

Deployment and Configuration
Version 3.5

Deployment and Configuration... 3
Simple Runtime .. 3

Transaction Support in Simple Runtime... 4
Data Source Configuration ... 4
Logging Configuration.. 5
Simple Runtime with Data Sources from Application Server .. 6

FAQ... 7

Deployment and Configuration

This document illustrates how to deploy the Java components generated for a
cartridge into Simple Runtime.

Simple Runtime

Simple runtime is more or less a fairly straightforward Java application. It is not a
server based application and infact both the client and the runtime along with the
generated application run in the same process.

In brief, this is how the Simple runtime works:

1. It is initialized when the client code tries to lookup something for the first time. It

prepares a list of deployable entities in the classpath (all Jars). It does this by
looking for tplus-jar.xml.

2. It creates a global lookup context (hashtable), where it binds all the all the

entities specified in each of the tplus-jar.xml. When the client tries to lookup an
entity, it uses this hastable for lookup, but not JNDI.

3. It uses its own connection pooling mechanism to establish DB connection. It uses

a file ‘data-sources.xml’ which contains the properties for the data source. This
file should be present in the class path for establishing database connection.

4. It uses the logging configuration defined in the ‘log.xml’ file for logging

messages.

NOTE

As the Simple runtime is not a server based application, the client code should not
use server specific features (like assuming JNDI).

As both the client and the runtime run in the same process, the client is not allowed
to lookup out process remote objects.

See Also:

Transaction Support in Simple Runtime
Data Source Configuration
Logging Configuration
Simple Runtime with Data Sources from Application Server

Transaction Support in Simple Runtime

Simple runtime supports simple transactions (Non-XA). Thus, a message flow with
Transaction requirements can be tested using Simple runtime.

For providing transaction support, the Simple runtime uses a Transaction Manager
and it works based on thread local storage (as most TMs do).

To use transaction support in database context, the connection pool class
‘com.volante.component.server.jdbc.ManagedJDBCDriverConnectionPool’ should be
used instead of the class
com.tplus.transform.util.sql.connection.JDBCDriverConnectionPool. This is required
as the resource (in this case, the connection pool implementation) should work with
the Transaction Manager. The later class does not support transactions.

These are the limitations of Transaction implementation:

 NO XA support
 No support for transaction propagation through RMI (only in proc).

See Also:

Simple Runtime
Data Source Configuration
Logging Configuration
Simple Runtime with Data Sources from Application Server

Data Source Configuration

All you need to connect to DB is to create a data-sources.xml file that defines the
<data-source> tag with the correct values for the connection attributes and copy it
into the generated ‘java’ directory before running the sample.

The sample given below connects to HSQL database.

<?xml version="1.0"?>

<data-sources>

 <data-source

 class="com.volante.component.server.jdbc.ManagedJDBCDriverConnectionPool"

 name="invoicedb"

 location="invoicedb"

 connection-driver="org.hsqldb.jdbcDriver"

 url="jdbc:hsqldb:hsql://localhost"

 username="sa"

 password=""

 />

</data-sources>

The following table describes the connection attributes used in the <data-source>
tag.

class Name of the connection pool class. Use the connection pool class
com.volante.component.server.jdbc.ManagedJDBCDriverConnectionPool,
which works with the Transaction Manager to provide transaction support.

The class com.tplus.transform.util.sql.connection.JDBCDriverConnectionPool can

also be used. But this does not support transactions.

name Name of the data source. Used mainly for error reporting.

location This should be same as the value of the Data Source property set as part of code
generation settings.

connection-
driver

JDBC driver class. Please note that this class should be present in the class path
for establishing database connection.

url URL to be passed to the driver

username User name to be used to get a connection to the database.

password Password to connect to the database (for the specified username)

See Also:

Simple Runtime
Transaction Support in Simple Runtime
Logging Configuration
Simple Runtime with Data Sources from Application Server

Logging Configuration

To enable logging while running the application, you need to create a log.xml file
that defines the <log4j:configuration> tag as shown below and copy it into the
generated ‘java’ directory before running it.

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration

xmlns:log4j="http://jakarta.apache.org/log4j/">

 <appender name="ConsoleLog"

class="org.apache.log4j.ConsoleAppender">

 <param name="Threshold" value="info" />

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="[%5p] %m%n"/>

 </layout>

 </appender>

 <root>

 <appender-ref ref="ConsoleLog" />

 </root>

</log4j:configuration>

Here, it uses the console appender to display log messages in Console.

As the value of the Threshold parameter is set to info, the application will display
information messages while running. The other acceptable values for this parameter
are debug and warn.

See Also:

Simple Runtime
Transaction Support in Simple Runtime
Data Source Configuration
Simple Runtime with Data Sources from Application Server
FAQ

Simple Runtime with Data Sources from
Application Server

We can use the data-sources resource defined using Application server instead of
providing the full definition in data-sources.xml. We still need to configure a
datasource in data-sources.xml. But, Instead of specifying the connection info you
just point to server datasource.

Using the server defined resources without using its Transaction Manager does not
make sense. We should necessarily lookup and use server’s Transaction Manager.

Data Sources Configuration from WebLogic Server

Following data-sources configuration uses data-sources resource defined using
WebLogic server.

<?xml version="1.0"?>

<data-sources>

 <transaction-manager server-location="javax.transaction.TransactionManager"

/>

 <data-source

class="com.volante.component.server.jdbc.ManagedDataSourceConnectionPool"

 name="hsql"

 server-location="serverdb"

 location="transformdb"

 />

</data-sources>

"javax.transaction.TransactionManager" is the Transaction Manager used for
WebLogic server.

See Also:

Simple Runtime
Transaction Support in Simple Runtime
Data Source Configuration

FAQ

1. Fundamentally what is the difference between EJB and non-EJB deployment

(SimpleRT), within the application server?

Using SimpleRT inside an EJB server is an interesting possibility. In case of
simple rt, there is no concept of server. So the client executes first before the
runtime gets a chance. This is how simplert works,

2. When you try to lookup something for the first time (from client code), it

prepares a list of deployable entities in the classpath (all Jars). It does this by
looking for tplus-jar.xml.

 It creates a global lookup context (hashtable), where it binds all the all the

entities specified in each of the tplus-jar.xml

Since simplert is more or less fairly straightforward Java, you can in theory use it
anywhere you want. But if you are embedding it in an EJB you should be aware
of how it works under the covers (since it works based on classpath of its
classloader).

If the generated cartridge is running under SimpleRT, it does not have any
knowledge of the enclosing EJB server. The implications are,

 It will not be able to access the application server’s DataSources.
 It will not be able to access the application server’s queue or other resources.
 Does not use the EJB server transactions(this is obvious because it does not

even use the resources provided by the Server).

If simplert is used in a servlet, some of the concerns raised above disappear. You
probably want the simplert to be oblivious of the server environment.

3. When simpleRT is depoyed in J2EE server, does it use its own lookup

implementation or the server's implementation of JNDI? Can the user choose the
implementation?

SimpleRT uses its own implementation of LookupContext, which is based on a
global Hashtable. This also applies to resources. The simple rt lives in its own
world and ignores the application completely.

The user cannot choose the implementation to be used.

4. If one uses simpleRT in library mode (i.e., linked to an application not deployed

in J2EE server) how is DB connection established. Does it use its own connection
pooling mechanism? In case simpleRT is deployed on J2EE server, can the user
choose to use the server's connection pool rather than connecting to DB directly?

SimpleRT uses its own connection pooling mechanism to establish DB connection.
simpleRT looks for a data source specified in the ‘Data Source’ property set in the
code generation settings of the cartridge. It uses a file ‘data-sources.xml’ which
contains the properties for the data source. This file should be present in the
class path for establishing database connection.

If you deploy simpleRT on J2EE server you cannot choose to use the server’s
connection pool.

See Also:

Deployment and Configuration

	Deployment and Configuration
	Simple Runtime
	Transaction Support in Simple Runtime
	Data Source Configuration
	Logging Configuration
	Simple Runtime with Data Sources from Application Server
	Data Sources Configuration from WebLogic Server

	FAQ

