
Programming Guide

B E A W e b L o g i c J a v a A d a p t e r f o r M a i n f r a m e 4 . 2
D o c u m e n t E d i t i o n 4 . 2

J u l y 2 0 0 1

BEA WebLogic Java
Adapter for Mainframe

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, Operating System for the Internet, Liquid Data, BEA WebLogic E-Business Platform, BEA Builder,
BEA Manager, BEA eLink, BEA Campaign Manager for WebLogic, BEA WebLogic Commerce Server, BEA
WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic Collaborate, BEA
WebLogic Enterprise, BEA WebLogic Server, and BEA WebLogic Integration are trademarks of BEA Systems,
Inc.

All other trademarks are the property of their respective company.

BEA WebLogic Java Adapter for Mainframe Programming Guide

Document Edition Part Number Date Software Version

4.2 July 2001 BEA WebLogic Java Adapter for
Mainframe 4.2

BEA WebLogic Java Adapter for Mainframe Programming Guide iii

Contents

About This Document
What You Need to Know .. viii

e-docs Web Site ... viii

How to Print the Document... viii

Related Information... viii

Documentation Conventions ...x

1. Generating a Java Application with the eGen COBOL Code
Generator

Understanding JAM... 1-3

Choosing an eGen Java Application Model .. 1-6

Gathering Mainframe Applications Information... 1-6

Obtaining Mainframe Services Information .. 1-7

Obtaining a COBOL Copybook... 1-9

Creating a New Copybook.. 1-9

Using an Existing COBOL Copybook.. 1-10

Writing an eGen COBOL Script ... 1-11

Writing the DataView Section of an eGen COBOL Script...................... 1-11

Writing the Application Section of an eGen COBOL Script 1-13

Processing eGen Scripts with the eGen Utility ... 1-13

Creating an Environment for Generating and Compiling the Java Code. 1-14

Generating the Java DataView Code ... 1-14

Generating the Java Application Code... 1-18

Special Considerations for Compiling the Java Code.............................. 1-18

Deploying Applications... 1-19

Deploying a JAM eGen Servlet (Quick-Start Deployment) 1-19

Deploying a JAM eGen EJB .. 1-20

iv BEA WebLogic Java Adapter for Mainframe Programming Guide

Providing OS/390 Mainframe Access with No Data Translation 1-23

Using Client Diagnostic Features with WebLogic Server 6.0......................... 1-24

Client Traffic Tracing... 1-25

Client Loopback ... 1-26

Client Stub Operation ... 1-27

What Do I Do Next? .. 1-27

2. Generating a Servlet-Only Application
Action List ... 2-1

Prerequisites... 2-2

Writing an eGen COBOL Servlet Script ... 2-3

Processing a Script to Generate Your Application Source Files 2-7

Reviewing the Generated Files.. 2-7

Customizing a Servlet-Only JAM Application ... 2-9

What Do I Do Next? .. 2-17

3. Generating a Client Enterprise Java Bean-based Application
Action List ... 3-1

Prerequisites... 3-2

Components of an eGen COBOL Client EJB Script ... 3-3

Working with Generated Files... 3-6

SampleClient.java Source File ... 3-7

SampleClientBean.java Source File ... 3-8

SampleClientHome.java Source File.. 3-9

SampleClient-jar.xml Source File .. 3-10

wl-SampleClient-jar.xml Source File ... 3-11

Customizing an Enterprise Java Bean-Based Application 3-11

Compiling and Deploying ... 3-17

What Do I Do Next? .. 3-17

4. Generating a Server Enterprise Java Bean-based Application
Action List ... 4-1

Prerequisites... 4-2

Components of an eGen COBOL Server EJB Script .. 4-3

Processing the Script ... 4-4

Working with Generated Files... 4-4

BEA WebLogic Java Adapter for Mainframe Programming Guide v

SampleServer.java Source File .. 4-5

SampleServerBean.java Source File .. 4-6

SampleServerHome.java Source File... 4-7

SampleServer-jar.xml Source File ... 4-7

wl-SampleServer-jar.xml Source File .. 4-8

Customizing a Server Enterprise Java Bean-Based Application....................... 4-9

Compiling and Deploying ... 4-13

What Do I Do Next?.. 4-14

5. Generating a Stand-alone Client Application
Action List ... 5-1

Prerequisites .. 5-2

Components of an eGen COBOL Stand-alone Application Script 5-3

Processing a Script .. 5-4

Working with Generated Files... 5-5

SampleClass.java Source File .. 5-5

Customizing a Stand-Alone Java Application... 5-6

What Do I Do Next?.. 5-12

vi BEA WebLogic Java Adapter for Mainframe Programming Guide

BEA WebLogic Java Adapter for Mainframe Programming Guide vii

About This Document

The BEA WebLogic Java Adapter for Mainframe product (hereafter referred to as
JAM) is a gateway connectivity application that enables client/server transactions
between Java applications and OS/390 or IMS programs. In addition to the runtime
environment that provides the gateway connectivity, JAM also provides tools for
developing cooperative Java applications.

This document provides the following topics on installing JAM software:

n “Generating a Java Application with the eGen COBOL Code Generator”
describes the tasks in general required to generate a Java application that can be
used to make mainframe application requests.

n “Generating a Servlet-Only Application” describes the tasks required to generate
a servlet that can be used to make mainframe application requests.

n “Generating a Client Enterprise Java Bean-based Application” describes the
tasks required to generate a Client EJB application that can be used to make
mainframe application requests.

n “Generating a Server Enterprise Java Bean-based Application” describes the
tasks required to generate a Server EJB application that can be used to accept
mainframe application requests.

n “Generating a Stand-alone Client Application” describes the tasks in general
required to generate a Java stand-alone client application that can be used to
make mainframe application requests.

viii BEA WebLogic Java Adapter for Mainframe Programming Guide

What You Need to Know

This document is intended for application programmers who will develop applications
using the development tools included with BEA WebLogic Java Adapter for
Mainframe.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://edocs.bea.com/.

How to Print the Document

A PDF version of this document is available on the JAM documentation Home page
on the e-docs Web site (and also on the installation CD). You can open the PDF in
Adobe Acrobat Reader and print the entire document (or a portion of it) in book
format. To access the PDFs, open the JAM documentation Home page, click the PDF
files button, and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

The following BEA publications are available for JAM 4.2:

n BEA WebLogic Java Adapter for Mainframe Release Notes

Related Information

BEA WebLogic Java Adapter for Mainframe Programming Guide ix

n BEA WebLogic Java Adapter for Mainframe Overview

n BEA WebLogic Java Adapter for Mainframe Installation Guide

n BEA WebLogic Java Adapter for Mainframe Configuration and Administration
Guide

n BEA WebLogic Java Adapter for Mainframe Programming Guide

n BEA WebLogic Java Adapter for Mainframe Workflow Processing Guide

n BEA WebLogic Java Adapter for Mainframe Reference Guide

n BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Contact Us

Your feedback on the BEA WebLogic Java Adapter for Mainframe documentation is
important to us. Send us e-mail at docsupport@bea.com if you have questions or
comments. Your comments will be reviewed directly by the BEA professionals who
create and update the JAM documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Java Adapter for Mainframe 4.2 release.

If you have any questions about this version of JAM, or if you have problems installing
and running JAM, contact BEA Customer Support through BEA WebSupport at
www.bea.com. You can also contact Customer Support by using the contact
information provided on the Customer Support Card that is included in the product
package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

x BEA WebLogic Java Adapter for Mainframe Programming Guide

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

blue text Indicates a hypertext link in PDF or HTML

italics Indicates emphasis or book titles or variables.

“string
with
quotes”

Indicates a string entry that requires quote marks.

UPPERCASE
TEXT

Indicates generic file names, device names, environment variables, and
logical operators.

Examples:

LPT1

SIGNON

OR

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void xa_commit ()

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

Documentation Conventions

BEA WebLogic Java Adapter for Mainframe Programming Guide xi

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

xii BEA WebLogic Java Adapter for Mainframe Programming Guide

BEA WebLogic Java Adapter for Mainframe Programming Guide 1-1

CHAPTER

1 Generating a Java
Application with the
eGen COBOL Code
Generator

The BEA WebLogic Java Adapter for Mainframe (JAM) consists of two components:

n JAM gateway

n Communication Resource Manager (CRM)

Using JAM, BEA WebLogic Server users can make requests for mainframe services
and receive responses to those requests. Also, mainframe users can make requests from
Java applications (EJBs) running in WebLogic Server and receive responses to those
requests.

This Programming Guide provides you with instructions on generating Java
applications that make requests for mainframe services and accept the responses
returning from the mainframe. One of the generated application types, the Server EJB,
accepts requests from mainframe applications, then responds to those requests. Refer
to the action list in the “Action List” section.

1 Generating a Java Application with the eGen COBOL Code Generator

1-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

Action List

As you generate a Java application with the eGen COBOL Code Generator (also called
the eGen utility), see the following action list and refer to the appropriate information
sources.

Your action... Refer to...

1 Complete all prerequisite tasks. “Prerequisites”

2 Choose an eGen application model. “Understanding JAM” and “Choosing an
eGen Java Application Model”

3 Gather necessary mainframe applications
information.

“Gathering Mainframe Applications
Information”

4 Write an eGen COBOL script “Writing an eGen COBOL Script”

5 Process eGen Scripts with the eGen utility “Processing eGen Scripts with the eGen
Utility”

6 Compile the Java application code. “Special Considerations for Compiling the
Java Code”

7 Deploy the generated applications. “Deploying Applications”

8 Debug the generated applications. “Using Client Diagnostic Features with
WebLogic Server 6.0”

9 Proceed to the next set of instructions. “What Do I Do Next?”

Prerequisites

BEA WebLogic Java Adapter for Mainframe Programming Guide 1-3

Prerequisites

Before you start programming, you should complete the following tasks:

Understanding JAM

Figure 1-1 illustrates how the eGen utility works.

Your action... Refer to...

1 Install your computer systems,
Windows/UNIX and mainframe, to meet
your requirements.

BEA WebLogic Java Adapter for
Mainframe Installation Guide

2 Configure your computer systems,
Windows/UNIX and mainframe, to meet
your requirements.

BEA WebLogic Java Adapter for
Mainframe Configuration and
Administration Guide

1 Generating a Java Application with the eGen COBOL Code Generator

1-4 BEA WebLogic Java Adapter for Mainframe Programming Guide

Figure 1-1 Understanding the eGen Utility

User-defined
Java

application
source file

eGen COBOL
script

COBOL
copybook

file

 eGen utility

import EmpRecBean;

public class ExtEmpRecBean

extends EmprecBean
{
 ...
}

import bea.jam.egenClientBean;

public class EmpRecBean
 extends egenClientBean
{

 public EmpRec

 {
 ...

03 EMP-REC.

05 EMP-SNN PIC 9(9)
 COMP-3.

05 EMP-ADDR.
07 EMP-A-STREET PIC X(30).
07 EMP-A-CITY PIC X(20).
07 EMP-A-ST PIC X(2).
07 EMP-A-ZIP PIC X(9).

05 EMP-NAME.
07 EMP-N-LAST PIC X(15).
07 EMP-N-FIRST PIC X(15).
07 EMP-N-MI PIC X(1).

Generated
Application

Generated
DataView

 }
 {

Understanding JAM

BEA WebLogic Java Adapter for Mainframe Programming Guide 1-5

Figure 1-2 illustrates how your generated application works with JAM.

Figure 1-2 Generated Application Working with JAM

 CRM

TCP/IP

 JAM
gateway

EmployeeRecord
 class object

Generated

WebLogic Application Server

Java Side CICS Side

CICS Region

COBOL program

DPL

SNASNA

DPL Request

COMMAREA
Data

EMP-REC
data item

SNA
Stack

VTAM

Java Application

1 Generating a Java Application with the eGen COBOL Code Generator

1-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

Choosing an eGen Java Application Model

There are four different types or models of Java applications that can be generated by
the eGen utility. These are:

n Servlet Only. The servlet-only application is a servlet that presents a simple form
and invokes mainframe services directly. This is the simplest model, but it may
be unsuitable for production applications.

n Client EJB. The client EJB is a Stateless Session EJB that invokes mainframe
services. It may be called by a servlet or other client programs. This is the
normal model for building a production application with access to mainframe
services. A servlet that invokes the EJB’s methods may be added for testing or
demonstration purposes.

n Client Class. The client class is a stand-alone Java class that invokes mainframe
services. This class may be built into your own EJB or utilized in some other
way within your code.

n Server EJB. The server EJB is a Stateless Session EJB that provides a service to
the mainframe.

Choose one of these four model types to use as the basis for your Java application.

Gathering Mainframe Applications
Information

Once you have determined which eGen application model you will be using, it is time
to gather information about the mainframe application with which JAM will be
interacting. The mainframe information gathered will be used to complete the JAM
configuration that maps mainframe components to JAM components. COBOL
copybooks gathered from the mainframe application will be used to generate Java
application code using the eGen utility.

Gathering Mainframe Applications Information

BEA WebLogic Java Adapter for Mainframe Programming Guide 1-7

Obtaining Mainframe Services Information

You will need the following mainframe information to develop a Java application that
requests a mainframe service:

n Resource names of the services to be requested. The resource name is the name
of the mainframe application providing the service.

l For CICS, the resource name is the equivalent of the CICS program name.

l For IMS, the resource name is the IMS transaction name.

n COBOL copybooks that define the format of the data sent and/or received from
the mainframe. The eGen utility will use these copybooks to generate
DataViews.

n A service name that JAM will map to the resource name.

Listing 1-1 shows an example of how a mainframe service is defined. These service
definitions can be found in the JC_REMOTE_SERVICES section of your JAM gateway
configuration file (jcrmgw.cfg).

Listing 1-1 Setting a Remote Service in jcrmgw.cfg

<ServiceName> RDOM="<Remote Domain>"

RNAME="<Mainframe Application called>"

TRANTIME=<transfer time>

SCHEMA=<Schema Name>

You will need the following mainframe information to develop a Java application that
responds to requests from the mainframe:

n Resource name of the service to be requested. This name is the service name that
the mainframe application (CICS or IMS) invokes to run the Java service.

n COBOL copybooks that define the data layout of data sent and/or received by
the mainframe application. The eGen utility will use these copybooks to generate
DataViews used by the Java server EJB.

1 Generating a Java Application with the eGen COBOL Code Generator

1-8 BEA WebLogic Java Adapter for Mainframe Programming Guide

Listing 1-2 shows an example of how a JAM service invoked from the mainframe is
defined. These service definitions can be found in the JC_LOCAL_SERVICES section of
the jcrmgw.cfg file.

Listing 1-2 Setting a Local Service (Used by Server EJB) in jcrmgw.cfg

<Stateless Session Bean Home> RNAME=”<Resource Name>”

Any mainframe service to be requested from JAM must be listed in the JAM gateway
configuration file (jcrmgw.cfg). These services must be running on your mainframe,
either under CICS or IMS. You will need to know the names under which these
services are available, and what data formats they require. These data formats will
usually be available as COBOL copybooks. If COBOL copybooks are not available,
you will need to create them from whatever documentation of the data format you have
available.

Mainframe data records are represented in JAM by Java DataView classes. These
classes are generated by the eGen utility and provide all of the data translation
necessary to communicate with mainframe applications as well as a Java-style access
to your data.

The sample files listed in Table 1-1 provide examples of code that can be used to
generate Java applications that can request mainframe services. These code example
files can be found by extracting them from the samples.jar file in your
<JAM Installation>\examples directory, then looking in the sample directory
that is created inside the examples directory.

eGen scripts corresponding to each of the four generation models can also be found in
the samples.jar file. The applications generated from these scripts are used as
examples throughout this guide and BEA Java Adapter for Mainframe Scenarios.

Table 1-1 Relevant Example Code from samples.jar File

COBOL Applications Gateway Config File COBOL Copybook

dpldemoc.cbl
dpldemor.cbl
dpldemou.cbl
dpldemod.cbl

jcrmgw1.cfg emprec.cpy

Gathering Mainframe Applications Information

BEA WebLogic Java Adapter for Mainframe Programming Guide 1-9

Obtaining a COBOL Copybook

A COBOL/CICS or IMS mainframe application typically uses a copybook source file
to define its data layout. This file is specified in a COPY directive within the
LINKAGE SECTION of the source program. If the CICS application does not use a
copybook file (but simply defines the COMMAREA directly in the program source),
you will have to create one from the definition contained in the program source.

The eGen utility is able to translate most COBOL copybook data types and data
clauses into their Java equivalents; however, it is unable to translate some obsolete
constructs and floating point data types. For information on COBOL data types that
can be translated by the eGen utility, see the “COBOL Datatypes” section of the BEA
Java Adapter for Mainframe Reference Guide. An eGen utility trial run will reveal any
unsupported constructs or data types. If the eGen utility is unable to fully support
constructs or data types, it:

n Treats them as alphanumeric data types (if reasonable)

n Ignores them (if their support is unimportant to JAM’s operation)

n Reports them as errors

If the eGen utility reports constructs or data types as errors, you must modify them, so
the eGen utility can translate them.

Each copybook’s contents (which define a COMMAREA record) are parsed by the
eGen utility, producing DataView sub-classes that provide facilities to:

n Convert COBOL data types to and from Java data types. This includes
conversions for mainframe data formats and code pages.

n Convert COBOL data structures to and from Java data structures.

n Convert the provided data structures into other arbitrary formats.

Creating a New Copybook

If you are producing a new application on the mainframe or modifying one, then one
or more new copybooks may be required. You should keep in mind the COBOL
features and data types supported by JAM as you create these copybooks.

1 Generating a Java Application with the eGen COBOL Code Generator

1-10 BEA WebLogic Java Adapter for Mainframe Programming Guide

Using an Existing COBOL Copybook

When a mainframe application has an existing DPL interface, the data for that interface
is probably described in a COBOL copybook. Before using an existing COBOL
Copybook, verify that the interface does not use any COBOL features or data types that
JAM does not support. To accomplish this task, attempt to process it.

An example COBOL copybook source file is shown in Listing 1-3.

Note: Some of the code sample listings in this topic have field names in bold for
easier reading. Also, comment-numbered items have corresponding comments
at the bottom of each script example.

Listing 1-3 Sample emprec.cpy COBOL Copybook

1 02 emp-record. (Comment 1)
2
3 04 emp-ssn pic 9(9) comp-3.
4
5 04 emp-name.
6 06 emp-name-last pic x(15). (Comment 2)
7 06 emp-name-first pic x(15).
8 06 emp-name-mi pic x.
9
10 04 emp-addr. (Comment 3)
11 06 emp-addr-street pic x(30).
12 06 emp-addr-st pic x(2).
13 06 emp-addr-zip pic x(9).
14
15 * End

Table 1-2 refers to the numbered comments in Listing 1-3.

Table 1-2 Script Comments for emprec.cpy

Comment 1 Declaration of a record (group) data item.

Comment 2 An elementary item. This is the base level of the data structure.

Comment 3 An aggregate item. This is the intermediate level of the data
structure.

Writing an eGen COBOL Script

BEA WebLogic Java Adapter for Mainframe Programming Guide 1-11

Writing an eGen COBOL Script

After you have gathered information about the mainframe applications and have
decided on an eGen Java application model for it, you are ready to write an eGen
COBOL script. This eGen script and the COBOL copybook that describes your data
structure will be processed by the eGen utility to generate the basis for your custom
Java application.

An eGen COBOL script has two sections. These are:

n DataView. The DataView section of the script generates Java DataView code
from a COBOL copybook. The class file compiled from the generated code
extends the Java DataView class.

n Java application. The Java application section of the script generates the Java
application code.

The eGen scripts that can be used to generate example applications corresponding to
each of the four generation models can be found in the samples.jar file. The
samples.jar file can be found in the <JAM Installation>\examples directory.
The application code generated from these scripts is used as examples throughout this
guide and BEA Java Adapter for Mainframe Scenarios.

Writing the DataView Section of an eGen COBOL Script

The eGen utility parses a COBOL copybook and generates Java DataView code that
encapsulates the data record declared in the copybook. It does this by parsing an eGen
script file containing a DataView definition similar to the example shown in
Listing 1-4. This section is only the first section of the eGen script. Application code
is generated by the second section.

Listing 1-4 Sample DataView Section of an eGen COBOL Script

generate view sample.EmployeeRecord from emprec.cpy

1 Generating a Java Application with the eGen COBOL Code Generator

1-12 BEA WebLogic Java Adapter for Mainframe Programming Guide

Analyzing the parts of this line of code, we see that generate view tells the eGen utility
to generate a Java DataView code file. sample.EmployeeRecord tells the eGen
utility to call the DataView file EmployeeRecord and place it in a package called
sample. The code from emprec.cpy tells the eGen utility to form the
EmployeeRecord DataView file from the COBOL copybook emprec.cpy.

Additional options may be specified in the eGen script to change details of the
DataView generation. For example, the following script will generate a DataView
class that uses codepage cp500 for conversions to and from mainframe format. If the
codepage clause is not specified, the default codepage of cp037 is used.

Listing 1-5 Sample DataView Section with Codepage Specified

generate view sample.EmployeeRecord from emprec.cpy codepage cp500

The following script will generate additional output intended to support use of the
DataView class with XML data:

Listing 1-6 Sample DataView Section Supporting XML

generate view sample.EmployeeRecord from emprec.cpy support xml

Additional files generated for XML support are listed in Table 1-3.

Table 1-3 Additional Files for DataView XML Support.

File Name File Purpose

classname.dtd XML DTD for XML messages accepted and produced by this
DataView.

classname.xsd XML schema for XML messages accepted and produced by this
DataView.

Processing eGen Scripts with the eGen Utility

BEA WebLogic Java Adapter for Mainframe Programming Guide 1-13

Writing the Application Section of an eGen COBOL Script

Now that you have written the DataView section of the script and have determined
which application model that you want to generate, refer to the section from the
following list for instructions on writing the script and implementing the model you
have chosen:

n “Generating a Servlet-Only Application”

n “Generating a Client Enterprise Java Bean-based Application”

n “Generating a Server Enterprise Java Bean-based Application”

n “Generating a Stand-alone Client Application”

For all of the applications you generate, you must provide a script file containing
definitions for the application, including the COBOL copybook file name and the
DataView class names.

Processing eGen Scripts with the eGen
Utility

After you have written your eGen COBOL script, you must process it. Processing the
eGen COBOL script generates Java DataView and application code. This Java code
must be compiled and deployed. Although processing the eGen COBOL script into
DataView and application code is usually performed in one step, it will be explained
in two steps, so the actual code generated can be analyzed in greater detail.

1 Generating a Java Application with the eGen COBOL Code Generator

1-14 BEA WebLogic Java Adapter for Mainframe Programming Guide

Creating an Environment for Generating and Compiling
the Java Code

Before you create an environment for generating and compiling your Java application
code, you must already have set up your environment as explained in the BEA
WebLogic Server documentation and the BEA Java Adapter for Mainframe
Installation Guide.

When you process the eGen COBOL scripts and compile the generated Java code, you
must have access to the Java classes and applications used in the code generation and
compilation processes. Adding the correct elements to your CLASSPATH and PATH
environment variables provides access to the necessary Java classes and applications.

For the eGen utility:

n Add <JAM Installation Directory>\lib\jam.jar to your CLASSPATH.

n Add <JAM Installation Directory>\bin to your PATH.

For compilation:

n Add <JAM Installation Directory>\lib\jam.jar to your CLASSPATH.

n Add <WLS_HOME>\lib\weblogic.jar to your CLASSPATH.

n Add path of your DataView class files to your CLASSPATH . You will need
access to these classes when you compile your Java application code.

Note: UNIX users must use “/” instead of “\” when adding directory paths as
specified above.

Generating the Java DataView Code

The script in Listing 1-7 specifies that the COBOL copybook file named emprec.cpy
is parsed, and that the Java DataView source file named EmployeeRecord.java is
generated from it. Also, this file is added to package sample. In other words, when this
script is processed by the eGen utility, a file named EmployeeRecord.java is
generated, and it contains the definition of class EmployeeRecord in package sample.

Processing eGen Scripts with the eGen Utility

BEA WebLogic Java Adapter for Mainframe Programming Guide 1-15

(If you are referring to the sample files that can be extracted from samples.jar, note
that this file is contained in a directory called sample.) The EmployeeRecord class is
an instance of the DataView class.

Listing 1-7 Sample DataView Section of emprec.egen Script

generate view sample.EmployeeRecord from emprec.cpy

If you saved this script in a file named emprec.egen, the following shell command
parses the copybook file named emprec.cpy and generates the
EmployeeRecord.java source file in the current directory:

Listing 1-8 Sample Copybook Parse Command

egencobol emprec.egen

If no error or warning messages are issued, the copybook is compatible with JAM and
the source files are created. If you are generating DataView code using the sample code
provided in the samples.jar file, you will notice that no application source files are
generated by processing the emprec.egen script. No application source files are
generated because there are no application generating commands in this script.

Note: Refer to the “Error Messages” section of the BEA Java Adapter for Mainframe
Reference Guide for suggestions on resolving any problems encountered.

The following example illustrates the resulting generated Java source file,
EmployeeRecord.java with some comments and implementation details removed
for clarity.

Listing 1-9 Generated EmployeeRecord.java Source File

//EmployeeRecord.java
//Dataview class generated by egencobol emprec.cpy

package Sample;(Comment 1)

1 Generating a Java Application with the eGen COBOL Code Generator

1-16 BEA WebLogic Java Adapter for Mainframe Programming Guide

//Imports

import bea.dmd.DataView.DataView;
...

/**DataView class for EmployeeRecord buffers*/

public final class EmployeeRecord (Comment 2)
extends DataView

{
...

// Code for field “emp-ssn”
private BigDecimal m_empSsn;(Comment 3)

public BigDecimal getEmpSsn() {...}(Comment 4)

/** DataView subclass for emp-name Group */
public final class EmpNameV (Comment 5)

extends DataView
{
 ...

 // Code for field “emp-name-last”
 private String m_empNamelast;

 public void setEmpNameLast(String value) {...}
 public String getEmpNameLast() {...}(Comment 6)

// Code for field “emp-name-first”
private String m_empNameFirsrt;

public void setEmpnameFisrt (String value) {...}
public String getEmpNameFirst() {...}

// Code for field “emp-name-mi”
private String m_empNameMi;

public void setEmpNameMi (String value) {...}
public String getEmpnameMi() {...}

}

// Code for field “emp-name”
private EmpNameV m_empname; (Comment 7)

public EmpnameV getEmpname() {...}

/**DataView subclass for emp-addr Group */
public final class EmpAddrV

extends DataView
{

...

Processing eGen Scripts with the eGen Utility

BEA WebLogic Java Adapter for Mainframe Programming Guide 1-17

// Code for field “emp-addr-street”
private String m_empAddrStreet;

public void setEmpAddrStreet(Street value) {...}
public String getEmpAddrStreet() {...}

// Code for field “emp-addr-st”
private String m_empAddrSt;

public void setEmpAddrSt(String value) {...}
public String getEmpAddrSt() {...}

// Code for field “emp-addr-zip”
private String m_empAddrZip;

public void setEmpAddrZip(String value) {...}
public String getEmpAddrZip() {...}

}

// Code for field “emp-addr”
private EmpAddrV m_empAddr;

public EmpAddrV getEmpAddr() {...}
}

//End EmployeeRecord.java

Table 1-4 refers to the numbered comments in Listing 1-9.

Table 1-4 Script Comments for EmployeeRecord.java

Comment 1 The package name is defined in the eGen script.

Comment 2 The data record is encapsulated in a class that extends the DataView
class.

Comment 3 Each class member variable corresponds to a field in the data record.

Comment 4 Each data field has accessor functions.

Comment 5 Each aggregate data field has a corresponding nested inner class that
extends the DataView class.

Comment 6 Each data field within an aggregate data field has accessor functions.

Comment 7 Each COBOL data field name is converted into a Java identifier.

1 Generating a Java Application with the eGen COBOL Code Generator

1-18 BEA WebLogic Java Adapter for Mainframe Programming Guide

Generating the Java Application Code

The Java application code can be generated at the same time that you generate the Java
DataView code. To generate Java application code, the eGen COBOL script that you
process must contain instructions for generating the Java application along with the
instructions for generating the DataView code.

Referring to the sample files in samples.jar, the following command generates
EmployeeRecord.java and SampleServlet.java. EmployeeRecord.java is the
DataView file, and SampleServlet.java is the application file.

> egencobol empservlet.egen

Special Considerations for Compiling the Java Code

You must compile the Java code generated by the eGen utility. However, there are
some special circumstances to consider. Because the application code is dependent on
the DataView code, you must compile the DataView code and make sure that the
resulting DataView class files are in your environment’s CLASSPATH before compiling
your application code. You must make sure that all of the DataView class files can be
referenced by the application code compilation.

For example, the compilation of EmployeeRecord.java results in four class files:

n EmployeeRecord.class

n EmployeeRecord$EmpRecord1V.class

n EmployeeRecord$EmpRecord1V$EmpName3V.class

n EmployeeRecord$EmpRecord1V$EmpAddr7V.class

All of these class files are used when compiling your application code.

Deploying Applications

BEA WebLogic Java Adapter for Mainframe Programming Guide 1-19

Deploying Applications

Deployment is the process of implementing servlets and/or EJBs on WebLogic Server.
Application deployment in WebLogic Server has evolved to the J2EE standard for
web application deployment.

The following information is not intended to specifically describe how applications are
deployed in WebLogic Server. For specific information, refer to Quick Start
information and detailed documentation for deploying applications in the WebLogic
Server 6.0 online documentation at:

http://edocs/wls/docs60/quickstart/quick_start.html
http://edocs/wls/docs60/servlet/admin.html#156888
http://edocs/wls/docs60/ejb/EJB_deployover.html

Deploying a JAM eGen Servlet (Quick-Start Deployment)

The basic JAM eGen servlet is deployed like any other WebLogic servlet. The
configuration for the eGen servlet is stored in the web.xml file in an applications
directory associated with a domain. The basic default configuration can be found in the
following directory:

<bea_home>/<wls_home>
 /config/mydomain/applications/DefaultWebApp_myserver/WEB-INF/web.xml

For the SampleServlet (generated by the egencobol empservlet.egen
command), add the classes and sample directories, so the directory structure looks
like the following:

<bea_home>/<wls_home>/config/mydomain
 /applications/DefaultWebApp_myserver/WEB-INF/classes/sample

The eGen SampleServlet and EmployeeRecord class, which are the result of
compiling the *.java files generated by the eGen utility, should be placed in the
sample directory:

<bea_home>/<wls_home>/config/mydomain
 /applications/DefaultWebApp_myserver/WEB-INF/classes/sample

1 Generating a Java Application with the eGen COBOL Code Generator

1-20 BEA WebLogic Java Adapter for Mainframe Programming Guide

SampleServlet can be configured with an XML entry (added to web.xml) similar to
the one shown in Listing 1-10:

Listing 1-10 XML Entry to Configure the SampleServlet Servlet

<web-app>
<servlet>

<servlet-name>
SampleServlet

</servlet-name>
<servlet-class>
 sample.SampleServlet
</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>
SampleServlet

</servlet-name>
<url-pattern>

/SampleServlet/*
</url-pattern>

</servlet-mapping>
</web-app>

SampleServlet can then by invoked by entering the following URL in the location
field of your web browser:

http://<host>:<port>/SampleServlet

If WebLogic Server is running on your local machine and you used the default port
(7001) when you installed WebLogic Server, SampleServlet can be invoked by the
following URL:

http://localhost:7001/SampleServlet

Deploying a JAM eGen EJB

A JAM eGen EJB (client or server) is deployed like any other WebLogic EJB. The
following instructions and examples are provided as an aid:

Deploying Applications

BEA WebLogic Java Adapter for Mainframe Programming Guide 1-21

1. Build your EJB deployment JAR file. Listing 1-11 will build the client EJB
deployment JAR file from the components generated by the empclient.egen
eGen COBOL script and emprec.cpy.

Listing 1-11 Script for Building empclientbean.jar

@rem --- Adjust these variables to match your environment

set TARGETJAR=empclientbean.jar
set JAVA_HOME=c:\bea\jdk130
set WL_HOME=c:\bea\wlserver6.0sp1
set JAM_HOME=c:\bea\wljam4.2
@rem ------ end of Adjustable variables

set JAMJARS=%JAM_HOME%\lib\jam.jar
set CLASSPATH=%JAM_HOME%\lib\jam.jar;%JAM_HOME%\lib\tools.jar;
%WL_HOME%\lib\weblogic.jar
set PATH=%JAVA_HOME%\bin;%JAVA_HOME%\lib;%PATH%

@rem Create the build directory, and copy the deployment
@rem descriptors into it.
@rem You should have already run your egen script so your xml files
@rem are already built.

md build build\META-INF
copy SampleClient-jar.xml ejb-jar.xml
copy wl-SampleClient-jar.xml weblogic-ejb-jar.xml
copy *.xml build\META-INF

@rem Compile ejb classes into the build directory (jar preparation)
javac -d build -classpath %CLASSPATH% *.java

@rem Make a standard ejb jar file, including XML deployment
@rem descriptors
cd build
jar cvf std_%TARGETJAR% META-INF sample
cd ..

@rem Run ejbc to create the deployable jar file

java -classpath %CLASSPATH% -Dweblogic.home=%WL_HOME%
weblogic.ejbc -compiler javac build\std_%TARGETJAR% %TARGETJAR%

1 Generating a Java Application with the eGen COBOL Code Generator

1-22 BEA WebLogic Java Adapter for Mainframe Programming Guide

2. Deploy the EJB in BEA WebLogic Server by configuring it as a new EJB in the
BEA WebLogic Server Admin Console. Configure this new EJB as follows:

a. Click the EJB icon under Deployments.

The EJB Deployments screen appears (see Figure 1-3).

Figure 1-3 Configuring a New EJB, empclientbean.jar

b. Click the Configure a new EJB link.

The EJB Deployments Create screen appears (see Figure 1-4).

Providing OS/390 Mainframe Access with No Data Translation

BEA WebLogic Java Adapter for Mainframe Programming Guide 1-23

Figure 1-4 New EJB Configuration Screen

c. Enter the name of your EJB in the Name: field, the EJB Deployment JAR file
in the URI: field, and the path to the EJB Deployment JAR file in the Path:
field. Make sure that the Deployed checkbox is checked. Then, click Create.

Your JAM eGen EJB is now deployed.

Providing OS/390 Mainframe Access with
No Data Translation

JAM may be used for OS/390 mainframe access without performing data translation.
All client-side code generated by the eGen utility uses the EgenClient class to access
the gateway. This class provides a raw-byte interface to the gateway. Use of the
EgenClient class for gateway access has the following advantages and disadvantages:

n Advantages:

a. No translation infrastructure overheads are incurred

1 Generating a Java Application with the eGen COBOL Code Generator

1-24 BEA WebLogic Java Adapter for Mainframe Programming Guide

b. Simple interface

c. JAM’s client diagnostic features may be used

n Disadvantages:

a. Not used for requests inbound from the mainframe

Use the interface of the EgenClient class (shown in Listing 1-12) to perform raw
mainframe requests.

Listing 1-12 Interface for Performing Raw Mainframe Requests

package com.bea.jam.egen;
import com.bea.sna.jcrmgw.snaException;
public class EgenClient
{
 public EgenClient();
 public byte[] callService(String service, byte[] in)
 throws snaException, java.io.IOException;
}

Note: If an example of the proper use of this class is desired, the eGen utility may be
used to generate a client class.

Using Client Diagnostic Features with
WebLogic Server 6.0

JAM includes several features to support diagnosing problems with eGen-based client
programs. While these facilities are not designed for use in a production environment,
they should be useful during development. These features are enabled by adding the
settings listed in Table 1-5 to the java statement at the end of your
startWebLogic.cmd file for the BEA WebLogic Server domain that you are
currently running.

Using Client Diagnostic Features with WebLogic Server 6.0

BEA WebLogic Java Adapter for Mainframe Programming Guide 1-25

Table 1-5 Client Diagnostic Settings

Listing 1-13 provides an example in bold of the changes that need to be made to the
java statement in the startWebLogic.cmd file necessary to enable the client
diagnostic loopback feature. This file can be found in the
%WLS_HOME%\config\<domain> directory. The java statement can be found near the
end of the file.

Listing 1-13 startWebLogic.cmd Loopback Example

...
"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m -classpath
%CLASSPATH% -Dweblogic.Domain=mydomain
-Dbea.jam.client.loopback=true -Dweblogic.Name=myserver
"-Dbea.home=g:\bea"
"-Djava.security.policy==g:\bea\wlserver6.0sp1/lib/weblogic.polic
y" -Dweblogic.management.password=%WLS_PW% weblogic.Server

...

Client Traffic Tracing

When client traffic tracing is enabled, all requests from eGen clients are dumped to the
WebLogic console in hexadecimal and EBCDIC characters. Listing 1-14 shows an
example of an eGen client dump.

bea.jam.client.trace.enable Set to "true" to enable tracing of
client requests.

bea.jam.client.trace.codepage Set to the name of a codepage to
be used for the character portion
of the trace dump.

bea.jam.client.loopback Set to "true" to bypass the
gateway & simply loop the
request bytes back to the client.

bea.jam.client.stub Set to the full name of a class to
be used as a gateway stub.

1 Generating a Java Application with the eGen COBOL Code Generator

1-26 BEA WebLogic Java Adapter for Mainframe Programming Guide

Listing 1-14 Dump of eGen Client Requests

---------------- Service: demoRead Input data --------------

00 00 00 00 0f e2 d4 c9 e3 c8 40 40 40 40 40 40 SMITH
40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
40 40 40 40 40 40 40 40 40 40 40 40 40 00 00 00 .
01 00 00 00 00 0f 00 00 00 00 0f 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
--
---------------- Service: demoRead Output data --------------
00 00 00 00 0f e2 d4 c9 e3 c8 40 40 40 40 40 40 SMITH
40 40 40 40 a7 40 40 40 40 40 40 40 40 40 40 40 x
40 40 40 a7 94 81 89 95 40 40 40 40 40 40 40 40 xmain
40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
40 40 40 40 40 40 40 40 40 40 40 40 40 00 00 00 ..
01 00 00 00 00 0f 00 00 00 00 0f
--

Note that the dumps occur while the data is in mainframe format, and characters are
usually in some variety of EBCDIC. By default, the character data is converted using
cp037, but that may be changed using another property setting.

Client Loopback

If the client loopback feature is enabled, all requests receive a response that is exactly
equal to the request data. Note that this loopback response is accomplished while the
data is in mainframe format. If a service accepts one DataView subclass and returns a
different one, a conversion failure in trying to construct the resulting DataView
subclass may occur.

When the client loopback feature is enabled, no gateway is required and the gwboot
startup class does not need to be configured.

What Do I Do Next?

BEA WebLogic Java Adapter for Mainframe Programming Guide 1-27

Client Stub Operation

The client stub operation enables you to replace the gateway with your own class, in
effect providing a replacement for the entire target mainframe. This feature is valuable
for testing or proof-of-concept situations where the mainframe connection is not
available.

Your stub class must:

n Provide a constructor that takes no arguments.

n Be available on your CLASSPATH.

n Contain a method for each service that is to be supported. This method must take
some DataView subclass as its only argument and return a DataView subclass.

The client tracing feature can be used to help debug your stub class.

What Do I Do Next?

Refer to the chapter from the following list that corresponds to the Java application
model you have chosen for your Java application:

n “Generating a Servlet-Only Application”

n “Generating a Client Enterprise Java Bean-based Application”

n “Generating a Server Enterprise Java Bean-based Application”

n “Generating a Stand-alone Client Application”

Also, refer to BEA Java Adapter for Mainframe Scenarios for detailed examples of
some of the application models discussed in this guide.

1 Generating a Java Application with the eGen COBOL Code Generator

1-28 BEA WebLogic Java Adapter for Mainframe Programming Guide

BEA WebLogic Java Adapter for Mainframe Programming Guide 2-1

CHAPTER

2 Generating a
Servlet-Only
Application

A JAM servlet-only application is a Java servlet that executes within BEA WebLogic
Server. The application is started from a web browser when the user enters a URL that
is configured to invoke the servlet. The servlet presents an HTML form containing data
fields and buttons. The buttons can be configured to invoke:

n EJB methods

n Remote gateway services (via the JAM Gateway)

In general, servlets generated by the eGen COBOL Code Generator are intended for
testing purposes and are not easily customized to provide a more aesthetically pleasing
interface.

Action List

Before you generate a servlet-only application, see the following action list and refer
to the appropriate information sources.

2 Generating a Servlet-Only Application

2-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

Prerequisites

Before you start programming your servlet-only application, you should complete the
following tasks:

Your action... Refer to...

1 Complete all prerequisite tasks. “Prerequisites”

2 Review the general steps for building a
Java application.

“Generating a Java Application with the
eGen COBOL Code Generator”

3 Review an example of a script for
generating a servlet-only application.

“Writing an eGen COBOL Servlet Script”

4 Review script processing and sample
script commands.

“Processing a Script to Generate Your
Application Source Files”

5 Review the generated files. “Reviewing the Generated Files”

6 Customize the application. “Customizing a Servlet-Only JAM
Application”

7 Proceed to the next set of instructions. “What Do I Do Next?”

Your action... Refer to...

1 Install your computer systems,
Windows/UNIX and mainframe, to meet
your requirements.

BEA WebLogic Java Adapter for
Mainframe Installation Guide

2 Configure your computer systems,
Windows/UNIX and mainframe, to meet
your requirements.

BEA WebLogic Java Adapter for
Mainframe Configuration and
Administration Guide

Writing an eGen COBOL Servlet Script

BEA WebLogic Java Adapter for Mainframe Programming Guide 2-3

Writing an eGen COBOL Servlet Script

In order to produce a servlet-only application, create an *.egen script file and use the
eGen COBOL Code Generator (also called the eGen utility) to generate your typed
data record (DataView), and Servlet code. Your DataView files must describe the
mainframe services accessed, the browser pages produced, and the servlets that
produce them. Service definitions look like the following listing.

Listing 2-1 Sample Service Definition in eGen COBOL Script

service sampleCreate
accepts EmployeeRecord
returns EmployeeRecord

Listing 2-1 defines a service named sampleCreate that accepts an input buffer of type
EmployeeRecord and returns an output buffer of type EmployeeRecord. This
service is configured by an entry in the SERVICES section of the jcrmgw.cfg file.
Listing 2-2 provides an example of an entry that configures the service
sampleCreate. This example configures the sampleCreate function to run on the
CICS410 remote domain (RDOM=”CICS410”). The sampleCreate service invokes the
CICS program named DPLDEMOC (RNAME=”DPLDEMOC”), and it uses the
sample.EmployeeRecord schema. The files that actually define the schema are
EmployeeRecord.java, EmployeeRecord.xsd and EmployeeRecord.dtd. These
files are generated by the eGen utility when support xml is appended on the generate
view code line of the script.

Listing 2-2 Sample jcrmgw.cfg Entry for Service sampleCreate

sampleCreate RDOM=”CICS410”
RNAME=”DPLDEMOC”
TRANTIME=10000
SCHEMA=sample.EmployeeRecord

A browser page that uses this service might be defined as the following.

2 Generating a Servlet-Only Application

2-4 BEA WebLogic Java Adapter for Mainframe Programming Guide

Listing 2-3 Sample Page Definition

page initial “Initial Page”
{

view EmployeeRecord

buttons
{

“Create”
service (“sampleCreate”)
shows fullPage

}
}

This listing defines an HTML page named initial, with a text title of “Initial Page”,
that displays an EmployeeRecord record object as an HTML form. It also specifies
that the form has a button labeled “Create”. When the button is pressed, the service
sampleCreate is invoked and is passed the contents of the browser page as an
EmployeeRecord object (the fields of which may have been modified by the user).
Afterwards, the fullPage page is used to display the results.

The servlet that initiates this page might be defined like the following listing.

Listing 2-4 Sample servlet Definition

servlet sample.SampleServlet shows initial

This listing defines an application servlet class named SampleServlet, and specifies
that it displays the HTML page named “Initial Page” as its initial display page.

The following listing shows a complete script for defining a servlet application.

Listing 2-5 Sample Servlet-Only Script

1 #---
2 # empservlet.egen
3 # JAM script for a servlet-only application.
4 #

Writing an eGen COBOL Servlet Script

BEA WebLogic Java Adapter for Mainframe Programming Guide 2-5

5 # $Id: empservlet.egen,v 1.2 2000/01/25 18:34:14 david Exp$
6 #--
7
8 # DataViews (typed data records)
9
10 view sample.EmployeeRecord (Comment 1)
11 from emprec.cpy support xml
12
13 # Services
14
15 service sampleCreate (Comment 2)
16 accepts EmployeeRecord
17 returns EmployeeRecord
18
19 service sampleRead (Comment 2)
20 accepts EmployeeRecord
21 returns EmployeeRecord
22
23 service sampleUpdate (Comment 2)
24 accepts EmployeeRecord
25 returns EmployeeRecord
26
27 service sampleDelete (Comment 2)
28 accepts EmployeeRecord
29 returns EmployeeRecord
30
31 # Servlet HTML pages
32
33 page initial “Initial page” (Comment 3)
34 {
35 view EmployeeRecord (Comment 4)
36
37 buttons
38 {
39 “Create” (Comment 5)
40 service (“sampleCreate”)
41 shows fullPage
42
43 “Read” (Comment 5)
44 service (“sampleRead”)
45 shows fullPage
46 }
47 }
48
49 page fullPage “Complete page”
50 {
51 view EmployeeRecord
52
53 buttons

2 Generating a Servlet-Only Application

2-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

54 {
55 “Create”
56 service (“sampleCreate”)
57 shows fullPage
58
59 “Read”
60 service (“sampleRead”)
61 shows fullpage
62
63 “Update”
64 service (“sampleUpdate”)
65 shows fullpage
66
67 “Delete”
68 service (“sampleDelete”)
69 shows fullpage
70 }
71 }
72
73 # Servlets
74
75 servlet sample.SampleServlet (Comment 6)
76 shows initial
77
78 # End

Table 2-1 refers to the numbered comments in Listing 2-5.

Table 2-1 Script Comments

Comment 1 Defines a DataView class, specifying its corresponding copybook
source file and its package file.

Comment 2 Defines a service function and its input and output parameter types.

Comment 3 Defines an HTML page to be displayed by the servlet.

Comment 4 Specifies the DataView class to display on the page.

Comment 5 Defines a button and its associated class method.

Comment 6 Defines a servlet class and its initial HTML display page.

Processing a Script to Generate Your Application Source Files

BEA WebLogic Java Adapter for Mainframe Programming Guide 2-7

Processing a Script to Generate Your
Application Source Files

To process the script, issue the command in Listing 2-6. The egencobol command
involves the JVM and is equivalent to java com.bea.jam.egen.EgenCobol
empservlet.egen.

Listing 2-6 Sample Script Process Command

egencobol empservlet.egen
emprec.cpy, Lines: 21 Errors: 0, Warnings:0
Generating sample.EmployeeRecord...
Generating group emp-name
Generating group emp-addr
Generating sample.SampleServlet...

Reviewing the Generated Files

The empservlet.egen script command generates the following files.

Table 2-2 Sample Script Generated Files

Files Content

SampleServlet.java Servlet source code

EmployeeRecord.java Source for the DataView object

EmployeeRecord.dtd Generated DTD

EmployeeRecord.xsd Generated XML/Schema

2 Generating a Servlet-Only Application

2-8 BEA WebLogic Java Adapter for Mainframe Programming Guide

The following listing illustrates the contents of the generated SampleServlet.java
source file (with some parts omitted).

Listing 2-7 Sample SampleServlet.java Contents

// SampleServlet.java
//
// Servlet class generated by eGencobol on 25-Jan-2000.

package sample;

// Imports

import javax.servlet.http.HttpServlet;
import com.bea.dmd.DataView.DataView;
import com.bea.jam.egen.EgenServlet;
...

/** servlet class for EmployeeRecord buffers. */

public class SampleServlet
extends EgenServlet

{
/** Create a new servlet. */
public SampleServlet()
{
 ...
}

/** Get an instance of the initial DataView for this
Servlet.*/
protected DataView initialDataView()
{
 ...
}

...
}

//End SampleServlet.java

Customizing a Servlet-Only JAM Application

BEA WebLogic Java Adapter for Mainframe Programming Guide 2-9

Customizing a Servlet-Only JAM Application

The generated Java classes produced for servlet applications are intended for proof of
concept and prototypes, and can be customized in limited ways. It is presumed that
some other development tool will be used to develop a servlet or other user interface
on top of the generated EJBs or client classes.

This section describes the way that generated servlet code can be customized.

The following figure illustrates the relationships and inheritance hierarchy between the
JAM classes comprising the application.

2 Generating a Servlet-Only Application

2-10 BEA WebLogic Java Adapter for Mainframe Programming Guide

Figure 2-1 The JAM Servlet Class Hierarchy

The generated Java code for a servlet application Sample Servlet is a class that inherits
class EgenServlet. Class EgenServlet is provided in the JAM distribution jar file.

The base class illustrated in the following listing provides the basic framework for a
servlet.

The EgenServlet script file that
defines the methods to be generated
in the server EJB.

Java source code written by the user
that extends the generated class
produced from the EgenServlet script,
and which adds member functions and
variables to that implement of the
business logic of the application.

class ExtSampleServlet
 extends SampleServlet
{
 ...
}

class SampleServlet
 extends EgenServlet
{
 ...
}

com.bea.jam.egen.
EgenServlet

jam.jar

inherits

inherits

translated
into

Generated Java source code produced
from a EgenServlet script file. The
class inherits the EgenServerBean
base class, and contains the methods
specified.

page initial “Initial page”
{
 view EmployeeRecord
 buttons
 {

 “Create”
 service (“sampleCreate”
 shows fullPage

 “Read”
 service (“sampleCreate”)
 shows fullPage
 }
 }

 servlet sample.SampleServlet
 shows initial

Customizing a Servlet-Only JAM Application

BEA WebLogic Java Adapter for Mainframe Programming Guide 2-11

Listing 2-8 EgenServlet.java Base Class

//==
// EgenServlet.java
// The base class for generated servlets.
//===

package bea.jam.egen;

//Imports

...

/**
* The base class for generated servlets
*/

abstract public class EgenServlet
extends HttpServlet

{
 /** Perform an HTTP Get operation. */
 public void doGet(HttpServletRequest req,HttpServletResponse
 resp)
 throws ServletException, IOException
 {
 DataView dv;
 HttpSession session=reqgetSession(true);

 ...

 // Get the initial DataView data record
 dv = initialDataView();

 // Invoke the user-defined callback
 dv = doGetSetup(dv,session);

 // Convert the DataView into an HTML form
 ...
 }

 /** Perform a HTTP Post operation. */
 public void doPost(HttpServletRequest req,HttpServletResponse
 resp)
 throws ServletException, IOException
 {
 DataView dv;
 HttpSession session=reqgetSession(true);

 // Move the HTML form data into a DataView
 ...

2 Generating a Servlet-Only Application

2-12 BEA WebLogic Java Adapter for Mainframe Programming Guide

 // Invoke the user-defined callback
 dv = doPostSetup(dv, session);

 // Execute the form button
 ...

 //Invoke the user-defined callback
 dv = doPostFinal(dv, session);

 // Convert the DataView into an HTML form
 ...
 }

 /** User exit for pre-presentation processing for a GET request.
 */
 public DataView doGetSetup (DataView in, HttpSession session)
 {
 // Default behavior may be overridden
 return in;
 }

 /**User exit for before business logic processing for a POST
 request. */
 public DataView doPostSetup (DataView in, HttpSession session)
 {
 // Default behavior, may be overridden
 return in;
 }

 /** User exit for after business logic processing for a POST
 request. */
 public DataView doPostFinal (DataView in, HttpSession session)
 {
 // Default behavior, may be overridden
 return in;
 }

 /** Get an instance of the initial DataView for this servlet. */
 protected abstract DataView initialDataView();

 /**
 * The title for the initial page.
 * This should be initialized in the subclass constructor.
 */
 protected String m_initialTitle;

 /**
 * The buttons for the initial page.
 * This should be initialized in the subclass constructor.
 */

Customizing a Servlet-Only JAM Application

BEA WebLogic Java Adapter for Mainframe Programming Guide 2-13

 protected Button[] m_initialButtons;
 }

// End EgenServlet.java

The EgenServlet base class provides functions for the GET and POST operations for
the servlet’s HTML page.

Both of these operations invoke the following default callback functions:

n doGetSetup() - invoked before the GET operation.

This function occurs prior to the presentation of the HTML page to the user’s
browser. Any changes made to the DataView object will be reflected in the
contents of the HTML page.

n doPostSetup() - invoked before the POST operation.

This function occurs after the HTML page is presented and the user activates a
form button. The DataView is sent to the doPostSetup() function, which
operates on its contents. For example, validating the contents of the fields.

n doPostFinal() - invoked after the POST operation.

This function occurs prior to the presentation of the HTML page to the user’s
browser after activating a form button. Any changes made to the DataView
object will be reflected in the contents of the HTML page.

Your class (ExtSampleServlet.java), which indirectly extends the EgenServlet
base class, overrides these functions and provides additional business logic to modify
the contents of the DataView. Each of these functions is passed to the DataView object
containing the current record data. Each is expected to return a (potentially modified)
DataView object.

Note: The overriding functions must have exactly the same signature as the functions
in the base class.

The following illustration shows the sequence of operations that occur during the
course of a user’s browser session. For example, the series of events that occur within
the EgenServlet class.

2 Generating a Servlet-Only Application

2-14 BEA WebLogic Java Adapter for Mainframe Programming Guide

Figure 2-2 User Browser-Session Flowchart

HTML page is
presented

User activates a form
button

User enters the url
for the application

GET

POST

doGetSetup()

DataView is
converted to HTML

DataView is
converted to HTML

doPostSetup()

button action is
performed

doPostFinal()

Customizing a Servlet-Only JAM Application

BEA WebLogic Java Adapter for Mainframe Programming Guide 2-15

Example ExtSampleServlet.java Class

The following listing shows an sample ExtSampleServlet class that extends the
generated SampleServlet class, and adds a validation function (isSsnValid()) for
the emp-ssn (m_empSsn) field of the DataView EmployeeRecord class. The three
callback functions are overridden by the functions in the extended class. If the
emp-ssn field is determined to be invalid, an exception is thrown.

Exceptions are caught by the Java server (BEA WebLogic Server) and cause a simple
informational text page to be presented to the user’s browser. Any string text
associated with the exception is displayed, along with a trace of the execution stack
that was in effect at the time that the exception was thrown.

Listing 2-9 Sample ExtSampleServlet.java Contents

//==
// ExtSampleServlet.java
// Example class that extends a generated JAM servlet application.
//===

package Sample;

// System imports

import java.math.BigDecimal;

import javax.servlet.http.HttpSession;
import com.bea.dmd.DataView.DataView;
import com.bea.jam.egen.EgenServlet;

// Local Imports

import sample.EmployeeRecord;
import sample.SampleServlet;

/***
*/ Extends the SampleServlet class, adding additional business
logic

*/

public class ExtSampleServlet
extends SampleServlet

{
// Public functions

2 Generating a Servlet-Only Application

2-16 BEA WebLogic Java Adapter for Mainframe Programming Guide

/**
* User exit for pre-presentation processing for a GET

* request. This is called prior to the presentation of the
* first HTML page to the user’s browser.
*/

public DataView doGetSetup (DataView in,
HttpSession session)

{
 EmployeeRecord erec;

 // Overrides the default behavior

 // Load default data into the empty DataView
 erec = (EmployeeRecord) in;
 erec.getEmprecord().setEmpSsn(BigDecimal.valueOf(99999));

 return (erec);
}

/**
* User exit for before business logic processing for a POST
* request. This is called after the user activates a button
* on the HTMl form, but before the action associated with the
* button is performed.
*/

 public DataView doPostSetup (DataView in,
HttpSession session)

{
 EmployeeRecord erec;

 // Overrides the default behavior

 // validate the Social Security Number field
 erec = (Employeerecord) in;

 if (!isSsnValid(erec.getEmpRecord().getEmpSsn()))
 {

// The SSN is not valid
throw new Error (“Invalid Social Security Number:”

= erec.getEmprecord().getEmpSsn());
 }

 return (erec);
}

/***
* User exit for after business logic processing for a POST
* request. This is called after the action is performed for

What Do I Do Next?

BEA WebLogic Java Adapter for Mainframe Programming Guide 2-17

* the button on the HTML form is activated by the user.
*/

public DataView doPostFinal(DataView in HttpSession session)
}

// Overrides the default behavior

// Nothing to do here

return (in);
}

 // Private functions

/**
* Validates an SSN field.
*
* @return
* True if the SSN is valid, otherwise false.
*/

private boolean isSsnValid(final BigDecimal ssn)
{

if (ssn.longValue() < 100000000)
{

// Oops, the SSN should not have a leading zero
return (false);

}
else

return (true);
}

 }

 //End ExtSampleServlet.java

Once it has been written, the ExtSampleServlet class and the other servlet Java
source files must be compiled and deployed in the same manner as other servlets.

What Do I Do Next?

Refer to BEA Java Adapter for Mainframe Scenarios for detailed examples of some of
the application models discussed in this guide.

2 Generating a Servlet-Only Application

2-18 BEA WebLogic Java Adapter for Mainframe Programming Guide

BEA WebLogic Java Adapter for Mainframe Programming Guide 3-1

CHAPTER

3 Generating a Client
Enterprise Java
Bean-based
Application

This type of application produces Java classes that comprise an EJB application. The
class methods are invoked from requests originating from other EJB classes and
transfer data records to and from the mainframe (remote system). From the viewpoint
of the mainframe, the Java classes act as a remote DTP or IMS client. From the
viewpoint of the EJB classes, they act as regular EJB classes.

Action List

Before you build a Client Enterprise Java Bean-based application, see the following
action list and refer to the appropriate information sources.

Your action... Refer to...

1 Complete all prerequisite tasks. “Prerequisites”

3 Generating a Client Enterprise Java Bean-based Application

3-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

Prerequisites

Before you start programming your Client Enterprise Java Bean-based application,
you should complete the following tasks:

2 Review the general steps for building a
Java application

“Generating a Java Application with the
eGen COBOL Code Generator”

3 Review an example of a script for
generating a client EJB application

“Components of an eGen COBOL Client
EJB Script”

4 Review script processing and sample
script commands

“Processing the Script”

5 Review the generated files “Working with Generated Files”

6 Customize the application “Customizing an Enterprise Java
Bean-Based Application”

7 Proceed to the next set of instructions. “What Do I Do Next?”

Your action... Refer to...

Your action... Refer to...

1 Install your computer systems,
Windows/UNIX and mainframe, to meet
your requirements.

BEA WebLogic Java Adapter for
Mainframe Installation Guide

2 Configure your computer systems,
Windows/UNIX and mainframe, to meet
your requirements.

BEA WebLogic Java Adapter for
Mainframe Configuration and
Administration Guide

Components of an eGen COBOL Client EJB Script

BEA WebLogic Java Adapter for Mainframe Programming Guide 3-3

Components of an eGen COBOL Client EJB
Script

In order to produce an EJB-based application, the script file that defines your
DataViews must be edited to describe both the mainframe services accessed and the
EJB that will access them. A service description might look like the listing in
Listing 3-1.

Listing 3-1 Sample service Description

service sampleCreate

accepts EmployeeRecord
returns EmployeeRecord

This sample listing defines a service named sampleCreate that accepts an input
buffer of type EmployeeRecord and returns an output buffer of type
EmployeeRecord. It is this service name that also requires an entry in the jcrmgw.cfg
file.

An EJB that uses this service might be defined like the following listing.

Listing 3-2 Sample getSalary Service Definition

client ejb MyEJBName MyEJBHome
{

method newEmployee is service sampleCreate
}

This listing defines a Java bean class named MyEJBName with a method named
newEmployee. The method corresponds to service name sampleCreate. The EJB
home will be registered in Java Naming and Directory Interface (JNDI) under the name
MyEJBHome.

3 Generating a Client Enterprise Java Bean-based Application

3-4 BEA WebLogic Java Adapter for Mainframe Programming Guide

The following listing shows the contents of a complete script file for defining a client
EJB application.

Listing 3-3 Sample Client EJB Script

1 #---
2 # empclient.egen
3 # JAM script for an employee record.
4 #
5 # $Id: empclient.egen,v 1.1 2000/01/25 18:34:14 david Exp$
6 #--
7
8 # DataViews (typed data records)
9
10 view sample.EmployeeRecord (Comment 1)
11 from emprec.cpy
12
13 # Services
14
15 service sampleCreate (Comment 2)
16 accepts EmployeeRecord
17 returns EmployeeRecord
18
19 service sampleRead (Comment 2)
20 accepts EmployeeRecord
21 returns EmployeeRecord
22
23 # Clients and servers
24
25 client ejb sample.SampleClient my.sampleBean (Comment 3)
26 {
27 method newEmployee (Comment 4)
28 is service sampleCreate
29
30 method readEmployee (Comment 4)
31 is service sampleRead
32 }
33
34 # End

Components of an eGen COBOL Client EJB Script

BEA WebLogic Java Adapter for Mainframe Programming Guide 3-5

Table 3-1 refers to the numbered comments in Listing 3-3.

Table 3-1 Script Comments

Comment 1 Defines a DataView class, specifying its corresponding copybook
source file and its package name.

Comment 2 Defines a service function and its input and output parameter types.

Comment 3 Defines a client EJB class and its home name.

Comment 4 Defines a client class method and its service name.

3 Generating a Client Enterprise Java Bean-based Application

3-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

Processing the Script

Issue the following command to process the script.

Listing 3-4 Sample Script Process Command

egencobol empclient.egen
emprec.cpy, Lines: 21, Errors: 0, Warnings: 0
Generating sample.EmployeeRecord...
Generating group emp-name
Generating group emp-addr
Generating SampleClient...

Working with Generated Files

The empclient.egen script command generates the following files.

Table 3-2 Sample Script Generated Files

File Content

SampleClient.java Source for the EJB remote interface.

SampleClientBean.java Source for the EJB implementation.

SampleClientHome.java Source for the EJB home interface.

EmployeeRecord.java Source for the DataView object.

SampleClient-jar.xml Sample deployment descriptor

wl-SampleClient-jar.xml Sample WebLogic deployment information

Working with Generated Files

BEA WebLogic Java Adapter for Mainframe Programming Guide 3-7

SampleClient.java Source File

The following listing shows the contents of the generated SampleClient.java
source file.

Listing 3-5 Sample SampleClient.java Contents

// SampleClient.java
//
// EJB Remote Interface generated by eGenCobol on 24-Jan-2000.

package sample;

// Imports

import javax.ejb.EJBObject;
...

/** Remote Interface for SampleClient EJB. */

public interface SampleClient (Comment 1)
extends EJBObject

{
// newEmployee (Comment 2)
EmployeeRecord newEmployee (EmployeeRecord commarea)

throws RemoteException, UnexpectedException;

readEmployee (Comment 2)
EmployeeRecord readEmployee (EmploymentRecord commarea)

throws RemoteException, UnexpectedException;
}

// End SampleClient.java

Table 3-3 refers to the numbered comments in Listing 3-5.

Table 3-3 Script Comments

Comment 1 Defines an EJB interface.

Comment 2 Methods to convert a raw COMMAREA into a Java DataView
object.

3 Generating a Client Enterprise Java Bean-based Application

3-8 BEA WebLogic Java Adapter for Mainframe Programming Guide

SampleClientBean.java Source File

Listing 3-6 shows the contents of the generated SampleClientBean.java source file.

Listing 3-6 Sample SampleClientBean.java Contents

// SampleClientBean.java
//
// EJB generated by eGenCobol on 24-Jan-2000.

package sample;

//Imports

import com.bea.jam.egen.egenClientBean;
...

/** EJB implementation. */

public class SampleClientBean (Comment 1)
extends egenClientBean

{
// newEmployee

public EmployeeRecord newEmployee (EmployeeRecord commarea)
throws IOException, snaException (Comment 2)

{
...

}

//readEmployee

public EmployeeRecord readEmployee (EmployeeRecord commarea)
throws IOException, snaException (Comment 2)

{
...

}

}

// End SampleClientBean.java

Working with Generated Files

BEA WebLogic Java Adapter for Mainframe Programming Guide 3-9

Table 3-4 refers to the numbered comments in Listing 3-6.

SampleClientHome.java Source File

Listing 3-7 shows the contents of the generated SampleClientHome.java
deployment descriptor file.

Listing 3-7 Sample SampleClientHome.java Contents

// SampleClientHome.java
//
// EJB Home interface generated by eGenCobol on 24-Jan-2000.

package sample;

// Imports

import javax.ejb.EJBHome;
...

/** Home interface for SampleClient EJB. */

public interface SampleClientHome (Comment 1)
extends EJBHome

{
// create

SampleClient create()
throws CreateException, remoteException;

}

// End SampleClientHome.java

Table 3-4 Script Comments

Comment 1 Defines an EJB client bean.

Comment 2 The methods convert a raw COMMAREA into a Java DataView object.

3 Generating a Client Enterprise Java Bean-based Application

3-10 BEA WebLogic Java Adapter for Mainframe Programming Guide

Table 3-5 refers to the numbered comments in Listing 3-7.

SampleClient-jar.xml Source File

Listing 3-8 shows the contents of the generated SampleClient-jar.xml deployment
descriptor file.

Listing 3-8 Sample SampleClient-jar.xml Contents

<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC ’-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN’’http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd’>
<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>SampleClient</ejb-name>
 <home>sample.SampleClientHome</home>
 <remote>sample.SampleClient</remote>
 <ejb-class>sample.SampleClientBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>SampleClient</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>*</method-name>
 </method>
 <trans-attribute>NotSupported</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

Table 3-5 Script Comments

Comment 1 Defines an EJB home interface.

Customizing an Enterprise Java Bean-Based Application

BEA WebLogic Java Adapter for Mainframe Programming Guide 3-11

wl-SampleClient-jar.xml Source File

Listing 3-9 shows the contents of the wl-SampleClient-jar.xml source file. To use
this file, copy it to weblogic-ejb-jar.xml.

Listing 3-9 Sample wl-SampleClient-jar.xml Contents

<?xml version="1.0"?>
<!DOCTYPE weblogic-ejb-jar PUBLIC ’-//BEA Systems, Inc.//DTD
WebLogic 5.1.0 EJB//EN’
’http://www.bea.com/servers/wls510/dtd/weblogic-ejb-jar.dtd’>
<weblogic-ejb-jar>
 <weblogic-enterprise-bean>
 <ejb-name>SampleClient</ejb-name>
 <caching-descriptor>
 <max-beans-in-free-pool>50</max-beans-in-free-pool>
 </caching-descriptor>
 <jndi-name>my.sampleBean</jndi-name>
 </weblogic-enterprise-bean>
</weblogic-ejb-jar>

Customizing an Enterprise Java Bean-Based
Application

Unlike the servlet applications, the generated Java classes produced for EJB
applications are intended for customization.

This section describes the way that generated client EJB code can be customized.

The following figure illustrates the relationships and inheritance hierarchy between the
JAM classes comprising the application.

3 Generating a Client Enterprise Java Bean-based Application

3-12 BEA WebLogic Java Adapter for Mainframe Programming Guide

Figure 3-1 The JAM Client EJB Class Hierarchy

The generated Java code for a client EJB application is a class that inherits class
egenClientBean. The egenClientBean class is provided in the JAM distribution jar
file.

jam.jar

inherits

inherits

translated
info

class ExtSampleClientBean
 extends SampleClientBean
{
 ...
}

class SampleClientBean
 extends egenClientBean
{
 ...
}

com.bea.jam.egen.
egenClientBean

Java source code written by
the user that extends the
generated class produced
from the eGen script,
and which adds member
functions and variables to
that implement the business
logic of the application.

Generated Java source code
produced from eGen
script file. The class
inherits the egenClientBean
base class, and contains
the methods specified.

The eGen script file that

service sampleCreate accepts EmployeeRecord
 returns EmployeeRecord
service sampleRead accepts EmployeeRecord
 returns EmployeeRecord

client ejb sample.SampleClient sampleClient
{method newEmployee is service sampleCreate
 method readEmployee is service sampleRead

defines the methods to be
generated in the client EJB.

}

Customizing an Enterprise Java Bean-Based Application

BEA WebLogic Java Adapter for Mainframe Programming Guide 3-13

This base class, illustrated in Listing 3-10, is provided in the jam.jar file and provides
the basic framework for an EJB. It provides the required methods for a Stateless
Session EJB.

Listing 3-10 EgenClientBean.java Base Class

//===
// egenClientBean.java
// The base class for generated client EJB’s.
//
//---

package com.bea.jam.egen;

abstract public class EgenClientBean
implements SessionBean

{
//Implementation of ejbActivate(), ejbRemove(),
// ejbPassiveate(), ejbCreate() and setSessionContext()
...

/**
 * Call a service by name through the jcrmgw.
 *
 * @exception bea.sna.jcrmgw.snaException For Gateway errors
 * @exception java.io.IOException For data translation
 errors.
 */
protected byte[] callService(String service, byte[] in)
 throws snaException, IOException
{
 // Low level gateway access code
 ...
}

// Variables

 protected SessionContext m_context;
 protected transient Properties m_properties;

}

// End EgenClientBean.java

The generated class, illustrated in Listing 3-11, adds the methods specific to this EJB.

3 Generating a Client Enterprise Java Bean-based Application

3-14 BEA WebLogic Java Adapter for Mainframe Programming Guide

Listing 3-11 Generated SampleClientBean.java Class

// SampleClientBean.java
//
// EJB generated by eGenCobol on Feb 2, 2000.
//

package Sample;

...

/**
 * EJB implementation.
 */
public class SampleClientBean extends EgenClientBean
{

// readEmployee
//
public EmployeeRecord readEmployee (EmployeeRecord commarea)
 throws IOException, snaException
{

// Make the remote call.
//
...

}

// newEmployee
//
public EmployeeRecord newEmployee (EmployeeRecord commarea)
 throws IOException, snaException
{
 // Make the remote call.
 //
 ...
}

}

// END SampleClientBean.java

Listing 3-12 illustrates an example ExtSampleClientBean class that extends the
generated SampleClientBean class, adding a validation function (isSsnValid())
for the emp-ssn (m_empSsn) field of the DataView EmployeeRecord class. The four
methods are overridden by the methods in the extended class. If the emp-ssn field is
determined to be invalid, an exception is thrown. Otherwise, the original function is
called to perform the mainframe operation.

Customizing an Enterprise Java Bean-Based Application

BEA WebLogic Java Adapter for Mainframe Programming Guide 3-15

Listing 3-12 Example ExtSampleClientBean.java Class

//==
// ExtSampleClientBean.java
// Example class that extends a generated JAM client EJB application.
//--

package sample;

// Imports

import java.math.BigDecimal;
import java.io.IOException;

import com.bea.sna.jcrmgw.snaException;

// Local imports

import sample.EmployeeRecord;
import sample.SampleClientBean;

/***
* Extends the SampleClientBean EJB class, adding additional business logic.
*/

public class ExtSampleClientBean
 extends SampleClientBean
{
// Public functions

 /***
 * Read an employee record.
 */

 public EmployeeRecord readEmployee(EmployeeRecord commarea)
 throws RemoteException, UnexpectedException, IOException, snaException
 {
 EmployeeRecord erec = (EmployeeRecord) commarea;

 if (!isSsnValid(erec.getEmpRecord().getEmpSsn()))
 {
 // The SSN is not valid.
 throw new Error("Invalid Social Security Number: "
 + erec.getEmpRecord().getEmpSsn());
 }

 // Make the remote call.
 return super.readEmployee(commarea);
 }

3 Generating a Client Enterprise Java Bean-based Application

3-16 BEA WebLogic Java Adapter for Mainframe Programming Guide

 /***

 * Create a new employee record.
 */

 public EmployeeRecord newEmployee(EmployeeRecord commarea)
 throws IOException, snaException
 {
 EmployeeRecord erec = (EmployeeRecord) commarea;

 if (!isSsnValid(erec.getEmpRecord().getEmpSsn()))
 {
 // The SSN is not valid.
 throw new Error("Invalid Social Security Number:"
 + erec.getEmpRecord().getEmpSsn());
 }

 // Make the remote call.
 return super.newEmployee(commarea);
 }

// Private Functions

 /***
 * Validate an SSN field.
 *
 * @return
 * True if the SSN is valid, otherwise false.
 */

 private boolean isSsnValid(final BigDecimal ssn)
 {
 if (ssn.longValue() < 100000000)
 {
 // Oops, appears to be less than 9 digits
 return false;
 }
 return true;
 }
}

// End ExtSampleClientBean.java

When it has been written, the ExtSampleClientBean class and the other EJB Java
source files must be compiled and deployed in the same manner as other EJBs. Prior
to deploying, the deployment descriptor must be modified; the ejb-class property must
be set to the name of your extended EJB implementation class.

Compiling and Deploying

BEA WebLogic Java Adapter for Mainframe Programming Guide 3-17

Compiling and Deploying

Refer to the BEA WebLogic server documentation for more information. The sample
file provided with WebLogic Server contains a build script for reference.

What Do I Do Next?

Refer to BEA Java Adapter for Mainframe Scenarios for detailed examples of some of
the application models discussed in this guide.

3 Generating a Client Enterprise Java Bean-based Application

3-18 BEA WebLogic Java Adapter for Mainframe Programming Guide

BEA WebLogic Java Adapter for Mainframe Programming Guide 4-1

CHAPTER

4 Generating a Server
Enterprise Java
Bean-based
Application

This type of application produces Java classes that comprise an EJB application,
similar to a Client EJB application, but acting as a remote server from the viewpoint
of the mainframe. The classes process service requests originating from the mainframe
(remote) system, known as “inbound” requests, and transfer data records to and from
the mainframe. From the viewpoint of the Java classes, they receive EJB method
requests. From the viewpoint of the mainframe application, it invokes remote DPL or
IMS programs.

Action List

Before you build a Server Enterprise Java Bean-based application, see the following
action list and refer to the appropriate information sources.

Your action... Refer to...

1 Complete all prerequisite tasks. “Prerequisites”

4 Generating a Server Enterprise Java Bean-based Application

4-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

Prerequisites

Before you start programming your Server Enterprise Java Bean-based application,
you should complete the following tasks:

2 Review the general steps for building a
Java application

“Generating a Java Application with the
eGen COBOL Code Generator”

3 Review an example of a script for
generating a server EJB application

“Components of an eGen COBOL Server
EJB Script”

4 Review script processing and sample
script commands

“Processing the Script”

5 Review the generated files “Working with Generated Files”

6 Customize the application “Customizing a Server Enterprise Java
Bean-Based Application”

7 Proceed to the next set of instructions. “What Do I Do Next?”

Your action... Refer to...

Your action... Refer to...

1 Install your computer systems,
Windows/UNIX and mainframe, to meet
your requirements.

BEA WebLogic Java Adapter for
Mainframe Installation Guide

2 Configure your computer systems,
Windows/UNIX and mainframe, to meet
your requirements.

BEA WebLogic Java Adapter for
Mainframe Configuration and
Administration Guide

Components of an eGen COBOL Server EJB Script

BEA WebLogic Java Adapter for Mainframe Programming Guide 4-3

Components of an eGen COBOL Server EJB
Script

The following listing shows the contents of a complete script for defining a server EJB
application.

Listing 4-1 Sample Server EJB Script

1 #--
2 # empserver.egen
3 # JAM script for an employee record.
4 #
5 # $Id: empserver.egen, v 1.1 2000/01/21 23:20:40
6 #---
7
8 # DataViews (typed data records)
9
10 view sample.EmployeeRecord (Comment 1)
11 from emprec.cpy
12
13 # Clients and servers (Comment 2)
14
15 server ejb sample.SampleServer my.sampleServer (Comment 3)
16 {
17 method newEmployee (EmployeeRecord)(Comment 4)
18 returns EmployeeRecord
19 }
20
21 # End

Table 4-1 refers to the numbered comments in Listing 4-1.

Table 4-1 Script Comments

Comment 1 Defines a DataView class, specifying its corresponding copybook
source file and its package name.

Comment 2 Defines a server EJB class.

4 Generating a Server Enterprise Java Bean-based Application

4-4 BEA WebLogic Java Adapter for Mainframe Programming Guide

Processing the Script

Issue the following command to process the script.

Listing 4-2 Sample Script Process Command

egencobol empserver.egen
emprec.cpy, Lines: 21, Errors: 0, Warnings: 0
Generating sample.EmployeeRecord...
Generating group emp-name
Generating group emp-addr
Generating SampleServer...

Working with Generated Files

The empserver.egen script command generates the following files.

Comment 3 my.sampleServer is the home interface identifier for this bean.
This value must be included in an entry in the local Services section of
the jcrmgw.cfg file for the Java gateway.

Comment 4 Defines a server class method and its parameter.

Table 4-1 Script Comments

Table 4-2 Sample Script Generated Files

File Content

SampleServer.java Source for the EJB remote interface.

SampleServerBean.java Source for the EJB implementation.

SampleServerHome.java Source for the EJB home interface.

Working with Generated Files

BEA WebLogic Java Adapter for Mainframe Programming Guide 4-5

SampleServer.java Source File

The following listing shows the content of the generated SampleServer.java source
file.

Listing 4-3 Sample SampleServer.java Contents

// SampleServer.java
//
// EJB Remote Interface generated by eGenCobol on 24-Jan-2000.

package sample;

// Imports

import javax.ejb.EJBObject;
...

/** Remote Interface for SampleServer EJB. */

public interface SampleServer
extends gwObject

{
//dispatch
byte[] dispatch(byte[] commarea, Object future)

throws RemoteException, UnexpectedException;
}

// End SampleServer.java

EmployeeRecord.java Source for the DataView object.

SampleServer-jar.xml Sample deployment descriptor

wl-SampleServer-jar.xml Sample WebLogic deployment information

Table 4-2 Sample Script Generated Files

File Content

4 Generating a Server Enterprise Java Bean-based Application

4-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

SampleServerBean.java Source File

The following listing shows the contents of the generated SampleServerBean.java
source file.

Listing 4-4 Sample SampleServerBean.java Contents

// SampleServerBean.java
//
EJB generated by eGenCobol on 24-Jan-2000.

package Sample;

// Imports

import com.bea.jam.egen.EgenServerBean;
...

/** EJB implementation. */

public class SampleServerBean
extends EgenServerBean

{
// dispatch
public byte[] dispatch (byte[] commarea, Object future)

throws IOException
{

...
}

/**
 * Do the actual work for a newEmployee operation.
 * NOTE: This routine should be overridden to do actual work
 */
EmployeeRecord newEmployee (EmployeeRecord commarea)
{

return new EmployeeRecord();
}

}

//End SampleServerBean.java

Working with Generated Files

BEA WebLogic Java Adapter for Mainframe Programming Guide 4-7

SampleServerHome.java Source File

The following listing shows the contents of the generated SampleServerHome.java
source file.

Listing 4-5 Sample SampleServerHome.java Contents

// SampleServerHome.java
//
// EJB Home interface generated by eGenCobol on 24-Jan-2000.

package Sample;

//Imports

import javax.ejb.EJBHome;
...

/** Home interface for SampleServer EJB. */

public interface SampleServerHome
extends EJBHome

{
//create
SampleServer create()

throws CreateException, RemoteException;
}

// End SampleServerHome.java

SampleServer-jar.xml Source File

The following listing shows the contents of the generated SampleServer-jar.xml
deployment descriptor file.

Listing 4-6 Sample SampleServer-jar.xml Contents

<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC ’-//Sun Microsystems, Inc.//DTD Enterprise

4 Generating a Server Enterprise Java Bean-based Application

4-8 BEA WebLogic Java Adapter for Mainframe Programming Guide

JavaBeans 1.1//EN’’http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd’>
<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>SampleServer</ejb-name>
 <home>sample.SampleServerHome</home>
 <remote>sample.SampleServer</remote>
 <ejb-class>sample.SampleServerBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>SampleServer</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>*</method-name>
 </method>
 <trans-attribute>NotSupported</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

wl-SampleServer-jar.xml Source File

The following listing shows the contents of the generated
wl-SampleServer-jar.xml source file. To use this file, copy it to
weblogic-ejb-jar.xml

Listing 4-7 Sample wl-SampleServer-jar.xml Contents

<?xml version="1.0"?>
<!DOCTYPE weblogic-ejb-jar PUBLIC ’-//BEA Systems, Inc.//DTD
WebLogic 5.1.0 EJB//EN’
’http://www.bea.com/servers/wls510/dtd/weblogic-ejb-jar.dtd’>
<weblogic-ejb-jar>
 <weblogic-enterprise-bean>
 <ejb-name>SampleServer</ejb-name>
 <caching-descriptor>
 <max-beans-in-free-pool>50</max-beans-in-free-pool>
 </caching-descriptor>

Customizing a Server Enterprise Java Bean-Based Application

BEA WebLogic Java Adapter for Mainframe Programming Guide 4-9

 <jndi-name>my.sampleBean</jndi-name>
 </weblogic-enterprise-bean>
</weblogic-ejb-jar>Script Comments

Customizing a Server Enterprise Java
Bean-Based Application

The generated server enterprise Java bean-based applications are only intended for
customizing, since they perform no real work without customization.

This section describes the way that generated server EJB code can be customized.

The following figure illustrates the relationships and inheritance hierarchy between the
JAM classes comprising the application.

4 Generating a Server Enterprise Java Bean-based Application

4-10 BEA WebLogic Java Adapter for Mainframe Programming Guide

Figure 4-1 The JAM Server EJB Class Hierarchy

The generated Java code for a client EJB application is a class that inherits class
EgenServerBean. The EgenServerBean class is provided in the JAM distribution jar
file. This base class, illustrated in the following listing, provides the basic framework
for an EJB. It provides the required methods for a Stateless Session EJB.

jam.jar

inherits

inherits

translated
info

server ejb sample.SampleServer
 my.sampleServer

{
 method newEmployee(EmployeeRecord)

 returns EmployeeRecord
}

class ExtSampleServerBean
 extends SampleServerBean
 {
 ...
 }

class SampleServerBean
 extends EgenServerBean
 {
 ...
 }

com.bea.jam.egen.EgenServerBean

Java source code written by the
user that extends the generated
class produced from the eGen
script, and which adds member
functions and variables to that
implement the business logic
of the application

Generated Java source code produced
from eGen script file. The class
inherits the EgenServerBean base
class, and contains the methods
specified.

The eGen script file that defines the
methods to be generated in the
server EJB.

Customizing a Server Enterprise Java Bean-Based Application

BEA WebLogic Java Adapter for Mainframe Programming Guide 4-11

Listing 4-8 EgenServerBean.java Base Class

//==
// EgenServerBean.java
// The base class for generated server EJB’s.
//
//===

package com.bea.jam.egen;

abstract public class EgenServerBean
implements SessionBean

{
// Implementation of ejbActivate(), ejbRemove(),
// ejbPassivate(),
// setSessionContext() and ejbCreate().
...

// Variables

protected transient SessionContext m_context;
protected transient Properties m_properties;

}

// End EgenServerBean.java

The generated class, illustrated in the following listing, adds the methods specific to
this EJB.

Listing 4-9 Generated SampleServerBean.java Class

// SampleServerBean.java
//
// EJB generated by eGenCobol on 03-Feb-00.
//

package Sample;

//Imports
//
import java.io.IOException;
import java.util.Hashtable;
import com.bea.sna.jcrmgw.snaException;
import com.bea.base.io.MainframeWriter

4 Generating a Server Enterprise Java Bean-based Application

4-12 BEA WebLogic Java Adapter for Mainframe Programming Guide

import com.bea.base.io.MainframeReader;
import com.bea.jam.egen.EgenServerBean;
import com.bea.jam.egen.InboundDispatcher;

/**
 * EJB implementation
 */
public class SampleServerBean extends EgenServerBean
 {
 // dispatch
 //
 public byte[] dispatch(byte[] commarea, Object future)

throws IOException
 {

EmployeeRecord inputBuffer
= new EmployeeRecord (new
MainframeReader (commarea));

EmployeeRecord result = newEmployee (inputBuffer);;
return result.toByteArray (new MainframeWriter());

 }

 /**
 * Do the actual work for a newEmployee operation.
 * NOTE: This routine should be overridden to do actual work
 */
 EmployeeRecord newEmployee(EmployeeRecord commarea)
 {

return new EmployeeRecord();
 }
}

// END SampleServerBean.java

The following listing shows an example ExtSampleServerBean class that extends
the generated SampleServerBean class, providing an implementation of the
newEmployee() method. The example method prints a message indicating that a
newEmployee request has been received.

Compiling and Deploying

BEA WebLogic Java Adapter for Mainframe Programming Guide 4-13

Listing 4-10 Sample ExtSampleServerBean.java Contents

// ExtSampleServerBean.java
//

package sample;

/**
 * EJB implementation
 */
public class ExtSampleServerBean extends SampleServerBean
{

public EmployeeRecord newEmployee (EmployeeRecord in)
{
 System.out.println(“New Employee: “ +

+in.getEmpRecord()in.getEmpName().getEmpNameFirst()
+ “ “
+ in.getEmpRecord().getEmpname().getEmpNameLast());

 return in;
}

}

// END ExtSampleServerBean.java

Once it has been written, the ExtSampleServerBean class and the other EJB Java
source files must be compiled and deployed in the same manner as other EJBs. Before
deploying, the deployment descriptor must be modified; the ejb-class must be set to
the name of your extended EJB implementation class.

Compiling and Deploying

Refer to the BEA WebLogic server documentation for more information. The sample
file provided with WebLogic Server contains a build script for reference.

4 Generating a Server Enterprise Java Bean-based Application

4-14 BEA WebLogic Java Adapter for Mainframe Programming Guide

What Do I Do Next?

Refer to BEA Java Adapter for Mainframe Scenarios for detailed examples of some of
the application models discussed in this guide.

BEA WebLogic Java Adapter for Mainframe Programming Guide 5-1

CHAPTER

5 Generating a
Stand-alone Client
Application

This type of application produces simple Java classes that perform the appropriate
conversions of data records sent between Java and the mainframe, but without all of
the EJB support methods. These classes are intended to be lower-level components
upon which more complicated applications are built.

Action List

Before you build a stand-alone application, see the following action list and refer to the
appropriate information sources.

Your action... Refer to...

1 Complete all prerequisite tasks. “Prerequisites”

2 Review the general steps for building a
Java application

“Generating a Java Application with the
eGen COBOL Code Generator”

3 Review an example of a script for
generating a stand-alone Java application

“Components of an eGen COBOL
Stand-alone Application Script”

5 Generating a Stand-alone Client Application

5-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

Prerequisites

Before you start programming your stand-alone application, you should complete the
following tasks:

4 Review script processing and sample
script commands

“Processing a Script”

5 Review the generated files “Working with Generated Files”

6 Customize the application “Customizing a Stand-Alone Java
Application”

7 Proceed to the next set of instructions. “What Do I Do Next?”

Your action... Refer to...

Your action... Refer to...

1 Install your computer systems,
Windows/UNIX and mainframe, to meet
your requirements.

BEA WebLogic Java Adapter for
Mainframe Installation Guide

2 Configure your computer systems,
Windows/UNIX and mainframe, to meet
your requirements.

BEA WebLogic Java Adapter for
Mainframe Configuration and
Administration Guide

Components of an eGen COBOL Stand-alone Application Script

BEA WebLogic Java Adapter for Mainframe Programming Guide 5-3

Components of an eGen COBOL Stand-alone
Application Script

The following listing shows the contents of a complete script for defining a stand-alone
client class with multiple services.

Listing 5-1 Sample Stand-Alone Client Class Script

1 #--
2 # empclass.egen
3 # JAM script for an employee record.
4 #
5 # $Id: empclass.egen, v 1.1 2000/01/21 23:20:40
6 #---
7
8 # DataViews (typed data records)
9
10 view sample.EmployeeRecord (Comment 1)
11 from emprec.cpy
12
13 # Services
14
15 service sampleCreate (Comment 2)
16 accepts EmployeeRecord
17 returns EmployeeRecord
18
19 service sampleRead (Comment 2)
20 accepts EmployeeRecord
21 returns EmployeeRecord
22
23 service sampleUpdate (Comment 2)
24 accepts EmployeeRecord
25 returns EmployeeRecord
26
27 service sampleDelete (Comment 2)
28 accepts EmployeeRecord
29 returns EmployeeRecord
30
31 # Clients and servers
32
33 client class sample.SampleClass (Comment 3)

5 Generating a Stand-alone Client Application

5-4 BEA WebLogic Java Adapter for Mainframe Programming Guide

34 {
35 method newEmployee (Comment 4)
36 is service sampleCreate
37
38 method readEmployee (Comment 4)
39 is service sampleRead
40 }
41
42 # End

Table 5-1 refers to the numbered comments in Listing 5-1.

Processing a Script

Issue the following command to process the script.

Listing 5-2 Sample Script Process Command

egencobol empclass.egen
emprec.cpy, Lines: 21, Errors: 0, warnings: 0
Generating sample.EmployeeRecord...
Generating group emp-name
Generating group emp-addr
Generating SampleClass...

Table 5-1 Script Comments

Comment 1 Defines a DataView class, specifying its corresponding copybook source
file and its package name.

Comment 2 Defines a service function and its input and output parameter types.

Comment 3 Defines a simple client class.

Comment 4 Defines a client class method and its parameter types.

Working with Generated Files

BEA WebLogic Java Adapter for Mainframe Programming Guide 5-5

Working with Generated Files

This script command generates the following files.

SampleClass.java Source File

The following listing contains the generated SampleClass.java source file.

Listing 5-3 Sample SampleClass.java Source File

// SampleClass.java
//
// Client class generated by eGenCobol on 24-Jan-2000.

package sample;(Comment 1)

// Imports

import com.bea.jam.egen.EgenClient;
...

/* Mainframe client class. */

public class SampleClass (Comment 2)
extends EgenClient

{
// newEmployee
public EmployeeRecord newEmployee (EmployeeRecord commarea)

throws IOException, snaException (Comment 3)
{

...
}

Table 5-2 Sample Script Generated Files

File Content

SampleClass.java Source for the sample class.

EmployeeRecord.java Source for the DataView class.

5 Generating a Stand-alone Client Application

5-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

// readEmployee
public EmployeeRecord readEmployee (EmployeeRecord commarea)

throws IOException, snaException (Comment 3)
{

...
}

}

// End SampleClass.java

Table 5-3 refers to the numbered comments in Listing 5-3.

Customizing a Stand-Alone Java Application

The stand-alone client class model is the simplest JAM code generation model both in
terms of the code generated and customizing the generated code.

The following figure illustrates the relationships and inheritance hierarchy between the
JAM classes comprising the application.

Table 5-3 Script Comments

Comment 1 The package name is defined in the eGen script.

Comment 2 The data record is encapsulated in a class that extends the
EgenClient class.

Comment 3 The methods convert a raw COMMAREA into a Java DataView
object.

Customizing a Stand-Alone Java Application

BEA WebLogic Java Adapter for Mainframe Programming Guide 5-7

Figure 5-1 The JAM Client EJB Class Hierarchy

The generated Java code for a client class application is a class that inherits class
EgenClient. The EgenClient class is provided in the JAM distribution jar file. This
base class, illustrated in the following listing provides the basic framework for a client
to the jcrmgw. It provides the required methods for accessing the gateway.

inherits

inherits

translated
info

Java source code written by
the user that extends the
generated class produced
from the eGen script,
and which adds member
functions and variables to
that implement the business
logic of the application.

Generated Java source code
produced from eGen
script file. The class
inherits the egenClientBean
base class, and contains
the methods specified.

class ExtSampleClient
 extends SampleClient
{
 ...
}

class SampleClient
 extends EgenClient

{ ...
}

jam.jar

com.bea.jam.egen.EgenClient
service sampleCreate accepts EmployeeRecord
 returns EmployeeRecord
service sampleRead accepts EmployeeRecord
 returns Employeerecord

client class sample.SampleClass
 {
 method newEmployee is service sampleCreate

 method readEmployee is service sampleread
 }

The eGen script file that
defines the methods to be
generated in the client EJB.

5 Generating a Stand-alone Client Application

5-8 BEA WebLogic Java Adapter for Mainframe Programming Guide

Listing 5-4 Generated EgenClient.java Class

//==
// EgenClient.java
// Basic functionality for clients of the jcrmgw
//
//---

package com.bea.jam.egen;

public class EgenClient
 {

public byte[] callService(String service, byte[] in)
throws snaException, IOException

{
// make a mainframe request through the gateway.
...

}
}

// End egenClientBean.java

The generated class, illustrated in the following listing, adds the methods specific to
the users application

Listing 5-5 Sample SampleClient.java Class

// SampleClass.java
//
// Client class generated by eGenCobol on 02-Feb-00.
//

package sample;

// Imports
//
import java.io.IOException;
import com.bea.jam.egen.EgenClient;
import com.bea.sna.jcrmgw.snaException;
import com.bea.base.io.MainframeWriter;
import com.bea.base.io.MainframeReader;

Customizing a Stand-Alone Java Application

BEA WebLogic Java Adapter for Mainframe Programming Guide 5-9

/**
 * Mainframe client class.
 */
public class SampleClass extends EgenClient
 {

// newEmployee
//
public EmployeeRecord newEmployee(EmployeeRecord commarea)

throws IOException, snaException
{
 // Make the remote call.
 //
 byte[] inputBuffer = commarea.toByteArray(new

MainframeWriter());
 byte[] rawResult = callService(“sampleCreate”,

inputBuffer);
 EmployeeRecord result =

new EmployeeRecord(new
 MainframeReader(rawResult));

 return result;
}

// readEmployee
//
public EmployeeRecord readEmployee(EmployeeRecord commarea)

throws IOException, snaException
{
 // Make the remote call.
 //
 byte[] inputBuffer = commarea.toButeArray(new

MainframeWriter());
 byte[] rawResult = callService(“sampleRead”, inputBuffer);
 EmployeeRecord result =

new EmployeeRecord(new MainframeReader(rawResult)):
 return result

}
]

// End SampleClass.java

Your class, which extends or uses the SampleClient class, simply overrides or calls
these methods to provide additional business logic, modifying the contents of the
DataView. Your class may also add additional methods, if desired.

The following listing shows an example ExtSampleClass class that extends the
generated SampleClient class.

5 Generating a Stand-alone Client Application

5-10 BEA WebLogic Java Adapter for Mainframe Programming Guide

Listing 5-6 Sample ExtSampleClient.java Contents

// ExtSampleClient.java
//

package sample;

// Imports
//
import java.io.IOException;
import com.bea.jam.egen.egenClientBean;
import com.bea.sna.jcrmgw.snaException;
import com.bea.base.io.MainframeWriter;
import com.bea.base.io.MainframeReader;

/**
 * Extended Sample Class
 */
public class ExtSampleClient extends SampleClass
{

// deleteEmployee
//
public EmployeeRecord deleteEmployee(EmployeeRecord

commarea)
throws IOException, snaException
{
 EmployeeRecord erec=(EmployeeRecord) in;
 if (!isSsnValid(erec.getEmpRecord().getEmpSsn()))
{
 // The SSN is not valid.
 throw new Error)”Invalid Social Security Number:”+

erec.getEmpRecord().getEmpSsm());
}

// Make the remote call.
//
return super.deleteEmployee(commarea);
}

//updateEmployee
//
public EmployeeRecord updateEmployee(EmployeeRecord

commarea)
throws IOException, snaException

{
 EmployeeRecord erec = (EmployeeRecord) in;
 if (!isSsnValid(erec.getEmpRecord().getEmpSsn()))
 {

The SSN is not valid.

Customizing a Stand-Alone Java Application

BEA WebLogic Java Adapter for Mainframe Programming Guide 5-11

throw new Error (“Invalid Social Security Number:”+
 erec.getEmpRecord().getEmpSsn());

 }

// Make the remote call.
//
return super.updateEmployee(commarea);

}

// readEmployee
//
public EmployeeRecord readEmployee(EmployeeRecord commarea)

throws IOException, snaException
{

EmployeeRecord erec =)EmployeeRecord)in;
if (!isSsnValid(erec.getEmpRecord().getEmpSsn()))
{

// The SSN is not valid.
throw new Error(“Invalid Social Security
Number:”+

erec.getEmpRecord().getEmpSsn());
}

// Make the remote call.
//
return super.readEmployee(commarea);

}

//newEmployee
//
public EmployeeRecord newEmployee(EmployeeRecord commarea)

throws IOException, snaException
{
 EmployeeRecord erec = (EmployeeRecord) in;
 if (!isSsnValid(erec.getEmpRecord().getEmpSsn()))
 {

// The SSN is not valid.
throw new Error(“Invalid Social Security Number:”+

erec.getEmpRecord().getEmpSsn());
 }

 // Make the remote call.
 //
 return super.newEmployee(commarea);

}

// Private functions

5 Generating a Stand-alone Client Application

5-12 BEA WebLogic Java Adapter for Mainframe Programming Guide

/**
* Validates an SSN field.
*/

private boolean isSsnValid(BigDecimal ssn)
{
 if (ssn.longValue() < 100000000)
 {
 // Ops, should not have a leading zero.
 return false;
 }

 return (true);
}

]

// END ExtSampleClient.java

Once it has been written, the ExtSampleClient class and the other Java source files
must be compiled and placed on to your CLASSPATH.

What Do I Do Next?

Refer to BEA Java Adapter for Mainframe Scenarios for detailed examples of some of
the application models discussed in this guide.

BEA WebLogic Java Adapter for Mainframe Programming Guide I-13

Index

B
Browser session flowchart 2-14

C
CLASSPATH 5-12
COBOL copybook

LINKAGE SECTION 1-9
customer support x
customer support contact information ix

D
documentation

conventions x
where to find it viii

E
e-docs Web Site viii
EJB application

customizing 4-9
customizing Java classes in 3-11
deploying 1-19
generating as a remote server 4-1
producing Java classes for 3-1
sample script for defining 3-4
sample script process command 3-6
Stateless Session EJB 3-13

J
Java application

customizing servlet-only application 2-9
customizing simple stand-alone

application 5-6
generating a simple stand-alone

application 5-1
generating servlet-only application 2-1
models 1-13
sample of generated source file 2-8

Java data types
converting to COBOL data types 1-9

P
printing product documentation viii

R
related information viii

S
Script process command 2-7
servlet

deploying 1-19
support

technical ix, x

T
technical support x

I-14 BEA WebLogic Java Adapter for Mainframe Programming Guide

W
WebLogic Server

as Java server 2-15

	Copyright
	Contents
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us
	Documentation Conventions

	1 Generating a Java Application with the eGen COBOL Code Generator
	Action List
	Prerequisites
	Understanding JAM
	Choosing an eGen Java Application Model
	Gathering Mainframe Applications Information
	Obtaining Mainframe Services Information
	Obtaining a COBOL Copybook
	Creating a New Copybook
	Using an Existing COBOL Copybook

	Writing an eGen COBOL Script
	Writing the DataView Section of an eGen COBOL Script
	Writing the Application Section of an eGen COBOL Script

	Processing eGen Scripts with the eGen Utility
	Creating an Environment for Generating and Compiling the Java Code
	Generating the Java DataView Code
	Generating the Java Application Code
	Special Considerations for Compiling the Java Code

	Deploying Applications
	Deploying a JAM eGen Servlet (Quick-Start Deployment)
	Deploying a JAM eGen EJB

	Providing OS/390 Mainframe Access with No Data Translation
	Using Client Diagnostic Features with WebLogic Server 6.0
	Client Traffic Tracing
	Client Loopback
	Client Stub Operation

	What Do I Do Next?

	2 Generating a Servlet-Only Application
	Action List
	Prerequisites
	Writing an eGen COBOL Servlet Script
	Processing a Script to Generate Your Application Source Files
	Reviewing the Generated Files
	Customizing a Servlet-Only JAM Application
	What Do I Do Next?

	3 Generating a Client Enterprise Java Bean-based Application
	Action List
	Prerequisites
	Components of an eGen COBOL Client EJB Script
	Processing the Script
	Working with Generated Files
	SampleClient.java Source File
	SampleClientBean.java Source File
	SampleClientHome.java Source File
	SampleClient-jar.xml Source File
	wl-SampleClient-jar.xml Source File

	Customizing an Enterprise Java Bean-Based Application
	Compiling and Deploying
	What Do I Do Next?

	4 Generating a Server Enterprise Java Bean-based Application
	Action List
	Prerequisites
	Components of an eGen COBOL Server EJB Script
	Processing the Script
	Working with Generated Files
	SampleServer.java Source File
	SampleServerBean.java Source File
	SampleServerHome.java Source File
	SampleServer-jar.xml Source File
	wl-SampleServer-jar.xml Source File

	Customizing a Server Enterprise Java Bean-Based Application
	Compiling and Deploying
	What Do I Do Next?

	5 Generating a Stand-alone Client Application
	Action List
	Prerequisites
	Components of an eGen COBOL Stand-alone Application Script
	Processing a Script
	Working with Generated Files
	SampleClass.java Source File

	Customizing a Stand-Alone Java Application
	What Do I Do Next?

	Index

