

BlueDragon,
BEA WebLogic® Edition 6.2.1

CFML Enhancements
Guide

BlueDragon, BEA WebLogic® Edition
6.2.1

CFML Enhancements Guide

Published April, 2006

Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.

This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is permitted unless you
have entered into a license agreement with BEA authorizing such use. This document is protected by copyright and may not be copied
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form, in whole or in part, without prior consent,
in writing, from BEA Systems, Inc.
Information in this document is subject to change without notice and does not represent a commitment on the part of BEA Systems. THE
DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION,
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA SYSTEMS DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE
USE, OF THE DOCUMENT IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems,
Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA
AquaLogic Service Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager,
BEA MessageQ, BEA WebLogic Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic
Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter
for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization
Server, BEA WebLogic Personal Messaging API, BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic
Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, Dev2Dev, Liquid Computing, and Think Liquid are
trademarks of BEA Systems, Inc. BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA Self Assessment are
service marks of BEA Systems, Inc.
All other names and marks are property of their respective owners.

Copyright © 1997-2006 New Atlanta Communications, LLC. All rights reserved.
100 Prospect Place • Alpharetta, Georgia 30005-5445

Phone 678.256.3011 • Fax 678.256.3012
http://www.newatlanta.com

BlueDragon is a trademark of New Atlanta Communications, LLC. ServletExec and JTurbo are registered trade-
marks of New Atlanta Communications, LLC in the United States. Java and Java-based marks are trademarks of
Sun Microsystems, Inc. in the United States and other countries. ColdFusion is a registered trademark of Macrome-
dia, Inc. in the United States and/or other countries, and its use in this document does not imply the sponsorship,
affiliation, or endorsement of Macromedia, Inc. All other trademarks and registered trademarks herein are the
property of their respective owners.

This product includes software developed by the Apache Software Foundation (http://www.apache.org).

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated
into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical,
chemical, manual, or otherwise without the prior written consent of New Atlanta Communications, LLC.

New Atlanta Communications, LLC makes no representations or warranties with respect to the contents of this
document and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose.

BlueDragon, BEA WebLogic Edition 6.2.1 CFML Enhancements Guide i

http://www.newatlanta.com/

Further, New Atlanta Communications, LLC reserves the right to revise this document and to make changes from
time to time in its content without being obligated to notify any person of such revisions or changes.

The Software described in this document is furnished under a Software License Agreement (“SLA”). The Software
may be used or copied only in accordance with the terms of the SLA. It is against the law to copy the Software on
tape, disk, or any other medium for any purpose other than that described in the SLA.

BlueDragon, BEA WebLogic Edition 6.2.1 CFML Enhancements Guide ii

Contents

1 INTRODUCTION ...1
1.1 About This Manual... 1
1.2 BlueDragon Product Configurations .. 1
1.3 Technical Support .. 2
1.4 Additional Documentation... 2

2 OVERVIEW OF ENHANCEMENTS ..2
2.1 Enhanced Features In BlueDragon... 3
2.2 CFML Enhancements in ColdFusion 5 and MX ... 4

2.2.1 CFML Enhancements Added in CF 5 ... 4
2.2.2 CFML Enhancements Added in CF MX 6/6.1.. 4

3 CFML VARIABLES ...5
3.1 Variable Names... 5
3.2 SERVER Variables .. 5

4 CFML TAGS..5
4.1 Enhancements Regarding ColdFusion Components (CFCs).. 5
4.2 Enhanced CFML Tags ... 6

4.2.1 CFARGUMENT ... 6
4.2.2 CFCOLLECTION... 6
4.2.3 CFCOMPONENT ... 6
4.2.4 CFCONTENT ... 6
4.2.5 CFDUMP .. 6
4.2.6 CFERROR, CFTRY/CFCATCH, and try/catch.. 7
4.2.7 CFFLUSH ... 8
4.2.8 CFFUNCTION.. 8
4.2.9 CFINCLUDE .. 8
4.2.10 CFINDEX.. 9
4.2.11 CFINVOKE... 10
4.2.12 CFLOCK ... 10
4.2.13 CFMAIL.. 11
4.2.14 CFMAILPARAM.. 11
4.2.15 CFOBJECT ... 11
4.2.16 CFOBJECTCACHE.. 11
4.2.17 CFPROCPARAM ... 11
4.2.18 CFPROCESSINGDIRECTIVE SuppressWhiteSpace Attribute... 12
4.2.19 CFQUERY .. 12
4.2.20 CFQUERYPARAM .. 15
4.2.21 CFSEARCH .. 15
4.2.22 CFSET (Multi-dimensional arrays) ... 15
4.2.23 CFXML ... 15

4.3 New CFML Tags... 15
4.3.1 CFASSERT ... 15
4.3.2 CFBASE.. 16
4.3.3 CFCACHECONTENT.. 17
4.3.4 CFCONTINUE.. 18

BlueDragon, BEA WebLogic Edition 6.2.1 CFML Enhancements Guide iii

4.3.5 CFDEBUGGER .. 19
4.3.6 CFFORWARD .. 19
4.3.7 CFIMAGE... 20
4.3.8 CFIMAP.. 22
4.3.9 CFMAPPING .. 28
4.3.10 CFPAUSE ... 29
4.3.11 CFTHROTTLE ... 29
4.3.12 CFXMLRPC.. 30
4.3.13 CFZIP and CFZIPPARAM ... 31

CFML FUNCTIONS..34
4.4 Enhanced CFML Functions .. 34

4.4.1 CreateObject.. 34
4.4.2 ListToArray... 34
4.4.3 ParagraphFormat ... 34
4.4.4 StructNew.. 34
4.4.5 XMLSearch ... 35
4.4.6 XMLParse ... 35
4.4.7 XMLTransform ... 35

4.5 New CFML Functions.. 35
4.5.1 Assert... 35
4.5.2 GetHttpContext ... 36
4.5.3 ListRemoveDuplicates .. 36
4.5.4 QueryDeleteRow... 36
4.5.5 QuerySort .. 37
4.5.6 Render ... 37

5 MISCELLANEOUS ENHANCEMENTS ..39
5.1 Option to Support Relative Paths in Tags Requiring Absolute.. 39
5.2 Integrating JSP/Servlets Alongside CFML Templates ... 39
5.3 Integrating ASP.NET Alongside CFML Templates .. 39
5.4 XML Handling.. 40

5.4.1 Case Sensitivity ... 40
5.4.2 Assignment of New Nodes.. 40
5.4.3 XML Array Processing ... 41

5.5 Application.cfm Processing Enhancements.. 41
5.5.1 Application.cfm Processed Even When Requested Template Does Not Exist.......................... 41
5.5.2 Search Process for Application.cfm Stops at Docroot... 41

5.6 WhiteSpace Compression .. 42
5.7 Error handling enhancements... 42

BlueDragon, BEA WebLogic Edition 6.2.1 CFML Enhancements Guide iv

BlueDragon, BEA WebLogic® Edition
6.2.1

CFML Enhancements Guide
1 Introduction

lu
ca
Bl

system, w
B eDragon is family of server-based products for deploying dynamic web appli-

tions developed using the ColdFusion® Markup Language (CFML).
ueDragon features native technology platform integration on the operating
eb server, and database of your choice. CFML is a popular server-side,

template-based markup language that boasts a rich feature set and renowned ease-of-use.

In addition to CFML, some BlueDragon editions also implement the Java Servlet API
and JavaServer Pages™ (JSP) standards defined by Sun Microsystems, Inc. as compo-
nent technologies of the Java 2 Platform, Enterprise Edition (J2EE™). BlueDragon for
the Microsoft .NET Framework also integrates with ASP.NET pages and .NET compo-
nents.

BlueDragon provides a high-performance, reliable, standards-based environment for
hosting CFML web applications, and enables the integration of CFML with J2EE and
Microsoft .NET technologies.

1.1 About This Manual
The BlueDragon, BEA WebLogic Edition 6.2.1 CFML Enhancements Guide presents
information about the enhanced CFML tags and functions enabled in the implementation
of CFML in BlueDragon compared to what developers may expect when using
Macromedia ColdFusion MX 6.1. Developers currently working with ColdFusion should
also be aware of differences in CFML compatibility, which are discussed in the
associated manual, BlueDragon, BEA WebLogic Edition 6.2.1 CFML Compatibility
Guide.

1.2 BlueDragon Product Configurations
BlueDragon is currently available in four product configurations. Details about these con-
figurations—BlueDragon Server, BlueDragon Server JX, BlueDragon for J2EE Servers,
and BlueDragon for the Microsoft .NET Framework—are provided in other related
manuals, discussed in the “Additional Documentation” section below. Except where ex-
plicitly noted, all references to “BlueDragon” in this document refer to all product
configurations.

BlueDragon 6.2.1 CFML Enhancements Guide 1

1.3 Technical Support
If you’re having difficulty installing or using BlueDragon, visit the self-help section of
the New Atlanta web site for assistance:

http://www.newatlanta.com/products/bluedragon/self_help/index.cfm

In the self-help section, you’ll find documentation, FAQs, a feature request form, and a
supportive mailing list staffed by both customers and New Atlanta engineers.

Details regarding paid support options, including online-, telephone-, and pager-based
support are available from the New Atlanta web site:

http://www.newatlanta.com/biz/support/index.jsp

For BEA Systems technical support, go to:

http://support.bea.com

1.4 Additional Documentation
The other manuals available in the BlueDragon documentation library are:

• BlueDragon, WebLogic Edition 6.2.1 Compatibility Guide

• BlueDragon 6.2.1 Server and Server JX Installation Guide

• BlueDragon, WebLogic Edition 6.2.1 User Guide

• BlueDragon, WebLogic Edition Deploying CFML on J2EE Application Servers

• Deploying CFML on ASP.NET and the Microsoft .NET Framework

• Integrating CFML with ASP.NET and the Microsoft .NET Framework

Each offers useful information that may be relevant to developers, installers, and admin-
istrators. BlueDragon, BEA WebLogic Edition documents are available at edocs.bea.com
and additional documents are available in PDF format from New Atlanta’s web site:

http://www.newatlanta.com/products/bluedragon/self_help/docs/index.cfm

2 Overview of Enhancements
As you consider the many enhancements that BlueDragon offers, some will be more
compelling than others. While this document presents them in alphabetical order by tags
and functions, the following highlights some of the more significant enhancements.

Additionally, developers moving to BlueDragon from older releases of ColdFusion will
enjoy the benefits of the language enhancements introduced in ColdFusion 5 and MX, as

BlueDragon 6.2.1 CFML Enhancements Guide 2

http://www.newatlanta.com/products/bluedragon/self_help/index.cfm
http://www.newatlanta.com/biz/support/index.jsp
http://support.bea.com/
http://edocs.bea.com/
http://www.newatlanta.com/products/bluedragon/self_help/docs/index.cfm

discussed briefly later in this section. These offer additional, if indirect, benefits of
upgrading to BlueDragon from older releases of ColdFusion.

2.1 Enhanced Features In BlueDragon
Among the most compelling enhancements that will appeal to all CFML developers are

• CFCs enhancements (they can be serialized, duplicated, and more)

• Application-level path mapping with CFMAPPING

• Site spidering via CFINDEX or admin console

• Support for CFQUERYPARAM within a Cached Query

• Enhanced query caching and cache management (see CFQUERY)

• Enhanced page content caching (including caching to disk, see CFCACHECONTENT)

• Ability to render CFML dynamically from a variable or query (see Render())

• Ability to send CFCONTENT data from a variable (like a database image column)

• Easy include of JSP or ASP.NET page output with CFINCLUDE PAGE

• Easy transfer of control to another CFML, JSP, or ASP.NET page via CFFORWARD

• Error logging and processing (see CFERROR)

• Available CFML execution tracing with CFDEBUGGER

• Various CFDUMP enhancements

• Support for assertions (see CFASSERT and Assert())

There are still other enhancements that might appeal to many developers:

• Support for request throttling (see CFTHROTTLE)

• Image processing via CFIMAGE

• Zip file creation and extraction using CFZIP

• IMAP mail processing with CFIMAP

• XMLRPC request processing using CFXMLRPC

• Enhanced page buffering via CFFLUSH

• Enhanced mail file attachments via CFMAILPARAM

• Enhanced control over CFSEARCH and enhanced metadata in returned results

• Freedom to use relative paths in many tags, using URIDIRECTORY attribute

• Ability to continue a CFLOOP with CFCONTINUE

• Ability to temporarily halt page execution with CFPAUSE

BlueDragon 6.2.1 CFML Enhancements Guide 3

• Ability to sort query results with QuerySort()

• Ability to delete rows from a query resultset using QueryDeleteRow()

• Ability to remove duplicate list entries with ListRemoveDuplicates()

• Ability to pass in XSTL arguments on XMLTransform()

• Ability to process Application.cfm even when a requested file is not present

These are just some of the enhancements. There are dozens more, as discussed
throughout this document.

Finally, the .NET edition of BlueDragon offers many unique enhancements. While many
of them are about integration with ASP.NET and the .NET Framework, as spelled out in
the manual, Integrating CFML with ASP.NET and the Microsoft .NET Framework, some
are simply enhancements to CFML that could benefit traditional CFML developers:

• Support for DSN-less connections in database tags like CFQUERY, CFSTOREDPROC

• Extension of CFOBJECT, createObject() to call .NET objects

• Support of TIMEOUT on CFINVOKE of Web Services

• Support of DBVARNAME on CFSTOREDPROC to support/validate named arguments

• Available GetHttpContext function to provide additional request metadata

2.2 CFML Enhancements in ColdFusion 5 and MX
Finally, developers upgrading from earlier releases of ColdFusion, especially ColdFusion
5 and before, should bear in mind that BlueDragon brings nearly all the enhancements
that were added in CF5 and CFMX.

2.2.1 CFML Enhancements Added in CF 5
For instance, developers upgrading from releases before ColdFusion 5 should seek
available resources that discuss the new language features added in that release, which
are available in BlueDragon, including CFDUMP, CFSAVECONTENT, CFFLUSH, CFLOG, and
more, as well as functions like IsCustomFunction() and GetHTTPRequestData() and
others.

2.2.2 CFML Enhancements Added in CF MX 6/6.1
Developers upgrading from ColdFusion 5 and before should similarly seek available
resources that discuss the many new language features introduced in CFMX, also
available in BlueDragon, including CFCOMPONENT, CFFUNCTION, CFXML, and more, as well
as functions like GetHTTPContext, URLSessionFormat, and others.

BlueDragon 6.2.1 CFML Enhancements Guide 4

3 CFML Variables

3.1 Variable Names
In ColdFusion, a variable name must start with a letter and can only contain letters, num-
bers and the underscore (_) character. In BlueDragon, a variable name may additionally
contain the dollar sign ($) character and a variable name may start with an underscore,
dollar sign, or letter.

3.2 SERVER Variables
BlueDragon offers its own identifying structure within the predefined Server scope, as
Server.BlueDragon, which contains the following variables:

Server.BlueDragon.Edition identifies the edition:

6 - BlueDragon Server (FREE edition)
7 - BlueDragon Server JX
8 - BlueDragon/J2EE
9 - BlueDragon for .NET

Server.BlueDragon.Mode identifies the license mode:

0 – development
1 - evaluation (time-limited)
2 - full production

As in ColdFusion, these pre-defined Server scope variables are read-only.

4 CFML Tags

4.1 Enhancements Regarding ColdFusion Components (CFCs)
There are a few enhancements in CFC (ColdFusion Component) processing in
BlueDragon:

• CFC instances can be duplicated using the Duplicate() function

• CFC instances can be serialized (useful with J2EE and .NET session support, and
where session replication or persistence requires this)

• CFC instances can be correctly passed roundtrip using web services (from CFMX
to BD, but not the other way around)

• BlueDragon does not restrict use of tags before use of CFSET VAR

BlueDragon 6.2.1 CFML Enhancements Guide 5

• Variables may be used in the component name on invocation, as well as in a
method’s ReturnType and CFARGUMENT Type, and in the CFC named in a
CFCOMPONENT Extends attribute

4.2 Enhanced CFML Tags
This section lists CFML tag enhancements that are unique to BlueDragon.

4.2.1 CFARGUMENT
BlueDragon permits an expression (variable) to be used in the Type attribute. See
additional discussion in section 4.1.

4.2.2 CFCOLLECTION
In BlueDragon, CFCOLLECTION does not require use of a PATH attribute (for indicating
where the collection should be stored). If not specified, it defaults to creating the collec-
tion in [bluedragon]\work\cfcollection\.

On the other hand, only collections created in that default directory are listed in the
BlueDragon Administration console, or when CFCOLLECTION ACTION="list" is used.
Collections created by specifying the PATH attribute (placing the collection in another
directory) will still be available for use by CFINDEX and CFSEARCH , but they will not be
displayed by these two approaches.

CFCOLLECTION also supports a new, optional WAIT attribute. See the discussion under
CFINDEX in section 4.2.10.2.

4.2.3 CFCOMPONENT
BlueDragon permits an expression (variable) to be used in the Extends attribute. See
additional discussion in section 4.1.

4.2.4 CFCONTENT
Both ColdFusion and BlueDragon support an available FILE attribute for CFCONTENT, to
name a file whose content should be sent to the browser (with its mime type optionally
indicated with the available TYPE attribute). BlueDragon takes this a step further and lets
you send the value of a variable, using a new OUTPUT attribute.

An example of using it might be when a CFQUERY retrieves a column of binary type from
a database (perhaps a graphic). Assuming the variable is myquery.mygraphic, you could
then send that to the browser in a single step with:

<CFCONTENT OUTPUT="#myquery.mygraphic#" type="image/jpeg">

4.2.5 CFDUMP
BlueDragon’s CFDUMP output is enhanced in various ways.

BlueDragon 6.2.1 CFML Enhancements Guide 6

4.2.5.1 AutoExpansion of Nested Structures and Arrays
BlueDragon expands the values of arrays, structures, and other nested objects, providing
more information to assist in debugging.

4.2.5.2 VAR is Optional, Automatic Dump of Several Scopes
While the CFDUMP tag VAR attribute is required in ColdFusion, is optional in BlueDragon;
if omitted, variables in all scopes (except the CGI and SERVER scopes) are displayed:

<CFDUMP VAR=”#SESSION#”> <!--- display SESSION variables --->

<CFDUMP> <!--- display variables in all scopes but cgi, server --->

Of course, it’s permissible to dump the CGI and SERVER scopes by specifying either of
them in the VAR attribute. They’re just not dumped automatically with the special form of
CFDUMP.

4.2.5.3 Additional Information Offered in Dump of Queries
The CFFDUMP output for query result sets shows additional information about the query
including the datasource name, the SQL processed, the execution time, the number of re-
cords found, and the size in bytes.

4.2.5.4 Available VERSION Attribute to Expand Queries and XML
BlueDragon’s dump can show all the records in a query resultset, as well as expanded
information about XML objects. This is controlled with an optional VERSION attribute,
which takes two values: LONG and SHORT. The default for query result sets is LONG. It
applies to CFDUMP both with and without use of the VAR attribute, as described above.

In the SHORT version, a dump of query result set will not show the actual records from the
query, but will show other useful information about the query (records found, execution
time, SQL string, etc.).

The dump of an XML object will work similarly to the long and short versions available
in ColdFusion MX. Whereas in ColdFusion MX, you would click on the displayed XML
object to cause it to switch between short and long versions, in BlueDragon you choose
the alternative using the VERSION attribute. The default is SHORT.

Currently, only query result sets and XML documents are affected by the VERSION attrib-
ute, and it has no effect for other variable types (they can be dumped, but the result is not
varied by specification of the VERSION attribute). Similarly, the VERSION attribute setting
does not affect query resultsets or XML documents that are contained within another
variable or structure being dumped. They use their respective defaults.

4.2.6 CFERROR, CFTRY/CFCATCH, and try/catch
BlueDragon offers an enhancement in error log processing, in that it writes out to a log
file the entire error page that would be displayed to a user if the error was not handled.
See section 5.7 for additional information.

BlueDragon 6.2.1 CFML Enhancements Guide 7

As of 6.2, that error log page is written even when the error is handled, as with CFERROR.
A new variable is available in the CFERROR and ERROR scopes (as well as the cfcatch
scope) called ErrorLogFile, which returns the name and location of the logfile that’s
written. Note that while you cannot include that log file in a CFMAIL from within an error
handler (as the write of the file will not be complete until the end of the error handler
request processing), you can offer the path and filename of the error log page in a
CFMAIL, such as to share with developers for their use in problem resolution.

4.2.7 CFFLUSH
BlueDragon offers an option in the administration console to control whether the gen-
eration of HTML output on a page is buffered to page completion or not, and it defaults
to buffering the entire page, like ColdFusion. See the BlueDragon 6.2.1 User Guide for
more information on the topic of page buffering.

If you choose to change the server-wide behavior to buffer less than the entire page (such
as to speed delivery of pages to the client or to reduce memory burden in buffering the
entire pages to completion), there may be a negative impact on your application in the use
of some tags in some situations. To change the behavior on a page-by-page basis to revert
to buffering the entire page, BlueDragon offers a new PAGE attribute for the INTERVAL
attribute of CFFLUSH, as in:

 <CFFLUSH INTERVAL=”page”>

BlueDragon also supports use of the CFFLUSH INTERVAL="n" attribute, which enables
page-level control of the flushing of the buffer after a given amount of generated content.
This would be used when the default server-wide setting is set to buffer the entire page
but you want to enable buffering on the current page. Note that the maximum value
BlueDragon allows for "n" is 128K (128*1024): if you set a larger size then BlueDragon
buffers the entire page.

4.2.8 CFFUNCTION
BlueDragon permits an expression (variable) to be used in the ReturnType attribute. See
additional discussion in section 4.1.

4.2.9 CFINCLUDE
BlueDragon allows you to include in your CFML pages the output of Java servlets or
JavaServer Pages (JSP), or ASP.NET pages in the .NET edition, via the new PAGE attrib-
ute of the CFINCLUDE tag. The page attribute specifies the URI for the page to include. It
cannot be an absolute file path but instead must be a web server-based path.

Paths that start with “/” start at the document root directory of the web application or web
server; paths that don’t start with “/” are relative to the current CFML document

 <CFINCLUDE PAGE=”/menu.jsp”>

 <CFINCLUDE PAGE=”footer.aspx”>

BlueDragon 6.2.1 CFML Enhancements Guide 8

This is essentially a simplification of the GetPagecontext().include() function,
introduced in CFMX and supported also in BlueDragon.

As when using CFFORWARD (see section 4.3.6), note that variables set in the included
page’s REQUEST scope will be available on the calling page. To access data from the
included page’s other scopes (like FORM or URL), simply copy them to the Request scope
before performing the CFINCLUDE.

When including plain HTML pages, it’s best to simply use the more traditional CFNCLUDE
TEMPLATE approach.

In the J2EE edition, CFINCLUDE can also refer to the WEB-INF directory in a web app, for
example:

 <CFINCLUDE TEMPLATE="/WEB-INF/includes/header.cfm">

 <CFMODULE TEMPLATE="/WEB-INF/modules/navbar.cfm">

The advantage of using WEB-INF is that files within it are never served directly by the
J2EE server, so a user cannot enter a URL to access them directly.

The CFINCLUDE PAGE attribute can be used to include CFML pages, in which case the
included page’s Application.cfm (and any OnRequestEnd.cfm) will be processed,
unlike a typical CFINCLUDE TEMPLATE. This behavior is the same as using
GetPagecontext().include() function.

4.2.10 CFINDEX

4.2.10.1 Spidering a Web Site
BlueDragon now adds the ability to index/spider the web pages of a web site. CFINDEX
has traditionally been used to index the content of files within a file system. If you in-
dexed a directory of CFML files, you were indexing the source code, not the result of
running the pages. Spidering a site actually executes the pages in the site and indexes the
results.

Spidering is supported by way of a new value for the TYPE attribute: website. The KEY
attribute is used to specify the URL of the site to be spidered, and it must contain the full
URL of the web site to index, including http:// or https://. (Spidering is also
supported by way of the BlueDragon admin console page for creating collections.)

When spidering a web site, the URL provided in the KEY attribute indicates the starting
page, which doesn't necessarily have to be the home page of the web site. For example,
you could create separate search collections for sub-sections of a web site. The KEY value
must specify a page; if you want to specify the default document for a directory, the URL
must end with a "/". For example, the following are valid KEY values:

 <CFINDEX TYPE="website" KEY="http://www.newatlanta.com/index.html">

BlueDragon 6.2.1 CFML Enhancements Guide 9

https:///

 <CFINDEX TYPE="website"
 KEY="http://www.newatlanta.com/bluedragon/index.cfm">

 <CFINDEX TYPE="website" KEY="http://www.newatlanta.com/">

 <CFINDEX TYPE="website" KEY="http://www.newatlanta.com/bluedragon/">

 The following is not valid (no trailing "/"):

 <CFINDEX TYPE="website" KEY="http://www.newatlanta.com">

The spidering process simply follows the links found in the starting page, processing any
links that result in text or html files formats (.cfm, .htm, .jsp, .asp, .aspx, .php,
etc.).

Note that it can be used to spider your own site or someone else’s. Please use this feature
responsibly when spidering the web sites of others. The spidering engine does not cur-
rently honor the robots.txt file exclusion standard, but this will be added in the future.

4.2.10.2 Asynchronous Index Processing
Index creation (spidering a web site or indexing a file collection or query resultset) can
take a long time, so BlueDragon adds an optional WAIT attribute to CFINDEX, which takes
a boolean value (such as true or false) that defaults to true (or yes).

If WAIT is true, processing of your CFML page will wait until the indexing operation is
completed. If WAIT is set to false, processing continues immediately (as in ColdFusion)
and the indexing is done on a background thread (a message is printed to
bluedragon.log when the indexing operation is complete).

Be aware that by specifying WAIT=”false”, it would be inappropriate to try in the same
request to perform a CFSEARCH of the same collection. Setting WAIT to false is appropri-
ate only on pages that kick off the indexing of, rather than search against, a collection.

The WAIT attribute only applies when the value of ACTION is Update, Refresh, or Purge.
It is ignored for other ACTION values.

The WAIT attribute is also available for CFCOLLECTION ACTION = "Create", with the
same semantics described above.

4.2.11 CFINVOKE
The .NET edition of BlueDragon supports a TIMEOUT attribute when using CFINVOKE
against a web service. The attribute specifies the maximum number of seconds to wait,
before the invocation will fail with a runtime error.

4.2.12 CFLOCK
BlueDragon supports the full syntax and semantics of CFLOCK, but like CFMX does not
always require the use of CFLOCK for all attempts to read or write variables in the Session,

BlueDragon 6.2.1 CFML Enhancements Guide 10

Application, and Server scopes (as developers were expected to in CF 5 and before).
BlueDragon manages concurrent access to these variable scopes internally.

As in CFMX, you would still use CFLOCK to prevent “race conditions” where two
templates or concurrent users of a given template might both try to update the same per-
sistent-scope variable at once.

4.2.13 CFMAIL
BlueDragon has added two new attributes to the CFMAIL tag to allow you to store sent
mail in an IMAP server folder. In order to use these attributes you must first open a con-
nection to the IMAP server using the CFIMAP tag (see below). These two new attributes
are used in conjunction with the existing CFMAIL attributes to send an email message and
have it saved on an IMAP server:

<CFMAIL IMAPCONNECTION="name"
 IMAPFOLDER="fullfoldername"
 ...>

4.2.14 CFMAILPARAM
BlueDragon has added two attributes to the CFMAILPARAM tag to support mail file attach-
ments:

 disposition="disposition-type"

 contentID="content ID"

The DISPOSITION attribute specifies how the file content is to be handled. Its value can
be INLINE or ATTACHMENT. The CONTENTID attribute specifies the mail content-ID header
value and is used as an identifier for the attached file in an IMG or other tag in the mail
body that references the file content. This ID should be globally unique.

4.2.15 CFOBJECT
In BlueDragon for the Microsoft .NET Framework, a new type value of .net is
supported for calling .NET objects. Use of type=”java” is supported for backward
compatibility and is synonymous. See Integrating CFML with ASP.NET and the
Microsoft .NET Framework for more information.

4.2.16 CFOBJECTCACHE
CF5 introduced a new tag, CFObjectCache,with an available Action=”clear” attrib-
ute/value pair used to clear all cached queries for all pages and applications. BlueDragon
supports this tag with an additional new attribute, CacheDomain, which allows you to
name a server whose cache you wish to flush. If you don't specify it, it will default to the
on which the request is processing.

4.2.17 CFPROCPARAM
The CFPROCPARAM tag is used to pass parameters to a stored procedure. When nested
within CFSTOREDPROC, the tags can pass the parameters either positionally or by name,

BlueDragon 6.2.1 CFML Enhancements Guide 11

using the DBVARNAME attribute. In BlueDragon for the Microsoft .NET Framework, the
DBVARNAME attribute is supported, while it’s ignored in CFMX and the Java editions of
BlueDragon. There are performance benefits in specifying the DBVARNAME attribute. See a
more detailed discussion in the BlueDragon 6.2.1 CFML Compatibility Guide.

4.2.18 CFPROCESSINGDIRECTIVE SuppressWhiteSpace Attribute
While in CF5 and CFMX, CFPROCESSINGDIRECTIVE whitespace settings do not apply to
templates included by CFINCLUDE or called as CFC methods or custom tags/CFMODULE,
BlueDragon does propagate this setting into templates executed this way. This is
generally an enhancement and a desirable feature, but it can cause problems with applica-
tions that are not expecting it.

If you have nested templates that you would not want to inherit this behavior, simply use
a CFPROCESSINGDIRECTIVE tag within that nested template to set the desired value (yes
or no) for that template. For a more complete discussion of white space handling in
BlueDragon, see the BlueDragon 6.2.1 CFML Compatibility Guide.

4.2.19 CFQUERY
BlueDragon offers various enhancements regarding CFQUERY, with respect to query
resultsets, query processing, and query caching.

4.2.19.1 DSN-less Connections Supported in .NET Edition
Although CFMX removed support for DSN-less connections (which was added in CF 5),
the .NET edition of BlueDragon does support this feature (through the
dbType=”dynamic” and connectString attributes). With it, you can use a database in
CFQUERY, CFINSERT, CFUPDATE, and CFSTOREDPROC without having to define a datasource
in the BlueDragon Admin console.

An example of this feature follows, which queries an access database in a given absolute
path to a directory:

<CFQUERY NAME="getemp" dbtype="dynamic"
ConnectString="DRIVER=Microsoft Access Driver (*.mdb);
DBQ=absolutpath\cfsnippets.mdb">
 SELECT *
 FROM Employees
</CFQUERY>

<cfdump var="#getemp#">

The following demonstrates using the text driver to be able to read a CSV file using
CFQUERY, which turns it into a query result set. You name the directory in the dbq
argument, then name the file in the SELECT … FROM clause:

<CFQUERY NAME="get" dbtype="dynamic"
connectstring="Driver={Microsoft Text Driver (*.txt;
*.csv)};Dbq=absolutepathtodirectory">
 SELECT *
 FROM test.csv
</CFQUERY>

BlueDragon 6.2.1 CFML Enhancements Guide 12

<cfdump var="#get#">

For more information on using DSN-less connections in CFML, see the following:

http://livedocs.macromedia.com/coldfusion/5.0/Developing_ColdFusion_
Applications/queryDB5.htm#1108627

http://www.atlantisnet.com/kb/archives/000011.html

For information on valid connection string values for various databases, see the following
resource (though it shows ASP-oriented syntax, the information is useful):

http://www.carlprothman.net/Default.aspx?tabid=90

Again, the Java editions of BlueDragon do not support DSN-less connections.

4.2.19.2 Query Caching Enhancements
BlueDragon offers improved caching for CFQUERY tags which provides greater control
over flushing cached queries. In ColdFusion, the only way to flush the query cache is
with CFOBJECTCACHE. While BlueDragon supports that, it also adds new cacheName and
action attributes to CFQUERY.

The optional cacheName attribute can be used to assign a unique name for cached
CFQUERY results, to facilitate later flushing of that specific cache:

<CFQUERY NAME=”users” DATASOURCE=”mycompany” CACHENAME=”usercache”>
SELECT * FROM USERS
</CFQUERY>

Of course, the cachedWithin and cachedAfter attributes as implemented by
ColdFusion can be used in conjunction with CACHENAME to add time-based caching.

In the above example, the CFQUERY results will be cached under the name “usercache”
and when this query is run again the results from the cache will be used. You must spec-
ify a unique value for CACHENAME; if the same value for CACHENAME is specified for multi-
ple CFQUERY tags, whether on the same or different CFML pages, the results in the cache
will be overwritten.

A CFQUERY cache can be flushed using the new optional action attribute:

<CFQUERY ACTION=”flushcache” CACHENAME=”usercache”>

All CFQUERY cached results can be cleared using a singe tag:

<CFQUERY ACTION=”flushall”>

A CFQUERY tag that uses the action attribute to flush a cache can appear on the same or a
different CFML page from the CFQUERY tag that defines the cache. BlueDragon also sup-
ports the CFObjectCache tag introduced in CF5, used to clear all cached queries, and it

BlueDragon 6.2.1 CFML Enhancements Guide 13

adds a new attribute (CacheDomain) for controlling cache clearing on multiple servers.
See the discussion of CFObjectCache in 4.2.16 for more information.

4.2.19.3 Query ExecutionTime Variable
While BlueDragon supports the cfquery.executiontime variable, which was added to
ColdFusion MX, it also provides an executiontime variable for in each query’s resultset
(so a query named GetEmp would have an available GetEmp.executiontime variable.)

4.2.19.4 New PreserveSingleQuotes Attribute
BlueDragon, like ColdFusion, automatically “escapes” single-quote characters within
CFML variables used to create SQL statements within CFQUERY tags. For example, the
following SQL will work correctly because the single quote within the string, “O’Neil”,
will be escaped before being passed to the database:

<CFSET EmployeeName=”O’Neil”>

<CFQUERY NAME=”employees” DATASOURCE=”MyCompany”>
SELECT * FROM Employees
WHERE LastName = ‘#EmployeeName#’
</CFQUERY>

If you have code where this behavior is undesirable, you can change it with the available
PreserveSingleQuotes() function, which when used against a variable within a
CFQUERY will stop the automatic escaping of quotes. For example, consider an instance
when a variable used in SQL (such as an incoming form field or other variable) may have
a list of values presented as a single-quote delimited list. Escaping single-quotes in this
case will produce incorrect results:

<CFSET NameList=" 'Peterson','Smith' ">

<CFQUERY NAME="employees" DATASOURCE="cfsnippets" >
SELECT * FROM Employees
WHERE LastName IN (#PreserveSingleQuotes(NameList)#)
</CFQUERY>

As an enhancement, if you would like all variables within a query to automatically
preserve any single quotes, BlueDragon 6.2 added a new PreserveSingleQuotes
attribute that can be specified on the CFQUERY. The new attribute simply applies a global
change of behavior in SQL processing than might otherwise be achieved with one or
more uses of the PreserveSingleQuotes() function; for example:

<CFSET NameList=" 'Peterson','Smith' ">

<CFQUERY NAME="employees" DATASOURCE="cfsnippets"
 PRESERVESINGLEQUOTES=”Yes”>
SELECT * FROM Employees
WHERE LastName IN (#NameList#)
</CFQUERY>

BlueDragon 6.2.1 CFML Enhancements Guide 14

4.2.20 CFQUERYPARAM
BlueDragon supports use of CFQUERYPARAM within cached queries (using CFQUERY’s
CACHEDWITHIN attribute, for instance). ColdFusion does not. The benefit here is that
cached queries can benefit from the enhanced security and performance features enabled
by CFQUERYPARAM.

4.2.21 CFSEARCH
BlueDragon adds predefined RecordCount and ColumnList columns to the results of a
CFSEARCH, with values identical to those returned in traditional query result sets.

On the other hand, a new variable has been added, SearchCount, which reflects the total
number of items in the search result, irrespective of any MaxRows value that may have
been specified in the CFSEARCH. This makes it possible to better manage the resultset,
such as when providing a paging interface.

CFSEARCH also supports an additional attribute, MinScore, which accepts a number
between 0 and 1.0 and will return only those results with a score greater than this. By
default, all query results are returned regardless of score.

Finally, BlueDragon adds SORT, SORTDIRECTION and SORTTYPE attributes to support
sorting of search results.

4.2.22 CFSET (Multi-dimensional arrays)
ColdFusion limits multi-dimensional arrays to three dimensions; BlueDragon does not
impose any limit. For example the following tags are supported by BlueDragon, but will
generate errors in ColdFusion:

<CFSET myArray=ArrayNew(8)>
<CFSET myArray[2][3][4][4][2][3][4][4]="BlueDragon">

4.2.23 CFXML
BlueDragon offers additional functionality with respect to case sensitivity, node proc-
essing, and array handling. See section 5.4 for more information.

4.3 New CFML Tags
This section lists new CFML tags that are unique to BlueDragon.

4.3.1 CFASSERT
CFASSERT is a new CFML tag introduced by BlueDragon that can be used as a testing
tool to enhance the reliability and robustness of your applications. The concept of using
assertions is frequently found in more advanced languages, and it’s critical to effective
unit-testing of your applications. Complete discussion of the benefits and uses of asser-
tions is beyond the scope of this manual, but a brief explanation follows.

CFASSERT (and its corresponding assert() function discussed in section 4.5.1) takes an
expression that is expected to evaluate to a Boolean result (true or false). CFASSERT has

BlueDragon 6.2.1 CFML Enhancements Guide 15

no attribute, rather on simply provides the expression to test within the tag, as in
<CFASSERT someexpression>. An example is <CFASSERT testvar is expectedval>.

An assertion tests throw an exception if the result is false but do nothing if the result is
true. They are also ignored if assertions have not been enabled in the BlueDragon
Administration console, as discussed at the end of this section. The intention is that you
can place these assertions in your code to help ensure that some expected state of the
application is indeed occurring as expected. More accurately, they cause failure if the
state is not as expected.

4.3.1.1 Understanding Assertions
A typical use is during testing, when you expect that a given variable will have a given
value (or perhaps a range of values), perhaps after calling a custom tag, UDF, or CFC
method. Another example is when you want to test the mere existence of a given variable
(such as an expected session or application variable).

The difference between assertions and using a CFIF is that the CFIF is intended to control
the flow of the logic, executing code depending on a condition that may or may not be
true. An assertion test is intended to simply throw an error is the expected condition is not
(and never should be) true. In other words, the CFIF test handles expected conditions,
while the assertion flags unexpected conditions.

An assertion could be surrounded by a CFTRY to catch and handle the error that will be
thrown, or the error can be allowed to pass up to the caller of the code throwing the
exception. It could also be left to be handled by any CFERROR or site-wide error handler,
or if unhandled will simply result in a BlueDragon runtime error. (There is a body of
opinion in the industry that suggests that assertion failures should not be caught at
runtime, or at least ought not be used to alter the flow of processing and allow execution
to continue. These proponents expect that an assertion failure should result in a cease of
processing because an unexected error has occurred.)

4.3.1.2 Controlled By Admin Console Setting
Execution of CFASSERT (and the assert() function) is controlled by the Enable Asser-
tions setting on the Debug Settings page of the BlueDragon Administration console.
After changing this setting, you must restart the server for it to take effect.

If the “Enable Assertions” option is checked, then CFASSERT tags and assert() func-
tions are enabled, otherwise they are not and are simply ignored when encountered. This
means that assertions can be left in code placed into production, where the Admin setting
would be set to disable assertions. There is no cost to assertions existing in code when
they are disabled. Assertions are supported in all editions of BlueDragon.

4.3.2 CFBASE
CFBASE is a CFML tag introduced by BlueDragon that is primarily intended for use in
BlueDragon for J2EE Servers. The CFBASE tag can be used to create an absolute URL
that serves as the base for resolving relative URLs within a CFML page (such as in IMG

BlueDragon 6.2.1 CFML Enhancements Guide 16

tags). The absolute URL created by the CFBASE tag includes the J2EE web application
context path. See the document Deploying CFML on Application J2EE Application Servers for
a detailed discussion of CFBASE.

4.3.3 CFCACHECONTENT
CFCACHECONTENT is a new tag introduced by BlueDragon to cache blocks of html for a
given time without having to regenerate it every time. While it may seem a melding of
CFSAVECONTENT and CFCACHE, this tag is more powerful as it can cache not only in mem-
ory but to a database table as well.

Additionally, flushing of the cache is enhanced as well, with two available attributes:
CACHENAME and GROUP. GROUP allows you to gather together cached elements and treat
them as a single logical unit. For example, you may wish to cache various elements for a
given user, but should that user change something, you can flush and clear all their
cached elements in a single operation.

<CFCACHECONTENT
 ACTION = "action"
 CACHENAME = "name of cache"
 GROUP = "group name">
 CACHEDWITHIN = "timeout for cache"
…some content
</CFCACHECONTENT>

The following table lists the CFCACHECONTENT tag attributes.

Attribute Description
Action Required. Operation to perform; possible operations are CACHE, FLUSH, FLUSHGROUP,

FLUSHALL, and STATS:
CACHE – Default value. Caches the data within the tag
FLUSH - Flushes cached items designated using the given CACHENAME. All items cached
with this CACHENAME are removed
FLUSHGROUP - Flushes cached items designated using the given GROUP. All items
cached with this GROUP are removed
FLUSHALL - Flushes the entire cache, including all data in the database cache
STATS - This will return a structure, CFCACHECONTENT, with two fields, MISSES and
HITS, which detail the number of times requests have found data using the cache and the
number of times requests called for a cached result to be generated. This gives you an indi-
cation of how efficient your cache is performing
RESET - resets the HIT and MISS counts to zero, for all GROUP/CACHENAMEs or individ-
ual ones.

CacheName Required for ACTION=CACHE. The name to be given for the item being cached, which
should be unique across all GROUPs.

Group Optional. A name given to group cached results together. It defaults to the name of the
server, as determined in cgi.server_name.

CachedWithin Optional. Used with ACTION=CACHE. The maximum time to maintain this cached result. If
the cached data is found to be older than this when a request attempts to use the cached
result, the cached content will be regenerated. Specified using #CreateTimeSpan()#.

This tag requires an end tag.

BlueDragon 6.2.1 CFML Enhancements Guide 17

4.3.3.1 Database Persistence of Cached Data
You can cause cached data to be persisted to a database, to support caching data across
server restarts, by declaring a datasource in the bluedragon.xml file using:

<system>
 <cfcachecontent>
 <datasource>datasourcename</datasource>
 <total>5</total>
 </cfcachecontent>
</system>

The TOTAL value specifies the number of cached items that will be persisted to memory
before being paged out to the database. A LeastRecentlyUsed algorithm is used for pag-
ing out data. When a flush occurs, the items in the database are also removed. A table,
LRUCACHE, will be automatically created in the database if one is not already present. Data
persisted in the database will be maintained over server-restarts. The table has a
DATETIME field associated with cached items which can be used to manually process
cached items.

The following examples illustrates caching content. This will cache data for 4 minutes

<CFCACHECONTENT CACHENAME="abc"
 CACHEDWITHIN="#CreateTimeSpan(0,0,4,0)#">
 <CFOUTPUT>#now#</CFOUTPUT>
</CFCACHECONTENT>

If this code was processed on multiple servers but cached to the same database, the
cached results would be unique to each server (because the GROUP attribute was
allowed to default to the current servername).

To flush this cache manually we would call:

<CFCACHECONTENT ACTION="flush" CACHENAME="abc"/>

Or to flush all cached data for the current server, regardless of cachename, use:

 <CFCACHECONTENT ACTION="flushgroup"/>

To flush all cached data for all servers (groups), regardless of cachename, use:

 <CFCACHECONTENT ACTION="flushall"/>

4.3.4 CFCONTINUE
The new CFCONTINUE tag works similarly to CFBREAK in that it can only be used within
the body of a CFLOOP tag (it cannot be used in a CFOUTPUT QUERY loop.) CFBREAK
terminates execution of the current iteration of the CFLOOP body and continues execution
after the closing CFLOOP tag. CFCONTINUE, on the other hand, terminates execution of the
current iteration of the CFLOOP body and continues execution of the next iteration of the
CFLOOP body from the opening CFLOOP tag.

BlueDragon 6.2.1 CFML Enhancements Guide 18

4.3.5 CFDEBUGGER
CFDEBUGGER is a CFML tag introduced by BlueDragon that adds a powerful new weapon
in CFML debugging. In simple terms, it writes a trace to a log file indicating each CFML
line of code that's been executed.

Consider the following simplified example of its use:

<CFDEBUGGER LOGFILE="#expandpath(‘trace.log’)#">
<CFSET name="bob">

This two-line template will create an entry in a file named trace.log (as indicated in the
LOGFILE attribute, which in this case will store the logfile in the same directory as the
page running the tag). In this case, the log file will include the following info:

#0: CFDEBUGGER trace started @ 19/Aug/2003 15:03.19
#1: active.file=C:/Inetpub/wwwroot/regression/cfdebugger.cfm
#2: tag.end=CFDEBUGGER; L/C=(1,1);
File=C:/Inetpub/wwwroot/regression/cfdebugger.cfm
#3: tag.start=CFSET; L/C=(2,1);
File=C:/Inetpub/wwwroot/regression/cfdebugger.cfm
#4: tag.end=CFSET; L/C=(2,1);
File=C:/Inetpub/wwwroot/regression/cfdebugger.cfm
#5: file.end=C:/Inetpub/wwwroot/regression/cfdebugger.cfm
#6: Session Ended

Note that it indicates the time the template was run and the template's name. More im-
portant, the trace shows, for each CFML tag it encounters, its start and end lines in the
given template. Beware that the log could accumulate a large amount of information, as it
starts logging once its set for the remainder of the request, and it appends data for all
subsequent requests executed, until the tag is removed.

Note as well that if you don’t specify a path for the file (or use a relative path), the
destination for the logfile will be vary depending on the version of BlueDragon you’re
using. Using an absolute path, or expandpath() as above, will be most straight-forward.

For more information on the CFDEBUGGER tag, see the November 2003 ColdFusion De-
velopers Journal article on the subject:

http://coldfusion.sys-con.com/read/42101.htm

4.3.6 CFFORWARD
CFFORWARD is a tag introduced by BlueDragon that allows you to do a “server-side redi-
rect” to another CFML page, or in some BlueDragon editions a Java servlet or JavaServer
Page (JSP), or in the .NET edition an ASP.NET page. In a “client-side redirect,” which is
done using the CFLOCATION tag, a response is sent to the browser telling it to send in a
new request for a specified URL. In contrast, CFFORWARD processing is handled com-
pletely on the server.

The advantages of CFFORWARD over CFLOCATION are:

BlueDragon 6.2.1 CFML Enhancements Guide 19

• There is no need for extra messaging between the server and browser

• Variables in the REQUEST scopes are available to the target of the CFFORWARD tag

To pass data from other scopes (like FORM or URL), simply copy them to the Request
scope before calling CFFORWARD.

CFFORWARD has a single attribute, page, which specifies the URI of the target page. Paths
that start with “/” start at the document root directory of the web application or web
server; paths that don’t start with “/” are relative to the current CFML document:

 <CFFORWARD PAGE=”/nextpage.cfm”>

 <CFFORWARD PAGE=”nextpage.jsp”>

 <CFFORWARD PAGE=”nextpage.aspx”>

Like CFLOCATION, processing of the current page is terminated as soon as the CFFORWARD
tag is executed.

4.3.7 CFIMAGE
CFIMAGE is a tag introduced by BlueDragon that allows you to modify an existing GIF or
JPEG image file to produce a new image file that is resized and/or has a text label added
to the image. Variables returned by this tag provide information about the new image file.

The following table lists the CFIMAGE tag attributes.

Attribute Description
SrcFile Required. The file name of the source image file that is to be modified. Can be either a full

physical path or a relative path (see the URIDirectory attribute).

DestFile Required if ACTION=EDIT, Optional if ACTION=INFO. The file name of the new image file to
be created by the CFIMAGE tag. Can be either a full physical path or a relative path (see the
URIDirectory attribute).

Action Optional. The action to be taken by the CFIMAGE tag. The value INFO populates the
CFIMAGE variables with information about the image file specified by the srcFile attrib-
ute without modifying the image. The value of EDIT creates a new image file by resizing
and/or adding a text label to the source image file. Defaults to EDIT.

Type Optional. The image file type, either GIF or JPEG. If this attribute is not specified, the
CFIMAGE tag attempts to determine the image type based on the file name extension.

Width Optional. The width of the new image, can be specified either in pixels or as a percentage of
the source image width. Defaults to “100%”.

Height Optional. The height of the new image, can be specified either in pixels or as a percentage of
the source image height. Defaults to “100%”.

FontSize Optional. An integer value that specified the font size of the text label to be added to the
image. Defaults to 12.

FontColor Optional. Specifies the font color of the text label to be added to the image. Accepts any
value that is valid for use in the FONT tag. Defaults to “black”.

Text Optional. The text label to add to the image.

Position Optional. The position of the text label to add to the image; valid valued are “north” and
“south”. Defaults to “south”.

NameConflict Optional. Indicates the behavior of the CFIMAGE tag when the file specified by destFile

BlueDragon 6.2.1 CFML Enhancements Guide 20

already exists. Valid values are ERROR, which generates a runtime error; SKIP, which
causes the CFIMAGE tag to do nothing without generating an error; OVERWRITE, to over-
write the existing image; and, MAKEUNIQUE, which causes CFIMAGE to create a new
unique file name for the new image file. Defaults to ERROR.

URIDirectory Optional. If YES, relative paths specified in srcFile and destFile are calculated from
the web server document root directory. If NO, relative paths are calculated as relative to the
current file. Defaults to NO.

The following table lists the variables returned by the CFIMAGE tag.

Variable Description
CFIMAGE.SUCCESS Contains the value TRUE or FALSE to indicate whether image processing was success-

ful.

CFIMAGE.ERRORTEXT If processing was unsuccessful, contains a text message describing the error.

CFIMAGE.WIDTH For ACTION=EDIT, the width in pixels of the new image. For Action=INFO, the width in
pixels of the image.

CFIMAGE.HEIGHT For ACTION=EDIT, the height in pixels of the new image. For Action=INFO, the height in
pixels of the image.

CFIMAGE.PATH The full physical path to the image.

CFIMAGE.NAME The name of the new image file.

CFIMAGE.FILESIZE The size in bytes of the new image file.

The following example displays two images – the original image “picture.gif”, and the
processed image “newPicture.gif”.

<cfimage action="edit"
 srcfile="picture.gif"
 destfile="newPicture.gif"
 uridirectory="yes"
 text="Copyright 2003"
 width="50%"
 height="50%"
 fontsize=20
 fontcolour="violet"
 position="SOUTH"
 nameconflict="overwrite">

The following example displays information about an existing image file named
“picture.jpg”.

<cfimage action="info" srcfile="picture.jpg">

<cfoutput>
Success : #cfimage.success#

Dimensions : #cfimage.width# x #cfimage.height#

Path : #cfimage.filepath#

Name : #cfimage.filename#

BlueDragon 6.2.1 CFML Enhancements Guide 21

Size (bytes) : #cfimage.filesize#

Error message : #cfimage.errortext#

</cfoutput>

While CFIMAGE can read a PNG file (with TYPE=”GIF”), it cannot write PNG files through
any means.

4.3.8 CFIMAP
The CFIMAP tag allows you to interact with both IMAP and POP mail servers (CFIMAP
may be used instead of CFPOP to interact with POP mail servers). Generally, the sequence
of steps to interact with a mail server is:

1. Open a connection to the mail server (OPEN action).

2. Get a list of folders from the mail server (LISTALLFOLDERS action).

3. Get a list of messages within a specific folder (LISTMAIL action).

4. Perform actions with specific messages (READMAIL, MARKREAD, DELTEMAIL, and
MOVEMAIL actions).

5. Perform actions with folders (DELETEFOLDER and RENAMEFOLDER actions).

6. Close the connection (CLOSE action).

Each of these steps is described below.

4.3.8.1 Opening a Connection
Before performing actions such as reading mail, you must first open a connection with
the IMAP or POP server. Specify a value of OPEN for the action attribute. The name
specified for the connection attribute will be used to refer to this connection when per-
forming subsequent actions with the IMAP or POP server, such as reading mail.

<CFIMAP ACTION="OPEN"
 SERVICE="POP3 or IMAP"

 CONNECTION="name"
 SERVER="mail.yourdomain.com"
 USERNAME="username"
 PASSWORD="password">

Two variables are always returned by the CFIMAP tag:

IMAP.SUCCEEDED – “true” or “false” depending on whether the previous action
succeeded

IMAP.ERRORTEXT – an error message, if the previous action failed

Please note that the Connection attribute is intended to be used to create a name to
uniquely distinguish this connection from any other. The value does not become a
variable that can be accessed in any way. Further, to distinguish CFIMAP calls from each
other, you can use a variable for the name, such as #session.sessionid#.

BlueDragon 6.2.1 CFML Enhancements Guide 22

4.3.8.2 Closing a Connection
An IMAP or POP server connection can be closed by specifying ACTION=”CLOSE” and
the name of the connection:

<CFIMAP ACTION="CLOSE"
 CONNECTION="name">

After closing a connection, any attempts to use the connection will generate an error.

4.3.8.3 Listing Mailbox SubFolders
Use ACTION=”LISTFOLDER” to get a list of subfolders under a given folder, or all the top
level folders on the IMAP or POP server:

<CFIMAP ACTION="LISTFOLDER"
 CONNECTION="name"
 FOLDER=”fullname/”

NAME="queryname">

If a FOLDER name is used, note that it must be a fullname. See the discussion of fields re-
turned in the query structure, later in this section. Additionally, note that you may need to
use a closing slash at the end of the folder name, depending on the mail server.

Note that the FOLDER attribute is optional. If note used, the will return all the folders (but
not subfolders) at the root level. See Action=”ListAllFolders” in the next section to
list all folders and subfolders.

The folder list is returned in a Query structure with the name you specified in the NAME
attribute. The fields of the Query structure are:

FULLNAME – the full path to the folder (used to retrieve folder message info)

NAME – shortcut name to the folder

TOTALMESSAGES – total messages this folder is holding

UNREAD – total unread messages in this folder

NEW – total new messages in this folder

The FULLNAME field is used for making subsequent calls to folders with other CFIMAP ac-
tion parameters.

4.3.8.4 Listing All Mailbox Folders
Use ACTION=”LISTALLFOLDERS” to get a list of folders on the IMAP or POP server:

<CFIMAP ACTION="LISTALLFOLDERS"
 CONNECTION="name"

NAME="queryname">

See the discussion in the previous section about the query structure returned in the vari-
able specified in the NAME attribute.

BlueDragon 6.2.1 CFML Enhancements Guide 23

4.3.8.5 Listing Mail Messages
You can retrieve high-level information about the messages within a folder by specifying
ACTION=”LISTMAIL”; this action does not retrieve the message bodies. To read a message
body you must first get an email message ID using the LISTMAIL action and then specify
the message ID in the READMAIL action as described in the next section.

The folder attribute must contain the name of a folder as contained in the FULLNAME
field of the Query structure returned by ACTION=”LISTALLFOLDERS”.

<CFIMAP ACTION="LISTMAIL"
 CONNECTION="name"
 FOLDER="fullname"
 NAME="queryname">

The message information is returned in a Query structure with the name you specified in
the name attribute. The fields of this Query structure are:

SUBJECT – subject line of the mail message

ID – unique ID of this mail message (used to retrieve the message body)

RXDDATE – the date this mail message was received

SENTDATE – the date this mail message was sent

FROM – address structure (see below)

TO – array of address structures (see below)

CC – array of address structures (see below)

BCC – array of address structures (see below)

SIZE – size in bytes of this mail message

LINES – number of lines of this mail message

ANSWERED – boolean flag if this mail message has been answered

DELETED – boolean flag if this mail message has been deleted

DRAFT – boolean flag if this mail message is an unsent draft

FLAGGED – boolean flag if this email has been flagged

RECENT – boolean flag if this email is recent

SEEN – boolean flag if this email has been seen (read)

Internet email addresses are stored as structures with two fields:

NAME – name of the person

EMAIL – email address of the person

The TO, CC, and BCC fields contain arrays of these structures.

BlueDragon 6.2.1 CFML Enhancements Guide 24

4.3.8.6 Reading a Mail Message
You can read a specific email message by specifying ACTION=”READMAIL”, the folder
name, and the email message ID as returned by the LISTMAIL action:

<CFIMAP ACTION="READMAIL"
 CONNECTION="name"
 FOLDER="foldername"
 MESSAGEID="messageid"
 ATTACHMENTSURI="uritofolder"
 NAME="messagename">

This action will retrieve the given message and fill in a structure variable containing in-
formation regarding the retrieved email message. In addition to this, should the message
have any attachments, you specify the URI of the folder you wish the email attachment to
be stored in. Note this is a URI and not a real directory. The fields of the returned struc-
ture are:

SUBJECT – subject of the email

ID – unique ID to this mail

RXDDATE – the date this mail was received

SENTDATE – the date this email was sent

FROM – address structure (see below)

TO – array of Address Structures (see below)

CC – array of Address Structures (see below)

BCC – array of Address Structures (see below)

SIZE – size in bytes of this email

LINES – number of lines of this email

ANSWERED – boolean flag if this email has been answered

DELETED – boolean flag if this email has been deleted

DRAFT – boolean flag if this email is a draft

FLAGGED – boolean flag if this email has been flagged

RECENT – boolean flag if this email is recent

SEEN – boolean flag if this email has been seen

BODY – array of Body structures (see below)

The body of the email is treated with some consideration. Due to the various properties a
MIME type email message can have, each element in the array is effectively the MIME
part that was transmitted with the email.

MIMETYPE – the MIME type of this part

BlueDragon 6.2.1 CFML Enhancements Guide 25

CONTENT – the content of this email if not an attachment

FILE – boolean flag to indicate if there is a file attached

FILENAME – the name of the attached file

URL – the URI to the saved file

SIZE – the size of the saved file

To loop through the message body array elements, you might use the following code:

 <CFOUTPUT>
 <CFLOOP INDEX="X" FROM="1" TO="#ArrayLen(msg.body)#">

#msg.body[X].mimetype#

#msg.body[X].file#

#msg.body[X].content#

 </CFLOOP>
 </CFOUTPUT>

This action will not overwrite any existing files; instead, it will create a unique name for
it.

4.3.8.7 Marking Mail Messages as “Read”
You can mark messages as having been read by specifying ACTION=”MARKREAD”, a folder
name, and a list of message IDs:

<CFIMAP ACTION="MARKREAD"
 CONNECTION="name"
 FOLDER="toplevelfoldername"
 MESSAGELIST="list of IDs">

The message list is either a single message ID or a comma-separated list of IDs.

4.3.8.8 Deleting Mail Messages
You can delete messages by specifying ACTION=”DELETEMAIL”, a folder name, and a list
of message IDs:

<CFIMAP ACTION="DELETEMAIL"
 CONNECTION="name"
 FOLDER="toplevelfoldername"
 MESSAGELIST="list of IDs">

The message list is either a single message ID or a comma-separated list of IDs.

4.3.8.9 Setting Message Flags
You can set the status of various aspects of a message (such as read, seen, answered),
using ACTION=”SETFLAGS”, along with a folder name, a message ID, and any of the

BlueDragon 6.2.1 CFML Enhancements Guide 26

following flagname attributes indicated as a Boolean value: ANSWERED, DELETED, DRAFT,
FLAGGED, RECENT, SEEN:

<CFIMAP ACTION="SETFLAGS"
 CONNECTION="name"
 FOLDER="toplevelfoldername"

MESSAGEID="messageid"
flagname=”boolean”>

4.3.8.10 Moving Mail Messages between Folders
You can move a list of messages from one mail server folder to another by specifying
ACTION=”MOVEMAIL”:

<CFIMAP ACTION="MOVEMAIL"
 CONNECTION="name"
 FOLDER="toplevelfoldername"
 DESTFOLDER="toplevelfoldername"
 MESSAGELIST="list of IDs">

The message list is either a single message ID or a comma-separated list of IDs.

4.3.8.11 Creating a Folder
Specifying ACTION=”CREATEFOLDER” will create a folder on the mail server:

<CFIMAP ACTION="CREATEFOLDER"
 CONNECTION="name"
 FOLDER="fullfoldername">

The folder name is the complete path to the folder.

4.3.8.12 Deleting a Folder
Specifying ACTION=”DELETEFOLDER” will delete a folder from the mail server, including
all of its contents (mail messages):

<CFIMAP ACTION="DELETEFOLDER"
 CONNECTION="name"
 FOLDER="fullfoldername">

The folder name is the complete path to the folder. This is a very powerful action and
should be used with extreme care, as it can remove all messages and folders from the
mail server.

4.3.8.13 Renaming a Folder
Specifying ACTION=”RENAMEFOLDER” will rename a folder on the mail server:

<CFIMAP ACTION="RENAMEFOLDER"
 CONNECTION="name"
 OLDFOLDER="fullfoldername"
 NEWFOLDER="fullfoldername">

The folder name is the complete path to the folder.

BlueDragon 6.2.1 CFML Enhancements Guide 27

4.3.8.14 Sending Mail Messages
Sending email messages is done using the CFMAIL tag, not CFIMAP. However,
BlueDragon has added two new attributes to the CFMAIL tag to allow you to store sent
mail in an IMAP server folder. See the section on the CFMAIL tag for details.

4.3.9 CFMAPPING
CFMAPPING is a new tag introduced by BlueDragon to assist in creating mappings (for use
with tags like CFINCLUDE, CFMODULE, and CFC invocation) at a page- or
application-level. (BlueDragon also supports defining global mappings in the
BlueDragon admin console.)

CFMAPPING requires two attribute, one of which is LOGICALPATH, and the other can be
either DIRECTORYPATH or RELATIVEPATH.

4.3.9.1 Using DirectoryPath for Absolute Paths
DIRECTORYPATH must specify a full physical path. An example that corresponds to a
similar kind of setting in the Admin console is:

<cfmapping logicalpath="/mypath" directorypath="C:\mymappedpath">

4.3.9.2 Using RelativePath for Relative Paths
The RELATIVEPATH option provides a benefit with no corresponding setting in the Admin
console, in that it permits specification of a path that’s relative rather than absolute. If the
RELATIVEPATH value starts with "/", it's interpreted as being relative to the application
root directory. For example:

<cfmapping logicalpath="/map1" relativepath="/WEB-INF/map1">

For BlueDragon Server JX, the application root is the web server document root; for
BlueDragon/J2EE, this the J2EE web application root; for BlueDragon.NET, this is the
ASP.NET application root.

If the RELATIVEPATH value does not start with "/", it's interpreted as being relative from
the current document directory. For example:

<cfmapping logicalpath="/map2" relativepath="../../map2">

4.3.9.3 Other Information
All three attributes, DIRECTORYPATH, LOGICALPATH, and RELATIVEPATH accept
variable expressions as well as string constants.

When the CFMAPPPING tag is rendered BlueDragon will verify that the specified
DIRECTORYPATH actually exists, is a directory (and not a file), and that BlueDragon can
read from that directory. If any of these checks fail, a CFML runtime exception will be
thrown.

BlueDragon 6.2.1 CFML Enhancements Guide 28

Mappings specified by CFMAPPING will exist for the duration of the request and survive
across CFINCLUDEs, custom tag calls, CFC method calls, etc. You can put a CFMAPPING
tag in any page, including Application.cfm.

The CFMAPPING tag will override mappings configured via the admin console.

4.3.10 CFPAUSE
CFPAUSE is a new tag introduced by BlueDragon to assist in debugging CFML pages. The
CFPAUSE tag allows you to pause the execution of a page for a specified number of sec-
onds. The interval attribute is required and must specify an integer value:

<CFPAUSE INTERVAL=”seconds to pause”>

4.3.11 CFTHROTTLE
CFTHROTTLE is a new tag introduced by BlueDragon to help respond to requests that are
coming in too quickly from a given host/client. Rogue spiders, bad software etc can crip-
ple a server with repeated requests. This tag is designed to track such requests in a given
a window of time and give you the opportunity to deny or redirect their requests.

<CFTHROTTLE
 ACTION = "action"
 TOKEN = "name of item to track"
 HITTHRESHOLD = "number of hits"
 HITTIMEPERIOD = "time period to count hits"
 MINHITTIME = "time between each request">
... some operation
</CFTHROTTLE>

The following table lists the CFTHROTTLE tag attributes.

Attribute Description
Action Required. Available values are:

THROTTLE – Default value. Enable throttle processing
FLUSH - Flushes entire historical table of throttle processing
STATUS - Returns a CFML variable, CFTHROTTLE, which is an array of structures detailing
each item that is currently being tracked by CFTHROTTLE. Allows creation of a status page.
SET - Sets the size of the window for tracking. Defaults to 100, for the last 100 items to be
tracked; can be overriden by passing a new value using the optional HISTORY attribute.

History Optional. Used with ACTION=SET. Sets the size of the window for tracking. Defaults to 100,
for the last 100 items being tracked.

Token Optional. Used with ACTION=THROTTLE. The string used to track repeated requests. In
most instances you will track the client ip address, and this is the default if not specified. You
may choose to use the CGI.HTTP_USER_AGENT variable to track, for instance, when re-
quests from certain search engines are visiting your site too often in a given period of time.

HitThreshold Optional. Used with ACTION=THROTTLE. The maximum number of times a unique TOKEN
value can be used by requests being monitored in the time period specified by
HITTIMEPERIOD. If the number is exceeded, then the request is flagged as excessive and a
candidate to be throttled (see discussion of resulting THROTTLE scope below). Defaults to
5.

HitTimePeriod Optional. Used with ACTION=THROTTLE. The time period, expressed in milliseconds, where
if a successive number of requests (determined by HITTHRESHHOLD) are received sharing

BlueDragon 6.2.1 CFML Enhancements Guide 29

the given TOKEN, the request will be deemed excessive. Defaults to 10000 (10 seconds).

MinHitTime Optional. Used with ACTION=THROTTLE. The time period, expressed in milliseconds, where
if successive requests (regardless of the TOKEN) are received, the request will be deemed
excessive. Defaults to 500 (one half second).

This tag does not require an end tag. CFTHROTTLE would typically be used in an
Application.cfm file to detect and enable handling of a request when it has been
deemed excessive.

After using ACTION=THROTTLE a special structure, CFTHROTTLE, is returned containing a
number of variables to aid in tracking a potential rogue user. If the boolean
CFTHROTTLE.THROTTLE is TRUE, then the server has detected an excessive request that is a
candidate for throttling.

The CFTHROTTLE tag will not throttle the connection itself. Instead, it helps detect such
requests, based on the attributes described above. Code within the CFTHROTTLE tag is
then processed to handle the excessive request.

The following example illustrates a use of this tag:

<CFTHROTTLE>
<CFIF cfthrottle.throttle EQ true>
 <CFHEADER STATUSCODE="503"
 STATUSTEXT="Try backing off the time between requests">
 <H1>503 Server is very busy. Try later</H1>
 <CFABORT>
</CFIF>
<!--- continue processing --->

In this case, since all the defaults were taken for CFTHROTTLE’s attributes, it would detect
if a request came from the same IP address more than 5 times in a 10 second period, or if
requests came in more often than every half second.

Other variables available in the CFTHROTTLE result structure include

- HITCOUNT - number of times the detected token has been found in requests
in given the time period

- TOTALHITS - total number of times the token has been detected throughout
the server’s life time (or since the history has been flushed)

- LASTHIT - number of milliseconds since the token was last detected

- AGE - the total time since this token has been tracked

4.3.12 CFXMLRPC
CFXMLRPC is a new tag introduced by BlueDragon to easily and quickly invoke remote
XML-RPC services:

<CFXMLRPC

BlueDragon 6.2.1 CFML Enhancements Guide 30

 SERVER = "url of server"
 METHOD = "method name"
 PARAMS = "array of params">

Note that if you’re intending to invoke remote Web Services, you should use the
CFINVOKE tag (or CFOBJECT/createObject) instead. More information on XMLRPC can
be found in the following resources:

http://www.xml-rpc.com/

http://weblog.masukomi.org/writings/xml-rpc_vs_soap.htm

http://www.oreilly.com/catalog/progxmlrpc/chapter/ch03.html

The following table lists the CFXMRPC tag attributes.

Attribute Description
Server Required. The full URL to the XML-RPC server

Method Required. The method you wish to invoke on at the given SERVER

Params Required. A CFML Array containing all the parameters for the given METHOD. All complex
types will be converted to the types laid out in the XML-RPC specification.

This tag does not require an end tag.

Upon completion, CFXMLRPC will create a variable, XMLRPC, as a structure with at least 1
key, SUCCESS. If the operation was successful, then SUCCESS will be set to TRUE and the
RESULT key will contain a CFML structure of the data that was returned. If the operation
was unsuccessful, SUCCESS will be set to FALSE, with ERROR reporting the error message.

The following example illustrates calling an XML-RPC server:

<CFXMLRPC SERVER="http://servername/filename.ext"
METHOD="methodname" PARAMS="#myarray#">

CFXMLRPC relies on the underlying (and provided) Apache XML-RPC library.

4.3.13 CFZIP and CFZIPPARAM
CFZIP is a new tag introduced by BlueDragon to assist in creating, extracting, and listing
the contents of compressed (zip) files. The optional CFZIPPARAM can be used as described
in the next section.

CFZIP ACTION=”create” will create a zip file comprised either of the file/files named in
the SOURCE attribute of CFZIP, or those named in the SOURCE attribute of the optional
CFZIPPARAM (multiple CFZIPPARAMs are permitted).

CFZIP ACTION=”extract” will extract the zip file contents to the named DESTINATION
directory.

BlueDragon 6.2.1 CFML Enhancements Guide 31

CFZIP ACTION=”list” will return a VARIABLE with a query resultset representing the
zipfile contents (similar to that returned by CFDIRECTORY).

The following table lists the CFZIP tag attributes.

Attribute Description
ZipFile Required. The name of the zipfile to create, extract, or list.

Source Required if ACTION=CREATE. The path to a file, or directory in which to find files, to be
added to the zipfile. (To name multiple directories or files, use CFZIPPARAM.)

Action Optional. The action to be taken by the CFZIP tag. The value CREATE creates a zip file from
the file(s) specified by the source attribute. The value of EXTRACT extracts a file(s) from
a zipfile to the named DESTINATION. The value of LIST creates a query resultset describing
the contents of the zip file. Defaults to CREATE.

Recurse Optional. Used with ACTION=CREATE. Indicates whether the subdirectories in the SOURCE
directory be included. Defaults to YES.

Filter Optional. Used with ACTION=CREATE. Specify a filter for the given SOURCE directory e.g.
*.gif (similar to the cfdirectory filter attribute)

Timeout Optional. Used with ACTION=CREATE or EXTRACT. An exception will be thrown if the time
taken to create/extract the zipfile exceeds this. Defaults to 60 seconds.

CompressionLevel Optional. Used with ACTION=CREATE. A numeric in the range 0-9 (inclusive) that specifies
the level of compression with 0 meaning no compression and 9 being the maximum. Defaults
to 8.

NewPath Optional. Used with ACTION=CREATE. If the item specified in SOURCE is a file then this
attribute can be used to specify a replacement path. If the SOURCE item is a directory then
this is ignored.

Prefix Optional. Used with ACTION=CREATE. A prefix that will be prepended to the path of files in
the created zipfile

Variable Required if ACTION=LIST. Ignored for other actions. The name of the variable where the
result of the zipfile contents listing will appear (as a query result set)

Destination Required if ACTION=EXTRACT. Ignored for other actions. The directory to which the zip file
will be extracted.

Flatten Optional. Used with ACTION=EXTRACT. Whether the directory structure of the zip file will be
maintained in the directory to which the zipfile contents are extracted. Defaults to YES.

An example of listing the contents of a zip file is:

<cfzip action="list" zipfile="sourcepath\somefile.zip"
variable="somevar">

 <cfdump var="#x#">

An example of extracting a zip file is:

<cfzip action="extract" zipfile="soourcepath\somefile.zip"
destination="destpath">

The CFZIPPARAM tag can be used to embed references to multiple files/directories during
the process of creating a zip file. It is to be used only with CFZIP ACTION=”create”. The
following table lists the CFZIPPARAM tag attributes.

BlueDragon 6.2.1 CFML Enhancements Guide 32

Attribute Description
Source Required. The path to a file, or directory in which to find files, to be added to the zipfile

Recurse Optional. Indicates whether the subdirectories in the SOURCE directory be included. Defaults
to YES.

Filter Optional. Used with ACTION=CREATE. Specify a filter for the given SOURCE directory e.g.
*.gif (similar to the cfdirectory filter attribute)

NewPath Optional. If the item specified in SOURCE is a file then this attribute can be used to specify a
replacement path. If the SOURCE item is a directory then this is ignored.

Prefix Optional. A prefix that will be prepended to the path of files in the created zipfile

BlueDragon 6.2.1 CFML Enhancements Guide 33

CFML Functions

4.4 Enhanced CFML Functions
This section lists CFML function enhancements that are unique to BlueDragon.

4.4.1 CreateObject
See the discussion under CFOBJECT in section 4.2.15, for information on a new type
value of .net, which is supported only on BlueDragon for the Microsoft .NET
Framework.

4.4.2 ListToArray
BlueDragon adds a new third argument to ListToArray(), a boolean value, which de-
termines whether to include empty list elements in the resulting array. The default is no,
which causes it to operate consistently with ColdFusion.

Consider the following:

<cfset list = "1,2,,3">
<cfdump var="#listToArray(list,",")#">

Both ColdFusion and BlueDragon would return an array of 3 elements, even though there
are 4 items in the list, the third of which is empty. Use the newly available third argument
to change this behavior::

<cfset list = "1,2,,3">
<cfdump var="#listToArray(list,",","yes")#">

This creates instead an array of 4 elements, with the third being empty.

4.4.3 ParagraphFormat
From the CFML Reference for CF5:

“Returns string with converted single newline characters (CR/LF sequences) into
spaces and double newline characters into HTML paragraph markers (<p>).”

BlueDragon varies from this behavior in that it converts single newline characters into
HTML break tags (
) instead of spaces. Double newline characters are converted into
HTML paragraph markers (<p>) by both BlueDragon and CF5.

4.4.4 StructNew
BlueDragon has enhanced the StructNew() function to accept an optional argument, a
boolean, indicating whether to create a structure allowing case-sensitive keynames. The
default is false, in which case BlueDragon internally normalizes structure keys to lower-
case.

Generally, the case of structure keynames is not important and shouldn’t be relied upon.
Indeed, if you have code that relies upon the current default behavior of normalizing

BlueDragon 6.2.1 CFML Enhancements Guide 34

lower-case, you should use caution when implementing this enhancement as it may break
that code.

There are situations, however, where the case of keynames is important. For instance, see
the discussion of the enhancement to XMLTransform(), in section 4.4.7.

Finally, note that there are some cases where structures created by internal processes are
already case-sensitive. For instance, in XML tag and function processing, the keynames
created from XML elements are case sensitive.

4.4.5 XMLSearch
XmlSearch() uses XPath expressions to extract data from an XML document. In CFMX,
the result is an array of XML document objects containing the elements that meet the ex-
pression criteria. BlueDragon additionally supports execution of any other type of XPath
statement that may return a boolean, string, or number type as a result.

4.4.6 XMLParse
BlueDragon offers additional functionality with respect to case sensitivity, node proc-
essing, and array handling. See section 5.4 for more information.

4.4.7 XMLTransform
BlueDragon adds the ability to pass arguments to an XML transformation by way of a
new optional third argument to XMLTransform(). The value of the argument is a struc-
ture, whose keys are used to substitute values in any XSLT param elements that may be
found in the XSLT specified in the second argument. An example of these param ele-
ments is <xsl:param name="keyname"></xsl:param>. For more information on using
these substitutable parameters, consult an XSLT reference.

Be aware that by default, BlueDragon normalizes structure keynames to lower case,
which could compromise the ability to match XSLT param elements. To address this is-
sue, an enhancement has been made to the StructNew function. See the documentation in
section 4.4.4.

Additionally, the key values in the structure that’s passed to the transformation can be
any valid java datatype or object. Normally they'll be strings, but if you want to use
XALAN extensions and need to pass a real object, we permit that and do not convert it to
a string automatically (the XALAN engine, which is the underlying XML/XSLT engine,
does this where appropriate).

4.5 New CFML Functions
This section lists new CFML functions that are unique to BlueDragon.

4.5.1 Assert
BlueDragon has added an Assert() function to CFML. See the discussion of CFASSERT
for more information. The Assert() function takes as its only argument the expression to
be tested, as in:

BlueDragon 6.2.1 CFML Enhancements Guide 35

<CFSCRIPT>
 Assert(somevar is somevalue);
</CFSCRIPT>

4.5.2 GetHttpContext
For BlueDragon.NET only, returns the ASP.NET System.Web.HttpContext object
associated with the currently executing request. For instance, to view the machine name
for the current server, run the following code:

<cfset svr = gethttpcontext().get_server()>
<cfoutput>#svr.get_machinename()#</cfoutput>

For more information on the HttpContext object, including its many properties
including Server, Request, Response, and more, see:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpref/html/frlrfsystemwebhttpcontextclassservertopic.asp

For more information on calling .NET objects in general (including the use of the get_
syntax used in the example), see the manual, Integrating CFML with ASP.NET and the
Microsoft .NET Framework.

4.5.3 ListRemoveDuplicates
BlueDragon has added a ListRemoveDuplicates() function to CFML. It removes any
duplicate elements in a given list. There is no return value. The syntax is as follows:

 ListRemoveDuplicates(query [, separator])

The function accepts an optional second argument describing the list separator, which
defaults to a comma(,).

An example of usage is:

<cfset list = "1,2,3,3">
<cfdump var="#listRemoveDuplicates(list)#">

4.5.4 QueryDeleteRow
BlueDragon has added a QueryDeleteRow() function to CFML. It deletes a given row
from a query resultset. There is no return value. The syntax is as follows:

 QueryDeleteRow(query, rowNumberToDelete)

The second argument refers to the row number within the query result set, not any inter-
nal database record id. An example of usage is:

<CFSET Query = QueryNew("id,name,age")>
<CFLOOP INDEX="X" FROM=1 TO=8>
 <CFSET QueryAddRow(Query,1)>
 <CFSET QuerySetCell(Query,"ID",X,X)>
 <CFSET QuerySetCell(Query,"Name","Name #X#",X)>
 <CFSET QuerySetCell(Query,"Age",X+15,X)>

BlueDragon 6.2.1 CFML Enhancements Guide 36

</CFLOOP>

Before deleting:
<CFDUMP VAR="#Query#">

<cfset QueryDeleteRow(Query, 8)>
After deleting:
<CFDUMP VAR="#Query#">

4.5.5 QuerySort
BlueDragon has added a QuerySort() function to CFML. It sorts a given query resultset
according to provided sort arguments. There is no return value. The syntax is as follows:

 QuerySort(query, column, sorttype, direction)

The following table lists the QuerySort arguments.

Argument Description
Query Required. The CFML query resultset to be sorted (could be from a CFQUERY or tags like

CFDIRECTORY, CFPOP, CFZIP, etc.)

Column Required. The query column to be used for sorting the query result set.

SortType Required. The type of sort to perform. That values can be TEXT, NUMERIC, or
TEXTNOCASE.

Direction Optional. Indicates the sort order, which can be ASC or DESC. Defaults to ASC.

An example of usage is the following:

 <CFDIRECTORY ACTION="LIST" DIRECTORY="c:\" NAME="tests">
 <CFSET QuerySort(tests,"name","TEXT","DESC")>
 <CFDUMP VAR=”#tests#”>

4.5.6 Render
BlueDragon has added a Render function, which will dynamically render (execute) the
CFML within any variable. This solves a long-standing problem where developers have
wished to store CFML in a database column, for example, and then later process it.

While it may seem like a CFINCLUDE, it’s much more powerful and by designing it as a
function it’s more flexible, in that the results can more easily be processed (or ignored).

Examples include the following:

<cfoutput>#Render(someQuery.cfmlContent)#</cfoutput>

<cfscript>
writeOutput(Render(someQuery.cfmlContent));
</cfscript>

<cfset render(somecfmlcontent)>

BlueDragon 6.2.1 CFML Enhancements Guide 37

As with a CFINCLUDE, any CFML in the variable is processed just as if it was running
in the template that called it. Any variables set inside this CFML will be available to the
calling template, and path names for custom-tags and CFINCLUDE's will be relative to
the calling template.

BlueDragon 6.2.1 CFML Enhancements Guide 38

5 Miscellaneous Enhancements
There are various other aspects of working with ColdFusion and CFML that may be
slightly different in BlueDragon, but don’t fit neatly into a discussion of tags or functions.

5.1 Option to Support Relative Paths in Tags Requiring Absolute
There are a number of CFML tags that manipulate the file system via the file attribute.
In ColdFusion, you must specify a full file system path for the file attribute for these
tags:
 CFCACHE

CFCONTENT
CFDIRECTORY
CFEXECUTE
CFFILE

 CFFTP
CFHTTP

 CFIMAGE
 CFLOG
 CFPOP
 CFSCHEDULE

BlueDragon adds an optional URIDirectory attribute to these tags to indicate whether
the file attribute specifies a full file system path or a URI path that is relative to the web
server’s document root directory. For example, the following tags would produce the
same result on Microsoft IIS:

<CFFILE ACTION=”delete” FILE=”C:\Inetpub\wwwroot\images\a.jpg”>

<CFFILE ACTION=”delete” FILE=”/images/a.jpg” URIDIRECTORY=”Yes”>

Specifying file attributes as relative URI paths improves the portability of CFML pages
by eliminating web server and operating system specific physical path specifications.
Note that if the code above was moved to a Linux running Apache, the first tag is not
portable, but the second one is.

The optional URIDirectory attribute accepts the values “Yes” and “No”; the default
value is “No”.

5.2 Integrating JSP/Servlets Alongside CFML Templates
BlueDragon Server JX and BlueDragon/J2EE both allow you to execute JSPs and serv-
lets alongside your CFML templates, as well as integrate your CFML with those and
other Java components. ColdFusion MX requires the Enterprise edition for the same
capability. For more information on CFML/J2EE integration, see the BlueDragon 6.2.1
User Guide.

5.3 Integrating ASP.NET Alongside CFML Templates
With BlueDragon for the Microsoft .NET Framework, you can run ASP.NET pages
alongside your CFML templates (because the .NET framework knows how to process

BlueDragon 6.2.1 CFML Enhancements Guide 39

them) , as well as integrate your CFML with those and other Java components. In the
.NET edition, BlueDragon adds even more integration features than where ever possible
in the Java editions of BlueDragon and ColdFusion. For more information on ASP.NET
integration, see Integrating CFML with ASP.NET and the Microsoft .NET Framework.

5.4 XML Handling
There are a few ways in which BlueDragon supports XML in enhanced ways over Cold-
Fusion. Rather than point these out with respect to particular tags or functions, this sec-
tion introduces these enhancements.

5.4.1 Case Sensitivity
XML case sensitivity is an optional parameter that can be passed to <cfxml> and
XMLparse(). The created XML object then requires case sensitive treatment when ac-
cessing nodes.

CFMX won't allow you to access an XML object using dot notation when you create it
using the case sensitive option, even if you use proper case. The error returned indicates
that CFMX is uppercasing the dot notated name, complaining that it cannot find the up-
percased value in the XML object. It won't find it when comparing on a case sensitive
basis. This operation is contrary to the ColdFusion documentation.

More specifically, in CFMX, using case sensitive XML objects forces you to use
myDoc["Root"]["FirstNode"] notation. CFMX uppercases all their nodes so you can-
not use normal dot notation when case sensitivity is turned on. In BlueDragon, we sup-
port both bracket and dot notation with case sensitive and case insensitive XML objects.

5.4.2 Assignment of New Nodes
CFMX does not allow adding nodes via assignment unless both the LHS (left hand side)
node name and RHS node name are identical. BlueDragon does. In the event of a mis-
match, BlueDragon lets the RHS node name be the name of the appended node.

For example, the following works in BlueDragon but fails in CFMX because the node
names don't match up.

 myDoc.Root.SubNode = XmlElemNew(myDoc, "WrongNode")

BlueDragon allows the RHS node name to take precedence.

In addition, the following fails in CFMX when there is only 1 SubNode element child of
Root.

 myDoc.Root.SubNode[2] = XmlElemNew(myDoc, "SubNode")

This is allowed in BlueDragon.

BlueDragon 6.2.1 CFML Enhancements Guide 40

5.4.3 XML Array Processing
There are some instances in CFMX where an XML node cannot be treated as an array in
array processing functions. For example, the following works in CFMX:

 ArrayClear(myDoc.Root.SubNode)

But the following does not:

 ArrayInsertAt(myDoc.Root.SubNode,1,XmlElemNew(myDoc,"SubNode"))

In BlueDragon, a node with even one element can be processed by the array functions.

5.5 Application.cfm Processing Enhancements

5.5.1 Application.cfm Processed Even When Requested Template Does
Not Exist

BlueDragon offers an enhancement whereby if a URL requests a file that does not exist,
Application.cfm is still processed before rejecting the request as a file not found, so that
processing can take place that redirects based on the requested URL. This has an impor-
tant advantage over CFMX, especially in the way of creating search-engine safe URLs or
otherwise hiding the technology behind your site.

As an example, the sites Blog-City.com and LinuxWorld.com both use URLs such as the
following to request CFML-driven pages. Notice that it’s a request for an HTM file:

 http://alan.blog-city.com/read/789800.htm

In this case, the file 789800.htm doesn't physically exist. The only file in the read di-
rectory is Application.cfm. When that request is processed, BlueDragon runs the
Application.cfm which in their code then parses the cgi.script-name looking
for the filename ('789800') and then makes a decision on that (such as pulling a record
from a database or such), and then they render the template. At the end of
Application.cfm processing, they call <CFABORT> to prevent the user getting a “file not
found” error.

Using this technique, they can create very clean URLs without having to resort to com-
plicated REWRITE rules in their web server. Also, using this technique allows them to
code to a Model-View-Controller (MVC) paradigm more effectively, with the
Application.cfm file being the controller.

5.5.2 Search Process for Application.cfm Stops at Docroot
In both ColdFusion and BlueDragon, if an Application.cfm file is not located in the
same directory as a page being requested, each ancestor directory (parent, grandparent,
etc.) will be searched until an Application.cfm is found. In BlueDragon, the search will
stop at the web server document root directory or J2EE web application root directory,
whereas ColdFusion will search beyond that to the drive root.

BlueDragon 6.2.1 CFML Enhancements Guide 41

5.6 WhiteSpace Compression
BlueDragon’s whitespace suppression is more thorough than ColdFusion’s, which can
reduce the bandwidth required to send pages to clients. See the discussion in section
4.2.17 as well as in the BlueDragon 6.2.1 CFML Compatibility Guide.

5.7 Error handling enhancements
BlueDragon offers various enhancements with regard to error handling and logging, as
discussed in the section above on CFERROR as well as the section “Resolving CFML
Compatibility Errors” in the BlueDragon 6.2.1 CFML Compatibility Guide.

BlueDragon 6.2.1 CFML Enhancements Guide 42

	Introduction
	About This Manual
	BlueDragon Product Configurations
	Technical Support
	Additional Documentation

	Overview of Enhancements
	Enhanced Features In BlueDragon
	CFML Enhancements in ColdFusion 5 and MX
	CFML Enhancements Added in CF 5
	CFML Enhancements Added in CF MX 6/6.1

	CFML Variables
	Variable Names
	SERVER Variables

	CFML Tags
	Enhancements Regarding ColdFusion Components (CFCs)
	Enhanced CFML Tags
	CFARGUMENT
	CFCOLLECTION
	CFCOMPONENT
	CFCONTENT
	CFDUMP
	AutoExpansion of Nested Structures and Arrays
	VAR is Optional, Automatic Dump of Several Scopes
	Additional Information Offered in Dump of Queries
	Available VERSION Attribute to Expand Queries and XML

	CFERROR, CFTRY/CFCATCH, and try/catch
	CFFLUSH
	CFFUNCTION
	CFINCLUDE
	CFINDEX
	Spidering a Web Site
	Asynchronous Index Processing

	CFINVOKE
	CFLOCK
	CFMAIL
	CFMAILPARAM
	CFOBJECT
	CFOBJECTCACHE
	CFPROCPARAM
	CFPROCESSINGDIRECTIVE SuppressWhiteSpace Attribute
	CFQUERY
	DSN-less Connections Supported in .NET Edition
	Query Caching Enhancements
	Query ExecutionTime Variable
	New PreserveSingleQuotes Attribute

	CFQUERYPARAM
	CFSEARCH
	CFSET (Multi-dimensional arrays)
	CFXML

	New CFML Tags
	CFASSERT
	Understanding Assertions
	Controlled By Admin Console Setting

	CFBASE
	CFCACHECONTENT
	Database Persistence of Cached Data

	CFCONTINUE
	CFDEBUGGER
	CFFORWARD
	CFIMAGE
	CFIMAP
	Opening a Connection
	Closing a Connection
	Listing Mailbox SubFolders
	Listing All Mailbox Folders
	Listing Mail Messages
	Reading a Mail Message
	Marking Mail Messages as “Read”
	Deleting Mail Messages
	Setting Message Flags
	Moving Mail Messages between Folders
	Creating a Folder
	Deleting a Folder
	Renaming a Folder
	Sending Mail Messages

	CFMAPPING
	Using DirectoryPath for Absolute Paths
	Using RelativePath for Relative Paths
	Other Information

	CFPAUSE
	CFTHROTTLE
	CFXMLRPC
	CFZIP and CFZIPPARAM

	CFML Functions
	Enhanced CFML Functions
	CreateObject
	ListToArray
	ParagraphFormat
	StructNew
	XMLSearch
	XMLParse
	XMLTransform

	New CFML Functions
	Assert
	GetHttpContext
	ListRemoveDuplicates
	QueryDeleteRow
	QuerySort
	Render

	Miscellaneous Enhancements
	Option to Support Relative Paths in Tags Requiring Absolute
	Integrating JSP/Servlets Alongside CFML Templates
	Integrating ASP.NET Alongside CFML Templates
	XML Handling
	Case Sensitivity
	Assignment of New Nodes
	XML Array Processing

	Application.cfm Processing Enhancements
	Application.cfm Processed Even When Requested Template Does
	Search Process for Application.cfm Stops at Docroot

	WhiteSpace Compression
	Error handling enhancements

