2%,

ﬂi hea

BlueDragon,
BEA WebLogic® Edition6.2.1

Deploying CFML on
WebLogic Server

BlueDragon, BEA WebLogic® Edition

6.2.1
Deploying CFML on WebLogic Server

Published September, 2006

Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.

This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is permitted unless you
have entered into a license agreement with BEA authorizing such use. This document is protected by copyright and may not be copied
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form, in whole or in part, without prior consent,
in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA Systems. THE
DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION,
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA SYSTEMS DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE
USE, OF THE DOCUMENT IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and WebLogic are registered tradematks of BEA Systems,
Inc. BEA Aqualogic, BEA Aqualogic Data Services Platform, BEA Aqualogic Enterprise Security, BEA Aqualogic Service Bus, BEA
Aqualogic Service Registry, BEA Builder, BEA Campaign Manager for WeblLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager,
BEA MessageQ, BEA WebLogic Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic
Enterprise Platform, BEA WebLogic Enterptise Security, BEA WebLogic Exptess, BEA WebLogic Integration, BEA WebLogic Java Adapter
for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization
Server, BEA WebLogic Personal Messaging API, BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic
Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, Dev2Dev, Liquid Computing, and Think Liquid are
trademarks of BEA Systems, Inc. BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA Self Assessment are
service matks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Copyright © 1997-2006 New Atlanta Communications, LLC. All rights reserved.
100 Prospect Place * Alpharetta, Georgia 30005-5445
Phone 678.256.3011 * Fax 678.256.3012

http:/ /www.newatlanta.com

BlueDragon is a trademark of New Atlanta Communications, LLC. ServletExec and JTurbo are registered trade-
marks of New Atlanta Communications, LLC in the United States. Java and Java-based marks are trademarks of
Sun Microsystems, Inc. in the United States and other countries. ColdFusion is a registered trademark of Macrome-
dia, Inc. in the United States and/or othet countties, and its use in this document does not imply the sponsotship,
affiliation, or endorsement of Macromedia, Inc. All other trademarks and registered trademarks herein are the
property of their respective owners.

This product includes softwate developed by the Apache Softwate Foundation (http://www.apache.otg).
No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated
into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical,

chemical, manual, or otherwise without the prior written consent of New Atlanta Communications, LLC.

New Atlanta Communications, LLLC makes no representations or warranties with respect to the contents of this
document and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose.

BlueDragon, BEA WebLogic Edition Deploying CFML on WebLogic Server i

Further, New Atlanta Communications, LLC reserves the right to revise this document and to make changes from
time to time in its content without being obligated to notify any person of such revisions or changes.

The Software described in this document is furnished under a Software License Agreement (“SLA”). The Software
may be used or copied only in accordance with the terms of the SLLA. It is against the law to copy the Software on
tape, disk, or any other medium for any purpose other than that described in the SLA.

BlueDragon, BEA WebLogic Edition Deploying CFML on WebLogic Server ii

1 INTRODUCTION ...ooiiiiiiiiiiiiiiiiiii e 1

1.1 ADOUL CFIML ittt bbbk bbb bbbt bbbttt e bt 1
1.2 Deploying CFML on J2EE Servers With BIUEDIagoN...........cccoiiiiiiiieiineeeeeee e 1
1.3 BlueDragon/J2EE LiCeNSING.......ccccvviieieieeieieesese e sie e e sie e e Error! Bookmark not defined.
IR AN o ToT 0L 23 [U1=T DT oo o SRR 2
SRV (= I R (=T o (U T =T g T=T) (SR 3
ORI I-Tod] ot LIS 0 o] o To] i S 4
1.7 Additional DOCUMENTALIONc.ciiiieiiitiiieiete ettt bbbttt b et beneeneans 4
2 J2EE WEB APPLICATIONS ... 5
2.1 Webapp DIreCIONY STFUCTUFEoouiiuiiiieieeie ettt ettt b ettt bbb e beebe et e neenne e 5
2.2 URL CONEXE PALN ..ottt bbbt bbbt bbbttt b s 6

2.2.1 Choosing an Alternative CONteXt Path ..o 6
2.3 Web. XMl DeploymMENt DESCIIPIONccuviiecicieiicie ettt sttt e e s r et estesaesreeneeneesnens 7
24 MVAR FIIES ..o bbb e bRt R et n s 7
3 DEPLOYING CFML AS A J2EE WEB APPLICATION.....cccoevvviieeiieeeeie e, 8
3.1 Creating and Deploying @ CEFML WEDAPP ..couviiiiiiie e 8
3.2 Creating WAR FIES ..ottt bbbttt e bbbt bbbt b e e 10
3.3 Options to Consider Before Production Deploymentcccceiiiiiiiiiinieneeee e 10

3.3.1 Setting the BlueDragon Working DIrECIOIYcc.ccvierieireniiinie e 10

3.3.2 Setting the BlueDragon Administration Console Password...........cccoevereveniennninieseeienenies 11

3.3.3 Removing the BlueDragon Administration CONSOIE...........cccoviieiiriiiiiie e 11

3.3.4 Preventing the Auto-load of ODBC DataSources on Windows SErverscccoceeeevererennene 12

3.3.5 Configuring Datasources in the J2EE SEIVEYccccciiiiiiiinine e e 12

3.3.6 Deploying CFML Without SOUICE COUEB.........cecveeeieiiesiesie ettt 12
4 RELATIVE URLS WITHIN HTML TAGS. ... 13
5 PROTECTING CFINCLUDE/CFMODULE TEMPLATES.......cccooiiiiiiine 14

BlueDragon, BEA WebLogic Edition Deploying CFML on WebLogic Server iii

1 Introduction

BlueDragon for J2EE Servers (BlueDragon/J2EE) allows CFML applications to be
deployed as standard J2EE web applications in either open directories or as web applica-
tion archive (WAR) files. While most web applications on J2EE servers are built with
servlets, JSPs, EJBs, and other components of the J2EE specification, BlueDragon makes
it possible to deploy CFML applications on J2EE servers as native J2EE components, and
to integrate CFML and native J2EE components.

This document offers a brief overview of J2EE web applications, explaining both the
benefits of CFML (for J2EE developers) and the benefits of J2EE deployment (for CFML
developers). It then describes how to create standard J2EE web application components
that include the BlueDragon CFML runtime. CFML pages are then added to these web
applications, which can be deployed onto any standard J2EE application server without
requiring the installation of proprietary Allaire/Macromedia ColdFusion Server soft-
ware.

1.1 About CFML

ColdFusion® Markup Language (CFML) is a popular server-side markup language for
building dynamic database-driven web sites. Unlike scripting-based alternatives such as
ASP or PHP, CFML is based primarily on HTML-like markup tags (CFML also contains
a scripting language component). CFML is characterized by its low learning curve and
ease-of-use, particularly for web developers who do not have a technical background in
programming languages such as C/C++ or Java. CFML was originally developed by
Allaire Corporation in the late 1990’s; Allaire was acquired by Macromedia, Inc. in early
2001, which in turn was acquired by Adobe Systems Inc. in late 2005.

Over the past several years, many organizations have begun adopting standards-based
application servers for their Internet and intranet web site deployments. In particular,
there has been a significant migration to application servers based on the Java 2 Enter-
prise Edition (J2EE) standard defined by Sun Microsystems, Inc. and its partners. This
standardization on J2EE servers creates a problem for organizations that have legacy
applications implemented in CFML.: prior to the introduction of BlueDragon these appli-
cations could only be deployed on proprietary Allaire/Macromedia ColdFusion applica-
tion servers.

1.2 Deploying CFML on J2EE Servers with BlueDragon

BlueDragon allows existing CFML applications to be redeployed as standard J2EE com-
ponents (WAR or EAR files) onto standard J2EE application servers, eliminating the
need for proprietary Allaire/Macromedia ColdFusion servers, and without requiring a
lengthy and expensive rewrite of the CFML into JSP. The redeployed legacy CFML
applications can then be enhanced using standard J2EE technologies (servlets, JSP, EJB,
etc.), or web developers can continue to enjoy the productivity and ease-of-use of CFML,
but in a standard J2EE environment.

BlueDragon, BEA WebLogic Edition Deploying CFML on WebLogic Server 1

A general discussion of the motivation for and benefits of deploying CFML on J2EE is
offered in a New Atlanta-written article published in the April 2004 ColdFusion Devel-
opers Journal, “Making the Case for CFML on J2EE”:

http://www.sys-con.com/story/?storyid=44481&DE=1

There are many benefits to redeploying CFML applications to J2EE servers, including
(but not limited to):

possibilities of clustering, load-balancing, and fail-over as provided by the J2EE
server for all web applications, including options such as session replication
across multiple servers;

options of persisting sessions across server restarts;

deploying multiple independent instances (where each independent deployed web
application is isolated from others—even on the same machine—with its own
administrative settings, JVM configuration, and more);

management controls provided by J2EE servers to stop, start, redeploy and other-
wise configure and manage web applications;

reporting mechanisms provided by J2EE servers to track requests, sessions, and
more;

option to use J2EE datasources, providing enhanced pooling, clustering,
configuration, management, and more.

Finally, it’s possible to integrate CFML with Java, Java objects, EJBs, and other J2EE
components, including sharing session and application variables, as well as including
back and forth between CFML pages and JSPs/servlets. Because this functionality is sup-
ported also in our BlueDragon Server JX edition, the topic of integrating CFML with
Java is covered in the BlueDragon 6.2.1 User Guide.

1.3 BlueDragon/J2EE Licensing

The BlueDragon/J2EE web Application (discussed in section 3) by default has no
BlueDragon license key embedded within it, so that it runs as a single-user (localhost-
only) developer mode. You may request an evaluation license key to extend it to be
accessible from any client. Contact your BEA Sales Representative or visit the BEA
corporate Web Site at http://www.bea.com in order to contact BEA Sales.

To use your software in a full-scale production environment, you must purchase a
production license, and place the license (license.bea file) under the BEA Home
directory.

To purchase a license, contact your sales representative or visit the BEA corporate Web
Site at http://www.bea.com in order to contact BEA Sales.

BlueDragon, BEA WebLogic Edition Deploying CFML on WebLogic Server 2

To use the Update License Utility, go to
http://e-docs.bea.com/common/docs92/install/license.html#wp1051754

1.4 About BlueDragon

The core technology of BlueDragon is a CFML runtime and execution module that is
implemented as a standard J2EE servlet. Building web applications that include the
BlueDragon CFML runtime allows the deployment of CFML pages onto standard J2EE
servers without installing proprietary Allaire/Macromedia ColdFusion server software.
BlueDragon is highly compatible with Macromedia’s ColdFusion MX Server, with some
limitations and some enhancements. See the BlueDragon CFML Compatibility Guide for
details:

http://www._newatlanta.com/products/bluedragon/self help/docs/index. jsp

BlueDragon is a highly optimized, high-performance CFML runtime engine. CFML
pages are compiled into an internal representation that is cached in memory and executed
by the BlueDragon runtime when CFML pages are requested by client browsers.

In addition to allowing the deployment of CFML pages onto standard J2EE servers,
BlueDragon is packaged in a standalone server configuration built on New Atlanta’s
award-winning ServletExec web application server. Additional information about
BlueDragon and ServletExec can be found on New Atlanta’s web site:

http://www._.newatlanta.com/products/index. jsp

1.5 System Requirements

BlueDragon/J2EE allows deployment of CFML applications using standard web applica-
tions as defined by the Java Servlet 2.3 specification. Therefore, BlueDragon/J2EE runs
on any J2EE server or JSP/servlet engine that supports standard web applications or web
application archive (WAR) files; it has been tested and is supported on the following:

J2EE Application Server
BEA WebLogic 8.1 and 9.0
JSP/Servlet Engines (non-EJB)
New Atlanta ServletExec 4.2 and 5.0
Apache Tomcat 5.0 and 5.5

BlueDragon/J2EE should run on any operating system supported by these application
servers; New Atlanta has tested and supports the following operating systems:

e Windows 2000/XP/2003

e Red Hat Enterprise Linux 3.0 and 4.0
e Mac OS X 10.1

e Solaris7,8,0r9

BlueDragon, BEA WebLogic Edition Deploying CFML on WebLogic Server 3

e AIX43.3and 4.3.10
e HP-UX 10.20 and 11.0

BlueDragon/J2EE is supported on Java 1.4.2 and 1.5.

1.6 Technical Support

If you’re having difficulty installing or using BlueDragon, visit the self-help section of
the New Atlanta web site for assistance:

http://www_newatlanta.com/products/bluedragon/self help/index.cfm

Details regarding paid support options, including online-, telephone-, and pager-based
support are available from the New Atlanta web site:

http://www.newatlanta.com/biz/support/index. jsp

For BEA Systems technical support, go to:

http://support.bea.com

1.7 Additional Documentation
The other relevant manuals available in the BlueDragon documentation library are:

e BlueDragon, BEA WebLogic Edition 6.2.1 CFML Compatibility Guide
e BlueDragon, BEA WebLogic Edition 6.2.1 CFML Enhancements Guide
e BlueDragon, BEA WebLogic Edition 6.2.1 User Guide

Each offers useful information that may be relevant to developers, installers, and admin-
istrators. BlueDragon, BEA WebLogic Edition documents are available at edocs.bea.com
and additional documents are available in PDF format from New Atlanta’s web site:

http://www.newatlanta.com/products/bluedragon/self _help/docs/index.cfm

BlueDragon, BEA WebLogic Edition Deploying CFML on WebLogic Server 4

2 J2EE Web Applications

This section is an introduction to J2EE web applications for developers who are new to
this subject. Experienced J2EE developers may want treat this as a refresher, or skip to
the next section, “BlueDragon Webapp Template™.

In J2EE terminology, a web application (or webapp) is a collection of Java servlets,
JavaServer Pages (JSP), JSP tag libraries, Java classes, HTML documents, GIF/JPEG
images, style sheets, and other resources. A J2EE webapp can be deployed as a single
component onto any J2EE application server that implements the Java Servilet API 2.3 (or
later) specification.

A J2EE webapp is characterized by a specific directory structure, and a configuration file
named web .xml that is also referred to as the webapp deployment descriptor. The fol-
lowing book contains an excellent in-depth discussion of J2EE web applications:

More Servlets and JavaServer Pages

by Marty Hall

Sun Microsystems Press / Prentice-Hall PTR, 2002
ISBN 0-13-067614-4

http://www._moreservilets.com

2.1 Webapp Directory Structure

Content that is to be served to the client is placed directly in the top-level directory of a
webapp. A webapp may contain sub-directories within the top-level directory; for exam-
ple, it may contain an images sub-directory to hold GIF and JPEG files.

Within the webapp top-level directory is a special sub-directory named WEB-INF. The
J2EE server will not serve any content from the WEB-INF sub-directory to the client;
therefore, this is the place to put configuration files, Java class files, or other resources
that need to be protected. The web.xml deployment descriptor is placed directly within
the WEB- INF sub-directory (see further discussion of web.xml, below).

There are two special sub-directories within the WEB-INF directory: the classes sub-
directory that is used to hold unbundled Java .class files, and the 1ib sub-directory that
is used to hold Java .jar archives. Any Java classes placed in these sub-directories are
automatically available to the webapp (that is, they don’t need to be added to the J2EE
server’s classpath or otherwise configured in any way). This is the location to put files to
be called via CFOBJECT, createObject, and Java CFX tags.

In summary, the key features of a J2EE webapp are:

e Content that is to be served to the client (HTML, GIF, JPEG, CFM, JSP, etc.) is
placed directly within the webapp top-level directory or its sub-directories.

e The WEB-INF sub-directory is located within the webapp top-level directory. The
J2EE server will not serve any files from WEB- INF to the client.

BlueDragon, BEA WebLogic Edition Deploying CFML on WebLogic Server 5

e The web.xml deployment descriptor is located directly within the WEB-INF direc-
tory.

e The classes and lib sub-directories within WEB-INF are used to store Java
.class and . jar files, respectively.

2.2 URL Context Path

When deploying a webapp onto a J2EE server, a URL prefix (referred to as the context
path or context root) is associated with the webapp. This deployment process is referred
to as registering the webapp and the specific procedures vary based on the J2EE server.
After the webapp is registered with the J2EE server, all URLSs that match the context path
are mapped to the webapp for processing.

The top-level directory serves as the document root for the webapp. When an incoming
URL matches (starts with) the context path of a webapp, the portion of the URL after the
context path is interpreted as being relative to the webapp top-level directory. In this way,
the context path acts as a sort of virtual directory that maps to the webapp physical
directory.

For example, if the file index.html resides within the webapp top-level directory and
the webapp has been configured with a context path of /mywebapp, the following URL
will serve index.html from the webapp:

http://www.myserver .com/mywebapp/index.html

The following URL would serve logo.gif from within the webapp images sub-direc-
tory:
http://www.myserver .com/mywebapp/images/logo.gif

2.2.1 Choosing an Alternative Context Path

Most J2EE servers will use the web application directory name or WAR file name as the
name of the context path. If you need to deploy the application to a different context path,
particularly if you want to deploy it as the root (/) context path, you must configure the
context path during deployment.

Most J2EE servers permit designation of the context path during deployment, whether
using the J2EE server’s administration console or command-line tool. Additionally, most
also permit indication of the context path using an XML file entry (typically in a file
name and using XML entries specific to each J2EE server.) Following are discussions of
how to set the context root in a few J2EE servers.

In BEA WebLogic, you must create (or edit) a weblogic.xml file in the web applica-
tion’s WEB- INF directory, placing in it the following lines:

<weblogic-web-app>

<context-root>/</context-root>

</weblogic-web-app>

BlueDragon, BEA WebLogic Edition Deploying CFML on WebLogic Server 6

Notice that this is setting the context path to “/”. Just be sure not to choose a context path
that would conflict with any other web application you’ve deployed.

In Macromedia JRun, edit jrun-web.xml in the web application’s WEB-INF directory,
using a similar entry:

<jrun-web-app>
<context-root>/</context-root>
</jrun-web-app>

In Tomcat, make a change to the single conf/server.xml file for the entire server
(under the Tomcat install directory), and create a <context> entry naming the desired
path and pointing to the deployed web app. So assuming we deployed the
BlueDragon621.war file, but we wanted to access it as 7 instead of /BlueDragon621,
use this entry:

<Context path= docBase=""BlueDragon621"'/>

For information on setting the context path in other J2EE servers, see the appropriate
documentation for that server.

2.3 web.xml Deployment Descriptor

The web.xml deployment descriptor contains configuration information used by the
J2EE server to support the webapp. For example, the web.xml file provided with the
BlueDragon web application template (see below) contains configuration information
that tells the J2EE server how to process CFML files (specifically, it instructs the J2EE
server to forward all URLs that end with the .cfm extension to the BlueDragon CFML
runtime servlet).

A detailed discussion of web.xml is beyond the scope of this document. However, the
web.xml file provided with the BlueDragon web application template (see below) con-
tains all of the configuration information needed to deploy CFML pages; this web.xml
file will normally not be modified in any way.

2.4 WAR Files

A webapp can be deployed unbundled in an open (or exploded) directory structure, or
bundled into a Web ARchive (WAR) file. A WAR file is simply a webapp directory
structure bundled into a ZIP file and given the “.war” extension. WAR files can be cre-
ated using the JDK jar utility or any utility that can create a ZIP file, such as WinZip on
Windows or gzip on UNIX. See section 3.2 for more information on creating WAR files.

BlueDragon, BEA WebLogic Edition Deploying CFML on WebLogic Server 7

3 Deploying CFML as a J2EE Web Application

When you download BlueDragon for J2EE Servers, you’ll find it creates a directory of
files including a single war file named BlueDragon621.war, and a directory of files
named BlueDragon_webapp_621. You can use either of these to deploy BlueDragon and
your CFML onto any standard J2EE server or servlet engine. This section explains how
to do that.

The BlueDragon_webapp_621 directory contains a pre-built standard J2EE web applica-
tion that includes the BlueDragon CFML runtime servlet, and contains all of the Java
archives (.jar files) and configuration files needed to support CFML pages. Using
BlueDragon_webapp_621 as a starting point, here is a high-level overview of the steps
needed to create a standard J2EE webapp that supports CFML pages:

1. Make a copy of the BlueDragon_webapp_621 directory.

2. Add CFML pages and other content files (HTML, GIF, JPEG, JSP, etc.) to the
new webapp directory created in Step 1.

3. Deploy the webapp to your J2EE server.

4. Use the BlueDragon administration console to configure any datasources required
by the CFML pages.

5. After testing, deploy the webapp to a production server either as an open directory
or packaged within a WAR file (See section 3.2 for more information on creating
WAR files.)

In addition to the BlueDragon CFML runtime servlet, BlueDragon_webapp_621 con-
tains JDBC drivers for Microsoft SQL Server, Oracle, and PostgreSQL databases; JDBC
drivers for additional databases can be added by placing their JAR files into the /WEB-
INF/11ib directory or adding them to the J2EE server classpath. The JDBC-ODBC Bridge
included with the standard Java runtime environment can be used to access ODBC
datasources.

The BlueDragon621.war file is offered as a compressed version of the
BlueDragon_webapp_621 directory. While you can deploy it instead, the following sec-
tion focuses on using the open directory, and a later section discusses creating your own
WAR file from your deployed CFML/J2EE web application, for subsequent deployment
on other servers.

3.1 Creating and Deploying a CFML webapp

Follow these detailed step-by-step instructions to create a standard J2EE web application
that supports CFML pages:

1. If you have not already done so, download the installer file which contains the
BlueDragon_webapp_621 directory:

http://www.newatlanta.com/products/bluedragon/download. jsp

BlueDragon, BEA WebLogic Edition Deploying CFML on WebLogic Server 8

2. Make a copy of the BlueDragon_webapp_621 directory (you could simply
rename the BlueDragon_webapp_621 directory, but you’ll probably want to use it
as a template to create additional webapps in the future). Note that many J2EE
servers automatically use the name of the webapp top-level directory as the URL
context path (see above for a discussion of URL context paths).

3. Copy your CFML and other content files (HTML, GIF, JPEG, JSP, etc.) into the
webapp top-level directory, creating sub-directories as needed, either before
deploying the web application or afterward, depending on your environment and
requirements.

4. Deploy the webapp to your J2EE server. On some servers, you can simply copy
the web app or WAR file to a particular directory (hot deployment), but on most,
you use the application server’s administration console or a command line utility
to deploy the web application. See section 3.2 for more information on creating
WAR files.

5. Test the webapp by serving the files index.jsp and index.cfm. For example, if
you configured a context path of “/mywebapp” use the following URLSs (replace
“www.myserver.com” with the host name or IP address of your computer):

http://www._myserver.com/mywebapp/index. jsp

http://www.myserver.com/mywebapp/index.cfm

After verifying that your webapp is registered properly, you can delete the files
index. jsp and index.cfm.

6. Access the BlueDragon administration console via the following URL (assuming
a context path of “/mywebapp”; replace “www.myserver.com” with the host name
or IP address of your computer):

http://www.myserver.com/mywebapp/bluedragon/admin.cfm

The password to the BlueDragon administration console is blank by default, so
you are not required to enter a password to login. You can set the password after

logging in.

The main task that needs to be performed via the BlueDragon administration con-
sole is to configure any datasources required by your CFML pages. See the
BlueDragon User Guide or built-in help files for further information about using
the BlueDragon administration console.

7. Test your webapp on the development machine.

8. Deploy your webapp onto the production server either as an open web app direc-
tory or by packaging the webapp into a WAR file, as desired or as may be
required by the production server. See step 4 above, as well as the remaining sec-
tions in this chapter, for more information on web application deployment.

BlueDragon, BEA WebLogic Edition Deploying CFML on WebLogic Server 9

3.2 Creating WAR Files

As explained previously, you can deploy your J2EE web applications either as an open
directory or as a WAR file. Some J2EE administrators may prefer to deploy code as
WAR files, and indeed some J2EE servers may offer additional benefits when code is
deployed as a WAR file.

You can create the WAR file manually using the JDK jar utility (which is installed by
most application servers) or by using a tool that can create a zip file (such as WinZip on
Windows or gzip on UNIX).

The details of using each is beyond the scope of this manual, but the bottom line is that in
either approach you simply want to create a compressed file comprising all the files and
directories of the open web application you’ve created.

With a tool like WinZip, be careful about how you perform the zip operation. Select all
the files and directories in the web app directory at once and zip that (rather than select-
ing the directory itself and zipping that). Also, do not choose the option to “save full path
info”. The resulting zip file contents should appear to contain the files (and subdirectory
names) just as it did in the open web application, with the path to web.xml (for instance)
being simply WEB-INF rather than yourappname\weB-INF. Finally, once the zip file is
created, simply rename it to a WAR file (or pay attention to name it a WAR file during
the zip processing).

Once you’re familiar with the process, it can become a two-step operation.

3.3 Options to Consider Before Production Deployment

Before deploying your web application into production, consider the following options
which may be required or desirable.

3.3.1 Setting the BlueDragon Working Directory

BlueDragon needs to read and write files used by the CFML runtime to a working direc-
tory. By default, BlueDragon is configured to use /WEB-INF/bluedragon/work within
the webapp as its working directory. For webapps deployed as open directories there is
no need to modify this default setting.

For webapps deployed as WAR files, certain J2EE servers and servlet engines may
deploy the web application in a way where it is not possible or desirable to write runtime
files to the deployed webapp directory (or the WEB-INF sub-directory). Therefore, when
deploying a webapp as a WAR file, configure BlueDragon to use a working directory
outside of the webapp directory. We recommend using the following directories for
Windows and UNIX/Linux, respectively:

C:\BlueDragon\<webapp name>
/usr/local/BlueDragon/<webapp name>

Each BlueDragon webapp must be configured to use a unique working directory. The
BlueDragon working directory is configured via the BLUEDRAGON_WORKING_DIRECTORY

BlueDragon, BEA WebLogic Edition Deploying CFML on WebLogic Server 10

init-param in web.xml. The location to store the bluedragon.xml configuration file
(holding admin console configuration changes) is also specified by an init-param,
BLUEDRAGON_XML, which should be changed as well.

While you generally should change these value before creating a WAR file and/or
deploying the web application to production, some J2EE servers may allow you to edit
the web.xml manually or via their administration consoles during or perhaps even after
deployment.

If you prefer to control the working directory without modifying each web application’s
web.xml file, note that the following also applies:

e |f the BLUEDRAGON_WORKING_DIRECTORY init-param is not defined within
web.xml, then BlueDragon uses the javax.servlet.context.tempdir attribute
provided by the J2EE server to determine the location of its working directory;
that is, it creates a sub-directory named "working" within this directory.

e |f the <tempdirectory> element is not defined within bluedragon.xml, then BD
creates the "temp" directory as a sub-directory of the working directory.

e |t’s also possible to define the working directory via the -Dbluedragon.workdir
JVM property

The Java Servlet 2.4 specification (paragraph 3.7.1) explains that the temporary directory
behavior in more detail. So to let the J2EE server control where the working directory is
placed (by its designation of the temporary directory for the web application), simply
delete the BLUEDRAGON WORKING_DIRECTORY init-param from web.xml and the
<tempdirectory> element from bluedragon.xml.

You can determine the value for javax.servlet.context.tempdir by runing the fol-
lowing within a JSP page:

<%=application.getAttribute("javax.servlet.context.tempdir')%>

3.3.2 Setting the BlueDragon Administration Console Password

By default, there is no password set for the BlueDragon administration console in the
web application made available in the original download. Before deploying the web
application to production, you will want to set a password, if not completely remove the
administration console as discussed in the next section. You can set the password within
the Administration console itself, under General->License & Security, Or you can set
it in the bluedragon.xml file.

3.3.3 Removing the BlueDragon Administration Console

Before deploying your web application into production, you can remove the code sup-
porting the BlueDragon administration console, if you prefer for security reasons to pre-
vent access in production.

BlueDragon, BEA WebLogic Edition Deploying CFML on WebLogic Server 11

To remove it, simply delete the following from the web application:

e the [webapp]\bluedragon\admin\ directory
e the [webapp]\WEB-INF\bluedragon\admin.bda file

If you delete these files after a web application is deployed, you must either redeploy or
restart the web application for the change to take effect.

3.3.4 Preventing the Auto-load of ODBC DataSources on Windows Servers

On Windows Servers, BlueDragon is configured by default to automatically load any
existing ODBC datasources as defined on the server in the Windows ODBC Datasources
panel (available in Control Panel or Administrative tools). See the BlueDragon 6.2.1
User Guide for more information on configuring and using ODBC Datasources.

While this feature of auto-loading ODBC datasources is generally considered a produc-
tivity enhancement, it may be desirable in some situations to prevent the process. To do
so, simply delete the [webapp]\WEB-INF\bin\ODBCNativeLib.dl1 file.

If you delete this file after a web application is deployed, you must either redeploy or
restart the web application for the change to take effect.

3.3.5 Configuring Datasources in the J2EE Server

When using BlueDragon for J2EE, you can either use the BlueDragon administration
console’s datasource configuration capability, or you can instead use the datasource con-
figuration capability provided by your J2EE application server. In that case, you do not
need to configure the datasource in the BlueDragon administration console.

Once configured, you can use the datasource name (technically the JNDI name, in J2EE
terms) in tags like CFQUERY, etc. BlueDragon will search first to see if there is a
datasource of that name in its configuration, and if none is found, it will then look for the
JNDI name in the J2EE environment.

Defining datasources in the J2EE environment may give you additional benefits, such as
deployment, clustering, replication, connection pooling and other beneficial features are
provided by the J2EE server. Consult your J2EE server documentation.

3.3.6 Deploying CFML Without Source Code

As discussed in the BlueDragon 6.2.1 User Guide, BlueDragon offers an option for
deploying your CFML applications in such a way that the source code is not readable
(and optionally not executable beyond a given date, or without a decryption key). Called
“precompiled templates”, they can be created using the BlueDragon administration con-
sole option Deploy->Precompile. For more information, see the section Precompiled,
Encrypted CFML Templates in the User Guide.

BlueDragon, BEA WebLogic Edition Deploying CFML on WebLogic Server 12

4 Relative URLs within HTML Tags

The use of URL context paths by webapps may result in the need for special handling of
relative URLs within HTML tags (this is not an issue that is specific to BlueDragon, but
is common to JSP and static HTML pages within a J2EE webapp). Relative URLs within
HTML tags that don’t start with the slash character (/) work properly when deployed
within a webapp and do not require any modification. For example, the following HTML
tags work the same in both webapp and non-webapp deployments:

<FORM ACTION=""store/processOrder.cfml”>

However, relative URLs that start with the slash character (/), do not work properly
within webapps. This is because the browser interprets these URLS as being relative to
the web server document root (that is, relative to the URL “/”), and the browser strips the
URL context path when converting these relative URLS to an absolute URL.

BlueDragon provides two CFML enhancements to allow you to specify URLs that are
relative to the webapp root directory (the webapp top-level directory) without using
URLSs that start with “/”. The first method is to use the CGI.Context_Path variable
when constructing relative URLs. For example:

<CFOUTPUT>

<CFOUTPUT>

The above example is equivalent to the following tag in a non-webapp deployment:

If you have a large number of relative URLs within a CFML page, then you can use the
CFBASE tag to set the “base” URL for all relative URLs within the page. For example:

<HTML>

<HEAD>

<CFBASE TARGET="optional”>

<TITLE>Relative URL Test Page</TITLE>

</HEAD>

<BODY>

</BODY>

</HTML>

In the above example, “images/logo.gif” is interpreted by the browser as being relative to
the webapp top-level directory (that is, “images” is a sub-directory within the webapp
top-level directory). When using the CFBASE tag, all relative URLs within the page are
interpreted as being relative to the webapp top-level directory, and not relative to the
current page as they would be without CFBASE.

The CFBASE tag is expanded by BlueDragon into an HTML BASE tag with the HREF
attribute set to the webapp top-level directory. The optional TARGET attribute to CFBASE
has the same function as the BASE tag optional TARGET attribute.

BlueDragon, BEA WebLogic Edition Deploying CFML on WebLogic Server 13

5 Protecting CFINCLUDE/CFMODULE Templates

The issue of template paths also applies to CFINCLUDE/CFMODULE template path map-
pings. Template paths that start with "/" are mapped by BlueDragon to the J2EE webapp
document root directory. It’s worth noting that these paths can be mapped to the WEB- INF
directory, for example:

<cfinclude template="/WEB-INF/includes/header.cfm'>
<cfmodule template="/WEB-INF/modules/navbar.cfm'>

The advantage of using WEB-INF is that files within it are never served directly by the
J2EE server, and therefore can be accessed by users via a URL.

BlueDragon, BEA WebLogic Edition Deploying CFML on WebLogic Server 14

