

XML Format Plug-in
User’s Guide

 Version 3.5

XML... 5

TERMINOLOGY... 5

CREATING AN XML FORMAT... 6
CREATING AN XML FORMAT BASED ON AN EXISTING XML MESSAGE FORMAT ... 7
CREATING AN EMPTY XML MESSAGE FORMAT... 9
FROM DESIGNER UI USING CREATION WIZARD .. 9
FROM COMMAND LINE USING SCHEMA2CAR UTILITY.. 28

XML EXTERNAL MESSAGE UI.. 29

BINDING XML SCHEMA TO DESIGNER ... 30
SIMPLE TYPE DEFINITION.. 31

Atomic Type.. 32
Type Mapping .. 33
Built-in atomic type.. 39
User-derived atomic type.. 41
Facets.. 45

List Type ... 49
Union Type ... 53
Simple Type Designer Support ... 54

COMPLEX TYPE DEFINITION.. 55
Aggregation .. 58
Simple Content (Complex Type Definition) .. 63
Complex Content (Complex Type Definition)... 64
Type Substitution .. 69
Complex Type Designer Support .. 76

ATTRIBUTE GROUP DEFINITION .. 77
Attribute Group Designer Support ... 78

MODEL GROUP.. 79
Model Group Flattening Rules ... 81
Model Group Represented as Section... 90
Model Group Definition Designer Support .. 91

SCHEMA ATTRIBUTE DECLARATION ... 92
Ignore Fixed Attributes (Schema Attribute Declaration) ... 94
Attribute Declaration Designer Support .. 95

SCHEMA ELEMENT DECLARATION .. 95
Ignore Fixed Elements.. 97
Element Substitution... 98
Element References .. 99
Nil Value Elements ... 101
Element Declaration Designer Support.. 103

ANNOTATION .. 104
Annotation Designer Support ... 106

WILDCARD .. 106
Wildcard Designer Support .. 108

IDENTITY-CONSTRAINT DEFINITION ... 109
XML NAME MAPPING .. 109

XML Name of Element / Attribute to Designer Name... 109
Model Group Name to Designer Name .. 111

Collisions and Conflicts.. 112
W3C XML SCHEMA SUPPORT .. 113

BINDING DTD TO DESIGNER... 114
DTD ELEMENT DECLARATION.. 114

Element with Character Data Only .. 115
Element with Standard Content .. 116
Element with Mixed Content... 117
Element with Any Content .. 119
Element with No Content Allowed.. 120

GROUP DECLARATION... 121
Sequence Declaration... 122
Choice Declaration .. 123
Group Flattening Rules .. 125
Group Represented as Section.. 129

DTD ATTRIBUTEDECLARATION.. 130
Enumeration Type .. 132
Ignore Fixed Attributes (DTD AttributeDeclaration)... 134

DESIGNING XML STRUCTURE MANUALLY IN DESIGNER.. 135
FIELD REPRESENTATION ... 136

Field Properties pane ... 137
SECTION REPRESENTATION ... 139

Section Properties pane.. 140
ADDING ELEMENT... 141

Simple Type .. 141
Non-repeating element ... 141
Repeating element .. 143

Complex Type ... 145
Simple Content (Complex Type).. 145
Complex Content (Complex Type) .. 150

ADDING ATTRIBUTE.. 158
ADDING CHARACTER CONTENT ... 160
ADDING WILDCARD .. 161

any element... 162
anyAttribute element... 163

ADDING GROUP... 164
RECONFIGURE SCHEMA.. 168

FORMAT OPTION.. 168
GENERAL .. 169
NAMESPACES .. 170
XML DECLARATION ... 174
XML PARSER OPTIONS ... 176
ENTITY REFERENCES... 178

EXPORTING AN XML MESSAGE FORMAT TO LIBRARY.. 179

CATALOG SUPPORT .. 181

REPAIR FUNCTIONALITY IN XML PLUGIN.. 181

GLOSSARY.. 183

XML

XML Plugin allows you to parse and write XML data; it allows you to view your pre-
defined schema (DTD/XSD) in an intuitive and user-friendly form by importing the
same in the Designer UI and also allows you to manually create XML Schema from
scratch.

See Also:

Terminology
Creating an XML Format
XML External Message UI
Binding XML Schema to Designer
Binding DTD to Designer
Designing XML Structure manually in Designer
Reconfigure Schema
Format Option
Export an XML Message Format to Library
Catalog Support
Repair functionality in XML plugin
Glossary

Terminology

XML

The extensible Markup Language (XML) is a subset of SGML (the Structured
Generalized Markup Language). It provides a uniform method for describing and
exchanging structured data in an open, text-based format. An XML document (which
is an instance of an XML Schema) is a tree of elements. An element may have a set
of attributes, and may contain other elements, text, or a mixture thereof.

Schema

A schema contains a set of rules that constrains the structure and content of a XML
document’s components, i.e., its elements, attributes and text. A schema is, in other
words, a specification of the syntax and semantics of a (potentially infinite) set of
XML documents. An XML document is said to be valid with respect to a schema if,
and only if, it satisfies the constraints specified in the schema.

DTD

Document Type Definition (DTD) is a schema for an XML document. It specifies what
elements and attributes may be used in a particular type of XML document and what
their structure and nesting may be.

W3C XSD (XML Schema)

The “XML Schema” language is an ongoing effort by the World Wide Web Consortium
to supplant DTDs with a more flexible and powerful system to describe the structure
of conforming XML documents, including provisions for defining data types.

See Also:

Glossary
Creating an XML Format
XML

Creating an XML Format

An XML message format can be created in the Designer either from

 Existing XML message format, or
 Empty message format

When using an existing format, the same set of sections and fields are available for
the newly created format. The user has the option of using the format as it is or
change the mandatory elements or add new elements as per his requirements. The
existing XML formats are available as XML files in the location <installation
dir>\config\xml\format.

When using an empty message format, the user has to add each section and field as
per the specification. This happens when the format has to be entered the first time,
after which the format can be saved and used to build other formats using the first
option.

See Also:

Creating an XML Format based on an existing XML message format
Creating an empty XML message Format
Exporting an XML Message Format to Library

Creating an XML Format based on an existing
XML message format

1. Right-click the Cartridge node in the Designer and select the New External

Message menu item from the context menu.

2. In the New External Message dialog that appears enter the Transformation Name

and select XML from the External Message list box. Click OK.

3. In the New XML Message Format dialog that appears, select an existing format

based on which the new format is to be created. Select Create based on
selected format radio button. Click Ok.

4. The new format is created in the Designer as shown below.

5. Note that the Design Element UI tool bar buttons in the figure are enabled

thereby allowing the user to modify the format.

Creating an empty XML message Format

An empty XML message format can be created in the Designer in two ways

 By importing a Schema (DTD or W3C XSD) (Auto-creation)
 By manually adding various elements and setting properties.

A schema (DTD or W3C XSD) can be imported in the Designer either from the
Designer UI or from the command line without even going to the Designer. In case
the user imports a DTD, depending on his requirement, he has to change the
Designer Type or XML Type of the elements / attributes.

From Designer UI using Creation Wizard

There is a creation wizard that guides you through the schema import. To invoke the
creation wizard, follow the steps given under:

1. Right-click the Cartridge node in the Designer and select the New External

Message menu item from the context menu.

2. In the New External Message dialog that appears enter the Transformation Name

and select XML from the External Message list box. Click OK.

The various windows in the wizard are explained hereunder.

Schema Option window

In the Schema Option dialog that appears, three options are available as listed
below:

Sl
No.

Option Description

i) “Use the specified
DTD”

Allows you to import a DTD.

ii) “Use the specified
W3C XSD”

Allows you to import a W3C
XSD.

iii)

“Synthesize DTD”

Allows you to manually design
a XML message structure.

Automatically generates a
DTD (with the specified root
element name) based on the
XML structure created by
you, on the cartridge being
validated.

If you select any of the first two options, you have to specify the path of the DTD /
XSD file in the corresponding text box or alternatively, you can click the ellipsis
button which would open the “Open” window from where you can select your
required DTD / XSD file.

After selecting either of the first two options, if you click the “Next” button without
specifying the DTD / XSD file, you will get the following error window.

Schema Parsing/Validation errors window

The schema specified by you is automatically validated by the Designer. If you
specify an invalid schema and click the “Next” button in the “Schema Option”
window, the following error window with warning message would be generated:

If you click the “Hide Detail” button, in the above window, the pane showing the
details of the error would be hidden and the “Hide Detail” button which is a toggle
becomes “Show Detail” as seen in the following picture:

(Note that you can proceed with the creation wizard by clicking the “Close” button in
the above window, however, in case of fatal errors in the schema, you would not be
able to proceed further or the schema would not be imported. Also note that your
schema should be in the same location as that of the cartridge in which it is
imported, otherwise, it would result in code generation error.)

After properly selecting an option and specifying the required DTD / XSD file, if
required, if you click the “Next” button in the “Schema Option” window, “Mode of
Operation” window would be opened.

The path taken by the creation wizard for each of the above-mentioned three options
is outlined below:

i) Use the specified DTD

Window Name Purpose

Schema parsing/validation errors To warn the user in case of invalid
schema

Mode of Operation Lets you choose between Batch
Mode and Message Mode

Root Element Gives information about root
element / Lets you choose root
element in case of multiple global
elements in schema

Schema Import Options Lets you customize your message
structure. Only some options are
applicable.

Header & Trailer

(In case “Message Mode” is
selected)

Batch Mode

(In case “Batch Mode” is
selected)

Lets you select the required Header
/ Trailer elements for your message.

Lets you select the required Body /
Record / Header / Trailer elements
for your message.

Finish Provides information about the
chosen DTD file, Header and Trailer
element names if specified.

For details regarding DTD to XML bindings, refer the chapter “Binding DTD to
Designer”.

ii) Use the specified W3C XSD

Window Name Purpose

Schema parsing/validation errors To warn the user in case of invalid
schema.

Mode of Operation Lets you choose between Batch Mode
and Message Mode.

Root Element Gives information about root element
/ Lets you choose root element in case
of multiple global elements in schema.

Schema Import Options Lets you customize your message
structure. All options are applicable.

Header & Trailer

(In case “Message Mode” is
selected)

Batch Mode

(In case “Batch Mode” is
selected)

Lets you select the required Header /
Trailer elements for your message.

Lets you select the required Body /
Record / Header / Trailer elements for
your message.

Finish Provides information about the chosen
XSD file, Header and Trailer element
names if specified

For details regarding XSD to XML bindings, refer the chapter “Binding XML Schema to
Designer”.

iii) Synthesize DTD

Window Name Purpose

Mode of Operation Lets you choose between Batch Mode
and Message Mode

Message Mode Tags

(In case “Message Mode” is
selected)

Batch Mode Tags

(In case “Batch Mode” is
selected)

Lets you specify the required names
for the Root / Header / Record /
Trailer elements for your message

Lets you specify the root element
name and other options.

Finish Displays the top-level structure of the
DTD.

After creating an empty XML message structure using the above option and
designing the XML structure by adding fields / sections, if you validate the cartridge,
a DTD file with name as that of the root element name specified by you in the
“Message Mode Tags” / “Batch Mode Tags” window is automatically generated in the
same location as that of the cartridge. This DTD file is based on the XML structure
created by you, and gets updated whenever you change the message structure in
the Designer, save and validate the same.

For details regarding manual creation of XML message structure, refer the chapter
“Designing XML Structure manually in Designer”.

Mode of Operation window

In the ‘Mode of Operation’ window, you have two options to choose from viz.,
“Batch Mode” and “Message Mode”. Batch Mode allows you to send/receive multiple
records as part of a single message, whereas Message Mode allows you to
send/receive single record as part of your message.

After selecting the required mode, if you click the “Next” button, “Root Element”
window would be opened, provided you have selected the DTD / XSD option in the
‘Schema Option’ window. However, if you had selected the third option viz.,
“Synthesize DTD”, “Message Mode Tags” / “Batch Mode Tags” window would be
opened depending on the mode selected. Note that the “Back” button is enabled in
this window, clicking which you can go back to the “Schema Option” window.

Root Element window

This window appears in the creation wizard only if you had selected the option of
importing a DTD / XSD in the ‘Schema Option’ window. This window has two
different displays based on the selected schema. If your schema has more than one
top-level element, they are displayed in the “Global Elements” list box, from which
you can select the required root element as seen in the following picture:

However, if your schema has just one top-level element, the same is automatically
recognized as the root element and the information is displayed as seen under:

After selecting the required root element, if applicable, if you click the “Next” button,
“Schema Import Options” window would be opened.

Schema Import Options window

This window appears in the creation wizard only if you had selected the option of
importing a DTD / XSD in the ‘Schema Option’ window. This window provides you a
set of options to customize your message structure. The options are categorized into
three sections as seen in the following picture depicting the default selection:

i) Ignore Elements/Attributes

This section has the following two options:

 Ignore Fixed Attributes (Applicable for both DTD & XSD)

If you want to exclude fixed value attributes in your schema from getting
imported in the message structure, you can check this checkbox. In this case, the
fixed attributes will not find place in the imported message structure. Refer
Ignore Fixed Attributes under the chapter “Attribute Declaration”.

 Ignore Fixed Elements (Applicable for XSD alone)

If you want to exclude the elements in your XSD for which the “Fixed” attribute is
set, from getting imported in the message structure, you can check this
checkbox. In this case, the fixed value elements will not find place in the
imported message structure. Refer “Ignore Fixed Elements” under the chapter
“Element Declaration”.

ii) Flatten model groups (Applicable for both DTD & XSD)

The options under this section let you reduce the number of sections in your
message structure, which in turn would reduce the strain during mapping. This
section has the following two options:

 Flatten optional groups

If you do not want the non-repeating optional groups in your schema to be
represented as a section (which is the default behavior) in your imported
message structure, you have to check this checkbox. If this option is selected,
the group is removed and its child elements are aggregated to the parent of the
group. For more details (specific to XSD), refer “Optional group flattening” under
“Flattening Rules” chapter. Note that in case of the optional group being a
Choice, you have to select the next option as well for this feature to work.

 Flatten non-repeating choice groups

If you do not want the non-repeating choice groups in your schema to be
represented as a section in your message structure, you have to check this checkbox
(as well as the previous checkbox). If this option along with the previous one is
selected, the choice group is removed and its child elements are aggregated to the
parent of the group. For more details (specific to XSD), refer Choice group flattening
under “Flattening Rules” chapter.

iii) Support type substitution (Applicable only for XSD)

This feature allows the user to apply the feature of type substitution provided in
the XSD. Three options are provided as seen in the following picture:

 Never

If this option is selected, then type substitution feature will not be supported
even if it is applicable.

 Abstract types only

If this option is selected, then type substitution feature will be supported only for
those elements whose complex type definition has the “abstract” attribute set to
true.

 If applicable

This is the default option and is provided to support the type substitution feature
for applicable elements.

For detailed explanation of each option, refer “Type Substitution”.

After selecting the required import options, if you click the “Next” button, “Header &
Trailer” window would be opened.

Header & Trailer window

This window appears in the creation wizard only if you had selected the option of
importing a DTD / XSD in the ‘Schema Option’ window and also “Message Mode”
option in the “Mode of Operation” window. In this window, you can select the
required Header / Trailer elements for your message as seen in the following picture:

 Header

If you check the “Header” checkbox, the corresponding list box is enabled with
the list of all top-level elements declared in your schema. You have to select the
element that should appear in the Header section of the message.

 Trailer

If you check the “Trailer” checkbox, the corresponding list box is enabled with the
list of all top-level elements declared in your schema. You have to select the
element that should appear in the Trailer section of the message.

Note that checking the Header / Trailer checkboxes is optional and you can very well
skip this step and proceed. If you click the “Next” button in this window, the “Finish”
window, which is the final window in the creation wizard, would be opened.

Batch Mode window

This window appears in the creation wizard only if you had selected the option of
importing a DTD / XSD in the ‘Schema Option’ window and also “Batch Mode” option
in the “Mode of Operation” window. In this window, you can select the required
Body / Record / Header / Trailer elements for your message as seen in the following
picture:

The options in this window are described below:

 Separate Body element that consists of records

In Batch mode, you can have multiple records. If the record elements in your
schema are contained in an element other than the root element (say, “Body”
element) then you have to select this option. If this option is selected, then the
“Body Element Name” list box and the “Record Element Name” text box under
this option are enabled. In the “Body Element Name” list box, all top-level
elements declared in your schema are listed, from which you have to select the
element name in your schema, which contains the record elements. In the
“Record Element Name” textbox, you have to specify the name of your record
element. These two inputs are mandatory for this option and trying to proceed
to the next window without specifying them would generate the following error
message window:

 Root element that consists of records

If the record elements in your schema are contained in the root element itself,
you have to select this option. If this option is selected, then the “Record Element
Name” text box under this option is enabled. In the “Record Element Name”
textbox, you have to specify the name of your record element. This input is
mandatory for this option and trying to proceed without specifying the same
would generate “Validation Error” window saying, “Record Element not specified”.

 Header

If you check the “Header” checkbox, the corresponding list box is enabled with
the list of all top-level elements declared in your schema. You have to select the
element that should appear in the Header section of the message. This input is
mandatory for this option and trying to proceed to the next window without
specifying the same would generate “Validation Error” window saying, “Header
Element not specified”.

 Trailer

If you check the “Trailer” checkbox, the corresponding list box is enabled with the
list of all top-level elements declared in your schema. You have to select the
element that should appear in the Trailer section of the message. This input is
mandatory for this option and trying to proceed to the next window without
specifying the same would generate “Validation Error” window saying, “Trailer
Element not specified”.

After selecting the required options, if you click the “Next” button in this window, the
“Finish” window, which is the final window in the creation wizard, would be opened.

Message Mode Tags window

This window appears in the creation wizard only if you had selected the “Synthesize
DTD” option in the ‘Schema Option’ window and also “Message Mode” option in the
“Mode of Operation” window. In this window, you can specify the required names for
the Root / Header / Record / Trailer elements for your message as seen in the
following picture:

 Root Element Name

In this textbox, you have to specify the required name for the root element of
your message. This input is mandatory and trying to proceed to the next window
without specifying the same would generate “Validation Error” window saying,
“Root Element not specified”.

 Message represents record (no header and trailer)

If you do not want your message to have Header and Trailer information, you can
select this option.

 Message comprises header, record and trailer

If you want your message to have Header and Trailer information, you can select
this option. If this option is selected, then the “Record Element Name” textbox
and the “Header” and “Trailer” check boxes get enabled.

 Record Element Name

In the “Record Element Name” text box, you have to specify the root tag of the
data layer. This input is mandatory for this option and trying to proceed to the
next window without specifying the same would generate “Validation Error”
window saying, “Record Element not specified”.

 Header

If you want your message to have Header information, you can check this check
box and specify the required name in the “Header Element Name” text box. This
input is mandatory for this option and trying to proceed to the next window
without specifying the same would generate “Validation Error” window saying,
“Header Element not specified”.

 Trailer

If you want your message to have Trailer information, you can check this check
box and specify the required name in the “Trailer Element Name” text box. This
input is mandatory for this option and trying to proceed to the next window
without specifying the same would generate “Validation Error” window saying,
“Trailer Element not specified”.

After selecting the required options, if you click the “Next” button in this window, the
“Finish” window, which is the final window in the creation wizard, would be opened.

Batch Mode Tags window

This window appears in the creation wizard only if you had selected the “Synthesize
DTD” option in the ‘Schema Option’ window and also “Batch Mode” option in the
“Mode of Operation” window. In this window, you can specify the root element name
and also the other options as seen in the following picture:

 Root Element Name

In this textbox, you have to specify the required name for the root element of
your message. This input is mandatory and trying to proceed to the next window
without specifying the same would generate “Validation Error” window saying,
“Root Element not specified”.

 Separate Body element that consists of records

In Batch mode, you have multiple records. If the record elements in your
message are to be contained in an element other than the root element (say,
“Body” element) then you have to select this option. If this option is selected,
then the “Body Element Name” and the “Record Element Name” text boxes under
this option are enabled. In the “Body Element Name” text box, you have to
specify the element name, which should contain the record elements. In the
“Record Element Name” textbox, you have to specify the required name for the
record element. These two inputs are mandatory for this option and trying to
proceed to the next window without specifying them would generate “Validation

Error” window saying “Body Element not specified” and “Record Element not
specified”.

 Root element consists of records

If the record elements in your message are to be contained in the root element
itself, you have to select this option. If this option is selected, then the “Record
Element Name” text box under this option is enabled. In the “Record Element
Name” textbox, you have to specify the required name for your record element.
This input is mandatory for this option and trying to proceed to the next window
without specifying the same would generate “Validation Error” window saying,
“Record Element not specified”.

 Header

If you want your message to have Header information, you can check this check
box and specify the required name in the “Header Element Name” text box. This
input is mandatory for this option and trying to proceed to the next window
without specifying the same would generate “Validation Error” window saying,
“Header Element not specified”.

 Trailer

If you want your message to have Trailer information, you can check this check
box and specify the required name in the “Trailer Element Name” text box. This
input is mandatory for this option and trying to proceed to the next window
without specifying the same would generate “Validation Error” window saying,
“Trailer Element not specified”.

After selecting the required options, if you click the “Next” button in this window, the
“Finish” window, which is the final window in the creation wizard, would be opened.

Finish window

This is the final window in the creation wizard and provides information about the
chosen XSD / DTD file, Header and Trailer element names if specified and also the
top level structure of the DTD if the “Synthesize DTD” option was chosen.

If the DTD/XSD option were chosen in the “Schema Option” window, the ‘Finish’
window would display information similar to the one shown in the following picture:

If “Synthesize DTD” option were chosen in the “Schema Option” window, the ‘Finish’
window would display information similar to the one shown in the following picture:

See Also:

From command line using Schema2Car utility
1Designing XML Structure manually in Designer
Binding XML Schema to Designer
Reconfigure Schema
Binding DTD to Designer
Format Option

From Command Line using Schema2Car Utility

A command-line tool named “schema2car.bat” is available which lets you import the
Schema from the command line without going to the Designer. This tool is available
in the DESIGNER_HOME\tools directory.

This tool can simply be invoked by calling from the above directory:

schema2car [options] <schemafile name>

Options:

 -root rootElementName

If there is more than one global element in your schema, you can use the above
option to specify the required element to be taken as the root element.

Example:

 schema2car –root purchaseOrder po.xsd

where “purchaseOrder” is the required root element and “po.xsd” is the schema file.
When this command is executed, a cartridge by the name “po.car” (same name as
that of the schema file) would be created in the location of the schema file. The
cartridge would have an XML External Message node added to it with the same name
as that of the XSD. This is equivalent to creating an XML External Message from the
Designer UI using creation wizard with the default options.

Note:

 The generated cartridge needs to be compiled manually.
 The schema specified by you is automatically validated by the Designer. If

you specify an invalid schema, appropriate error message would be thrown in
the command line and the “Schema Option” window of the creation wizard
would be opened.

 If your schema has more than one global element and if you omit to specify
the “-root” option, then again, the “Schema Option” window of the creation
wizard would be opened letting you specify the required root.

See Also:

From Designer UI using Creation Wizard
Designing XML Structure manually in Designer
Binding XML Schema to Designer
Reconfigure Schema
Binding DTD to Designer
Format Option

XML External Message UI

Once an XML external format has been created the following properties can be
specified in the External Message UI.

 Format Name. The name of the external format. This is a mandatory property.
 Format Version. This is a mandatory property.
 Standard Name. The message name. This is an optional property.
 Standard Version. This is an optional property.
 Detailed Name. This is an optional property.
 Description. This is an optional property.

See Also:

Creating an XML Format
Binding XML Schema to Designer
Binding DTD to Designer
Designing XML Structure manually in Designer
Format Option

Binding XML Schema to Designer

The XML Plugin supports the W3C XML Schema Recommendation document.
Roughly speaking, the XML Plugin maps a XML Schema type to a corresponding
Designer type.

This chapter describes the Designer representation of each schema component and
also the features of the schema component supported by the Designer.

Note that only the Schema components added under the Root Element of the XSD
will be imported in the Designer UI & would have an equivalent representation in the
Designer and not any other schema component added globally. Also, the root
element is not shown explicitly in the Designer & is shown in the ‘General’ tab of the
‘Format Options’ window.

You will find below a detailed list of the equivalent Designer representation for each
Schema Component

See Also:

Simple Type Definition
Complex Type Definition
Attribute Group Definition
Model Group
Attribute Declaration
Element Declaration
Annotation
Wildcard
Identity-constraint Definition
XML Name Mapping
W3C XML Schema support
Terminology
Glossary

Simple Type Definition

Simple Type definitions provide for constraining character information item of
element and attribute information items. There are three varieties of Simple Types
viz., atomic types, list types and the union types.

The simple type definitions for atomic and list types can be categorized as:

 schema built-in data types
 user-derived data types

For union type, it is always user-derived.

As for now, there is no specific Designer representation for list and union types and
elements of these types are represented similar to that of atomic type.

See Also:

Atomic Type
List Type
Union Type
Simple Type Designer Support

Atomic Type

The value of an atomic type is indivisible from XML Schema’s perspective. For e.g., if
the value for an atomic type is, say, “US”, then no part of the value, such as the
character “S”, has any meaning by itself.

A schema component using an atomic simple type definition is typically represented
as a field in Designer. This applies to both an element and an attribute using an
atomic simple type definition. If the element is repeating, then it is represented as a
section with a ‘Value’ field under it (since Designer does not support repeating
fields).

Designer representation in a nutshell:

Simple Type Applied To Designer Representation

Attribute Field

Non Repeating Element Field

Repeating Element Section

An atomic simple type definition can be a built-in data type or a user-derived one.
Conceptually, there is no difference between the Designer representations of the
two. In case of schema built-in data types, the specified XML type is shown under
the “XML Type” column. In case of user-derived types, XML built-in type specified in
the top most level of the hierarchy is shown under the “XML Type” column.

See Also:

Type Mapping
Built-in atomic type
User-derived atomic type

Facets
List Type
Union Type
Simple Type Designer Support

Type Mapping

The XML built-in hierarchy along with the corresponding Designer type is depicted in
the following picture:

The above picture is represented in the form of tables as seen under:

Built-in Primitive data types

XML Schema Data type Default Designer
Data type

Other supported
Designer Data
type/s

string String Character

boolean Boolean -

decimal BigDecimal Double

Float

float Float -

double Double -

duration String -

dateTime ISODateTime DateTime

time ISOTime TimeOnly

date ISODate DateOnly

gYearMonth ISODate String

gYear ISODate String

gMonthDay ISODate String

gDay ISODate String

gMonth ISODate String

hexBinary Binary -

base64Binary Binary -

anyURI String -

QName String -

XML Schema Data type Default Designer
Data type

Other supported
Designer Data
type/s

NOTATION String -

The XML Schema Data type “anySimpleType”, which can be considered as the base
type of all primitive types has its equivalent Designer data type as under:

XML Schema Data type Designer Data type Other supported
Designer Data type/s

anySimpleType String -

Built-in Derived data types

XML Schema Data type Designer Data type Other supported
Designer Data type/s

normalizedString String -

token String -

language String -

NMTOKEN String -

NMTOKENS String -

Name String -

NCName String -

ID String -

IDREF String -

IDREFS String -

ENTITY String -

ENTITIES String -

XML Schema Data type Designer Data type Other supported
Designer Data type/s

integer BigInteger Integer

Long

nonPositiveInteger BigInteger Integer

Long

negativeInteger BigInteger Integer

Long

long Long -

int Integer -

short Integer -

byte Integer -

nonNegativeInteger BigInteger Integer

Long

unsignedLong BigInteger Integer

Long

unsignedInt Long Integer

BigInteger

unsignedShort Integer -

unsignedByte Integer -

positiveInteger BigInteger Integer

Long

User-derived data types

In case of an element of user-derived type, the XML built-in type specified in the top
most level of the hierarchy is taken as the XML type of the element and is mapped to
the corresponding Designer type as seen in the above tables. Refer “User-derived
atomic type”.

Support for customizing type mapping

Using this feature you can change the default Designer type mapping for an XML
type. All elements/attributes of that type (or its derived types) would be represented
with a field of the corresponding Designer type.

This feature is particularly useful for mapping the ‘decimal’ XML type to Designer’s
Double type and the ‘integer’ XML type to Designer’s Integer type, if you are sure
that it always falls within the range. It is also possible to do this customization after
importing, but it is very tedious.

See Also:

Atomic Type

Built-in atomic type

The primitive and derived data types listed in the above tables are the built-in data
types.

Element

Consider the following schema where A1, A2 & A3 are elements with simple type
definition and of built-in data types:

When this schema is imported in the Designer, the Designer representation would be
as under:

Designer Representation details

 Elements ‘A1’, ‘A2’ and ‘A3’ are represented as fields (as they are non-repeating).
 The built-in data type specified for each element in the schema is represented as

it is under ‘XML Type’ column against each element.
 The corresponding Designer type is represented under ‘Type’ column (Refer the

data type mapping tables above).

 The ‘Node Type’ of the elements ‘A1’, ‘A2’ and ‘A3’ is shown as “element” in the

‘Field Properties’ pane.
 The XML Name of the element and its namespace are displayed in the

corresponding text boxes in the “Field Properties” pane.

Attribute

Consider the following schema where the complex element ‘Invoice’ has two
attributes ‘orderDate’ and ‘billDate’ of built-in data type “date” and “dateTime”
respectively added to it.

When this schema is imported in the Designer, the Designer representation would be
as under:

Designer Representation details

 Attributes ‘billDate’ and ‘orderDate’ are represented as fields with Node Type as

“attribute”.

 The built-in data type specified for the attributes in the schema is represented as

it is under ‘XML Type’ column against the corresponding attribute field.

 The corresponding Designer type is represented under ‘Type’ column (Refer the

data type mapping tables above).

 The occurrence constraint is represented by the “Required” checkbox in the “Field

Properties” pane. For the attribute, ‘billDate’, the checkbox would be unchecked
& for the attribute ‘orderDate’, the checkbox would be checked.

 The XML Name of the attribute and its namespace (if applicable) are displayed in

the corresponding text boxes in the “Field Properties” pane.

See Also:

Atomic Type

User-derived atomic type

User-derived data types are those derived data types that are defined by individual
schema designers.

Element

Consider the following Simple Type definition schema component:

<xs:simpleType name="productCode">
 <xs:restriction base="xs:string">

 <xs:length value="8" fixed="true"/>
 </xs:restriction>
</xs:simpleType>

Here, “productCode” is a named Simple Type schema component, which is derived
by restricting the base type “xs:string” by setting the ‘length’ facet.

Consider the following schema:

Here, we have 3 elements added under the Root with type as “productCode”, but
with different occurrence constraints; A1 minOcc = 1, maxOcc = 1; A2 minOcc
= 0, maxOcc = 1 and A3 minOcc = 2, maxOcc = 3. When this schema is
imported in the Designer, the Designer representation would be as under:

Designer Representation details

 Elements ‘A1’ and ‘A2’ are represented as fields as they are non-repeating (with

Node Type as “element”).
 Element ‘A3’ is represented as a section as it is repeating, with a ‘Value’ field

under it (whose Node Type is “Value”).
 The XML Type shown for these elements is the built-in data type “string”

specified for the Simple Type definition ‘productCode’ which is the user-derived
data type set for these elements. (Note that user-derived data type
‘productCode’, has no representation in the Designer)

 The corresponding Designer type is represented under ‘Type’ column. (Refer the
data type mapping tables above).

 The occurrence constraints of the non-repeating elements, ‘A1’ and ‘A2’ in this
case are represented by the “Required” checkbox in the “Field Properties” pane.

For the element ‘A1’, the checkbox would be checked & for the element ‘A2’, the
checkbox would be unchecked.

 The occurrence constraints of the repeating element, ‘A3’ in this case is
represented by the “Min Occurs” and “Max Occurs” combo boxes in the ”Section
Properties” pane as seen in the above picture.

 The ‘Node Type’ for the elements ‘A1’ and ‘A2’ is shown as “element” in the ‘Field
Properties’ pane. The Node Type for the ‘Value’ field of A3 is shown as “value” in
the ‘Field Properties’ pane.

Attribute

Consider the following Simple Type definition (user-derived data type) schema
component:

<xs:simpleType name="SKU">
 <xs:restriction base="xs:string">
 <xs:pattern value="\d{3}-[A-Z]{2}"/>
 </xs:restriction>
</xs:simpleType>

Consider the following schema where the complex element ‘Item’ has an attribute
‘partNum’ of user-derived data type ‘SKU’ added to it.

Above schema in text form:

<xs:element name="Root">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Item">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Quantity" type="xs:integer"/>
 </xs:sequence>
 <xs:attribute name="partNum" type="SKU" use="required"/>

 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

When this schema is imported in the Designer, the Designer representation would be
as under:

Designer Representation details

 The attribute ‘partNum’ is represented as a field with ‘Node Type’ as “attribute”.

 The XML Type shown for the attribute is the built-in data type “string” specified

for the Simple Type definition ‘SKU’ which is the user-derived data type set for
the attribute. (Note that user-derived data type ‘SKU’ has no representation in
the Designer).

 The corresponding Designer type is represented under ‘Type’ column (Refer the

data type mapping tables above).

 The occurrence constraints are represented by the “Required” checkbox in the

“Field Properties” pane. In this case, the checkbox would be checked as the
attribute use is set as “required”.

Note:

 Simple Type definition schema component, by itself does not have a

representation in the Designer. It can have a representation in the Designer if
and only if an element of this type is added somewhere under the Root element.

 The Designer representation of an element of simple type varies based on the

occurrence constraints of that element.
 User derived data type name has no equivalent Designer representation, and only

the contents of that Simple Type definition schema component viz., the built-in
data type used and the facets set have an equivalent representation in the
Designer. Thus the data types ‘productCode’ and ‘SKU’ defined in the above
examples have no equivalent Designer representation.

See Also:

Atomic Type

Facets

Facets set for an element or an attribute are represented in the Designer in a
separate window. Let the Designer representation of a schema be as under:

In the above structure, when the field ‘A1’, ‘A2’ or “A3.Value” is selected, “Facets”
button appear in the “Field Properties” pane, which when clicked, opens the “Facets”
window depicting the facets if any set for that element.

For ease of view, the representation of Facets is split across three tabs in the ‘Facets’
window as seen in the above picture.

Facets tab

Under the Facets tab, all applicable facets (except “pattern” and “enumeration”) for
the XML type of a selected element or attribute are listed under the ‘Facet’ column
and the value, if any set for the facet is shown under the respective ‘Value’ column.
For e.g., in the above picture, under the ‘Facet’ column, the facets applicable (other
than “pattern” and “enumeration”) of the XML type “string” are listed since the
selected field, viz., A3.Value has XML type as “string”. The value “8” set for the
length facet for the element A3 is shown under the ‘Value’ column.

A subset of the following facets would be listed in the ‘Facet’ column based on the
XML type of the selected element / attribute.

Sl.No. Facet list

1 length

2 minLength

3 maxLength

4 whiteSpace

5 maxExclusive

6 maxInclusive

7 minExclusive

8 minInclusive

9 totalDigits

10 fractionDigits

Pattern tab

Pattern facet, if set for the XML type (if applicable) of an element or attribute is
shown under this tab.

For e.g., consider the following Simple Type definition where ‘pattern’ facet is used:

<xs:simpleType name="SKU">
 <xs:restriction base="xs:string">
 <xs:pattern value="\d{3}-[A-Z]{2}"/>
 </xs:restriction>
</xs:simpleType>

Let us suppose that an element A1 is added somewhere under the root element with
type as “SKU” as shown under.

When the above schema is imported in the Designer, the pattern facet set for the
Simple Type “SKU” would be represented in the “Facets” window under the “Pattern”
tab as shown below:

Enumeration tab

Enumeration facet, if set for the XML type (if applicable) of an element or attribute is
shown under this tab.

For e.g., consider the following Simple Type definition where ‘enumeration’ facet is
used:

<xs:simpleType name="USState">
 <xs:restriction base="xs:string">
 <xs:enumeration value="AK"/>
 <xs:enumeration value="AL"/>
 <xs:enumeration value="AR"/>
 </xs:restriction>
</xs:simpleType>

Let us suppose that an element A1 is added somewhere under the root element with
type as “USState” as shown under.

When the above schema is imported in the Designer, the enumeration facet set for
the Simple Type “USState” is represented in the “Facets” window under the
“Enumeration” tab as shown below:

Note:
Facet representation for an attribute in the Designer is identical to that of an
element. .

See Also:

List Type
Union Type
Simple Type Designer Support

List Type

List types are comprised of sequences of atomic types and consequently the parts of
a sequence (“the atoms”) themselves are meaningful, unlike an atomic type.

Representation of list type in Designer is somewhat similar to atomic type, except
that the XML built-in type specified in the schema is ignored & in that place
“anySimpleType” is used. Hence, facet constraints, if any, set and the data type
constraint are not honored.

Built-in list type

XML Schema has three built-in list types, viz., NMTOKENS, IDREFS and ENTITIES.
For e.g., an element of type NMTOKENS would be a whilte-space delimited list of
NMTOKEN’s, such as “US UK FR”.

User-derived list type

You can also create new list types by derivation from existing atomic types.

Element without facet

Let us consider the case, where the list type is derived from an atomic type.

Consider the following atomic type definition.

<xs:simpleType name="myInteger">
 <xs:restriction base="xs:integer">

 <xs:minInclusive value="10000"/>
 <xs:maxInclusive value="99999"/>
 </xs:restriction>
</xs:simpleType>

Let “listOfMyIntType” be a list type derived from the above atomic type:

<xs:simpleType name="listOfMyIntType">
 <xs:list itemType="myInteger"/>
</xs:simpleType>

Consider the following schema where an element ‘A1’ is added under the Root
element with type as “listOfMyIntType”:

When this schema is imported in the Designer, the Designer representation would be
as under:

Designer Representation details

1. Element ‘A1’ is represented as a field as it is non-repeating (with Node Type as

“element”).
2. The XML Type of ‘A1’ is shown as “anySimpleType” irrespective of the built-in

data type (“integer” in this case) specified for the Simple Type definition
‘myInteger’ which is the user-derived data type based on which the list data type
is derived.

3. The corresponding Designer type (“string”) is represented under ‘Type’ column.
4. The facets of the Simple Type definition ‘myInteger’ are not represented unlike

the case of an atomic data type. (as the content of the element is taken as a
whole and parsed and not as a sequence of atomic types)

Element with facet

Several facets such as length, minLength, maxLength, pattern and enumeration can
be applied to list type.

Let us consider the case where the ‘length’ facet is applied.

Consider the following schema components:

<xs:simpleType name="USState">
 <xs:restriction base="xs:string">
 <xs:enumeration value="AK"/>
 <xs:enumeration value="AL"/>
 <xs:enumeration value="AR"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="USStateList">
 <xs:list itemType="USState"/>
</xs:simpleType>

<xs:simpleType name="SixUSStates">
 <xs:restriction base="USStateList">
 <xs:length value="6"/>
 </xs:restriction>
</xs:simpleType>

In the above, “USStateList” is a list type derived from the atomic simple type
“USState”. “SixUSStates” is a simple type derived by restricting “USStateList” to
only six items, i.e., elements whose type is SixUSStates must have six items.

Consider the following schema:

Here, an element State is added under the Root element with type as “SixUSStates”.
When this schema is imported in the Designer, the Designer representation would be
as under:

Designer Representation details

1. Element ‘State’ is represented exactly similar to that of the previous case. Refer

(i) to (iii) of Designer Representation details under “Element of user-derived list
type”.

2. The ‘length’ facet set for the Simple Type definition “SixUSStates” is represented

in the Facets window as shown under:

See Also:

Atomic Type

Union Type
Simple Type Designer Support

Union Type

Atomic types and list types enable an element or an attribute value to be one or
more instances of one atomic type. In contrast, a union type enables an element or
attribute value to be one or more instances of one type drawn from the union of
multiple atomic and list types.

Representation of union type in Designer is exactly identical to list type. Here also,
the XML built-in type specified in the schema is ignored & in that place
“anySimpleType” is used. Hence, facet constraints if any set and the data type
constraint are not honored. Refer List Type.

Consider the following schema components:

<xs:simpleType name="USState">
 <xs:restriction base="xs:string">
 <xs:enumeration value="AK"/>
 <xs:enumeration value="AL"/>
 <xs:enumeration value="AR"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="myInteger">
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="10000"/>
 <xs:maxInclusive value="99999"/>
 </xs:restriction>
</xs:simpleType>

<xs:simpleType name="listOfMyIntType">
 <xs:list itemType="myInteger"/>
</xs:simpleType>

<xs:simpleType name="zipUnion">
 <xs:union memberTypes="USState listOfMyIntType"/>
</xs:simpleType>

In the above, “zipUnion” is a union type built from one atomic type namely
“USState” and one list type namely “listOfMyIntType”.

Consider the following schema:

Here, an element “zips” is added under the Root element with type as “zipUnion”.
When this schema is imported in the Designer, the Designer representation would be
as under:

Designer Representation details

Element ‘zips’ is represented exactly similar to that of the case in List type. Refer (i)
to (iv) of Designer Representation details under “Element of user-derived list type”.

See Also:

Atomic Type
List Type
Simple Type Designer Support

Simple Type Designer Support

Property Supported

{name} Yes

{target
namespace}

Yes

{base type
definition}

Yes

{facets} “totalDigits” facet not supported for any applicable data type.

Following facets are not supported for “duration” data type:

maxInclusive, maxExclusive, minInclusive & maxInclusive.

{final} Text

{annotation} Yes

{variety} atomic - Yes

list - Yes (Facet constraint & Type constraint not supported)

union - Yes (Facet constraint & Type constraint not supported)

See Also:

Atomic Type
List Type
Union Type

Complex Type Definition

A schema component using a complex type definition is typically represented as a
section in Designer and the contents are shown as sub-elements. However, if the
Complex Type has just text content and no attributes or sub-elements in it and is
applied to a non-repeating element, it is represented as a field. If the complex type
is represented as a section, its text content (if present) is represented as the ‘Value’
field under the section.

Designer representation in a nutshell:

Content of Complex Type Applied to Representation

Has Sub-elements with or
without attributes

Repeating/Non-
Repeating Element

Section

Has text and attributes & no
sub-element

Repeating/Non-
Repeating Element

Section

Has just text and no
attribute or sub-element

Non-repeating element Field

Has just text and no
attribute or sub-element

Repeating element Section with ‘Value’
field representing the
text content

The following example would illustrate the above representation.

Consider the following three Complex Type definition schema components:

i) Complex Type schema component with sub-elements:

<xs:complexType name="HasElm">
 <xs:sequence>
 <xs:element name="Child1" type="xs:string"/>
 <xs:element name="Child2" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

ii) Complex Type schema component with text and attribute & no sub-element

<xs:complexType name="TextAndAttribute">
 <xs:simpleContent>
 <xs:extension base="xs:decimal">
 <xs:attribute name="Att1" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

iii) Complex Type schema component with just text and no attribute or
 sub-element

<xs:complexType name="OnlyText">
 <xs:simpleContent>
 <xs:extension base="xs:string"/>
 </xs:simpleContent>
</xs:complexType>

Consider the following schema:

Here, we have used the three complex type definitions specified above for the
elements added under the Root. Note that both ‘Elm3’ and ‘Elm4’ have the same
type but ‘Elm3’ is non-repeating while ‘Elm4’ is repeating. When this schema is
imported in the Designer, the Designer representation would be as under:

Note that while ‘Elm3’ is represented as a field, ‘Elm4’ is represented as a section
since it is repeating.

See Also:

Aggregation
Simple Content
Complex Content
Type Substitution
Complex Type Designer Support

Aggregation

Designer representation of an element of complex type definition is built based on
the concept of aggregation, i.e. the contents of all the components referenced by the
type are put to the type and eventually the type itself is aggregated to the element.
A complex type schema component aggregates to Designer representation of all the
schema components it references, i.e., for deriving Designer representation for an
element of complex type definition, all the schema components that the complex
type definition references are looked at and are aggregated to build the super-
structure of the complex type. If the content of a complex type itself is an aggregate,
we take those contents and aggregate it to the complex type. For e.g., if a complex
type definition references to an attribute group, the contents of the attribute group
are aggregated into the Designer representation of the complex type.

Contents that are aggregated:

Content of Complex Type Aggregation procedure

Group

Model Group

The contents of the group are aggregated. In some
special cases the contents of the group cannot be
aggregated and the group / model group itself is
represented as section.

Attribute Group The contents of the attribute group are
aggregated. (Attribute Group never has a first-
class representation)

Base type (if complex type
is a derived one)

The contents of the base type are aggregated
(including all ancestors’ types).

Simple Element

Complex Element

Any element

Attributes

Any Attribute

Always aggregated. (Have a first-class
representation)

The entire contents are aggregated as a whole
without looking into them.

Represented as a Field or a Section depending on
its contents and occurrence.

Annotation Annotations for the complex type and its base
types are accumulated.

This aggregation is done only where it is possible. For e.g., if the content of a
complex type is a model group, only where flattening of model group (Refer “Model
Group Flattening Rules”) is applicable, the contents of the model group are pushed to
the complex type, otherwise, the model group is retained as such and is represented
as a section in the Designer.

Consider the following Complex Type schema component “USAddress”, which is
derived from another Complex Type schema component viz. “Address”.

Address (Base Type)

USAddress schema component

 (The nos. in circles represent different contents allowed in a Complex Type and are
referred in the “No.” column in the following table “Designer Representation Details”)

When an element, say “USAddress” of type “USAddress” is added under the Root
element in a schema and when that schema is imported in the Designer, the
equivalent Designer representation would be as under:

Designer Representation details

No Content Type

(Name)

Aggregated Representation Details

1 Base Type

(Address)

Yes The base type ‘Address’ is aggregated & its
contents ‘name’, ‘city’ & ‘postcode’ are pushed
to the derived type ‘USAddress’;

They are represented as sub-fields of
‘USAddress’ element.

2 Attributes

(postcode)

Yes Attribute ‘postcode’ of ‘Address’ base type is
aggregated to the base type & in turn,
aggregated to the derived type as specified
above.

3 Attribute Group

(Attrgrp)

Yes ‘Attrgrp’ by itself has no representation,
however, its contents viz., ‘verified’ & ‘region’
are aggregated to the complex type.

They are represented as sub-fields of
‘USAddress’ element.

4 Simple Element Yes Simple Element “state” is aggregated to the
‘USAddress’ type.

No Content Type

(Name)

Aggregated Representation Details

(state) It is represented as a sub-field of ‘USAddress’
element.

5 Complex
Element

(phoneno)

Yes Complex Element “phoneno” with its entire
contents is aggregated to the ‘USAddress’ type.

It is represented as a sub-section of
‘USAddress’ element.

6 Group

(Grp)

Yes The contents ‘emailid1’ & ‘emailid2’ of the
group ‘Grp’ are aggregated to the ‘USAddress’
type (As “Flattening” is possible in this case).

The group has no representation while its
contents are represented as sub-fields of
‘USAddress’ element.

7 Non-repeating
Model Group

Yes Both model groups (represented by circle no.7)
are flattened & their contents are aggregated
to the ‘USAddress’ type. (As flattening possible
here)

The model groups have no representation while
their contents are represented as sub-
fields/sub-sections as the case may be.

8 Repeating

Model Group

No The model group is not flattened as flattening
is not possible in this case. (Refer “Model
Group represented as section”).

The model group is represented as the section
‘phonenoGroup1’.

9

10

Annotation of
Base & Derived
type

Yes Annotation of ‘Address’ type & ‘USAddress’
type are accumulated to the ‘USAddress’ type;

Represented as Description for the ‘USAddress’
element.

See Also:

Simple Content
Complex Content
Type Substitution
Complex Type Designer Support

Simple Content (Complex Type Definition)

If a complex type is defined to be of simple content, then it can have only character
data content (i.e. it can reference to a built-in data type) and/or attributes and can
have no sub-elements in it. The simple content definition can use extension or
restriction.

Consider the following Complex Type definition with Simple Content using extension:

<xs:complexType name="length1">
 <xs:simpleContent>
 <xs:extension base="xs:nonNegativeInteger">
 <xs:attribute name="unit" type="xs:NMTOKEN"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

Consider the following schema:

Here, an element ‘width’ is added under the Root with type as “length1”. When this
schema is imported in the Designer, the Designer representation would be as under:

Designer Representation details

1. The element ‘width’ is represented as a section (because it has attribute content)

with the ‘Value’ field with ‘Node Type’ as ‘value’ representing its value nformation
item. The base simple type is shown as the ‘XML Type’ of the ‘Value’ field.

2. The attribute ‘unit’ is represented as another sub-field of the ‘width’ section

with ‘Node Type’ as “attribute”.

See Also:

Aggregation
Complex Content
Type Substitution
Complex Type Designer Support

Complex Content (Complex Type Definition)

If a complex type is defined to be of complex content, then it can have sub-
elements, attributes and/or character content in it. The complex content definition
can use extension or restriction.

Mixed Content

If a Complex Type definition is defined to be of mixed content (value for the attribute
“mixed” is specified as “true”), then character data can appear alongside sub
elements.

Consider the following Complex Type definition schema component:

<xs:complexType name="letterBody" mixed="true">
 <xs:sequence>
 <xs:element name="salutation">
 <xs:complexType mixed="true">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="quantity" type="xs:positiveInteger"/>
 </xs:sequence>
</xs:complexType>

As per the above definition, text can appear anywhere between an element of type
“letterBody” and its child elements. Also, text can appear anywhere between the
element “salutation” and its child element.

Consider the following schema:

Here, an element ‘letterBody’ is added under the Root with type as “letterBody”.
When this schema is imported in the Designer, the corresponding Designer
representation would be as under:

Designer Representation details

1. The applicability of text content (mixed = “true”) for the elements “letterBody”

and “salutation” is represented by the ‘Value’ field following those elements.

2. All the text content that can appear between the elements are merged and

shown as a whole by the ‘Value’ field & hence, the position of the text content in
the XML instance would not be retained as such.

Derivation by Restriction

A complex type derived by restriction is very similar to its base type, except that its
declarations are more limited than the corresponding declarations in the base type.
In fact, the values represented by the new type are a subset of the values
represented by the base type (as is the case with restriction of simple types). In
other words, an application prepared for the values of the base type would not be
surprised by the values of the restricted type.

Consider the following Complex Type definition schema components:

<xs:complexType name="length1">
 <xs:sequence>
 <xs:element name="size" type="xs:nonNegativeInteger"/>
 <xs:element name="unit" type="xs:NMTOKEN" minOccurs="0"/>
 </xs:sequence>

 <xs:attribute name="object" type="xs:string"/>
</xs:complexType>

<xs:complexType name="length2">
 <xs:complexContent>
 <xs:restriction base="length1">
 <xs:sequence>
 <xs:element name="size" type="xs:nonNegativeInteger"/>
 <xs:element name="unit" type="xs:NMTOKEN" minOccurs="1"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
</xs:complexType>

Here ‘length2’ is a Complex Type definition schema component derived by restriction
from the complex type ‘length1’. In the definition of ‘length2’, we have provided a
new (more restrictive) value for the minimum number of ‘unit’ element occurrences
by setting minOccurs as 1.This change narrows the allowable number of ‘unit’
elements from a minimum of 0 (in the base type) to a minimum of 1 (in the derived
type). Note that all elements of type ‘length2’ will also be acceptable as elements of
type ‘length1’.

Consider the following schema:

Here, an element ‘depth’ is added under the Root with type as “length2”. When this
schema is imported in the Designer, the corresponding Designer representation
would be as under:

The contents of the base type along with the restrictions set in the derived type are
shown as the contents of an element of the derived type.

Designer Representation details

1. The element ‘depth’ is represented as a section with ‘Node Type’ as “element”.

2. The element contents of the complex type definition viz, ‘length2’ (derived from

‘length1’) are represented as sub-fields of the section “depth” with ‘Node Type’ as
“element”.

3. The attribute of the base complex type definition ‘lenght1’ is aggregated to the

derived type, (though not specifically mentioned in the derived type as schema
definition does not require the same) and is represented as a sub-field of “depth”
with ‘Node Type’ as “attribute”.

4. The occurrence constraint “minOccurs = 1” set for the element “unit” is

represented by the checking of the “Required” checkbox in the “Field Properties”
pane. (also by the absence of the optional icon ‘?’ near the field icon)

Derivation by Extension

When a complex type is derived by extension, its effective content model is the
content model of the base type plus the content model specified in the type
derivation. Furthermore, the two content models are treated as two children of a
sequential group.

Consider the following Complex Type definition schema components:

Address type (Base type)

USAddress type (Derived from ‘Address’ type by Extension)

The content model of ‘USAddress’ is the content model of ‘Address’ plus the
declarations for ‘state’ and ‘zip’ elements, ‘region’ attribute and annotation.

When an element, say “USAddress” of type “USAddress” is added under the Root
element in a schema and when that schema is imported in the Designer, the
equivalent Designer representation would be as under:

The base type ‘Address’ is aggregated and its contents are aggregated to the derived
type. The annotation of the base type and derived type are accumulated and shown
as description for the element of derived type.

Designer Representation details

1. The model group (sequence) in the base type is flattened (Refer “Model Group

Flattening Rules”) and the child elements viz. ‘name’, ‘street’ and ‘city’ are shown
as the child elements of “USAddress” element with Node Type as “element”.

2. The attribute ‘verified’ of the base type is aggregated to the derived type and
shown as the sub-field of the “USAddress” element with ‘Node Type’ as
“attribute”.

3. The model group (sequence) added to the derived type is again flattened (as
flattening is possible in this case) and the sub-elements viz. ‘state’ and ‘zip’ are
shown as the child elements of “USAddress” element with ‘Node Type’ as
“element”. The attribute ‘region’ added for the derived type is again shown as a
child element of “USAddress” element with ‘Node Type’ as “attribute”.

4. Annotation of ‘Address’ type & ‘USAddress’ type are accumulated to the
‘USAddress’ type and represented as Description for the ‘USAddress’ element.

See Also:

Aggregation
Simple Content
Type Substitution
Complex Type Designer Support

Type Substitution

Suppose there is a complex type definition by name “Address” and another complex
type, say, “USAddress” is derived by extension from the “Address” type, XML
Schema allows us to use instances of “USAddress” in place of instances of “Address”.
In other words, an instance document whose content conforms to the “USAddress”

type will be valid if that content appears within the document at a location where an
“Address” is expected (assuming the “USAddress” content itself is valid). To make
this feature of XML Schema work, and to identify exactly which derived type is
intended, the derived type must be identified in the instance document. The type is
identified using the xsi:type attribute which is part of the XML Schema instance
namespace. The value of this attribute is a ‘QName’.

In Designer, wherever type substitution option is selected, an element of the base
type (which is not abstract) is represented as a choice section with the element of
base type and the element of all the derived types added as its children, meaning
that any of the structures can be used and also the “type” attribute used to specify
the desired type in the instance document is added as a sub-field of that section. If
the base type is abstract, i.e., if the attribute abstract = “true” is set for the base
type, then the children of the choice section will not have an element of the base
type.

Type Substitution options

The option of applying type substitution in the instance document is left with the
user by allowing him to select any of the three options in the “Schema Import
Options” window as seen under:

If applicable

This is the default option and is provided to support the type substitution feature for
applicable elements. If this option is selected, then the imported schema would have
a Designer representation so as to support type substitution of applicable elements
as described above.

Consider the following schema components:

<xs:complexType name="Address">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="street" type="xs:string"/>
 </xs:sequence>

</xs:complexType>

<xs:complexType name="USAddress">
 <xs:complexContent>
 <xs:extension base="Address">
 <xs:sequence>
 <xs:element name="zip" type="xs:positiveInteger"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

Here “Address” is a complex type definition and “USAddress” is another complex
type definition derived by extension from “Address”.

Consider the following schema:

Here there is an element added under the Root with type “Address”. When this
schema is imported in the Designer with the default import options (By default, the
option “If applicable” is checked in the “Support type substitution” pane), the
corresponding Designer representation would be as under:

Designer Representation details

1. The “Address” element which is of the base type is represented as a choice

section (‘Compositor’ as choice) with two sub-sections: “Address” section with
structure conforming to an element of “Address” type and “USAddress” section
with structure conforming to an element of “USAddress” type (derived type),
meaning that an “Address” element in the instance document can use any one of
the structures.

2. A sub-field “type” with Node Type as “attribute” and XML Type as “Qname” is

added as a sub-field of the above choice section to represent the “xsi:type”
attribute. The default value of this field is specified as “Address” (base type with
the namespace), meaning that if no value is given for this attribute, it will be
taken as the base type by default.

3. In the instance document, if the value of the type attribute is given as

“USAddress”, then the “Address” element can have the structure of “USAddress”
element.

4. In this case, the “Address” type is not abstract. If it were so, then the Designer

representation for the “Address” element would be as under:

Note that unlike the previous case, here, the “Address” section does not have the
“Address” sub-section as its child. Also, in this case, no default value would be
shown for the “type” attribute.

Never

If this option is selected, then type substitution feature will not be supported even if
it is applicable. The above schema, when imported with this option selected would
have the following Designer representation:

Designer Representation details

The “Address” element is represented as a separate entity without any relation to the
“USAddress” type (derived type).

Abstract types only

This option is provided to support type substitution for elements whose complex type
definition has the “abstract” attribute set to true. If this option is selected, then type
substitution feature will be supported only for elements of abstract types and not for
the other elements, even if type substitution is applicable for them.

For e.g., consider the following complex type definition schema components:

<xs:complexType name="Address1" abstract="true">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="street" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="Address2" abstract="false">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="street" type="xs:string"/>
 <xs:element name="city" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

Here “Address1” is an abstract type while “Address2” is a non-abstract type. Let
“USAddress” be a type derived by extension from “Address1” and “UKAddress” be a
type derived by extension from “Address2”.

Consider the following schema:

When this schema is imported in the Designer with the option “Abstract types only”
selected, the corresponding Designer representation would be as under:

Designer Representation details

The “Address1” element whose type is abstract alone is represented in the way to
support type substitution as discussed above, while the “Address2” element is
represented as a separate entity without reference to its derived type (“UKAddress”
in this case)

Support for Controlling Type Substitution

While importing a schema you can now customize/change the way type substitution
is applied for the global types in the schema. This feature is particularly useful if you
want to block some of the allowed message types for a particular type.

While importing a schema, a page that displays all the substitutable types in the
schema along with the possible substitutes for each type is shown.

To control the allowed substitutes,

1. Select the type you are interested in from the left list box.

2. The right pane (list) displays the possible substitutes for the selected type. All the

types are checked by default. To block or disallow a type, uncheck it. You would
find that these types are not included in the imported representation. Hence
these types of message will be rejected.

See Also:

Aggregation
Simple Content
Complex Content
Complex Type Designer Support

Complex Type Designer Support

Property Supported

{name} Yes

{target namespace} Yes

{base type definition} Yes

{derivation method} restriction - Yes

extension - Yes

{final} text

{abstract} Yes

{attribute use pairs}

{attribute wildcard} Yes

{content type} simple content - Yes

complex Content - Yes

mixed content - Yes

For mixed content, all the text content

are merged.

{prohibited substitutions} text

{annotations} Yes

See Also:

Aggregation
Simple Content
Complex Content
Type Substitution

Attribute Group Definition

An attribute group definition is an association between a name and a set of attribute
declarations, enabling re-use of the same set in several complex type definitions.
Using an attribute group can improve the readability of schemas, and facilitates
updating schemas because an attribute group can be defined and edited in one place
and referenced in multiple definitions and declarations. Attribute group references
must appear at the end of complex type definitions.

Attribute group schema component, by itself, has no default representation in the
Designer. When an attribute group is referenced, each attribute in the attribute
group definition becomes part of the referencing complex type definition, i.e., the
contents of the attribute group are aggregated to the complex type in which the
attribute group is referenced.

Consider the following Attribute Group definition schema component:

<xs:attributeGroup name="ItemDelivery">
 <xs:attribute name="partNum" type="xs:string" use="required"/>
 <xs:attribute name="weightKg" type="xs:decimal"/>
</xs:attributeGroup>

Consider the following schema:

Here, an element ‘item’ is added under the Root and the attribute group
‘ItemDelivery’ is referenced in its complex type definition. When this schema is
imported in the Designer, the corresponding Designer representation would be as
under:

Designer Representation details

The contents viz., ‘partNum’ and ‘weightKg’ of the attribute group ‘ItemDelivery’ are
aggregated to the complex type definition of the ‘item’ element and are represented
as the sub-fields of the ‘item’ element. The attribute group, by itself has no
representation in the Designer.

See Also:

Attribute Group Designer Support
Terminology
Glossary

Attribute Group Designer Support

Property Supported

{name} Attribute group name does not have a concrete Designer
representation

{target namespace}

{attribute use pairs}

{attribute wildcard} Yes

{annotation} No

See Also:

Attribute Group Definition

Model Group

A model group is a constraint in the form of a grammar fragment that applies to lists
of element information items. It is used to specify the order of occurrence of child
elements of an element. There are three varieties of model group:

 Sequence
-- child elements must occur in the specified order.

 Conjunction (All)

-- child elements can occur in any order.

 Disjunction (Choice)
 -- only one of the child elements must occur.

A model group can be named or anonymous. A named model group is one which is
globally defined (xs:group) by associating a name and optional annotations with a
model group. An anonymous model group is one which is locally defined inside a
complex type defintion. In case of named model group, by reference to the name,
the entire model group can be incorporated into a referencing item.

Note:

 The Designer representation of a named and anonymous model group is identical. In
the following discussions and examples, we use the anonymous model group.
However, it is equally applicable to a named model group as well.

Generally, the model group is flattened (Refer “Model Group Flattening Rules”) and
its contents are aggregated to its parent. Thus, the model group has no explicit

representation in the Designer. However, in some special cases such as when the
model group is repeating, the contents of the model group cannot be aggregated and
the model group itself is represented as a section. Refer “Aggregation”.

Consider the following schema:

Here, we have three model groups, two of which are non-repeating and one is
repeating with minOccurs = 1 & maxOccurs = 2. When this schema is imported in
the Designer, the corresponding Designer representation would be as under:

Designer Representation details

1. The model group under “Root” is flattened (has no explicit Designer

representation) and its children viz. ‘Elm1’ and ‘Elm2’ are aggregated to the root
element and represented at the root level. (Root element has no explicit
representation in the Designer)

2. Similarly, the model group under ‘Elm1’ is also flattened and its contents viz.,

‘A1’ and ‘A2’ are aggregated to the ‘Elm1’ element.

3. The compositor of the above model group namely “sequence” is also pushed to

the parent element ‘Elm1’ and represented by the ‘sequence’ item set in the
“Compositor” list box in the “Section Properties” pane.

4. The model group under ‘Elm2’ is not flattened since it is repeating and hence

represented as a section ‘Elm2Group1’ with ‘Node Type’ as “group” and
‘Compositor’ as “sequence” with the contents viz., ‘A3’ and ‘A4’ shown as sub-
fields of the section.

See Also:

Model Group represented as section
Model Group Definition Designer Support

Model Group Flattening Rules

In the following cases, the model group is flattened, i.e., the model group is removed
and the contents and the compositor of the model group are pushed to its parent.

Single model group flattening

Where applicable

The following conditions should be satisfied for this rule to be applied:

 Element has a single model group as its child. (the model group may be
‘sequence’, ‘choice’ or ‘all’.

 The model group is mandatory.
 The model group is non-repeating.

Flattening details

 The parent element (section) inherits the compositor of its child model group.
 The model group is removed.
 The child elements of the child model group are moved to its parent element,

i.e. the parent section.

Note: No option need be selected

Example

Consider the following schema:

Here, the model group “all” satisfies all the three conditions mentioned above.
When this schema is imported in the Designer, the corresponding Designer
representation would be as under:

Designer Representation details

1. The element ‘Elm’ (represented by section) inherits the compositor of its child

model group. Consequently, the Compositor of the element ‘Elm’ is shown as
“all”. (Refer “Section Properties” pane)

2. The “all” model group is flattened (removed), i.e., it does not have any

representation in the Designer.

3. The child elements of the “all” model group are moved to its parent element, i.e.

the parent section. Thus, the child elements viz., ‘A1’ and ‘A2’ of the “all” model
group are represented as the child elements of the parent section “Elm”.

Remarks

This rule is always applied.

Mandatory Sequence Group Flattening

Where applicable

The following conditions should be satisfied for this rule to be applied:

 The model group is mandatory and non-repeating.
 The parent of the model group (element or another group) is also a sequence.

Flattening details

 The model group is removed.
 The child elements of the model group are moved to its parent (in its place) .

Note: No option need to be selected

Example

Consider the following schema:

Here, the “all” model group is mandatory & non-repeating and its parent element
“Elm” has Compositor as “sequence” (before the model group was added to it). The
“sequence” model group (with children as ‘A3’ & ‘A4’) is also mandatory & non-
repeating & its parent is again a sequence model group. When this schema is
imported in the Designer, the corresponding Designer representation would be as
under:

Designer Representation details

1. The two model groups are flattened (removed), i.e., they don’t have any

representation in the Designer.

2. The child elements of the two model groups are moved to their corresponding

parents, i.e. ‘A1’ and ‘A2’ of the “all” model group are represented as the child
elements of the parent section “Elm” while ‘A3’ and ‘A4’ of the sequence model
group are moved to the parent sequence and in turn moved to the root element.

Remarks

This rule is always applied.

Single Child Group Flattening

Where applicable

The following condition should be satisfied for this rule to be applied:

 The model group has a single child.

Flattening details

 The model group is removed
 The single child element of the model group is moved to its parent (in place of

the group)
 The cardinality of the child is determined as specified in the following table:

Cardinality of model
group

Cardinality of the single
child

Resultant cardinality of the
single child

Mandatory & Non-
repeating

(1, 1)

Any cardinality

say, (1, 3)

No change

(1, 3)

Optional & Non-
repeating

(0, 1)

Min Occurs < 2

Max Occurs -- anything

say, (1, 3)

Max Occurs is retained.

Min Occurs becomes
invariably zero.

(0, 3)

Repeating

(Optional or
Mandatory)

Min Occurs < 2

Max Occurs --
anything

MinOccurs = Min Occurs
of Model group x min
occurs of child

Max Occurs = max
occurs of model group x
max occurs of child

(1, 3) (0, 1) (0, 3)

(1, 3) (1, 5) (1, 15)

(0, 3) (1, 4) (0, 12)

Note: No option need be selected

Example

Consider the following schema:

When this schema is imported in the Designer, the corresponding Designer
representation would be as under:

Designer Representation details

1. All the model groups are flattened (removed) & their single child is moved to the

parent element.

2. The cardinality of the single child is determined as per the above table.

Remarks

1. This rule is always applied.

2. Note that when the model group is optional and repeating / non-repeating, if the

min occurs of the single child is > 1, the model group is not flattened and is
retained as such as a section.

Optional group flattening

Where applicable

The following conditions should be satisfied for this rule to be applied:

 The model group is optional and non-repeating.
 The model group has the compositor as “sequence” or “all”.
 The option “Flatten optional groups” is selected in the “Schema Import

Options” window.

Flattening details

 The cardinality of the model group is applied to its child elements. Since the
model group is optional the child elements under it are invariably made
optional.

 The model group is removed.
 The child elements under the model group are moved to the parent of the

group (in place of the group).

Example

Consider the following schema:

When this schema is imported in the Designer with the option “Flatten optional
groups” selected in the “Schema Import Options” window, the corresponding
Designer representation would be as under:

Designer Representation details

1. The min Occurs cardinality of the “sequence” model group is applied to its child

elements viz., ‘A1’ and ‘A2’.

2. The “sequence” model group is flattened (removed), i.e., it does not have any

representation in the Designer.

3. The child elements of the model group are moved to its parent, i.e. the parent

section. Thus, the child elements viz., ‘A1’ and ‘A2’ of the “sequence” model
group are represented as the child elements of the parent section “Elm”.

Remarks

 This rule is not applied by default. It is applied only when the option “Flatten
optional groups” is selected in the “Schema Import Options” window. Else, the
model group will not be flattened.

 There are both positive and negative effects in using this option. The positive
effect is that the user can get rid of an extra section and thereby reduce the
extra work during mapping. The negative effect is that some information is
lost. In the above e.g., since the optional cardinality of the model group is
applied to the child elements which are originally mandatory, the mandatory
behavior of the child elements is lost.

Choice Group Flattening

Where applicable

The following conditions should be satisfied for this rule to be applied:

 The model group is non-repeating choice.
 Both the options “Flatten optional groups” and “Flatten non-repeating choice

groups” are selected in the “Schema Import Options” window.

Flattening details

 The cardinality of the model group is applied to its child elements. Since the
model group is optional the child elements under it are invariably made
optional.

 The model group is removed.
 The child elements under the model group are moved to the parent of the

group (in place of the group).

Example

Consider the following schema:

When this schema is imported in the Designer with both the options “Flatten optional
groups” and “Flatten non-repeating choice groups” selected in the “Schema Import
Options” window, the corresponding Designer representation would be as under:

Designer Representation details

1. The min Occurs cardinality of the “choice” model group is applied to its child

elements viz., ‘A1’ and ‘A2’.

2. The “choice” model group is flattened (removed), i.e., it does not have any

representation in the Designer.

3. The child elements of the model group are moved to its parent, i.e. the parent

section. Thus, the child elements viz., ‘A1’ and ‘A2’ of the “choice” model group
are represented as the child elements of the parent section “Elm”.

Remarks

 This rule is not applied by default. It is applied only when both the options
“Flatten optional groups” and “Flatten non-repeating choice groups” are
selected in the “Schema Import Options” window. Else, the model group will
not be flattened.

 There are both positive and negative effects in using this option. The positive
effect is that the user can get rid of an extra section and thereby reduce the
extra work during mapping. The negative effect is that some information is
lost. In the above e.g., since the optional cardinality of the model group is
applied to the child elements which are originally mandatory, the mandatory
behavior of the child elements is lost. Secondly, the “choice” compositor
information itself is lost.

Optional behavior of Choice fields

The fields of a “choice” model group are made optional whether the “choice” model
group is optional or not or whether it is flattened or not. This is due to conflict
between the Designer and schema in interpreting the meaning of the word ‘optional’.

See Also:

Model Group represented as section
Model Group Definition Designer Support

Model Group Represented as Section

In the following cases, the model group is not flattened, i.e., the model group is
represented as a section.

1. Where the model group is repeating with more than one child
2. Where the model group is optional with more than one child
3. Where the optional model group has a single child whose minoccurs>1

Example

Consider the following schema where the above three conditions are satisfied:

When this schema is imported in the Designer with the default import options, the
corresponding Designer representation would be as under:

Note that none of the model group is flattened and they are represented as a
section.

See Also:

Model Group Flattening Rules
Model Group Definition Designer Support

Model Group Definition Designer Support

Property Supported

{name} Yes (if model group is not flattened)

{target namespace} Yes (if model group is not flattened)

{model group} all, choice, sequence – Yes

{annotation} Yes (if model group is not flattened)

Property Supported

{compositor} Yes

{particles} Yes

{annotation} Yes (if model group is not flattened)

See Also:

Model Group Flattening Rules
Model Group represented as section

Schema Attribute Declaration

An attribute declaration is an association between a name and a simple type
definition, together with occurrence information and (optionally) a default value.
Attributes may be declared locally or globally. Once declared, a global attribute can
be referenced in one or more declarations using the ‘ref’ attribute. Attributes can be
declared with a ‘use’ attribute to indicate whether the attribute is required, optional,
or even prohibited. Default values of attributes are declared using the ‘default’
attribute. Default attribute values apply when attributes are missing. The ‘fixed’
attribute is used in attribute declarations to ensure that the attributes are set to
particular values. Note that the concepts of a fixed value and a default value are
mutually exclusive, and so it is an error for a declaration to contain both fixed and
default attributes. Attribute references must appear at the end of complex type
definitions.

Attributes are always aggregated to the complex type in which they are declared and
are represented as fields in the Designer. Refer “Aggregation”.

Consider the following schema components:

<xs:complexType>
 . . .
 <xs:attribute ref="postcode" use="required"/>
 <xs:attribute name="verified" type="xs:boolean" use="optional" default="1"/>
 <xs:attribute name="region" type="xs:string" fixed="north"/>
</xs:complexType>

<xs:attribute name="postcode" type="xs:string"/>

Here two attributes are added locally inside the Complex Type definition and one is
added globally & referenced. Consider the following schema:

When this schema is imported in the Designer with the default import options, the
corresponding Designer representation would be as under:

Designer Representation details

1. The locally defined as well as the referenced attributes are aggregated to the

“USAddress” element.

2. The “use” attribute is represented by the “Required” checkbox in the “Field

Properties” pane.
3. The “default” and “fixed” value, if set for the attributes are represented by

“Default Value” text boxes in the “Field Properties” pane.
4. The sequential order of occurrence of attributes is not supported; i.e., though as

per the schema the order of occurrence of the attributes is “postcode” followed
by “verified” followed by “region”, they are imported in the following order:
“region”, “verified” and “postcode”.

5. Note that if the “use” for an attribute were set as “prohibited”, then that attribute
would not be imported in the Designer.

See Also:

Ignore Fixed Attributes
Attribute Declaration Designer Support
Glossary

Ignore Fixed Attributes (Schema Attribute Declaration)

“Ignore Fixed Attributes” option is provided in the “Schema Import Options” window.
When this option is checked, the fixed value attributes (attributes for which ‘fixed’
attribute is specified) will not be imported in the Designer. This is particularly useful
in cases where fixed value attributes are used to provide meta-info or additional
information about the elements in the schema. In the above e.g., for the “region”
attribute, the attribute fixed = “north” is specified. When the above schema is
imported in the Designer with the option “Ignore Fixed Attributes” selected, the
equivalent Designer representation would be as under:

Note that the “region” attribute is not imported in this case.

See Also:

Attribute Declaration Designer Support

Attribute Declaration Designer Support

Property Supported

{name} Yes

{target namespace} Yes

{type definition} Yes

{scope} Yes

{value constraint} Yes

{annotation} Yes

See Also:

Ignore Fixed Attributes

Schema Element Declaration

An element declaration is an association of a name with a type definition, either
simple or complex, an optional default value and a possibly empty set of identity-
constraint definitions. The association is either global or scoped to a containing
complex type definition. Once declared, a global element can be referenced in one
or more declarations using the “ref” attribute. The declaration of a global element
also enables the element to appear at the top-level of an instance document.
Cardinality constraints cannot be placed on global declarations, although they can be
placed on local declarations that reference global declarations. In other words, global
declarations cannot contain the attributes “minOccurs”, “maxOccurs” (where element
is of complex type), or “use” (element is of simple type).
Default and Fixed attributes apply to an element of simple type defintion. When an
element is declared with a default value, the default value applies when the element
appears without any content in the instance document and not when the element
itself is missing. The “fixed” attribute is used in element declarations to ensure that
the elements are set to particular values.

Elements are always aggregated to the complex type definition in which they are
defined. An element is represented as a field or a section in the Designer depending
on its contents and occurrence constraints. Refer “Aggregation”.

Consider the following schema components:

<xs:element name="USAddress">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="state" type="xs:string" default="PA"/>
 <xs:element name="phoneno" type="xs:positiveInteger" maxOccurs="2"/>
 <xs:element ref="zip"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="zip" type="xs:integer" fixed="95819"/>

Here “USAddress” is an element with complex type definition, while “state”,
“phoneno” and “zip” are elements with simple type definition ,where “zip” is a
globally declared element and is referenced inside the “USAddress” element’s
complex type definition. The “state” element has “default” attribute set; the element
“phoneno” has occurrence constraint set and the element “zip” has “fixed” attribute
set. Consider the following schema:

When this schema is imported in the Designer with the default import options, the
corresponding Designer representation would be as under:

Designer Representation details

1. The complex type element “USAddress” is represented as a section. The locally

defined as well as the referenced sub-elements are aggregated to the
“USAddress” element and are represented as its children.

2. The elements “state” and “zip” are represented as sub-fields of “USAddress”
section as they are non-repeating. The element “phoneno” is represented as a
sub-section with a ‘Value’ field since it is repeating. All the three have ‘Node
Type’ as “element”.

3. The “default” and “fixed” attributes set for the elements are represented by the
“Default Value” text box in the “Field Properties” pane.

4. The occurrence constraints of the non-repeating elements (“state” and “zip”) are
represented by the “Required” check box in the “Field Properties” pane while the
occurrence constraints of the repeating element (“phoneno”) are represented by
the “Min Occurs” and “Max Occurs” combo boxes in the “Section Properties”
pane.

See Also:

Ignore Fixed Elements
Element Substitution
Element References
Nil Value Elements
Element Declaration Designer Support

Ignore Fixed Elements

“Ignore Fixed Elements” option is provided in the “Schema Import Options” window.
When this option is checked, the elements for which ‘fixed’ attribute is specified will
not be imported in the Designer. In the above e.g., for the element “zip”, the ‘fixed’
attribute is specified. When the above schema is imported in the Designer with the
option “Ignore Fixed Elements” selected, the equivalent Designer representation
would be as under:

Note that the “zip” element is not imported in this case.

See Also:

Element Substitution
Element References
Nil Value Elements
Element Declaration Designer Support

Element Substitution

XML Schema provides a mechanism, called substitution groups, that allows elements
to be substituted for other elements. More specifically, elements can be assigned to a
special group of elements that are said to be substitutable for a particular named
element called the head element. (Note that the head element as well as the
substitutable elements must be declared as global elements). Elements in a
substitution group must have the same type as the head element, or they can have a
type that has been derived from the head element's type. The existence of a
substitution group does not require any of the elements in that class to be used, nor
does it preclude use of the head element. It simply provides a mechanism for
allowing elements to be used interchangeably.

For e.g., consider the following element declaration schema components:

<xs:element name="comment" type="xs:string"/>

<xs:element name="shipComment" type="xs:string"
 substitutionGroup="comment"/>

<xs:element name="customerComment" type="xs:string"
 substitutionGroup="comment"/>

Here, the elements “shipComment” and “customerComment” are assigned to a
substitution group whose head element is “comment”. This would mean that the
elements “shipComment” and “customerComment” could be used in any place that
we are able to use comment.
Consider the following schema component:

<xs:element name="item" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="productName" type="xs:string"/>
 <xs:element name="quantity" type="xs:positiveInteger"/>
 <xs:element name="USPrice" type="xs:decimal"/>
 <xs:element ref="comment"/>
 </xs:sequence>

 </xs:complexType>
</xs:element>

Here the element “comment” is referenced. When this “item” element is added
somewhere under the Root element of a schema and when that schema is imported
in the Designer, the corresponding Designer representation would be as under:

Designer Representation details

1. The head element viz., “comment” and the elements of the substitution group

viz., “customerComment” and “shipComment” are shown as optional fields under
the “Items” element.

2. Basically they are considered as children of a choice section and the choice
section is flattened and the elements are aggregated to the “item” element.

3. Note that due to the above flattening, the choice functionality is lost.

See Also:

Ignore Fixed Elements
Element References
Nil Value Elements
Element Declaration Designer Support

Element References

Sometimes, in the schema definition, it is preferable to use an existing element
rather than declare a new element. In such cases, the ‘ref’ attribute is used in the
element declaration. The value of “ref” attribute must reference a global element
and it enables the referenced element to appear in the instance document in the
context of the referencing declaration.

In the Designer, there is a specific representation for a reference element provided
the referred element is of complex type and the element is referred more than once.

This specific representation is applicable to the second and subsequent usage of the
referred element, and not to the first usage.

Reference Element representation

The reference element is represented in the Designer by a circle icon super-imposed
on the section (folder) icon . Also, the full path of the first occurrence of the
referred element is shown as description.

For e.g., let ‘CE’ be a complex type element declared globally with the following
definition:

<xs:element name="CE">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ce1" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Consider the following schema, where the element ‘CE’ is referred in three places:

When the above schema is imported in the Designer, the corresponding Designer
representation would be as under:

Designer Representation details

1. The first reference of ‘CE’ element (added as child of ‘A’) is shown in the usual

manner.
2. The second and third references of ‘CE’ element (added as child of ‘B’ and ‘C’) are

shown as reference elements. See “Reference Element representation”.

Note:

1. This representation is particularly useful in cases where you refer an element in a

recursive manner, i.e., where a child element refers to a parent element.

2. In case the referred element is of simple type, all usages of the referred element

are represented in the normal (and identical) fashion (provided there are no
naming conflicts), i.e. as a field.

See Also:

Ignore Fixed Elements
Element Substitution
Nil Value Elements
Element Declaration Designer Support

Nil Value Elements

XML Schema's nil mechanism enables an element to appear with or without a non-nil
value. This mechanism involves an "out of band" nil signal. In other words, there is
no actual nil value that appears as element content, instead there is an attribute to
indicate that the element content is nil. To allow an element to have nil value, you
have to set the attribute “nillable” to true in the element declaration and in the
instance document, to represent that the element has a nil value, you have to set
the “xsi:nil” attribute to true. Note that the nil mechanism applies only to element
values, and not to attribute values. An element with xsi:nil = “true” attribute set,
may not have any element content but it may still carry attributes.

A mandatory element, for which the nillable attribute is set to true is represented in
the Designer as an optional element.

For e.g., consider the following schema:

<xs:element name="root">
 <xs:complexType>

 <xs:sequence>
 <xs:element name="A" type="xs:positiveInteger"/>
 <xs:element name="B" type="xs:positiveInteger" nillable="true"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

In the above schema, we have two elements ‘A’ and ‘B’ added under the root
element. Both elements are mandatory and have the same data type. For the
element ‘B’ alone, the ‘nillable’ attribute is set to true. When the above schema is
imported in the Designer, the corresponding Designer representation would be as
under:

Designer Representation details

The mandatory element ‘B’ is shown as an optional element.

Consider the following instance document where the attribute “xsi:nil” attribute is set
to true for the element ‘B’.

<?xml version="1.0" encoding="UTF-8"?>
 <root xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="..\..\NillableElement.xsd">

<A>1
<B xsi:nil = "true">

</root>

The corresponding “Parse and Write” output would be as under:

<?xml version="1.0" encoding="UTF-8"?>
<root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <A>1
 <B xsi:nil="true"/>
</root>

Note that though the element ‘B’ is mandatory, setting the ‘xsi:nil’ attribute to true
enables us to use the element with nil content.

See Also:

Ignore Fixed Elements
Element Substitution
Element References
Element Declaration Designer Support

Element Declaration Designer Support

Property Supported

{name} Yes

{target namespace} Yes

{type definition} Yes

{scope} Yes

{value constraint} Yes

{nillable}

{identity-constraint definitions} No

{substitution group affiliation} Yes

{substitution group exclusions}

{disallowed substitutions}

{abstract} Yes

{annotation} Yes

See Also:

Ignore Fixed Elements
Element Substitution
Element References
Nil Value Elements

Annotation

An annotation is information for human and/or mechanical consumers. Annotation of
schemas and schema components, with material for human or computer
consumption, is provided for by allowing application information and human
information at the beginning of most major schema elements, and anywhere at the
top level of schemas. The content of an annotation may be a “documentation” and /
or an “appinfo”. “documentation” element is the recommended location for human
readable material. The “appinfo” element can be used to provide information for
tools, stylesheets and other applications.
Annotation can be specified for various schema components like Element declaration,
Complex Type definition, simpleType definition, Attribute, Attribute Group, etc.

The “documentation” element of the Annotation is shown as Description in the
Designer. The Designer representation of annotation added to various schema
components is explained in the following table.

Schema Component to which
annotation is added

Designer Representation

Only for Base Type & not for
Derived type

Shown as description for element of derived
type

Both for Base Type & Derived type Both annotations are accumulated & shown as
description for element of derived type

Global Simple Type defintion Description of element of that simple type,
provided not overwritten at the element level.

Element (both local & global) Description of the element

Attribute Description of the attribute

Attribute Group No representation (information is lost)

Model Group If the group is flattened, no representation.

If not flattened, represented as the description
of the equivalent section

Consider the following complex type definition:

Here “state1” & “state2” are elements of type “USState” which is a simple type
definition with annotation (documentation) as “State in US”. For “state1” another
annotation is specified at the element level. (Annotations specified for the schema
components are displayed under each schema component in the above picture).
When an element “USAddress” is added under the root with type as “USAddress” and
when that schema is imported in the Designer, the corresponding Designer
representation would be as under:

Designer Representation details

1. For the element “state1”, the annotation of its type “USState” is overwritten by

its own annotation.
2. The annotation of attribute group is lost as the attribute group is flattened.
3. The annotation of the model group “Grp” is lost since it is flattened while the

annotation of the repeating model group is represented as description against the
section “USAddressGroup1”.

See Also:

Annotation Designer Support
Binding XML Schema to Designer

Annotation Designer Support

Property Supported

{application
information}

No

{user information} Yes (where schema component is not flattened)

See Also:

Annotation

Wildcard

A wildcard provides for validation of attribute and element information items
dependent on their namespace name, but independently of their local name.

Consider the following complex type definition schema component where the four
basic types of wildcard and one attribute wildcard are added.

<xs:complexType>
 <xs:sequence>
 <xs:any processContents="skip"/>
 <xs:any namespace="##other" processContents="lax"/>
 <xs:any namespace="http://www.w3.org/1999/XSL/Transform"/>
 <xs:any namespace="##targetNamespace"/>
 </xs:sequence>
 <xs:anyAttribute namespace="http://www.w3.org/XML/1998/namespace"/>
</xs:complexType>

Consider the following schema:

Here the Root element has the above mentioned complex type definition. When this
schema is imported in the Designer, the corresponding Designer representation
would be as under:

Designer Representation details

1. The “any” elements are represented as sections (the names “any2”, “any3” and

“any4” are auto-generated to avoid naming collision) with ‘Node Type’ as “any”.
2. The “anyAttribute” is also represented as a section with the same name with

‘Node Type’ as “anyAttribute”.
3. The value of the “namespace” attribute specified for the ‘any’ elements are

displayed in the “Namespace” list box in the “Section Properties” pane.

See Also:

Wildcard Designer Support
Binding XML Schema to Designer

Wildcard Designer Support

Property Supported

{namespace constraint} Yes

{process contents} Designer does not validate contents, be it skip, lax or
strict.

{annotation} No

See Also:

Wildcard

Identity-Constraint Definition

Identity-constraint definition components provide for uniqueness and reference
constraints with respect to the contents of multiple elements and attributes. The
three kinds of identity-constraint definitions are xs:key, xs:keyref and xs:unique.
Identity-constraint definition is not supported in the Designer.

See Also:

Simple Type Definition
Complex Type Definition
Attribute Group Definition

XML Name Mapping

Generally, the XML name is mapped as it is to the Designer name. In special cases
as listed below, the Designer applies either conversion mechanism to convert XML
name to Designer acceptable names, or it coins new names to represent unnamed
XML schema components:

1. Where the XML name is not a valid Designer name
2. Where there are name collisions and
3. Where anonymous model groups are not flattened.

However, only the Designer name is modified and the XML name is retained as such.

See Also:

XML Name of Element / Attribute to Designer Name
Model Group Name to Designer Name
Collisions and conflicts

XML Name of Element / Attribute to Designer Name

Generally, when a schema is imported in the Designer, the XML name specified for
an element / attribute in the schema is mapped as it is to the corresponding field /
section name in the Designer. In case, the XML name has characters not accepted
by the Designer, they are converted to “underscore”. However, the XML name of the
element / attribute is retained as such, i.e., the “XML Name” text box in the “Field
Properties” / “Section Properties” pane shows the same value for the element /
attribute names as specified in the schema. The following table explains the
mapping from XML Name to Designer Name:

XML Name
of element
/ attribute

Designer Name

(Field Name column)

Remarks

Child1 Child1 No punctuation used. Hence Designer
Name is same as XML name.

Child-2 Child-2 ‘Hyphen’ accepted in Designer Name.
Hence, Designer Name is same as XML
name.

Child_3 Child_3 ‘Underscore’ accepted in Designer
Name. Hence, Designer Name is same
as XML name.

Child.4 Child_4 ‘Dot’ not accepted in Designer Name. It
is converted to ‘underscore’. (XML
Name not changed)

Child5. Child5_ ‘Period’ not accepted in Designer
Name. It is converted to ‘underscore’.
(XML Name not changed)

The following pictures explain the above table visually:

XSD:

Designer equivalent:

See Also:

Model Group Name to Designer Name
Collisions and conflicts

Model Group Name to Designer Name

There are named (xs: group) and anonymous model groups in XSD. During schema
import, the Designer automatically flattens (removes) these model groups wherever
applicable ,also provides the user, the option to flatten the model group in certain
cases in the “Schema Import Options” window. Wherever the model group is not
flattened, the computation of the equivalent Designer name for the model group
depends on whether the model group is named or anonymous. If the model group is
named, the name is mapped as it is to the corresponding section in the Designer.
Where the model group is an anonymous one, a new name is invented for the
corresponding section depending on the name of the parent element. The following
pictures throw light on the above discussion:

XSD:

Designer equivalent: (Above XSD imported with default options)

In the above XSD, leaving the model group following the “Root” element, there are
three model groups; two are anonymous while one is named. The anonymous model
group following the “USAddress” element is flattened by default; the named model
group “Grp” is not flattened & hence represented by a section with the same name
as found in the schema; the anonymous model group following the “phoneno”
element is not flattened as it is repeating & is represented by a section with the
name “phonenoGroup1” which name is arrived at by concatenating the two strings
“phoneno” and “Group1”, where “phoneno” is the name of the parent element while
“Group1” indicates that this is the first non-flattened model group occurring under
the section “phoneno”. The subsequent anonymous and non-flattened model groups
would be named “phonenoGroup2”, “phonenoGroup3” and so on.

See Also:

XML Name of Element / Attribute to Designer Name
Collisions and conflicts

Collisions and Conflicts

During mapping of XML Name to Designer name, conflicts may arise in some cases.
For e.g., an XML component can have two distinct sub-components with same XML
name. However, the Designer does not permit duplicate field / section names at the
same level (there being only two possible representations for any XML element in the
Designer, they being a field or a section). Note that in the Designer though a field
can be represented as an element, attribute or value, depending on the “Node Type”
selected in the “Field Properties” pane, all the three represent only a field internally.
To overcome naming conflicts, during import of a schema, the Designer
automatically adjusts some field / section names to avoid validation errors. However,
the XML name is not altered.

For e.g., consider the following schema:

In the above schema, the “USAddress” element has a sub-element with XML name
as “city” and also an attribute with the same XML name. When this schema is
imported in the Designer, the Designer representation would be as under:

Here, the attribute as well as the sub-elements is represented as sub-field of the
section “USAddress” and they are at the same level. Hence, if the same name were
retained for the sub-element “city”, it would have resulted in duplicate field names
and consequently would result in validation error. To avoid this, during import, the
Designer automatically maps the conflicting name to a new name. In this case, the
XML name “city” of the sub-element is represented as “city2” in the Designer.
However, the XML name is not modified. (See “Field Properties” pane). Note that
this name change would in no way affect the parsing or writing of a valid XML
instance, i.e., during runtime, the parser would expect a “city” sub-element and not
a “city2” sub-element.

See Also:

XML Name of Element / Attribute to Designer Name
Model Group Name to Designer Name

W3C XML Schema Support

Click the following links to view the Designer support details of various W3C XML
Schema components.

Simple Type Designer Support
Complex Type Designer Support
Attribute Group Designer Support
Model Group Definition Designer Support
Attribute Declaration Designer Support
Element Declaration Designer Support
Annotation Designer Support
Wildcard Designer Support
Identity Constraint definition
Terminology
Glossary

Binding DTD to Designer

The XML Plugin allows you to import a DTD in the Designer. Roughly speaking, the
XML Plugin maps a DTD component to a corresponding Designer type. This chapter
describes the Designer representation of each DTD component and also the features
of the DTD component supported by the Designer. You will find below a detailed list
of the equivalent Designer representation for each DTD Component

See Also:

DTD Element declaration
Group declaration
Attribute declaration
Terminology
Glossary

DTD Element Declaration

If you use a DTD to describe the XML message structure, every element used in a
valid XML instance must be declared in that DTD using the ELEMENT declaration,
which consists of an element name followed by a description of the element’s
contents. Based on the content, elements in XML documents can be categorized into
five heads. The following sections describe the DTD structure to describe these
element types and their corresponding Designer representation.

The types of elements that are possible are

Element with Character Data only

Element with Standard Content
Element with Mixed Content
Element with Any Content
Element with No Content Allowed

See Also:

Group declaration
DTD Attribute declaration

Element with Character Data Only

This type of element can contain only parsed character data and not any other
content such as (sub-elements or attributes). The keyword #PCDATA describes
basic elements that contain parsed character data. A DTD component defining an
element with “character data only” is typically represented as a field in Designer.
However, in case where the element is repeating, it is represented as a section.

Consider the following DTD:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT Root (child1, child2*)>
<!ELEMENT child1 (#PCDATA)>
<!ELEMENT child2 (#PCDATA)>

Here, we have 2 elements added under the Root, which allow just character data.
The element “child1” is non-repeating while “child2” is repeating. When this DTD is
imported in the Designer, the corresponding Designer representation would be as
under:

Designer Representation details

1. The non-repeating element “child1” is represented as a field with ‘Node Type’ as

“element” while the repeating element “child2” is represented as a section with
‘Node Type’ as “element” with the “Value” sub-field added.

2. The character content of “child1” is represented by the field itself (data type
“string” in the ‘XML Type’ column in the table).

3. The character content of “child2” is represented by the “Value” sub-field whose
‘Node Type’ is “value”.

4. The XML name of the element is displayed in the ‘XML Name’ textbox.
5. The mandatory / optional behavior of the non-repeating element “child1” is

represented by the checking / unchecking of the ‘Required’ checkbox in the “Field
Properties” pane.

6. The occurrence constraints of the repeating element “child2” is represented by
the value in the ‘Min Occurs’ and ‘Max Occurs’ combo boxes in the “Section
Properties” pane.

See Also:

Element with Standard Content
Element with Mixed Content
Element with Any Content
Element with No Content Allowed

Element with Standard Content

An element with standard content can have one or more child elements associated
with it and also it can have attributes. Specifically, it should not contain text. A DTD
component defining an element with standard content is represented in the Designer
as a section with sub-fields (with Node Type as “element”) / sub-sections
representing the sub-elements and sub-fields (with Node Type as “attribute”)
representing the attributes.

Consider the following DTD:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT Root (item)>
<!ELEMENT item (productName, quantity)>
<!ELEMENT productName (#PCDATA)>
<!ELEMENT quantity (#PCDATA)>
<!ATTLIST item weightKg CDATA #IMPLIED
 partNum CDATA #REQUIRED>

Here, the element “item” has child elements as well as attributes as it’s content.
When this DTD is imported in the Designer, the corresponding Designer
representation would be as under:

Designer Representation details

1. The element “item” is represented as a section with ‘Node Type’ as “element”

with sub-fields added to represent the sub-elements and attributes.
2. In this case, since the child elements of the “item” element are non-repeating,

they are represented as sub-fields with ‘Node Type’ as “element”. (repeating child
elements would be represented as sections)

3. The attributes of the “item” element are represented as sub-fields with ‘Node
Type’ as “attribute”.

4. The XML name of the “item” element is displayed in the ‘XML Name’ text box.
5. The occurrence constraints of the “item” element is represented by the value set

in the ‘Min Occurs’ and ‘Max Occurs’ combo boxes in the “Section Properties”
pane.

6. The order of occurrence of the child elements is represented by the item set in
the ‘Compositor’ list box. In this case, since the child elements’ occurrence is of
sequential order (child elements are separated by comma), “sequence” item is
selected in the list box.

See Also:

Element with Character Data only
Element with Mixed Content
Element with Any Content
Element with No Content Allowed

Element with Mixed Content

An element with mixed content can contain both text and other elements. A DTD
component defining an element with mixed content is represented in the Designer as

a section with sub-fields (with Node Type as “element”) / sub-sections representing
the sub-elements and another sub-field (with Node Type as “value”) to represent the
text content.

Consider the following DTD:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT Root (inventory)>
<!ELEMENT inventory (#PCDATA | item)*>
<!ELEMENT item (#PCDATA)>

Here, the element “inventory” has child element as well as text (#PCDATA) as its
content. When this DTD is imported in the Designer, the corresponding Designer
representation would be as under:

Designer Representation details

1. The element “inventory” is represented as a section with ‘Node Type’ as

“element” and ‘Compositor’ as “sequence”, with sub-sections added to represent
the sub-element and a sub-field added to represent the text content.

2. In this case, since the child element “item” of the “inventory” element is
repeating, it is represented as sub-section with ‘Node Type’ as “element”.

3. The text content of the “inventory” element is represented by the “Value” sub-
field with ‘Node Type’ as “value” and with ‘Required’ checkbox checked.

4. Note that all the text content that can appear between the elements are merged
and shown as a whole by the ‘Value’ field & hence, the position of the text
content in the XML instance would not be retained as such.

See Also:

Element with Character Data only
Element with Standard Content
Element with Any Content
Element with No Content Allowed

Element with Any Content

An element with any content can contain any type of content, including standard
content, text, and mixed content. In DTD, you declare an ‘any content’ element
with the keyword “ANY”. A DTD component defining an element with any content is
represented in the Designer as a section with a sub-field (with ‘Node Type’ as
“value”) representing the applicability of text content, a sub-section (with ‘Node
Type’ as “any”) to represent the applicability of any element content and another
sub-section (with ‘Node Type’ as “anyAttribute”) to represent the applicability of any
attribute content.

Consider the following DTD:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT Root (main)>
<!ELEMENT main ANY>

Here, the element “main” is declared with the keyword “ANY” which means that the
“main” element can contain any type of content. When this DTD is imported in the
Designer, the corresponding Designer representation would be as under:

Designer Representation details

1. The element “main” is represented as a section with ‘Node Type’ as “element”

and ‘Compositor’ as “sequence”.

2. A sub-field “Value” with ‘Node Type’ as “value” is added to the “main” section to

represent the applicability of text content.
3. A sub-section “anyAttribute” with ‘Node Type’ as “anyAttribute” is added to the

“main” section to represent the applicability of any attribute content.
4. Another sub-section “any” with ‘Node Type’ as “any” is added to the “main”

section to represent the applicability of any element content.
5. The occurrence constraints of both the sub-sections are set as Min Occurs = 0 &

Max Occurs = Unbounded.

See Also:

Element with Character Data only
Element with Standard Content
Element with Mixed Content
Element with No Content Allowed

Element with No Content Allowed

An element with no content allowed is an empty element, which does not have, nor
allows content. In DTD, you declare empty elements with the EMPTY keyword. A
DTD component defining an element with empty content is represented in the
Designer as a section without any sub-section or sub-field. However, an empty
element can allow attributes, and in such cases, the attributes are represented as
sub-fields of the section with ‘Node Type’ set as “attribute”.

Consider the following DTD:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT Root (br)>
<!ELEMENT br EMPTY>

Here, the “br” element is declared with EMPTY keyword meaning that it is an empty
element. When this DTD is imported in the Designer, the corresponding Designer
representation would be as under:

Designer Representation details

1. The element “br” is represented as an empty section with ‘Node Type’ as

“element” and ‘Compositor’ as “sequence”.
2. The XML name of the element is displayed in the ‘XML Name’ text box.

See Also:

Element with Character Data only
Element with Standard Content
Element with Mixed Content
Element with Any Content

Group Declaration

When multiple child elements are specified, you use groups to combine them
together. In DTD, you use open and close parentheses to represent a group. The
elements added inside a group fall under two categories viz., sequence and choice,
based on the order of their occurrence. In addition, the grouped sets can be
qualified with ?, * and + suffixes to indicate the cardinality (occurrence constraints)
of the group.

Generally, the group is flattened (Refer “Group Flattening Rules”) and its contents
are aggregated to its parent and hence, a group has no explicit representation in the
Designer and the order indicator functionality of the child elements enclosed in the
group is represented by the ‘Compositor’ property of the parent element. However,
in cases where “Flattening” is not possible, such as when the group is repeating, the
contents of the group cannot be aggregated and the group is represented as a
section.

See Also:

Sequence declaration

Choice declaration
Group Flattening Rules
Group represented as section

Sequence Declaration

Sequence indicates that the child elements must occur in a specific order. In DTD,
you use comma to represent a sequence, i.e., if you want the child elements to
appear in a specific sequence, you separate them with commas.

Consider the following DTD:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT Root (contact_details)>
<!ELEMENT contact_details (account_id, name, phone, email)>
<!ELEMENT account_id (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT email (#PCDATA)>

In the above declaration, the “contact_details” element has multiple child elements
and hence they are represented as a group (inside the () parentheses). Also, the
child elements of the “contact_details” element are separated by commas which
indicates that in the corresponding XML instance, the child elements should occur in
the order in which they are specified i.e., “account_id” element followed by “name”
element, followed by “phone” element and so on. When this DTD is imported in the
Designer, the corresponding Designer representation would be as under:

Designer Representation details

1. The group enclosing the child elements of the “contact_details” element is

flattened (has no explicit Designer representation) since it is non-repeating, and
its children are aggregated to the “contact_details” element and represented as
sub-fields. (Root element has no explicit representation in the Designer)

2. The sequence functionality (represented by ‘commas’ in the DTD declaration) is
pushed to the parent element “contact_details” and represented by the
‘sequence’ item set in ‘Compositor’ list box in the “Section Properties” pane.

3. Here, the occurrence constraints of the group and the parent element are
identical (both being mandatory & non-repeating) and are represented by the
‘Min Occurs’ and ‘Max Occurs’ combo boxes in the “Section Properties” pane.

4. In the above e.g., suppose the group was declared as optional using the ?
qualifier, i.e., if the declaration of “contact_details” element was as follows
<!ELEMENT contact_details (account_id, name, phone, email)?> and, if you had
enabled the “Flatten optional groups” option in “Schema Import Options” window
during import, the corresponding Designer representation would be as under:

Here, the occurrence constraints (Min Occurs = 0 & Max Occurs = 1) of the group
are pushed to the child elements.

See Also:

Choice declaration
Group Flattening Rules
Group represented as section

Choice Declaration

Choice indicates that only one child element must occur. In DTD, you use the pipe
symbol | to represent a choice, i.e., if you want only one of the child elements to
appear, you separate them with pipe symbol.

Consider the following DTD:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT Root (contact_details)>

<!ELEMENT contact_details (phone | email | website)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT website (#PCDATA)>

In the above declaration, the child elements of the “contact_details” element are
separated by pipe symbol, which indicates that only one among the child elements
should occur in the corresponding XML instance. When this DTD is imported in the
Designer, the corresponding Designer representation would be as under:

Designer Representation details

1. The group enclosing the child elements of the “contact_details” element is

flattened (has no explicit Designer representation) since it is non-repeating, and
its children are aggregated to the “contact_details” element and represented as
sub-fields. (Root element has no explicit representation in the Designer)

2. The choice functionality (represented by ‘pipe symbol’ in the DTD declaration) is
pushed to the parent element “contact_details” and represented by the ‘choice’
item set in ‘Compositor’ list box in the “Section Properties” pane. And also, all the
child elements of the “contact_details” element are made optional to represent
the choice behavior in the Designer.

3. Here, the occurrence constraints of the group and the parent element are
identical (both being mandatory & non-repeating) and are represented by the
‘Min Occurs’ and ‘Max Occurs’ combo boxes in the “Section Properties” pane.

4. In the above e.g., suppose the group was declared as optional using the ?
qualifier, i.e., if the declaration of “contact_details” element was as follows
<!ELEMENT contact_details (phone | email | website)?>

5. and if you had enabled the “Flatten optional groups” option in “Schema Import
Options” window during import, the corresponding Designer representation would
be similar to the one above. On the other hand if you import using the default

options (without specifying flattening option) the group would have an explicit
representation as section in the Designer.

See Also:

Sequence declaration
Group Flattening Rules
Group represented as section

Group Flattening Rules

In the following cases, the group is flattened, i.e., the group has no explicit
representation in the Designer and the contents and the order indicator of the child
elements of the group are pushed to its parent.

Mandatory and Non-repeating group flattening

Where applicable

The following condition should be satisfied for this rule to be applied:

 The group is mandatory and non-repeating

Flattening details

 The parent element (section) inherits the order indicator (sequence, choice)
of the child elements enclosed in the group.

 The group has no explicit Designer representation.
 The child elements enclosed in the group are moved to its parent element,

i.e. the parent section.

Example

Consider the following DTD:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT Root (contact_details)>
<!ELEMENT contact_details (account_id, name)>
<!ELEMENT account_id (#PCDATA)>
<!ELEMENT name (#PCDATA)>

Here, the group (represented by open & close parentheses) is mandatory & non-
repeating (no qualifier used) and the child elements enclosed in the group are
separated by comma, meaning the “sequence” order indicator. When this DTD is

imported in the Designer, the corresponding Designer representation would be as
under:

Designer Representation details

1. The group is flattened, i.e., it does not have any explicit representation in the

Designer.
2. The child elements enclosed in the group are moved to the parent element and

represented as the child elements of the parent section “contact_details” and the
order indicator (‘sequence’ in this case) of the child elements is inherited by the
parent element. (Compositor property for the “contact_details” element is set as
‘sequence’).

Remarks

1. This rule is always applied.

2. In case the order indicator of the child elements enclosed in the group is

choice, then the child elements are made optional. Refer “Optional behavior of
Choice fields”.

Optional group flattening

Where applicable

The following condition should be satisfied for this rule to be applied:

 The group is optional and non-repeating
 The option “Flatten optional groups” is selected in the “Schema Import

Options” window.

Flattening details

 The cardinality of the group is applied to the child elements enclosed in the
group. Since the model group is optional, the child elements under it are
invariably made optional.

 The group has no explicit Designer representation.
 The child elements enclosed in the group are moved to its parent element,

i.e. the parent section.

Example

Consider the following DTD:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT Root (contact_details)>
<!ELEMENT contact_details (email, website)?>
<!ELEMENT email (#PCDATA)>
<!ELEMENT website (#PCDATA)>

Here, the group (represented by open & close parentheses) is optional & non-
repeating (qualifier ? used) and the child elements enclosed in the group are
separated by comma, meaning the “sequence” order indicator. When this DTD is
imported in the Designer, the corresponding Designer representation would be as
under:

Designer Representation details

1. The group is flattened, i.e., it does not have any explicit representation in the

Designer.
2. The child elements enclosed in the group are moved to the parent element and

represented as the child elements of the parent section “contact_details” and the

order indicator (‘sequence’ in this case) of the child elements is inherited by the
parent element. (Compositor property for the “contact_details” element is set as
‘sequence’).

3. The optional behavior of the group is applied to the child elements viz., ‘email’
and ‘website’ enclosed in the group by making them optional.

Remarks

1. This rule is not applied by default. It is applied only when the option “Flatten

optional groups” is selected in the “Schema Import Options” window. Else, the
group will not be flattened.

2. There are both positive and negative effects in using this option. The positive

effect is that the user can get rid of an extra section and thereby reduce the
extra work during mapping. The negative effect is that some information is lost.
In the above e.g., since the optional behavior of the group is applied to the child
elements which are originally mandatory, the mandatory behavior of the child
elements is lost.

Optional behavior of Choice fields

If the order indicator used for the elements in a group is a choice (pipe symbol
used), then the child elements of the group are invariably made optional, whether
the group is optional or not or whether it is flattened or not. This is due to conflict
between the Designer and DTD in interpreting the meaning of the word ‘optional’.

Example

Consider the following DTD:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT Root (contact_details)>
<!ELEMENT contact_details (phone | email)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT email (#PCDATA)>

Here, the group (represented by open & close parentheses) is mandatory & non-
repeating (no qualifier used) and the child elements enclosed in the group are
separated by pipe symbol, meaning the ‘choice’ order indicator. When this DTD is
imported in the Designer, the corresponding Designer representation would be as
under:

Note that the child elements “phone” and “email” are made optional though they are
mandatory as per the DTD.

See Also:

Sequence declaration
Choice declaration
Group represented as section

Group Represented as Section

In the following cases, the group is not flattened, i.e., the group is represented as a
section.

1. Where the group has more than one child and is repeating.
2. Where the group has more than one child and is optional.

Example

Consider the following DTD where the above two conditions are satisfied:

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT Root (contact_details)>

<!ELEMENT contact_details (email, website)*>

<!ELEMENT email (email1 | email2)?>

<!ELEMENT email1 (#PCDATA)>

<!ELEMENT email2 (#PCDATA)>

<!ELEMENT website (#PCDATA)>

When this DTD is imported in the Designer with the default import options, the
corresponding Designer representation would be as under:

Note that both the groups are not flattened and they are represented as a section.

See Also:

Sequence declaration
Choice declaration
Group Flattening Rules

DTD AttributeDeclaration

If you use DTD to describe XML structure, all attributes used in a valid XML
document must be declared in that DTD. You define a list of attributes for an
element with the ATTLIST assignment. You can assign multiple attributes to an
element using a single assignment. Attribute declarations have an attribute name,
an attribute type and a default usage. Attribute types fall into one of three
categories: string types, tokenized types, and enumerated types. For e.g., CDATA is
a string type while ENUMERATION is an enumerated type. For string and tokenized
attributes, default usages can be set with the keywords #IMPLIED, #FIXED and
#REQUIRED which are described in the following table:

Keyword Attribute Usage Default Value

#IMPLIED Optional attributes No default value is assigned or
allowed

#FIXED Fixed-value attributes Default value is assigned as

provided and necessary

#REQUIRED Mandatory attributes No default value is assigned or
allowed.

- Literal value attributes Default value is assigned as
provided and necessary.

Default attribute values apply when attribute are missing in the related document.

When a DTD is imported, attributes are always aggregated to the element for which
they are declared and are represented as fields in the Designer. Refer
“Aggregation”.

Consider the following DTD:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT Root (purchase_order)>
<!ELEMENT purchase_order (date, item)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT item (#PCDATA)>
<!ATTLIST purchase_order cust_rep CDATA #IMPLIED
 shipping CDATA #REQUIRED
 prepaid CDATA #FIXED "yes"
 store NMTOKEN "Seattle"
>

In the above DTD, the purchase_order element has four attributes added to it.
When this DTD is imported in the Designer, the corresponding Designer
representation would be as under:

Designer Representation details

1. All the attributes are aggregated to the “purchase_order” element and are

represented as its sub-fields with ‘Node Type’ set as “attribute” in the “Field
Properties” pane.

2. The mandatory / optional behavior of the attribute is represented by the checking
/ unchecking of the ‘Required’ check box in the “Field Properties” pane. The
attribute “cust_rep” is optional; hence “Required” check box would be unchecked
for it while for the mandatory attribute “shipping” the “Required” check box
would be checked.

3. The default value “yes” set for the Fixed attribute “prepaid” is represented by the
value set in the “Default Value” text box in the “Field Properties” pane.

4. The default value “Seattle” set for the literal value attribute “store” is also
similarly represented.

See Also:

Enumeration type
Ignore Fixed Attributes
DTD Element declaration
Group declaration

Enumeration Type

For enumerated type attribute, the list of possible values specified in the DTD is
represented in the Designer in the table under the “Enumeration” tab of the “Facets”
window, which is opened by clicking the “Facets” button in the “Field Properties”
pane.

Consider the following DTD:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT Root (purchase_order)>
<!ELEMENT purchase_order (date, item)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT item (#PCDATA)>
<!ATTLIST purchase_order type (walkin | phone | catalog) "walkin"
>

In the above DTD, the purchase_order element has an enumeration attribute “type”.
The type attribute has three name tokens that define the valid values for the
attribute. The default value “walkin” is assigned as a literal value enclosed in
quotation marks. When this DTD is imported in the Designer, the corresponding
Designer representation would be as under:

The default value is represented in the “Default Value” text box in the “Field
Properties” pane. To view the list of enumerations, you should click the “Facets”
button, which would open the “Facets” window as seen below:

Note that the list mentioned in the DTD finds place in the table in the “Enumeration”
tab.

See Also:

Ignore Fixed Attributes

Ignore Fixed Attributes (DTD AttributeDeclaration)

“Ignore Fixed Attributes” option is provided in the “Schema Import Options” window.
When this option is checked, the attributes for which usage is specified as #FIXED
will not be imported in the Designer during DTD import. This is particularly useful in
cases where fixed attributes are used to provide meta-info or additional information
about the elements in the schema. In the first e.g. given above, for the “prepaid”
attribute, usage is set as #FIXED. When the DTD in the first example under the
chapter “Attribute declaration” given above is imported in the Designer with the
option “Ignore Fixed Attributes” selected, the equivalent Designer representation
would be as under:

Note that the “prepaid” attribute is not imported in this case.

See Also:

Enumeration type

Designing XML Structure Manually in
Designer

When you select the “Synthesize DTD” option in the “Schema Option” window and
select the required options in the subsequent windows of the creation wizard (Refer
“iii) Synthesize DTD”), an empty XML message format is created as shown below:

In the Explorer window, the newly created XML Message format is displayed with two
child nodes viz., External Format and Validation Rules. The External Format User
Interface has three segments viz., Header, Data and Trailer, where you design your
XML message structure by adding fields / sections and setting properties for the
same. The tool bar that lets you add field / section and set format options is shown
under:

Tool Bar
Icon

Function

 Adds a new field

 Adds a new section

 Removes a field / section

 Moves the selection field / section up by one step

 Moves the selection field / section down by one step

 Moves the selected field / section left

 Moves the selected field / section right

 Lets you reconfigure the schema

 Lets you specify various format options

To add an XML element with different types of content and XML attribute, you have
to add a field / section in the Designer and set the “Node Type” and “Compositor” in
the “Properties” pane accordingly. The following sections explain the possible XML
component representations of a Field and a Section.

See Also:

Field representation
Section representation
Adding Element
Adding Attribute
Adding character content
Adding Wildcard
Adding Group

Field Representation

A Designer field can represent an XML element / attribute / character data based on
the selected “Node Type”

Node Type of the
Field

XML component

element Non-repeating element with
character data or text

attribute Attribute

Value character data / text of mixed

content element

When a field is selected in the UI, the “Field Properties” pane is displayed, which is
described hereunder:

See Also:

Section representation

Field Properties pane

 XML Name text box is used to specify the required name of the XML element
/ attribute. If no value is specified here, the Designer name is taken as the
XML name.

 Namespace text box is used to specify the namespace for namespace

qualified element / attribute.

 Node Type list box is used to specify the required XML representation of the
selected field. There are three items in the list viz., element, attribute and
value each representing different XML components as detailed in the table
under “Field representation”.

 Required check box is used to specify the optional / mandatory behavior of

an element / attribute.

 Default Value text-box is used to specify the default / fixed value of the XML
element / attribute.

 Facets button, when clicked, opens the “Facets” window, where you can set

the required facet for the element. The window has three tabs as explained
under:

‘Facets’ tab

Under the ‘Facets’ tab, all applicable facets (except “pattern” and “enumeration”)
for the XML type of a selected element or attribute are listed under the ‘Facet’
column. You can set the required value under the respective ‘Value’ column and
also specify description if required under the ‘Description’ column.

‘Pattern’ tab

Under the ‘Pattern’ tab, pattern facet for the XML Type of the selected element /
attribute (if applicable) can be specified under the ‘Pattern’ column and
description if required can be specified under the ‘Description’ column. Click the
‘Add’ button available in the tool bar to add a ‘pattern’ facet. You can remove
an added facet using the ‘Remove’ button which is enabled when a facet is
added. You can move the added facets in the table one step up and down using
the “Move Selection Up” and “Move Selection Down” buttons.

‘Enumeration’ tab

Under the ‘Enumeration’ tab, enumeration facet for the XML Type of the selected
element / attribute (if applicable) can be specified under the ‘Enumeration’
column and description if required can be specified under the ‘Description’
column. Use the buttons available in the tool bar to add / remove / move up &
down the added enumeration facets.

See Also:

Field representation

Section Representation

A Designer section can represent an XML element / group / anyElement /
anyAttribute based on the selected “Node Type”

Node Type of the
Section

XML component

element Element with sub-elements, with &
without attributes /

Element with text & attribute /

Repeating element

group group (sequence / choice / all)

Any any Element

anyAttribute any Attribute

When a section is selected in the UI, the “Section Properties” pane is displayed,
which is described hereunder:

See Also:

Field representation
Section Properties pane

Section Properties pane

 XML Name text box is used to specify the required name of the XML
element. If no value is specified here, the Designer name is taken as the XML
name.

 Namespace text box is used to specify the namespace for namespace

qualified element.

 Node Type list box is used to specify the required XML representation of the
selected section. There are four items in the list viz., element, group, any
and anyAttribute each representing different XML components as detailed in
the table under “Section representation”.

 Min Occurs, Max Occurs combo boxes are used to specify the occurrence

constraints for the XML element.

 Compositor list box is used to specify the compositor which determines the
order of occurrence of child elements of an XML element. There are three
elements in this list box viz., sequence, choice and all.

sequence

Indicates that the child elements should appear in sequential order as
specified.

choice

Indicates that only one of the child elements should appear.

all

Indicates that the child elements may appear in any order.

We have seen what a field and a section added in the Designer mean in the XML’s
perspective. Now let us see how to design a XML message structure containing
various XML components in the Designer.

See Also:

Section Representation

Adding Element

To add an element, you have to add a field / section based on the element content
and its occurrence constraints. An element can be of simple / complex type and can
be repeating / non-repeating.

See Also:

Adding Attribute
Adding character content
Adding Wildcard
Adding Group

Simple Type

An element is said to be of simple type if it can contain only character data and no
sub-elements or attributes. A simple type element can be repeating or non-
repeating. In the Designer, to add a simple type element, you have to add a field /
section based on its occurrence. If the element is non-repeating, you have to add a
field; if it is repeating, you have to add a section.

See Also:

Complex Type

Non-repeating element

To add a non-repeating simple type element, follow the steps detailed below:

1. Add a field by clicking the “Add New Field” icon & specify the field name.
2. In the “Field Properties” pane, specify the properties as shown in the following

table:

Property Name Value to be specified

Node Type list box element

XML Name text box required XML name for
the element

Required check box Mandatory / Optional
behavior of the
element

Namespace text box Namespace for the
element, if required

Default Value text box Default value for the
element, if required

3. In the XML Type column, specify the required data type for the element.
4. If you want to set facets, click the “Facets” button in the “Field Properties” pane

to open the “Facets” window and specify required facets for that element.
5. If required, specify description about the field in the “Description” column.

Equivalent DTD

The relevant DTD equivalent for the above structure is:

<!ELEMENT Root (name)>

<!ELEMENT name (#PCDATA)>

Equivalent XSD

The relevant XSD equivalent for the above structure is:

<xs:element name="name" type="xs:string"/>

See Also:

Simple Type
Repeating element

Repeating element

To add a repeating simple type element, follow the steps detailed below:

1. Add a section by clicking the “Add New Section” icon & specify the section name.

2. In the “Section Properties” pane, specify the properties as shown in the following

table:

Property Name Value to be specified

Node Type list box element

XML Name text box required XML name for the
element

Namespace text box Namespace for the element,
if required

Min Occurs, Max Occurs combo boxes Occurrence constraints for
the element

Compositor list box sequence

3. Add a sub-field under the above section, specify a name (typically named as

“Value” as it represents the value of the XML element) and in the “Field
Properties” pane, specify the properties as shown in the following table:

Property Name Value to be specified

Node Type list box value

XML Name text box Not Applicable

Required check box Checked

Namespace text box Not Applicable

Default Value text box Default value for the
element, if required

4. In the XML Type column for the above added field, specify the required data type

for the element.
5. If you want to set facets for the element, click the “Facets” button in the “Field

Properties” pane to open the “Facets” window and specify required facets for that
element.

6. If required, specify description about the section & the sub-field in the
“Description” column.

Equivalent DTD

The relevant DTD equivalent (See “comment” element) for the above structure is:

<!ELEMENT Root (name, comment*)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT comment (#PCDATA)>

Equivalent XSD

The relevant XSD equivalent for the above structure is:

<xs:element name="comment" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

See Also:

Adding Element

Complex Type

An element is said to be of complex type if it can contain sub-elements, attributes as
well as character data. The content of a Complex Type can be simple / complex. A
complex type element is typically represented as a section in the Designer except in
one special case (Refer “Character Data Only”).

See Also:

Simple Type

Simple Content (Complex Type)

An element of complex type with simple content (Text-only content) can have just
character data or character data and attributes, but it cannot have sub-elements.

Character Data Only

To add an element of complex type with simple content that has just character data
and no other content, you have to add a field / section based on the occurrence
constraints of the element. If the element is non-repeating, you have to add a field
and if it is repeating, you have to add a section. The non-repeating option is the
only case, where an element of complex type is represented as a field. (Note that in
XSD, an element with just character data can be of simple type or complex type,
whereas in DTD, there is no separate type definition and an element with just
character data has only one possible representation).

Non-repeating Element

To add a non-repeating element with just character data, follow the steps explained
in the section “Non-repeating element” under “Simple Type”.

Designer representation of a non-repeating complex type element with just character
data.

Equivalent DTD

The relevant DTD equivalent for the above structure is:

<!ELEMENT Root (internationalPrice)>

<!ELEMENT internationalPrice (#PCDATA)>

Equivalent XSD

The relevant XSD equivalent for the above structure is:

<xs:element name="internationalPrice">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string"/>

 </xs:simpleContent>

 </xs:complexType>

</xs:element>

Repeating Element

To add a repeating element with just character data, follow the steps explained in
the section “Repeating Element” under “Simple Type”.

Designer representation of a repeating complex type element with just character
data.

Equivalent DTD

The relevant DTD equivalent for the above structure is:

<!ELEMENT Root (internationalPrice)*>

<!ELEMENT internationalPrice (#PCDATA)>

Equivalent XSD

The relevant XSD equivalent for the above structure is:

<xs:element name="internationalPrice" minOccurs=”0” maxOccurs=”unbounded”>

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string"/>

 </xs:simpleContent>

 </xs:complexType>

</xs:element>

Character Data and Attributes

To add an element of complex type with simple content that has character data as
well as attributes, you have to invariably add a section whether the element is
repeating or non-repeating and add sub-fields to represent the attributes and
character data. To add such an element follow the steps detailed below:

1. Add a section by clicking the “Add New Section” icon & specify the section name.
2. In the “Section Properties” pane, specify the properties as shown in the following

table:

Property Name Value to be specified

Node Type list box element

XML Name text box required XML name for the
element

Namespace text box Namespace for the element,
if required

Min Occurs, Max Occurs combo boxes Occurrence constraints for
the element, if required

Compositor list box sequence

3. To add attribute, add a sub-field under the above section, specify a name, and in

the “Field Properties” pane, specify the properties as shown in the following
table:

Property Name Value to be specified

Node Type list box attribute

XML Name text box required XML name for the
attribute

Required check box Mandatory / Optional behavior
of the attribute

Namespace text box Namespace for the attribute, if
required

Default Value text box Default value for the attribute,
if required

4. In the XML Type column for the above added attribute field, specify the required

data type for the attribute.
5. If you want to set facets for the attribute, click the “Facets” button in the “Field

Properties” pane to open the “Facets” window and specify required facets for that
attribute.

6. To represent the character data, again add a sub-field under the above section,
specify a name (typically named as “Value” as it represents the value of the XML
element) and in the “Field Properties” pane, specify the properties as shown in
the following table:

Property Name Value to be specified

Node Type list box value

XML Name text box Not Applicable

Required check box Checked

Namespace text box Not Applicable

Default Value text box Default value for the
element, if required

7. In the XML Type column for the above added field, specify the required data type

for the element.
8. If you want to set facets for the element, click the “Facets” button in the “Field

Properties” pane to open the “Facets” window and specify required facets for that
element.

9. If required, specify description about the element & attribute in the
corresponding “Description” column.

Equivalent DTD

The relevant DTD equivalent (see “internationalPrice” element) for the above
structure is:

<!ELEMENT Root (name, comment*, internationalPrice)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT comment (#PCDATA)>

<!ELEMENT internationalPrice (#PCDATA)>

<!ATTLIST internationalPrice currency CDATA #IMPLIED >

Equivalent XSD

The relevant XSD equivalent for the above structure is:

<xs:element name="internationalPrice">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:decimal">

 <xs:attribute name="currency" type = "xs:string"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

</xs:element>

See Also:

Complex Type

Complex Content (Complex Type)

An element of complex type with complex content can have sub elements, attributes
as well as character data. Based on the content, an element of complex content can
be further categorized as element having standard content, mixed content, any
content or empty content.

Standard Content

Complex Types with standard content have only elements or elements and attributes
associated with them. To add such an element in the Designer, you have to add a
section to represent the parent element, sub-fields / sub-sections to represent the
child elements and sub-fields (with Node Type “Attribute”) to represent the
attributes.

To add an element of standard content that has both child elements and attributes,
follow the steps detailed below:

1. Add a section by clicking the “Add New Section” icon & specify the section name.
2. In the “Section Properties” pane, specify the properties as shown in the following

table:

Property Name Value to be specified

Node Type list box element

XML Name text box required XML name for the
element

Namespace text box Namespace for the element,
if required

Min Occurs, Max Occurs combo boxes Occurrence constraints for
the element, if required

Compositor list box sequence

For each attribute, add a sub-field under the above added section, specify a name
and set the required properties in the “Field Properties” pane. Refer the table in the
previous section.
To add the child elements, add a sub-field or sub-section depending on whether the
child element is repeating or non-repeating and also based on its content. Refer the
sections explained above to determine whether to add a field or section to represent
the child element. In the following case, fields (with Node Type as “element”) are
added to represent the child elements.

Equivalent DTD

The relevant DTD equivalent for the above structure is:

<!ELEMENT Root (item)>

<!ELEMENT item (productName, quantity)>

<!ELEMENT productName (#PCDATA)>

<!ELEMENT quantity (#PCDATA)>

<!ATTLIST item weightKg CDATA #IMPLIED

 partNum CDATA #REQUIRED>

Equivalent XSD

The relevant XSD equivalent for the above structure is:

<xs:element name="item">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="productName" type="xs:string"/>

 <xs:element name="quantity" type="xs:positiveInteger"/>

 </xs:sequence>

 <xs:attribute name="partNum" type="xs:string" use="required"/>

 <xs:attribute name="weightKg" type="xs:decimal"/>

 </xs:complexType>

</xs:element>

Mixed Content

Complex Types with mixed content have a combination of elements and text
associated with them and may contain attribute definitions. To add such an element
in the Designer, you have to add a section to represent the parent element, sub-
fields (with Node Type as “element”) / sub-sections to represent the child elements,
sub-fields (with Node Type as “attribute”) to represent the attributes if any, and
another sub-field (with node type as “value”) to represent the text content.

To add an element with mixed content without any attributes, follow the steps
detailed below:

1. Add a section by clicking the “Add New Section” icon & specify the section name.

2. In the “Section Properties” pane, specify the properties as shown in the following

table:

Property Name Value to be specified

Node Type list box element

XML Name text box required XML name for the
element

Namespace text box Namespace for the element,
if required

Min Occurs, Max Occurs combo boxes Occurrence constraints for
the element, if required

Compositor list box sequence

To represent the text content of the element, add a sub-field under the above
section, specify a name and in the “Field Properties” pane, specify the properties as
shown in the following table:

Property Name Value to be specified

Node Type list box value

XML Name text box Not Applicable

Required check box Checked

Namespace text box Not Applicable

Default Value text box Not Applicable

In the XML Type column for the above added field, select “string”.
To add the child elements, add a sub-field or sub-section depending on whether the
child element is repeating or non-repeating and also based on its content. Refer the
sections explained above to determine whether to add a field or section to represent
the child element. In the following case, a section (with Node Type as “element”) is
added to represent the repeating “item” child element.

Equivalent DTD

The relevant DTD equivalent for the above structure is:

<!ELEMENT Root (inventory)>

<!ELEMENT inventory (#PCDATA | item)*>

<!ELEMENT item (#PCDATA)>

Equivalent XSD

The relevant XSD equivalent for the above structure is:

<xs:element name="inventory">

 <xs:complexType mixed="true">

 <xs:sequence>

 <xs:element name="item" type="xs:string" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

Any Content

Complex Types with any content are unconstrained, i.e., they can contain any type
of content say, text, sub-element, attribute, etc. To add such an element in the
Designer, you have to add a section to represent the element, a sub-field (with Node
Type as “value”) to represent the applicability of text content, a sub-section (with
Node Type as “any”) to represent the applicability of child elements and another sub-
section (with Node Type as “anyAttribute”) to represent the applicability of
attributes.

To add an element with any content, follow the steps detailed below:

1. Add a section by clicking the “Add New Section” icon & specify the section name.

2. In the “Section Properties” pane, specify the properties as shown in the following

table:

Property Name Value to be specified

Node Type list box Element

XML Name text box required XML name for the

element

Namespace text box Namespace for the element,
if required

Min Occurs, Max Occurs combo boxes Occurrence constraints for
the element, if required

Compositor list box Sequence

To represent the applicability of text content for the element, add a sub-field under
the above section, specify a name and in the “Field Properties” pane, specify the
properties as shown in the following table:

Property Name Value to be specified

Node Type list box Value

XML Name text box Not Applicable

Required check box Unchecked

Namespace text box Not Applicable

Default Value text box If required

To represent the applicability of any attribute content for the element, add a sub-
section under the above section, specify a name and in the “Section Properties”
pane, specify the properties as shown in the following table:

Property Name Value to be specified

Node Type list box anyAttribute

XML Name text box required XML name for the
anyAttribute

Namespace text box required Namespace for the
anyAttribute

Min Occurs, Max Occurs combo boxes Min Occurs = 0

Max Occurs = Unbounded

Compositor list box sequence

To represent the applicability of any sub-element content for the element, add
another sub-section under the above section, specify a name and in the “Section
Properties” pane, specify the properties as shown in the following table:

Property Name Value to be specified

Node Type list box any

XML Name text box required XML name for the
any element

Namespace text box required Namespace for the
any element

Min Occurs, Max Occurs combo boxes Min Occurs = 0

Max Occurs = Unbounded

Compositor list box sequence

Equivalent DTD

The relevant DTD equivalent for the above structure is:

<!ELEMENT Root (main)>

<!ELEMENT main ANY>

Equivalent XSD

The relevant XSD equivalent for the above structure is:

<xs:element name="main" type="xs:anyType"/>

Empty Content

Complex Types with no content associated with them are empty, meaning they don’t
have, nor do they allow, content. They can, however, have attributes. To add such
an element in the Designer, you have to add a section to represent the element and
sub-fields (with Node Type as “attribute”) to represent the attributes if any.

To add an element with empty content, follow the steps detailed below:

1. Add a section by clicking the “Add New Section” icon & specify the section name.

2. In the “Section Properties” pane, specify the properties as shown in the following

table:

Property Name Value to be specified

Node Type list box element

XML Name text box required XML name for the
element

Namespace text box Namespace for the element,
if required

Min Occurs, Max Occurs combo boxes Occurrence constraints for
the element, if required

Compositor list box sequence

If you want the element to contain attributes, add the same by adding sub-fields
under the above added section with Node Type as “attribute” and setting the
required properties. Refer the table given earlier for details. In the following case, we
have an empty element, which allows attributes.

Equivalent DTD

The relevant DTD equivalent for the above structure is:

 <!ELEMENT Root (internationalPrice)>

<!ELEMENT internationalPrice EMPTY>

<!ATTLIST internationalPrice currency CDATA #IMPLIED

 value CDATA #IMPLIED>

Equivalent XSD

The relevant XSD equivalent for the above structure is:

<xs:element name="internationalPrice">

 <xs:complexType>

 <xs:attribute name="currency" type="xs:string"/>

 <xs:attribute name="value" type="xs:decimal"/>

 </xs:complexType>

</xs:element>

See Also:

Complex Type

Adding Attribute

To add an Attribute in the Designer, you have to add a field and set the Node Type
as “attribute”.

To add an attribute, follow the steps detailed below:

1. Add a field by clicking the “Add New Field” icon & specify the field name.
2. In the “Field Properties” pane, specify the properties as shown in the following

table:

Property Name Value to be specified

Node Type list box attribute

XML Name text box required XML name for the
attribute

Required check box Mandatory / Optional behavior
of the attribute

Namespace text box Namespace for the attribute, if
required

Default Value text box Default value for the attribute,
if required

Equivalent DTD

The relevant DTD equivalent for the above structure is:

<!ELEMENT Root (item)>

<!ELEMENT item EMPTY>

<!ATTLIST item partNum CDATA #REQUIRED >

Equivalent XSD

The relevant XSD equivalent for the above structure is:

<xs:element name="item">

 <xs:complexType>

 <xs:attribute name="partNum" type="xs:string" use="required"/>

 </xs:complexType>

</xs:element>

Note:

To add an “attributeGroup”, which is nothing but a list of attributes, just add each
attribute in the “attributeGroup” following the steps detailed above.

See Also:

Adding Element
Adding character content
Adding Wildcard
Adding Group

Adding character content

To represent the character data content of a repeating simple type element or a
complex type element where character data is applicable, follow the steps detailed
below:

1. Under the parent element (section), add a sub-field by clicking the “Add New

Field” icon & specify the field name.
2. In the “Field Properties” pane, specify the properties as shown in the following

table:

Property Name Value to be specified

Node Type list box value

XML Name text box Not Applicable

Required check box Checked

Namespace text box Not Applicable

Default Value text box Default value for the
element (simple type), if
required

3. In case of repeating simple type element, f you want to set facets for the

element, click the “Facets” button in the “Field Properties” pane to open the
“Facets” window and specify required facets for that element.

Equivalent DTD

The relevant DTD equivalent for the above structure is:

<!ELEMENT Root (comment+)>

<!ELEMENT comment (#PCDATA)>

Equivalent XSD

The relevant XSD equivalent for the above structure is:

<xs:element name="comment" type="xs:string" maxOccurs="unbounded"/>

See Also:

Adding Element
Adding Attribute
Adding Wildcard
Adding Group

Adding Wildcard

A wildcard provides for validation of attribute and element information items
dependent on their namespace name, but independently of their local name. This
concept is relevant to XSD. The two wildcard schema components are “any” and
“anyAttribute” elements.

See Also:

Adding Element
Adding Attribute
Adding character content
Adding Group

any element

In general, an “any” element specifies that any well-formed XML is permissible in a
type's content model. It enables element content according to namespaces. To add
an “any” element in the Designer, you have to add a section with “Node Type” as
“any”.

To add an “any” element, follow the steps detailed below:

1. Add a section by clicking the “Add New Section” icon & specify the section name.
2. In the “Section Properties” pane, specify the properties as shown in the following

table:

Property Name Value to be specified

Node Type list box any

XML Name text box any

Namespace text box value of “namespace” attribute of
the “any” element (##any,
##other, etc.)

Min Occurs, Max Occurs combo boxes Occurrence constraints for the
“any” element, if required

Compositor list box sequence

It is pertinent to note here that unlike the previous cases, the value specified in
the “Namespace” text box for an “any” element does not represent the
namespace of the “any” element, but it represents the value of the “namespace”
attribute of the “any” element.

Equivalent XSD

The relevant XSD equivalent for the above structure is:

<xs:any namespace="##any"/>

See Also:

anyAttribute element

anyAttribute element

“anyAttribute” element enables attributes to appear in elements. In contrast to an
“any” element, “anyAttribute” cannot constrain the number of attributes that may
appear in an element. To add an “anyAttribute” element in the Designer, you have
to add a section with “Node Type” as “anyAttribute”.

To add an “anyAttribute” element, follow the steps detailed below:

1. Under the required parent element, “Elm” in this case (added as section), add a

sub-section by clicking the “Add New Section” icon & specify the sub-section
name.

2. In the “Section Properties” pane, specify the properties as shown in the following
table:

Property Name Value to be specified

Node Type list box anyAttribute

XML Name text box anyAttribute

Namespace text box value of “namespace” attribute of

the “anyAttribute” element
(##any, ##local, ##other, etc.)

Min Occurs, Max Occurs combo boxes Min Occurs = 0

Max Occurs = Unbounded

(because, no. of attributes can’t be
constrained)

Compositor list box sequence

Here also, as in the case of “any” element, the value specified in the
“Namespace” text box for the “anyAttribute” element does not represent the
namespace of the “anyAttribute” element, but it represents the value of the
“namespace” attribute of the “anyAttribute” element.

Equivalent XSD

The relevant XSD equivalent for the above structure is:

<xs:anyAttribute namespace = "##any"/>

See Also:

any element

Adding Group

To determine the order of occurrence of child elements of an XML element, you may
add a group (sequence / choice / all). (In XSD, two types of groups, viz., named
(group) and anonymous are available; in DTD, open and close parentheses ()

represent a group, a comma between two elements indicates “sequence” while the
pipe symbol indicates “choice” and the concept of “all” is not applicable for DTD). In
the Designer, you have two options to represent a group’s functionality:

i) You can explicitly add a section under the parent element to represent the group
 and set the compositor;
ii) You can make the parent element itself determine the order of occurrence of its
 children by setting the “Compositor” property for the same.

The latter option (called “Flattening”), has its own pros and cons; the advantage
being, you can reduce the complexity of the message structure; the disadvantage
being, there can be loss of information and Flattening is not applicable in some
cases.

To explicitly add a group (Option (i) discussed above), follow the steps detailed
below:

 Under the parent element (section) where you want to add a group, add a
sub-section by clicking the “Add New Section” icon & specify the required
section name. Note that this sub-section will have no representation in the
corresponding XML instance, as it is not an XML element.

 In the “Section Properties” pane for the added sub-section, specify the
properties as shown in the following table:

Property Name Value to be specified

Node Type list box group

XML Name text box Not Applicable

Namespace text box Not Applicable

Min Occurs, Max Occurs combo boxes Occurrence constraints for
the group

Compositor list box required compositor
(sequence, choice or all)

 Under the above sub-section, add the child elements of the parent element by

adding a field or section depending on whether the child element is repeating
or non-repeating and also based on its content. Refer the sections explained
above to determine whether to add a field or section to represent the child

element. In the following case, fields (with Node Type as “element”) are
added to represent the non-repeating child elements with character data.

 If the Compositor of the group is “choice”, make all the child elements as
optional to represent the “choice” behavior in the Designer.

Equivalent DTD

The relevant DTD equivalent for the above structure is:

<!ELEMENT Root (ContactDetails)>

<!ELEMENT ContactDetails (account_id, extra_info, phone_no) >

<!ELEMENT account_id (#PCDATA)>

<!ELEMENT extra_info (fax_no | email_id)?>

<!ELEMENT fax_no (#PCDATA)>

<!ELEMENT email_id (#PCDATA)>

<!ELEMENT phone_no (#PCDATA)>

Equivalent XSD

The relevant XSD equivalent for the above structure is:

<xs:element name="ContactDetails">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="account_id" type="xs:string"/>

 <xs:element name="extra_info">

 <xs:complexType>

 <xs:choice minOccurs="0">

 <xs:element name="fax_no" type="xs:positiveInteger"/>

 <xs:element name="email_id" type="xs:string"/>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 <xs:element name="phone_no" type="xs:positiveInteger"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

Note:

To represent the group’s functionality by the element itself (Option (ii) discussed
above), just change the compositor of the “extra_info” element to “choice” and make
the child elements optional.

However, in this case, the information regarding the optional behavior of the choice
group is lost, as the group is not explicitly added.

See Also:

Adding Element
Adding Attribute
Adding character content
Adding Wildcard

Reconfigure Schema

If your schema has changed after you last imported, you can re-import the schema
by using the functionality of the ‘Reconfigure Schema’ button in the ‘External
Format’ UI toolbar. When you click this button, the “Schema Option” window of the
creation wizard would be opened which guides you through the various steps of the
XML message creation process. In the last window of the creation wizard viz.,
“Finish”, when you click the “Finish” button, the “Update Field Structure”
confirmation window would be opened:

If you click the ‘Yes’ button in the above window, the existing message structure
would be overwritten based on the newly selected schema. If you click the ‘No’
button, there won’t be any change to the existing message structure.

Note:

If you reconfigure the schema of a XML external message, the mapping information
corresponding to this external message would be lost. Also, in case of DTD, the type
changes if any, made manually for the elements / attributes in the imported XML
message structure would be lost.

See Also:

Creating an XML Format
Binding XML Schema to Designer

Format Option

The Designer gives information about the imported XML message structure and also
allows the user to customize parsing and writing options by providing various options
in the “XML Format Option” window. This setting is optional and is just for
convenience. You can later change the properties as per your choice.

Click on the ‘Format Options’ button in the ‘External Format’ UI toolbar to bring
up the ‘XML Format Option’ dialog box that has five tabs as described below.

See Also:

General
Namespaces
XML Declaration
XML Parser Options
Entity References

General

Under this tab, information about the XML message structure such as the name of
the imported schema and the options such as mode of operation, name of root /
header / record / trailer elements specified in the windows of the creation wizard are
listed. The information displayed under this tab is not editable.

General Info

1. Schema Name
2. Here, the name of the schema (XSD / DTD) with full path, which is imported to

get the current XML message structure in the Designer, is displayed. In case of
“Synthesize DTD” option selected in the “Schema Option” window, it will read as
“Synthesized” meaning that the schema (DTD) is synthesized.

3. Mode Of Operation

Here, the mode of operation (Batch / Message) selected in the “Mode Of
Operation” window of the creation wizard is displayed.

Tags

Here, the root element name specified in the “Root Element” window of the creation
wizard and the Header / Trailer / Record element names specified in the “Header &
Trailer” / “Batch Mode” window of the creation wizard are displayed.

See Also:

Namespaces
XML Declaration
XML Parser Options
Entity References

Namespaces

The options listed under this tab are used to customize the output with regard to
namespace and schema location. If the user decides not to declare a specific target
namespace, he can specify where the schema for a document is located using the
XML schema instance namespace. The XML schema instance namespace defines two
key attributes for locating schemas: “noNamespaceSchemaLocation” and
“schemaLocation”. Under this tab, you can specify three inputs as described below:

1. Schema Location

Typically, you would use the “schemaLocation” attribute where you set a default
namespace for a schema and there’s no target namespace. In the “Schema Location”
text box, the user can specify the value for the “schemaLocation” attribute. The
value specified here would be displayed as the value of the “schemaLocation”
attribute of the root element in the generated output.

In the case depicted in the above picture, we have specified the value for the
“schemaLocation” attribute as “purchaseOrder.xsd”. This would find place in the
Root element of the generated “write” output as seen under:

<?xml version="1.0" encoding="UTF-8"?>

<Root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="purchaseOrder.xsd">

. . .

</Root>

2. No Namespace Schema Location

Using “noNamespaceSchemaLocation” attribute, you can make a direct reference to
a schema location when there is no namespace target defined for the document. In
the “No Namespace Schema Location” text box, the user can specify the value for
the “noNamespaceSchemaLocation” attribute. The value specified here would be
displayed as the value of the “noNamespaceSchemaLocation” attribute of the root
element in the generated “write” output.

In the case depicted in the above picture, we have specified the value for the
“noNamespaceSchemaLocation” attribute as “purchaseOrder.xsd”. This would find
place in the Root element of the generated “write” output as seen under:

<?xml version="1.0" encoding="UTF-8"?>

<Root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="purchaseOrder.xsd">

. . .

</Root>

3. Preferred Namespace Prefixes (for output)

In this table, the target namespace, the schema namespace and any other name
space specified in the imported schema would be displayed. The user can add /
remove namespace by using the “Add” and “Remove” buttons in the tool bar of the
table and also set his preferred prefix for the namespace. The namespaces specified
here will be listed in the top of the output XML document. The parser will try to
honor the namespaces specified here. In cases where it is not possible, the same
would be ignored. If schema has target namespace, it would be automatically set in

the output XML document. In case, where namespace prefix is not specified, it
would be auto-generated. The three possible cases are explained below:

Case 1: Target namespace with default prefix

In the above case, after the schema is imported, the target namespace set in the
schema is displayed under the “Namespace” column and a default prefix
“targetnamespace” is displayed under the “Prefix” column. In this case, the value of
the target namespace is shown as the value of the “xmlns” attribute in the Root
element of the generated “write” output as seen under:

<?xml version="1.0" encoding="UTF-8"?>

<Root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http:/www.any.com">

. . .

 </Root>

Case 2: Target namespace with user-defined prefix

Suppose the user specifies his own preferred prefix in place of the
“targetnamespace” value under the Prefix column as shown in the following picture,
that prefix would find place in the generated “write” output.

In the above case, the prefix “po” is used in place of the default value
“targetnamespace”. This finds place in the generated “write” output as seen under:

<?xml version="1.0" encoding="UTF-8"?>

<po:Root xmlns:po="http:/www.any.com" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance">

. . .

</po:Root>

Case 3: Target namespace with no prefix

Suppose the user omits to specify any value in the “Prefix” column as shown in the
following picture, a prefix “ns1” would be auto-generated and that prefix would find
place in the generated “write” output.

In the above case, no prefix is used for the targetnamespace. A prefix “ns1” is auto-
generated and finds place in the generated “write” output as seen under:

<?xml version="1.0" encoding="UTF-8"?>

<ns1:Root xmlns:ns1="http:/www.any.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

. . .

 </ns1:Root>

See Also:

General
XML Declaration
XML Parser Options
Entity References

XML Declaration

The options listed under this tab are used to customize the output with regard to
DOCTYPE declaration and XML declaration.

 Doc Type Declaration

In DTD, the DOCTYPE declaration follows the XML declaration. The DOCTYPE
declaration is a container for all DTD assignments. In external DTDs, the
DOCTYPE assignment contains a Uniform Resource Identifier that identifies the
location of the DTD. You can specify the required DOCTYPE declaration in the
“Doc Type Declaration” textbox and the value specified here would be displayed
in the DOCTYPE declaration of the generated “write” output as seen under:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE "-//W3C//DTD// Specification V2.0//EN" "/XML/1998/06/xmlspec-v20.dtd">

<purchase_order>

 . . .

</purchase_order>

 XML Declaration Attributes

In this table, by default, the two XML declaration attributes viz., version &
encoding are listed. The user has the option to add / remove any XML
declaration attribute by using the “Add” and “Remove” buttons in the tool bar of
the table. The attributes and the values specified here would find place in the
XML declaration of the generated “write” output.

In the above case, we have added the “standalone” attribute. All the attributes
find place in the XML declaration of the generated output as seen below:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<purchase_order>
 . . .
</purchase_order>

See Also:

General
Namespaces
XML Declaration
Entity References

XML Parser Options

Under this tab, the user can specify external validation options and also the option of
enabling or disabling namespace processing by the XML parser. These options are
relevant for input and applicable to the XML parser (for e.g., Xerces). The validation
options are applicable when the XML message structure is imported using a DTD or
XSD. There exist a significant number of scenarios that do not require validation and
/ or cannot afford the overhead of schema validation. Typically, schema validation is
disabled to improve processing speed and/or to be able to process documents
containing invalid or incomplete content. An application must be allowed to disable
schema validation checking during runtime. To achieve this, these options are
provided.

1. Validate

If you check the “Validate” checkbox, the XML parser would validate the XML
instance with the corresponding DTD if available. If it were unchecked, no schema
validation would be done by the XML parser even if a corresponding DTD schema
were available.

2. Validate with schema

If you check the “Validate with schema” checkbox, the XML parser would validate the
XML instance with the corresponding XSD if available. If it were unchecked, no
schema validation would be done by the XML parser even if a corresponding XSD
schema were available.

Note:

By default, these two checkboxes would be unchecked. If you check these, you have
to specify the list of schemas that define the structure of the imported XML message
structure in the table provided in the “Entity References” tab.

3. Namespace aware

If your document uses namespaces, to enable / disable namespace processing, you
have to check / uncheck the “Namespace aware” checkbox. If this were unchecked,
the XML parser would not recognize namespaces and an element name “po:order”
(with namespace prefix as “po”) would be taken as one with name “po:order” and
not as “order”. When you create the XML message structure by importing a DTD,

this would be unchecked by default and in case of XSD; this would be checked by
default.

 See Also:

Format Option
Entity References

Entity References

If the user decides to validate the XML instance using the XML parser, i.e., check the
conformity of the XML instance with the corresponding schema (DTD / XSD) by
enabling the corresponding checkbox provided in the “XML Parser Options” tab, he
has to list the XSDs / DTDs directly or indirectly used for importing the current
message structure in the Designer, in the table provided in the “Entity References”
tab. The entities specified here are used during the external validation process.

See Also:

General
Namespaces
XML Declaration
XML Parser Options

Exporting an XML Message Format to
Library

An XML message format once fully entered in Designer can be saved so that it is
available for creating other formats depending on it.

1. To Export an xml message to library , right-click the XML message node in the
Explorer and choose the context menu Export to Library.

2. The Export to Library dialog appears. Enter the Name, Message group,
Version, Detailed Name, Category and Description of the format. The
category entered can be an existing one, or a new category. From the Versions
drop down select the version for the message format , From the Message Group
drop down select the Message Group for the message format. Click OK.

3. The XML message format is saved as XML file along with the Schema (DTD or
W3C XSD) in the location <installation dir>\config\xml\format in the given
Format Name.

4. XML Formats saved this way are available for creating formats in future. Refer

Creating an XML Format based on an existing XML message format.

See Also:

Creating an empty XML Format

Catalog Support

Schemas, especially those that are developed by a standard body, often contain
references to external resources, such as “http://www.w3.org/2001/xml.xsd” or
“XMLSchema.dtd”. To import those schemas, you have to either modify a schema to
fix the references, or you have to make sure that the network connection is available
when you import it. But both approaches are problematic.

We have added a XML catalog, which turns on the use of catalog-based entity
resolver. This will allow you to essentially “redirect” references to your local copies of
resources without touching the schema files.

The catalog of local schemas (XSD and DTDs) is in ‘<installation
dir>\config\xml\catalog’ directory. It also has resolver-catalog.xml where you specify
the link between the system/public id to the local file.

For example the following would instruct the Designer to use xml.xsd in this
directory instead of fetching it from the http location.

 <system systemId="http://www.w3.org/2001/xml.xsd"
 uri="xml.xsd"/>

So if the user’s schema refers to “http://www.w3.org/2001/xml.xsd”, the local copy
will be used. Users can update this catalog based on their requirements.

The concept of catalog has been standardized by Oasis and most XML based products
support it. A catalog resolver library was available in Apache site, which we
integrated with Designer.

See Also:

Format Option

Repair Functionality in XML Plugin

XML Plugin supports repair functionality, i.e., it supports generating output even if an
exception is encountered at any phase of message transformation. However, the
generation of output depends on the nature of exception encountered and the phase
of message transformation. The correctness of the output is also not guaranteed.

For e.g., let us consider that during the parsing phase of message transformation, an
exception is encountered which is non-fatal. Then, along with the exception, the
parsed output also gets produced (though its correctness is not guaranteed).

http://www.w3.org/2001/xml.xsd

This feature is supported only during certain phases of message transformation. For
e.g., if an exception were encountered during the actual transformation phase
(mapping), no output would be generated (null output generated) as all exceptions
encountered in this phase are fatal in nature.

Some non-fatal error cases are described below:

1. Violation of facet constraints in simple type definitions.

For e.g., let us consider that you have set the length facet for a simple type
element ‘A’ of type string as ‘5’, but while giving data, you give the value for ‘A’ as
“abcd”. Then during the parsing phase the following exception and output would be
generated:

Exception:

<TransformException>
 <Type>TransformException</Type>
 <Message>The value 'abcd' of element 'A' is not facet-valid with respect to
 length '5'</Message>
 <Severity>error</Severity>
 . . .
</TransformException>

Parsed Output:

<DataObject>
 <A>abcd
</DataObject>

2. Violation of content specification in complex type definitions (local structural
 constraint), for e.g., if the occurrence constraint of a child element is violated.

For e.g., let us consider the following schema:

We have set occurrence constraints for the child element A1 of the complex element
A as: minOccurs="3" maxOccurs="4”.

If your XML file has, say, only 2 occurrences of the element ‘A1’, then during the
parsing phase the following exception and output would be generated:

Exception:

<TransformException>
 <Type>TransformException</Type>
 <Message>The number of elements in the section 'A.A1' is less than
 '3'.</Message>
 . . .
 </TransformException>

Parsed Output:

<DataObject>
 <A>
 <A1>
 <Value>one</Value>
 </A1>
 <A1>
 <Value>two</Value>
 </A1>

</DataObject>

See Also:

Creating an XML Format

Glossary

Element

Elements are the basic components of an XML document. An XML document consists
of individual elements that are marked by start and end tags. Tags contain the
name of the element, so that they can be distinguished from one another more
easily. An element can contain sub-elements, attributes and text.

any element

‘any’ element is one whose content is unconstrained, i.e., it can contain any type of
content say, text, sub-element, attribute, etc. This is useful when you are
developing new schemas and are not sure of the exact document structure that you
want to use.

Attribute

Attributes are used to further specify additional information that augments the data
of an element. They are specified in the start-tag of an element. They always have
a name and a value and the syntax is: name = “value”.

AnyAttribute

‘anyAttribute’ element enables any type of attributes to appear in elements. In
contrast to an ‘any’ element, ‘anyAttribute’ cannot constrain the number of attributes
that may appear in an element.

Group

Groups are used to structure related sets of elements.

Model Group

A model group is used to specify the order of occurrence of child elements of an
element.

Compositor

A compositor specifies the relationship between two components in a content model.
‘sequence’, ‘choice’ and ‘all’ are the three compositors that can be used in a content
model.

Sequence

‘sequence’ compositor indicates that the child elements must occur in the specified
order.

Choice

‘choice’ compositor indicates that only one of the child elements must occur.

All

‘all’ compositor indicates that the child elements can occur in any order.

Namespace

Namespaces are used to prevent naming conflicts when like-named elements and
attributes are associated with different types of data structures and are used in the
same document.

Facet

Facets are applied to data types to distinguish those aspects of one data type which
differ from other data types. For e.g., for a “string” data type, you can apply the
facets ‘length’, ‘minLength’, ‘maxLength’ and ‘whiteSpace’.

Flattening

Flattening is the process of removing a model group and pushing the contents of a
model group to the parent of the group. There is an option provided in the Designer
during schema import to enable flattening in some cases where it is not carried out
by default, and is particularly useful in reducing the number of sections in the
message structure.

Aggregation

Aggregation is the process where the contents of all the components referenced by
the schema component type are put to the type and eventually the type itself is
aggregated to the element to which it is set.

Global elements / attributes

Global elements, and global attributes, are created by declarations that appear as
the children of the schema element. Once declared, a global element or a global
attribute can be referenced in one or more declarations using the “ref” attribute.

See Also:

Terminology
Creating an XML Format

	XML
	Terminology
	Creating an XML Format
	Creating an XML Format based on an existing XML message format
	Creating an empty XML message Format
	From Designer UI using Creation Wizard
	From Command Line using Schema2Car Utility
	XML External Message UI
	Binding XML Schema to Designer
	Simple Type Definition
	Atomic Type
	Type Mapping
	Built-in Primitive data types
	Built-in Derived data types
	User-derived data types
	Support for customizing type mapping

	Built-in atomic type
	Element
	Attribute

	User-derived atomic type
	Element
	Attribute

	Facets
	Facets tab
	Pattern tab
	

	Enumeration tab

	List Type
	Built-in list type
	User-derived list type
	Element without facet
	Element with facet

	Union Type
	Simple Type Designer Support

	Complex Type Definition
	Aggregation
	Simple Content (Complex Type Definition)
	Complex Content (Complex Type Definition)
	Mixed Content
	Derivation by Restriction
	Derivation by Extension

	Type Substitution
	Type Substitution options
	
	If applicable
	Never
	Abstract types only

	Support for Controlling Type Substitution

	Complex Type Designer Support

	Attribute Group Definition
	Attribute Group Designer Support

	Model Group
	Model Group Flattening Rules
	Single model group flattening
	Where applicable
	Mandatory Sequence Group Flattening
	Single Child Group Flattening
	Optional group flattening
	Choice Group Flattening
	Optional behavior of Choice fields

	Model Group Represented as Section
	Model Group Definition Designer Support

	Schema Attribute Declaration
	Ignore Fixed Attributes (Schema Attribute Declaration)
	Attribute Declaration Designer Support

	Schema Element Declaration
	Ignore Fixed Elements
	Element Substitution
	Element References
	Nil Value Elements
	Element Declaration Designer Support

	Annotation
	Annotation Designer Support

	Wildcard
	Wildcard Designer Support

	Identity-Constraint Definition
	XML Name Mapping
	XML Name of Element / Attribute to Designer Name
	Model Group Name to Designer Name
	Collisions and Conflicts

	W3C XML Schema Support

	Binding DTD to Designer
	DTD Element Declaration
	Element with Character Data Only
	Element with Standard Content
	Element with Mixed Content
	Element with Any Content
	Element with No Content Allowed

	Group Declaration
	Sequence Declaration
	Choice Declaration
	Group Flattening Rules
	Mandatory and Non-repeating group flattening
	Optional group flattening
	Optional behavior of Choice fields

	Group Represented as Section

	DTD AttributeDeclaration
	Enumeration Type
	Ignore Fixed Attributes (DTD AttributeDeclaration)

	Designing XML Structure Manually in Designer
	Field Representation
	Field Properties pane

	Section Representation
	Section Properties pane

	Adding Element
	Simple Type
	Non-repeating element
	Repeating element

	Complex Type
	Simple Content (Complex Type)
	Character Data Only
	Character Data and Attributes

	Complex Content (Complex Type)
	Standard Content
	Mixed Content
	Any Content
	Empty Content

	Adding Attribute
	Adding character content
	Adding Wildcard
	any element
	anyAttribute element

	Adding Group

	Reconfigure Schema
	Format Option
	General
	Namespaces
	XML Declaration
	XML Parser Options
	Entity References

	
	
	
	Exporting an XML Message Format to Library
	Catalog Support
	Repair Functionality in XML Plugin
	Glossary

