
BEAAquaLogic
Enterprise
Security™®

Policy Managers Guide

Version 2.1
Revised: January 18, 2006

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT,
GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE
USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY,
RELIABILITY, OR OTHERWISE.

Third-Party Software License Agreement
Sun Microsystems, Inc.’s XACML implementation v2.0
Copyright © 2003-2004 Sun Microsystems, Inc. All Rights Reserved.

This product includes Sun Microsystems, Inc.’s XACML implementation v2.0, which is governed by the following terms:

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistribution of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistribution in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of Sun Microsystems, Inc. or the names of contributors maybe used to endorse or promote products
derived from this software without specific prior written permission.

This software is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
HEREBY EXCLUDED. SUN MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL NOT BE LIABLE
FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS
BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,

CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS
OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS
SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You acknowledge that this software is not designed or intended for use in the design, construction, operation or
maintenance of any nuclear facility.

For all third-party software license agreements, see the 3rd_party_licenses.txt file, which is placed in the
\ales21-admin directory when you install the AquaLogic Enterprise Security Administration Server.

Trademarks or Service Marks
BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data
Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service Registry,
BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA WebLogic
Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security,
BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic
JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server, BEA WebLogic
Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup Edition, BEA
WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support is a
service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual property rights
reserved by third parties.

All other trademarks are the property of their respective companies.

Policy Managers Guide v

Contents

1. Policy Overview
What is an AquaLogic Enterprise Security Policy?. 1-1

Policy Components . 1-2

Resources . 1-4

Virtual Resources . 1-6

Resource Attributes. 1-6

Privilege Groups . 1-6

Privileges . 1-7

Identities. 1-7

Identity Attributes . 1-8

Groups. 1-9

Users . 1-10

Roles . 1-10

Policies . 1-10

Role Mapping Policies . 1-10

Authorization Policies. 1-12

Delegation Policies . 1-13

Summary of Policy Differences . 1-14

Declarations . 1-14

Constants. 1-15

Enumerated Types. 1-15

Attributes . 1-15

vi Policy Managers Guide

Evaluation Functions . 1-16

2. Writing Policies
Policy Implementation Tasks . 2-1

Access Decision Process . 2-4

Authentication Service . 2-4

Role mapping Service . 2-4

Authorization Service . 2-5

Credential Mapping Service. 2-5

Authorization and Role Mapping Engine . 2-5

Using the Administration Console to Write Policies . 2-7

Administration Console Overview. 2-7

Defining Resources . 2-8

Virtual Resources . 2-12

Resource Attributes. 2-12

Privileges . 2-12

Privilege Groups . 2-14

Defining Identities . 2-14

Identity Attributes . 2-17

Groups. 2-17

Users . 2-19

Roles . 2-19

Metadirectory . 2-20

Writing Authorization and Role Mapping Policies . 2-21

Role Mapping Policies . 2-21

Authorization Policies. 2-22

Role Mapping Policy Reports. 2-22

Authorization Policy Reports . 2-23

Policy Managers Guide vii

Defining Declarations. 2-23

Binding Policies . 2-25

Deploying Policies . 2-25

3. Advanced Topics
Designing More Advanced Policies . 3-1

Multiple Components . 3-2

Policy Constraints. 3-2

Comparison Operators. 3-3

Regular Expressions . 3-4

Constraint Sets. 3-6

String Comparisons . 3-7

Boolean Operators. 3-7

Associativity and Precedence . 3-8

Grouping with Parentheses . 3-9

Boolean Operators and Constraint Sets. 3-10

Declarations . 3-10

Constant Declarations . 3-11

Enumerated Type Declarations . 3-13

Attribute Declarations . 3-15

Evaluation Function Declarations . 3-22

Closed-world Security Environment . 3-25

Policy Inheritance. 3-25

Group Inheritance . 3-25

Direct and Indirect Group Membership . 3-26

Restricting Policy Inheritance . 3-26

Resource Attribute Inheritance . 3-26

WebLogic Resource Type Conversions . 3-27

viii Policy Managers Guide

 Web Server Applications . 3-29

Resource Format . 3-30

Action Format . 3-30

Application Context . 3-30

Header Context Key (HEADERNAME) . 3-31

 Query Context Key (VARNAME). 3-32

Cookie Context Key (COOKIENAME) . 3-32

Using Named Keys in the Web Application Policy . 3-32

Web Application Context Handler . 3-32

Retrieval of Response Attributes . 3-33

Using Response Attributes . 3-33

report() Function . 3-34

report_as() Function. 3-35

Report Function Policy Language . 3-35

Using Evaluation Plug-ins to Specify Response Attributes. 3-36

Using queryResources and grantedResources. 3-37

4. Importing and Exporting Policy Data
Introduction . 4-1

Creating Policy Data Files for Importing . 4-2

Policy Element Naming . 4-2

Fully Qualified Names . 4-3

Policy Element Qualifiers . 4-4

Size Restriction on Policy Data . 4-5

Character Restrictions in Policy Data . 4-6

Special Names and Abbreviations . 4-11

Sample Policy Files . 4-12

Application Bindings [binding] . 4-13

Policy Managers Guide ix

Attribute [attr] . 4-14

Declarations [dec] . 4-15

Directories [dir] . 4-16

Directory Attribute Schemas [schema] . 4-16

Mutually Exclusive Subject Groups [excl] . 4-17

Resources [object] . 4-17

Resource Attributes [object] . 4-18

Policy Distribution [distribution] . 4-19

Policy Inquiry [piquery] . 4-19

Policy Verification [pvquery] . 4-20

Privileges [priv]. 4-21

Privilege Bindings [privbinding]. 4-21

Privilege Groups [privgrp] . 4-22

Role [role] . 4-22

Rule [rule] . 4-22

Distribution Targets . 4-23

Subject Group Membership [member] . 4-23

Subjects [subject] . 4-24

Resource Discovery . 4-25

Subject Transformation . 4-27

Resource Transformation . 4-28

WebLogic Resource Transformation. 4-29

Java API Resource Transformation. 4-30

Action Transformation . 4-31

Attribute Transformations . 4-31

What’s Next? . 4-33

Importing Policy Data . 4-33

Policy Import Tool . 4-33

x Policy Managers Guide

Configuring the Policy Import Tool . 4-34

Setting Configuration Parameters . 4-34

Sample Configuration File . 4-39

Running the Policy Import Tool. 4-41

Understanding How the Policy Loader Works. 4-42

Exporting Policy Data . 4-42

Policy Exporter Tool . 4-43

Before You Begin. 4-43

Exporting Policy Data on Windows Platforms . 4-44

Exporting Policy Data on UNIX Platforms . 4-45

What’s Next . 4-46

Upgrading an Administration Server to AquaLogic Enterprise Security 2.1 4-47

Index

Policy Managers Guide xi

About This Document

This section covers the following topics:

“Audience for this Document”

“Prerequisites for this Document”

“How this Document is Organized”

“Product Documentation on the dev2dev Web Site”

“Related Information”

“Contact Us!”

Audience for this Document
This document is intended for application developers who are tasked with developing security
policies using the BEA AquaLogic Enterprise Security products and security administrators who
are implementing the policy. The reader should also be familiar with the policy model used by
BEA AquaLogic Enterprise Security and described in the Introduction to BEA AquaLogic
Enterprise Security.

The audiences for this document include:

Application developers—Application developers should be familiar with the business
policies for their company, including resource access control policies and privileges
granted or denied to users of applications and resources.

{DOCROOT}/secintro/index.html
{DOCROOT}/secintro/index.html

About Th is Document

xii Policy Managers Guide

Security administrators—Security Administrators have a general knowledge of security
concepts. They can identify security events in server and audit logs. They are tasked with
implementing security policy, configuring security providers, and implementing
authentication, authorization, role mapping, credential mapping, auditing and failover
policies.

Prerequisites for this Document
Prior to reading this document, you should read the Introduction to BEA AquaLogic Enterprise
Security. This document provides an overview of the product and includes conceptual
information.

Additionally, BEA AquaLogic Enterprise Security includes many unique terms and concepts that
you need to understand. These terms and concepts—which you will encounter throughout the
documentation—are defined in the Glossary.

How this Document is Organized
This document is organized as follows:

Chapter 1, “Policy Overview,”describes the different types of policies, describes how to
design policies and provides general information about audiences and related information.

Chapter 2, “Writing Policies,” describes how to use the Administration Console to write
policies.

Chapter 3, “Advanced Topics,” describes how to write more advanced and complex
policies.

Chapter 4, “Importing and Exporting Policy Data,” describes how to create policy data
files for importing policy, how to import and export policy data to from and to the policy
database.

Product Documentation on the dev2dev Web Site
BEA product documentation, along with other information about BEA software, is available
from the BEA dev2dev web site:
http://dev2dev.bea.com

To view the documentation for a particular product, select that product from the Product Centers
menu on the left side of the screen on the dev2dev page. Select More Product Centers. From the
BEA Products list, choose AquaLogic Enterprise Security 2.1. The home page for this product is

{DOCROOT}/secintro/index.html
{DOCROOT}/secintro/index.html
{DOCROOT}/glossary/index.html
http://dev2dev.bea.com

Re la ted In fo rmat ion

Policy Managers Guide xiii

displayed. From the Resources menu, choose Documentation 2.1. The home page for the
complete documentation set for the product and release you have selected is displayed.

Related Information
The BEA corporate web site provides all documentation for BEA AquaLogic Enterprise Security.
Other BEA AquaLogic Enterprise Security documents that may be of interest to the reader
include:

Introduction to BEA AquaLogic Enterprise Security—This document provides an overview,
and conceptual and architectural information for the BEA AquaLogic Enterprise Security
products.

Administration and Deployment Guide—This document describes tasks associated with
deploying and managing AquaLogic Enterprise Security.

Integrating with the ALES Application Environment—This document describes important
tasks associated with integrating AquaLogic Enterprise Security into application
environments.

Programming Security for Java Applications—This document describes how to implement
security in Java applications. It include descriptions of the security service Application
Programming Interfaces (API) and programming instructions for implementing security in
Java applications.

Programming Security for Web Services—This document describes how to implement
security in web server applications. It include descriptions of the Web Services Application
Programming Interfaces (API) and programming instructions for implementing security in
web server applications.

Developing Security Providers for BEA AquaLogic Enterprise Security —This document
provides security vendors and security and application developers with the information
needed to develop custom security providers.

Javadocs for Java API—The Javadocs provide reference material for the Java Application
Programming Interfaces (API) that are provided with and supported by this release of BEA
AquaLogic Enterprise Security.

Wsdldocs for Web Services API—The Wsdldocs provide reference material for the Web
Services API that are provided with and supported by this release of BEA AquaLogic
Enterprise Security.

{DOCROOT}/secintro/index.html
{DOCROOT}/integrateappenviron/index.html
{DOCROOT}/programmersguide/index.html
{DOCROOT}/webservicesprogrammersguide/index.html
{DOCROOT}/dvspisec/index.html
{DOCROOT}/javadocs/JavaAPI/index.html
{DOCROOT}/javadocs/WsdlAPI/wsdldoc/index.html
{DOCROOT}/admindeployguide/index.html

About Th is Document

xiv Policy Managers Guide

Javadocs for the Business Logic Manager API—The javadocs for the Business Logic
Manager (BLM) provide reference material for the BLM API. The BLM can be used to
define security policy which can then be deployed using the Administration Console.

Javadocs for Security Service Provider Interfaces—The Javadocs provide reference
material for the Security Service Provider Interfaces (SSPI) that are provided with and
supported by this release of BEA AquaLogic Enterprise Security.

Contact Us!
Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using, as well as
the title and document date of your documentation. If you have any questions about this version
of BEA AquaLogic Enterprise Security, or if you have problems installing and running BEA
AquaLogic Enterprise Security, contact BEA Customer Support through BEA WebSupport at
http://www.bea.com. You can also contact Customer Support by using the contact information
provided on the Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

{DOCROOT}/javadocs/BlmAPI/blmdoc/index.html
{DOCROOT}/javadocs/SSPI/index.html
http://www.bea.com

Policy Managers Guide 1-1

C H A P T E R 1

Policy Overview

This section covers the following topics:

“What is an AquaLogic Enterprise Security Policy?” on page 1-1

“Policy Components” on page 1-2

“Resources” on page 1-4

“Identities” on page 1-7

“Policies” on page 1-10

“Declarations” on page 1-14

What is an AquaLogic Enterprise Security Policy?
AquaLogic Enterprise Security is a fine-grained entitlements engine that allows the user to
centrally define and manage a set of policies to control access for both application software
components (for example URLs, EJBs, and EJB methods) as well as the application business
objects (for example accounts and patient records) that make up the application. A set of access
control policies is evaluated and enforced locally in the application container so application
context can be included as part of the access control decision. A major benefit of using
AquaLogic Enterprise Security to implement access control is that it allows you to remove
security logic from the application. This enables you to take access control decisions out of the
hands of your developers and define and manage access control consistently across multiple
applications.

Po l icy Overv iew

1-2 Policy Managers Guide

Policies are statements that work together to define access control for your business resources. A
resource is any object that represents an underlying application or application component that
needs to be protected from unauthorized access. A well-written set of policies accurately
represents the access control requirements for your business, is easy to manage, and is designed
for maximum efficiency.

You write separate policies to grant or deny access privileges to your business resources to users,
groups, and roles under some set of conditions, or constraints. Therefore, before you begin to
write policies, you must know the access control requirements of your business, the resources that
are to be protected, who the users are and their responsibilities, and what privileges the users are
to have on the resources.

There are three types of policies, authorization policies, role mapping policies, and delegation
policies, each type having a different function.

Authorization policies—authorization policies, also referred to as access policies, define
what users, groups, or roles have what privileges on what resources. Authorization policies
are used to define the access control for application software components (for example,
URLs, JSPs, EJBs, and so on), as well as business objects (such as accounts, customer
records, and similar items) in the application.

Role mapping policies—Define what users and groups belong to what roles for what
resources. You use role Mapping policies to define how, when, and under what constraints
roles are assigned to what users and groups.

Delegation policies—Once you have written authorization policies and role mapping
policies, you can then write delegation policies. Privileges and roles can be delegated.
Typically, delegation policies are used to define the constraints under which a privilege or a
role that was previously granted to one user is granted to another user, however, the time
period for the delegation can be indefinite. You can use delegation policies to assign access
privileges previously granted to one user to another user, group, role. You can also use
delegation policies to assign roles previously granted to the one user to another user or
group.

Policy Components
All policies follow a syntax that is similar to English grammar. The structure of a policy is similar
to a sentence and the policy elements can be thought of as parts of the sentence.

The general syntax for an AquaLogic Enterprise Security policy is as follows:

Effect (privilege|role, resource, policy subject, delegator) IF
constraint;

Po l i cy Components

Policy Managers Guide 1-3

A single policy can have multiple privileges, resources, and policy subjects defined.

The functions of each policy component are as follows:

The Effect can be to grant, to deny, or to delegate a privilege or role. A policy can grant,
deny, or delegate a privilege or role on a given resource to a subject under some set of
constraints. Grant is used to assign a privilege or a role to an subject. Deny is used to deny
a privilege or a role from an subject. Delegate is used to assign a privilege or a role that
has been granted to one subject to another subject.

Privilege|role—a privilege is an action on a resource. A role is name that can be assigned
to a set of users, similar to a group. Authorization policies assign privileges. Role mapping
policies assign roles. Delegation policies can delegate privileges or roles.

A resource is a protected object.

A policy subject can be users, groups, or roles. For authorization policies, policy subjects
can be users, groups, or roles. For role mapping policies, policy subjects can be users or
groups.

A delegator is a user, or subject, whose privilege or role is being delegated, or assigned, to
another policy subject. Delegation policies that delegate privileges can delegate the
privileges from one user to other users, groups, or roles. Delegation policies that delegate
roles can delegate the role to other users or groups. You cannot delegate a role from one
user to role.

Constraints are conditions that must be true for the policy to evaluate to true. A broad
range of operators and functions can be used to define constraints, but in general,
constraints are made up of attribute/value pairs with some comparison operator. Individual
constraints can also be combined with logical operators such AND, OR, and NOT.
Conditions can include a date, a time, a time period, a day of the week, a day of the month,
a day of the year, a location, and other attributes. You may also write custom attributes and
use them as conditions. In addition to attributes that you may define specifically for users
and groups and then use them as conditions, you can also define different types of
declarations and use them as conditions.

Policies must adhere to the following rules:

Parentheses enclose the privilege or role, resource, policy subject, and delegator, as a
group.

Commas separate the privilege or role, resource, subject, and delegator.

A delegator cannot be a group or a role.

Po l icy Overv iew

1-4 Policy Managers Guide

The delegator portion of a policy is only used delegation policies.

A delegator must be a user, not a group or role.

For authorization policies, policy subjects can users, groups, and roles, however, for role
mapping policies, policy subjects are limited to users and groups. Roles cannot be used as
policy subjects in role mapping policies.

You may not delegate to a role to a role, only to a user or group.

The keyword IF indicates a constraint.

All policies end with a semicolon.

Resources
A resource is simply an object used to represent an underlying application or application
component (or any resource), that can be protected from unauthorized access using authorization
policies. Resources are often hierarchical in nature. Resources can be specific application
software components managed by the container (for example URLs, EJBs, JSPs, and so on) or
any business object in the application. Resources may have attributes, for example bank accounts
have owners and transfer limits. Resources are hierarchical and child resources inherit policies
and attributes from their parent.

Resources

Policy Managers Guide 1-5

When defining resources you start by defining the top-level resource in the resource tree and then
define the resources that make up the tree. Once a resource is defined, you can write authorization
policies to grant or deny access privileges to users, groups, or roles for the top-level resource and
resources on the tree. Hence, defining a resource tree is a necessary prequisite to writing policies.
For example, if you define a resource named TellerApp (see Figure 1-1), you can then write an
authorization policy that grants or denies access privileges to the TellerApp resource.

Figure 1-1 Resource Mapping

Some typical resources that you might want to secure, include:

An application, an application window, or a dialog box

Specific business transactions, such as a money transfer or security trade

Application controls, such as buttons and menu selections

Database or directory server structures

Web pages, servlets, and Enterprise Java Beans (EJB)

Products or services accessed through a BEA WebLogic Portal

Note: In development mode, you may use the Resource Discovery tool to help define resources
for a particular application. For more information, see “Resource Discovery” on
page 4-25.

For more information about resources, see the following topics:

“Virtual Resources” on page 1-6

“Resource Attributes” on page 1-6

Po l icy Overv iew

1-6 Policy Managers Guide

“Privilege Groups” on page 1-6

“Privileges” on page 1-7

Virtual Resources
In addition to the resources that you define in the resource tree, you have the option of defining
virtual resources, which do not appear in the resource tree. This feature offers some flexibility as
to the levels of resource hierarchy that must be included in the resource tree so that protections
can be assigned. Once you configure a resource to allow virtual resources, any resources below
it, that is, its child resources, are, in effect, virtual resources and are protected by the same policies
as their parent, even though they do not appear in the resource tree. For example, configuring a
resource to allow virtual resources enable policies to be evaluated on resources below the
resource which are not explicitly defined inside in the resource tree. For example, if a directory
is configured in the resource tree to allow virtual resources, the Authorization and Role Mapping
Engine (ARME) can process access requests on files in of the directory even if the files are not
explicitly listed in the resource tree.

Resource Attributes
You can associate attributes with resources. An attribute contains information about a
characteristic of the resource to which it is associated. Thus, you can use attributes to define
additional information about a resource. For example, filetype could be a resource attribute
that you use to define an html, image, jsp, or pdf file type. Then, you could grant access to all pdf
files in a directory by adding the condition: if filetype = pdf.

Privilege Groups
Simply stated, a privilege group is constructed by grouping two or more privileges. A privilege
can belong to more than one privilege group. In addition to the privilege groups that are provided
in the product, you can define your own with distinct characteristics. Privilege groups are not
used in policies. They are simply a way to organize privileges and have no meaning when writing
a policy and are only provided to simplify the task of choosing the right privilege.

It is common to define a privilege group that applies to a particular application or set of
transactions. You can control access to privilege groups (those provided in the product and those
that are user-defined) through delegated administration.

I dent i t i es

Policy Managers Guide 1-7

Privileges
A privilege represents an action or task in your business policy that can be executed on a resource.

What actions can a user can perform on a resource?

Privileges are actions that are granted or denied on a resource. Privileges can be standard actions
associated with specific software components (for example Get and Post for a URL) or a custom
action for a business object in an application (for example, transfer for a bank account). The
privileges that may be granted or denied on a particular resource are limited by the operations
supported by the resource. For example, a simple text file may support Read, Write, Copy, Edit,
and Delete operations. Similarly an executable (.exe) may support operations such as Copy,
Delete, and Execute. A more complex resource may support far more complex privileges. For
example, a checking account application may support operations such as deposit, withdrawal,
view account balance, view account history, transfer to savings, and transfer from savings.

In addition to the privileges that are provided in the product, you can define your own privileges.
You can also organize privileges into logical groups for ease of management.

You use privileges to write authorization polices as follows:
grant(privilege, resource, policy subject[users, groups, roles]) IF
constraint;

For example, if you have the business security requirement: "Only lead tellers can open an
account," you might define an OpenAccount privilege and a LeadTellers role. Now, to grant
LeadTellers (the role) the authority to open an account (the privilege), the authorization policy
might look like this:

grant(//priv/OpenAccount, //app/policy/TellerApp, //role/LeadTellers)
if time24 in [900..1700] AND
dayofweek in [Monday..Friday];

With this policy is deployed, only tellers who are assigned the LeadTellers role are allowed to
used the TellerApp to open an account between the hours of 9:00 AM and 5:00 PM (a
time-of-day constraint) on Monday through Friday (a days-of-the-week constraint).

Identities
Identity definition includes the definition of directories, users, groups, and roles. An identity
directory serves as a logical container for a collection of identity attributes, users, groups, and
roles. An identity directory typically represents a set users, groups, and roles. Therefore, the first
step in defining identities is to define the directory. Once you have defined the identity
information, you can use it to write authorization policies and role mapping policies. In

Po l icy Overv iew

1-8 Policy Managers Guide

authorization and role mapping policies, the user identity (users, groups, roles) is defined in the
policy subject.

You may define multiple identity directories. The number of directories you define depends on
the level of granularity needed to separate your user community. You may want to have one
global directory containing all users. In this case, you can populate a single directory using
multiple external repositories. Having one directory for all users requires that you have a unique
name for each user and group across all of your identity repositories. If you cannot guarantee this
when you integrate your identity repositories, then you should probably maintain separate
directories. For example, you might have one directory for customers, one for employees, and
one for partners.

The following topics describe user identity components:

“Identity Attributes” on page 1-8

“Groups” on page 1-9

“Users” on page 1-10

“Roles” on page 1-10

Identity Attributes
A user or group can contain attributes that further describe their characteristics—who they are
and what they can do; these are referred to as identity attributes. You can use these identity
attributes to define dynamic constraints for a role to which a user or group belongs. For example,
consider that account balance is an attribute of a user. To allow customers with an account
balance over $100,000 to access the premier banking features of your application, you define
accountbalance as an attribute and apply it to each customer in the bankusers group (sgrp).
Next, you define the premierbanking role and write a role mapping policy that only allows
access to the application if the customer is in the premierbanking role. Then you write an
authorization policy that defines the privileges you want to allow on the bankapp resource and
define the policy subject as the role premierbanking.

Grant(//role/premierbanking,//app/policy/bankapp,
//sgrp/bankusers/customers/) if accountbalance > 100000

This role mapping policy allows customers who are assigned the premierbanking role to access
the resource called bankapp if they have an accountbalance of over $100,000.

I dent i t i es

Policy Managers Guide 1-9

Groups
A group is typically a collection of users that have something in common, such as a department,
a job function, or a job title. For example, a group named Accounting might contain users in the
accounting department. It is important to realize that this does not directly reflect what access
rights they have. A group can contain either users or other groups; users who are assigned to a
group are called group members. Nested memberships of groups within a group form a hierarchy.
Group membership can be assigned only from within the same directory. Groups have a static
identity, or name, which you assign.

If a group has subgroups and an authorization policy grants certain privileges to a group, the
members of subgroups will have the same privileges. This is true because each member of a
subgroup is by default a member of the parent group.

In addition to managing groups in the policy database, AquaLogic Enterprise Security can use
group membership information from a corporate directory. Typically, a group hierarchy is based
on an organizational model of the company, although this is not a requirement. For example, the
source of your user data might be an employee database, where users belong to four groups: the
employee group, the Sales department group, the London office group, and the star-salesmen
group.

Thus, you want to create groups of users, whose tasks are related and for whom the policy
enforcement is the same. In the following example (see Figure 1-2), Tellers are assigned to the
Teller Group.

Figure 1-2 Users and Groups

Determine the identity
of each teller.

Users

Teller Group
Create a group of tellers. This group is

typically established through an
external application.

Apply attributes for
each user.

Attributes

Po l icy Overv iew

1-10 Policy Managers Guide

Users
A user corresponds to an individual who makes a request to access a resource, although a user
can also be an automated process that accesses a resource. You can assign users to groups from
the same directory. Each user within a directory must have a unique identity or user name. Users
can be associated with certain characteristics or attributes that contain information about the user.
Keep in mind that it may be more efficient to write policies that apply to a collection of users
defined as a role or a group. AquaLogic Enterprise Security supports both.

Roles
A role is a set of privileges that can be assigned to a user or group. The actual access privileges
assigned to a role are defined by the authorization policy that you write for the role. You write a
role mapping policy to assign the role to users and/or groups, thereby granting the access
privileges defined by the authorization policy. Once you have written a role mapping policy to
assign the role to a user or a group, you can also write a delegation policy to delegate the role
from one user to another user or group. Like groups, roles allow you to restrict access to resources
for many users or groups at once. However, unlike groups, roles are computed dynamically at
runtime based on role mapping policies. Additionally, roles can be associated with specific
resources in an application.

Policies
To specify the access control requirements for your resources you write a set of policies that may
include role mapping policies, authorization policies, and delegation policies.

The following topics describe the different types of policies:

“Role Mapping Policies” on page 1-10

“Authorization Policies” on page 1-12

“Delegation Policies” on page 1-13

“Summary of Policy Differences” on page 1-14

Role Mapping Policies
Role Mapping policies define when and which to grant roles to users and/or groups for a
particular resource.

Po l ic i es

Policy Managers Guide 1-11

The basic format of a role mapping policy is as follows:

grant|deny(role, resource, policy subjects[users, groups]) IF
constraints;

Where the grant|deny portion is the policy effect and either allows or prohibits the role to the
policy subject for the given resource, the role defines the role, the resource is the application
or application component to which the role is scoped, policy subjects specify which users
and groups belong to the role, and constraints define any conditions that apply to the role.

For example:

GRANT(//role/accountants, //app/policy/acme/payroll,
//user/acme/Bill/);

grants the accountants role to bill on the payroll resource.

At runtime, user access privileges are computed based on the roles the user has been assigned—
either explicitly or through a role mapping policy—at the time an access request is made. Unlike
groups, which are relatively static and persist for duration of the runtime session, roles are highly
dynamic and are assigned to users by processing role mapping policies. Role mapping
significantly reduces the number of policies required and makes features like role delegation
easier to manage.

A role may apply to one or more users and groups and usually refers to some set of related tasks.
For example, a group of bank tellers might have access to the same set of applications (resources)
to perform specific banking tasks; thus, you might have a role called TellerRole and assign the
BankTellers group to that role. Figure 1-3 shows a group of tellers who belong to a Teller group
that has membership in the CustomerService role that, in turn, has access to the Teller resource.
The privileges, or actions, allowed on that resource are defined by an authorization policy, which
you also define. Now, anyone who is not in the CustomerService Role does not have access to
the Teller resource. You can also apply restrictions and conditions to limit access to the resource
at runtime by defining the constraints such as time-of-day or day-of-the-week on the role
mapping policy and/or the authorization policy.

Po l icy Overv iew

1-12 Policy Managers Guide

Figure 1-3 Role Mapping Policy

Authorization Policies
What the user is allowed to do to this resource?

The syntax of an authorization policy is as follows:

grant|deny(privilege, resource, policy subjects[users, groups, roles])
IF constraints;

Where the grant|deny portion is the policy effect and either allows or prohibits the privilege to
the policy subject for the given resource, the privilege defines the privilege, resource defines
the application or application component of the privilege, policy subjects specify which
users, groups, and roles are granted the privilege, and constraints defines any conditions that
apply to the privilege.

For example, the policy:

GRANT(//priv/any, //app/policy/acme/payroll, //user/acme/agarcia/);

grants any privileges supported by the acme payroll application (the resource) to the user
agarcia in the acme directory. And, the policy:

GRANT(//priv/any, //app/policy/acme/payroll, //role/accountants/);

grants any privileges supported by the acme payroll application (the resource) to the role
accountants so only users and groups who have been granted the accountants role are
granted this privilege. Therefore, before anyone can gain this privilege, a role mapping policy has
to be written and deployed that grants this role to a user or a group.

Role Mapping
Tellers

Teller Resource

Determine who is a teller.

Determine which resources the
role can access and write an
Authorization policy to grant
privileges for the role to that

resource.

Teller Group
Create a group of tellers. This group is

typically established through an
external application.

CustomerService Role
Create a role and write a role
mapping policy that assigns
theTeller group to that role.

Po l ic i es

Policy Managers Guide 1-13

It is important to note that by default, all access to a resource is denied until an authorization
policy is written and deployed that explicitly grants an access privilege, or an entitlement, on that
resource to a user, group, or role. If the authorization policies only grants an entitlement on a
resource to a role, then a role mapping policy must be written and deployed that assigns a user or
a group the defined role.

If an authorization policy denies a previously granted entitlement, the deny takes precedence over
the grant. Explicit DENY authorization policies cannot be overruled. A practical use of a DENY
policy is to explicitly deny an entitlement to ensure that a user or group can never gain access to
a specific resource. For example, the DENY authorization policy:

DENY (//priv/view, //app/policy/acme/payroll,
//sgrp/acme/receptionist/);

denies the view privilege related to the acme payroll application to everyone belonging to the
group named receptionist in the acme directory.

Delegation Policies
The syntax of a delegation policy is as follows

DELEGATE (privilege|role, resource, policy subject, delegator) IF
constraint;

A DELEGATE policy that delegates a privilege allows you to share the privileges of one user with
another user, group, or role. You may also add a constraint that restricts this sharing to a certain
time of day or day of the week, for example:

DELEGATE (//priv/any, //app/policy/acme, //user/acme/joe/,
//user/acme/larry/) if dayofweek in [Monday..Friday];

At runtime, this policy delegates any privileges that larry (the delagator) has on the acme
application to joe if the day of the week is Monday, Tuesday, Wednesday, Thursday, or Friday.

A DELEGATE policy that delegates a role allows you to share a role of one user with another user
or group. You may also add a constraint that restricts this sharing to a certain time of day or date
range, for example:

DELEGATE (//role/accountants, //app/policy/acme, //user/acme/joe/,
//user/acme/bill/) IF ThisMonth = December;

delegates the role accountants on the acme application from bill (the delagator) to joe at
runtime if the current mouth is December.

Note: Before a delegator’s privilege or role can be delegated, the ARME must verify that the
delegator has the privilege or role to be delegated on the specified resource. To perform

Po l icy Overv iew

1-14 Policy Managers Guide

the verification, the ARME uses information about the delegator (password, groups,
roles) that is stored in the policy database to build a Subject for the delegator. If the
database does contain the required information, the delegation policy will not be
executed.

Summary of Policy Differences
Table 1-1 summarizes the functions of authorization and role mapping policies and highlights the
differences.

Declarations
A declaration is a variable that represents either a predefined value (for example, days of the
week) or a value that is dynamically defined at runtime (the date). You use declarations in policies
as attributes. To help you design policies, built-in declarations are pre-defined for your use. You
can also define custom declarations to suit your requirements.

You can define four types of declarations:

Table 1-1 Summary of Policy Differences

Policy Component Authorization Policy Role Mapping Policy

Effect (Grant,
Deny, or Delegate)

GRANT permits the specified privilege
to a user, group, or role.

DENY denies the privilege to a user,
group, or role.

GRANT permits the specified role to the
specified user or group.

DENY denies the role to the specified user
or group.

Privilege The privilege granted or denied. NA

Role NA The role granted or denied.

Resources The resource to which the privilege is
granted or denied.

The resource to which the role is granted or
denied.

Policy Subjects The user, group, or role to which the
privilege is granted or denied.

The user or group to which the role is
granted or denied.

Delegator The user whose privilege is delegated. The user whose role is delegated.

Constraints Conditions under which the privilege is
granted, denied, or delegated.

Conditions under which the role is granted,
denied, or delegated.

Dec la rat ions

Policy Managers Guide 1-15

“Constants” on page 1-15

“Enumerated Types” on page 1-15

“Attributes” on page 1-15

“Evaluation Functions” on page 1-16

Constants
A constant is a named value or set of values that does not change at runtime. You can reference
constants in policies. For example, if you set a constant named Rate to 12, policies can then refer
to the constant Rate rather than using its literal value, 12. Using constants in policies makes them
more readable and makes changes to values that are used across of set policies easier

Constants are especially useful if the value changes periodically and you use the constant in more
than one location. For example, if you enter a rate value 12 into multiple policies, you need to
individually change each one. Instead, if you use the constant Rate, you can edit the value once
and have it take effect in every policy that refers to the constant.

Enumerated Types
An enumerated type is a type that consists of a predefined list of values from which you create
constants and multi-valued attributes. The product comes with a number of predefined
enumerated types and allows you to define your own. For example, you could define the
enumerated type "color" with the values of "red", "green", or "blue".

Attributes
Attributes represent characteristics that define dynamic values, users, groups, and configurations.
Attributes may be associated with users or groups (identity attributes), resources (resource
attributes), or policy requests (dynamic attributes). Attributes may be descriptive, may be used to
configure policy engine behavior or manage delegated administration, or used in forming policy
as part of the policy constraint.

Attributes must have a defined type, which denotes the range of legal values that it may have. A
number of predefined types exist: such as string, integer, date, time, IP address, or you can use
custom enumerated types. The value of the attribute may be assigned to only one instance of an
attribute. An attribute may be a multi-valued list.

Po l icy Overv iew

1-16 Policy Managers Guide

Evaluation Functions
An evaluation function is a named function that you can use in a policy constraint to perform
more advanced operations. Each function may have a number of parameters and returns a
Boolean result of true of false.

AquaLogic Enterprise Security provides a number of pre-defined evaluation functions and also
allows you to declare your own custom evaluation functions. You can use a predefined function
in your application by using a plug-in extension that a programmer creates specifically for your
application. To use an evaluation function you must register it as a plug-in with the authorization
and role mapping providers used in the Security Service Module (SSM) configuration and declare
it in a policy.

Policy Managers Guide 2-1

C H A P T E R 2

Writing Policies

The following topics are covered in this section:

“Policy Implementation Tasks” on page 2-1

“Using the Administration Console to Write Policies” on page 2-7

Policy Implementation Tasks
To write and deploy a set of policies, perform the following tasks (see Figure 2-1):

1. Task 1: Define security requirements for your business.

2. Task 2: Define resources. Determine which resources you want to protect and define them
in a resource tree. Resources include the resources to be protected, the resource attributes,
the privileges, or actions, that will be used to access the resources, and, optionally, privilege
groups.

3. Task 3: Define an identity directory and the identity attributes, users, groups, and roles that
are to make up the directory. Optionally, metadirectories can be used to import user
identities from remote repositories.

4. Task 4: Define declarations to use with the resources and identities and as constraints in
authorization policies, role mapping policies, and delegation policies.

5. Task 5: Write role mapping policies that control which users and groups have membership
in specific roles, under what constraints, and on which resources.

Wri t ing Po l i c ies

2-2 Policy Managers Guide

6. Task 6: Write authorization policies to define which privileges apply to each resource,
under what specific conditions, or constraints, and which roles a user or group must have
membership in so as to be granted the defined privilege to the specified resource.

7. Task 7: Bind the top-level resource and the identity directory to the authorization and role
mapping providers configured in the security configuration. By doing this you choose
which Security Service Module (SSM) enforces policies for these resources.

8. Task 8: Deploy the set of policies to the SSM. The SSM starts enforcing policies only after
they are deployed.

Po l icy Implementa t ion Tasks

Policy Managers Guide 2-3

Figure 2-1 Policy Implementation Tasks

While the subsequent sections of this document describe how to use the Administration Console
to define and manage role mapping and authorization policies, you may also use the Business
Logic Manager (BLM) as it offers the same capabilities.

For instructions on using the Administration Console to perform policy implementation
tasks, see “Using the Administration Console to Write Policies” on page 2-7.

For instructions for using the BLM, see the Javadocs for the Business Logic Manager.

Define Resources
(Resource Tree, Privileges)

Write Authorization Policies

Bind Resources and Identity Directory
to Authorization and Role Maping

Providers

Deploy Policy Set to the SSM

Define the Security Requirements
(Resources, Privileges, Users)Task 1

Task 2

Task 6

Task 7

Task 8

Define Identities
(Directory, Users, Groups, Roles)Task 3

Write Role Mapping PoliciesTask 5

Define DeclarationsTask 4

{DOCROOT}/javadocs/BlmAPI/blmdoc/index.html

Wri t ing Po l i c ies

2-4 Policy Managers Guide

Access Decision Process
For a user to gain access to a resource, AquaLogic Enterprise Security provides the following
services and components:

 “Authentication Service” on page 2-4

“Role mapping Service” on page 2-4

“Authorization Service” on page 2-5

“Credential Mapping Service” on page 2-5

“Authorization and Role Mapping Engine” on page 2-5

Authentication Service
The authentication service is responsible for authenticating the user. There are two ways a user
can be authenticated.

One way is that the authentication service tells the container what type of credentials are
required and then the SSM authenticates those credentials with an external source like a
directory or database. ALES supports a wide range of authentication stores and an API is
also provided to write custom authentication modules.

The other way to identify the user is via identity assertion. The ALES SSM authentication
service provides a means for plugging in an Identity Assertion service that can be used to
validate a token that is provided by an external system. Several Web single sign-on vendors
provide IdentityAssertion plug-ins for ALES.

You can configure multiple authentication services to authenticate, assert identity, and collect
additional group or attribute information at authentication time.

Once the user is authenticated, the service will create a subject object. The subject can contain
one or more user principles with attribute information, one or more group principles for the
groups in which the user has membership, and any attributes associated with those groups. The
subject is provided to the authorization and role mapping services.

Role mapping Service
Given the subject, which is provided by the authentication service, the role mapping service
evaluates the role mapping policies to determine if a user or group is granted a role on the
requested resource. Roles provide a level of abstraction between users and the privileges that they

Access Dec is i on P rocess

Policy Managers Guide 2-5

have in a given context (within an application). Role mapping policies can be time-based so that
users can delegate their privileges for a limited time (for example, when they go on vacation).
Roles are always associated with resources and be can granted broadly or granted only in the
context of a particular application resource.

Authorization Service
The actual authorization decision is made (isAccessAllowed) based on identity, group, role
membership.

The Authorization Service evaluates access control policies to determine what a user can do on a
particular resource. Policies can include constraints that the authorization service evaluates
against static data, such as user attributes that are retrieved when a user is authenticated. The
authorization service can also evaluate constraints against dynamic data that is retrieved at
runtime when the policy is evaluated. Further, the authorization service can take application
context (for example, EJB parameter values) into account at evaluation time. The authorization
service can return authorization decisions or entitlements through the report function.

The authorization service supports the use of multiple authorization providers. This allows you
to use ALES in conjunction with an existing entitlements system. ALES can be used to add new
capabilities while preserving the existing access control logic. When multiple authorization
providers are used, a custom adjudicator is required to determine the outcome when conflicts
occur between authorization providers.

Credential Mapping Service
The credential mapping service provides a mechanism to address enterprise single sign-on to
back office systems. This service can map user identity to an appropriate set of credentials for
authentication to back office applications like PeopleSoft, SAP, and relational databases. This
service can also be used to remove the need to embed credentials within application code. ALES
can support a number of identity token formats, such as SAML, to represent the user’s identity.

Authorization and Role Mapping Engine
At runtime, the Authorization and Role Mapping Engine (ARME)—located in the Security
Service Module instance on which the polices are deployed—uses the role mapping,
authorization, and delegation policies to make access control decisions and grant or deny access
to users.

Wri t ing Po l i c ies

2-6 Policy Managers Guide

Figure 2-2 shows the access control decision process. As illustrated, before you can write policies
to define access control for your business resources, you must define those resources, the
associated user identity, and, optionally, any custom declarations you may want to use. Once
resources and user identify are defined and the policies are written, they do not take effect until
they are bound to the Authorization and Role Mapping providers in an Security Service Module
(SSM) configuration and deployed to an Authorization and Role Mapping Engine (ARME). The
ARME runs on an instance of an SSM. At runtime, user requests to perform actions on specific
resources are processed using role-based access control (RBAC) to determine whether the user is
granted the requested access (isAccessAllowed).

Figure 2-2 Access Control Decision Process

Groups
Roles

Directories

Resources, User
Identity, and
Declarations

Role Mapping
Policies

Authorization
Policies

User Requests Runtime Access
Control Decisions

Authorization and Role Mapping
Engine (ARME)

Runtime
Computation

of Roles

Constraints

Metadirectories

Users
Attributes

Identity

Privileges
Privilege Groups
Attributes

Resources

Constants

Enumberated
Types

Attributes

Declarations

Avaluation
Functions

(resource,
subject,
action)

Resources

Delegation Policy

Policy Subjects (Users, Groups,
Roles)

Constraints

User

Role Mapping
Policy

Roles

Resources

Policy Subjects (Users,
Groups,)

Resources

Authorization Policy

Policy Subjects (Users, Groups,
Roles)

Constraints

Privileges

Delegator

Delegation
Policies

Privileges|Role

Us ing the Admin is t rat i on Conso le to Wr i te Po l i c i es

Policy Managers Guide 2-7

Using the Administration Console to Write Policies
A set of policies control what actions users can perform on resources. A set of policies can be
applied to a single resource, an entire application, or implemented globally as a structured
collection of entitlements for your organization, representing the superset of all of your
application policies.

The following sections describe the components of AquaLogic Enterprise Security policies as
presented in the Administration Console and how you write security policies using the
Administration Console:

“Administration Console Overview” on page 2-7

“Defining Resources” on page 2-8

“Defining Identities” on page 2-14

“Writing Authorization and Role Mapping Policies” on page 2-21

“Defining Declarations” on page 2-23

“Binding Policies” on page 2-25

“Deploying Policies” on page 2-25

Administration Console Overview
Figure 2-3 shows how the Administration Console represents the various policy components.
You use the Security Configuration node to configure security providers for the SSM and to bind
the set of policies to the security configuration. You use the Resources, Identity, Policy, and
Declarations nodes to write policy. Then you use the Deployment node to deploy the policy set
and the security configuration to the SSM.

Wri t ing Po l i c ies

2-8 Policy Managers Guide

Figure 2-3 Administration Console

Defining Resources
A resource is a general term that refers to an entity or group of entities that you can protect.
Resources can include applications, data, or system components. Resources may also include
background services with which the user has no direct interaction.

Us ing the Admin is t rat i on Conso le to Wr i te Po l i c i es

Policy Managers Guide 2-9

Figure 2-4 shows the expanded Resource node in the Administration Console.

Figure 2-4 Expanded Resource Node

Clicking Resources displays all of the resources that are defined in the right pane (see Figure 2-5).

Figure 2-5 Defined Resources

The Administration Console displays resources in a tree structure called a resource hierarchy. A
page generated from a Java Server Page (JSP) is an example of an application resource. The page
can call EJBs or COM resources to execute some business logic. The back office services that
transfer money between accounts, issue a payment, or run a report are also resources, although
they may not appear on the web page or execute on the application server.

Wri t ing Po l i c ies

2-10 Policy Managers Guide

An administrator may define as many resources and levels in the hierarchy as needed to represent
data, services, and system components within an application.
Individual resources in the hierarchy are also called nodes and the type of node can convey additional
information about the resource. Table 2-1 lists and describes the types of nodes that you can configure using
the Administration Console.

Table 2-1 Types of Nodes Supported

Node Type Console
Icon

Description

Organizational You use organizational nodes to represent organizational structure with
the goal of enforcing uniform access control across multiple applications.

Note: An organizational node can be configured as a distribution point
and to allow virtual resources.

Application You use application nodes to represent a collection of applications that
provide a specific set of services. An application node can also be used to
represent an application with a single component, such as a desktop
spreadsheet application.

Note: An application node can be configured as a distribution point and
to allow virtual resources.

Binding You use binding nodes to represent applications. When you configure the
security providers you can use a binding node to bind the authorization
and role mapping providers to the application resource tree.

Note: A binding node can be configured as a distribution point and to
allow virtual resources.

Us ing the Admin is t rat i on Conso le to Wr i te Po l i c i es

Policy Managers Guide 2-11

Any resource at or above a binding node can be configured as a distribution point for policies.
When a distribution, or deployment, is initiated, you can choose to distribute either all updates
(by selecting the root node) or you can limit which updates are distributed by selecting resources
using the nodes that are configured as distribution points. Only updates that were made at and
below the selected nodes are distributed.

Some typical resources that you might want to secure, include:

An application, an application window, or a dialog box

Specific business transactions, such as a money transfer or security trade

Application controls, such as buttons and menu selections

Database or directory server structures

Web pages (URLs), servlets, and Enterprise Java Beans (EJB)

Products or services available through the BEA WebLogic Portal

For instructions on how to define a resource, log into the Administration Console, access the
console Help, find Resources in the left pane, and click Creating a Resource.

The following topics provide more information on configuring resources:

Binding
Application

You can use binding application nodes to represent applications. When
you configure the security providers you can use a binding application
node to bind the authorization and role mapping providers to the
application resource tree.

Note: A binding application node can be configured as a distribution
point and to allow virtual resources.

Resource You use resource nodes to represent subcomponents of your application.
Resource nodes can be used to represent any object within an application,
such as data, services, and system components, to which you might want
to control access. A binding node or a binding application node can have
as many resource nodes as needed at as many levels in the resource
hierarchy as necessary. Thus, resource nodes can have other resource
nodes as children.

Note: A resource node can be configured to allow virtual resources, but
it cannot be configured as a distribution point.

Table 2-1 Types of Nodes Supported

Wri t ing Po l i c ies

2-12 Policy Managers Guide

“Virtual Resources” on page 2-12

“Resource Attributes” on page 2-12

“Privileges” on page 2-12

“Privilege Groups” on page 2-14

Virtual Resources
Any resource defined in the resource tree can be configured as a virtual resource. Once you
configure a resource to allow virtual resources, any resources below it, that is, its child resources,
are, in effect, virtual resources and are protected by the same policies as their parent, even though
they do not appear in the resource tree. For example, given a resource hierarchy URL such as
http://www.myname.com/private/dir1/dir2/, if you create the resource tree up to
http://www.myname.com/private and then configure private to allow virtual resources,
dir1 and dir2 are automatically protected by the access control policies you assign to private,
without having to add dir1 and dir2 as explicit resources on the resource tree or assigning them
explicit policies.

To configure a resource as virtual, select a resource in the resource tree, click Configure, and set
the Allow Virtual Resources check box to on.

Resource Attributes
A resource attribute is represented by the icon in the Administration Console (see
Figure 2-4). All resources can have attributes, which store information about the resources to
which they belong. For example, you may create resource attributes to specify resource owner,
type of resource, creation date, and so on.

Attributes are inherited by child resources from their parent. If a resource explicitly sets the value
for an attribute, this value overrides the inherited one.

For instructions on how to create a resource attribute, log into the Administration Console, access
the console Help, find Resource Attributes in the left help pane, and click Creating a Resource
Attribute.

Privileges

A privilege is represented by the key icon in the Administration Console (see Figure 2-4)
and is an action that you can perform on a resource. For instance, execute is a typical application
privilege; and read and write are typical file-system privileges.

Us ing the Admin is t rat i on Conso le to Wr i te Po l i c i es

Policy Managers Guide 2-13

You can use the privileges provided or you can create your own. Figure 2-6 shows how privileges
appear in the Administration Console. Notice that each privilege refers to an action. A related
collection of privileges may be organized into a privilege group for management purposes.

For instructions on how to create privileges, log into the Administration Console, access the
console Help, find Resources-->Privileges in the left help pane, and click Creating a Privilege.

Figure 2-6 Privileges Representation in the Administration Console

Wri t ing Po l i c ies

2-14 Policy Managers Guide

Privilege Groups

A privilege group is represented by the keys icon in the Administration Console (see
Figure 2-4) and allows you to organize privileges into logical groups for ease of management. For
example, it is common to define a privilege group that applies to a particular application or set of
transactions. Privilege groups can be used as filters when constructing policies, although they
cannot appear directly in a policy. Figure 2-7 shows an example of how privilege groups and their
associated privileges appear in the Administration Console.

For instructions on how to create privilege groups, log into the Administration Console, access
the console Help, find Resources-->Privilege Groups in the left help pane, and click Creating a
Privilege Group.

Figure 2-7 Privilege Groups Representation in the Administration Console

Defining Identities
The Identity icon represents your directories and user communities in the Administration
Console (see Figure 2-4). Although BEA AquaLogic Enterprise Security provides tools to

Us ing the Admin is t rat i on Conso le to Wr i te Po l i c i es

Policy Managers Guide 2-15

manage users and groups locally, they are typically managed through an external repository, such
as a Lightweight Directory Access Protocol (LDAP) directory server or a network database. A
virtual view of identity data can be created through the replication and synchronization of the data
using the metadirectory tools. User and group information, along with any attributes, is then
stored as metadata in the policy database and is then available for viewing directly through the
Administration Console.

Wri t ing Po l i c ies

2-16 Policy Managers Guide

Figure 2-8 shows the expanded Identity node in the Administration Console.

Figure 2-8 Expanded Identity Node

A directory typically represents groups of users of a particular application or resource, or users
in a specific location. Each directory has an associated attribute schema. The schema defines the
attributes applied to members of the directory. Figure 2-9 shows how directories are represented
in the Administration Console. In this example, there is one directory: asi and test. The test
directory shows the attributes that are stored for each member of the directory.

Figure 2-9 Directory Representation in the Administration Console

For instructions on how to create directories, log into the Administration Console, access the
console Help, find Identity in the left help pane, and click Creating a Directory.

For more information on configuring identity policy elements, see the following topics:

“Identity Attributes” on page 2-17

“Groups” on page 2-17

“Users” on page 2-19

“Roles” on page 2-19

“Metadirectory” on page 2-20

Us ing the Admin is t rat i on Conso le to Wr i te Po l i c i es

Policy Managers Guide 2-17

Identity Attributes

Identity attributes are represented by the icon in the Administration Console (see
Figure 2-8). Each user and group can have different characteristics defined as identity attributes.
The type of information or attributes collected—a method typically referred to as profiling—also
varies and typically includes information such as name and address, phone, e-mail address,
personal preferences, and so forth. Identity attributes can be extracted from the external data
source.

An identity attribute is declared specifically to contain identity information. An attribute value
can be used in policies to set limits for that user. Attributes provide a very powerful way to refer
to users and groups indirectly in policies, which results in a more dynamic and versatile policy
set.

Figure 2-10 shows how identity attributes are represented in the Administration Console.

Figure 2-10 Identity Attributes Representation in the Administration Console

For instructions on how to create identity attributes, log into the Administration Console, access
the console Help, find Identity Attributes in the left help pane, and click Creating an Identity
Attribute.

Groups

A group is represented by the icon in the Administration Console (see Figure 2-8) and is a
logical collection of users that share some common characteristics, such as department, job
function, or job title. For example, a company may separate its sales staff into two groups, Sales

Wri t ing Po l i c ies

2-18 Policy Managers Guide

Representatives and Sales Managers, because they want their sales personnel to have different
levels of access to resources depending on their job functions.

A group can contain either users or other groups; users who are assigned to a group are called
group members. Nested memberships of groups within a group form a hierarchy. Group
membership can be assigned only from within the same directory. Groups have a static identity
that an administrator assigns.

Managing groups is more efficient than managing large numbers of users individually. By using
groups, you do not need to define an access control policy for each and every user. Instead, each
user in the group inherits the policies applied to the group; this rule also applies to nested groups.
Granting a permission or role to a group is the same as giving that permission or role to each user
who is a member of the group. For example, an administrator can specify roles for 50 users at one
time by placing the users in a group, and then granting that group the role on a given resource.

Figure 2-11 shows how groups are represented in the Administration Console. Notice that the
BankTellers group contains four members.

Figure 2-11 Group Representation in the Administration Console

For instructions on how to create groups, log into the Administration Console, access the console
Help, find Identity-->Groups in the left help pane, and click Creating a Group.

Us ing the Admin is t rat i on Conso le to Wr i te Po l i c i es

Policy Managers Guide 2-19

Users

A user is represented by the icon in the Administration Console (see Figure 2-8) and
corresponds to an individual who makes a request to access a resource, although a user can be an
automated process that accesses the system. Users are included in an authorization policy by
assigning users to groups, and then assigning that group to a role or assigning the users directly
to roles. Each user within a directory must have a unique identity, or user name.

Users can be associated with certain characteristics, referred to as identity attributes; these
attributes store information about the user. The list of attributes that can be set for a user is
dictated by the attribute schema of the directory to which the user belongs. Figure 2-12 shows an
example of a user representation with identity attributes.

Figure 2-12 User Representation in the Administration Console

For instructions on how to create users, log into the Administration Console, access the console
Help, find Identity-->Users in the left help pane, and click Creating a User.

Roles

Roles are represented by the icon in the Administration Console (see Figure 2-8). A role is
a dynamic alias used to associate users and groups to role-based functional responsibilities. A role

Wri t ing Po l i c ies

2-20 Policy Managers Guide

represents a collection of privileges on a resource. Roles are computed and granted to users or
groups dynamically based on conditions, such as user name, group membership, identity
attributes, or dynamic data, such as the time of day. Roles membership can apply to only specific
resources within a single application or can be applied globally across the enterprise. A role can
also be delegated from one user to another user. Multiple users or groups can be granted a single
security role. Figure 2-13 shows an example of a roles representation.

Figure 2-13 Roles Representation in the Administration Console

For instructions on how to create roles, log into the Administration Console, access the console
Help, find Identity-->Roles in the left help pane, and click Creating a Role.

Metadirectory

Metadirectories are represented by the icon in the Administration Console (see Figure 2-8).
You can use a metadirectory to extract user data from your user repository (for example, an
LDAP server, an Active Directory, a database server, or NT Domain directory) and import that
data into the policy database. As a result, the user, group, roles, and attributes are available and
synchronized, and can be used to enforce dynamic security policies in your applications through
the ASI Authorization and ASI Role Mapping services.

For instructions on how to configure metadirectories, log into the Administration Console, access
the console Help, find Identity-->Metadirectories in the left help pane, and click Configuring a
Metadirectory.

For more information on configuring a metadirectory, see "Configuring Metadirectories" in the
Integrating ALES with Application Environments.

{DOCROOT}/integrateappenviron/metadirectory.html

Us ing the Admin is t rat i on Conso le to Wr i te Po l i c i es

Policy Managers Guide 2-21

Writing Authorization and Role Mapping Policies

The policy node is represented by the icon in the Administration Console (see Figure 2-4).
A set of policies can include three types of policies: role mapping policies, authorization polices,
and delegation policies. Role mapping policies, at a minimum, are written to create roles that
define what policy subjects (user and groups) are assigned to the role for what resources. Role
mapping policies can also include constraints. Authorization policies are written against
resources to define what policy subjects (users, group, or roles) have what privileges on what
resources. Authorization policies can also include constraints. Delegation policies are used to
assign privileges or roles granted to one user to another user.

Figure 2-14 shows the expanded Policy node in the Administration Console.

Note: Delegation policies that assign roles are listed in the console with role mapping policies.
Delegation policies that assign privileges are listed in the console with authorization
policies. Delegation policies are distinguished by the Effect type of DELEGATE as oppose
to GRANT or DENY.

Figure 2-14 Expanded Policy Node

For more information about policies, refer to the following topics:

“Role Mapping Policies” on page 2-21

“Authorization Policies” on page 2-22

“Role Mapping Policy Reports” on page 2-22

“Authorization Policy Reports” on page 2-23

Role Mapping Policies

Role mapping policies are represented by the icon in the Administration Console (see
Figure 2-14) and displays the policies that determine how roles are granted, and to which a user

Wri t ing Po l i c ies

2-22 Policy Managers Guide

or group can be assigned. Role mapping policies are used to grant users or groups membership
into a given role. The membership can be limited based on a number of items including the
resource hierarchy, policy subjects (users and groups), constraints, and delegator. A delegation
policy that delegates a role assigns a role granted to one user (the delegator) on a resource to
another user or group. A role cannot be delegated to a role.

For instructions on how to write role mapping policies, log into the Administration Console,
access the console Help, find Policy-->Role Mapping Policies in the left help pane, and click
Creating a Role Mapping Policy.

Authorization Policies

Authorization policies are represented by the icon in the Administration Console (see
Figure 2-14) and displays the policies that determine what actions can be performed on a
resource. Authorization policies are typically written to grant specific privileges upon specific
resources to a role with a defined set of constraints. An authorization policy represented by a blue

check mark icon in the Administration Console. An authorization policy can define
privileges, resources, policy subjects (users, groups, and roles), constraints, and delegators. A
delegation policy that delegates a privilege assigns the privileges granted to one user (the
delegator) on a resource to another user, group, or role.

For instructions on how to write authorization policies, log into the Administration Console,
access the console Help, find Policy-->Authorization Policies in the left help pane, and click
Creating an Authorization Policy.

Role Mapping Policy Reports

Role Mapping policy reports are represented by the icon in the Administration Console (see
Figure 2-14). Using this function you can create a role mapping policy inquiry and use it to
generate a report that you can use for analysis. You can define inquiries that include a policy
subject list (user and group), a role list, a resource list, and a delegator list. Role mapping policy
inquiries ask this question, What role is granted to a user or group scoped to a particular resource?

For example, let us say that you want to find out who can access a particular resource. You can
run a policy inquiry that simply includes a resource and an Effect type of GRANT. Such an inquiry
produces a complete list of the roles that will be granted to any subject during access to the
defined resource. To narrow the inquiry you can add roles, subjects (users and groups) and
delegators to the inquiry definition.

Us ing the Admin is t rat i on Conso le to Wr i te Po l i c i es

Policy Managers Guide 2-23

For instructions on how to create role mapping policy reports, log into the Administration
Console, access the console Help, find Policy-->Role Mapping Policy Reports in the left help
pane, and click Creating a Role Mapping Policy Report Inquiry.

Authorization Policy Reports

Authorization policy reports are represented by the icon in the Administration Console (see
Figure 2-14). Using this function you can create an authorization policy inquiry and use it to
generate a report that you can use for analysis. Authorization policy inquiries search for
privilege-based policies that match specified characteristics exactly. You can define inquiries that
include a policy subject list (user, group and role), a privilege list, a resource list, and a delegator
list. Authorization policy inquiries ask this question, Who can do what to what resource?

For example, let us say that you want to find out who with a privilege type of GRANT can access
a particular resource. You can run a policy inquiry that simply includes a resource and an Effect
type of GRANT. Such an inquiry produces a complete list of the users for any subject for any role
on the defined resource that has a GRANT privilege type. To narrow the inquiry you can add
privileges, policy subjects (users, groups, and roles) and delegators to the inquiry definition.

For instructions on how to create authorization policy reports, log into the Administration
Console, access the console Help, find Policy-->Authorization Policy Reports in the left help
pane, and click Creating an Authorization Policy Report Inquiry.

Defining Declarations

Declaration are represented by the icon. A declaration is a variable that represents either a
predefined value (for example, days of the week) or a value that is dynamically defined at runtime
(the date). To help you design efficient policies, various built-in declarations are provided for
your use.

Wri t ing Po l i c ies

2-24 Policy Managers Guide

Figure 2-15 shows the expanded Declarations node in the Administration Console.

Figure 2-15 Expanded Declarations Node

There are four types of declarations:

Constants–A named, predefined, static value, or set of values that you can reference in a
policy for a value that does not change at runtime.

Enumerated Types–A type that consists of a predefined list of ordered values from which
you create constants and attributes. The system comes with a number of predefined
enumerated types and you can define your own. For example, you could define the
enumerated type "color" with the values of "red", "green", or "blue".

Attributes–Represents characteristics that define dynamic values, users, groups, resources
and configurations. An attribute has an associated type which may either be a built-in type
(such as string, integer, date) or an enumerated type. For more information, see “Dynamic
Attributes” on page 3-17.

Evaluation Functions–A named function that you can use in a policy constraint to
perform more advanced operations. Each function may have a number of parameters and
returns a Boolean result. There are a number of built-in evaluation functions and you can
declare and use your own custom evaluation functions. Each custom evaluation function
must be registered as a plug-in with the authorization and role mapping engine (ARME)
that uses it. For more information, see “Evaluation Function Declarations” on page 3-22.

For instructions on how to create the different types of declarations, log into the Administration
Console, access the console Help, find Declarations in the left help pane, and click the following
topics:

Creating a Constant

Creating an Enumerated Type

Creating an Attribute

Us ing the Admin is t rat i on Conso le to Wr i te Po l i c i es

Policy Managers Guide 2-25

Creating an Evaluation Function

Binding Policies
You can use the Administration Console to write and deploy a set of policies to protect
application resources. A policy set can include role mapping policies, authorization policies, and
delegation policies that, taken together, define who has access to which resources. You design
and write policies to satisfy the resource access control requirements of your business. Once
written, the policy set must be bound to the authorization and role mapping providers that are
configured for the SSM that you will use to protect your application resources.

To use the Administration Console to bind the policies to the authorization and role mapping
providers, perform the following steps:

1. Open the Security Configuration folder.

2. Open the Service Control Manager folder that contains the Security Service Module whose
providers you want to configure or change.

3. Open the Security Service Module folder that contains the providers you want to configure
or change.

Note: If you have not bound the Security Service Module, open the Unbound Configuration
folder that contains the providers you want to configure.

4. Open the Authorization folder, and click Authorization.

The Authorization page appears.

5. Click the Details tab, enter identity directory you defined when you define the user
identities and the application deployment parent (//app/resource) you defined the
top-level resource, and click Save.

Deploying Policies

Deployment is represented by the icon in the Administration Console. Once you have
designed your policies and configuration, you need to deploy them to the SSM so that they can
be used to protect your resources. You must distribute both policy and configuration data before
they can take effect. You can distribute policy data and configuration data together, or you can
distribute only configuration data as structural changes. After a configuration update, you must
restart the SSM for the new configuration to take effect.

Wri t ing Po l i c ies

2-26 Policy Managers Guide

Before you distribute policies, you choose the distribution point. The distribution point identifies
what portions of the policy updates are distributed.

After the distribution, you can view the results of the policy distribution by clicking on
Distribution Results and Deployment Status. Figure 2-16 shows the expanded Deployment node
in the Administration Console.

Figure 2-16 Expanded Deployment Node

For more information about deployment and instructions on how to distribute policy data and
configuration information, log into the Administration Console, access the console Help, find
Deployments in the left help pane, and click the following topics:

Distributing Policy

Viewing Distribution Results

Viewing Deployment Status

Policy Managers Guide 3-1

C H A P T E R 3

Advanced Topics

This topic describes more advanced aspects of writing role mapping and authorization policies.
The following topics are covered here:

“Designing More Advanced Policies” on page 3-1

“WebLogic Resource Type Conversions and Resource Trees” on page 3-27

“Web Server Applications” on page 3-29

“Using Response Attributes” on page 3-33

“Using queryResources and grantedResources” on page 3-37

Designing More Advanced Policies
All policies, simple or complex, follow the same standard syntax:

GRANT|DENY|DELEGATE (privilege|role, resource, policy subject,
delegator) IF constraint;

You can extend the policy syntax to encompass very complex situations by grouping policies and
adding constraints.

For more information, see the following topics:

“Multiple Components” on page 3-2

“Policy Constraints” on page 3-2

“Declarations” on page 3-10

Advanced Top ics

3-2 Policy Managers Guide

“Closed-world Security Environment” on page 3-25

“Policy Inheritance” on page 3-25

Multiple Components
You are not limited to one role, privilege, resource or subject per policy. You may specify sets
by enclosing them in brackets [] and separating the individual items with commas. For example:

GRANT(any, //app/policy/MyApp, [//user/ORG/USER21/,
//user/ORG/USER22/]);

Policy Constraints
A constraint is a statement that limits when or under what circumstances permission is granted,
denied or delegated. All constraints start with the keyword IF. Simple constraints usually contain
two values separated by an operator. The following example shows an authorization policy with
a simple constraint:

GRANT(//priv/any, //app/policy/MyApp, //sgrp/ORG/allusers/) IF
purchaseAmount < 2000;

In this policy, any user of the resource MyApp who is in the ORG directory is allowed to spend
any amount less than $2000.

Constraints are very useful because they allow your application to have different responses based
on dynamic application, data, business environment, or real-time conditions. For example, you
might use a constraint to grant a user access to a resource only during certain hours of the day.

To limit the user in the previous example to having privileges only in December and January, you
would add the constraint:

IF month IN [december, january]

To limit the user to accessing the application from a computer with a particular static IP address,
you would add the constraint:

IF clientip = 207.168.100.1

Several types of attributes are provided that are automatically computed for you (see
“Declarations” on page 3-10).

Once a grant result is determined at runtime by the Authorization and Role Mapping Engine
(ARME) for a particular resource, the rest of the applicable GRANT policies, which may contain
additional constraints, are ignored. Therefore, if your business logic requires the evaluation of

Des ign ing More Advanced Po l i c i es

Policy Managers Guide 3-3

multiple constraints, you must combine them into a complex constraint using an AND operator to
achieve the desired result. For example, given the following two policies:

GRANT(//priv/any, //app/policy/MyApp, //sgrp/ORG/allusers/) IF
purchaseAmount < 2000;

GRANT(//priv/any, //app/policy/MyApp, //sgrp/ORG/allusers/) IF month IN
[december, january];

The conditions under which allusers would be granted access would be determined by which
policy the ARME evaluates first. If the goal is to grant access only if both constraints are true,
you must combine these policies into one policy using the AND operator as follows:

GRANT(//priv/any, //app/policy/MyApp, //sgrp/ORG/allusers/) IF
purchaseAmount < 2000 AND month IN [december, january];

For more information on combining multiple constraints into one policy, see “Boolean
Operators” on page 3-7.

The following topics provide more information on constraints:

“Comparison Operators” on page 3-3

“Regular Expressions” on page 3-4

“Constraint Sets” on page 3-6

“String Comparisons” on page 3-7

“Boolean Operators” on page 3-7

“Associativity and Precedence” on page 3-8

“Grouping with Parentheses” on page 3-9

“Boolean Operators and Constraint Sets” on page 3-10

Comparison Operators
Constraints support the comparison operators listed in Table 3-1.

Table 3-1 Comparison Operators

Symbol Operation Applicable Types

= Equal to All

!= Not equal to All

Advanced Top ics

3-4 Policy Managers Guide

Regular Expressions
There are two comparison operators, LIKE and NOTLIKE, that are used to perform regular
expression matching on attribute values or string literals. This is typically used for pattern
matching on resource names. For example, the following policy provides the GET access privilege
to all JPGs in a web application (//app/policy/MyWebApp).

GRANT(//priv/GET, //app/policy/MyWebApp, //role/webusers)

IF sys_resource LIKE ".*\\.JPG";
The regular expression syntax follows certain policies.

Any character that is not a special character matches itself. Special characters are:

 + * ? . [] ^ $

A backslash (\) followed by any special character matches the literal character. For example:

"*u"

matches "u".

A period (.) matches any character. For example:

".ush"

matches any string containing the set of characters, such as "Lush" or "Mush".

> Greater than All except String

< Less than All except String

=> Greater than or equal to All except String

=< Less than or equal to All except String

LIKE Matches regular expression String

NOTLIKE Does not match regular expression String

IN Included in a list List of any type

NOTIN Not included in a list List of any type

Table 3-1 Comparison Operators (Continued)

Symbol Operation Applicable Types

Des ign ing More Advanced Po l i c i es

Policy Managers Guide 3-5

A set of brackets ([]) indicates a one-character regular expression matching any of the characters
in the set. For example:

"[abc]"

matches either "a", "b", or "c".

A dash (-) indicates a range of characters. For example:

"[0-9]"
matches any single digit.

A caret (^) at the beginning of a set indicates that any character outside of the set matches. For
example:

"[^abc]"

matches any character other than "a", "b", or "c" not including an empty string.

The following policies are used to build a multi-character regular expressions.

Parentheses (()) indicate that two regular expressions are combined into one. For example:

(ma)+

matches one or more instances of "mad's".

The OR character (|) indicates a choice of two regular expressions. For example:

bell(y|ies)

matches either "belly" or "bellies".

A single-character regular expression followed by an asterisk (*) matches zero or more
occurrences of the regular expression. For example:

"[0-9]*"
matches any sequence of digits or an empty string.

A single-character regular expression followed by an plus sign (+) matches one or more
occurrences of the regular expression. For example:

"[0-9]+"
matches any sequence of digits but not an empty string.

A single-character regular expression followed by a question mark (?) matches either zero or one
occurrence of the regular expression. For example:

"[0-9]?"

Advanced Top ics

3-6 Policy Managers Guide

matches any single digit or an empty string.

A concatenation of regular expression matches the corresponding concatenation of strings. For
example:

[A-Z][a-z]*

matches any word starting with a capital letter.

When you use a regular expression that contains backslashes, the constraint evaluator and the
regular expression operation both assume that any backslashes are used to escape the character
that follows. To specify a regular expression that exactly matches "a\a", create the regular
expression using four backslashes as follows:

LIKE "a\\\\a"

Likewise, with the period character "." you need to include two backslashes in the expression:

LIKE "\\."

Constraint Sets
There are two operators, IN and NOTIN, used to test the memberships of sets in your constraint.
A constraint set is a definition of a set of items, notated by one or more values separated by
commas, enclosed in square brackets, and prefaced with either the keyword IN or NOTIN. For
example, rather than writing:

. . . IF NextMonth = january or

. . . NextMonth = february or

. . . NextMonth = march;

You can write:

. . . IF NextMonth IN [january, february, march] ;

The keyword IN means in this set of values, and NOTIN means not in this set of values. Neither
keyword is case sensitive.

You can also specify a range of values in a set of constraints. For example, the statement:

IF age NOTIN[1..100]

says if the age value is not between 1 and 100 (inclusive), then the statement is true. The
keywords IN and NOTIN work well with attributes based on enumerated types and constant sets.

Des ign ing More Advanced Po l i c i es

Policy Managers Guide 3-7

String Comparisons
You can test for specific text strings in your constraints by using the keywords LIKE and
NOTLIKE. For example, assume you have a user attribute called GroupID. This attribute contains
a string of data indicating information about the group the user belongs to:

GroupID = "59NY20BREQ";

To check for and exclude users in the New York office, you can test the GroupID attribute for NY
as follows:

(Grant policy) IF GroupID NOTLIKE "*NY*";

where * represents any number of characters. Similarly, if you want to ensure that the user was
in New York, you can add this constraint:

(Grant policy) IF GroupID LIKE "*NY*";

Similar to IN and NOTIN, LIKE and NOTLIKE are not case sensitive.

To compare a string to a policy element in the constraint, replace the first characters of the
element with a wildcard. Normally, the system does not evaluate a policy element as a string. For
example, to compare a user, enter the constraint using the following format:

IF user like “??user/acme/Joe/";

Boolean Operators
You can build complex policy constraints by using logical operators. Boolean operators allow
you to string multiple constraints together and to have the whole constraint return true only if
certain patterns of the component constraints are true. For instance, if the whole constraint is only
true if both component constraints are true.

If one of them is not true, then the whole constraint is not true, as the following example:

(whole constraint) is true IF (first constraint is true) AND (second
constraint is true)

Or in another example, where it is true if either component is true:

(whole constraint) is true IF (first constraint is true) OR (second
constraint is true)

Boolean operators are nothing more than a way to make these kinds of statements. You can write
a complex Boolean constraint like this:

IF userBudget < 2000 AND ThisMonth = December

This constraint is only true if userBudget is less than $2000 and the current month is December.
Table 3-2 lists the three Boolean operators allowed.

Advanced Top ics

3-8 Policy Managers Guide

The third Boolean operator is NOT, which simply reverses the truth of a constraint. For example,
if you want to make sure it is not December, you can write:

IF NOT ThisMonth = December

The use of these Boolean operators can get as complex as you want. For example, you can have
the following constraint:

IF A AND B OR NOT C

In English, this means, If both A and B are true or if C is not true, then the constraint is true. With
a little thought, that is easy enough, but what about a complex constraint, such as:

IF A AND B OR C AND NOT D

Does it mean, if A and B are true or C is true and D is not true, grant the privilege, or does it
mean, if A and B or C is true and D is not true, grant the privilege, or does it mean something
else?

Associativity and Precedence
One way to decipher Boolean expressions is to understand keyword precedence, the order in
which keywords are evaluated; and, associativity, the direction in which terms are grouped. The
order of precedence is:

1. NOT

2. AND

3. OR

AND and OR are left associative and NOT is right associative. That is, with AND and OR the system
always looks to the immediate left of the keyword for the first value and to the immediate right
for the second value. With NOT, the system only looks to the immediate right because NOT does
not compare two or more values; it affects only one value. If our earlier example is evaluated

Table 3-2 Boolean Operators

Operator Description

AND Each component must be true.

OR At least one component must be true.

NOT The component cannot be true.

Des ign ing More Advanced Po l i c i es

Policy Managers Guide 3-9

using associativity and precedence, it means, If either both A and B are true or if C is true and D
is not, the constraint is true.

Grouping with Parentheses
Rather than remembering the policies about associativity and precedence, the easiest thing to do
is to use parentheses to logically group your AND, OR, and NOT statements.

In the previous example:

IF A AND B OR C AND NOT D

you can evaluate the statement by applying the policies of associativity and precedence or you
can logically group the statements in parentheses as follows:

IF (A AND B) OR (C AND NOT D)

This eliminates ambiguity from the statement. It becomes clear that there are two constraints: (A
AND B) and (C AND NOT D), and that one of those constraints must be true for the statement
to be true because the two statements have an OR between them.

Changing the location of the parentheses can change the meaning of the statement. For example:

IF (A AND B OR C) AND (NOT D)

changes the statement completely. Now there are two constraints: (A AND B OR C) and (NOT
D), in which both must be true for the statement to be true.

You may nest parentheses within parentheses to clarify or change the logic of the statement. For
example:

IF ((A AND B) OR C) AND (NOT D)

is the same statement as the previous example, but it is now even clearer. However, if the
parentheses are changed slightly, as in:

IF (A AND (B OR C)) AND (NOT D)

the meaning completely changes.

To understand complex grouped statements with parentheses, follow these policies:

Evaluate the statements within parentheses first.

If there are nested parentheses, evaluate the inner ones first.

Once the statements in parentheses are evaluated, evaluate the other statements.

If necessary, use associativity and precedence on the simplified statements.

Advanced Top ics

3-10 Policy Managers Guide

Boolean Operators and Constraint Sets
Rather than building long OR or AND statements, you can define sets of constraints for your
policies. A constraint set defines a set of items. For example, rather than writing:

If ThisMonth = january OR ThisMonth = february

OR ThisMonth = march

you can write:

IF ThisMonth IN [january, february, march]

The keyword IN means in this set of values, and NOTIN means not in this set of values.

You can also specify a range of values in a set of constraints. For example, the following
statement:

IF age NOTIN[1..100]

says if the age value is not between 1 and 100 (inclusive), then the statement is true.

The keywords IN and NOTIN work well with attributes based on enumerated types and with
constant sets.

You may be wondering about the value of constraint sets when the constraint statement is nearly
as long as the chain of ORs that you would instead have to write. Besides the ability to specify
ranges of values, the real benefit to constraint sets is that you can predefine them, as a constant
(“Constant Declarations” on page 3-11). Using the previous example:

IF ThisMonth in [january, february, march]

using a predefined a constant list called FirstQuarter, you can write:

IF ThisMonth in FirstQuarter

rather than the longer bracketed statement.

Declarations
Declarations allow you to add new keywords to the policy language. These keywords can
represent new data types, constants, attributes, or evaluation functions. Declaration names must
start with a letter or an underscore. There are four types of declarations:

Constants–States one definition for a value that is used over and over.

Enumerated Types–Defines the structure of the other declarations.

Des ign ing More Advanced Po l i c i es

Policy Managers Guide 3-11

Attributes–Contains data and must have a declared type. There are several types of
attributes, including identity attributes (user and group attributes), resource attributes, and
built-in system attributes.

Evaluation Functions–Returns a true or false value from a plug-in.

For programmers, type declarations are enumerated types. Type declarations declare the
composition of the enumerated type and define an ordered list of acceptable values. Attributes
and evaluation functions declare an instance (variable) of a built-in or enumerated type.
Attributes are based on predefined or user-defined types, and evaluation functions are based on
Boolean types.

For more information on declarations, see the following topics:

“Constant Declarations” on page 3-11

“Enumerated Type Declarations” on page 3-13

“Attribute Declarations” on page 3-15

“Evaluation Function Declarations” on page 3-22

Constant Declarations
A constant is a named value or set of values that does not change at runtime. For instance, if you
set a constant named Rate to 12, policies can then refer to the constant Rate rather than using its
literal value, 12. You use constants to:

Make policies more readable

Make policy-wide value changes easier

Constants are especially useful if the value changes periodically and you use the constant in more
than one location. For example, if you enter a rate value 12 into multiple policies, you need to
individually change each one. Instead, if you use the constant Rate, you can edit the value once
and have it take effect in every policy that refers to it.

Simple Constant
Here are some examples of simple constant declarations:

CONST Insurance = "home";

CONST InterestRate= 12;

Constants can contain other constants in their value:

Advanced Top ics

3-12 Policy Managers Guide

CONST ClosurePoints = 2;

Or even enumerated types:

CONST FavoriteVehicle = Motorcycle;

If you enclose Motorcycle in quotation marks, this constant would contain a string without any
special meaning. If you use Motorcycle without quotation marks, it is recognized as the special
value Motorcycle of type Vehicles.

Constants List
A constant can also contain a list of more than one value. For example, you may define a constant
called MyColors with the values red, green, blue, white and black.

Constant lists differ from enumerated type lists. Types are used to restrict the values an attribute
may contain. For example, an integer may only contain numerals and a constant list is simply a
declared list or range of values with no implied order. A constant list always has an underlying
type. In the previous example, the underlying type is a string. You can also create lists of any
other type.

The rules for defining constant lists are as follows:

Ensure all the constants in a list represent the same data type, including enumerated types.

Use commas to separate the items in the list.

Use brackets [] to enclose the whole list.

Enclose strings in the list with quotation marks.

If values in a list are a range, indicate the range with two dots. For example, [1..100]. A list
of one item is still a valid list, as long as you enclose it in brackets.

Here are some examples of constant lists:

CONST MyPets = ["Dogs", "Cats", "Birds"];

CONST CurrentAge = [1..120];

CONST WorkWeek = [monday..friday];

CONST Transportation = [Motorcycle];

You can even place another constant list within a constant list, like this:

CONST FamilyPets = ["Ferrets", "Birds", MyPets];

One benefit of a constant list is that it saves you from having to write multiple policies or
string-together constraints to test if a value belongs in a group. Without constant lists, you would

Des ign ing More Advanced Po l i c i es

Policy Managers Guide 3-13

need to compare your value to each independent constant, rather than perform one quick test to
see if the value belongs in the list. For example, given the constant list:

CONST Manager = ["Bert", "Marty", "Sandy"];

If you want to find out if your string attribute called Active contains a value that is in the
Manager list, you could write constraints to test for these three possibilities:

IF Active = "Bert"

OR Active = "Marty"

OR Active = "Sandy"

or you could simply write:

IF Active IN Managers

As mentioned before, there is no implied order to the Manager list. So, even if Bert is clearly a
more privileged Manager than Sandy, the following test is invalid.

If "Bert" > "Sandy"

For the test to work, you need to create an enumerated type containing the names of the three
managers.

Enumerated Type Declarations
An enumerated type defines a class or group of values from which you can create constants and
attributes. It is a template for constants and attributes. For example, an attribute of the type integer
(a pre-defined, built-in type) may only have integer values. Many attributes can use the same type
declaration, but each attribute is limited to one type, and this type cannot change without deleting
and recreating the attribute. For example, you could have dozens of integer attribute variables,
but each one is based on the same integer type declaration. Think of an enumerated type
declaration as a cookie cutter and attributes as the cookies.

Pre-Defined, Built-In Enumerated Types
The following types are pre-defined and built into the product and are available for you to use.
They cannot be modified.

date – A type that limits the data to the format MM/DD/YYYY and allows you to compare
date values and date ranges within constraints.

integer – A type that contains a whole number with no decimal places that may be
negative, positive, or zero. You can use integers in comparisons and ranges.

Advanced Top ics

3-14 Policy Managers Guide

ip – A type that limits the data to the format allowed for IP (Internet Protocol) addresses:
xxx.xxx.xxx.xxx, where xxx is any numeral between 0 and 255, inclusive. You can
compare IP addresses, but when defining ranges of IP values, the host number, which is
represented by the last three digits, is allowed to vary.

string – A type that contains an alphanumeric text value. Strings do not allow
comparison or range operations because they are not ordered. However, you can use
wildcard comparisons using LIKE and NOTLIKE operations.

time – A type that limits data to the format HH:MM:SS and allows you to compare time
values and time ranges within constraints.

Note: Different types of declarations cannot have the same names as they share the same
namespace. For example, you cannot have a constant and an attribute both called
account_number. In addition, the values of enumerated types share this namespace. So,
continuing with our example, you could not create constants or attributes with the values
Crows, Ducks, or Geese (or Birds).

User-Defined Types
You can also create custom types. For example, you might create a type called Insurance that
contains the values Truck, Car and Motorcycle. You would declare it like this:

enum_Insurance = (Truck,Car,Motorcycle)

Once you declare a type, you must declare an attribute to use the type in your policy. You can
declare an attribute based on your new type like this:

cred Transportation : Insurance;

Once declared, you must give the attribute a value, like this:

Transportation = Motorcycle;

As mentioned earlier, you can compare the value based on your type by testing if the value is
greater to or less than a value in the list. For example, to make your list order represent the relative
level of insurance of a vehicle, you might use this constraint to see if your Transportation
attribute is greater than a Car enumeration:

IF Transportation > Car

If Transportation is a Motorcycle, given the order of the list defined earlier, this would return
TRUE and your constraint allows implementation of the policy.

Des ign ing More Advanced Po l i c i es

Policy Managers Guide 3-15

Attribute Declarations
An attribute is a variable that you can use in policies. Attributes store values that are predefined
or dynamically defined at runtime.

Declaring an attribute allows you to associate an instance of that attribute with an identity or a
resource. For example, you can declare a identity attribute named "email" of type "string", and
then associate email addresses to users.

Attributes make policies more legible by replacing certain constraint values with logical names.
You can use attributes to put values in constraints that depend on conditions unknown when you
write the policy, such as timeofday. Attributes contain values for your input data that your
policies can manipulate. That is, they can serve as variables, for example, account_balance
could be used as an attribute.

There are four ways to use attributes:

Resource Attribute–Provides a value defined and associated with a resource.

Identity Attribute–Provides a value defined and associated with a user or group.

Dynamic Attribute–Provides a value computed or retrieved when the policy is evaluated.

– System Attribute – A dynamic attribute that is computed automatically by the
Authorization Provider and available for use in your policy. These attributes usually
begin with the prefix sys_.

– Time and Date Attributes – System attributes that provide time and date information.

Attributes are specific instances of a declared type. For example, an attribute of the type integer
can only contain an integer value. Attributes can represent any type whether provided as part of
the product or defined by the you. Here are some examples of attribute declarations:

cred month : month_type;
cred timeofday : time;
cred pencils_swiped : integer;

For a description of the different types of attributes, see the following topics:

“Resource Attributes” on page 3-16

“Identity Attributes” on page 3-16

“Static Attributes” on page 3-17

“Dynamic Attributes” on page 3-17

Advanced Top ics

3-16 Policy Managers Guide

“Time and Date Attributes” on page 3-18

“Request Attributes” on page 3-19

Resource Attributes
Resource attributes store information about the entity to which they belong. For example, the
Banking application might have an attribute called Version that contains the current version
number for the application, denoted as a string.

Resource attributes behave differently from identity attributes. While they do inherit attributes
and their values, they do not merge any values of redundant attributes. If the same attribute exists
in more than one place in an tree, the resource first attempts to take the attribute from itself.
Failing that, the resource takes the value of the attribute from the first resource above it on the
tree that contains the attribute. The attributes of the same name on still higher nodes are ignored;
once an instance of the attribute is found, the search ends.

For example, assume that you have an application resource called Banking that contains a variety
of banking features. Deposit is a resource of the ATMCard application, which in turn is an
application node below the Banking organization node. If both the ATMCard resource and the
Banking application have the Version attribute defined with a value (and Deposit does not),
Deposit inherits the value of the Version attribute from ATMCard. The Banking Version
attribute is ignored.

Identity Attributes
User attributes store information about an individual user. For instance, you could have an
attribute called AgeRange that stores a range of dates. Attributes are associated with a directory
through a directory schema. The schema states that all users of a given directory have a given set
of available attributes. Additionally the schema determines if the attribute value is a list.

You can also assign attributes to groups (although groups may only contain list attributes). Thus,
users can inherit the attributes of all groups to which they belong. However, a user can still have
a unique value for an inherited attribute. If you do not assign the user attribute a value, then the
user inherits the value of the attribute from the group. This is how group attributes provide default
attribute values for users who are members of those groups. If a user has the same attribute as a
group, but a different value is assigned to the user attribute, the value of the user attribute always
takes precedence of the value of the group attribute.

Even an empty string, " ", is considered a value for purposes of this rule. Therefore, if you do not
assign a value, the user attribute does not take precedence over a group attribute of the same
name. However, if you placed an empty string in the user attribute, it does take precedence.

Des ign ing More Advanced Po l i c i es

Policy Managers Guide 3-17

Group attributes behave very differently from user attributes. Group attribute values are
cumulative — if the same attribute exists in more than one place in the inheritance path of a user,
the values of the attributes are merged and passed on to the user. For example, assume you have
a user called Bob, and Bob is a member of the Manager group, which in turn is a member of the
Employee group. If both Manager and Employee both have an attribute called WorkPlace with
the values primary and secondary respectively, Bob would inherit a WorkPlace attribute with
the value primary and secondary (a list attribute). In fact, to support this merging of attribute
values, all group attributes must be list attributes. If the attribute merging finds the same value
more than once, it eliminates the redundancy from the final list value.

Static Attributes
Many attributes are specific instances of a declaration type. These attributes are often user
(identity) attributes. For example, if you had a type called ColorType, you might have the static
credentials HairColor and EyeColor, which are both of type ColorType. You can attach these
static attributes to a user. Table 3-3 lists some examples of user attributes.

As previously discussed, there are several attribute types. Attributes differ from constants in that
their value may change, but not the name and value type. Depending on the user making the
request, a different value can be calculated for the attribute. In contrast, constants have a static
value, as well as a static name and type. The declaration for a user attribute is attached to one or
more directories. Because of this, all users in the same directory have the same user attribute
names but not necessarily the same values for those attributes. Attributes can be applied to users,
groups, and resources; however, each one behaves a bit differently.

Dynamic Attributes
A dynamic attribute is an attribute with a value that may change at policy evaluation time.
Dynamic attributes have their value set by the provider, your application, or through a plug-in
function. These attributes can have any type of value.

Table 3-3 User Attributes

Instance Type

MonthBorn month_type

ArrivalTime time

Pencils_needed integer

Advanced Top ics

3-18 Policy Managers Guide

Additionally, plug-ins can be registered to compute the value of dynamic attributes. These
plug-ins can retrieve the values of other attributes and use them to compute the attribute value
needed.

Time and Date Attributes
Numerous time and date system attributes are pre-defined and built in. Most system attributes
allow you to use comparison and range operators. Table 3-4 lists the built-in time and date
attributes provided for you to use.

Table 3-4 Built-In Time and Date System Attributes

Attribute Value Range or Format

time24 integer 0–2359

time24gmt1 integer 0–2359

dayofweek Dayofweek_type Sunday–Saturday

dayofweekgmt Dayofweek_type Sunday–Saturday

dayofmonth integer 1–31

dayofmonthgmt integer 1–31

dayofyear integer 1–366

dayofyeargmt integer 1–366

daysinmonth integer 28–31

daysinyear integer 365–366

minute integer 0–59

minutegmt integer 0–59

month month_type January–December

monthgmt month_type January–December

year integer 0–9999

yeargmt integer 0–9999

Des ign ing More Advanced Po l i c i es

Policy Managers Guide 3-19

Request Attributes
There is a set of system attributes that contain details of the request. Table 3-5 describes these
attributes and provides and example of each one.

timeofday time HH:MM:SS

timeofdaygmt time HH:MM:SS

hour integer 0–23

hourgmt integer 0–23

currentdate Date MM/DD/YYYY

currentdategmt Date MM/DD/YYYY

1. gmt is an abbreviation for Greenwich Mean Time

Table 3-4 Built-In Time and Date System Attributes (Continued)

Attribute Value Range or Format

Table 3-5 Built-In Request System Attributes

Attribute Value Range or Format

sys_defined Evaluation
function

Returns true if all arguments passed to it are defined
attributes (either single valued or list). Using an
undefined attribute in a policy causes a runtime error.
This can occur when the value of the attribute is
determined from the application code, either through the
context handler or the resource object. If there is a chance
that the attribute does not have a value, then use the
sys_defined evaluation function to ensure that a
value exists before it is used. For example
grant(…) if sys_defined(foo) and foo =
“bar”;

sys_external_attributes list of strings A resource attribute set through the Administration
Console on an application resource to indicate what
attributes are needed for dynamic evaluation. This
contains a list of attribute names.

Advanced Top ics

3-20 Policy Managers Guide

sys_rule_subj_q string Qualified subject user or group name in the currently
evaluated policy: //user/ales/system/

sys_rule_subj string Unqualified subject user or group name in the currently
evaluated policy: system

Servername string Name of the server, where an ARME process is running.

sys_rule_obj_q string Qualified resource name for the currently evaluated
policy: //app/policy/foo

sys_rule_obj string Unqualified resource name for the currently evaluated
policy: foo

sys_rule_priv_q string Qualified current policy privilege: //priv/write

sys_rule_priv string Unqualified current policy privilege: write

sys_subjectgroups_q list of string List of groups to which the current user belongs:
["//sgrp/ales/admin/,"
"//sgrp/ales/managers/"]

sys_subjectgroups list of strings List of unqualified group names to which user belongs:
["admin", "managers"]

sys_dir_q string Directory of the user: //dir/ales

sys_dir string Directory of the user, unqualified form: ales

sys_user_q string Current user: //user/ales/system/

sys_user string Current user: unqualified form: system

Table 3-5 Built-In Request System Attributes (Continued)

Attribute Value Range or Format

Des ign ing More Advanced Po l i c i es

Policy Managers Guide 3-21

sys_obj_type enumeration Set through the Administration Console on the resource.
Valid values include:
• Organizational node (orgnode)
• Application node (appnode)
• Binding node (bndnode)
• Application Binding node (bndappnode)
• Resource node (resnode)

sys_obj_distribution_po
int

Boolean
enumeration
{yes, no}

Distribution point set through the Administration Console
on the resource. Setting this to yes, displays the resource
on the distribution page as a potential point of
distribution.

sys_suppress_rule_excep
tions

Boolean
enumeration
{yes, no}

Set through the Administration Console to indicate
whether to continue evaluation if a policy with missing
data is encountered.

sys_app_q string Name of the binding resource for the resource on which
query is performed: //app/policy/ALES/admin

sys_app string Unqualified name of the binding resource for the resource
on which the query is performed: admin

sys_obj_q string Resource on which the query is performed:
//app/policy/foo/bar

sys_obj string Resource on which the query is performed: bar

sys_priv_q string Effect of the current policy: //priv/foo

sys_priv string Unqualified form of the effect of the current policy: foo

sys_privilege string The action referenced in the context of a role mapping
request.

sys_direction enumeration Defines the direction of authorization: once, post or prior.

Table 3-5 Built-In Request System Attributes (Continued)

Attribute Value Range or Format

Advanced Top ics

3-22 Policy Managers Guide

Evaluation Function Declarations
An evaluation function is a declaration that returns one of two values: true or false. These
values come from a pre-defined function and are included by using a plug-in extension that a
programmer creates specifically for your application. Additionally, you can use any of the
built-in evaluation functions available in all applications.

For instance, your programmer might create a plug-in for your accounting application that
includes an evaluation function called Overdrawn that contains the results of a calculation of
whether the account was overdrawn for that month. A constraint for a deny policy might use that
function like this:

[Deny user access to something] IF Overdrawn();

Like functions and procedures in programming, evaluation functions can take zero or more
parameter values, which are passed to the plug-in. For example, if you wanted to provide the
overdrawn amount, you might use it like this:

[Deny user access to something] IF Overdrawn(500);

Evaluation functions can dynamically take different numbers or types of parameter values each
time they are referenced in a policy. It is up to the programmer writing the evaluation function
code to correctly handle the parameters.

Authorization Caching Expiration Functions
Authorization caching allows the system to cache the result of an authorization call and use that
result if future identical calls are made. The cache is smart and automatically invalidates itself if
there is a policy change or other client side change that would affect the authorization results.
However, the cache is not smart enough to know when authorization decisions depend on
dynamic data. Dynamic data includes date and time values, as well as evaluation plug-ins that
reference external sources. If you are using authorization caching you need to set expiration times
on policies that reference dynamic data. For additional information on caching, see the
Performance and Caching, in Integrating ALES with Application Environments.

Note: By default, authorization caching is turned on.

Table 3-6 lists the expiration functions for the authorization cache that let you set an expiration
time for the authorization decision. This way you can instruct the cache to only hold the value for
a given period of time, based on Greenwich Mean Time (GMT), or not to hold it at all.

{DOCROOT}/integrateappenviron/performance.html

Des ign ing More Advanced Po l i c i es

Policy Managers Guide 3-23

Table 3-6 Expiration Functions for Authorization Cache

Function Argument Type Description

valid_for_mseconds integer Valid for a given number of milliseconds.

valid_for_seconds integer Valid for a given number of seconds.

valid_for_minutes integer Valid for a given number of minutes.

valid_for_hours integer Valid for a given number of hours.

valid_until_timeofday time Valid until the specified time on the date the
evaluation is performed.

valid_until_time24 integer Valid until the specified time on the date the
evaluation is performed.

valid_until_hour integer Valid until the specified hour on the date the
evaluation is performed.

valid_until_minute integer Valid until the specified minute of the hour the
evaluation is performed.

valid_until_date Date Valid until the specified date.

valid_until_year integer Valid until the specified year.

valid_until_month month_type Valid until the specified month of the year the
evaluation is performed.

valid_until_dayofyear integer Valid until the specified day of the year the
evaluation is performed

valid_until_dayofmonth integer Valid until the specified day of the month the
evaluation is performed.

valid_until_dayofweek Dayofweek_type Valid until the specified day of the week the
evaluation is performed.

valid_until_timeofday_gmt time Valid until the specified time on the date the
evaluation is performed in GMT time.

valid_until_time24_gmt integer Valid until the specified time on the date the
evaluation is performed in GMT time.

Advanced Top ics

3-24 Policy Managers Guide

For example, if you had the following authorization policy:

GRANT(//priv/order,//app/restaurant/breakfast,//group/customers/alluser
s) if hour < 11;

With authorization caching enabled (it is enabled by default), the results of this grant decision is
cached until the next policy distribution.

On the other hand, if you call the valid_until_hour() expiration function in the authorization
policy as follows:

GRANT(//priv/order,//app/restaurant/breakfast,//group/customers/allusers)
if hour < 11 and valid_until_hour(11);

with authorization caching, the result of this policy is cached until 11:00 AM, at which time it
expires. Therefore, with authorization caching enabled, it is important to update your time
dependent policies appropriately.

valid_until_hour_gmt integer Valid until the specified minute of the hour the
evaluation is performed in GMT time.

valid_until_minute_gmt integer Valid until the specified minute of the hour the
evaluation is performed in GMT time.

valid_until_date_gmt Date Valid until the specified date in GMT time.

valid_until_year_gmt integer Valid until the specified year in GMT time.

valid_until_month_gmt month_type Valid until the specified month of the year the
evaluation is performed in GMT time.

valid_until_dayofyear_gmt integer Valid until the specified day of the year the
evaluation is performed in GMT time.

valid_until_dayofmonth_gmt integer Valid until the specified day of the month the
evaluation is performed in GMT time.

valid_until_dayofweek_gmt Dayofweek_type Valid until the specified day of the week the
evaluation is performed in GMT time.

Table 3-6 Expiration Functions for Authorization Cache (Continued)

Function Argument Type Description

Des ign ing More Advanced Po l i c i es

Policy Managers Guide 3-25

Closed-world Security Environment
The policy evaluation strategy imposes a closed-world security environment. This means that
before you specifically create a authorization policy granting access privileges to specific
resources, users, groups, and roles have no privileges. You must grant privileges with a
authorization policy before users can do anything. This means that all privileges to all resources
protected by a Security Service Module are implicitly denied until authorization policies grant
specific privileges.

Thus, the closed-world security environment has the powerful advantage of having your
application security err on the side of caution. That is, if you forget to deploy an authorization
policy, someone may be denied access rather than be granted access to something to which they
should not have access. A user that is denied privileges will usually let you know that there is a
problem (and, if they do not, that is probably okay). On the other hand, a user that has been
granted privileges they should not have may not tell you, which may have disastrous
consequences. Once you grant an access privilege, you must explicitly deny it to revoke that right.
Explicit DENY policies cannot be overruled.

Policy Inheritance
Inheritance reduces the number of policies the have to written to protect a set of resources. The
following topics describe how inheritance works:

“Group Inheritance” on page 3-25

“Direct and Indirect Group Membership” on page 3-26

“Restricting Policy Inheritance” on page 3-26

“Resource Attribute Inheritance” on page 3-26

Group Inheritance
Users or groups inherit the right (privilege or role) of any group to which they belong, either
directly or through their parents. Group inheritance allows each user in the group to assume all
the group rights to which they are members, either directly or indirectly through their parent
groups (or the groups of their parents). Both users and groups can have parent groups but only
groups can have children. Group inheritance is very powerful as it allows you to define
entitlements once and have the policy apply to all members.

Advanced Top ics

3-26 Policy Managers Guide

Note: BEA recommends that you define your role mapping policies using groups, rather than
individual users. Role mapping policies written using users should be used for exceptions
and to handle unusual or infrequent situations.

It is important to note that parent groups usually have fewer rights than their children. As you
move from the bottom of the resource tree to the top, the groups inherit the rights of their
ancestors and are directly granted.

Direct and Indirect Group Membership
The immediate members of a group are called direct members. Direct members appear
immediately below their parent on the inheritance tree. A member that has an inherited
membership is called indirect member. The collection of all groups available, either directly or
through inheritance, is referred to as group closure.

Restricting Policy Inheritance
Policies are inherited in a number of ways:

Policies written on a resource apply to the descendants of that resource.

Policies written on a group apply to all members that Group.

Policies written on a role apply to everyone who has been granted that role.

Policies written on the any privilege apply to all privileges.

You can restrict policy inheritance by limiting its applicability. For example, you can limit the
applicability of a GRANT role mapping policy by adding a constraint. The following policy
illustrates this:

GRANT(//role/admin, //app/policy/www.myserver.com/protected,
//sgrp/acme/manager/) IF sys_obj_q =
//app/policy/www.myserver.com/protected;

where: sys_obj_q is a system attribute on which the query is performed.

The sys_obj_q constraint keeps this policy from being applicable to the descendants of the
protected resource, thus blocking policy inheritance.

Resource Attribute Inheritance
Like users and groups, descendant resources also inherit the attributes of any parent resource.
Resource inheritance allows each child resource in the tree to assume all of the attributes of the
parent resource. Resource attribute inheritance is also very powerful as it allows you to define

WebLog ic Resource Type Convers i ons and Resource T rees

Policy Managers Guide 3-27

attributes on the parent resource, and have the attributes be inherited to all child resources
automatically.

Note: BEA recommends that you define your attributes on parents, rather than individual child
resources. When an attribute is explicitly defined for a child, the attribute overrides any
inherited value. Policies written directly for child resources should be used for exceptions
or short-lived policies so as to handle unusual circumstances.

WebLogic Resource Type Conversions and Resource Trees
This section describes how ALES converts the different resources types supported by WebLogic
Server, WebLogic Portal, and AquaLogic Data Services Platform and how they are represented
in a resource tree in the Administration Console.

For example, the <wlp> resource type is converted as follows:

//app/policy/portalapp/wlp/portalweb/com_bea_p13n/Portlet/portlet2 O

where:

portalapp represents the portal enterprise application
wlp represents the resource type
portalweb represents the portal web application contained in the enterprise application
com_bea_p13n/Portlet represents the WebLogic Portal application resource type and
portlet2 represents the WebLogic Portal resource.

Figure 3-1 shows how the above example is represented in the Administration Console.

Figure 3-1 Representation of the <wlp> Resource Type in the Administration Console

Table 3-7 lists the resource types supported for WebLogic Server, WebLogic Portal, and
AquaLogic Data Services Platform..

Advanced Top ics

3-28 Policy Managers Guide

Table 3-8 shows how each of resource type is represented in the Administration Console resource
tree.

Table 3-7 Supported Resource Types

Target System Supported Resource Types

WebLogic Server 8.1 <adm>, <app>, <com>, <eis>, <ejb>, <jdbc>, <jms>, <jndi>,
<ld>, <svr>, <url>, <web>, <webservices>

WebLogic Portal 8.1 All WebLogic Server 8.1 resources plus <wlp>.

AquaLogic Data Services
Platform 2.1

All WebLogic Server 8.1 resources plus <ld>.

Table 3-8 Resource Type Conversion

Resource Type Sample Resource Tree Conversions

<adm> //app/policy/ALES/shared/adm O
//app/policy/ALES/shared/adm/Configuration O
//app/policy/ALES/shared/adm/FileDownload O
//app/policy/ALES/shared/adm/FileUpload O
//app/policy/ALES/shared/adm/ViewLog O

<app>

<com>

<eis> //app/policy/essdemo/shared/eis O

<ejb> //app/policy/essdemo/ess/ejb/netuix.jar O
//app/policy/essdemo/ess/ejb/netuix.jar/PortalCustomizationManager O

<jdbc> //app/policy/essdemo/shared/jdbc/ConnectionPool O
//app/policy/essdemo/shared/jdbc/ConnectionPool/MedRecPool-PointBase O

<jms> //app/policy/essdemo/shared/jms/queue O
//app/policy/essdemo/shared/jms/queue/jms O

Web Serve r App l i cat i ons

Policy Managers Guide 3-29

 Web Server Applications
This section discusses writing policies for web server applications that are protected using either
of the Web Server Security Service Modules (SSMs): the IIS Web Server SSM or the Apache
Web Server SSM.

In the context of a web application, a policy enforces security to protect your web application
from unauthorized access. A security policy defines who can do what, where, and when.

<jndi> //app/policy/essdemo/shared/jndi/jms O
//app/policy/essdemo/shared/jndi/weblogic O
//app/policy/essdemo/shared/jndi/weblogic/jms O
//app/policy/essdemo/shared/jndi/weblogic/jms/MessageDrivenBeanConnectionFactory O
//app/policy/essdemo/shared/jndi/weblogic/jms/S:MedRecServer O
//app/policy/essdemo/shared/jndi/weblogic/management O
//app/policy/essdemo/shared/jndi/weblogic/management/home O
//app/policy/essdemo/shared/jndi/weblogic/management/home/localhome O

<ld> //app/policy/essdemo/shared/ld O
//app/policy/myrealm/RTLApp/ld/DataServices/RTLServices/CustomerView.ds/CUSTO
MER/ORDERS/ORDER_SUMMARY/OrderDate O

<svr> //app/policy/essdemo/shared/svr O

<url> //app/policy/essdemo/ess/url/demolaunch O
//app/policy/essdemo/ess/url/demolaunch/launch.portal O
//app/policy/essdemo/ess/url/demolaunch/framework O
//app/policy/essdemo/ess/url/demolaunch/framework/skins O
//app/policy/essdemo/ess/url/demolaunch/resources O
//app/policy/essdemo/ess/url/demolaunch/resources/images O

<webservices> //app/policy/essdemo/shared/webservices O

<web> See <url>.

<wlp> //app/policy/essdemo/ess/wlp/essWeb/com_bea_p13n O
//app/policy/essdemo/ess/wlp/essWeb/com_bea_p13n/Page O
//app/policy/essdemo/ess/wlp/essWeb/com_bea_p13n/Desktop O
//app/policy/essdemo/ess/wlp/essWeb/com_bea_p13n/Book O
//app/policy/essdemo/ess/wlp/essWeb/com_bea_p13n/Portlet O

Table 3-8 Resource Type Conversion

Resource Type Sample Resource Tree Conversions

Advanced Top ics

3-30 Policy Managers Guide

The resource that the web application policy protects is a URL. The resource is expressed as a
BEA AquaLogic Enterprise Security representation, which separates the resource and the action.
The action is the method: GET, HEAD, POST, PUT.

When writing security policies for web applications hosted on web servers you must take the
resource format, the action format, and the application context (information relevant to the
request environment) into consideration.

For more information, see the following topics:

“Resource Format” on page 3-30

“Action Format” on page 3-30

“Application Context” on page 3-30

“Using Named Keys in the Web Application Policy” on page 3-32

“Web Application Context Handler” on page 3-32

“Retrieval of Response Attributes” on page 3-33

Resource Format
The resource format passed to the provider is a portion of the full URL. The fully qualified URL
is available in the context as “url”. The resource format is as follows:

/path/to/directory/page.html

Using this resource format allows the Web Server SSM to handle many virtual servers, each
server with their own separate security policy.

Action Format
The action passed through to the provider is the method name from the HTTP protocol. GET,
POST, HEAD, PUT, or some other custom action (if the web server supports it).

Application Context
The application context provides a mechanism to write authorization policy based on request
attributes such as query parameters, cookies, or header information.

An application context is passed through to the Authorization and Role Mapping providers and
is associated with any audit records logged. This context contains values relevant to the request

Web Serve r App l i cat i ons

Policy Managers Guide 3-31

environment at the time the provider processes the call. The values in the context are not prefixed
with key names that segment the context into related values. If a query string name and HTTP
header name collide, only one will be represented in the application context. The order in which
names are added from the HTTP request is undefined.

The Web Server SSM supports the following context keys:

HTTP Headers

Cookies

URL Query Strings

Note: All context keys are returned as strings, including date, which is normally a type.

When you write security policies for web applications that are protected by a Web Server SSM,
you add the context key value pair (name/value) to the constraint. For example the policy:

grant (//priv/any, //app/policy, //sgrp/allusers/) if accept-language like

"*us_en*";

where accept-language is the name and "*us_en*" is the value.

This policy grants any privilege on any resource to all users whose browser is configured to
accept United States English.

The authorization policy:

grant (//priv/any, //app/policy, //sgrp/allusers/) if session.accesscount

< 100;

grants any privilege on any resource to all users 100 times within the session. On the 101st
evaluation of this policy within the session access will be denied.

Header Context Key (HEADERNAME)
Header context keys return values in the HTTP request header. This key is returned as a string.
Any value in the header can be retrieved and so there is no hard-coded set of keys in this context.
The HEADERNAME component of this context key is case sensitive, and specifically linked to the
HTTP protocol. Examples of keys often available are: "date", "if-modified-since",
"referrer", or "user-agent".

Note: The date key, which is usually a type, is returned as a string.

Advanced Top ics

3-32 Policy Managers Guide

 Query Context Key (VARNAME)
The Query context key returns values that are on the URL query-string. This key is returned as a
string. The VARNAME portion of this key is case sensitive and refers to the query string variable
encoded within the request. For example, if the URL includes a query such as
?test=endcoded%20char, the security policy query is:

 "if query.test= "encoded char"

Cookie Context Key (COOKIENAME)
The cookie context key returns values passed to the web server as cookies. This key is returned
as a string. The COOKIENAME portion of this key is case sensitive and refers to the name of the
cookie passed to this request from the browser. The value of the cookie returned is application
specific and may need further decoding. For example, if you are using the ALES cookie, an
example context key is:

"ALESIdentityAssertion"

Using Named Keys in the Web Application Policy
In addition to using elements of the resource to map the resource to the web application resource
hierarchy in the administration server, the named values themselves can be referenced directly in
policy constraints. For example, to write a policy on policy2.asp so that a policy only applies
to the file if there is a mode=view argument, you would write an authorization policy for the
policy2.asp resource with a mode=view constraint as follows:

grant(//priv/any, //app/policy/mywebapp/policy2.asp, //sgrp/allusers/) if

if mode="view";

This policy applies the constraint to access to the policy2.asp file if mode is either an HTTP
header or a query string argument.

Web Application Context Handler
The Web Server SSM implements a context handler that provides contextual information from
the HTTP request to the security framework. This information includes HTTP header, query
arguments, and cookies. All information is in a single namespace. Therefore, there is the
possibility of name collisions between the name/value pairs.

Using Response A t t r ibutes

Policy Managers Guide 3-33

Retrieval of Response Attributes
The Web Server SSM retrieves response attributes during the authorization process and provides
them in a form that a layered web application can use. For more information on response
attributes, see “Using Response Attributes” on page 3-33

Using Response Attributes
Response attributes are defined as a list of the attributes you want to return from the authorization
system when a request is made by an application. Response attributes provide a mechanism for
allowing the authorization system to pass arbitrary information back through the Security
Framework to the caller. The use of this information is typically application specific. Some
examples of how you can use response attributes include:

Personalization—The decision as to what resources to display on a portal may be tied
closely to the security policy. Suppose that when a user enters the portal, the portal
displays a list of accounts and menu options denoting operations on the accounts. If a user
attempts to access a particular item and the attempt is rejected for security reasons, the
portal has limited effectiveness. That is, the portal may serve as an information source used
for future attacks. By tying the security policy directly to the portal, only the resources that
the user is allowed to access are displayed.

Business Process Flow —Business processes often have inter-task dependencies. For
example, suppose that a senior trader has the ability to override the rejection of a trade
placed by a junior trader. To make this decision, the senior trader would have to take into
account the reasons why the proposed trade violates the security policy, which could be the
trade amount, the risk profile, or any of several other reasons. By enhancing the
authorization decision with that context, subsequent authorization decisions based on that
context can be enabled.

Transaction specific data—An application may need specific facts about authorized or
rejected transactions. For example, the application may want to display the post-trade
balance for an executed transaction, information that typically would be calculated as part
of the authorization process but not returned as part of the authorization decision.

Response attributes are typically specified using built-in evaluation functions that report
name/value pairs. There are two functions for returning attributes: report() and report_as().
These functions always return TRUE (if there are no errors), and their information is passed to your
application as response attributes, embedded within the ResponseContextCollector.

Advanced Top ics

3-34 Policy Managers Guide

You use report() and report_as() in the policy after an IF statement used in a constraint. It is
best to use them in a logical if this policy is evaluated, then manner, even though "then" does not
exist in the language.

For example:

if (constraint) and report_as (name,value);

While the functions are run when the policy is evaluated, they are not really constraints of the
policy. Data reported by the functions are returned only if the adjudicated authorization decision
agrees with the policy. This means the attributes returned from GRANT policies are not passed to
the caller unless the overall access decision is PERMIT.

The following topics provide more information on using response attributes:

“report() Function” on page 3-34

“report_as() Function” on page 3-35

“Report Function Policy Language” on page 3-35

“Using Evaluation Plug-ins to Specify Response Attributes” on page 3-36

report() Function
The report function takes one or more attributes as input parameters and sets a corresponding
response attribute with the name/value pair of the supplied attributes. For example, suppose you
have the attribute called department, containing the value Accounting. If the following
constraint was evaluated:

IF report(department);

the response attribute (department = accounting) is set in the response context results. Your
client application can then use this information in many ways, for example:

As a parameter in a database query where it filters the query results by department

To personalize a portal page with an accounting department template

To update the record being modified with the department information

Using Response A t t r ibutes

Policy Managers Guide 3-35

report_as() Function
The report_as function loads a named response attribute with a specified value. The value may
be an attribute, a constant or a string literal. You can specify multiple values, in which case the
response attribute is returned as a list.

IF report_as("error","Your account balance is too low");

IF report_as("query", "Select * from record_table where dept_type = ",

department);

IF report_as("userlogin", trading_login,trading_password);

IF report_as("url","http://www.xyz.com/userinfo/xyz100383.htm");

Report Function Policy Language
The report function returns the name/value pair of the specified attribute. The value may be a
one or more strings and is determined using the attribute retrieval mechanism of the authorization
system. This means that the attribute can come from the following sources: system, user, resource
or context.

The report_as function allows you to write the policy to specify both the attribute name and
value:

report_as("company", "BEA Systems")

Additionally, you can specify a list of values, as follows:

report_as("accounts", "123", "456", "789")

The value portion of the report function supports de-referencing. Assume the user attribute
favorite_color is part of a user profile. You can put the following statement into a policy:

report_as("window_background", favorite_color)

This allows you to set the response attribute window_background with the value of the favorite
color that is stored in another attribute. You can use any of the supported language data types as
values, but they are all returned to the provider using their string representation and no additional
type data is transmitted.

Note: Reporting the same attribute multiple times from the same policy, results in only the last
report clause date being used. For example:

grant (p,o,s) if report as (”car”, ”porche”) and report_as (”car”,
“ford”);

where: (p,o,s) is shorthand for privilege, object, and subject,

Advanced Top ics

3-36 Policy Managers Guide

results in response attribute car = ford.

Using Evaluation Plug-ins to Specify Response Attributes
The ASI Authorization and ASI Role Mapping providers support the use of custom evaluation
plug-ins to generate response attributes. The report and report_as functions are just special
implementations of ASI Authorization and ASI Role Mapping provider plug-ins. Using custom
evaluation functions, you can write even more complex statements. For example, the following
policy retrieves the current stock price from an authoritative source.

grant(//priv/lookup, //app/policy/stockprice, //role/everyone)

if report_stock_price("BEAS");

A plug-in that implements this function must handle all of the logic required to obtain the actual
stock price and then return it in a response attribute. Listing 3-1 shows an example of how to use
a plug-in to implement this function.

Listing 3-1 Stock Price Function Implementation

TruthValue report_stock_price(Session &sess, const char *fname,

 char **argv) {

 const char* stock_symbol=argv[0];

 //lookup stock price using custom logic

 double price;

 bool found = lookup_stock_price(stock_symbol, &price);

 if(!found) {

 return TV_FALSE;//price not found

 }

 //change numeric value into a string

 char pricestr[1024];

 snprintf(pricestr,1023,"%f",price);

 //setup the return data

 sess.appendReturnData("stock_price",

 new AttributeValue((const char*)pricestr));

 return TV_TRUE;

}

Us ing que ryResources and grantedResources

Policy Managers Guide 3-37

For additional information on using ASI Authorization and ASI Role Mapping provider plug-ins,
see Provider Extensions in the Administration Reference Guide.

Using queryResources and grantedResources
This feature allows a caller to query the authorization system to determine access on a set of
resources rather then a single resource. The ASI Authorization provider determines access to all
child nodes of the node specified in the access query, and returns lists indicating which nodes are
granted and which nodes are denied.

The client performs an isAccessAllowed query on the parentResource. This resource must be
a binding node or a resource of a binding node.

The queryResources functionality evaluation is triggered by the presence of some qrvalue
value in the com.bea.security.authorization.queryResources attribute of the
ContextHandler. The access decision for the parentResource is returned, as normal. One of
the return attributes for this decision is a
com.bea.security.Authorization.grantedResources return attribute. One of the return
attributes for this decision is a com.bea.security.Authorization.deniedResources return
attribute.

For grantedResources, the value of this attribute is a list of values for the qrvalue resource
attribute; or, if the qrvalue is an empty string, the value is the internal ARME name for the
resource. This list is an intersection of all child nodes of parentResource and all resources for
which the ASI Authorization provider and ASI Role Mapping provider and role policy evaluates
to GRANT. If the qrvalue attribute is not defined on a particular child node, it is omitted to allow
an application to deal with identification of the resource other than the internal ARME
representation of it, which is not trivial to convert back to the framework resource.

This list can contain duplicate values. If the empty value for the qrvalue is used, the returned
resource name is unique and defined for each child node.

The same applies for the deniedResources, except for the resources that the policy evaluates to
DENY. For example, assume that an application makes an isAccessAllowed call on the
//app/policy/Foo resource and sets the value of the queryResources attribute to
object_id. The authorization policy has no policies set on the Foo resource, thus an ABSTAIN
result is returned.

Now let’s assume that Foo has child nodes Foo/A, Foo/B, Foo/C. The authorization policy allows
access to Foo/A and Foo/C, given the role policy on Foo by all providers, and the role policy for
A and C for a security provider. Assume that A and C have an object_id resource attribute equal

{DOCROOT}/adminref/plugins.html

Advanced Top ics

3-38 Policy Managers Guide

to "rA" and "rC". Then, the above query returns an attribute grantedResources with the value
["rA", "rC"].

For role providers other than the ASI Role Mapper provider, roles granted on the
parentResource are assumed to apply to all child nodes of the parentResource. For the role
policy, it is evaluated as usual for all child nodes.

To receive the results, you must supply a ResponseContextCollector in the ContextHandler
request.

When the application needs to call into the Security Framework to query resources it passes in:

AppContextElement qrElement = new SimpleContextElement(
"com.bea.security.authorization.", "queryResources", "name");
appContext.addElement(qrElement);

When it retrieves the list of resources from the response, for granted resources, it must call:

AppContextElement granted = responseContext.getElement(
"com.bea.security.Authorization.grantedResources");

or, for denied resources:

AppContextElement denied = responseContext.getElement(
"com.bea.security.Authorization.deniedResources");

Note: The case for authorization on the request and the response is not the same.

Policy Managers Guide 4-1

C H A P T E R 4

Importing and Exporting Policy Data

This section covers the following topics:

“Introduction” on page 4-1

“Creating Policy Data Files for Importing” on page 4-2

“Importing Policy Data” on page 4-33

“Exporting Policy Data” on page 4-42

“Upgrading an Administration Server to AquaLogic Enterprise Security 2.1” on page 4-47

Introduction
The AquaLogic Enterprise Security Administration Server includes two tools to assist you in
managing the contents of the policy store: an import tool and an export tool. Using these tools
you can perform the following tasks:

Define your policy data in text files that are external to the Administration Server and
import those files to a policy store on any Administration Server.

Export policy data from an existing policy store on an Administration Server and import
that policy data to a policy store on any Administration Server.

Export policy data from an existing policy store on an Administration Server, install a
newer version of the server software, and re-import the policy data into the upgraded
server.

Impo r t ing and Expor t ing Po l i cy Data

4-2 Policy Managers Guide

Creating Policy Data Files for Importing
In addition writing policy using the Administration Console or the Business Logic Manager, you
may also write policy by creating and importing policy data files. To use policy data files to
import policy, you must enter the policy data in a text file. When you view policy data in
Administration Console, you are viewing its external representation. However, internally, policy
data names are represented with certain prefixes or suffixes. You must use this internal
representation when you create policy data files.

This following topics describe how to create policy data files:

“Policy Element Naming” on page 4-2

“Sample Policy Files” on page 4-12

“Resource Discovery” on page 4-25

“What’s Next?” on page 4-33

Policy Element Naming
The policy language uses standard naming conventions called qualifiers to refer to privileges,
applications, resources, roles, and identity elements (directories, users and groups). These
conventions ensure that each component has a unique name, even if you use the same name in
other locations. The Administration Console hides these qualifiers from you during most
operations. See “Fully Qualified Names” on page 4-3 for additional information on naming
conventions.

The following rules apply to policy element names:

Most names are case sensitive. Declarations and attribute names are the exception; they are
case insensitive. Internally, when a declaration name or attribute name is saved, it is saved
in all lowercase. For example, the user names //user/ales/system/ and
//user/ales/System/ reflect the same user.

A qualified name is a name with qualifier prefix prepended to the non-qualified name.
Some names, like user and group names, have an ending suffix also. See Table 4-1 for
examples. Declaration names do not have a qualified form.

The characters used for the names and the length of the names are restricted (see “Size
Restriction on Policy Data” on page 4-5).

Creat ing Po l i cy Data F i l es fo r Impor t ing

Policy Managers Guide 4-3

For more information on policy element naming, see the following topics:

“Fully Qualified Names” on page 4-3

“Policy Element Qualifiers” on page 4-4

“Size Restriction on Policy Data” on page 4-5

“Character Restrictions in Policy Data” on page 4-6

“Special Names and Abbreviations” on page 4-11

Fully Qualified Names
A fully qualified name references the full name for a policy element. This name consists of a
series of simple names separated by forward slashes (/). Fully qualified names have the following
parts, in order:

A starting double forward slash: //

A qualifier followed by a forward slash

For users and groups, a directory name followed by a slash mark, and a final slash after the
name

Table 4-1 Examples of Qualified Names

Policy Element Example

resource //app/policy/banking/transfer

directory //dir/extranet

privilege //priv/place_order

privilege group //grp/trading_privileges

user //user/extranet/JohnDoe/

group //sgrp/extranet/trader/

role //role/roleName

logical name //ln/ShortHandForResource

Impo r t ing and Expor t ing Po l i cy Data

4-4 Policy Managers Guide

A name:

For example, in //user/Accounting/JJBob/

user is the qualifier

Accounting is the directory

JJBob is the user name

For resources, the qualified name either starts with //app/policy/. Additional names may
appear, each separated by a single slash. This naming convention defines the resource tree. Each
resource name is represented as a node on the tree, but the entire string represents the fully
qualified name of the final resource. For example:

//app/policy/trading_system/PersonalTrades/BondOrder/Order

Policy Element Qualifiers
Qualifiers are built in. You cannot create your own qualifier or change the existing ones. They
represent one of the basic policy elements and always begin with a double slash (//) followed by
a single slash (/). Table 4-2 lists the built-in qualifiers.

Table 4-2 Policy Element Qualifiers

Qualifier Policy Element

//priv privilege

//grp privilege group

//user user

//sgrp group

//app resource

//dir directory

//bind engine

//role role

//ln logical name

Creat ing Po l i cy Data F i l es fo r Impor t ing

Policy Managers Guide 4-5

There is no qualifier for a declaration. Declarations are identified by a different method. For a
discussion of Declarations, see “Declaration Names” on page 4-11.

Size Restriction on Policy Data
There are some limits on the size of names, attribute values, and rules, restricted by the type of
database that you use. The restriction by the database is determined by the VARCHAR column size
and the key size allowed by the database. Table 4-3 summarizes the limit for different policy data
and different databases.

Table 4-3 Database Restrictions on Policy Data

Policy Data Oracle Sybase
12.5
2K1

Sybase
12.5
4K

Sybase
12.5
8K

Sybase
12.5
16K

Qualified privilege name

Qualified privilege group name

Qualified role name

Qualified resource name

Qualified user name

Qualified subject group name

Qualified logical name

Qualified security provider name

2000 580 1200 2500 5000

All privileges in the privilege field of a rule

All roles in the privilege field of a rule

All resources in the object field of a rule

All user and group in subject field of a rule

All roles in subject field of a rule

2000 580 1200 2500 5000

Rule conditions 4000 1160 2400 5000 10000

Rule text-combined text of all fields in a rule
(privilege, object, subject, delegator, and
conditions, plus the syntax delimiters)

N/A2 1962 4010 8106 16298

Impo r t ing and Expor t ing Po l i cy Data

4-6 Policy Managers Guide

Character Restrictions in Policy Data
There are several restrictions on the character set that you can use to define policy data. The
following common rules apply and Table 4-4 describes the extended character set restrictions.

Because AquaLogic Enterprise Security does not support internationalization, the character
set used in policy data is ISO 8859-1 (Latin-1), Western European eight-bit character set.

All names without qualifier or called non-qualified names allow alphanumeric characters
(a-z, A-Z, and 0-9) and the underscore (_). These names include privilege name, privilege

Declaration name

Attribute name

The individual declaration name inside a type
declaration

2000 580 1200 2500 4000

Declaration text-the combined text of
declaration name, kind, and value, plus the
syntax delimiters

4000 1160 2400 5000 10000

A single attribute value 2000 580 1200 2500 4000

A quoted literal string in the declaration value 4000 1160 2400 4000 4000

A quoted literal string in a constraint for a rule 4000 1160 2400 4000 4000

A qualified name in the declaration value 2000 580 1200 2500 4000

A qualified name in a constraint for a rule 2000 580 1200 2500 4000

Integer value of a constant declaration 9 digits*3 9 digits* 9 digits* 9 digits* 9 digits*

All attribute values combined for a user, group
or resource attribute

40000 40000 40000 40000 40000

1. Sybase 12.5 has a dependency on the logical page size that you choose when you set up the database
server. The supported logical page size varies from 2K, 4K, 8K, and 16K.
2. N/A means that there is no limit.
3. An asterisk (*) indicates that the limit is imposed.

Table 4-3 Database Restrictions on Policy Data (Continued)

Policy Data Oracle Sybase
12.5
2K1

Sybase
12.5
4K

Sybase
12.5
8K

Sybase
12.5
16K

Creat ing Po l i cy Data F i l es fo r Impor t ing

Policy Managers Guide 4-7

group name, role name, resource name, user name, subject group name, directory name,
logical name, security provider name, declaration, and attribute name.

All names, except user and subject group name, must start with an alpha character or
underscore. Numeric characters are not allowed.

The following topics provide more information:

“Data Normalization” on page 4-7

“Directory Names” on page 4-10

“Logical Name” on page 4-10

“Declaration Names” on page 4-11

Data Normalization
When using the ASI Authorization or ASI Role Mapping providers, there are certain data
transformations that you must consider. The policy database limits what characters are allowed
in certain policy elements. This set is more restrictive than the set allowed by the Security
Framework.

Table 4-4 Policy Data Character Restrictions

Policy data Extra characters allowed

Resource name Pound sign (#), apostrophe (`), dash (-), period (.), colon (:), at
(@), tilda (~), ampersand (&).

User name or Subject
group name

The name can include any other printable characters, such as
space, period, and dollar sign, etc. A forward slash (/) in the
name must be escaped by a backward slash (\), because a
forward slash (/) is used as field separator.

String typed attribute
value

All printable characters are allowed.

Literal string in the value
of a constant declaration

All printable characters are allowed except the double quote (")
and a backslash (\). When used, these characters may cause
parsing problems.

Literal string in a
condition for a rule

All printable characters are allowed except the double quote (").

Impo r t ing and Expor t ing Po l i cy Data

4-8 Policy Managers Guide

The ASI Authorization and ASI Role Mapping providers perform normalization of input data to
ensure that they abide by the restrictions imposed by the authorization management system. The
management system does not currently perform any automatic normalization, so it is important
to understand the normalization mechanism because it must be preformed manually when writing
policy. Unless otherwise stated, the substitutions listed Table 4-5 apply to the following
elements: resource, attribute, privilege, role, and directory names.

Additionally, any non printable character is translated into the numeric hexadecimal equivalent;
for example, the ASCII character code 1 (a smiley face) is represented as __0x1_. Table 4-5
shows the characters that are normalized and the character substitution applied at runtime. When
writing policy, you must substitute these characters.

Table 4-5 Character Substitution

Character Character Substitution

\n (carriage return) __CR_ also applies to user and group names

0 __0_ 1st character only

1 __1_ 1st character only

2 __2_ 1st character only

3 __3_ 1st character only

4 __4_ 1st character only

5 __5_ 1st character only

6 __6_ 1st character only

7 __7_ 1st character only

8 __8_ 1st character only

9 __9_ 1st character only

\t (tab) __TAB_

‘ ‘ (space) __SP_

! __EXPL_

“ __DQUOT_

Creat ing Po l i cy Data F i l es fo r Impor t ing

Policy Managers Guide 4-9

__HASH_ 1st character of resource, or any character in attr, priv,
role, dir

. __PRD_ 1st character of resource, or any character in attr, priv, role,
dir

% __PRCT_

(__OPRN_

) __CPRN_

* __ASTR_

+ __PLUS_

, __COMMA_

/ __FSLSH_

; __SCLN_

< __LT_

= __EQ_

> __GT_

? __QTM_

[__OSQB_

\ __BSLSH_

] __CSQB_

‘ __CSQUOT_

{ __OCRL_

| __PIPE_

} __CCRL_

& __AMP_ Applies only to attr, priv, role, dir

Table 4-5 Character Substitution (Continued)

Character Character Substitution

Impo r t ing and Expor t ing Po l i cy Data

4-10 Policy Managers Guide

Directory Names
A directory further separates qualifiers. You define directories to store and scope users and
groups. For example, if you had an application called Bankers, the directory that stores users and
groups might look like this:

//dir/Bankers

Once declared, the directory is used with the user and group qualifier to fully qualify subjects.
For example, //sgrp/Bankers/loans/ is a group called loans that belongs to the Bankers
group and //user/Bankers/BSilva/ is a user named BSilva that belongs to the Bankers
application.

Note: A directory name must start with a letter and can contain any number of alphanumeric or
underscore characters. Directory names are case sensitive.

A directory name does not necessarily need to represent a resource. For example, a directory
name might represent users in a particular location (as in //dir/NewYork) or a department (as
in //dir/Accounting). Essentially, you can use them any way you want to delineate groups of
users and groups.

A privilege group is not part of the policy language but is provided for administrative
convenience. Each privilege in a group is defined as an individual privilege in the actual policy.

Logical Name
A logical name is a shorthand method used to represent a resource. Once you map a logical name
to a fully qualified name, your developers can use the logical name when coding your application.

//ln/name

- __DASH_ Applies only to attr, priv, role, dir

: __CLN_ Applies only to attr, priv, role, dir

@ __AT_ Applies only to attr, priv, role, dir

~ __TLD_ Applies only to attr, priv, role, dir

Table 4-5 Character Substitution (Continued)

Character Character Substitution

Creat ing Po l i cy Data F i l es fo r Impor t ing

Policy Managers Guide 4-11

Declaration Names
A declaration name is not qualified. In fact, that is exactly how they are identified. Any policy
element without a fully qualified name and not in quotation marks (indicating a string), is
assumed to be a declaration. When defined, declarations are preceded by one of the following
identifiers:

const - Constant Declaration

type - Type Declaration

cred - Credential (or Attribute) Declaration

eval - Evaluation Function Declaration

Special Names and Abbreviations
There are several special names, referred to as keywords, that are shortcuts for denoting groups
of objects. The keywords keep you from having multiple rules or multiple rule queries in certain
reoccurring situations. By using these keywords, you can define very powerful, yet generic rules.
The keywords are as follows:

any—Signifies any privilege. When specifying any in a rule, it means you do not care
what privilege a user invokes when applying the rule.

ALL—Signifies a privilege group containing all privileges. You must use the grp qualifier
with the keyword ALL (//grp/ALL). The keyword ALL is mainly used for grouping
purpose in the console and, by default, every privilege defined belongs to the privilege
group ALL.

allusers—For each user directory, there is an implied group called allusers. This group
refers to all users in a directory. For example:

//group/Acct/allusers

This example refers to allusers for the Acct directory and eliminates the need to
individually address each user or to create a named group for all of the users.

Note: The keyword allusers is only a limited pseudo group. It does not have many of the
qualities of a regular group; you cannot map it to anything, you cannot add or remove
members, and it cannot be a member of group hierarchy. You can delegate to
allusers groups.

Table 4-6 describes the rules for using keywords.

Impo r t ing and Expor t ing Po l i cy Data

4-12 Policy Managers Guide

Sample Policy Files
This section provides examples of each policy file. A policy file is a text file that lists the relevant
policy elements using their fully qualified names. Sample files for each policy element are
provided with the product and are installed in the following directory:

BEA_HOME\ales21-admin\examples\policy

For a description of each of these files, see the following topics. The policy data filenames are
shown in brackets (“[]”).

“Application Bindings [binding]” on page 4-13

“Attribute [attr]” on page 4-14

Table 4-6 Rules for Using Keywords

Characteristic any ALL allusers

Policy Element Built-in privilege Built-in privilege group Built-in local group

Represents any privilege All privileges including
built-in and user-defined

All users in one local
directory

Used in rules Yes No Yes

Needs qualifier No Yes
//grp/ALL

Yes
//sgrp/ [directory
name]/allusers

Used in policy
queries

Yes

Only finds rules with the
literal any. That is, it does
not return all rules (rules
with any privilege).

No Yes

Finds rules that
specifically entitle the
group allusers

Controlled by
delegation

No

Must be in a group that is
delegated

Yes

Controls access to all
privileges regardless of
privilege group

Yes

You must be specifically
delegated access to this
group

Case-sensitive Yes Yes Yes

Creat ing Po l i cy Data F i l es fo r Impor t ing

Policy Managers Guide 4-13

“Declarations [dec]” on page 4-15

“Directories [dir]” on page 4-16

“Directory Attribute Schemas [schema]” on page 4-16

“Mutually Exclusive Subject Groups [excl]” on page 4-17

“Resources [object]” on page 4-17

“Resource Attributes [object]” on page 4-18

“Policy Distribution [distribution]” on page 4-19

“Policy Inquiry [piquery]” on page 4-19

“Policy Verification [pvquery]” on page 4-20

“Privileges [priv]” on page 4-21

“Privilege Bindings [privbinding]” on page 4-21

“Privilege Groups [privgrp]” on page 4-22

“Role [role]” on page 4-22

“Rule [rule]” on page 4-22

“Distribution Targets” on page 4-23

“Subject Group Membership [member]” on page 4-23

“Subjects [subject]” on page 4-24

Application Bindings [binding]
This file contains an example of the Authorization provider and Service Control Manager
bindings. The resources that can be bound are the resources that are created as binding nodes.

Each line contains a name of an Authorization provider or Service Control Manager, followed by
a binding node name. A Security Provider can only bind policy resources and the Service Control
Manager can only bind configuration resources.

Examples:

//bind/myAuthorizationProvider //app/policy/myApplication/myBinding

//bind/mySCM //app/config/myConfiguration/configBind

Impo r t ing and Expor t ing Po l i cy Data

4-14 Policy Managers Guide

Attribute [attr]
This file lists the subject attribute for users and subject group. The attribute value property must
comply with user attribute schema defined for //dir/dirName. If the property is "L", the
attribute value must be enclosed in brackets ([]), with items separated by commas. In general, the
attribute value for all users must be set according to the specification defined in user attribute
schema. However, if an attribute is not set when this file is created, its record may be left out in
this file.

Note: Both user and credential declarations must exist in the policy database before it can be
loaded successfully. Further, the user attribute schema must be defined before the user
attribute can be assigned in Attribute Value file.

Examples:

Given the user attribute schema shown in Listing 4-1, the user attribute values and subject
attribute value are defined as shown in Listing 4-2 and Listing 4-3.

Listing 4-1 User Attribute Schema

//dir/CA_Office my_host_ip S

//dir/CA_Office my_favorite_color L [blue,green]

//dir/NY_Office email_address S "user@crosslogix.com"

//dir/NY_Office my_birthday S

//dir/NY_Office my_favorite_color L [red]

Listing 4-2 Sample User Attributes

//user/CA_Office/user_a@mycom.com/ my_host_ip 121.1.100.25
//user/CA_Office/user_b@mycom.com/ my_host_ip 121.1.100.26
//user/CA_Office/user_c@mycom.com/ my_host_ip 121.1.100.50
//user/CA_Office/user_d@mycom.com/ my_host_ip 121.1.100.225
//user/CA_Office/user_e@mycom.com/ my_host_ip 132.99.25.77

//user/CA_Office/user_a@mycom.com/ my_favorite_color [red]
//user/CA_Office/user_b@mycom.com/ my_favorite_color [white,green]
//user/CA_Office/user_c@mycom.com/ my_favorite_color [red,blue]

Creat ing Po l i cy Data F i l es fo r Impor t ing

Policy Managers Guide 4-15

//user/NY_Office/user_1/ email_address "user1@crosslogix.com"
//user/NY_Office/user_1/ my_birthday 1/1/1960
//user/NY_Office/user_1/ my_favorite_color [blue]

Listing 4-3 Sample Subject Group Attribute

//sgrp/NY_Office/role1/ my_favorite_color [green]

Declarations [dec]
BEA AquaLogic Enterprise Security supports four kinds of declarations that are used in rules,
user attributes, and resource attributes. You must create the declaration before you use it in a rule.
The kinds of declarations are: enumerated types (ENUM), constants (CONST), attributes (CRED), and
evaluation functions (EVAL). You can use this file to declare each one. Each line contains the
declaration text, starting with declaration type. Declaration names are case-insensitive and are
always saved in lower case. The four kinds of declaration text must conform with the following
syntax.

ENUM enum_name = (enum1, enum2, …, enumn);

CONST constant_name_1 = constValue;

CONST constant_name_2 = [value1, value2, …, valuen];CRED cred_name :

datatype;

EVAL eval_name;

Examples:

ENUM color_type = (red, blue, green, white);

CONST my_favorite_color = green;

CONST my_birth_date = 07/04/1980;

CONST favorite_colors_for_tom = [blue, white];

CONST colors_of_my_choice = [my_favorite_color, red];

CONST a_few_cities = ["New York", "Boston", "San Francisco"];

CONST a_magic_number = 28;

Impo r t ing and Expor t ing Po l i cy Data

4-16 Policy Managers Guide

CRED string_cred_1 : string;

CRED color_cred : color_type;

CRED date_cred : date;

CRED weight_in_pound : integer;

EVAL is_good_number;

Directories [dir]
Multiple directories can be used to separate users and groups that come from different user stores.
A directory is also associated with a schema and the types of attributes the users in that directory
contains.

This file lists the name of some sample directories. The directory name must start with the prefix:

//dir/

Examples:

//dir/CompanyA

//dir/CompanyB

Directory Attribute Schemas [schema]
A directory defines all users and user groups. Before a user or a user group can be assigned an
attribute, you must declare the directory to accept their attributes. You can use this file to declare
the attributes that a directory can have.

Each line in the file contains a directory name, an attribute name (the attribute declaration as in
file "decl"), a value type (single- or multi-value), and an optional template value matching the
data type of the attribute. The single-value type is denoted by S and multi-value type by L (from
list-value).

You must enter a multi-value (list) attribute with all values enclosed in square brackets [] and
separated by commas, and enclose each value for a string data typed attribute with double quotes
("). You cannot use another double quote (") and backslash (\) in the template value.

Examples:

//dir/CompanyA my_host_ip S 111.111.111.111

//dir/CompanyA my_favorite_color S

//dir/CompanyA email_address L ["user@bea.com", "xyz@yahoo.com"]

Creat ing Po l i cy Data F i l es fo r Impor t ing

Policy Managers Guide 4-17

//dir/CompanyB my_birthday S

//dir/CompanyB my_favorite_color L [blue,green]

list of exclusive sgrp pair.

Mutually Exclusive Subject Groups [excl]
This file lists the subject groups that are mutually exclusive from one another. An exclusive
subject groups record has the following format:
//sgrp/dirName/aSubjectGroupName/ //sgrp/dirName/anotherSubjectGroupName

For subject groups to be mutually exclusive, they must comply with the following requirements:

Both subject groups must be in the same directory.

The subject groups must not share a common sgrp member or user member.

Both subject groups in a pair must exist in the policy database before the pair can be
defined and loaded successfully.

Example:
//sgrp/CA_Office/trader/ //sgrp/CA_Office/salesPerson/

Resources [object]
In general, resources are constructed as a tree below two tree roots: the policy resources tree and
the configuration tree. The policy tree has a resource name that starts with the prefix
//app/policy/ (for resource configuration) and configuration tree that starts with the prefix
//app/config/ (for provider configuration). However, you do not see the provider
configuration in the tree. This file lists all the resource names in order, from the root to the child
nodes, together with the resource type and the logical name for the resource.

There is a special resource type, denoted by A, indicating that the resource node is bound by an
ASI Authorization Provider or a Service Control Manager. This special resource node is called a
binding node. All other resources are denoted by O and are called non-binding nodes.

A logical name or alias is a short name for a resource and can be optionally associated with a
resource. Only binding nodes derived from the resource can have an alias. A logical name used
as an alias must start with prefix:

//ln/

Impo r t ing and Expor t ing Po l i cy Data

4-18 Policy Managers Guide

and must be unique to the entire resource tree. Each line contains a resource name, an optional
resource type, and an optional alias. If the resource type is missing, it defaults to O. If there is an
alias, the resource type must be specified.

Examples:

//app/policy/myApplication

//app/policy/myApplication/myBinding A

//app/policy/myApplication/myBinding/myresource.one O //ln/myres1

//app/policy/myApplication/myBinding/myresource.two O

//app/policy/myApplication/myBinding/myresource.three

//app/config/myConfiguration O

//app/config/myConfiguration/configBind A //ln/configBind

Resource Attributes [object]
Because a resource is also referred to as object, a resource attribute is also referred to as an object
attribute. Each line contains a resource name (as in file "object"), an attribute name (the
declaration as in file "decl"), a value type (single- or multi-value), and values matching the data
type of the attribute. The single-value type is denoted by S and multi-value type is by L (from
list-value). You can enter a multi-value attribute either in multiple lines, with the same resource
name, attribute name and value type (L); or, you can enter it using one line, with all the values
enclosed in square brackets [] and separated by commas. You must enclose each value for a string
attribute with double quotes ("). You cannot use another double quote and backslash (\) in the
attribute value.

Examples:
//app/policy/myApplication/myBinding string_attr_1 S "A value to be decided"

//app/policy/myApplication/myBinding/myresource.one string_attr_1 L "1st
Value"

//app/policy/myApplication/myBinding/myresource.one string_attr_1 L "2nd
Value"

//app/policy/myApplication/myBinding/myresource.one string_attr_1 L "3rd
Value"

//app/policy/myApplication/myBinding/myresource.two string_attr_1 L ["ABC",
"DEF", "XYZ"]

Creat ing Po l i cy Data F i l es fo r Impor t ing

Policy Managers Guide 4-19

//app/policy/myApplication/myBinding/myresource.three color_attr_1 L [red,
blue]

//app/policy/myApplication/myBinding/myresource.three integer_attr_1 S 1001

//app/policy/myApplication/myBinding/myresource.three date_attr_1 L
[01/01/2003, 01/01/2004]

Policy Distribution [distribution]
This file provides the parameters used for policy distribution issued by the Policy Import tool
when the distribution is enabled in a configuration. The policy distributor takes a list of user
directories and distribution point combinations. Therefore, each line contains a directory and a
distribution point separated by white spaces.

The distribution point is a resource node on or above a binding resource node. The directory can
be either a specific directory or //dir/* to include all user directories.

Note: You cannot use applications pending deletion as distribution points. Select a node higher
in the tree as the distribution point.

Examples:

//dir/* //app/policy/myApplication

//dir/CompanyA //app/policy/myApplication/myBinding

Policy Inquiry [piquery]
AquaLogic Enterprise Security stores the contents of a policy inquiry in the policy database. This
file contains examples of policy inquiries to import and store in the policy database. Each query
can span multiple lines, can have multiple lines of each type, but must have a minimum of one
line. The first line of each query must specify the privilege, the effect (grant or deny), the query
owner and the query title.

Each line has the following syntax:

P/O/S oneQualifiedName grant/deny queryOwner queryTitleMayhaveSpace

where P/O/S stands for privilege, object (resource), and subject.

Listing 4-4 shows policy inquiry examples.

Listing 4-4 Policy Inquiry Examples

Sample query 1:

Impo r t ing and Expor t ing Po l i cy Data

4-20 Policy Managers Guide

P //priv/delete grant //user/ales/system/ Saved Policy Inquiry #1

O //app/policy/myApplication/myBinding grant //user/ales/system/

 Saved Policy Inquiry #1

S //ales/ales/userid/ grant //user/ales/system/ Saved Policy Inquiry #1

Sample query 2 (same content as query 1):

P //priv/delete grant //user/ales/system/ Policy Inquiry #2

O //app/policy/myApplication/myBinding

S //ales/ales/userid/

Sample query 3:

P //priv/delete grant //user/ales/system/ Policy Inquiry #3

Sample query 4:

P //priv/delete deny //user/ales/system/ PIQuery4

P //priv/create

O //app/policy/myApplication

Policy Verification [pvquery]
AquaLogic Enterprise Security stores the contents of a policy verification in the policy database.
This file defines policy verification queries to import and store in the database. Each query spans
multiple lines. The first line of each query must have the owner and title, in the following syntax:

LP/RO/RP/RO oneQualifiedName queryOwner queryname

A query name may contain spaces.

Listing 4-5 shows policy verification examples:

Listing 4-5 Policy Verification Examples

Sample query 1:

LP //priv/delete //user/ales/system/ Policy Verification #1
LO //app/policy/myApp/firstResource //user/ales/system/ Policy Verification #1
RP //priv/create //user/ales/system/ Policy Verification #1
RO //app/policy/myApp/secondResource //user/ales/system/ Policy Verification #1

Sample query 2 (query content is the same as query 1):

Creat ing Po l i cy Data F i l es fo r Impor t ing

Policy Managers Guide 4-21

LP //priv/delete //user/ales/system/ Policy Verification #2
LO //app/policy/myApp/firstResource
RP //priv/create
RO //app/policy/myApp/secondResource

Sample query 3:

LP * //user/ales/system/ Policy Verification #3
LO //app/policy/myApp/firstResource //user/ales/system/ Policy Verification #3
RP //priv/delete //user/ales/system/ Policy Verification #3
RO //app/policy/myApp/secondResource //user/ales/system/ Policy Verification #3

Sample query 4:

LP * //user/ales/system/ PolicyVerification#4
LO //app/policy/myApp/firstResource //user/ales/system/ PolicyVerification#4
RP * //user/ales/system/ PolicyVerification#4
RO //app/policy/myApp/secondResource //user/ales/system/ PolicyVerification#4

Privileges [priv]
This file contains a sample list of privilege names. Each privilege name must start with the prefix:

//priv/

Examples:

//priv/read

//priv/Read

//priv/search_file

//priv/search_text

Privilege Bindings [privbinding]
This file contains examples of how privileges are bound to privilege groups. Each line contains
a privilege group followed by a privilege.

Examples:

//grp/myPrivGroup //priv/read

//grp/myPrivGroup //priv/search_file

//grp/myPrivGroup //priv/search_text

//grp/DevelopmentGroup //priv/read

//grp/DevelopmentGroup //priv/Read

Impo r t ing and Expor t ing Po l i cy Data

4-22 Policy Managers Guide

Privilege Groups [privgrp]
This file contains examples of privilege group names. Each privilege group name must start with
the prefix:

//grp/

Examples:

//grp/myPrivGroup

//grp/DevelopmentGroup

Role [role]
This file defines a list of role names. Roles are used to construct policies. Each line contains a
role name. Each role name is prefixed with:

//role/

Examples:

//role/manager

//role/QA

//role/trading_Manager

//role/salesEngineer

//role/junior_trader

//role/salesPerson

//role/trader

Rule [rule]
Rules are used by the Authorization and Role Mapping Engine (ARME) to make authorization
and role mapping decisions. This file lists rules with their rule text conforming to rule syntax.
Each line contains one rule, a grant, deny, or delegate rule. Sample entries assume all of the
referenced roles, privileges, resources, users, groups and declarations exist in the policy database.

Examples:

grant(//role/Administrators, //app/policy/myApplication,

//user/ales/system/);

grant(//priv/read, //app/policy/myApplication, //sgrp/ales/allusers/);

deny([//priv/read, //priv/search_text],

//app/policy/myApplication/myBinding/confidentialDocument.one,

//role/public);

Creat ing Po l i cy Data F i l es fo r Impor t ing

Policy Managers Guide 4-23

delegate(//role/Administrators, //app/policy/myApplication,

//user/ales/John Doe/, //user/ales/system/) if dayofweek in weekend;

Distribution Targets
There are two types of distribution targets in BEA AquaLogic Enterprise Security:

The Authorization and Role Mapping providers that enforce policy

The Service Control Manager that manages configuration changes

Both of these targets retrieve their policy data from the policy distributor. The security providers
receive only policy related changes and the Service Control Manager retrieves only configuration
related changes. The file called engine lists the names of the security providers and the Service
Control Manager and respective type.

The name is qualified by the prefix:

//bind/

The names are referred to by the application binding file (binding) and must be imported before
the application binding file.

Examples:

//bind/myAuthorizationProvider ARME

//bind/mySCM SCM

Subject Group Membership [member]
This file lists subject group membership. Each record has one of the following formats:
//sgrp/dirName/aSubjectGroupName/ //sgrp/dirName/aSubjectGroupMemberName/

//sgrp/dirName/aSubjectGroupName/ //user/dirName/aUserMemberName/

When you define subject group memberships, the subject group and members must comply with
the following requirements:

The subject group and the member must be in the same directory.

One user may belong to many subject groups.

One subject group may be a member of many subject groups.

Two subject groups that have common members cannot become mutually exclusive.

Impo r t ing and Expor t ing Po l i cy Data

4-24 Policy Managers Guide

Both subject groups and their members must exist in the policy database before the
membership can be loaded successfully.

For an example of a Member policy file, see Listing 4-6.

Listing 4-6 Sample Member Policy File

//sgrp/CA_Office/junior_trader/ //sgrp/CA_Office/trader/

//sgrp/CA_Office/trader/ //sgrp/CA_Office/senior trader/

//sgrp/CA_Office/senior trader/ //sgrp/CA_Office/trading_Manager/

//sgrp/CA_Office/salesEngineer/ //sgrp/CA_Office/salesManager/

//sgrp/CA_Office/salesPerson/ //sgrp/CA_Office/salesManager/

//sgrp/CA_Office/junior_trader/ //user/CA_Office/user_a@mycom.com/

//sgrp/CA_Office/senior trader/ //user/CA_Office/user_b@mycom.com/

//sgrp/CA_Office/trading_Manager/ //user/CA_Office/user_c@mycom.com/

//sgrp/CA_Office/salesPerson/ //user/CA_Office/user_d@mycom.com/

//sgrp/CA_Office/customer/ //user/CA_Office/user_e@mycom.com/

Subjects [subject]
This file contains a list of users and subject groups. Each record must have one of the following
formats:
//user/dirName/aUserName/
//sgrp/dirName/aSubjectGroupName/

The directory name must be formatted as //dir/dirName and it must exist in the policy database
before its subjects can be loaded successfully.

For an example of a Subjects policy file, see Listing 4-7.

Listing 4-7 Sample Subjects Policy File

//user/CA_Office/user_a@mycom.com/

//user/CA_Office/user_b@mycom.com/

//user/CA_Office/user_c@mycom.com/

//user/CA_Office/user_d@mycom.com/

//user/CA_Office/user_e@mycom.com/

Creat ing Po l i cy Data F i l es fo r Impor t ing

Policy Managers Guide 4-25

//sgrp/CA_Office/junior_trader/

//sgrp/CA_Office/trader/

//sgrp/CA_Office/senior trader/

//sgrp/CA_Office/salesEngineer/

//sgrp/CA_Office/salesPerson/

//sgrp/CA_Office/salesManager/

//sgrp/CA_Office/trading_Manager/

//sgrp/CA_Office/customer/

//user/NY_Office/user_1/

//sgrp/NY_Office/sgrp1/

Resource Discovery
When developing policy for use with a Security Service Module, you can use the Discovery mode
to help build your policy. Understanding how to write a policy requires that you understand the
application you want to protect, the policy representations, and the mapping between the two.

Note: You should never use Discovery mode in a production environment. Discovery mode is
used in the development environment to create the bootstrap security policy.

A typical policy consists of the following elements:

Resources

Privileges

Roles

Attributes (user, group and resource)

Attributes, privileges, and resource associations

Rules to grant privileges on resources through roles

Rules to grant roles to users

The ASI Authorization and ASI Role Mapping providers support a Discovery mode that helps
make this task easier. Typically, these providers answer questions about security, but when in
Discovery mode, the providers record information about those questions to build your policy (for
example, what privileges and resources must be granted to view a particular web page).

Impo r t ing and Expor t ing Po l i cy Data

4-26 Policy Managers Guide

To use Discovery mode, you must modify the command line that starts your Security Service
Module by adding the following system properties:

com.bea.security.providers.authorization.asi.AuthorizationProviderImpl.
discoverymode=true

com.bea.security.providers.authorization.asi.RoleProviderImpl.discovery
mode=true

You set the system properties using the -D command-line switch in the appropriate file,
depending on which Security Service Module (SSM) you are targeting. Table 4-7 lists the files
and their default locations for each type of SSM.

Note: The policy files are stored in the domain directory from which the startWeblogic.bat
or startWeblogic.sh script is started and configured to run in Discovery mode.

A sample policy is recorded by the providers as you traverse an application. This is a learning
process for the providers and they can only learn about the parts of the application that you use.
If a portion of the application is not used, no information or policy about it is recorded. The
generated policy is output to a set of files that you can import later, by using the Policy Import
tool described in “Importing Policy Data” on page 4-33.

Table 4-7 Setting System Properties for Discovery Mode

Security Service
Module Type

File Name File Default Location

Apache set-env.sh (UNIX only) BEA_HOME\ales21-ssm\apache-ssm\
instance\
<instancename>\bin

IIS Web Server set-env.bat (Windows
only)

BEA_HOME\ales21-ssm\iis-ssm\instance\
<instancename>\bin

Java set-env.bat (.sh for
UNIX)

BEA_HOME\ales21-ssm\java-ssm\instance\
<instancename>\bin

Web Services wlesws.wrapper.conf BEA_HOME\ales21-ssm\webservice-ssm\
instance\<instancename>\config

WebLogic Server 8.1 set-wls-env.bat (.sh
for UNIX)

BEA_HOME\ales21-ssm\wls-ssm\instance\
<instancename>\bin

Creat ing Po l i cy Data F i l es fo r Impor t ing

Policy Managers Guide 4-27

Among other things, the ASI Authorization and ASI Role Mapping providers transform their
requests into a proprietary format. A request consists of the following four elements:

Subject
Resource
Action
Attributes

The ARME providers build this information based on data contained in the request to the
provider. Each of these elements has different restrictions on the allowable character set. The
providers automatically normalize any invalid characters to produce a valid entry. See “Character
Restrictions in Policy Data” on page 4-6 for further details.

The following sections describe how each element is represented and transformed.

“Subject Transformation” on page 4-27

“Resource Transformation” on page 4-28

“WebLogic Resource Transformation” on page 4-29

“Java API Resource Transformation” on page 4-30

“Action Transformation” on page 4-31

“Attribute Transformations” on page 4-31

Subject Transformation
A subject representation uses the standard javax.security.auth.Subject class that contains a set of
java.security.Principal objects.

A subject consists of a directory name, a user name, and a set of group names. The user and
groups must exist within the directory specified for the provider. The directory name is part of
the provider configuration and can be modified using the Administration Console.

The providers iterate the principals, selecting those that implement the
weblogic.security.spi.WLSUser and weblogic.security.spi.WLSGroup interfaces. The first
WLSUser principal is used to retrieve the user name. All of the WLSGroup principals are used to
build of the group names.

Impo r t ing and Expor t ing Po l i cy Data

4-28 Policy Managers Guide

Resource Transformation
A resource representation varies based on the resource type. Each WebLogic J2EE resource has
a special representation based on a common resource base class. The Java API uses a standard
resource representation (see Java API and Programming Security for Java Applications).

To effectively handle each of these resource representations the ASI Authorization and Role
Mapping providers support a plug-in mechanism for registering code to handle the
transformation to the native resource format. See Resource Converter for details on how to use
the resource converter plug-in.

The ARME represents a resource as a node within a tree and the node is referenced using a
path-like expression. The nodes are delimited by the forward slash (/) character and are rooted at
a node named //app/policy. Typically, an application is not located directly below the root
node, but is nested, based on an organizational structure. The application root node is referred to
as the Application Deployment Parent and is a configuration property for the ASI Authorization
and ASI Role Mapping providers. The plug-in defines the part of the path expression below the
Application Deployment Parent.

A typical resource path may look like:

//app/policy/MyWebServer/HelloWorldApp/url/helloworld/HelloWorld.jsp

In this case, the Application Deployment Parent is:

//app/policy/MyWebServer

AquaLogic Enterprise Security provides resource converter plug-ins for the standard WebLogic
J2EE resource types. The same transformation scheme is used for each resource and consists of
the following elements:

Name of the application with which the resource is associated

Resources type

Resource hierarchy that identifies the parents of the resource

Resources name

These elements are used to define the resource path expression. The hierarchy is typically divided
into a number of individual units.

Resources that have no associated application are considered to be shared and exist under a
configurable shared node. Typically, this shared node is called “shared” and exists just below the
Application Deployment Parent.

{DOCROOT}/javadocs/JavaAPI/index.html
{DOCROOT}/programmersguide/index.html
{DOCROOT}/adminref/index.html

Creat ing Po l i cy Data F i l es fo r Impor t ing

Policy Managers Guide 4-29

The following example shows a URL resource, describing its component parts. A typical URL
resource looks like this:

http://localhost/helloworld/HelloWorld.jsp

It may also contain the following data elements:

Application - HelloWorldApp

Context Path Argument - /helloworld

URI - HelloWorld.jsp

The URL Resource Converter performs the following transformation:

1. The application maps to an application

2. The resource type is: url.

3. The resource hierarchy is built from the context path and the URI.

4. The resource name is the last element of the URI.

5. The context path and URI are hierarchal components and are parsed based on the URL
delimiter (/) and reassembled into the ARME resource.

The resulting ARME resource is represented as:

HelloWorldApp/url/helloworld/HelloWorld.jsp

with an Application Deployment Parent of:

//app/policy/MyWebServer

a fully qualified ARME resource is thus named:

//app/policy/MyWebServer/HelloWorldApp/url/helloworld/HelloWorld.jsp

WebLogic Resource Transformation
The same basic pattern is used for all other WebLogic resources. Table 4-8 describes the elements
of each resource class that are used to construct each resource name. An understanding of the
WebLogic Server resource representation may help you have a better understanding the data
included in the resource. For detailed descriptions of each resource class, see the Javadocs for the
weblogic.security.service package in the WebLogic Server 8.1 Javadocs located at:
http://edocs.bea.com/wls/docs81/javadocs/index.html.

http://edocs.bea.com/wls/docs81/javadocs/index.html
http://edocs.bea.com/wls/docs81/javadocs/index.html

Impo r t ing and Expor t ing Po l i cy Data

4-30 Policy Managers Guide

Java API Resource Transformation
The BEA AquaLogic Enterprise Security for Java 2.1 API Reference provides a more abstracted
resource interface. Resources of all types are represented as a ResourceActionBundle. This class
provides methods for extracting deep enumerations describing each resource. The conversion for
the ResourceActionBundle resource type is simple. The first non-null, non-empty element in the
enumeration is considered to be the application, and the last non-null, non-empty element is

Table 4-8 Standard WebLogic Server Resources

Resource Class Application Type Hierarchy Name

ApplicationResource Application “app” N/A N/A

URLResource Application “url” contextPath URI

AdminResource shared “adm” Category realm

COMResource Absolute parent’s
application name

“com” Class name

EJBResource Application “ejb” Module name EJB name

JDBCResource Application typically
Shared

“jdbc” Module name +
resource type

Resource name

JNDIResource Application typically
Shared

“jndi” JNDI Path

ServerResource Application typically
Shared

“svr” Server name

EISResource Application “eis” Module name EIS name

JMSResource Application typically
Shared

“jms” Destination type Resource Name

WebResource Application name “Web” URI of the web
resource

Resource name

WebServiceResource application “webservices” Context path Web service
name

wlp Enterprise
application name

“wlp” Web application
name

Resource name

{DOCROOT}/javadocs/JavaAPI/index.html

Creat ing Po l i cy Data F i l es fo r Impor t ing

Policy Managers Guide 4-31

considered to be the name. Basically the elements are joined in order using the ARME
forwardslash (/) delimiter.

Action Transformation
The ASI Authorization and ASI Role Mapping providers represent an action as a simple string
identifier. The Security Framework encodes the action as part of the resource object. The resource
converter extracts an action similar to how it extracts the resource path. Some resources do not
have the notion of an action, in which case the default action access is used. Table 4-9 lists the
WebLogic resources and associated action transformations.

With the Java API resource transformation, actions are represented as a deep enumeration. If the
enumeration contains more then a single item, they are joined together using an underscore (_)
delimiter. The ASI Authorization and ASI Role Mapping providers treat these as an atomic unit.

Attribute Transformations
The ASI Authorization and ASI Role Mapping providers attempt to make as much contextual
information available as possible for use in making authorization decisions. This includes both
data from the ContextHandler as well as data embedded in the resource object.

Table 4-9 WebLogic Resource Action Transformations

Resource Attribute

URLResource http method name

AdminResource Admin action name

COMResource “access”

EJBResource EJB method name

JDBCResource JDBC action name

JNDIResource JNDI action name

ServerResource Server action name

EISResource “access”

JMSResource JMS action name

WebServiceResource WebService method name

Impo r t ing and Expor t ing Po l i cy Data

4-32 Policy Managers Guide

The data from the ContextHandler is directly available by name; that is, if the
ContextHandler contains an element named balance, it can be directly referenced from the
authorization policy. The data supplied in the ContextHandler is application specific.

The resource object used in the authorization query can contain more data than was used in
constructing the ARME resource and action. This data is provided to the ARME as attributes. The
specific attributes available depend on the resource type (see Table 4-10). Again, the resource
converter retrieves resource specific data whenever requested.

Table 4-10 Attributes and Resources Class

Resource Class Attributes

URLResource application, contextpath, uri, httpmethod, transporttype, authtype, pathInfo,
pathtranslated, querystring, remoteuser, requestedsessionid, requesturi,
requesturl, servletpath, characterencoding, contenttype, locale, protocol,
remoteaddr, remotehost, scheme, servername, serverport, issecure

Note: Additionally, servlet parameters, attributes, headers, and cookies are all
available by name. These items are specific to the request and thus cannot
be enumerated here.

AdminResource category, realm, action

COMResource application, class

EJBResource application, module, ejb, method, methodinterface, signature

JDBCResource application, module, category, resource, action

JNDIResource application, path, action

ServerResource application, server, action

EISResource application, module, eis

JMSResource application, destinationtype, resource, action

WebServiceResource application, contextpath, webservice, method, signature

ResourceActionBundle All elements in the resource and action enumerations are available by name.
These names are application specific.

Impor t ing Po l i c y Data

Policy Managers Guide 4-33

What’s Next?
After you create the policy data files, you can import those files into the policy store using the
Policy Import tool.

Importing Policy Data
This section provides instructions and information on how to import policy data to the policy
store. It covers the following topics:

“Policy Import Tool” on page 4-33

“Configuring the Policy Import Tool” on page 4-34

“Running the Policy Import Tool” on page 4-41

“Understanding How the Policy Loader Works” on page 4-42

Policy Import Tool
The Policy Import tool is a Java utility that provides an alternate method of entering policy data
(rather than through the Administration Console). The main purpose of using this tool is to reduce
the amount of manual data entry required. The Policy Import tool lets you load policy data into the
database, distribute that policy, and remove policy data from the database. The Policy Import tool
reads and imports policy data that is stored as text using non-XML, easy to read format. Each
policy element is stored in a separate file, referred to as a policy file. For information on the
specific format of these policy elements, see “Creating Policy Data Files for Importing” on
page 4-2.

The Policy Import tool has the following features:

Multi-threaded architecture–Allows for more efficient policy loading.

Separation of policy elements–Loads multiple files with each file corresponding to one
policy element.

Optimized–Fast import of large policies during initial import.

Policy Distribution–After importing, use the Policy Import tool to distribute the policy.

Note: Before you can use the Policy Import tool to distribute policy, you must configure
the distribution file and enable the policy distribution feature in the distribution
configuration file of the policy loader.

Impo r t ing and Expor t ing Po l i cy Data

4-34 Policy Managers Guide

Removing Policy–You can also use the Policy Import tool to remove policy elements from
the database.

Note: When running the Policy Import tool on a large policy, the number of records processed
may not be synchronized. If multiple threads are used to import the data, when one thread
completes before the other cannot be determined. If the threads are set too high, a
message may appear indicating that the number of records processed is not synchronized.
This is normal and is not a problem for the Policy Import tool.

For a description of the content of Policy files, see “Sample Policy Files” on page 4-12.

Note: If you want to store users, groups, and their attributes in an external store, you can use the
Metadata Directory tool, as described in “Configuring Metadirectories” in Integrating
ALES with Application Environments.

When exporting the policy, the configuration resources are saved to the following files:
object_config and objattr_config. These two files are not loaded by the policy loader by
default. If you want to load the configuration resources, you need to create a directory and copy
object_config, objattr_config, and binding into that directory. Rename object_config
to object and objattr_config to objattr. Then you can configure the policy loader to load
these files into this new directory.

Configuring the Policy Import Tool
The Policy Import tool relies on the configuration file for information on how to load the policy
files. You only need to modify the configuration file if you the change the location of the policy
files or you want to change some configuration options. The Domain parameter is required for
successful import. The Policy Import tool uses default values for the other parameters, which are
all optional.

This section covers the following topics:

“Setting Configuration Parameters” on page 4-34

“Sample Configuration File” on page 4-39

Setting Configuration Parameters
Each configuration parameter has the following format:

<Parameter> <Value>

The file paths in the configuration file depend on the directory from which you run the Policy
Import tool. You may use the full path filename to avoid directory dependency. Spaces are allowed

{DOCROOT}/integrateappenviron/metadirectory.html

Impor t ing Po l i c y Data

Policy Managers Guide 4-35

between parameters and between new lines. Parameter names are case insensitive. Table 4-11
lists the parameters you need to configure for the Policy Import tool.

To create the configuration file (see Listing 4-8 for a complete sample), you need a text editor
such as Notepad. Create the file by entering the necessary parameters and parameter values. The
following sections describe the contents of a sample configuration file, with a detailed
explanation of each parameter and its default value.

Enter the following parts of the configuration file in the format described. These are only sample
entries. Your entries depend on the names you create and where your files are stored. An italics
font is used here to represent variables that you replace with your own parameter names. You do
not need to list the parameters in the configuration file in this order.

There is a sample of a Policy Import configuration file named policy_loader_sample.conf
located in the .../examples/policy directory. You can modify this file for your own use. BEA
recommends that you use this file as a template and customize it for your particular needs.

Note: The configuration parameters are listed in alphabetical order in Table 4-11. This is not
the order in which they are listed in the policy_loader_sample.conf file.

Table 4-11 Configuration Parameters

Parameter Description

Action Indicates the Action that the Policy Import tool will perform. Supported values are
LOAD and REMOVE (case insensitive).

REMOVE = Unloads the specific policy from the database.

ADD = Loads the specific policy data into the database.

ApplicationNode Specifies the application node that holds the administration policy. If this parameter is
commented out, the default value of admin is used.

BLMContext
Retries

Specifies the number of times retries should take place. If the ALES Administration
Console server is still starting up, then you need to retry the BLM API Authentication.
In most cases the ALES Administration Console server is always running. Default: 100.

BLMContext
Interval_ms

Specifies the amount of time (in milliseconds) to wait between context retries.
DEFAULT: 100ms.

Impo r t ing and Expor t ing Po l i cy Data

4-36 Policy Managers Guide

BulkSize Specifies the number of records to send at one time in a thread. Default: 200.

Note: When there are multiple threads importing policy data, each processing a
number of records, the number of records processed may result in an
“out-of-sync” message. However, it does not harm the data when importing the
policy. The policy import tool switches to single thread when importing some
policy elements, such as resources and declarations, as the later records have
dependency on earlier records.

ConsoleDisplay Specifies whether to hide console interaction or not (yes/no). If you want to run the
policy loader in the background as a batch process, set to no. Default: yes

no = Error messages are not displayed on the console and the user is requested to enter
their Username and Password if they are missing in the configuration file.

yes = Error messages are displayed on the console. This parameter must be enabled if
you want to type in your password on the command prompt, rather then use the one
specified in the password.xml or in the configuration file.

Debug Specifies whether you want to log debug information. Default: 0

0 = Does not log debug information.

1 = Sends debug information to the file defined by: ErrorLogFile.

Domain Specifies the Enterprise domain name, as assigned during the installation of the
Administration Application. Default: asidomain.

This parameter is required.

ErrorLogFile Specifies the name of error log file. This file is produced if the Importing Tools fails
while attempting to load a set of policy files. It contains error messages that describe the
failures to assist you in correcting the errors. Default: error.log.

Table 4-11 Configuration Parameters (Continued)

Parameter Description

Impor t ing Po l i c y Data

Policy Managers Guide 4-37

Mode Specifies the mode of operation the Policy Import tool. Values are INITIAL or
RECOVER (case insensitive). Use INITIAL mode the first time you run the Import
Policy Tool to load a set of policy files. If you encounter errors in the initial load attempt,
check the ErrorLogFile for a description of the error, correct the errors in the
generated error file(s) (an error file is produced for each policy file that fails), and rerun
the Import Policy Tool again, but this time in the RECOVER mode. This way the tool
only attempts to load the generated error files. If the tool fails again, fix the errors, and
run it again in RECOVER mode. Repeat until no errors are encountered.

Note: This parameter can also be passed in as a command-line parameter -recover
or -initial. Values for this parameter on the command line override values
specified in the configuration file.

PasswordFile Specifies an encrypted password file. To set up a password file, use the asipasswd
utility. This utility prompts you for the alias (username) and the password of the user
trying to import the policy and then saves the encrypted password in the
password.xml file. Default: ../ssl/password.xml.

PasswordKey
File

Specifies a private key used to decrypt the password stored and encrypted in the
password.xml file. To set up a password file, use the asipasswd utility. Default:
../ssl/password.key.

Policy
DirectoryPath

Specifies the directory path from which to import policy files. For example:
../examples/policy. The path may be relative. Default: “.” (for relative)

Policy
Distribution

Specifies whether the Policy Import tool will distribute policy. If the distribution file is
in policy distribution path and PolicyDistribution parameter is set to yes, the policy will
be distributed. Supports YES or NO setting. Default: YES.

YES = The Policy Import tool distributes policy data.

NO = The Policy Import tool does not distribute data. It only imports it into the database.
The Administration Console can then be used to distribute data.

requestTimeout Specifies the time (in milliseconds) to wait for the server to respond. Should be longer
for loading large files. May set to infinite (ASI.INFINITE) for very large files.
Default: 600000

Table 4-11 Configuration Parameters (Continued)

Parameter Description

Impo r t ing and Expor t ing Po l i cy Data

4-38 Policy Managers Guide

For more information on the configuration parameters, refer to the following topics:

“Username and Password” on page 4-38

“Policy Import Parameters” on page 4-38

Username and Password
Including the password in the configuration file is optional and is not recommended because it
could be viewed by others who are not authorized to import policy. The password can be
encrypted and stored in the password.xml file. You should set the PasswordFile and
PasswordKeyFile for the policy to automatically retrieve the password using the alias as the
username specified in the configuration file. If you do not include these parameters and the
console display is enabled (the default setting), you are prompted to enter their values when you
run the Policy Import tool. If one of the two parameters is not included in the configuration file
and the console display is disabled, the Policy Import tool logs an error and terminates. When
entered, the password is not displayed for security reasons.

Policy Import Parameters
This section of the configuration file specifies parameters that the Policy Import tool uses to
import policy data. There are three policy import parameters: PolicyDirectoryPath,
RunningThread and BulkSize.

The PolicyDirectoryPath parameter specifies the directory path for the policy files. When
you start the Policy Import tool, it looks in the directory pointed by PolicyDirectoryPath for
valid files. The directory path is either a relative or full path. If the value is left empty or the value
is a period (.), the current directory of the Policy Import tool is assumed. For example:

RunningThread Number of threads running concurrently to process the policy import. The value
depends on the capacity of the database server. Commonly the optimal value is 2 - 4 or
be larger for a high capacity database server. Default: 2.

Username Specifies the username for the administrator (optional). The username is case
sensitive. If the username is not specified in the configuration file and the
ConsoleDisplay parameter is enabled, then you are prompted to enter one. Default:
system.

Note: This user must have the privilege to import policy.

Table 4-11 Configuration Parameters (Continued)

Parameter Description

Impor t ing Po l i c y Data

Policy Managers Guide 4-39

PolicyDirectoryPath ../examples/policy

The RunningThread parameter specifies the number of running threads and depends on the
hardware configuration of the database server. The default number is 3. For most database
servers, you want to use a value from 2 to 4. For a high-capacity database server, where a high
CPU speed and large memory size are allocated, increase this number to improve import
performance. If you set this value too high, it may hinder the performance of the Policy Import
tool. If this is the case, you can observe database busy warning messages in the server log file.

The BulkSize parameter denotes the size of each bulk load data block per thread in the Policy
Import tool; that is, the number of entries imported in a single load using a single connection
between server and the database. Increase the parameter value to lessen the time to initiate a
connection. If you enter too high a value, the import process slows, which in turn requires higher
RequestTimeout and ConnectionTimeout values. The optimal value is between 50 and 300.

Sample Configuration File
Use the sample file shown in Listing 4-8 to guide you through the process of creating your
configuration file. Each parameter description includes comments, indicated by the # symbol.
The sample configuration file assumes that all of your policy files are located in the directory
specified by BEA_HOME/ales21-admin/examples/policy.

Note: Be sure to use forward slashes (/) when specifying the policy file directory path.

The sample configuration file also assumes that no policy distribution is performed.

Listing 4-8 Sample Configuration File

Required

In addition to this file, asi.properties is read in from the ALES_HOME/config
directory. Any parameters set here will override values defined there.

policy domain name, as set in policy database during database installation
Domain asidomain

Optional

A ALES administrator user id and password.
If either Username or password is not provided, they can be
entered at prompt (case sensitive).
They should be same as stored in database.
#Username system

Impo r t ing and Expor t ing Po l i cy Data

4-40 Policy Managers Guide

Encrypted password file
To set up a password file, use asipasswd utility tool
PasswordFile ../ssl/password.xml

Password key file
PasswordKeyFile ../ssl/password.key

This is the application node that holds the administration policy.
If commented out it assumes the dafult value of "admin".
ApplicationNode admin

Number of Threads Running concurrently
The value depends on the capacity of the database server
commonly the optimal value is 2 - 4, or could be larger for high capacity
DB server
RunningThread 2

If ALES Admin console server is still coming up then you need to retry
the BLM API Authentication. In most cases the ALES Admin console server will
always be running.
Configure the number of times retries should take place (DEFAULT 100)
BLMContextRetries 2

Configure the the amount of time in milli seconds to wait between context
retries (DEFAULT 100ms)
BLMContextInterval_ms 100

Size for each bulk load. I.e. number of entries loaded in a
single load(200 here)
BulkSize 200

Loading directory value for loading policy files, value is the
directory from which the files will be loaded.
Directory path may be a relative path
PolicyDirectoryPath .

To indicate whether to distribute policy in same operation.
If distribution file is in policyDistribution path and
PolicyDistribution parameter is not set to no the policy WILL be
distributed.
Parameter takes either yes or no (case insensitive). Default = YES
PolicyDistribution yes

File where all error messages are logged.
ErrorLogFile policyImporter.log

To indicate the Action that the Policy Import tool will perform.
Values are LOAD or REMOVE (case insensitive). Default = LOAD
#Action REMOVE

Impor t ing Po l i c y Data

Policy Managers Guide 4-41

To indicate the Mode the Policy Import tool will be in
Values are INITIAL or RECOVER (case insensitive). Default = INITIAL
This parameter can also be passed in as a commandline parameter -recover or
-initial.
Values on the command line will override values specified in the
configuration file.
#Mode RECOVER

uncomment if you want to see debug information, Default = 0 (no debug)
#Debug 1

uncomment if you want to hide console interaction (yes/no), default = yes
If you want to run loader in background/in batch process, set this to no
ConsoleDisplay yes

Running the Policy Import Tool
After you complete the configuration file, you can run the Policy Import tool and import your
policy files.

To run the Policy Import tool:

1. Prepare your policy data files.

You can create your own policy data files as described in “Creating Policy Data Files for
Importing” on page 4-2 or you can use files that you have exported from your policy
database as described in “Exporting Policy Data” on page 4-42.

2. Create a configuration file to define your policy load.

You can use the ../examples/policy/policy_loader_sample.conf file as a template
for your configuration file. Additionally, for a sample configuration file, see “Sample
Configuration File” on page 4-39.

3. Run the Policy Import tool.

On a Microsoft Windows platform, run

policyloader.bat

On a UNIX platforms, run:

policyloader.sh

4. Check for errors in log file.

Impo r t ing and Expor t ing Po l i cy Data

4-42 Policy Managers Guide

Note: If an error occurs, the Policy Loader terminates; you must restart the Policy Import tool.
The name of the error file is defined in the your Policy Import tool configuration file by
the ErrorLogFile parameter. In addition, to distribute policy you need distribution
privileges granted to you.

Also, because the Policy Import tool is multi-threaded and each thread writes out to the
log when it is complete, you cannot guarantee the order in which each load completes.

The Policy Import tool processes policy files according to a predefined order, and if the policy
file is not found, it tries to load the next policy file in the proper order. Records imported
successfully are committed to the database. After the import process begins, you cannot go back
within the same process and edit changes you have made. If you want to change what you have
done, you have to start a new import process. After the import process is complete, you may run
the removal operation to reverse the import process.

Understanding How the Policy Loader Works
When an Object Exists Error occurs—indicating that you created a duplicate policy entry—
the import process does not stop. When the Policy Import tool encounters an error other than the
Object Exists Error, it generates a file named <filename>.<version> (for example,
object.1 , object.2) and the error message is logged in the configured error file.

Once the policy loader has finished, you need to check to see if there are any versioned files. If
there are such files, this indicates that there were errors in certain files and only the problematic
lines from those files have been placed in the versioned files. You can now correct the mistakes
in the versioned files and re-run the policy loader in the recover mode. You can do this in two
ways. By either updating the mode in the configuration file to RECOVER or adding an extra
command line argument (-recover) when running the policy loader again. Now the loader will
only try to load the highest version files that has not already been previously loaded. If you
corrected priv.1 and there are still problems, then the loader will now generate priv.2 with just
the lines that filed. You now have to make the fix in priv.2 and rerun the policy loader in the
recover mode. You need to keep doing this until the policy loader does not generate any new
version files and the error log file does not have any errors listed in it for the last run.

Policy unloading works similar to policy loading except the order in which the files are read is
reversed, and the policy is removed from the database instead of being added.

Exporting Policy Data
This section provides instructions and information on how to export policy data from the policy
store. It covers the following topics:

Expor t ing Po l i c y Data

Policy Managers Guide 4-43

“Policy Exporter Tool” on page 4-43

“Before You Begin” on page 4-43

“Exporting Policy Data on Windows Platforms” on page 4-44

“Exporting Policy Data on UNIX Platforms” on page 4-45

“What’s Next” on page 4-46

Policy Exporter Tool
Policy exporting allows you to output data from the policy database to text files called policy
files. These policy files can be imported back to the same or another policy database using the
Policy Import tool, as described in “Importing Policy Data” on page 4-33. This tool allows you
to transfer your policy data easily to a production environment.

To perform policy exporting, you need access to the policy database. In general, you can access
the policy database when you are the policy owner or the database administrator.

All the files that are exported by the Policy Export tool are supported by the Policy Import tool.
All the files are created even though some files may not contain any records. There are two other
files exported: object_config, and objattr_config, that contain the data for SSM
configuration. These files also get loaded and are similar to object and objattr respectively in
format. These files are split so as to differentiate policy elements from configuration elements.
However, the object_config and objattr_config files can be merged into object and
objattr respectively, if needed.

Before You Begin
Before you begin, perform the following tasks:

1. Locate or create a target directory in which to store the policy files.

Ensure that the directory is not write-protected. The free space that the export requires
depends on the size of your existing policy. If your export fails because of insufficient disk
space, add more space before attempting the export again. In addition, ensure that the full
directory path contains no white space.

2. Ensure that the database client is installed and configured, and that you have access to the
database.

Depending on the database system, you need to have either the Oracle or Sybase client
installed and configured to connect to the policy database. Make sure all the environment

Impo r t ing and Expor t ing Po l i cy Data

4-44 Policy Managers Guide

settings are correct as discussed in Database Setup in the Administration Application
Installation Guide.

Make sure you can access the policy database using the isql (Sybase) or sqlplus (Oracle)
command. You must be the policy owner or database administrator to run the export tool.
When exporting, you are asked to provide the information for policy owner, your database
login id and password.

3. Ensure that you can run the tools from the /bin subdirectory for the product installation.

You must run the exporting scripts in this directory because the scripts need to locate some
files relative to this directory.

On a Microsoft Windows platform, you can open a DOS command prompt window and
change to this directory.

Exporting Policy Data on Windows Platforms
This procedure exports your policy from the database into formatted text files. You perform this
export using the export tool included as part of the Administration Application.

Before you begin, make sure you have the information listed in Table 4-12:

To export the policy data on a Windows platform, perform the following steps:

1. Open a command window and change to the \bin directory in the product installation. By
default, this directory location is C:\bea\ales21-admin\bin.

2. Ensure that the current path (.) is included your PATH. Also, ensure that the Sybase or
Oracle client environment is set up as discussed in Database Setup in the Installing the
Administration Sever.

3. At the command prompt, do one of the following:
For Oracle, type the following command, and then press <Enter>:

export_policy_oracle.bat server policyowner login password directory

For Sybase, type the following command, and then press <Enter>:
export_policy_sybase.bat server databasename policyowner login
password directory

where server, databasename, policyowner, login, and directory are as defined in
Table 4-12.

{DOCROOT}/installadmin/database.html
{DOCROOT}/installadmin/database.html

Expor t ing Po l i c y Data

Policy Managers Guide 4-45

When exporting the policy, the configuration resources are saved to the following files:
object_config and objattr_config. The Policy Import tool does not import these two files
by default. If you want to import the configuration resources, you need to create a directory, and
copy object_config, objattr_config, and binding into that directory. Rename
object_config to object and objattr_config to objattr. Then you can configure the Policy
Import tool to import these to file in this new directory.

Exporting Policy Data on UNIX Platforms
This procedure exports your policy from the database into formatted text files. You perform this
export using the Policy Export tool included as part of the Administration Server.

Running the Policy Export tool on Sun Solaris requires the use of a shell script. If you do not
normally use this shell or have difficulty running the tool, check with your UNIX system
administrator to determine if it is available in your environment. For Linux, you can run this script
from a Borne shell.

Before you begin, make sure you have the information listed in Table 4-12.

To export the policy data on a UNIX platform, perform the following steps:

1. Open a command window and change to BEA_HOME/ales21-admin/bin directory.

Table 4-12 Information Required to Export Policy Data

Information Description

server Name of your database server (Sybase) or the service name of the database server
instance (Oracle).

databasename Name of your database (Sybase only).

policyowner Name of the owner of the policy database. This is usually the same as the username
used to access your Sybase or Oracle database. Do not confused this with the
database owner for Sybase.

login Username used to access your Sybase or Oracle database.

password Password used to access your Sybase or Oracle database.

directory The target directory for the exported policy files. Be sure to include the full path
of the directory. This directory cannot contain white space.

Impo r t ing and Expor t ing Po l i cy Data

4-46 Policy Managers Guide

2. Ensure that all the *_oracle.sh (for Oracle) or *_sybase.sh files (for Sybase) have execution
permission and that the current path (.) is included in the PATH environment variable. Also,
ensure that the Oracle or Sybase client is set up as described in Database Setup in the
Administration Application Installation Guide.

3. From the command line, enter the following command:

For Oracle: export_policy_oracle.sh<Enter>

For Sybase: export_policy_sybase.sh<Enter>

4. When the script prompts you to continue, type Y, and then press <Enter>.

5. When the script prompts you for the directory in which to save the policy files, type the full
path directory name, and then press <Enter>.

6. When the script prompts you for your database server, type the name of your database
server (Service Name in Oracle), and then press <Enter>.

7. With Sybase, the script may prompt you for your database name, type the name of your
database, and then press <Enter>.

8. When the script prompts you for the policyowner, type the name of the database user who
owns the policy schema, and then press <Enter>.

The policy owner is the owner of the policy database, (for example, the database schema
owner). Do not confuse the database owner (dbo) with the policy owner in Sybase.

9. When the script prompts you for your Oracle or Sybase login ID, type your database
username, and then press <Enter>.

10. When the script prompts you for your login password, type your database password, and
then press <Enter>.

When the script completes, a successful message appears.

When exporting the policy, the configuration resources are saved to the following files:
object_config and objattr_config. The Policy Import tool does not import these two files
by default. If you want to import the configuration resources, you need to create a directory, and
copy object_config, objattr_config, and binding into that directory. Rename
object_config to object and objattr_config to objattr. Then you can configure the Policy
Import tool to import these to file in this new directory.

What’s Next
Once you have exported the policy data, you can import the exported policy into policy database
using the Policy Import tool. The exported policy files are in the format required by the Policy

{DOCROOT}/installadmin/database.html

Upgrading an Admin is t ra t ion Se rver to AquaLogic En te rp r ise Secur i t y 2 .1

Policy Managers Guide 4-47

Import tool; however, you need to configure the tool to point to the exported file directory. You
also need to create a policy distribution file distribution if you want the policy to be
automatically distributed after the import completes. For additional information, see “Importing
Policy Data” on page 4-33.

Upgrading an Administration Server to AquaLogic Enterprise
Security 2.1

If you are upgrading your Administration Server from WebLogic Enterprise Security 4.2 to
AquaLogic Enterprise Security 2.1 and you want to save any changes you may have made to the
policies and security configuration provided with the product, you must export the policies,
modify the policy file as instructed in this procedure, upgrade the Administration Server to ALES
2.1, and import the policies into the newly installed server.

The following changes were made to the default policy provided with the ALES 2.1 product:

The names of the following resources were changed:

– //app/policy/WLES changed to //app/policy/ASI.

– //app/policy/WLESRecovery changed to //app/policy/ASIRecovery.

The name of the default identity directory was changed from wles to asi. This is the
directory where the user system resides.

To save your changes, perform the following steps:

1. Use the Export tool to export you policy data from the Administration Server. For
instructions, see “Exporting Policy Data” on page 4-42.

2. Open the exported data files and make the following changes:

a. Change all occurrences of
//app/policy/WLES to
//app/policy/ASI.

b. Change all occurrences of
//app/policy/WLESRecovery to
//app/policy/ASIRecovery.

c. Change all occurrences of
//dir/wles to //dir/asi.

Impo r t ing and Expor t ing Po l i cy Data

4-48 Policy Managers Guide

d. Change all occurrences of
//user/wles to //user/asi.

e. Change all occurrences of
//sgrp/wles to //sgrp/asi.

f. Change all occurrences of
//bind/wlesadmin to
//bind/asiadmin.

g. Change all occurrences of
//app/config/ssm/wlesadmin to
//app/config/ssm/asiadmin.

h. Change config__identity_scope S wles to
config__identity_scope S to asi.

i. Change config__name S wlesadmin to
config__name S asiadmin.

3. If it is necessary to save the Policy Queries Migration file (piquery), merge any multiple
items into one line. Listing 4-9 shows an example.

Upgrading an Admin is t ra t ion Se rver to AquaLogic En te rp r ise Secur i t y 2 .1

Policy Managers Guide 4-49

Listing 4-9 Example of Merging Lines in the piquery File

change:

O

//app/policy/MgrtOrg/MgrtBindingApp/MgrtBindingAppRes deny

//user/wles/system/

QueryAllUser

to:

O //app/policy/MgrtOrg/MgrtBindingApp/MgrtBindingAppRes deny

//user/wles/system/QueryAllUser

4. Install the AquaLogic Enterprise Security 2.1 Administration Server.

5. Import the policy data into the newly installed Administration Server. For instructions, see
“Importing Policy Data” on page 4-33.

6. Check to see if there are any versioned files (*.1) in the policy data directory. If so, open the
*.1 files and check whether any of the data is related to the asi admin configuration data and
whether it is different from the current configuration defined in the latest installation.

Impo r t ing and Expor t ing Po l i cy Data

4-50 Policy Managers Guide

Policy Managers Guide Index-1

Index

A
Action

configuration parameter 4-35
Administration Console 2-7
application binding 4-23
attribute 4-15

defined 2-24
definition 1-15
directory 4-16
dynamic 3-15, 3-17
identity 2-17, 3-15
resource 2-12, 3-15
system 3-15

attributes
time and date 3-15

B
binding node 4-17
BLMContextInterval_ms

configuration parameter 4-35
BLMContextRetries

configuration parameter 4-35
BulkSize

configuration parameter 4-38

C
caching

authorization 3-22
character set 4-6
character substitution 4-8
configuration

file, sample 4-39
policy import 4-35

configuration file 4-39
ConsoleDisplay

configuration parameter 4-36
constant 4-15

defined 2-24
ContextHandler

request 3-38
customer support

contact information -xiv

D
data

dynamic 3-22
exporting policy 4-44, 4-45

data transformation 4-7
Debug

configuration parameter 4-36
declaration

sample file 4-15
declaration name 4-11
delegate

policy 2-20
deniedResources 3-37
directories, understanding 1-7
directory

name 4-10
sample file 4-16

directory server 2-15
distribution target 4-23
Domain

Index-2 Policy Managers Guide

configuration parameter 4-36
dynamic

data 3-22

E
engine 4-23
enumerated type 2-24, 4-15

understanding 1-15
ErrorLogFile

configuration parameter 4-36
errors, checking for 4-41
evaluation function 1-16, 4-15

understanding 2-24
export

on Unix 4-45
exporting

policy data 4-42
exporting policy 4-43, 4-44, 4-45

G
grantedResources 3-37, 3-38
group

membership 2-20
groups

understanding 1-9

I
identity

unique 2-19
user or group 1-8

identity attribute 2-20
defined 2-17

identity, unique 1-10

K
keyword 4-11

L
logical name 4-10, 4-17

N
name

declaration 4-11
logical 4-10
qualified 4-3
special 4-11

node
binding 4-17

normalization 4-7

O
objattr_config 4-45, 4-46
object_config 4-45, 4-46

P
PasswordFile 4-38

configuration parameter 4-37
PasswordKeyFile

configuration parameter 4-37
policy

defined 2-25
delegate 2-20

policy data
exporting 4-42
removing 4-34

policy database
limits 4-7

policy distributor 4-23
policy elements 2-7
policy file

import 4-43
samples 4-12

Policy Import tool 4-33
Policy Import tool, ordered policy files 4-42
Policy Importer, running 4-41

Policy Managers Guide Index-3

policy inquiry 2-22, 2-23
PolicyDirectoryPath

configuration parameter 4-37
PolicyDistribution

configuration parameter 4-37
privilege

defined 2-12
privilege group

defined 2-14

Q
qualifier 4-6
queryResources 3-37

R
requestTimeout

configuration parameter 4-37
resource 2-20

attribute 2-12
defined 2-8
examples of 2-11
types 1-4

resource attribute 4-18
resource name 4-18
resource node 2-11
resources

retriving a list of 3-38
ResponseContextCollector 3-38
restrictions

on input data 4-8
RunningThread

configuration parameter 4-38

S
sample 4-39
sample configuration file 4-39
security providers 4-23
Service Control Manager 4-23
support

technical -xiv

U
understanding evaluation functions 2-24
user

defined 2-19
privilege 1-11

Username
configuration parameter 4-38

username 4-38

Index-4 Policy Managers Guide

	About This Document
	Audience for this Document
	Prerequisites for this Document
	How this Document is Organized
	Product Documentation on the dev2dev Web Site
	Related Information
	Contact Us!

	Policy Overview
	What is an AquaLogic Enterprise Security Policy?
	Policy Components
	Resources
	Virtual Resources
	Resource Attributes
	Privilege Groups
	Privileges

	Identities
	Identity Attributes
	Groups
	Users
	Roles

	Policies
	Role Mapping Policies
	Authorization Policies
	Delegation Policies
	Summary of Policy Differences

	Declarations
	Constants
	Enumerated Types
	Attributes
	Evaluation Functions

	Writing Policies
	Policy Implementation Tasks
	Access Decision Process
	Authentication Service
	Role mapping Service
	Authorization Service
	Credential Mapping Service
	Authorization and Role Mapping Engine

	Using the Administration Console to Write Policies
	Administration Console Overview
	Defining Resources
	Virtual Resources
	Resource Attributes
	Privileges
	Privilege Groups

	Defining Identities
	Identity Attributes
	Groups
	Users
	Roles
	Metadirectory

	Writing Authorization and Role Mapping Policies
	Role Mapping Policies
	Authorization Policies
	Role Mapping Policy Reports
	Authorization Policy Reports

	Defining Declarations
	Binding Policies
	Deploying Policies

	Advanced Topics
	Designing More Advanced Policies
	Multiple Components
	Policy Constraints
	Comparison Operators
	Regular Expressions
	Constraint Sets
	String Comparisons
	Boolean Operators
	Associativity and Precedence
	Grouping with Parentheses
	Boolean Operators and Constraint Sets

	Declarations
	Constant Declarations
	Enumerated Type Declarations
	Attribute Declarations
	Evaluation Function Declarations

	Closed-world Security Environment
	Policy Inheritance
	Group Inheritance
	Direct and Indirect Group Membership
	Restricting Policy Inheritance
	Resource Attribute Inheritance

	WebLogic Resource Type Conversions and Resource Trees
	Web Server Applications
	Resource Format
	Action Format
	Application Context
	Header Context Key (HEADERNAME)
	Query Context Key (VARNAME)
	Cookie Context Key (COOKIENAME)

	Using Named Keys in the Web Application Policy
	Web Application Context Handler
	Retrieval of Response Attributes

	Using Response Attributes
	report() Function
	report_as() Function
	Report Function Policy Language
	Using Evaluation Plug-ins to Specify Response Attributes

	Using queryResources and grantedResources

	Importing and Exporting Policy Data
	Introduction
	Creating Policy Data Files for Importing
	Policy Element Naming
	Fully Qualified Names
	Policy Element Qualifiers
	Size Restriction on Policy Data
	Character Restrictions in Policy Data
	Special Names and Abbreviations

	Sample Policy Files
	Application Bindings [binding]
	Attribute [attr]
	Declarations [dec]
	Directories [dir]
	Directory Attribute Schemas [schema]
	Mutually Exclusive Subject Groups [excl]
	Resources [object]
	Resource Attributes [object]
	Policy Distribution [distribution]
	Policy Inquiry [piquery]
	Policy Verification [pvquery]
	Privileges [priv]
	Privilege Bindings [privbinding]
	Privilege Groups [privgrp]
	Role [role]
	Rule [rule]
	Distribution Targets
	Subject Group Membership [member]
	Subjects [subject]

	Resource Discovery
	Subject Transformation
	Resource Transformation
	WebLogic Resource Transformation
	Java API Resource Transformation
	Action Transformation
	Attribute Transformations

	What’s Next?

	Importing Policy Data
	Policy Import Tool
	Configuring the Policy Import Tool
	Setting Configuration Parameters
	Sample Configuration File

	Running the Policy Import Tool
	Understanding How the Policy Loader Works

	Exporting Policy Data
	Policy Exporter Tool
	Before You Begin
	Exporting Policy Data on Windows Platforms
	Exporting Policy Data on UNIX Platforms
	What’s Next

	Upgrading an Administration Server to AquaLogic Enterprise Security 2.1

	Index

