

Formula Language
User’s Guide

Version 3.5

FORMULA LANGUAGE.. 4

Expression Language .. 4

LEXICAL STRUCTURES .. 5
WHITESPACE.. 6
IDENTIFIERS ... 6
KEYWORDS .. 7
LITERALS ... 8
COMMENTS .. 9
OPERATORS ... 9

Arithmetic Operators .. 10
Unary Arithmetic Operators ... 11
Relational Operators .. 12
Logical Operator .. 13
Bit Operators .. 15
Assignment Operators... 17
Array Access ... 18
Operator Precedence .. 19

Explicit Precedence... 20
SEPARATORS.. 20

FUNCTIONS... 21

STATEMENTS ... 22
LOCAL VARIABLE DECLARATION .. 22
BLOCK STATEMENTS ... 23
VARIABLE SCOPE... 24
CONDITION STATEMENTS... 25
ITERATION CONSTRUCTS ... 26

for Statement ... 26
foreach Statement.. 27
while Statement ... 29
do-while Statement.. 29
break Statement... 30
continue Statement .. 31

RETURN STATEMENT ... 31
LIST LITERAL... 32

TEMPLATE STRING LITERAL... 34
EXPRESSIONS ... 35
SCRIPTLETS.. 35
LINE FEED AND WHITESPACES... 37
DIRECTIVES ... 38

SUMMARY OF TEMPLATE STRING SYNTAX .. 38
Uninterpreted Text .. 39
Expressions ... 39
Scriptlets (Statement).. 39
Directives .. 40

ERROR HIGHLIGHTING ... 40
SYNTAX HIGHLIGHTING... 40
USAGE SCENARIO .. 41

Simple Strings ... 41
Complete Messages... 42

COMPARISON WITH UNIVERSAL PLUG-IN... 43
When should you use Universal Plug-in?... 43
When should you use Template Strings?.. 44

Formula Language

Formula is primarily an expression language, which is tightly integrated with
Designer. The tight integration allows you to specify/embed small snippets of an
executable code, which typically evaluates to a value. How the evaluated value is
used depends on the context in which the formula is used. For instance, if it is used
for validation of a field, then the formula should evaluate to a boolean value. A
return value of true would indicate that the validation succeeded.

Formula scripts are written using plain ASCII characters. The lexical translations
result in sequence of input elements, which are whitespaces, comments and tokens.
The token comprises identifiers, keywords, literals, operators and separators of
Formula grammar. Where possible, lexical similarity with Java/C++ has been
maintained.

Expression Language

Formula is primarily an expression language. Typically, you write a small formula
snippet, which evaluates to a value. The returned value is used, depending on the
context in which formula is used.

For example, the following snippets are valid formula
1. 10
2. 5 + 3
3. “Hello”
4. a + b
5. a == true

In some cases, you may want to perform a non-trivial computation. The computation
may require loops to perform a complex calculation or local variables to hold state.
In general, you may want to perform a computation, which cannot be expressed in a
simple expression (pun intended). Formula language supports local variables and
statements similar to languages such as Java and C++.

From its simplest form of a simple expression, the formula language scales up to
support structured constructs such as if, for, foreach, break, continue, return
statements. In all cases, the return value of the last top-level expression/statement
is treated as the return value of the snippet.

def sum =0;

for(def i =0; i<10;++i) {

 sum += i;

}

sum;

In this snippet, the formula returns the value of the variable sum. You can also use
an explicit return statement to return a value. Using a return statement allows you
to return a value in the middle of the snippet as well as at the end as shown in the
following snippet.

def number = 121;

for (def i = 2; i <= (number/2); i++) {

 if (number % i == 0) {

 return false;

 }

}

return true;

See Also:

Lexical Structures
Functions
Statements

Lexical Structures

Formula code is a collection of whitespace, identifiers, keywords, literals, comments,
operators and separators.

Whitespace
Identifiers
Keywords
Literals
Comments
Operators
Separators

See Also:

Formula Language
Functions
Statements

Whitespace

Formula language is a freeform language. You do not have to indent anything to get
it to work properly. A formula could be written all on one line:

def sum = 0; for (def i = 1; i <= 4; ++i) {sum += i;} return sum;

or in any other strange way you feel like typing it, as long as there is at least one
space, tab, or new line between each token that is not already delineated by an
operator or separator. This, for example, will produce the exact same formula as the
single line above.

def

sum =

0;

for(def i = 1;i <=

4;

++i) {sum

+= i;} return

sum;

See Also:

Identifiers
Keywords
Literals
Comments
Operators

Identifiers

Identifiers are used to name variables, fields, and functions. An identifier may
contain the letters ‘a’ .. ‘z’, ‘A’ .. ‘Z’, the digits ‘0’ .. ‘9’, and the characters ‘_’ and ‘$’.
There is no restriction on the length of the identifier name. All identifiers in Formula
are case sensitive. By convention a variable starting with ‘$’ is used for local
variable.

See Also:

Whitespace
Keywords
Literals
Comments
Operators

Keywords

The list of reserved keywords is given below. These are reserved for use and cannot
be used as identifiers.

for foreach in if else

switch while do delegate lambda

public private protected final native

abstract volatile synchronized int long

short char float double boolean

void

def

There are very few keywords in list above that are actively used in the language.
Many of these keywords are reserved for future use.
Note that, a function name can be same as the keyword provided you use a different
case at call point. For example, to call the ‘If’ function you need to use If(…) and not
if(….) .

See Also:

Whitespace
Identifiers
Literals
Comments
Operators

Literals

All literals available in Java are supported in Formula. The only difference is the lack
of unicode support for string and character literals.

Type Description Examples

String The value should be enclosed
within double quotes.

 Supports Unicode literals
(\unnnn)

 Supports hex literals (\#xHH)

 Standard escape sequences
(as in Java)
\r, \n, \b, \t, etc can be used
in the string.

See Also:

Template String Literal

 “hello”, “\u0040 foo”

Character The single character value
should be enclosed with
single quotes.

 Supports Unicode literals

 Supports hex literals (\#xHH)

 Standard escape sequences
(as in Java) \r, \n, \b, \t, etc
can be used

‘a’, ‘\#x13’, ‘\n’

Integer Supports base10 (normal), octal
& hex literals

31, 067, 0x20

Long Supports base10 (normal),
octal & hex literals

 Should be suffixed with ‘l’ or
‘L’ to distinguish it from
Integer literals

1234567L

Boolean true, false

Float Java/C++ style IEEE floating
point literals.

 Should be suffixed with ‘f’

23.1f, 10f

Double Java/C++ style IEEE double
precision literals.

 Can be suffixed with ‘d’

23.1, 23.1d

BigInteger Supports base10 (normal),
octal & hex literals

 Should be suffixed with ‘n’

1234567890123456789012345n

BigDecimal Should be suffixed with ‘m’ 1.1234567890123456789012345m

See Also:

Whitespace
Identifiers
Keywords
Comments
Operators
Template String Literal

Comments

All types of comments supported by Java/C++ are treated as comments. This
includes the single-line comment using // syntax and the multi-line comment using
/* */ syntax.

See Also:

Whitespace
Identifiers
Keywords
Literals
Operators

Operators

An operator is something that takes one or more arguments and operates on them
to produce a result.

All operators available in Java are supported in Formula with identical precedence,
arity, and commutativity. Some of the operators behave slightly differently in
Formula. For example, unlike in Java, assignment operator does not return the
value.
So the following is not legal,
a = b = c;

Similarly, the ++ operator does not return the incremented value.

In general, the intention is to allow either a side effect (such as for ++) or a return
value (such as for + operator) for each operator. Operators with both side effect and
a return value are not available.

Supported Operators:

Arithmetic Operators
Unary Arithmetic Operators
Relational Operators
Logical Operator
Bit operators
Assignment operators
Array Access

See Also:

Operator Precedence
Whitespace
Identifiers
Keywords
Literals
Comments

Arithmetic Operators

Operator
Function
Name

Comments

+ Plus This binary operator works on all numeric types and has
the usual meaning.

The plus operator is overloaded to work with Strings like in
Java). If either of the values is a String then values are
concatenated. It is equivalent to calling the concat function
with the two arguments.

e.g. return ("Sum of " + i + " and " + j + " is: " + (i+j));

- Minus This binary operator works on all numeric types and has
the usual meaning.

* Multiply This binary operator works on all numeric types and has
the usual meaning.

/ Divide This binary operator works on all numeric types and has
the usual meaning.

% Remainder This binary operator works on all numeric types and has
the usual meaning.

See Also:

Unary Arithmetic Operators
Relational Operators
Logical Operator
Bit operators
Assignment operators
Array Access
Operator Precedence

Unary Arithmetic Operators

Operator
Function
Name

Comments

++ Incr Increments the value of the variable. This is supported
only for local variables. Unlike Java/C++ this does not
return the incremented value. So there is no difference
between pre-increment & post-increment, though you can
use both styles.

e.g.

a) ++i //legal

b) t++ //legal

c) t = ++i // illegal

-- Decr Decrements the value of the variable. This is supported

only for local variables. Unlike Java/C++ this does not
return the decremented value. So there is no difference
between pre-decrement & post-decrement, though you
can use both styles.

e.g.

-–i //legal

t-- //legal

c) t = --i // illegal

+ UnaryPlus The sign of the operand is unchanged. Usually this is not
used.

e.g.

+a //if the value of ‘a’ is –5, it continues to be –5.

- UnaryMinus This is equivalent of multiplying the operand by -1.

e.g.

-a //if the value of ‘a’ is 5, it becomes –5.

See Also:

Arithmetic Operators
Relational Operators
Logical Operator
Bit operators
Assignment operators
Array Access
Operator Precedence

Relational Operators

In order to compare two values, formula has the following set of relational operators
that describe equality and ordering. Most types, including integers, floating point
numbers, characters, booleans, dates, strings can be compared using the equality
test, ==, and the inequality test, !=.

Number, string, character and date types can be compared using the ordering
operators. The relational operators always return a boolean value, true or false.

Operator Function Name Description

< Less Less than

> Greater Greater than

<= LessEqual Less than or equal to

>= GreaterEqual Greater than or equal to

== Equal Equal to

!= NotEqual Not equal to

See Also:

Arithmetic Operators
Unary Arithmetic Operators
Logical Operator
Bit operators
Assignment operators
Array Access
Operator Precedence

Logical Operator

The Boolean logical operators summarized below operate only on boolean operands.
The binary logical operators operate on a one or more boolean values to form a
resultant boolean value.

Operator Function Name Description

&& And The logical ‘And’ operator returns true only if both
the operands are true

e.g.

true && true //returns true

true && false //returns false

false && true //returns false

false && false //returns false

|| Or The logical ‘Or’ operator returns true if either or both
of the operands are true

e.g.

true && true //returns true

true && false //returns true

false && true //returns true

false && false //returns false

? : If The syntax of the conditional (ternary) operator is
given below.

<expression1> ? <expression2> : <expression3>

Here, expression1 should be a Boolean expression;
expression2 and expression3 should be of the same
type. First expression1 is evaluated. If its value is
true, then expression2 is evaluated and its value is
returned as the result of the operator. If its value is
false, then expression3 is evaluated and its value is
returned as the result of the operator.

e.g.

(1 < 2) ? 1 : 2 //returns 1

(1 < 2) ? "small" : "big" //returns "small"

! Not The logical ‘Not’ operator returns the complement of
the input operand.

e.g.

!true //returns false

!false //returns true

See Also:

Arithmetic Operators
Unary Arithmetic Operators
Relational Operators
Bit operators
Assignment operators
Array Access
Operator Precedence

Bit Operators

Operator Function Name Description

<< LeftShift The syntax of the left shift operator is given below:

value << num

It shifts all the bits of the value operand to the left
by the number of times as specified by the num
operand. It should be noted that the value
operand should be of either integer or long type
and the num operand should be of integer type.

e.g.

16 << 2 // returns 64

>> RightShift The syntax of the right shift operator is given
below:

value >> num

It shifts all the bits of the value operand to the
right by the number of times as specified by the
num operand. It preserves the sign as it extends
the sign bit. It should be noted that the value
operand should be of either integer or long type
and the num operand should be of integer type.

e.g.

64 >> 2 // returns 16

-64 >> 2 // returns -16

>>> UnsignedRightShift The syntax of the unsigned right shift operator is
given below:

value >>> num

It shifts all the bits of the value operand to the
right by the number of times as specified by the
num operand. It does not preserve as it extends
with zero bit. It should be noted that the value
operand should be of either integer or long type
and the num operand should be of integer type.

e.g.

64 >>> 2 // returns 16

-64 >>> 2 // returns -1073741808

& BitAnd The Bitwise ‘And’ operator produces a 1 bit if the
corresponding bits in the operands are 1. A zero is
produced in all other cases.

e.g.

42 & 15 //returns 10

| BitOr The Bitwise ‘Or’ operator combines bits such that,
if any one of the corresponding bits in the
operands is a 1, then the resultant bit is a 1.

e.g.

42 | 15 //returns 47

^ BitXOR The Bitwise ‘XOR’ operator combines bits such
that, if exactly one of the corresponding bits is 1,
then the resultant bit is 1. Otherwise, the resultant
bit is zero.

e.g.

42 ^ 15 //returns 37

~ BitNot Not supported

See Also:

Arithmetic Operators
Unary Arithmetic Operators
Relational Operators
Logical Operator
Assignment operators
Array Access
Operator Precedence

Assignment Operators

Operator
Function
Name

Description

= Set The RHS and LHS should be type compatible.

Unlike Java/C++ this operator does not return the
assigned value. So a = b = c style of assignment is
illegal.

+= PlusEqual Adds the RHS value to the LHS variable

Only works on local variables (LHS).

Does not return the assigned value.

-= MinusEqual Subtracts the RHS value from the LHS variable

Only works on local variables (LHS).

Does not return the assigned value.

*= MultiplyEqual Only works on local variables (LHS).

Does not return the assigned value.

/= DivideEqual Only works on local variables (LHS).

Does not return the assigned value.

%= ModulaEqual Only works on local variables.

Does not return the assigned value.

See Also:

Arithmetic Operators
Unary Arithmetic Operators
Relational Operators
Logical Operator
Bit operators
Array Access
Operator Precedence

Array Access

Operator
Function
Name

Description

[] At Access the element from a collection/array/aggregate
type. The index of the element must be specified within
the square brackets. The index is zero based, that is to
get the first element you need to use the index 0.

This operator is available for Section, Array, String and
Binary.

A type which supports array access operator (At
function) and the length() function can be used in a
foreach loop.

e.g. str[2] returns the 3rd character in the string str.

Since most of the types in formula language are
immutable, this operator can only be used to access the
value at the specified index and not to assign to it. The
following is illegal.

str[2] = ‘c’; // illegal

See Also:

Arithmetic Operators
Unary Arithmetic Operators
Relational Operators
Logical Operator
Bit operators
Assignment operators
Operator Precedence

Operator Precedence

In an expression there is a certain order, or precedence of operations. The following
table shows the order of all of the possible Formula operations, from highest
precedence to lowest:

Highest

() [] .

++ -- !

* / %

+ -

>> >>> <<

> >= < <=

== !=

&

^

|

&&

||

?:

= op=

Lowest

Explicit Precedence

Since parentheses are the highest precedence, you can always throw in a few extra
pair if you are not sure about implicit precedence rules or want to make sure your
code is readable.

If for example, you are not sure what the following expression really means
a | 4 + c >> b & 7 || b > a % 3
Try to put in a few clarifying parentheses, such as:
(a | (((4 + c) >> b) & 7)) || (b > (a % 3))

Parentheses also allow you to explicitly set the precedence of an operation, which is
often needed when combining shifting and addition like this:
a >> b + 3
Which of the following:
a >> (b + 3)
or
(a >> b) + 3
does the first expression resolve to? Since + is higher precedence than >>, you will
get the first result. If you intended the second result, the parentheses are required
to explicitly set the precedence of operations.

See Also:

Operators

Separators

Separators define the shape and function of your code. The table given below will
define the separators and explain their use.

Symbol Name What it is used for

() parentheses Used to contain lists of parameters in function invocation
and also used for defining precedence in expressions

{} braces Used to define a block of code and local scopes

[] brackets Used to declare array types (lists), also used when
dereferencing array values (items of a list)

; semi-colon Separates statements

, comma Used to separate items in a array declaration

. period Used to separate a nested field from its parent section

See Also:

Whitespace
Identifiers
Keywords
Literals
Comments
Operators

Functions

Function names in Formula language are case insensitive. By convention, we use
camel casing. The first letter also starts with a capital letter by convention.
As of this version, there is no way to define a function in the formula language. The
functions are implemented natively (written in Java/C++ etc) and made available to
language depending on the context in which it is used.
To invoke a function use the normal function call syntax as in Java
E.g. Left(str, 10)

The object oriented syntax is also supported. In this case the first argument of the
function is pushed out followed by a ‘.’ and the function name. In the argument list
you need to remove the first argument.
The following are equivalent,

1. Left(str, 10)
2. str.Left(10)

If a function or an operator returns a value it is illegal to ignore it. For example the
statement Left(str, 10); is illegal. You need to use the return value, by assigning it to
a variable or by some other means. This rule is relaxed if the statement is the last
top-level statement, in which case it is implicitly returned to the caller (hence the
return value is not ignored).

 Many functions are overloaded to work on multiple types (e.g. toText(int),

toText(double)).
 For some functions trailing parameters are optional. In general when a function is

overloaded the semantics of the overloaded functions is kept the same.

 Some functions like ‘In’, ‘Concat’ take variable number of arguments.
 Like in Java/C++ you can nest function calls as given below.
 Left(Right(str, 10), 5)

See Also:

Formula Language
Lexical Structures
Statements

Statements

As mentioned earlier, though formula is primarily an expression language, it nicely
scales up to support statements.

Statements supported:

Block Statements
Condition Statements
Iteration Constructs
Return statement
List Literal

See Also:

Local Variable Declaration
Variable Scope

Local Variable Declaration

In any nontrivial formula, we need variables that keep track of program state. Local
variables can be used to hold the state across statements.
To define a local variable use the def keyword.
def varName = expr;
The following snippet prints the sum of two variables.

def i = 123;

def j = 6456;

return ("Sum of " + i + " and " + j + " is: " + (i+j));

You don’t have to (as a matter of fact, there is no way to) specify the type of the
variable. Type is inferred from the initialization expression. It is incorrect to define a
variable without initialization. Once a variable is defined with an inferred type, it is
illegal to assign to it an incompatible value. For instance the following is illegal.

def i =10;

i = “hello” // illegal i is of type int.

The formula language is statically typed. Though it looks a scripting language it
shares more in common with statically typed languages such as Java C++.

It should also be noted that a local variable could not hold a null value. This is
especially true when a field is assigned to a local variable. It is the user’s
responsibility to check the field for null value (using IsNull() or IsNotNull() function)
and assign only the non-null value to a local variable.

There is also another way to define a local variable. Variables which start with a $
symbol are treated as local variables. If variable with that name is not yet defined, a
new variable is defined implicitly. As in the case of ‘def’, the type of the variable is
inferred based on the initialization expression. The following snippet defines a local
variable named $i of type int and initializes it to value 10.
$j = 10;

Variables such as i, $j that are defined within a formula snippet are local to that
formula; they cannot be accessed from outside, say from another formula snippet.

Normal scoping rules, as in Java, apply in formula. It is illegal to define a local
variable when another variable with the same name is available in the scope (either
declared in that scope or inherited from the enclosing scope).

See Also:

Block Statements
Variable Scope
Condition Statements
Iteration Constructs
Return statement
List Literal

Block Statements

A group of statements can be specified with in a block. A block start with brace ‘{‘
and is terminated with brace with a group of statements in between.
The statements in the block are executed in a sequence, from top to bottom, in the
lexical order. A block statement can be used in any place where a statement is
allowed.

{

 def i = 10;

 sum = a * i;

}

The block statement also starts a new scope (for local variables). Variables defined in
this scope are not visible outside the block.

See Also:

Local Variable Declaration
Variable Scope
Condition Statements
Iteration Constructs
Return statement
List Literal

Variable Scope

Formula local variables are valid only from the point where they are declared till the
end of the block. The blocks can be nested, and each one can contain its own set of
local variable declarations. You cannot, however, declare a variable to have the same
name as one in an outer scope. Here is an example that tries to declare two separate
variables with the same name. In Formula, this is illegal.

def sum = 0;

def x = 1;

{

 def y = 2;

 {

 sum += y;

 {

 def x = 3; //illegal, variable with name ‘x’ already defined

 sum += x;

 }

 }

}

sum += x;

return sum;

See Also:

Local Variable Declaration

Condition Statements

Formula supports both "if...then...else" statement and the ternary operator. While
the former allows you to use multiple statements, the latter allows only an
expression.

if(boolExpr)

 statement

else {optional}

 statement

If the Boolean expression evaluates to true, the ‘then’ block/statement is executed.
If it evaluates to false, the else block, if available, will be executed. If needed, you
can use block statements in the then and else clause since a block statement is also
a normal statement.
The following code snippet returns the smaller between x and y. It does not use the
else block.

def x = 10;

def y = 20;

if(x < y) {

 return x;

}

return y;

The following code snippet also returns the smaller between x and y. But it uses the
else block.

def x = 20;

def y = 10;

if(x < y) {

 return x;

}

else {

 return y;

}

See Also:

Block Statements
Variable Scope
Iteration Constructs
Return statement
List Literal

Iteration Constructs

Formula supports for, foreach statements. These loop constructs support C++-style
continue and break statements to alter loop execution. There is no labeled break and
continue (available in Java).

Iteration statements:

for statement
foreach statement
while Statement
do-while Statement
break statement
continue statement

See Also:

Block Statements
Condition Statements
Return statement
List Literal

for Statement

Here is the syntax of the for statement:

for (initialization; condition; iteration) <body>

The for loop operates as follows. When the loop first starts, the initialization
portion of the loop is executed. Generally this is an expression that sets the value of
the loop control variable. It is important to understand that the initialization
expression is executed only once. Next, condition is evaluated. This must be a
Boolean expression. It usually tests the loop control variable against a target value.
If this expression is true, then the body of the loop is executed. If it is false, the loop
terminates. Next, the iteration portion of the loop is executed. This is usually an
expression that increments or decrements the loop control variable.

The following code snippet returns the sum of values from 1 to 4.

def sum = 0;

for(def i = 1; i <= 4; ++i)

 sum += i;

return sum;

See Also:

foreach statement
break statement
continue statement

foreach Statement

The ‘foreach’ construct is a simplified ‘for’ which is convenient for traversing
collections and sections. Unlike the ‘for’ loop, you don’t need to specify an initializer,
condition and a increment part. The foreach, works on a collection and loops once for
each element of the collection. The element of the collection is made available inside
the loop.

You can break out the loop using the break statement or skip an element using he
continue statement. But there is no way to get the index of the current element in
the loop.
The following code snippet returns the double value 20.34.

def sum =0.0;

foreach($el in [1.0, 12.34, 7])

 sum += $el;

return sum;

Additionally ‘foreach’ allows you to specify a where clause. This is a Boolean
expression, which is evaluated for every iteration, and the body of loop is executed
only if it is true.

Note:

 If the ‘where’ clause is false, it does not break out of the loop, it continues to the

next iteration.

 If no where clause is specified, the body is executed for all iterations.

Example

def colors = ["red", "green", "blue"];

foreach(def color in colors where color != "green") {

 // do something with color

}

Here, the body of the loop executes for all colors except “green”.

The foreach construct also supports multiple nested iterations by allowing you to
specify multiple loop variables and collections. A comma separates each loop
specification, and the second and subsequent loops are executed as nested loops.

In the following snippet, two loops are defined using a single foreach construct. The
loop on favColors is executed as an inner loop. Each loop specification can have its
own ‘where’ clause which can refer to the current and preceding loop variables.

def colors = ["red", "green", "blue", "yellow", "pink"];

def favColors = ["yellow", "violet"];

foreach(def color in colors,

 def favColor in favColors where favColor == color) {

 // intersection of color and favColor

}

This kind of multiple loops is particularly useful when you want to loop over a deeply
nested section. For instance, if you have a top-level section A with child B which
itself has a child section C, to iterate over all instances of C, you can use the
following snippet.

foreach(def A in secA,

 def B in A.B,

 def C in B.C) {

}

You can add where clause to each of the loop specifications to iterate over only those
elements that satisfy the condition.

The foreach syntax is:

foreach (<loopvar> in <collection exp> [where condition], …) <body>

Everytime through the loop, the next element of the collection is bound to
<loopvar>. The collection expression is evaluated only once.

See Also:

for statement
break statement
continue statement

while Statement

The while loop repeats a statement or block while its controlling condition is true.
Here is its general form:

while (condition) {

 //body of loop

}

The condition can be any Boolean expression. The body of the loop will be executed
as long as the conditional expression is true. When condition becomes false, control
passes to the next line of code immediately following the loop. The curly braces are
unnecessary if only a single statement is being repeated.

The following code snippet returns the sum of values from 1 to 4.

def sum = 0;

def i = 1;

while(i <= 4) {

 sum += i;

 ++i;

}

return sum;

See Also:

for statement
do-while Statement
break statement
continue statement

do-while Statement

If the conditional expression controlling a while loop is initially false, then the body
of the loop will not be executed at all. However, sometimes it is desirable to execute
the body of a while loop at least once, even if the conditional expression is false to
begin with. In other words, there are times when you would like to test the
termination expression at the end of the loop rather than at the beginning. The
do-while loop always executes its body at least once, because its conditional
expression is at the bottom of the loop. Its general form is

do {

 //body of loop

} while (condition);

Each iteration of the do-while loop first executes the body of the loop and then
evaluates the conditional expression. If this expression is true, the loop will repeat.
Otherwise, the loop terminates. As with all other loops, the condition must be a
Boolean expression.

The following code snippet returns the sum of values from 1 to 4.

def i = 1;

def sum = 0;

do {

 sum += i;

 ++i;

}

while(i <= 4);

return sum;

See Also:

for statement
while Statement
break statement
continue statement

break Statement

The break statement is used to prematurely break out of a loop without executing
the loop’s body again. It should be used inside a loop construct (for & foreach) and
the control jumps to the statement next to the loop.
The following code snippet checks if the number 121 is a prime or not. The break
statement transfers control out of the for loop as soon as the number is found
divisible (i.e. the number is not prime).

def number = 121;

def prime = true;

for (def i = 2; i <= (number/2); i++) {

 if (number % i == 0) {

 prime = false;

 break;

 }

}

return prime;

See Also:

for statement
foreach statement
while Statement
do-while Statement
continue statement

continue Statement

The continue statement is used inside a loop to skip processing the remainder of the
code for this particular iteration. The execution continues with the next iteration of
the loop.

The following code snippet finds the sum of all the odd numbers between 1 and 10
inclusive. Here, the for loop generates numbers from 1 to 10. In case of even
numbers, the continue statement transfers control to the next iteration of the loop
without incrementing the sum.

def sum = 0;

for (def i = 1; i <= 10; ++i) {

 if (i % 2 == 0) {

 continue;

 }

 sum += i;

}

return sum;

See Also:

for statement
foreach statement
while Statement
do-while Statement
break statement

Return Statement

Return statement can be used to cause the execution to branch back/return to the
caller of the formula. The formula snippet stops executing and can optionally return a
value to the caller.

As mentioned earlier, the last top-level statement/expression in the formula code is
implicitly treated as the return value. You can also use a explicit return statement at

the end of the code. The return statement can also be used in the middle of the code
(typically conditionally) to return a value to the caller.
The following are equivalent
a) return a + b;
b) a+b

A more useful case is to return a value from the middle of the formula code.

if(a>b)

 return a;

else

 return b;

In case of multiple return statements all of them should return a value of same type
(or return nothing). It is also possible to return the last expression implicitly and
return another value from some where in the middle. It is necessary for the return
values to be of same type.

Note that the caller of the formula depends on the context in which it is used. If it is
used for enforcing a validation, its return value is used by the validator. The return
value of the formula must be of a type, which is acceptable to the caller. For
instance, in case of a validation, the formula should return a Boolean value. In case
of mapping, the return type should match that of the destination field.

See Also:

Block Statements
Condition Statements
Iteration Constructs
List Literal

List Literal

A list is a group of like-typed values that are referred to by a common name. The
syntax given below can be used for creating lists (arrays) and it can be used with all
data types.
[value1, value2, ...]
For example, the following statement shows the declaration of a variable values,
which is an array of integer values.

def values = [10, 30, 40];

The items of a list can be accessed using index. The following code snippet returns
the sum of the items in the list values.

def values = [10, 30, 40];

def sum = 0;

for (def i = 0; i < Length(values); ++i) {

 sum += values[i];

}

return sum;

The foreach construct can also be used to iterate through the items of the list as can
be seen in the following code snippet that calculates the sum of the items in the list
values.

def values = [10, 30, 40];

def sum = 0;

foreach($val in values) {

 sum += $val;

}

return sum;

See Also:

Block Statements
Condition Statements
Iteration Constructs
Return statement

Template String Literal

One of the common requirements is generating semi-structured output messages
based on a template. You can use Universal plug-in to generate such output. Though
using Universal plug-in works, it is not easy to maintain it. A small change in the
output structure may require substantial changes in the message definition. More
importantly, you don’t see how the output is generated. It is all hidden in Universal
message definition as tags and delimiters.

An ideal solution is to have a template like approach supported directly in the
Cartridge. Many scripting languages like Groovy and Ruby support it (to some
extent). The formula language now supports this approach and it is similar to what
Groovy does and many other languages are seriously considering.

Template strings are supported using a special kind of string literal. These are the
differences between this special literal and a normal string literal.

1. Unlike a normal literal this starts with @" and ends with "@.

2. The literal can span multiple lines.

3. Text inside the literal is not escaped. That is, it does not support escape

sequences like \n, \t, etc. If you want a linefeed, simply enter the text in the next
line. If you want to enter a quote, just enter the quote character and there is no
need to escape it. In most cases you should be able to enter multi line freeform
text (like in a text document) and enclose it within this special quote.

See Also:

Expressions
Scriptlets
Line Feed and Whitespaces
Directives
Summary of Template String Syntax
Error Highlighting
Syntax Highlighting
Usage Scenario
Comparison with Universal Plug-in

Expressions

Support for such special string literals are even found in mainstream languages like
C#. But scripting languages go one step further and allow you to embed expressions
within the literal. You can do this in formula’s string literals.

def str = @"Reference: ${obj.ref}"@;

The expression is enclosed with ${ }. The value of the expression is inserted at the
location where it is used. The expression needs to be valid in the context it is used.
It can make use of local variables/message variables that are accessible in the
formula. The expression need not evaluate to a string type. If it evaluates to a
non-string type, the default text representation of the value is used. The above
string literal translates to the following:

def str = "Reference: " + obj.ref;

See Also:

Scriptlets
Directives
Template String Literal

Scriptlets

The syntax of embedding expressions in literal, works well for common cases. But
when it is used for generating full-fledged messages, it breaks down because,

1. In many cases, the parts of the output should be conditionally generated. For

example, in the above example, only if ‘ref’ has a non-null value.

2. In case of messages, certain areas of the output are recurring (repeating). In the

above case if ‘ref’ is part of a repeating section, we may have to generate the
output line once for each occurrence.

Both of the above problems can be addressed by breaking the output template into
multiple parts and concatenating these parts in the formula.

def output = "";

if(isNotNull(obj.ref)) {

 output += @"Reference: ${obj.ref}"@;

}

The whole point of template is now lost because the formula code now dominates
instead of the template. To know what is happening, you need to go through,
multiple lines of literals embedded within normal formula code. Having said that, it is
impossible to avoid some kind of ‘if’ statement since we want part of the output to
be generated conditionally. The standard solution for this problem is to allow
statements to be embedded in the template instead of other way around. This would
keep the focus on the template, but it would still let you control the output the way
you want. This is the approach followed in JSP (which allows embedded Java
statements).

In tune with other solutions, the special string literal supports embedded formula
statements. The statements should be enclosed with in <% and %> markers (same
as in JSP). Within the special string literal, anything enclosed within these markers
will be treated as formula statements and are emitted as it is.

def str = @"

<% if (!isNull(obj.ref)) { %>

Reference: ${obj.ref}

<%} %>

"@;

This is almost identical to what JSP does. The above translates to

def str = "";

if (!isNull(obj.ref)) {

 str += "Reference: " + obj.ref;

}

Though the difference is not substantial in this case, it really shines when the literal
text dominates in the output string; for instance, when you generate HTML or other
verbose outputs.

Just like the ‘if’ statement shown above you can use any formula statements; you
can define variables, use a ‘for/foreach’ loop, etc. Just make sure that the blocks are
properly closed.

Note:

Unlike a full-fledged template language like JSP, template strings are available in
formula as literals. That is, the entire text of the formula code is not treated as
template; only those parts that are enclosed within the special quotes (@”). This
allows you to use formula statements and expressions not just inside the template
string but outside as well. The template string itself is just an entity within the
formula code. For instance, you can declare local variables in the formula code,

which will contain some computed value. These local variables can be referenced
within the template string.

def totalPrice = secSumDouble(obj, “price”);

def outStr = @” The total price is ${totalPrice}”@;

The above is equivalent to

def outStr = @” The total price is ${ secSumDouble(obj, “price”)}”@;

Some would prefer the former because it is clearer.

The point is that, since the template is just a part of the formula code, you can chose
to do your computations outside the template literal, thus keeping it clean.

See Also:

Expressions
Directives
Template String Literal

Line Feed and Whitespaces

Linefeeds and whitespaces in the literal are treated as significant and appear without
changes in the output. This applies to space character, tab character and the line
feed. Line feeds or whitespaces within the statement markers are treated as part of
the statements and do not appear in the output (since formula language ignores
whitespaces, they are harmless).

There is one special case where linefeeds within the literal (and outside markers) are
ignored. Normally you embed a statement in the literal using <% and complete the
statement using %> in the same line or in another line. There is linefeed between
the statement end marker %> and the next line. You normally do not want this line
feed to occur in the output.

If this line feed is emitted in the output, you would be forced to write the statement
and literal part in the same line, as below.

<% foreach(def field in obj.Fields){ %>:${field.tag}:${field.description}:<%}%>

Since this usage is common, line feed at the end of a line containing a statement is
ignored if there is just whitespace between the statement end and the line feed.
Similarly line feed preceding a line that contains a statement start is also ignored.

See Also:

Directives
Template String Literal

Directives

Occasionally you may want to control how the template is converted to output
(string). For instance, by default, line feeds within the template are emitted as
simple line feeds; cartridge return (CR) is never emitted. If you want the output to
contain CRLF pairs, you need to direct the template engine accordingly.

Directives are name=value pairs which are treated as instruction to the template
engine. They are embedded within the markers <%@ and %>. For instance, the
directive <%@ usecrlf = true %> instructs the template engine to use CRLF instead of
just line feed.

The only directive supported as of now is ‘USECRLF’. The value for this directive
should either be true or false. If the value is set to true, the template engine will
start using CRLF pairs in place of line feeds. You can turn it off later by setting it to
false. In the succeeding text (after it is turned off) line feeds will not be converted to
CRLF. The default value is false, meaning only line feed is emitted by default.

See Also:

Expressions
Scriptlets
Line Feed and Whitespaces
Template String Literal

Summary of Template String Syntax

The template string may contain the following,

 Uninterpreted text
 Expressions
 Scriptlets (statements)
 Directives

Of these, the last three appear within special markers. Everything else is treated as
uninterpreted text.

Uninterpreted Text

All text that appears within the template string and does not appear within special
markers falls under this category. The special markers are used to indicate an
expression, scriptlet or a directive. Everything else is treated as uninterpreted text
and is passed through as output.

Note that no escape sequences are recognized. This means that uninterpreted text
cannot contain ‘${‘ and ‘<%’ character sequences, since they will be treated as
expression or statement start markers. To workaround this limitation, if your text
contains these markers use them as literal within expressions.

${“<%”}

Expressions

An expression element in a template string is a formula language expression that is
evaluated and the result is coerced into a string, which is subsequently emitted into
output. The content of an expression must be a complete expression in the formula
language.

Two different syntaxes for expressions are supported.

 <%= expression %>
 ${expression}

Note that you cannot use the %> character sequence as literal characters within an
expression using the first syntax. Similarly ‘}’ cannot appear as literal in the second
syntax.

Scriptlets (Statement)

Scriptlets can contain any code fragment that is valid for the formula language.
Scriptlets need not be fully completed, well formatted statements. When all scriptlets
in the template are combined in the order in which they appear, they shall yield a
valid statement or sequence thereof. Note that you cannot use the %> character
sequence as literal characters within the scriptlet. The suggested workaround is to
break it into two literals and concatenate them (“%” + “>”).

The syntax of the scriptlet is

<% formula script %>

A scriptlet can span multiple lines.

Directives

Directives are instruction to the template engine. The directives have this syntax:

<%@ directive %>

There may be optional spaces after the “<%@” and before “%>”.

See Also:

Template String Literal

Error Highlighting

The template string literals can contain embedded expressions and statements. Like
in normal formula, you are likely to make mistakes while typing it. You may misspell
the name of a field; miss a semicolon or a brace etc. It is very important that such
errors are caught as early as possible.

In the formula dialog, errors within the literal are highlighted as you type in the
same way as normal formula code. This would help you to catch such trivial mistakes
as soon as you finish typing.

See Also:

Syntax Highlighting
Usage Scenario
Comparison with Universal Plug-in
Template String Literal

Syntax Highlighting

The embedded expressions and statements within a template string are syntax
highlighted. The literal text, which appears as it is in the output, has the regular
literal color. The statements and the expressions are syntax highlighted accordingly.

The expression and the statement markers (${} and <% %>) are colored in blue to
distinguish it from the literal text.

Also note that, you can locate the definition of the fields/methods used within the
literal by pressing the control button down and hovering the mouse over the usage
point. A hyper link is shown. Clicking on it will take you to the definition of that
variable/function.

See Also:

Error Highlighting
Usage Scenario
Comparison with Universal Plug-in
Template String Literal

Usage Scenario

Template Strings can be used for generating entire messages and it can also be used
during mapping to generate a complex field derived from multiple input fields.

See Also:

Error Highlighting
Syntax Highlighting
Comparison with Universal Plug-in
Template String Literal

Simple Strings

It is very common to merge multiple fields or values to form the value of a
destination field. These typically mean adding strings using the + operator or the

concat function. The output required is broken down to constituent expressions and
literals and they are concatenated to get the full output.

"/" + Branch_Code + " : " + SeqNum + "//" + FormatDate(Today(),"MMddyyyy")

You can use template string literal to achieve the same. For example the above
formula code can be changed to literal given below.

@"/${Branch_Code} : ${SeqNum}//${FormatDate(Today(),"MMddyyyy")}@"

The main advantage is that the literal can easily be correlated with the output
generated.

See Also:

Usage Scenario

Complete Messages

If the requirement is to generate semi structured messages dominated by literal
text, but also containing values extracted from source, then you should consider
using template string to generate it. Since the literal supports multi-line strings and
does not escape characters, it is ideal for generating free-form text (like an email).
Since messages tend to contain optional and repeating fields, you may have to use
embedded ‘if’ and ‘for’ statements within the literal.

def obj = emailObj.Data;

def HEADER= obj.header[0];

def INPUT= obj.Input[0];

def temp =

@"${obj.seqNum} EMAIL1/

RFK: ${obj.RFK} Mailed on: ${obj.Mailed_on}

TRN: ${obj.TRN}

* Incoming *

 MT:${HEADER.MTName}

Sender: ${HEADER.Sender}

Send Ref: ${HEADER.Send_Ref}

Receiver:${HEADER.ReceiverRef}

 ${HEADER.ReceiverName}

Owner:${HEADER.Owner} Internal Priority: ${HEADER.Internal_Priority}

Stage: Inb-Compl Next Activity: Archive

Input: /F-${INPUT.ltIdentifier}B/${INPUT.SessionNumber}

 /${INPUT.SeqNum}/${INPUT.MessageInputRef}

<% foreach(def field in obj.Fields) { %>

:${field.tag}:${field.description}:

<% if (!isNull(field.value)) { %>

${field.value}

<%} %>

<%} %>

----------------------------------"@;

formulaTempl = temp;

See Also:

Usage Scenario

Comparison with Universal Plug-in

As mentioned before the string template can be used for generating entire
messages, where you have thought of using Universal plug-in to serialize the output.
Because these two techniques can be used for solving the same problem, it is very
important to understand the benefits and limitations of each solution.

When should you use Universal Plug-in?

 String templates can be used only for generating output; it does not help in

parsing. While a universal message can be used on both the input and the output
side.

 Universal messages support both text and binary messages, while string

templates can be used only for text. Even in case of text, it allows you specify the
format and padding characters for fields. Simulating the same is possible in
template string but you have to write the appropriate formula and embed it as an
expression.

 Universal messages support esoteric possibilities like fixed length fields, length

preceded fields, etc. It is difficult to simulate them in template strings. Universal

plug-in is ideal for structured messages. For instance, if your message consists of
a number of fixed length fields, template string is unlikely to be a good choice.

When should you use Template Strings?

 Template Strings are very lightweight. You don’t have to define a message

structure to use it. You can use it with whatever input field structure you have
(for instance an internal message). It is also quite easy to mix data from multiple
messages/objects.

 Template Strings need not necessarily be used for generating entire messages. It

can be used during mapping to generate a complex field derived from multiple
input fields.

 As the name implies, the string literal is a template from which output is

generated. The correlation between the output and template is easy to see.
Because of this, it is easy to modify and maintain a template compared to a
universal message.

 Template strings are ideal for semi-structured messages, like Email. It is ideal for

mail merge like scenario, where the output contains lot of predefined text
interspersed with fields that need to be inserted based on some other data
source. It can also be considered for generating outputs in HTML, XML or other
text formats.

To sum it up, template strings and Universal plug-in cater mostly to different
requirements. The use cases where both of them are suitable are minimal. Template
strings should only be considered for generating semi structured output, where the
output contains lot of predefined text interspersed with fields that need to be
inserted based on some other data source. In all other cases use Universal plug-in.

See Also:

Error Highlighting
Syntax Highlighting
Usage Scenario
Template String Literal

	Formula Language
	Expression Language
	Lexical Structures
	Whitespace
	Identifiers
	Keywords
	Literals
	Comments
	Operators
	Arithmetic Operators
	Unary Arithmetic Operators
	Relational Operators
	Logical Operator
	Bit Operators
	Assignment Operators
	Array Access
	Operator Precedence
	Explicit Precedence

	Separators

	Functions
	Statements
	Local Variable Declaration
	Block Statements
	Variable Scope
	Condition Statements
	Iteration Constructs
	for Statement
	foreach Statement
	while Statement
	do-while Statement
	break Statement
	continue Statement

	Return Statement
	List Literal

	Template String Literal
	Expressions
	Scriptlets
	Line Feed and Whitespaces
	Directives
	Summary of Template String Syntax
	Uninterpreted Text
	Expressions
	Scriptlets (Statement)
	Directives

	Error Highlighting
	Syntax Highlighting
	Usage Scenario
	Simple Strings
	Complete Messages

	Comparison with Universal Plug-in
	When should you use Universal Plug-in?
	When should you use Template Strings?

