
Scenarios Guide

B E A W e b L o g i c J a v a A d a p t e r f o r M a i n f r a m e 4 . 2
D o c u m e n t E d i t i o n 4 . 2

J u l y 2 0 0 1

BEA WebLogic Java
Adapter for Mainframe

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, Operating System for the Internet, Liquid Data, BEA WebLogic E-Business Platform, BEA Builder,
BEA Manager, BEA eLink, BEA Campaign Manager for WebLogic, BEA WebLogic Commerce Server, BEA
WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic Collaborate, BEA
WebLogic Enterprise, BEA WebLogic Server, and BEA WebLogic Integration are trademarks of BEA Systems,
Inc.

All other trademarks are the property of their respective company.

BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Document Edition Part Number Date Software Version

4.2 N/A July 2001 BEA WebLogic Java Adapter for
Mainframe 4.2

Contents

About This Document
What You Need to Know .. viii

e-docs Web Site... viii

How to Print the Document... viii

Related Information... viii

Documentation Conventions ...x

1. Developing a Multi-Service Data Entry Servlet
Action List ... 1-2

Prerequisites .. 1-3

Task 1: Use the eGen COBOL Code Generator to Generate an
Application.. 1-3

Step 1: Prepare eGen COBOL Script.. 1-4

Step 2: Add Service Entries .. 1-4

Step 3: Add Page Declaration in eGen COBOL Script 1-4

Step 4: Add Servlet Name... 1-5

Step 5: Generate the Java Source Code .. 1-5

Step 6: Review the Java Source Code... 1-6

Task 2: Create Your Custom Application from the Generated
Application.. 1-7

Step 1: Start with Imports ... 1-7

Step 2: Declare the New Custom Class .. 1-7

Step 3: Add Implementation for doGetSetup...................................... 1-8

Step 4: Create Implementation for doPostSetup 1-9

Step 5: Create Implementation for doPostFinal 1-12

Step 6: Update the jcrmgw.cfg File with Service Entries 1-13

Step 13: Create Basic Three-Part HTML Frame 1-13
BEA WebLogic Java Adapter for Mainframe Scenarios Guide iii

Step 14: Create a Series of Links to HELP Pages............................. 1-14

Task 3: Update the JAM Configurations and Update BEA WebLogic
Server web.xml File .. 1-15

Task 4: Deploy Your Application .. 1-16

Task 5: Use the Application ... 1-16

Sample COBOL Programs Invoked by the Multi-Service Data Entry
Servlet... 1-19

Create.. 1-19

Read.. 1-20

Update... 1-21

Delete.. 1-22

2. Enhancing an Existing Servlet to Originate a Mainframe
Request

Action List ... 2-1

Prerequisites... 2-2

Enhancing a Multi-Service Data Entry Servlet ... 2-3

Task 1: Obtain the survey Servlet .. 2-3

Task 2: Use eGen COBOL Code Generator to Generate a Base Class...... 2-3

Step 1: Prepare eGen Script .. 2-3

Step 2: Generate the Java Source Code... 2-4

Step 3: Review the Java Source Code... 2-4

Task 3: Update the survey Servlet Using the Generated Class 2-5

Step 1: Start with Imports.. 2-5

Step 2: Add New Data Members... 2-6

Step 3: Update doPost with Mainframe Request 2-6

Step 4: Continue Updating doPost by Extracting Form Data 2-7

Step 5: Continue Updating doPost by Calling Mainframe Service..... 2-7

Task 4: Update the JAM Configurations and Update WebLogic Server
web.xml File.. 2-8

Task 5: Deploy Your Application .. 2-9

Task 6: Use the Application ... 2-10

Sample COBOL Program to Write to Temporary Storage Queue 2-10

3. Updating an Existing EJB to Service a Mainframe Request
Action List ... 3-2
iv BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Prerequisites .. 3-2

Update an Existing EJB to Service a Mainframe Request 3-3

Task 1: Use eGen COBOL Code Generator to Generate a Base Class...... 3-3

Step 1: Prepare eGen COBOL Script.. 3-4

Step 2: Generate the Java Source Code .. 3-4

Step 3: Review the Java Source Code... 3-5

Task 2: Update the Trader Interface Using the Generated Class 3-6

Step 1: Start with Import ... 3-6

Step 2: Continue with Imports .. 3-6

Step 3: Update EJB with dispatch... 3-7

Step 4: Continue Updating EJB with dispatch.................................... 3-7

Step 5: Finish Updating EJB with dispatch .. 3-8

Task 3: Update the JAM Configurations.. 3-8

Task 4: Deploy Your Application .. 3-9

Task 5: Use the Application ... 3-9

Sample COBOL Program to Write to Temporary Storage Queue 3-10

4. Web-enabling an IBM 3270 Application
Action List ... 4-2

Prerequisites .. 4-2

Implementing JAM with CrossPlex .. 4-3

Task 1: Create a CrossPlex Script .. 4-3

Step 1: Prepare Record Definition for the Mainframe........................ 4-4

Step 2: Create a Copybook of the Record Definition Sent to the
Mainframe.. 4-5

Step 3: Create a Record Definition and Copybook Sent From the
Mainframe.. 4-6

Step 4: Prepare the CrossPlex Script... 4-7

Step 5: Test and Debug the Script... 4-8

Task 2: Use eGen COBOL to Create a Base Application.......................... 4-9

Step 1: Prepare eGen COBOL Script.. 4-11

Step 2: Add Service Entry... 4-12

Step 3: Add Page Declarations in eGen COBOL Script 4-12

Step 4: Add Servlet Name... 4-13

Step 5: Generate the Java Source Code .. 4-13
BEA WebLogic Java Adapter for Mainframe Scenarios Guide v

Task 3: Create Your Custom Application from the Generated
Application .. 4-14

Step 1: Start with Imports.. 4-14

Step 2: Declare the New Custom Class... 4-14

Step 3: Add Implementation for doGetSetup.................................... 4-15

Step 4: Create Implementation for doPostSetup 4-15

Step 5: Create Implementation for doPostFinal 4-17

Task 4: Update the JAM Configuration and WebLogic Server web.xml 4-18

Task 5: Deploy Your Application .. 4-19

Task 6: Use the Application ... 4-20

5. Using JAM in a Clustered Environment
Action List ... 5-1

Prerequisites... 5-2

Preparing Your System.. 5-2

Running the Sample... 5-3
vi BEA WebLogic Java Adapter for Mainframe Scenarios Guide

About This Document

The BEA WebLogic Java Adapter for Mainframe product (hereafter referred to as
JAM) is a gateway connectivity application that enables client/server transactions
between Java applications and OS/390 or IMS programs.

This document describes the following scenarios for how you might use the JAM
product:

� “Developing a Multi-Service Data Entry Servlet” provides a scenario that
illustrates how to develop a multi-service application for WebLogic Server.

� “Enhancing an Existing Servlet to Originate a Mainframe Request” provides a
scenario that illustrates how to enhance an existing servlet to originate a
mainframe request using WebLogic Server.

� “Updating an Existing EJB to Service a Mainframe Request” provides a scenario
that shows how to update and existing EJB to service a request from the
mainframe.

� “Web-enabling an IBM 3270 Application” provides a scenario that shows how
to develop a single service servlet-based application that invokes a CrossPlex
script on the mainframe when you are using WebLogic Server.

� “Using JAM in a Clustered Environment” provides a scenario that extends the
base EJB client sample to demonstrate a client requesting multiple employee
actions against an EJB that is deployed in a clustered environment.
BEA WebLogic Java Adapter for Mainframe Scenarios Guide vii

What You Need to Know

This document is intended for system administrators, application programmers, and
business analysts who will use the BEA WebLogic Java Adapter for Mainframe
application.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://edocs.bea.com/.

How to Print the Document

A PDF version of this document is available on the JAM documentation Home page
on the e-docs Web site (and also on the installation CD). You can open the PDF in
Adobe Acrobat Reader and print the entire document (or a portion of it) in book
format. To access the PDFs, open the JAM documentation Home page, click the PDF
files button, and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

The following BEA publications are available for JAM 4.2:

� BEA WebLogic Java Adapter for Mainframe Release Notes
viii BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Contact Us
� BEA WebLogic Java Adapter for Mainframe Introduction

� BEA WebLogic Java Adapter for Mainframe Installation Guide

� BEA WebLogic Java Adapter for Mainframe Configuration and Administration
Guide

� BEA WebLogic Java Adapter for Mainframe Programming Guide

� BEA WebLogic Java Adapter for Mainframe Scenarios Guide

� BEA WebLogic Java Adapter for Mainframe Workflow Processing Guide

� BEA WebLogic Java Adapter for Mainframe Reference Guide

Contact Us

Your feedback on the BEA WebLogic Java Adapter for Mainframe documentation is
important to us. Send us e-mail at docsupport@bea.com if you have questions or
comments. Your comments will be reviewed directly by the BEA professionals who
create and update the JAM documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Java Adapter for Mainframe 4.2 release.

If you have any questions about this version of JAM, or if you have problems installing
and running JAM, contact BEA Customer Support through BEA WebSupport at
www.bea.com. You can also contact Customer Support by using the contact
information provided on the Customer Support Card that is included in the product
package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages
BEA WebLogic Java Adapter for Mainframe Scenarios Guide ix

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

blue text Indicates a hypertext link in PDF or HTML

italics Indicates emphasis or book titles or variables.

“string
with
quotes”

Indicates a string entry that requires quote marks.

UPPERCASE
TEXT

Indicates generic file names, device names, environment variables, and
logical operators.

Examples:

LPT1

SIGNON

OR

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void xa_commit ()

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.
x BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Documentation Conventions
[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

� That an argument can be repeated several times in a command line

� That the statement omits additional optional arguments

� That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
BEA WebLogic Java Adapter for Mainframe Scenarios Guide xi

xii BEA WebLogic Java Adapter for Mainframe Scenarios Guide

CHAPTER
1 Developing a
Multi-Service Data
Entry Servlet

This section contains a scenario that shows how to develop a multi-service application
for WebLogic Server. The concepts presented for the servlet-only application model
described in the BEA WebLogic Java Adapter for Mainframe Programming Guide are
used and extended for this scenario.

In this scenario, a new application is developed and existing applications are updated.
WebLogic Server samples are used to illustrate any existing applications. All
discussions are from the application developer’s point of view.

Note: Although the sample code in this section represents typical applications, it is
intended for example only and is not supported for actual use.

Action List

The following table lists the tasks that must be completed to develop a multi-service
data entry servlet.

Your action... Refer to...

1 Verify that prerequisite tasks have been
completed.

“Prerequisites”
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 1-1

1 Developing a Multi-Service Data Entry Servlet
The following example creates a servlet that invokes the sample COBOL programs
described at the end of this chapter.

Prerequisites

Before you begin to develop a multi-service data entry servlet, ensure that the
following prerequisites have been completed.

2 Use eGen COBOL Code Generator to
generate an application.

“Task 1: Use the eGen COBOL Code
Generator to Generate an Application”

3 Create your custom application from the
generated application.

“Task 2: Create Your Custom Application
from the Generated Application”

4 Update the JAM configurations and update
WebLogic Server configuration.

“Task 3: Update the JAM Configurations
and Update BEA WebLogic Server
web.xml File”

5 Deploy your application. “Task 4: Deploy Your Application”

6 Use the application. “Task 5: Use the Application”

Your action... Refer to...

Your action... Refer to...

1 Verify that the required software has been
properly installed: WebLogic Server,
WebLogic Java Adapter for Mainframe.

BEA WebLogic Server documentation,
BEA WebLogic Java Adapter for
Mainframe Installation Guide

2 Verify that the environment and the
software components have been properly
configured.

BEA WebLogic Server documentation,
BEA WebLogic Java Adapter for
Mainframe Configuration and
Administration Guide.

3 Verify the appropriate mainframe
application is available.

Your mainframe system administrator.
1-2 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Prerequisites
Task 1: Use the eGen COBOL Code Generator to Generate
an Application

Identify the mainframe application and obtain its COBOL copybook, usually a CICS
DFHCOMAREA or the user data portion of an IMS queue record layout. The copybook’s
name in this discussion is emprec.cbl, as shown in Listing 1-1.

Listing 1-1 Mainframe Application COBOL Copybook emprec.cbl

02 emp-record.
05 emp-ssn pic 9(9) comp-3.
05 emp-name.

10 emp-name-last pic x(15).
10 emp-name-first pic x(15).
10 emp-name-mi pic x.

05 emp-addr.
10 emp-addr-street pic x(30).
10 emp-addr-st pic x(2).
10 emp-addr-zip pic x(9).

Step 1: Prepare eGen COBOL Script

The script shown in Listing 1-2 generates the emprecData DataView from the
copybook named emprec.cbl.

Listing 1-2 Basic eGen script

view empRecData from emprec.cbl

4 Review the steps to develop a single
service application.

BEA WebLogic Java Adapter for
Mainframe Programming Guide

Your action... Refer to...
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 1-3

1 Developing a Multi-Service Data Entry Servlet
Step 2: Add Service Entries

Add the single line service entries in Listing 1-3 for create, read, update, and delete
operations. They all use empRecData as input and return emprecData as output. In
this example, a single DataView is used; however, the input and output DataViews
could be different.

Listing 1-3 Service Names Associated with Input and Output Views

service empRecCreate accepts empRecData returns empRecData
service empRecRead accepts empRecData returns empRecData
service empRecUpdate accepts empRecData returns empRecData
service empRecDelete accepts empRecData returns empRecData

Step 3: Add Page Declaration in eGen COBOL Script

Multiple pages can be chained together. Any service entries should match services
defined elsewhere in the script. The page declarations shown in Listing 1-4 associate
buttons on the HTML display with services declared in the previous step.

Listing 1-4 Page Declaration Associating Display Buttons with Services

page empRecPage "Employee Record”
{
view empRecData

buttons
{

"Create" service(empRecCreate) shows empRecPage
"Read" service(empRecRead) shows empRecPage
"Update" service(empRecUpdate) shows empRecPage
"Delete" service(empRecDelete) shows empRecPage

}
}

1-4 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Prerequisites
Step 4: Add Servlet Name

As shown in Listing 1-5, empRecServlet is the servlet name to be registered at a URL
in the WebLogic Server web.xml file. (Every servlet requires a URL to be registered
this way. Refer to WebLogic Server documentation about deploying servlets for more
specific information.) Here, the empRecPage is to be displayed when the
empRecServlet is invoked.

Listing 1-5 Add Servlet Name

servlet empRecServlet shows empRecPage

The script is saved as emprec.egen.

Step 5: Generate the Java Source Code

Use the eGen COBOL Code Generator to generate the application as shown in
Listing 1-6. These classes will be extended in Task 2 to customize the servlet. The
empRecData.java is the DataView object for emprec.cbl.

Warning: CLASSPATH should include the WebLogic Server .jar files and the
jam.jar file; otherwise, the compile fails.

Note: You can create a script file containing the eGen COBOL command line, along
with the javac command to make the invocation easier.

Listing 1-6 Generating the Java Source Code

$egencobol emprec.egen
$ls emp*.java

empRecData.java
empRecServlet.java

$javac emp*.java
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 1-5

1 Developing a Multi-Service Data Entry Servlet
Step 6: Review the Java Source Code

Obtain a list of accessors for use later. Look at the eGen COBOL output to become
familiar with each of the scenarios presented in this section.

The entire method of customizing the generated output is predicated on derivation
from generated code. The application can be regenerated without destroying the
custom code.

Note: Each COBOL group item has its own accessor. This is important because the
group name represents a nested inner class that must be accessed in order to
retrieve the members.

In the Listing 1-7, the output from the grep command shows the relationships in
reverse order, for example:

getEmpRecord().getEmpAddr().getEmpAddrSt()

This relationship is illustrated in the actual code example shown in Listing 1-7.

Listing 1-7 Review the Java Source Code

$grep get emp*.java
empRecData.java: public BigDecimal getEmpSsn()
empRecData.java: public String getEmpNameLast()
empRecData.java: public String getEmpNameFirst()
empRecData.java: public String getEmpNameMi()
empRecData.java: public EmpNameV getEmpName()
empRecData.java: public String getEmpAddrStreet()
empRecData.java: public String getEmpAddrSt()
empRecData.java: public String getEmpAddrZip()
empRecData.java: public EmpAddrV getEmpAddr()
empRecData.java: public EmpRecordV getEmpRecord()

Task 2: Create Your Custom Application from the
Generated Application

The preferred customization method is to derive a custom class from the generated
application.
1-6 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Prerequisites
Step 1: Start with Imports

In Listing 1-8, BigDecimal supports COMP-3 packed data. HttpSession is available
for saving limited state. DataView is the base for emprecData. The empRecData and
empRecServlet were generated from the COBOL copybook.

Listing 1-8 Using Imports to Start Creating the Custom Application

import java.math.BigDecimal;
import javax.servlet.http.HttpSession;
import bea.dmd.dataview.DataView;
import empRecData;
import empRecServlet;

Step 2: Declare the New Custom Class

Listing 1-9 shows how to extend the generated servlet. This method enables
regeneration of the application without destroying customized code. Fields can be
added to the copybook without disrupting the customized code.

Listing 1-9 Declaring the New Custom Class

public class customCrud
extends empRecServlet

{
:
:

Step 3: Add Implementation for doGetSetup

Listing 1-10 demonstrates how to provide a new DataView and the http session. The
HttpSession(s) can be used to hold a reference to the DataView, ensuring that you
are actually in the first pass rather than a browser back arrow. The DataView provided
(dv) is a fresh instance of the empRecData DataView. Refer to the BEA WebLogic
Java Adapter for Mainframe Programming Guide for more information on
doGetSetup.
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 1-7

1 Developing a Multi-Service Data Entry Servlet
Listing 1-10 Add Implementation for doGetSetup

public DataView doGetSetup(DataView dv, HttpSession s){
empRecData erd = (empRecData)s.getValue("customCrud");
if (erd == null)

erd = (empRecData)dv; // use new dataview

In Listing 1-11, note the use of group level accessors to obtain fields. This code
pre-fills fields with data entry hints as to which fields are required or how numeric
values should be entered. You can fill form data in any manner required prior to
displaying the fields.

Listing 1-11 Continue Implementation for doGetSetup

if(erd.getEmpRecord().getEmpSsn().compareTo(BigDecimal.valueOf(0L)) == 0)
erd.getEmpRecord().setEmpSsn(BigDecimal.valueOf(123121234L));

if (erd.getEmpRecord().getEmpName().getEmpNameLast().length() == 0)
erd.getEmpRecord().getEmpName().setEmpNameLast("Entry Required");

if (erd.getEmpRecord().getEmpName().getEmpNameFirst().trim().length() == 0)
erd.getEmpRecord().getEmpName().setEmpNameFirst("Entry Required");

if (erd.getEmpRecord().getEmpAddr().getEmpAddrStreet().trim().length() == 0)
erd.getEmpRecord().getEmpAddr().setEmpAddrStreet("Entry Required");

if (erd.getEmpRecord().getEmpAddr().getEmpAddrSt().trim().length() == 0)
erd.getEmpRecord().getEmpAddr().setEmpAddrSt("TX");

if (erd.getEmpRecord().getEmpAddr().getEmpAddrZip().trim().length() == 0)
erd.getEmpRecord().getEmpAddr().setEmpAddrZip("123451234");

In Listing 1-12, note the use of the HttpSession putValue to save a reference to the
DataView. The doGet() processing continues on return. This data is be presented in
the displayed form.
1-8 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Prerequisites
Listing 1-12 Finish Implementation for doGetSetup

s.putValue("customCrud",(Object)erd);
return erd;

}

Step 4: Create Implementation for doPostSetup

In Listing 1-13, the DataView passed in contains values entered into the form by the
application user. (The HttpSession is also available for use at this point, if required.)
Refer to the BEA WebLogic Java Adapter for Mainframe Programming Guide for
more information on doPostSetup.

Listing 1-13 Create Implementation for doPostSetup

public DataView doPostSetup(DataView dv, HttpSession s)
{

empRecData erd = (empRecData)dv;

In Listing 1-14, note the use of group-level accessors to obtain fields. This code checks
for original defaults, as well as missing data. SocialSecurity is a BigDecimal
object. Validation can be simple or complex as required.

Listing 1-14 Continue implementation for doPostSetup

if(erd.getEmpRecord().getEmpSsn().compareTo(BigDecimal.valueOf(0L
)) == 0)

throw new Error("Social Security Number Is Required");
if(erd.getEmpRecord().getEmpSsn().compareTo(BigDecimal.valueOf(12
3121234L)) == 0)

throw new Error("Social Security Number Is Required");
if (erd.getEmpRecord().getEmpName().getEmpNameLast() == null)

throw new Error("Last Name Is Required");
if
(erd.getEmpRecord().getEmpName().getEmpNameLast().trim().length()
== 0)

throw new Error("Last Name Is Required");
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 1-9

1 Developing a Multi-Service Data Entry Servlet
if
(erd.getEmpRecord().getEmpName().getEmpNameLast().trim().compareT
o("EntryRequired") == 0)

throw new Error("Last Name Is Required");

In Listing 1-15, note the use of group-level accessors to obtain fields. This code checks
for original defaults, as well as missing data. (Validation routines could have been split
out by field.)

Listing 1-15 Continue Implementation of doPostSetup

if (erd.getEmpRecord().getEmpName().getEmpNameFirst() == null)
throw new Error("First Name Is Required");

if (erd.getEmpRecord().getEmpName().getEmpNameFirst().trim().length == 0)
throw new Error("First Name Is Required");

if (erd.getEmpRecord().getEmpName().getEmpNameFirst().trim().compareTo("Entry
Required") == 0)

throw new Error("First Name Is Required");
if (erd.getEmpRecord().getEmpAddr().getEmpAddrStreet() == null)

throw new Error("Street Address Is Required");
if (erd.getEmpRecord().getEmpAddr().getEmpAddrStreet().trim().length() == 0)

throw new Error("Street Address Is Required");
if (erd.getEmpRecord().getEmpAddr().getEmpAddrStreet().trim().compareTo("Entry

Required") == 0)
throw new Error("Street Address Is Required");

In Listing 1-16, notice the use of group-level accessors to obtain fields. This code
checks for original defaults, as well as missing data. Depending on the application, it
may be more advantageous to develop validations as separate methods. This
development process enables routines to be developed and tested with a servlet and
easily re-used in an EJB.

Listing 1-16 Continue Implementation for doPostSetup

if (erd.getEmpRecord().getEmpAddr().getEmpAddrSt() == null)
throw new Error("State Abreviation Is Required");

if (erd.getEmpRecord().getEmpAddr().getEmpAddrSt().trim().length() == 0)
throw new Error("State Abreviation Is Required");
1-10 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Prerequisites
if (erd.getEmpRecord().getEmpAddr().getEmpAddrSt()
.trim().compareTo("TX") != 0)

throw new Error("Texas Employees ONLY");

if (erd.getEmpRecord().getEmpAddr().getEmpAddrZip() == null)
throw new Error("ZipCode Is Required");

if (erd.getEmpRecord().getEmpAddr().getEmpAddrZip().trim().length() == 0)
throw new Error("ZipCode Is Required");

if erd.getEmpRecord().getEmpAddr().getEmpAddrZip().trim().compareTo
("123451234") == 0)
throw new Error("ZipCode Is Required");

In Listing 1-17, the HttpSession is used to remove a reference to the DataView. This
method prevents re-posting the same data twice. The doPost processing continues on
return. This data is now passed to the mainframe.

Listing 1-17 Finish Implementation for doPostSetup

else
s.removeValue("customCrud");
return erd;

}

Step 5: Create Implementation for doPostFinal

In Listing 1-18, the doPostFinal occurs after mainframe transmission, but prior to
re-display in the browser. This example clears entered data after it is sent to the
mainframe. This step completes the custom servlet.

Listing 1-18 Create Implementation for doPostFinal

public DataView doPostFinal(DataView dv, HttpSession s)
{
empRecData erd = (empRecData)dv;
erd.getEmpRecord().setEmpSsn(BigDecimal.valueOf(0L));
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 1-11

1 Developing a Multi-Service Data Entry Servlet
erd.getEmpRecord().getEmpName().setEmpNameLast("");
erd.getEmpRecord().getEmpName().setEmpNameFirst("");
erd.getEmpRecord().getEmpName().setEmpNameMi("");
erd.getEmpRecord().getEmpAddr().setEmpAddrStreet("");
erd.getEmpRecord().getEmpAddr().setEmpAddrSt("");
erd.getEmpRecord().getEmpAddr().setEmpAddrZip("");
return erd;
}

Step 6: Update the jcrmgw.cfg File with Service Entries

Listing 1-19 shows definitions of the entries that are used when the corresponding
Create/Read/Update/Delete form buttons are pushed; for example, the Create button
triggers empRecCreate which invokes DPLDEMOC. The gateway must be restarted for
the new services to take effect.

Listing 1-19 Update jcrmgw.cfg File

empRecCreate RDOM="CICS410"
RNAME="DPLDEMOC"

empRecRead RDOM="CICS410"
RNAME="DPLDEMOR"

empRecUpdate RDOM="CICS410"
RNAME="DPLDEMOU"

empRecDelete RDOM="CICS410"
RNAME="DPLDEMOD"

Step 13: Create Basic Three-Part HTML Frame

In Listing 1-20, the primary frame (identified as “main” in the HTML code) displays
the servlet, while an auxiliary frame provides links to HELP pages. The “Built on BEA
WebLogic” logo is also displayed. A single line of Java script is used to ensure the
window displays in the foreground.

Listing 1-20 Create Basic Three-Part HTML Frame

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>
1-12 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Prerequisites
<head>
<title>eGen</title>

</head>
<script language="javascript">
<!--
if (window.focus) {self.focus();} // -->
</script>
<FRAMESET cols="20%, 80%">

<FRAMESET rows="20%, 80%">
<FRAME src="bea_built_on_wl.gif" name="logo">
<FRAME src="panel.html" name="aux">

</FRAMESET>
<FRAME src="http://machine.domain.com:7001/empRec" name="main">

</FRAMESET>
</html>

Step 14: Create a Series of Links to HELP Pages

Listing 1-21 shows how the HTML can display as a sidebar frame. The intro.html,
emprec.html, and create.html can display inside the “main” frame to provide basic
HELP.

Listing 1-21 Creating a Series of HELP Page Links

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>
<head> <title>eGen help</title> </head>

<script language="javascript">
<!--
if (window.focus) {self.focus();} // -->
</script>
<body>
<TABLE summary="This table contains links to help pages.">
<TR> <TH>empRec Info</TH>
<TR> <TD>Introduction
<TR> <TD>EmpRec
<TR> <TD>Create
<TR> <TD>Read
<TR> <TD>Update
<TR> <TD>Delete
</TABLE>
</body>
</html>
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 1-13

1 Developing a Multi-Service Data Entry Servlet
Task 3: Update the JAM Configurations and Update BEA
WebLogic Server web.xml File

Update the jcrmgw.cfg file with the remote service entries shown in Listing 1-22.
The Java gateway must be restarted for new services. The entries are used when the
corresponding form button is pushed. For example, the Create button triggers
empRecCreate, which invokes DPLDEMOC. The service name must match values in the
eGen script. In this example, the RNAME must match an actual CICS program name.

Listing 1-22 Remote Service Entries for Create/Read/Update/Delete

empRecCreate RDOM="CICS410"
RNAME="DPLDEMOC"

empRecRead RDOM="CICS410"
RNAME="DPLDEMOR"

empRecUpdate RDOM="CICS410"
RNAME="DPLDEMOU"

empRecDelete RDOM="CICS410"
RNAME="DPLDEMOD"

Update the WebLogic Server web.xml file with the entries shown in Listing 1-23. For
more information, see the WebLogic Server documentation.

Listing 1-23 Update WebLogic Server web.xml File

<?xml version="1.0" ?>
<!DOCTYPE web-app (View Source for full doctype...)>
<web-app>
<servlet>

<servlet-name>customCrud</servlet-name>
<servlet-class>customCrud</servlet-class>
</servlet>
- <servlet-mapping>
<servlet-name>customCrud</servlet-name>
<url-pattern>customCrud</url-pattern>
1-14 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Prerequisites
</servlet-mapping>
</web-app>

Task 4: Deploy Your Application

At this point, you have created a basic form capable of receiving data entry, along with
some static HTML code for display. For a complete description of how to deploy a
servlet, refer to the WebLogic Server documentation. For evaluation purposes, refer to
the BEA WebLogic Server Quick Start Guide.

Task 5: Use the Application

Figure 1-1 shows the default servlet with customized code displayed in an HTML
frame. This type of servlet is useful for presentation, proof-of-concept, and as a test bed
for development.
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 1-15

1 Developing a Multi-Service Data Entry Servlet
Figure 1-1 New Data Entry Servlet Display
1-16 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Prerequisites
Figure 1-2 shows the servlet with the Create HELP page displayed in a new window
on top of the application window.

Figure 1-2 Servlet with HELP Page Displayed

Figure 1-3 is an example of the page used for the front end of the new custom servlet.

Figure 1-3 New Data Entry Servlet Front End Page
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 1-17

1 Developing a Multi-Service Data Entry Servlet
Sample COBOL Programs Invoked by the
Multi-Service Data Entry Servlet

The following section describe show COBOL programs for each of these button and
service combinations:

� Create (DPLDEMOC)

� Read (DPLDEMOR)

� Update (DPLDEMOU)

� Delete (DPLDEMOD)

All of these programs make use of a CICS temporary storage queue for data. This
simple technique is useful for testing and demonstrations.

Create

The simple program shown in Listing 1-24 writes a temporary storage queue using the
first eight characters of the employee name as the QID.

Listing 1-24 COBOL Program for Create (DPLDEMOC)

IDENTIFICATION DIVISION.
PROGRAM-ID. DPLDEMOC.
INSTALLATION.
DATE-COMPILED.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TSQ-DATA-LENGTH PIC S9(4) COMP VALUE ZERO.
01 TSQ-NAME.

05 TSQ-ID PIC X(8) VALUE SPACES.
05 FILLER PIC X(30) VALUE SPACES.

LINKAGE SECTION.
01 DFHCOMMAREA.

COPY EMPREC.
1-18 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Sample COBOL Programs Invoked by the Multi-Service Data Entry Servlet
PROCEDURE DIVISION.
MAINLINE SECTION.

MOVE EMP-NAME TO TSQ-NAME
MOVE LENGTH OF EMP-RECORD
TO TSQ-DATA-LENGTH
EXEC CICS WRITEQ TS

QUEUE(TSQ-ID)
FROM(EMP-RECORD)
LENGTH(TSQ-DATA-LENGTH)

END-EXEC.
EXEC CICS RETURN
END-EXEC.
EXIT.

Read

The simple program shown in Listing 1-25 reads a temporary storage queue using the
first eight characters of the employee name as the QID. If the read fails, the COMMAREA
is reset so that residual data does not appear as the result of a read.

Listing 1-25 COBOL Program for Read (DPLDEMOR)

IDENTIFICATION DIVISION.
PROGRAM-ID. DPLDEMOR.
INSTALLATION.
DATE-COMPILED.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TSQ-DATA-LENGTH PIC S9(4) COMP VALUE ZERO.
01 TSQ-RESP PIC S9(4) COMP VALUE ZERO.
01 TSQ-NAME.

05 TSQ-ID PIC X(8) VALUE SPACES.
05 FILLER PIC X(30) VALUE SPACES.

LINKAGE SECTION.
01 DFHCOMMAREA.

COPY EMPREC.
PROCEDURE DIVISION.
MAINLINE SECTION.

MOVE EMP-NAME TO TSQ-NAME
MOVE LENGTH OF EMP-RECORD
TO TSQ-DATA-LENGTH
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 1-19

1 Developing a Multi-Service Data Entry Servlet
EXEC CICS READQ TS
ITEM(1)
INTO(EMP-RECORD)
QUEUE(TSQ-ID)
LENGTH(TSQ-DATA-LENGTH)
RESP(TSQ-RESP)

END-EXEC.
IF TSQ-RESP NOT EQUAL ZERO

MOVE ZEROS TO EMP-SSN
MOVE SPACES TO EMP-NAME-FIRST
MOVE SPACES TO EMP-NAME-MI
MOVE SPACES TO EMP-ADDR

END-IF
EXEC CICS RETURN
END-EXEC.

Update

The simple program shown in Listing 1-26 deletes a temporary storage queue using the
first eight characters of the employee name as the QID. It then creates a new queue with
the COMMAREA provided.

Listing 1-26 COBOL Program for Update (DPLDEMOU)

IDENTIFICATION DIVISION.
PROGRAM-ID. DPLDEMOU.
INSTALLATION.
DATE-COMPILED.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TSQ-DATA-LENGTH PIC S9(4) COMP VALUE ZERO.
01 TSQ-NAME.

05 TSQ-ID PIC X(8) VALUE SPACES.
05 FILLER PIC X(30) VALUE SPACES.

LINKAGE SECTION.
01 DFHCOMMAREA.

COPY EMPREC.
PROCEDURE DIVISION.
MAINLINE SECTION.

MOVE EMP-NAME TO TSQ-NAME
MOVE LENGTH OF EMP-RECORD
1-20 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Sample COBOL Programs Invoked by the Multi-Service Data Entry Servlet
TO TSQ-DATA-LENGTH
EXEC CICS DELETEQ TS

QUEUE(TSQ-ID)
END-EXEC.
EXEC CICS WRITEQ TS

QUEUE(TSQ-ID)
FROM(EMP-RECORD)
LENGTH(TSQ-DATA-LENGTH)

END-EXEC.
EXEC CICS RETURN
END-EXEC.
EXIT.

Delete

This simple program shown in Listing 1-27 deletes a temporary storage queue using
the first eight characters of the employee name as the QID. The COMMAREA is reset so
that residual data does not remain after the delete.

Listing 1-27 COBOL Program for Delete (DPLDEMOD)

IDENTIFICATION DIVISION.
PROGRAM-ID. DPLDEMOD.
INSTALLATION.
DATE-COMPILED.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TSQ-DATA-LENGTH PIC S9(4) COMP VALUE ZERO.
01 TSQ-NAME.

05 TSQ-ID PIC X(8) VALUE SPACES.
05 FILLER PIC X(30) VALUE SPACES.

LINKAGE SECTION.
01 DFHCOMMAREA.

COPY EMPREC.
PROCEDURE DIVISION.
MAINLINE SECTION.

MOVE EMP-NAME TO TSQ-NAME
MOVE LENGTH OF EMP-RECORD
TO TSQ-DATA-LENGTH
EXEC CICS DELETEQ TS

QUEUE(TSQ-ID)
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 1-21

1 Developing a Multi-Service Data Entry Servlet
END-EXEC.
MOVE SPACES
TO DFHCOMMAREA
MOVE ZEROS TO EMP-SSN
EXEC CICS RETURN
END-EXEC.
EXIT.
1-22 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

CHAPTER
2 Enhancing an Existing
Servlet to Originate a
Mainframe Request

This scenario illustrates how to enhance an existing servlet to originate a mainframe
request using WebLogic Server. In this scenario, a new application is developed and
existing applications are updated. WebLogic Server samples are used to illustrate any
existing applications. All discussions are from the application developer’s point of
view, presume a properly installed and configured environment, and presume an
appropriate mainframe application is available.

Note: Although the sample code in this section represents typical applications, it is
intended for example only and is not supported for actual use.

Action List

The following table lists the actions to develop a multi-service data entry servlet:

Your action... Refer to...

1 Verify that the prerequisite tasks have been
completed.

“Prerequisites”

2 Create the survey servlet. “Task 1: Obtain the survey Servlet”
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 2-1

2 Enhancing an Existing Servlet to Originate a Mainframe Request
Prerequisites

Before you begin, ensure that the following prerequisites have been completed.

3 Use eGen COBOL Code Generator to
create an application.

“Task 2: Use eGen COBOL Code
Generator to Generate a Base Class”

4 Update the survey servlet using the
generated class.

“Task 3: Update the survey Servlet Using
the Generated Class”

5 Update the JAM configurations and update
the WebLogic Server configuration.

“Task 4: Update the JAM Configurations
and Update WebLogic Server web.xml
File”

6 Deploy your application. “Task 5: Deploy Your Application”

7 Use the application. “Task 6: Use the Application”

Your action... Refer to...

Your action... Refer to...

1 Verify that the required software has been
properly installed.

BEA WebLogic Server documentation,
BEA WebLogic Java Adapter for
Mainframe Installation Guide

2 Verify that the environment and the
software components have been properly
configured.

BEA WebLogic Server documentation,
BEA WebLogic Java Adapter for
Mainframe Configuration and
Administration Guide.

3 Verify the appropriate mainframe
application is available.

Your mainframe system administrator.

4 Review the steps to develop a java
application.

BEA WebLogic Java Adapter for
Mainframe Programming Guide
2-2 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Enhancing a Multi-Service Data Entry Servlet
Enhancing a Multi-Service Data Entry
Servlet

To enhance a multi-service data entry servlet, complete the following tasks.

Task 1: Obtain the survey Servlet

Use the WebLogic Server survey servlet and add a mainframe request to the post
routine. In future steps, you will add the code to the postprocessing routine to create a
mainframe buffer and send it to CICS where an application writes the buffer to a
temporary storage queue and returns.

Task 2: Use eGen COBOL Code Generator to Generate a
Base Class

Identify the mainframe application and obtain its COBOL copybook, usually a CICS
DFHCOMAREA or the user data portion of an IMS queue record layout. The copybook’s
name in this discussion is survey.cbl, shown in Listing 2-1.

Listing 2-1 Mainframe Application COBOL Copybook survey.cbl

02 survey-record.
05 survey-ide pic x(12).
05 survey-emp pic x(12).
05 survey-cmt pic x(256).

Step 1: Prepare eGen Script

In Listing 2-2, both the DataView surveyData and the client class SurveyClient are
generated from the copybook survey.cbl.
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 2-3

2 Enhancing an Existing Servlet to Originate a Mainframe Request
Listing 2-2 Basic eGen script

view surveyData from survey.cbl
service doSurvey accepts surveyData returns surveyData
client class SurveyClient
{

method doSurvey is service doSurvey
}

You are now finished creating the survey.egen script file and are ready to generate
the source code.

Step 2: Generate the Java Source Code

As shown in Listing 2-3, invoke the eGen COBOL Code Generator to create the base
class. This action makes java class files (*java.class) available for servlet
customizing. The surveyData.java is the DataView object for survey.cbl.

Warning: CLASSPATH should have both the WebLogic Server subdirectories and the
jam.jar file; otherwise, the compile fails.

Note: You could create a script file containing the eGen COBOL command line,
along with the javac command to make the invocation easier.

Listing 2-3 Generating the Java Source Code

>egencobol survey.egen
>ls *.java
SurveyServlet.java surveyData.java SurveyClient.java
>tasks

Step 3: Review the Java Source Code

Obtain a list of accessors for later use. Review the eGen COBOL output to become
familiar with the information presented in this section.
2-4 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Enhancing a Multi-Service Data Entry Servlet
Note: Each COBOL group item has its own accessor. The group name represents a
nested inner class that must be accessed in order to retrieve the members.

In Listing 2-4, the output from the grep command shows the relationships in reverse
order, for example:

getSurveyRecord().getSurveyIde()

This relationship is illustrated in the actual code example shown subsequently in this
scenario.

Listing 2-4 Review the Java Source Code

grep get surveyData.java
public String getSurveyIde()
public String getSurveyEmp()
public String getSurveyCmt()
public SurveyRecordV getSurveyRecord()

grep set surveyData.java
public void setSurveyIde(String value)
public void setSurveyEmp(String value)
public void setSurveyCmt(String value)

Task 3: Update the survey Servlet Using the Generated
Class

The preferred customization method is to derive a custom class from the generated
application. You are now ready to update the WebLogic Server example survey
servlet.

Step 1: Start with Imports

In Listing 2-5, bea.jam.egen provides the eGen COBOL client and DataView base.
The surveyData is the specific DataView generated from the COBOL copybook.
SurveyClient is the generated client class.
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 2-5

2 Enhancing an Existing Servlet to Originate a Mainframe Request
Listing 2-5 Using Imports to Start Creating the Custom Application

import bea.jam.egen.*;
import surveyData;
import SurveyClient;

Step 2: Add New Data Members

In Listing 2-6, the code adds a private member for SurveyClient, which can be
created in the init() function because there is no state for it. The init() is then
updated for a new member. The SurveyClient obtains a connection factory when
created. A single instance of SurveyClient can serve all requests.

Listing 2-6 Adding New Data Members

init ()

//Add private member for SurveyClient
private SurveyClient egc = null;
//Update init() for new member
egc = new SurveyClient();

Step 3: Update doPost with Mainframe Request

Listing 2-7 shows the local variables for form data and DataView in doPost. The
DataView is the minimum requirement. The values entry has been declared
previously.

Listing 2-7 Update doPost with Mainframe Request

values = req.getParameterNames();
surveyData sd = new surveyData();
2-6 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Enhancing a Multi-Service Data Entry Servlet
Step 4: Continue Updating doPost by Extracting Form Data

In Listing 2-8, the code loops through the form using DataView accessors to set data.
The submit field is skipped. The surveyData accessors are used to set values for ide,
employee, and comment. The surveyData object represents the mainframe message
buffer that ultimately is used to make the request. (The surveyData class was
generated using the eGen COBOL Code Generator with the mainframe COBOL
copybook.)

Listing 2-8 Continue Updating doPost

while(values.hasMoreElements())
{

String name = (String)values.nextElement();
String value = req.getParameterValues(name)[0];

if(name.compareTo("submit") != 0)
{

if(name.compareTo("ide") == 0)
sd.getSurveyRecord().setSurveyIde(value);

else if(name.compareTo("employee") == 0)
sd.getSurveyRecord().setSurveyEmp(value);

else if(name.compareTo("comment") == 0)
sd.getSurveyRecord().setSurveyCmt(value);

}
}

Step 5: Continue Updating doPost by Calling Mainframe Service

In Listing 2-9, the code shows how to make the mainframe request. The doSurvey
command blocks until a response is provided. The call can throw either IOException
or snaException. In this listing, doSurvey is in a try block that catches
IOException. The doSurvey command returns a DataView that contains a response.

Listing 2-9 Continue Updating doPost

egc.doSurvey(sd);
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 2-7

2 Enhancing an Existing Servlet to Originate a Mainframe Request
The snaException is the base class for several exceptions, shown in Listing 2-10. A
time-out is the most likely error an application would get.

Listing 2-10 Mainframe Exceptions

snaException
jcrmConfigurationException
snaCallFailureException
snaLinkNotFoundException
snaNoSessionAvailableException
snaRequestTimeoutException
snaServiceNotReadyException

Task 4: Update the JAM Configurations and Update
WebLogic Server web.xml File

In Listing 2-11, update the jcrmgw.cfg file with the remote service name doSurvey.
The Java gateway must be restarted for new services to take effect. The RNAME
DPLSURVY is a CICS program that exists on the mainframe.

Listing 2-11 Update the jcrmgw.cfg File with Service Name

doSurvey RDOM="CICS410"
RNAME="DPLSURVY"

Update the WebLogic Server web.xml file with the entries shown in Listing 2-12.

Listing 2-12 Update WebLogic Server web.xmlFile

<?xml version="1.0" ?>
<!DOCTYPE web-app (View Source for full doctype...)>
- <web-app>
- <servlet>
<servlet-name>survey</servlet-name>
2-8 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Enhancing a Multi-Service Data Entry Servlet
<servlet-class>examples.servlets.SurveyServlet</servlet-class>
</servlet>
- <servlet-mapping>
<servlet-name>survey</servlet-name>
<url-pattern>survey</url-pattern>
</servlet-mapping>
</web-app>

Task 5: Deploy Your Application

At this point, you have a basic form capable of making a maintenance request. For a
complete description of how to deploy a servlet, refer to the WebLogic Server
documentation. For evaluation purposes, refer to the BEA WebLogic Server Quick
Start Guide.
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 2-9

2 Enhancing an Existing Servlet to Originate a Mainframe Request
Task 6: Use the Application

Figure 2-1 shows the HTML display of the enhanced application.

Figure 2-1 Enhanced Survey Servlet Display

Sample COBOL Program to Write to
Temporary Storage Queue

The simple program shown in Listing 2-13 writes the contents of the COMMAREA to a
temporary storage queue. This type of servlet is useful for testing, demonstrations, and
new application development.
2-10 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Sample COBOL Program to Write to Temporary Storage Queue
Listing 2-13 COBOL Program for DPLSURVY

IDENTIFICATION DIVISION.
PROGRAM-ID. DPLSURVY.
INSTALLATION.
DATE-COMPILED.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TSQ-DATA-LENGTH PIC S9(4) COMP VALUE ZERO.
01 TSQ-ID PIC X(8) VALUE SPACES.
LINKAGE SECTION.
01 DFHCOMMAREA.

COPY SURVEY.
PROCEDURE DIVISION.
MAINLINE SECTION.

MOVE 'SURVEY' TO TSQ-NAME
MOVE LENGTH OF SURVEY-RECORD
TO TSQ-DATA-LENGTH
EXEC CICS WRITEQ TS

QUEUE(TSQ-ID)
FROM(SURVEY-RECORD)
LENGTH(TSQ-DATA-LENGTH)

END-EXEC.
EXEC CICS RETURN
END-EXEC.
EXIT.

Note: Some applications have extremely large COMMAREA copybooks. Distributed
applications can be very sensitive to large amounts of data being transferred
between components. If the Java application requires only a few fields from a
large copybook, it would be advantageous to front-end the target application
with a simpler program passing only the data required.
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 2-11

2 Enhancing an Existing Servlet to Originate a Mainframe Request
2-12 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

CHAPTER
3 Updating an Existing
EJB to Service a
Mainframe Request

This section contains a scenario that shows how to update an existing EJB to service a
request from the mainframe. Practical examples for using JAM tools are presented as
tasks with step-by-step procedures. In this scenario, a new application is developed and
existing applications are updated. WebLogic Server samples are used to illustrate any
existing applications. All discussions are from the application developer’s point of
view, presume a properly installed and configured environment, and presume an
appropriate mainframe application is available.

Note: Although the sample code in this section represents typical applications, it is
intended for example only and is not supported for actual use.

Action List

The following table lists the actions to update an existing EJB to service a mainframe
request:

Your action... Refer to...

1 Verify that prerequisite tasks have been
completed.

“Prerequisites”
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 3-1

3 Updating an Existing EJB to Service a Mainframe Request
Prerequisites

Before you begin, ensure that the following prerequisites have been completed.

2 Use eGen COBOL to create a base java
class.

“Task 1: Use eGen COBOL Code
Generator to Generate a Base Class”

3 Update the trader interface using the
generated java class.

“Task 2: Update the Trader Interface
Using the Generated Class”

4 Update the JAM configurations. “Task 3: Update the JAM Configurations”

5 Deploy your application. “Task 4: Deploy Your Application”

6 Use the application. “Task 5: Use the Application”

Your action... Refer to...

Your action... Refer to...

1 Verify that the required software has been
properly installed.

BEA WebLogic Server documentation,
BEA WebLogic Java Adapter for
Mainframe Installation Guide

2 Verify that the environment and the
software components have been properly
configured.

BEA WebLogic Java Adapter for
Mainframe Configuration and
Administration Guide

3 Verify the appropriate mainframe
application is available.

Your mainframe system administrator.

4 Review the steps to develop a java
application.

BEA WebLogic Java Adapter for
Mainframe Programming Guide

5 Create the survey servlet prior to
attempting the enhancement discussed
in this scenario.

BEA WebLogic Java Adapter for
Mainframe Programming Guide
3-2 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Update an Existing EJB to Service a Mainframe Request
Update an Existing EJB to Service a
Mainframe Request

To update an existing EJB to service a mainframe request, complete the following
tasks.

Task 1: Use eGen COBOL Code Generator to Generate a
Base Class

Use the WebLogic Server basic statelessSession TraderBean and update the
interface to add a dispatch function that is given control upon receipt of an inbound
request. The eGen COBOL client class code generation model is used. The
TraderBean is designed to run from a stand-alone client and output a list of stock
trades.

You should have successfully run the WebLogic Server basic statelessSession
TraderBean prior to attempting the updates discussed in this scenario. You must then
identify the mainframe application and obtain its COBOL copybook. This is typically
a CICS DFHCOMAREA or the user data portion of an IMS queue record layout. The
copybook’s name in this discussion is trader.cbl, as shown in Listing 3-1.

Listing 3-1 Mainframe Application COBOL Copybook trader.cbl

02 TRADER-RECORD.
05 CUSTOMER PIC X(24).
05 SYMBOL PIC X(6).
05 SHARES PIC 9(7) COMP-3.
05 PRICE PIC 9(7) COMP-3.
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 3-3

3 Updating an Existing EJB to Service a Mainframe Request
Step 1: Prepare eGen COBOL Script

The single-line script in Listing 3-2 generates the DataView traderData from the
copybook named trader.cbl. The script is then saved as inboundEJB.egen.

Listing 3-2 Basic eGen COBOL script

view traderData from trader.cbl

You are now finished creating the inboundEJB.egen script file and are ready to
generate the source code.

Step 2: Generate the Java Source Code

In Listing 3-3, the eGen COBOL Code Generator is invoked to compile trader.cbl
copybook and inboundEJB.egen. The traderData.java is the DataView object for
trader.cbl.

Warning: CLASSPATH should have both the WebLogic Server subdirectories and the
jam.jar file; otherwise, the compile fails.

Note: You could create a script file containing the eGen COBOL command line,
along with the javac command to make the invocation easier.

Listing 3-3 Generating the Java Source Code

egencobol inboundEJB.egen
ls traderDat*.java
traderData.java
javac traderData.java

Step 3: Review the Java Source Code

Obtain a list of accessors for use later. Look at the eGen COBOL output to become
familiar with each of the scenarios presented in this section.
3-4 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Update an Existing EJB to Service a Mainframe Request
The entire method of customizing the generated output is based on deriving the output
from generated code. The base application can be regenerated without destroying the
custom code.

Note: Each COBOL group item has its own accessor. This is important because the
group name represents a nested inner class that must be accessed in order to
retrieve the members.

In Listing 3-4, the output from the grep command shows the relationships in reverse
order, for example:

getTraderRecord().getPrice()

This relationship is illustrated in the actual code example shown in Listing 3-4.

Listing 3-4 Review the Java Source Code

grep get traderData.java
public String getCustomer()
public String getSymbol()
public BigDecimal getShares()
public BigDecimal getPrice()
public TraderRecordV getTraderRecord()

grep set traderData.java
public void setCustomer(String value)
public void setSymbol(String value)
public void setShares(BigDecimal value)
public void setPrice(BigDecimal value)

Task 2: Update the Trader Interface Using the Generated
Class

Update the WebLogic Server trader example basic statelessSession bean.
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 3-5

3 Updating an Existing EJB to Service a Mainframe Request
Step 1: Start with Import

In Listing 3-5, the EJB interface is updated. In the Trader interface declaration, the
EJBobject is replaced with gwObject. The gwObject extends EJBObject and
provides the dispatch method that gets control on receipt of an incoming request.

Listing 3-5 Using Imports to Start Updating the EJB

import bea.sna.jcrmgw.gwObject;
.
.
.
public interface Trader extends gwObject {
.
.
.

Step 2: Continue with Imports

The code in Listing 3-6 performs four imports to update the EJB. The bea.base.io.*
import provides the mainframe reader and writer. The traderData import is the
specific DataView generated from the COBOL copybook. The BigDecimal class
handles packed decimal COMP-3 fields. The mainframe reader and writer can generate
IOExceptions.

Listing 3-6 Continuing Imports

import bea.base.io.*;
import traderData;
import java.math.BigDecimal;
import java.io.IOException;

Step 3: Update EJB with dispatch

In Listing 3-7, the gateway invokes dispatch with a byte array of mainframe
EBCDIC data. The code converts the mainframe byte array to a DataView using a
MainFrameReader. The traderData is the generated DataView class.
3-6 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Update an Existing EJB to Service a Mainframe Request
Listing 3-7 Update EJB with dispatch

.

.

.
public byte[] dispatch(byte[] b)

{
traderData td = null;
try {

td = new traderData(new MainframeReader(b));
catch(IOException ie) { return b; }

// error protocol required

Step 4: Continue Updating EJB with dispatch

In Listing 3-8, the code uses accessors to get input and set output. The mainframe
COMMAREA is updated with the result. Note the use of an accessor to obtain the
group-level class prior to accessing the member variable. An application-level error
indicator in the data is used to convey the exception. Updating the DataView member
results in updates to the mainframe application. Any application exception thrown
from the dispatch routine results in an abend returned to the mainframe.

Listing 3-8 Continue Updating EJB with dispatch

try {
TradeResult tr = buy(td.getTraderRecord().getCustomer()

,td.getTraderRecord().getSymbol()
,td.getTraderRecord().getShares().intValue());

td.getTraderRecord().setShares(new
BigDecimal((long)tr.numberTraded));

td.getTraderRecord().setPrice(new
BigDecimal((long)tr.priceSoldAt));

}catch(ProcessingErrorException pe)
td.getTraderRecord().setSymbol("*ERROR");}
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 3-7

3 Updating an Existing EJB to Service a Mainframe Request
Step 5: Finish Updating EJB with dispatch

The code in Listing 3-9 converts the DataView back into a byte array to be returned to
the mainframe using a MainframeWriter. The MainframeWriter and DataView
handle conversions. Note that the dispatch function takes a byte array and returns a
byte array. This process means when you set up an initial configuration, you can stub
dispatch as an echo function.

Listing 3-9 Finish Updating EJB with dispatch

try {
return td.toByteArray(new MainframeWriter());

} catch(IOException ie) {return b; }
// error protocol required

}

Task 3: Update the JAM Configurations

Update the jcrmgw.cfg file with the service name shown in Listing 3-10. The JAM
gateway must be restarted for new services to take effect.

Listing 3-10 Update the jcrmgw.cfg File with Service Name

*JC_LOCAL_SERVICES
statelessSession.TraderHome RNAME=”DPL1SVR”

Task 4: Deploy Your Application

Use the build function supplied with WebLogic Server to build the
statelessSession example. The EJB is saved in
/myserver/ejb_basic_statelessSession.jar. Deploy the EJB using the
WebLogic Server Console.

To run the client, follow the instructions in the WebLogic Server documentation.
3-8 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Update an Existing EJB to Service a Mainframe Request
Warning: DataView classes are not included in the jar file using the default script.
You must either add traderData*.class entries to the jar file or copy the
entries to another location on the CLASSPATH. The EJB does not deploy
if the traderData classes cannot be found.

Task 5: Use the Application

Listing 3-11 shows the inbound mainframe request for a “buy” transaction executed by
the traderBean. If the previous tasks have been performed correctly, the result should
look similar to this listing.

Listing 3-11 Inbound Mainframe Request

Thu Feb 17 15:31:10 CST 2000:<I> <EJB> EJB home interface:
'examples.ejb.basic.statelessSession.TraderHome' deployed bound to
the JNDI name: 'statelessSession.TraderHome'

Thu Feb 17 15:31:10 CST 2000:<I> <EJB> 0 EJBs were deployed using
.ser files.

Thu Feb 17 15:31:10 CST 2000:<I> <EJB> 1 EJBs were deployed using
.jar files.
.
.
.

**** Inbound Mainframe Request ****

buy (JEFF TESTER, WEBL, 150)

Executing stmt: insert into tradingorders (account, stockSymbol,
shares, price) VALUES ('JEFF TESTER','WEBL',150,10.0)
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 3-9

3 Updating an Existing EJB to Service a Mainframe Request
Sample COBOL Program to Write to
Temporary Storage Queue

The simple program shown in Listing 3-12 writes the contents of the COMMAREA to a
temporary storage queue. This type of simple mainframe program is useful for testing,
demonstrations, and new application development.

Listing 3-12 COBOL Program for DPL1CLT

IDENTIFICATION DIVISION.
PROGRAM-ID. DPL1CLT.
INSTALLATION.
DATE-COMPILED.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 STUFF.

COPY INBOUND.
PROCEDURE DIVISION.
MAINLINE SECTION.

MOVE 'JEFF TESTER' TO CUSTOMER
MOVE 'WEBL' TO SYMBOL
MOVE ZEROS TO PRICE
MOVE +150 TO SHARES
EXEC CICS LINK

PROGRAM('DPL1SVR')
COMMAREA(STUFF)

END-EXEC.
EXEC CICS WRITEQ TS

QUEUE('TRADER')
FROM(STUFF)

END-EXEC.
EXEC CICS RETURN
END-EXEC.
3-10 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Sample COBOL Program to Write to Temporary Storage Queue
Note: Some applications have extremely large COMMAREA copybooks. Distributed
applications can be very sensitive to large amounts of data being transferred
between components. If the Java application requires only a few fields from a
large copybook, it would be advantageous to preface the target application
with a simpler program passing only the data required.
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 3-11

3 Updating an Existing EJB to Service a Mainframe Request
3-12 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

CHAPTER
4 Web-enabling an IBM
3270 Application

This section contains a scenario that shows how to develop a single service
servlet-based application that invokes a CrossPlex script on the mainframe when you
are using WebLogic Server. Similar techniques may be used to interface to other
third-party products. Because CrossPlex requires the use of a record header that should
not be presented on a browser page, some DataView manipulation will be required.

This scenario is based on the general procedures presented in the BEA WebLogic Java
Adapter for Mainframe Programming Guide. It gives practical examples for using
JAM tools, presented as tasks with step-by-step procedures. In this scenario a new
application is developed. All discussions are from the application developer’s point of
view, presume a properly installed and configured environment, and presume an
appropriate mainframe application is available.

Note: Although the sample code in this section represents typical applications, it is
intended for example only and is not supported for actual use.

Action List

The following table provides an action list for implementing JAM with CrossPlex:

Your action... Refer to...

1 Verify that all prerequisite activities have
been completed.

“Prerequisites”
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 4-1

4 Web-enabling an IBM 3270 Application
Prerequisites

Before you begin, verify that the following prerequisites have been completed.

2 Create a CrossPlex script. “Task 1: Create a CrossPlex Script”

3 Use eGen COBOL Code Generator to
generate an application.

“Task 2: Use eGen COBOL to Create a
Base Application”

4 Create your custom application from the
starter application.

“Task 3: Create Your Custom Application
from the Generated Application”

5 Update the JAM configurations and update
WLS properties.

“Task 4: Update the JAM Configuration
and WebLogic Server web.xml”

6 Deploy your application. “Task 5: Deploy Your Application”

7 Use the application. “Task 6: Use the Application”

Your action... Refer to...

Your action... Refer to...

1 Verify that the required software has been
properly installed.

BEA WebLogic product Installation
Guides and SofTouch CrossPlex
documentation

2 Verify that the environment and the
software components have been properly
configured.

BEA WebLogic product Installation
Guides and SofTouch CrossPlex
documentation

3 Verify the appropriate mainframe
application is available.

Your mainframe system administrator

4 Review the steps to develop a java
application.

BEA WebLogic Java Adapter for
Mainframe Programming Guide
4-2 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Implementing JAM with CrossPlex
Implementing JAM with CrossPlex

To implement JAM with CrossPlex, complete the following tasks.

Task 1: Create a CrossPlex Script

A CrossPlex script provides the business logic to execute one or more 3270
transactions running on the mainframe. Transactions in any VTAM system, such as
CICS or IMS, can be accessed. When a script executes in CrossPlex, it usually requires
some input data, such as customer number and part number. This input data is passed
from your application in a container called a record definition.

During execution, a script selects and optionally reformats data from the screen
displays of the executed 3270 transactions. This selected data is returned to your
application in a record definition.

Note: Record definitions do not necessarily conform to any known data record in a
file. A record definition is simply a description of a series of data fields being
passed to and from a script.

Record definitions are created with the CrossPlex development system. An online
editor is used to define each field in the record, along with its length and type (alpha,
numeric, binary, packed). A single record definition may be used for data passing to
and from the mainframe, or two definitions may be used.

Another of the CrossPlex development tools creates a COBOL copybook, using a
record definition as input. The generated copybook is stored in a PDS member where
it can be copied into your application program as needed.

Figure 4-1 illustrates the processing flow from the JAM front end to retrieve data from
one or more mainframe transactions.
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 4-3

4 Web-enabling an IBM 3270 Application
Figure 4-1 Processing Flow from JAM to Mainframe Transactions

Step 1: Prepare Record Definition for the Mainframe

Assign a record name and description, then define each data field to be passed to the
CrossPlex script. The process of defining a record definition is described in detail in
the CrossPlex Middleware Programmer's Guide.

To illustrate, assume the mainframe application is a simple name/address display that
requires a customer number and company number as input. For this example, the
record definition to and from the mainframe are different, though the same record
definition can be used for both. Figure 4-2 shows how the record sent to the mainframe
appears.
4-4 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Implementing JAM with CrossPlex
Figure 4-2 Illustration of a Record Sent to the Mainframe

The data required by the mainframe transaction is CUSTNO, a seven-byte alphanumeric
field beginning in position one of the record, and COMPANY, a three-byte numeric field
beginning in position eight.

Step 2: Create a Copybook of the Record Definition Sent to the Mainframe

Store the generated copybook in a PDS member where you can easily copy it to your
development system. For a complete description of the process of creating a COBOL
copybook from a record definition, refer to the CrossPlex Middleware Programmer's
Guide.

Continuing with the same example, a COBOL copybook generated from the
previously illustrated record definition, INREC, appears as shown in Listing 4-1:

Listing 4-1 INREC Example

* INREC - Sample record definition sent to the m/f*

01 INREC-START.
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 4-5

4 Web-enabling an IBM 3270 Application
05 INREC-CUSTNO PIC X(007).
05 INREC-COMPANY PIC 9(003).

Step 3: Create a Record Definition and Copybook Sent From the Mainframe

If the data sent from the mainframe is to use a different record format from the data
sent to the mainframe, repeat Steps 1 and 2 to prepare the record definition and
copybook.

For this example, the record definition and copybook appears as in Figure 4-3.

Figure 4-3 Record Definition for Data Sent From the Mainframe

* OUTREC - Sample record definition sent from the m/f *

01 OUTREC-START.

05 OUTREC-CUSTOMER PIC X(007).
05 OUTREC-NAME PIC X(025).
05 OUTREC-ADDRESS1 PIC X(025).
05 OUTREC-ADDRESS2 PIC X(025).
05 OUTREC-CITY PIC X(025).
05 OUTREC-STATE PIC X(002).
05 OUTREC-ZIP PIC 9(005).
4-6 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Implementing JAM with CrossPlex
Step 4: Prepare the CrossPlex Script

Scripts can be coded using the CrossPlex script editor, or they may be coded on any
external editor and imported into the CrossPlex control file. The CrossPlex script
language and the process of creating a script are described in the CrossPlex
Middleware Programmer's Guide.

Note: In the CrossPlex documentation, scripts are also known as command streams
and stream objects.

Prepare a script that navigates through a series of 3270 transactions in the same manner
as a terminal operator. The script acts as a virtual operator, performing a log-on to the
OLTP system, sending terminal data to the mainframe as if keyed on a keyboard,
examining the returned screen display for correct execution, and selecting data from
the screen if needed. Any number of transactions may be executed. The script language
also provides a method of linking to a user program on the mainframe in order to
perform direct retrieval of data that may not be available in a 3270 transaction display.

Continuing with the example of name/address data retrieval, the script might appear as
Listing 4-2.

Listing 4-2 CrossPlex Script

CALLCPX MSGAREA(NMAD)Initiate transaction NMAD.
CALLCPX ROWCOL(05023) DATA(&CUSTNO)Send CUSTNO to row 5 col 23.

IF ROWCOL(24021) EQ DATA(NOT ON FILE)-Verify customer
record found

GOTO(NOTFOUND)
SELECT RECORD(OUTREC) -Select data from mainframe

ROWCOL(05023) RFIELD(CUSTNO) -screen into remaining
ROWCOL(06023) RFIELD(NAME) -record fields.
ROWCOL(07023) RFIELD(ADDR1) -
ROWCOL(08023) RFIELD(ADDR2) -
ROWCOL(09023) RFIELD(CITY) -
ROWCOL(10023) RFIELD(STATE) -
ROWCOL(11023) RFIELD(ZIP)

GOTO(ENDJOB)Skip following error routine
NOTFOUND Enter if customer not found

SELECT RECORD(OUTREC) -Move zeros to customer number
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 4-7

4 Web-enabling an IBM 3270 Application
DATA(0000000) RFIELD(CUSTNO)
ENDJOB Enter or fall through

CALLCPX AID(PF3) Terminate NMAD transaction

Note: This example illustrates row/column addressing of screen data. CrossPlex also
provides a method of assigning screen field names to avoid specific
row/column references

Step 5: Test and Debug the Script

You can fully test and debug the script that executes on the mainframe without
connecting it to your front-end application. CrossPlex provides a variety of execution
and debugging tools to ensure the back-end portion of your application is operating
properly.

When you are satisfied that the script is doing what you want and the returned data is
correct, proceed to prepare the front-end of your application and connect the two
together.

The process of testing and debugging a script is described in the CrossPlex
Middleware Programmer's Guide.

Handling the Mainframe Sign-on

Most VTAM systems require the user to sign on in the target region when first
connecting. You must also sign on when connecting to a target region with CrossPlex.
This sign-on requirement can be handled in any one of the following ways:

� Interact with a user sign-on transaction in the script.

The most common situation, especially for CICS, requires that your script
handle the sign-on. Many users have CICS configured so that upon the first
connection, the terminal is presented with a sign-on panel that may have been
customized for the installation. If this is the case, the first CALLCPX command
of the script returns the sign-on screen to the script and a subsequent CALLCPX
must send a valid user ID and password. The mainframe sign-in is discussed in
the CrossPlex Middleware Programmer's Guide.

� Let CrossPlex perform a short-form sign-on.
4-8 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Implementing JAM with CrossPlex
Supplying a valid user ID and password in the CrossPlex header will cause
CrossPlex to perform a short-form sign-on before sending the first transaction
data from the script.

Note: This case is valid for CICS systems only, and is installation dependent.

The short-form CICS sign-on may be disabled, depending on the user's CICS
configuration. This case is discussed in the CrossPlex Middleware
Programmer's Guide.

� Perform a mass log-on at CICS startup.

With this technique, several FEPI virtual terminals are logged-on when CICS is
first started and they remain active until CICS is recycled. If this is done, scripts
do not need to be concerned with doing a sign-on at all. This topic is discussed
in the CrossPlex Web Enabling Guide.

Task 2: Use eGen COBOL to Create a Base Application

Copy the CrossPlex COBOL copybooks to your development system. These
copybooks include the copybook for the CrossPlex header (CSMF), the script
invocation record definition (in this case INREC), and the script result record
definition (in this case OUTREC). This scenario requires that you generate four
DataView classes from these three copybooks, by merging them in the correct pattern.
Table 4-1 lists the four DataView classes created from the three copybooks.

Table 4-1 Merge Pattern for DataView Classes

Purpose Copybook(s) used Combined Copybook Name

Initial form for presentation on
browser

INREC INREC

Record sent to mainframe CSMF + INREC INREC-H

Result returned from mainframe CSMF + OUTREC OUTREC-H

Result presented to user OUTREC OUTREC
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 4-9

4 Web-enabling an IBM 3270 Application
When your application calls CrossPlex to retrieve data from the mainframe, it must
pass a 256-byte header (CSMF), followed by the record area (INREC) to the
mainframe. The data selected in the script will be returned in the record area
(OUTREC) from the mainframe, which occupies the same memory address as the
record to the mainframe, immediately following the header.

The CrossPlex header is described in the CrossPlex Middleware Programmer's Guide.
Three copybooks are distributed to describe this area. A COBOL version called
XPLXCBL is available, as well as a C version (XPLXC) and an Assembler version
(XPLXASM).

In addition to the required fields listed in Standardized Message Format, two
additional fields must be supplied by your application:

Table 4-2 Additional Standardized Message Format Fields

The record definition from the mainframe is named in a SELECT statement within the
script.

Listing 4-3 shows the COBOL version of the header copybook.

Listing 4-3 COBOL Version of Header Copybook

* *
* XPLXCBL - CROSSPLEX STANDARDIZED MESSAGE FORMAT *
* COBOL VERSION *
* *

01 XP-COMMAREA.

05 XP-COMMAND PIC X(4).
05 XP-RESPONSE PIC S9(8).
05 XP-EXCEP-DATA.

10 XP-EXECP-ROWCOL PIC S9(4) COMP.
10 XP-EXCEP-LENGTH PIC S9(4) COMP.

XP-EXECUTING-SCRIPT The name of the CrossPlex script to execute.

XP-INBOUND-RECORD The name of the record definition sent to the mainframe.

XP-MODE Operating mode. Must contain CMDR to execute a script with
a record definition as input.
4-10 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Implementing JAM with CrossPlex
10 XP-FLD-ERR PIC S9(4) COMP.
10 XP-EXCEP-MSG-FIELD PIC S9(4) COMP.
10 XP-EXCEP-FEPI PIC X(4).
10 XP-EXCEP-EIBRESP PIC S9(8) COMP.
10 XP-EXCEP-EIBRESP2 PIC S9(8) COMP.

05 XP-OPTIONAL-PARMLIST PIC S9(8) COMP.
05 XP-TARGET PIC X(8).
05 XP-POOL PIC X(8).
05 XP-AIDBYTE PIC X(6).
05 XP-INSCREEN PIC X(8).
05 XP-OUTSCREN PIC X(8).
05 XP-CURSOR.

10 XP-CURSOR-ROW PIC S9(4).
10 XP-CURSOR-COL PIC S9(4).

05 XP-SIGNON-USERID PIC X(8).
05 XP-SIGNON-PASSWORD PIC X(8).
05 XP-NODENAME PIC X(8).
05 XP-FEPI-CONVID PIC X(8).
05 XP-DEBUG-QUEUE PIC X(8).
05 XP-ASSOC-NAME PIC X(8).
05 XP-MODE PIC X(4).

88 XP-HTML VALUE 'HTML'.
88 XP-HTQS VALUE 'HTQS'.
88 XP-3270 VALUE '3270'.
88 XP-CMDS VALUE 'CMDS'.
88 XP-CMDR VALUE 'CMDR'.

05 XP-TRANSLATION-SCREEN PIC X(8).
05 XP-IN-LENGTH PIC S9(4).
05 XP-AREA-LENGTH PIC S9(4).
05 XP-OUT-LENGTH PIC S9(4).
05 XP-TERM-OPTION PIC X(1).

88 XP-NOTERM VALUE 'N'.
05 XP-USD-OPTION PIC X(1).

88 UNSOLICITED-DATA-EXPECTED VALUE 'N'.
05 XP-USD-WAIT-TIME PIC S9(4) COMP.
05 FILLER PIC X(36).
05 XP-EXECUTING-SCRIPT PIC X(8).
05 XP-FEPI-TIMEOUT PIC S9(4) COMP.
05 FILLER PIC X(15).
05 XP-INBOUND-RECORD PIC X(8).
05 FILLER PIC X(41).
05 XP-MESSAGE-AREA.

Step 1: Prepare eGen COBOL Script

In Listing 4-4, the DataViews are generated from the combined copybooks.
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 4-11

4 Web-enabling an IBM 3270 Application
Listing 4-4 Basic eGen COBOL Script

view InrecRecord from INREC.cbl
view InrecHdrRecord from INREC-H.cbl
view OutrecRecord from OUTREC.cbl
view OutrecHdrRecord from OUTREC-H.cbl

Step 2: Add Service Entry

Add the single line service entry in Listing 4-5 for the CrossPlex operation. This entry
specifies the DataView.

Listing 4-5 Service Names Associated with Input and Output Views

service DoIt accepts InrecHdrRecord returns OutrecHdrRecord

Step 3: Add Page Declarations in eGen COBOL Script

This application requires two pages: one to invoke the operation and another to present
the results. Note that the full records (with header) are mentioned, even though these
are not displayed. The custom code written later in the scenario specifies this display.

Listing 4-6 Page Declaration Associating Display Buttons with Services

page page1 "Invoke Operation" {
view InrecHdrRecord

buttons {
"doit" service(DoIt) shows resultPage

}
}
page resultPage "Results of Operation" {

view OutrecHdrRecord
buttons {

// No buttons on this page.
}

}

4-12 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Implementing JAM with CrossPlex
Step 4: Add Servlet Name

As shown in Listing 4-7, BaseServlet is the servlet name to be registered as a URL
in the WebLogic Server web.xml file. (Every servlet requires a URL to be registered
this way. Refer to WebLogic Server documentation about deploying servlets for more
specific information.) Here, the page "page1" is to be displayed when the servlet
"BaseServlet" is invoked.

Listing 4-7 Add Servlet Name

servlet BaseServlet shows page1

The script is then saved as crossplex.egen.

Step 5: Generate the Java Source Code

In Listing 4-8, invoke the eGen COBOL Code Generator to create the application that
is then compiled. This process makes class files (*.class) available for servlet
customizing. CLASSPATH should include the WebLogic Server subdirectories and the
jam.jar file; otherwise, the compile fails. You can create a script file containing the
eGen COBOL command line, along with the javac command to make the invocation
easier.

Listing 4-8 Generating the Java Source Code

egencobol emprec.egen
ls *.java

BaseServlet.java
InrecHdrRecord.java
InrecRecord.java
OutrecHdrRecord.java
OutrecRecord.java
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 4-13

4 Web-enabling an IBM 3270 Application
Task 3: Create Your Custom Application from the
Generated Application

The preferred customizing method is to derive a custom class from the generated
application. In this case, we will subclass the generated servlet code to both change
record formats and manipulate CrossPlex header fields.

Step 1: Start with Imports

In Listing 4-9, BigDecimal supports COMP-3 packed data. HttpSession is available
for saving limited state. DataView is the base for all generated data records.

Listing 4-9 Using Imports to Start Creating the Custom Application

import java.util.Hashtable;
import javax.servlet.http.HttpSession;
import com.bea.dmd.dataview.DataView;
import InrecRecord;
import InrecHdrRecord;
import OutrecRecord
import OutrecHdrRecord;
import com.bea.dmd.dataview.HashtableLoader;
import com.bea.dmd.dataview.HashtableUnloader;
import com.bea.dmd.dataview.PrefixChanger;

Step 2: Declare the New Custom Class

Listing 4-10 shows how to extend the generated servlet. Extension of the generated
servlet enables regeneration of the base application without destroying customized
code. Fields can be added to the copybook without disrupting the customized code.

Listing 4-10 Declaring the New Custom Class

public class customServlet
extends BaseServlet
4-14 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Implementing JAM with CrossPlex
{
:

Step 3: Add Implementation for doGetSetup

In Listing 4-11, the doGetSetup () function is used to ensure that the user is presented
with a form reflecting the INREC record.

Listing 4-11 Add Implementation for doGetSetup

public DataView doGetSetup(DataView dv, HttpSession s){
return new InrecRecord ();
}

Step 4: Create Implementation for doPostSetup

The doPostSetup method performs operations after a button has been pressed on the
form, prior to the mainframe call. In Listing 4-12, the DataView passed in contains
values entered into the form by the application user. This code moves the specified data
into an InrecHdrRecord; then sets the header fields for the operation you wish to
perform.

Listing 4-12 Create Implementation for doPostSetup

public DataView doPostSetup(DataView dv, HttpSession s)
{

InrecHdrRecord bhr = new InrecHdrRecord();
try
{

// Move the contents, by using a Hashtable as an
intermediate holder.
Hashtable h = new HashtableUnloader(new PrefixChanger

(“mwdrecStart.”, “xpCommarea.”)).unload(dv);
new HashtableLoader().load(h,(bhr);

// Load header fields.
bhr.getXpCommarea().setXpCommand("EXEC");
bhr.getXpCommarea().setXpTarget("THISCICS");
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 4-15

4 Web-enabling an IBM 3270 Application
bhr.getXpCommarea().setXpPool("POOLM2");
bhr.getXpCommarea().setXpFepiConvidBin(0L);
bhr.getXpCommarea().setXpMode("CMDR");
bhr.getXpCommarea().setXpInLength((short) 300);
bhr.getXpCommarea().setXpAreaLingth((short) 1300);
bhr.getXpCommarea().setXpExecutingScript("MYSCRIPT");
bhr.getXpCommarea().setXpInboundRecord("INRECRECRD");

}
catch (Exception e)
{
}
return bhr;

}

The meaning of each field in the CrossPlex header is described in the CrossPlex
Middleware Programmer's Guide. For most executions, the following fields must
contain meaningful data:

Table 4-3 CrossPlex Header Fields

COMMAND Contains "EXEC" to execute a script, or "TERM" to terminate a
session.

TARGET Contains the FEPI target name of the VTAM region where
transactions are to be executed.

POOL Contains the FEPI pool name for this session.

ASSOC Instead of TARGET and POOL, a CrossPlex Association can be
named, which defines the target, pool and connection type (FEPI
or BRIDGE).

MODE Must contain "CMDR" if a record definition to the mainframe is
used and a script is to be executed.

AREA-LENGTH Contains the maximum length of MESSAGEAREA.

EXECUTING-SCRIPT The name of the script to be executed.

INBOUND-RECORD The name of the record definition sent to the mainframe.

MESSAGEAREA Contains the record sent to the mainframe when CrossPlex is
called and the record from the mainframe upon return.
4-16 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Implementing JAM with CrossPlex
On the first call to CrossPlex, all fields of the CSMF header must be completely
initialized to their default values or filled with user data. The generated DataView code
initializes with default values. Upon return, the header contains some fields provided
by CrossPlex, such as the FEPI conversation ID. If subsequent calls to CrossPlex are
made for the same session, these fields must not be re-initialized, since CrossPlex
needs the FEPI conversation ID to continue the same session

Step 5: Create Implementation for doPostFinal

In Listing 4-13, the doPostFinal occurs after mainframe transmission, but prior to
re-display in the browser. This example moves the result OutrecHdrRecord into an
OutrecRecord prior to display.

Listing 4-13 Create Implementation for doPostFinal

public DataView doPostFinal(DataView dv, HttpSession s)
{

OutrecHdrRecord qhr = (OutrecHdrRecord) dv;
int resp=qhr.getXPCommarea().getXpCommarea().getXpResponse();
if (resp != 0 && resp != 12)

throw new Error("Bad xp-response: " + resp);

OutrecRecord qr = new OutrecRecord();

try
{

// Move the contents, by using a Hashtable as an
intermediate holder.

USERID To perform a short sign-on to the target region using FEPI,
supply a valid user ID in this field.

PASSWORD Valid password if USERID is present.

DEBUGQ Name of a debug queue where execution trace records are to be
written.

Upon return from CrossPlex, the following fields are supplied:

NODENAME The FEPI node name used by the mainframe session.

CONVID The FEPI conversation ID assigned to the mainframe session.
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 4-17

4 Web-enabling an IBM 3270 Application
Hashtable h = new HashtableUnloader(new
PrefixChanger(“xpCommarea.”, “mwdrecStart.”))

.unload(dv);
new HashtableLoader.load(h, qr);
}
catch (Exception e)
{
}

return qr;
}

Task 4: Update the JAM Configuration and WebLogic
Server web.xml

Update the jcrmgw.cfg file with the remote service entries shown in Listing 4-14.
The JAM gateway must be restarted for new services. The entries are used when the
corresponding form button is pushed. The doit button triggers DoIt, which invokes
XPLXSBEA. The service name must match values in the eGen COBOL script. In this
example, the RNAME must match an actual CICS program name.

Listing 4-14 Remote Service Entries for Create/Read/Update/Delete

DoIt RDOM="CICS410"
RNAME="XPLXSBEA"

Update the WebLogic Server web.xml file with the entries shown in Listing 4-15.

Listing 4-15 Update WebLogic Server web.xml File

weblogic.httpd.register.crossplex=customServlet
4-18 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Implementing JAM with CrossPlex
Task 5: Deploy Your Application

At this point, you have a basic form capable of receiving data entry, along with some
static HTML code for display. For a complete description of how to deploy a servlet,
refer to the WebLogic Server documentation. For evaluation purposes, refer to the
BEA WebLogic Server Quick Start Guide.
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 4-19

4 Web-enabling an IBM 3270 Application
Task 6: Use the Application

Figure 4-4 shows the default servlet with customized code displayed in an HTML
facade. This type of servlet is useful for presentation, proof-of-concept, and as a test
bed for development.

Figure 4-4 New Data Entry Servlet Display
4-20 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Implementing JAM with CrossPlex
Figure 4-5 is an example of the page used for the front end of the new custom servlet.

Figure 4-5 New Data Entry Servlet Front End Page
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 4-21

4 Web-enabling an IBM 3270 Application
4-22 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

CHAPTER
5 Using JAM in a
Clustered Environment

This scenario extends the EJB client model described in the BEA WebLogic Java
Adapter for Mainframe Programming Guide to demonstrate a client requesting
multiple employee actions against an EJB that is deployed in a cluster. The client holds
a remote interface for each EJB on each WebLogic Server in the cluster on which it is
deployed. A JAM gateway must be running on each WebLogic Server in the cluster.
Each gateway is connected to a CRM running on the same machine or distributed to a
different machine. The client is used to make multiple requests to the clustered EJB.
The EJB writes a message to the WebLogic Server console, showing the distribution
of the client requests.

Action List

To use JAM in a clustered environment, complete the following tasks.

Your action... Refer to...

1 Verify that prerequisite tasks have been
completed.

“Prerequisites”

2 Prepare your system. “Preparing Your System”

3 Run the sample. “Running the Sample”
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 5-1

5 Using JAM in a Clustered Environment
Prerequisites

Verify that the following prerequisite tasks have been completed.

Preparing Your System

Complete the following steps to run the clustering scenario:

1. Add the WebLogic cluster information to the WebLogic Server domain where you
will run your cluster samples.

2. Generate the EJB Client sample by following the steps described in the BEA
WebLogic Java Adapter for Mainframe Programming Guide.

3. Add the services generated from the client sample to the JAM configuration file
for each WebLogic Server in your clustered configuration.

4. Start the JAM gateway under each WebLogic Server. If the WebLogic Server is
already started, or the JAM gateway is already running, use the admin servlet to
perform the necessary steps. See the “Using JAM Administration Utilities”
section of the BEA WebLogic Java Adapter for Mainframe Programming Guide.

Your action... Refer to...

1 Verify that the required software has been
properly installed: WebLogic Server,
WebLogic Java Adapter for Mainframe.

BEA WebLogic Server Getting Started
Guide, BEA WebLogic Java Adapter for
Mainframe Installation Guide

2 Verify that the environment and the
software components have been properly
configured.

BEA WebLogic Server Administration
Guide, BEA WebLogic Java Adapter for
Mainframe Configuration and
Adminstration Guide

3 Verify the appropriate mainframe
application is available.

Your mainframe system administrator
5-2 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Running the Sample
Running the Sample

To run the clustering sample provided with the JAM product, complete the following
steps.

1. Extend the base example by adding the clusterSampleClientBean to the
sample container. The clusterSampleClientBean extends the functions of the
SampleClientBean methods readEmployee and newEmployee. These
methods will write a line to the WebLogic Server console.

2. The clusterSampleClientBean should be generated and packaged into the
sample EJB.

Listing 5-1 clusterSampleClientBean.java

// ===

// clusterSampleClientBean.java
// Example class that extends a generated JAM client EJB application.
//--
package sample;

// Imports
import java.math.BigDecimal;
import java.io.IOException;
import com.bea.sna.jcrmgw.snaException;

// Local imports
import sample.EmployeeRecord;
import sample.EmployeeRecord.EmpRecord1V;
import sample.SampleClientBean;

//**

Extends the SampleClientBean EJB class, adding additional business logic.
*/
public class clusterSampleClientBean
extends SampleClientBean

{
// Public functions

* Read an employee record.
*/
public EmployeeRecord readEmployee(EmployeeRecord commarea)

throws IOException, snaException
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 5-3

5 Using JAM in a Clustered Environment
{
EmployeeRecord erec = (EmployeeRecord) commarea;
try {
// Make the remote call.

erec = super.readEmployee(commarea);
// Log the results

printEmployee("readEmployee : ", erec);
} catch (Exception e) {

log("Read Exception " + e.toString() + " for "
+ erec.getEmpRecord().getEmpName().getEmpNameLast());

throw new IOException();
}
// Return the Employee Record
return erec;

}
/**

* Create a new employee record.
*/
public EmployeeRecord newEmployee(EmployeeRecord commarea)

throws IOException, snaException
{

EmployeeRecord erec = (EmployeeRecord) commarea;
try {
// Make the remote call.

erec = super.newEmployee(commarea);
// Log the results

printEmployee("newEmployee : ", erec);
} catch (Exception e) {

log("Create Exception " + e.toString() + " for "
+ erec.getEmpRecord().getEmpName().getEmpNameLast());

throw new IOException();
}
// Return the Employee Record
return erec;

}
// Private Functions
/**

* Print the Employee Record
*/
private void printEmployee(String title, EmployeeRecord emp)
{

EmpRecord1V empinfo = emp.getEmpRecord();
log(title +

empinfo.getEmpName().getEmpNameFirst() + " " +
empinfo.getEmpName().getEmpNameMi() + " " +
empinfo.getEmpName().getEmpNameLast() + ", " +
empinfo.getEmpAddr().getEmpAddrStreet() + ", " +
empinfo.getEmpAddr().getEmpAddrSt() + " " +
5-4 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Running the Sample
empinfo.getEmpAddr().getEmpAddrZip());
}
private void log(String s) {

System.out.println(s);
}

}

3. Change the ejb-jar.xml file to use the extension classes. Change the
<ejb-class> to reference clusterSampleClientBean as illustrated in the
following example.

<enterprise-beans>

<session>

<ejb-name>SampleClient</ejb-name>

<home>sample.SampleClientHome</home>

<remote>sample.SampleClient</remote>

<ejb-class>sample.clusterSampleClientBean</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

</session>

4. Deploy the sample to each of the machines in the cluster node by referencing
each of the target machines on the EJB deployment list in the WebLogic Server

config.xml as illustrated in the following example.

<Application Deployed="true" Name="SampleClient”
Path=.\config\mydomain\applications">

<EJBComponent Name="SampleClient" Targets="mach1,mach2,mach3"
URL="SampleClient.jar”"/>

</Application>

5. Perform a client request against the EJB that is deployed on the cluster. The
client will look up the home interface for the clustered EJB and get the remote
interface stub for each of the EJBs in the cluster. If you make multiple requests to
the EJB, you should see the requests being clustered based on the cluster
algorithm you selected under WebLogic Server.

In the example in Listing 5-2, the ClientTest sample is used to make the cluster
requests.
BEA WebLogic Java Adapter for Mainframe Scenarios Guide 5-5

5 Using JAM in a Clustered Environment
Listing 5-2 ClientTest Sample

java sample.ClientTest –u “t3://cluster:7001” –c 10 –i 100

The options are in this example are defined in the following way:

-u option
specifies the cluster alias and the port number the WebLogic cluster
servers are listening on

-c option
specifies 10 concurrent requests to be made, each one on its own
thread

-i option
specifies that 100 requests will be made on each of the concurrent
requests
5-6 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

Index

C
ClientTest 5-7
clustered environment 5-1
clusterSampleClientBean 5-3
COBOL copybook 4-5
CrossPlex 4-1

COBOL copybooks 4-9
header fields 4-16
script 4-3, 4-7

customer support x
customer support contact information ix

D
dispatch 3-7
documentation

conventions x
where to find it viii

doGetSetup 1-8, 4-15
doPost 2-6, 2-7
doPostFinal 1-12, 4-17
doPostSetup 1-9, 4-15

E
e-docs Web Site viii
eGen COBOL Code Generator 1-3, 2-3, 3-3
ejb-jar.xml 5-6
enhancing an existing servlet 2-1

I
IBM 3270 application

web-enabling 4-1

J
Java source code 1-5, 2-4, 3-4, 4-13
jcrmgw.cfg 1-13, 3-8, 4-18

M
mainframe

sign-on 4-8
multi-service data entry servlet 1-19

create 1-19
developing 1-1
enhancing 2-3
read 1-20
update 1-21

N
newEmployee 5-3

P
page declaration 1-4, 4-12
printing product documentation viii

R
readEmployee 5-3
BEA WebLogic Java Adapter for Mainframe Scenarios Guide I-1

record definition 4-4
related information viii

S
SampleClientBean 5-3
support

technical ix, x

T
technical support x
trader interface 3-6

U
updating an existing EJB 3-1, 3-3

W
WebLogic Server

cluster 5-1
config.xml 5-6
survey servlet 2-3, 2-5
web.xml 1-15, 2-8, 4-18

X
xplxasm 4-10
xplxc 4-10
xplxcbl 4-10
I-2 BEA WebLogic Java Adapter for Mainframe Scenarios Guide

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us
	Documentation Conventions

	1 Developing a Multi-Service Data Entry Servlet
	Action List
	Prerequisites
	Task 1: Use the eGen COBOL Code Generator to Generate an Application
	Listing 1-1 Mainframe Application COBOL Copybook emprec.cbl
	Step 1: Prepare eGen COBOL Script
	Listing 1-2 Basic eGen script

	Step 2: Add Service Entries
	Listing 1-3 Service Names Associated with Input and Output Views

	Step 3: Add Page Declaration in eGen COBOL Script
	Listing 1-4 Page Declaration Associating Display Buttons with Services

	Step 4: Add Servlet Name
	Listing 1-5 Add Servlet Name

	Step 5: Generate the Java Source Code
	Listing 1-6 Generating the Java Source Code

	Step 6: Review the Java Source Code
	Listing 1-7 Review the Java Source Code
	$grep get emp*.java empRecData.java: public BigDecimal getEmpSsn() empRecData.java: public String...

	Task 2: Create Your Custom Application from the Generated Application
	Step 1: Start with Imports
	Listing 1-8 Using Imports to Start Creating the Custom Application

	Step 2: Declare the New Custom Class
	Listing 1-9 Declaring the New Custom Class

	Step 3: Add Implementation for doGetSetup
	Listing 1-10 Add Implementation for doGetSetup
	Listing 1-11 Continue Implementation for doGetSetup
	if(erd.getEmpRecord().getEmpSsn().compareTo(BigDecimal.valueOf(0L)) == 0) erd.getEmpRecord().setE...
	Listing 1-12 Finish Implementation for doGetSetup

	Step 4: Create Implementation for doPostSetup
	Listing 1-13 Create Implementation for doPostSetup
	Listing 1-14 Continue implementation for doPostSetup
	Listing 1-15 Continue Implementation of doPostSetup
	if (erd.getEmpRecord().getEmpName().getEmpNameFirst() == null) throw new Error("First Name Is Req...
	Listing 1-16 Continue Implementation for doPostSetup

	if (erd.getEmpRecord().getEmpAddr().getEmpAddrSt() == null) throw new Error("State Abreviation Is...
	Listing 1-17 Finish Implementation for doPostSetup

	Step 5: Create Implementation for doPostFinal
	Listing 1-18 Create Implementation for doPostFinal

	Step 6: Update the jcrmgw.cfg File with Service Entries
	Listing 1-19 Update jcrmgw.cfg File

	Step 13: Create Basic Three-Part HTML Frame
	Listing 1-20 Create Basic Three-Part HTML Frame

	Step 14: Create a Series of Links to HELP Pages
	Listing 1-21 Creating a Series of HELP Page Links

	Task 3: Update the JAM Configurations and Update BEA WebLogic Server web.xml File
	Listing 1-22 Remote Service Entries for Create/Read/Update/Delete
	Listing 1-23 Update WebLogic Server web.xml File

	Task 4: Deploy Your Application
	Task 5: Use the Application
	Figure 1�1 New Data Entry Servlet Display
	Figure 1�2 Servlet with HELP Page Displayed
	Figure 1�3 New Data Entry Servlet Front End Page

	Sample COBOL Programs Invoked by the Multi-Service Data Entry Servlet
	Create
	Listing 1-24 COBOL Program for Create (DPLDEMOC)

	Read
	Listing 1-25 COBOL Program for Read (DPLDEMOR)

	Update
	Listing 1-26 COBOL Program for Update (DPLDEMOU)

	Delete
	Listing 1-27 COBOL Program for Delete (DPLDEMOD)

	2 Enhancing an Existing Servlet to Originate a Mainframe Request
	Action List
	Prerequisites
	Enhancing a Multi-Service Data Entry Servlet
	Task 1: Obtain the survey Servlet
	Task 2: Use eGen COBOL Code Generator to Generate a Base Class
	Listing 2-1 Mainframe Application COBOL Copybook survey.cbl
	Step 1: Prepare eGen Script
	Listing 2-2 Basic eGen script

	Step 2: Generate the Java Source Code
	Listing 2-3 Generating the Java Source Code

	Step 3: Review the Java Source Code
	Listing 2-4 Review the Java Source Code

	Task 3: Update the survey Servlet Using the Generated Class
	Step 1: Start with Imports
	Listing 2-5 Using Imports to Start Creating the Custom Application

	Step 2: Add New Data Members
	Listing 2-6 Adding New Data Members

	Step 3: Update doPost with Mainframe Request
	Listing 2-7 Update doPost with Mainframe Request

	Step 4: Continue Updating doPost by Extracting Form Data
	Listing 2-8 Continue Updating doPost

	Step 5: Continue Updating doPost by Calling Mainframe Service
	Listing 2-9 Continue Updating doPost
	Listing 2-10 Mainframe Exceptions

	Task 4: Update the JAM Configurations and Update WebLogic Server web.xml File
	Listing 2-11 Update the jcrmgw.cfg File with Service Name
	Listing 2-12 Update WebLogic Server web.xmlFile

	Task 5: Deploy Your Application
	Task 6: Use the Application
	Figure 2�1 Enhanced Survey Servlet Display

	Sample COBOL Program to Write to Temporary Storage Queue
	Listing 2-13 COBOL Program for DPLSURVY

	3 Updating an Existing EJB to Service a Mainframe Request
	Action List
	Prerequisites
	Update an Existing EJB to Service a Mainframe Request
	Task 1: Use eGen COBOL Code Generator to Generate a Base Class
	Listing 3-1 Mainframe Application COBOL Copybook trader.cbl
	Step 1: Prepare eGen COBOL Script
	Listing 3-2 Basic eGen COBOL script

	Step 2: Generate the Java Source Code
	Listing 3-3 Generating the Java Source Code

	Step 3: Review the Java Source Code
	Listing 3-4 Review the Java Source Code

	Task 2: Update the Trader Interface Using the Generated Class
	Step 1: Start with Import
	Listing 3-5 Using Imports to Start Updating the EJB

	Step 2: Continue with Imports
	Listing 3-6 Continuing Imports

	Step 3: Update EJB with dispatch
	Listing 3-7 Update EJB with dispatch

	Step 4: Continue Updating EJB with dispatch
	Listing 3-8 Continue Updating EJB with dispatch

	Step 5: Finish Updating EJB with dispatch
	Listing 3-9 Finish Updating EJB with dispatch

	Task 3: Update the JAM Configurations
	Listing 3-10 Update the jcrmgw.cfg File with Service Name

	Task 4: Deploy Your Application
	Task 5: Use the Application
	Listing 3-11 Inbound Mainframe Request

	Sample COBOL Program to Write to Temporary Storage Queue
	Listing 3-12 COBOL Program for DPL1CLT

	4 Web-enabling an IBM 3270 Application
	Action List
	Prerequisites
	Implementing JAM with CrossPlex
	Task 1: Create a CrossPlex Script
	Figure 4�1 Processing Flow from JAM to Mainframe Transactions
	Step 1: Prepare Record Definition for the Mainframe
	Figure 4�2 Illustration of a Record Sent to the Mainframe

	Step 2: Create a Copybook of the Record Definition Sent to the Mainframe
	Listing 4-1 INREC Example

	Step 3: Create a Record Definition and Copybook Sent From the Mainframe
	Figure 4�3 Record Definition for Data Sent From the Mainframe

	Step 4: Prepare the CrossPlex Script
	Listing 4-2 CrossPlex Script

	Step 5: Test and Debug the Script
	Handling the Mainframe Sign-on

	Task 2: Use eGen COBOL to Create a Base Application
	Table 4�1 Merge Pattern for DataView Classes
	Table 4�2 Additional Standardized Message Format Fields
	Listing 4-3 COBOL Version of Header Copybook
	Step 1: Prepare eGen COBOL Script
	Listing 4-4 Basic eGen COBOL Script

	Step 2: Add Service Entry
	Listing 4-5 Service Names Associated with Input and Output Views

	Step 3: Add Page Declarations in eGen COBOL Script
	Listing 4-6 Page Declaration Associating Display Buttons with Services

	Step 4: Add Servlet Name
	Listing 4-7 Add Servlet Name

	Step 5: Generate the Java Source Code
	Listing 4-8 Generating the Java Source Code

	Task 3: Create Your Custom Application from the Generated Application
	Step 1: Start with Imports
	Listing 4-9 Using Imports to Start Creating the Custom Application

	Step 2: Declare the New Custom Class
	Listing 4-10 Declaring the New Custom Class

	Step 3: Add Implementation for doGetSetup
	Listing 4-11 Add Implementation for doGetSetup

	Step 4: Create Implementation for doPostSetup
	Listing 4-12 Create Implementation for doPostSetup
	Table 4�3 CrossPlex Header Fields

	Step 5: Create Implementation for doPostFinal
	Listing 4-13 Create Implementation for doPostFinal

	Task 4: Update the JAM Configuration and WebLogic Server web.xml
	Listing 4-14 Remote Service Entries for Create/Read/Update/Delete
	Listing 4-15 Update WebLogic Server web.xml File

	Task 5: Deploy Your Application
	Task 6: Use the Application
	Figure 4�4 New Data Entry Servlet Display
	Figure 4�5 New Data Entry Servlet Front End Page

	5 Using JAM in a Clustered Environment
	Action List
	Prerequisites
	Preparing Your System
	1. Add the WebLogic cluster information to the WebLogic Server domain where you will run your clu...
	2. Generate the EJB Client sample by following the steps described in the BEA WebLogic Java Adapt...
	3. Add the services generated from the client sample to the JAM configuration file for each WebLo...
	4. Start the JAM gateway under each WebLogic Server. If the WebLogic Server is already started, o...

	Running the Sample
	1. Extend the base example by adding the clusterSampleClientBean to the sample container. The clu...
	2. The clusterSampleClientBean should be generated and packaged into the sample EJB.
	Listing 5-1 clusterSampleClientBean.java
	// ===
	// clusterSampleClientBean.java // Example class that extends a generated JAM client EJB applicat...
	3. Change the ejb-jar.xml file to use the extension classes. Change the <ejb-class> to reference ...
	4. Deploy the sample to each of the machines in the cluster node by referencing each of the targe...
	5. Perform a client request against the EJB that is deployed on the cluster. The client will look...
	Listing 5-2 ClientTest Sample
	-u option
	-c option
	-i option

	Index
	C
	D
	E
	I
	J
	M
	N
	P
	R
	S
	T
	U
	W
	X

