
BEAAquaLogic
Service Bus™

AquaLogic Service Bus
Interoperability
Solutions Guide

Version: 2.1
Document Revised: December 2005

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

BEA AquaLogic Service Bus Interoperability Solutions Guide iii

Contents

Introduction
Summary of Interoperability . 1-2

FTP and Email Servers . 1-4

Security Providers . 1-4

Web Service Standards . 1-5

HTTP Standards . 1-5

XPath and XQuery . 1-6

JMS . 1-6

Databases . 1-6

Platform Interoperability . 1-6

Interoperability with BEA Tuxedo
Introduction . 2-1

Using BEA Tuxedo Services from AquaLogic Service Bus (Outbound Example) 2-2

Implementation Overview . 2-3

Before You Begin . 2-3

Configuring WebLogic Tuxedo Connector and the Tuxedo Queuing Bridge 2-4

Configuring a New Business Service . 2-12

Testing Your Configuration . 2-19

Using AquaLogic Service Bus Services from BEA Tuxedo (Inbound Example) 2-20

Implementation Overview . 2-20

Before You Begin . 2-20

iv BEA AquaLogic Service Bus Interoperability Solutions Guide

Configuring the Sample EJB ToQSBean . 2-21

Adding Field Classes to EJB’s JAR File . 2-22

Building and Deploying the EJB . 2-22

Configuring WebLogic Tuxedo Connector . 2-22

Adding and Configuring a Proxy Service . 2-26

Testing Your Configuration . 2-32

Interoperability with JMS
Asynchronous Request/Response . 3-2

SOAP/JMS Transport . 3-2

Naming Guidelines for WebLogic Servers, JMS Servers, and Domains 3-3

Specifying the JMS Type for Services . 3-3

AquaLogic Service Bus and MQ/JMS Interoperability . 3-4

WSDL-Defined SOAP Fault Messages . 3-4

Interoperability with WebSphere MQ
Using WebSphere MQ in AquaLogic Service Bus. 4-1

Messaging Types. 4-2

Non-Persistent Messaging . 4-2

Non-XA Persistent Messaging. 4-3

XA Messaging . 4-3

Tuning WebSphere MQ . 4-3

Interoperability with WebLogic Platform
AquaLogic Service Bus Interoperability with WebLogic 8.1 Domains 5-1

Guidelines for Naming WebLogic Domains and Servers . 5-2

Interoperability with Web Services for Remote Portlets (WSRP)
WSRP Producers and Consumers . 6-1

BEA AquaLogic Service Bus Interoperability Solutions Guide v

Architecture . 6-2

Basic WSRP Architecture . 6-2

Enhanced WSRP Architecture with AquaLogic Service Bus 6-3

WSRP Design Concepts . 6-4

WSRP WSDLs . 6-4

WSRP Messages. 6-5

Configuring AquaLogic Service Bus for WSRP. 6-5

Getting the Producer WSDL . 6-6

Routing Messages Between the Consumer and Producer . 6-6

Choosing the Monitoring Level . 6-7

Load Balancing and Failover . 6-10

WSRP Interoperability Example . 6-11

Example Prerequisites . 6-11

Example Projects and Folders . 6-12

Producer-Level Monitoring Example. 6-12

Operation-Level Monitoring Example . 6-21

vi BEA AquaLogic Service Bus Interoperability Solutions Guide

BEA AquaLogic Service Bus Interoperability Solutions Guide 1-1

C H A P T E R 1

Introduction

AquaLogic Service Bus provides a unified software product for implementing and deploying
your Service-Oriented Architecture (SOA).

AquaLogic Service Bus supports broad compliance with messaging standards including SOAP
1.1, HTTP, JMS, SMTP/POP/IMAP, FTP, SSL, XML 1.0, XML Schema, WSDL 1.1, WSRP 1.0,
and WS-Security.

This section contains information about AquaLogic Service Bus interoperability. It includes the
following topics:

Summary of Interoperability

FTP and Email Servers

Security Providers

Web Service Standards

HTTP Standards

XPath and XQuery

JMS

Databases

Platform Interoperability

In t roduc t i on

1-2 BEA AquaLogic Service Bus Interoperability Solutions Guide

Summary of Interoperability
The following table summarizes the versions of the platforms, standards, FTP servers, and so on,
that are certified to interoperate with AquaLogic Service Bus.

Table 1-1 AquaLogic Service Bus Interoperability Matrix

AquaLogic Service Bus
Interoperates With . . .

Version . . . For More Information . . .

FTP and Email Servers • Microsoft Windows IIS

• Sol/Apache

“FTP and Email Servers” on
page 1-4

Security Providers • WebLogic Server 9.x (for
providers, except XACML
authorization provider)

• WebLogic Server 9.1 XACML
authorization provider

“Security Providers” on page 1-4

Web Service Standards • SOAP 1.1

• WSDL 1.1

• WebLogic Platform 8.1 SP4 or
later (except security)

• WS-Security using WebLogic
Server 9.x

• WebLogic Server 9.x WS-Policy

• WS-I

“Web Service Standards” on
page 1-5

HTTP • 1.0 “HTTP Standards” on page 1-5

XQuery • 1.0 “XPath and XQuery” on page 1-6

XPath • 2.0

JMS • WebLogic Server 9.x JMS

• IBM WebSphere MQ/JMS 5.3

“JMS” on page 1-6

Summary of In te rope rab i l i t y

BEA AquaLogic Service Bus Interoperability Solutions Guide 1-3

Databases • Oracle 9.2.0.4 and later patch
sets of 9.2.x

• Oracle 10.1.0.4 and later patch
sets of 10.1.x

• PointBase 5.1 (in development
mode, and non cluster
environments only)

• DB2 8.2 FixPak2 (equivalent to
8.1 FixPak 9) and later FixPaks

• SQL Server 2000 SP3+

• Sybase 12.5.03 and later patch
levels of 12.5.x

. . about databases and drivers, see

Supported Database
Configurations in Supported
Configurations for AquaLogic
Service Bus

Microsoft .NET • 1.1 “Platform Interoperability” on
page 1-6

Apache Axis • 1.2.1

WebLogic JMS • WebLogic Platform 8.1 SP4 or
later

WebLogic Platform • WebLogic Platform 8.1 SP4 or
later

WebLogic Integration • WebLogic Integration 8.1 SP4 or
later

IBM WebSphere MQ • 6.0

AquaLogic Service Registry • 2.0

Web Services for Remote Portlets
(WSRP)

• 1.0

BEA Tuxedo/WebLogic Tuxedo
Connector

• 8.1/9.0

AquaLogic Service Bus
Interoperates With . . .

Version . . . For More Information . . .

http://edocs.bea.com/platform/suppconfigs/configs_al21/21_over/supported_db.html
http://edocs.bea.com/platform/suppconfigs/configs_al21/21_over/supported_db.html

In t roduc t i on

1-4 BEA AquaLogic Service Bus Interoperability Solutions Guide

FTP and Email Servers
AquaLogic Service Bus is certified against the following FTP and Email servers:

FTP

– Microsoft Windows IIS FTP Server

– Sol/Apache FTP Server

Email

– Microsoft Windows IIS SMTP Server

– Sol/Apache SMTP Server

Security Providers
AquaLogic Service Bus is certified against the following security providers:

WebLogic Server 9.x default authentication provider

WebLogic Server 9.x default authorization provider

WebLogic Server 9.x default credential mapper

WebLogic Server 9.x PKI credential mapper

WebLogic Server 9.x PKI credential provider

WebLogic Server 9.x Java KeyStores (JKS)

WebLogic Server 9.x default User Name Token and X509 Token handlers

WebLogic Server 9.1 XACML authorization provider

WebLogic Server 9.1 XACML Role Mapping provider

WebLogic SAML Identity Assertion Provider V2

WebLogic SAML Credential Mapping Provider V2

For more information about managing and configuring AquaLogic Service Bus security, see in
Securing Inbound and Outbound Messages in the BEA AquaLogic Service Bus User Guide.

Note: The defaults for WebLogic Server 9.1 are the XACML Authorization provider and
XACML Role Mapping provider.

http://edocs.bea.com/alsb/docs21/userguide/security.html

Web Se rv i ce S tandards

BEA AquaLogic Service Bus Interoperability Solutions Guide 1-5

Web Service Standards
AquaLogic Service Bus is certified against the following Web Service standards:

SOAP 1.1

WSDL 1.1

WS-Addressing

WS-Security using WebLogic Server 9.x WS client or WebLogic Server 9.x business
services.

WSDL attached WS-Policies as supported by WebLogic Server 9.x.

WebLogic Server 9.x WS-Policy—identity, integrity, confidentiality and timestamp
assertions.

Note: WS-ReliableMessaging assertions are not supported.

WS-I
AquaLogic Service Bus includes WS-I compliance. However, in some cases, AquaLogic Service
Bus does not reject SOAP/HTTP messages that are not WS-I compliant. This enables you to build
implementations with service endpoints which are not strictly WS-I compliant.

When you configure a proxy service or business service, you can use the AquaLogic Service Bus
Console to specify whether you want AquaLogic Service Bus to enforce WS-I compliance for the
service. When you configure WS-I compliance for a proxy service, WS-I compliance checks are
performed when the proxy service receives a message as a response from an invoked service with
a Service Callout, a route node, or on a proxy service.

For information about the types of messages to which the compliance checks are applied and the
nature of those checks, see “WS-I Compliance” in Modeling Message Flow in AquaLogic
Service Bus in the BEA AquaLogic Service Bus User Guide.

HTTP Standards
AquaLogic Service Bus is certified against the following HTTP protocols:

HTTP 1.0

Transport-Layer Security (TLS) Secure Sockets Layer (/SSL) protocols

Note: TLS/SSL support is the same as for WebLogic Server 9.x

http://edocs.bea.com/alsb/docs21/userguide/modelingmessageflow.html
http://edocs.bea.com/alsb/docs21/userguide/modelingmessageflow.html

In t roduc t i on

1-6 BEA AquaLogic Service Bus Interoperability Solutions Guide

XPath and XQuery
AquaLogic Service Bus is certified against the following protocols:

BEA’s implementation of XQuery 1.0

To learn more, see XQuery Implementation in BEA AquaLogic Service Bus User Guide.

BEA’s implementation of XPath 2.0

JMS
AquaLogic Service Bus is certified against the following JMS implementations:

WebLogic Server 9.x JMS

For information about JMS interoperability, see Chapter 3, “Interoperability with JMS.”

IBM WebSphere MQ/JMS 5.3

For information about AquaLogic Service Bus and MQ/JMS interoperability, see
Chapter 4, “Interoperability with WebSphere MQ.”

Databases
For complete information about supported databases and drivers, see Supported Database
Configurations in Supported Configurations for AquaLogic Service Bus.

Platform Interoperability
AquaLogic Service Bus is certified to interoperate with the following platforms:

WS-* and JMS interoperability with WebLogic Platform 8.1 SP4 or later (except for
WS-Security)

For information about AquaLogic Service Bus and JMS interoperability, see Chapter 3,
“Interoperability with JMS” and Chapter 4, “Interoperability with WebSphere MQ.”

Web Services for Remote Portlets (WSRP) with BEA WebLogic Portal

For information about AquaLogic Service Bus and WSRP interoperability, see Chapter 6,
“Interoperability with Web Services for Remote Portlets (WSRP).”

MQ event generator and control in WebLogic Integration 8.1 SP4 or later

http://edocs.bea.com/platform/suppconfigs/configs_al21/21_over/supported_db.html
http://edocs.bea.com/platform/suppconfigs/configs_al21/21_over/supported_db.html
http://edocs.bea.com/alsb/docs21/userguide/appendixxquery.html

Plat fo rm In te rope rab i l i t y

BEA AquaLogic Service Bus Interoperability Solutions Guide 1-7

BEA Tuxedo

For information about AquaLogic Service Bus and BEA Tuxedo interoperability, see
Chapter 2, “Interoperability with BEA Tuxedo.”

BEA AquaLogic Service Registry 2.0

To learn about using AquaLogic Service Registry with AquaLogic Service Bus, see UDDI
in the BEA AquaLogic Service Bus User Guide. To learn about AquaLogic Service
Registry, see the product documentation at the following URL:

http://e-docs.bea.com/alsr/docs20/

Microsoft .NET 1.1

Style-encoding: document-literal, rpc-encoded.

– AquaLogic Service Bus supports document-literal and interoperates with .NET
services.

– AquaLogic Service Bus interoperates with .NET rpc-encoded services in cases of
inbound and outbound (routing/publish). In these cases, interoperability is possible
regardless of parameter types.

– AquaLogic Service Bus Service Callouts may fail to interoperate with .NET
rpc-encoded services.

Note: DIME attachments is not supported by AquaLogic Service Bus.

Apache Axis 1.2.1

IBM WebSphere MQ 6.0

AquaLogic Service Bus is not certified to interoperate with the following platforms:

WebLogic Platform 7.0

See the BEA AquaLogic Service Bus Release Notes for the latest information about patches or
updates that may be required to support your interoperability scenarios.

http://edocs.bea.com/alsb/docs21/relnotes/index.html
http://edocs.bea.com/alsb/docs21/userguide/uddi.html
http://e-docs.bea.com/alsr/docs20/

In t roduc t i on

1-8 BEA AquaLogic Service Bus Interoperability Solutions Guide

BEA AquaLogic Service Bus Interoperability Solutions Guide 2-1

C H A P T E R 2

Interoperability with BEA Tuxedo

Introduction
BEA AquaLogic Service Bus and BEA Tuxedo can interoperate to use the services that each
product offers.

When AquaLogic Service Bus uses services offered by BEA Tuxedo, a request for a
Tuxedo service can be placed on a JMS queue and the reply to that request can be received
from another JMS queue. The term “outbound” refers to this scenario.

When BEA Tuxedo uses services offered by AquaLogic Service Bus, BEA Tuxedo
services can call an EJB as though it were another BEA Tuxedo application. The term
“inbound” refers to this scenario.

You can use the following related documentation to learn more about this environment:

For information on setting up your AquaLogic Service Bus environment, see the
AquaLogic Service Bus Administration Console Online Help.

For information on setting up your BEA Tuxedo environment, see Setting Up a Tuxedo
Application in the BEA Tuxedo documentation.

For information about the WebLogic Tuxedo Connector, see WebLogic Tuxedo Connector
in the WebLogic Server documentation.

If you want to set up and use a working example of this interoperability scenario, see
“Interoperability with AquaLogic Service Bus and Tuxedo” on the dev2dev web site.

http://e-docs.bea.com/tuxedo/tux81/ads/index.htm
http://e-docs.bea.com/tuxedo/tux81/ads/index.htm
http://edocs.bea.com/alsb/docs21/consolehelp/index.html
http://e-docs.bea.com/wls/docs90/wtc.html

In te rope rab i l i t y w i th BEA Tuxedo

2-2 BEA AquaLogic Service Bus Interoperability Solutions Guide

The following diagram summarizes this message handling process:

This chapter includes the following sections:

Using BEA Tuxedo Services from AquaLogic Service Bus (Outbound Example)

Using AquaLogic Service Bus Services from BEA Tuxedo (Inbound Example)

Using BEA Tuxedo Services from AquaLogic Service Bus
(Outbound Example)

The following sections describe how to use BEA Tuxedo services from AquaLogic Service Bus:

Implementation Overview

Before You Begin

Configuring WebLogic Tuxedo Connector and the Tuxedo Queuing Bridge

Configuring a New Business Service

Testing Your Configuration

Us ing BEA Tuxedo Ser v i ces f rom AquaLogic Se rv i ce Bus (Outbound Example)

BEA AquaLogic Service Bus Interoperability Solutions Guide 2-3

Implementation Overview
AquaLogic Service Bus can utilize services offered by BEA Tuxedo using WebLogic Tuxedo
Connector. WebLogic Tuxedo Connector provides a JMS bridge (tBridge) that can directly call
Tuxedo services.

After you configure WebLogic Tuxedo Connector and the Tuxedo Queuing Bridge, a request for
a Tuxedo service can be placed on a JMS queue and the reply to that request can be received from
another JMS queue. tBridge handles the conversion from the JMS message to a Tuxedo buffer
type, calls the imported Tuxedo service, converts the reply buffer back to a JMS message type,
and places the converted reply onto a JMS queue. The request to Tuxedo can either be made
directly to a service or placed on a Tuxedo /Q queue.

Before You Begin
Gather the following information about the Tuxedo application that AquaLogic Service Bus will
use:

ID of the Tuxedo local access point.

Network address of the Tuxedo local access point.

Name of the exported Tuxedo service.

Whether the service needs XML-to-FML and FML-to-XML conversion.

If XML-to-FML and FML-to-XML conversion is needed, you will need to add one or
more Field Table classes to a resource section in the WebLogic Tuxedo Connector
configuration. This task is described in “Create Field Table Classes (if Required)” on
page 2-8.

The example described in the following sections assumes the use of FML/FML32 buffer
types.

ID of the access point that the Tuxedo domain gateway will use to refer to this WebLogic
Tuxedo Connector instance.

Network address that the Tuxedo domain gateway has defined for this WebLogic Tuxedo
Connector Local Access Point.

Prior to configuring the Tuxedo Queuing Bridge, you must create several JMS queues if they do
not already exist. Queues are required for the following purposes:

One or more queues on which to place requests to the Tuxedo service

In te rope rab i l i t y w i th BEA Tuxedo

2-4 BEA AquaLogic Service Bus Interoperability Solutions Guide

A queue to pick up replies from the Tuxedo service

A queue to receive messages that failed to be delivered to Tuxedo

A queue to receive error replies from the called service

Configuring WebLogic Tuxedo Connector and the Tuxedo
Queuing Bridge
You configure WebLogic Tuxedo Connector and the Tuxedo Queuing Bridge (tBridge) using the
WebLogic Server Administration Console. For additional information about the WebLogic
Tuxedo Connector, see WebLogic Tuxedo Connector in the WebLogic Server documentation.

Log in to the WebLogic Server Administration Console. Perform the configuration steps in the
order presented, using the instructions in the following sections.

Create a New WTC Server

Create a Local Access Point

Create a Remote Access Point

Create a WTC Imported Service

Create Field Table Classes (if Required)

Create a Queuing Bridge

Create a Redirection

Activate Changes

Create a New WTC Server
Follow these steps:

1. Click WTC Servers under the Interoperability tab.

2. Click Lock & Edit; this allows you to make changes. A display similar to Figure 2-1
appears:

http://e-docs.bea.com/wls/docs90/wtc.html

Us ing BEA Tuxedo Ser v i ces f rom AquaLogic Se rv i ce Bus (Outbound Example)

BEA AquaLogic Service Bus Interoperability Solutions Guide 2-5

Figure 2-1 WTC Server Display

3. Click New to add the new WTC server. A display similar to Figure 2-2 appears:

Figure 2-2 New WTC Server Data Entry Display

4. Enter a name for the WTC server and click OK.

A message at the top of the page indicates that the server was added correctly.

5. Click the newly created WTC server to display its settings.

Create a Local Access Point
Follow these steps:

1. Click Local APs on the Configuration tab.

2. Click New to create a new WTC Local Access Point. A display similar to Figure 2-3
appears:

In te rope rab i l i t y w i th BEA Tuxedo

2-6 BEA AquaLogic Service Bus Interoperability Solutions Guide

Figure 2-3 New Local Access Point Data Entry Display

3. Enter the following values:

Access Point – A name for this access point.

Access Point ID – The name WebLogic Server will use to refer to the access point. This
value must match the Remote Access Point ID that the Tuxedo domain gateway has been
configured to use for this WTC instance.

Network Address – This value must match the remote network address that the Tuxedo
domain gateway has been configured to use for this WTC instance.

4. Click OK.

Create a Remote Access Point
Follow these steps:

1. Click Remote APs on the Configuration tab.

2. Click New to create a new WTC Remote Access Point. A display similar to Figure 2-4
appears:

Us ing BEA Tuxedo Ser v i ces f rom AquaLogic Se rv i ce Bus (Outbound Example)

BEA AquaLogic Service Bus Interoperability Solutions Guide 2-7

Figure 2-4 New Remote Access Point Data Entry Display

3. Enter the following values:

Access Point – A name for this access point.

Access Point ID – The name WebLogic Server will use to refer to the access point. This
value must match the Local Access Point ID that the Tuxedo domain gateway has been
configured to use for this WTC instance.

Local Access Point – The name of WTC Local Access Point.

Network Address – This value must match the local network address that the Tuxedo
domain gateway has been configured to use for this WTC instance.

4. Click OK.

Create a WTC Imported Service
Follow these steps:

1. Click Imported on the Configuration tab.

2. Click New to create a new WTC Imported Service. A display similar to Figure 2-5 appears:

In te rope rab i l i t y w i th BEA Tuxedo

2-8 BEA AquaLogic Service Bus Interoperability Solutions Guide

Figure 2-5 New WTC Import Service Data Entry Display

3. Enter the following values:

Resource Name – The name WebLogic Server will use to refer to the service (including
the tBridge)

Local Access Point – The name of the just created local access point

Remote Access Point List – The name of the newly created remote access point

Remote Name – The name of the service as exported by the remote Tuxedo system

4. Click OK.

Create Field Table Classes (if Required)
If the Tuxedo service expects FML or FML32 buffers, you must add one or more Field Table
classes to a resource section in the WebLogic Tuxedo Connector configuration. To create the
classes, use the weblogic.wtc.jatmi.mkfldclass utilities for FML field tables or the
weblogic.wtc.jatmi.mkfldclass32 utility for FML32 field tables.

If you do not need to create Field Table classes, skip to “Create a Queuing Bridge” on page 2-9.

To create Field Table classes, follow these steps:

1. Click Resources on the Configuration tab.

Us ing BEA Tuxedo Ser v i ces f rom AquaLogic Se rv i ce Bus (Outbound Example)

BEA AquaLogic Service Bus Interoperability Solutions Guide 2-9

2. Click New to create a new WTC Resource Configuration. A display similar to Figure 2-6
appears:

Figure 2-6 New Field Table Class Data Entry Display

3. Add the full class names to the FldTbl classes or FldTbl32 classes fields. The classes must
be on the WebLogic Server classpath; you might need to change the WebLogic Server
classpath. For information on setting the WebLogic Server classpath, see Modifying the
Classpath in the WebLogic Server Command Reference.

Create a Queuing Bridge
Follow these steps:

1. Click Queuing Bridge on the Configuration tab.

2. Click New to create a new Queuing Bridge. A display similar to Figure 2-7 appears:

http://e-docs.bea.com/wls/docs90/admin_ref/weblogicServer.html
http://e-docs.bea.com/wls/docs90/admin_ref/weblogicServer.html

In te rope rab i l i t y w i th BEA Tuxedo

2-10 BEA AquaLogic Service Bus Interoperability Solutions Guide

Figure 2-7 New WTC Queuing Bridge Data Entry Display

3. Enter the following values:

WLS Error Destination – Enter the JNDI name of the JMS queue that should receive
messages if they can’t successfully be delivered to Tuxedo.

Tuxedo Error Queue – Enter the JNDI name of the JMS queue that is to receive error
replies from Tuxedo.

4. Click OK.

Create a Redirection
Follow these steps:

1. Click Redirections on the Configuration tab.

2. Click New to create a redirection for the service that is to be called in Tuxedo. A display
similar to Figure 2-8 appears:

Us ing BEA Tuxedo Ser v i ces f rom AquaLogic Se rv i ce Bus (Outbound Example)

BEA AquaLogic Service Bus Interoperability Solutions Guide 2-11

Figure 2-8 New WTC Redirection Data Entry Display

3. Enter the following values:

Direction –Specify JmsQ to TuxS.

TranslateFML – If the Tuxedo service requires XML-to-FML and FML-to-XML
translation, select Flat.

Reply Q – Enter the JNDI name of the JMS queue that is to receive the replies from the
Tuxedo service.

In te rope rab i l i t y w i th BEA Tuxedo

2-12 BEA AquaLogic Service Bus Interoperability Solutions Guide

Source Name – Enter the JNDI name of the JMS queue that is to receive the requests for
the Tuxedo service.

Target Access Point – Enter the name of the remote access point that you created
previously.

Target Name – Enter the name of the imported Tuxedo service that you created
previously.

4. Click OK.

Activate Changes
To activate the changes you made, click Activate Changes on the WebLogic Server
Administration Console.

Configuring a New Business Service
To utilize the Tuxedo service from AquaLogic Service Bus, you must configure a new Business
Service in the AquaLogic Service Bus Console. For more information about Business Services,
see Business Services in the AquaLogic Service Bus Console Online Help.

Log in to the AquaLogic Service Bus Console. Perform the configuration steps in the order
presented, using the instructions in the following sections.

Add a New Project

Add a Business Service

Add a Proxy Service

Configure the Proxy Service

Add a New Project
Follow these steps:

1. Click Create to start a new console session.

You must be in a session to edit resources.

2. Click Project Explorer.

3. Enter a name for the new project and click Add Project.

A message at the top of the page indicates that the server was added correctly.

http://edocs.bea.com/alsb/docs21/consolehelp/businessServices.html

Us ing BEA Tuxedo Ser v i ces f rom AquaLogic Se rv i ce Bus (Outbound Example)

BEA AquaLogic Service Bus Interoperability Solutions Guide 2-13

Add a Business Service
Follow these steps:

1. Click the newly created project.

2. In the Resources area Create Resource dropdown menu, select Business Service.

The Edit a Business Service – General Configuration page displays, as shown in
Figure 2-9.

Figure 2-9 New Business Service Page 1

3. Enter the following values:

Service Name – The name of the service

Service Type – Select Any XML Service (the default)

Click Next to display the Edit a Business Service – Transport Configuration page as
shown in Figure 2-10.

In te rope rab i l i t y w i th BEA Tuxedo

2-14 BEA AquaLogic Service Bus Interoperability Solutions Guide

Figure 2-10 New Business Service Page 2

4. Enter the following values:

Protocol – Select jms.

Load Balancing Algorithm – Leave the default as is, or select another algorithm.

Endpoint URI - Enter a JMS URI. that corresponds to the endpoint URI on the server
where the service was deployed.

5. Click Next to continue.

6. Enter the following values:

Is Response Required – Select the checkbox.

Response URI – Enter a valid response URI.

Response Timeout – 30.

Message Type – Text.

7. Click Finish.

8. At the Summary page, click Save.

Add a Proxy Service
Create a proxy service for testing purposes. For more information about proxy services, see Proxy
Services in the AquaLogic Service Bus Console Online Help.

http://edocs.bea.com/alsb/docs21/consolehelp/proxyservices.html
http://edocs.bea.com/alsb/docs21/consolehelp/proxyservices.html

Us ing BEA Tuxedo Ser v i ces f rom AquaLogic Se rv i ce Bus (Outbound Example)

BEA AquaLogic Service Bus Interoperability Solutions Guide 2-15

Follow these steps:

1. In the Resources area Create Resource dropdown menu, select Proxy Service.

The Edit a Proxy Service – General Configuration page displays, as shown in
Figure 2-11.

Figure 2-11 New Proxy Service Data Entry Page 1

2. Enter the following values:

Service Name – The name of the service

Service Type – Select Any SOAP Service

Click Next to display the Edit a Proxy Service – Transport Configuration page, as
shown in Figure 2-12.

In te rope rab i l i t y w i th BEA Tuxedo

2-16 BEA AquaLogic Service Bus Interoperability Solutions Guide

Figure 2-12 New Proxy Service Data Entry Page 2

3. Enter the following required values:

Protocol – Select http.

Endpoint URI - The URI field automatically displays a URI corresponding to your proxy
service name. You can leave it as is, or enter a different URI.

4. Click Finish.

5. At the Summary page, click Save.

Configure the Proxy Service
AquaLogic Service Bus Message Flows define the implementation of proxy services. Message
flows can include zero or more pipeline pairs: request and response pipelines for the proxy
service (or for the operations on the service) and error handler pipelines that can be defined for
stages, pipelines, and proxy services. Pipelines can include one or more stages, which in turn
include actions. To change the routing behavior of the proxy service you will edit this message
flow to:

Add a route node

Configure an action to route the Proxy Service to the Business Service resource that you
created previously

Follow these steps:

1. In the AquaLogic Service Bus Console navigation panel, select Resource Browser from the
list of available choices, if it is not already selected.

The Resource Browser pane is opened in the navigation panel and the Summary of Proxy
Services project page is displayed in the console.

Us ing BEA Tuxedo Ser v i ces f rom AquaLogic Se rv i ce Bus (Outbound Example)

BEA AquaLogic Service Bus Interoperability Solutions Guide 2-17

2. In Options, click the Message Flow icon . A display similar to Figure 2-13 appears:

Figure 2-13 Message Flow Default Display

The Edit Message Flow page for the proxy service you created previously is displayed.
This page displays the default message flow configuration. The default configuration
consists of a start node. This is the minimum configuration of a message flow. The
behavior of the message flow is sequential.

3. Click the Start Node. From the popup menu select the Add Route Node link, as shown in
Figure 2-14.

Figure 2-14 Convert to Route Node Display

4. In the configuration dialog, name the route node as desired and click Save.

In the message flow, the name of the node changes to display the route node name.

5. Click the route node and from the pop up menu select Edit > Route Node, as shown in
Figure 2-15:

In te rope rab i l i t y w i th BEA Tuxedo

2-18 BEA AquaLogic Service Bus Interoperability Solutions Guide

Figure 2-15 Edit Route Node Display

The Edit Stage Configuration page is displayed. The page contains a single link, Add an
Action.

A stage is an element of a pipeline and it is a container for actions defined in a pipeline.
Actions are the elements of a pipeline stage that define the handling of messages as they
flow through a proxy service.

6. Click the Add an Action link, then select Routing from the popup menu, as shown in
Figure 2-16:

Figure 2-16 Message Flow Routing Display

The Edit Stage Configuration page changes to display the contents of the action. The
contents of the action are defined by the type of node we created—a route node.

7. In Route to <Service>, click <Service>, as shown in Figure 2-17:

Us ing BEA Tuxedo Ser v i ces f rom AquaLogic Se rv i ce Bus (Outbound Example)

BEA AquaLogic Service Bus Interoperability Solutions Guide 2-19

Figure 2-17 Route to Service Display

The Service Browser displays the names of the Proxy Service and Business Service that
you created.

8. Select the Business Service that you created in “Add a Business Service” on page 2-13.

9. Click Submit.

The display updates to show routing to the Business Service.

The configuration is completed and ready to test.

Testing Your Configuration
Now that you have configured AquaLogic Service Bus to work with BEA Tuxedo, you can test
the application. One way to test the configuration is to use a WebLogic Workshop–based
application, by setting up a web service proxy and calling it using a default pipeline.

The following list of tasks summarizes the process of testing outbound usage of BEA Tuxedo by
AquaLogic Service Bus.

1. Build and start the Tuxedo servers and the WebLogic Workshop application.

2. Set up a WebLogic Workshop application to call the AquaLogic Service Bus proxy.

3. Run the web service in the WebLogic Workshop application, inputting a request. A
successful response to the request indicates that the configuration is correct.

In te rope rab i l i t y w i th BEA Tuxedo

2-20 BEA AquaLogic Service Bus Interoperability Solutions Guide

Using AquaLogic Service Bus Services from BEA Tuxedo
(Inbound Example)

The following sections describe how to use AquaLogic Service Bus services from BEA Tuxedo:

Implementation Overview

Before You Begin

Adding Field Classes to EJB’s JAR File

Testing Your Configuration

Implementation Overview
The WebLogic Tuxedo Connector allows BEA Tuxedo applications to call an EJB as though it
were another BEA Tuxedo application. This scenario uses a particular example EJB that performs
the function of receiving a Tuxedo service request, translating the buffer as necessary, and
placing the resulting message on a JMS queue. The method described in this document is based
on setting up an EJB using deployment descriptors; this method also provides translation of
Tuxedo buffers to and from JMS messages.

Before You Begin
Gather the following information about the AquaLogic Service Bus application that BEA Tuxedo
will use:

ID of the Tuxedo local access point and add this ID as a WLS user.

Network address of the Tuxedo local access point.

Name of the exported Tuxedo service.

Whether the service needs XML-to-FML and FML-to-XML conversion.

If XML-to-FML and FML-to-XML conversion is needed, you will need to add one or
more Field Table classes; these classes are bundled in the jar with the EJB and loaded
dynamically from the EJB’s jar.

ID of the access point that the Tuxedo domain gateway will use to refer to this WebLogic
Tuxedo Connector instance.

Network address that the Tuxedo domain gateway has defined for this WebLogic Tuxedo
Connector Local Access Point.

Us ing AquaLog ic Se rv i ce Bus Serv i ces f rom BEA Tuxedo (Inbound Example)

BEA AquaLogic Service Bus Interoperability Solutions Guide 2-21

You must create the following JMS queues if they do not already exist:

One or more queues on which to place requests to the AquaLogic Service Bus service

A queue to pick up replies from the AquaLogic Service Bus service

Configuring the Sample EJB ToQSBean
Set environment entries in the ejb-jar.xml file and set the name of the exported service that
WebLogic Tuxedo Connector will allow other domains to call. The following sections contain
instructions for these tasks.

Edit the ejb-jar.xml File
In the ejb-jar.xml file, set the following environment entries:

JMSConnectionFactory – Set this to the JNDI name of the JMS connection factory that the
EJB should use.

ToQueueName – Set this to the JNDI name of the JMS queue into which the EJB should
place incoming requests. This string can contain the indicator “%s,” which causes the
actual service name to be substituted. For example, if the EJB is deployed to provide the
CREDITCHECK ATMI service, setting this string to
weblogic.jms.%sServiceRequestQ results in a JNDI name of
weblogic.jms.CREDITCHECKServiceRequestQ.

ReplyQueueName – Set this to the JNDI name of the JMS queue into which AquaLogic
Service Bus places replies. This string can contain a “%s” to make this setting more
generic.

FieldTables – A comma-separated list of the FML/FML32 field table classes required for
any FML/XML translation.

Edit the weblogic-ejb-jar.xml File
In the weblogic-ejb-jar.xml file, set the EJB’s JNDI name to
tuxedo.services.svcnameHome where svcname is the ATMI service name that the
deployment supports. This is the name of the exported service that WTC allows other domains to
call.

For reference information on the structure of the weblogic-ejb-jar.xml file, see
weblogic-ejb-jar.xml Deployment Descriptor Reference in Programming WebLogic Enterprise
JavaBeans.

http://e-docs.bea.com/wls/docs90/ejb/DDreference-ejb-jar.html

In te rope rab i l i t y w i th BEA Tuxedo

2-22 BEA AquaLogic Service Bus Interoperability Solutions Guide

Adding Field Classes to EJB’s JAR File
This task is optional if you set up field classes as described in “Create Field Table Classes (if
Required)” on page 2-8. Any Field Table class files required for XML to FML and FML to XML
conversion must be included in the EJB’s JAR file. For instructions on performing this task, see
the WebLogic Server Javadoc.

Building and Deploying the EJB
Deploying an EJB enables WebLogic Server to serve the components of an EJB to clients. You
can deploy an EJB using one of several procedures, depending on your environment and whether
or not your EJB is in production.

For general instructions on deploying WebLogic Server applications and modules, including
EJBs, see Deploying Applications to WebLogic Server in the WebLogic Server documentation.
For EJB-specific deployment issues and procedures, see Deployment Guidelines for Enterprise
Java Beans in Programming WebLogic Enterprise JavaBeans.

Configuring WebLogic Tuxedo Connector
You configure WebLogic Tuxedo Connector using the WebLogic Server Administration
Console. For additional information about the WebLogic Tuxedo Connector, see WebLogic
Tuxedo Connector in the WebLogic Server documentation.

Log in to the WebLogic Server Administration Console and perform these steps in the order
presented.

Note: If you performed the WTC setup described in “Configuring WebLogic Tuxedo
Connector and the Tuxedo Queuing Bridge” on page 2-4, you can skip the corresponding
tasks described here; the only required task is to create a WTC Export Service.

To complete this configuration, you will perform the tasks described in the following sections:

Create a New WTC Server

Create a Local Access Point

Create a Remote Access Point

Create a WTC Export Service

http://e-docs.bea.com/wls/docs90/deployment/index.html
http://e-docs.bea.com/wls/docs90/wtc.html
http://e-docs.bea.com/wls/docs90/wtc.html
http://e-docs.bea.com/wls/docs90/javadocs/index.html
http://e-docs.bea.com/wls/docs90/ejb/deploy.html
http://e-docs.bea.com/wls/docs90/ejb/deploy.html

Us ing AquaLog ic Se rv i ce Bus Serv i ces f rom BEA Tuxedo (Inbound Example)

BEA AquaLogic Service Bus Interoperability Solutions Guide 2-23

Create a New WTC Server
Follow these steps:

4. Click WTC Servers under the Interoperability tab.

5. Click Lock & Edit; this allows you to make changes. A display similar to Figure 2-18
appears:

Figure 2-18 WTC Server Display

6. Click New to add the new WTC server. A display similar to Figure 2-19 appears:

Figure 2-19 New WTC Server Data Entry Display

7. Enter a name for the WTC server and click OK.

A message at the top of the page indicates that the server was added correctly.

8. Click the newly created WTC server to display its settings.

In te rope rab i l i t y w i th BEA Tuxedo

2-24 BEA AquaLogic Service Bus Interoperability Solutions Guide

Create a Local Access Point
Follow these steps:

1. Click Local APs on the Configuration tab.

2. Click New to create a new WTC Local Access Point. A display similar to Figure 2-20
appears:

Figure 2-20 New Local Access Point Data Entry Display

3. Enter the following values:

Access Point – A name for this access point.

Access Point ID – The name WebLogic Server will use to refer to the access point. This
value must match the Remote Access Point ID that the Tuxedo domain gateway has been
configured to use for this WTC instance.

Network Address – This value must match the remote network address that the Tuxedo
domain gateway has been configured to use for this WTC instance.

4. Click OK.

Create a Remote Access Point
Follow these steps:

1. Click Remote APs on the Configuration tab.

Us ing AquaLog ic Se rv i ce Bus Serv i ces f rom BEA Tuxedo (Inbound Example)

BEA AquaLogic Service Bus Interoperability Solutions Guide 2-25

2. Click New to create a new WTC Remote Access Point. A display similar to Figure 2-21
appears:

Figure 2-21 New Remote Access Point Data Entry Display

3. Enter the following values:

Access Point – A name for this access point.

Access Point ID – The name WebLogic Server will use to refer to the access point. This
value must match the Local Access Point ID that the Tuxedo domain gateway has been
configured to use for this WTC instance.

Local Access Point – The name of WTC Local Access Point.

Network Address – This value must match the local network address that the Tuxedo
domain gateway has been configured to use for this WTC instance.

4. Click OK.

Create a WTC Export Service
Follow these steps:

1. Click Exported on the Configuration tab.

In te rope rab i l i t y w i th BEA Tuxedo

2-26 BEA AquaLogic Service Bus Interoperability Solutions Guide

2. Click New to create a new WTC Exported Service. A display similar to Figure 2-22
appears:

Figure 2-22 New WTC Export Service Data Entry Display

3. Enter the following values:

Resource Name – The name WebLogic Server will use to refer to the service (including
the tBridge)

Local Access Point – The name of the local access point you created earlier

EJB Name – The complete name of the EJB home interface to use when invoking a
service

Remote Name – The name of the service as exported by the remote Tuxedo system

4. Click OK.

Adding and Configuring a Proxy Service
To utilize theAquaLogic Service Bus service from Tuxedo, you must configure a new proxy
service using the AquaLogic Service Bus Console. For more information about proxy services,
see Proxy Services in the AquaLogic Service Bus Console Online Help.

Log in to the AquaLogic Service Bus Console and perform these steps in the order presented.

http://edocs.bea.com/alsb/docs21/consolehelp/proxyservices.html

Us ing AquaLog ic Se rv i ce Bus Serv i ces f rom BEA Tuxedo (Inbound Example)

BEA AquaLogic Service Bus Interoperability Solutions Guide 2-27

To complete this configuration, you will perform the tasks described in the following sections:

Add a New Project

Add a Proxy Service

Configure the Proxy Service

Add a New Project
Follow these steps:

1. Click Create to start a new console session.

You must be in a session to edit resources.

2. Click Project Explorer.

3. Enter a name for the new project and click Add Project.

A message at the top of the page indicates that the server was added correctly.

Add a Proxy Service
Follow these steps:

1. In the Resources area Create Resource dropdown menu, select Proxy Service.

The Edit a Proxy Service – General Configuration page displays, as shown in
Figure 2-23.

In te rope rab i l i t y w i th BEA Tuxedo

2-28 BEA AquaLogic Service Bus Interoperability Solutions Guide

Figure 2-23 New Proxy Service Data Entry Page 1 - Inbound

2. Enter the following values:

Service Name – The name of the service

Service Type – Select Any XML Service (the default)

Click Next to display the Edit a Proxy Service – Transport Configuration page, as
shown in Figure 2-24.

Us ing AquaLog ic Se rv i ce Bus Serv i ces f rom BEA Tuxedo (Inbound Example)

BEA AquaLogic Service Bus Interoperability Solutions Guide 2-29

Figure 2-24 New Proxy Service Data Entry Page 2 - Inbound

3. Enter the following required values:

Protocol – Select jms.

Endpoint URI - Enter a JMS URI. that corresponds to the endpoint URI on the server
where the service was deployed.

4. Click Next to continue.

5. Enter the following values:

Is Response Required – Select the checkbox.

Message Type – Text.

6. Click Finish.

7. At the Summary page, click Save.

Configure the Proxy Service
AquaLogic Service Bus Message Flows define the implementation of proxy services. Message
flows can include zero or more pipeline pairs: request and response pipelines for the proxy
service (or for the operations on the service); and error handler pipelines that can be defined for
stages, pipelines, and proxy services. Pipelines can include one or more stages, which in turn
include actions. To change the routing behavior of the proxy service you will edit this message
flow to:

Add a route node

Configure an action to route the Proxy Service to the Business Service resource that you
created previously

In te rope rab i l i t y w i th BEA Tuxedo

2-30 BEA AquaLogic Service Bus Interoperability Solutions Guide

Follow these steps:

1. In the AquaLogic Service Bus Console navigation panel, select Resource Browser from the
list of available choices, if it is not already selected.

The Resource Browser pane is opened in the navigation panel and the Summary of Proxy
Services project page is displayed in the console.

2. In Options, click the Message Flow icon . A display similar to Figure 2-25 appears:

Figure 2-25 Message Flow Default Display

The Edit Message Flow page for the proxy service you created previously is displayed.
This page displays the default message flow configuration. The default configuration
consists of a start node. This is the minimum configuration of a message flow. The
behavior of the message flow is sequential.

3. Click the Start Node. From the popup menu select the Add Route Node link, as shown in
Figure 2-26.

Figure 2-26 Convert to Route Node Display

4. In the configuration dialog, name the route node as desired and click Save.

In the message flow, the name of the node changes to display the route node name.

5. Click the route node and from the pop up menu select Edit > Route Node, as shown in
Figure 2-27:

Us ing AquaLog ic Se rv i ce Bus Serv i ces f rom BEA Tuxedo (Inbound Example)

BEA AquaLogic Service Bus Interoperability Solutions Guide 2-31

Figure 2-27 Edit Route Node Display

The Edit Stage Configuration page is displayed. The page contains a single link, Add an
Action.

A stage is an element of a pipeline and it is a container for actions defined in a pipeline.
Actions are the elements of a pipeline stage that define the handling of messages as they
flow through a proxy service.

6. Click the Add an Action link, then select Routing from the popup menu, as shown in
Figure 2-28:

Figure 2-28 Message Flow Routing Display

The Edit Stage Configuration page changes to display the contents of the action. The
contents of the action are defined by the type of node we created—a route node.

7. In Route to <Service>, click <Service>, as shown in Figure 2-29:

Figure 2-29 Route to Service Display

The Service Browser displays the names of the Proxy Service and Business Service that
you created.

In te rope rab i l i t y w i th BEA Tuxedo

2-32 BEA AquaLogic Service Bus Interoperability Solutions Guide

8. Select the Business Service that you want to expose to Tuxedo.

9. Click Submit.

The display updates to show routing to the Business Service.

The configuration is completed and ready to test.

Testing Your Configuration
Now that you have configured BEA Tuxedo to work with AquaLogic Service Bus, you can
perform a test to verify that it is working correctly. If you are using XML-to-FML32 and
FML32-to-XML conversions, you can test this configuration using the “ud32” Tuxedo client
program that is included with BEA Tuxedo. (If you are using FML conversions, you can use the
“ud” client.) ud32 reads input consisting of text representation of FML buffers. For more
information, see the information on the ud and ud32 commands in the Tuxedo Command
Reference.

If you are not using XML-to-FML and FML-to-XML conversions, you must develop a test client
program in Tuxedo to test this configuration. To find information on this task, refer to the BEA
Tuxedo documentation.

http://e-docs.bea.com/tuxedo/tux81/rfcm/index.htm
http://e-docs.bea.com/tuxedo/tux81/rfcm/index.htm
http://e-docs.bea.com/tuxedo/tux81/index.htm
http://e-docs.bea.com/tuxedo/tux81/index.htm

BEA AquaLogic Service Bus Interoperability Solutions Guide 3-1

C H A P T E R 3

Interoperability with JMS

AquaLogic Service Bus is certified against the following JMS implementations:

WebLogic Server 9.x JMS

IBM WebSphere MQ/JMS 5.3

Configuring proxy services and business services to use the JMS transport is described in the
Proxy Services and Business Services sections of the Using the AquaLogic Service Bus Console.

All of the AquaLogic Service Bus service types support the JMS transport. For information about
the AquaLogic Service Bus service types and the transports for each of the service types, see
“Selecting a Service Type” in Modeling Message Flow in AquaLogic Service Bus in the BEA
AquaLogic Service Bus User Guide.

For information about WebLogic Server 9.x JMS, see the following resources:

Managing Your Applications in Programming WebLogic JMS

Configure JMS Servers in the WebLogic Server Administration Console Online Help

This section includes the following additional JMS interoperability topics:

Asynchronous Request/Response

SOAP/JMS Transport

Naming Guidelines for WebLogic Servers, JMS Servers, and Domains

Specifying the JMS Type for Services

http://edocs.bea.com/wls/docs91/jms/manage_apps.html
http://edocs.bea.com/wls/docs91/ConsoleHelp/taskhelp/jms_servers/ConfigureJMSServers.html
http://edocs.bea.com/alsb/docs21/userguide/modelingmessageflow.html
http://edocs.bea.com/alsb/docs21/consolehelp/proxyservices.html
http://edocs.bea.com/alsb/docs21/consolehelp/businessServices.html

In te rope rab i l i t y w i th JMS

3-2 BEA AquaLogic Service Bus Interoperability Solutions Guide

AquaLogic Service Bus and MQ/JMS Interoperability

WSDL-Defined SOAP Fault Messages

Asynchronous Request/Response
For information about designing asynchronous request/response messaging, including the use of
the JMS Correlation ID to link the request and response messages, see “Asynchronous
Request/Response” in Modeling Message Flow in AquaLogic Service Bus in the BEA AquaLogic
Service Bus User Guide.

SOAP/JMS Transport
When using the JMS binding to configure a business service in BEA WebLogic Workshop, the
SOAP/JMS URI format you must provide in the AquaLogic Service Bus Console is:

jms://host:port/factoryJndiName/destJndiName

However, BEA WebLogic Workshop expects the following format:

jms://host:port/factoryJndiName/destJndiName?URI=/process/myprocess.jpd

To overcome this problem, you must set the URI as a JMS property inside the message flow on
the outbound variable ($outbound) before it is sent. For information about setting $outbound,
see “Inbound and Outbound Variables” in Message Context in the Using the AquaLogic Service Bus
Console.

When using the JMS binding to configure a business service in WebLogic Server 8.1, you must
use the following SOAP/JMS URI format in the AquaLogic Service Bus Console:

jms://host:port/factoryJndiName/destJndiName?URI=/contextURI/serviceName

You must set the URI as a JMS property inside the message flow on the outbound variable
($outbound) before a request is sent to the business service.

When using the JMS binding to configure a business service in WebLogic Server 9.x, you must
use the following SOAP/JMS URI format in the AquaLogic Service Bus Console:

jms://host:port/contextURI/serviceName?URI=destJndiName

You must configure the business service to use the JNDI name of an existing
QueueConnectionFactory in the target WebLogic Server. You must also set a user defined
JMS property with the name as URI and the value as /contextURI/serviceName inside the
message flow on the outbound variable ($outbound) before a request is sent to the business
service.

http://e-docs.bea.com/alsb/docs21/consolehelp/context.html
http://edocs.bea.com/alsb/docs21/userguide/modelingmessageflow.html

Naming Gui de l ines f or WebLogi c Se rver s , JMS Ser ve rs , and Domai ns

BEA AquaLogic Service Bus Interoperability Solutions Guide 3-3

Naming Guidelines for WebLogic Servers, JMS Servers, and
Domains

Unique naming rules apply to all WebLogic Server deployments if more than one domain is
involved. Therefore, make sure of the following:

WebLogic Server instances and domain names are unique.

WebLogic JMS server names are uniquely named across domains.

If a JMS file store is being used for persistent messages, the JMS file store name must be
unique across domains.

Regarding JMS Server names:

You cannot have duplicate JMS server names within the same domain. If you do, when
messages are sent to a destination at a particular JMS server, it is ambiguous as to which
server the message should be sent.

If you are using Store and Forward (SAF), having duplicate JMS Server names in different
domains does not pose a problem.

In the case of cross-domain communication, having duplicate JMS Server names can be a
problem when using the ReplyTo function. For a scenario in which two domains each have
a JMS Server with the same name, a ReplyTo message sent from a given domain is
returned to the JMS server on the same domain that received the message instead of being
returned to the domain that sent the original message.

For more information about configuring and managing WebLogic JMS, see:

Managing Your Applications in Programming WebLogic JMS

Configure JMS Servers in the WebLogic Server Administration Console Online Help

For information about WebLogic Server Domains, see Understanding Domain Configuration.

Specifying the JMS Type for Services
To support interoperability with heterogeneous endpoints, AquaLogic Service Bus allows you to
control the content type used, the JMS type used, and the encoding used when configuring
message flows. The JMS type can be byte or text. For more information, see “Content Types,
JMS Type, and Encoding” in Modeling Message Flow in AquaLogic Service Bus in the BEA
AquaLogic Service Bus User Guide.

http://edocs.bea.com/wls/docs91/jms/manage_apps.html
http://edocs.bea.com/wls/docs91/ConsoleHelp/taskhelp/jms_servers/ConfigureJMSServers.html
http://edocs.bea.com/wls/docs91/domain_config/index.html
http://edocs.bea.com/alsb/docs21/userguide/modelingmessageflow.html

In te rope rab i l i t y w i th JMS

3-4 BEA AquaLogic Service Bus Interoperability Solutions Guide

AquaLogic Service Bus and MQ/JMS Interoperability
For information about AquaLogic Service Bus and MQ/JMS interoperability, see Chapter 4,
“Interoperability with WebSphere MQ.”

WSDL-Defined SOAP Fault Messages
When consuming a WSDL that explicitly defines a fault, the WebLogic clientgen tool generates
a subclass of java.lang.Exception for the XML fault type. When the WebLogic Server
JAX-RPC stack inspects a SOAP response message and determines that the response message
contains a SOAP fault, it tries to map the fault to a clientgen-generated exception Java class.

For example, if a WSDL contains the definitions shown in the following listing, the clientgen tool
generates a Java class com.bea.test.TheFaultType that extends java.lang.Exception. A
JAX-RPC client can catch com.bea.test.TheFaultType when invoking the related method of
the service stub.

Listing 3-1 Example WSDL Definitions

<definitions ... xmlns:s0="http://www.bea.com/test/">

...

<types>

<xsd:schema targetNamespace="http://www.bea.com/test/">

...

<xsd:complexType name="theFaultType">

<xsd:sequence>

<xsd:element name="ID" type="xsd:int" />

<xsd:element name="message" type="xsd:string" />

</xsd:sequence>

</xsd:complexType>

<xsd:element name="theFault" type="theFaultType" />

</xsd:schema>

</types>

WSDL-Def ined SOAP Faul t Messages

BEA AquaLogic Service Bus Interoperability Solutions Guide 3-5

...

<message name="theFaultMessage">

<part element="s0:theFaultPart" name="theFault" />

</message>

...

<binding ...>

<operation ...>

<soap:operation soapAction="..." style="document" />

<input ...>

...

</input>

<output ...>

...

</output>

<fault ...>

<soap:fault name="theFaultPart" use="literal" />

</fault>

</operation>

</binding>

...

</definitions>

The SOAP message must contain a fault of the correct format so that the JAX-RPC stack throws
the correct exception. If the fault is constructed from inside a AquaLogic Service Bus message
flow, you must:

1. Replace the node for the $body variable with the following example listing:

In te rope rab i l i t y w i th JMS

3-6 BEA AquaLogic Service Bus Interoperability Solutions Guide

Listing 3-2

<soap-env:Body>

<soap-env:Fault>

<faultcode
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">soap:Server</fau
ltcode>

<faultstring>Some literal string</faultstring>

<detail>

<test:theFault>

<test:ID>Any user defined code</e2eb:Id>

<test:message>A specific literal message</test:message>

</test:theFault>

</detail>

</soap-env:Fault>

</soap-env:Body>

where:

– soap-env is the system prefix for the namespace
http://schemas.xmlsoap.org/soap/envelope/

– test is the prefix for the namespace http://www.bea.com/test/.

If the prefix test is not already known to AquaLogic Service Bus, you must declare it.

2. Configure a reply action with failure.

For information about configuring Reply Actions in the AquaLogic Service Bus Console, see
Proxy Services Actions in Using the AquaLogic Service Bus Console.

The clientgen tool is used to generate the client-side artifacts, such as the JAX-RPC stubs, needed
to invoke a Web Service. See Ant Task Reference in Programming Web Services for WebLogic
Server.

http://edocs.bea.com/alsb/docs21/consolehelp/index.html
http://e-docs.bea.com/wls/docs91/webserv/anttasks.html
http://e-docs.bea.com/wls/docs91/webserv/index.html
http://e-docs.bea.com/wls/docs91/webserv/index.html
http://edocs.bea.com/alsb/docs21/consolehelp/proxyactions.html

BEA AquaLogic Service Bus User Guide 4-1

C H A P T E R 4

Interoperability with WebSphere MQ

This section outlines how the AquaLogic Service Bus connects to WebSphere MQ and presents
an overview of some of the message types used in communication between WebSphere MQ and
AquaLogic Service Bus. Tuning guidelines for WebSphere MQ are also introduced.

The topics discussed in this section include:

Using WebSphere MQ in AquaLogic Service Bus

Messaging Types

Tuning WebSphere MQ

Using WebSphere MQ in AquaLogic Service Bus
AquaLogic Service Bus connects to WebSphere MQ via the WebSphere MQ JMS interface. In
other words, AquaLogic Service Bus is an implementation of the WebSphere MQ JMS Client.
WebLogic Server’s foreign JMS server specifies the initial context factory, connection factory,
and queue to the WebSphere MQ server. WebSphere MQ JMS supports two transport types:

BINDINGS

CLIENT

If the WebSphere MQ JMS Client is running on the same physical machine as the queue manager,
it is possible to set the transport type to BINDINGS. Otherwise, you can only use the CLIENT
type.

In te rope rab i l i t y w i th WebSphere MQ

4-2 BEA AquaLogic Service Bus User Guide

WebSphere MQ can interface with AquaLogic Service Bus in two ways:

AquaLogic Service Bus acts as the front-end of WebSphere MQ to accept service requests
from other applications and translates them to WebSphere MQ requests. See Figure 4-1.

WebSphere MQ sends messages to other applications via AquaLogic Service Bus. See
Figure 4-2.

Figure 4-1 AquaLogic Service Bus Front End

Figure 4-2 Messages sent via AquaLogic Service Bus

Configuration of AquaLogic Service Bus is performed in the AquaLogic Service Bus Console,
which is described in the AquaLogic Service Bus Console Online Help.

Messaging Types
This section provides an overview of the following messaging types:

Non-Persistent Messaging

Non-XA Persistent Messaging

XA Messaging

Non-Persistent Messaging
If you decide to accept unreliable delivery, such as some missing requests, you can use
non-persistent messages where appropriate. WebSphere MQ logging and WebLogic JMS
message persistence is only performed for persistent messages, therefore the use of non-persistent
messages eliminates any related I/O activity.

Note: Non-persistent message throughput is usually limited by the processor speed of the
machine. However, in case of a shortage of physical memory, the server system may
consume CPU cycles on paging I/O.

AquaLogic Service Bus WebSphere MQ
Incoming

Service Requests

WebSphere MQ AquaLogic Service Bus Outgoing
Messages

http://e-docs.bea.com/alsb/docs21/consolehelp/index.html

Tuning WebSphere MQ

BEA AquaLogic Service Bus User Guide 4-3

Non-XA Persistent Messaging
WebSphere MQ persistent message throughput is usually limited by the queue manager and the
I/O latency writing to the log.

XA Messaging
XA only applies to JMS to WebSphere MQ and WebSphere MQ to JMS messaging for
AquaLogic Service Bus supported protocols. To enable queue support, the queue manager must
be accessed using BINDINGS (AquaLogic Service Bus co-resides with the queue manager) or
using CLIENT and a specific XA enabled WebSphere MQ client (for example, WebSphere MQ
Extended Transactional Client) must be installed on the AquaLogic Service Bus machine.

Tuning WebSphere MQ
This section presents tips for tuning WebSphere MQ when working with AquaLogic Service Bus.
For detailed WebSphere MQ information, see your relevant WebSphere MQ documentation.

Use the BINDINGS transport type if AquaLogic Service Bus and the queue manager are
deployed on the same machine.

If you need XA for only a small section of application requests, create a separate
connection object without XA enabled.

Distribute active logs across many volumes. If your system must handle high persistent
message throughput, you must place the log files on a fast Direct Access Storage Device
(DASD) with a minimum of contention from other data set usage. Ideally, you should
allocate each of the active logs on separate, low usage volumes.

To reduce buffer overflow, tune the buffer pools and pagesets. Buffer overflow results in
the flushing of the hard disk.

In te rope rab i l i t y w i th WebSphere MQ

4-4 BEA AquaLogic Service Bus User Guide

BEA AquaLogic Service Bus Interoperability Solutions Guide 5-1

C H A P T E R 5

Interoperability with WebLogic Platform

AquaLogic Service Bus Interoperability with WebLogic 8.1
Domains

When your scenario requires interoperability between an AquaLogic Service Bus domain and a
BEA WebLogic Platform 8.1 domain, you must set up your AquaLogic Service Bus domain as
follows:

1. Apply any patches required for WebLogic Platform 8.1 domains. For the latest information
about patches, see “Known Limitations” in the BEA AquaLogic Service Bus Release Notes.

2. Establish domain trust between all WebLogic Server domains participating in the
transaction.

For information about how to do so, see “Enabling Trust Between WebLogic Server
Domains” in Configuring Security for a WebLogic Domain in Securing WebLogic Server.

3. Ensure that you set the Security Interoperability Mode attribute in the WebLogic Server
Administration Console to compatibility.

The Security Interoperability Mode attribute specifies the security mode to use for XA
calls in cross-domain transactions. You can set this attribute on the WebLogic Server
Administration Console from either the domain-wide security settings or from the Java
Transaction API (JTA) configuration page for the WebLogic Server domain. For more
information, see Domain: Security: General and Domains: Configuration: JTA in the
WebLogic Server Administration Console Online Help.

http://edocs.bea.com/wls/docs91/secmanage/domain.html
http://edocs.bea.com/alsb/docs21/relnotes/index.html
http://edocs.bea.com/wls/docs91/ConsoleHelp/pagehelp/Corecoredomaindomainconfigjtatitle.html
http://edocs.bea.com/wls/docs91/ConsoleHelp/pagehelp/Securitysecuritydomaindomainconfiggeneraltitle.html

In te rope rab i l i t y w i th WebLog ic P la t fo rm

5-2 BEA AquaLogic Service Bus Interoperability Solutions Guide

4. Use different listening ports for the AquaLogic Service Bus and WebLogic 8.1 domains.
Also, ensure that the Debug and Pointbase ports are different (you can check the
db.properties file to determine which ports are specified). Both AquaLogic Service Bus
and WebLogic 8.1 domains are initally set up with default ports, which may conflict if they
not changed.

Guidelines for Naming WebLogic Domains and Servers
For information about naming WebLogic domains and servers, see “Naming Guidelines for
WebLogic Servers, JMS Servers, and Domains” on page 3-3.

Related Topics
For AquaLogic Service Bus use cases, including use cases that involve interoperability between
WebLogic Domains, see Modeling Message Flow in AquaLogic Service Bus in the BEA
AquaLogic Service Bus User Guide.

http://edocs.bea.com/alsb/docs21/userguide/modelingmessageflow.html

BEA AquaLogic Service Bus User Guide 6-1

C H A P T E R 6

Interoperability with Web Services for
Remote Portlets (WSRP)

Web Services for Remote Portlets (WSRP) is an increasingly popular mechanism for generating
markup fragments on a remote system for display in a local portal application. This section
describes how AquaLogic Service Bus can be used to provide Service Level Agreement
monitoring in applications that use WSRP.

The topics discussed in this section include:

WSRP Producers and Consumers

Architecture

WSRP Design Concepts

Configuring AquaLogic Service Bus for WSRP

WSRP Interoperability Example

The AquaLogic Service Bus Console, which is described in the AquaLogic Service Bus Console
Online Help, is used to configure AquaLogic Service Bus. For more information about creating
WSRP-enabled portals using WebLogic Portal, see Using WSRP with WebLogic Portal.

WSRP Producers and Consumers
WSRP involves two integral components:

The remote application, called a WSRP producer (referred to as a producer in this section)
implements standards-based Web Services using the SOAP specification over HTTP.

http://e-docs.bea.com/alsb/docs21/consolehelp/index.html
http://e-docs.bea.com/alsb/docs21/consolehelp/index.html
http://e-docs.bea.com/wlp/docs81/wsrp/index.html

In te rope rab i l i t y w i th Web Se rv ices fo r Remote Por t l e ts (WSRP)

6-2 BEA AquaLogic Service Bus User Guide

Producers can be easily created using WebLogic Portal or third-party implementations of
WSRP.

A WSRP consumer (referred to as a consumer in this section) is a Portal application.
Typically, the consumer application references the producer's WSDL when the portal is
designed, and the consumer directly accesses the producer.

Architecture
This section describes the basic WSRP architecture and then shows how this architecture can be
enhanced by adding AquaLogic Service Bus.

Basic WSRP Architecture
The following figure shows the basic WSRP SOAP request and response flow between a
producer application and a consumer application.

Figure 6-1 Basic Request/Response Flow Between Producer and Consumer Applications

Arch i t ec tu re

BEA AquaLogic Service Bus User Guide 6-3

Enhanced WSRP Architecture with AquaLogic Service Bus
Because a WSRP producer implements SOAP Web Services, an enterprise service bus (such as
the AquaLogic Service Bus) can be used as an intermediary between the producer and consumer
to provide Service Level Agreement monitoring, as shown in the following figure.

Figure 6-2 Enhanced WSRP Request / Response Flow Via AquaLogic Service Bus

In this architecture, the WSRP SOAP request / response flow occurs in the following sequence:

1. Inbound Request: The client (consumer) calls the proxy in the AquaLogic Service Bus.

2. Outbound Request: The proxy routes the request (a message containing the SOAP body and
transport headers) to the business service, and then the business service makes the request of
the external Web Service (producer).

3. Inbound Response: The Web service returns a reply to AquaLogic Service Bus.

In te rope rab i l i t y w i th Web Se rv ices fo r Remote Por t l e ts (WSRP)

6-4 BEA AquaLogic Service Bus User Guide

4. Outbound Response: The proxy returns the reply (a message containing the SOAP body and
transport headers) to the consumer.

The remainder of this section provides instructions for configuring the AquaLogic Service Bus
to proxy service requests for WSRP services. It describes services that a producer provides, along
with other attributes of WSRP that must be used to properly configure AquaLogic Service Bus.
It provides different possible strategies that can be used to monitor producers with increasing
degrees of detail. Finally, it discusses load balancing and failover with WSRP.

WSRP Design Concepts
This topic describes the following WSRP design concepts:

WSRP WSDLs

WSRP Messages

WSRP WSDLs
The following table describes the kinds of services offered by producers.

Table 6-1 Producer Services

Service Description

Service Description Required service. Used to describe the producer and the portlets that it makes
available to consumers.

Markup Required service. Manages user interaction with a remote portlet and returns the
HTML markup used to render the portlet.

Registration Optional service. Allows consumers to register themselves with the producer.
Registration is required for complex producers.

Management Optional service. Provided by complex producers for managing portlet
customization and portlet preferences.

Markup Extension Service provided by BEA Portal producers that replaces the Markup service.
The Markup Extension allows more efficient message handling by using
multipart MIME messages for transmitting HTML markup content.

Conf igur ing AquaLog ic Se rv ice Bus fo r WSRP

BEA AquaLogic Service Bus User Guide 6-5

Each producer implements a minimum of two services (Service Description and Markup).
A simple producer offers just these two services. A complex producer, however, provides two
additional services (Registration and Management). WebLogic Portal producers also implement
an extension service (Markup Extension) that replaces the standard Markup service.

These services are described using a standard WSDL format. The producer supplies a single URL
for retrieving its WSDL, which describes all of the services that are available from that producer.
The endpoints for each service indicate whether the consumer should use transport-level security
(HTTPS) or not to communicate with the producer.

WSRP Messages
WSRP uses SOAP over HTTP for all messages sent between producers and consumers. In
addition to using standard message formats in the SOAP Body, WSRP requires that certain
transport headers be set in the request message—at a minimum, consumers must set the
SOAPAction header, cookie headers, and the usual HTTP headers (such as Content-Type).
Producers will return a session cookie, plus any application-specific cookies, in the HTTP
transport header of the response message. The consumer must return the session cookie in
subsequent request messages.

Configuring AquaLogic Service Bus for WSRP
Configuring AquaLogic Service Bus for WSRP involves the following tasks:

implementing a service that consumers can invoke to obtain an appropriate WSDL for a
particular producer

implementing the nuts and bolts of conveying a consumer's request to the producer and
returning the response to the consumer

This topic describes the following tasks:

Getting the Producer WSDL

Routing Messages Between the Consumer and Producer

Choosing the Monitoring Level

In te rope rab i l i t y w i th Web Se rv ices fo r Remote Por t l e ts (WSRP)

6-6 BEA AquaLogic Service Bus User Guide

Getting the Producer WSDL
As a common practice, consumers contact a producer directly to obtain its WSDL. However, if
AquaLogic Service Bus is used to proxy the service, then all access to the producer occurs via
AquaLogic Service Bus. Therefore, a proxy service must be implemented for consumers that
calls the producer's real URL to obtain its WSDL, and then transforms the results by:

rewriting the endpoint address for the producer to refer to the Service Bus IP address and
port

changing the endpoint URI to refer to the AquaLogic Service Bus proxy service that
reflects the required monitoring granularity (as described in “Choosing the Monitoring
Level” on page 6-7)

changing the endpoint protocol and port to reflect whether transport security is used
between the consumer and the AquaLogic Service Bus proxy service

The developer who creates a producer can specify whether the producer requires SSL or not
("secure=true"). In addition, the AquaLogic Service Bus administrator can change the security
requirement to the consumer via AquaLogic Service Bus configuration. For example, suppose a
producer does not require SSL. The AquaLogic Service Bus administrator can require consumers
to use SSL by:

changing the WSDL to specify HTTPS

configuring the proxy services for WSRP to use the HTTPS transport

When configured in this way, AquaLogic Service Bus automatically bridges the secure messages
from the consumer to the non-secure messages used by the producer.

Routing Messages Between the Consumer and Producer
After the consumer has retrieved a copy of the WSDL, it uses the definitions in the WSDL to
formulate service requests that it then sends to the producer via AquaLogic Service Bus.
The WSRP request / response process involves the following steps:

1. The consumer sends a message to the AquaLogic Service Bus proxy service corresponding to
the producer service.

2. The proxy service executes a simple message flow that routes the message (unchanged) to the
actual producer service.

3. The producer formulates a response that it then sends to the consumer via AquaLogic Service
Bus.

Conf igur ing AquaLog ic Se rv ice Bus fo r WSRP

BEA AquaLogic Service Bus User Guide 6-7

4. The consumer receives the response (unchanged) from the producer.

WSRP Web services expose portlets and those can rely on HTTP cookies and sessions.
Therefore, WLSB must be configured to propagate HTTP transport headers (such as
SOAPAction and cookies). However, by default, AquaLogic Service Bus does not pass transport
headers from the proxy service to the business service, because it cannot assume that the proxy
service uses the same transport as the business service. Therefore, the message flow must be
configured to copy the request headers from the inbound request to the outbound request.
Similarly, the response headers from the business service must be copied back to the proxy
service's response to the consumer.

Although it is possible to copy all transport headers between the proxy service and the business
service, it is necessary to be more selective to avoid errors. The Set-Cookie and Cookie headers
must be copied. Because AquaLogic Service Bus is the entity that assembles the final message to
send, it must own some of the headers information (such as Content-Length). For example, if
the message flow were to copy the Content-Length header from the proxy service to the
business service, it might result in an error because the length of the message could change during
processing.

Choosing the Monitoring Level
When monitoring WSRP applications, an AquaLogic Service Bus administrator must decide
about the degree of granularity that is required.

The decision about which monitoring level to implement has an impact on the complexity of the
AquaLogic Service Bus configuration. It determines the type and number of proxies or business
services that must be created for each producer. In addition, the AquaLogic Service Bus
administrator can choose to monitor both the proxy service and the producer service—the
granularity of monitoring does not need to be the same for each side.

Table 6-2 WSRP Monitoring Levels

Monitoring Level Description

Producer-level Coarsest-grained level and the easiest to implement. This level looks at the
producer as a whole, without regard to its constituent services.

Operation-level Finest-grained monitoring level. Monitors the usage of a producer’s individual
services and operations.

In te rope rab i l i t y w i th Web Se rv ices fo r Remote Por t l e ts (WSRP)

6-8 BEA AquaLogic Service Bus User Guide

Producer-Level Monitoring
Producer-level monitoring tracks the total number of requests sent to a producer, without regard
to the specific service being requested. As such, producer-level monitoring is the simplest to
configure within AquaLogic Service Bus. Because the service types are not significant, it is not
necessary to create the proxy service or business service based on a WSDL. Instead, the service
type is configured as "Any SOAP Service". Each producer requires only a single proxy service
and a single business service. For an example implementation, see “Producer-Level Monitoring
Example” on page 6-12.

To configure producer-level monitoring, complete the following tasks:

1. Configure the message flow in the proxy service to unconditionally route any message to the
business service.

2. Add a request action in the message flow to copy the appropriate request headers from the
inbound request to the outbound request.

3. Add a response action in the message flow to copy the response headers back from the
outbound response to the inbound response.

The suitability of producer-level monitoring depends on the specific requirements of a given
implementation. In producer-level monitoring, the elapsed time for all services and operations for
the producer are averaged together, regardless of the differences among them. However, a
producer’s services and operations can have vastly different characteristics, and it might not be
meaningful to consider aggregated measurements. For example, the Markup service is the
workhorse of WSRP—it requires substantially more time to execute than the Registration
service. However, producer-level monitoring does not distinguish between the two. Nonetheless,
producer-level monitoring can be useful to gauge the extent to which a producer is being utilized,
or to help when there is a severe performance problem at the producer. Because the Markup
service typically gets used more often (almost 99%) in a production system, it might still be
useful to monitor Service Level Agreement (SLAs) at the producer level.

Operation-Level Monitoring
Operation-level monitoring tracks operations for services individually. Monitoring proxy
services via operation-level monitoring is very easy to set up. Configuring operation-level
monitoring for business services, however, requires more work. Fortunately, the message flow
for WSRP services introduces very little overhead, and the mapping between proxy services and
producers, and between business services and producers, is simple to configure. Therefore, to
satisfy SLA requirements, it is often sufficient to monitor only the proxy services at the operation

Conf igur ing AquaLog ic Se rv ice Bus fo r WSRP

BEA AquaLogic Service Bus User Guide 6-9

level. For an example implementation, see “Operation-Level Monitoring Example” on
page 6-21.

Operation-Level Monitoring for Proxy Services
To configure operation-level monitoring for WSRP proxy services, create a proxy service for
each of the services implemented by the producer.

Simple producers require only two proxies—one for the Markup service and one for the
Description service.

Complex producers require these two proxies plus two additional proxy services for
Registration and Management.

These proxy services should be based on the standard WSRP WSDLs using SOAP bindings.
Only a single business service for the producer should be created, and it should be configured to
use "Any SOAP Service" instead of being based on a WSDL. The message flow between the
proxies and the business service should not modify the SOAP body in any way. However, just as
for all WSRP message flows, it must pass the request headers via HTTP from the client request
to the actual producer. Similarly, the response HTTP headers returned by the producer must be
copied back to the client in the message flow.

Operation-Level Monitoring for Business Services
If operation-level monitoring is required for producer business services, then individual business
services must be created for each of the Web services described in the producer's WSDL, and the
business services must be defined using the WSDL. There is a one-to-one mapping between the
proxy services and the business services—a simple, unconditional routing node is sufficient in
the message flow.

For the operations to be counted correctly, AquaLogic Service Bus must be told which operation
to use. Normally, the administrator would do this by selecting one of the operations from a
drop-down menu when the business service is selected for the Route action. However, the
operation specified by the client message is not the same for all messages, so a single, hard-coded
value will not work here. The administrator must ensure that the business service uses the same
operation as the proxy service. While this could be achieved by specifying a Routing Table action
that selects the case using the $operation variable, it is a very tedious approach because the
WSRP standard defines 14 operations across all WSRP services, and each would require a Route
action with transformations to propagate the transport headers.

Fortunately, there is a more effective alternative. When routing to the business service, rather
than selecting the operation from the drop-down menu, an administrator should use another

In te rope rab i l i t y w i th Web Se rv ices fo r Remote Por t l e ts (WSRP)

6-10 BEA AquaLogic Service Bus User Guide

transformation in the request actions to insert the value of
$inbound/ctx:service/ctx:operation into $outbound/ctx:service. With this
transformation, the operation for the business service is dynamically set to the same value as was
specified for the proxy service, and AquaLogic Service Bus will correctly count and monitor all
operations of the service.

Load Balancing and Failover
AquaLogic Service Bus allows business services to define multiple endpoints that all provide the
same Web service. When multiple endpoints are defined, AquaLogic Service Bus can
automatically load balance requests across endpoints, and it can automatically fail over requests
when an endpoint is inaccessible. However, WSRP imposes some limitations on the use of these
features.

Portlets are a means of surfacing a user interface to some application. Therefore, portlets typically
have session data associated with them. To preserve session data, requests to the portlet must be
directed to the same server (or cluster) that serviced the original request. This requirement makes
load balancing via AquaLogic Service Bus inappropriate. Multiple endpoints in a business
service will usually target different servers or cluster. Because there is no communication among
servers that are in separate clusters, there is no way to preserve the session. Therefore, if multiple
endpoints are defined for a WSRP business service, then the load balancing algorithm must be
set to "none".

Multiple endpoints can be used to provide redundancy in certain circumstances in the event that
one of the endpoints is unavailable. The WSRP service is still available via a secondary endpoint.
However, any session data that existed at the time the first endpoint failed will not be available
on other endpoints.

This failover configuration is an option only for simple producers (see “WSRP WSDLs” on
page 6-4), not for complex produces. Complex producers require that their consumers first
register with the producer before sending service requests. The producer returns a registration
handle that the consumer must include with each request to that producer. In the case where a
business service defines multiple endpoints, each endpoint requires its own registration handle.

AquaLogic Service Bus is, however, stateless across requests—it does not maintain a mapping
of the correct handle to send to a particular endpoint. In fact, it would only send the registration
request to a single endpoint, so the consumer would be registered with only that one producer. If
that one producer crashed, then AquaLogic Service Bus would route a service request to another
endpoint defined for that business service, but the consumer would never have registered with
that new producer, and the request would fail with an "InvalidRegistration" fault.

WSRP In te rope rab i l i t y Example

BEA AquaLogic Service Bus User Guide 6-11

The management of registration handles therefore requires an application outside of AquaLogic
Service Bus to maintain this state data. Error handling could be challenging to implement.
Therefore, the registration requirement precludes defining multiple endpoints for complex
producers. Because simple producers do not require or support the Registration service, a failover
configuration that defines multiple endpoints in the business service is possible, although session
data is lost on failover.

WSRP Interoperability Example
This section describes a WSRP interoperability example. It contains the following topics:

Example Prerequisites

Example Projects and Folders

Producer-Level Monitoring Example

Operation-Level Monitoring Example

Example Prerequisites
The WSRP interoperability example assumes the following components and configuration:

WebLogic Platform 8.1 SP4

AquaLogic Service Bus 2.0

Sample Platform domain configured at platform:7001

AquaLogic Service Bus domain configured at alsb:7001

Sample Portal application consumer

Sample producer

For an AquaLogic Service Bus configuration that supports the configuration defined in this
example, see the AquaLogic Service Bus/WSRP code sample, available from the AquaLogic
Service Bus code samples page on BEA dev2dev:

https://codesamples.projects.dev2dev.bea.com/

https://codesamples.projects.dev2dev.bea.com/

In te rope rab i l i t y w i th Web Se rv ices fo r Remote Por t l e ts (WSRP)

6-12 BEA AquaLogic Service Bus User Guide

Example Projects and Folders
This example includes separate configurations for two producers. Although the actual producer
is the same for both examples, from the consumer's point of view, the producers are different.

The structure of the sample is divided into three projects—one containing common resources, and
two containing resources for two example producers.

Producer-Level Monitoring Example
The basic configuration example (in the producerExample folder) is the easiest configuration
to implement. This configuration supports the monitoring of a producer in the aggregate (see
“Producer-Level Monitoring” on page 6-8), but it does not consider the constituent services or
operations.

Implementing this producer-level monitoring configuration involves:

creating one business service and one proxy service to retrieve the WSDL from the
producer

creating one business service and one proxy service to invoke the producer services

The rest of this section describes the tasks required to implement this producer-level monitoring
configuration.

Step 1: Retrieve the WSDL from the Producer
To configure producer-level monitoring, the first step is to create the resources needed to retrieve
the producer's WSDL and return it to the consumer. Because the WSDL contains the endpoints
of the producer's services, it is necessary to transform them to hide the IP address and port of the

Table 6-3 Projects in the WSRP Interoperability Examples

Folder Description

wsrp Contains common resources that are not specific to any producer.

producerExample Basic example that is the easiest to configure. Folder contains
producer-specified resources. See “Producer-Level Monitoring Example”
on page 6-12.

operationExample Full example supports the most fine-grained producer monitoring. Folder
contains producer-specified resources. See “Operation-Level Monitoring
Example” on page 6-21.

WSRP In te rope rab i l i t y Example

BEA AquaLogic Service Bus User Guide 6-13

actual server. Instead, the addresses must refer to the AquaLogic Service Bus server, and the
URIs must match the URIs that the proxy service defines for this producer.

Step 1.1: Create a Business Service
Create a business service to obtain the WSDL from the producer. This resource is specific to the
producer, so it must be created in the producerExample project. The following table describes
the properties of the business service.

Step 1.2: Create an XQuery Expression to Construct URLs
All endpoint addresses in the producer's WSDL must be transformed to reflect the AquaLogic
Service Bus server address and the proxy service URI values. Because each producer WSDL can
have four or more ports defined, it is convenient to create an XQuery expression to simplify the
construction of the endpoint locations. The XQuery expression accepts the following three string
variables as input and concatenates them together to form a SOAP address element:

base URL for the AquaLogic Service Bus server

name to identify the producer

extension used to differentiate ports for a producer

Table 6-4 Business Service Configuration Properties

Name Value Comments

Service Name wsdlSvc Any name is allowed.

Service Type Any XML Service Consumers usually retrieve the WSDL
from the producer using an HTTP GET
request. Only XML services support
GET.

Protocol HTTP Or HTTPS

Load Balancing Algorithm none none is preferable.

Endpoint URI http://platform:7001/
producer/producer?WSD
L

Although multiple endpoints may be
specified for retrieving the WSDL,
doing so is of limited benefit.

HTTP Request Method GET

In te rope rab i l i t y w i th Web Se rv ices fo r Remote Por t l e ts (WSRP)

6-14 BEA AquaLogic Service Bus User Guide

The following table shows the query definition in the wsrp project.

Step 1.3: Create a No-Op Proxy Service
A subsequent configuration task (see “Step 1.4: Create a Common Proxy Service” on page 6-14)
requires a service that does nothing. To create this service, define a new proxy service in the wsrp
project folder with the resource name nullSvc. Accept all of the defaults for this service.
Configuring this proxy service creates a message flow for the service of an echo node only, which
is all that is required for this example.

Step 1.4: Create a Common Proxy Service
Create a proxy service used by consumers to get WSDLs from producers. This proxy service is
appropriate for any producer configuration modeled on this basic sample. The example described
in this section is only a suggestion—a different approach might better suit the specific
requirements of a given implementation. Because this proxy service is not specific to a single
producer, it should be created in the wsrp project folder.

The approach used in this step requires the administrator to assign each producer a name that is
included in part of the URL to retrieve the WSDL. The message flow for the proxy service will
extract the name from the URL, use it to locate the business service specific to that producer,
obtain the WSDL, and then transform the WSDL to rewrite the endpoints to AquaLogic Service
Bus. The proxy service endpoint URI is configured as /producerWSDL, and the URL that
consumers use to obtain a WSDL is:

http://alsb:7001/producerWSDL/producerName

where producerName is the name assigned to the producer by the administrator. In this example,
the producer name is producerExample.

Table 6-5 XQuery Definition in the wsrp Project

Name Value

Resource Name wsrp/addr

XQuery declare variable $baseURL external;

declare variable $name external;

declare variable $svc external;

declare namespace
soap="http://schemas.xmlsoap.org/wsdl/soap/";

<soap:address location="{concat($baseURL, $name, $svc)}"/>

WSRP In te rope rab i l i t y Example

BEA AquaLogic Service Bus User Guide 6-15

The following table describes how the proxy service is configured:

The message flow for this proxy service consists of a pipeline pair and a route node. The request
side of the pipeline pair consists of a single stage whose job is to extract the producer name from
the URL and assign it to a context variable. The action is:

Assign $inbound/ctx:transport/ctx:request/http:relative-URI to
variable producerName

The response side of the message flow is a stage where all of the transformations are performed.
Before executing the Replace Actions to transform the WSDL, assign the base URL of the
AquaLogic Service Bus server to a context variable to avoid specifying it on every
transformation:

Assign "http://alsb:7001/" to variable nonSecureBaseURL

Because a producer can implement four ports, the proxy service must transform each port. If the
producer does not implement a particular port, the XQuery transformation simply does nothing.
Because a single endpoint will be defined to handle all WSRP traffic for this producer, the
Replace Action uses the addr XQuery resource created earlier (see “Step 1.2: Create an XQuery
Expression to Construct URLs” on page 6-13) to transform the endpoint to the value:

Table 6-6 Proxy Service Configuration Properties

Property Name Value Comments

Service Name producerWSDL Any name is allowed.

Service Type Any XML Service

Protocol HTTP

Endpoint URI /producerWSDL

Table 6-7 Variable Mapping (wsrp/addr)

Property Setting

name: $producerName

svc: ""

BaseURL: $nonSecureBaseURL

In te rope rab i l i t y w i th Web Se rv ices fo r Remote Por t l e ts (WSRP)

6-16 BEA AquaLogic Service Bus User Guide

The four Replace Actions are defined as shown in the following code listing. The value of name
is replaced with the binding names from the table.

Replace
./wsdl:definitions/wsdl:service/wsdl:port[@binding="name"]/soap:addr
ess[starts-with(attribute::location,"http:")]in variable body with

xqTransform(…)

Replace entire node
name
urn:WSRP_v1_Markup_Binding_SOAP
urn:WSRP_v1_ServiceDescription_Binding_SOAP
urn:WSRP_v1_PortletManagement_Binding_SOAP
urn:WSRP_v1_Registration_Binding_SOAP

For the first Replace Action, the following User Namespace definitions must be added:

Note: Producers created by BEA tools implement an extension service
(urn:WLP_WSRP_v1_Markup_Ext_Binding_SOAP). This port is not used in this
example. It is harmless to leave its endpoint unmodified.

The route node of this message flow consists of a routing table that selects the case based on
$producerName. For each known producer (this example uses only one producer named
producerExample), add cases so that each case routes to the correct business service to retrieve
the WSDL if the name matches. This example uses the following directive:

= "producerExample" Route to wsdlSvc

To handle cases in which an unknown producer name is given, add a Default Case that routes to
the no-op service (defined in “Step 1.3: Create a No-Op Proxy Service” on page 6-14):

Default Route to nullSvc

In this example, return an HTTP 404 status code by adding these response actions to the default
case:

Insert <http:http-response-code>404</http:http-response-code> as last

child of ./ctx:transport/ctx:response in variable inbound
Reply With Failure

Table 6-8 User Namespace Definitions on Replace Action

Prefix Namespace

wsdl http://schemas.xmlsoap.org/wsdl/

soap http://schemas.xmlsoap.org/wsdl/soap/

WSRP In te rope rab i l i t y Example

BEA AquaLogic Service Bus User Guide 6-17

Step 2: Configure WSRP Service Processing
After the resources needed to retrieve the producer's WSDL have been created, create the
configuration resources to handle normal WSRP service requests via AquaLogic Service Bus.
The easiest configuration involves creating a single proxy service and a single business service,
and then linking them via a message flow that propagates the transport headers that WSRP
requires.

Step 2.1: Create the Business Service
The minimal business service required for WSRP is not based on a WSDL—instead, it is created
to accept any SOAP message. This approach simplifies configuration and allows a single
business process to handle all port types used by WSRP. The trade-off with this approach is that
it limits monitoring capabilities. Configure the business service with the following settings:

Step 2.2: Create the Proxy Service
The most convenient way to define the proxy service is to create it from the existing business
service defined in the previous step. This creates a proxy service with the correct type ("Any
SOAP Service", the same type configured in the business service) and also constructs the basic
message flow that unconditionally routes messages to the proper business service. The message
flow must be edited in a subsequent step. Configure the proxy service using the following
settings.

Table 6-9 Business Service Configuration Settings

Property Name Value Comments

Service Name producerSvc Any name is allowed.

Service Type Any SOAP Service

Protocol HTTP Or HTTPS if the producer was created with
secure="true".

Load Balancing
Algorithm

none Must be none, or session information will be
lost across requests if multiple endpoints are
defined.

Endpoint URI http://platform:7001
/producer/producer

Multiple endpoints may be defined for simple
producers only. If multiple endpoints are
defined for complex producers, Invalid
Registration faults will occur.

In te rope rab i l i t y w i th Web Se rv ices fo r Remote Por t l e ts (WSRP)

6-18 BEA AquaLogic Service Bus User Guide

Step 2.3: Edit the Message Flow
WSRP relies on data conveyed in the transport headers to function properly. In particular,
producers will return to consumers any session cookies in the response headers that they expect
consumers to supply in subsequent requests. Similarly, producers expect consumers to provide
the requested operation in the SOAPAction request header.

By default, AquaLogic Service Bus does not copy transport headers from the inbound request to
the outbound request, or from the outbound response to the inbound response. The message flow
must therefore propagate the required headers both in and out of the business service. Because
these transformations are required for every WSRP service, it is convenient to define two
common XQuery resources—one for request headers and one for response headers—that extract
the correct headers.

For request headers, use the following query.

Table 6-10 Proxy Service Configuration Settings

Name Value Comments

Service Name proxySvc Any name is allowed.

Service Type Any SOAP Service

Protocol HTTP Or HTTPS, if desired. The value does not need to
match the secure mode of the producer, but it does
need to match what is returned in the endpoints in the
WSDL. This example uses HTTP.

Endpoint URI /producerExample Any value may be used, but it must match the location
return in the WSDL.

Operation Selection
Algorithm

SOAP Body Type Can also use the SOAPAction from the transport
header.

WSRP In te rope rab i l i t y Example

BEA AquaLogic Service Bus User Guide 6-19

The rqstHeaders query extracts all transport headers (except Content-Length) from the $in
variable. AquaLogic Service Bus can sometimes reformat the message body so that its length no
longer exactly matches the request message. Copying the length from the original request can
result in transport errors if the body was modified (such as reformatted).

To copy the inbound request headers to the outbound business service, add the following Replace
request action to the message flow:

Replace ./ctx:transport/ctx:request/tp:headers in variable outbound

with xqTransform(…)
Replace node contents
Variable Mapping (wsrp/rqstHeaders):
in:$inbound

Similar to the request side, the response side defines a common XQuery resource to extract all
but the Content-Length header from the response returned from the producer.

For response headers, use the following query.

Table 6-11 Request Header Query

Name Value

Resource Name wsrp/rqstHeaders

XQuery declare namespace ctx="http://www.bea.com/wli/sb/context";

declare namespace
tp="http://www.bea.com/wli/sb/transports";

declare variable $in external;

$in/ctx:transport/ctx:request/tp:headers/child::*[local-n
ame()!="Content-Length"]

In te rope rab i l i t y w i th Web Se rv ices fo r Remote Por t l e ts (WSRP)

6-20 BEA AquaLogic Service Bus User Guide

The following Replace response action in the route node propagates the required headers:
Replace ./ctx:transport/ctx:response/tp:headers in variable inbound

with xqTransform(…)
Replace node contents
Variable Mapping (wsrp/rspncHeaders):
out:$outbound

Step 3: Test the Configuration
After completing the simple configuration for the producer-level example, activate the changes
made in the session. To test the configuration:

1. Retrieve the WSDL from a regular browser window by entering the following URL:

http://alsb:7001/producerWSDL/producerExample

to get the WSDL for the sample producer.

2. Verify that all of the endpoint URLs (except for the BEA extension service) have been
modified to the AquaLogic Service Bus IP address, port, and correct proxy service for the
sample.

3. Create a remote portlet in a Portal consumer application, specifying this URL as the address
of the WSDL for the producer.

Use either the WebLogic Workshop or Portal Administration Tool to create the remote
portlet. Except for entering a different URL to retrieve the WSDL, the steps to create this
portlet are no different from those used to create the portlet not proxied by AquaLogic
Service Bus.

Table 6-12 Response Header Query

Name Value

Resource Name wsrp/rspncHeaders

XQuery declare namespace
ctx="http://www.bea.com/wli/sb/context";

declare namespace
tp="http://www.bea.com/wli/sb/transports";

declare variable $out external;

$out/ctx:transport/ctx:response/tp:headers/child::*[loca
l-name()!="Content-Length"]

WSRP In te rope rab i l i t y Example

BEA AquaLogic Service Bus User Guide 6-21

4. After the consumer portal is complete, run the application.

When configuring AquaLogic Service Bus, monitoring of any of the components has not yet been
explicitly enabled. The procedure to enable monitoring is no different for WSRP services than it
is for any other Web service in AquaLogic Service Bus. For each component of interest, select
(check) the Enable Monitoring box on the Manage Monitoring page and set the aggregation
interval. Consider setting up any alert rules, if applicable. After these changes have been
activated, the configuration can be monitored from the dashboard facility of the AquaLogic
Service Bus console.

Operation-Level Monitoring Example
The full monitoring configuration example (in the operationExample folder) involves
configuring AquaLogic Service Bus to monitor all services and operations of a producer (see
“Operation-Level Monitoring” on page 6-8). All of the concepts described for the producer-level
monitoring example (see “Producer-Level Monitoring Example” on page 6-12) still apply to this
example; to simplify configuration tasks, certain elements of that configuration will be copied.
The operation-level monitoring example uses the same producer application as the producer-level
monitoring example.

The fundamental difference between this example and the producer-level monitoring example is
that the operation-level monitoring configuration uses both business services and proxy services
that are based on the WSDLs defined by the WSRP standard. This example defines the additional
resources to describe the WSRP services and extend the message flows to support monitoring at
the operation level.

The rest of this section describes the tasks required to implement this operation-level monitoring
configuration.

Step 1: Define WSDL Resources
Import all of the WSRP WSDL definition files, along with the XML schema files on which the
definitions depend. All of the files are available as part of the sample code associated with this
example, but the standard resource locations are described in the following table.

In te rope rab i l i t y w i th Web Se rv ices fo r Remote Por t l e ts (WSRP)

6-22 BEA AquaLogic Service Bus User Guide

Producers generated by BEA Portal extend the standard WSDLs by defining an additional port
that allows messages to be sent using MIME attachments. Describing this extension is beyond the
scope of this example, but it is still necessary to define these extension resources if the producer
WSDL references them. In this example, an optional task is to create a resource for the WSDL
used by the producer. After creating these WSDL and XML Schema resources, edit the references
in each resource to resolve the dependencies on other resources.

Step 2: Create Business Services
In the producer-level monitoring example, a single business service was created to process all
messages for the producer, an approach that worked because the business service was not
associated with a WSDL.

This operation-level monitoring example uses the WSDL bindings for each port type
implemented by the producer. Because a business service can be associated with only one WSDL
port or binding, a separate business service resource must be created for each. A simple producer
implements only the required Markup and Service Description interfaces, while a complex
producer also implements the Management and Registration interfaces. The services are created
identically (except for the service name and types), as shown in the following table.

Table 6-13 WSDL Resource Definitions

Resource Name Location

wsrp_v1_bindings http://www.oasis-open.org/committees/wsrp/specificati
ons/version1/wsrp_v1_bindings.wsdl

wsrp_v1_interfaces http://www.oasis-open.org/committees/wsrp/specificati
ons/version1/wsrp_v1_interfaces.wsdl

wsrp_v1_types http://www.oasis-open.org/committees/wsrp/specificati
ons/version1/wsrp_v1_types.xsd

wlp_wsrp_v1_bindings $BEA_HOME/weblogic81/portal/lib/wsrp/wsrp-common.jar

wlp_wsrp_v1_types $BEA_HOME/weblogic81/portal/lib/wsrp/wsrp-common.jar

xml http://www.w3.org/2001/xml.xsd

wsrpWSDL http://platform:7001/producer/producer?WSDL

WSRP In te rope rab i l i t y Example

BEA AquaLogic Service Bus User Guide 6-23

For each service, minimally set the attributes listed in the following table.

Step 3: Create the Proxy Services
Proxy services in this operation-level monitoring example are very similar to the proxy services
created for the producer-level monitoring example, with some important differences:

Just as the business services are based on a WSDL, the proxy services must be based on
the same WSDL.

Table 6-14 Business Service Configuration

Service Name Service Type

base WSDL port: operationExample/wsrpWSDL,
port="WSRPBaseService"

desc WSDL port: operationExample/wsrpWSDL,
port="WSRPServiceDescriptionService"

mgmt WSDL port: operationExample/wsrpWSDL,
port="WSRPPortletManagementService"

reg WSDL port: operationExample/wsrpWSDL,
port="WSRPRegistrationService"

Table 6-15 Service Attributes for Business Services

Name Value Comments

Protocol HTTP Or HTTPS if the producer was
created with secure="true".

Load Balancing
Algorithm

none Must be none, or session data will be
lost across requests if multiple
endpoints are defined.

Endpoint URI http://platform:7001/producer/
producer

Multiple endpoints may be defined
for simple producers only. If multiple
endpoints are defined for complex
producers, Invalid Registration faults
will occur.

In te rope rab i l i t y w i th Web Se rv ices fo r Remote Por t l e ts (WSRP)

6-24 BEA AquaLogic Service Bus User Guide

One proxy service is created for each business service, but each proxy service must have a
different URI.

The configuration must specify which operation is being invoked (described later in this
section).

To create the proxy services:

1. Creating the proxy service for the base WSRP service.

As in the earlier example, create the proxy service using the existing
operationExample/base business service as the model. This will automatically base the
proxy service on the same WSDL binding as the business service, and it will create a
message flow with an unconditional route action to the business service. For the Endpoint
URI, anything may be used, such as the producer name with the port type abbreviation
appended to it (for example, /operationExampleBase).

2. Edit the message flow to add the same transformations that were added for the producer-level
monitoring example (see “Step 2.3: Edit the Message Flow” on page 6-18) to copy the request
transport headers and response transport headers between the consumer and producer.

3. Specify which operation to invoke.

Normally, in a Route Action that routes to a WSDL-based service, an operation to invoke
(by selecting the correct operation from the drop-down menu) is specified. However, each
WSRP port implements several operations, and so the configuration requires a routing
table with a case for each operation. Each case requires the same transformations to
propagate the transport headers.

Creating all of the transformations in this way might prove to be quite tedious. Fortunately,
there is a more convenient approach. Instead of using the drop-down menu, use another
transformation to copy the operation from the proxy service to the business service.
Configure this transformation by adding an Insert Action to the Request Actions of the
message flow:

Insert $inbound/ctx:service/ctx:operation as last child of ./ctx:service
in variable outbound

The proxy services for the other business services can be created by repeating these steps,
although a shortcut can be used to avoid recreating all of the transformations manually. For
example, to create the proxy service for the Service Description service:

1. Create a new proxy service using the existing operationExample/base proxy service just
created as the model. Following this example, use /operationExampleDesc for the
Endpoint URI.

WSRP In te rope rab i l i t y Example

BEA AquaLogic Service Bus User Guide 6-25

2. On the Summary Page, click the edit link for General Configuration. The WSDL binding was
created using the Base port, so correct that here to refer to the
WSRPServiceDescriptionService port.

3. Edit the message flow. The route action refers to the base business service. Correct this to
route to the desc service.

Step 4: Retrieve the WSDL from the Producer
Just as in the producer-level monitoring example, create a service that will retrieve the WSDL
from the producer and transform it to hide the actual producer endpoints. The resources created
are very similar to those created in the producer-level monitoring sample, but in this example the
proxies for each producer have a different URI. The rest of this section describes how to create
the resources to retrieve the producer WSDL.

Step 4.1: Create the Business Service
The business service used to obtain the producer WSDL for this example is identical to the
resource used in the producer-level monitoring example (see “Step 1.1: Create a Business
Service” on page 6-13).

Step 4.2: Create the Proxy Service
Creating a proxy service (named wsrp/getWSDL) using wsrp/producerWSDL (see “Step 1.4:
Create a Common Proxy Service” on page 6-14) as the model. Edit the stage of the Response
Pipeline to modify each Replace Action to make the transformation match the Endpoint URI
given to the proxies created earlier. In this example, the proxies were created using the producer
name with an abbreviated service type appended to it. The addr XQuery resource created earlier
(see “Step 1.2: Create an XQuery Expression to Construct URLs” on page 6-13) accepts an
extension argument to construct the URI location. Simply change that argument to the proper
value, as shown in the following table.

Table 6-16 Extension Settings to Construct the URI Location

If @binding is svc arg of addr is

urn:WSRP_v1_Markup_Binding_SOAP "Base"

urn:WSRP_v1_ServiceDescription_Binding_SOAP "Desc"

urn:WSRP_v1_PortletManagement_Binding_SOAP "Mgmt"

urn:WSRP_v1_Registration_Binding_SOAP "Reg"

In te rope rab i l i t y w i th Web Se rv ices fo r Remote Por t l e ts (WSRP)

6-26 BEA AquaLogic Service Bus User Guide

Finally, edit the Routing Table in the route node to make the cases correspond to the producers
known to the system.

Step 5: Test the Configuration
After completing the configuration, test it to verify that it works correctly. The testing steps for
testing the configuration are similar to the producer-level monitoring example (see “Step 3: Test
the Configuration” on page 6-20)—the only difference is with the URL used to retrieve the
WSDL from the producer:

http://alsb:7001/getWSDL/operationExample

1. Retrieve the WSDL from a regular browser window by entering the following URL:

http://alsb:7001/getWSDL/operationExample

2. Verify that all of the endpoint WSRP endpoint URLs (except for the BEA extension service)
have been changed to correctly refer to the proxy service values on the AquaLogic Service
Bus server.

3. Create a remote portlet in a Portal consumer application, specifying this URL as the address
of the WSDL for the producer.

Use either the WebLogic Workshop or Portal Administration Tool to create the remote
portlet. Except for entering a different URL to retrieve the WSDL, the steps to create this
portlet are no different from those used to create the portlet not proxied by AquaLogic
Service Bus.

4. After the consumer portal is complete, run the application.

5. Enable monitoring on the AquaLogic Service Bus components of interest.

6. Use the AquaLogic Service Bus Console to drill down to see message counts and performance
statistics on all WSRP services and operations handled by the producer.

	Introduction
	Summary of Interoperability
	FTP and Email Servers
	Security Providers
	Web Service Standards
	HTTP Standards
	XPath and XQuery
	JMS
	Databases
	Platform Interoperability

	Interoperability with BEA Tuxedo
	Introduction
	Using BEA Tuxedo Services from AquaLogic Service Bus (Outbound Example)
	Implementation Overview
	Before You Begin
	Configuring WebLogic Tuxedo Connector and the Tuxedo Queuing Bridge
	Create a New WTC Server
	Create a Local Access Point
	Create a Remote Access Point
	Create a WTC Imported Service
	Create Field Table Classes (if Required)
	Create a Queuing Bridge
	Create a Redirection
	Activate Changes

	Configuring a New Business Service
	Add a New Project
	Add a Business Service
	Add a Proxy Service
	Configure the Proxy Service

	Testing Your Configuration

	Using AquaLogic Service Bus Services from BEA Tuxedo (Inbound Example)
	Implementation Overview
	Before You Begin
	Configuring the Sample EJB ToQSBean
	Edit the ejb-jar.xml File
	Edit the weblogic-ejb-jar.xml File

	Adding Field Classes to EJB’s JAR File
	Building and Deploying the EJB
	Configuring WebLogic Tuxedo Connector
	Create a New WTC Server
	Create a Local Access Point
	Create a Remote Access Point
	Create a WTC Export Service

	Adding and Configuring a Proxy Service
	Add a New Project
	Add a Proxy Service
	Configure the Proxy Service

	Testing Your Configuration

	Interoperability with JMS
	Asynchronous Request/Response
	SOAP/JMS Transport
	Naming Guidelines for WebLogic Servers, JMS Servers, and Domains
	Specifying the JMS Type for Services
	AquaLogic Service Bus and MQ/JMS Interoperability
	WSDL-Defined SOAP Fault Messages

	Interoperability with WebSphere MQ
	Using WebSphere MQ in AquaLogic Service Bus
	Messaging Types
	Non-Persistent Messaging
	Non-XA Persistent Messaging
	XA Messaging

	Tuning WebSphere MQ

	Interoperability with WebLogic Platform
	AquaLogic Service Bus Interoperability with WebLogic 8.1 Domains
	Guidelines for Naming WebLogic Domains and Servers

	Interoperability with Web Services for Remote Portlets (WSRP)
	WSRP Producers and Consumers
	Architecture
	Basic WSRP Architecture
	Enhanced WSRP Architecture with AquaLogic Service Bus

	WSRP Design Concepts
	WSRP WSDLs
	WSRP Messages

	Configuring AquaLogic Service Bus for WSRP
	Getting the Producer WSDL
	Routing Messages Between the Consumer and Producer
	Choosing the Monitoring Level
	Producer-Level Monitoring
	Operation-Level Monitoring

	Load Balancing and Failover

	WSRP Interoperability Example
	Example Prerequisites
	Example Projects and Folders
	Producer-Level Monitoring Example
	Step 1: Retrieve the WSDL from the Producer
	Step 2: Configure WSRP Service Processing
	Step 3: Test the Configuration

	Operation-Level Monitoring Example
	Step 1: Define WSDL Resources
	Step 2: Create Business Services
	Step 3: Create the Proxy Services
	Step 4: Retrieve the WSDL from the Producer
	Step 5: Test the Configuration

