

Web Form Tag Library

Version 10g Release 3 (10.3)

WEBFORM TAG LIBRARY.. 3

CORE TAGS ... 5

CREATENO TAG ... 5
PERSIST TAG .. 6
QUERY TAG.. 8
UPDATE TAG .. 9
REMOVE TAG ... 10
DELETE TAG... 12
PARAM TAG ... 13
PROCESSMESSAGE TAG (@DEPRECATED).. 14
PROPERTY TAG (@DEPRECATED)... 15

WEBFORM TAGS ... 16

WEB FORM TAG... 17
Attributes of webform Tag .. 18
Variables exposed by webform Tag .. 20

OVERRIDING VALUES SPECIFIED IN DESIGNER ... 21
NAVIGATION TAGS .. 23

Action Tag... 23
Button tag.. 24

DISPLAYING THE FORM .. 25
DISPLAYING TOP LEVEL ERROR MESSAGES... 25
ADDING BUSINESS VALIDATION ERRORS TO THE FORM.. 26
REMOVING BUSINESS VALIDATION ERRORS ... 27
GETTING LIST OF ERRORS.. 27
A SAMPLE USAGE OF WEBFORM TAGS.. 29

SUMMARY TAGS ... 30
TABLE TAG .. 31
COLUMN TAG .. 33
SETPROPERTY TAG .. 35

WebForm Tag Library

The WebForm tags are used for interacting with cartridge entities deployed in the
runtime environment from a JSP. The following table lists categories of tags are
supported in the WebForm tag library and the tags within each category.

Tags Description

WebForm Tags

The complex functionality of WebForms is exposed as tags
present in this category. Request handling, validation of
submitted data and display of errors can be performed
using tags present in this category

webform This is root controller tag for WebForms. Responsible for
validation and request processing. This the root tag under
which all other tags given below should be used.

override Allows you to override choiceList and defaultValue of a
field.

display Displays the webform.

Action Tag The action tag is equivalent to the HTML tag
except that the form is submitted back to the same page
and the action parameters the you specified are available
in the postback request

button The button tag is equivalent to the HTML <button> tag
except that the form is submitted back to the same JSP
page and the action parameters that you specified are
available in the postback request.

displayerrors This tag is used to display top-level errors (errors that are
not associated with any field) at the top of the web form.

geterrors This tag can be used to get the list of errors occurred
during processing of data.

adderrors Add business validations errors to the list of error
maintained by the web from. These errors, if applicable to
a field, would be displayed next to the field.

clearerrors Clears business validation errors from the list of errors

maintained by the webform.

Summary Tags

The tags in this category can be used for displaying web
pages. They also provide support for sorting and paging.

table This tag takes a list of objects and creates a table to
display those objects. With the help of column tags, you
simply provide the name of properties (get Methods) that
are called against the objects in your list that gets
displayed [[reword that...]] This tag works very much like
the struts iterator tag, most of the attributes have the
same name and functionality as the struts tag.

column The column tag is used to display values from the list
specified in the ‘table’ tag.

setProperty There are a number of "default" values and strings used by
the table tags to show messages, decide which options to
display, etc. You can use the <display:setProperty
name=... value=...> tag to override these default values.

Core Tags These tags in this category are non-UI tags, which can be
used to interact with the application layer.

processMessage This tag submits the validated normalized object to the
business tier.

property This tag should be used in conjunction with the
processMessage tag. TransformContext properties that can
be specified in webforms.xml can be overridden using this
tag.

createNo This tag is used to create a raw normalized object.

persist This is tag used to persist a normalized object.

query This tag used to query data from the persistence manager.
The result of the query will be available in ‘id’ attribute
value of query tag.

update This tag is used to update data to the persistence
manager.

remove This tag is used to remove data from the persistence

manager. This tag removes the normalized object that is
passed by the ‘message’ attribute.

delete This tag is used delete data from the persistence manager.

This tag deletes the result of a query, the name of which is
specified for the attribute ‘queryName’.

param This tag is used to pass parameter values for query tag or
delete tag. This tag should be used only with in the query
tag or delete tag.

Core Tags

Core tags are non-UI tags, which can be used to interact with the application layer.

The core tags that are supported are,

createNo Tag
persist Tag
query Tag
update Tag
remove Tag
delete Tag
param Tag and
processMessage Tag (@deprecated)

See Also:

WebForm Tags
Summary Tags

createNo Tag

This tag is used to create a raw normalized object.
Sample:

<% String format=”MT304”; %>

<volante:createNo id=<%= format + "model" %> format=<%= format %>

scope="session" />

Attribute Description

id This attribute is used for binding the result of the createNo
action, which will be a normalized object.

In createNo tag if the scope attribute is not mentioned or scope
attribute value is page, in this case based on the id attribute
value, a corresponding variable will be created in the page
context scope and the normalized object will be bound to that
variable.

Otherwise variable will be created in the ‘scope’ attribute value
context and the normalized object will be bound to that variable.

Scope should be page, session, request, and application.

This attribute is mandatory.

format The value of this attribute should be the name of the internal
message an instance of which should be created. The internal
message should be present. Exception will be thrown if incorrect
format is specified.

This attribute is mandatory.

scope Attribute that specifies the scope for the value of the id
attribute.

Scope should be page, session, request, and application.

This attribute is optional.

See Also:

persist Tag
query Tag
update Tag
remove Tag
delete Tag
param Tag
processMessage Tag (@deprecated)

persist Tag

This is tag used to persist a normalized object. The normalized object can be created
using ‘createNo’ tag.

Sample:

<% String format=”MT304”; %>

<volante:persist id="result" format=<%= format %> message=<%= no %>/>

Attribute Description

id This attribute is used for binding the result of the ‘persist’
action, which will be a normalized object.

In ‘persist’ tag the scope attribute not mention or scope
attribute value is page, in this case based on the id attribute
value, a corresponding variable will be created in the page
context scope and the normalized object will be bound to that
variable.

Otherwise variable will be created in the ‘scope’ attribute value
context and the normalized object will be bound to that variable.

Scope should be page, session, request, and application.

This attribute is mandatory.

format The value of this attribute should be the name of the internal
message, to which the normalized object should be persisted.
The format should be present. Exception will be thrown if
incorrect format is specified.

This attribute is mandatory.

message The normalized object that is to be persisted. The normalized
object should be the type of Internal message name specified in
the format attribute.

This attribute is mandatory.

scope Attribute that specifies the scope for the value of the id
attribute.

Scope should be page, session, request, and application.

This attribute is optional.

See Also:

query Tag
update Tag
remove Tag
delete Tag
param Tag
processMessage Tag (@deprecated)

query Tag

This tag used to query data from the persistence manager. The result of the query
will be available in ‘id’ attribute value of query tag. This id value will contain a
‘NormalizedObjectCollection’. If no data matches the query an empty
‘NormalizedObjectCollection’ will be returned.

 Sample:

<volante:query queryName="All" id="summaryList" format=<%=format%>

scope="session"/>

Using query tag with parameter:

<volante:query queryName="ByItem" id="result" format="Invoice" scope="page">

 <volante:param value="ITM1"/>

</volante:query>

Attribute Description

id This attribute is used for binding the result of the ‘query’ action,
which will be a NormalizedObjectCollection.

In ‘query’ tag if the scope attribute is not mentioned or scope
attribute value is page, in this case based on the id attribute
value, a corresponding variable will be created in the page
context scope and the NormalizedObjectCollection will be bound
to that variable.

Otherwise variable will be created in the ‘scope’ attribute value
context and the NormalizedObjectCollection will be bound to
that variable.

Scope should be page, session, request, and application.

This attribute is mandatory.

queryName The name of the query that should be already defined in the

persistence manager. ‘All’ is the default query name, which is
already defined in the persistence manager.

This attribute is mandatory.

format The value of this attribute should be the name of the internal
message, where the query should be looked up. The format
should be present. Exception will be thrown if incorrect format
is specified.

This attribute is mandatory.

scope Attribute that specifies the scope for the value of the id
attribute.

Scope should be page, session, request, and application.

This attribute is optional.

startRow Not yet implemented

maxRows Not yet implemented

See Also:

createNo Tag
persist Tag
update Tag
remove Tag
delete Tag
param Tag
processMessage Tag (@deprecated)

update Tag

This tag is used to update data to the persistence manager.

Sample:

<% String format=”MT304”; %>

<volante:update id="result" format=<%= format %> message=<%= no %>/>

Attribute Description

id This attribute is used for binding the result of the ‘update’
action, which will be a string message.

In ‘update’ tag if the scope attribute is not mentioned or scope
attribute value is page, based on the id attribute value, a
corresponding variable will be created in the page context scope
and the string message will be bound to that variable.

Otherwise variable will be created in the ‘scope’ attribute value
context and the string message will be bound to that variable.

Scope should be page, session, request, and application.

This attribute is optional.

format The value of this attribute should be the name of the internal
message, where the normalized object should be updated. The
format should be present. Exception will be thrown if incorrect
format is specified.

This attribute is mandatory.

message The value of this attribute should be the normalized object to be
updated.

This attribute is mandatory.

scope Attribute that specifies the scope for the value of the id
attribute.

Scope should be page, session, request, and application.

This attribute is optional.

See Also:

createNo Tag
persist Tag
query Tag
remove Tag
delete Tag
param Tag
processMessage Tag (@deprecated)

remove Tag

This tag is used to remove data from the persistence manager. This tag removes the
normalized object that is passed by the ‘message’ attribute.

Sample:

<% String format=”MT304”; %>

<volante:remove message=<%= no %> format= <%= format %> id="result" />

Attribute Description

id This attribute is used for binding the result of the ‘remove’
action, which will be a string message.

In ‘remove’ tag if the scope attribute is not mentioned or scope
attribute value is page, based on the id attribute value, a
corresponding variable will be created in the page context scope
and the string message will be bound to that variable.

Otherwise variable will be created in the ‘scope’ attribute value
context and the string message will be bound to that variable.

Scope should be page, session, request, and application.

This attribute is optional.

format The name of the internal message, from where the data should
be removed. The internal message should be present. Exception
will be thrown if incorrect format is specified.

This attribute is mandatory.

message The value of this attribute should be the normalized object to be
removed.

This attribute is mandatory.

scope Attribute that specifies the scope for the value of the ‘id’
attribute.

Scope should be page, session, request, and application.

This attribute is optional.

See Also:

createNo Tag
persist Tag
query Tag
update Tag
delete Tag
param Tag

processMessage Tag (@deprecated)

delete Tag

This tag is used delete data from the persistence manager.
This tag deletes the result of a query, the name of which is specified for the attribute
‘queryName’.

Sample:

<volante:delete queryName="ByItem" id="result" format="Invoice">

 <volante:param name="Id" value="ITM7"/>

</volante:delete>

Attribute Description

id This attribute is used for binding the result of the ‘delete’ action,
which will be a string message.

In ‘delete’ tag if the scope attribute not mentioned or scope
attribute value is page, based on the id attribute value, a
corresponding variable will be created in the page context scope
and the string message will be bound to that variable.

Otherwise variable will be created in the ‘scope’ attribute value
context and the string message will be bound to that variable.

Scope should be page, session, request, and application.

This attribute is not mandatory.

format The value of this attribute should be the name of the internal
message, from where the result of the query is to be deleted.

The format should be present. Exception will be thrown if
incorrect format is specified.

This attribute is mandatory.

queryName The name of the query that should be already defined in the
persistence manager. ‘All’ is the default query name, which is
already defined in the persistence manager.

This attribute is mandatory.

The result of the query will be removed when this tag is
executed.

scope Attribute that specifies the scope for the value of the id

attribute.

Scope should be page, session, request, and application.

This attribute is optional.

See Also:

createNo Tag
persist Tag
query Tag
update Tag
remove Tag
param Tag
processMessage Tag (@deprecated)

param Tag

This tag is used to pass parameter values for query tag, delete tag. This tag should
be used only with in these tags.

Sample:

Using param tag with query Tag:

<volante:query queryName="ByItem" id="result" format="Invoice" scope="page">

 <volante:param value="ITM1"/>

</volante:query>

Using param tag with delete Tag:

<volante:delete queryName="ByItem" id="result" format="Invoice">

 <volante:param name="Id" value="ITM7"/>

</volante:delete>

Using param tag within input and output tags:

<volante:invokeMessageFlow name='<%= name + "WebFlow" %>'

errorRef="processingErrors">

 <volante:input>

 <volante:param value="<%= rawMessage.getBytes() %>"/>

 </volante:input>

 <volante:output>

 <volante:param valueRef="noObj"/>

 </volante:output>

</volante:invokeMessageFlow>

Attribute Description

name The value of this attribute should be the name of parameter that
is already defined in the query.

If this tag is used within ‘query’, ‘input’ or ‘output’ tags this
attribute need not be specified.

When used within ‘delete’ tag this attribute must be specified.

value The value of this attribute should be the value of parameter that
is already defined in the query.

This attribute is optional.

While using the ‘input’ tag either ‘value’ or ‘valueRef’ can be
specified. But both attributes cannot be specified.

valueRef This attribute refers to a variable that contains the value for the
parameter. While using the ‘output’ tag it is advisable to use this
attribute instead of the ‘value’ attribute.

This attribute is optional.

scope Attribute that specifies the scope for the valueRef (session,
request, application, page). This attribute is optional.

By default the scope is ‘Page’ scope.

See Also:

createNo Tag
persist Tag
query Tag
update Tag
remove Tag
delete Tag
processMessage Tag (@deprecated)

processMessage Tag (@deprecated)

The Webform tag by itself does not submit the validated normalized object to the
business tier. You can perform this by using the processMessage tag. This tag is
technically a core tag and can be used independent of the WebForm tag.

This tag submits the specified normalized object to the Business transaction EJB for
further processing. The Transform context properties (output.format, output.protocol
etc) can be specified in webforms.xml config file. Alternatively, you can specify them
as a set of property tags nest under the process tag. The property values you
specify, as property tag will override the values specified in the XML.

If there are any exceptions while processing, they are bound to a page attribute with
the name specified in errorRef.

Sample:

<volante:processMessage errorRef="processingErrors"

format=<%= format %>

message=<%= session.getAttribute(modelName) %> >

 <% if(!"saveAndRelease".equals(request.getParameter("task"))) { %>

 <volante:property name="output.protocol" value="nullprotocol" />

 <% } %>

</volante:processMessage>

See Also:

createNo Tag
persist Tag
query Tag
update Tag
remove Tag
delete Tag
param Tag

property Tag (@deprecated)

The property is used must be present inside a processMessage tag. The
processMessage tag submits the specified normalized object to the Business
transaction EJB for further processing. The Transform context properties
(internal.format etc) can be specified in webforms.xml config file. Alternatively, you
can specify them as a set of property tags nest under the process tag. The property
values you specify, as property tag will override the values specified in the XML.

Sample:

<volante:processMessage errorRef="processingErrors"

format=<%= format %>

message=<%= session.getAttribute(modelName) %> >

 <% if(!"saveAndRelease".equals(request.getParameter("task"))) { %>

 <volante:property name="output.protocol" value="nullprotocol" />

 <% } %>

</volante:processMessage>

See Also:

createNo Tag
persist Tag
query Tag
update Tag
remove Tag
delete Tag
param Tag

WebForm Tags

Since Web form encapsulates complex functionality it is exposed in the tag library as
number of cooperating nested tags. The webform tag is main controller tag for Web
forms.

Tags Functionality

webform

This is root controller tag for WebForms. Responsible for
validation and request processing. This the root tag under which
all other tags given below should be used.

override

Allows you to override some attributes of a field (displayed in the
form).

display

Displays the webform.

displayerrors Displays message level errors in the form.

action

The action tag is equivalent to the HTML tag except
that the form is submitted back to the same JSP page and the
action parameters that you specified are available in the postback
request.

button The button tag is equivalent to the HTML <button> tag except
that the form is submitted back to the same JSP page and the
action parameters that you specified are available in the postback
request.

adderrors

Add business validations errors to the list of error maintained by
the web from. These errors, if applicable to a field, would be
displayed next to the field.

clearerrors Clears business validation errors from the list of errors maintained
by the webform.

geterrors Gets the list of errors that have occurred.

See Also:

A sample usage of Webform tag
Core Tags
Summary Tags

Web Form Tag

The webform tag is main controller tag for Web forms. It performs the following
functions.

 Handles request (submitted data). It converts back and forth between the

presentation model and the actual data model (Normalized Object). In case of
errors it populates the form with data entered by the user.

 Validates the submitted form. These validations include mandatory fields
verification and type conversion checks (UI to model). Application level
validations must be done in the EJB layer.

 Exposes some variables that help you decide whether the form is completed and
the model (NormalizedObect) is ready for use (processing in EJB layer)

 In case of business validation errors (in EJB layer), you can pass these errors
back to the WebForm, which would display the errors next to the correct field.

 Allow you to override the choice list, the default value and other attributes of a
field. Using this you can for instance fill up the sender and recipient combo boxes
with values fetched from the Database.

See Also:

Attributes of webform Tag
Variables exposed by webform Tag
Overriding values specified in Designer
Navigation Tags

Displaying the form
Displaying top level error messages
Adding Business validation errors to the form
Removing Business validation errors
Getting List of Errors
A sample usage of Webform tag

Attributes of webform Tag

Attribute Description

name The name of the webform, which is to be displayed. The name
should be defined in the cartridge.

This attribute is optional.

If this attribute is not specified then webform with name
‘Default’ will be looked up and displayed.

format The internal format’s name as specified in the Designer. The
internal message should have a web form added and the Jars
files for the internal message should have been deployed.

This attribute is mandatory.

modelRef The value of this attribute (in the specified scope) should hold
the normalized object. You can use this or use the model
property to specify the NormalizedObject.

This attribute is optional.

model The NormalizedObject to be used. You can use either the model
or the modelRef property.

This attribute is optional.

scope Attribute that specifies the scope for the modelRef (session,
request, application, page).

This attribute is optional.

requestURI The URL for the page where the WebForm tag is present should
be specified as value for this property. This information is
needed because WebForm submits back (postback) to the same
page. By default, the web tag tries to figure out what the URL is
for the page it is on by calling the request.getRequestURI()

method, but this will not always return a correct answer in
environment where you are forwarding a request around before
arriving at the JSP that is to be displayed (like struts). In those
cases, you need to specify the URL via the "requestURI"
attribute.

This attribute is optional.

errorStyle The style in error messages should be displayed. It can be one
of “text”, “tooltip” or “tooltippopup”. In the “text” is specified,
the validation messages are displayed as plain text in the form.
If you specify “tooltip” an error icon is displayed next to the field
with the error message as the tooltip (mouse over image).If
“tooltippopup” is selected an error icon will be displayed next to
the error field. If the icon is clicked the error message will be
displayed in a pop up window. Even in this case the error
message will also be displayed as tool tip when mouse is moved
over the image.

This attribute is optional.

errorBackground This attribute specifies the background in which the error fields
are highlighted. By default the error fields are highlighted in a
background of pink. HTML color syntax can be used to specify
the color (e.g. #FFFFFF)

This attribute is optional.

checkMandatoryFi
elds

By default the webform validates the presence of mandatory
fields before sending data to the EJB/Application layer. However
since the validation is anyway likely to be performed in the
EJB/Application layer the value of this attribute can be set to
false.

If this attribute is set to false it will not perform the validation.
This provides a flexible approach when you want to save a
partially filled page. For example if you want to save the data in
draft mode this attribute has to be set to false.

By default the value of this attribute is true.

This attribute is optional.

readOnly Specifies whether the message should be displayed in edit or
read only mode. If it is displayed in read only mode all the fields
are disabled. The allowed values (boolean) are true and false.

This attribute is optional.

hideNullFields If set to true, all fields and sections with null value are hidden.
It provides a convenient way of viewing sparsely populated
form. This should normally be used only in readOnly mode.

This attribute is optional.

page Sets the current page for the webform.

This attribute is optional.

<volante:webform format=<%= format %>

 errorStyle="text"

 errorBackground="#FFE3E7"
 modelRef=<%= modelName %>

 requestURI=<%= requestURI%>

 readOnly=<%= readOnly %>

>

See Also:

Variables exposed by webform Tag

Variables exposed by webform Tag

Variable
Name

Description

formpage The current page number (1 .. formPages)

formpages Total number of pages in the form

completed A boolean value, if true means that the form has been submitted
and there are no validation errors. This would mean that the
normalized object is ready to be passed to the business tier (EJB).

errors True if the form to be displayed has errors

pagenames A String[] containing the names of all pages in the form (as
specified during design time).

currentpage Name of the current page to be displayed.

These page level variables are available inside the webform tag. These variables
provide enough information for you to build navigational buttons (Previous/Next) or
a tab like interface in your JSP page.

Note:

You can add HTML tags, Java code and nested tags inside the webform tag. They
behave, as you would expect.

See Also:

Attributes of webform Tag

Overriding values specified in Designer

You can override the attributes of a field specified in webforms in Designer by using
the <volante:override> tag. For example, using the ‘choiceList’ attribute of the
<volante:override> tag, you can override the list of values to be displayed for a
field. Using this you can, for instance, fill up the sender and recipient combo boxes
with values fetched from the Database. Please note that, in this you should have
specified the renderer for the field as Choice in the Designer for choiceList override
to work.
The following code fragments overrides the values specified for field ‘Sender’ with
choice renderer in Designer. The values displayed in the combo in webforms are the
list of values specified using the override tag and not the values specified in
Designer.

<%

List senders = Arrays.asList(new String[] {"DAVID LEAN","WILLIAM PRICE"});

List recipients =Arrays.asList(new String[] {"BANK OF NEW YORK",

"ABN AMRO"});

%>

<volante:webform format=<%= format %> ….. >

 ...

<volante:override fieldName="Sender" choiceList="<%= senders%>"

label="New Sender" labelStyle="DefaultLabelStyle"

rendererStyle="DefaultRendererStyle" />

 ...

<volante:override fieldName="Sender" choiceList="<%= senders%>"

visible="false" />

...

Attribute Description

fieldName Qualified name (as specified in Designer) of a field whose
attributes you want to override.

This is a mandatory attribute.

choiceList List of string values. You should have specified the renderer for
the field as Choice in the Designer for the choiceList override to
work. The specified values replace the values specified in
Designer (typically you would have left it empty in the
Designer).

This is an optional attribute.

defaultValue The default value for the field. This overrides the value you
specified in the Designer.

This is an optional attribute.

label The title to be used for a field. This overrides the value you
specified in the Designer.

This is an optional attribute.

enabled The enabled or disabled state of a field in a form. Use the value
“false” to disable a field and the value “true” to enable a field.

This is an optional attribute.

visible The visible or hidden state a field in a form. Use the value
“false” to hide a field and the value “true” to show a field.

This is an optional attribute.

labelStyle The style to be applied to the title/label of a field. It should be
one of the styles available under the Style Manager of the
corresponding Web Form.

This is an optional attribute.

rendererStyle The style to be applied to the renderer of a field. It should be
one of the styles available under the Style Manager of the
corresponding Web Form.

This is an optional attribute.

See Also:

Web Form Tag
Navigation Tags
Displaying the form
Displaying top level error messages
Adding Business validation errors to the form
Removing Business validation errors
Getting List of Errors
A sample usage of Webform tag

Navigation Tags

By default, (for maximum flexibility) the webform does not display navigational
buttons (for submitting, moving to next page etc). This has to be done in the JSP by
the programmer. Webforms provides two tags for navigation action tag and button
tag.

See Also:

Action Tag
Button tag
Web Form Tag
Overriding values specified in Designer
Displaying the form
Displaying top level error messages
Adding Business validation errors to the form
Removing Business validation errors
Getting List of Errors
A sample usage of Webform tag

Action Tag

The action tag is equivalent to the HTML tag except that the form is
submitted back to the same page and the action parameters the you specified are
available in the postback request. The actions supported are “Submit”, “nextPage”
and “PreviousPage”. Any additional parameters you pass will be available in the post
back request as parameters.

<volante:action name="Submit" params="task=save">

</volante:action>

These are the attributes supported by the action tag.

Attribute Description

name The webform action that you want to perform. The allowed
values are “Submit”, “NextPage” and “PreviousPage”.

This is a mandatory attribute.

params Your action specific parameters (name value pairs). These
values would be appended to the link and the values would be
accessible when the form is posted back.

This is an optional attribute.

style The CSS class that should be applied to the button

This is an optional attribute.

See Also:

Button tag

Button tag

Instead of using action tag the other possibility is to add buttons to the form. This
can be done using the button tag.

This tag is equivalent to the HTML <button> tag except that the form is submitted
back to the same JSP page and the action parameters that you specified are
available in the postback request.

<volante:button name="Submit" style="sbttn" label=" Save "

 params="task=save"/>

These are the attributes supported by the button tag.

Attribute Description

name The webform action that you want to perform. The allowed
values are “Submit”, “NextPage” and “PreviousPage”.

This is a mandatory attribute.

params Your action specific parameters (name value pairs). These
values would be appended to the link and the values would be
accessible when the form is posted back.

This is an optional attribute.

label Label of the button

This is a mandatory attribute.

style The CSS class that should be applied to the button

This is an optional attribute.

The reason for providing these two tags is to ensure that form is posted back as per
the requirement. If the control should come back to the form, always use one of
these two tags instead of their HTM equivalents.

See Also:

Action Tag

Displaying the form

Display part is exposed as an independent tag because the user may not always
want to display the form. Note that WebForm uses a postback model hence when the
form is submitted the same page gets control. The WebForm tag validates the
submitted data and if there were no errors it would send it to the Business Tier
(EJB). And if no error occurs in business tier also, the form would not be displayed
again. The user would forward to some other page. So it is very likely that the user
would use the ‘display’ tag conditionally.

<volante:display/>

See Also:

Web Form Tag
Overriding values specified in Designer
Navigation Tags
Displaying top level error messages
Adding Business validation errors to the form
Removing Business validation errors
Getting List of Errors
A sample usage of Webform tag

Displaying top level error messages

Top level (message level) error messages that are not associated with any field can
be displayed at the top of the webform using the ‘displayerrors’ tag.

<volante:displayerrors/>

See Also:

Web Form Tag
Overriding values specified in Designer
Navigation Tags
Displaying the form
Adding Business validation errors to the form
Removing Business validation errors
Getting List of Errors
A sample usage of Webform tag

Adding Business validation errors to the form

The validations done by the Webform are only mandatory field verification and type
conversion checks. Rest of the validations has to be done in the Application layer
while processing the message. If errors are encountered during processing, they
have to be displayed in the Web form (next to the field). You do this by adding the
business validation errors to the web form.

<volante:adderrors errorRef="processingErrors" scope="session"/>

The errorRef should refer to an attribute that has a list of validation errors

Attribute Description

errorRef Reference to a list of errors.

error List of errors.

scope Attribute that specifies the scope for the errorRef (session,
request, application, page).

This attribute is optional.

By default the scope is ‘Page’ scope.

See Also:

Web Form Tag

Overriding values specified in Designer
Navigation Tags
Displaying the form
Displaying top level error messages
Removing Business validation errors
Getting List of Errors
A sample usage of Webform tag

Removing Business validation errors

The list of business validation stored in a session variable (or in other scope) can be
removed using the clear errors tag.

<volante:clearerrors errorRef="externalErrors"/>

The errorRef should refer to an attribute that has a list of validation errors. All the
errors present in the list will be cleared.

Attribute Description

errorRef Reference to a list of errors to be cleared. If used in conjunction
with the invokeMessage tag the errorRef you specify here would
be same as the errorRef you specified in invokeMessage tag.

scope Attribute that specifies the scope for the errorRef (session,
request, application, page).

By default the scope is ‘Page’ scope.

See Also:

Web Form Tag
Overriding values specified in Designer
Navigation Tags
Displaying the form
Displaying top level error messages
Adding Business validation errors to the form
Getting List of Errors
A sample usage of Webform tag

Getting List of Errors

The list of errors occurred during processing of data can be obtained using the
‘geterrors’ tag. This tag returns a list of
com.tplus.transform.runtime.webforms.ValidationInfo objects. Details about

each error such as ErrorCode, Message etc. can be obtained from the ValidationInfo
object.
88

<volante:geterrors errorType="message" errorRef="topLevelErrors"

scope="session"/>

Attribute Description

ErrorType

This attributes specifies the type of error that is to be returned.
It can be one of two values ‘all’ or ‘message’. If value specified
is ‘all’ all errors that occur during processing are returned.

If value specified is ‘message’ only top level errors (errors that
are not bound to any field) are returned. By default the
errorType is ‘message’.

ErrorRef Reference to the list of errors that are returned by the geterrors
tag. The list contains ValidationInfo objects. Details about the
error can be obtained from ValidationInfo object.

Scope Attribute that specifies the scope for the errorRef (session,
request, application, page).

By default the scope is ‘Page’ scope.

Methods in com.tplus.transform.runtime.webforms.ValidationInfo
The ValidationInfo object obtained using the geterrors tag can be used to get details
about the error using the following methods present in it.

Method Description

getFieldId() Returns the id of the field with which this
exception is associated. If the exception
is not associated with any field ‘null’ is
returned.

GetMessage() Returns the error message.

getExceptionObject() Returns the original exception thrown
from the application layer or null if this
validation was generated by web form
itself. If the exception is not null
exception properties such as ErrorCode,
Error Phase etc. can be obtained from it.

getFieldValue() Returns the value for the error field. In

cases where the value cannot be set for
the field (e.g. type mismatch) null will be
returned.

See Also:

Web Form Tag
Overriding values specified in Designer
Navigation Tags
Displaying the form
Displaying top level error messages
Adding Business validation errors to the form
Removing Business validation errors
A sample usage of Webform tag

A sample usage of Webform tags

<volante:webform name="<%= webformName %>" format="<%= format %>"

checkMandatoryFields="false" errorStyle="tooltippopup" modelRef="<%=

modelName%>" requestURI="<%= requestURI%>"

readOnly="<%= readOnly%>" hideNullFields="<%= readOnly%>">

 <!—Override values specified in designer --!>

 <% if(newMessage) { %>

 <volante:override fieldName="Sender" label="New Sender"/>

 <% } else { %>

 <volante:override fieldName="Sender" enabled="false" />

 <% } %>

 <volante:override fieldName="Recipient" />

 <!— Check whether form has been completed (with no errors) --!>

 <% if (!completed.booleanValue()) { %>

 <volante:adderrors errorRef="externalErrors" scope="session"/>

 <% }

 <volante:clearerrors errorRef="externalErrors" scope="session"/>

 <volante:clearerrors errorRef="processingErrors" scope="session"/>

 <!— Send message for processing to EJB layer--!>

 <volante:invokeMessageFlow name='<%= format + "WebFlow" %>'

errorRef="processingErrors" scope="session">

 <volante:input>

 <volante:param value="<%= session.getAttribute(modelName)%>"/>

 <volante:param value='<%= request.getParameter("task") %>'/>

 </volante:input>

 </volante:invokeMessageFlow>

 <% if (session.getAttribute("processingErrors") == null) { %>

 <jsp:forward page="<%= returnPage%>"/>

 <% }%>

 <% } %>

 <!— Add business validation errors --!>

 <volante:adderrors errorRef="processingErrors" scope="session"/>

 <!--- Using table for laying out buttons, tabs, error messages & form --->

 <table width="760" cellspacing="0" cellpadding="0" >

 <!--- display button at top --->

 <tr><td>

 <%@ include file="WebFormButtons.jsp" %>

 </td></tr>

 <!--- display top level errors --->

 <tr><td>

 <volante:displayerrors/>

 </td></tr>

 <!--- display a row of tabs--->

 <tr><td>

 <%@ include file="WebFormTabs.jsp" %>

 </td></tr>

 <!--- display the form --->

 <tr><td style="BORDER:#000000 1px solid;">

 <volante:display/>

 </td></tr>

 <!--- display button at bottom --->

 <tr><td>

 <%@ include file="WebFormButtons.jsp" %>

 </td></tr>

 </table>

 </volante:webform>

See Also:

WebForm Tags

Summary Tags

Summary tags are based on an open source tag library named “display”.

Main Features:

 Displays a list of Normalized objects (in fact it can a collection of any bean)
 Support for sorting a column
 Support for paging
 Allows customization of columns (links, form fields etc).

 Based on the HTML table tag.
 Works well with the core tags such as query etc. that produce a list of normalized

objects.

See Also:

Table Tag
Column Tag
setProperty Tag
Core Tags
WebForm Tags

Table Tag

This tag takes a list of objects and creates a table to display those objects. With the
help of column tags, you simply provide the name of properties (get Methods) that
are called against the objects in your list that gets displayed. This tag works very
much like the struts iterator tag, most of the attributes have the same name and
functionality as the struts tag.

Attribute Description

Id Uniquely identifies a table tag. This is useful in cases where
multiple table tags are defined in a single page.

name The value of this attribute should be the list of objects that are
to be displayed in the table.

property The property to be fetched from the list specified in the ‘name’
attribute should be given here.

list The list of objects to be displayed can be directly passed to the
table using this attribute. In such a case ‘name’ attribute need
not be used.

decorator A "decorator" is a design pattern where one object provides a
layer of functionality by wrapping or "decorating" another
object. You can write your own wrapper class extending the
decorator and specify that class as value for this attribute.

scope Attribute that specifies the scope for the values of this table

length In case where you want to show only a subset of the data
present in the list you can use the length attribute. The number
of data display will be the value specified for this attribute.

offset This attribute can be used to skip data present in the list. For

example you can display first 2 items in the list, then skip the
next 5 items using the offset attribute. This attribute can be
used together with the length attribute.

pagesize This attribute can be used to split the data in the list into pages.
The number of items displayed in the table will be the value
specified for this property. If the number of items in the list is
greater than the value specified the remaining items will be
automatically paged.

requestURI The URL for the page where the table tag is present should be
specified as value for this property. By default, the table tag
tries to figure out what the URL is for the page it is on by calling
the request.getRequestURI() method, but this will not always
return a correct answer in environment where you are
forwarding a request around before arriving at the JSP that is to
be displayed (like struts). In those cases, you need to tell the
table tag what it's URL is via the "requestURI" attribute

width Width of the table.

styleClass Style class name to apply to the table

border Width of border to be drawn around cells

cellspacing Amount of space between cells

cellpadding Amount of space between cell border and contents

align Aligns within the text flow – You can use stylesheets instead

background Background image

bgcolor Background color of table – You can use stylesheets instead

frame To draw borders around the table (IE only)

height Specifies height of the table

hspace Number of pixels to left/right of an aligned table

Rules To draw borders within the table (IE only)

summary Like alt, provides a summary of the table for non-display
browsers

vspace Number of pixels above/below an aligned table

An example for table tag is given below

<volante:table id="1" name="summaryList"

requestURI=<%= requestURI %>

pagesize="15"decorator="com.tplus.transform.runtime.webforms.summary.CustomData

ObjectWrapper" border="0" bgcolor="#CCCCCC">

See Also:

Column Tag
setProperty Tag

Column Tag

The column tag is used to display values from the list specified in the ‘table’ tag.

Attribute Description

Property This attribute specifies what getXXX method is called on
each item in the list. The value returned by the method is
set for the column.

Value The value for the column can be directly specified using this
property instead of using ‘property’.

Title The title for the column.

Nulls This attribute can be used suppress "null" values that might
be returned.

decorator A "decorator" is a design pattern where one object provides
a layer of functionality by wrapping or "decorating" another
object. You can write your own wrapper class extending the
decorator and specify that class as value for this attribute.

Sort If this attribute is “true” then the column data will be sorted.
When the user clicks on the column title the rows will be
sorted in ascending order and redisplayed on the page. If
the user clicks on the column title again, the data will get
sorted in descending order and redisplayed.

Only the rows being shown on the page are sorted and
resorted, so if you use this attribute along with the pagesize

attribute, it will not resort the entire list.

Group This attribute is used to group columns. If multiple columns
are group the grouping order should be specified in this
property.

Autolink If you have email addresses or web URLs in the data that
you are displaying in columns of your table, then you can set
the autolink="true". The data will be automatically displayed
as hyperlinks.

Href This is strut-like attribute that can be set to create a
dynamic link. It is the base URL used to construct the
dynamic link.

paramId The name of the parameter that gets added to the URL
specified in the href property.

paramName Name of the bean that contains the data the user wants to
tack on the URL (typicall null, indicating the current object in
the List)

paramProperty Attribute to call on the object specified in the paramName
property to return the value that gets tacked onto the URL.

paramScope Specific scope where the databean lives, typically null

maxLength This attribute can be used to restrict the size of a column, so
that it fits within a certain size of table.

maxWords This attribute can be used to restrict the number of words to
be displayed in a column. “…” will be appended at the end if
value of the column is greater than the value specified for
this property.

Width Width of the cell

styleClass Style class name to apply to the cell

Align Aligns within the cell

Valign Specifies vertical alignment within the cell

background Background image

Bgcolor Background color of cell – you can use stylesheets instead

Height Specifies height of the cell

nowrap Indicates that the cell should not wrap text

An example for ‘column’ tag is given below

<volante:column property=<%=fieldName%> title=<%=fieldName%> sort="true"

decorator="com.tplus.transform.runtime.webforms.summary.LinkColumnWrapper" />

See Also:

Table Tag
setProperty Tag

setProperty Tag

There are a number of "default" values and strings used by the table tags to show
messages, decide which options to display, etc. You can use the
<display:setProperty name=... value=...> tag to override these default values. This
is useful if you want to change the behavior of the tag a little (for example, don't
show the header etc), or if you need to localize some of the default messages and
banners.

Attribute Description

name The name of the property to override.

value Value for the property.

An example for ‘setProperty’ tag is given below

<volante:setProperty name="sort.behavior" value="all" />

The various properties that are currently available are listed along with their default
values and a brief explanation.

Property Default
Valid
Values

Descriptions

basic.show.header true true, false Indicates if you want the header to
appear at the top of the table, the
header contains the column names, and

any additional action banners that might
be required (like paging, export, etc...)

basic.msg.empty_list Nothing
found to
display

Any string The message that is displayed with the
list that this table is associated with is
either null, or empty.

sort.behavior page page, list Describes the behavior that happens
when a user clicks on a sortable column
in a table that is showing just a portion
of a long list. The default behavior
(page), just resorts the elements
currently being displayed and leaves the
user showing the same subset. If you
change this value to (list) then the
entire list will be resorted, and the user
will be taken back to the first subset of
the newly sorted list.

export.banner Export
options:
{0}

Any string
in a
message
format
with 1
placehold
er

Contains the string that is displayed in
the table footer when the user indicates
that they want to enabled the export
function. The placeholder is replaced
with links to the various export formats
that are support.

export.sepchar | Any string Used to seperate the valid export type
(typically would be a bar a comma, or a
dash).

export.csv true true, false Should the tag present the option to
export data in comma seperated format
(csv).

export.csv.label CSV Any string The label on the link that the user clicks
on to export the data in CSV format.

export.csv.mimetype text/csv Any valid
mime-
type

The MIME type that is used when
sending CSV data back to the user's
web browser. If you want to launch a
specific program to deal with the data
on the user's system you can change
this property.

export.csv.include_header false true, false If set to true, then the first line of the
export will contain the column titles as

displayed on the HTML page. By default
this is set to false, so the header is not
included in the export.

export.excel true true, false Should the tag present the option to
export data in Excel format (tab
seperated values).

export.excel.label Excel Any string The label on the link that the user clicks
on to export the data in Excel format.

export.excel.mimetype applicatio
n/vnd.ms
-excel

Any valid
mime-
type

The MIME type that is used when
sending Excel data back to the user's
web browser. I can't think of many
reasons you would want to change this,
but perhaps you want to launch a
specific program to deal with the data
on the user's system.

export.excel.include_heade
r

false true, false If set to true, then the first line of the
export will contain the column titles as
displayed on the HTML page. By default
this is set to false, so the header is not
included in the export

export.xml true true, false Should the tag present the option to
export data in XML format.

export.xml.label XML Any string The label on the link that the user clicks
on to export the data in XML format.

export.xml.mimetype text/xml Any valid
mime-
type

The MIME type that is used when
sending XML data back to the user's
web browser. I can't think of many
reasons you would want to change this,
but perhaps you want to launch a
specific program to deal with the data
on the user's system.

export.amount list page, list Indicates how much data should be sent
down to the user when they ask for a
data export. By default, it sends the
entire list, but you can instruct the table
tag to only send down the data that is
currently being shown on the page.

export.decorated true true, false Should the data be "decorated" as it is

exported. The default value is true, but
you might want to turn off any
decoratation that is HTML specific for
example when exporting the data.

paging.banner.placement top top,
bottom,
both

When the table tag has to show the
header for paging through a long list,
this option indicates where that header
should be shown in relation to the table

paging.banner.item_name item Any string What the various objects in the list
being displayed should be refered to as
(singular).

paging.banner.items_name items Any string What the various objects in the list
being displayed should be refered to as
(plural).

paging.banner.no_items_fo
und

No {0}
found.

Any string
in a
message
format
with 1
placehold
er

What is shown in the pagination header
when no objects are available in the list
to be displayed. The single placeholder
is replaced with the name of the items
in the list (plural).

paging.banner.one_items_f
ound

1 {0}
found.

Any string
in a
message
format
with 1
placehold
er

What is shown in the pagination header
when one object is available in the list
to be displayed. The single placeholder
is replaced with the name of the items
in the list (singular

paging.banner.all_items_fo
und

{0} {1}
found,
showing
all {2}

Any string
in a
message
format
with 3
placehold
ers

What is shown in the pagination header
when all the objects in the list are being
shown. {0} and {2} are replaced with
the number of objects in the list, {1} is
replaced with the name of the items
{plural}.

paging.banner.some_items
_found

{0} {1}
found,
displaying

Any string
in a
message

What is shown in the pagination header
when a partial list of the objects in the
list are being shown. {0} indicates the

{2} to
{3}

format
with 4
placehold
ers

total number of objects in the list, {1}
is replaced with the name of the items
(plural}, {2} and {3} are replaced with
the start and end index of the objects
being shown respectively.

paging.banner.include_first
_last

false true, false Should the banner contain a "First" and
"Last" link to instantly jump to the start
and end of the list. The default behavior
is to not include those links

paging.banner.first_label First Any string Label for the link that takes the person
to the first page of objects being shown
in the list.

paging.banner.last_label Last Any string Label for the link that takes the person
to the last page of objects being shown
in the list.

paging.banner.prev_label Prev Any string Label for the link that takes the person
to the previous page of objects being
shown in the list.

paging.banner.next_label Next Any string Label for the link that takes the person
to the next page of objects being shown
in the list.

paging.banner.group_size 8 Any
reasonabl
e number

The number of pages to show in the
header that this person can instantly
jump to.

See Also:

Table Tag
Column Tag

	WebForm Tag Library
	Core Tags
	createNo Tag
	persist Tag
	query Tag
	update Tag
	remove Tag
	delete Tag
	param Tag
	processMessage Tag (@deprecated)
	property Tag (@deprecated)

	WebForm Tags
	Web Form Tag
	Attributes of webform Tag
	Variables exposed by webform Tag

	Overriding values specified in Designer
	Navigation Tags
	Action Tag
	Button tag

	Displaying the form
	Displaying top level error messages
	Adding Business validation errors to the form
	Removing Business validation errors
	Getting List of Errors
	A sample usage of Webform tags

	Summary Tags
	Table Tag
	Column Tag
	setProperty Tag

