

Java Runtime Exceptions
User’s Guide

Version 10g Release 3 (10.3)

JAVA RUNTIME EXCEPTIONS .. 3

TRANSFORMEXCEPTION... 4

FIELDS/CONTEXT PROPERTIES OF TRANSFORMEXCEPTION... 8

CORE EXCEPTIONS.. 10
RUNTIME EXCEPTIONS.. 10

TransformRuntimeException.. 10
FieldNotFoundException ... 11
TransformNullValueException... 12

VALIDATION EXCEPTIONS .. 13
FieldValidationException... 14
SectionConstraintException ... 15

GENERAL EXCEPTIONS ... 15
TransformSQLException.. 16
KeyGenerationException ... 17
FieldNullException... 17
FieldParsingException... 18
FieldTypeMismatchException.. 18

PLUG-IN RELATED EXCEPTIONS .. 19

SWIFT PLUG-IN EXCEPTIONS .. 20
SwiftParseException... 20
SwiftTokenizeException.. 21
SwiftWriteException ... 22

FIX PLUG-IN EXCEPTIONS.. 22
FIXParsingException ... 23
FIXWriterException ... 23

FCS PLUG-IN EXCEPTIONS... 24
FCSParseException ... 24

XML PLUG-IN EXCEPTIONS ... 25
XMLParseException... 25
XMLWriteException ... 25

UNIVERSAL PLUG-IN EXCEPTIONS ... 26
UniversalParseException... 26
UniversalWriteException ... 27

ASCII DELIMITED PLUG-IN EXCEPTIONS ... 28
ASCIIDelimitedParseException ... 28
ASCIIDelimitedTokenizeException .. 28
ASCIIDelimitedWriteException ... 29

ASCII FIXED PLUG-IN EXCEPTIONS ... 30
ASCIIFixedParseException.. 30
ASCIIFixedWriteException .. 30

Java Runtime Exceptions

The exceptions thrown by Runtime system can be classified into the following
categories:

1. Core Exceptions
2. Plug-In Related Exceptions

While the core exceptions are common for all Plug-Ins, the Plug-In related
exceptions are specific to the corresponding Plug-In. TransformException is the root
of all exceptions thrown by the Runtime system except TransformRuntimeException
that is derived from java.lang.RuntimeException.

The TransformException hierarchy is given below.

 TransformException
 |
 +-- FieldValueException
 | |
 | +-- FieldNullException
 | |
 | +-- FieldParsingException
 | |
 | +-- FieldTypeMismatchException
 |
 +-- TransformSQLException
 |
 +-- ValidationException
 | |
 | +-- FieldValidationException
 | |
 | +-- SectionConstraintException
 |
 +-- ASCIIDelimitedException
 | |
 | +-- ASCIIdelimitedParseException
 | |
 | +-- ASCIIDelimitedTokenizeException
 |
 +-- ASCIIDelimitedWriteException
 |
 +-- ASCIIFixedParseException
 |
 +-- ASCIIFixedWriteException
 |
 TransformException
 +-- FCSParseException

 |
 +-- FIXParsingException
 |
 +-- FIXWriterException
 |
 +-- KeyGenerationException
 |
 +-- SwiftException
 | |
 | +--SwiftParseException
 | | |
 | | +--SwiftTokenizeException
 | |
 | +-- SwiftWriteException
 |
 +-- UniversalParseException
 |
 +-- UniversalwriteException
 |
 +-- XMLParseException
 |
 +-- XMLWriteException

TransformException

TransformException represents the root of all exceptions thrown by Runtime system
except TransformRuntimeException. The caller can just catch TransformException or
if finer details are needed any derived class can be caught.

The table given below summarizes the fields of TransformException.

Field Name Mandatory/
Optional

Max
Length

Description

Type Mandatory 100 Type of the exception. Always
'TransformException'.

Message Mandatory 500 Descriptive error message.

ErrorCode Optional 100 Error code corresponding to the error
that has occurred.

In case of validation this is the user
defined error code in the cartridge.

In case of other errors, this is the error
code that has been specified in
message.properties.

Severity Mandatory 100 Severity of the error that has occured.
Possible values include

fatal

error

warn

Cascadable Mandatory N/A Whether the exception is cascadable or
not. Possible values include

true

false

FieldName Optional 100 Name of the field in which error has
occurred. Present in case of validation
errors, parsing/writing errors that occur
while parsing/writing a field’s value.

FieldID Optional 100 Name of the field in which error has
occurred. Present in case of validation
errors.

Error-Code Optional 100 Error code corresponding to the error
that has occurred. This occurs only in
case of TransformRuntime exceptions.

Error-Phase Mandatory 100 Phase in which error has occurred.

Allowed values are

Input

Output

Internal Message

Error-Type Optional 100 Type of error that has occurred. Allowed
values are

Parsing

Required

Validation

Input Mapping

Processing

Output Writing

Field-Value Optional 10000 Value of the field in which error has
occurred.

Location Optional 100 Location in input/output message where
the error has occurred.

Exceptions thrown during input parsing
phase of input records in batch mode
(applicable for ASCII Delimited and XML
formats) always include the ‘Location’
field.

Allowed values are

Header

Record

Trailer

Error-Record Optional 10000 The entire record in which the field that
has resulted in error is present.

All the fields present in the record are
displayed along with the field that has
resulted in error.

 Exceptions thrown during the
‘Internal Message’ phase always
include the ‘Error-Record’ field.

Error-Record-
Index

Optional 100 The index of the record in which the
field that has resulted in error is
present.

Please note that the index starts from 0.
This means that if error has occurred in
a field present in the first record, then
the index would be 0.

Exceptions thrown during input parsing

phase of input records in batch mode
(applicable for ASCII Delimited and XML
formats) always include the
‘Error-Record-Index’ field.

Error-Line Optional 1000 The actual line in the input message
where error has occurred.

Internal-Code Optional 100 Internal error code that corresponds to
the actual error code.

line Optional 20 Line number where the error has
occurred.

column Optional 20 Position (column) in the line where the
error has occurred.

The line number is specified by the 'line'
field.

Index Optional 100 Index where the error has occurred in
the input data.

The index is calculated from the
beginning of data.

Trace Optional 1000 Execution trace

subfield Optional 100 Specific to SWIFT. Name of the subfield
in which error has occurred.

Field Optional 100 Specific to SWIFT. Tag for the field in
which error has occurred.

sequence Optional 100 Specific to SWIFT. Name of the
sequence in which error has occurred.

qualifier Optional 100 Specific to SWIFT. If error has occurred
in a generic field, the name of the
qualifier in which error has occurred.

Notes:

 All the fields of TransformException except the Cascadable field are of String
type.

 Some of the error fields are not applicable in all formats (e.g. ‘sequence’ is
specific to ‘Swift’).

 The error fields are applicable only in case of Java runtime errors.
 <StackTrace> is optional and it can be suppressed.

See Also:

Fields/Context properties of TransformException
Java Runtime Exceptions

Fields/Context properties of
TransformException

The fields of TransformException are either defined as fields in this class or as a
context property.

The table given below lists the TransformException fields that are defined as fields in
the class.

Field
Name

The TransformException method used to access the
corresponding value

Type getType()

Message getMessage()

ErrorCode GetErrorCode()

Severity getSeverity()

Cascadable getCascadable()

FieldName GetFieldName()

FieldID getFieldID()

The table given below lists the TransformException fields that are set as context
properties of the exception object thrown. The values of these properties can be
accessed using the getContextProperty(java.lang.String name) method of
TransformException.

Field Name

Name of the Constant as defined in TransformException
that can used in the getContextProperty(java.lang.String
name) method of TransformException to access the
corresponding value

Error-Code ERROR_CODE

Error-Phase ERROR_PHASE

Error-Type ERROR_TYPE

Field-Value ERROR_FIELD_VALUE

Location ERROR_LOCATION

Error-Record ERROR_RECORD

Error-Record-Index ERROR_RECORD_INDEX

Error-Line ERROR_LINE

Internal-Code INTERNAL_CODE

line LINE

column COLUMN

Index INDEX

Trace ERROR_TRACE

The table given below lists the TransformException fields that can also be accessed
using the methods of TransformException even though they are set as context
properties of the exception object thrown. See the API documentation for more
details.

Field Name The TransformException method used to access the
corresponding value

Error-Phase getErrorPhase()

Error-Type getErrorType()

Field-Value getFieldValue()

See Also:

TransformException

Core Exceptions

These exceptions are thrown by the core runtime system and these are applicable for
all types of Plug-Ins.

The core exceptions can be further classified into the following categories:

1. Runtime Exceptions

2. General Exceptions

3. Validation Exception

See Also:

Java Runtime Exceptions

Runtime Exceptions

The runtime exceptions caused typically by programming errors are represented by
TransformRuntimeException and its subclasses. These exceptions are thrown by the
core runtime system and these are applicable for all types of Plug-Ins. Please note
that the TransformRuntimeException class is derived from unchecked
java.lang.RuntimeException.

The hierarchy of TransformRuntimeException is given below:

TransformRuntimeException
 |
 +-- FieldNotFoundException
 |
 +-- TransformNullValueException

See Also:

Validation Exceptions
Core Exceptions

TransformRuntimeException

This exception represents runtime exceptions caused by programming errors. Invalid
input field values and invalid arguments passed to function calls used in formula also
result in this kind of exception.

<Message>Unexpected exception. Date parsing error. '20031225' not in expected

format 'yyyy-MM-dd'</Message>

<ErrorCode>SRT563</ErrorCode>

<Severity>fatal</Severity>

<Cascadable>true</Cascadable>

<Error-Phase>Input</Error-Phase>

<Internal-Code>SRT563</Internal-Code>

<Error-Record>

 <?xml version="1.0" encoding="UTF-8" ?>

 <Data>

 <EncryptMethod>1</EncryptMethod>

 <HeartBtInt>2</HeartBtInt>

 <CustomDate>20031225</CustomDate>

 </Data>

</Error-Record>

<StackTrace>

Unexpected exception. Date parsing error. '20031225' not in expected format

'yyyy-MM-dd'

com.tplus.transform.runtime.TransformRuntimeException: Date parsing error.

'20031225' not in expected format 'yyyy-MM-dd'

...

</StackTrace>

Fields within TransformRuntimeException

 Message
 ErrorCode
 Severity
 Cascadable
 Error-Phase
 Internal-Code
 Error-Record
 StackTrace

See Also:

Runtime Exceptions
FieldNotFoundException

FieldNotFoundException

This exception can happen at any phase (input, Internal Message or output), in the
following cases:

 using a field within a formula without checking the occurrence of its parent

section trying to access a field which is not defined as part of the data object

<Type>TransformException</Type>

<Message>Unexpected runtime error. 'Field with name Account not

defined'.</Message>

<ErrorCode>SRT216</ErrorCode>

<Severity>fatal</Severity>

<Cascadable>true</Cascadable>

<Internal-Code>SRT216</Internal-Code>

<Error-Phase>Internal Message</Error-Phase>

<Error-Record>

 ...

</Error-Record>

<StackTrace>

 Unexpected runtime error. 'Field with name Account not defined'.

 com.tplus.transform.runtime.FieldNotFoundException: Field with name

Account not defined

 at

com.tplus.transform.runtime.DataObjectMetaInfo.getFieldMetaInfo(DataObjectMe

taInfo.java:168)

 ...

</StackTrace>

See Also:

Runtime Exceptions

TransformNullValueException

This is a subclass of TransformRuntimeException and it is thrown when trying to
access an empty field (field with null value) from a formula. This can be avoided by
checking for null values using the IsNull() and IsNotNull() functions.

<Message>Unexpected exception. Attempt to access field 'XPR' with null

value</Message>

<ErrorCode>SRT500</ErrorCode>

<Severity>fatal</Severity>

<Cascadable>true</Cascadable>

<Error-Phase>Input</Error-Phase>

<Internal-Code>SRT500</Internal-Code>

<Error-Record>

 <?xml version="1.0" encoding="UTF-8" ?>

 <Data>

 <ClOrdID>BHA 0066/11172003</ClOrdID>

 <HandlInst>1</HandlInst>

 <Symbol>SU</Symbol>

 <Side>1</Side>

 <OrderQty>1000</OrderQty>

 <OrdType>2</OrdType>

 <Price>21.76</Price>

 <TimeInForce>0</TimeInForce>

 <Rule80A>A</Rule80A>

 </Data>

</Error-Record>

<StackTrace>

Unexpected exception. Attempt to access field 'XPR' with null value

com.tplus.transform.runtime.TransformNullValueException: Attempt to access

field 'XPR' with null value

...

</StackTrace>

Fields within TransformNullValueException

 Message
 ErrorCode
 Severity
 Cascadable
 Error-Phase
 Internal-Code
 Error-Record
 StackTrace

See Also:

Runtime Exceptions

Validation Exceptions

The ValidationException class and its subclasses (shown in the hierarchy tree given
below) represent errors while validating the message/field.

ValidationException
 |
 +-- FieldValidationException
 |
 +-- SectionConstraintException

See Also:

Core Exceptions

FieldValidationException

This exception can happen at any phase (input, Internal Message or output) and it
exception is thrown when the validation rule applied for a field/message fails.

<TransformException>

 <Type>TransformException</Type>

 <Message>0532 is not valid.</Message>

 <ErrorCode>T50</ErrorCode>

 <Severity>error</Severity>

 <Cascadable>true</Cascadable>

 <FieldName>61.Entry_Date</FieldName>

 <FieldID>61[0].Entry_Date</FieldID>

 <Internal-Code>F61-D</Internal-Code>

 <Error-Type>Validation</Error-Type>

</TransformException>

Fields within FieldValidationException

The optional fields are marked with question mark (?).
 Type
 Message
 ErrorCode
 In case of SWIFT format, this field will contain the error code as defined in SWIFT

SRG.
 Severity
 Cascadable
 Internal-Code
 FieldName
 This field is set to ‘Message’ if the ‘Applies To’ column of the corresponding

Formula Validation is left empty.
 FieldID
 Please also note that this field is populated only when the validation rule is

applied to a field. It will not be populated when the validation rule is specified at
the message level, i.e. if the ‘Applies To’ column of the Formula Validation is left
empty.

 Error-Type
 This is always set to ‘Validation’.

See Also:

Validation Exceptions

SectionConstraintException

This exception can happen at any phase (input, Internal Message or output) and it is
thrown when the number of elements in a section does not match the Min/Max
Occurs properties (repeating/optional properties) specified for that section.

<TransformException>

 <Type>TransformException</Type>

 <Message>The number of elements (3) in the section 'items.item' is

greater than 2.</Message>

 <ErrorCode>SRT302</ErrorCode>

 <Severity>error</Severity>

 <Cascadable>true</Cascadable>

 <FieldName>items.item</FieldName>

 <FieldID>items.item</FieldID>

 <Internal-Code>SRT302</Internal-Code>

 <Error-Phase>Output</Error-Phase>

 <Error-Type>Output Writing</Error-Type>

</TransformException>

Fields within SectionConstraintException

The optional fields are marked with question mark (?).
 Type
 Message
 ErrorCode
 Severity
 Cascadable
 FieldName
 FieldID
 Internal-Code
 Error-Phase
 Error-Type

See Also:

Validation Exceptions

General Exceptions

TransformSQLException, KeyGenerationException and FieldValueException along
with its subclasses belong to this category of exceptions.

 TransformSQLException

 KeyGenerationException

 FieldValueException
 |
 +-- FieldNullException
 |
 +-- FieldParsingException
 |
 +-- FieldTypeMismatchException

See Also:

Core Exceptions

TransformSQLException

Thrown by the Persistence Designer when one of the following operations fails:
persisting NO, updating NO, removing NO and executing query (defined using
Persistence Designer -> Queries UI).

<TransformException>

 <Type>TransformException</Type>

 <Message>

 Error persisting normalized object. SQL error : ORA-01401: inserted

 value too large for column

 </Message>

 <ErrorCode>SRT636</ErrorCode>

 <Severity>fatal</Severity>

 <Cascadable>true</Cascadable>

 <Internal-Code>SRT636</Internal-Code>

 <Trace>at PersistInColumnsFlow.Persist1(Persist Invoice)</Trace>

</TransformException>

Fields within TransformSQLException

 Type
 Message
 ErrorCode
 Severity
 Cascadable
 Internal-Code
 Trace

See Also:

General Exceptions

KeyGenerationException

This exception is thrown in the following cases:

 if there is a problem in creating the connection to the specified datasource
 if the specified table is not found in the datasource
 if an SQL exception is thrown while executing database operations

<TransformException>

 <Type>TransformException</Type>

 <Message>Error generating unique key. SQLException:

java.sql.SQLException: Table not found: UNIQUEKEYGENTBL in statement [select

CurrentKey from UniqueKeyGenTbl]</Message>

 <ErrorCode>SRT631</ErrorCode>

 <Severity>fatal</Severity>

 <Cascadable>true</Cascadable>

 <Internal-Code>SRT631</Internal-Code>

</TransformException>

See Also:

General Exceptions

FieldNullException

After completing the post-processing of a normalized object, its mandatory fields are
checked for the presence of their value. If a mandatory field is not assigned a value,
it results in this exception.

<TransformException>

 <Type>TransformException</Type>

 <Message>Not-null check failed. The field 'TotalCost' has null

value</Message>

 <ErrorCode>SRT600</ErrorCode>

 <Severity>fatal</Severity>

 <Cascadable>true</Cascadable>

 <FieldName>TotalCost</FieldName>

 <FieldID>TotalCost</FieldID>

 <Internal-Code>SRT600</Internal-Code>

 <Trace>at Input2NOFlow.Validate1(Validate)</Trace>

</TransformException>

Fields within FieldNullException

 Type
 Message

 ErrorCode
 Severity
 Cascadable
 FieldName
 FieldID
 Internal-Code
 Trace

See Also:

General Exceptions

FieldParsingException

This exception is thrown in the following cases:

 If a mandatory field/section is missing in the input message
 If a duplicate field/section is present in the input message
 If the value does not match the corresponding field type
 Incorrect value in case of FILLER fields in Universal format

<TransformException>

 <Type>TransformException</Type>

 <Message>Field 'RecordID' cannot be null.</Message>

 <ErrorCode>SRT129</ErrorCode>

 <Severity>error</Severity>

 <Cascadable>true</Cascadable>

 <FieldName>RecordID</FieldName>

 <Internal-Code>SRT129</Internal-Code>

 <Error-Type>Required</Error-Type>

 <Location>Record</Location>

 <Error-Phase>Input</Error-Phase>

</TransformException>

See Also:

General Exceptions

FieldTypeMismatchException

This exception occurs when a data access function (such as GetInt(), GetString(),
etc. in the aggregate function category) is used in a formula to access a field of a
data object (element of a section) whose type does not match the type expected by
the data access function. This exception can happen at any phase (input, Internal
Message or output).

<TransformException>

 <Type>TransformException</Type>

 <Message>

 Type mismatch while accesing field 'ItemID'. The field is not of

 specified type.

 </Message>

 <ErrorCode>SRT580</ErrorCode>

 <Severity>fatal</Severity>

 <Cascadable>true</Cascadable>

 <Internal-Code>SRT580</Internal-Code>

 <Error-Phase>Internal Message</Error-Phase>

 <Error-Record>

 <?xml version="1.0" encoding="UTF-8" ?>

 <NewOrderBT>

 <Item>

 <ItemID>ITM1</ItemID>

 <Qty>5</Qty>

 <Price>100.0</Price>

 </Item>

 </NewOrderBT>

 </Error-Record>

</TransformException>

See Also:

General Exceptions

Plug-In Related Exceptions

The exceptions listed here apply to you only if you are using the corresponding plug
in.

Plug-In related exceptions can be classified into the following:

 Parse Exceptions
 Write Exceptions

The parse exceptions happen at Input Parsing phase. At this time, the input object is
not instantiated yet, so the <Error-Field-ID> will not be populated.

The write exceptions happen when the value of a mandatory field is missing (null) or
the output value violates the specified constraint/format.

See Also:

Swift Plug-In Exceptions

FIX Plug-In Exceptions
FCS Plug-In Exceptions
XML Plug-In Exceptions
Universal Plug-In Exceptions
ASCII Delimited Plug-In Exceptions
ASCII Fixed Plug-In Exceptions

Swift Plug-In Exceptions

The Swift Plug-In throws the following exceptions:

 SwiftParseException
 SwiftTokenizeException
 SwiftWriteException

See Also:

Plug-In Related Exceptions

SwiftParseException

Reasons for this exception include the following:

 Extra characters left at the end of a field/block/message.
 Missing mandatory field/block.
 Unable to locate end of a block.
 The field value violates the specified constraint such as length or format.

<TransformException>

 <Type>TransformException</Type>

 <Message>In the value (1,123) of the subfield 'Amount', number of digits

following the comma, exceeds the maximum number (2) allowed for the specified

currency 'USD'.</Message>

 <ErrorCode>C03</ErrorCode>

 <Severity>error</Severity>

 <Cascadable>true</Cascadable>

 <FieldName>B.32H.Amount</FieldName>

 <FieldID>B.32H.Amount</FieldID>

 <Internal-Code>SWT313</Internal-Code>

 <field>32</field>

 <Error-Line>:32H:USD1,123</Error-Line>

 <line>22</line>

 <column>14</column>

 <sequence>B</sequence>

 <subfield>Amount</subfield>

 <Field-Value>1,123</Field-Value>

 <Error-Phase>Input</Error-Phase>

 <Error-Type>Parsing</Error-Type>

</TransformException>

See Also:

Swift Plug-In Exceptions

SwiftTokenizeException

This is a subclass of SwiftParseException and these exceptions are thrown when
parsing the value corresponding to a sub-field.

Reasons for this exception include the following:

 One of the characters in the value corresponding to a subfield does not match the

Swift format character used in the specifying the subfield format
 The value corresponding to a multi-line format exceeds the line limit.
 The integer part of decimal number is missing
 A decimal separator (comma) in the amount/number subfield is missing
 Multiple commas in a decimal number
 Sign character (N) expected for a subfield is missing
 Separator character expected for a subfield is missing
 Literal expected for a subfield is missing
 Unexpected additional characters at the end of a field
 Not enough characters found for a subfield
 Subfield itself is missing

<TransformException>

 <Type>TransformException</Type>

 <Message>A decimal separator (comma) in the amount/number subfield

'Amount' with format '15d' is missing. Illegal value '0'.</Message>

 <ErrorCode>T43</ErrorCode>

 <Severity>error</Severity>

 <Cascadable>true</Cascadable>

 <FieldName>A.32a.Amount</FieldName>

 <FieldID>A.32a.Amount</FieldID>

 <subfield>Amount</subfield>

 <field>32</field>

 <Error-Line>:32:NINR0</Error-Line>

 <line>6</line>

 <column>9</column>

 <Internal-Code>SWT310</Internal-Code>

 <Field-Value>0</Field-Value>

 <Error-Phase>Input</Error-Phase>

 <Error-Type>Parsing</Error-Type>

</TransformException>

See Also:

Swift Plug-In Exceptions

SwiftWriteException

Reasons for this exception include the following:

 Missing mandatory field/sub-field/qualifier.
 Repeating qualifier.
 Unexpected format option for swift field.
 Unexpected additional characters at the end of field.
 In the value of a sub-field, the number of digits following the comma exceeds the

maximum number allowed for the specified currency.

<TransformException>

 <Type>TransformException</Type>

 <Message>Length of subfield 'Sender's_Reference' with format '16x' must

be less than or equal to 16 characters, found 17 characters. Illegal value

'12345678901234567'.</Message>

 <ErrorCode>T33</ErrorCode>

 <Severity>error</Severity>

 <Cascadable>true</Cascadable>

 <FieldName>A.20.Sender's_Reference</FieldName>

 <FieldID>A.20.Sender's_Reference</FieldID>

 <subfield>Sender's_Reference</subfield>

 <Field-Value>12345678901234567</Field-Value>

 <Internal-Code>SWT303C</Internal-Code>

 <field>20</field>

 <sequence>A</sequence>

 <Error-Phase>Output</Error-Phase>

 <Error-Type>Output Writing</Error-Type>

</TransformException>

See Also:

Swift Plug-In Exceptions

FIX Plug-In Exceptions

The FIX Plug-In throws the following exceptions:

 FIXParsingException

 FIXWriterException

See Also:

Plug-In Related Exceptions

FIXParsingException

Reasons for this exception include the following:

 Blob type tag value pair has incorrect data length, character after the specified

length is not the SOH character.
 Unexpected end of input while looking for data.
 Empty tag or value.
 Cannot convert tag to integer.
 Unexpected tag.
 Unexpected FIX data at the end.
 When the value corresponding to a Boolean/Boolean_4_1 FIX type field does not

start with Y or N.

<TransformException>

 <Type>TransformException</Type>

 <Message>Unexpected tag 789</Message>

 <ErrorCode>FIX112</ErrorCode>

 <Severity>fatal</Severity>

 <Cascadable>true</Cascadable>

 <Internal-Code>FIX112</Internal-Code>

 <Location>Header</Location>

 <Error-Phase>Input</Error-Phase>

 <Error-Type>Parsing</Error-Type>

</TransformException>

See Also:

FIX Plug-In Exceptions

FIXWriterException

This exception is thrown when a mandatory field is missing while writing the output.

<TransformException>

 <Type>TransformException</Type>

 <Message>BeginString is a mandatory field. Tag 'BeginString[8]' cannot be

null.</Message>

 <ErrorCode>FIX114</ErrorCode>

 <Severity>fatal</Severity>

 <Cascadable>true</Cascadable>

 <Internal-Code>FIX114</Internal-Code>

 <Error-Phase>Output</Error-Phase>

 <Error-Record>...</Error-Record>

</TransformException>

See Also:

FIX Plug-In Exceptions
Plug-In Related Exceptions

FCS Plug-In Exceptions

The FCS Plug-In throws the following exception:

 FCSParseException

See Also:

Plug-In Related Exceptions

FCSParseException

Reasons for this exception include the following:

 Input values does not conform to the specified format
 Unexpected characters at the end of line

<TransformException>

 <Type>TransformException</Type>

 <Message>Expected field 'Exchange Code'</Message>

 <ErrorCode>FCS107</ErrorCode>

 <Severity>fatal</Severity>

 <Cascadable>true</Cascadable>

 <Internal-Code>FCS107</Internal-Code>

 <line>2</line>

 <column>6</column>

 <Error-Line>ADMIN RPX XYZ</Error-Line>

 <Error-Phase>Input</Error-Phase>

 <Error-Type>Parsing</Error-Type>

</TransformException>

See Also:

FCS Plug-In Exceptions

See Also:

Plug-In Related Exceptions

XML Plug-In Exceptions

The XML Plug-In throws the following exception:

 XMLParseException
 XMLWriteException

See Also:

Plug-In Related Exceptions

XMLParseException

Exceptions of this type include all exceptions thrown by the SAX parser.

<TransformException>

 <Type>TransformException</Type>

 <Message>Parsing Error. The entity "Site1" was referenced, but not

declared.</Message>

 <ErrorCode>XML101</ErrorCode>

 <Severity>fatal</Severity>

 <Cascadable>true</Cascadable>

 <Internal-Code>XML101</Internal-Code>

 <line>4</line>

 <column>28</column>

</TransformException>

See Also:

XML Plug-In Exceptions

XMLWriteException

Reasons for this exception include the following:

 Missing mandatory field/section/attribute.

<TransformException>

 <Type>TransformException</Type>

 <Message>Missing mandatory section 'kunde.name'.</Message>

 <ErrorCode>SRT300</ErrorCode>

 <Severity>error</Severity>

 <Cascadable>true</Cascadable>

 <FieldName>kunde.name</FieldName>

 <FieldID>kunde.name</FieldID>

 <Internal-Code>SRT300</Internal-Code>

 <Error-Phase>Output</Error-Phase>

 <Error-Type>Output Writing</Error-Type>

</TransformException>

See Also:

XML Plug-In Exceptions

Universal Plug-In Exceptions

The Universal Plug-In throws the following exceptions:

 UniversalParseException
 UniversalWriteException

See Also:

Plug-In Related Exceptions

UniversalParseException

Reasons for this exception include the following:

 Incorrect section/field tag
 Incorrect section/field tag separator
 Field value does not correspond to the specified format
 Unexpected additional data at the end of input.
 Not enough characters corresponding to a fixed length field
 Incorrect filler value
 Missing mandatory field

<TransformException>

 <Type>TransformException</Type>

 <Message>Section tag separator ':' expected. Found 'V'.</Message>

 <ErrorCode>UNV102</ErrorCode>

 <Severity>fatal</Severity>

 <Cascadable>true</Cascadable>

 <FieldName>Tagged</FieldName>

 <Internal-Code>UNV102</Internal-Code>

 <Index>10</Index>

 <line>1</line>

 <column>11</column>

 <Error-Phase>Input</Error-Phase>

 <Error-Type>Parsing</Error-Type>

</TransformException>

See Also:

Universal Plug-In Exceptions

UniversalWriteException

Reasons for this exception include the following:

 Length of the value does not match the specified length
 Record length exceeding the specified upper limit
 Overflow of digits in packed decimal format
 More than one choice has a non-null value
 All the choices are null
 Missing mandatory field/section.

<TransformException>

 <Type>TransformException</Type>

 <Message>Cannot represent 9123 in 1 digits</Message>

 <ErrorCode>UNV126</ErrorCode>

 <Severity>fatal</Severity>

 <Cascadable>true</Cascadable>

 <FieldName>fltf4</FieldName>

 <Internal-Code>UNV126</Internal-Code>

 <Error-Phase>Output</Error-Phase>

 <Error-Record>

 ...

 </Error-Record>

</TransformException>

See Also:

Universal Plug-In Exceptions

ASCII Delimited Plug-In Exceptions

The ASCII Delimited Plug-In throws the following exceptions:

ASCIIDelimitedException
|
+-- ASCIIDelimitedParseException
 |
 +-- ASCIIDelimitedTokenizeException

See Also:

Plug-In Related Exceptions

ASCIIDelimitedParseException

Reasons for this exception include the following:

 The input does not have the minimum number (two) of records
 Incorrect number of fields in header, record or trailer

<TransformException>

 <Type>TransformException</Type>

 <Message>Incorrect number of fields in RecordData. Expected fields 2,

found 1</Message>

 <ErrorCode>ASC122</ErrorCode>

 <Severity>error</Severity>

 <Cascadable>true</Cascadable>

 <Internal-Code>ASC122</Internal-Code>

 <Location>Record</Location>

 <Error-Phase>Input</Error-Phase>

 <Trace>at Flow2.Parse1(Parse Msg)

 at BuggyDynamicBinaryParamsInvocationFlow.Invoke2(Invoke Flows)</Trace>

</TransformException>

See Also:

ASCII Delimited Plug-In Exceptions

ASCIIDelimitedTokenizeException

Reasons for this exception include the following:

 In a quoted field the closing quote corresponding to the opening quote is not

found
 Improper quoted token

 EOL reached before closing quote found

<TransformException>

 <Type>TransformException</Type>

 <Message>Improper quoted token</Message>

 <ErrorCode>ASC119</ErrorCode>

 <Severity>fatal</Severity>

 <Cascadable>true</Cascadable>

 <Internal-Code>ASC119</Internal-Code>

 <column>7</column>

 <line>2</line>

 <Error-Line>ITM1,"" ,10,100.0</Error-Line>

 <Trace>at CommaDelTestFlow.Parse1(Parse)</Trace>

</TransformException>

See Also:

ASCII Delimited Plug-In Exceptions

ASCIIDelimitedWriteException

Reasons for this exception include the following:

 Incorrect number of fields in header, record or trailer
 Missing mandatory field.

<TransformException>

 <Type>TransformException</Type>

 <Message>The mandatory field 'joindate' is missing.</Message>

 <ErrorCode>ASC121</ErrorCode>

 <Severity>fatal</Severity>

 <Cascadable>true</Cascadable>

 <Internal-Code>ASC121</Internal-Code>

 <Error-Phase>Output</Error-Phase>

 <Error-Record>

 ...

 </Error-Record>

</TransformException>

See Also:

ASCII Delimited Plug-In Exceptions

ASCII Fixed Plug-In Exceptions

The ASCII Fixed Plug-In throws the following exceptions:

 ASCIIFixedParseException
 ASCIIFixedWriteException

See Also:

Plug-In Related Exceptions

ASCIIFixedParseException

Reasons for this exception include the following:

 Unexpected additional data at the end of input.
 Not enough characters corresponding to a fixed length field
 Missing mandatory field

<TransformException>

 <Type>TransformException</Type>

 <Message>Unexpected characters at the end of sequence.</Message>

 <ErrorCode>ASCFIX104</ErrorCode>

 <Severity>fatal</Severity>

 <Cascadable>true</Cascadable>

 <Internal-Code>ASCFIX104</Internal-Code>

 <Index>13</Index>

 <line>1</line>

 <column>14</column>

</TransformException>

See Also:

ASCII Fixed Plug-In Exceptions

ASCIIFixedWriteException

Reasons for this exception include the following:

 Length of the value does not match the specified length
 Missing mandatory field/section.

<TransformException>

 <Type>TransformException</Type>

 <Message>The mandatory field 'Price' is missing.</Message>

 <ErrorCode>ASCFIX105</ErrorCode>

 <Severity>fatal</Severity>

 <Cascadable>true</Cascadable>

 <FieldName>Price</FieldName>

 <Internal-Code>ASCFIX105</Internal-Code>

 <Error-Phase>Output</Error-Phase>

 <Error-Record>

 ...

 </Error-Record>

</TransformException>

See Also:

ASCII Fixed Plug-In Exceptions
Java Runtime Exceptions

	Java Runtime Exceptions
	TransformException
	Fields/Context properties of TransformException

	Core Exceptions
	Runtime Exceptions
	TransformRuntimeException
	Fields within TransformRuntimeException

	FieldNotFoundException
	TransformNullValueException
	Fields within TransformNullValueException

	Validation Exceptions
	FieldValidationException
	Fields within FieldValidationException

	SectionConstraintException
	Fields within SectionConstraintException

	General Exceptions
	TransformSQLException
	Fields within TransformSQLException

	KeyGenerationException
	FieldNullException
	Fields within FieldNullException

	FieldParsingException
	FieldTypeMismatchException

	Plug In Related Exceptions
	Swift Plug In Exceptions
	SwiftParseException
	SwiftTokenizeException
	SwiftWriteException

	FIX Plug In Exceptions
	FIXParsingException
	FIXWriterException

	FCS Plug In Exceptions
	FCSParseException

	XML Plug In Exceptions
	XMLParseException
	XMLWriteException

	Universal Plug In Exceptions
	UniversalParseException
	UniversalWriteException

	ASCII Delimited Plug In Exceptions
	ASCIIDelimitedParseException
	ASCIIDelimitedTokenizeException
	ASCIIDelimitedWriteException

	ASCII Fixed Plug In Exceptions
	ASCIIFixedParseException
	ASCIIFixedWriteException

