis:

$p_firstname as xs:string, $p_lastname as xs:string

b. Remove the asterisk (*), because you want this function to only return a single result.

The code should be similar to the following:

declare function tns:getCustomerByName($p_firstname as xs:string,
$p_lastname as xs:string) as element(ns0:Results) {

4. Click the + symbol next to the getCustomerByName() function. This opens the function
body.

5. Split the <tns0:RESULTS/> element into open and end tags, with curly braces in between for
the XQuery. The code should be as follows (ignore the error indicator):

<tns0:Results>

{

}

Bui ld ing XQuer ies in Source V iew

19-6 Data Services Samples Tutorial

</tns0:Results>

6. Open XQuery Construct Palette.

7. Drag and drop the FWR construct between the curly braces. The code should be as follows:

for $var in ()

where true()

return ()

8. Define the for clause by completing the following steps:

a. Change the variable to $customer.

b. In the Data Services Palette, expand CustomerDB\CUSTOMER.ds.

c. Drag and drop CUSTOMER() into the for clause's first empty parenthesis. The code should
be similar to the following:

for $customer in (ns1:CUSTOMER())

where true ()

return ()

9. Replace the where clause true() code with the following:

$customer/FIRST_NAME eq $p_firstname and $customer/LAST_NAME eq
$p_lastname

10. Set the return clause, by adding $customer between the parenthesis.

11. Confirm that the source code is as displayed in Figure 19-5; namespaces may be different for your
application.

19 .2 Crea t ing a Bas ic Paramete r i zed XQue ry

Data Services Samples Tutorial 19-7

Figure 19-5 Parameterized Query Source Code

12. Build the DataServices project.

13. Open XQueries.ds in XQuery Editor View and review the graphical version of the XQuery
code. It should be as displayed in Figure 19-6.

Bui ld ing XQuer ies in Source V iew

19-8 Data Services Samples Tutorial

Figure 19-6 Query Editor View of Parameterized Function

14. Test the function, by completing the following steps:

a. Open XQueries.ds in Test View.

b. Select getCustomersByName() from the Function drop-down list.

c. Enter the following parameters:

Firstname: Jack

Lastname: Black

d. Confirm the results.

19 .2 Crea t ing a Bas ic Paramete r i zed XQue ry

Data Services Samples Tutorial 19-9

Figure 19-7 Test Results of a Parameterized Function

15. (Optional) Open CustomerInfo.ds in XQuery Editor View and compare the diagrams for the
two data services.

XQuery Code Reference for a Parameterized Function
declare function tns:getCustomerByName($p_firstname as xs:string,

$p_lastname as xs:string) as element(tns0:Results) {

 <tns:Results>

 {

Bui ld ing XQuer ies in Source V iew

19-10 Data Services Samples Tutorial

 for $customer in (ns1:CUSTOMER())

 where ($customer/FIRST_NAME eq $p_firstname and $customer/LAST_NAME

eq $p_lastname)

 return

 ($customer)

 }

 </tns:Results>

19.3 Creating a String Function
XQuery provides numerous string functions that can be incorporated into your business logic.

Objectives
In this exercise, you will:

Create a startwith() function that retrieves customer information by name or SSN.

Test the function.

Instructions
1. Add a new function to XQueries.ds and name it getCustomerByNameorSSN().

2. Open XQueries.ds in Source View.

3. Define the function declaration, by changing the parameter as follows:

$fullname as xs:string, $ssn as xs:string

4. Replace the contents of the where clause with the following:

fn:contains(fn:upper-case(fn:concat($customer/FIRST_NAME,"

",$customer/LAST_NAME)), fn:upper-case($fullname)) or

fn:starts-with($customer/SSN, $ssn)

Note: You can either type the code in or build the clause by using the following built-in
functions, located in the XQuery Function Palette:

fn:concat fn:starts-with

fn:contains fn:upper-case

19.3 Crea t ing a St r ing Funct ion

Data Services Samples Tutorial 19-11

Note: The full name is created “on-the-spot” by concatenating FIRST_NAME and LAST_NAME
elements to the local (XQuery engine internal) variable such as $p_name. Upper case is
used to normalize names.

5. Leave the return clause as $customer so that all elements in the type are returned.

6. Confirm that the code is as follows (namespaces may be different for your application):

Figure 19-8 Source View of XQueries.ds

7. Open XQueries.ds in XQuery Editor View.

Bui ld ing XQuer ies in Source V iew

19-12 Data Services Samples Tutorial

Figure 19-9 Query Editor View of XQueries.ds

8. Test the query by completing the following steps:

a. Open XQueries.ds in Test View.

b. Enter a value in both Parameter fields. Neither field can be blank; however, because of the
query logic, only one parameter needs to be matched.

c. Click Execute. The query should return results based on your keyword search parameters. See
below for results in Test View and the underlying code.

19.3 Crea t ing a St r ing Funct ion

Data Services Samples Tutorial 19-13

Figure 19-10 Test Results of String Function

XQuery Code Reference for a String Function
declare function tns:getCustomerByNameOrSSN($fullname as xs:string, $ssn as

xs:string) as element(ns0:Results) {

 <ns0:Results>

 {

 for $customer in (ns1:CUSTOMER())

 where (fn:contains(fn:upper-case(fn:concat($customer/FIRST_NAME,"

Bui ld ing XQuer ies in Source V iew

19-14 Data Services Samples Tutorial

 ",$customer/LAST_NAME)), fn:upper-case($fullname)) or

 fn:starts-with($customer/SSN, $ssn))

 return

 ($customer)

 }

</ns0:Results>

19.4 Building an Outer Join and Using Order By
Outer joins allow you to get results from the joined objects even if the primary key is not represented
in both objects. For example, an outer join of customers and orders reports all customers—even those
without orders.

Objectives
In this exercise, you will:

Build a query that retrieves all customers and lists their addresses, if any.

Shape the return data to include:

– All customers, even those without known addresses.

– Nest addresses with customers (there may be more than 1).

– Order customers by first name and last name.

– Order the addresses by zip code.

Test the function.

Instructions
Note: Namespaces may differ for your application.

1. Add a new function to XQueries.ds and name it getCustomerAddresses.

2. Open XQueries.ds in Source View.

3. Define the function declaration by removing the asterisk (*). The code should be as:

declare function tns:getCustomerAddresses() as element(ns0:Results) {

19.4 Bu i ld ing an Oute r Jo in and Us ing Order By

Data Services Samples Tutorial 19-15

4. Click the + symbol next to the getCustomerAddresses() function. This opens the
function body.

5. Split the <tns0:RESULTS/> element into open and end tags, with curly braces in between for
the XQuery.

6. Open XQuery Construct Palette, and then drag and drop the FOR construct between the curly
braces. The code should be as follows:

for $var in ()

order by ()

return ()

7. Set the for clause, using a $customer variable that is associated with CUSTOMER() located in
the CustomerDB\CUSTOMER.ds folder within the Data Services Palette.

for $customer in (ns1:CUSTOMER())

8. Set the order by clause, by replacing the (), as follows:

$customer/FIRST_NAME, $customer/LAST_NAME

9. Set the return clause, by replacing the (), as follows:

return

<CUSTOMER>

<FIRST_NAME>{fn:data($customer/FIRST_NAME) }</FIRST_NAME>

<LAST_NAME>{fn:data($customer/LAST_NAME)}</LAST_NAME>

{

for $address in ()

where ($address/CUSTOMER_ID eq $customer/CUSTOMER_ID)

order by $address/ZIPCODE ascending

return

$address

}

</CUSTOMER>

Note: You can either type the code in, or use the XQuery Function Palette and XQuery Construct
Palette to build up your query function.

10. Set the $address clause by associating it with ADDRESS(), which is located in
CustomerDB\ADDRESS.ds folder within Data Services Palette.

Bui ld ing XQuer ies in Source V iew

19-16 Data Services Samples Tutorial

for $address in (ns2:ADDRESS())

11. Confirm that the query is as shown in Figure 19-11; namespaces may be different for your
application.

Figure 19-11 Source View of Outer View and Order By Function

12. Open XQueries.ds in XQuery Editor View.

19.4 Bu i ld ing an Oute r Jo in and Us ing Order By

Data Services Samples Tutorial 19-17

Figure 19-12 XQuery Editor View of Outer Join and Order By Function

13. Open XQueries.ds in Test View and test the query; no parameters are required. The XQuery
function appears below.

Bui ld ing XQuer ies in Source V iew

19-18 Data Services Samples Tutorial

Figure 19-13 Test Results of Outer Join and Order By Function

XQuery Code Reference for an Outer Join and Order By
Function
declare function tns:getCustomerAddresses() as element(ns0:Results) {

 <tns0:Results>

 {

 for $customer in (ns1:CUSTOMER())

 order by $customer/FIRST_NAME, $customer/LAST_NAME

19.5 Creat ing an Inner J o in and a Top N

Data Services Samples Tutorial 19-19

 return

 <CUSTOMER>

 <FIRST_NAME>{ fn:data($customer/FIRST_NAME) }</FIRST_NAME>

 <LAST_NAME>{fn:data($customer/LAST_NAME)}</LAST_NAME>

 {

 for $address in (ns2:ADDRESS())

 where ($address/CUSTOMER_ID eq $customer/CUSTOMER_ID)

 order by $address/ZIPCODE ascending

 return

 $address

 }

 </CUSTOMER>

 }

 </tns0:Results>

19.5 Creating an Inner Join and a Top N
Inner joins mandate that the only items that are returned are with a corresponding entry (such as a
primary key in the relational world) in another data source. The following are introduced:

let clauses

Nested for clauses

concat() and subsequence() XQuery functions

Objectives
In this exercise, you will:

Build a query that retrieves the top 10 customers who have placed orders with the company.

Define the shape of the returned data to include:

– Customer’s full name.

Bui ld ing XQuer ies in Source V iew

19-20 Data Services Samples Tutorial

– Order ID.

– Total order amount (in descending order).

Test the function.

Instructions
Note: Namespaces may differ for your application.

1. Add a new function to XQueries.ds and name it getTop10Customers.

2. Open XQueries.ds in Source View.

3. Define the function declaration by removing the asterisk (*). The code should be as follows:

declare function tns:getTop10Customers() as element(ns0:Results) {

4. Click the + symbol next to the getTop10Customers() function. This opens the function
body.

5. Add curly braces between the two tags.

6. After the opening curly brace, add the following let clause, which will hold the results of
subsequent for clauses:

let $top10:=

7. Open XQuery Construct Palette and then drag and drop the FLWOR construct after the let clause.
The code should be as follows:

for $var in ()

where true()

order by ()

return ()

8. Set the for clause using a $customer variable that is associated with CUSTOMER() located in the
CustomerDB\CUSTOMER.ds folder within Data Services Palette.

for $customer in (ns1:CUSTOMER())

9. Create a second for clause, using a $order variable that is associated with
CUSTOMER_ORDER() located in the ElectronicsDB\CUSTOMER_ORDER.ds folder
within Data Services Palette.

for $order in (ns3:CUSTOMER_ORDER())

19.5 Creat ing an Inner J o in and a Top N

Data Services Samples Tutorial 19-21

10. Set the where clause, by replacing the true() with the following code:

where ($customer/CUSTOMER_ID eq $order/CUSTOMER_ID)

11. Set the order by clause, by entering the following code in the ():

order by $order/TOTAL_ORDER_AMOUNT descending

12. Set the return clause, by entering the following code:

return

<CUSTOMER>

<CUSTOMER_NAME>

{fn:concat($customer/FIRST_NAME," ", $customer/LAST_NAME)}

 </CUSTOMER_NAME>

 <ORDER_ID>{fn:data($order/ORDER_ID)}</ORDER_ID>

<TOTAL_ORDERS>{fn:data($order/TOTAL_ORDER_AMOUNT)}</TOTAL_ORDERS>

 </CUSTOMER>

return fn:subsequence($top10, 1, 10)

Note: You can either type the code in, or use the XQuery Function Palette and XQuery Construct
Palette to build up your query.

13. Confirm that the source code is similar to that displayed in Figure 19-14; namespaces may vary.

Figure 19-14 Source Code for Inner Join and Top N Function

14. Open XQueries.ds in XQuery Editor View.

Bui ld ing XQuer ies in Source V iew

19-22 Data Services Samples Tutorial

Figure 19-15 XQuery Editor View of Inner Join and Top N Function

15. Open XQueries.ds in Test View; no parameters are required to run your query. You should see
a document containing the top 10 orders will appear, ordered by total amount. The XQuery
function appears below.

19.5 Creat ing an Inner J o in and a Top N

Data Services Samples Tutorial 19-23

Figure 19-16 Test View for Inner Join and Top N Function

XQuery Code Reference for Inner Join and Top N Function
declare function tns:getTop10Customers() as element(ns0:Results) {

 <tns0:Results>

 {

 let $top10:=

 for $customer in (ns1:CUSTOMER())

 for $order in (ns3:CUSTOMER_ORDER())

 where ($customer/CUSTOMER_ID eq $order/CUSTOMER_ID)

 order by $order/TOTAL_ORDER_AMOUNT descending

 return

Bui ld ing XQuer ies in Source V iew

19-24 Data Services Samples Tutorial

 <CUSTOMER>

 <CUSTOMER_NAME>

 {fn:concat($customer/FIRST_NAME," ", $customer/LAST_NAME)}

 </CUSTOMER_NAME>

 <ORDER_ID>{fn:data($order/ORDER_ID)}</ORDER_ID>

<TOTAL_ORDERS>

{fn:data($order/TOTAL_ORDER_AMOUNT)}

</TOTAL_ORDERS>

 </CUSTOMER>

 return fn:subsequence($top10, 1, 10)

 }

 </tns0:Results>

19.6 Creating a Multi-Level Group By
Retrieving customers grouped by states and cities is not only often needed; it is also a classic database
exercise. The following are introduced:

Group by clause.

count() function.

Objectives
In this exercise, you will:

Create a query that determines the number of customers, by state and by city.

Test the function.

Instructions
1. Add a function to XQueries.ds and name it getNumCustomersByState().

2. Open XQueries.ds in Source View.

3. Define the function declaration, by removing the asterisk *.

19.6 Creat ing a Mul t i -Leve l Group By

Data Services Samples Tutorial 19-25

4. Click the + symbol next to the getNumCustomersByState() function.

5. Split the <tns0:Results/> element into open and end tags, with curly braces in between.

6. Open XQuery Construct Palette and then drag and drop the for-group-return (FGR) construct
between the curly braces:

for $var in ()

group $var as $varGroup by () as $var2

return ()

7. Set the for and group clauses as follows:

for $address in ns2:ADDRESS()

group $address as $stateGroup by $address/STATE as $state

Note: Your source is invalid until you complete the next step.

8. Associate the for clause with ADDRESS() located in CustomerDB\Address.ds within
the Data Services Palette as follows:

for $address in ns2:ADDRESS()

9. Set the return clause, as follows:

return

<state>

<name>{$state}</name>

<number>{fn:count($stateGroup/CUSTOMER_ID)}</number>

{

Note: The clause includes the fn:count() built-in function, available from the XQuery
Function Palette.

10. Open XQuery Construct Palette and then drag and drop the FWGR construct after the open curly
brace of the return clause:

for $address1 in ns2:ADDRESS()

where $address1/STATE eq $state

group $address1 as $cityGroup by $address1/CITY as $city

return

<cities>

Bui ld ing XQuer ies in Source V iew

19-26 Data Services Samples Tutorial

<city>{$city}</city>

<number>{fn:count($cityGroup/CUSTOMER_ID)}</number>

</cities>

}

</state>

11. Make sure that the namespace in the second for clause is the same as the namespace in the first
for clause.

12. Confirm that the code is as displayed in Figure 19-17(namespaces may be different for your
application).

Figure 19-17 Source Code for Multi-Level Group By Function

13. Open XQueries.ds in XQuery Editor View.

19.6 Creat ing a Mul t i -Leve l Group By

Data Services Samples Tutorial 19-27

Figure 19-18 XQuery Editor View of Multi-Level Group By Function

14. Open XQueries.ds in Test View and test the function; no parameters are required. You should see
the state name, followed by the number of customers residing in that state, followed by the city
name and number of customers residing in that city. The underlying XQuery also appears below.

Bui ld ing XQuer ies in Source V iew

19-28 Data Services Samples Tutorial

Figure 19-19 Test View of Multi-Level Group By Function

XQuery Code Reference for Multi-Level Group By Function
declare function tns:getNumCustomersByState() as element(ns0:Results) {

 <tns0:Results>

 {

 for $address in ns2:ADDRESS()

 group $address as $stateGroup by $address/STATE as $state

 return

19.7 Us ing I f -Then-E lse I f

Data Services Samples Tutorial 19-29

 <state>

 <name>{$state}</name>

 <number>{fn:count($stateGroup/CUSTOMER_ID)}</number>

 {

 for $address1 in ns2:ADDRESS()

 where $address1/STATE eq $state

 group $address1 as $cityGroup by $address1/CITY as $city

 return

 <cities>

 <city>{$city}</city>

 <number>{fn:count($cityGroup/CUSTOMER_ID)}</number>

 </cities>

 }

 </state>

}

 </tns0:Results>

 };

19.7 Using If-Then-Else If
This example shows how you can create switch-like conditions when building your query. The
If-Then-Else-If concept is introduced.

Objectives
In this exercise, you will:

Create a function that returns different achievement levels as strings for a set of customers,
based on their total order amount.

Test the function.

Bui ld ing XQuer ies in Source V iew

19-30 Data Services Samples Tutorial

Instructions
Note: Namespaces may differ for your application.

1. Add a new function to XQueries.ds and name it getCustomerLevels.

2. Open XQueries.ds in Source View.

3. Define the function declaration, by removing the asterisk (*).

4. Split the <tns0:Results/> element into open and end tags, with curly braces ({}) in
between.

5. Add a for clause, using a $customer variable that is associated with CUSTOMER() located in
CustomerDB\CUSTOMER.ds within Data Services Palette.

for $customer in ns1:CUSTOMER()

6. Add a second for clause, using an $orders variable that is associated with CUSTOMER_ORDER()
located in the ElectronicsDB\CUSTOMER_ORDER.ds folder within Data Services
Palette.

for $orders in ns3:CUSTOMER_ORDER()

7. Add where, let, and return clause code, placing it immediately after the second for clause:

where $customer/CUSTOMER_ID eq $orders/CUSTOMER_ID

group $orders as $orderGroup by fn:concat($customer/FIRST_NAME,"
",$customer/LAST_NAME) as $customer_name

let $sum := fn:sum($orderGroup/TOTAL_ORDER_AMOUNT)

return

<CUSTOMER_RATING>

<CUSTOMER_ID>{$customer_name}</CUSTOMER_ID>

<RATING> {if ($sum>=10000) then

 "GOLD"

else if ($sum<5000) then

"REGULAR"

else

"SILVER"

}

</RATING>

19.7 Us ing I f -Then-E lse I f

Data Services Samples Tutorial 19-31

</CUSTOMER_RATING>

8. Confirm that the code is as displayed in Figure 19-20; namespaces may be different in your
application.

Figure 19-20 Source View of If-Then-Else If Function

9. Open XQueries.ds in XQuery Editor View.

Bui ld ing XQuer ies in Source V iew

19-32 Data Services Samples Tutorial

Figure 19-21 XQuery Editor View of If-Then-Else If Function

10. Open XQueries.ds in Test View and test the function; no parameters are required. When you
run the query you will see results organized according to the following levels of purchases:

• Gold for total orders >= 10000

• Silver for total orders >= 5000 and <10000

• Regular for total orders below 5000

The customer’s full name and level are also shown. The XQuery function appears below.

19.7 Us ing I f -Then-E lse I f

Data Services Samples Tutorial 19-33

Figure 19-22 Test View of If-Then-Else If Function

XQuery Code Reference for If-Then-Else Function
declare function tns:getCustomerLevels() as element(ns0:Results) {

 <tns0:Results>

 {

for $customer in ns1:CUSTOMER()

for $orders in ns3:CUSTOMER_ORDER()

where $customer/CUSTOMER_ID eq $orders/CUSTOMER_ID

Bui ld ing XQuer ies in Source V iew

19-34 Data Services Samples Tutorial

group $orders as $orderGroup by fn:concat($customer/FIRST_NAME,"

",$customer/LAST_NAME) as $customer_name

let $sum := fn:sum($orderGroup/TOTAL_ORDER_AMOUNT)

return

<CUSTOMER_RATING>

<CUSTOMER_ID>{$customer_name}</CUSTOMER_ID>

<RATING> {

if ($sum>=10000) then

"GOLD"

else if ($sum<5000) then

"REGULAR"

else

"SILVER"

}

</RATING>

</CUSTOMER_RATING>

 }

 </tns0:Results>

 };

19.8 Creating a Union and Concatenation
This example demonstrates how to integrate data from two different data sources and present the
results in a single report that lets you view the data source information as two separate variables.

Objectives
In this exercise, you will:

Create a function that gathers results from two order entry systems: RTLAPPLOMS and
RTLELECOMS.

19.8 Creat ing a Un ion and Concatenat ion

Data Services Samples Tutorial 19-35

Test the function.

Instructions
1. Add a new function to XQueries.ds and name it getCombinedOrders.

2. Open XQueries.ds in Source View.

3. Define the function declaration, by removing the asterisk * and adding the following parameter:

$customer_id as xs:string

4. Split the <ns0:Results/> element into open and end tags, with curly braces ({}) in between.

5. Open XQuery Construct Palette and then drag and drop the FLWR construct between the curly
braces.

6. Set the for clause using a $customer variable that is associated with CUSTOMER() located in the
CustomerDB\CUSTOMER.ds folder within Data Services Palette.

for $customer in ns1:CUSTOMER()

7. Set the let clause, using a $applOrder variable that is associated with CUSTOMER_ORDER(),
which is located in ApparelDB\CUSTOMER_ORDER.ds within Data Services Palette.

let $applOrder:= for $order1 in ns4:CUSTOMER_ORDER()

8. Set the where clause as follows:

where $customer/CUSTOMER_ID = $order1/C_ID

9. Set the return clause, as follows:

return

$order1

 let $elecOrder := for $order2 in ns3:CUSTOMER_ORDER()

 where ($order2/CUSTOMER_ID eq $customer/CUSTOMER_ID)

 return

 $order2

where ($customer/CUSTOMER_ID eq $customer_id)

return

 <CUSTOMER>

 {$customer}

Bui ld ing XQuer ies in Source V iew

19-36 Data Services Samples Tutorial

 <Orders>

 {$applOrder, $elecOrder }

 </Orders>

 </CUSTOMER>

Note: ns3:CUSTOMER_ORDER() refers to CUSTOMER_ORDER.ds in ElectronicsDB
folder

10. Confirm that the code is as displayed in Figure 19-23; the namespaces may vary in your
application.

Figure 19-23 Source View for Union and Concatenation Operation

11. Open XQueries.ds in XQuery Editor View.

19.8 Creat ing a Un ion and Concatenat ion

Data Services Samples Tutorial 19-37

Figure 19-24 XQuery Editor View of Union and Concatenation Operation

12. Open XQueries.ds in Test View, and then test the getCombinedOrders() function
using CUSTOMER3 as the parameter. The XQuery function appears below.

Bui ld ing XQuer ies in Source V iew

19-38 Data Services Samples Tutorial

Figure 19-25 Test View of Union and Concatenation Function

XQuery Reference Code for Union and Concatenation
Operation
declare function tns:getCombinedOrders($customer_id as xs:string) as

element(ns0:Results) {

 <tns0:Results>

 {

 for $customer in ns1:CUSTOMER()

19.8 Creat ing a Un ion and Concatenat ion

Data Services Samples Tutorial 19-39

 let $applOrder:= for $order1 in ns4:CUSTOMER_ORDER()

 where ($order1/C_ID eq $customer/CUSTOMER_ID)

 return

 $order1

 let $elecOrder := for $order2 in ns3:CUSTOMER_ORDER()

 where ($order2/CUSTOMER_ID eq $customer/CUSTOMER_ID)

 return

 $order2

 where ($customer/CUSTOMER_ID eq $customer_id)

 return

 <CUSTOMER>

 {$customer}

 <Orders>

 { $applOrder, $elecOrder }

 </Orders>

 </CUSTOMER>

 }

 </tns0:Results>

 };

Lesson Summary
In this lesson you, learned how to:

Use Source View to add, edit, or delete XQuery code that defines a data service's query
functions.

Compare the coded query with the XQuery Editor View.

Bui ld ing XQuer ies in Source V iew

19-40 Data Services Samples Tutorial

Data Services Samples Tutorial 20-1

T U T O R I A L 20

Implementing Relationship Functions
and Logical Modeling

Relationship functions return data combined from two or more data services. For example, by creating
a relationship between the Address and Customer data services, you can obtain the address for a given
customer. Or by creating a relationship between the Customer and Order Management data services,
you can receive data that identifies all orders returned by a particular customer.

Model diagrams are used to view a selected set of data services and the relationships between them.
The model shows the basic structure of the data returned by the data service. The main purpose of the
diagram is to help you envision meaningful subsets of your enterprise data relationships, but it can
also be used to define new artifacts or edit existing artifacts.

Logical modeling is an extension of the physical modeling that you learned about in Tutorial 5:
Modeling Data Services. There are three exercises in this lesson, which are to be completed in
sequential order. The exercises in this tutorial are dependent on the work completed in the previous
tutorials.

Objectives
After completing this lesson, you will be able to:

Create model diagrams for a logical data service.

Define relationships between data services.

View and implement multiple relationship functions.

Test multiple relationship functions.

Implement ing Re lat i onsh ip Funct i ons and Log ica l Mode l ing

20-2 Data Services Samples Tutorial

Overview
To help you get from a complex, distributed physical data landscape to a more holistic view of
enterprise information, ALDSP supports a visual, model-driven approach to developing data services.
Modeling provides a graphical representation of the data resources in your environment, providing a
bird’s-eye view of a large system or giving you a way to create “zoomed” views of enterprise areas. In a
model diagram data services appear as boxes, while relationships appear as annotated lines
connection the data service representations. A relationship is only visible if both end points are also
on the diagram.

The result is real-time access to externally persisted data through a logical data model.

20.1 Implementing and Testing a Relationship Function
The getCustomer_Order() function is intended to return customer order information for a
specific customer. However, to accomplish that you need to add the ApparelDB data service’s
CUSTOMER_ORDER as a source schema, and then create a relationship with the target schema.

Objectives
In this exercise you will:

Implement a relationship function, using XQuery Editor View to define the return data service,
by:

– Identifying the data source.

– Creating an overwrite map between source and target elements.

– Creating a simple map between a parameter and a source element.

Test the relationship function created as a result of the mappings.

Instructions
1. Open CUSTOMER.ds in XQuery Editor View. The file is located in DataServices\CustomerDB.

2. Select getCustomer_Order(arg) from the Function drop-down list.

20.1 Implement ing and Test ing a Re la t ionsh ip Funct ion

Data Services Samples Tutorial 20-3

Figure 20-1 XQuery Editor View of getCustomer_Order Function

3. In Data Services Palette, expand the ApparelDB and CUSTOMER_ORDER.ds folders.

4. Drag and drop CUSTOMER_ORDER() into XQuery Editor View.

5. In XQuery Editor View, create an overwrite mapping between the CUSTOMER_ORDER source and
Return elements by completing the following steps:

a. Press Ctrl.

b. Drag and drop the source node's CUSTOMER_ORDER* element onto the Return type's
CUSTOMER_ORDER element.

6. Drag and drop the parameter’s CUSTOMER_ID element onto the source node's C_ID element.
Confirm that the getCustomer_Order() function is as displayed in Figure 20-2.

Implement ing Re lat i onsh ip Funct i ons and Log ica l Mode l ing

20-4 Data Services Samples Tutorial

Figure 20-2 Joined and Mapped Function

7. Save your work and then build the DataServices project.

8. Open CUSTOMER.ds in Test View and run a test by completing the following steps:

Select getCUSTOMER_ORDER(arg) from the Function drop-down list.

Click Browse, navigate to, and open the
<beahome>\weblogic81\samples\LiquidData\EvalGuide directory.

Select the customer.xml file.

20.1 Implement ing and Test ing a Re la t ionsh ip Funct ion

Data Services Samples Tutorial 20-5

Figure 20-3 Select XML File

9. Click Select. The contents of the file are inserted into the Parameters field.

Figure 20-4 Select XML File

10. Click Execute. The order information for CUSTOMER3 should appear.

Implement ing Re lat i onsh ip Funct i ons and Log ica l Mode l ing

20-6 Data Services Samples Tutorial

Figure 20-5 Relationship Test Results

20.2 Creating a Model Diagram for Logical Data Services
Model diagrams display the basic structure of the data returned by a data service. A model diagram
lets you view a selected set of data services and the relationships between them. The main purpose of
the diagram is to help you envision meaningful subsets of the model, but it can also be used to define
new artifacts or edit existing artifacts.

Objectives
In this exercise, you will:

Import a schema that provides a logical and unified representation of two separate physical
data sources.

Create a basic model diagram by adding data services to the imported logical data service.

Create relationship functions between the modeled data services.

Instructions
1. Import the OrderManagement schema into the DataServices project folder by completing the

following steps:

a. Right-click the DataServices project folder.

b. Choose Import.

20.2 Creat ing a Mode l D iagram fo r Log ica l Data Se rv ices

Data Services Samples Tutorial 20-7

c. Navigate to and open the
<beahome>\weblogic81\samples\LiquidData\EvalGuide directory.

d. Select the OrderManagement folder.

e. Click Import. A new folder, OrderManagement, is created in the DataServices project. The
imported schema contains logical representations of the two Order Management Systems
(Apparel and Electronics), which make the two systems appear as if they are a single Order
Management System.

2. Create a sub-folder within the Models folder by completing the following steps:

a. Right-click the MODELS folder, located in the DataServices folder.

b. Choose New → Folder.

c. Enter Logical in the Name field.

d. Click OK.

3. Create a new logical model diagram by completing the following steps:

a. Right-click the Logical folder.

b. Choose New → Model Diagram.

c. Enter OrderManagement_Logical_Model.md in the Name field.

d. Click Create.

4. Create a model for the OrderManagement data services by completing the following steps:

a. Expand the CustomerManagement, OrderManagement, and ServiceDB folders.

b. Drag and drop the following .ds files into the model:

Table 20-6 Model data services

Data Service File Located in:

customerProfile.ds CustomerManagement

address.ds OrderManagement

Customer.ds OrderManagement

customerOrder.ds OrderManagement

Implement ing Re lat i onsh ip Funct i ons and Log ica l Mode l ing

20-8 Data Services Samples Tutorial

Your model diagram should be similar to that displayed in Figure 20-7. Notice that relationships
between data services already exist. These relationships were generated during the Import Source
Metadata process, and are based on the foreign key relationship defined in the underlying relational
data.

Figure 20-7 Model Diagram for Logical Data Services

customerOrderLineItem.ds OrderManagement

orders.ds OrderManagement

product.ds OrderManagement

service_case.ds ServiceDB

Table 20-6 Model data services

Data Service File Located in:

20.2 Creat ing a Mode l D iagram fo r Log ica l Data Se rv ices

Data Services Samples Tutorial 20-9

5. Create a relationship between the CustomerProfile and ADDRESS data services by completing the
following steps:

a. Drag and drop the customer_id element (CustomerProfile) onto the
CustomerID element (Address).

b. Click Finish in the Relationship Properties window.

6. Create a relationship between CustomerProfile and SERVICE_CASE data services by completing
the following steps:

a. Drag and drop the customer_id (CustomerProfile) onto the CUSTOMER_ID
element (SERVICE_CASE).

b. Click Finish in the Relationship Properties window.

Figure 20-8 New Relationships Defined

7. Open CustomerProfile.ds in Design View. You should see two new relationship functions,
getAddress() (which navigates to the Address logical data service, located in

Implement ing Re lat i onsh ip Funct i ons and Log ica l Mode l ing

20-10 Data Services Samples Tutorial

OrderManagement) and getSERVICE_CASE() (which navigates to the SERVICE_CASE
physical data service, located in ServiceDB).

Figure 20-9 New Functions

8. Save your work.

Lesson Summary
In this exercise, you learned to:

Import a schema that provides a logical and unified representation of two separate physical
data sources.

Create a basic model diagram by adding data services to the imported logical data service.

Create relationship functions between the modeled data services.

Data Services Samples Tutorial 21-1

T U T O R I A L 21

Running Ad Hoc Queries

Sometimes it is necessary to execute a query on functions associated with an application that is
already deployed. Rather than take the application offline to create a new query, ALDSP provides the
PreparedExpression class, which lets you create and run ad hoc queries on deployed applications.

Objectives
After completing this lesson, you will be able to:

Create an ad hoc query from within a ALDSP application.

Run an ad hoc query.

Overview
ALDSP includes a PreparedExpression class that lets you build an ad hoc query using remote data
sources, and then execute it using the Mediator API or ALDSP Control. Using the methods within the
PreparedExpression class, you can build queries on top of existing XDS functions belonging to
applications already deployed on an active local or remote server domain.

The process for running an ad hoc query is as follows:

1. Create a StringBuffer to hold the query.

2. Create an instance of the PreparedExpression class, using the prepareExpression method.

3. Create parameters for the ad hoc query, using the bind<DataType> methods.

Running Ad Hoc Quer ies

21-2 Data Services Samples Tutorial

4. Submit the query and review the results, using the Mediator API or ALDSP Control.

21.1 Creating an Instance of the PreparedExpression
Class

The first steps in creating an ad hoc query are to instantiate a StringBuffer and the
PreparedExpression class. For the latter instance, you use the prepareExpression method of the
DataServiceFactory class, which accepts three parameters:

InitialContext

Application Name

XQuery String

For example:

PreparedExpression pe = DataServiceFactory.prepareExpression(

getInitialContext(),

"Evaluation",

xquery.toString()

);

Objectives
In this exercise, you will:

Build a StringBuffer instance to hold the ad hoc query.

Create an instance of the PreparedExpression class.

Instructions
1. Create a new Java project in the Evaluation application, and name it AdHocClient.

2. Create a new Java class in the AdHocClient project, and name it AdHocQuery.

3. Open AdHocQuery.java.

4. Import the following Java classes:

import com.bea.ld.dsmediator.client.DataServiceFactory;

21.1 Creat ing an Ins tance o f the P reparedExpress ion C lass

Data Services Samples Tutorial 21-3

import com.bea.ld.dsmediator.client.PreparedExpression;

import com.bea.xml.XmlObject;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import javax.xml.namespace.QName;

import weblogic.jndi.Environment;

Note: You can also import the necessary Java classes by first adding the code specified below,
and then pressing Alt + Enter.

5. Specify the initial context for the query, by adding the following code after the first curly brace:

public static InitialContext getInitialContext() throws NamingException
{

 Environment env = new Environment();

 env.setProviderUrl("t3://localhost:7001");

env.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");

 env.setSecurityPrincipal("weblogic");

 env.setSecurityCredentials("weblogic");

 return new InitialContext(env.getInitialContext().getEnvironment());

 }

6. Add the main argument, by adding the following code after the initial context:

public static void main (String args[]) {

System.out.println("========== Ad Hoc Client =============");

try {

} catch (Exception e) {

e.printStackTrace();

}

 }

7. Build a StringBuffer instance to hold your query. For example, add the following code after the
line:

try {:

StringBuffer xquery = new StringBuffer();

Running Ad Hoc Quer ies

21-4 Data Services Samples Tutorial

xquery.append("declare variable $p_firstname as xs:string external;
\n");

xquery.append("declare variable $p_lastname as xs:string external; \n");

xquery.append("declare namespace
ns1=\"ld:DataServices/MyQueries/XQueries\"; \n");

xquery.append("declare namespace
ns0=\"ld:DataServices/CustomerDB/CUSTOMER\"; \n\n");

xquery.append("<ns1:RESULTS> \n");

xquery.append("{ \n");

xquery.append(" for $customer in ns0:CUSTOMER() \n");

xquery.append(" where ($customer/FIRST_NAME eq $p_firstname \n");

xquery.append(" and $customer/LAST_NAME eq $p_lastname) \n");

xquery.append(" return \n");

xquery.append(" $customer \n");

xquery.append(" } \n");

xquery.append("</ns1:RESULTS> \n");

8. Use the prepareExpression method of the Mediator API’s DataServiceFactory class to create an
instance of the PreparedExpression class, by adding the following code:

PreparedExpression pe = DataServiceFactory.prepareExpression(

getInitialContext(), "Evaluation", xquery.toString());

21.2 Defining Ad Hoc Query Parameters
After you create an instance of the PreparedExpression class, you need to specify the parameters that
will be passed when the ad hoc query is submitted. To pass parameters, you use one or more
bind<DataType> methods, such as bindString and bindInt.

Objectives
In this exercise, you will:

Use the bind<DataType> methods of the PreparedExpression instance to pass parameters.

21.3 Test ing the Ad Hoc Query

Data Services Samples Tutorial 21-5

Invoke the query.

Display the query’s XML results.

Instructions
1. Pass parameters by using the bindString method of the PreparedExpression instance. For

example, add the following code to the AdHocQuery.java file:

pe.bindString(new QName("p_firstname"), "Jack");

pe.bindString(new QName("p_lastname"), "Black");

2. Invoke the executeQuery method to return the query results in an XmlObject.

XmlObject obj = pe.executeQuery();

3. Enter the code necessary to return the XmlObject and display the XML. For example:

System.out.println(obj.toString());

21.3 Testing the Ad Hoc Query
You are now ready to test the ad hoc query, which is set to return information for Jack Black.

Objectives
In this exercise, you will:

Build the AdHocClient project.

Run the AdHocQuery.java

Instructions
1. Build the AdHocClient project.

2. In the AdHocQuery.java application, click the Start icon (or press Ctrl + F5).

3. Confirm that you can retrieve customer profile information for Jack Black.

Running Ad Hoc Quer ies

21-6 Data Services Samples Tutorial

Figure 21-1 Results of Ad-Hoc Query () Function

Code Reference for an Ad Hoc Query
import com.bea.ld.dsmediator.client.DataServiceFactory;

 import com.bea.ld.dsmediator.client.PreparedExpression;

 import com.bea.xml.XmlObject;

 import javax.naming.InitialContext;

 import javax.naming.NamingException;

 import javax.xml.namespace.QName;

 import weblogic.jndi.Environment;

 public class AdHocQuery

 {

 public static InitialContext getInitialContext() throws NamingException {

 Environment env = new Environment();

 env.setProviderUrl("t3://localhost:7001");

21.3 Test ing the Ad Hoc Query

Data Services Samples Tutorial 21-7

env.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");

 env.setSecurityPrincipal("weblogic");

 env.setSecurityCredentials("weblogic");

 return new

InitialContext(env.getInitialContext().getEnvironment());

 }

 public static void main (String args[]) {

System.out.println("==================== Ad Hoc Client

====================");

try {

StringBuffer xquery = new StringBuffer();

xquery.append("declare variable $p_firstname as xs:string external; \n");

xquery.append("declare variable $p_lastname as xs:string external; \n");

xquery.append("declare namespace

ns1=\"ld:DataServices/MyQueries/XQueries\"; \n");

xquery.append("declare namespace

ns0=\"ld:DataServices/CustomerDB/CUSTOMER\"; \n\n");

xquery.append("<ns1:RESULTS> \n");

xquery.append("{ \n");

xquery.append(" for $customer in ns0:CUSTOMER() \n");

xquery.append(" where ($customer/FIRST_NAME eq $p_firstname \n");

xquery.append(" and $customer/LAST_NAME eq $p_lastname) \n");

xquery.append(" return \n");

xquery.append(" $customer \n");

xquery.append(" } \n");

Running Ad Hoc Quer ies

21-8 Data Services Samples Tutorial

xquery.append("</ns1:RESULTS> \n");

PreparedExpression pe =

DataServiceFactory.prepareExpression(getInitialContext(), "Evaluation",

xquery.toString());

pe.bindString(new QName("p_firstname"), "Jack");

pe.bindString(new QName("p_lastname"), "Black");

XmlObject results = pe.executeQuery();

System.out.println(results);

} catch (Exception e) {

e.printStackTrace();

}

 }

}

Lesson Summary
In this lesson, you learned how to:

Create a StringBuffer instance to hold the ad hoc query.

Create an instance of the PreparedExpression class, using the prepareExpression method of the
Mediator API’s DataServiceFactory class.

Create parameters for the ad hoc query, using the bindString method of the
PreparedExpression class.

Submit the query and review the results, using the Mediator API.

Review the XML output.

Data Services Samples Tutorial 22-1

T U T O R I A L 22

Creating Data Services Based on SQL
Statements

The SQL-Exit feature lets developers re-use SQL statements that are currently available in the source
system. These user-defined SQL statements are bound in XQuery as external functions, in the same
manner as all ALDSP sources.

Objectives
After completing this lesson, you will be able to:

Create data service based on a user-defined SQL statement.

Use that data service to retrieve customer and address information together.

Overview
Configuring the SQL-exit data source involves the following steps:

1. Create the .xsd schema that describes the SQL results.

2. Create the data service, including annotations, describing the result set.

3. Associate an XML Type for the data service to the schema previously created.

When a user-defined SQL statement is used within other functions, the ALDSP engine will bind the
SQL statement as a sub-query in a new SQL statement. To disable this functionality, the metadata
property is Subquery, stored in the function's pragma, can be set to value false.

Creat ing Data Serv ices Based on SQL Statements

22-2 Data Services Samples Tutorial

22.1 Creating a Data Service from a User-Defined SQL
Statement

The SQL statement that will be used to create a new data service involves a join between the
CUSTOMER and ADDRESS data services. You need to manually add all the necessary metadata to the
new data service, before this query can execute. To do so, you will use metadata previously imported
from the CUSTOMER and ADDRESS tables.

Objectives
In this exercise, you will:

Import an SQL statement as source metadata for a physical data service.

Generate a new data service.

Instructions
1. Open the SQL_Statement.txt file, located in the

<beahome>\weblogic81\samples\LiquidData\EvalGuide folder.

2. Copy the text within the file. The text is:

select "A"."CUSTOMER_ID", "A"."FIRST_NAME", "A"."LAST_NAME", "B"."ADDR_ID",

"B"."CITY", "B"."STATE", "B"."ZIPCODE", "B"."COUNTRY" from

"RTLCUSTOMER"."CUSTOMER" "A", "RTLCUSTOMER"."ADDRESS" "B" where

"A"."CUSTOMER_ID" = "B"."CUSTOMER_ID" AND "B"."STATE" = ?

3. Create a new folder in the DataServices project and name it SQL. You will use this folder to store
a new data service based on user-defined SQL statements.

4. Right-click the SQL folder and select Import Source Metadata.

5. Select Relational from the Data Source Type and click Next.

6. Select the SQL statement radio button and click Next. The SQL Statement page opens.

7. Paste the copied text into the SQL Statement field.

8. Select VARCHAR from the Type column for Position 1 and click Next. The Summary page opens.

22.1 Creat ing a Data Se rv ice f rom a User-Def ined SQL Statement

Data Services Samples Tutorial 22-3

Figure 22-1 SQL Statement

9. Rename the data service to MySQL.

Creat ing Data Serv ices Based on SQL Statements

22-4 Data Services Samples Tutorial

Figure 22-2 Summary for SQL-Based Data Service

10. Click Finish. The MySQL data service and associated schema files are added to the SQL folder.

22.2 Testing Your SQL Data Service
You are now ready to test whether the MySQL data service can retrieve all customers who reside in
California.

Objectives
In this exercise, you will:

Test the MySQL data service.

View the results.

22.2 Tes t ing Your SQL Data Serv i ce

Data Services Samples Tutorial 22-5

Instructions
1. Open MySQL.ds in Test View.

2. Select MySQL(x1) from the Function drop-down list.

3. In the parameter box enter CA

4. Click Execute. The result set will show customer and address information for the state of
California.

Figure 22-3 Test Results for an SQL-Based Data Service

Lesson Summary
In this lesson, you learned how to:

Manually create a data service out of an SQL statement.

Test the SQL-based data service.

Creat ing Data Serv ices Based on SQL Statements

22-6 Data Services Samples Tutorial

Data Services Samples Tutorial 23-1

T U T O R I A L 23

Performing Custom Data Manipulation
Using Update Override

ALDSP permits customized updates through the use of the update override feature. The update
override logic, which is triggered prior to submitting data, can be used for custom data manipulation,
update overrides, logging, debugging, or other custom logic needs.

In this lesson, you will write an update override that computes total orders, based on the quantity and
price of each order.

Objectives
After completing this lesson, you will be able to:

Write customized data manipulation through an update override.

Associate an update override with a data service.

Overview
An update override, which you assign to a data service, performs custom logic prior to submitting data.
The update override is a Java class that implements the com.bea.sdo.mediator.UpdateOverride class.
Using that class’s performChange (DataGraph graph) method, a Data Graph instance of the current
data service is returned. The Data Graph can then be manipulated in using the update override logic.

For example, you can get the CustomerProfileDocument DataObject through the data graph

 (CustomerProfileDocument) graph.getRootObject();

You could also get the Change Logging summary through graph.getChangeSummary()

Pe r fo rming Custom Data Manipu lat ion Us ing Update Over r ide

23-2 Data Services Samples Tutorial

On return of the Data Graph, the following conditions apply:

Return true: Proceed with the rest of update.

Return false: Stop the update.

Throw Exception: Rollback.

23.2 Creating an Update Override
An update override enables custom manipulation of data within data service.

Objectives
In this exercise, you will:

Create a new Java class that will serve as the basis for an update override.

Import and implement an update override class.

Implement the performChange method.

Write customized update logic.

Instructions
1. Create a new Java class by completing the following steps:

a. Right-click the CustomerManagement folder, located in the DataServices folder.

b. Choose New → Java Class.

c. Enter CustomerProfileExit in the File Name field.

d. Click Create.

2. Build the DataServices project.

3. Open the CustomerProfileExit.java file.

4. Import and implement the update override, by completing the following steps:

a. Import the update override by entering the following code:

import com.bea.ld.dsmediator.update.UpdateOverride;

23 .2 Creat ing an Update Ove r r ide

Data Services Samples Tutorial 23-3

b. Implement the update override by modifying the public class CustomerProfileExit code, as
follows:

public class CustomerProfileExit implements UpdateOverride

c. Press Alt + Enter, and then click OK to add the performChange(DataGraph)
signature.

d. Implement the performChange(DataGraph graph) method by modifying the code
to read as follows:

public boolean performChange(DataGraph graph)

The DataGraph passed in the argument contains the current SDO instance with all changes,
including the change summary.

5. Access the update override by casting the root object of the data graph to your SDO. Add the
following code, after the opening braces:

CustomerProfileDocument customerDocument =

 (CustomerProfileDocument) graph.getRootObject();

6. Press Alt+Enter. With this CustomerProfileDocument instance, you can get and set values that
will be applied to the SDO before it is submitted.

7. Write update logic to compute the total order amount, based on the sum of each order item’s
quantity multiplied by its price (sum of price*qty). You can use this to get the total of each item’s
quantity*price and to set the total order amount to this value.

Note: Use BigDecimals for computations.

For example:

Order[] orders =
customerDocument.getCustomerProfile().getCustomerArray(0).getOrders().g
etOrderArray();

for (int x=0; x<orders.length; x++) {

BigDecimal total = new BigDecimal(0);

OrderLine[] items = orders[x].getOrderLineArray();

for (int y=0; y < items.length; y++) {

total =
total.add(items[y].getQuantity().multiply(items[y].getPrice()));

}

Pe r fo rming Custom Data Manipu lat ion Us ing Update Over r ide

23-4 Data Services Samples Tutorial

orders[x].setTotalOrderAmount(total);

}

8. Press Alt + Enter, for all flagged items.

9. Enter the code necessary to return the results. For example:

System.out.println(">>> CustomerProfile.ds Exit completed");

return true;

}

}

10. Confirm that your code is as displayed in Figure 23-1.

11. Build DataServices project.

Figure 23-1 Update Override Code

23.3 Associating an Update Override to a Logical Data
Service

Before you can use the update override, you must associate it with a specific data service.

Objectives
In this exercise you will:

Use the Property Editor to associate an update override with a specific data service.

23.4 Tes t ing the Update Ove r r ide

Data Services Samples Tutorial 23-5

Build the data service to include the update override.

Instructions
1. Open the CustomerProfile data service in Design View.

2. Click the CustomerProfile header to activate the Property Editor. (If the Property Editor is not
open, press Alt + 6.)

3. Click the update override class field.

4. Navigate to the DataServices.jar\CustomerManagement folder.

5. Select CustomerProfileExit.class and click Open. The update override class field is
now populated with CustomerManagement.CustomerProfileExit.

6. Build the DataServices project.

23.4 Testing the Update Override
As with any other data service, you should test the update override to ensure that it works properly.

Objectives
In this exercise you will:

Change order information from within your CustomerManagementWebApp application.

Confirm update override results.

Instructions
1. Open CustomerPageFlowController.jpf, which is located in the

CustomerManagementWebApp\CustomerPageFlow folder.

2. Click the Start icon to open Workshop Test Browser.

3. Enter CUSTOMER3 in the CUSTOMER ID field and click Submit.

Note: It may take a few seconds before the information is returned.

4. Change the order information by adding, modifying or deleting order lines.

5. Click Submit All Changes.

Pe r fo rming Custom Data Manipu lat ion Us ing Update Over r ide

23-6 Data Services Samples Tutorial

6. Click Back to return to the CUSTOMER ID page.

7. Enter CUSTOMER3 in the CUSTOMER ID field and click Submit.

8. Confirm if the updated total order information was computed.

Update Override Reference Code

 package CustomerManagement;

 import com.bea.ld.dsmediator.update.UpdateOverride;

 import commonj.sdo.DataGraph;

 import java.math.BigDecimal;

 import
org.openuri.temp.dataServices.schemas.customerProfile.CustomerProfileDo
cument;

 import
org.openuri.temp.dataServices.schemas.customerProfile.CustomerProfileDo
cument.CustomerProfile.Customer.Orders.Order;

 import
org.openuri.temp.dataServices.schemas.customerProfile.CustomerProfileDo
cument.CustomerProfile.Customer.Orders.Order.OrderLine;

 public class CustomerProfileExit implements UpdateOverride

 {

 public boolean performChange(DataGraph graph)

 {

 CustomerProfileDocument customerDocument =
(CustomerProfileDocument) graph.getRootObject();

 Order[] orders =
customerDocument.getCustomerProfile().getCustomerArray(0).getOrders().g
etOrderArray();

 for (int x=0; x<orders.length; x++) {

 BigDecimal total = new BigDecimal(0);

 OrderLine[] items = orders[x].getOrderLineArray();

 for (int y=0; y < items.length; y++) {

 total =
total.add(items[y].getQuantity().multiply(items[y].getPrice()));

 }

23.4 Tes t ing the Update Ove r r ide

Data Services Samples Tutorial 23-7

 orders[x].setTotalOrderAmount(total);

 }

 return true;

 }

 }

Lesson Summary
In this lesson, you learned how to:

Create an update override for a logical data service.

Write logic in the update override to access the XML bean and perform custom data
manipulation prior to submitting.

Associate an update override to the data service.

Pe r fo rming Custom Data Manipu lat ion Us ing Update Over r ide

23-8 Data Services Samples Tutorial

Data Services Samples Tutorial 24-1

T U T O R I A L 24

Updating Web Services Using Update
Override

You can also use update overrides to update a Web service.

Objectives
After completing this lesson, you will be able to:

Write an update override function for performing manual updates.

View your results.

Overview
Unlike relational data sources, Web service updates are not automated, because ALDSP is unable to
determine how to decompose a read function into a corresponding write. To enable ALDSP to perform
the necessary writes, you must create an update override for the physical data service, and then
implement the necessary writes in that update override. For example:

public class CreditRatingExit implements UpdateOverride {

 public boolean performChange(DataGraph datagraph){

 // don't do anything if there are no changes

 ChangeSummary cs = datagraph.getChangeSummary();

 if (cs.getChangedDataObjects().size()==0)

Updat ing Web Se rv ices Us ing Update Ove r r ide

24-2 Data Services Samples Tutorial

 return true;

 // get changed values from SDO

 GetCreditRatingResponseDocument creditRating =

(GetCreditRatingResponseDocument) datagraph.getRootObject();

 int newRating =

creditRating.getGetCreditRatingResponse().getGetCreditRatingResult().getRa

ting();

 String customerId =

creditRating.getGetCreditRatingResponse().getGetCreditRatingResult().getCu

stomerId();

 // update CreditRating web service

 try {

 CreditRatingDBTestSoap ratingWS = new

CreditRatingDBTest_Impl().getCreditRatingDBTestSoap();

 CreditRating rating = new CreditRating(newRating,customerId);

 ratingWS.setCreditRating(rating);

 } catch (Exception e) {

 e.printStackTrace();

 return false;

 }

 System.out.println("WEB SERVICE EXIT COMPLETE!");

 return true;

 }

}

24.1 Creat ing an Update Ove r r ide fo r a Phys ica l Data Serv ice

Data Services Samples Tutorial 24-3

24.1 Creating an Update Override for a Physical Data
Service

The clientgen utility in WebLogic generates a Web Service-specific client .jar file that client
applications can use to invoke Web Services. You simply need to specify the WSDL URI, the name and
location of the client.jar file to generate and a package structure. Clientgen is available as an
ant task as well as a Java application that can be invoked from the command line.

For more information on clientgen see:

http://e-docs.bea.com/wls/docs81/webserv/anttasks.html

Objectives
In this exercise, you will:

Edit the WebLogic clientgen command to point to your WebLogic Server.

Run the clientgen utility.

Add the generated client .jar file to your application Library.

Instructions
Set the clientgen command line utility to generate a Web service client .jar file by completing
the following steps:

1. Edit the setenv.cmd, located in
<beahome>\weblogic81\samples\LiquidData\EvalGuide, to point to your
WebLogic Server installation. This will set the environment for running clientgen. For example:

call <beahome>\weblogic81\server\bin\setWLSEnv.cmd

set CLASSPATH=d:\bea\weblogic81\server\lib\webservices.jar;%CLASSPATH%

echo %CLASSPATH%

2. Open the command prompt.

3. Navigate to the <beahome>\weblogic81\samples\LiquidData\EvalGuide
folder.

4. Run setenv.cmd.

5. Run clientgen.cmd to generate CreditRatingWSClient.jar.

Updat ing Web Se rv ices Us ing Update Ove r r ide

24-4 Data Services Samples Tutorial

6. In WebLogic Workshop add CreditRatingWSClient.jar to your application’s Libraries
folder. The .jar file should be located in
<beahome>\weblogic81\samples\LiquidData\EvalGuide.

24.2 Writing Web Service Update Logic in the Update
Override

You now should set the update override class to the CreditRatingExit. This will let you get any updated
credit rating information, invoke the CreditRating Web service, and pass in the new value.

Objectives
In this exercise, you will:

Import the CreditRatingExit.java file into the WebServices folder.

Set the update override class to the CreditRatingExit.

Instructions
1. Right-click the WebServices folder, located in the DataServices folder.

2. Choose Import.

3. Navigate to <beahome>\weblogic81\samples\LiquidData\EvalGuide and
select CreditRatingExit.java.

4. Click Import.

5. Build the DataServices project.

6. Open getCreditRatingResponse.ds in Design View. The file is located in the
WebServices folder.

7. In the Property Editor, set the update override class by selecting CreditRatingExit from
DataServices\WebServices.

8. Build the DataServices project.

24.3 Testing the Update Override
You are now ready to test whether the update override functions correctly.

24.3 Tes t ing the Update Ove r r ide

Data Services Samples Tutorial 24-5

Objectives
In this exercise, you will:

Change a customer's credit rating.

View the results.

Instructions
1. Open CreditRatingDBTest.jws, located in the CreditRatingWS folder.

2. Click the Start icon. The Workshop Test Browser opens.

3. Enter CUSTOMER3 in the customer_id field and click getCreditRating(x1).

4. Click the Test XML tab.

5. Copy the SOAP body for the getCreditRating() function.

<getCreditRating xmlns="http://www.openuri.org/">

 <!--Optional:-->

 <customer_id>string</customer_id>

</getCreditRating>

6. Close the Workshop Test Browser.

7. Open getCreditRatingResponse.ds in Test View.

8. Paste the SOAP body into the Parameter field.

9. Change <customer_id>string</customer_id> to <customer_id>CUSTOMER3</customer_id>.

10. Click Execute.

11. Click Edit and modify the credit rating. The update override is functioning correctly if you can
update the credit rating.

Updat ing Web Se rv ices Us ing Update Ove r r ide

24-6 Data Services Samples Tutorial

Figure 24-1 Test View of Update Override for a Web Service

24.4 Checking for Change Requirements
You can now use the Web service to perform update overrides.

Objectives
In this exercise you will:

Change credit rating information from within your CustomerManagementWebApp application.

Confirm update override results.

24.4 Check ing fo r Change Requ i rements

Data Services Samples Tutorial 24-7

Instructions
1. Open CustomerPageFlowController.jpf, which is located in the

CustomerManagementWebApp folder. The Workshop Test Browser opens.

2. Click the Start icon.

3. Enter CUSTOMER3 in the CUSTOMER ID field and click Submit.

4. Click Update Profile, change the credit rating information, click Submit, and then click Submit All
Changes.

5. Confirm if the credit rating was updated, by clicking Back, entering CUSTOMER3 in the
CUSTOMER ID field, and clicking Submit.

Figure 24-2 Workshop Test Browser View of Update Override Functionality

Lesson Summary
In this lesson, you learned how to:

Create an update override for a physical data service (Web service)

Updat ing Web Se rv ices Us ing Update Ove r r ide

24-8 Data Services Samples Tutorial

Associate the update override with a Web service client and write logic to invoke Web service
update operations.

Use the change summary to check whether there are changes needing to be written.

Data Services Samples Tutorial 25-1

T U T O R I A L 25

Overriding SQL Updates Using Update
Overrides

So far you have completed a few lessons on how update override functionality can be used for custom
data manipulation and web service updates.

In this lesson you will learn how custom SQL updates can be used for performing manual updates to
a relational source (table, view, stored procedure, or SQL Exit), using update overrides and JDBC.

Objectives
After completing this lesson, you will be able to:

Add update functionality to a previously created update override.

Write an update override for performing manual updates to a relational source (table, view,
stored procedure, or update override) via JDBC.

Create an update override for a physical data service.

Setup the update override to be a JDBC client and write logic to update the database table.

Overview
Update overrides are useful in situations where you need to perform some custom updates or create a
custom query.

In this particular case, since the previous update override lacks update functionality, you can add an
update statement to the override.

Over r id ing SQL Updates Us ing Update Over r ides

25-2 Data Services Samples Tutorial

25.1 Adding SQL Update Statements to an Update
Override File

You can add SQL update statements to an update override file, thereby enabling custom data
manipulations in relational databases.

Objectives
In this exercise, you will:

Import the Java folder, which contains the MySQLExit.java file.

Add SQL update statements to the Java file.

Instructions
1. Right-click the SQL folder located in DataServices project, choose Import, and select the Java

folder from the <beahome>\weblogic81\samples\LiquidData\EvalGuide
folder.

2. Click Import and verify that the Java folder is added to the SQL folder.

3. Open MySQLExit.java, located in the DataServices\SQL\Java folder.

4. Locate the line “Type in your UPDATE SQL statements here”.

5. Enter the two following SQL statements and store them into updateStr and updateStr1
respectively:

"UPDATE RTLCUSTOMER.CUSTOMER SET FIRST_NAME=?, LAST_NAME=? WHERE
CUSTOMER_ID=?";

"UPDATE RTLCUSTOMER.ADDRESS SET CITY=?, STATE=?, ZIPCODE=?, COUNTRY=?
WHERE ADDR_ID=?";

Your code should look like the following:

String updateStr = "UPDATE RTLCUSTOMER.CUSTOMER SET FIRST_NAME=?,
LAST_NAME=? WHERE CUSTOMER_ID=?";

String updateStr1 = "UPDATE RTLCUSTOMER.ADDRESS SET CITY=?, STATE=?,
ZIPCODE=?, COUNTRY=? WHERE ADDR_ID=?";

25.2 Assoc ia t ing an SQL-Based Data Se rv ice and Update Ove r r ide

Data Services Samples Tutorial 25-3

Figure 25-1 MySQLExit.java

6. Save MySQLExit.java and close the file.

7. Build DataServices project.

25.2 Associating an SQL-Based Data Service and Update
Override

You must now set the update override class to the MySQLExit. This will let you get any updated
changes and pass the new value.

Objectives
In this exercise, you will:

Associate the update override class with the MySQLExit.

Confirm the settings in the Property Editor.

Instructions
1. Open MySQL.ds in Design View. The file is located in the DataServices\SQL folder.

2. Click the MySQL Data Service header. The Property Editor opens.

Over r id ing SQL Updates Us ing Update Over r ides

25-4 Data Services Samples Tutorial

3. In the Property Editor, set the update override class by selecting MySQLExit from the
DataServices\SQL\Java folder.

4. Save the MySQL.ds file.

5. Build your DataServices project.

25.3 Testing Updates
You are now ready to test whether the update override functions correctly.

Objectives
In this exercise, you will:

Test the update override, by using the MySQL data service to make changes to the underlying
relational data source.

View the results.

Instructions
1. Open MySQL.ds in Test View.

2. Select MySQL(x1) from the Function drop-down list, enter CA, and click Execute.

3. Click Edit.

4. Test if updates are getting propagated to the database, by completing the following steps:

a. Select any Customer node.

b. Modify City and Zip Code elements.

c. Click Submit to issue the update override commit command and propagate changes to the
database.

5. Select MySQL(x1) from the function drop-down list, enter CA, and click Execute to confirm that
your database is updated.

Lesson Summary
In this lesson, you learned how to:

25.3 Test ing Updates

Data Services Samples Tutorial 25-5

Create an update override for a physical data service.

Setup the update override to be a JDBC client and write logic to update the database table.

Over r id ing SQL Updates Us ing Update Over r ides

25-6 Data Services Samples Tutorial

Data Services Samples Tutorial 26-1

T U T O R I A L 26

Understanding Query Plans

A query plan contains detailed, functional-level information about an XQuery. Reviewing the Query
Plan is the first step in troubleshooting a data service function's performance bottlenecks, as it lets
you view the query's construction.

Objectives
After completing this lesson, you will be able to:

Examine a query plan in three different views: tree, XML, and text.

Locate the SQL statement created to retrieve data from the underlying database.

Locate XML elements.

Overview
The most common reason for viewing a query plan is to review the SQL statement generated by the
ALDSP query engine. However, the query plan also displays the following information for the physical
data sources to be called during the query:

Physical Data Source Information Provided

Relational Data source name, actual SQL calls, and join parameters.

Web Services Data source name, operation(s) called, and join parameters.

Unders tanding Query P lans

26-2 Data Services Samples Tutorial

In addition, the following information is displayed for all functions:

Number of invocations.

Order in which the data source calls are made.

Compilation time.

Areas where calls are made in parallel.

Areas where there are Cartesian joins.

Areas where join algorithms are used, including parameter passing and index joins.

Any calls to a middle-tier cache.

26.1 Viewing the Query Plan
A query plan is generated for each data service function, when a ALDSP project is built.

Objectives
In this exercise, you will:

Get the query plan for the getCustomerProfile() function.

View the results in tree, XML, and text views.

Instructions
1. Open XQueries.ds in Query Plan View.

2. Select getTop10Customers() from the function drop down list.

3. Click Show Query Plan. The query plan opens in tree view, as displayed in Figure 26-1.

Custom Functions Function name and join parameters.

XML and Delimited Files. Filename

Physical Data Source Information Provided

26.1 V iew ing the Query P lan

Data Services Samples Tutorial 26-3

Figure 26-1 Query Plan as a Tree Structure

4. Click the XML button to view the Query Plan as an XML document.

Unders tanding Query P lans

26-4 Data Services Samples Tutorial

Figure 26-2 Query Plan as an XML Document

5. Click the Text button to view the Query Plan as a text document.

26 .2 Locat ing the SQL Sta tement in a Que ry P lan

Data Services Samples Tutorial 26-5

Figure 26-3 Query Plan as a Text Document

26.2 Locating the SQL Statement in a Query Plan
SQL statements are generated for functions that call relational databases.

Objectives
In this exercise, you will:

Locate an SQL statement within the query.

Review the contents of the SQL statement.

Instructions
1. Open the Query Plan as an XML document.

2. Expand the FLWOR nodes until you see the #cdata-section. This is the SQL statement for the
query.

Unders tanding Query P lans

26-6 Data Services Samples Tutorial

Figure 26-4 Query Plan View of SQL Statements

As a reminder, this function retrieves customer and order amount information. In addition, the result
set is ordered in descending order by order amount.

26.3 Locating XML Elements
XML elements identify the data that will be returned by the query function. Each XML element is
identified with a QName.

Objectives
In this exercise, you will:

Locate all XML elements within the query.

Review the contents of the XML element lines.

Instructions
1. In Query Plan View, expand the return node.

26.3 Locat ing XML E lements

Data Services Samples Tutorial 26-7

2. Notice all the XML elements that will be returned when the function is executed.

Figure 26-5 Query Plan View of XML Elements

Lesson Summary
In this lesson, you learned how to:

Examine a query plan as tree, XML, and text documents.

Locate the SQL statement that was created to retrieve data from the underlying database.

Locate XML elements.

Unders tanding Query P lans

26-8 Data Services Samples Tutorial

Data Services Samples Tutorial 27-1

T U T O R I A L 27

Reusing XQuery Code through Vertical
View Unfolding

ALDSP enables powerful data service code reusability.

Objectives
After completing this lesson, you will be able to:

Re-use code.

Unfold vertical file view.

Overview
ALDSP enables powerful data service code reusability. You can develop your logic once, and then
re-use it later when building other data services. This feature is called view unfolding.

In addition to code reuse, ALDSP is smart enough to optimize your output and only query sources and
elements that you request in your data service (vertical view unfolding).

27.1 Unfolding Vertical View
You will reuse the CustomerProfile data service previously built to retrieve Customer Order
information. The CustomerProfile data service is built from three different tables in the underlying
PointBase database: CUSTOMER, CUSTOMER_ORDER and CUSTOMER_ORDER_LINE_ITEM.

Reus ing XQuery Code th rough Ve r t i ca l V i ew Unfo ld ing

27-2 Data Services Samples Tutorial

Objectives
In this exercise, you will:

Import the CustomerOrder data service into the CustomerManagement folder.

Import CustomerOrder.xsd, and then associate the schema with the CustomerOrder data
service.

Implement a query function, and define its conditions.

Instructions
1. Import CustomerOrder.ds into DataServices\CustomerManagement. The file

is located in <beahome>\weblogic81\samples\LiquidData\EvalGuide.

2. Import CustomerOrder.xsd into
DataServices\CustomerManagement\schemas. The file is also located in
<beahome>\weblogic81\samples\LiquidData\EvalGuide.

3. Implement the getCustomerOrder() function in the CustomerOrder data service, by
completing the following steps:

a. Open CustomerOrder.ds in XQuery Editor View.

b. In Data Services Palette, drag and drop getAllCustomers() into XQuery Editor View.
The method call is located in the folder:

DataServices\CustomerManagement\CustomerProfile

4. Set the conditions for the function, by completing the following steps:

a. Select the Customer* element. This will activate the Expression Editor and make visible the
ns2:getAllCustomers()/customer expression. You will use the Expression Editor
to scope the data returned in the getAllCustomers() function.

27 .1 Unfo ld ing Ve r t i ca l V i ew

Data Services Samples Tutorial 27-3

Figure 27-1 Default Expression

b. Triple-click the Expression field.

c. Modify the expression by adding the following code:

ns2:getAllCustomers()/customer/orders/order

d. Click the green checkmark icon to accept the changes. The CustomerProfile* element changes
to the order* element, and the For:$CustomerProfile schema now includes the order elements.

Reus ing XQuery Code th rough Ve r t i ca l V i ew Unfo ld ing

27-4 Data Services Samples Tutorial

Figure 27-2 Modified Expression

5. Create a simple mapping: Drag and drop all order* elements (source node) to the corresponding
CUSTOMER_ORDER elements in the Return type.

27 .1 Unfo ld ing Ve r t i ca l V i ew

Data Services Samples Tutorial 27-5

Figure 27-3 XQuery Editor View—Mappings

6. Save the data service file.

7. Open CustomerOrders.ds in Source View and notice that the function is using the
CustomerProfile file as its data source.

Reus ing XQuery Code th rough Ve r t i ca l V i ew Unfo ld ing

27-6 Data Services Samples Tutorial

Figure 27-4 Source View of Vertical File Unfolding Function

 27.2 Testing a Vertical File Unfolding
Testing a vertical file unfolding is similar to testing any other data service function.

Objectives
In this exercise, you will:

Test the CustomerOrder data service.

Review the results.

Instructions
1. Open CustomerOrders.ds in Test View.

2. Select getCustomerOrder() from the function drop-down list.

3. Click Execute.

27.2 Tes t ing a Ve r t i ca l F i l e Unfo ld ing

Data Services Samples Tutorial 27-7

4. Confirm that you can retrieve customer order information.

Figure 27-5 Vertical File Unfolding Test Results

Lesson Summary
In this lesson, you learned how to:

Build a data service based on another data service (view unfolding)

Re-use code (vertical file unfolding).

Reus ing XQuery Code th rough Ve r t i ca l V i ew Unfo ld ing

27-8 Data Services Samples Tutorial

Data Services Samples Tutorial 28-1

T U T O R I A L 28

Configuring Alternatives for
Unavailable Data Sources

Sometimes a particular data source is either temporarily unavailable or very slow to send a response
back to a consuming application. In such cases, you need to be able to run an alternative data source.
ALDSP enables you create an alternative data source that will be called if the primary data source
does not respond within a specified time frame.

Objectives
After completing this lesson, you will be able to:

Invoke, configure, and test an alternative data source.

Use the fn-bea:timeout() function for configuring alternative sources.

Review WebLogic Server output.

Overview
Enabling an alternative data source is implemented by calling the fn-bea:timeout() function.
The syntax for the function is as follows:

fn-bea:timeout($seq as item()*, $millis as xs:int, $alt as item()*) as

item()*

where:

$seq is the primary expression.

Conf igur ing A l t e rnat ives fo r Unavai lab le Data Sources

28-2 Data Services Samples Tutorial

 $millis in the timeout in milliseconds.

 $alt is the alternate expression.

To implement this functionality, the return types of both the primary and alternative expression
should be available when the project is compiled. This ensures that the function's return type is
correctly inferred. In other words, the source metadata must be available at compile time, because
the alternative source function provides only runtime failover capability.

 28.1 Setting the Demonstration Conditions
You will import a slow Web service into your application, thereby enabling the demonstration of
configuring alternatives for unavailable data sources.

Objectives
In this exercise, you will:

Import and test a "slow" Web for demonstration purposes.

Create a physical data service that is based on an alternative data source.

Instructions
1. Right-click the Evaluation folder and then import the

<beahome>\weblogic81\samples\LiquidData\EvalGuide\CreditWS file
as a Web Service Project. This will import a simple Web service that does nothing but sleep for 3
seconds. Click ‘Yes’ when asked for “Files required for Web Services are not in the project. Do you
wish to add them?”

2. Build the CreditWS project.

3. Test the slow Web service by completing the following steps:

a. Open the NewCreditReport.jws, located in the CreditWS folder.

b. Click the Start icon (or press Ctrl + F5). The Workshop test browser opens.

c. Enter CUSTOMER3 in the cid field and click NewLookupCredit.

d. Confirm that you can get credit rating information.

28 .1 Set t ing the Demonst ra t i on Cond i t ions

Data Services Samples Tutorial 28-3

Figure 28-1 Test Browser View of the Slow Web Service

4. Create a physical data service for the slow Web service, by completing the following steps:

a. Select the Overview tab in the Workshop Test Browser.

b. Click Complete WSDL.

c. Copy the WSDL URI, which you will use to import an alternative data service. The URI typically
is:

http://localhost:7001/CreditWS/NewCreditReport.jws?WSDL=

d. In the Application pane of WebLogic Workshop, right-click the WebServices folder (located in
DataServices).

e. Choose Import Source Metadata.

f. Select Web Service from the Data Source Type drop-down list and click Next.

g. Paste the WSDL URI into the URI field, then click Next.

h. Expand the folders and select the NewLookupCredit operation.

i. Click Add to populate the Selected Web Service Operations pane and click Next.

Conf igur ing A l t e rnat ives fo r Unavai lab le Data Sources

28-4 Data Services Samples Tutorial

Note: Do not select NewLookCredit as a side-effect procedure.

j. Review the Summary information and click Finish.

5. Check the Application pane. There should be a new physical data service called
NewLookupCreditResponse.ds.

6. Open NewLookupCreditResponse.ds in Design View. There should be a function called
NewLookupCredit.

Figure 28-2 Design View of Web Service-Based Data Service

 28.2 Configuring Alternative Sources
Because the CreditWS Web service is slow, you need to configure an alternative source to obtain the
credit rating information in a timely manner.

Objectives
In this exercise, you will:

Configure an alternative data source.

Use the fn:bea:timeout() function.

28 .2 Conf igur ing A l t e rnat i ve Sources

Data Services Samples Tutorial 28-5

Instructions
1. Open CustomerProfile.ds in Source View. (The file is located in

DataServices\CustomerManagement.

2. Add the following code to the namespace declaration:

declare namespace
ws3="ld:DataServices/WebServices/NewLookupCreditResponse";

declare namespace ws4 = "http://www.openuri.org/";

3. Locate the getAllCustomers() function.

4. Locate the following entry:

{

for $rating in ws1:getCreditRating(

 <ws2:getCreditRating>

 <ws2:customer_id>{data($CUSTOMER/CUSTOMER_ID)}</ws2:customer_id>

 </ws2:getCreditRating>)

return

 <creditrating>

<rating>{data($rating/ws2:getCreditRatingResult/ws2:Rating)}</rating>

<customer_id>{data($rating/ws2:getCreditRatingResult/ws2:Customer_id)}<
/customer_id>

 </creditrating>

}

5. Replace that entry with the following code and note the use of the fn-bea:timeout()
function.:

{

<creditrating>

 <rating>

 {

 fn-bea:timeout(

 data(

Conf igur ing A l t e rnat ives fo r Unavai lab le Data Sources

28-6 Data Services Samples Tutorial

 ws3:NewLookupCredit(

 <ws4:NewLookupCredit>

 <ws4:cid>{data($CUSTOMER/CUSTOMER_ID)}</ws4:cid>

 </ws4:NewLookupCredit>

)/ws4:NewLookupCreditResult/ws4:CreditCode

)

 , 2000,

 data(

 ws1:getCreditRating(

 <ws2:getCreditRating>

<ws2:customer_id>{data($CUSTOMER/CUSTOMER_ID)}</ws2:customer_id>

 </ws2:getCreditRating>
)/ws2:getCreditRatingResult/ws2:Rating)

)

 }

 </rating>

 <customer_id>{data($CUSTOMER/CUSTOMER_ID)}</customer_id>

</creditrating>

}

28.3 Testing an Alternative Source
Testing getAllCustomers() function will let you confirm that the query is retrieving data from
the alternative source, rather than the CreditWS.

Objectives
In this exercise, you will:

Test the CustomerProfile data service, using the getAllCustomers() function.

Review the results in the Output window.

28.3 Tes t ing an A l te rnat i ve Source

Data Services Samples Tutorial 28-7

Instructions
1. Build the DataServices project.

2. Enable auditing for the getAllCustomers() function using the AquaLogic Data Services
Platform Console. For details about auditing, refer to
http://edocs.bea.com/aldsp/docs21/admin/monitor.html.

3. Open CustomerProfile.ds located in CustomerManagement folder in Test View.

4. Select getAllCustomers() from the function drop-down list.

5. Click Execute.

Open the Output window, scroll to the bottom, and then confirm that the CreditWS Web service
times out and then the CreditRating Web service is called. The output should display as shown
in Figure 28-3.

Figure 28-3 Output Window

The invocation of the first Web service NewLookupCreditResponse fails because the thread
times out. Because this Web service has failed it will not be invoked again. Instead, the
alternate Web service is invoked.

Lesson Summary
In this lesson, you learned how to:

Invoke, configure, and test an alternative data source.

Conf igur ing A l t e rnat ives fo r Unavai lab le Data Sources

28-8 Data Services Samples Tutorial

Use the fn-bea:timeout() function for configuring alternative sources.

Review WebLogic Server output.

Data Services Samples Tutorial 29-1

T U T O R I A L 29

Enabling Fine Grained Caching

Fine-grained caching lets you cache a data subset, such as information that does not frequently
change. Fine-grained caching is at the function level, because a function's role is to retrieve specific
information.

Objectives
After completing this lesson, you will be able to:

Define a cache policy for the slow credit rating Web service.

Testing caching performance.

Overview
ALDSP provides a flexible caching mechanism to manage caching of data service functions. In Part 1,
you learned how to cache a function in a logical data service. However, there are situations where you
may want to cache only a sub-set of information available in a particular logical data service. For
example, the CustomerProfile data service includes information about each customer's profile and
order information. The profile information does not change often, whereas order information
constantly changes. In this situation users would like to cache the profile information for a given
customer but retrieve the most recent order information from the operational system.

By defining different caching policies for the underlying customer and order physical data services,
you can cache only the CUSTOMER physical data service. As a result, any request made to the logical

Enab l ing F ine Gra ined Caching

29-2 Data Services Samples Tutorial

CustomerProfile data service will be partly answered from the ALDSP Cache for customer information
and partly answered from the operational system for order information.

29.1 Enabling Function-Level Caching for a Physical Data
Service

Caching of a function in an underlying data service provides you with the ability to cache a sub-set of
data within a data service function.

Objectives
In this exercise, you will:

Enable application-level caching and function-level caching.

Instructions
1. Login to the ALDSP Console (http://localhost:7001/ldconsole/), using the

following credentials:

– User Name = weblogic

– Password = weblogic

2. Using the + icon, expand the ldplatform directory.

Note: If you click the ldplatform name, the Application List page opens. This is not the page you
want for this lesson.

3. Click Evaluation. The Administration Control’s General page opens.

4. In the Data Cache section, select Enable Data Cache.

5. Select cgDataSource from the Data Cache data source name drop-down list.

6. Enter WSCACHE in the Data Cache table name field.

7. Click Apply.

29.1 Enabl ing Func t i on-Leve l Cach ing fo r a Phys ica l Data Serv ice

Data Services Samples Tutorial 29-3

Figure 29-1 Enable Caching

8. Expand the Evaluation folder and navigate to getCreditRatingResponse.ds, located in
DataServices\WebServices folder.

9. For the getCreditRating() function, set a caching policy by completing the following
steps:

a. Select Enable Data Cache.

b. Enter 300 in the TTL field.

c. Click Apply.

Enab l ing F ine Gra ined Caching

29-4 Data Services Samples Tutorial

Figure 29-2 Enable Function-Level Caching

29.2 Testing the Caching Policy
You are now ready to test your new fine-grained caching policy.

Objectives
In this exercise, you will:

Test the function-level caching policy.

Determine whether the cache was populated.

Instructions
1. In WebLogic Workshop, execute a test query by completing the following steps:

a. Open CustomerProfile.ds in Test View. The file is located in the
CustomerManagement folder.

b. Select getCustomerProfile(CustomerID) from the function drop-down list.

c. Enter CUSTOMER3 in the Parameter field.

d. Click Execute.

29.2 Tes t ing the Caching Po l i cy

Data Services Samples Tutorial 29-5

e. In the Output window, note the number of invocations and the times for the
NewLookupCreditResponse and getCreditRatingResponse data sources.

2. In the PointBase Console, check whether the cache database table was populated by completing
the following steps:

a. Start the PointBase Console, using the following command in a command prompt window:

<beahome>\weblogic81\common\bin\startPointBaseConsole.cmd

b. Use the following configuration to connect to your local PointBase database:

– Driver: com.pointbase.jdbc.jdbcUniversalDriver

– URL: jdbc:pointbase:server://localhost:9093/workshop

– User: weblogic

– Password: weblogic

c. Click OK.

d. Enter the SQL command: SELECT * FROM WSCACHE

e. Click Execute to check whether the cache was populated.

Figure 29-3 PointBase Console Cache Information

Enab l ing F ine Gra ined Caching

29-6 Data Services Samples Tutorial

29.3 Testing Performance Impact
The next step is to determine whether the caching policy improves query performance.

Objectives
In this exercise, you will:

Execute a data service test.

Determine whether the caching policy improved query performance time.

Instructions
1. In WebLogic Workshop, execute a test query by completing the following steps:

a. Open CustomerProfile.ds in Test View. (The file is located in the
CustomerManagement folder.)

b. Select getCustomerProfile() from the function drop-down list.

c. Enter CUSTOMER3 in the Parameter field.

d. Click Execute.

2. Confirm the following performance results in the Output window:

a. Confirm that the slow Web service (NewLookupCreditRatingResponse) was never invoked due
to alternate path execution.

b. Determine whether caching the Web service helped to reduce the query execution time.

Lesson Summary
In this lesson, you learned how to:

Enable the cache for a physical data service function and define the cache's TTL.

Determine the performance impact of the physical data service cache on a function in a logical
data service by checking the query response time and whether the physical data service
(original data source) was invoked.

29.3 Tes t ing Pe r fo rmance Impact

Data Services Samples Tutorial 29-7

Enab l ing F ine Gra ined Caching

29-8 Data Services Samples Tutorial

Data Services Samples Tutorial 30-1

T U T O R I A L 30

CreatingXQueryFilters to Implement
Conditional Logic Security

Data Services Platform can enable security based on the results of conditional logic.

Objectives
After completing this lesson, you will be able to:

Activate security XQuery functions.

Write security XQuery functions.

Overview
Conditional logic can be used to establish very specific security restrictions. For example, access to a
social security number can be restricted to managers, as is illustrated in Exercise 30.2 Writing the
XQuery Security Function. Security restrictions at the element level are set through the ALDSP
Console.

30.1 Creating User Groups
The first step in setting conditional-logic security is establishing security groups.

Objectives
In this exercise, you will:

Create new user groups.

Creat ingXQueryF i l te rs to Implement Cond i t i ona l Log ic Secur i t y

30-2 Data Services Samples Tutorial

Assign user accounts to user groups.

Instructions
1. Login to the WebLogic Server Console (http://localhost:7001/console/), using

the following credentials:

– User Name = weblogic

– Password = weblogic

2. Create two new user groups by completing the following steps:

a. Choose Security → Realms → myrealm → Groups.

b. Select Configure a New Group.

c. Enter LD_Emp in the Name field.

d. (Optional) Enter “Employee Group” in the Description field.

e. Click Apply.

f. Repeat steps 2b through 2e to create a new group for LD_Mgr.

Figure 30-1 Configuring a New User Group

3. Assign the user Bob to the LD_Emp group, by completing the following steps:

a. Choose Security → Realms → myrealm → Users.

b. Click Bob in the User column. The User page for Bob opens.

30.1 Creat ing User Groups

Data Services Samples Tutorial 30-3

Figure 30-2 User Page for Bob

c. Click the Groups tab. The Groups page opens.

d. Select LD_Emp from the Possible Groups pane.

e. Click the arrow (→) to add the group to the Current Groups pane.

f. Click Apply.

Figure 30-3 Group Assignment Page for Bob

4. Assign the user Joe in the LD_Mgr group, by completing the following steps:

a. Choose Security → Realms → myrealm → users.

b. Click Joe in the User column. The User page for Joe opens.

c. Click the Groups tab. The Groups page opens.

Creat ingXQueryF i l te rs to Implement Cond i t i ona l Log ic Secur i t y

30-4 Data Services Samples Tutorial

d. Select LD_Mgr from the Possible Groups pane.

e. Click the arrow (→) to add the group to the Current Groups pane.

f. Click Apply.

30.2 Writing the XQuery Security Function
You can specify a security function using XQuery syntax. In this example, access to social security
numbers is restricted to managers.

Objectives
In this exercise, you will:

Set security access control.

Set a security XQuery function.

Instructions
1. Login to the ALDSP Console (http://localhost:7001/ldconsole/), using the

following credentials:

– User Name = weblogic

– Password = weblogic

2. Using the plus (+) icon, expand the ldplatform directory.

Note: If you click the ldplatform name, the Application List page opens. You do not want this
page for this lesson.

3. Click Evaluation. The Administration Control’s General page opens.

4. Select Check Access Control.

5. Select Allow Default Anonymous Access.

30.2 Wr i t ing the XQuery Secur i t y Funct i on

Data Services Samples Tutorial 30-5

Figure 30-4 Setting Access Control

6. Select Xquery Functions for Security and enter the following function:

Note: Namespaces may be different for your application.

declare namespace demo="lib:mydemo";

declare namespace
items="http://temp.openuri.org/DataServices/schemas/CustomerProfile.xsd
" ;

declare function demo:secureCustomer($ssn as xs:string) as xs:boolean {

if (fn-bea:is-user-in-group("LD_Mgr")) then fn:true()

else fn:false()

};

7. Click Apply.

8. Click Apply again. You should now have the following:

Creat ingXQueryF i l te rs to Implement Cond i t i ona l Log ic Secur i t y

30-6 Data Services Samples Tutorial

Figure 30-5 Specifying Security XQuery Function Code

 30.3 Activating the XQuery Function for Security
The next step in setting an XQuery security function is to set security at the element level.

Objectives
In this exercise, you will:

Secure data source elements.

Set a security policy.

Instructions
1. In the ALDSP Console expand the Evaluation folder and navigate to the CustomerProfile data

service, located in DataServices\CustomerManagement.

2. Navigate to the Security Policy dialog (Admin → Security → Security Policy).

3. Click the icon in the XQuery Function for Security column for the CustomerProfile/customer/ssn
resource. The Assign XQuery Functions window opens.

30.4 Tes t ing the XQuery Secur i t y Funct ion

Data Services Samples Tutorial 30-7

4. Click on Apply. The icon in the Security Policy tab will appear.

5. Set the Namespace URI and Local Name, by completing the following steps:

a. Click Add and enter the following values:

• Namespace URI: lib:mydemo

• Local Name: secureCustomer

b. Click Submit.

c. Click Close.

Figure 30-6 QName Information

30.4 Testing the XQuery Security Function
Using the security credentials for Bob and Joe, you can now test the XQuery security function.

Objectives
In this exercise, you will:

Using two different user logins, test access control.

View the results.

Instructions
1. Set the login properties to Bob and run a test, by completing the following steps:

Creat ingXQueryF i l te rs to Implement Cond i t i ona l Log ic Secur i t y

30-8 Data Services Samples Tutorial

a. In the ALDSP-enabled Workshop application, choose Tools → Application Properties →
WebLogic Server.

b. Select Use Credentials Below.

c. Enter “Bob” and “password” in the Use Credentials Below fields.

d. Click OK.

e. Open CustomerProfile.ds in Test View. (The file is located in the
CustomerManagement folder.)

f. Select getAllCustomers() from the function drop-down list.

g. Click Execute. All customer data, except SSNs, should be returned.

Note: In order to deploy from WorkShop User/Group you should have permission to deploy
applications.

2. Change the login properties to Joe and run a test. All customer data, including SSNs, should be
returned.

3. In the ALDSP Console expand the Evaluation folder and navigate to the CustomerProfile data
service, located in DataServices\CustomerManagement.

4. Click Security Policy.

5. Click the icon in the XQuery Function for Security column for the CustomerProfile/customer/ssn
resource. The QName window opens.

6. Click Remove, click Submit, and then click Close to remove the following:

– Namespace URI: lib:mydemo;

– Local Name: secureCustomer

WARNING: You must remove the Namespace/Local Name information before you can
proceed with the following lessons.

7. Click Tools→Application Properties.

8. Use the following credentials:

– User name = weblogic

– Password = weblogic

30.4 Tes t ing the XQuery Secur i t y Funct ion

Data Services Samples Tutorial 30-9

Lesson Summary
In this lesson, you learned how to:

Establish security based on XQuery functions.

Write security XQuery functions.

Creat ingXQueryF i l te rs to Implement Cond i t i ona l Log ic Secur i t y

30-10 Data Services Samples Tutorial

Data Services Samples Tutorial 31-1

T U T O R I A L 31

Creating Data Services from Stored
Procedures

Enterprise databases utilize stored procedures to improve query performance, manage and schedule
data operations, enhance security, and so forth. Stored procedures are essentially database objects
that logically group a set of SQL and native database programming language statements together to
perform a specific task.

You can import stored procedure metadata from any relational data available to the BEA WebLogic
Server. ALDSP then uses that metadata to generate a physical data service that you can then use in
logical data services.

Objectives
After completing this lesson, you will be able to:

Import stored procedures as a Java project within an application.

Import stored procedure metadata into a data service.

Overview
Imported stored procedure metadata is quite similar to imported metadata for relational tables and
views. Stored procedure metadata generally contains:

A data service file with a pragma that describe the parameters of the stored procedure.

A schema file with the same primary name as the procedure name.

Creat ing Data Se rv ices f rom Sto red P rocedures

31-2 Data Services Samples Tutorial

Note: If a stored procedure includes only one return value and the value is either simple type or a
row set that is mapping to an existing schema, no schema file is created.

Handling Stored Procedure Row Sets
A row set type is a complex type, whose name can include:

The parameter name, if there is an input/output or output only parameter.

An assigned name such as RETURN_VALUE, if there is a return value.

The referenced element name (result rowsets) in a user-specified schema.

The row set type contains a repeatable element sequence (for example, called CUSTOMER) with the
fields of the row set.

Notes:

All row set-type definitions must conform to the structure in the stored procedure itself. In
some cases the Metadata Import Wizard will be able to automatically detect the structure of a
row set and create an element structure. However, if the structure cannot be determined, you
will need to provide it through the wizard.

Each database vendor approaches stored procedures differently. Refer to your database
documentation for details on managing stored procedures.

XQuery support limitations are, in general, due to JDBC driver limitations.

ALDSP does not support rowset as an input parameter.

31.1 Importing a Stored Procedure into the Application
The first step in demonstrating ALDSP's ability to access data through a stored procedure is to import
the procedure into the application.

Objectives
In this exercise, you will:

Import stored procedures as a Java project.

Test the results.

31.1 Impor t ing a Sto red Procedure in to the Appl i cat ion

Data Services Samples Tutorial 31-3

Instructions
1. Import storedprocs as a Java project, adding it to the Evaluation application. The project is located

in <beahome>\weblogic81\samples\LiquidData\EvalGuide.

2. Build the storedprocs project. The storedprocs.jar file will be added to the Libraries folder.

3. Shutdown the PointBase database, by stopping WebLogic Server.

Note: Stopping WebLogic Server calls the PointBase shutdown script.

4. Open the startPointBase.cmd in a text editor such as Notepad. The file is located in
<beahome>\weblogic81\common\bin.

5. In the startPointBase.cmd script, search for the string “@REM Add PointBase classes to
the classpath” and add the complete path of the storedprocs.jar file below this line in the
script as follows:

set
CLASSPATH=<beahome>\user_projects\applications\Evaluation\APP-INF\lib\s
toredprocs.jar;%POINTBASE_CLASSPATH%

Note:

• For reference, the modified startPointBase.cmd is included in
samples\liquiddata\EvalGuide.

• The CLASSPATH depends on your WebLogic Server installation. User can copy the
correct path from the Output window of WebLogic Workshop.

6. Start WebLogic Server, which in turn starts the PointBase database.

7. Run CreditRatingStoredProcedure.java to define the stored procedures in
PointBase.

8. Click OK at the pop-up message.

9. Confirm that the stored procedure executed, by reviewing the contents in the Output window. You
should see the credit rating for CUSTOMER3.

Note: Your credit rating may be different, based on the changes that you made in Exercise 23.2
Creating an Update Override.

Creat ing Data Se rv ices f rom Sto red P rocedures

31-4 Data Services Samples Tutorial

Figure 31-1 Output Window View of Stored Procedures Compilation

31.2 Importing Stored Procedure Metadata into a Data
Service

Importing a stored procedure's source metadata enables the generation of a stored procedure data
service.

Objectives
In this exercise, you will:

Import source metadata into a new data service.

Test the stored procedure data service.

Instructions
1. Create a new folder in the DataServices project and name it StoredProcedures.

2. Import stored procedures metadata, by completing the following steps:

a. Right-click the StoredProcedures folder.

b. Choose Import Source Metadata.

c. Select Relational from the Data Source Type drop-down list, then click Next.

d. Select cgDataSource from the Data Source drop-down list, then click Next.

e. Expand the WEBLOGIC\Procedures folders.

f. Select GETCREDITRATING_SP, click Add, and click Next.

g. Accept the default settings displayed in the Configure Procedure window, then click Next.

31 .2 Impor t ing S to red Procedure Metadata in to a Data Serv i ce

Data Services Samples Tutorial 31-5

Note: Do not select GETCREDITRATING_SP as a side-effect procedure.

h. Accept the default settings displayed in the Summary window and click Finish.

3. Build the DataServices project.

4. In the Application pane, confirm that there is a new data service,
GETCREDITRATING_SP.ds, located in the StoredProcedures folder.

5. Test the data service, by completing the following steps:

a. Open GETCREDITRATING_SP.ds in Test View.

b. Select GETCREDITRATING_SP(x1) from the Function drop-down list.

c. Enter CUSTOMER3 in the Parameter field.

d. Click Execute. You should see the credit rating for Customer3

e. Review the results.

Lesson Summary
In this lesson, you learned how to:

Import stored procedures into an application.

Import stored procedure source metadata into a data service.

Creat ing Data Se rv ices f rom Sto red P rocedures

31-6 Data Services Samples Tutorial

Data Services Samples Tutorial 32-1

T U T O R I A L 32

Creating Data Services from Java
Functions

A Java function is another form of metadata that ALDSP can use as a data source. This is perhaps the
most powerful metadata, because it allows ALDSP to utilize any data source that can be accessed from
Java, such as Enterprise Java Beans, JMS/messaging applications, LDAP and other directory services,
text/binary files that can be read through Java I/O, and even DCOM-based applications like Microsoft
Excel.

In this lesson, you will access three data sources through Java functions:

WebLogic’s embedded LDAP, by importing a Directory Service Markup Language (DSML)-based
Java application as a Java function.

Data in a Microsoft Excel spreadsheet, by importing a Java application that uses JCOM to
access the MS Excel spreadsheet.

An Enterprise Java Bean that returns customer credit card information using a Java function.

Objectives
After completing this lesson, you will be able to:

Write Java functions and access them from data services.

Overview
When you use ALDSP's Import Source Metadata feature to import user-defined Java functions, the
functions are introspected to create the necessary method signatures and parameter metadata. At the

Creat ing Data Serv ices f rom Java Func t ions

32-2 Data Services Samples Tutorial

same time, a prologue is created that defines the function's signatures and relevant schema type for
complex elements such as Java classes and arrays.

In ALDSP, user-defined functions are treated as Java classes. The following are supported:

Java primitive types and single-dimension arrays, such as Boolean, byte, and char.

XMLBean classes corresponding to global elements, complex types, and arrays. The classes
generated by XMLBeans can be used as parameters or Return types. The advantage of using
XMLBean-generated classes is that you do not need to define a schema for the references
complex type or element.

The Metadata Import Wizard supports marshalling and unmarshalling that converts Java token
iterators into XML, and vice versa. For example, you start with a Java function, getListGivenMixed,
defined as follows:

public static float[] getListGivenMixed(float[] fpList, int size) {

int listLen = ((fpList.length > size) ? size : fpList.length);

float fpListop = new float[listLen];

for (int i =0; i < listLen; i++)

fpListop[i]=fpList[i];

return fpListop;

}

After the function is processed through the Metadata Import Wizard, the following XML-based
metadata is generated:

(::pragma xds <x:xds xmlns:x="urn:annotations.ld.bea.com"

targetType="t:float" xmlns:t="http://www.w3.org/2001/XMLSchema">

<javaFunction

classpath="D:\jf\build\jar\jfTest.jar;D:\jf\xbeanTests\xbeangen\

Customer.jar;D:\wls82\weblogic81\server\lib\xbean.jar"

class="jfTest.Customer"/>

</x:xds>::)

declare namespace f1 = "ld:javaFunc/float";

(::pragma function <f:function xmlns:f="urn:annotations.ld.bea.com"

32.1 Access ing Data Us ing WebLog ic ’ s Embedded LDAP Funct ion

Data Services Samples Tutorial 32-3

kind="datasource" access="public">

<params>

<param nativeType="[F"/>

<param nativeType="int"/>

</params>

</f:function>::)

declare function f1:getListGivenMixed($x1 as xsd:float*, $x2 as xsd:int)

as xsd:float* external;

The corresponding XQuery for the imported Java function would be as follows:

declare namespace f1 = "ld:javaFunc/float";

let $y := (2.0, 4.0, 6.0, 8.0, 10.0)

let $x := f1:getListGivenMixed($y, 2)

return $x

Note: To ensure successful importation and usage within ALDSP, the Java function should be static
functions and its package and class names should be defined in its namespace. ALDSP
recognizes the Java method name as the XQuery function name qualified with the Java
function namespace.

For detailed information about using Java functions within ALDSP see the Data Services Developer’s
Guide.

32.1 Accessing Data Using WebLogic’s Embedded LDAP
Function

ALDSP enables access to data services, using WebLogic's embedded LDAP function. You will learn
how to use this functionality by importing a Directory Service Markup Language (DSML)-based Java
application as a Java function.

Objectives
In this exercise, you will:

Set the LDAP security credential for WebLogic’s Embedded LDAP.

Creat ing Data Serv ices f rom Java Func t ions

32-4 Data Services Samples Tutorial

Create a new user account.

Import JAR files and Java applications that will be used to generate a data service.

Test the data service.

Instructions
1. In the DataServices project, create a folder and name it Functions. This is where you will place the

Java functions that you want to import.

2. Set the LDAP security credential for WebLogic’s Embedded LDAP, by completing the following
steps:

a. Open the WebLogic Server Console from your browser:

http://localhost:7001/console.

b. Login using the following credentials:

• User Name = weblogic

• Password = weblogic

c. Select the Security folder, located under the ldplatform domain.

d. Click Embedded LDAP.

e. Enter security in the Credential and Confirm Credential fields.

f. Click Apply. This allows access to the WebLogic Server LDAP.

32.1 Access ing Data Us ing WebLog ic ’ s Embedded LDAP Funct ion

Data Services Samples Tutorial 32-5

Figure 32-1 Setting LDAP Access Credentials

3. You will need to restart the WebLogic Server now as change to this property does not take effect
until the Server is restarted.

4. Create a new user, by completing the following steps:

a. Expand the Security → Realms → myrealm → Users folders.

b. Click Configure a New User, using your name and a password of your choice.

c. Click Apply.

5. In WebLogic Workshop right-click the Libraries folder and import all the JAR files located in the
samples\liqiddata\EvalGuide\ldap\lib folder into the Libraries folder in Workshop.

6. Right-click the Functions folder and import DSML.java from the samples\liquiddata\EvalGuide
folder.

7. Build the DataServices project.

Creat ing Data Serv ices f rom Java Func t ions

32-6 Data Services Samples Tutorial

8. Import the Java function metadata for the DSML Java application into the Functions folder by
completing the following steps:

a. Right click the Functions folder and choose Import Source Metadata.

b. Select Java Function for the Data Source Type and click Next.

c. In the Class Name field, browse and select DataServices.jar\Functions\DSML.class and click
Next.

d. Select the callDSML() function, click Add, and then click Next.

Note: Do not select the callDSML procedure as a side-effect procedure.

e. Accept the default settings in the Summary window and click Finish.

The dsml.ds file and schemas folder are added to the Functions folder.

9. Build the DataServices project.

10. Test the DSML data service by completing the following steps:

a. Open dsml.ds in Test View.

b. Select callDSML() from the Function drop-down list.

c. Enter the following arguments (for more information on LDAP arguments and access, see
http://dev2dev.bea.com/codelibrary/code/ld_ldap.jsp):

d. Click Execute.

e. View the results.

Description Argument

LDAP URL ldap://localhost:7001

Principal (Directory Manager) cn=Admin

Credentials (Password) security

JNDI (true: use JNDI to access LDAP; false: use native
LDAP connection

jndi

Base domain name to search dc=ldplatform

Filter used to search cn=<your user name>

32.2 Access ing Exce l Spreadshee t Data Us ing JCOM

Data Services Samples Tutorial 32-7

Figure 32-2 Results for callDSML()

32.2 Accessing Excel Spreadsheet Data Using JCOM
Data in a Microsoft Excel spreadsheet can be accessed through JCOM.

Objectives
In this exercise, you will:

Import JAR and Java files appropriate that will be used to generate a data service for using
JCOM.

Test the results.

Instructions
1. Right-click the Libraries folder and using the add Add to Library option, add all the JAR files

located in the samples\liqiddata\EvalGuide\excel\lib folder.

2. Right-click the Functions folder and import excel_jcom.java from
<beahome>\weblogic81\samples\LiquidData\EvalGuide.

3. Build the DataServices project.

4. Import the Java function metadata for the Excel JCOM Java application into the Functions folder,
by completing the following steps:

a. Right-click the Functions project and choose Import Source Metadata.

Creat ing Data Serv ices f rom Java Func t ions

32-8 Data Services Samples Tutorial

b. Select Java Function for the Data Source Type and click Next.

c. In the Class Name field, browse and select DataServices\Functions\Functions.excel_jcom and
then click Next.

d. Select the getExcel() function, click Add, and then click Next.

e. Accept the default setting in the Select Side Effect Procedures window and click Next.

f. Accept the default settings in the Summary window and click Finish. The excel.ds and
associated schema files are added to the Functions folder.

5. Build the DataServices project.

6. Test the Excel data service, by completing the following steps:

a. Open excel.ds in Test View.

b. Select getExcel(x1, x2) from the Function drop-down list.

c. Enter the following arguments:

7. Review the results.

Description Argument

XLS File Name <beahome>\weblogic81\samples\L
iquidData\EvalGuide\excel\test
.xls

Worksheet Name Customers

32.3 (Opt iona l) Access ing Data Us ing an Ente rp r ise Java Bean

Data Services Samples Tutorial 32-9

Figure 32-3 Results of the getExcel function

Note: For more information on Excel access refer to a dev2dev sample illustrating accessing data in
an MS-Excel spreadsheet. As of this writing the sample is located at:

http://codesamples.projects.dev2dev.bea.com/servlets/Scarab?id=S230

32.3 (Optional) Accessing Data Using an Enterprise Java
Bean

Create an Enterprise Java Bean that returns customer credit card information using a Java function.

Objectives
In this exercise, you will:

Import the schemas needed to define an EJB-based data service.

Generate an EJB-based data service.

Test the EJB-based data service.

Instructions
1. Create a Schemas Project, by completing the following steps:

a. Right-click the Evaluation application folder and import the Schemas folder as a Schema
Project. The folder is located in:

Creat ing Data Serv ices f rom Java Func t ions

32-10 Data Services Samples Tutorial

<beahome>\weblogic81\samples\LiquidData\EvalGuide\ejb

This schema will be used for the EJB results, which returns an XML document containing
credit card information for a customer.

b. Build the Schemas project.

2. Create an EJB Project, by completing the following steps:

a. Right-click the Evaluation application folder and import the EJB folder as an EJB Project. The
folder is located in:

<beahome>\weblogic81\samples\LiquidData\EvalGuide\ejb. This
contains:

• A container-managed entity bean that maps to the credit card database table.

• A stateless session bean that invokes the entity bean finder method returning a list of
credit cards for a given customer in the shape of the CREDIT_CARDS XML
schema.

b. Build the EJB project.

3. Create a Java project, by completing the following steps:

a. Right-click the Evaluation application folder and import the EJBClient folder as a Java
Project. The folder is located in:

<beahome>\weblogic81\samples\LiquidData\EvalGuide\ejb

This project contains the Java client that connects remotely to the stateless session bean.
This will be used as the custom function.

b. Build the EJBClient project.

4. Run CreditCardClient.java, which is located in the EJBClient project folder. A list of
credit cards for CUSTOMER3 should display in the Output window

Note: Click OK for the pop-up message. Drag and drop the CreditCardClient.java
into the Functions folder.

5. Build the DataServices project.

6. Import the Java function metadata for the EJB Client into the DataServices project by completing
the following steps.

a. Right-click the Functions folder and select Import Source Metadata.

b. Select Java Function as the Data Source Type and click Next.

32.3 (Opt iona l) Access ing Data Us ing an Ente rp r ise Java Bean

Data Services Samples Tutorial 32-11

c. Browse and select DataServices\Functions.CreditCardClient as the Class
Name and click Next.

d. Select getCreditCards, click Add, and then click Next.

e. Accept the default settings in the Select Side Effect Procedures window.

f. Accept the default settings in the Summary window and click Finish. The CREDIT_CARDS.ds
file is added to the Functions folder.

Note: Do not confuse this data service with the CREDIT_CARD.ds created from the
relationship database.

g. Build the DataServices project.

7. Test the getCreditCards() function within the CREDIT_CARDS data service. Use
CUSTOMER3 as the argument. Confirm that you can retrieve credit card information for Britt
Pierce.

Figure 32-4 Results for the getCreditCards() function

Lesson Summary
In this lesson, you learned how to import the following sources as Java functions:

WebLogic’s embedded LDAP through a Directory Service Markup Language (DSML)-based Java
application

Data in a Microsoft Excel spreadsheet through a Java application that uses JCOM to access the
MS Excel spreadsheet.

Creat ing Data Serv ices f rom Java Func t ions

32-12 Data Services Samples Tutorial

An Enterprise Java Bean that returns customer credit card information.

Data Services Samples Tutorial 33-1

T U T O R I A L 33

Creating Data Services from XML Files

XML documents are a convenient means for handling hierarchical data. ALDSP enables the creation
of data services that read data stored in XML files.

Objectives
After completing this lesson, you will be able to:

Import XML metadata and query XML files.

Confirm that the results conform to the XML file specifications.

Overview
Contents of an XML file can be turned into a data service and used as a data source.

In this lab you will create a data service that queries data stored in an XML file. The XML file contains
UNSPSC product category received from third-party vendor.

33.1 Importing XML Metadata and XML Schema Definition
Importing XML metadata and schema definitions is similar to importing relational and Web service
metadata, with some differences.

Objectives
In this lab, you will:

Creat ing Data Serv ices f rom XML F i l es

33-2 Data Services Samples Tutorial

Import XML metadata.

Associate a schema and XML source file with the data service.

Generate a data service that reads XML data for the UNSPSC product category.

Instructions
1. Import the XMLFiles folder into the DataServices project. The folder is located in

<beahome>\weblogic81\samples\LiquidData\EvalGuide.

2. Right click the XMLFiles folder and select Import Source Metadata.

3. Select XML Data from the Data Source Type drop-down list, then click Next.

Figure 33-1 Import XML Data

The Select XML Source window opens.

Figure 33-2 Select XML Source Window

4. Associate a schema file with the data service, by completing the following steps:

33.1 Impor t ing XML Metadata and XML Schema De f in i t i on

Data Services Samples Tutorial 33-3

a. Click Browse, next to the Schema File field. The XMLFiles directory opens in the Select
Schema Files window.

b. Expand the Schemas folder.

c. Select ProductUNSPSC.xsd and click Select.

Figure 33-3 Select Schema File

5. Associate the XML Document with the data service, by completing the following steps:

a. Click Browse, next to the XML Document field. The XMLFiles directory opens in the Select
XML Source File window.

b. Select unspsc.xml and click Select.

Figure 33-4 Select XML Source File

Creat ing Data Serv ices f rom XML F i l es

33-4 Data Services Samples Tutorial

The Select XML Source window is now populated with file information.

Figure 33-5 Populated Select XML Source Window
\

6. Click Next. The Summary window opens.

Figure 33-6 Summary Window

The Summary information includes the following details:

33.2 Tes t ing the XML Data Serv i ce

Data Services Samples Tutorial 33-5

– XML Type, for XML objects whose source metadata will be imported.

– Name, for each data service that will be generated from the source metadata. (Any name
conflicts appear in red; you can modify any data service name to correct an error condition
or to change to a different project-unique name.)

– Location, where the generated data service(s) will reside.

7. Click Finish. A new data service, called ProductUNSPSC.ds, is created in:

DataServices\XMLFiles

33.2 Testing the XML Data Service
After creating an XML data service, you need to confirm that the service is able to return data, based
on the associated XML source file.

Objectives
In this lab, you will:

Build the DataService project.

Execute the productUNSPSC() function.

Compare the test results with the unspsc.xml file.

Instructions
1. Build the project containing the ProductUNSPSC data service.

2. Open ProductUNSPSC.ds in Test View.

3. Test the data service by completing the following steps:

a. Select productUNSPSC() from the Function drop-down list.

b. Click Execute.

c. Confirm that you can retrieve data, as displayed in Figure 33-7.

Creat ing Data Serv ices f rom XML F i l es

33-6 Data Services Samples Tutorial

Figure 33-7 XML Data Service Test Results

4. 4.In the Application pane expand the XMLFiles folder and open the unspsc.xml file.

5. Confirm that the test results conform to the specifications in the XML file.

33.2 Tes t ing the XML Data Serv i ce

Data Services Samples Tutorial 33-7

Figure 33-8 XML Elements

Lesson Summary
In this lesson, you learned how to:

Access data in an XML file.

Confirm that the results conform to the contents of the XML file.

Creat ing Data Serv ices f rom XML F i l es

33-8 Data Services Samples Tutorial

Data Services Samples Tutorial 34-1

T U T O R I A L 34

Creating Data Services from Flat Files

Flat files, such as spreadsheets, offer a highly adaptable means of storing and manipulating data,
especially data that needs to be quickly changed. Flat files are simply treated as another data source
that ALDSP can use to generate metadata and create a data service.

Objectives
After completing this lesson, you will be able to:

Create a data service that can access data stored in a flat file.

Associate the flat file data service with a logical data service.

Overview
Flat files, such as spreadsheets, often support a text format called CSV or Comma Separated Values.
Such file formats typically have a .csv extension.

34.1 Importing Flat File Metadata
The flat file must be in a ALDSP project, before a data service can be generated. As part of the import
process, you must provide a schema name, a file name, or both.

Objectives
In this exercise, you will:

Creat ing Data Se rv ices f rom F la t F i l es

34-2 Data Services Samples Tutorial

Create a data service that queries data stored in a flat file. The flat file contains customer
valuation data received from an internal department that deals with customer scoring and
valuation models. The file contains the following fields:

Customer_id

Valuation_date

Valuation_score

Instructions
1. Right-click the DataServices folder and import the FlatFiles folder, which is located in

<beahome>\weblogic81\samples\LiquidData\EvalGuide.

2. Import source metadata by completing the following steps:

a. Right-click the FlatFiles folder and select Import Source Metadata.

b. Select Delimited Data from the Data Source Type drop-down list, then click Next.

c. Ignore the Schema field.

d. Click Browse, next to the Delimited Source field.

e. Select Valuation.csv and click Select.

f. Confirm that the Has Header checkbox is enabled.

By selecting this option, you specify that the header data, which is usually located in the
first row of the spreadsheet, will not be treated as data within the generated data service.

g. Confirm that the Delimited radio button is enabled. By enabling this option, you specify that
the data is separated by a specific character, rather than a fixed width such as 10 spaces.

h. Confirm that a comma (,) is in the Delimiter field. If data is delimited, then you must specify
what character is used to delimit the data. Although the default is a comma, any ASCII
character is supported.

i. Click Next. The Summary dialog box opens.

j. Click Finish. A new data service called Valuation.ds is created in the
DataServices\FlatFiles.

3. Open the Valuation.ds file in Design View.

34.2 Tes t ing Your F la t F i l e Data Serv ice

Data Services Samples Tutorial 34-3

4. Open Valuation.ds in Design View and confirm that there is a Valuation function. This
function will retrieve all data from the flat file.

Figure 34-1 Design View of the Data Service Based on a Flat File

 34.2 Testing Your Flat File Data Service
After creating the data service, you need to confirm that the service is able to return data, based on
the associated delimited source file.

Objectives
In this exercise, you will:

Build the DataService project.

Execute the Valuation function.

Instructions
1. Right-click the DataServices folder.

Creat ing Data Se rv ices f rom F la t F i l es

34-4 Data Services Samples Tutorial

2. Choose Build DataServices.

3. Open Valuation.ds in Test View.

4. Test the data service by completing the following steps:

a. Select Valuation() from the Function drop-down list.

b. Click Execute.

5. Confirm that you can retrieve data, as displayed in Figure 34-2. Notice that the return element is
introspected. That is based on the header information in the Valuation.csv file.

Figure 34-2 Test Results—Flat File Data Service

34.3 In teg ra t ing F lat F i l e Va luat ion w i th a Log ica l Data Serv i ce

Data Services Samples Tutorial 34-5

34.3 Integrating Flat File Valuation with a Logical Data
Service

At this point, you are able to pull data from the flat file. However, integrating the flat file data service
into a logical data service lets you retrieve multiple sources of information.

Objectives
In this exercise, you will:

Modify a function to retrieve data from a flat file physical data service.

View the results in both XQuery Editor View and Source View.

Instructions
1. Open CustomerProfile.ds under DataServices/CustomerManagement/CustomerProfile in

XQuery Editor View.

2. Select getAllCustomers() from the Function drop-down list.

3. In the Data Services Palette, expand the FlatFiles and Valuation.ds folders.

4. Drag and drop Valuation() into XQuery Editor View.

5. Create a simple mapping by dragging and dropping the VALUATION_DATE and VALUATION_TIER
elements (valuation node) onto the corresponding elements in the Return type.

6. Create a join. Drag and drop the CUSTOMER_ID element (Customer node) onto the
corresponding element in the Valuation node. The final layout should be similar to that shown in
Figure 34-3:

Creat ing Data Se rv ices f rom F la t F i l es

34-6 Data Services Samples Tutorial

Figure 34-3 XQuery Editor View of Flat File Data Service Integrated with Logical Data Service

7. Open CustomerProfile.ds in Source View and confirm that the following mapping have
been created:

34.4 Tes t ing an In tegra ted F la t F i l e Data Serv ice

Data Services Samples Tutorial 34-7

Figure 34-4 Source View of Flat File Data Service Integrated with Logical Data Service

34.4 Testing an Integrated Flat File Data Service
Testing the function lets you confirm that the data is correctly retrieved.

Objectives
In this exercise, you will:

Test the getAllCustomers function.

View the results.

Instructions
1. Open CustomerProfile.ds in Test View.

2. Select getAllCustomers() from the Function drop-down list.

3. Click Execute.

4. Confirm that you can retrieve valuation information.

Creat ing Data Se rv ices f rom F la t F i l es

34-8 Data Services Samples Tutorial

Figure 34-5 Test View of Integrated Flat File Data Service

5. (Optional) Use the getCustomerProfile function, enter CUSTOMER3 in the Parameter field, and
click Execute.

Note: Ensure that the user has access to run the getCustomerProfile function by checking the
security settings in the ALDSP Console.

Lesson Summary
In this lesson, you learned how to:

Import a CSV file containing valuation information.

Create a flat file physical data service.

Integrate the flat file physical data service with a logical data service.

Data Services Samples Tutorial 35-1

T U T O R I A L 35

Creating an XQuery Function Library

In any ALDSP project you can create XQuery libraries containing functions which can be used by any
data service in your application. An XQuery function library is ideal for containing transformation and
other types of functions without the overhead of having to build a data service. An XQuery function
library can also be used to hold security functions which, in turn, can be used by any data service.

Objectives
After completing this lesson, you will be able to:

Create and use XFL functions.

View the results.

Overview
An XQuery Function Library (XFL) contains user functions that return discrete values, such as string,
integer, or calendar. These functions are useful for data manipulation at query execution time.

35.1 Creating an XQuery Function Library
In this lesson, you will “encrypt” a customer's SSN to hide its value. As part of this process you will be
modifying the getCustomerProfile() query function.

Creat ing an XQue ry Funct ion L ib rar y

35-2 Data Services Samples Tutorial

Objectives
In this exercise, you will:

Import a Java file into the DataServices project.

Import source metadata.

Test the function

Instructions
1. Create a new folder in the DataServices project and name it xfl.

2. Import protectSSN.java in the xfl folder. The file is located in:

samples\liquiddata\EvalGuide

3. Build the DataServices project.

4. Import source metadata into the xfl folder by completing the following steps:

a. Right-click the xfl folder and choose Import Source Metadata.

b. Select Java Function from the Data Source Type drop-down list and click Next.

c. Browse and select DataServices\xfl.protectSSN in the Class Name field and click Next.

Figure 35-1 Selecting the Java File

d. Select the protectSSN function, and then click Add.

35.1 Creat ing an XQuer y Funct ion L ib ra ry

Data Services Samples Tutorial 35-3

Figure 35-2 Selecting the Java Function

e. Accept the default settings in the Select Side Effect Procedures window and click Next.

f. Click Next. The Summary window opens.

Creat ing an XQue ry Funct ion L ib rar y

35-4 Data Services Samples Tutorial

Figure 35-3 imported Java Metadata Summary

g. Click Finish.

5. Test the function, by completing the following steps:

a. Open library.xfl in Test View.

b. Select protectSSN from the Function drop-down list.

c. Insert any number in the Parameter field; for example, 3.

d. Click Execute. The test should return 999-99-9999, regardless of the input parameter.

35.2 Us ing the XQuery Funct i on L ibrar y in an XQue ry

Data Services Samples Tutorial 35-5

Figure 35-4 XQuery Function Library Test

35.2 Using the XQuery Function Library in an XQuery
Adding an XQuery Function Library file to an XQuery.

Objectives
In this exercise, you will:

Add the protectSSN.xfl file to an XQuery.

Test the query.

View the results.

Instructions
1. Build the DataServices project.

2. In the ALDSP-console, navigate to:

DataServices\CustomerManagement\CustomerProfile

3. Click Admin and then Security.

Creat ing an XQue ry Funct ion L ib rar y

35-6 Data Services Samples Tutorial

4. Click the Access Policy icon for getCustomerProfile().

5. Remove the users Bob and Joe from the Policy Statement list.

6. Test the getCustomerProfile() function without the protectSSN function by completing
the following steps:

a. Open CustomerProfile.ds in Test View.

b. Select getCustomerProfile() from the function drop-down list.

c. Enter CUSTOMER3 in the Parameter field.

d. Confirm that the query returns a valid SSN.

7. Set SSN protection, by completing the following steps:

a. Open CustomerProfile.ds in Source View.

b. Expand the getAllCustomers node.

c. Locate the SSN return code within the getAllCustomers() function. It should be as
follows:

<ssn?>{fn:data($CUSTOMER/SSN)}</ssn>

d. In Data Services Palette, expand the xfl and library.xfl folders.

e. Drag and drop protectSSN() to the SSN return value.

f. Modify the remaining code, so that it is as follows:

{ssn?{ns9:protectSSN($CUSTOMER/SSN)}</ssn>)}

Note: <a> is the renamed element. You can use any name for the element, but for the
sake of clarity, we used the simple <a> name.

8. Test the getCustomerProfile() function with the protectSSN function, by completing the
following steps:

a. Open CustomerProfile.ds in Test View.

b. Select getCustomerProfile() from the function drop-down list.

c. Enter CUSTOMER3 in the parameter field. The query should return an invalid social security
number.

35.2 Us ing the XQuery Funct i on L ibrar y in an XQue ry

Data Services Samples Tutorial 35-7

Figure 35-5 Test View of Protected SSN

Lesson Summary
In this lesson, you learned how to:

Create a XFL function.

Use the XFL function within a query.

Creat ing an XQue ry Funct ion L ib rar y

35-8 Data Services Samples Tutorial

Data Services Samples Tutorial Glossary-1

Glossary

ad-hoc query. A hand-coded or generated query that is passes to Data Services Platform on the fly,
rather than stored in the ALDSP repository.

administration console. A Web-based administration tool that an administrator uses to configure and
monitor WebLogic Servers. ALDSP provides a console to help manage instances of Data Services
Platform.

application. A collection of all resources and components deployed as a unit to an instance of
WebLogic Server. The application contains one or more projects, which in turn contain the folders and
files that make up your application. Only one application can be open at a time.

cache. The location where ALDSP stores information about commonly executed stored queries for
subsequent, efficient retrieval, thereby enhancing overall system performance. ALDSP provides query
plan cache and result set cache.

cache policy. In the result set cache, configuration settings determine when the cached results expire
for individual stored queries.

data model. A visual representation of data resources.

data object. In SDO, a complex type that holds atomic values and references to other data objects.

data service. A modeled object that describes a data shape and functions used to retrieve and update
the data, as well as functions to navigate to other related data services.

data service mediator. The SDO mediator that uses data services to retrieve and update data.

data service update. The engine responsible for handling submits of changes to SDOs

Glossary

Glossary-2 Data Services Samples Tutorial

data source. Any structured, semi-structured, or unstructured information that can be queried. The
types of data sources that ALDSP can query include relational databases, Web services, flat files
(delimited and fixed width), XML files, Java functions, application views using Web applications
(business-level interfaces to the data in packaged applications such as Oracle, PeopleSoft, or SAP),
data views (dynamic results of ALDSP queries).

data source schema. An XML schema that defines the content, semantics, and physical structure of
a data source.

function. A uniquely named portion of an XQuery that performs a specific action. In the case of ALDSP
the function would typically query physical or logical data.

Java Server Page (JSP). A J2EE component that extends the Servlet class, and allows for rapid
server-side development of HTML interfaces that can be co-mingled with Java.

logical data service. A data service that integrates data from multiple physical and/or logical data
services.

mapping. The process of connecting data source schemas to a target (result) schema.

metadata. Descriptors about a data service’s information, format, meaning, and lineage.

physical data service. The leaf-level data services that expose external data. For relational sources,
this would be a data service representing tables or stored procedures. For functional sources, this
would be the functions that are considered to be the initial source of data operated on by XQuery.

project. Groups related files within an application.

query. In ALDSP an XQuery function that retrieves data from a data source. Functions define what
tasks the query will perform, while expressions define what data to extract.

query operation. Operation that a query performs, such as a join, aggregation, union, or minus.

query plan. A compiled query. Before a query is run, ALDSP compiles the XQuery code into an
executable query plan. When the query executes, the query plan is sent to the data source for
processing.

repository. File-based metadata maintained in a ALDSP project.

result set. The data returned from an executed query. There are two types of result sets: intermediate
result sets are temporary result sets that the query processor generates while processing an analytical
query; final result sets are returned to the client application that requested the query in the form of
XML data.

return type. A type of XML schema that defines the shape of data returned by a query.

schema. A model for representing the data types, structure, and relationships of data sets and queries.

Data Services Samples Tutorial Glossary-3

security. Set of mechanisms available to prevent access to, corruption of, or theft of data. ALDSP
extends the WebLogic Server compatibility security mechanisms to define groups, users, and access
control to ALDSP resources.

service data object (SDO). Defines a Java-based programming architecture and API for data access.

Simple Object Access Protocol (SOAP). An extensible, platform-independent, XML-based protocol
that allows disparate applications to exchange messages over the Web. SOAP can be used to invoke
methods on servers, Web services, application components, and objects in a distributed,
heterogeneous environment. SOAP-based Web services are one of the data sources ALDSP supports.

source schema. XML schema that describes the shape (structure and legal elements) of the source
data—that is, the data to be queried. The ALDSP-enabled server runs queries against source data and
returns query results in the form of the source schema.

stored query. A query that has been saved to the ALDSP repository. There is a performance benefit
to using a stored query because its query plan is always cached in memory, optionally along with query
result. With an ad-hoc query, however, the query plan and result are not cached. In addition, caching
of query results for a stored query is configurable through the Cache tab on the ALDSP node in the
Administration Console.

Structured Query Language (SQL). The standard, structured language used for communicating with
relational databases. Database programmers use SQL queries to retrieve information and modify
information in relational databases. In order to be able to access different types of data sources
dynamically, ALDSP employs the XML-based XQuery language as a layer on top of platform-dependent
query systems such as SQL.

target schema. See return type.

Weblogic Server. The platform upon which ALDSP is built.

Weblogic Workshop. The IDE in which ALDSP runs as an application.

Web service. Business functionality made available by one company, usually through an Internet
connection, for use by another company or software program. Web services are a type of service that
can be shared by, and used as components of, distributed Web-based applications. Web services
communicate with clients (both end-user applications and other Web services) through XML
messages that are transmitted by standard Internet protocols, such as HTTP. Web services endorse
standards-based distributed computing. Currently, popular Web Service standards are Simple Object
Access Protocol (SOAP), Web services description language (WSDL), and Universal Description,
Discovery, and Integration (UDDI).

Glossary

Glossary-4 Data Services Samples Tutorial

Web services description language (WSDL). Specification for an XML-based grammar that defines
and describes a Web service. A WSDL is necessary if two different online systems need to
communicate without human intervention.

xml schema. A structured model for describing the structure, content, and semantics of XML
documents based on custom rules. Unlike DTDs, XML schemas are written in XML data syntax and
provide more support for standard data types and other data-specific features. When metadata about
a data source is obtained, it is stored in an XML schema in the ALDSP repository.

XQuery. An XML query language, which represents a query as an expression which is used to query
relational, semi-structured, and structured data.

xsd. An abbreviation for XML Schema Definition. An XSD file describes the contents, semantics, and
structure of data within an XML document.

	About This Document
	Document Organization
	Technical Prerequisites
	System Requirements
	Data Sources Used Within These Tutorials
	Related Information

	Core (Tutorials 1-17)
	Data Services Platform Development Process

	Advanced (Tutorials 18-35)

	Introducing the Data Services Environment
	1.1 Starting WebLogic Workshop
	1.2 Navigating the ALDSP Integrated Development Environment (IDE)
	Application Pane
	Design View
	XQuery Editor View
	XQuery Editor View Tools
	Source View
	Test View

	1.3 Starting WebLogic Server
	1.4 Stopping WebLogic Server
	1.5 Saving Your Work

	Creating a Physical Data Service
	2.1 Creating an ALDSP Application
	2.2 Creating a Data Services Project
	2.3 Creating Project Sub-Folders
	2.4 Importing Relational Source Metadata
	2.5 Building a Project
	2.6 Viewing Physical Data Service Information
	Viewing XML type
	Viewing Native Data Type
	Instructions

	Viewing XML Schema Definition
	Instructions

	Viewing Generated Functions
	Instructions

	Viewing Data Service Metadata
	Instructions

	2.7 Testing Physical Data Service Functions

	Creating a Logical Data Service
	3.1 Creating a Simple Logical Data Service
	3.2 Defining the Logical Data Service Shape
	3.3 Adding a Function to a Logical Data Service
	3.4 Mapping Source and Target Elements
	3.5 Viewing XQuery Source Code
	3.6 Testing a Logical Data Service Function
	Objectives

	Integrating Data from Multiple Data Sources
	4.1 Joining Multiple Physical Data Services within a Logical Data Service
	4.2 Defining a Where Clause to Join Multiple Physical Data Services
	4.3 Creating a Parameterized Function

	Modeling Data Services
	5.1 Creating a Basic Model Diagram for Physical Data Services
	5.2 Modeling Relationships Between Physical Data Sources

	Accessing Data Services
	6.1 Importing a Web Service Project into the Application
	6.2 Importing Web Service Metadata into a Project
	6.3 Testing the Web Service via a SOAP Request
	6.4 Invoking a Web Service in a Data Service

	Consuming Data Services Using Java
	7.1 Running a Java Program Using the Untyped Mediator API
	7.2 Running a Java Program Using the Typed Mediator API
	7.3 Resetting the Mediator API

	Consuming Data Services using Data Service Controls
	8.1 Installing a Data Service Control
	8.2 Defining the Data Service Control
	8.3 Inserting a Data Service Control into a Page Flow
	8.4 Running the Web Application

	Accessing Data Services Through Web Services
	9.1 Generating a Web Service from a Data Service Control
	9.2 Using a Data Service Control to Generate a WSDL for a Web Service

	Updating Data Services Using Java
	10.1 Modifying and Saving Changes to the Underlying Data Source
	10.2 Inserting New Data to the Underlying Data Source Using Java
	10.3 Deleting Data from the Underlying Data Source Using Java

	Filtering, Sorting, and Truncating XML Data
	11.1 Filtering Data Service Results
	11.2 Sorting Data Service Results
	11.3 Truncating Data Service Results

	Consuming Data Services through JDBC/SQL
	12.1 Running DBVisualizer
	12.2 Integrating Crystal Reports and Data Services Platform
	12.3 (Optional) Configuring JDBC Access through Crystal Reports

	Consuming Data via Streaming API
	13.1 Stream results into a flat file
	13.2 Consume data in streaming fashion

	Managing Data Service Metadata
	14.1 Defining Customized Metadata for a Logical Data Service
	14.2 Viewing Data Service Metadata Using the ALDSP Console
	14.3 Synching a Data Service with Underlying Data Source Tables

	Managing Data Service Caching
	15.1 Determining the Non-Cache Query Execution Time
	15.2 Configuring a Caching Policy Through the ALDSP Console
	15.3 Testing the Caching Policy
	15.4 Determining Performance Impact of the Caching Policy
	15.5 Disable Caching

	Managing Data Service Security
	16.1 Creating New User Accounts
	16.2 Setting Application-Level Security
	16.3 Granting User Access to Read Functions
	16.4 Granting User Access to Write Functions
	16.5 Setting Element-Level Data Security
	16.6 Testing Element-Level Security

	(Optional) Consuming Data Services through Portals & Business Processes
	17.1 Installing a Data Service Control in a Portal Project
	17.2 Testing the Control and Retrieving Data

	Building XQueries in XQuery Editor View
	18.1 Importing Schemas for Query Development
	18.2 Creating Source-to-Target Mappings
	18.3 Creating a Basic Parameterized Function
	18.4: Creating a String Function with a Built-In XQuery Function
	18.5: Creating a Date Function
	18.6: Creating Outer Joins and Order By Expressions
	18.7: Creating Group By and Aggregate Expressions
	18.8: Creating Constant Expressions

	Building XQueries in Source View
	Source View Tools
	19.1 Creating a New XML Type
	19.2 Creating a Basic Parameterized XQuery
	XQuery Code Reference for a Parameterized Function

	19.3 Creating a String Function
	XQuery Code Reference for a String Function

	19.4 Building an Outer Join and Using Order By
	XQuery Code Reference for an Outer Join and Order By Function

	19.5 Creating an Inner Join and a Top N
	XQuery Code Reference for Inner Join and Top N Function

	19.6 Creating a Multi-Level Group By
	XQuery Code Reference for Multi-Level Group By Function

	19.7 Using If-Then-Else If
	XQuery Code Reference for If-Then-Else Function

	19.8 Creating a Union and Concatenation
	XQuery Reference Code for Union and Concatenation Operation

	Implementing Relationship Functions and Logical Modeling
	20.1 Implementing and Testing a Relationship Function
	20.2 Creating a Model Diagram for Logical Data Services

	Running Ad Hoc Queries
	21.1 Creating an Instance of the PreparedExpression Class
	21.2 Defining Ad Hoc Query Parameters
	21.3 Testing the Ad Hoc Query
	Code Reference for an Ad Hoc Query

	Creating Data Services Based on SQL Statements
	22.1 Creating a Data Service from a User-Defined SQL Statement
	22.2 Testing Your SQL Data Service

	Performing Custom Data Manipulation Using Update Override
	23.2 Creating an Update Override
	23.3 Associating an Update Override to a Logical Data Service
	23.4 Testing the Update Override

	Updating Web Services Using Update Override
	24.1 Creating an Update Override for a Physical Data Service
	24.2 Writing Web Service Update Logic in the Update Override
	24.3 Testing the Update Override
	24.4 Checking for Change Requirements

	Overriding SQL Updates Using Update Overrides
	25.1 Adding SQL Update Statements to an Update Override File
	25.2 Associating an SQL-Based Data Service and Update Override
	25.3 Testing Updates

	Understanding Query Plans
	26.1 Viewing the Query Plan
	26.2 Locating the SQL Statement in a Query Plan
	26.3 Locating XML Elements

	Reusing XQuery Code through Vertical View Unfolding
	27.1 Unfolding Vertical View
	27.2 Testing a Vertical File Unfolding

	Configuring Alternatives for Unavailable Data Sources
	28.1 Setting the Demonstration Conditions
	28.2 Configuring Alternative Sources
	28.3 Testing an Alternative Source

	Enabling Fine Grained Caching
	29.1 Enabling Function-Level Caching for a Physical Data Service
	29.2 Testing the Caching Policy
	29.3 Testing Performance Impact

	CreatingXQueryFilters to Implement Conditional Logic Security
	30.1 Creating User Groups
	30.2 Writing the XQuery Security Function
	30.3 Activating the XQuery Function for Security
	30.4 Testing the XQuery Security Function

	Creating Data Services from Stored Procedures
	Handling Stored Procedure Row Sets
	31.1 Importing a Stored Procedure into the Application
	31.2 Importing Stored Procedure Metadata into a Data Service

	Creating Data Services from Java Functions
	32.1 Accessing Data Using WebLogic’s Embedded LDAP Function
	32.2 Accessing Excel Spreadsheet Data Using JCOM
	32.3 (Optional) Accessing Data Using an Enterprise Java Bean

	Creating Data Services from XML Files
	33.1 Importing XML Metadata and XML Schema Definition
	Objectives

	33.2 Testing the XML Data Service

	Creating Data Services from Flat Files
	34.1 Importing Flat File Metadata
	34.2 Testing Your Flat File Data Service
	34.3 Integrating Flat File Valuation with a Logical Data Service
	34.4 Testing an Integrated Flat File Data Service

	Creating an XQuery Function Library
	35.1 Creating an XQuery Function Library
	35.2 Using the XQuery Function Library in an XQuery

	Glossary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

