ORACLE

Adding User Defined Native
Functions

Getting Started Guide

Version 10g Release 3 (10.3)

ORACLE

ADDING USER DEFINED NATIVE FUNCTIONS ..o 3
CREATING A NATIVE FUNCTION DEFINTION ..cvvuuiee e e ettt eeeeeeeeeaa e e e e e eeeeenaaeeneeeeees 3
WRITING THE | INVOKABLE IMPLEMENTATION CLASS...uuuiiiiiiiieeetiiisiseeesseesssssnsseesssessssnns 5

INEEITACE HINVOKADIE ...t ee e e eeeeeees 5
MELNOA DELAIL ... et e e ettt e e e e e e e enenees 6

ADDING EXTERNAL JAVA SOURCE FILES

BINDING A NATIVE CLASS REFERENCE TO A CONCRETE JAVA CLASS ...ccvvvviiiiieeeereeennnns 11

ORACLE

Adding User Defined Native Functions

At times you might have to add new formula function for validating/processing the
data. Designer supports defining new formula functions using the Function Definition
feature. You can choose to implement the operation of the function using either the
formula language or the platform specific code. Once the functions are defined in a
Cartridge, they are available globally in the cartridge and any cartridge that
references it. This means that the function can be used in formula code from
anywhere in the cartridge.

The following steps are required in creating native function that implements the
operation of the function using platform specific code.

1. Create a function definition with a reference name to the native class that
implements the function operation.

2. Write the native class. In case of Java platform, you need to write a Java class
that implements the IInvokable interface.

3. Add the Java source file to the cartridge using the ‘External Sources’ tab of the
‘Java Code Generation Settings’ dialog.

4. Bind the reference name of the native class to the concrete Java class name
including the package prefix.

Creating a Native Function Defintion

Follow the steps given below to create a function defintion that uses a native class
for implementing the function operation.

1. Right click the cartridge node, select ‘Add Item-> New Function’ as shown below.

Eﬁ Explorer FunctionDefinitonCart

FunctionDefinition

Cartridge Details

:'|I‘:| Add Itern ¥ IC3) Mew Folder ... i

@ e RS e e O Mew Internal Message ... i

: ; 4@ Mew External Message ...
Verify Integrity -

H Mew Mapping ...

Path b

; @ Add Macros B
Properties

£# Mew Function

7

B rann el

ORACLE

A new function definition will be added.

E& Explorer 2= Function - [Mew Function]
b, b =

rGeneral r[ﬁude |

FunctionDefinitionCart
fé)—liﬁ Function Definiions
L §# Hew Function

Marne & Description

Function Mame |New Functian |

Categary |Llser Defined | - |

Crascription

Signature

Return Type

Pararmetars

B8 ¢ 0

| || parameterName |[Type || Description

Signature String Mew Function(]

Specify the name of the function in the ‘Function Name’ text field.

The function should be accessed using this name. This is a mandatory property.
The name should conform to identifier rules.

Specify the category of the function in the ‘Category’ combo box.

The ‘User Defined’ category is selected by default. You can select any other
category from the drop down list. In the ‘Edit Formula’ dialog, the function will be
listed under the specified category.

Specify the function description in the ‘Description’ text area.

This is not mandatory. When a function is selected in the functions list box the
description specified here will be displayed.

Specify the input parameters of the function using the ‘Parameters’ table.

A function can have multiple parameters or no parameter. Parameters are not
mandatory for a function.

Properties of a parameter are,

ORACLE

Name: Each parameter name should be unique.

Description: Description of the parameter. This is not mandatory.

Type: The parameter type. All the supported Designer types can be specified as
parameters. Along with those types, the following four new types can be
specified: Any, Token, Section and Message.

6. Select the return type of the function in the ‘Return Type’ list box.

The type can be any of the supported designer types. The following five new
types are also supported as return types: Any, Token, Section, Message and
Void.

7. In the ‘Code’ tab, select the ‘Native Function’ check box and specify a refernce
name in the ‘Native Class Ref’ text field.

Function - [SelectOrders] 1)
|/ General Code

Mative Function, If checked the function is implermented using platform specfic

E code,

otherwisze formula code should be provided.

Mative Claszs

Mative Class Ref |OrderMatcher

See Also:

Adding User Defined Native Functions

Writing the IInvokable Implementation Class

In case of Java platform, the native class should implement the
com.tplus.transform_runtime._handler.lInvokable interface. The API for the interface
is given below for your convenience.

Interface Ilnvokable

Interface for external (user defined) classes to perform a custom operation. This is
used by

User defined functions with native implementation

The interface defines a generic run method, which takes an Object array as a
parameter. The elements of the array are the arguments to the operation. The
implementing class should execute the operation and return a value. Since the run
method's signature is generic, it is very important to ensure that the same set of

ORACLE

arguments with same types are used at the call point (Invoke External activity or
Function definition).

The implementing class,
should be public
should have public default constructor

should be made available to the generated JAR at runtime (by specifying in the
manifest classpath, or by including the source while building)

should be stateless. The class should not maintain call specific data.

As many instances of the implementing class will be created as required. The class
should not expect all calls to be made to one particular instance.
Note:

For an easy way of creating an lInvokable implementation class please refer the
section ‘New File from Template’ in Designher Guide documentation.

Method Detail

public java.lang.Object run(java.lang.Object[] args,
TransformContext cxt)
throws TransformException

Executes the operation and returns the value. Primitive values are boxed into the
corrsponding object wrappers.

Parameters:

args - arguments to the operation
cxt - the transformation context. In case of function definition this parameter should
not be used.

Returns:

The return value of the operation.
Throws:

TransformException

ORACLE

The OrderMatcher class given below is an example of the IInvokable class.

package com.volante;

import com.tplus.transform.runtime.handler.*;
import com.tplus.transform.runtime.*;

public class OrderMatcher implements Ilnvokable{
public Object run(Object[] args, TransformContext cxt)
throws TransformException {
DataObjectSection orders = (DataObjectSection)args[0];
String symbol = (String)args[1];
DataObjectSectionImpl matchingOrders =
new DataObjectSectionImpl2(null, "newsection™);
for (int i1 = 0; i < orders.getElementCount(); ++i) {
DataObject order = orders.getElement(i);
if (order.getField('Symbol') .equals(symbol)) {
matchingOrders.addElement(order);

}

return matchingOrders;

It implements the lInvokable interface by implementing the run() method with the
following signature and this method is invoked whenever the function definition
needs to be executed.

public Object run(Object[] args , TransformContext cxt)
throws TransformException;

Here, the parameter ‘args’ represents the input arguments passed during invocation
of this method.

It uses a ‘for’ loop to iterate though the elements of the section passed as the first
input parameter. If the ‘Symbol’ field of an element matches the value of the second
input parameter, then it is added to the ‘matchingOrders’ local variable of
‘DataObjectSection’ type, which will be returned as the result of the function.

See Also:

Adding User Defined Native Functions

ORACLE

Adding External Java Source Files

Follow the steps given below to add external Java source files to the code generation
settings of a cartridge:

1. In the ‘External Sources’ tab of the ‘Java/EJB Code Generation Settings’ dialog,
click on the ‘Add Files’ LE button.

2. The ‘Add Source Files’ dialog will be displayed.

EI Add Source Files

Look In: | [custormnclaszes w E @ ca |EE|E:::

D CancelTriggerHandlerjava

D CrndECSDTriggerHandlarjava
D CrndMettingTriggerHandlerjava
D ECDTriggerHandlarjava

D MettingTriggerHandlerjava

D ReplaceTriggerHandlar.java

File Marme: ReplaceTriggerHandlerjava

Filez of Type: |[Jawa Source Files (*.java) 4

Open Cancel

3. Navigate to the directory that contains the required Java source files and select
them.

It is recommended that the Java source files are available under a child directory
of the cartridge.

4. Click the ‘Open’ button.

The files will be included to the external source files list.

ORACLE

ElJava/EJB Code Generation Settings

Language Bindings |/ External Sources |/ Target Platform

General |/ Code Generation |

External Sources

Specify a list of external zaurce files [java extenszions only), Theze files
will be cormpiled along with the generated source filez, vou can alzo mark
one or more of these filez az 'Main', in which case batch fila(s] are
generated to execute ther.

a8

Main Mame Path
Il CancelTriggerHandlerjava E:\ClearingDemotcustornClasses
] CrndECCTriggerHandlerjava E:'ClearingDermaolcustormicClasses
] CrndMettingTriggerHandlerjava B\ ClearingDermal custormiClassas
] EZDTriggerHandlarjava E:'ClearingDermol custormClasseas
] MettingTriggerHandlerjava E:ClearingDemotcustornClasses
] ReplaceTriggerHandler.java E:'ClearingDermaolcustormiClassas
(a4 Cancel a Help

5. Select the ‘Main’ check box for one or more source files to mark them as
application class files.

For each file marked as an application class file, a batch file that invokes the
corresponding application class will be generated.

You can also add directories containing external Java source files to the code
generation settings of a cartridge. In this case, all the source files in the specified
directories are included in the build process.

Follow the steps given below to add directories containing Java sources files.

1. In the ‘External Sources’ tab of the ‘Java/EJB Code Generation Settings’ dialog,
click on the ‘Add Files’ LE button.

2. The ‘Add Source Files’ dialog will be displayed.

) Add Source Files x|
Look In: ﬂCugtnmCI.asses b |E||@||E||EE"E::|
1 cppare
ﬂjauasrc
File Marne: |jal.lasrc |
Filez of Type: |Ja'.'a Source Files (*.java) b |

apen || Cancel |

Navigate to the directory that contains the required Java source files and select
it.

It is recommended that the Java source files are available under a child directory
of the cartridge.

Click the ‘Open’ button.

The directory will be included to the external source files list.

) Java/EJB Code Generation Settings x|

|/ Genearal |/ Code Generaton |/ Language Bindings |/ Extemnal Sources |/ Target Platform |

External Sources
Specfy a list of external source files [(Jjava extensions only) or directories, These files
will be cornpiled along with the generated source files, You can also mark one or more
of theze files a2z 'Main', in which case batch fila(z) are generated to execute thar,

Mame ” Path
IE:"LCl.|5tn:rrnIn'.'n:ke"LCustomCIaESeﬂjal.lasru:

(n],4 || Cancel || aHelp |

ORACLE

Note:

You can include external Java classes to the code generation settings of a cartridge
in two other ways:

You can specify the Java class files (instead of Java source files) to be included in
the generated component.

You can bundle the required Java class files into a Jar file and add it to the
manifest entry of the generated component.

See Also:

Adding User Defined Native Functions

Binding a Native Class Reference to a Concrete
Java Class

You can proceed with code generation and deployment, once the reference name of
a native class is bound to a concrete Java class (byte code file) and the Java class is
added to the code generation settings of the cartridge.

Follow the steps given below to bind a native class reference to an actual Java class.
1. In Designer, select the Build > Code Generation Settings (Java/EJB) menu item.

The Java/EJB Code Generation Settings dialog box appears.

2. Select the Language Bindings tab and specify the actual Java class name in the
‘Java Class’ column of the row corresponding to the custom class reference.

E)Java/EJB Code Generation Settings

Language Bindings |/ Extermnal Sources |/ Target Platform
General |/

Code Generation |
Language Bindings

Here you specify concrete lava clazs bindings for all the external
references you have made in the cartridge. By default, the
reference narme itzelf is treated as the Java clazs name.

Java Language Mappings
| Reference ||

Jawva Class

PersizstenceTrigger cormn.tplus.transform.runtirne, PersistenceTrigger

RouterTrigger cormtplus.transfarm. rantirne, RouterTrigger

SurmrmaryCalc SurnrmaryCale

Ok || Cancel || GHelp |

3. Click on the OK button to close the dialog.

Please note that you should save the cartridge to permanently save the changes.

See Also:

Adding User Defined Native Functions

	Adding User Defined Native Functions
	Creating a Native Function Defintion
	Writing the IInvokable Implementation Class
	Interface IInvokable
	Method Detail

	Adding External Java Source Files
	Binding a Native Class Reference to a Concrete Java Class

