
BEAAquaLogic
Service Bus®

Transport SDK
User Guide

Version 2.6
Document Revised: January 2007

AquaLogic Service Bus Transport SDK User Guide iii

Contents

1. Introduction
Purpose of this Guide . 1-1

Audience for this Guide . 1-1

Overview of this Guide . 1-2

Related Information . 1-2

2. Design Considerations
What is a Transport Provider? . 2-1

What is the Transport SDK? . 2-4

Purpose of the SDK . 2-4

Transport SDK Features . 2-4

Transport Provider Modes . 2-6

Related Features . 2-6

Do You Need to Develop a Custom Transport Provider? . 2-7

When to Use the Transport SDK . 2-7

When Alternative Approaches are Recommended. 2-8

Transport Provider Components . 2-9

Overview. 2-9

Design-Time Component . 2-10

Runtime Component . 2-12

The Transaction Model . 2-13

Overview of Transport Endpoint Properties . 2-13

iv AquaLogic Service Bus Transport SDK User Guide

Support for Synchronous Transactions. 2-15

The Security Model . 2-16

Inbound Request Authentication . 2-17

Outbound Request Authentication . 2-18

Link-Level or Connection-Level Credentials. 2-20

Uniform Access Control to Proxy Services . 2-20

Identity Propagation and Credential Mapping . 2-21

The Threading Model . 2-21

Overview . 2-21

Inbound Request Message Thread . 2-22

Outbound Response Message Thread . 2-23

Support for Asynchrony . 2-23

Publish and Service Callout Threading . 2-24

Designing for Message Content. 2-25

Overview . 2-25

Sources and Transformers . 2-25

Sources and the MessageContext Object . 2-26

Built-In Transformations . 2-29

3. Developing a Transport Provider
Development Roadmap . 3-1

Planning . 3-2

Developing . 3-2

Packaging and Deploying. 3-2

Before You Begin . 3-3

Basic Development Steps . 3-3

1. Review the Transport Framework Components . 3-4

2. Create a Directory Structure for Your Transport Project . 3-5

AquaLogic Service Bus Transport SDK User Guide v

3. Create an XML Schema File for Transport-Specific Artifacts 3-5

4. Define Transport-Specific Artifacts . 3-6

5. Define the XMLBean TransportProviderConfiguration . 3-11

6. Implement the Transport Provider User Interface . 3-11

7. Implement the Runtime Interfaces . 3-13

8. Deploy the Transport Provider . 3-14

Important Development Topics . 3-14

Handling Messages . 3-14

Transforming Messages . 3-18

Working with TransportOptions . 3-19

Handling Errors. 3-21

Publishing Proxy Services to a UDDI Registry . 3-24

When to Implement TransportWLSArtifactDeployer . 3-26

4. Deploying a Transport Provider
Packaging the Transport Provider . 4-1

Deploying the Transport Provider . 4-2

Undeploying a Transport Provider. 4-3

Deploying to a Cluster . 4-3

5. Transport SDK Interfaces and Classes
Introduction . 5-1

Schema-Generated Interfaces . 5-1

General Classes and Interfaces . 5-2

Summary of General Classes . 5-3

Summary of General Interfaces . 5-3

Source and Transformer Classes and Interfaces . 5-4

Summary of Source and Transformer Interfaces . 5-5

vi AquaLogic Service Bus Transport SDK User Guide

Summary of Source and Transformer Classes . 5-5

Metadata and Header Representation for Request and Response Messages. 5-7

Runtime Representation of Message Contents. 5-7

Interfaces . 5-8

User Interface Configuration . 5-8

Overview . 5-8

Summary of UI Interfaces . 5-9

Summary of UI Classes . 5-9

6. Sample Socket Transport Provider
Sample Socket Transport Provider Design . 6-1

Concepts Illustrated by the Sample . 6-2

Basic Architecture of the Sample . 6-2

Configuration Properties . 6-3

Sample Location and Directory Structure . 6-5

Building and Deploying the Sample . 6-6

Setting Up the Environment . 6-6

Building the Transport . 6-6

Deploying the Sample Transport Provider . 6-7

Start and Test the Socket Server . 6-7

Start the Socket Server . 6-7

Test the Socket Transport . 6-8

Configuring the Socket Transport Sample . 6-8

Create a New Project . 6-9

Create a Business Service. 6-9

Create a Proxy Service . 6-11

Edit the Pipeline . 6-11

Testing the Socket Transport Provider . 6-13

AquaLogic Service Bus Transport SDK User Guide vii

A. UML Sequence Diagrams
AquaLogic Service Bus Runtime Inbound Messages .A-1

AquaLogic Service Bus Runtime Outbound Messages .A-2

Design Time Service Registration .A-4

viii AquaLogic Service Bus Transport SDK User Guide

AquaLogic Service Bus Transport SDK User Guide 1-1

C H A P T E R 1

Introduction

This chapter describes the purpose of this guide, its intended audience, and general organization.
The chapter includes these topics:

Purpose of this Guide

Audience for this Guide

Overview of this Guide

Related Information

Purpose of this Guide
This guide provides developers with the information needed to design, create, and deploy a new
custom transport provider.

Audience for this Guide
This guide is written for experienced Java developers who want to add a new custom transport
provider to AquaLogic Service Bus. It is assumed that you have solid knowledge of Web services
technologies, AquaLogic Service Bus, the transport protocol that you want to use with
AquaLogic Service Bus, and WebLogic Server.

In t roduct ion

1-2 AquaLogic Service Bus Transport SDK User Guide

Overview of this Guide
This guide provides developers with the information needed to design, create, and deploy a new
custom transport provider. This guide is organized as follows:

Chapter 2, “Design Considerations”

Describes transport provider concepts and functionality to help you get started. It is
important to review this chapter before developing a transport provider.

Chapter 3, “Developing a Transport Provider”

Explains the basic steps required to create a new custom transport provider as well as
advanced topics.

Chapter 4, “Deploying a Transport Provider”

Explains how to package and deploy a new transport provider.

Chapter 5, “Transport SDK Interfaces and Classes”

Summarizes each of the interfaces and classes provided by the Transport SDK.

Chapter 6, “Sample Socket Transport Provider”

Discusses the sample socket transport provider that is provided with AquaLogic Service
Bus. This sample includes public source code that you can examine and reuse.

Appendix A, “UML Sequence Diagrams”

Presents UML diagrams that help explain the flow of method calls through AquaLogic
Service Bus runtime.

Related Information
The complete set of AquaLogic Service Bus and WebLogic Server documentation is available on
edocs (http://edocs.bea.com). Specific documents that may be of interest to custom transport
provider developers include:

AquaLogic Service Bus Concepts and Architecture

AquaLogic Service Bus User Guide

Using the AquaLogic Service Bus Console

AquaLogic Service Bus Deployment Guide

Javadoc for AquaLogic Service Bus Classes

../javadoc/index.html
../consolehelp/index.html
../userguide/index.html
../concepts/index.html
http://edocs.bea.com/
../deploy/index.html

AquaLogic Service Bus Transport SDK User Guide 2-1

C H A P T E R 2

Design Considerations

Careful planning of development activities can greatly reduce the time and effort you spend
developing a custom transport provider. The following sections describe transport provider
concepts and functionality to help you get started:

What is a Transport Provider?

What is the Transport SDK?

Do You Need to Develop a Custom Transport Provider?

Transport Provider Components

The Transaction Model

The Security Model

The Threading Model

Designing for Message Content

What is a Transport Provider?
A transport provider implements the interfaces of the Transport SDK and provides a bridge
between AquaLogic Service Bus and mechanisms by which messages are sent or received. Such
mechanisms can include specific transport protocols, such as HTTP, as well as other entities, such
as a file or an e-mail message. A transport provider manages the life cycle and runtime behavior
of transport endpoints. An endpoint is a resource where messages originate or are targeted.

Des ign Cons ide ra t i ons

2-2 AquaLogic Service Bus Transport SDK User Guide

Figure 2-1 illustrates the basic flow of messages through AquaLogic Service Bus. A client sends
a message to AquaLogic Service Bus using a specific transport protocol. A transport provider
processes the inbound message, handling communication with the service client endpoint and
acting as the entry point for messages into AquaLogic Service Bus.

Figure 2-1 Message Flow Through AquaLogic Service Bus

The binding layer, also shown in Figure 2-1, packs and unpacks messages, handles message
security, and hands messages off to the AquaLogic Service Bus Pipeline.

Tip: For more information on AquaLogic Service Bus message brokering and the role of the
transport layer, see AquaLogic Service Bus Concepts and Architecture. For more detailed
sequence diagrams that describe the message flow through AquaLogic Service Bus, see
Appendix A, “UML Sequence Diagrams.”

By default, AquaLogic Service Bus includes transport providers that support several commonly
used transport protocols, such as HTTP, JMS, File, FTP, and others. These native providers let
you configure proxy and business services that require these common transport protocols. These
built-in providers are listed in Table 2-1.

../concepts/index.html

What i s a T ranspor t P rov ide r?

AquaLogic Service Bus Transport SDK User Guide 2-3

Tip: For more information using and configuring these native transport providers, see the
AquaLogic Service Bus User Guide.

Table 2-1 Transport Providers Installed with AquaLogic Service Bus

Transport Provider Description

E-mail Use the E-mail transport for sending and receiving e-mail messages.
Inbound messages are received via IMAP or POP3 and outbound
messages are sent via SMTP.

EJB Use the EJB transport provider in business services to access EJBs
potentially in other domains from AquaLogic Service Bus.
The EJB transport provider is a self-described transport as defined by the
Transport SDK and generates a WSDL to describe the service interface.
This transport provider cannot be used in a proxy to expose AquaLogic
Service Bus as an EJB.

File Use the File transport to receive file based messages or to write files from
the local file system.

FTP Use the FTP transport provider to communicate with an FTP server to get
or put an FTP file.

HTTP/HTTPS Use the HTTP or HTTPS transport provider to send and receive HTTP/S
messages.

JMS Use the JMS transport provider to send and receive JMS messages.

Local Use the Local transport provider with proxy services that are invoked by
other proxy services in the message flow.
In AquaLogic Service Bus there two categories of proxy services. One
category which are invoked directly by the clients, while the proxy
services of the second category are invoked by other proxy services in the
message flow. The proxy services of the second category use a new
transport called the Local transport.

Tuxedo Use the Tuxedo transport provider for secure, reliability, high
performance, bi-directional access to a Tuxedo domain from AquaLogic
Service Bus. With this transport provider, BEA AquaLogic Service Bus
and BEA Tuxedo can inter-operate to use the services each of them offer.

../userguide/index.html

Des ign Cons ide ra t i ons

2-4 AquaLogic Service Bus Transport SDK User Guide

What is the Transport SDK?
This section briefly describes the purpose and features of the Transport SDK. This section
includes these topics:

Purpose of the SDK

Transport SDK Features

Transport Provider Modes

Related Features

Purpose of the SDK
AquaLogic Service Bus processes messages independently of how they flow into or out of the
system. The Transport SDK provides a layer of abstraction between AquaLogic Service Bus and
components that deal with the flow of data in and out of AquaLogic Service Bus. This layer of
abstraction allows you to develop new transport providers to handle unique transport protocols.
For a list of the transport providers that are installed with AquaLogic Service Bus, see Table 2-1,
“Transport Providers Installed with AquaLogic Service Bus,” on page 2-3.

The SDK abstracts from the rest of AquaLogic Service Bus:

Handling specific transport bindings

Deploying service endpoints on the transport bindings. An endpoint is either capable of
transmitting or receiving a message.

Collecting monitoring information

Managing endpoints (such as performing suspend/resume operations and setting
connection properties)

Enforcing Service Level Agreement (SLA) behavior (such as timing out connections)

Transport SDK Features
This section describes the primary features of the Transport SDK.

Handling Inbound and Outbound Messages
A transport provider developed with the Transport SDK handles inbound and outbound messages
as follows:

What i s the T ranspor t SDK?

AquaLogic Service Bus Transport SDK User Guide 2-5

Inbound messages typically come into AquaLogic Service Bus from an outside source,
such as an HTTP client. The Transport SDK packages the payload and transport level
headers, if any, into a generic data structure. The Transport SDK then passes the message,
in its generic format, to the AquaLogic Service Bus pipeline.

Outbound messages originate from AquaLogic Service Bus business services and go to an
externally managed endpoint, such as a Web service or JMS queue. The Transport SDK
receives a generic data structure from the AquaLogic Service Bus pipeline, converts it to
the corresponding transport-specific headers and payload, and sends it out to an external
system.

The Transport SDK handles outbound and inbound messages independently. An inbound
message can be bound to one transport protocol and bound to a different transport protocol on the
outbound endpoint.

For more information on how messages flow through AquaLogic Service Bus, see the AquaLogic
Service Bus User Guide.

Deploying Transport-Related Artifacts
Certain transports include artifacts that need to be deployed to WLS server. For instance, a JMS
proxy is implemented as a message-driven bean. This artifact, an EAR file, must be deployed
when the new JMS proxy is registered. Similarly, the EJB transport provider employs an EAR
file that must be deployed when a new EJB business service is registered. Other kinds of artifacts
might require deployment, such as a JMS transport, which may create queues and topics as part
of the service registration. The SDK allows you to support these artifacts and lets you participate
in the WLS deployment cycle. If the deployment of one of these artifacts fails, the AquaLogic
Service Bus session is notified and the deployment is canceled. This feature of the SDK allows
for the atomic creation of services. If something fails, the session reverts to its previous state.

Note: To participate in WLS deployment cycle, the transport provider must implement the
TransportWLSArtifactDeployer interface. The primary benefit of this technique is
atomic WebLogic Server deployment, which can be rolled back if needed. For more
information on this interface, see “Summary of General Interfaces” on page 5-3 and see
“When to Implement TransportWLSArtifactDeployer” on page 3-26.

Processing Messages Asynchronously
Because the server has a limited number of threads to work with when processing messages,
asynchrony is important. This feature allows AquaLogic Service Bus to scale to handle large
numbers of messages. After a request is processed, the thread is released. When the business

../userguide/index.html
../userguide/index.html

Des ign Cons ide ra t i ons

2-6 AquaLogic Service Bus Transport SDK User Guide

service receives a response (or is finished with the request if it is a one-way message), it notifies
AquaLogic Service Bus asynchronously through a callback.

See also “Support for Synchronous Transactions” on page 2-15 and “The Threading Model” on
page 2-21.

Transport Provider Modes
With the Transport SDK, you can implement inbound property modes and outbound property
modes. These connection and endpoint modes are specified in the transport provider’s XML
Schema definition file. For more information on this file, see “3. Create an XML Schema File for
Transport-Specific Artifacts” on page 3-5. This schema is available to the AquaLogic Service
Bus Pipeline for filtering and routing purposes.

Related Features
This section lists related features that are provided by the transport manager. The transport
manager provides the main point of centralization for managing different transport providers,
endpoint registration, control, processing of inbound and outbound messages, and other
functions. These features do not require specific support by a transport provider.

Load Balancing
The Transport SDK supports load balancing and failover for outbound messages. Supported load
balancing options are:

None – For each outbound request, the transport provider cycles through the URIs in the
list in which they were entered and attempts to send a message to each URI until a
successful send is completed.

Round Robin – Similar to None, but in this case, the transport provider keeps track of the
last URI that was tried. Each time a message is sent, the provider starts from the last
position in the list.

Random – The transport provider tries random URIs from the list in which they were
entered.

Weighted Random – Each URI is associated with a weight. An algorithm is used to pick a
URI based on this weight.

Do You Need to Deve lop a Custom T ranspor t P rov ide r?

AquaLogic Service Bus Transport SDK User Guide 2-7

Monitoring and Metrics
The transport manager handles these monitoring metrics:

response-time (applies to inbound and outbound messages)

message-count (applies to inbound and outbound messages)

error-count (applies to inbound and outbound messages)

failover-count (applies to outbound messages only)

Do You Need to Develop a Custom Transport Provider?
This section explains the basic use cases for writing a custom transport provider. In some cases,
it is appropriate to chose an alternative approach. This section includes the following topics:

When to Use the Transport SDK

When Alternative Approaches are Recommended

When to Use the Transport SDK
One of the prime use cases for the Transport SDK is to support a specialized transport that you
already employ for communication between your internal applications. Such a transport may
have its own concept of setup handshake, header fields, metadata, or transport-level security.
Using the Transport SDK, you can create a transport implementation for AquaLogic Service Bus
that allows configuring individual endpoints, either inbound, outbound or both. With a custom
transport implementation, the metadata and header fields of the specialized transport can be
mapped to context variables available in a proxy service pipeline.

Use the Transport SDK when the transport provider needs to be seamlessly integrated into all
aspects of AquaLogic Service Bus for reliability, security, performance, management, user
interface, and the use of the UDDI registry.

Some cases where it is appropriate to use the Transport SDK to develop a custom transport
include:

Using a proprietary transport that requires custom interfaces and supports an organization’s
existing applications.

Using a CORBA or IIOP protocol for communicating with CORBA applications.

Using other legacy systems, such as IMS and Mainframe.

Des ign Cons ide ra t i ons

2-8 AquaLogic Service Bus Transport SDK User Guide

Using variations on existing transports, such as SFTP (Secure FTP) and the native IBM
WebSphere MQ API (instead of WebSphere MQ JMS).

Using industry-specific transports, such as LLP, AS3, and ACCORD.

Using raw sockets, perhaps with TEXT or XML messages. A sample implementation of
this type of transport is described in Chapter 6, “Sample Socket Transport Provider.”

Alternatively, you can use the Transport SDK to support a specialized protocol over one of the
existing transports provided with AquaLogic Service Bus. Examples of this could include
supporting:

Messages consisting of parsed or binary XML over HTTP.

WS-RM or other new Web service standards over HTTP.

Request-response messaging over JMS, but with a different response pattern than either of
the two patterns supported by the AquaLogic Service Bus JMS transport (for example, a
response queue defined in the message context).

When Alternative Approaches are Recommended
Creating a new AquaLogic Service Bus transport provider using the Transport SDK can be a
significant effort. The Transport SDK provides a rich, full featured environment so that a custom
transport has all of the usefulness and capabilities of the transports that come natively with
AquaLogic Service Bus. But such richness brings with it some complexity. For certain cases, you
might want to consider easier alternatives.

If you need an extension merely to support a different format message sent or received over an
existing protocol, it may be possible to use the existing transport and use a Java Callout to convert
the message. For example, suppose you have a specialized binary format (such as ASN.1 or a
serialized Java object) being sent over the standard JMS protocol. In this case, you might consider
defining the service using the standard JMS transport with the service type being a messaging
service with binary input/output messages. Then, if the contents of the message are needed in the
pipeline, a Java Callout action can be used to convert the message to or from XML. For
information on using Java Callouts, see “Extensibility Using Java Callouts and POJOs” in the
AquaLogic Service Bus User Guide.

Other cases where it is best not to use the Transport SDK to develop a custom transport provider
include:

When combining existing BEA solutions with AquaLogic Service Bus satisfies the
transport requirement: WLS, WLI, ALDSP, ALBPM, Tuxedo, Portal.

../userguide/pojo.html

Transpor t P rov ide r Components

AquaLogic Service Bus Transport SDK User Guide 2-9

When service enablement tools, like BEA Workshop, provide a simpler and more
standards-based mechanism to implement SOA practices.

When alternative connectivity solutions (certified with AquaLogic Service Bus) also
address the requirement. For example: iWay adapters and Cyclone B2B.

When EJBs can be used instead as a means to abstract some type of simple Java
functionality.

Transport Provider Components
This section presents UML diagrams that depict the runtime and design-time components of a
transport provider. This section includes these topics:

Overview

Design-Time Component

Runtime Component

Overview
In general, a custom transport provider consists of a design-time part and a runtime part. The
design-time part is concerned with registering endpoints with the transport provider. This
configuration behavior is provided by the implementation of the UI interfaces. The runtime part
implements the mechanism of sending and receiving messages.

When you develop a new custom transport provider, you need to implement a number of
interfaces provided by the SDK. This section includes UML diagrams that model the organization
of the design-time and runtime parts of the SDK.

Tip: In AquaLogic Service Bus, implementations of the TransportProvider interface represent
the central point for management of transport protocol-specific configuration and
runtime properties. A single instance of a TransportProvider object exists for every
supported protocol. For example, there are single instances of HTTP transport provider,
JMS transport provider, and others.

For more information, see Chapter 3, “Developing a Transport Provider” for a list of the required
interfaces. A summary of the interfaces and classes provided by the Transport SDK are discussed
in Chapter 5, “Transport SDK Interfaces and Classes.” Detailed descriptions are provided in
Javadoc for AquaLogic Service Bus Classes.

../javadoc/index.html

Des ign Cons ide ra t i ons

2-10 AquaLogic Service Bus Transport SDK User Guide

Design-Time Component
The design-time part of a custom transport provider consists of the user interface configuration.
This configuration is called by the AquaLogic Service Bus Console when a new business or
proxy service is being registered. Figure 2-2 shows a UML diagram that depicts the structure of
the design time part of a transport provider. Some of the interfaces described in the diagram
include:

TransportManager – A transport provider communicates with the transport manager
through this interface. The implementation is not public.

TransportProvider – Third parties must implement this interface. The TransportProvider
keeps track of TransportEndpoint objects. TransportProvider also manages the life cycle of
the endpoints. For example, you can suspend a transport endpoint, which is managed
through the TransportProvider interface.

TransportUIBinding – Helps the AquaLogic Service Bus Console render the transport
specific pages.

Transpor t P rov ide r Components

AquaLogic Service Bus Transport SDK User Guide 2-11

Figure 2-2 Design Time UML Diagram

Note: Each transport endpoint has a configuration that consists of some properties that are
generic to all endpoints of any transport provider, such as a URI, and some properties that
are specific to endpoints of that provider only. Figure 2-3 shows the relationship between
the shared endpoint configuration properties and transport provider specific
configuration properties. See “Overview of Transport Endpoint Properties” on page 2-13
for more information.

Des ign Cons ide ra t i ons

2-12 AquaLogic Service Bus Transport SDK User Guide

Figure 2-3 EndPointConfiguration Properties

Runtime Component
The runtime part of a custom transport provider:

Receives messages and delivers them to the AquaLogic Service Bus runtime.

Delivers outbound messages from AquaLogic Service Bus runtime to external services.

In the runtime framework, the transport provider calls the transport manager to acknowledge that
an inbound message has been received. The transport message context contains the header and
body of the inbound message. For the outbound message, there is a TransportSendListener and
TransportSender. The transport provider retrieves the header and body from the message.

Figure 2-2 shows a UML diagram that depicts the structure of the runtime part of a transport
provider.

The T ransact ion Mode l

AquaLogic Service Bus Transport SDK User Guide 2-13

Figure 2-4 Runtime UML Diagram

The Transaction Model
Before you develop a new transport provider using the Transport SDK, it is important to consider
the transaction model for your message endpoints. This section discusses the transaction model
used by AquaLogic Service Bus and how that model relates to the Transport SDK.

This section includes these topics:

Overview of Transport Endpoint Properties

Support for Synchronous Transactions

Overview of Transport Endpoint Properties
A transport endpoint is an AquaLogic Service Bus resource, such as a JMS proxy service, where
messages are originated or targeted. In AquaLogic Service Bus, transport endpoints are managed

Des ign Cons ide ra t i ons

2-14 AquaLogic Service Bus Transport SDK User Guide

by protocol-specific transport providers, plug-in objects that manage the life cycle and runtime
behavior of transport endpoints.

To understand the transactional model of AquaLogic Service Bus, it is useful to review some of
the properties of service transport endpoints.

Transactional vs. Non-Transactional Endpoints
A given endpoint may or may not be transactional. A transactional endpoint has potential to start
or enlist in a global transaction context when processing a message. The following examples
illustrate how transactional properties vary depending on the endpoint:

A JMS proxy service that uses the XA connection factory is a transactional endpoint.
When the message is received, the container ensures that a transaction is started so that the
message is processed in the context of a transaction.

A Tuxedo proxy service may or may not be a transactional endpoint. A Tuxedo proxy
service is only transactional if a transaction was started by the Tuxedo client application
before the message is received.

An HTTP proxy service endpoint is never transactional. In other words, inbound HTTP
requests are never processed in the context of a transaction.

For detailed information on specific proxy services, see the AquaLogic Service Bus User Guide.

Supported Message Patterns
A given endpoint can use one of the following message patterns:

One Way – No responses are expected. An example of a one-way endpoint is a JMS proxy
service that does not expect a response.

Synchronous – A request or response is implied. In this case, the response message is
paired with the request message implicitly because no other traffic can occur on the
transport channel from the time the request is issued until the time the response is received.
In most cases, a synchronous message implies blocking calls for outbound requests. An
EJB endpoint is synchronous. An HTTP endpoint is also synchronous: a new request
cannot be sent until a response is received.

Asynchronous – A request and response is implied. The response is correlated to a request
through a transport-specific mechanism, such as a JMS transport and correlation through a
JMSCorrelationID message property. For example, a JMS business service endpoint with
request and response is asynchronous.

../userguide/index.html

The T ransact ion Mode l

AquaLogic Service Bus Transport SDK User Guide 2-15

Support for Synchronous Transactions
The EJB and Tuxedo transports support synchronous transactions. Previously, the only
transactional support in AquaLogic Service Bus was for the JMS transport, where transactions
originated in and were bounded by the AquaLogic Service Bus domain. With the EJB and Tuxedo
transports, transactions can originate outside of AquaLogic Service Bus and can pass through to
external domains. Synchronous transactional transports support the following use cases:

Use Case 1 (Response Pipeline Processing)
Response pipeline processing is included in an incoming transaction when the inbound transport
supports synchronous transactions. This case is supported when the inbound transport is paired
with any other outbound transport, with the exception described in the note below.

Note: A deadlock situation occurs when the inbound transport is synchronous transactional and
the outbound transport is asynchronous transactional. The deadlock occurs because the
outbound request is not available until after the transaction commits, but the transaction
was started externally and does not commit until AquaLogic Service Bus gets the
response and returns. The transport manager recognizes this situation and avoids the
deadlock by throwing a runtime error.

For example, if a synchronous transactional inbound endpoint is used, such as a Tuxedo
proxy service, and the outbound endpoint is asynchronous transactional, such as a JMS
proxy service, the outbound request does not commit the transaction until the response is
received. It cannot be received until the external entity receives the request and processes
it.

Also in this case, the AquaLogic Service Bus Publish action performed in the response pipeline
is part of the transaction just like publish actions in the request pipeline are part of the transaction.

Note: There are several actions that can potentially participate in a transaction (in either the
request or response pipeline). These include Publish, Service Callout, and Report actions.

For example, if an inbound Tuxedo transport is synchronous transactional, it can be committed
only after the request and response pipeline have been completed. In this case, the transport
manager transfers the transaction context from the inbound to the outbound thread. When the
response thread is finished, the transaction control and outcome are returned to the invoking
client.

Use Case 2 (Service Callout Processing)
AquaLogic Service Bus Service Callouts allow you to make a callout from a proxy service to
another service. If a Service Callout action is made to a synchronous transactional transport, the

Des ign Cons ide ra t i ons

2-16 AquaLogic Service Bus Transport SDK User Guide

case of Exactly Once quality of service is supported in addition to Best Effort quality of service.
Exactly Once means that messages are delivered from inbound to outbound exactly once,
assuming a terminating error does not occur before the outbound message send is initiated. Best
Effort means that each dispatch defines its own transactional context (if the transport is
transactional). When Best Effort is specified, there is no reliable messaging and no elimination of
duplicate messages; however, performance is optimized. See also “Working with
TransportOptions” on page 3-19.

Callouts to synchronous transactional transports are optionally part of an existing transaction. For
example, while the request pipeline is executing during a global transaction, Service Callouts are
permitted to participate in the transaction. For example, if there is a callout to an EJB service, the
service can participate in that transaction if it wants to.

For more information on Service Callouts, see “Service Callouts” in Using the AquaLogic Service
Bus Console. For more information on message reliability, see the AquaLogic Service Bus User
Guide.

Use Case 3 (Suspending Transactions)
Before calling the transport provider to send an outbound request the transport framework will
suspend a transaction if the following conditions apply:

The outbound service endpoint is transactional.

There is a global XA transaction in progress.

The quality of service is set to Best Effort.

The suspended transaction will resume, after the “send” operation is complete.

Use Case 4 (Multiple URIs)
If a given outbound service endpoint has multiple URIs associated with it, and is transactional,
failover only occurs while the transaction, if any, is not marked for rollback. For example, if a
URI is called, and the service returns an error, a failover is normally triggered. In this event, the
transport framework detects that the transaction has been marked for rollback; therefore, the
framework does not perform a failover to a different URI.

The Security Model
The Transport SDK allows customers and third-parties to plug in new transports into AquaLogic
Service Bus. Within the AquaLogic Service Bus security model, transport providers are

../consolehelp/proxyactions.html#wp1264184
../userguide/index.html
../userguide/index.html

The Secur i t y Mode l

AquaLogic Service Bus Transport SDK User Guide 2-17

considered trusted code. It is critical that transport provider implementations are carefully
designed to avoid potential security threats by creating security holes. Although this document
does not contain specific guidelines on how to develop secure transport providers, this section
discusses the following security goals of the Transport SDK:

Inbound Request Authentication

Outbound Request Authentication

Link-Level or Connection-Level Credentials

Uniform Access Control to Proxy Services

Identity Propagation and Credential Mapping

Inbound Request Authentication
Transport providers are free to implement whatever inbound authentication mechanisms are
appropriate to that transport. For example: the HTTP transport provider supports these
authentication methods:

HTTP BASIC

Custom authentication tokens carried in HTTP headers

The HTTPS transport provider supports SSL client authentication, in addition to the ones listed
above. Both HTTP and HTTPS transport providers also support anonymous client requests.

The transport provider is responsible for implementing any applicable transport level
authentication schemes, if any. If the transport provider authenticates the client it must make the
client Subject object available to AquaLogic Service Bus by calling
TransportManager.receiveMessage() within the scope of
weblogic.security.Security.runAs(subject). For information on this method, see
http://edocs.bea.com/wls/docs92/javadocs/weblogic/security/Security.html.

Tip: For information on the Java class Subject, see
http://java.sun.com/j2se/1.5.0/docs/api/javax/security/auth/Subject.html.

The proxy will use this Subject in the following ways:

During access control to the proxy service

http://edocs.bea.com/wls/docs92/javadocs/weblogic/security/Security.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/security/auth/Subject.html

Des ign Cons ide ra t i ons

2-18 AquaLogic Service Bus Transport SDK User Guide

To populate the message context variable
$inbound/ctx:security/ctx:transportClient/*

As the input for identity propagation and credential mapping (unless there is also
message-level client authentication)

If the transport provider does not support authentication, or if it supports anonymous requests, it
must make sure the anonymous subject is on the thread before dispatching the request. Typically
the transport provider will already be running as anonymous, but if this is not the case, then the
provider must call:

Subject anonymous = SubjectUtils.getAnonymousUser()

Security.runAs(anonymous, action)

For information on SubjectUtils, see
http://edocs.bea.com/wls/docs92/javadocs/weblogic/security/SubjectUtils.html.

The transport provider is also responsible for providing any AquaLogic Service Bus Console
configuration pages required to configure inbound client authentication.

The transport provider must clearly document its inbound authentication model.

Outbound Request Authentication
Transport providers are free to implement whatever outbound authentication schemes are
appropriate to that transport. The transport SDK includes APIs to facilitate outbound
username/password authentication, (two-way) SSL client authentication, and JAAS Subject
authentication.

Outbound Username/Password Authentication
Outbound username/password authentication can be implemented by leveraging AquaLogic
Service Bus service accounts. Service accounts are first-class, top-level AquaLogic Service Bus
resources. Service accounts are created and managed in the AquaLogic Service Bus Console.
Transport providers are free to design their transport-specific configuration to include references
to service accounts. That way the transport provider can make use of the credential management
mechanisms provided by AquaLogic Service Bus service accounts.

Transport providers don't have to worry about the details of service account configuration. There
are three types of service accounts:

Static – A static service account is configured with a fixed username/password.

http://edocs.bea.com/wls/docs92/javadocs/weblogic/security/SubjectUtils.html

The Secur i t y Mode l

AquaLogic Service Bus Transport SDK User Guide 2-19

Mapped – A mapped service account contains a list of remote-users/remote-passwords and
a map from local-users to remote-users. Mapped service accounts can optionally map the
anonymous subject to a given remote user.

Pass-through – A pass-through service account indicates that the username/password of
the AquaLogic Service Bus client must be sent to the back-end.

An outbound endpoint can have a reference to a service account. The reference to the service
account must be stored in the transport-specific endpoint configuration. When a proxy service
routes a message to this outbound endpoint, the transport provider passes the service account
reference to CredentialCallback.getUsernamePasswordCredential(ref). AquaLogic
Service Bus returns the username/password according to the service account configuration. This
has the advantage of separating identity propagation and credential mapping configuration from
the transport-specific details, simplifying the transport SDK. It also allows sharing this
configuration. Any number of endpoints can reference the same service account.

Note: The CredentialCallback object is made available to the transport provider by calling
TransportSender.getCredentialCallback().

CredentialCallback.getUsernamePasswordCredential() returns a
weblogic.security.UsernameAndPassword instance. This is a simple class which has
methods to get the username and password. The username/password returned depends on the type
of service account. If the service account is of type static, the fixed username/password is
returned. If it is mapped, the client subject is used to look up the remote username/password. If
it is pass-through, the client’s username/password is returned.

Note: A mapped service account throws CredentialNotFoundException if:

if there is no map for the inbound client, or

the inbound security context is anonymous and there is no anonymous map

Note: In AquaLogic Service Bus 2.5, pass-through service accounts only work in two
scenarios:

When the proxy is of type HTTP or HTTPS and the inbound request contains a
username/password in the HTTP Authorization header (for example, HTTP BASIC
authentication)

When the proxy is a WS-Security active intermediary and the inbound request
includes a WS-Security Username token with a clear-text password

Otherwise the pass-through service account throws CredentialNotFoundException.

Des ign Cons ide ra t i ons

2-20 AquaLogic Service Bus Transport SDK User Guide

Outbound SSL Client Authentication (Two-Way SSL)
AquaLogic Service Bus also supports outbound SSL client authentication. In this case, the proxy
making the outbound SSL request must be configured with a PKI key-pair for SSL. (This is done
with a reference to a proxy service provider, the details are out of the scope of this document. For
more information, see the AquaLogic Service Bus User Guide). To obtain the key-pair for SSL
client authentication, the transport provider must call CredentialCallback.getKeyPair().
The HTTPS transport provider is an example of this.

Outbound JAAS Subject Authentication
Some transport providers send a serialized JAAS Subject on the wire as an authentication token.
To obtain the inbound subject the transport provider must call
CredentialCallback.getSubject().

Note: The return value may be the anonymous subject.

Link-Level or Connection-Level Credentials
Some transports require credentials to connect to services. For example, FTP endpoints may be
required to authenticate to the FTP server. Transport providers can make use of static service
accounts to retrieve a username/password for establishing the connection. Note that mapped or
pass-through service accounts cannot be used in this case because these connections are not made
on behalf of a particular client request. If a transport provider decides to follow this approach, the
endpoint must be configured with a reference to a service account. At runtime, the provider must
call TransportManagerHelper.getUsernamePassword(), passing the reference to the static
service account.

Uniform Access Control to Proxy Services
AquaLogic Service Bus enforces access control to proxy services for every inbound request.
Transport providers are not required to enforce access control or to provide interfaces to manage
the access control policy.

Note: The access control policy covers the majority of the use cases; however, a transport
provider can implement its own access control mechanisms (in addition to the access
control check done by AquaLogic Service Bus) if required for transport provider specific
reasons. If that is the case, please contact your BEA representative. In general BEA
recommends transport providers let AquaLogic Service Bus handle access control.

When access is denied, TransportManager.receiveMessage() throws an
AccessNotAllowedException wrapped inside a TransportException. Transport providers are

../userguide/index.html

The Thread ing Mode l

AquaLogic Service Bus Transport SDK User Guide 2-21

responsible for checking the root-cause of the TransportException. A transport provider may do
special error handling when the root cause is an AccessNotAllowedException. For example, the
HTTP/S transport provider returns an HTTP 403 (forbidden) error code in this case.

Note: AquaLogic Service Bus makes the request headers available to the authorization
providers for making access control decisions.

Identity Propagation and Credential Mapping
As explained in “Outbound Request Authentication” on page 2-18, AquaLogic Service Bus
provides three types of service accounts. A transport provider can make use of service accounts
to get access to the username/password for outbound authentication. A service account hides all
of the details of identity propagation and credential mapping from AquaLogic Service Bus
transport providers.

The Threading Model
This section discusses the threading model used by AquaLogic Service Bus and how the model
relates to the Transport SDK. This section includes these topics:

Overview

Inbound Request Message Thread

Outbound Response Message Thread

Support for Asynchrony

Publish and Service Callout Threading

Overview
Figure 2-5 illustrates the AquaLogic Service Bus threading model for a hypothetical transport
endpoint processing a single inbound message.

A front end artifact, such as a Servlet, is responsible for getting the inbound message. A request
can be routed to an outbound endpoint and sent asynchronously. At this point, the thread is
released. At some later point, a response is sent back to AquaLogic Service Bus (using a
callback). The response is received, packaged, and handed to the AquaLogic Service Bus
pipeline. Later, the pipeline notifies the inbound endpoint that the response is ready to be sent to
the client. This processing is scalable because a thread is only tied up as long as it is needed.

Des ign Cons ide ra t i ons

2-22 AquaLogic Service Bus Transport SDK User Guide

Figure 2-5 Sample AquaLogic Service Bus Threading Model

Inbound Request Message Thread
The following actions occur in the same thread:

1. An inbound message is received by the front end artifact of the transport endpoint. This front
end artifact could be, for example, an HTTP servlet or JMS message-driven bean instance.

2. The message is packaged into a TransportMessageContext object by the transport endpoint
implementation and passed to the AquaLogic Service Bus runtime. For more information on
the TransportMessageContext interface, see “Metadata and Header Representation for
Request and Response Messages” on page 5-7.

3. The pipeline performs request pipeline actions configured for the proxy.

4. While processing the inbound message in AquaLogic Service Bus pipeline, in the same
(request) thread, AquaLogic Service Bus runtime calls on the registered outbound transport
endpoint, which may or may not be managed by the same provider, to deliver an outbound
message to an external service.

5. At some later point, the external service asynchronously calls on the outbound endpoint to
deliver the response message. The outbound endpoint must have been registered previously
with a transport specific callback object.

Note: At this point, the initial request thread is released and placed back into the WebLogic
Server thread pool for use by another request.

The Thread ing Mode l

AquaLogic Service Bus Transport SDK User Guide 2-23

Outbound Response Message Thread
The following actions occur in the same thread:

1. The response message is packaged into a TransportMessageContext object and delivered back
to AquaLogic Service Bus runtime for response processing. This processing occurs in a
different thread than the request thread. This new thread is called the response thread.

2. After the response message is processed, AquaLogic Service Bus runtime calls on the
InboundTransportMessageContext object to notify it that it is now time to send the response
back to the original caller. For more information on the InboundTransportMessageContext
interface, see “Metadata and Header Representation for Request and Response Messages” on
page 5-7.

If the transport provider does not have a native implementation of an asynchronous
(non-blocking) outbound call, it still needs to deliver the response back to AquaLogic
Service Bus runtime on a separate thread than that on which the inbound request message
was received. To do this, it can execute the call in a blocking fashion in the request thread
and then use a Transport SDK helper method to deliver the response back to AquaLogic
Service Bus runtime.

For example, the EJB transport provider does not have an asynchronous (non-blocking)
outbound call. The underlying API is a blocking API. To work around this, the provider
makes its blocking call, then schedules the response for processing with
TransportManagerHelper.schedule(). For more information on the EJB transport
provider, see “EJB Transport” in the AquaLogic Service Bus User Guide.

Support for Asynchrony
By design, the transport subsystem interacts asynchronously with AquaLogic Service Bus. The
reason for this is that asynchronous behavior is more scalable, and therefore, more desirable than
synchronous behavior. Rather than create two separate APIs, one for asynchronous and one for
synchronous interaction, AquaLogic Service Bus runtime expects asynchronous interaction. It is
up to the transport developer to work around this by a method such as posting a blocking call and
posting the response in a callback. In any case, the response must be executed in a different thread
from the request. See Table 2-2 for a list of AquaLogic Service Bus transport providers that
support asynchronous outbound calls.

../userguide/ejbtransport.html

Des ign Cons ide ra t i ons

2-24 AquaLogic Service Bus Transport SDK User Guide

Publish and Service Callout Threading
The threading diagram shown in Figure 2-5 focuses on routing. The transport subsystem behaves
the same way for AquaLogic Service Bus Publish and Service Callout actions which can occur
in the middle of the request or response pipeline processing. These actions occur outside the
scope of the transport subsystem and in the scope of an AquaLogic Service Bus pipeline.
Therefore, some differences exist between the threading behavior of Publish and Service Callout
actions and transport providers.

Note, however, the following cases:

Service Callout – The pipeline processor will block the thread until the response arrives
asynchronously. The blocked thread would then resume execution of the pipeline. The
purpose is to bind variables that can later be used in pipeline actions to perform business
logic. Therefore, these actions must block so that the business logic can be performed
before the response comes back.

Publish – The pipeline processor may or may not block the thread until the response
arrives asynchronously. This thread then continues execution of the rest of the request or
response pipeline processing.

Tip: A Service Callout action allows you to configure a synchronous (blocking) call to a proxy
or business service that is already registered with AquaLogic Service Bus. Use a Publish

Table 2-2 Support for Asynchrony by AquaLogic Service Bus Transport Providers

Transport Provider Supports Asynchronous Non-Blocking Outbound Calls

HTTP/HTTPS Yes

JMS Yes

File N/A (One-way only. No response is sent.)

Email N/A (One-way only. No response is sent.)

FTP N/A (One-way only. No response is sent.)

Tuxedo Yes

EJB No

Socket Yes

Des ign ing fo r Message Content

AquaLogic Service Bus Transport SDK User Guide 2-25

action to identify a target service for a message and configure how the message is
packaged and sent to that service. For more information on Service Callout and Publish
actions, see the AquaLogic Service Bus Console online help and the AquaLogic Service
Bus User Guide.

Designing for Message Content
This section includes these topics:

Overview

Sources and Transformers

Sources and the MessageContext Object

Built-In Transformations

Overview
Transport providers have their own native representation of message content. For example, HTTP
transport uses java.io.InputStream, JMS has Message objects of various types, Tuxedo has
buffers, and the WLS WebServices stack uses SAAJ. However, within the runtime of a proxy
service, the native representation of content is the Message Context. While AquaLogic Service
Bus supports some common conversion scenarios, such as InputStream to/from Message
Context, this conversion between transport representation and the Message Context is ultimately
the transport provider’s responsibility.

In general, the Transport SDK is not concerned with converting directly between two different
transport representations of content. However, if two transports use compatible representations
and the content does not require re-encoding, the SDK may allow the source content to be
passed-through directly (for example, passing a FileInputStream from an inbound File transport
to an outbound HTTP transport). However, if the source content requires any sort of processing,
it makes more sense to unmarshall the source content into the Message Context first and then use
the standard mechanisms to generate content for the outgoing transport.

Sources and Transformers
Content is represented as an instance of the Source interface. Transport SDK interfaces that deal
with message content, such as TransportSender and TransportMessageContext, all use the Source
interface when passing message payloads. The requirements on a Source are minimal. A Source

../userguide/index.html
../userguide/index.html

Des ign Cons ide ra t i ons

2-26 AquaLogic Service Bus Transport SDK User Guide

must support push- and pull-based conversions to byte-based streams using the two methods
defined in the base Source interface. A Source may or may not take into account various
transformation options, such as character-set encoding, during serialization, as specified by the
TransformOptions parameter.

While all Source objects must implement the base serialization interface, the underlying
representation of the Source object’s content is implementation specific. This allows for Source
objects based on InputStreams, JMS Message objects, Strings, or whatever representation is most
natural to a particular transport. Typically, Source implementations allow direct access to the
underlying content, in addition to the base serialization methods. For example, StringSource,
which internally uses a String object to store its content offers a getString() method to get at
the internal data. The ultimate consumer of a Source can then extract the underlying content by
calling these source-specific APIs and potentially avoid any serialization overheads.

Sources may also be transformed into other types of Sources using a Transformer object. If a
Source consumer, such as a transport provider, is given a Source instance that it does not
recognize, it can often transform it into a Source instance that it does recognize. The underlying
content can then be extracted from that known Source using the source-specific APIs. However,
often a transport provider simply serializes the content and send it using the base serialization
methods. See also “Source and Transformer Classes and Interfaces” on page 5-4.

Sources and the MessageContext Object
Sources are the common content representation between the transport layer and the binding layer.
The binding layer is the entity responsible for converting content between the Source
representation used by the transport layer and the Message Context used by the pipeline runtime.
How that conversion happens depends upon the type of service (its binding type) and the presence
of attachments. While not strictly part of the Transport SDK, any transport provider that defines
its own Source objects should be familiar with this conversion process.

When attachments are not present, the incoming Source represents just the core message content.
The MessageContext is initialized by converting the received Source to a specific type of Source
and then extracting the underlying content. For example, for XML-based services, the incoming
Source is converted to an XmlObjectSource. The XmlObject is then extracted from the
XmlObjectSource and used as the payload inside the $body context variable. SOAP services are
similarly converted to XmlObjectSource except that the extracted XmlObject must be a SOAP
Envelope so that the <SOAP:Header> and <SOAP:Body> elements can be extracted to initialize
the $header and $body context variables.

Below are the canonical Source types used for the set of defined service-types:

Des ign ing fo r Message Content

AquaLogic Service Bus Transport SDK User Guide 2-27

SOAP – XmlObjectSource

XML – XmlObjectSource

TEXT – StringSource

MFL – MFLSource

For binary services, no Source conversion is done. Instead, the Source is registered with an
internal repository and the resulting <binary-content/> XML is used as the payload inside
$body.

When attachments are present, the incoming Source is first converted to a
MessageContextSource. From the MessageContextSource, two untyped Source objects are
obtained, one representing the attachments and one representing the core message. The Source
for the core message is handled as described previously. The Source representing attachments is
converted internaly to XML and is used to initialize the $attachments context variable and the
internal repository containing the registered Sources that represent any binary attachment
content. This entire process is illustrated in Figure 2-6.

Des ign Cons ide ra t i ons

2-28 AquaLogic Service Bus Transport SDK User Guide

Figure 2-6 Flow of Attachments

A similar conversion occurs when creating a Source from data in the MessageContext to be
passed to the transport layer. The core message is represented by a Source instance that can be
converted to the canonical Source for the service type. In most cases, the Source will already be
an instance of the canonical Source, but not always. When attachments are present, the Source
delivered to the transport layer will be a source that can be converted to an instance of
MessageContextSource. If the transport provider supports Content-Type as a pre-defined
transport header, then the delivered Source will likely be an instance of MessageContextSource.
Otherwise, the delivered Source will likely be an instance of MimeSource, but this can also be
converted to a MessageContextSource.

Des ign ing fo r Message Content

AquaLogic Service Bus Transport SDK User Guide 2-29

The reason for this difference is that transports that natively support Content-Type as a transport
header require that the top-level MIME headers appear in the transport headers rather than in the
payload. Examples of this are HTTP and Email. Transports that do not natively support
Content-Type must have these top-level MIME headers as part of the payload, as the
Content-Type header is critical for decoding a multipart MIME package.

Built-In Transformations
Below is a matrix showing the set of supported transformations offered by the built-in
transformers. The column of Source names on the left indicates the initial Source type and the
row of Source names on the top indicates the target Source type. An “X” in a given row R and
column C means that it is possible to directly convert from initial Source R to target Source C.
For example, there is some built-in transformer that handles converting a StringSource into an
XmlObjectSource; however, there is no transformer that can convert a StringSource into an
MessageContextSource. Typically, these transformers take advantage of their knowledge of the
internal data representation used by both Source types.

Des ign Cons ide ra t i ons

2-30 AquaLogic Service Bus Transport SDK User Guide

Figure 2-7 Transformation Matrix

Of special interest is the very first row of “X” values in the matrix, as it represents supported
transformations from arbitrary Sources into specific Sources. For example, while there is no
transformer that specifically handles converting an XmlObjectSource to a ByteArraySource,
there is a transformer that will handle converting any instance of Source to a ByteArraySource.
These generic transformations are done without any knowledge of the initial Source type but
instead rely on the base serialization methods that are implemented by all Sources:
getInputStream() and writeTo(). So, although it is ultimately possible to convert an
XmlObjectSource to a ByteArraySource, it is not done using any special knowledge of the
internal details of XmlObjectSource.

Note: Many custom Sources implemented by Transports can be handled by these generic
transformations, especially if the underlying data is an unstructured collection of bytes.
For example, the File Transport uses a custom Source that pulls its content directly from
a file on disk. However, as that data is just a set of bytes without structure, there is no

Des ign ing fo r Message Content

AquaLogic Service Bus Transport SDK User Guide 2-31

need to provide custom transformations to, for example, XmlObjectSource. The generic
transformation Source XmlObjectSource can handle this custom FileSource using just
the base serialization methods that all Sources must implement.

For more information, see “Source and Transformer Classes and Interfaces” on page 5-4.

Des ign Cons ide ra t i ons

2-32 AquaLogic Service Bus Transport SDK User Guide

AquaLogic Service Bus Transport SDK User Guide 3-1

C H A P T E R 3

Developing a Transport Provider

The Transport SDK provides a layer of abstraction between transport protocols and the
AquaLogic Service Bus runtime system. This layer of abstraction makes it possible to develop
and plug in new transport providers to AquaLogic Service Bus. The Transport SDK interfaces
provide this bridge between transport protocols, such as HTTP, and the AquaLogic Service Bus
runtime.

Tip: Before beginning this chapter, be sure to review Chapter 2, “Design Considerations”
first.

This chapter explains the basic steps involved in developing a custom transport provider. This
chapter includes these topics:

Development Roadmap

Before You Begin

Basic Development Steps

Important Development Topics

Development Roadmap
The process of designing and building a custom transport provider is complex. This section offers
a recommended path to follow as you develop your transport provider. Development of a custom
transport provider breaks down into these basic stages:

Deve lop ing a T ranspor t P rov ide r

3-2 AquaLogic Service Bus Transport SDK User Guide

Planning

Developing

Packaging and Deploying

Planning
1. Decide if you really need to develop a custom transport provider. See “Do You Need to

Develop a Custom Transport Provider?” on page 2-7.

2. Run and study the example socket transport provider. The source code for this provider is
installed with AquaLogic Service Bus and is publicly available for you to examine and reuse.
See Chapter 6, “Sample Socket Transport Provider.”

3. Review Chapter 2, “Design Considerations.” This chapter discusses the architecture of a
transport provider and many aspects of transporter provider design, such as the security model
and the threading model employed by transport providers.

4. Review the section “Before You Begin” on page 3-3.

Developing
The section “Basic Development Steps” on page 3-3 outlines the steps you need to take to
develop a transport provider, including schema configurations and interface implementations.

The section “Important Development Topics” on page 3-14 discusses in detail several topics that
you might need to refer to during the development cycle. This section includes detailed
information on topics such as Handling Messages, Transforming Messages, Handling Errors, and
others.

Packaging and Deploying
For detailed information on packaging and deploying a transport provider, see Chapter 4,
“Deploying a Transport Provider.”

Befo re You Begin

AquaLogic Service Bus Transport SDK User Guide 3-3

Before You Begin
Before you begin to develop a custom transport provider, you need to consider and review a
number of design issues, which include:

Deciding if you really need to develop a custom transport provider. See “Do You Need to
Develop a Custom Transport Provider?” on page 2-7.

Deciding if your message endpoints are transactional or non-transactional. See
“Transactional vs. Non-Transactional Endpoints” on page 2-14.

Deciding if your message endpoints are one way, synchronous, or asynchronous. See
“Supported Message Patterns” on page 2-14 and “Support for Synchronous Transactions”
on page 2-15.

Deciding on the security requirements for outgoing and incoming messages. See “The
Security Model” on page 2-16.

Understanding the threading model used by AquaLogic Service Bus. See “The Threading
Model” on page 2-21.

Understanding whether your transport provider will support synchronous or asynchronous
outbound calls. See “Support for Asynchrony” on page 2-23.

Reviewing the interfaces and classes provided with the Transport SDK, and becoming
familiar with how they fit into the design time and runtime parts of a transport provider.
See Chapter 5, “Transport SDK Interfaces and Classes.”

Understanding how to package and deploy a custom transport provider. See Chapter 4,
“Deploying a Transport Provider.”

Reviewing the flow of method calls through the transport framework. See Appendix A,
“UML Sequence Diagrams.”

Basic Development Steps
The basic steps to follow when developing a custom transport provider include:

1. Review the Transport Framework Components.

2. Create a Directory Structure for Your Transport Project.

3. Create an XML Schema File for Transport-Specific Artifacts.

4. Define Transport-Specific Artifacts.

Deve lop ing a T ranspor t P rov ide r

3-4 AquaLogic Service Bus Transport SDK User Guide

5. Define the XMLBean TransportProviderConfiguration.

6. Implement the Transport Provider User Interface.

7. Implement the Runtime Interfaces.

8. Deploy the Transport Provider.

1. Review the Transport Framework Components
Figure 3-1 illustrates the components that you must implement and configure to create a custom
transport provider. The transport manager controls and manages the registration of transport
providers and handles communication with AquaLogic Service Bus. A transport provider
manages the life cycle and runtime behavior of transport endpoints (resources where messages
originate or are targeted). You use the Transport SDK to develop custom transport providers.
Using the Transport SDK to develop a custom transport provider is the subject of this chapter.

Figure 3-1 Transport Subsystem Overview

The parts of the transport subsystem that you must implement and configure include:

Transport UI Bindings – The user interface component for the transport provider. Related
interfaces are summarized in “User Interface Configuration” on page 5-8.

Transport endpoint – Responsible for sending and accepting messages. Related interfaces
are summarized in “General Classes and Interfaces” on page 5-2.

Bas ic Deve lopment S teps

AquaLogic Service Bus Transport SDK User Guide 3-5

Endpoint configuration – Stores endpoint configurations. Related interfaces are listed in
“Schema-Generated Interfaces” on page 5-1.

Transport message context – Contains metadata for request and response headers and
other parts of the message (inbound and outbound). See also “Source and Transformer
Classes and Interfaces” on page 5-4 and “Metadata and Header Representation for Request
and Response Messages” on page 5-7.

WLS Artifact deployer – (optional) Deploys artifacts, such as servlets that receive and
send messages.

Transport sender – Retrieves metadata for the outbound message and the payload.
Related interfaces are summarized in “Summary of General Interfaces” on page 5-3

Transport listener – Allows the outbound endpoint to post the result of an outbound
request to the rest of AquaLogic Service Bus. See also “Metadata and Header
Representation for Request and Response Messages” on page 5-7.

Request/Response Metadata – Related interfaces are summarized in “Metadata and
Header Representation for Request and Response Messages” on page 5-7.

2. Create a Directory Structure for Your Transport Project
Before developing a new transport provider, take time to set up an appropriate directory structure
for your project. The recommended approach is to copy the directory structure used for the
sample socket transport provider. For a detailed description of this structure, see “Sample
Location and Directory Structure” on page 6-5.

3. Create an XML Schema File for Transport-Specific
Artifacts
Create an XML schema (xsd) file for transport-specific definitions. You can base this file on the
schema file developed for the sample socket transport provider:

BEA_HOME/weblogic92/samples/servicebus/sample-transport/schemas/

SocketTransport.xsd

where BEA_HOME is the directory in which you installed AquaLogic Service Bus.

Note: The SocketTransport.xsd file imports the file TransportCommon.xsd. This file is
the base schema definition file for service endpoint configurations. This file is located in
BEA_HOME/weblogic92/servicebus/lib/sb-public.jar. You might want to
review the contents of this file before continuing.

Deve lop ing a T ranspor t P rov ide r

3-6 AquaLogic Service Bus Transport SDK User Guide

4. Define Transport-Specific Artifacts
Define XML schema for the following transport-specific artifacts in the XML schema file
described in the previous section, “3. Create an XML Schema File for Transport-Specific
Artifacts” on page 3-5.

EndpointConfiguration

RequestMetaDataXML

ResponseMetaDataXML

Note: Only simple XML types are supported when defining transport provider-specific
metadata and headers. For example, complex types with nested elements are not
supported. Furthermore, an additional restriction is that there can be at most one header
with a given name

Tip: Each of these schema definitions is converted into a corresponding Java file and
compiled. You will find these converted Java source files for the sample socket transport
provider in the directory:
sample-transport/build/classes/com/bea/alsb/transports/sock/impl

EndPointConfiguration
EndPointConfiguration is the base type for endpoint configuration, and describes the complete
set of parameters necessary for the deployment and operation of an inbound or outbound
endpoint. This configuration consists of generic and provider-specific parts. For more
information on the EndPointConfiguration schema definition, refer to the documentation
elements in the TransportCommon.xsd file.

You need to specify a provider-specific endpoint configuration in the schema file. Listing 3-1
shows an excerpt from the SocketTransport.xsd.

Listing 3-1 Sample SocketEndPointConfiguration Definition

<xs:complexType name="SocketEndpointConfiguration">

 <xs:annotation>

 <xs:documentation>

 SocketTransport - specific configuration

 </xs:documentation>

Bas ic Deve lopment S teps

AquaLogic Service Bus Transport SDK User Guide 3-7

 </xs:annotation>

 <xs:sequence>

 <xs:choice>

 <xs:element name="outbound-properties"

 type="SocketOutboundPropertiesType"/>

 <xs:element name="inbound-properties"

 type="SocketInboundPropertiesType"/>

 </xs:choice>

 <xs:element name="request-response" type="xs:boolean">

 <xs:annotation>

 <xs:documentation>

 Whether the message pattern is synchronous

 request-response or one-way.

 </xs:documentation>

 </xs:annotation>

 </xs:element>

...

RequestMetaDataXML
It is required that each transport provider store metadata (message headers) in a Plain Old Java
Object (POJO) and pass that to the pipeline. Examples of information that might be transmitted
in the metadata are the Content-Type header, security information, or locale information. A
RequestMetaData POJO is a generic object that extends the RequestMetaData abstract class and
describes the message metadata of the incoming or outgoing request. The transport provider has
to deliver the message metadata to AquaLogic Service Bus runtime in a RequestMetaData POJO.
See also “Request and Response Metadata Handling” on page 3-16.

RequestMetaDataXML is an XML representation of the same RequestMetaData POJO. This
XML representation uses Apache XML Bean technology. It is only needed by AquaLogic
Service Bus runtime if or when processing of the message involves any actions in the pipeline
that need an XML representation of the metadata, such as setting the entire metadata to a specified
XML fragment on the outbound request.

You need to specify request metadata configuration in the schema file. Listing 3-2 shows an
excerpt from the SocketTransport.xsd.

Deve lop ing a T ranspor t P rov ide r

3-8 AquaLogic Service Bus Transport SDK User Guide

Listing 3-2 Sample SocketRequestMetaDataXML Definition

<xs:complexType name="SocketRequestMetaDataXML">

 <xs:annotation>

 <xs:documentation/>

 </xs:annotation>

 <xs:complexContent>

 <xs:extension base="ts:RequestMetaDataXML">

 <xs:sequence>

 <xs:element name="client-host"

 type="xs:string" minOccurs="0">

 <xs:annotation>

 <xs:documentation>

 Client host name

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="client-port" type="xs:int" minOccurs="0">

 <xs:annotation>

 <xs:documentation>Client port</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

RequestHeadersXML
RequestHeadersXML is the base type for a set of inbound or outbound request headers. You need
to specify the RequestHeadersXML configuration in the schema file. Listing 3-2 shows an
excerpt from the SocketTransport.xsd.

Bas ic Deve lopment S teps

AquaLogic Service Bus Transport SDK User Guide 3-9

Listing 3-3 Sample SocketRequestHeadersXML Definition

<xs:complexType name="SocketRequestHeadersXML">

 <xs:annotation>

 <xs:documentation/>

 </xs:annotation>

 <xs:complexContent>

 <xs:extension base="ts:RequestHeadersXML">

 <xs:sequence>

 <xs:element name="message-count" type="xs:long" minOccurs="0">

 <xs:annotation>

 <xs:documentation>

 Number of messages passed till now.

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

ResponseMetaDataXML
ResponseMetaDataXML is the base type for metadata for a response to an inbound or outbound
message. You need to specify the ResponseMetaDataXML configuration in the schema file.
Listing 3-2 shows an excerpt from the SocketTransport.xsd.

Listing 3-4 Sample SocketResponseMetaDataXML Definition

<xs:complexType name="SocketResponseMetaDataXML">

 <xs:complexContent>

 <xs:extension base="ts:ResponseMetaDataXML">

 <xs:sequence>

 <xs:element name="service-endpoint-host"

 type="xs:string" minOccurs="0">

 <xs:annotation>

Deve lop ing a T ranspor t P rov ide r

3-10 AquaLogic Service Bus Transport SDK User Guide

 <xs:documentation>

 Host name of the service end point connection.

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="service-endpoint-ip"

 type="xs:string" minOccurs="0">

 <xs:annotation>

 <xs:documentation>

 IP address of the service end point connection.

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

ResponseHeadersXML
ResponseHeadersXML is the base type for a set of response headers. You need to specify the
ResponseHeadersXML configuration in the schema file. Listing 3-2 shows an excerpt from the
SocketTransport.xsd.

Listing 3-5 Sample SocketResponseHeadersXML Definition

<xs:complexType name="SocketResponseHeadersXML">

 <xs:annotation>

 <xs:documentation/>

 </xs:annotation>

 <xs:complexContent>

 <xs:extension base="ts:ResponseHeadersXML"/>

 </xs:complexContent>

 </xs:complexType>

Bas ic Deve lopment S teps

AquaLogic Service Bus Transport SDK User Guide 3-11

5. Define the XMLBean TransportProviderConfiguration
To configure the TransportProviderConfiguration XML bean, edit the transport provider
configuration file. This XML file is located in the config directory in the transport provider root
directory. See “Sample Location and Directory Structure” on page 6-5 for the location of this file
(SocketConfig.xml) in the sample socket transport provider implementation.

If proxy services can use your transport, set the inbound-direction-supported element
to true.

If business services use your transport, set the outbound-direction-supported element
to true.

If your transport is self-described, include an element self-described with the value set
to true. A self-described transport is one whose services are responsible for describing
their shape (schema or WSDL) based on their endpoint configuration.

If you want to publish a tModel for your transport to UDDI, include an element UDDI. See
the section “Publishing Proxy Services to a UDDI Registry” on page 3-24 for more info.

Tip: The schema for TransportProviderConfiguration is defined in TransportCommon.xsd,
which is located in BEA_HOME/weblogic92/servicebus/lib/sb-public.jar. Refer
to the schema file for more information.

6. Implement the Transport Provider User Interface
When you add a business or proxy service using the AquaLogic Service Bus Console, you select
a transport provider from a menu in the Service Creation wizard. This menu includes the transport
providers that are provided with AquaLogic Service Bus and any custom transport providers that
were developed with the Transport SDK.

This section discusses the Transport SDK API components that bind your custom transport
provider to the AquaLogic Service Bus Console user interface. You must implement these APIs
to connect your provider to the user interface.

Tip: This section assumes that you are familiar with the Service Creation Wizard. See
“Configuring the Socket Transport Sample” on page 6-8 for a detailed, illustrated
example.

Deve lop ing a T ranspor t P rov ide r

3-12 AquaLogic Service Bus Transport SDK User Guide

1. After a user creates a new service and chooses the Service Type in the Service Creation
wizard, she must then select an appropriate transport provider for the Service Type. To
validate the selection, the wizard calls the following method of the TransportUIBinding
interface:
public boolean isServiceTypeSupported(BindingTypeInfo binding)

This method determines if the transport provider is suitable for the selected Service Type.

2. After a valid transport provider is selected, the user enters an endpoint URI. To validate this
URI, the wizard calls the following method of the TransportUIBinding interface:
public TransportUIError[] validateMainForm(TransportEditField[] fields)

3. Next, the wizard displays the transport-specific configuration page. To render this page, the
wizard calls the following method of the TransportUIBinding interface:

public TransportEditField[] getEditPage(EndPointConfiguration config,
BindingTypeInfo binding) throws TransportException

The Transport SDK offers a set of TransportUIObjects that represent fields in the
configuration page. For example, you can add text boxes, checkboxes, and other types of
UI elements. Use the TransportUIFactory to create them. After creation use the same
factory to specify additional properties and obtain TransportEditField objects that can be
displayed by the Service Creation wizard.

For a complete list of the available TransportUIObjects, refer to the Javadoc.

Tip: You can associate events with most of the UI fields. An event acts like a callback
mechanism for the TransportUIBinding class and lets you refresh, validate, and
update the configuration page. When an event is triggered, the wizard calls the
method:

updateEditPage(TransportEditField[] fields, String name) throws
TransportException

4. When the user finishes the transport configuration, the wizard calls the validation method:

TransportUIError[] validateProviderSpecificForm(TransportEditField[]
fields)

5. Finally, the user saves the new service, and the wizard displays a summary of the
configuration. To implement the summary display, you need to implement the method:

public TransportViewField[] getViewPage(EndPointConfiguration config)
throws TransportException

../javadoc/index.html

Bas ic Deve lopment S teps

AquaLogic Service Bus Transport SDK User Guide 3-13

6. After the service is saved, the transport manager calls the following method of the
TransportProvider class:

void validateEndPointConfiguration(TransportValidationContext context)

If no error is reported, a new endpoint is created. The Transport Manager then calls the
method:

TransportEndPoint createEndPoint(EndPointOperations.Create context)
throws TransportException

If this method returns successfully, the new service is listed in the AquaLogic Service Bus
Console and the underlying transport configuration is associated with an endpoint on the
TransportProvider.

Note: The endpoint configuration is saved in the AquaLogic Service Bus session and does
not need to be persisted or recovered in case of a server restart by the transport
provider.

7. Once the session is activated, you must deploy the endpoint to start processing requests. See
“When to Implement TransportWLSArtifactDeployer” on page 3-26 and “Deploying to a
Cluster” on page 4-3 to learn more about deploying an endpoint and processing requests.

Tip: For the sample socket transport provider, you can find the implementations of these
interfaces in the sample-transport/src directory.

7. Implement the Runtime Interfaces
A new custom transport provider must implement the following runtime interfaces. For a
summary of the Transport SDK interfaces and related classes, see Chapter 5, “Transport SDK
Interfaces and Classes.” For detailed information on interfaces and classes, see the AquaLogic
Service Bus Javadoc description.

Tip: For the sample socket transport provider, you can find the implementations of these
interfaces in the sample-transport/src directory.

TransportProvider

TransportWLSArtifactDeployer

Note: Only implement the TransportWLSArtifactDeployer interface if the transport
provider needs to deploy WebLogic Server-related artifacts, such as EAR/WAR/JAR

../javadoc/index.html

Deve lop ing a T ranspor t P rov ide r

3-14 AquaLogic Service Bus Transport SDK User Guide

files, that go into a WebLogic Server change list at the time of endpoint creation. For
more information, see “When to Implement TransportWLSArtifactDeployer” on
page 3-26.

TransportEndPoint

InboundTransportMessageContext

OutboundTransportMessageContext

Transformer

Note: Only implement the Transformer interface if the transport provider needs to work
with non-standard payload bindings, for example, anything other than Stream, DOM,
SAX, or XMLBean. For more information, see “Transforming Messages” on
page 3-18.

8. Deploy the Transport Provider
For detailed information on deployment, see Chapter 4, “Deploying a Transport Provider.”

Important Development Topics
This section discusses several topics that you will encounter while developing a custom transport
provider. These topics include:

Handling Messages

Transforming Messages

Working with TransportOptions

Handling Errors

Publishing Proxy Services to a UDDI Registry

When to Implement TransportWLSArtifactDeployer

Handling Messages
This section discusses message handling in transport providers and includes these topics:

Overview

Sending and Receiving Message Data

Impo r tant Deve lopment Top ics

AquaLogic Service Bus Transport SDK User Guide 3-15

Request and Response Metadata Handling

Character Set Encoding

Co-Located Calls

Returning Outbound Responses to AquaLogic Service Bus Runtime

Overview
The Transport SDK features a flexible representation of message payloads. All Transport SDK
APIs dealing with payload use the Source interface to represent message content.

The Source-derived message types provided with the Transport SDK include:

StreamSource

ByteArraySource

StringSource

XmlObjectSource

DOMSource

MFLSource

SAAJSource

MimeSource

Note: StreamSource is a single use source; that is, it implements the marker interface
SingleUseSource. With the other Sources, you can get the input stream from the source
multiple times. Each time the Source object gets the input stream from the beginning.
With a SingleUseSource, you can only get the input stream once. Once the input is
consumed, it is gone (for example, a stream from a network socket); however,
AquaLogic Service Bus buffers the input from a SingleUseSource, essentially keeping a
copy of all of its data.

If you implement a Source class for your transport provider, you need to determine
whether you can re-get the input stream from the beginning. If the nature of the input
stream is that it can only be consumed once, it is recommended that your Source class
implement the marker interface SingleUseStream.

The Transport SDK provides a set of Transformers to convert between Source objects. You can
implement new transformations, as needed, as long as they support transformations to/from a set

Deve lop ing a T ranspor t P rov ide r

3-16 AquaLogic Service Bus Transport SDK User Guide

of canonical representations. See “Transforming Messages” on page 3-18 for more information.
See also “Designing for Message Content” on page 2-25.

Sending and Receiving Message Data
When implementing inbound endpoints to deliver the inbound message to AquaLogic Service
Bus runtime, you need to call TransportManager.receiveMessage(). The transport provider
is free to expose the incoming message payload in either one of the standard Source-derived
objects, such as stream, DOM or SAX, or a custom one.

If AquaLogic Service Bus needs to send a response message back to the client that sent the
request, it will call methods setResponseMetaData() and setResponsePayload() followed
by close() on InboundTransportMessageContext to indicate that the response is ready to be sent
back. When AquaLogic Service Bus runtime calls the inbound transport message context
close() method, this will be done from a different thread than that on which the inbound request
message was received. The transport provider should be aware of this as it may affect the
semantics of transactions. Also, the transport provider cannot attempt to access the response
payload and/or metadata until close() method has been called.

Request and Response Metadata Handling
It is required that each transport provider store metadata and headers in a Plain Old Java Object
(POJO) and pass that to the pipeline. There are some cases where AquaLogic Service Bus
requires an XMLBean. In these cases, you need to implement a conversion from POJO to
XMLBean using the API.

The following are the methods you must provide to convert from a POJO to XML:

RequestHeaders.toXML()

RequestMetaData<T>.toXML()

ResponseHeaders.toXML()

ResponseMetaData<T>.toXML()

For the reverse direction (XML to POJO) you need to implement:

TransportEndPoint.createRequestMetaData(RequestMetaDataXML)

InboundTransportMessageContext.createResponseMetaData(ResponseMetaDataXML)

Character Set Encoding
Each transport provider is responsible for specifying the character set encoding of the incoming
message payload to AquaLogic Service Bus. For outgoing messages (outbound request and

Impo r tant Deve lopment Top ics

AquaLogic Service Bus Transport SDK User Guide 3-17

inbound response), the transport provider is responsible for telling AquaLogic Service Bus what
character set encoding to use for the outgoing payload. The character-set encoding is specified in
request and response metadata.

In virtually every case, the character-set encoding that the transport is responsible for inserting
into the metadata is exactly the encoding that is statically specified in the service configuration.
One of the few exceptions to this is HTTP transport, which inspects Content-Type for any
“charset” parameters and overrides any encoding configured in the service. This is necessary in
order to conform to HTTP specifications. Other transport protocols may need to handle similar
issues.

Tip: In general, the encoding for a service is fixed. If someone sends an UTF-16 encoded
message to a proxy that is specified to be SHIFT_JIS, then that is generally considered
to be an error. Transport providers should not need to inspect the message simply to
determine encoding.

For outgoing messages, the transport provider tells AquaLogic Service Bus what encoding it
requires for the outbound request, and AquaLogic Service Bus performs the conversion if
necessary.

Transports should always rely on this encoding for outgoing messages and should not assume that
it is the same as the encoding specified in the service configuration. If there is a discrepancy, the
transport can choose to allow it, but others could consider it an error and throw an exception. Also
the transport has the additional option of leaving the encoding element blank. That leaves the
pipeline free to specify the encoding (for example, via pass-through).

Co-Located Calls
If a given transport provider supports proxy service endpoints, it is possible to configure the
request pipeline such that there is a routing step that routes to that provider’s proxy service.
Furthermore there could be a Publish or a Service Callout action that sends a message to a proxy
service instead of a business service. This use case is referred to as co-located calls.

The transport provider needs to be aware of co-located calls, and handle them accordingly.
Depending on the nature of the proxy service endpoint implementation, the transport provider
may choose to optimize the invocation such that this call bypasses the entire transport
communication stack and any inbound authentication/authorization, and instead is a direct call
that effectively calls TransportManager.receiveMessage() immediately.

Deve lop ing a T ranspor t P rov ide r

3-18 AquaLogic Service Bus Transport SDK User Guide

Tip: AquaLogic Service Bus has implemented this optimization with the HTTP, File, Email
and FTP transport providers. The JMS provider does not use this optimization due to the
desire to separate the transactional semantics of send operation versus receive operations.

If you want to use this optimization in a custom transport provider, you need to extend the
CoLocatedTransportMessageContext class and call its send() method when
TransportProvider.sendMessageAsync() is invoked.

Returning Outbound Responses to AquaLogic Service Bus Runtime
When AquaLogic Service Bus runtime sends a message to an outbound endpoint and there is a
response message to be returned, the transport provider must return this response
asynchronously. That means TransportSendListener.onReceiveResponse() or
TransportSendListener.onError() methods need to be called from a different thread than
the one on which TransportProvider.sendMessageAsync() was called.

If the transport provider has a built-in mechanism by which the response arrives asynchronously,
such as responses to JMS requests or HTTP requests when the async response option is used, it
happens naturally. However, if the transport provider has no built-in mechanism for retrieving
responses asynchronously, it can execute the outbound request in a blocking fashion and then
schedule a new worker thread using the TransportManagerHelper.schedule() method, in
which the response is posted to the TransportSendListener.

Transforming Messages
When AquaLogic Service Bus needs to set either the request payload to an outbound message or
the response payload to an inbound message, it asks the transport provider to do so through an
object derived from the Source interface. The transport provider then needs to decide what
representation the underlying transport layer requires and use the Transformer.transform()
method to translate the Source object into the desired source.

Tip: For more information on message transformation, see “Designing for Message Content”
on page 2-25. For a list of built-in transformations, see “Built-In Transformations” on
page 2-29 and “Source and Transformer Classes and Interfaces” on page 5-4.

A custom transport provider can support new kinds of transformations. Suppose a transport
provider needs to work with a DOM object in order to send the outbound message. When called
with setRequestPayload(Source src), the transport provider needs to call the method:

Impo r tant Deve lopment Top ics

AquaLogic Service Bus Transport SDK User Guide 3-19

TransportManagerHelper.getTransportManager().getTransformer().

transform(src, DOMSource.class, transformOptions).

The return value of the method gives a DOMSource, which can then be used to retrieve the DOM
node.

Note: If the transport provider requires a stream, there is a shortcut: each Source object supports
transformation to stream natively.

You can add new transformations to a custom transport provider. For example, suppose you want
to add a new kind of Source-derived class, called XYZSource. For performance reasons, transport
providers are encouraged to provide conversions from XYZSource to one of the two canonical
Source objects, XmlObjectSource and StreamSource when applicable. Without such
transformation, generic transformers will be used, which rely on the StreamSource representation
of XYZSource. Of course, if XYZSource is a simple byte-based Source with no internal structure,
then relying on the generic transformers is usually sufficient. Note that any custom transformer
that is registered with TransportManager is assumed to be thread-safe and stateless.

To support attachments, the transport provider has three options:

The Source returned by TransportMessageContext must be an instance of
MessageContextSource. A limitation of this option is that MessageContextSource requires
that the content has already been partitioned into a core-message Source and an
attachments Source.

The Source is an instance of MimeSource and the Headers objects contain a multipart
Content-Type header.

The Content-Type is a pre-defined header for the transport provider with the specific value
multipart/related. Both HTTP(S) and Email transports rely on this third option for
supporting attachments.

Working with TransportOptions
A TransportOptions object is used to supply options for sending or receiving a message. A
TransportOptions object is passed from the transport provider to the transport manager on
inbound messages. On outbound messages, a TransportOptions object is passed from the
AquaLogic Service Bus runtime to the transport manager, and finally to the transport provider.

This section includes these topics:

Inbound Processing

Outbound Processing

Deve lop ing a T ranspor t P rov ide r

3-20 AquaLogic Service Bus Transport SDK User Guide

Request Mode

Inbound Processing
The transport provider supplies these parameters to TransportManager.receiveMessage():

QOS – Specifies exactly-once or best-effort quality of service. Exactly-once quality of
service is specified when the incoming message is transactional.

Throw On Error – If this flag is set, an exception is thrown to the callee of method
TransportManager.receiveMessage() when an error occurs during the AquaLogic
Service Bus pipeline processing. The options for throwing the exception include: throw the
exception back to the inbound message or create a response message from the error and
notify the inbound message with the response message. Typically, you set Throw On
Error to true when QOS is exactly-once (for transactional messages).

For example, JMS/XA sets this flag to true to throw the exception in the same request
thread, so it can mark the exception for rollback. HTTP sets the flag to false, because there
is no retry mechanism. The error is converted to a status code and a response message is
returned.

Any transport-specific opaque data – Opaque data can be any data that is set by the
transport provider and passed through the pipeline to the outbound call. This technique
provides optimizes performance when the same transport is used on inbound and outbound.
The opaque data is passed directly through the pipeline from the inbound transport to the
outbound transport. For example, the HTTP/S transport provider can pass the username
and password directly from the inbound to the outbound to efficiently support identity
pass-through propagation.

Outbound Processing
For outbound processing, the AquaLogic Service Bus runtime supplies these parameters to the
transport manager, which uses some of the parameters internally and propagates some parameters
to TransportProvider.sendMessageAsync(). These parameters include:

QOS – Specifies whether or not “exactly-once” quality of service can be achieved. For
example, for HTTP, if quality of service is set to exactly once, the HTTP call is blocking.
If it is set to best effort, it is a non-blocking HTTP call.

Mode – Specifies one-way or request response. See also “Transport Provider Modes” on
page 2-6.

URI, Retry Interval, and Count – The transport provider uses the URI to initialize the
outbound transport connection. For example, the HTTP transport provider uses the URI

Impo r tant Deve lopment Top ics

AquaLogic Service Bus Transport SDK User Guide 3-21

when instantiating a new HttpURLConnection. The transport provider is not required to
use Retry Interval and Count.

OperationName – The transport provider can use OperationName if it needs to know what
outbound Web Service is being used. The transport manager uses this parameter to keep
track of monitoring statistics.

Any transport-specific opaque data – An example of transport-specific opaque data is
the value of the “Authorization” header for HTTP/S.

Request Mode
The request mode is defined as an enumeration with two values: REQUEST_ONLY (also called
“one-way”) and REQUEST_RESPONSE. These modes are interpreted as follows for requests and
responses:

On outbound requests, the pipeline indicates the mode through TransportOptions and the
transport provider must honor the mode.

On inbound requests, the pipeline knows the mode and closes the inbound request and does
not send a response if it computes the mode REQUEST_ONLY.

If a response is sent by the pipeline, then there is a response even if the response is empty.

For transports that are inherently one-way, the transport must not specify response
metadata.

Handling Errors
There are three different use cases to consider with respect to the effect runtime exceptions have
on the transactional model. These cases include:

Case 1: The exception occurs somewhere in the request pipeline but before the outbound
call to the business service.

Case 2: The exception occurs during the business service call.

Case 3: The exception occurs sometime after the business service call in the response
pipeline.

These cases are discussed in this section.

Deve lop ing a T ranspor t P rov ide r

3-22 AquaLogic Service Bus Transport SDK User Guide

Case 1
The exception occurs somewhere in the request pipeline but before the outbound call to the
business service, as shown in Figure 3-2. For example, executing a specific XQuery against the
contents of the request message raises an exception.

If there is a user-configured error handler configured for the request pipeline, the error will be
handled according to the user configuration. Otherwise, the proxy service will either catch an
exception when calling TransportManager.receiveMessage() or will be notified in the
InboundTransportMessageContext.close() method of the error through response
metadata, based on the transport options passed as an argument to the receiveMessage() call.
If the proxy service indicates that the exception should be thrown, surround receiveMessage()
with a try/catch clause and mark the transaction for rollback.

Figure 3-2 Error Case 1

Case 2
The exception occurs during the business service call, as shown in Figure 3-3. The outbound
transport provider either:

Throws an exception from TransportProvider.sendMessageAsync(). For example, the
outbound provider throws an exception if there was an error while establishing a socket
connection to external service. This situation could occur if the business service cannot be
called because of an incorrect URL, a faulty connection, or other reasons. In these cases,
the transport provider must raise an exception.

Notifies the listener through TransportSendListener.onError(). For example, if the
business service was called, but the call resulted in an error (such as a SOAP fault), the
transport provider needs to call TransportSendListener.onError() instead of raising
an exception.

Impo r tant Deve lopment Top ics

AquaLogic Service Bus Transport SDK User Guide 3-23

In the first instance, the exception handling is the same as that described in Case 1. In the second
instance, if there is an error handler configured for the response pipeline, the error is handled
according to the user configuration. Otherwise, the exception is propagated back to the proxy
service endpoint in InboundTransportMessageContext.close() through the response
metadata.

Figure 3-3 Error Case 2

Case 3
The exception occurs sometime after the business service call in the response pipeline, as shown
in Figure 3-4. Again, in the absence of a user-defined error handler for the response pipeline, the
proxy service endpoint is notified of the error with the
InboundTransportMessageContext.close() method with appropriate response metadata. If
the inbound transport endpoint is a synchronous transactional endpoint, it is guaranteed that the
transaction that was active at the time request was received is still active and it may be rolled
back. If the inbound endpoint is not transactional or not synchronous, there is not an inbound
transactional context to roll back, so some other action might need to be performed.

Deve lop ing a T ranspor t P rov ide r

3-24 AquaLogic Service Bus Transport SDK User Guide

Figure 3-4 Error Case 3

Publishing Proxy Services to a UDDI Registry
Universal Description, Discovery, and Integration (UDDI) is a standard mechanism for
describing and locating Web services across the internet. You might want to publish proxy
services based on a custom transport provider to a UDDI registry. This allows proxy services to
be imported into another AquaLogic Service Bus server in a different domain as the one hosting
the business service.

To publish a proxy service, the transport provider needs to define a tModel that represents the
transport type in the “UDDI” section of TransportProviderConfiguration XML schema
definition. (For more information on the schema-generated interfaces, see “Schema-Generated
Interfaces” on page 5-1.)

This tModel must contain a CategoryBag with a keyedReference whose tModelKey is set to the
UDDI Types Category System and keyValue is “transport.” You are required to provide only the
UDDI V3 tModel key for this tModel.

If UDDI already defines a tModel for this transport type, it is recommended that the definition be
copied and pasted into the UDDI section.

An example of such a tModel is provided in Listing 3-6.

Listing 3-6 Example tModel

<?xml version="1.0" encoding="UTF-8"?>

<ProviderConfiguration xmlns="http://www.bea.com/wli/sb/transports">

Impo r tant Deve lopment Top ics

AquaLogic Service Bus Transport SDK User Guide 3-25

 …

 …

 <UDDI>

 <TModelDefinition>

 <tModel tModelKey="uddi:bea.uddi.org:transport:socket">

 <name>uddi-org:socket</name>

 <description>Socket transport based webservice</description>

 <overviewDoc>

 <overviewURL useType="text">

 http://www.bea.com/wli/sb/UDDIMapping#socket

 </overviewURL>

 </overviewDoc>

 <categoryBag>

 <keyedReference keyName="uddi-org:types:transport"

 keyValue="transport"

 tModelKey="uddi:uddi.org:categorization:types"/>

 </categoryBag>

 </tModel>

 </TModelDefinition>

 </UDDI>

</ProviderConfiguration>

If UDDI does not already define a tModel for this transport type, AquaLogic Service Bus can
publish the tModel you define here to configured registries. When a UDDI registry is configured
to AquaLogic Service Bus, the “Load tModels into Registry” option can be specified. That option
causes all of the tModels of AquaLogic Service Bus, including the tModels for custom transport
providers, to be published to the UDDI registry. After deploying your transport provider, you can
update your UDDI registry configuration to publish your tModel.

During UDDI export, TransportProvider.getBusinessServicePropertiesForProxy(Ref)
is called and the resulting map is published to the UDDI registry. The provider is responsible for
making sure to preserve all important properties of the business service in the map so that during
the UDDI import process the business service definition can be correctly constructed without loss
of information.

Deve lop ing a T ranspor t P rov ide r

3-26 AquaLogic Service Bus Transport SDK User Guide

During UDDI import, TransportProvider.getProviderSpecificConfiguration(Map) is
called and the result is an XmlObject that conforms to the provider-specific endpoint
configuration schema, which goes into the service definition.

Tip: OASIS, the Organization for the Advancement of Structured Information Standards, is
responsible for creating the UDDI standard. To read more about UDDI, including the full
technical specification, go to:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uddi-spec

When to Implement TransportWLSArtifactDeployer
Two sets of transport provider interfaces are provided that deal with individual service
registration. TransportProvider has methods like create/update/delete/suspend/resume and
TransportWLSArtifactDeployer has the same methods. This section discusses these two
implementations and explains when you need to implement TransportWLSArtifactDeployer.

Only implement TransportWLSArtifactDeployer if your provider needs to make changes to
WebLogic Server artifacts in the AquaLogic Service Bus domain. The methods on
TransportWLSArtifactDeployer are only called on an Administration Server. In this case,
changes are made through the DomainMBean argument that is passed in, and then the changes
are propagated to the entire cluster.

The TransportProvider methods are called on all servers (Administration and Managed Servers)
in the domain. Because you cannot make changes to AquaLogic Service Bus domain artifacts on
a managed server, the purpose of the method calls on TransportProvider is to update its internal
data structures only.

When a given Transport provider implements the TransportWLSArtifactDeployer interface, the
methods on TransportWLSArtifactDeployer are called before the corresponding methods on
TransportProvider. For example, TransportWLSArtifactDeployer.onCreate() is called
before TransportProvider.createEndPoint().

For more information on TransportWLSArtifactDeployer, see “Summary of General Interfaces”
on page 5-3.

AquaLogic Service Bus Transport SDK User Guide 4-1

C H A P T E R 4

Deploying a Transport Provider

This chapter explains how to package and deploy a custom transport provider and includes these
topics:

Packaging the Transport Provider

Deploying the Transport Provider

Undeploying a Transport Provider

Deploying to a Cluster

Packaging the Transport Provider
It is recommended that you develop your custom transport provider as a self-contained EAR file.
You can then deploy the EAR with the AquaLogic Service Bus Kernel EAR and other AquaLogic
Service Bus related applications.

Tip: The sample socket transport provider example illustrates how a transport provider is
organized and deployed. See Chapter 6, “Sample Socket Transport Provider” for more
information.

Each transport provider consists of two distinct parts:

Configuration – The configuration part of a transport provider is used by AquaLogic
Service Bus Console to register endpoints with the transport provider. This configuration

Deploy ing a T ranspor t P rov ider

4-2 AquaLogic Service Bus Transport SDK User Guide

behavior is provided by the implementation of the UI interfaces. See “User Interface
Configuration” on page 5-8.

Runtime – The runtime part of a transport provider implements the business logic of
sending and receiving messages.

Tip: A best practice is to package the transport provider so that the configuration and runtime
parts are placed in separate deployment units. This practice makes cluster deployment
simpler. See “Deploying to a Cluster” on page 4-3 for more information. See also
“Transport Provider Components” on page 2-9.

Deploying the Transport Provider
This section discusses how to deploy a transport provider.

Tip: For more information on deploying applications to AquaLogic Service Bus, see the
AquaLogic Service Bus Deployment Guide.

After you create a deployable EAR file for your transport provider, you need to deploy it to the
AquaLogic Service Bus domain. You can deploy the EAR by whatever method you prefer:

Programmatically (using WebLogic Deployment Manager JSR-88 API)

Using the WebLogic Server Administration Console

Adding an entry similar to Listing 4-1 to the AquaLogic Service Bus domain config.xml
file

Listing 4-1 Application Deployment Entry

<app-deployment>

<name>My Transport Provider</name>

<target>AdminServer, myCluster</target>

<module-type>ear</module-type>

<source-path>$USER_INSTALL_DIR$/servicebus/lib/mytransport.ear</source-path>

<deployment-order>1234</deployment-order>

</app-deployment>

../deploy/index.html

Undep loy ing a T ranspor t P rov ide r

AquaLogic Service Bus Transport SDK User Guide 4-3

Note: The deployment order of your transport provider EAR file should be high enough so that
the entire ALSB Kernel EAR is deployed before the transport provider.

If you deploy the transport provider as an EAR file, typically
TransportManager.registerProvider() is called from within the EAR file’s
ApplicationLifeCycleListener.postStart() method.

Undeploying a Transport Provider
Once a transport provider has been registered with ALSB, the undeployment or unregistration of
the transport provider is not supported.

Deploying to a Cluster
In a cluster environment, only the configuration part of the transport provider needs to be
deployed on the AquaLogic Service Bus domain Administration Server. The runtime parts need
only be deployed on the managed servers for load-balancing and failover.

If you deploy the runtime and configuration parts of the transport provider in a single deployment
unit, the resulting EAR file needs to be aware of where it is being deployed (Administration
Server or Managed Server) and exhibit only configuration behavior on the Administration Server
and only runtime behavior on the Managed Server.

For example, in the initialization pseudo code in some_transport.ear you can use this logic to
decide whether or not to activate the configuration or runtime portion of the provider:
protected SomeTransportProvider() throws TransportException {

… some other initialization code …

if (!isAdminServer || !clusterExists)

_engine = new RuntimeEngine(…);

}

In this case, creating an instance of the RuntimeEngine class is runtime behavior and only needs
to happen on a managed node or administration node in a single server domain.

Furthermore, as mentioned previously, in a cluster environment,
TransportProvider.createEndPoint() and deleteEndPoint() are called on an
Administration Server as well as Managed Servers in the cluster (with the exception of WLS
HTTP router/front-end host). Some transport providers can choose not to do anything other than
registering the fact that there is an endpoint with the given configuration, such as HTTP. In
general the transport provider needs to examine whether createEndPoint() or

Deploy ing a T ranspor t P rov ider

4-4 AquaLogic Service Bus Transport SDK User Guide

deleteEndPoint() is called on the Administration or Managed Server to decide the appropriate
behavior.

AquaLogic Service Bus Transport SDK User Guide 5-1

C H A P T E R 5

Transport SDK Interfaces and Classes

This chapter lists and summarizes the classes and interfaces provided by the Transport SDK. For
information on which interfaces are required to develop a custom transport provider, see
Chapter 3, “Developing a Transport Provider.”

This chapter includes these sections:

Introduction

Schema-Generated Interfaces

General Classes and Interfaces

Metadata and Header Representation for Request and Response Messages

User Interface Configuration

Introduction
All of the classes and interfaces discussed in this chapter are defined in the package
com.bea.wli.sb.transports, and are part of sb-public.jar, which is listed on the system
CLASSPATH after AquaLogic Service Bus is installed.

Schema-Generated Interfaces
A number of interfaces are generated from XML Schema by an XML Schema compiler tool. The
source (XML Schema) for the following interfaces is provided in the file
TransportCommon.xsd. This file is the base schema definition file for service endpoint

Transpo r t SDK In te r faces and C lasses

5-2 AquaLogic Service Bus Transport SDK User Guide

configurations. This file is located in
BEA_HOME/weblogic92/servicebus/lib/sb-public.jar

where BEA_HOME is the directory in which you installed AquaLogic Service Bus.

EndPointConfiguration – The base type for endpoint configuration. An endpoint is an
AquaLogic Service Bus resource where messages are originated or targeted.
EndPointConfiguration describes the complete set of parameters necessary for the
deployment and operation of an inbound or outbound endpoint.

RequestMetaDataXML – The base type for the metadata of an inbound or outbound
request. Metadata is not carried in the payload of the message, but separately and is used as
the “context” for processing the message. Examples of such information that might be
transmitted in the metadata are the Content-Type header, security information, or locale
information.

RequestHeadersXML – The base type for a set of inbound or outbound request headers.

ResponseMetaDataXML – The base type for response metadata for an inbound or
outbound message.

ResponseHeadersXML – The base type for a set of response headers.

TransportProviderConfiguration – Allows you to configure (a) whether this provider
generates a service description (for example, WSDL) for its endpoints; (b) whether or not
this provider supports inbound (proxy) endpoints; or (c) whether or not this provider
supports outbound (business service) endpoints.

General Classes and Interfaces
This section summarizes general classes and interfaces of the Transport SDK.

This section includes these topics:

Summary of General Classes

Summary of General Interfaces

Note: For detailed information on each class and interface listed in this section, refer to the
AquaLogic Service Bus Javadoc description.

../javadoc/index.html

Genera l C lasses and In te r faces

AquaLogic Service Bus Transport SDK User Guide 5-3

Summary of General Classes
class TransportManagerHelper – Helper class that allows the client to execute some
common tasks with respect to the transport subsystem.

class ServiceInfo – Wrapper class that describes information about a service, such as its
transport configuration and its binding type.

class TransportOptions – Supplies options for sending or receiving a message. There are
two styles for using TransportOptions: multiline setup, and single-line use.

class EndPointOperations – Describes different types of transport endpoint
lifecycle-related events by which the transport provider is notified. Nested classes include:
CommonOperation, Create, Delete, EndPointOperationTypeEnum, Resume, Suspend, and
Update.

class Ref – Uniquely represents a resource, project or folder that is managed by the
Configuration system.

class TransportValidationContext – Container that supplies information to transport
providers that can be used when implementing validation checks of endpoint configuration.

class Diagnostics – Contains a collection of Diagnostic entries relevant to a particular
resource.

class Diagnostic – Represents a particular validation message related to a resource.
Diagnostic objects are generated as a result of validation that is performed when a resource
changes. Such changes in the system trigger validation for the changed resource, as well as
all other resources that (transitively) depend on the changed resource.

class EnvValue – Represents an instance of an environment-dependent value in
configuration data. Environment-dependent values normally change when moving the
configuration from one domain to another. For example the URI of a service could be
different on test domain and production domains.

Summary of General Interfaces
interface TransportManager – A singleton object that provides the main point of
centralization for managing different transport providers, endpoint registration, control,
processing of inbound and outbound messages, and other points.

interface TransportProvider – Represents the central point for management of transport
protocol-specific configuration and runtime properties. There is a single instance of

../javadoc/com/bea/wli/sb/transports/TransportManagerHelper.html
../javadoc/com/bea/wli/sb/services/ServiceInfo.html
../javadoc/com/bea/wli/sb/transports/TransportOptions.html
../javadoc/com/bea/wli/sb/transports/EndPointOperations.html
../javadoc/com/bea/wli/sb/transports/TransportManager.html
../javadoc/com/bea/wli/sb/transports/TransportProvider.html
../javadoc/com/bea/wli/sb/transports/TransportValidationContext.html
../javadoc/com/bea/wli/config/resource/Diagnostics.html
../javadoc/com/bea/wli/config/resource/Diagnostic.html

Transpo r t SDK In te r faces and C lasses

5-4 AquaLogic Service Bus Transport SDK User Guide

TransportProvider for every supported protocol. For example, there is a single instance of
HTTP transport provider, JMS transport provider.

interface BindingTypeInfo – Describes the binding details of the service. The
implementation is a convenience wrapper class around several internal AquaLogic Service
Bus structures. Additional methods can be added as needed by transport providers.

interface TransportWLSArtifactDeployer – The plugin interface for modules that need
to deploy/undeploy/modify WLS related artifacts along with an AquaLogic Service Bus
deployment. For example, in certain cases, WLS queues need to be deployed in response to
the creation of a service.

Tip: For more information, see “When to Implement TransportWLSArtifactDeployer” on
page 3-26.

interface SelfDescribedTransportProvider – Extends TransportProvider. Those transport
providers that generate a service binding type description from a given transport endpoint
need to implement this interface. An example is the EJB transport provider.

interface SelfDescribedBindingTypeInfo – Extends the BindingTypeInfo interface for
those services that are self-described (for example, EJB services).

interface WsdlDescription – Describes the WSDL associated with a registered AquaLogic
Service Bus service.

interface ServiceTransportSender – Sends outbound messages to a registered service
associated with a transport endpoint. TransportProvider.sendMessageAsync() gets an
instance of ServiceTransportSender (which extends TransportSender) from which the
provider can retrieve the payload and metadata for outbound requests.

interface CredentialCallback – Transport providers get an instance of this callback
interface from AquaLogic Service Bus. The transport provider can call its methods to fetch
a credential used for outbound authentication.

interface TransportEndPoint – A transport endpoint is an AquaLogic Service Bus
entity/resource where service messages are originated or targeted.

Source and Transformer Classes and Interfaces
Below is a description of the base Source and Transformer interfaces, along with several concrete
Sources provided with AquaLogic Service Bus and some supporting classes. For more
information, see “Designing for Message Content” on page 2-25.

../javadoc/com/bea/wli/sb/services/BindingTypeInfo.html
../javadoc/com/bea/wli/sb/transports/TransportWLSArtifactDeployer.html
../javadoc/com/bea/wli/sb/transports/SelfDescribedTransportProvider.html
../javadoc/com/bea/wli/sb/services/SelfDescribedBindingTypeInfo.html
../javadoc/com/bea/wli/sb/resources/WsdlDescription.html
../javadoc/com/bea/wli/sb/transports/ServiceTransportSender.html
../javadoc/com/bea/wli/sb/transports/CredentialCallback.html
../javadoc/com/bea/wli/sb/transports/TransportEndPoint.html

Source and T ransfo rmer C lasses and In te r faces

AquaLogic Service Bus Transport SDK User Guide 5-5

Summary of Source and Transformer Interfaces
interface Source – Represents source content in some form. Sources may be transformed
into other Sources through a Transformer instance. At minimum, a Source must natively
support conversion to a byte-based stream via the two methods defined in this interface.
Source may or may not take into account various TransformOptions (for example,
character-set encoding) during serialization.

interface SingleUseSource – A marker interface indicating that a type of Source can only
be consumed once. It also provides one helper method that can be used to determine if the
Source is still “consumable” (valid).

If you create a Source class that implements the Source interface, AquaLogic Service Bus
is free to call the getInputStream() method multiple times, each time retrieving the
input stream from the beginning. If the Source class implements SingleUseSource,
AquaLogic Service Bus calls getInputStream() only once; however, AquaLogic Service
Bus buffers the entire message in memory in this case.

interface Transformer – Transforms one type of Source to another. The instance is
responsible for indicating what types of sources it can convert between. Note that a
transformer is required to support the full cross-product of transformations implied by the
supported input and output sources. In other words, a transformer must support
transforming any supported input source to any supported output source.

Summary of Source and Transformer Classes
class StreamSource – A byte-stream Source whose content comes from an InputStream.
As a byte-stream source, the serialization methods do not heed any transformation options.

Note: Because this stream is backed by an InputStream, that means that this source is a
single-use source. Both serialization methods pull from the same underlying
InputStream, and once that content is consumed, it is gone. The push-based
writeTo() method results in all data being consumed immediately, assuming no
error occurs. The pull-based getInputStream() actually gives the underlying
InputStream directly to the caller.

class ByteArraySource – A byte-stream Source whose content comes from a byte array.
As a byte-stream source, the serialization methods do not heed any transformation options.

class StringSource – A Source that is backed by a single String. Serialization is simply a
character-set encoded version of the character data.

../javadoc/com/bea/wli/sb/sources/Source.html
../javadoc/com/bea/wli/sb/sources/SingleUseSource.html
../javadoc/com/bea/wli/sb/sources/Transformer.html
../javadoc/com/bea/wli/sb/sources/StreamSource.html
../javadoc/com/bea/wli/sb/sources/ByteArraySource.html
../javadoc/com/bea/wli/sb/sources/StringSource.html

Transpo r t SDK In te r faces and C lasses

5-6 AquaLogic Service Bus Transport SDK User Guide

class XmlObjectSource – Apache XBean Source content is represented as an Apache
XBean. The XBean may be typed and so may be accompanied by a SchemaType object
and an associated ClassLoader. However, both of these are entirely optional and the XBean
can be untyped XML.

class DOMSource – A Source whose content comes from a DOM node. The referenced
node may be a full-fledged org.w3c.dom.Document, but it may also be an internal node
in a larger document.

class MFLSource – Represents MFL content. MFL data is essentially binary data that has
some logical structure imposed on it by an MFL definition. CSV is a simple example of
MFL data, but the structure can be arbitrarily complex. The logical/in-memory
representation of the data is an XML document, but its serialized representation is the raw
unstructured binary data.

class SAAJSource – A Source that is backed by a SAAJ SOAPMessage object. A
SAAJSource is typically converted to and from MessageContextSource and MimeSource.

class MimeSource – A Source representing arbitrary content with headers. Essentially this
is a Source that represents a MIME part. Headers must conform to RFC822 whereas the
Source can be any type of source. The serialization format for this Source is a
fully-compliant MIME package. This source is also aware of Content-Transfer-Encoding,
and it will perform the proper encoding of the underlying content stream if the header is
present. Note that this means that the Source provided to the constructor should be in raw
form and not be already encoded.

class MessageContextSource – A Source that represents all message content. The Source
for the message and attachments are left untyped to allow for deferred processing.
Eventually, however, the attachments source will likely be converted into an object and the
message source will likely be converted to a specific typed source such as an
XmlObjectSource or a StringSource.

Note: The serialization format of a MessageContextSource is always a MIME
multipart/related package, irrespective of the native serializations of the message and
attachment sources. However, if this serialized object is needed more than once, it is
best to transform the Source into a MimeSource.

class TransformOptions – Represents a set of transformation options. Instances of this
class are used in conjunction with the Transformer class to influence how an input source
is converted to an output source (for example, a change in character-set encoding from
SHIFT_JIS to EUC-JP). This class is also used by the InputStream/OutputStream methods
of the Source interface, since that is effectively also a transformation between the Source
and the byte-level representation in the InputStream/OutputStream.

../javadoc/com/bea/wli/sb/sources/XmlObjectSource.html
../javadoc/com/bea/wli/sb/sources/DOMSource.html
../javadoc/com/bea/wli/sb/sources/MFLSource.html
../javadoc/com/bea/wli/sb/sources/SAAJSource.html
../javadoc/com/bea/wli/sb/sources/MimeSource.html
../javadoc/com/bea/wli/sb/sources/MessageContextSource.html
../javadoc/com/bea/wli/sb/sources/TransformOptions.html

Metadata and Header Representa t ion fo r Request and Response Messages

AquaLogic Service Bus Transport SDK User Guide 5-7

Metadata and Header Representation for Request and
Response Messages

This section lists classes and interfaces that deal with request and response message metadata
representation. See also “Handling Messages” on page 3-14 and “Designing for Message
Content” on page 2-25.

This section includes these topics:

Runtime Representation of Message Contents

Interfaces

Runtime Representation of Message Contents
abstract class CoLocatedMessageContext – Needs to be extended by a transport provider
that implements optimization for co-located outbound calls to go through a Java method
invocation instead of the transport layer. For an example implementation, see the class
com.bea.alsb.transports.sock.SocketCoLocatedMessageContext.java, which is
part of the Sample Socket Transport described in Chapter 5, “Transport SDK Interfaces and
Classes.” See also “Co-Located Calls” on page 3-17.

abstract class RequestHeaders – Represents a union of standard and user-defined headers
in a given inbound or outbound request message. The set of standard headers is specific to
each transport provider. This is an abstract class to be extended by each transport provider
to implement its version of request headers.

abstract class RequestMetaData<T extends RequestHeaders> – Represents inbound or
outbound request message metadata information (for example, headers, request character
set encoding, and so on.) Transport providers provide an extension of this class that adds
metadata information applicable to the transport provider. For example, HTTP transport
provider adds get/setQueryString(), get/setClientHost() and other methods.

abstract class ResponseHeaders – Represents a union of standard and user-defined
headers in a given inbound or outbound response message. The set of standard headers is
specific to each transport provider. This is an abstract class to be extended by each
transport provider to implement their version of response headers.

abstract class ResponseMetaData<T extends ResponseHeaders> – Represents inbound
or outbound response message metadata information (such as headers, request character set
encoding, and so on.) Transport providers provide an extension of this class that adds

../javadoc/com/bea/wli/sb/transports/CoLocatedMessageContext.html
../javadoc/com/bea/wli/sb/transports/RequestHeaders.html
../javadoc/com/bea/wli/sb/transports/RequestMetaData.html
../javadoc/com/bea/wli/sb/transports/ResponseHeaders.html
../javadoc/com/bea/wli/sb/transports/ResponseMetaData.html

Transpo r t SDK In te r faces and C lasses

5-8 AquaLogic Service Bus Transport SDK User Guide

metadata information applicable to the transport provider. For example, HTTP transport
provider adds get/setHttpResponseCode() and other methods.

Interfaces
interface TransportMessageContext – Most message-oriented middleware (MOM)
products treat messages as lightweight entities that consist of a header and a payload. The
header contains fields used for message routing and identification; the payload contains the
application data being sent. In general, the transport-level message context consists of a
message ID, RequestMetadata, request payload, ResponseMetaData, response payload and
related properties.

interface InboundTransportMessageContext – Inbound Transport Message Context
implements the message context abstraction for incoming messages.

interface OutboundTransportMessageContext – Outbound Transport Message Context
implements the message context abstraction for outgoing messages.

interface ServiceTransportSender – Sends outbound messages to a registered service.
The service is associated with a transport endpoint.

interface TransportSendListener – This is the callback object supplied to the outbound
transport allowing it to signal to the system that response processing can proceed. This
callback object should be invoked on a separate thread from the request message.

User Interface Configuration
This section includes these topics:

Overview

Summary of UI Interfaces

Summary of UI Classes

Overview
Because each transport provider can decide on a list of service endpoint specific configuration
properties to persist, a flexible user interface is required that allows the user to enter
provider-specific configuration properties for each new service endpoint. What follows is a set of
classes and interfaces that allow each transport provider to expose its own properties for the user
to enter as part of AquaLogic Service Bus service definition wizard.

../javadoc/com/bea/wli/sb/transports/TransportSendListener.html
../javadoc/com/bea/wli/sb/transports/TransportMessageContext.html
../javadoc/com/bea/wli/sb/transports/InboundTransportMessageContext.html
../javadoc/com/bea/wli/sb/transports/OutboundTransportMessageContext.html
../javadoc/com/bea/wli/sb/transports/ServiceTransportSender.html

User I n te r face Conf igurat ion

AquaLogic Service Bus Transport SDK User Guide 5-9

This section lists interfaces and classes used to develop the user interface for a new transport.

Summary of UI Interfaces
interface TransportUIBinding – Represents an object responsible for rendering
provider-specific UI pages used during the service definition, summary, as well as
validation of transport provider specific endpoint configurations.

Summary of UI Classes
class TransportUIContext – Supplies options for the transport provider specific user
interface. It is passed by AquaLogic Service Bus Console to each transport provider.

class TransportUIGenericInfo – Holds transport specific UI information for the common
transport page in the AquaLogic Service Bus Service Definition wizard.

class TransportUIFactory – Provides factory methods for creating a Transport Edit Field
and different kinds of Transport UI objects associated with the field. Also provides some
helper methods for accessing values in these objects.

class TransportEditField – Represents a single editable UI element in the
provider-specific portion of AquaLogic Service Bus Console service registration wizard.

class TransportViewField – Represents a single read-only UI element in the
provider-specific portion of the service summary page AquaLogic Service Bus Console
service registration wizard.

class TransportUIError – Returns validation errors to the AquaLogic Service Bus
Console.

../javadoc/com/bea/wli/sb/transports/ui/TransportUIBinding.html
../javadoc/com/bea/wli/sb/transports/ui/TransportUIContext.html
../javadoc/com/bea/wli/sb/transports/ui/TransportUIGenericInfo.html
../javadoc/com/bea/wli/sb/transports/ui/TransportUIFactory.html
../javadoc/com/bea/wli/sb/transports/ui/TransportEditField.html
../javadoc/com/bea/wli/sb/transports/ui/TransportViewField.html
../javadoc/com/bea/wli/sb/transports/ui/TransportUIError.html

Transpo r t SDK In te r faces and C lasses

5-10 AquaLogic Service Bus Transport SDK User Guide

AquaLogic Service Bus Transport SDK User Guide 6-1

C H A P T E R 6

Sample Socket Transport Provider

This chapter explains how to build and run the sample socket transport provider. This sample is
installed along with AquaLogic Service Bus. The sample serves as an example implementation
of a custom transport provider and the sample source code is available to you.

This chapter includes these topics:

Sample Socket Transport Provider Design

Sample Location and Directory Structure

Building and Deploying the Sample

Start and Test the Socket Server

Configuring the Socket Transport Sample

Testing the Socket Transport Provider

Sample Socket Transport Provider Design
The primary purpose of the sample socket transport provider is to serve as an example transport
provider implementation. This publicly available sample demonstrates the implementation and
configuration details of the Transport SDK.

This section includes these topics:

Concepts Illustrated by the Sample

Basic Architecture of the Sample

Configuration Properties

Sample Socke t T ranspor t P rov ide r

6-2 AquaLogic Service Bus Transport SDK User Guide

Concepts Illustrated by the Sample
The sample transport is designed to send and receive streamed data to and from a configured TCP
socket in AquaLogic Service Bus. The sample transport is intended to illustrate the following
Transport SDK concepts:

Implementing the set of Transport SDK APIs that are required to build a custom transport.

Performing transport endpoint validations, such as checking that no socket endpoint is
listening on the configured address.

Implementing several UI configuration options, including socket properties and message
patterns.

Implementing a one-way or synchronous request-response message pattern.

Using POJOs (Plain Old Java Objects) for metadata and headers of endpoint requests and
responses.

Showing how streaming is used in the AquaLogic Service Bus pipeline.

Basic Architecture of the Sample
Figure 6-1 shows the basic architecture of the sample socket transport provider. Any client can
connect to the server socket. Data is received at the server socket and passes through the pipeline.
The response comes back through the outbound transport. The response is finally sent back to the
inbound transport and back to the client.

Sample Socket T ranspor t P rov ide r Des ign

AquaLogic Service Bus Transport SDK User Guide 6-3

Figure 6-1 Sample Socket Transport Architecture

Configuration Properties
Figure 6-2 illustrates the configuration properties for the transport endpoint. These properties are
configured in the schema file: SocketTransport.xsd. See “Sample Location and Directory
Structure” on page 6-5 for information on the location of this file. This file allows you to extend
the basic set of properties defined in the common schema provided with the SDK. Refer to the
SocketTransport.xsd file for information on each of the properties.

Tip: See also “4. Define Transport-Specific Artifacts” on page 3-6 for more information on
these configuration properties.

Transport
Provider

Transport
Provider

Sample Socke t T ranspor t P rov ide r

6-4 AquaLogic Service Bus Transport SDK User Guide

Figure 6-2 SocketEndpointConfiguration Properties

Also in the SocketTransport.xsd file are the request/response header and metadata properties,
as illustrated in Figure 6-3. Refer to the SocketTransport.xsd file for more information on
these properties.

Figure 6-3 Request/Response Header and Metadata Configurations

Sample Locat i on and D i rec to ry S t ructure

AquaLogic Service Bus Transport SDK User Guide 6-5

Sample Location and Directory Structure
The sample socket transport provider is installed with AquaLogic Service Bus and is located in
the following directory:

BEA_HOME/weblogic92/samples/servicebus/sample-transport

where BEA_HOME is the directory in which you installed AquaLogic Service Bus.

Figure 6-4 shows the directory structure for the sample socket transport provider. This section
briefly describes the folders in the sample project. You can use this directory structure as a model
for developing your custom transport provider.

Figure 6-4 Sample Transport Project Structure

Table 6-1 lists and briefly describes the sample-transport directories.

Table 6-1 Sample Transport Provider Directories

build Directory which contains all the class files

config Configuration files directory.

SocketConfig.xml – Socket transport provider configuration that is used by the
Transport SDK.

l10n Contains Internationalization files:

SocketTransportMessages.xml – Configuration file for text messages which are
displayed on the Aqualogic Service Bus Console.

SocketTransportTextMessages.xml

Sample Socke t T ranspor t P rov ide r

6-6 AquaLogic Service Bus Transport SDK User Guide

The following Ant build files are also located in the sample-transport directory:

build.properties – Properties file for Ant.

build.xml – An Ant build file with different targets for compile, build, and deploy.

Building and Deploying the Sample
This section explains how to build and deploy the sample transport provider.

Setting Up the Environment
1. Create a new domain or use one of the preconfigured domains that are installed with

AquaLogic Service Bus.

2. Set the domain environment by running the following script:

DOMAIN_HOME/bin/setDomainEnv.cmd (setDomainEnv.sh on a UNIX system)

Building the Transport
To build the socket transport, do the following:

1. In a command window, go to the sample home directory:

BEA_HOME/weblogic92/samples/servicebus/sample-transport

lib Directory which contains the sample deployment unit sock_transport.ear

META-INF Contains application deployment descriptor files:

application.xml – J2EE application descriptor file

weblogic-application.xml – WebLogic application descriptor file

schemas Contains the relevant schemas defined for this transport:

SocketTransport.xsd – Describes Socket Endpoint Request/Response
Metadata/headers

src Source tree of the sample transport

test (not shown) Test files directory:
src – Source tree for test server and client

Table 6-1 Sample Transport Provider Directories

Star t and Test the Socke t Se rve r

AquaLogic Service Bus Transport SDK User Guide 6-7

where BEA_HOME is the directory in which you installed AquaLogic Service Bus.

2. Execute the following command: ant build-jar

This command compiles all the source files, creates sock_transport.ear, and puts it in the
directory: BEA_HOME/weblogic92/servicebus/lib

Deploying the Sample Transport Provider
To deploy the sample transport provider on a server, do the following:

1. Set the following variables in sample-transport/build.properties:
wls.hostname

wls.port

wls.username

wls.password

wls.server.name

2. Deploy the transport provider on the server by running the following command:

ant deploy

Start and Test the Socket Server
The sample project includes a simple socket server and a client to test the server. You can use this
socket server to test the socket transport provider.

This section includes the following topics:

Start the Socket Server

Test the Socket Transport

Start the Socket Server
Run the following command to start the external service, which is a server socket that listens on
a specified port and receives/sends the messages.

java -classpath .\test\build\test-client.jar -Dfile-encoding=utf-8

-Drequest-encoding=utf-8 com.bea.alsb.transports.sample.test.TestServer

<port> <message-file-location>

where:

Sample Socke t T ranspor t P rov ide r

6-8 AquaLogic Service Bus Transport SDK User Guide

port – The port number at which ServerSocket is listening, which is the port number in
the business service.

message-file-location – (optional) The location of the message-file which will be sent
as a response to the business service.

 file-encoding – A system property that is the encoding of the file. (default = utf-8)

 request-encoding – The encoding of the request that is sent by the socket business
service. (default = utf-8)

Test the Socket Transport
Run the following command to start the service, which is a client to a configured socket
proxy-service. It sends a message and receives the response from AquaLogic Service Bus.

java -classpath .\test\build\test-client.jar -Dfile-encoding=utf-8

-Dresponse-encoding=utf-8 com.bea.alsb.transports.sample.test.TestClient

<host-name> <port> <thread-ct> <message-file-location>

where:

host-name – The host name of the AquaLogic Service Bus server.

port – The port number at which the proxy service is listening.

thread-ct – The number of clients that can send a message to AquaLogic Service Bus.

message-file-location – (optional) The location of the message file that will be sent
as a response to the business service.

file-encoding – An optional argument specifying the encoding of the file. (default =
utf-8)

response-encoding – The encoding of the response received from the socket proxy
service. (default = utf-8)

Configuring the Socket Transport Sample
The sample consists of a test server and a test client. The client sends a message to the server.
You configure AquaLogic Service Bus to receive and process the message.

This section describes these tasks:

Create a New Project

Conf igur ing the Socke t T ranspo r t Sample

AquaLogic Service Bus Transport SDK User Guide 6-9

Create a Business Service

Create a Proxy Service

Edit the Pipeline

Create a New Project
1. Start the AquaLogic Service Bus Console.

2. Open the Project Explorer.

3. In the Change Center, click Edit.

4. In the Projects panel, enter SocketTest in the Enter New Project Name Field, as shown in
Figure 6-5.

Figure 6-5 Adding a New Project

5. Click Add Project. The new project appears in the project table.

Create a Business Service
Create a business service to talk to the server.

1. Click the SocketTest project name in the project table. The SocketTest panel appears.

2. From the Create Service dropdown menu, select Business Service, as shown in Figure 6-6.
The General Configuration panel appears.

Sample Socke t T ranspor t P rov ide r

6-10 AquaLogic Service Bus Transport SDK User Guide

Figure 6-6 Creating a Business Service

3. In the General Configuration panel, enter SocketBS in the Service Name field.

4. Be sure Any XML Service is selected in the Service Type list, and click Next.

5. From the Protocol menu, select socket, as shown in Figure 6-7.

Figure 6-7 Choosing a Protocol

6. In the Endpoint URI field, enter: tcp://localhost:7031, and click Add.

7. Click Next.

8. In the next panel, accept the defaults by clicking Next.

9. After viewing the Summary panel, click Save.

10. In the Change Center, click Activate.

Conf igur ing the Socke t T ranspo r t Sample

AquaLogic Service Bus Transport SDK User Guide 6-11

Create a Proxy Service
In this section, you create a proxy service.

1. From the Create Resource menu, select Proxy Service, as shown in Figure 6-8.

Figure 6-8 Creating a Proxy Service

2. In the General Configuration panel, enter SocketProxy in the Service Name field.

3. Be sure that Any XML Service is selected in the Service Type list, and click Next.

4. From the Protocol menu, select socket.

5. In the Endpoint URI field, enter tcp://7032, and click Next.

6. In the next panel, accept the defaults and click Next.

7. After viewing the Summary panel, click Save.

8. In the Change Center, click Activate.

9. Click Submit.

Edit the Pipeline
Now that the business and proxy services are defined, you can edit the pipeline to route incoming
messages to the business service.

1. In the Change Center, click Create.

2. In the Resources section, click the View Message Flow icon in the SocketProxy row, as
shown in Figure 6-9.

Sample Socke t T ranspor t P rov ide r

6-12 AquaLogic Service Bus Transport SDK User Guide

Figure 6-9 Selecting the Message Flow Icon

3. In the Edit Message Flow window, click the SocketProxy icon and select Add Route from
the menu, as shown in Figure 6-10.

Figure 6-10 Editing the Message Flow

4. Click the RouteNode1 icon and select Edit Route from the menu.

5. In the Edit Stage Configuration window, click Add an Action.

6. In the Route Node window, click Add an Action and select Communication > Routing from
the menu, as shown in Figure 6-11.

Figure 6-11 Adding an Action

7. In the next panel, select <Service>.

8. In the Select Service window, select SocketBS from the list, as shown in Figure 6-12, and
click Submit.

Test ing the Socket T ranspor t P rov ider

AquaLogic Service Bus Transport SDK User Guide 6-13

Figure 6-12 Selecting the Service to Route To

9. In the Edit Stage Configuration window, click Save.

10. Optionally, click the RouteNode1 icon and change the name to SocketBS.

11. Click Save.

12. In the Change Center, click Activate, and then click Submit.

Testing the Socket Transport Provider
In this section you test the transport provider using AquaLogic Service Bus Console.

1. Start the test server, as explained previously in “Start the Socket Server” on page 6-7.

2. In the Project Explorer, click SocketTest.

3. In the SocketProxy row of the Resources table, click the Launch Test Console icon, as shown
in Figure 6-13.

Figure 6-13 Starting the Test Console

Sample Socke t T ranspor t P rov ide r

6-14 AquaLogic Service Bus Transport SDK User Guide

4. In the Test Console, enter any valid XML stanza in the text area, or use the Browse button to
select a valid XML file on the local system. For example, in Figure 6-14, a simple XML
expression <x/> is entered in the text area.

Figure 6-14 Test Console

5. Click Execute. If the test is successful, information similar that shown in Figure 6-15 appears
in the Test Console. In addition, the XML text input into the Test Console is echoed in the
server console.

Test ing the Socket T ranspor t P rov ider

AquaLogic Service Bus Transport SDK User Guide 6-15

Figure 6-15 Successful Test

6. Close the Test Console.

Sample Socke t T ranspor t P rov ide r

6-16 AquaLogic Service Bus Transport SDK User Guide

AquaLogic Service Bus Transport SDK User Guide A-1

A P P E N D I X A

UML Sequence Diagrams

This chapter contains UML sequence diagrams that describe the flow of method calls through
AquaLogic Service Bus runtime.

AquaLogic Service Bus Runtime Inbound Messages
The sequence diagram in Figure A-1 describes the flow of inbound messages through AquaLogic
Service Bus runtime.

First, an inbound artifact, such as an HTTP Servlet, intercepts a client request. The transport
provider creates a data structure called InboundTransportMessageContext. The message context
packages headers from the request into a metadata object, converting the payload from an HTTP
stream into a specific AquaLogic Service Bus source object. The transport provider calls the
transport manager to receive the message. The transport manager preprocesses the message and
passes the message to the AquaLogic Service Bus runtime for processing. The AquaLogic
Service Bus runtime asks for the message context’s service, service version, and other
information. It also asks about the metadata and payload, which are required for processing. The
runtime asks the MessageContext to create the response metadata and the response payload, and
then calls close(). The response is sent back to the client.

UML Sequence D iagrams

A-2 AquaLogic Service Bus Transport SDK User Guide

Figure A-1 Inbound Messages at Runtime

AquaLogic Service Bus Runtime Outbound Messages
The sequence diagram shown in Figure A-2 describes the flow of outbound messages through
AquaLogic Service Bus runtime.

The AquaLogic Service Bus runtime routes the message to an external service. The transport
provider creates metadata for the request and creates a TransportSender object, which includes
information about the payload and quality of service and retry information. Next, the provider
calls TransportManager (the central hub for the transport subsystem) to send the message
asynchronously. TransportManager calls the transport provider to send the message. The
transport provider creates an OutboundTransportMessageContext. The transport provider then
asks about the metadata and payload and other information and takes appropriate action. For

AquaLog ic Se rv i ce Bus Runt ime Outbound Messages

AquaLogic Service Bus Transport SDK User Guide A-3

example, for a JMS message, the transport provider uses the JMS API to populate the headers and
the payload and calls the protocol-specific send operation.

When a response comes in, the transport provider calls the TransportSendListener object.
Eventually the transport manager invokes the response pipeline. After pipeline actions are
executed, the outbound endpoint is closed.

UML Sequence D iagrams

A-4 AquaLogic Service Bus Transport SDK User Guide

Figure A-2 Outbound Messages at Runtime

Design Time Service Registration
During service registration, a wizard guides you through a number of AquaLogic Service Bus
Console pages. Figure A-3 describes the service registration process. The basic steps include:

Specifying the name of the service, the service binding type, and other information.

Selecting from a dropdown list of transport providers (protocols). The AquaLogic Service
Bus Console calls the transport manager to retrieve an object for each one of these entries
in the list and gets a UI binding from each transport provider. This binding answers
questions that the console requests, such as what is or is not supported. This step allows the
console page to be populated with appropriate information.

Des ign T ime Serv i ce Reg is t ra t ion

AquaLogic Service Bus Transport SDK User Guide A-5

Entering transport-specific information. A transport provider specific form is generated
automatically. The transport provider controls the contents of the page.

Reviewing a summary page.

Finally, the transport provider is contacted and asked to validate the endpoint configuration and
register the new endpoint. The endpoint is only created after activation occurs.

Figure A-3 Service Registration

UML Sequence D iagrams

A-6 AquaLogic Service Bus Transport SDK User Guide

	Contents
	Introduction
	Purpose of this Guide
	Audience for this Guide
	Overview of this Guide
	Related Information

	Design Considerations
	What is a Transport Provider?
	What is the Transport SDK?
	Purpose of the SDK
	Transport SDK Features
	Handling Inbound and Outbound Messages
	Deploying Transport-Related Artifacts
	Processing Messages Asynchronously

	Transport Provider Modes
	Related Features
	Load Balancing
	Monitoring and Metrics

	Do You Need to Develop a Custom Transport Provider?
	When to Use the Transport SDK
	When Alternative Approaches are Recommended

	Transport Provider Components
	Overview
	Design-Time Component
	Runtime Component

	The Transaction Model
	Overview of Transport Endpoint Properties
	Transactional vs. Non-Transactional Endpoints
	Supported Message Patterns

	Support for Synchronous Transactions
	Use Case 1 (Response Pipeline Processing)
	Use Case 2 (Service Callout Processing)
	Use Case 3 (Suspending Transactions)
	Use Case 4 (Multiple URIs)

	The Security Model
	Inbound Request Authentication
	Outbound Request Authentication
	Outbound Username/Password Authentication
	Outbound SSL Client Authentication (Two-Way SSL)
	Outbound JAAS Subject Authentication

	Link-Level or Connection-Level Credentials
	Uniform Access Control to Proxy Services
	Identity Propagation and Credential Mapping

	The Threading Model
	Overview
	Inbound Request Message Thread
	Outbound Response Message Thread
	Support for Asynchrony
	Publish and Service Callout Threading

	Designing for Message Content
	Overview
	Sources and Transformers
	Sources and the MessageContext Object
	Built-In Transformations

	Developing a Transport Provider
	Development Roadmap
	Planning
	Developing
	Packaging and Deploying

	Before You Begin
	Basic Development Steps
	1. Review the Transport Framework Components
	2. Create a Directory Structure for Your Transport Project
	3. Create an XML Schema File for Transport-Specific Artifacts
	4. Define Transport-Specific Artifacts
	EndPointConfiguration
	RequestMetaDataXML
	RequestHeadersXML
	ResponseMetaDataXML
	ResponseHeadersXML

	5. Define the XMLBean TransportProviderConfiguration
	6. Implement the Transport Provider User Interface
	7. Implement the Runtime Interfaces
	8. Deploy the Transport Provider

	Important Development Topics
	Handling Messages
	Overview
	Sending and Receiving Message Data
	Request and Response Metadata Handling
	Character Set Encoding
	Co-Located Calls
	Returning Outbound Responses to AquaLogic Service Bus Runtime

	Transforming Messages
	Working with TransportOptions
	Inbound Processing
	Outbound Processing
	Request Mode

	Handling Errors
	Case 1
	Case 2
	Case 3

	Publishing Proxy Services to a UDDI Registry
	When to Implement TransportWLSArtifactDeployer

	Deploying a Transport Provider
	Packaging the Transport Provider
	Deploying the Transport Provider
	Undeploying a Transport Provider
	Deploying to a Cluster

	Transport SDK Interfaces and Classes
	Introduction
	Schema-Generated Interfaces
	General Classes and Interfaces
	Summary of General Classes
	Summary of General Interfaces

	Source and Transformer Classes and Interfaces
	Summary of Source and Transformer Interfaces
	Summary of Source and Transformer Classes

	Metadata and Header Representation for Request and Response Messages
	Runtime Representation of Message Contents
	Interfaces

	User Interface Configuration
	Overview
	Summary of UI Interfaces
	Summary of UI Classes

	Sample Socket Transport Provider
	Sample Socket Transport Provider Design
	Concepts Illustrated by the Sample
	Basic Architecture of the Sample
	Configuration Properties

	Sample Location and Directory Structure
	Building and Deploying the Sample
	Setting Up the Environment
	Building the Transport
	Deploying the Sample Transport Provider

	Start and Test the Socket Server
	Start the Socket Server
	Test the Socket Transport

	Configuring the Socket Transport Sample
	Create a New Project
	Create a Business Service
	Create a Proxy Service
	Edit the Pipeline

	Testing the Socket Transport Provider

	UML Sequence Diagrams
	AquaLogic Service Bus Runtime Inbound Messages
	Figure A-1 Inbound Messages at Runtime

	AquaLogic Service Bus Runtime Outbound Messages
	Figure A-2 Outbound Messages at Runtime

	Design Time Service Registration
	Figure A-3 Service Registration

