
Reference Guide

B E A W e b L o g i c J a v a A d a p t e r f o r M a i n f r a m e

BEA WebLogic Java
Adapter for Mainframe

J u l y 2 0 0 1
D o c u m e n t E d i t i o n 4 . 2
 R e f e r e n c e G u i d e 4 . 2

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, Operating System for the Internet, Liquid Data, BEA WebLogic E-Business Platform, BEA Builder,
BEA Manager, BEA eLink, BEA Campaign Manager for WebLogic, BEA WebLogic Commerce Server, BEA
WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic Collaborate, BEA
WebLogic Enterprise, BEA WebLogic Server, and BEA WebLogic Integration are trademarks of BEA Systems,
Inc.

All other trademarks are the property of their respective company.

BEA WebLogic Java Adapter for Mainframe Reference Guide

Document Edition Part Number Date Software Version

4.2 N/A July 2001 BEA WebLogic Java Adapter for
Mainframe 4.2

BEA WebLogic Java Adapter for Mainframe Reference Guide iii

Contents

What You Need to Know .. vi

e-docs Web Site ... vi

How to Print the Document... vi

Related Information... vi

Documentation Conventions ... viii

1. JAM Programming Reference
Field Name Mapping Rules... 1-2

Field Type Mappings... 1-2

Group Field Accessors .. 1-4

Elementary Field Accessors .. 1-4

Array Field Accessors ... 1-5

Fields with REDEFINES Clauses ... 1-6

COBOL Data Types .. 1-6

Other Access Methods for Generated DataView Classes 1-9

Mainframe Access to DataView Classes ... 1-9

XML Access to DataView Classes .. 1-11

Hashtable Access to DataView Classes ... 1-13

Code for Unloading and Loading Hashtables 1-14

Rules for Unloading and Loading Hashtables 1-14

Name Translator Interface Facility ... 1-15

Known Limitations.. 1-16

2. eGen COBOL Code Generator Reference
eGen COBOL .. 2-1

Synopsis ... 2-1

Script Syntax Reserved Words... 2-2

iv BEA WebLogic Java Adapter for Mainframe Reference Guide

General Rules ... 2-3

Grammar... 2-4

Results of Running the eGen COBOL Code Generator 2-6

3. Understanding How JAM Uses XML
What is XML? ... 3-1

Document Type Definition... 3-2

XML Schema.. 3-3

How JAM Uses XML.. 3-3

4. Security
Supported Security Options... 4-1

Controlling User IDs and Passwords through Business Logic or Client
Classes .. 4-2

Controlling Security Credentials from Client EJB Code 4-3

Controlling Security Credentials from Client Class Code 4-7

5. Extracting Java Docs

6. CRM Error Messages

7. JAM Error Messages

BEA WebLogic Java Adapter for Mainframe Reference Guide v

About This Document

The BEA WebLogic Java Adapter for Mainframe product (hereafter referred to as
JAM) is a gateway connectivity application that enables client/server interactions
between Java applications and OS/390 Customer Information Control
System/Enterprise System Architecture (CICS/ESA) or Information Management
System (IMS) programs.

This document provides the following reference information to supplement the JAM
documentation:

n “JAM Programming Reference” describes rules used by the eGen COBOL Code
Generator.

n “eGen COBOL Code Generator Reference” contains reference pages for the
BEA WebLogic Java Adapter for Mainframe eGen COBOL Code Generator.

n “Understanding How JAM Uses XML” describes XML and explains how JAM
uses XML.

n “Security” describes supported security options for JAM.

n “Extracting Java Docs” describes how to extract the HTML pages that document
the JAM Java classes

n “CRM Error Messages” describes the error, informational, and warning
messages that can be encountered while using the CRM.

n “JAM Error Messages” describes the error, informational, and warning messages
that can be encountered while using the JAM software

n “Index”

vi BEA WebLogic Java Adapter for Mainframe Reference Guide

What You Need to Know

This document is intended for system administrators, application programmers, and
business analysts who will use the BEA WebLogic Java Adapter for Mainframe
application.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://edocs.bea.com/.

How to Print the Document

A PDF version of this document is available on the JAM documentation Home page
on the e-docs Web site (and also on the installation CD). You can open the PDF in
Adobe Acrobat Reader and print the entire document (or a portion of it) in book
format. To access the PDFs, open the JAM documentation Home page, click the PDF
files button, and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

The following BEA publications are available for JAM 4.2:

n BEA WebLogic Java Adapter for Mainframe Release Notes

Related Information

BEA WebLogic Java Adapter for Mainframe Reference Guide vii

n BEA WebLogic Java Adapter for Mainframe Introduction

n BEA WebLogic Java Adapter for Mainframe Installation Guide

n BEA WebLogic Java Adapter for Mainframe Configuration and Administration
Guide

n BEA WebLogic Java Adapter for Mainframe Programming Guide

n BEA WebLogic Java Adapter for Mainframe Scenarios Guide

n BEA WebLogic Java Adapter for Mainframe Workflow Processing Guide

n BEA WebLogic Java Adapter for Mainframe Reference Guide

Contact Us

Your feedback on the BEA WebLogic Java Adapter for Mainframe documentation is
important to us. Send us e-mail at docsupport@bea.com if you have questions or
comments. Your comments will be reviewed directly by the BEA professionals who
create and update the JAM documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Java Adapter for Mainframe 4.2 release.

If you have any questions about this version of JAM, or if you have problems installing
and running JAM, contact BEA Customer Support through BEA WebSupport at
www.bea.com. You can also contact Customer Support by using the contact
information provided on the Customer Support Card that is included in the product
package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

viii BEA WebLogic Java Adapter for Mainframe Reference Guide

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

blue text Indicates a hypertext link in PDF or HTML

italics Indicates emphasis or book titles or variables.

“string
with
quotes”

Indicates a string entry that requires quote marks.

UPPERCASE
TEXT

Indicates generic file names, device names, environment variables, and
logical operators.

Examples:

LPT1

SIGNON

OR

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void xa_commit ()

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

Documentation Conventions

BEA WebLogic Java Adapter for Mainframe Reference Guide ix

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

x BEA WebLogic Java Adapter for Mainframe Reference Guide

BEA WebLogic Java Adapter for Mainframe Reference Guide 1-1

CHAPTER

1 JAM Programming
Reference

This section provides the rules that allow you to identify what form a generated Java
class takes from a given COBOL copybook processed by the eGen COBOL Code
Generator (eGen utility). An understanding of the rules facilitates a programmer’s
ability to correctly code any custom programs that make use of the generated classes.

The eGen utility maps a COBOL copybook into a Java class. The COBOL copybook
contains a data record description. The eGen utility derives the generated Java class
from the com.bea.dmd.dataview.DataView class (later referred to as DataView),
which is provided on your BEA WebLogic Java Adapter for Mainframe (JAM)
product CD-ROM in the jam.jar file.

This section discusses data mapping rules in the following topics:

n “Field Name Mapping Rules”

n “Field Type Mappings”

n “Group Field Accessors”

n “Elementary Field Accessors”

n “Array Field Accessors”

n “Fields with REDEFINES Clauses”

n “COBOL Data Types”

n “Other Access Methods for Generated DataView Classes”

n “Known Limitations”

1 JAM Programming Reference

1-2 BEA WebLogic Java Adapter for Mainframe Reference Guide

You should find the COBOL terms in this section easy to understand; however, you
may need to use a COBOL reference book or discuss the terms with a COBOL
programmer. Also, you can process a copybook with the eGen utility and examine the
generated Java code in order to understand the mapping.

Field Name Mapping Rules

When you process a COBOL copybook containing field names, they are mapped to
Java names. The mapping is performed by the eGen utility according to the following
rules:

1. All alphabetic characters are mapped to lower case, except in the following two
cases.

2. All dashes are removed and the character following the dash is mapped to upper
case.

3. When a prefix is added to the name (as when creating a field accessor function
name), the first character of the base name is mapped to upper case.

Table 1-1 lists some mapping examples.

Field Type Mappings

When you process a COBOL copybook, the data types of fields are mapped to Java
data types. The mapping is performed by the eGen utility according to the following
rules:

Table 1-1 Example Field Name Mapping from COBOL to Java and Accessor

COBOL Field Name Java Base Name Sample Accessor Name

EMP-REC empRec setEmpRec

500-REC-CNT 500RecCnt set500RecCnt

Field Type Mappings

BEA WebLogic Java Adapter for Mainframe Reference Guide 1-3

1. Groups map to DataView subclasses.

2. All alphanumeric fields are mapped to type String.

3. All edited numeric fields are mapped to type String.

4. All SIGN SEPARATE, BLANK WHEN ZERO or JUSTIFIED RIGHT fields are
mapped to type String.

5. SIGN IS LEADING is not supported.

6. The types COMP-1, COMP-2, COMP-5, COMP-X, and PROCEDURE-POINTER fields
are not supported (an error message is generated).

7. All INDEX fields are mapped to Java type int.

8. POINTER maps to Java type int.

9. All numeric fields with any digits to the right of the decimal point are mapped to
type BigDecimal.

10. All COMP-3 (packed) fields are mapped to type BigDecimal.

11. All other numeric fields are mapped as shown in Table 1-2.

Table 1-2 Numeric Field Mapping

Number of Digits Java Type

 <= 4 short

> 4 and <= 9 int

> 9 and <= 18 long

> 18 BigDecimal

1 JAM Programming Reference

1-4 BEA WebLogic Java Adapter for Mainframe Reference Guide

Group Field Accessors

Each nested group in a COBOL copybook is mapped to a corresponding DataView
subclass. The generated subclasses are nested exactly as the COBOL groups in the
copybook. In addition, the eGen utility generates a private instance variable of this
class type and a get accessor.

For example, the following copybook:

10 MY-RECORD.
20 MY-GRP.

30 ALNUM-FIELD PIC X(20).

Produces code similar to the following:

public MyGrp2V getMyGrp();
public static class MyGrp2V extends DataView
{

// Class definition
}

Elementary Field Accessors

Each elementary field is mapped to a private instance variable within the generated
DataView subclass. Access to this variable is accomplished by two accessors that are
generated (set and get).

These accessors have the following forms:

public void setFieldName(FieldType value);

public FieldType getFieldName();

Where:

FieldType

is described in the “Field Type Mappings” section.

FieldName

is described in the “Field Name Mapping Rules” section.

Array Field Accessors

BEA WebLogic Java Adapter for Mainframe Reference Guide 1-5

For example, the following copybook:

10 MY-RECORD.
20 NUMERIC-FIELD PIC S9(5).
20 ALNUM-FIELD PIC X(20).

Produces the accessors:

public void setNumericField(int value);
public int getNumericField();
public void setAlnumField(String value);
public String getAlnumField();

Array Field Accessors

Array fields are handled according to the field accessor rules described in “Group Field
Accessors” and “Elementary Field Accessors”, with the addition that each accessor
takes an additional int argument that specifies which array entry is to be accessed, for
example:

public void setFieldName(int index, FieldType value);
public FieldType getFieldName(int index);

Array fields specified with the DEPENDING ON clause are handled the same as
fixed-size arrays with the following special rules:

1. The accessors may be used to get or set any instance up to the maximum array
index.

2. The controlling (DEPENDING ON) variable is evaluated when the DataView is
converted to or from an external format, such as a mainframe format. The eGen
utility converts only the array elements with subscripts less than the controlling
value.

1 JAM Programming Reference

1-6 BEA WebLogic Java Adapter for Mainframe Reference Guide

Fields with REDEFINES Clauses

Fields that participate in a REDEFINES set are handled as a unit. A private byte[]
variable is declared to hold the underlying mainframe data, as well as a private
DataView variable. Each of the redefined fields has an accessor or accessors. These
accessors take more CPU overhead than the normal accessors because they perform
conversions to and from the underlying byte[] data.

For example the copybook:

10 MY-RECORD.
20 INPUT-DATA.

30 INPUT-A PIC X(4).
30 INPUT-B PIC X(4).

20 OUTPUT-DATA REDEFINES INPUT-DATA PIC X(8).

Produces Java code similar to the following:

private byte[] m_redef23;
private DataView m_redef23DV;
public InputDataV getInputData();
public String getOutputData();
public void setOutputData(String value);
public static class InputDataV extends DataView
{
// Class definition.
}

COBOL Data Types

This section summarizes the COBOL data types supported by JAM software.
Table 1-3 lists the COBOL data item definitions recognized by the eGen utility.
Table 1-4 lists the syntactical features and data types recognized by the eGen utility. If
a COBOL feature is unsupported and it is not listed as ignored in the table, an error
message is generated.

COBOL Data Types

BEA WebLogic Java Adapter for Mainframe Reference Guide 1-7

Table 1-3 Major COBOL Features

COBOL Feature Support

IDENTIFICATION DIVISION Unsupported

ENVIRONMENT DIVISION Unsupported

DATA DIVISION Partially Supported

WORKING-STORAGE SECTION Partially Supported

Data record definition Supported

PROCEDURE DIVISION Unsupported

COPY Unsupported

COPY REPLACING Unsupported

EJECT, SKIP1, SKIP2, SKIP3 Supported

Table 1-4 COBOL Data Types

COBOL Type Java Type

COMP, COMP-4, BINARY (integer) Short/Int/Long

COMP, COMP-4, BINARY (fixed) BigDecimal

COMP-3, PACKED-DECIMAL BigDecimal

COMP-5 Unsupported

COMP-X Unsupported

DISPLAY numeric (zoned) BigDecimal

BLANK WHEN ZERO (zoned) String

SIGN IS LEADING (zoned) Unsupported

SIGN IS LEADING SEPARATE (zoned) String

SIGN IS TRAILING (zoned) String

1 JAM Programming Reference

1-8 BEA WebLogic Java Adapter for Mainframe Reference Guide

SIGN IS TRAILING SEPARATE (zoned) String

edited numeric String

COMP-1, COMP-2 (float) Unsupported

edited float numeric String

DISPLAY (alphanumeric) String

edited alphanumeric String

INDEX Int

POINTER Int

PROCEDURE-POINTER Unsupported

JUSTIFIED RIGHT Unsupported (ignored)

SYNCHRONIZED Unsupported (ignored)

REDEFINES Supported

66 RENAMES Unsupported

66 RENAMES THRU Unsupported

77 level Supported

88 level (condition) Unsupported (ignored)

group record Inner Class

OCCURS (fixed array) Array

OCCURS DEPENDING (variable-length array) Array

OCCURS INDEXED BY Unsupported (ignored)

OCCURS KEY IS Unsupported (ignored)

Table 1-4 COBOL Data Types

COBOL Type Java Type

Other Access Methods for Generated DataView Classes

BEA WebLogic Java Adapter for Mainframe Reference Guide 1-9

Other Access Methods for Generated
DataView Classes

JAM allows you to access DataView classes through several methods as described in
the following sections:

n Mainframe Access to DataView Classes

n XML Access to DataView Classes

n Hashtable Access to DataView Classes

Mainframe Access to DataView Classes

This section describes how mainframe format data may be moved into and out of
DataView classes. The eGen COBOL tool writes this code for you, so this information
is provided as reference.

Mainframe format data may be extracted from a DataView class through the use of the
MainframeWriter class. Listing 1-1 shows a sample of code that may be used to
perform the extraction.

Listing 1-1 Sample Code for Extracting Mainframe Format Data from a
DataView Class

import com.bea.base.io.MainframeWriter;
import com.bea.dmd.dataview.DataView;

 ...

 /**
 * Get mainframe format data from a DataView into a byte[].
 */
 byte[] getMainframeData(DataView dv)
 {
 try
 {

1 JAM Programming Reference

1-10 BEA WebLogic Java Adapter for Mainframe Reference Guide

 MainframeWriter mw = new MainframeWriter();
 // To override the DataView’s codepage, change the
 // above constructor call to something like:
 // ...new MainframeWriter("cp1234");

 return dv.toByteArray(mw);
 }
 catch (java.io.IOException e)
 {
 // Some conversion failure occurred…
 }
 }

If you wish to override the codepage provided when the DataView was generated, you
may provide another codepage as a String argument to the MainframeWriter
constructor, as shown in the comment in Listing 1-1.

Loading mainframe data into a DataView is a similar process, in this case requiring the
use of the MainframeReader class. Listing 1-2 shows a sample of code that may be
used to perform the load.

Listing 1-2 Sample Code for Loading Mainframe Data into a DataView Class

import com.bea.base.io.MainframeReader;
import com.bea.dmd.dataview.DataView;

 ...

 /**
 * Put a byte[] containing mainframe format data into a DataView.
 */
 MyDataView putMainframeData(byte[] buffer)
 {
 MainframeReader mr = new MainframeReader(buffer);
 // To override the DataView's codepage, change the above
 // constructor call to something like:
 // …new MainframeReader("cp1234", buffer);
 .
 .
 .
 MyDataView dv;
 .
 .

Other Access Methods for Generated DataView Classes

BEA WebLogic Java Adapter for Mainframe Reference Guide 1-11

 .
 try
 {
 // Construct a new DataView with the mainframe data.
 dv = new MyDataView(mr);

 // Or, to load a pre-existing DataView with mainframe data.
 // dv.mainframeLoad(mr);
 }
 catch (java.io.IOException e)
 {
 // Some conversion failure occurred.
 }

 return dv;
 }

XML Access to DataView Classes

Facilities are provided to move XML data into and out of DataView classes. These
operations are performed through the use of the XmlLoader and XmlUnloader
classes.

n XmlLoader is used to load XML data into a DataView.

n XmlUnloader is used to unload data from a DataView into XML.

n If the eGen COBOL script used to produce the DataView specifies the "support
xml" option, then both a DTD and an XML/Schema that describe the XML
format for this DataView are produced.

Listing 1-3 shows an example of the code used to load XML data into a DataView.

Listing 1-3 Sample Code for Loading XML Data into a DataView

import com.bea.dmd.dataview.DataView;
import com.bea.dmd.dataview.XmlLoader;

 ...

 void loadXmlData(String xml, DataView dv)

1 JAM Programming Reference

1-12 BEA WebLogic Java Adapter for Mainframe Reference Guide

 {
 XmlLoader xl = new XmlLoader();
 try
 {
 // Load the xml. Note that the xml argument may be either
 // a String or a org.w3c.dom.Element object.
 xl.load(xml, dv);
 }
 catch (Exception e)
 {
 // Some conversion error occurred.
 }
 }

Listing 1-4 shows an example of the code used to unload a DataView into XML.

Listing 1-4 Sample Code for Unloading a DataView into XML

import com.bea.dmd.dataview.DataView;
import com.bea.dmd.dataview.XmlUnloader;

 ...

 String unloadXmlData(DataView dv)
 {
 XmlUnloader xu = new XmlUnloader();

 try
 {
 String xml = xu.unload(dv);
 return xml;
 }
 catch (Exception e)
 {
 // Some conversion error occurred.
 }
 }

Other Access Methods for Generated DataView Classes

BEA WebLogic Java Adapter for Mainframe Reference Guide 1-13

Hashtable Access to DataView Classes

JAM also provides facilities to load and unload DataView objects using Hashtable
objects. Hashtable objects are most often used to move data from one DataView to
another similar DataView.

When DataView fields are moved into Hashtables, each field is given a key that is a
string reflecting the location of the field within the original copybook data structure.
Listing 1-5 shows a sample of a COBOL Copybook.

Listing 1-5 Sample emprec.cpy COBOL Copybook

1 *--
2 * emprec.cpy
3 * An employee record.
4 *--
5
6 02 emp-record.
7
8 04 emp-ssn pic 9(9) comp-3.
9
10 04 emp-name.
11 06 emp-name-last pic x(15).
12 06 emp-name-first pic x(15).
13 06 emp-name-mi pic x.
14
15 04 emp-addr.
16 06 emp-addr-street pic x(30).
17 06 emp-addr-st pic x(2).
18 06 emp-addr-zip pic x(9).
19
20 * End

The fields for the COBOL Copybook in Listing 1-5 are stored into a Hashtable as
shown in the following table.

Key String Content Type

empRecord.empSsn BigDecimal

1 JAM Programming Reference

1-14 BEA WebLogic Java Adapter for Mainframe Reference Guide

Code for Unloading and Loading Hashtables

Following is an example of the code used to unload a DataView into a Hashtable.

 Hashtable ht = new HashtableUnloader().unload(dv);

Following is an example of the code used to load a Hashtable into an existing
DataView.

 new HashtableLoader().load(dv);

Rules for Unloading and Loading Hashtables

The basic rules of Hashtable unloading are:

n All data elements in the DataView are placed into the Hashtable.

n Each data item is stored as an object of its Java type. Elements of int/short/long
type are converted to Integer/Short/Long.

n Arrays are mentioned at the appropriate level in the key as an index enclosed in
"[", "]" pairs. For instance, if empAddr was an array, then one key into the
Hashtable might be "empRecord.empAddr[2].empAddrStreet".

The basic rules of Hashtable loading are:

n All data elements in the DataView attempt to acquire a value from the
Hashtable. If no matching key exists, the element retains its original value.

empRecord.empName.empNameLast String

empRecord.empName.empNameFirst String

empRecord.empName.empNameMi String

empRecord.empAddr.empAddrStreet String

empRecord.empAddr.empAddrSt String

empRecord.empAddr.empAddrZip String

Key String Content Type

Other Access Methods for Generated DataView Classes

BEA WebLogic Java Adapter for Mainframe Reference Guide 1-15

n Hashtable members of the wrong type result in a ClassCastException being
thrown.

Name Translator Interface Facility

A name translator interface facility is available to provide Hashtable name mappings.
Both HashtableLoader and HashtableUnloader provide a constructor that accepts
an argument of type "com.bea.dmd.dataview.NameTranslator". Listing 1-6 shows
how this interface is defined.

Listing 1-6 Name Translator Interface

//===
// NameTranslator.java
// Name Translator interface.
//
// Copyright ©2000, BEA Systems, Inc., all rights reserved.

//---

 package com.bea.dmd.dataview;

/**
* Name Translator interface.
* An interface for a 'functor' object that translates field names.
*
* @version $Revision: 1.1 $
* @author Copyright ©2000, BEA Systems, Inc., all rights reserved.
*/

 public interface NameTranslator
 {
 public String translate(String input);
 }

// End NameTranslator.java

You can write classes that implement this interface for your application. These
implementations are used to translate the key strings before the Hashtable is accessed.

1 JAM Programming Reference

1-16 BEA WebLogic Java Adapter for Mainframe Reference Guide

Following are some useful implementations that are included in the JAM library:

The HashtableLoader, HashtableUnloader, and the various name translator
classes are included in the "com.bea.dmd.dataview" package.

Known Limitations

Following are some of the known limitations of this version of the JAM product.

n Continuation lines are not recognized in COBOL copybooks. This is only a
problem for long character literals occurring within VALUES clauses. Comment
out the relevant clause to fix the problem.

n COBOL copybooks with array (table) data items having an OCCURS DEPENDING
ON clause must be structured so that the depending-on counter data item is not
contained within the same group data item as the one containing the array.

n USAGE clauses on group data items in COBOL copybooks are not properly
propagated to their subordinated member data items.

Class Constructor Purpose

NameFlattener() Reduces the key to the portion following
the final period character.

PrefixChanger(String old, String add) Removes an old prefix & adds a new one.

PrefixChanger(String old) Removes a prefix.

BEA WebLogic Java Adapter for Mainframe Reference Guide 2-1

CHAPTER

2 eGen COBOL Code
Generator Reference

This section contains reference pages for the BEA WebLogic Java Adapter for
Mainframe eGen COBOL Code Generator (eGen utility). This information includes
the rules for writing the script file that controls the code generator.

eGen COBOL

The eGen utility maps a COBOL copybook into a Java class.

Synopsis

Invoke the utility with the following command:

java com.bea.jam.egen.EgenCobol scriptfile

where:

java

is the name of the Java virtual machine executable in the Java Development
Kit (JDK).

com.bea.jam.egen.EgenCobol

is the full class name of the eGen utility.

2 eGen COBOL Code Generator Reference

2-2 BEA WebLogic Java Adapter for Mainframe Reference Guide

scriptfile

is the script file that controls the eGen utility. You must write this script file
on an application-by-application basis. (See Listing 2-1 for an example).

If the JAM installation bin directory has been added to your path, then the eGen utility
may also be invoked with the command:

egencobol scriptfile

Listing 2-1 Example of scriptfile.egen

example script
#

view demo.CustomDataView from emprec.cpy

service demoService accepts CustomDataView returns CustomDataView

page demoPage "Demo Page"
{
 view demo.CustomDataView

 buttons
 {
 "Try It" service(demoService) shows demoPage
 }
}

servlet demo.DemoServlet shows demoPage

Script Syntax Reserved Words

The reserved words shown in Table 2-1 must be used as specified in the “Grammar”
section.

Note: A reserved word can be used as an identifier if it is enclosed in either single or
double quotation marks (refer to “General Rules”).

eGen COBOL

BEA WebLogic Java Adapter for Mainframe Reference Guide 2-3

General Rules

n The ‘#’ character and all following characters on the same line are a comment.
Use the ‘#’ character to specify commented text.

n The character sequence “//” and all following characters on the same line are a
comment. Use the “//” characters to specify commented text.

n The character sequence “/*” and all following characters until the occurrence of
the sequence “*/” are a comment. Use the “/*” characters to specify
commented text that extends beyond one line.

n White space (including newlines) is not significant, except when it is used to
seperate tokens. White space includes newlines, carriage returns, tabs, spaces,
etc.

n Any sequence of letters, digits, underscores, or periods is a word.

n Any word that does not match a reserved word is an identifier.

n Any sequence of characters is treated as an identifier if it is enclosed in either
single or double quotes. This allows the use of reserved words and sequences
that contain spaces.

Table 2-1 Reserved Words

accepts buttons class client codepage ejb

from generate group is method page

reset returns server service servlet shows

support view xml

2 eGen COBOL Code Generator Reference

2-4 BEA WebLogic Java Adapter for Mainframe Reference Guide

Grammar

The eGen COBOL script grammar uses a modified Backus-Naur Form (BNF) syntax,
which is used in many industry-standard software reference guides. BNF syntax
specifies a context-free grammar. Reserved words are shown in bold. Comments are
in italics preceded by a dash (—).

script:
definition | script definition

fulldefinition:
generate definition | definition

definition:
viewdef | servicedef | servletdef | ejbdef | classdef |
pagedef

viewdef:
view viewname from copybook | viewdf viewmodifier

viewmodifier:
codepage codepagename | support xml

servicedef:
service servicename accepts fullViewname returns
fullViewname

servletdef:
servlet classname shows pagename

ejbdef:
clientejb | serverejb

clientejb:
client ejb classname ejbregistration { clientmethods }

serverejb:
server ejb classname ejbregistration { servermethods }

classdef:
client class classname { clientmethods }

pagedef:
 page pagename title { view viewname buttons { buttonlist } }

buttonlist:
 buttondef | buttonlist buttondef

buttondef:
servicebutton | ejbbutton

eGen COBOL

BEA WebLogic Java Adapter for Mainframe Reference Guide 2-5

clientmethods:
clientmethoddef | clientmethods clientmethoddef

clientmethoddef:

 method methodname is servicename

servermethods:
 servermehtoddef | servermethods servermethodddef

servermethoddef:
 method methodname (fullviewname) returns fullviewname

servicebutton:
buttonname service (servicename) shows pagename

ejbbutton:
buttonname ejbmethod (fullViewname) returns fullViewname

viewname:
classname

fullViewname:

viewname | viewname [codepagename]

copybook:
identifier

—An identifier that names a file containing a COBOL data definition.

servicename:
identifier

—An identifier that matches a resource definition in your jcrmgw.cfg file

pagename:
identifier

—An identifier that names a page definition.

codepagename:
identifier

—The name of a codepage to be used for character translation to/from
mainframe data formats. This must be a codepage supported by the JDK
being used.

methodname:
identifier

—The name to be given to a generated Java method.

classname:
identifier

—An identifier that names a Java class, including any package name.

2 eGen COBOL Code Generator Reference

2-6 BEA WebLogic Java Adapter for Mainframe Reference Guide

ejbregistration:
identifier

—The name that will be used to register the home interface for an EJB.

title:
identifier

—The title to be placed into the HTML generated for a page.

buttonname:
identifier

—A button name that will be used in the HTML generated for a page.

ejbmethod:
identifier

—An EJB classname and method specification that should look like this:
package.ejbclass.method

or
ejbclass.method

Results of Running the eGen COBOL Code Generator

n The specified COBOL copybook is parsed for each DataView definition
(described in the “JAM Programming Reference” section of this guide) and a
Java source file for the specified DataView class is generated in the current
directory.

If XML support was requested, then the following files are also produced:

l viewname.dtd - DTD file

l viewname.xsd - XML Schema file

n For each servlet definition, a Java source file is generated in the current directory
for the specified class.

n For each client class definition, a Java source file is generated in the current
directory for the specified class.

n For each EJB definition, three Java source files and a deployment descriptor
text file are generated in the current directory. The names of the generated files
are listed in Table 2-2.

eGen COBOL

BEA WebLogic Java Adapter for Mainframe Reference Guide 2-7

Table 2-2 Generated Files for EJB Definitions

Name of File Purpose

classnameHome.java EJB Home Interface

classnameBean.java EJB Implementation class

classname.java EJB Remote Interface

classname-jar.xml EJB Deployment descriptor

wl-classname-jar.xml WebLogic Deployment Info

2 eGen COBOL Code Generator Reference

2-8 BEA WebLogic Java Adapter for Mainframe Reference Guide

BEA WebLogic Java Adapter for Mainframe Reference Guide 3-1

CHAPTER

3 Understanding How
JAM Uses XML

BEA WebLogic Java Adapter for Mainframe uses the capabilities of XML to exchange
data between different applications and operating systems. Understanding basic XML
terms will help you to understand JAM’s XML capabilities and how they are used.

This section discusses the following topics:

n What is XML?

l Document Type Definition

l DTD Generated from eGen COBOL Code Generator (emprec.dtd)

n How JAM Uses XML

What is XML?

Extensible Markup Language, or XML, is a text format for exchanging data between
different systems. It allows data to be described in a simple, standard, text-only format.
Since the data is presented in a standard form, applications on disparate systems can
interpret the data using simple text parsing tools, instead of having to interpret data in
proprietary binary formats.

XML documents come in two varieties: data and metadata.

n XML Data Document

3 Understanding How JAM Uses XML

3-2 BEA WebLogic Java Adapter for Mainframe Reference Guide

Data records can be converted into XML documents, which can then be
transmitted to other applications. The XML data documents contain a single
top-level entity (or tag) that represents the entire data record. Fields within the
record are represented by other subordinate entities nested within the top-level
entity. Each entity has a unique tag name, which corresponds to a field within
the original data record. Each entity has content, which is the actual data value
of the field. Entities may also have attributes, which are values attached to the
entities that augment the normal content values. The XML data document file
name ends with a .xml extension.

See Listing 3-2 for an example XML data document.

n XML Metadata

Every XML document consists of a top-level entity, which in turn may be
composed of subordinate entities. The structure of these entities, which included
their tag names, the order in which they occur, the type and length of their
content values, and their allowed attribute values, is described by a metadata
definition. Metadata definitions can take the form of XML documents
themselves. There are two standard formats for XML metadata documents: XML
Document Type Definition (DTD) and XML Schema.

Document Type Definition

A Document Type Definition, or DTD, defines the legal building blocks of an XML
document. It defines the document structure with a list of legal elements (tags). While
XML provides an application independent way of sharing data, the DTD provides a
common definition for interchanging data.

Your application can use a standard DTD to verify that data that you receive from the
outside world is valid. You can also use a DTD to verify your own data.

The XML DTD file name ends with a .dtd extension.

See Listing 3-3 for an example XML DTD document.

How JAM Uses XML

BEA WebLogic Java Adapter for Mainframe Reference Guide 3-3

XML Schema

A schema specifies the structure of an XML document and constraints on its content.
While XML is the meta-language that provides the rules for defining tag languages, an
XML Schema document is a formal specification of the grammar for a particular tag
language. The schema defines the elements that can appear within the document and
the attributes that can be associated with an element. It also defines the structure of the
document: which elements are child elements of others, the sequence in which the
child elements can appear, and the number of child elements. It defines whether an
element is empty or can include text. The schema can also define default values for
attributes.

XML Schema is more precise than DTD, providing more descriptive information
about each XML element. It is likely that XML Schema will eventually replace XML
DTD as the dominant standard metadata format.

A schema is useful for validating the document content to determine whether a
document is a valid instance of the grammar expressed by that schema and for
describing your grammar for use by others.

The XML Schema file name ends with a .xsd extension.

See Listing 3-4 for an example XML Schema document.

How JAM Uses XML

The JAM eGen COBOL Code Generator provides the ability to generate both XML
Schema and XML DTD (Document Type Definition) documents for a given COBOL
copybook record definition. The JAM runtime environment provides the capability of
converting data records into XML data documents formatted according to their
corresponding schema or DTD definitions.

The following listings show examples of the XML files generated by the eGen utility
from the COBOL Copybook for an employee information record.

Listing 3-1 shows an example of an employee information record from a COBOL
Copybook. The eGen utility generates an XML Schema and a DTD from the employee
information record. Listing 3-2 shows the corresponding XML document that

3 Understanding How JAM Uses XML

3-4 BEA WebLogic Java Adapter for Mainframe Reference Guide

conforms to the XML Schema and DTD generated from the employee record
information, Listing 3-3 shows the corresponding DTD, and Listing 3-4 shows the
corresponding XML Schema.

Listing 3-1 COBOL Copybook for Employee Information Record (emprec.cpy)

*--
* emprec.cpy
* Employee record.
*
* @(#)$Id: emprec.cpy,v 1.2 1999/11/12 01:16:41 $
*---
 02 emp-record.

 04 emp-ssn pic 9(9) comp-3.

 04 emp-name.
 06 emp-name-last pic x(15).
 06 emp-name-first pic x(15).
 06 emp-name-mi pic x.

 04 emp-addr.
 06 emp-addr-street pic x(30).
 06 emp-addr-st pic x(2).
 06 emp-addr-zip pic x(9).

* End

Listing 3-2 Example XML Document that Conforms to a DTD and XML Schema
Generated from the eGen COBOL Code Generator (emprec.xml)

<emprec>
 <empRecord>
 <empSsn>660337645</empSsn>
 <empName>
 <empNameLast>Doe</empNameLast>
 <empNameFirst>John</empNameFirst>
 <empNameMi>P</empNameMi>
 </empName>
 <empAddr>
 <empAddrStreet>3235 Possum Park Ln.</empAddrStreet>
 <empAddrSt>TX</empAddrSt>
 <empAddrZip>758050000</empAddrZip>

How JAM Uses XML

BEA WebLogic Java Adapter for Mainframe Reference Guide 3-5

 </empAddr>
 </empRecord>
</emprec>

Listing 3-3 DTD Generated from eGen COBOL Code Generator (emprec.dtd)

<!--
! DTD emprec 1.0
!
! Definition: emprec
! Version: 1.0
! Source: ../symbol/emprec.cpy
! Generated: 2000-09-27T19:18:25.084Z
! Created: 2000-09-27T19:18:24.937Z
! Modified: 1999-11-12T01:16:41.000Z
!-->

<!ELEMENT emprec
 (empRecord)>

<!ATTLIST emprec
 date CDATA #DEFAULT "unknown">
 <!-- format="ccyy-mm-ddThh:mm:ss.mmmZ" -->

<!ATTLIST emprec
 version CDATA #DEFAULT "1.0">

<!-- empRecord -->
<!ELEMENT empRecord
 (empSsn ,
 empName ,
 empAddr)>

<!-- empRecord.empSsn -->
<!ELEMENT empSsn
 (#PCDATA)>

<!-- empRecord.empName -->
<!ELEMENT empName
 (empNameLast ,
 empNameFirst ,
 empNameMi)>

<!-- empRecord.empName.empNameLast -->

3 Understanding How JAM Uses XML

3-6 BEA WebLogic Java Adapter for Mainframe Reference Guide

<!ELEMENT empNameLast
 (#PCDATA)>

<!-- empRecord.empName.empNameFirst -->
<!ELEMENT empNameFirst
 (#PCDATA)>

<!-- empRecord.empName.empNameMi -->
<!ELEMENT empNameMi
 (#PCDATA)>

<!-- empRecord.empAddr -->
<!ELEMENT empAddr
 (empAddrStreet ,
 empAddrSt ,
 empAddrZip)>

<!-- empRecord.empAddr.empAddrStreet -->
<!ELEMENT empAddrStreet
 (#PCDATA)>

<!-- empRecord.empAddr.empAddrSt -->
<!ELEMENT empAddrSt
 (#PCDATA)>

<!-- empRecord.empAddr.empAddrZip -->
<!ELEMENT empAddrZip
 (#PCDATA)>

<!-- End -->

Listing 3-4 XML Schema Generated from eGen COBOL Code Generator
(emprec.xsd)

<?xml version="1.0"?>
<schema
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">

 <xsd:annotation>
 <xsd:documentation>
 Schema: emprec
 Version: 1.0
 Source: ../symbol/emprec.cpy
 Generated: 2000-09-27T19:19:42.857Z
 Created: 2000-09-27T19:19:43.708Z

How JAM Uses XML

BEA WebLogic Java Adapter for Mainframe Reference Guide 3-7

 Modified: 1999-11-12T01:16:41.000Z
 </xsd:documentation>
 </xsd:annotation>

 <xsd:element name="emprec">
 <xsd:complexType>

 <xsd:attribute name="date"
 type="xsd:timeInstant"/>

 <xsd:attribute name="version"
 type="xsd:string"
 use="default"
 value="1.0"/>

 <xsd:element name="empRecord">
 <xsd:complexType>

 <xsd:element name="empSsn">
 <xsd:simpleType base="xsd:integer">
 <xsd:precision value="9"/>
 <xsd:minInclusive value="0">
 </xsd:simpleType>
 <!-- <%picture value="9(9)"/> -->
 </xsd:element>

 <xsd:element name="empName">
 <xsd:complexType>

 <xsd:element name="empNameLast"
 type="xsd:string"
 length="15"/>
 <!-- <%picture value="x(15)"/> -->

 <xsd:element name="empNameFirst"
 type="xsd:string"
 length="15"/>
 <!-- <%picture value="x(15)"/> -->

 <xsd:element name="empNameMi"
 type="xsd:string"
 length="1"/>
 <!-- <%picture value="x"/> -->

 </xsd:complexType>
 </xsd:element> <!--"empName"-->

 <xsd:element name="empAddr">
 <xsd:complexType>

3 Understanding How JAM Uses XML

3-8 BEA WebLogic Java Adapter for Mainframe Reference Guide

 <xsd:element name="empAddrStreet"
 type="xsd:string"
 length="30"/>
 <!-- <%picture value="x(30)"/> -->

 <xsd:element name="empAddrSt"
 type="xsd:string"
 length="2"/>
 <!-- <%picture value="x(2)"/> -->

 <xsd:element name="empAddrZip"
 type="xsd:string"
 length="9"/>
 <!-- <%picture value="x(9)"/> -->

 </xsd:complexType>
 </xsd:element> <!--"empAddr"-->

 </xsd:complexType>
 </xsd:element> <!--"empRecord"-->

 </xsd:complexType>
 </xsd:element> <!--"emprec"-->

</schema>

BEA WebLogic Java Adapter for Mainframe Reference Guide 4-1

CHAPTER

4 Security

BEA WebLogic Java Adapter for Mainframe (JAM) supports the basic Application
Program-to-Program Communication (APPC) style of sign-on security. You can
configure a gateway to use one of three types of sign-on security for each link that is
defined. The security options are defined in the JC_LINKS section of the jcrmgw.cfg
file. Refer to the BEA WebLogic Java Adapter for Mainframe Configuration and
Administration Guide for more information. The selected level of security determines
which combination of user ID and password is used for transactions across the link.

Supported Security Options

JAM supports the following security options:

n LOCAL

All security is handled by the local system and the link itself has no security
requirement.

n IDENTIFY

A user ID is passed to the mainframe. This user ID can originate with the
client application or it can be a default user ID supplied at Java gateway
startup by the –u option.

n VERIFY

A user ID and password are passed to the mainframe. The user ID can
originate with the client application or it can be a default user ID supplied at
Java gateway startup by the –u option. The password must be supplied by the
client application.

4 Security

4-2 BEA WebLogic Java Adapter for Mainframe Reference Guide

Note: For more information about the startup class, refer to the “Configuring the
Gateway” section of the BEA WebLogic Java Adapter for Mainframe
Configuration and Administration Guide.

In addition, an alternate mirror transaction is supported on each Distributed Program
Link (DPL). The mirror transaction can be used to associate different Resource Access
Control Facility (RACF) profiles with different services.

Refer to IBM RACF documentation for more specific information about establishing
and administrating mainframe security.

Controlling User IDs and Passwords through
Business Logic or Client Classes

User IDs and passwords used for mainframe requests can be controlled from business
logic within client EJBs or from normal client classes. In order for this security
credential control to work, you must have your gateway security level set to VERIFY.

Note: Following are the limitations of JAM security credential control:

l Individual control of security credentials from servlets that directly invoke
services is not available.

l Encryption of the TCP/IP link between the WebLogic server and the CRM
is not supported. Passwords are passed as clear text.

l Encryption of the SNA link between the CRM and the mainframe is not
supported. Passwords are passed as clear text.

l Secure requests from the mainframe are not supported.

Controlling User IDs and Passwords through Business Logic or Client Classes

BEA WebLogic Java Adapter for Mainframe Reference Guide 4-3

Controlling Security Credentials from Client EJB Code

Business logic within client EJB code can be used to control the security credentials
used for mainframe requests. Client EJB implementations generated by eGen COBOL
provide two routines, setUserid() and setPassword(), to adjust the user ID and
password parameters.

The following listings are based upon the samples provided with JAM. They
demonstrate the use of the setUserid() and setPassword() routines.

Listing 4-1 shows an eGen COBOL script used to generate a client EJB.

Listing 4-1 eGen COBOL Script to Generate a Client EJB

#---
empclient.egen
JAM script for a client EJB application.
#
$Id: empclient.egen,v 1.1 2000/01/21 22:02:40 Exp $
#---

Dataviews (typed data records)

view sample.EmployeeRecord from emprec.cpy

Services

service sampleCreate
 accepts EmployeeRecord returns EmployeeRecord

service sampleRead
 accepts EmployeeRecord returns EmployeeRecord

service sampleUpdate
 accepts EmployeeRecord returns EmployeeRecord

service sampleDelete
 accepts EmployeeRecord returns EmployeeRecord

Clients and servers

client ejb sample.SampleClient my.sampleBean
{
 method newEmployee

4 Security

4-4 BEA WebLogic Java Adapter for Mainframe Reference Guide

 is service sampleCreate

 method readEmployee
 is service sampleRead

 method updateEmployee
 is service sampleUpdate

 method deleteEmployee
 is service sampleDelete
}

When this script is passed to eGen COBOL, several files are generated, one of which
is SampleClientBean.java, the EJB implementation. Listing 4-2 shows an example
of this file.

Listing 4-2 Example of SampleClientBean.java File

// SampleClientBean.java
//
// EJB generated by EgenCobol on Dec 6, 2000.
//

package sample;

// Imports
//
import java.io.IOException;
import com.bea.jam.egen.EgenClientBean;
import com.bea.sna.jcrmgw.snaException;
import com.bea.base.io.MainframeWriter;
import com.bea.base.io.MainframeReader;

/**
 * EJB implementation.
 */
public class SampleClientBean extends EgenClientBean
{
 // deleteEmployee
 //
 public sample.EmployeeRecord deleteEmployee(sample.EmployeeRecord commarea)
 throws IOException, snaException
 {
 // Make the remote call.

Controlling User IDs and Passwords through Business Logic or Client Classes

BEA WebLogic Java Adapter for Mainframe Reference Guide 4-5

 //
 byte[] inputBuffer = commarea.toByteArray(new MainframeWriter());
 byte[] rawResult = callService(“sampleDelete”, inputBuffer);
 sample.EmployeeRecord result =
 new sample.EmployeeRecord(new MainframeReader(rawResult));
 return result;
 }

 // updateEmployee
 //
 public sample.EmployeeRecord updateEmployee(sample.EmployeeRecord commarea)
 throws IOException, snaException
 {
 // Make the remote call.
 //
 byte[] inputBuffer = commarea.toByteArray(new MainframeWriter());
 byte[] rawResult = callService(“sampleUpdate”, inputBuffer);
 sample.EmployeeRecord result =
 new sample.EmployeeRecord(new MainframeReader(rawResult));
 return result;
 }

 // readEmployee
 //
 public sample.EmployeeRecord readEmployee(sample.EmployeeRecord commarea)
 throws IOException, snaException
 {
 // Make the remote call.
 //
 byte[] inputBuffer = commarea.toByteArray(new MainframeWriter());
 byte[] rawResult = callService(“sampleRead”, inputBuffer);
 sample.EmployeeRecord result =
 new sample.EmployeeRecord(new MainframeReader(rawResult));
 return result;
 }

 // newEmployee
 //
 public sample.EmployeeRecord newEmployee(sample.EmployeeRecord commarea)
 throws IOException, snaException
 {
 // Make the remote call.
 //
 byte[] inputBuffer = commarea.toByteArray(new MainframeWriter());
 byte[] rawResult = callService(“sampleCreate”, inputBuffer);
 sample.EmployeeRecord result =
 new sample.EmployeeRecord(new MainframeReader(rawResult));
 return result;
 }

4 Security

4-6 BEA WebLogic Java Adapter for Mainframe Reference Guide

}

// END SampleClientBean.java

Note that the four service routines all invoke the callService method to perform
their work. Listing 4-3 illustrates a class that extends the generated EJB
implementation to provide security credentials to the gateway during these operations.

Listing 4-3 Example of Class with Security Credentials

// ExtClientBean.java
//

package sample;

// Imports
//
import java.io.IOException;
import com.bea.sna.jcrmgw.snaException;

/**
 * EJB implementation.
 */
public class ExtClientBean extends SampleClientBean
{
 protected byte[] callService(String svc, byte[] input)
 throws snaException, IOException
 {
 setUserid(“JAMUSER”);
 setPassword(“JAMPASS”);

 return super.callService(svc, input);
 }
}

// END ExtClientBean.java

In order to deploy the extended EJB, the XML deployment descriptor must be edited
to modify the ejb-class field. Listing 4-4 illustrates this file with the class name that
must be changed marked in bold.

Controlling User IDs and Passwords through Business Logic or Client Classes

BEA WebLogic Java Adapter for Mainframe Reference Guide 4-7

Listing 4-4 Extended EJB with Modified XML Deployment Descriptor

<?xml version=“1.0”?>
<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
1.1//EN' 'http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'>
<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>SampleClient</ejb-name>
 <home>sample.SampleClientHome</home>
 <remote>sample.SampleClient</remote>
 <ejb-class>sample.ExtClientBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>SampleClient</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>*</method-name>
 </method>
 <trans-attribute>NotSupported</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

Controlling Security Credentials from Client Class Code

Client classes generated by eGen COBOL may be extended to specify security
credentials used for requests. The parent class for generated client code provides
setUserid() and setPassword() routines with the same signatures as those in the
EJB model. These may be extended in the same manner. Refer to “Controlling Security
Credentials from Client EJB Code” for examples of the EJB model code.

4 Security

4-8 BEA WebLogic Java Adapter for Mainframe Reference Guide

BEA WebLogic Java Adapter for Mainframe Reference Guide 5-1

CHAPTER

5 Extracting Java Docs

The BEA WebLogic Java Adapter for Mainframe (JAM) product comes with HTML
pages that document the JAM Java classes. These also are referred to as “javadoc”
files. They are located in the jamdoc.jar file, found in the JAM installation directory.

To view the contents of the javadoc HTML files from the .jar file without extracting it,
issue the following command:

jar -tvf jamdoc.jar

Or,

To extract the javadoc HTML files from the .jar file, issue the following command:

jar -xvf jamdoc.jar

where:

jar

is the Java archive command.

-t

is the display Table of Contents parameter.

-x

is the extract file(s) parameter.

v

is the verbose parameter to list the files.

f

is the option that designates the next parameter as the jar file name.

jamdoc.jar

is the name of the JAM javadoc file.

5 Extracting Java Docs

5-2 BEA WebLogic Java Adapter for Mainframe Reference Guide

This command extracts all of the files contained in the jar file into the current directory.
The HTML documentation files are placed in a newly created subdirectory named
classdocs in the current directory.

To view an HTML documentation file, open your web browser and specify the file
name of the javadoc you want to view, taken from the classdocs directory. Any of
the following files are good for getting started:

n classdocs/AllNames.html

n classdocs/packages.html

n classdocs/tree.html

BEA WebLogic Java Adapter for Mainframe Reference Guide 6-1

CHAPTER

6 CRM Error Messages

The following table contains a description of error, informational, and warning
messages that can be encountered while using the Communications Resource Manager
(CRM).

9001:ERROR <taskname> timed out with failCode <failcode>

DESCRIPTION A conversation has timed out in the CRM with the
stack return code of <failcode>. A timer event
set to watch a conversation has expired.

<taskname> may appear as:

OB-Conversation #nn (<linkref>) tx #m
<tranname>, or

IB-Conversation #nn (<linkref>) tx #m
<tranname>

where:

nn is an internal APPC conversation number.

m is the transaction context where -1 signifies
non-transactional.

ACTION Examine stderr and the ULOG for additional
information concerning the failure.

9002:ERROR Server (<stackref>) Creation Failed

DESCRIPTION CRM was unable to instantiate the stack object
due to an error.

ACTION Check for additional messages in stderr. The
shared library for the stack or the stack interface
might not have been loaded due to an incorrect
library path.

6 CRM Error Messages

6-2 BEA WebLogic Java Adapter for Mainframe Reference Guide

9003:ERROR Server Failed (<stackref>), Code = <returncode>

DESCRIPTION CRM received a bad return code from the stack
start-up.

ACTION The <returncode> is the value returned by the
SNA Stack software. Check the status of the stack,
the configuration of the stack, and the gateway
configuration. .

9004:ERROR Configuration change on link <linkref> requires cold start

DESCRIPTION Attempting to do a warm start after changing the
domain configuration.

ACTION Change start type to COLD and restart.

BEA WebLogic Java Adapter for Mainframe Reference Guide 6-3

9010:ERROR <taskname> failed with failCode <failcode>

DESCRIPTION A conversation has failed with the stack return
code of <failcode>.

<taskname> may appear as:

OB-Conversation #nn (<linkref>) tx #m
<tranname>, or

IB-Conversation #nn (<linkref>) tx #m
<tranname>

where:

nn is an internal APPC conversation number.

m is the transaction context where -1 signifies
non-transactional.

Possible values for the <failcode> are:

1. Communications - unable to create the
APPCserver object.

2. MemoryAllocation - internal error allocating
memory.

3. InvalidObject - a CRM object could not be
created or has been made invalid by some
previous error.

4. InputOutput - error occurred during file I/O
or an unexpected APPC return code was
received.

5. Registration - internal task cannot be
registered.

ACTION Examine stderr and the ULOG for additional
information concerning the failure. For failcode
Input/Output, verify that the user starting the CRM
process has the proper file permissions for the
BLOBLOG and RSTRTLOG. If no apparent error is
found, contact BEA Customer Support.

6 CRM Error Messages

6-4 BEA WebLogic Java Adapter for Mainframe Reference Guide

9011:ERROR Attempt to connect as second master refused!

DESCRIPTION A second JAM gateway is attempting to connect to
the CRM as a master gateway. Only one master
gateway is allowed.

ACTION Ensure that multiple configurations do not use the
same CRM address.

9012:ERROR Attempt to connect as master in autonomous mode refused!

DESCRIPTION An attempt to connect to the CRM as a master
gateway was made when the CRM was running in
autonomous mode.

ACTION Ensure that multiple configurations do not use the
same CRM address.

9013:ERROR Attempt to connect with incorrect group name (<groupname>)
refused!

DESCRIPTION The group name in the gateway configuration file
does not match the group name specified in the
CRM command line.

ACTION Correct the group name that is in error and restart.

9014:ERROR INTERNAL ERROR: memory allocation failed [for new context/data
buffer]

DESCRIPTION Internal error allocating memory. No more
memory.

ACTION Contact BEA Customer Support.

9015:ERROR INTERNAL ERROR: server registration failed

DESCRIPTION Internal error registering the APPC server. APPC
libraries not found. The stack failed.

ACTION Contact BEA Customer Support.

BEA WebLogic Java Adapter for Mainframe Reference Guide 6-5

9016:ERROR Link refers to undefined APPC stack (<stackref>)!

DESCRIPTION The stackref in the link configuration is
incorrect.

ACTION Correct the stackref that is in error.

9017:ERROR INTERNAL ERROR: link registration failed

DESCRIPTION Internal error registering the link. The stack failed.

ACTION Contact BEA Customer Support.

9019:ERROR Unknown Service Correlator = <correlator>, message dropped

DESCRIPTION Internal error assigning service correlator values.
Message context lost.

ACTION Contact BEA Customer Support.

9020:ERROR Duplicate Service Correlator = <correlator>

DESCRIPTION Internal error assigning service correlator values.

ACTION Contact BEA Customer Support.

9023:ERROR Unknown Service Correlator = <correlator>, message dropped

DESCRIPTION Internal error assigning service correlator values.
Message context lost.

ACTION Contact BEA Customer Support.

9025:ERROR Invalid Input Message Discarded

DESCRIPTION Internal error, bad message sent between JAM
gateway and CRM. Possibly incompatible JAM
gateway and CRM.

ACTION Contact BEA Customer Support.

9026:ERROR CNOS Notification Received for unknown partner <partnerLU>

DESCRIPTION Multiple instances of the CRM may be using the
same local LU.

6 CRM Error Messages

6-6 BEA WebLogic Java Adapter for Mainframe Reference Guide

ACTION Ensure that multiple configurations running
JCRMGW do not use the same local LU.

9027:WARNING Remote Stop Received for <linkref>

DESCRIPTION The remote host has issued a stop for the specified
link.

ACTION None. This message for information only.

9028:WARNING Remote Start Received for <linkref>

DESCRIPTION The remote host has issued a start for the specified
link.

ACTION None. This message for information only.

9029:ERROR Undefined Remote LU on link <linkref>

DESCRIPTION The remote LU does not exist as defined.

ACTION Check the gateway configuration file and the stack
configuration and correct the mis-match.

9030:ERROR Unable to start session on link <linkref>. Reason=<reason>

DESCRIPTION Link activation failure due to SNA error.

ACTION <reason> is the description of the stack return
code. Determine the cause and correct.

9031:ERROR Unable to initialize link <linkref>. Reason=<reason>

DESCRIPTION Link initialization failure due to SNA error.

ACTION <reason> is the description of the stack return
code. Determine the cause and correct.

9032:ERROR No Available Session on link <linkref> for context
<correlator>

DESCRIPTION Max sessions has been exceeded.

ACTION Check session limits in gateway configuration,
stack configuration, OLTP application or VTAM.
Increase if necessary.

BEA WebLogic Java Adapter for Mainframe Reference Guide 6-7

9033:ERROR Requested Synclevel not supported by link <linkref> for context
<correlator> (synclevel <level>)

DESCRIPTION Attempted to issue a request at sync level
<level> on a link that does not support that
level.

ACTION Correct application or gateway configuration.

9035:ERROR Inbound Request Transform Failed (<status>) for context
<correlator>

DESCRIPTION An error has occurred while processing the CICS
transform for an inbound DPL request. This
normally occurs when the API entry in the
gateway configuration for the local service
specifies CICS instead of ATMI.

ACTION Check gateway configuration for incorrect
specification of local service API entry.

9036:ERROR Inbound Response Transform Failed (<status>) for context
<correlator>

DESCRIPTION An error has occurred while processing the CICS
transform for an inbound DPL response. This
normally occurs when the API entry in the
gateway configuration for the local service
specifies CICS instead of ATMI.

ACTION Check gateway configuration for incorrect
specification of local service API entry.

9037:ERROR Outbound Request Transform Failed (<status>) for context
<correlator>

DESCRIPTION An error has occurred while processing the CICS
transform for an outbound DPL request. This
normally occurs when the API entry in the
gateway configuration for the remote service
specifies CICS instead of ATMI.

ACTION Check gateway configuration for incorrect
specification of local service API entry.

6 CRM Error Messages

6-8 BEA WebLogic Java Adapter for Mainframe Reference Guide

9038:ERROR Outbound Response Transform Failed (<status>) for context
<correlator>

DESCRIPTION An error has occurred while processing the CICS
transform for an outbound DPL response. This
normally occurs when the API entry in the
gateway configuration for the remote service
specifies CICS instead of ATMI.

ACTION Check gateway configuration for incorrect
specification of local service API entry.

9040:ERROR Inbound Confirm not supported

DESCRIPTION Host application is requesting an inbound confirm.
This is not supported.

ACTION Check host application program and correct.

9041:ERROR Inbound Confirm for multi-ISRT not supported

DESCRIPTION Host IMS application is requesting an inbound
confirm and using multiple ISRT commands. This
is not supported.

ACTION Check host application program and correct.

9043:ERROR Missing send last from host (ATMI request/response) for context
<correlator>

DESCRIPTION Host application did not issue send last during an
outbound request/response service. The host
application may have abended.

ACTION Check application program and correct.

9044:INFO DPL program abended with CICS code <abendcode>,
program=<progname>

DESCRIPTION The specified host DPL program has abended with
the code specified.

ACTION None. This message is for information only.

9045:INFO DPL program failed with CICS rcode <eibrcode>,
program=<progname>

BEA WebLogic Java Adapter for Mainframe Reference Guide 6-9

DESCRIPTION The specified host DPL program has failed with
the eibrcode specified.

ACTION None. This message is for information only.

9046:ERROR Invalid combination for Service Context <correlator>,
<combination>

DESCRIPTION The specified <combination> is invalid. It will
be one of the following:

1. Sync-Level, function, and API

2. Function and API

ACTION Examine the gateway configuration and make
corrections.

9047:ERROR Sequence number error for Service Context <correlator>, seqno
<seqno>

DESCRIPTION There has been a sequence number failure for the
specified context. Context is out of sequence.

ACTION Contact BEA Customer Support.

9048:ERROR Invalid conversation task for Service Context <correlator>,
task=<task>

DESCRIPTION The conversation has already been terminated.

ACTION Contact BEA Customer Support.

9049:ERROR Invalid task switch for Service Context <correlator>, from
<task1> to <task2>

DESCRIPTION An internal protocol violation has occurred.

ACTION Contact BEA Customer Support.

9050:ERROR Transformer creation failed for inbound transaction <trancode>

DESCRIPTION An internal error has occurred. Possibly out of
memory.

ACTION Contact BEA Customer Support.

9051:ERROR Transformer failed for inbound transaction <trancode>

6 CRM Error Messages

6-10 BEA WebLogic Java Adapter for Mainframe Reference Guide

DESCRIPTION An internal error has occurred. Resource name is
not present. Mainframe compatibility problem.

ACTION Contact BEA Customer Support.

9052:WARNING Inter-task Message dropped (<verbname>), parm=<parm> From:
<task1> to <task2>

DESCRIPTION An internal message between two tasks has been
dropped.

ACTION None. This message is for information only.

9053:ERROR Attempt to send <nnnnn> bytes (> 32767)

DESCRIPTION The length of a send request exceeded 32767
(including overhead).

ACTION Check application program and correct.

9054:ERROR Allocation Failure for <trancode> on <remotesysid>: <error>

DESCRIPTION An Allocation error occurred.

ACTION The reason for the failure is described by <error>.
Correct problem with configuration or application.

9060:WARNING Inbound Exchange Logs Rejected for <remotesysid>

DESCRIPTION Link not configured for sync level 2.

ACTION None. This message is for information only.

9061:WARNING Link <linkref> not configured for sync level 2

DESCRIPTION Link specified by <linkref> is not configured
for sync level 2.

ACTION None. This message is for information only.

BEA WebLogic Java Adapter for Mainframe Reference Guide 7-1

CHAPTER

7 JAM Error Messages

The following table contains a description of error, informational, and warning
messages that can be encountered while using the JAM software.

100 warning: 66 level (RENAMES) is not supported

DESCRIPTION This language feature is not supported.

ACTION No action is necessary.

101 warning: 88 level (condition name) is not supported

DESCRIPTION This language feature is not supported.

ACTION No action is necessary.

102 warning: Binary bitfield datatype is not supported

DESCRIPTION This language feature is not supported.

ACTION No action is necessary.

103 warning: COMP-5 datatype is not supported

DESCRIPTION This language feature is not supported.

ACTION No action is necessary, but it is recommended that
the source file be corrected.

104 warning: COMP-X datatype is not supported

DESCRIPTION This language feature is not supported.

ACTION No action is necessary, but it is recommended that
the source file be corrected.

105 warning: Extraneous ’.’ ignored

7 JAM Error Messages

7-2 BEA WebLogic Java Adapter for Mainframe Reference Guide

DESCRIPTION A extra delimiter was encountered, and is ignored.

ACTION No action is necessary.

106 warning: Extraneous OCCURS TO clause, ignored

DESCRIPTION This clause is not necessary, and is ignored.

ACTION No action is necessary, but it is recommended that
the source file be corrected.

107 warning: INDEXED BY clause ignored

DESCRIPTION This clause is not necessary, and is ignored.

ACTION No action is necessary.

108 warning: Identifier is not unique: {name}

DESCRIPTION The data item name is not unique, which might
cause ambiguity.

ACTION No action is necessary.

109 warning: KEY IS clause ignored

DESCRIPTION This clause is not necessary, and is ignored.

ACTION No action is necessary.

110 warning: Level number {num} is out of sequence, treating like {num}

DESCRIPTION The level number of a data item definition does not
match previous level numbers, so a default value is
assumed.

ACTION No action is necessary, but it is recommended that
the source file be corrected.

111 warning: OCCURS lower bound exceeds upper bound ({occurMin} >
{occurMax})

DESCRIPTION The OCCURS ranges are out of order.

ACTION No action is necessary, but it is recommended that
the source file be corrected.

112 warning: PICTURE ignored for COMP-1/COMP-2 datatype

BEA WebLogic Java Adapter for Mainframe Reference Guide 7-3

DESCRIPTION The clause is not meaningful for the data item
definition.

ACTION No action is necessary.

113 warning: PICTURE ignored for INDEX datatype

DESCRIPTION The clause is not meaningful for the data item
definition.

ACTION No action is necessary, but it is recommended that
the source file be corrected.

114 warning: PICTURE ignored for POINTER datatype

DESCRIPTION The clause is not meaningful for the data item
definition.

ACTION No action is necessary, but it is recommended that
the source file be corrected.

115 warning: PICTURE ignored for binary bitfield datatype

DESCRIPTION The clause is not meaningful for the data item
definition.

ACTION No action is necessary, but it is recommended that
the source file be corrected.

118 warning: Token begins with an unrecognizable character ({char})

DESCRIPTION An unrecognizable character was encountered in
the source file.

ACTION No action is necessary, but it is recommended that
the source file be corrected.

119 warning: USAGE ignored for 88-level datatype

DESCRIPTION The clause is not meaningful for the data item
definition.

ACTION No action is necessary, but it is recommended that
the source file be corrected.

120 warning: Data item follows a 66-level item

DESCRIPTION All 66-level items must be the last items within a
given group.

7 JAM Error Messages

7-4 BEA WebLogic Java Adapter for Mainframe Reference Guide

ACTION Correct the source file.

121 warning: JUSTIFY clause ignored for non-alphanumeric item

DESCRIPTION The clause is not meaningful for the data item
definition.

ACTION No action is necessary, but it is recommended that
the source file be corrected.

122 warning: PICTURE clause ignored for RENAMES datatype

DESCRIPTION The clause is not meaningful for the data item
definition.

ACTION No action is necessary, but it is recommended that
the source file be corrected.

123 warning: PICTURE clause required for NO USAGE datatype

DESCRIPTION The required clause is missing.

ACTION Correct the source file.

124 warning: SIGN clause ignored

DESCRIPTION The clause is not meaningful for the data item
definition.

ACTION No action is necessary, but it is recommended that
the source file be corrected.

125 warning: Terminating “.” appears to be missing

DESCRIPTION Data Record definitions must be terminated with a
!!

ACTION No action is necessary, but it is recommended that
the source file be corrected.

126 warning: USAGE clause ignored for RENAMES item

DESCRIPTION The clause is not meaningful for the data item
definition.

ACTION No action is necessary, but it is recommended that
the source file be corrected.

127 warning: OCCURS lower bound assumed to be 1

BEA WebLogic Java Adapter for Mainframe Reference Guide 7-5

DESCRIPTION The lower bound in the OCCURS clause of the
DEPENDS ON clause is missing and assumed to
be 1.

ACTION Items with a DEPENDS ON clause require an
OCCURS lower bound.

128 warning: OCCURS lower and upper bounds should be different

DESCRIPTION The upper and lower bound in the OCCURS clause
of the DEPENDS ON clause are the same.

ACTION Items with a DEPENDS ON clause should have
different upper and lower bounds.

200 error: BLANK WHEN ZERO clause ignored for non-zoned item

DESCRIPTION The clause is not meaningful for the data item
definition.

ACTION Correct the source file.

201 error: Bad data item clause

DESCRIPTION A syntax error or semantic disagreement was
encountered while parsing the data item definition.

ACTION Correct the source file.

202 error: Cannot REDEFINE the item: {name}

DESCRIPTION The name specified is not a valid REDEFINES
target.

ACTION Correct the source file.

203 error: Character literal is missing its closing quote

DESCRIPTION Quoted literals require a closing quote mark.

ACTION Correct the source file.

204 error: Character literal is too long, truncated ({num})

DESCRIPTION Character literals are truncated beyond a fixed
upper limit.

ACTION Correct the source file.

7 JAM Error Messages

7-6 BEA WebLogic Java Adapter for Mainframe Reference Guide

205 error: DEPENDING ON clause requires OCCURS TO upper bound

DESCRIPTION The required clause is missing.

ACTION Correct the source file.

206 error: DEPENDING ON item is not an integer: {name}

DESCRIPTION The DEPENDING ON data item is not a numeric
integer type.

ACTION Correct the source file.

207 error: DEPENDING ON clause requires an OCCURS clause

DESCRIPTION The required clause is missing.

ACTION Correct the source file.

208 error: Expected an ASCENDING/DESCENDING KEY IS clause

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

209 error: Expected BLANK

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

210 error: Expected a DEPENDING ON clause

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

211 error: Expected a DEPENDING ON qualified identifier

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

BEA WebLogic Java Adapter for Mainframe Reference Guide 7-7

212 error: Expected EXTERNAL

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

213 error: Expected EXTERNAL/GLOBAL

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

214 error: Expected GLOBAL

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

215 error: Expected an INDEXED BY clause

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

216 error: Expected an INDEXED BY qualified identifier

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

217 error: Expected a JUSTIFIED clause

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

218 error: Expected a KEY IS qualified identifier

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

7 JAM Error Messages

7-8 BEA WebLogic Java Adapter for Mainframe Reference Guide

219 error: Expected LEADING/TRAILING, found ’{text}’

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

220 error: Expected an OCCURS clause

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

221 error: Expected OCCURS lower bound, found ’{text}’

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

222 error: Expected OCCURS upper bound, found ’{text}’

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

223 error: Expected a PICTURE clause

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

224 error: Expected a PICTURE specification, found ’{text}’

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

225 error: Expected a REDEFINES clause

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

BEA WebLogic Java Adapter for Mainframe Reference Guide 7-9

226 error: Expected a REDEFINES identifier, found ’{text}’

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

227 error: Expected a RENAMES THRU identifier, found ’{text}’

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

228 error: Expected a RENAMES clause

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

229 error: Expected a RENAMES qualified identifier, found ’{text}’

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

230 error: Expected a SIGN clause

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

231 error: Expected a SYNC clause

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

232 error: Expected a VALUE clause

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

7 JAM Error Messages

7-10 BEA WebLogic Java Adapter for Mainframe Reference Guide

233 error: Expected ZERO

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

234 error: Expected a ’)’ following a bitfield size, found ’{text}’

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

235 error: Expected a USAGE data type, found ’{text}’

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

236 error: Expected a bitfield size, found ’{text}’

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

237 error: Expected a data clause, found ’{text}’

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

238 error: Expected a level number, found ’{text}’

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

239 error: Expected an identifier or FILLER, found ’{text}’

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

BEA WebLogic Java Adapter for Mainframe Reference Guide 7-11

240 error: Extraneous BLANK WHEN ZERO clause

DESCRIPTION The data item definition can only have one such
clause.

ACTION Correct the source file.

241 error: Extraneous DEPENDING ON clause

DESCRIPTION The data item definition can only have one such
clause.

ACTION Correct the source file.

242 error: Extraneous EXTERNAL clause

DESCRIPTION The data item definition can only have one such
clause.

ACTION Correct the source file.

243 error: Extraneous GLOBAL clause

DESCRIPTION The data item definition can only have one such
clause.

ACTION Correct the source file.

244 error: Extraneous INDEXED BY clause

DESCRIPTION The data item definition can only have one such
clause.

ACTION Correct the source file.

245 error: Extraneous JUSTIFY clause

DESCRIPTION The data item definition can only have one such
clause.

ACTION Correct the source file.

246 error: Extraneous KEY IS clause

DESCRIPTION The data item definition can only have one such
clause.

ACTION Correct the source file.

7 JAM Error Messages

7-12 BEA WebLogic Java Adapter for Mainframe Reference Guide

247 error: Extraneous OCCURS clause

DESCRIPTION The data item definition can only have one such
clause.

ACTION Correct the source file.

248 error: Extraneous PICTURE clause

DESCRIPTION The data item definition can only have one such
clause.

ACTION Correct the source file.

249 error: Extraneous REDEFINES clause

DESCRIPTION The data item definition can only have one such
clause.

ACTION Correct the source file.

250 error: Extraneous RENAMES clause

DESCRIPTION The data item definition can only have one such
clause.

ACTION Correct the source file.

251 error: Extraneous SIGN clause

DESCRIPTION The data item definition can only have one such
clause.

ACTION Correct the source file.

252 error: Extraneous SYNC clause

DESCRIPTION The data item definition can only have one such
clause.

ACTION Correct the source file.

253 error: Extraneous USAGE clause

DESCRIPTION The data item definition can only have one such
clause.

ACTION Correct the source file.

BEA WebLogic Java Adapter for Mainframe Reference Guide 7-13

254 error: Extraneous VALUES clause

DESCRIPTION The data item definition can only have one such
clause.

ACTION Correct the source file.

255 error: Hex string literal must have an even number of digits

DESCRIPTION Hexadecimal character literals must be composed
of an even number of digits.

ACTION Correct the source file.

256 error: INDEXED BY clause requires an OCCURS clause

DESCRIPTION The required clause is missing.

ACTION Correct the source file.

257 error: Improper bitfield size ({len})

DESCRIPTION A improper length was specified.

ACTION Correct the source file.

258 error: Improper level-number for REDEFINES item ({levelNo})

DESCRIPTION The level numbers of redefined data items must
match.

ACTION Correct the source file.

260 error: KEY IS clause requires an OCCURS clause

DESCRIPTION The required clause is missing.

ACTION Correct the source file.

261 error: Level number {n} is out of sequence, treating like {n}

DESCRIPTION The level number of a data item definition does not
match previous level numbers, so a default value is
assumed.

ACTION Correct the source file.

7 JAM Error Messages

7-14 BEA WebLogic Java Adapter for Mainframe Reference Guide

262 error: Malformed DEPENDING ON clause

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

263 error: Malformed INDEXED BY clause

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

264 error: Malformed KEY IS clause

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

265 error: Malformed USAGE clause

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

267 error: Malformed VALUE clause

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

268 error: Malformed data definition ignored for: {name}

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

269 error: Malformed data definition, ignored

DESCRIPTION A syntax error occurred while parsing the source
file.

ACTION Correct the source file.

BEA WebLogic Java Adapter for Mainframe Reference Guide 7-15

270 error: Malformed picture specification: ’{pic}’

DESCRIPTION The picture clause contains invalid characters.

ACTION Correct the source file.

271 error: Missing PICTURE clause

DESCRIPTION The data item definition requires such a clause.

ACTION Correct the source file.

272 error: Missing USAGE and PICTURE clauses

DESCRIPTION The data item definition requires such a clause.

ACTION Correct the source file.

273 error: Missing VALUE literal constant, found ’{text}’

DESCRIPTION The clause contains a syntax error.

ACTION Correct the source file.

274 error: Missing identifier following IN/OF, found ’{text}’

DESCRIPTION The clause contains a syntax error.

ACTION Correct the source file.

275 error: Missing literal constant after THRU, found ’{text}’

DESCRIPTION The clause contains a syntax error.

ACTION Correct the source file.

276 error: Nonexistent or nonunique DEPENDING ON identifier: {name}

DESCRIPTION The name specified is ambiguous.

ACTION Correct the source file.

277 error: OCCURS count must be greater than zero ({occurMax})

DESCRIPTION Arrays must have at least one element.

ACTION Correct the source file.

7 JAM Error Messages

7-16 BEA WebLogic Java Adapter for Mainframe Reference Guide

278 error: REDEFINES identifier cannot be qualified

DESCRIPTION The clause contains a syntax error.

ACTION Correct the source file.

279 error: REDEFINES item must have the same level number ({levelNo})

DESCRIPTION The level numbers of redefined data items must
match.

ACTION Correct the source file.

281 error: Recovering, skipping to next ’.’

DESCRIPTION A syntax error was encountered, so the rest of the
definition is ignored.

ACTION Correct the source file.

282 error: String literal is empty

DESCRIPTION A quoted literal must contain at least one character.

ACTION Correct the source file.

283 error: USAGE and PICTURE clauses disagree

DESCRIPTION The clauses specify contradictory types or lengths.

ACTION Correct the source file.

284 error: Word is too long, truncated ({num})

DESCRIPTION Token words cannot be longer than a certain fixed
length.

ACTION Correct the source file.

285 error: PICTURE and SIGN clauses disagree

DESCRIPTION The clauses specify contradictory types or lengths.

ACTION Correct the source file.

BEA WebLogic Java Adapter for Mainframe Reference Guide 7-17

300 Error: An I/O error occurred while generating [{name}]: {error}

DESCRIPTION Could not write to the output file.

ACTION Check the permissions of the output file.

301 Error: An I/O error occurred while generating [{name}]: {error}

DESCRIPTION Could not write to the output file.

ACTION Check the permissions of the output file.

302 Error: An I/O error occurred while generating [{name}]: {error}

DESCRIPTION Could not write to the output file.

ACTION Check the permissions of the output file.

303 Error: An I/O error occurred while generating [{view}]: {error}

DESCRIPTION Could not write to the output file.

ACTION Check the permissions of the output file.

304 Error: An I/O error occurred while reading the script: {file}

DESCRIPTION The file could not be read.

ACTION Check the permissions of the input file.

305 Error: EJB specification must contain both a class name and a method
name

DESCRIPTION Proper code cannot be generated without the
missing items.

ACTION Provide the missing items.

306 Error: EJB {bean} is not defined.

DESCRIPTION A nonexistent EJB bean name was referenced.

ACTION Specify a different file name.

7 JAM Error Messages

7-18 BEA WebLogic Java Adapter for Mainframe Reference Guide

307 Error: Parse failed on [{file}].

DESCRIPTION A syntax error was encountered while parsing the
script file.

ACTION Correct the script.

308 Error: The copybook [{file}] was not found.

DESCRIPTION A nonexistent COBOL source file name was
specified.

ACTION Correct the misspelling or provide the missing
source file.

309 Error: The script file [{file}] was not found.

DESCRIPTION A nonexistent file name was specified.

ACTION Specify a different file name.

310 Error: excess method {name} is ignored.

DESCRIPTION An extraneous method definition was specified.

ACTION Remove the duplicate definition.

311 Error: expecting {token}.

DESCRIPTION A syntax error occurred while parsing the input
file.

ACTION Correct the input file.

312 Error: method {name} is not defined in EJB {bean}.

DESCRIPTION A nonexistent method was referenced.

ACTION Correct the input file.

313 Error: service {name} is not defined.

DESCRIPTION A nonexistent service name was referenced.

ACTION Correct the input file.

BEA WebLogic Java Adapter for Mainframe Reference Guide 7-19

314 Error: service {service} is not defined.

DESCRIPTION The service name referenced was not defined.

ACTION Provide the missing service name definition or
correct the misspelling.

315 Error: servlet {name} refers to an unknown page ({page}).

DESCRIPTION A nonexistent page name was referenced.

ACTION Correct the input file.

7 JAM Error Messages

7-20 BEA WebLogic Java Adapter for Mainframe Reference Guide

BEA WebLogic Java Adapter for Mainframe Reference Guide I-1

Index

A
accessors 1-4
alphanumeric field

rules for mapping 1-3
APPC

sign-on security style in JAM
applications 4-1

array field
rules for mapping 1-5

B
BigDecimal

rules for mapping to 1-3
BLANK WHEN ZERO field

rules for mapping 1-3

C
COBOL copybook

processing by eGen COBOL Code
Generator 2-6

rules for mapping into a Java class 1-1
rules for mapping REDEFINES 1-6

COBOL data types
syntax features and data types supported

by EgenCobol tool 1-6
context-free grammar

rules for eGen COBOL Code Generator
script 2-4

customer support viii

customer support contact information vii

D
documentation

conventions viii
where to find it vi

E
edited numeric field

rules for mapping 1-3
e-docs Web Site vi
eGen COBOL Code Generator

rules for generating code 1-1
rules for writing script file 2-1

EJB
Home Interface class generated by eGen

COBOL Code Generator 2-7
Implementation class generated by eGen

COBOL Code Generator 2-7
Remote Interface class generated by

eGen COBOL Code Generator
2-7

elementary field
rules for mapping 1-4

F
field name

rules for mapping into Java name 1-2

I-2 BEA WebLogic Java Adapter for Mainframe Reference Guide

G
group field

nested, rules for mapping 1-4
groups

rules for mapping 1-3

H
HTML

Java Docs 5-1

I
INDEX field

rules for mapping 1-3

J
JAM Java classes

documented in Java Docs v, 5-1
jar file

extracting Java Docs from v, 5-1
jam_11.jar file on product CDROM 1-1

Java Development Kit (JDK) 2-1
JUSTIFIED RIGHT field

rules for mapping 1-3

N
numeric field

rules for mapping 1-3

P
password

security settings for 4-1
printing product documentation vi

R
REDEFINES clause

rules for mapping 1-6

related information vi

S
Security

RACF profile for applications 4-2
SIGN IS TRAILING field

rules for mapping 1-3
support

technical vii, viii

T
technical support viii

W
Web browser

viewing Java Docs in 5-2

X
XML

DTD 3-2
Schema 3-2
varieties 3-1
What XML is 3-3

	Copyright
	Contents
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us
	Documentation Conventions

	1 JAM Programming Reference
	Field Name Mapping Rules
	Field Type Mappings
	Group Field Accessors
	Elementary Field Accessors
	Array Field Accessors
	Fields with REDEFINES Clauses
	COBOL Data Types
	Other Access Methods for Generated DataView Classes
	Mainframe Access to DataView Classes
	XML Access to DataView Classes
	Hashtable Access to DataView Classes
	Code for Unloading and Loading Hashtables
	Rules for Unloading and Loading Hashtables
	Name Translator Interface Facility

	Known Limitations

	2 eGen COBOL Code Generator Reference
	eGen COBOL
	Synopsis
	Script Syntax Reserved Words
	General Rules
	Grammar
	Results of Running the eGen COBOL Code Generator

	3 Understanding How JAM Uses XML
	What is XML?
	Document Type Definition
	XML Schema

	How JAM Uses XML

	4 Security
	Supported Security Options
	Controlling User IDs and Passwords through Business Logic or Client Classes
	Controlling Security Credentials from Client EJB Code
	Controlling Security Credentials from Client Class Code

	5 Extracting Java Docs
	6 CRM Error Messages
	7 JAM Error Messages
	Index

