
BEA
 WebLogic® Java
Adapter for
Mainframe

Programming Guide
Release 5.0
Document Date: January 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Portal, BEA WebLogic Process Integrator, BEA WebLogic
Server and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

BEA WebLogic Java Adapter for Mainframe Programming Guide

Part Number Date Software Version

N/A January 2002 5.0

Contents

1. Introduction to Generating Applications
Understanding How WebLogic JAM Uses DataViews 1-2

Understanding How WebLogic JAM Provides Programmatic Access to Services
1-3

Application Model Overview.. 1-4

Mainframe to WebLogic Server Application Models................................ 1-5

WebLogic Server to Mainframe Application Models................................ 1-5

Roadmap for WebLogic JAM Programming .. 1-5

2. Generating a Java Application with the eGen Application
Generator

Understanding eGen .. 2-1

Working With COBOL Copybooks .. 2-4

Obtaining a COBOL Copybook... 2-4

Creating a New COBOL Copybook ... 2-4

Using an Existing COBOL Copybook.. 2-5

Limitations of the eGen Utility .. 2-6

Writing an eGen Script.. 2-6

Writing the DataView Section of an eGen Script 2-7

Processing eGen Scripts with the eGen Utility ... 2-8

Creating an Environment for Generating and Compiling the Java Code... 2-9

Generating the Java DataView Code ... 2-9

Special Considerations for Compiling the Java Code.............................. 2-12

3. Basic Programming Techniques
Choosing an eGen Java Application Model .. 3-1

Generating the Java Application Code... 3-2
BEA WebLogic Java Adapter for Mainframe Programming Guide iii

General Form of an eGen Script.. 3-3

Writing the Application Section of an eGen Script.................................... 3-3

List of Services.. 3-3

List of Application Components ... 3-5

Mainframe to WebLogic Server Application Models 3-7

Generating a Server Enterprise Java Bean-Based Application 3-7

Components of an eGen Server EJB Script .. 3-7

Generated Files.. 3-10

Customizing a Server Enterprise Java Bean-Based Application 3-13

Compiling and Deploying ... 3-15

WebLogic Server to Mainframe Application Models 3-15

Generating a Stand-Alone Client Application.. 3-16

Components of an eGen Stand-Alone Application Script 3-16

Generated Files.. 3-17

Customizing a Stand-Alone Java Application 3-18

Generating a Client Enterprise Java Bean-Based Application 3-21

Components of an eGen Client EJB Script 3-21

Generated Files.. 3-23

Customizing an Enterprise Java Bean-Based Application................ 3-26

Compiling and Deploying ... 3-29

Generating a Servlet Application ... 3-29

Components of an eGen HTML Page Definition.............................. 3-30

Components of an eGen Servlet Definition 3-32

Generated Files.. 3-33

Customizing a Servlet WebLogic JAM Application......................... 3-33

Supplying Security Credentials .. 3-34

Security Levels.. 3-34

Supplying Security Credentials in a WebLogic JAM Client Program.....
3-35

WebLogic JAM to JMS... 3-36

4. Deploying Applications
Deploying a WebLogic JAM eGen EJB.. 4-1

Renaming Deployment Descriptors ... 4-2

Adding Business Logic to a Generated EJB... 4-3
iv BEA WebLogic Java Adapter for Mainframe Programming Guide

Merging Multiple Deployment Descriptors ... 4-4

Sample EJB Deployment ... 4-4

Deploying a WebLogic JAM eGen Servlet (Quick-Start Deployment)............ 4-7

5. Understanding Programming Flows
Distributed Program Link Programming Flows .. 5-1

Java Client Request/Response to CICS DPL ... 5-2

CICS Request/Response DPL to WebLogic Server EJB 5-3

CICS DPL Asynchronous No Reply to WebLogic Server Application..... 5-5

Transactional Java Client Request/Response to CICS DPL 5-7

Transactional CICS Request/Response DPL to WebLogic Server EJB .. 5-10

IMS Implicit APPC Programming Flows.. 5-12

Java Client Request/Response to IMS Transaction Program................... 5-12

IMS Asynchronous No Reply Transaction Program to Java Server 5-15

Transactional Java Client Request/Response to IMS Transaction Program
5-17

Common Programming Interface for Communications Programming Flows 5-20

Java Client Request/Response to Host CPI-C.. 5-20

Host CPI-C Request/Response to WebLogic Server EJB........................ 5-22

Host CPI-C Asynchronous No Reply to Java Server 5-24

Transactional Java Client Request/Response to Host CPI-C 5-26

Transactional Host CPI-C Request/Response to WebLogic Server EJB. 5-29

6. Performing Your Own Data Translation
Why Perform Your Own Data Translation?.. 6-1

Using EgenClient Directly .. 6-2

How EgenClient Locates a WebLogic JAM Gateway............................... 6-3

Using EgenClient to Make a Mainframe Request...................................... 6-4

Translating Buffers from Java to Mainframe Representation 6-5

MainframeWriter Public Interface ... 6-5

Using MainframeWriter to Create Data Buffers 6-10

Translating Buffers from Mainframe Format to Java...................................... 6-12

MainframeReader Public Interface .. 6-12

Using MainframeReader to Translate Data Buffers................................. 6-15
BEA WebLogic Java Adapter for Mainframe Programming Guide v

7. Diagnostics
Gateway Statistics.. 7-1

Gateway Tracing.. 7-2

Low-Level Client Diagnostics... 7-4

Client Loopback ... 7-5

Client Stub Operation ... 7-6

CRM Tracing... 7-6

Viewing Trace Output .. 7-7

APPC API Tracing .. 7-8

Viewing APPC Trace Output ... 7-9

A. DataView Programming Reference
Field Name Mapping Rules .. A-2

Field Type Mappings.. A-2

Group Field Accessors.. A-4

Elementary Field Accessors ... A-4

Array Field Accessors .. A-5

Fields with REDEFINES Clauses .. A-6

COBOL Data Types ... A-6

Other Access Methods for Generated DataView Classes................................. A-9

Mainframe Access to DataView Classes... A-9

XML Access to DataView Classes.. A-11

Hashtable Access to DataView Classes .. A-13

Code for Unloading and Loading Hashtables A-14

Rules for Unloading and Loading Hashtables.................................. A-14

Name Translator Interface Facility .. A-15

Known Limitations of WebLogic JAM working with COBOL Copybooks.. A-16

B. eGen Application Generator Reference
Synopsis.. B-1

Script Syntax Reserved Words ... B-2

General Rules ... B-3

Grammar ... B-3

Results of Running the eGen Application Generator B-6
vi BEA WebLogic Java Adapter for Mainframe Programming Guide

C. Understanding How WebLogic JAM Uses XML
What is XML? ...C-1

Document Type Definition...C-2

XML Schema ...C-3

How WebLogic JAM Uses XML..C-3

Index
BEA WebLogic Java Adapter for Mainframe Programming Guide vii

viii BEA WebLogic Java Adapter for Mainframe Programming Guide

CHAPTER
1 Introduction to
Generating
Applications

Integrating applications that run on the mainframe with applications that run within
BEA WebLogic Server requires solving three significant problems:

n Connectivity -- How can applications invoke each other when they are running
on different hosts? WebLogic JAM provides software components that establish
connections between your WebLogic and mainframe environments. These
components are described in detail in the BEA WebLogic Java Adapter for
Mainframe Configuration and Administration Guide.

n Data Transformation -- Java applications running in WebLogic Server use Java
numeric representation and character encoding schemes. Applications running in
the mainframe environment use different numeric and character encoding
schemes. In order for applications running in these disparate environments to
communicate, the data that is communicated must be transformed between these
different representations.

n Programmatic Access -- Java applications running in WebLogic Server require
an Application Programming Interface (API) to access applications running in
the mainframe environment. There also must be an API that allows Java
applications to be accessed on behalf of mainframe applications.

WebLogic JAM provides Java classes that transform data to and from the native binary
data types of the mainframe. WebLogic JAM provides a software development tool
that allows you to generate Java applications. These generated Java applications
include data translation code (DataViews) that translates data between Java and
BEA WebLogic Java Adapter for Mainframe Programming Guide 1-1

1 Introduction to Generating Applications
mainframe data formats. These generated Java applications also contain the methods
needed to invoke mainframe applications, or to be invoked by mainframe applications,
in conjunction with WebLogic JAM.

This section discusses the following topics:

n Understanding How WebLogic JAM Uses DataViews

n Understanding How WebLogic JAM Provides Programmatic Access to Services

n Application Model Overview

n Roadmap for WebLogic JAM Programming

Understanding How WebLogic JAM Uses
DataViews

In order to request services from the mainframe, WebLogic JAM must know the data
formats required by these services. These data formats are usually available as COBOL
copybooks.

Mainframe data records are represented in WebLogic JAM by Java DataViews. These
DataViews are generated by the eGen Application Generator (hereafter referred to as
the eGen utility) and provide all of the data translation necessary to communicate with
mainframe applications. The eGen utility parses a COBOL copybook and generates
Java DataView code that captures the data record described in the copybook. (For
more information on the eGen utility, see Understanding eGen.)

Figure 1-1 illustrates how WebLogic JAM uses DataViews. This illustration shows the
COBOL copybook on the mainframe side, which contains the data formats for the
mainframe services. When a request is made for a Java service, the data is passed
through the communications components, which are described in more detail in the
BEA WebLogic Java Adapter for Mainframe Introduction. As part of this process, the
WebLogic JAM Gateway initializes a DataView, performing the proper translation of
the data. The data is utilized by the Java applications in the form of the DataView.

When the response is sent back, the WebLogic JAM Gateway translates the data back
into the copybook format and sends it back to the mainframe.
1-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

Understanding How WebLogic JAM Provides Programmatic Access to Services
Figure 1-1 How WebLogic JAM Uses DataViews

Understanding How WebLogic JAM Provides
Programmatic Access to Services

Using WebLogic JAM, BEA WebLogic Server applications can make requests for
mainframe services and receive responses to those requests. Applications in which
these types of requests are made are referred to as WebLogic Server to Mainframe
BEA WebLogic Java Adapter for Mainframe Programming Guide 1-3

1 Introduction to Generating Applications
Applications. Also, mainframe applications can make requests from Java applications
(EJBs) running in WebLogic Server and receive responses to those requests.
Applications in which these types of requests are made are referred to as Mainframe to
WebLogic Server Applications.

WebLogic JAM provides an API that allows Java applications running under
WebLogic Server to invoke services running on the mainframe. All such requests for
mainframe services are made by calling the callService() method of the
EgenClient class. The Java applications generated by the eGen utility contain a
method that calls the callService() method of the EgenClient class. These
generated applications can access the callService() method by either being
extensions of the EgenClient class or having an EgenClient class as a member.
Instead of using the eGen utility to generate application code, you can also write your
own applications that make requests of mainframe services by calling the
callService() method (see Performing Your Own Data Translation.)

WebLogic JAM provides an API that allows clients running on the mainframe to
invoke services provided by stateless session EJBs running under WebLogic Server
and receive responses to those requests. EJBs that can be invoked by WebLogic JAM
on behalf of mainframe clients extend the EgenServerBean class. The WebLogic
JAM Gateway calls the dispatch() method of the EgenServerBean class when a
request is made from a mainframe client. The server EJBs generated by the eGen utility
extend the EgenServerBean class. They also provide an implementation of the
dispatch() method that includes the necessary data transformation, as well as
making a call to the method that actually performs the business logic. You can write
your own EJBs to service mainframe requests by extending the EgenServerBean
class and implementing the dispatch() method.

WebLogic JAM also provides the ability for mainframe clients to queue messages on
JMS queues and topics. No coding is necessary for this; it is simply a matter of
configuration (see WebLogic JAM to JMS).

Application Model Overview

This guide provides four Java application models you can use as guides for creating
your own applications. The following sections give you a brief overview of these
models:
1-4 BEA WebLogic Java Adapter for Mainframe Programming Guide

Roadmap for WebLogic JAM Programming
n Mainframe to WebLogic Server Application Models

n WebLogic Server to Mainframe Application Models

Mainframe to WebLogic Server Application Models

In a Mainframe to WebLogic Server application, a request originates from a
mainframe and is serviced by an EJB invoked by a WebLogic JAM Gateway.

The following Mainframe to WebLogic Server application model is discussed in this
guide:

n Generating a Server Enterprise Java Bean-Based Application

WebLogic Server to Mainframe Application Models

In a WebLogic Server to Mainframe application, a request originates on a WebLogic
client or server, and is serviced by a mainframe program invoked by the WebLogic
JAM Gateway in cooperation with the CRM.

The following WebLogic Server to Mainframe application models are discussed in this
guide:

n Generating a Stand-Alone Client Application

n Generating a Client Enterprise Java Bean-Based Application

n Generating a Servlet Application

Roadmap for WebLogic JAM Programming

The steps outlined in Figure 1-2 provide you with a high-level guideline to all of the
tasks and processes that you must perform to generate applications using WebLogic
JAM. You can think of these steps as a roadmap to guide you through the process and
to point you to the resources available to help you.
BEA WebLogic Java Adapter for Mainframe Programming Guide 1-5

1 Introduction to Generating Applications
Figure 1-2 Roadmap for JAM Programming

1. Analyze the application and determine if it is Mainframe to WebLogic Server or
WebLogic Server to Mainframe. If the application is WebLogic Server to
Mainframe, decide which model you are going to use (see WebLogic Server to
Mainframe Application Models for more information).

2. Obtain or create a COBOL copybook (see Obtaining a COBOL Copybook for
more information).
1-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

Roadmap for WebLogic JAM Programming
3. Write the eGen script. The eGen script has two parts. The first part defines the
DataView. The second part defines the application code (see Writing an eGen
Script for more information).

4. Use the COBOL copybook and the eGen script as input for the eGen utility. This
produces the DataView and the application code (see Processing eGen Scripts
with the eGen Utility for more information).

5. Customize the application code. This can be done by extending the code to
perform the tasks required for your application (see Basic Programming
Techniques for more information).
BEA WebLogic Java Adapter for Mainframe Programming Guide 1-7

1 Introduction to Generating Applications
1-8 BEA WebLogic Java Adapter for Mainframe Programming Guide

CHAPTER
2 Generating a Java
Application with the
eGen Application
Generator

This section discusses the following topics:

n Understanding eGen

n Working With COBOL Copybooks

n Processing eGen Scripts with the eGen Utility

Understanding eGen

The eGen Application Generator, also known as the eGen utility, is installed with
WebLogic JAM. It generates Java applications from a COBOL copybook and a
user-defined script file.
BEA WebLogic Java Adapter for Mainframe Programming Guide 2-1

2 Generating a Java Application with the eGen Application Generator
The eGen utility generates a Java application by processing a script you create, called
an eGen script. A Java DataView is defined by the first section of the script. This
DataView is used by the application code to provide data access and conversions, as
well as to perform other miscellaneous functions. The actual application code is
defined by the second section of the script.

Figure 2-1 illustrates how the eGen utility works. This illustration shows the eGen
script and COBOL copybook file being used as input to the eGen utility, and the output
that is generated is the DataView and the Java application. The generated Java
application may be used in a variety of ways. In some cases, it may be used as is.
However, in most cases, you will need to extend the generated application in some
way, or it may become a member of the actual user-defined application.
2-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

Understanding eGen
Figure 2-1 Understanding the eGen utility
BEA WebLogic Java Adapter for Mainframe Programming Guide 2-3

2 Generating a Java Application with the eGen Application Generator
Working With COBOL Copybooks

A COBOL CICS or IMS mainframe application typically uses a copybook source file
to define its data layout. This file is specified in a COPY directive within the LINKAGE
SECTION of the source program for a CICS application, or in the WORKING-STORAGE
SECTION of an IMS program. If the CICS or IMS application does not use a copybook
file, you will have to create one from the data definition contained in the program
source.

Each copybook’s contents are parsed by the eGen utility, producing DataView
sub-classes that provide facilities to:

n Convert COBOL data types to and from Java data types. This includes
conversions for mainframe data formats and code pages.

n Convert COBOL data structures to and from Java data structures.

n Convert the provided data structures into other arbitrary formats.

Obtaining a COBOL Copybook

The eGen utility must have a COBOL Copybook to use as input. There are two
methods you can use to obtain this Copybook:

n Creating a New COBOL Copybook

n Using an Existing COBOL Copybook

Creating a New COBOL Copybook

If you are producing a new application on the mainframe or modifying one, then one
or more new copybooks may be required. You should keep in mind the COBOL
features and data types supported by WebLogic JAM as you create these copybooks
(see eGen Application Generator Reference for more information).
2-4 BEA WebLogic Java Adapter for Mainframe Programming Guide

Working With COBOL Copybooks
Using an Existing COBOL Copybook

When a mainframe application has an existing DPL or APPC interface, the data for that
interface is usually described in a COBOL copybook. Before using an existing
COBOL Copybook, verify that the interface does not use any COBOL features or data
types that WebLogic JAM does not support (see Limitations of the eGen Utility).

An example COBOL copybook source file is shown in Listing 2-1.

Listing 2-1 Sample emprec.cpy COBOL Copybook
BEA WebLogic Java Adapter for Mainframe Programming Guide 2-5

2 Generating a Java Application with the eGen Application Generator
Limitations of the eGen Utility

The eGen utility is able to translate most COBOL copybook data types and data
clauses into their Java equivalents; however, it is unable to translate some obsolete
constructs and floating point data types. For information on COBOL data types that
can be translated by the eGen utility, see DataView Programming Reference. If the
eGen utility is unable to fully support constructs or data types, it:

n Treats them as alphanumeric data types (if reasonable)

n Ignores them (if their support is unimportant to WebLogic JAM’s operation)

n Reports them as errors

If the eGen utility reports constructs or data types as errors, you must modify them, so
they can be translated.

Writing an eGen Script

After you have obtained a COBOL Copybook for the mainframe applications, you are
ready to write an eGen script. This eGen script and the COBOL copybook that
describes your data structure will be processed by the eGen utility to generate a
DataView and application code which will serve as the basis for your custom Java
application.

An eGen script has two sections. These are:

n DataView. The DataView section of the script generates Java DataView code
from a COBOL copybook. The class file compiled from the generated code
extends the Java DataView class. Generating DataViews is discussed in detail in
the remainder of this section.

Note: If the purpose of your eGen script is to generate a DataView for use with
the WebLogic JAM to JMS EJB, or to launch a WebLogic Integration
event, you only need to create the DataView section of the script.

n Java application. The Java application section of the script generates the Java
application code. This is discussed in detail in Basic Programming Techniques.
2-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

Writing an eGen Script
Writing the DataView Section of an eGen Script

The eGen utility parses a COBOL copybook and generates Java DataView code that
encapsulates the data record declared in the copybook. It does this by parsing an eGen
script file containing a DataView definition similar to the example shown in
Listing 2-2 (keywords are in bold). The section containing the DataView definition is
the first section of the eGen script. Application code is generated by the second section.

Listing 2-2 Sample DataView Section of an eGen script

generate view examples.CICS.outbound.gateway.EmployeeRecord from
emprec.cpy

Analyzing the parts of this line of code, we see that generate view tells the eGen utility
to generate a Java DataView code file.
examples.CICS.outbound.gateway.EmployeeRecord tells the eGen utility to call
the DataView file EmployeeRecord.java. The package is called
examples.CICS.outbound.gateway. The EmployeeRecord class defined in
EmployeeRecord.java is a subclass of the DataView class. The phrase from
emprec.cpy tells the eGen utility to form the EmployeeRecord DataView file from
the COBOL copybook emprec.cpy.

Additional generate view statements may be added to an eGen script in order to
produce all the DataViews required by your application. Also, additional options may
be specified in the eGen script to change details of the DataView generation. For
example, the following script will generate a DataView class that uses codepage cp500
for conversions to and from mainframe format. If the codepage clause is not specified,
the default codepage of cp037 is used.

Listing 2-3 Sample DataView Section with Codepage Specified

generate view examples.CICS.outbound.gateway.EmployeeRecord from
emprec.cpy codepage cp500
BEA WebLogic Java Adapter for Mainframe Programming Guide 2-7

2 Generating a Java Application with the eGen Application Generator
The following script will generate additional output intended to support use of the
DataView class with XML data:

Listing 2-4 Sample DataView Section Supporting XML

generate view sample.EmployeeRecord from emprec.cpy support xml

Additional files generated for XML support are listed in Table 2-1.

Table 2-1 Additional Files for DataView XML Support.

Processing eGen Scripts with the eGen
Utility

After you have written your eGen script, you must process it to generate the DataView
and application code. This Java code must then be compiled and deployed. The same
eGen script usually contains both the definitions of the DataView and application code,
and both are produced with a single processing of the script. However, in this
Programming Guide, the script is explained in two steps, so the actual code generated
can be analyzed in greater detail.

File Name File Purpose

classname.dtd XML DTD for XML messages accepted and produced by this
DataView.

classname.xsd XML schema for XML messages accepted and produced by this
DataView.
2-8 BEA WebLogic Java Adapter for Mainframe Programming Guide

Processing eGen Scripts with the eGen Utility
Creating an Environment for Generating and Compiling
the Java Code

When you process the eGen scripts and compile the generated Java code, you must
have access to the Java classes and applications used in the code generation and
compilation processes. Adding the correct elements to your CLASSPATH and PATH
environment variables provides this access.

For the eGen utility:

n Add <JAM_INSTALL_DIR>\lib\jam.jar to your CLASSPATH.

n Add <JAM_INSTALL_DIR>\bin to your PATH.

For compilation:

n Add <JAM_INSTALL_DIR>\lib\jam.jar to your CLASSPATH.

n Add <WLS_HOME>\lib\weblogic.jar to your CLASSPATH.

n Add the path of your DataView class files to your CLASSPATH . You will need
access to these classes when you compile your Java application code.

Notes: UNIX users must use “/” instead of “\” when adding directory paths as
specified above.

Running config\verify\setVerifyEnv.cmd (on Windows systems) or
config/verify/setVerifyEnv.sh (on UNIX systems) will perform the
above actions necessary for the eGen utility.

Generating the Java DataView Code

For the eGen script named emprec.egen shown in Listing 2-2, the following shell
command parses the copybook file named emprec.cpy (see Listing 2-1) and
generates the EmployeeRecord.java source file in the current directory:
BEA WebLogic Java Adapter for Mainframe Programming Guide 2-9

2 Generating a Java Application with the eGen Application Generator
Listing 2-5 Sample Copybook Parse Command

egencobol emprec.egen

If no error or warning messages are issued, the copybook is compatible with WebLogic
JAM and the source files are created. Note that no application source files are
generated by processing the emprec.egen script. This is because there are no
application generating commands in this script.

Note: Refer to eGen Application Generator Reference for suggestions on resolving
any problems encountered.

The following example illustrates the resulting generated Java source file,
EmployeeRecord.java with some comments and implementation details removed
for clarity.
2-10 BEA WebLogic Java Adapter for Mainframe Programming Guide

Processing eGen Scripts with the eGen Utility
Listing 2-6 Generated EmployeeRecord.java Source File
BEA WebLogic Java Adapter for Mainframe Programming Guide 2-11

2 Generating a Java Application with the eGen Application Generator
Special Considerations for Compiling the Java Code

You must compile the Java code generated by the eGen utility. However, there are
some special circumstances to consider. Because the application code is dependent on
the DataView code, you must compile the DataView code and make sure that the
resulting DataView class files are in your environment’s CLASSPATH before compiling
your application code. You must make sure that all of the DataView class files can be
referenced by the application code compilation.

For example, the compilation of EmployeeRecord.java results in four class files:

n EmployeeRecord.class

n EmployeeRecord$EmpRecord1V.class

n EmployeeRecord$EmpRecord1V$EmpName3V.class

n EmployeeRecord$EmpRecord1V$EmpAddr7V.class

All of these class files are used when compiling your application code.
2-12 BEA WebLogic Java Adapter for Mainframe Programming Guide

CHAPTER
3 Basic Programming
Techniques

This section discusses the following topics:

n Choosing an eGen Java Application Model

n General Form of an eGen Script

n Mainframe to WebLogic Server Application Models

n WebLogic Server to Mainframe Application Models

n WebLogic JAM to JMS

Choosing an eGen Java Application Model

There are four different types or models of Java applications that can be generated by
the eGen utility. These models, which can be classified as either Mainframe to
WebLogic Server or WebLogic Server to Mainframe, are described below.

Mainframe to WebLogic Server (request originates on the mainframe and is serviced
by WebLogic):

n Server EJB. The server EJB is a Stateless Session EJB that provides a service to
the mainframe.
BEA WebLogic Java Adapter for Mainframe Programming Guide 3-1

3 Basic Programming Techniques
WebLogic Server to Mainframe (request originates on the WebLogic client or server
and is serviced by the mainframe):

n Client Class. The client class is a stand-alone Java class that invokes mainframe
services. This class may be built into your own EJB or utilized in some other
way within your code.

n Client EJB. The client EJB is a Stateless Session EJB that invokes mainframe
services. It may be called by a servlet or other client programs. This is the
normal model for building a production application with access to mainframe
services. A servlet that invokes the EJB’s methods may be added for testing or
demonstration purposes.

n Servlet Only. The servlet-only application is a servlet that presents a simple form
and invokes mainframe services directly. This is the simplest model, but it may
not be suitable for production applications.

Choose one of these four model types to use as the basis for your Java application.
Once you have chosen a model type, refer to the section from the following list for
instructions on writing the script and implementing the model you have chosen:

n Generating a Server Enterprise Java Bean-Based Application

n Generating a Stand-Alone Client Application

n Generating a Client Enterprise Java Bean-Based Application

n Generating a Servlet Application

For all of the applications you generate, you must provide a script file containing
definitions for the application, including the COBOL copybook file name and the
DataView class names.

Generating the Java Application Code

The Java application code can be generated at the same time that you generate the Java
DataView code. To generate Java application code, the eGen script that you process
must contain instructions for generating the Java application along with the
instructions for generating the DataView code.
3-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

General Form of an eGen Script
Referring to the sample files in samples\verify\gateway\outbound, the following
command generates Chardata.java and BaseClient.java. The DataView file is
Chardata.java, and the application file is BaseClient.java.

> egencobol baseClient.egen

General Form of an eGen Script

As previously stated, most eGen scripts consist of two major sections:

n The DataView section described in Writing an eGen Script.

n The Application section, which defines the Java application code that the eGen
utility is to generate (described in Writing the Application Section of an eGen
Script).

Writing the Application Section of an eGen Script

The application section of an eGen script contains the information about the Java class
files that the eGen utility is to generate for a particular application. The application
section is divided into two distinct subsections, which are actually lists. The two lists
are:

n List of Services -- Describes the remote services that are configured for JAM
and are called by the classes that the eGen script defines. This list is not present
in the script if the classes to be generated by the eGen utility are all server EJB’s.

n List of Application Components -- Components for which the eGen utility is to
generate the class files. This list contains one or more definitions of stand alone
clients, client EJB’s, servlets, or server EJB’s.

List of Services

Scripts that are used to define the application components that the eGen utility is to
generate usually contain a list of one or more service definitions. If the application
components are all server or Mainframe to WebLogic Server EJB’s, this list of services
BEA WebLogic Java Adapter for Mainframe Programming Guide 3-3

3 Basic Programming Techniques
is not present. This is because this list of service definitions describes remote services
configured in JAM; server EJB’s do not call remote services since the requests are
flowing outward from the mainframe.

The general form of a service definition is as follows (keywords are in bold):

service servicename accepts inputViewname returns outputViewname

Table 3-1 describes the service definition parameters.

Table 3-1 Service Definition Parameters

Note: The inputViewname and outputViewname do not have to be the same;
however, due to the way many applications are written, they often are the
same.

Following is an example of a service definition:

service TOUPPER accepts Chardata returns Chardata

In this example, the service TOUPPER is a configured remote service. As far as the Java
application making the request for a mainframe service through WebLogic JAM is
concerned, this service accepts as input a Chardata DataView. The actual mainframe
server application accepts as input the COBOL copybook which corresponds to a
Chardata DataView. As far as the Java application is concerned, the output or
response from the mainframe service is a Chardata DataView.

Parameter Definition

servicename Must match the name of a remote service that is defined
in the WebLogic JAM configuration (see the BEA WebLogic
Java Adapter for Mainframe Configuration and Administration
Guide).

inputViewname The name of a DataView that will be the input or request data for
the service.

outputViewname The name of the DataView that is the output or response from
the service.
3-4 BEA WebLogic Java Adapter for Mainframe Programming Guide

General Form of an eGen Script
List of Application Components

In order for the eGen utility to generate code for Java applications, the eGen script
must contain a list of one or more definitions of the application components that are to
be generated. This list of definitions of application components can contain definitions
of stand-alone clients, client or server EJB’s, and servlets. This list of definitions also
contains the definition of any HTML pages that are used by servlets defined in the list.

Note: The definition of an HTML page appearing in this list by itself will not cause
any code to be generated.

The general form of an application component definition is as follows:

model identifier [model-dependent-parameters]
{ details }

Table 3-2 describes the application component definition parameters.

Table 3-2 Application Component Definition Parameters

Parameter Definition

model Indicates to the eGen utility the type of application component
that is to be generated. The possible values of this identifier are:

n client class

n client ejb

n server ejb

n servlet

n page

identifier This is generally the class name (or class name stem for EJB’s)
for the application component that is to be generated. The
identifier includes the package name. For an HTML page, the
identifier is the page name.
BEA WebLogic Java Adapter for Mainframe Programming Guide 3-5

3 Basic Programming Techniques
Following is an example of an application component definition:

client ejb sample.SampleClient my.sampleBean
 {
 method newEmployee
 is service sampleCreate
 }

The example states the following:

n This is the definition for a client or EJB.

n The classname for this EJB is SampleClient. That is, the eGen utility will
generate files named SampleClient.java, SampleClientBean.java, and
SampleClientHome.java.

n The package name is sample.

n The home interface identifier for this bean is my.sampleBean.

n The bean will have a method called newEmployee that calls the sampleCreate
service. The sampleCreate service is defined elsewhere in the file.

model-dependent-
parameters

These further describe the application component to the
eGen utility and can vary a great deal depending on the
model. For a stand-alone client, there would be no
model-dependent-parameters given. For an EJB
(client or server), the home interface identifier for the
bean must be given. For a servlet, the initial HTML page
that is to be displayed is given. For an HTML page, the
title of the page is given.

details These give details about the code for the application component.
For a stand-alone client, as well as an EJB, these details would
include the definitions of class methods that will call services
defined in the script. For a servlet, there usually will not be any
details given. For an HTML page, these details include the
DataView that is to be displayed and any buttons that will be
displayed on the page.

Parameter Definition
3-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

Mainframe to WebLogic Server Application Models
Specific details about the application component definitions for each application
model, as well as the files that the eGen utility generates for each model, are discussed
in the following sections.

Mainframe to WebLogic Server Application
Models

In a Mainframe to WebLogic Server application, a request originates on a mainframe
and is serviced by an EJB invoked by a WebLogic JAM Gateway.

Generating a Server Enterprise Java Bean-Based
Application

This type of application produces Java classes that comprise an EJB application acting
as a remote server from the viewpoint of the mainframe. The classes process service
requests originating from the mainframe (remote) system and transfer data records to
and from the mainframe. From the viewpoint of the Java classes, they receive EJB
method requests. From the viewpoint of the mainframe application, it invokes remote
CICS or IMS programs.

Components of an eGen Server EJB Script

The general form of a definition of a server (Mainframe to WebLogic Server) EJB that
appears in an eGen script is as follows (keywords are in bold):

server ejb classname ejbregistration transaction
 transaction-attribute
{servermethod}

Table 3-3 describes the server EJB definition keywords and parameters.
BEA WebLogic Java Adapter for Mainframe Programming Guide 3-7

3 Basic Programming Techniques
Table 3-3 Service EJB Definition Keywords and Parameters

Keyword/Parameter Definition

server ejb Indicates to the eGen utility the type of application component
that is to be generated.

classname Indicates the class name stem for the EJB. For example, if
the classname is SampleServer, then the following
files are generated by the eGen utility:

n SampleServer.java

n SampleServerBean.java

n SampleServerHome.java

Note: The package name should be included in the
classname.

ejbregistration The name that will be used to register the home interface
for the EJB.

transaction
transaction-
 attribute

This keyword and parameter are optional. They are used to
manage the level of transaction demarcation. The possible
values of the transaction-attribute are:

n NotSupported

n Required

n Supports

n RequiresNew

n Mandatory

n Never

Note: If the transaction keyword is not present in the
definition, the default value of the
transaction-attribute is Supports. For a
detailed explanation of how the WebLogic Server EJB
container responds to the transaction-attribute
setting, see the section on Transaction Attributes in the
EJB 2.0 Specification.
3-8 BEA WebLogic Java Adapter for Mainframe Programming Guide

Mainframe to WebLogic Server Application Models
Table 3-4 Parameters for the servermethod

Following is an example of a server (Mainframe to WebLogic Server) EJB definition
that appears in an eGen script:

server ejb sample.SampleServer my.sampleServer
{

method newEmployee (EmployeeRecord)
returns EmployeeRecord

}

The example states the following:

n This is the definition for a server EJB class. The generated EJB class files are
defined in the Generated Files section that follows.

n The my.sampleServer is the home interface identifier for this bean in the
WebLogic deployment description.

n The transaction keyword is not present in this example, so it defaults to
Supports.

servermethod Method that appears in the EJB implementation (must be in
braces). The general form of a servermethod definition is as
follows (keywords are in bold):

method methodname (inputDataView) returns
outputDataView

Table 3-4 describes the parameters of a servermethod
definition.

Parameter Definition

methodname The name of the method.

inputDataView The name of the DataView that is the type of the input parameter
for the method (must be in parenthesis).

outputDataView The name of the DataView that is the type returned from the
method.

Keyword/Parameter Definition
BEA WebLogic Java Adapter for Mainframe Programming Guide 3-9

3 Basic Programming Techniques
n The server class method newEmployee takes its input from the DataView
EmployeeRecord and writes its output to an EmployeeRecord output
DataView.

Generated Files

Table 3-5 lists the files generated from the example server (Mainframe to WebLogic
Server) EJB described in Components of an eGen Server EJB Script. These files are
described in the sections following the table.

SampleServer.java Source File

Listing 3-1 shows the partial contents of the generated remote interface
SampleServer.java source file.

Table 3-5 Sample Script Generated Files

File Content

SampleServer.java Source for the EJB remote interface.

SampleServerBean.java Source for the EJB implementation.

SampleServerHome.java Source for the EJB home interface.

SampleServer-jar.xml Deployment descriptor.

wl-SampleServer-jar.xml WebLogic deployment information.
3-10 BEA WebLogic Java Adapter for Mainframe Programming Guide

Mainframe to WebLogic Server Application Models
Listing 3-1 Sample SampleServer.java Contents

SampleServerBean.java Source File

Listing 3-2 shows the partial contents of the generated EJB implementation
SampleServerBean.java source file.
BEA WebLogic Java Adapter for Mainframe Programming Guide 3-11

3 Basic Programming Techniques
Listing 3-2 Sample SampleServerBean.java Contents

SampleServerHome.java Source File

The eGen utility generates a standard home interface class for the server EJB.

SampleServer-jar.xml Source File

The following line from the deployment descriptor file results from the transaction
attribute in the definition in the eGen script.

 <trans-attribute>Supports</trans-attribute>
3-12 BEA WebLogic Java Adapter for Mainframe Programming Guide

Mainframe to WebLogic Server Application Models
As described in Components of an eGen Server EJB Script, this element indicates the
level of transaction demarcation. If the transaction-attribute is not present in the
definition, the default value is Supports. So, in this example, the transaction attribute
was not listed in the script definition.

wl-SampleServer-jar.xml Source File

The following line from the WebLogic deployment information file results from the
home interface name in the eGen script.

 <jndi-name>my.sampleServer</jndi-name>

As described in Components of an eGen Server EJB Script, my.sampleServer is the
home interface identifier for this bean in the WebLogic deployment description.

Customizing a Server Enterprise Java Bean-Based Application

The generated server enterprise Java bean-based applications are only intended for
customizing, since they perform no real work without customization. This section
describes the way generated server EJB code can be customized.

The following figure illustrates the relationships and inheritance hierarchy between the
WebLogic JAM classes comprising the application.
BEA WebLogic Java Adapter for Mainframe Programming Guide 3-13

3 Basic Programming Techniques
Figure 3-1 The WebLogic JAM Server EJB Class Hierarchy

The generated Java code for a server EJB application is a class that inherits the class
EgenServerBean. The EgenServerBean class is provided in the WebLogic JAM
distribution jar file. This base class provides the basic framework for an EJB. It
provides the required methods for a Stateless Session EJB.

The following listing shows an example ExtSampleServerBean class that extends
the generated SampleServerBean class, providing an implementation of the
newEmployee() method. The example method prints a message indicating that a
newEmployee request has been received.
3-14 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models
Listing 3-3 Sample ExtSampleServerBean.java Contents

package sample;

public class ExtSampleServerBean extends SampleServerBean
{

public EmployeeRecord newEmployee (EmployeeRecord in)
{
 System.out.println(“New Employee: “ +

+in.getEmpRecord().getEmpName().getEmpNameFirst()
+ “ “
+ in.getEmpRecord().getEmpname().getEmpNameLast());

 return in;
}

}

Once it has been written, the ExtSampleServerBean class and the other EJB Java
source files must be compiled and deployed in the same manner as other EJBs. Before
deploying, the deployment descriptor must be modified; the ejb-class must be set to
the name of your extended EJB implementation class (see Deploying a WebLogic
JAM eGen EJB).

Compiling and Deploying

Refer to the WebLogic Server documentation for more information. The sample file
provided with WebLogic Server contains a build script for reference.

WebLogic Server to Mainframe Application
Models

In a WebLogic Server to Mainframe application, a request originates on a WebLogic
client or server, and is serviced by a mainframe program invoked by the WebLogic
JAM Gateway in cooperation with the CRM.
BEA WebLogic Java Adapter for Mainframe Programming Guide 3-15

3 Basic Programming Techniques
Generating a Stand-Alone Client Application

This type of application produces simple Java classes that perform the appropriate
conversions of data records sent between Java and the mainframe and call mainframe
services, but without all of the EJB support methods. These classes are intended to be
lower-level components upon which more complicated applications are built.

Components of an eGen Stand-Alone Application Script

The general form of a definition of a stand-alone client class that appears in an eGen
script is as follows (keywords are in bold):

client class classname
{ clientmethods }

Table 3-6 describes the stand-alone client class definition keywords and parameters.

Table 3-6 Stand-Alone Client Class Definition Keywords and Parameters

Keyword/Parameter Definition

client class Indicates to the eGen utility the type of application component
that is to be generated.

classname Indicates the class name for the client class.

Note: The package name should be included in the
classname.

clientmethods List of methods that appear in the client class implementation
(must be in braces). These methods are wrappers for calls to
services that are defined in the services section of the eGen
script. The general form of the definition for a clientmethod
in an eGen script is as follows:

method methodname is service servicename

Table 3-7 describes the parameters of a clientmethod
definition.
3-16 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models
Table 3-7 Parameters for the clientmethod

Following is an example of a stand-alone client class definition that appears in an eGen
script:

client class sample.SampleClass
{

method newEmployee
is service sampleCreate

}

The example states the following:

n This is the definition of a simple client class.

n The package name is sample and SampleClass is the class name.

n The method newEmployee acts as a wrapper for a WebLogic JAM call to the
remote service sampleCreate.

n This service must be defined in the same eGen script as the client class.

Generated Files

The file SampleClass.java, containing the source for the sample class, is generated.

Listing 3-4 shows the partial contents of the SampleClass.java source file.

Parameter Definition

methodname The name of the method.

servicename Indicates the remote service for which this method acts as a
wrapper for a WebLogic JAM call. This service must be defined
in the same eGen script.
BEA WebLogic Java Adapter for Mainframe Programming Guide 3-17

3 Basic Programming Techniques
Listing 3-4 Sample SampleClass.java Source File

Customizing a Stand-Alone Java Application

The following figure illustrates the relationships and inheritance hierarchy between the
WebLogic JAM classes comprising the stand-alone java application.
3-18 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models
Figure 3-2 The WebLogic JAM Client Class Hierarchy

The generated Java code for a client class application is a class that inherits class
EgenClient. The EgenClient class is provided in the WebLogic JAM distribution
jam.jar file. This base class provides the basic framework for a client to the
WebLogic JAM Gateway, as well as the required methods for accessing the gateway.

Your class, which extends or uses the SampleClient class, simply overrides or calls
these methods to provide additional business logic, modifying the contents of the
DataView. Your class may also add additional methods.
BEA WebLogic Java Adapter for Mainframe Programming Guide 3-19

3 Basic Programming Techniques
The following listing shows an example ExtSampleClass class that extends the
generated SampleClient class.

Listing 3-5 Sample ExtSampleClient.java Contents

package sample;

public class ExtSampleClient extends SampleClass
{

// createEmployee
//
public EmployeeRecord newEmployee(EmployeeRecord

commarea)
throws IOException, snaException
{
 if (!isSsnValid(commarea.getEmpRecord().getEmpSsn()))
 {
 // The SSN is not valid
 throw new Error(”Invalid Social Security Number:”+

commarea.getEmpRecord().getEmpSsn());
 }
return super.newEmployee(commarea);
}
.
.
.

// Private functions

/***
* Validates an SSN field.
*/

private boolean isSsnValid(BigDecimal ssn)
{
 if (ssn.longValue() < 100000000)
 {
 // Oops, appears to be less than 9 digits.
 return false;
 }

 return (true);
}

}

3-20 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models
Once it has been written, the ExtSampleClient class and the other Java source files
must be compiled and placed in your CLASSPATH.

Instead of extending the generated client, you can also write classes that have the
generated client as a member. This is an especially useful alternative if the class you
write must extend some other class.

Generating a Client Enterprise Java Bean-Based
Application

This type of application produces Java classes that comprise an EJB application. The
class methods are invoked from requests originating from other EJB classes or other
WebLogic Server client classes and transfer data records to and from the mainframe
(remote system). From the viewpoint of the mainframe, the Java classes act as a remote
CICS or IMS client. From the viewpoint of the WebLogic Server client classes, they
act as regular EJB classes.

Components of an eGen Client EJB Script

In order to produce an EJB-based application, the script file that defines your
DataViews must be edited to describe both the mainframe services accessed and the
EJB that will access them.

The general form of a definition of a client (WebLogic Server to Mainframe) EJB that
appears in an eGen script is as follows (keywords are in bold):

client ejb classname ejbregistration transaction
 transaction-attribute
{clientmethods}

Table 3-8 describes the client EJB script keywords and parameters.

Table 3-8 Client EJB Script Keywords and Parameters

Keyword/Parameter Definition

client ejb Indicates to the eGen utility the type of application component
that is to be generated.
BEA WebLogic Java Adapter for Mainframe Programming Guide 3-21

3 Basic Programming Techniques
classname Indicates the class name stem for the EJB. For example, if the
classname is SampleClient, the following files are
generated by the eGen utility:

n SampleClient.java

n SampleClientBean.java

n SampleClientHome.java

Note: The package name should be included in the
classname.

ejbregistration The name that will be used to register the home interface for the
EJB.

transaction
transaction-
 attribute

This keyword and parameter are optional. They indicate the
level of transaction demarcation. The possible values of
transaction-attribute are:

n NotSupported

n Required

n Supports

n RequiresNew

n Mandatory

n Never

Note: If the transaction keyword is not present in the
definition, the default value of the
transaction-attribute is Supports. For a
detailed explanation of how the WebLogic Server EJB
container responds to the
transaction-attribute setting, see the section
on Transaction Attributes in the EJB 2.0 Specification.

clientmethods List of methods that appear in the EJB implementation. These
methods are wrappers for calls to remote services that are
defined in the services section of the eGen script. The
general form of a clientmethod definition is as follows
(keywords are in bold):

method methodname is service servicename

Table 3-9 describes the parameters of a client method definition.

Keyword/Parameter Definition
3-22 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models
Table 3-9 Client Method Definition Parameters

Following is an example of a client (WebLogic Server to Mainframe) EJB definition
that appears in an eGen script:

client ejb sample.SampleClient my.sampleBean
{

method newEmployee
is service sampleCreate

}

The example states the following:

n This listing defines a Java bean class named SampleClient in the package
sample with a method named newEmployee.

n The method corresponds to service name sampleCreate.

n The EJB home will be registered in Java Naming and Directory Interface (JNDI)
under the name my.sampleBean.

Generated Files

Table 3-10 lists the files generated from the client (WebLogic Server to Mainframe)
EJB described in Components of an eGen Client EJB Script. These files are described
in the sections following the table.

.

Parameter Definition

methodname The name of the method.

servicename Indicates the remote service for which this method acts as
a wrapper for a WebLogic JAM call. This service must be
defined in the same eGen script.

Table 3-10 Sample Script Generated Files

File Content

SampleClient.java Source for the EJB remote interface.

SampleClientBean.java Source for the EJB implementation.
BEA WebLogic Java Adapter for Mainframe Programming Guide 3-23

3 Basic Programming Techniques
SampleClient.java Source File

Listing 3-6 shows the partial contents of the generated remote interface
SampleClient.java source file. Following the listing are descriptions of the
elements in this file.

Listing 3-6 Sample SampleClient.java Contents

SampleClientHome.java Source for the EJB home interface.

SampleClient-jar.xml Deployment descriptor.

wl-SampleClient-jar.xml WebLogic deployment information.

Table 3-10 Sample Script Generated Files
3-24 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models
SampleClientBean.java Source File

Listing 3-7 shows the partial contents of the generated EJB implementation
SampleClientBean.java source file. Following the listing are descriptions of the
elements in this file.

Listing 3-7 Sample SampleClientBean.java Contents

SampleClientHome.java Source File

The eGen utility generates a standard home interface class for the client EJB.

SampleClient-jar.xml Source File

The following line from the deployment descriptor file results from the transaction
demarcation listed in the definition in the eGen script.

 <trans-attribute>Supports</trans-attribute>
BEA WebLogic Java Adapter for Mainframe Programming Guide 3-25

3 Basic Programming Techniques
As described in Components of an eGen Client EJB Script, this element indicates the
level of transaction demarcation. If the transaction-attribute is not present in the
definition, the default value is Supports. In this example, the
transaction-attribute was not listed in the script definition.

wl-SampleServer-jar.xml Source File

The following line from the WebLogic deployment information file results from the
Home Interface name in the eGen script.

 <jndi-name>my.sampleBean</jndi-name>

As described in Components of an eGen Client EJB Script, my.sampleBean is the
home interface identifier for this bean in the WebLogic deployment description.

Note: You can edit the deployment descriptor to change the pool size, etc.

Customizing an Enterprise Java Bean-Based Application

The generated client enterprise Java bean-based applications are generally intended for
customizing. Without customization, the only function they perform is communication
with the mainframe. This section describes the way generated client EJB code can be
customized.

The following figure illustrates the relationships and inheritance hierarchy between the
WebLogic JAM classes comprising the application.
3-26 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models
Figure 3-3 The WebLogic JAM Client EJB Class Hierarchy

The generated Java code for a client EJB application is a class that inherits class
egenClientBean. The egenClientBean class is provided in the WebLogic JAM
distribution jar file.

Listing 3-8 illustrates an example ExtSampleClientBean class that extends the
generated SampleClientBean class, adding a validation function (isSsnValid())
for the emp-ssn (m_empSsn) field of the DataView EmployeeRecord class. If the
emp-ssn field is determined to be invalid, an exception occurs. Otherwise, the original
function is called to perform the mainframe operation.
BEA WebLogic Java Adapter for Mainframe Programming Guide 3-27

3 Basic Programming Techniques
Listing 3-8 Example ExtSampleClientBean.java Class

package Sample;

// Imports

import java.math.BigDecimal;
import java.io.IOException;

import com.bea.sna.jcrmgw.snaException;

// Local imports

import sample.EmployeeRecord;
import sample.SampleClientBean;

/***
* Extends the SampleCientBean EJB class, adding additional business
logic.
*/

public class ExtSampleClientBean
extends SampleClientBean

{
//Public functions

...

/**
 * Create a new employee record.
 */

 public EmployeeRecord newEmployee (EmployeeRecord commarea)
 throws IOException, snaException

{
if (!isSsnValid (commarea.getEmpRecord().getEmpSsn()))
{
// The SSN is not valid.
throw new Error (“Invalid Social Security Number:”

+ commarea.getEmpRecord().getEmpSsn());

}
//
 // Make the remote call.
 return super.newEmployee(commarea);
}

}

// Private Functions
/**
3-28 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models
* Validate an SSN field
*
* @return
* True if the SSN is valid, otherwise false.
*/

private boolean isSsnValid(final BigDecimal ssn)
{

if (ssn.longValue() < 100000000)
{

// Oops, appears to be less than 9 digits
return false;

}
return true;

}
}

When it has been written, the ExtSampleClientBean class and the other EJB Java
source files must be compiled and deployed in the same manner as other EJBs. Prior
to deploying, the deployment descriptor must be modified; the ejb-class property
must be set to the name of your extended EJB implementation class (see Deploying a
WebLogic JAM eGen EJB).

Compiling and Deploying

Refer to the BEA WebLogic Server documentation for more information. The sample
file provided with WebLogic Server contains a build script for reference.

Generating a Servlet Application

A WebLogic JAM servlet application is a Java servlet that executes within BEA
WebLogic Server. The application is started from a web browser when the user enters
a URL that is configured to invoke the servlet. The servlet presents an HTML form
containing data fields and buttons. The buttons can be configured to invoke:

n EJB methods

n Remote gateway services (via the JAM Gateway)
BEA WebLogic Java Adapter for Mainframe Programming Guide 3-29

3 Basic Programming Techniques
In general, servlets generated by the eGen utility are intended for testing purposes and
are not easily customized to provide a more aesthetically pleasing interface.

In order to produce a servlet application, create an eGen script file and use the eGen
utility to generate your typed data record (DataView), and Servlet code.

In order to define a servlet application using an eGen script, you must define the
following:

n HTML pages displayed by the servlet

n The servlet itself

Components of an eGen HTML Page Definition

The general form of an HTML page that appears in an eGen script is as follows
(keywords are in bold):

page pagename title
{ view viewname
 buttons {buttonlist}
}

Table 3-11 describes the HTML page definition keywords and parameters.

Table 3-11 HTML Page Definition Keywords and Parameters

Keyword/Parameter Definition

page Indicates to the eGen utility the type of application component
that is to be generated.

pagename Indicates the name of the page so it can be referenced by the
servlet and other page definitions in the script.

title The title that will be displayed on the HTML page.

viewname Indicates the name of the DataView that is to be displayed on the
page. This DataView must be defined elsewhere in the eGen
script.
3-30 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models
The general syntax for a remote service button in an eGen script is as follows
(keywords are in bold):

buttonname service (servicename) shows pagename

Table 3-12 describes the remote service button definition keywords and parameters.

Table 3-12 Remote Service Button Definition Keywords and Parameters

The general syntax for an EJB button in an eGen script is as follows (keywords are in
bold):

buttonname ejbmethod () shows pagename

Note: Empty parenthesis must follow ejbmethod.

Table 3-13 describes the EJB button definition keywords and parameters.

Table 3-13 EJB Button Definition Keywords and Parameters

buttonlist List of buttons that are displayed on the page. The buttons can
either call EJB methods or remote services that are defined
elsewhere in the eGen script. The general form of the definition
for a button in the buttonlist depends on whether it is a remote
service button or an EJB.

Keyword/Parameter Definition

buttonname The label that appears on the button.

servicename The name of the remote service (must be in parenthesis).

pagename The page used to display the results.

Keyword/Parameter Definition

buttonname The label that appears on the button.

Keyword/Parameter Definition
BEA WebLogic Java Adapter for Mainframe Programming Guide 3-31

3 Basic Programming Techniques
Following is an example of an HTML page that appears in an eGen script:

page initial “Initial Page”
{

view EmployeeRecord

buttons
{

“Create”
service (“sampleCreate”)
shows fullPage

}
}

This listing defines an HTML page named initial, with a text title of Initial
Page, that displays an EmployeeRecord record object as an HTML form. It also
specifies that the form has a button labeled Create. When the button is pressed, the
service sampleCreate is invoked and is passed the contents of the browser page as an
EmployeeRecord object (the fields of which may have been modified by the user).
Afterwards, the fullPage page is used to display the results.

Components of an eGen Servlet Definition

The general form of a servlet definition that appears in an eGen script is as follows
(keywords are in bold):

servlet classname shows pagename

Table 3-14 describes the servlet definition keywords and parameters.

ejbmethod The name of the EJB method that is to be called. This method
should be specified in the following form:

packagename.EJBclass.method

pagename The page used to display the results.

Keyword/Parameter Definition
3-32 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models
Table 3-14 Servlet Definition Keywords and Parameters

Following is an example of a servlet definition that appears in an eGen script:

servlet sample.SampleServlet shows initial

The example states the following:

n This is the definition of an application servlet class named SampleServlet in
the package sample.

n The servlet is to be displayed in the HTML page named initial.

Generated Files

The eGen servlet definition described in Components of an eGen Servlet Definition
generates a servlet source code file called SampleServlet.java.

Customizing a Servlet WebLogic JAM Application

The generated Java classes produced for servlet applications are intended for proof of
concept and prototypes. They can be customized in limited ways. It is presumed that
some other development tool will be used to develop a servlet or other user interface
on top of the generated EJBs or client classes.

Keyword/Parameter Definition

servlet Indicates the type of application component that is to be
generated.

classname Indicates the class name for the servlet.

Note: The package name should be included in the
classname.

pagename The name of the page that is initially displayed by the servlet.
This page must be defined elsewhere in the script.
BEA WebLogic Java Adapter for Mainframe Programming Guide 3-33

3 Basic Programming Techniques
Supplying Security Credentials

WebLogic JAM has the capability to accept user ID and password information from a
Java client program, and apply that information to access a secure service on the
mainframe.

Note: When security information is transmitted via the connection between the
WebLogic JAM Gateway and the CRM, it is sent in clear text (not encrypted).
You should not send this information over a network that can be read by
unauthorized parties.

Security Levels

There are three levels of security that are supported by WebLogic JAM.

n Local -- No user information from the Java client is required to access a
mainframe service. Use of this security level implies that any user with access to
execute the Java client program should have access to a mainframe service.

n Identify -- A user ID specified by the Java client is required to access a
mainframe service. This user ID is passed to the mainframe to verify that it is a
valid user ID. Use of this security level implies that there is a trusted relationship
between the Java and mainframe environments, since there is no re-verification
of the user’s identity in the mainframe environment.

n Verify -- A user ID and password specified by the Java client are required to
access a mainframe service. The password is used to re-verify the user’s identity
in the mainframe environment.

Notes: Refer to the BEA WebLogic Java Adapter for Mainframe Configuration and
Administration Guide for information on setting the security level for a CRM
link and using a default user ID.

Refer to your mainframe security documentation for more specific
information about establishing and administrating mainframe security.
3-34 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic Server to Mainframe Application Models
Supplying Security Credentials in a WebLogic JAM Client Program

User security information can be supplied in a WebLogic JAM stand-alone client or
client EJB. There are two methods in the EgenClient object that support this
operation:

n EgenClient.setUserId(String)

This method sets the user ID to the value specified in the String argument.

n EgenClient.setPassword(String)

This method sets the user password to the value specified in the String
argument.

These methods can be called on any sub-class of EgenClient, such as the client
classes generated by the eGen utility. The methods are not inserted automatically by
the eGen utility; they must be manually added to the client program source, and should
be called prior to the any calls to EgenClient.callService().

The methods setUserID and setPassword can be called on any subclass of
EgenClientBean, such as the client EJBs generated by the eGen utility.
EgenClientBean has methods by the same name that act as wrappers for calls to
methods of the EgenClient member of the EgenClientBean class.

Calls to the EgenClient.setUserId() method within a WebLogic JAM client will
override any default user ID value configured for the CRM link the client is using.

These methods cannot be used with the servlet-only applications, since they do not use
the EgenClient object directly. Servlet-only applications can make use of the default
user ID to support security level Identify.

Listing 3-9 illustrates a class that extends the generated EJB implementation to provide
security credentials to the Gateway during these operations.

Listing 3-9 Example of Class with Security Credentials

// ExtSampleClientBean.java
//

package sample;

// Imports
//
BEA WebLogic Java Adapter for Mainframe Programming Guide 3-35

3 Basic Programming Techniques
import java.io.IOException;
import com.bea.sna.jcrmgw.snaException;

/**
 * EJB implementation.
 */
public class ExtSampleClientBean extends SampleClientBean
{
 protected byte[] callService(String svc, byte[] input)
 throws snaException, IOException
 {
 setUserid(“JAMUSER”);
 setPassword(“JAMPASS”);

 return super.callService(svc, input);
 }
}

// END ExtSampleClientBean.java

Note: WebLogic JAM will return an SNANotAuthorized exception if the
credentials are rejected by the mainframe security package.

WebLogic JAM to JMS

WebLogic JAM includes an EJB that has two major functions:

n Inserts request data into JMS topics or queues

n Converts EBCDIC data into an ASCII XML document for use with custom
applications

WebLogic JAM to JMS is a utility stateless session EJB that uses a DataView
generated by the eGen utility to convert the data. The EJB is contained in the jam.ear
file with a default JNDI name of JAMToJMS.

The general process for this insertion and conversion is described in the following
sections.

1. Obtain a COBOL Copybook.
3-36 BEA WebLogic Java Adapter for Mainframe Programming Guide

WebLogic JAM to JMS
The mainframe client application must have a COBOL record layout (copybook)
to describe the message comprising the request. This layout is used to generate
Java classes that can be used for data transformation. Refer to Obtaining a
COBOL Copybook for more information.

2. Generate a DataView with XML Support.

Make sure that your eGen script is written to generate DataViews that support
XML, as shown in the following code example:

generate view empRecData from emprec support xml

For more information on DataViews, refer to Writing the DataView Section of
an eGen Script. For more information on generating the DataView source files,
see Processing eGen Scripts with the eGen Utility. These files can be compiled
for deployment. The schema and DTD can be made available to the XML
application as necessary.

3. Compile the DataView .java files (see Creating an Environment for Generating
and Compiling the Java Code).

4. Copy the DataView class files created by the eGen utility to a directory in the
WebLogic Server CLASSPATH.

5. Create a JMS Event definition. For specific instructions, refer to the BEA
WebLogic Java Adapter for Mainframe Configuration and Administration Guide.

For an example of how to use the WebLogic JAM to JMS feature, refer to the
BEA WebLogic Java Adapter for Mainframe Samples Guide.
BEA WebLogic Java Adapter for Mainframe Programming Guide 3-37

3 Basic Programming Techniques
3-38 BEA WebLogic Java Adapter for Mainframe Programming Guide

CHAPTER
4 Deploying
Applications

Deployment is the process of installing servlets and/or EJBs on WebLogic Server.
Application deployment in WebLogic Server has evolved to the J2EE standard for web
application deployment.

The following information is not intended to specifically describe how applications are
deployed in WebLogic Server. For specific information, refer to Quick Start
information and detailed documentation for deploying applications in the WebLogic
Server online documentation at:

http://edocs/wls/docs61/quickstart/quick_start.html
http://edocs/wls/docs61/servlet/admin.html#156888
http://edocs/wls/docs61/ejb/EJB_deployover.html

This section discusses the following topics:

n Deploying a WebLogic JAM eGen EJB

n Deploying a WebLogic JAM eGen Servlet (Quick-Start Deployment)

Deploying a WebLogic JAM eGen EJB

A WebLogic JAM eGen EJB (client or server) is deployed like any other WebLogic
EJB. Considerations that are specific to WebLogic JAM are:

n Deployment descriptors generated by the eGen utility need to be renamed.
BEA WebLogic Java Adapter for Mainframe Programming Guide 4-1

4 Deploying Applications
n If the EJB is to contain business logic in addition to WebLogic JAM access
code, a subclass must be created.

n If multiple EJBs are created, the generated deployment descriptors must be
manually merged if the beans are to be deployed in the same .jar file.

Renaming Deployment Descriptors

The EJB deployment descriptors generated by the eGen utility are named based on the
generated EJB, rather than the using the standard J2EE and WebLogic file names. This
is to avoid file naming conflicts if multiple beans are generated in the same directory.
As a result, these descriptors must be renamed before the EJB is packaged and
deployed. Following are the naming conventions used, where BeanName is the name
of the generated EJB:

For example, consider the following portion of an eGen script:

client ejb TestClient TestClientHome
{

method newEmployee
is service emplCreate

}

In this script, the descriptions generated would be named TestClient-jar.xml and
wl-TestClient.xml respectively.

Generated Descriptor Name Deployed Descriptor Name

BeanName-jar.xml ejb-jar.xml

wl-BeanName.xml weblogic-jar.xml
4-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

Deploying a WebLogic JAM eGen EJB
Adding Business Logic to a Generated EJB

The EJBs generated by the eGen utility contain the infrastructure for calling
mainframe services and returning the results of those services. If you want to present
a different API that performs some business logic before deferring to the generated
service methods, you will need to create a new bean class that sub-classes the
generated code.

If you want to maintain the same remote interface generated by the eGen utility but add
business logic before/after the mainframe call, simply derive a new class from the
generated bean class while retaining the generated home and remote interfaces. For
example, if our generated TestClientBean.java contains a method named
newEmployee(), you could insert business logic as follows:

public class MyLogicBean extends TestClientBean
{

public dataView newEmployee(dataView in)
{

// perform before business logic here
dataView out = super.newEmployee(in);
// perform after business logic here
return(out);

}
}

However, if you want to present a different remote interface in addition to adding
business logic, you also need to create new remote and home interfaces to support your
new bean.

In either case, be sure to update the generated deployment descriptors to reflect your
new bean classes.

For example, suppose you used the eGen utility to generate an EJB named
TestClientBean, and that bean had been extended as in the above example by a bean
class named MyLogicBean. The eGen utility would have generated a deployment
descriptor with the name TestClient-jar.xml. The generated deployment
descriptor would need to be renamed ejb-jar.xml before deployment. The
ejb-class element’s value should also be changed from TestClientBean to
MyLogicBean to reflect the new bean class name as in the example below.

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>TestClient</ejb-name>
BEA WebLogic Java Adapter for Mainframe Programming Guide 4-3

4 Deploying Applications
 <home>TestClientHome</home>
 <remote>TestClient</remote>
 <ejb-class>MyLogicBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>

...
</ejb-jar>

Merging Multiple Deployment Descriptors

Multiple WebLogic JAM EJB’s can be generated as part of a single application. This
can be done in a single eGen script, or by running the eGen utility multiple times with
different scripts. If these beans are to be deployed in a single .jar file, the generated
deployment descriptors for each must be merged into a single ejb-jar.xml and
weblogic-jar.xml.

Sample EJB Deployment

Following are instructions for the deployment of a sample eGen-created EJB.

1. Build your EJB deployment .jar file. Listing 4-1 will build the client EJB
deployment .jar file from the components generated by the tradeserver.egen
eGen script and TradeRecord.cpy.

Listing 4-1 Script for Building JAM_TradeServer.jar

@rem --- Adjust these variables to match your environment -----------------
set TARGETJAR=JAM_TradeServer.jar
set JAVA_HOME=c:\bea\jdk131
set WL_HOME=c:\bea\wlserver6.1sp1
set JAM_HOME=c:\bea\wljam5.0
@rem ------ end of Adjustable variables ------------------------------------

set JAMJARS=%JAM_HOME%\lib\jam.jar
set CLASSPATH=%JAM_HOME%\lib\jam.jar;%JAM_HOME%\lib\tools.jar;
%WL_HOME%\lib\weblogic.jar
set PATH=%JAVA_HOME%\bin;%JAVA_HOME%\lib;%PATH%
4-4 BEA WebLogic Java Adapter for Mainframe Programming Guide

Deploying a WebLogic JAM eGen EJB
@rem Create the build directory, and copy the deployment
@rem descriptors into it.
@rem You should have already run your egen script so your xml files
@rem are already built.

md build build\META-INF
copy TradeServer-jar.xml ejb-jar.xml
copy wl-TradeServer-jar.xml weblogic-ejb-jar.xml
copy *.xml build\META-INF

@rem Compile ejb classes into the build directory (jar preparation)
javac -d build -classpath %CLASSPATH% *.java

@rem Make a standard ejb jar file, including XML deployment
@rem descriptors
cd build
jar cvf std_%TARGETJAR% META-INF sample
cd ..

@rem Run ejbc to create the deployable jar file

java -classpath %CLASSPATH% -Dweblogic.home=%WL_HOME% weblogic.ejbc -compiler
javac build\std_%TARGETJAR% %TARGETJAR%

2. Deploy the EJB in BEA WebLogic Server by configuring it as a new EJB in the
WebLogic Administration Console. Configure this new EJB as follows:

a. Click the EJB icon under Deployments.

The EJB Deployments screen appears (see Figure 4-1).
BEA WebLogic Java Adapter for Mainframe Programming Guide 4-5

4 Deploying Applications
Figure 4-1 Configuring a New EJB

b. Click the Configure a new EJB link.

The EJB Deployments Create screen appears (see Figure 4-2).
4-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

Deploying a WebLogic JAM eGen Servlet (Quick-Start Deployment)
Figure 4-2 New EJB Configuration Screen

c. Enter the name of your EJB in the Name field, the EJB Deployment .jar file
in the URI field, and the path to the EJB Deployment .jar file in the Path
field. Make sure that the Deployed checkbox is checked. Then, click Create.

Your JAM eGen EJB is now deployed.

Deploying a WebLogic JAM eGen Servlet
(Quick-Start Deployment)

The basic JAM eGen servlet is deployed like any other WebLogic servlet. The
configuration for the eGen servlet is stored in the web.xml file in an applications
directory associated with a domain. The basic default configuration can be found in the
following directory:
BEA WebLogic Java Adapter for Mainframe Programming Guide 4-7

4 Deploying Applications
<BEA_HOME>/<JAM_INSTALL_DIR>/config/verify/applications/
 DefaultWebApp/WEB-INF/web.xml

For example, suppose a servlet is generated by executing the eGen utility on a script
containing the following servlet definition:

servlet sample.SampleServlet shows initial

This produces a servlet class file named SampleServlet in a package called sample.

For the SampleServlet, add the classes and sample directories, so the directory
structure looks like the following:

<BEA_HOME>/<JAM_HOME>/config/verify/applications/
 DefaultWebApp/WEB-INF/classes/sample

The SampleServlet and the associated DataView class, which are the result of
compiling the *.java files generated by the eGen utility, should be placed in the
sample directory.

SampleServlet can be configured with an XML entry (added to web.xml) similar to
the one shown in Listing 4-2:

Listing 4-2 XML Entry to Configure the SampleServlet Servlet

<web-app>
<servlet>

<servlet-name>
SampleServlet

</servlet-name>
<servlet-class>
 sample.SampleServlet
</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>
SampleServlet

</servlet-name>
<url-pattern>

/SampleServlet/*
</url-pattern>

</servlet-mapping>
</web-app>
4-8 BEA WebLogic Java Adapter for Mainframe Programming Guide

Deploying a WebLogic JAM eGen Servlet (Quick-Start Deployment)
SampleServlet can then by invoked by entering the following URL in the location
field of your web browser:

http://<host>:<port>/SampleServlet

If WebLogic Server is running on your local machine and you used the default port
(7001) when you installed WebLogic Server, SampleServlet can be invoked by the
following URL:

http://localhost:7001/SampleServlet
BEA WebLogic Java Adapter for Mainframe Programming Guide 4-9

4 Deploying Applications
4-10 BEA WebLogic Java Adapter for Mainframe Programming Guide

CHAPTER
5 Understanding
Programming Flows

This section illustrates the interaction between WebLogic Server and mainframe
programs. The following topics are discussed:

n Distributed Program Link Programming Flows

n IMS Implicit APPC Programming Flows

n Common Programming Interface for Communications Programming Flows

Distributed Program Link Programming
Flows

The following examples of DPL programming flows are discussed:

n Java Client Request/Response to CICS DPL

n CICS Request/Response DPL to WebLogic Server EJB

n CICS DPL Asynchronous No Reply to WebLogic Server Application

n Transactional Java Client Request/Response to CICS DPL

n Transactional CICS Request/Response DPL to WebLogic Server EJB
BEA WebLogic Java Adapter for Mainframe Programming Guide 5-1

5 Understanding Programming Flows
Java Client Request/Response to CICS DPL

Figure 5-1 illustrates a Java Client Request/Response to CICS DPL programming
flow.

Figure 5-1 Java Client Request/Response to CICS DPL

The following steps describe the Java Client Request/Response to CICS DPL
programming flow.

1. A Java client class (such as a stand-alone client, EJB, etc.) makes a call to the
BaseClient.toupper method with a Chardata DataView as the parameter.
5-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

Distributed Program Link Programming Flows
2. In the toupper method, a call is made to the EgenClient.callService
method.

Note: The BaseClient extends EgenClient, so the BaseClient inherits the
callService method from EgenClient.

The value of the first parameter is TOUPPER. TOUPPER is the name of the DPL
Service that is mapped to the CICS DPL program TOUPCICS in the WebLogic
Administrative Console.

3. The host mirror transaction starts the TOUPCICS program and passes the contents
of the inputBuffer byte array as the commarea.

4. The TOUPCICS program processes the data.

5. The CICS server returns the commarea. The data is returned from the
EgenClient.callService method as the byte array rawResult.

CICS Request/Response DPL to WebLogic Server EJB

Figure 5-2 illustrates a CICS request/response DPL to WebLogic Server EJB
programming flow.
BEA WebLogic Java Adapter for Mainframe Programming Guide 5-3

5 Understanding Programming Flows
Figure 5-2 CICS Request/Response DPL to WebLogic Server EJB

The following steps describe the CICS request/response DPL to WebLogic Server EJB
programming flow.

1. The user-entered transaction TRCL invokes the TRADCLNT program.

The EXEC CICS LINK command causes the advertised service TRADSERV to
execute. The SYSID value is set to the name of the connection associated with
the CRM Logical Unit. The SYNCONTRETURN parameter indicates that the
WebLogic Server EJB will not be involved in the CICS transaction.
5-4 BEA WebLogic Java Adapter for Mainframe Programming Guide

Distributed Program Link Programming Flows
2. In the WebLogic Administration Console, the TRADSERV service is mapped to the
JNDI name jam.TradeServer for the TradeServer EJB. This causes the
dispatch method of TradeServerBean to be invoked.

3. The buy method is invoked from the dispatch method.

4. The business logic is performed, and the result is returned to the dispatch
method.

5. The data is returned from the dispatch method into the COMMAREA.

CICS DPL Asynchronous No Reply to WebLogic Server
Application

Figure 5-3 illustrates a CICS DPL asynchronous no reply to Java server programming
flow.
BEA WebLogic Java Adapter for Mainframe Programming Guide 5-5

5 Understanding Programming Flows
Figure 5-3 CICS DPL asynchronous no reply to Java server

The following steps describe the CICS DPL asynchronous no reply to Java server
programming flow.

1. The user-entered transaction CTOJ invokes the JMSCLNT program.

2. The EXEC CICS LINK command causes the advertised service CTOJMSSV to
execute. The SYSID value is set to the name of the connection associated with the
CRM Logical Unit. The SYNCONTRETURN parameter indicates that the WebLogic
Server EJB will not be involved in the CICS transaction.

3. The Gateway sends the message to the JMS Event CTOJMSSV. In the WebLogic
Administration Console, the CTOJMSSV service name is mapped to the JMS topic
Jam.examples.CICS.EventTopic.
5-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

Distributed Program Link Programming Flows
4. Data that is identical to the request data is returned in the COMMAREA to JMSCLNT.

Transactional Java Client Request/Response to CICS DPL

Figure 5-4 illustrates a transactional Java client request/response to CICS DPL
programming flow.
BEA WebLogic Java Adapter for Mainframe Programming Guide 5-7

5 Understanding Programming Flows
Figure 5-4 Transactional Java Client Request/Response to CICS DPL

The following steps describe the transactional Java client request/response to CICS
DPL programming flow.

1. A Java client class calls the begin method of a UserTransaction object to start
a transaction.

2. Within the boundaries of that transaction, the Java client class makes a call to the
BaseClient.toupper method with a Chardata DataView as the parameter.

3. In the toupper method, a call is made to the EgenClient.callService
method.
5-8 BEA WebLogic Java Adapter for Mainframe Programming Guide

Distributed Program Link Programming Flows
Note: The BaseClient extends EgenClient, so the BaseClient inherits the
callService method from EgenClient.

The value of the first parameter is TOUPPER. TOUPPER is the name of the DPL
Service that is mapped to the CICS DPL program TOUPCICS in the WebLogic
Administration Console.

4. The host mirror transaction starts the TOUPCICS program and passes the contents
of the inputBuffer byte array as the commarea.

5. The TOUPCICS program processes the data.

6. The CICS server returns the commarea. The data is returned from the
EgenClient.callService method as the byte array rawResult.

7. The Java client class calls the commit method of the UserTransaction object to
indicate the successful completion of the transaction. This causes the commit of
the WebLogic managed resources, as well as the resources held by the Host
Mirror Transaction.
BEA WebLogic Java Adapter for Mainframe Programming Guide 5-9

5 Understanding Programming Flows
Transactional CICS Request/Response DPL to WebLogic
Server EJB

Figure 5-5 illustrates a transactional CICS request/response DPL to WebLogic Server
EJB programming flow.

Figure 5-5 Transactional CICS Request/Response DPL to WebLogic Server EJB

The following steps describe the transactional CICS request/response DPL to
WebLogic Server EJB programming flow.
5-10 BEA WebLogic Java Adapter for Mainframe Programming Guide

Distributed Program Link Programming Flows
1. The user-entered transaction TRCL invokes the TRADCLNT program.

2. The EXEC CICS LINK command causes the advertised service TRADSERV to
execute. The SYSID value is set to the name of the connection associated with the
CRM Logical Unit. When the SYNCONRETURN command is not included in the
EXEC CICS LINK, this indicates that the WebLogic Server is involved in the CICS
transaction.

In the WebLogic Administration Console, the TRADSERV service is mapped to
the JNDI name jam.TradeServer for the TradeServer EJB. This causes the
dispatch method of TradeServerBean to be invoked.

3. The buy method is invoked from the dispatch method.

4. The business logic is performed, and the result is returned to the dispatch
method.

5. The data is returned from the dispatch method into the COMMAREA.

6. If necessary, further processing can be done in TRADCLNT before the EXEC CICS
SYNCPOINT that ends the transaction.
BEA WebLogic Java Adapter for Mainframe Programming Guide 5-11

5 Understanding Programming Flows
IMS Implicit APPC Programming Flows

The following examples of IMS implicit APPC programming flows are discussed:

n Java Client Request/Response to IMS Transaction Program

n IMS Asynchronous No Reply Transaction Program to Java Server

n Transactional Java Client Request/Response to IMS Transaction Program

Java Client Request/Response to IMS Transaction
Program

Figure 5-6 illustrates a Java Client Request/Response to IMS programming flow.
5-12 BEA WebLogic Java Adapter for Mainframe Programming Guide

IMS Implicit APPC Programming Flows
Figure 5-6 Java Client Request/Response to IMS Transaction Program

The following steps describe the Java Client Request/Response to IMS programming
flow.

1. A Java client class (such as a stand-alone client, EJB, etc.) makes a call to the
BaseClient.toupper method with a Chardata DataView as the parameter.

2. In the toupper method, a call is made to the EgenClient.callService
method.

Note: The BaseClient extends EgenClient, so the BaseClient inherits the
callService method from EgenClient.

The value of the first parameter is TOUPPER. TOUPPER is the name of the APPC
Service that is mapped to the IMS transaction TOUPIMS in the WebLogic
Administrative Console.
BEA WebLogic Java Adapter for Mainframe Programming Guide 5-13

5 Understanding Programming Flows
3. IMS starts the TOUPIMS transaction. This transaction executes the associated
program TOUPIMS. The contents of the inputBuffer byte array are placed on an
IOPCB as request data.

4. The TOUPIMS program accesses the request data by performing a get unique on
the IOPCB.

5. The TOUPIMS program processes the data and creates a response message.

6. The TOUPIMS program inserts the response data to the IOPCB.

7. IMS returns the response data back to the requester. The data is returned from the
EgenClient.callService method as the byte array rawResult.
5-14 BEA WebLogic Java Adapter for Mainframe Programming Guide

IMS Implicit APPC Programming Flows
IMS Asynchronous No Reply Transaction Program to
Java Server

Figure 5-7 illustrates an IMS asynchronous no reply transaction program to a Java
server programming flow.

Figure 5-7 IMS Asynchronous No Reply Transaction Program to Java Server

The following steps describe the IMS transaction program to asynchronous no reply
Java Server programming flow.

1. IMS starts the IMSTOJMS transaction. This transaction executes the associated
program IMSTOJMS.

2. The IMSTOJMS program accesses the input data by doing a get unique on the
IOPCB.
BEA WebLogic Java Adapter for Mainframe Programming Guide 5-15

5 Understanding Programming Flows
3. The IMSTOJMS program composes the request message.

4. The IMSTOJMS program issues a call with the CHNG function code to store the
appropriate logical terminal name in a modifiable alternate PCB.

Note: To use an alternate PCB, you must include a PCB statement in your PSB
(see Listing 5-1).

Listing 5-1 IMS PSBGEN for a Modifiable Alternate PCB for the IMS Client

PCB TYPE=TP,MODIFY=YES
PSBGEN PSBNAME=IMSTOJMS,CMPAT=YES,LANG=COBOL

Note: The logical terminal name, in this case JAMIMS01, must be mapped to an
LU name and a transaction name in a LU 6.2 Descriptor. In Listing 5-2,
JAMIMS01 is mapped to the LU CRMLU and the transaction ITOJMSSV.

Listing 5-2 LU 6.2 Descriptor

A JAMIMS01 LUNAME=CRMLU TPNAME=ITOJMSSV SYNCLEVEL=N

5. The IMSTOJMS program issues an insert call with the request message to the
alternate PCB, ALTPCB.

6. The IMSTOJMS program issues a PURG call to the alternate PCB, ALTPCB, to tell
IMS to send the request message.

7. IMS sends the request message to the indicated LU, the LU configured for the
CRM. The request message is forwarded to the Gateway.

8. The gateway sends the message to the JMS Event ITOJMSSV. ITOJMSSV is the
transaction name in the LU 6.2 descriptor in Listing 5-2. In the WebLogic
Administration Console, the ITOJMSSV service name is mapped to the JMS topic
JAM.examples.IMS.EventTopic.
5-16 BEA WebLogic Java Adapter for Mainframe Programming Guide

IMS Implicit APPC Programming Flows
Transactional Java Client Request/Response to IMS
Transaction Program

Figure 5-8 illustrates a transactional Java client request/response to an IMS transaction
programming flow.
BEA WebLogic Java Adapter for Mainframe Programming Guide 5-17

5 Understanding Programming Flows
Figure 5-8 Transactional Java Client Request/Response to an IMS Transaction
Program

The following steps describe the transactional Java client request/response to IMS
transaction programming flow.

1. A Java client class calls the begin method of a UserTransaction object to start
a transaction.
5-18 BEA WebLogic Java Adapter for Mainframe Programming Guide

IMS Implicit APPC Programming Flows
2. Within the boundaries of that transaction, the Java client class makes a call to the
BaseClient.toupper method with a Chardata DataView as the parameter.

3. In the toupper method, a call is made to the EgenClient.callService
method.

Note: The BaseClient extends EgenClient, so the BaseClient inherits the
callService method from EgenClient.

The value of the first parameter is TOUPPER. TOUPPER is the name of the APPC
Service that is mapped to the IMS transaction TOUPIMS in the WebLogic
Administration Console.

4. IMS starts the TOUPIMS transaction that executes the associated program
TOUPIMS. The contents of the inputBuffer byte array are placed on an IOPCB
as request data.

5. The TOUPIMS program accesses the request data by doing a get unique on the
IOPCB.

6. The TOUPIMS program processes the data and creates a response message.

7. The TOUPIMS program inserts the response data to the IOPCB.

8. IMS returns the response data back to the requester. The data is returned from the
EgenClient.callService method as the byte array rawResult.
BEA WebLogic Java Adapter for Mainframe Programming Guide 5-19

5 Understanding Programming Flows
9. The Java client class calls the commit method of the UserTransaction object to
indicate the successful completion of the transaction. This causes the commit of
the WebLogic managed resources, as well as the resources managed by IMS.

Common Programming Interface for
Communications Programming Flows

The following examples of CPI-C programming flows are discussed:

n Java Client Request/Response to Host CPI-C

n Host CPI-C Request/Response to WebLogic Server EJB

n Transactional Java Client Request/Response to Host CPI-C

n Host CPI-C Asynchronous No Reply to Java Server

n Transactional Host CPI-C Request/Response to WebLogic Server EJB

Java Client Request/Response to Host CPI-C

Figure 5-9 illustrates a Java client request/response to a host CPI-C programming
flow.
5-20 BEA WebLogic Java Adapter for Mainframe Programming Guide

Common Programming Interface for Communications Programming Flows
Figure 5-9 Java Client Request/Response to Host CPI-C

The following steps describe the Java client request/response to host CPI-C
programming flow.

1. A Java client class (such as a stand-alone client, EJB, etc.) makes a call to the
BaseClient.toupper method with a Chardata dataview as the parameter.

2. In the toupper method, a call is made to the EgenClient.callService
method.

Note: The BaseClient extends EgenClient, so the BaseClient inherits the
callService method from EgenClient.

The value of the first parameter is SIMPCPIC. SIMPCPIC is the name of the
APPC Service that is mapped to the CPI-C Transaction Program ID TPNCPIC in
the WebLogic Administration Console.
BEA WebLogic Java Adapter for Mainframe Programming Guide 5-21

5 Understanding Programming Flows
3. The transaction program TPNCPIC invokes the TOUPCPIC program.

4. TOUPCPIC accepts the conversation with the cmaccp call. The conversation ID
returned in convid is used for all other requests on this conversation.

5. The cmrcv request receives the inputBuffer buffer contents for processing.

6. The TOUPCPIC program processes that data.

7. The cmsst request prepares for the send request by setting the send type to
CM_SEND_AND_DEALLOCATE.

8. The cmsend request returns the obuffer contents. The data is returned from the
EgenClient.callService method as the byte array rawResult.

Host CPI-C Request/Response to WebLogic Server EJB

Figure 5-10 illustrates a host CPI-C request/response to WebLogic Server EJB
programming flow.
5-22 BEA WebLogic Java Adapter for Mainframe Programming Guide

Common Programming Interface for Communications Programming Flows
Figure 5-10 Host CPI-C Request/Response to WebLogic Server EJB

The following steps describe the host CPI-C request/response to WebLogic Server
EJB programming flow.

1. The CPI-C application program TRADCPIC is invoked using the environment
start-up specifications.

2. The TRADCPIC client requests cminit to establish conversation attributes and
receive a conversation ID that will be used on all other requests on this
conversation. The remote server and service are named in the CPI-C side
information entry TRADSIDE.

3. The cmallc request initiates the advertised service TRADSERV. In the WebLogic
Administration Console, the TRADSERV service is mapped to the JNDI name
jam.TradeServer for the TradeServer EJB.
BEA WebLogic Java Adapter for Mainframe Programming Guide 5-23

5 Understanding Programming Flows
4. The cmsst request prepares the next send request by setting the send type to
CM_SEND_AND_PREP_TO_RECEIVE.

5. The cmsend request immediately sends the contents of the obuffer to the
dispatch method of TradeServerBean in the commarea byte array and
relinquishes control.

6. The buy method is messaged from the dispatch method.

7. The business logic is performed, and the result is returned to the dispatch
method.

8. The cmrcv request receives the contents of the byte array returned from the
dispatch method in the ibuffer buffer, and notification that the conversation
has ended with the return code value of CM_DEALLOCATED_NORMAL.

Host CPI-C Asynchronous No Reply to Java Server

Figure 5-11 illustrates a Host CPI-C asynchronous no reply to Java server
programming flow.
5-24 BEA WebLogic Java Adapter for Mainframe Programming Guide

Common Programming Interface for Communications Programming Flows
Figure 5-11 Host CPI-C Asynchronous No Reply to Java Server

The following steps describe the Host CPI-C asynchronous no reply to Java server
programming flow.

1. The CPI-C application program JMSCPIC is invoked using the environment
start-up specifications.

2. The JMSCPIC client requests cminit to establish conversation attributes and
receive a conversation ID that will be used on all other requests on this
conversation. The remote server and service are named in the CPI-C side
information entry JMSSIDE.

3. The cmallc request initiates the advertised service CTOJMSSV.

4. The cmsend request sends the contents of the obuffer to the CTOJMSSV service.

5. The cmdeal request flushes the data and indicates the conversation is finished.
The request message is forwarded to the Gateway.
BEA WebLogic Java Adapter for Mainframe Programming Guide 5-25

5 Understanding Programming Flows
6. The Gateway sends the message to the JMS Event CTOJMSSV. In the WebLogic
Administration Console, the CTOJMSSV service name is mapped to the JMS topic
JAM.examples.CPIC.EventTopic.

Transactional Java Client Request/Response to Host
CPI-C

Figure 5-12 illustrates a transactional Java client request/response to a Host CPI-C
programming flow.
5-26 BEA WebLogic Java Adapter for Mainframe Programming Guide

Common Programming Interface for Communications Programming Flows
Figure 5-12 Transactional Java Client Request/Response to a Host CPI-C

The following steps describe the transactional Java client request/response to a host
CPI-C programming flow.

1. A Java client class calls the begin method of a UserTransaction object to start
a transaction.
BEA WebLogic Java Adapter for Mainframe Programming Guide 5-27

5 Understanding Programming Flows
2. Within the boundaries of that transaction, the Java client class (stand-alone client,
EJB, etc.) makes a call to the BaseClient.toupper method with a Chardata
DataView as the parameter.

3. In the toupper method, a call is made to the EgenClient.callService
method.

Note: The BaseClient extends EgenClient, so the BaseClient inherits the
callService method from EgenClient.

The value of the first parameter is SIMPCPIC. SIMPCPIC is the name of the
APPC Service that is mapped to the CPI-C transaction program ID TPNCPIC in
the WebLogic Administration Console.

4. The transaction program with the tpname TPNCPIC invokes the TOUPCPIC
program.

5. TOUPCPIC accepts the conversation with the cmaccp call. The conversation ID
returned in convid is used for all other requests on this conversation.

6. The cmrcv request receives the inputBuffer buffer contents for processing.

7. The TOUPCPIC program processes that data.
5-28 BEA WebLogic Java Adapter for Mainframe Programming Guide

Common Programming Interface for Communications Programming Flows
8. The cmsst and cmsptr prepare the next send request by setting the send type to
CM_SEND_AND_PREP_TO_RECEIVE and by setting the prepare-to-receive type to
CM_PREP_TO_RECEIVE_CONFIRM. The CONFIRM indicates that the service has
completed successfully.

9. The cmsend request returns the obuffer contents. The data is returned from the
EgenClient.callService method as the byte array rawResult.

10. The Java client class calls the commit method of the UserTransaction object to
indicate the successful completion of the transaction and request the commit of
all updated resources. The cmrcv request receives the commit request, and
responds explicitly to the request with the SAA Resource/Recovery commit call
srrcmit. The conversation is ended after the successful commit exchange.

Transactional Host CPI-C Request/Response to WebLogic
Server EJB

Figure 5-13 illustrates a transactional host CPI-C request/response to WebLogic
Server EJB programming flow.
BEA WebLogic Java Adapter for Mainframe Programming Guide 5-29

5 Understanding Programming Flows
Figure 5-13 Transactional Host CPI-C Request/Response to WebLogic Server
EJB

The following steps describe the transactional host CPI-C request/response to
WebLogic Server EJB programming flow.

1. The CPI-C application program TRADCPIC is invoked using the environment
start-up specifications.

2. The TRADCPIC client requests cminit to establish conversation attributes and
receive a conversation ID that will be used on all other requests on this
conversation. The remote server and service are named in the CPI-C side
information entry TRADSIDE.

3. The cmssl sets the conversation attribute to sync-level 2 with CM_SYNCPOINT.
This allows the WebLogic EJB to participate in the transaction.

4. The cmallc request initiates the advertised service TRADSERV. In the WebLogic
Administration Console the TRADSERV service is mapped to the JNDI name
jam.TradeServer for the TradeServer EJB.
5-30 BEA WebLogic Java Adapter for Mainframe Programming Guide

Common Programming Interface for Communications Programming Flows
5. The cmsst request prepares the next send request by setting the send type to
CM_SEND_AND_PREP_TO_RECEIVE.

6. The cmsend request immediately sends the contents of the obuffer to the
dispatch method of TradeServerBean in the commarea byte array and
relinquishes control.

7. The buy method is messaged from the dispatch method.

8. The business logic is performed, and the result is returned to the dispatch
method.

9. The cmrcv request receives the contents of the byte array returned from the
dispatch method in the ibuffer buffer. The cmrcv receives a confirm request
indicating the conversation should terminate.

10. The client replies positively to the confirm request with cmcfmd.

11. The TRADCPIC client prepares to free the conversation with the cmdeal request.
The conversation in CM_DEALLOCATE_SYNC_LEVEL commits all updated
resources in the transaction and waits for the SAA resource recovery verb,
srrcmit. After the commit sequence has completed, the conversation terminates.
BEA WebLogic Java Adapter for Mainframe Programming Guide 5-31

5 Understanding Programming Flows
5-32 BEA WebLogic Java Adapter for Mainframe Programming Guide

CHAPTER
6 Performing Your Own
Data Translation

This section discusses the following topics:

n Why Perform Your Own Data Translation?

n Using EgenClient Directly

n Translating Buffers from Java to Mainframe Representation

n Translating Buffers from Mainframe Format to Java

Why Perform Your Own Data Translation?

The automatic data translation provided by DataViews can usually fill your needs. The
eGen-generated DataViews relieve your application of the burden of translating data
between the mainframe EBCDIC environment and the Java runtime environment. In
addition, native mainframe data types that are not supported in Java (such as packed,
zoned decimal, etc.) are automatically mapped to appropriate Java data types.
However, occasionally you may want to bypass these features and create your own
data translation. Following are some advantages of bypassing the eGen/DataView
infrastructure:

n Unnecessary data translation may be avoided

If the data has been acquired in the appropriate format, it can simply be
transmitted to the mainframe bypassing the DataView translation overhead.
BEA WebLogic Java Adapter for Mainframe Programming Guide 6-1

6 Performing Your Own Data Translation
n Contents of data buffer may be dynamically determined at runtime

In some cases, this may be preferable to a DataView generated from a copybook
containing numerous REDEFINES representing various record types.

Simple interfaces are provided for translating data both from and to the mainframe. In
addition, a simple callService() method is available for making mainframe service
requests.

Using EgenClient Directly

EgenClient is the WebLogic JAM class responsible for making service calls from
WebLogic Server to the mainframe. This class is the foundation of all WebLogic
Server to Mainframe communication by eGen-created EJB and Servlet objects.
EgenClient may also be used directly by applications to issue mainframe service
requests. Listing 6-1 shows the public methods available for your use:

Listing 6-1 EgenClient Public Interface

package com.bea.jam.egen;

import java.io.IOException;
import com.bea.sna.jcrmgw.snaException;

public class EgenClient
{

public EgenClient();
public EgenClient(String serverURL);
public void setServerURL(String serverURL);
public byte[] callService(String service, byte[] in)

throws snaException, IOException;
public void setUserID(String userid);
public void setPassword(String password);

}

Table 6-1 lists the definitions of the public interface methods:
6-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

Using EgenClient Directly
Table 6-1 EgenClient Public Interface Methods

How EgenClient Locates a WebLogic JAM Gateway

The EgenClient class requires a connection to a WebLogic Server running a
WebLogic JAM Gateway to communicate with a mainframe. This connection is
accomplished via a URL provided by the caller identifying the server, or cluster of
servers, hosting the WebLogic JAM Gateway(s). The EgenClient class attempts to
obtain this URL from the following sources (listed in priority order):

1. If the EgenClient.setServerURL() method has been called, the URL provided
is used to locate a WebLogic JAM Gateway.

Method Description

EgenClient() The default constructor. Constructing an
EgenClient class using the default constructor will
search for a jam.url property containing the
WebLogic JAM Gateway server URL.

EgenClient(URL) If the EgenClient class is provided a URL at
construction, it will be used in place of the search for a
jam.url property.

setServerURL(URL) This method may be used to override the URL set at
construction. All service calls following the invocation
of this method will use the URL provided.

callService(service, in) This method is the workhorse of the EgenClient
class. The mainframe service in the WebLogic JAM
configuration named service will be called and
passed the buffer provided by the in parameter. The
response buffer of the service is returned from this
method.

setUserID(userid) This method sets the User ID used to access a
mainframe service.

setPassword(password) This method sets the password used to access a
mainframe service.
BEA WebLogic Java Adapter for Mainframe Programming Guide 6-3

6 Performing Your Own Data Translation
2. If a URL was provided on the EgenClient constructor, this URL is used to
locate a WebLogic JAM Gateway.

3. EgenClient checks for the existence of a jam.url system property and, if
present, uses its value as the URL to locate a WebLogic JAM gateway.

4. EgenClient searches the CLASSPATH for a file named jam.properties. If this
properties file is found and contains a jam.url entry, this value is used to locate
a WebLogic JAM Gateway.

5. EgenClient assumes that it is running on the same WebLogic Server as the
WebLogic JAM Gateway and attempts to establish a local connection.

Using EgenClient to Make a Mainframe Request

Listing 6-2 illustrates calling a mainframe service via the EgenClient class. This
example assumes that a properly formatted mainframe buffer is passed as a parameter,
and that the URL of a correctly configured WebLogic JAM Gateway is set via the
jam.url property.

Listing 6-2 Mainframe Request Using EgenClient

import com.bea.jam.egen.EgenClient;
import com.bea.sna.jcrmgw.snaException;
import java.io.IOException;

.

.
public byte[] getPurchaseOrder(byte[] poNum)

throws IOException
{

try
{
return(new EgenClient().callService("GetPO", poNum));
}
catch (snaException e)
{

throw new IOException(e.getMessage());
}

}

6-4 BEA WebLogic Java Adapter for Mainframe Programming Guide

Translating Buffers from Java to Mainframe Representation
The sections that follow provide information on dynamically creating mainframe
buffers and interpreting the responses from mainframe services.

Translating Buffers from Java to Mainframe
Representation

Support for creating buffers for input to a mainframe service is provided by the
com.bea.base.io.MainframeWriter class. This class functions similar to a Java
java.io.DataOutputStream object. It translates Java data types and all
mainframe-native data types. For numeric data types, this translation service provides
a conversion from Java native numeric types to those available on the mainframe. For
string data types, a translation is performed from UNICODE to EBCDIC by default,
although the output codepage used is configurable.

MainframeWriter Public Interface

Listing 6-3 shows the public methods provided by the MainframeWriter class.

Listing 6-3 MainframeWriter Class Public Methods

package com.bea.base.io;

public class MainframeWriter
{

public MainframeWriter();
public MainframeWriter(String codepage);
public void setDefaultCodepage(String cp)
public byte[] toByteArray();
public void writeRaw(byte[] bytes

throws IOException;
public void writeFloat(float value)

throws IOException;
public void writeDouble(double value)

throws IOException;
public void write(char c)
BEA WebLogic Java Adapter for Mainframe Programming Guide 6-5

6 Performing Your Own Data Translation
throws IOException;
public void writePadded(String s, char padChar, int length)

throws IOException;
public void write16bit(int value)

throws IOException;
public void write16bitUnsigned(int value)

throws IOException;
public void write16bit(long value, int scale)

throws IOException, ArithmeticException;
public void write16bitUnsigned(long value, int scale)

throws IOException, ArithmeticException;
public void write32bit(int value)

throws IOException;
public void write32bitUnsigned(long value)

throws IOException;
public void write32bit(long value, int scale)

throws IOException, ArithmeticException;
public void write32bitUnsigned(long value, int scale)

throws IOException, ArithmeticException;
public void write64bit(long value)

throws IOException;
public void write64bitUnsigned(long value)

throws IOException;
public void write64bitBigUnsigned(BigDecimal value)

throws IOException;
public void write64bit(long value, int scale)

throws IOException, ArithmeticException;
public void write64bit(BigDecimal value, int scale)

throws IOException, ArithmeticException;
public void write64bitUnsigned(long value, int scale)

throws IOException, ArithmeticException;
public void write64bitUnsigned(BigDecimal value, int scale)

throws IOException, ArithmeticException;
public void writePacked(BigDecimal value, int digits,

int precision, int scale)
throws ArithmeticException, IOException;

public void writePackedUnsigned(BigDecimal value,
int digits, int precision, int scale)
throws ArithmeticException, IOException;

}

Following are the definitions of these methods:
6-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

Translating Buffers from Java to Mainframe Representation
Table 6-2 MainframeWriter Class Public Method Definitions

Method Description

MainframeWriter() The default constructor. Constructs a
MainframeWriter using the default code
page of cp037 (EBCDIC).

MainframeWriter(cp) Constructs a MainframeWriter using the
specified codepage for character field
translation.

setDefaultCodepage(cp) Set the codepage to be used for all future data
translations.

toByteArray() Returns the translated buffer constructed by
writing data to the MainframeWriter class
as a byte array.

writeRaw(bytes) Write a raw byte array to the output buffer.

writeFloat(num) Convert a floating point number from the IEEE
Java float data type to IBM 4 byte floating point
format. The equivalent COBOL picture clause
is PIC S9V9 COMP-1.

writeDouble(num) Convert a floating point number from the IEEE
Java double data type to IBM 8 byte floating
point format. The equivalent COBOL picture
clause is PIC S9V9 COMP-2.

write(c) Translate and write a single character to the
output buffer. The equivalent COBOL picture
clause is PIC X.

writePadded(str, pad, len) Translate and write a string to a fixed length
character field. The passed pad character is used
if the length of the passed string is less than
len. If the length of the passed string is greater
than len, it will be truncated to len characters.
The equivalent COBOL picture clause is PIC
X(len).
BEA WebLogic Java Adapter for Mainframe Programming Guide 6-7

6 Performing Your Own Data Translation
write16bit(num) Writes a signed 16 bit binary integer to the
output buffer. The equivalent COBOL picture
clause is PIC S9(4) COMP.

write16bitUnsigned(num) Writes an unsigned 16 bit binary integer to the
output buffer. The equivalent COBOL picture
clause is PIC 9(4) COMP.

write16bit(num, scale) Writes a signed 16 bit integer to the output
buffer after moving the implied decimal point
left by scale digits. For example, the call
write16bit(100, 1) would result in the value 10
being written. The equivalent COBOL picture
clause is PIC S9(4) COMP.

write16bitUnsigned(num,
scale)

Writes an unsigned 16 bit integer to the output
buffer after moving the implied decimal point
left by scale digits. For example, the call
write16bitUnsigned(100, 1) would
result in the value 10 being written. The
equivalent COBOL picture clause is PIC 9(4)
COMP.

write32bit(num) Writes a signed 32 bit binary integer to the
output buffer. The equivalent COBOL picture
clause is PIC S9(8) COMP.

write32bitUnsigned(num) Writes an unsigned 32 bit binary integer to the
output buffer. The equivalent COBOL picture
clause is PIC 9(8) COMP.

write32bit(num, scale) Writes a signed 32 bit integer to the output
buffer after moving the implied decimal point
left by scale digits. For example, the call
write32bit(100L, 1) would result in the
value 10 being written. The equivalent COBOL
picture clause is PIC S9(8) COMP.

Method Description
6-8 BEA WebLogic Java Adapter for Mainframe Programming Guide

Translating Buffers from Java to Mainframe Representation
write32bitUnsigned(num,
scale)

Writes an unsigned 32 bit integer to the output
buffer after moving the implied decimal point
left by scale digits. For example, the call
write32bitUnsigned(100L, 1) would
result in the value 10 being written. The
equivalent COBOL picture clause is PIC 9(8)
COMP.

write64bit(num) Writes a signed 64 bit binary integer to the
output buffer. The equivalent COBOL picture
clause is PIC S9(15) COMP.

write64bitUnsigned(num) Writes an unsigned 64 bit binary integer to the
output buffer. The equivalent COBOL picture
clause is PIC 9(15) COMP.

write64bit(num, scale) Writes a signed 64 bit integer to the output
buffer after moving the implied decimal point
left by scale digits. For example, the call
write64bit(100L, 1) would result in the
value 10 being written. The equivalent COBOL
picture clause is PIC S9(15) COMP.

write64bitUnsigned(num,
scale)

Writes an unsigned 64 bit integer to the output
buffer after moving the implied decimal point
left by scale digits. For example, the call
write64bitUnsigned(100L, 1) would
result in the value 10 being written. The
equivalent COBOL picture clause is PIC
9(15) COMP.

writePacked(num, digits,
prec, scale)

Writes a decimal number as an IBM signed
packed data type with digits decimal digits
total and prec digits to the right of the decimal
point. Prior to conversion, the number is scaled
to the left scale digits. The equivalent
COBOL picture clause is PIC
S9(digits-prec)V9(prec) COMP-3.

Method Description
BEA WebLogic Java Adapter for Mainframe Programming Guide 6-9

6 Performing Your Own Data Translation
Using MainframeWriter to Create Data Buffers

As an example of using the MainframeWriter class to create a mainframe data buffer,
assume we have a mainframe service which accepts the data record shown in
Listing 6-4:

Listing 6-4 Data Record

01 INPUT-DATA-REC.
05 FIRST-NAME PIC X(10).
05 LAST-NAME PIC X(10).
05 AGE PIC S9(4) COMP.
05 HOURLY-RATE PIC S9(3)V9(2) COMP-3.

Listing 6-5 shows a Java test program that creates a buffer matching this record layout
using the MainframeWriter translation class:

Listing 6-5 Java Test Program

import java.math.BigDecimal;

import com.bea.base.io.MainframeWriter;

public class MakeBuffer
{

public static void main(String[] args) throws Exception
{

writePackedUnsigned(num,
digits, prec, scale)

Writes a decimal number as an IBM unsigned
packed data type with digits decimal digits
total and prec digits to the right of the decimal
point. Prior to conversion the number is scaled
to the left scale digits. The equivalent
COBOL picture clause is PIC
9(digits-prec)V9(prec) COMP-3.

Method Description
6-10 BEA WebLogic Java Adapter for Mainframe Programming Guide

Translating Buffers from Java to Mainframe Representation
MainframeWriter mf = new MainframeWriter();
mf.writePadded("Edgar", ’ ’, 10); // first name
mf.writePadded("Jones", ’ ’, 10); // last name
mf.write16bit(22); // age
mf.writePacked(new BigDecimal(22.50), 5, 2, 0);// hourly rate
byte[] buffer = mf.toByteArray();
System.out.println(getHexString(buffer));

}

private static String getHexString(byte[] buffer)
{
StringBuffer hexStr = new StringBuffer(buffer.length * 2);
for (int i = 0; i < buffer.length; ++i)
{

int n = buffer[i] & 0xff;
hexStr.append(hex[n >> 4]);
hexStr.append(hex[n & 0x0f]);

}
return(hexStr.toString());

}

private static char[] hex =
{

’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,
’8’, ’9’, ’A’, ’B’, ’C’, ’D’, ’E’, ’F’

};
}

The output of running this sample program is:

C5848781994040404040D1969585A24040404040001602250C

This buffer breaks down as follows:

FIRST-NAME C5848781994040404040"Edgar" + 5 spaces in EBCDIC
LAST-NAME D1969585A24040404040"Jones" + 5 spaces in EBCDIC
AGE 0016 22 as 16 bit integer
HOURLY-RATE 02250C 22.50 positive packed number

(decimal point is assumed)
BEA WebLogic Java Adapter for Mainframe Programming Guide 6-11

6 Performing Your Own Data Translation
Translating Buffers from Mainframe Format
to Java

Support for translating data received from the mainframe to Java data types is provided
by the com.bea.base.io.MainframeReader class. This class operates in a manner
similar to a Java jam.io.DataInputStream, and performs translations from
mainframe data types to equivalent types usable by a Java program. Like the
MainframeWriter class, the codepage used for string translations may be configured
and defaults to EBCDIC.

MainframeReader Public Interface

Listing 6-6 shows the public methods provided by the MainframeReader class.

Listing 6-6 MainframeReader Class Public Methods

package com.bea.base.io;

public class MainframeReader
{

public MainframeReader(byte[] buffer);
public MainframeReader(byte[] buffer, String codepage);
public void setDefaultCodepage(String cp);
public byte[] readRaw(int count) throws IOException;
public float readFloat() throws IOException;
public double readDouble() throws IOException;
public char readChar() throws IOException;
public String readPadded(char padChar, int length)

throws IOException;
public short read16bit() throws IOException;
public int read16bitUnsigned() throws IOException;
public long read16bit(int scale) throws IOException;
public int read32bit() throws IOException;
public long read32bit(int scale)

throws IOException;
public long read32bitUnsigned() throws IOException;
public long read32bitUnsigned(int scale) throws IOException;
6-12 BEA WebLogic Java Adapter for Mainframe Programming Guide

Translating Buffers from Mainframe Format to Java
public long read64bit() throws IOException;
public long read64bitUnsigned()

throws IOException;
public long read64bit(int scale)

throws IOException;
public BigDecimal read64bitBigUnsigned()

throws IOException;
public BigDecimal read64bitBig(int scale)

throws IOException
public BigDecimal readPackedUnsigned(int digits,

int precision, int scale)
throws ArithmeticException, IOException;

public BigDecimal readPacked(int digits,
int precision, int scale)
throws ArithmeticException, IOException;

}

Following are the definitions of these methods:

Table 6-3 MainframeReader Class Public Method Definitions

Method Description

MainframeReader(buffer) Constructs a MainframeReader for the
passed buffer using the default code page of
cp037 (EBCDIC).

MainframeReader(buffer, cp) Constructs a MainframeReader for the
passed buffer using the specified codepage for
character field translation.

setDefaultCodepage(cp) Sets the codepage to be used for all future
character translations.

readRaw(count) Read count characters from the buffer without
any translation and return them as a byte array.

readFloat() Read a 4 byte IBM floating point number and
return it as a Java float data type.

readDouble() Read an 8 byte IBM floating point number and
return it as a Java double data type.

readChar() Read and translate a single character.
BEA WebLogic Java Adapter for Mainframe Programming Guide 6-13

6 Performing Your Own Data Translation
readPadded(pad, len) Read and translate a fixed length character field
and return it as a Java String. The length of the
field is passed as len and the field pad character
is passed as pad. Trailing instances of the pad
character are removed before the data is
returned.

read16bit() Read a 16 bit binary integer and return it as a
Java short.

read16bitUnsigned() Read an unsigned 16 bit integer and return it as a
Java int.

read16bit(scale) Read a 16 bit binary integer and scale the value
by 10^scale. For example, if the value 10 is read
via read16bit(1), the returned value would
be 100.

read32bit() Read a 32 bit binary integer and return it as a
Java int.

read32bit(scale) Read a 32 bit binary integer and scale the value
by 10^scale. For example, if the value 10 is read
via read32bit(1), the returned value would
be 100.

read32bitUnsigned() Read an unsigned 32 bit integer and return it as a
Java long.

read32bitUnsigned(scale) Read an unsigned 32 bit binary integer and scale
the value by 10^scale. For example, if the value
10 is read via read32bit(1), the returned
value would be 100.

read64bit() Read a 64 bit binary integer and return it as a
Java long.

read64bitUnsigned() Read an unsigned 64 bit integer and return it as a
Java long.

Method Description
6-14 BEA WebLogic Java Adapter for Mainframe Programming Guide

Translating Buffers from Mainframe Format to Java
Using MainframeReader to Translate Data Buffers

As an example of using the MainframeReader, class following is a program that
translates and displays the fields in the mainframe buffer created above. Our input
buffer consists of the binary data:

C5848781994040404040D1969585A24040404040001602250C

Listing 6-7 shows the sample program used to process this buffer.

Listing 6-7 Sample Program

import java.math.BigDecimal;
import com.bea.base.io.MainframeReader;

public class ShowBuffer

read64bitUnsigned(scale) Read an unsigned 64 bit binary integer and scale
the value by 10^scale. For example, if the value
10 is read via read32bit(1), the returned
value would be 100.

read64bitBigUnsigned() Read an unsigned 64 bit integer and return it as a
Java BigDecimal.

read64bitBig(scale) Read a signed 64 bit integer and scale the value
by 10^scale. The value is returned as a Java
BigDecimal.

readPackedUnsigned(digits,
prec, scale)

Read an unsigned packed number consisting of
digits numeric digits with prec digits to the
right of the decimal. The value is scaled by
10^scale returned as a Java BigDecimal.

readPacked(digits, prec,
scale)

Read a signed packed number consisting of
digits numeric digits with prec digits to the
right of the decimal. The value is scaled by
10^scale returned as a Java BigDecimal.

Method Description
BEA WebLogic Java Adapter for Mainframe Programming Guide 6-15

6 Performing Your Own Data Translation
{
public static void main(String[] args) throws Exception
{
String data =

"C5848781994040404040D1969585A24040404040001602250C";
byte[] buffer = buildBinary(data);
MainframeReader mf = new MainframeReader(buffer);
System.out.println(" First Name: " + mf.readPadded(’ ’, 10));
System.out.println(" Last Name: " + mf.readPadded(’ ’, 10));
System.out.println(" Age: " + mf.read16bit());
System.out.println("Hourly Rate: " + mf.readPacked(5, 2, 0));
}

private static byte[] buildBinary(String data)
{

byte[] buffer = new byte[data.length() / 2];
for (int i = 0; i < buffer.length; ++i)
{

int msb = hex.indexOf(data.charAt(i * 2));
int lsb = hex.indexOf(data.charAt(i * 2 + 1));
buffer[i] = (byte) (msb << 4 | lsb);

}
return(buffer);
}

private static final String hex = "0123456789ABCDEF";
}

When run, the program produces the following output:

First Name: Edgar
Last Name: Jones
Age: 22
Hourly Rate: 22.50
6-16 BEA WebLogic Java Adapter for Mainframe Programming Guide

CHAPTER
7 Diagnostics

This section discusses the following topics:

n Gateway Statistics

n Gateway Tracing

n Low-Level Client Diagnostics

n CRM Tracing

n APPC API Tracing

Gateway Statistics

You can display the statistics for a Gateway definition using the WebLogic
Administration Console. For instructions on accessing Gateway statistics, refer to the
BEA WebLogic Java Adapter for Mainframe Configuration and Administration Guide.
The statistics information displayed for the Gateway is listed in Table 7-1.

Table 7-1 Statistics Categories

Total Requests The number of requests that have reached the gateway. This may
be larger than the sum of successes and failures if some requests
are still being processed.

Total Successes The number of requests that have successfully been processed to
completion by the gateway. Application level failures may be
reported as gateway successes.
BEA WebLogic Java Adapter for Mainframe Programming Guide 7-1

7 Diagnostics
Gateway Tracing

WebLogic JAM runtime traces are sent to the WebLogic log as "Debug" messages.
Debug messages are written to each WebLogic Server’s log file but are not sent to the
administration server. In addition, these messages are only sent to the server’s stdout
if the server’s configuration has both the Log to Stdout and Debug to Stdout options
selected on the server's Logging/General page.

For instructions on accessing Gateway tracing options, refer to the BEA WebLogic
Java Adapter for Mainframe Configuration and Administration Guide. The user trace
categories displayed for the Gateway are listed in Table 7-2.

Table 7-2 User Trace Categories

Here is an example of a trace for two user requests:

Average Response Time The average response time for all successful requests and some
failures. Failures that fail before they are transmitted over the
network do not affect this statistic. Timeouts do not affect this
statistic until a late reply is received.

Total Failures The total number of failures of any kind.

No Response The number of requests that have timed out and have never
received a response of any kind.

Late Response The number of requests that timed out and then received a
response.

Other The number of request that failed other than by timeout.

User level trace Produces trace records for the beginning and completion of all
user requests, both to and from the mainframe. The completion
message will indicate the success or failure of the request.

User dump trace Produces trace records with a hexadecimal dump of the user data
associated with all user requests and replies. This trace level will
also cause the trace records for User level trace to be produced.
7-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

Gateway Tracing
<Nov 15, 2001 3:53:06 PM GMT-06:00> <Debug> <JAM1> <[5560199] Beginning of
request:134217866 service:sampleCreate>

<Nov 15, 2001 3:53:06 PM GMT-06:00> <Debug> <JAM1> <[5560199] ---- request data
dump ----

0000: 00 00 00 00 0f d3 81 a2 a3 61 f0 40 40 40 40 40 Last/0
0010: 40 40 40 40 c6 89 99 a2 a3 61 f1 40 40 40 40 40 First/1
0020: 40 40 40 d4 f3 f2 f0 f0 40 c1 95 a8 a2 a3 99 85 M3200 Anystre
0030: 85 a3 40 c3 96 a4 99 a3 40 40 40 40 40 40 40 40 et Court
0040: 40 40 e3 e7 f7 f7 f5 f5 f5 f0 f0 f0 f0 TX775550000

>

<Nov 15, 2001 3:53:07 PM GMT-06:00> <Debug> <JAM1> <[5560199] End of
request:134217866>

<Nov 15, 2001 3:53:07 PM GMT-06:00> <Debug> <JAM1> <[5560199] ---- response data
dump ----

0000: 00 00 00 00 0f d3 81 a2 a3 61 f0 40 40 40 40 40 Last/0
0010: 40 40 40 40 c6 89 99 a2 a3 61 f1 40 40 40 40 40 First/1
0020: 40 40 40 d4 f3 f2 f0 f0 40 c1 95 a8 a2 a3 99 85 M3200 Anystre
0030: 85 a3 40 c3 96 a4 99 a3 40 40 40 40 40 40 40 40 et Court
0040: 40 40 e3 e7 f7 f7 f5 f5 f5 f0 f0 f0 f0 TX775550000

>

<Nov 15, 2001 3:53:07 PM GMT-06:00> <Debug> <JAM1> <[5560199] Starting one phase
commit>

<Nov 15, 2001 3:53:07 PM GMT-06:00> <Debug> <JAM1> <[5560199] Beginning of
request:1207959692 service:sampleRead>

<Nov 15, 2001 3:53:07 PM GMT-06:00> <Debug> <JAM1> <[5560199] ---- request data
dump ----

0000: 00 00 00 00 0f d3 81 a2 a3 61 f0 40 40 40 40 40 Last/0
0010: 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
0020: 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
0030: 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
0040: 40 40 40 40 40 40 40 40 40 40 40 40 40

>

<Nov 15, 2001 3:53:07 PM GMT-06:00> <Debug> <JAM1> <[5560199] End of
request:1207959692>

<Nov 15, 2001 3:53:07 PM GMT-06:00> <Debug> <JAM1> <[5560199] ---- response data
dump ----
BEA WebLogic Java Adapter for Mainframe Programming Guide 7-3

7 Diagnostics
0000: 00 00 00 00 0f d3 81 a2 a3 61 f0 40 40 40 40 40 Last/0
0010: 40 40 40 40 c6 89 99 a2 a3 61 f1 40 40 40 40 40 First/1
0020: 40 40 40 d4 f3 f2 f0 f0 40 c1 95 a8 a2 a3 99 85 M3200 Anystre
0030: 85 a3 40 c3 96 a4 99 a3 40 40 40 40 40 40 40 40 et Court
0040: 40 40 e3 e7 f7 f7 f5 f5 f5 f0 f0 f0 f0 TX775550000

>

<Nov 15, 2001 3:53:07 PM GMT-06:00> <Debug> <JAM1> <[5560199] Starting one phase
commit>

The trace categories listed in Table 7-3 are for use if you find it necessary to contact
BEA Technical Support. They may be used to collect data about your system necessary
to resolve problems.

Table 7-3 System Trace Categories

Low-Level Client Diagnostics

WebLogic JAM includes two low-level features to support diagnosing problems with
eGen-based client programs. While these facilities are not designed for use in a
production environment, they should be useful during development. These features are
enabled by adding the settings listed in Table 7-4 to the java statement at the end of
your startWebLogic.cmd file for the BEA WebLogic Server domain that you are
currently running.

CRMAPI trace Produces trace records showing the messages exchanged
between the Gateway and the CRM.

JAM socket trace Produces trace records showing a hexadecimal dump of the data
exchanged between the Gateway and the CRM.

Configuration trace Produces trace records showing operations within the WebLogic
Administration Console and interactions between it and the
Gateway.

Thread level trace Produces trace records showing operations within the Gateway
related to its internal threads and subtasks.
7-4 BEA WebLogic Java Adapter for Mainframe Programming Guide

Low-Level Client Diagnostics
Table 7-4 Client Diagnostic Settings

Listing 7-1 provides an example in bold of the changes that need to be made to the java
statement in the startWebLogic.cmd file necessary to enable the client diagnostic
loopback feature. This file can be found in the <WLS_HOME>\config\<domain>
directory. The java statement can be found near the end of the file.

Listing 7-1 startWebLogic.cmd Loopback Example

...
"%JAVA_HOME%\bin\java" -hotspot -ms64m -mx64m -classpath
%CLASSPATH% -Dweblogic.Domain=mydomain
-Dbea.jam.client.loopback=true -Dweblogic.Name=myserver
"-Dbea.home=g:\bea"
"-Djava.security.policy==g:\bea\wlserver6.1sp2/lib/weblogic.polic
y" -Dweblogic.management.password=%WLS_PW% weblogic.Server

...

Client Loopback

If the client loopback feature is enabled, all requests receive a response that is exactly
equal to the request data. Note that this loopback response is accomplished while the
data is in mainframe format. If a service accepts one DataView subclass and returns a
different one, a conversion failure in trying to construct the resulting DataView
subclass may occur.

Note: When the client loopback feature is enabled, a Gateway need not be deployed.

bea.jam.client.loopback Set to "true" to bypass the
gateway & simply loop the
request bytes back to the client.

bea.jam.client.stub Set to the full name of a class to
be used as a gateway stub.
BEA WebLogic Java Adapter for Mainframe Programming Guide 7-5

7 Diagnostics
Client Stub Operation

The client stub operation enables you to replace the gateway with your own class, in
effect providing a replacement for the entire target mainframe. This feature is valuable
for testing or proof-of-concept situations where the mainframe connection is not
available.

Your stub class must:

n Provide a constructor that takes no arguments.

n Be available on your CLASSPATH.

n Contain a method for each service that is to be supported. This method must take
some DataView subclass as its only argument and return a DataView subclass.

CRM Tracing

The CRM has tracing options that can be enabled for advanced debugging of
WebLogic JAM applications. Refer to the BEA WebLogic Java Adapter for Mainframe
Configuration and Administration Guide for information about setting trace levels.

On Windows NT and Unix systems, traces are written to a file in the directory in which
the CRM was started. If the environment variable APPDIR is set, the trace will be
written to the directory it specifies. The file name will be specified as:

CRM.<pid>.trace.<seq>

Where <pid> is the process ID of the CRM process, and <seq> is the sequence number
of the trace file, which is always 0.

On MVS systems, traces are written to SYSOUT, which is identified by TRACE DD
NAME.
7-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

CRM Tracing
Viewing Trace Output

With a few exceptions, each line in the trace output is preceded by a time tag,
identifying the date and time the line was written.

Note: The time tag information in the CRM trace should reflect the current system
time. In order to make use of the correct time zone information on Unix and
MVS systems, it is important that the TZ environment variable be set
correctly. If this variable is not set correctly on your system, refer to your
system documentation for further information.

After the time tag, a four-digit number appears, identifying the number of the task that
wrote the line to the trace. This number can be useful when multiple processes are
connected to the CRM.

If the trace level of the CRM is greater than one, a plus sign (+) following the task
number indicates that a line in the trace is level 1 output. For example, in the sequence:

Tue Oct 09 10:45:10.291 0001 +CRM initialization complete --
Normal dispatching begins

Tue Oct 09 10:45:10.291 0001 CRM state transition from
InitializationInProgress to Reset

The line CRM initialization complete is level 1 output, and the line CRM state
transition is not (it is level 3 output).

When the trace level is set to 3, hex dump information will appear in the trace. These
entries will appear interspersed with other trace statements. An example follows:

OFFS ----------------- HEXADECIMAL------------------ *------ASCII-----*
0000: 00 00 00 B2 63 00 00 56 BE AC 05 00 00 04 00 02 (....c..V........)
0010: 00 00 00 00 00 00 00 1C 7E 71 00 00 00 00 00 96 (.........q......)
0020: 7E 76 00 00 41 30 36 52 65 67 69 6F 6E 00 00 00 (.v..A06Region...)
0030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 (................)
0040: 00 00 00 00 01 57 45 42 4C 00 43 49 43 53 00 53 (.....WEBL.CICS.S)
0050: 4E 41 43 52 4D 00 00 00 00 00 00 00 00 00 00 00 (NACRM...........)
0060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 41 30 (..............A0)
0070: 36 43 49 43 53 00 00 00 00 00 00 00 00 00 00 00 (6CICS...........)
0080: 00 00 00 00 00 00 00 00 00 00 00 00 00 41 30 36 (.............A06)
0090: 43 49 43 53 00 00 53 4D 53 4E 41 31 30 30 00 4C (CICS..SMSNA100.L)
00A0: 4F 43 41 4C 00 00 00 00 00 00 02 00 00 04 00 02 (OCAL............)
00B0: EA 60 (..)
BEA WebLogic Java Adapter for Mainframe Programming Guide 7-7

7 Diagnostics
These entries consist of offset information in the left column, followed by columns
with the data in hexadecimal format, followed by an ASCII or EBCDIC representation
of the data. The data is read from left to right, top to bottom.

Hex dump information for application data appears in a slightly different format, with
two different representations of the user data. An example follows:

00000 |12345678 9fe29489 a3884040 40404040| |.....Smith |
00010 |40404040 d1968895 40404040 40404040| | John |
00020 |404040d8 f1f2f3f4 40c59394 40e2a34b| | Q1234 Elm St.|
00030 |40404040 40404040 40404040 40404040| | |
00040 |4040e3d5 f1f2f3f4 f5404040 40000000| | TN12345 ...|

The two columns following the hex data contain the user data in “actual” and “native”
representations. In the “actual” representation, the binary data is represented directly
as character data, with unprintable characters appearing as a period (.). In the “native”
representation, the binary data is converted to the native character format (EBCDIC or
ASCII), allowing text fields to be viewed directly.

Note: The above example was taken from a CRM trace from an EBCDIC machine,
so the “actual” and “native” columns both contain readable text.

APPC API Tracing

The BEA support team might request an APPC API trace for diagnosis of a customer
problem. The mapping of the APPC API trace is BEA internal.

The VTAM APPC API may be captured by enabling the APPC API tracing. The API
trace shows the parameters and values passed and returned to the VTAM APPC stack.
The API trace is captured to the GTF tracing facility. The GTF tracing facility must be
active in the mainframe region to capture the API traces.

After capturing the traces, you must format the print using GTF formatting procedures
such as IPCS. The APPC API trace is written to GTF as user id '2EA'. You may use
this ID to filter the GTF print to include only the APPC API traces.

Refer to the BEA WebLogic Java Adapter for Mainframe Configuration and
Administration Guide for information about setting APPC tracing.
7-8 BEA WebLogic Java Adapter for Mainframe Programming Guide

APPC API Tracing
Viewing APPC Trace Output

The APPC API trace captures the parameters and values used by the CRM to make a
VTAM APPC request. The trace will show the APPC verb control block before and
after the request is made. The response to the request will show return codes and
returned values.

The following example of a request and a response was formatted by using the IBM
provided program IKJEFT01.
BEA WebLogic Java Adapter for Mainframe Programming Guide 7-9

7 Diagnostics
7-10 BEA WebLogic Java Adapter for Mainframe Programming Guide

CHAPTER
A DataView
Programming
Reference

This section provides the rules that allow you to identify what form a generated Java
class takes from a given COBOL copybook processed by the eGen Application
Generator (eGen utility). An understanding of the rules facilitates a programmer’s
ability to correctly code any custom programs that make use of the generated classes.

The eGen utility maps a COBOL copybook into a Java class. The COBOL copybook
contains a data record description. The eGen utility derives the generated Java class
from the com.bea.dmd.dataview.DataView class (later referred to as DataView),
which is provided on your WebLogic JAM product CD-ROM in the jam.jar file.

This section discusses data mapping rules in the following topics:

n Field Name Mapping Rules

n Field Type Mappings

n Group Field Accessors

n Elementary Field Accessors

n Array Field Accessors

n Fields with REDEFINES Clauses

n COBOL Data Types

n Other Access Methods for Generated DataView Classes
BEA WebLogic Java Adapter for Mainframe Programming Guide A-1

A DataView Programming Reference
n Known Limitations of WebLogic JAM working with COBOL Copybooks

You should find the COBOL terms in this section easy to understand; however, you
may need to use a COBOL reference book or discuss the terms with a COBOL
programmer. Also, you can process a copybook with the eGen utility and examine the
generated Java code in order to understand the mapping.

Field Name Mapping Rules

When you process a COBOL copybook containing field names, they are mapped to
Java names by the eGen utility. All alphabetic characters are mapped to lower case,
except in the following two cases.

1. All dashes are removed and the character following the dash is mapped to upper
case.

2. When a prefix is added to the name (as when creating a field accessor function
name), the first character of the base name is mapped to upper case.

Table A-1 lists some mapping examples.

Field Type Mappings

When you process a COBOL copybook, the data types of fields are mapped to Java
data types. The mapping is performed by the eGen utility according to the following
rules:

Table A-1 Example Field Name Mapping from COBOL to Java and Accessor

COBOL Field Name Java Base Name Sample Accessor Name

EMP-REC empRec setEmpRec

500-REC-CNT 500RecCnt set500RecCnt
A-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

Field Type Mappings
1. Groups map to DataView subclasses.

2. All alphanumeric fields are mapped to type String.

3. All edited numeric fields are mapped to type String.

4. All SIGN SEPARATE, BLANK WHEN ZERO or JUSTIFIED RIGHT fields are
mapped to type String.

5. SIGN IS LEADING is not supported.

6. The types COMP-1, COMP-2, COMP-5, COMP-X, and PROCEDURE-POINTER fields
are not supported (an error message is generated).

7. All INDEX fields are mapped to Java type int.

8. POINTER maps to Java type int.

9. All numeric fields with any digits to the right of the decimal point are mapped to
type BigDecimal.

10. All COMP-3 (packed) fields are mapped to type BigDecimal.

11. All other numeric fields are mapped as shown in Table A-2.

Table A-2 Numeric Field Mapping

Number of Digits Java Type

 <= 4 short

> 4 and <= 9 int

> 9 and <= 18 long

> 18 BigDecimal
BEA WebLogic Java Adapter for Mainframe Programming Guide A-3

A DataView Programming Reference
Group Field Accessors

Each nested group in a COBOL copybook is mapped to a corresponding DataView
subclass. The generated subclasses are nested exactly as the COBOL groups in the
copybook. In addition, the eGen utility generates a private instance variable of this
class type and a get accessor.

For example, the following copybook:

10 MY-RECORD.
20 MY-GRP.

30 ALNUM-FIELD PIC X(20).

Produces code similar to the following:

public MyGrp2V getMyGrp();
public static class MyGrp2V extends DataView
{

// Class definition
}

Elementary Field Accessors

Each elementary field is mapped to a private instance variable within the generated
DataView subclass. Access to this variable is accomplished by two accessors that are
generated (set and get).

These accessors have the following forms:

public void setFieldName(FieldType value);

public FieldType getFieldName();

Where:

FieldType

is described in the Field Type Mappings section.

FieldName

is described in the Field Name Mapping Rules section.
A-4 BEA WebLogic Java Adapter for Mainframe Programming Guide

Array Field Accessors
For example, the following copybook:

10 MY-RECORD.
20 NUMERIC-FIELD PIC S9(5).
20 ALNUM-FIELD PIC X(20).

Produces the accessors:

public void setNumericField(int value);
public int getNumericField();
public void setAlnumField(String value);
public String getAlnumField();

Array Field Accessors

Array fields are handled according to the field accessor rules described in Group Field
Accessors and Elementary Field Accessors, with the addition that each accessor takes
an additional int argument that specifies which array entry is to be accessed, for
example:

public void setFieldName(int index, FieldType value);
public FieldType getFieldName(int index);

Array fields specified with the DEPENDING ON clause are handled the same as
fixed-size arrays with the following special rules:

1. The accessors may be used to get or set any instance up to the maximum array
index.

2. The controlling (DEPENDING ON) variable is evaluated when the DataView is
converted to or from an external format, such as a mainframe format. The eGen
utility converts only the array elements with subscripts less than the controlling
value.
BEA WebLogic Java Adapter for Mainframe Programming Guide A-5

A DataView Programming Reference
Fields with REDEFINES Clauses

Fields that participate in a REDEFINES set are handled as a unit. A private byte[]
variable is declared to hold the underlying mainframe data, as well as a private
DataView variable. Each of the redefined fields has an accessor or accessors. These
accessors take more CPU overhead than the normal accessors because they perform
conversions to and from the underlying byte[] data.

For example the copybook:

10 MY-RECORD.
20 INPUT-DATA.

30 INPUT-A PIC X(4).
30 INPUT-B PIC X(4).

20 OUTPUT-DATA REDEFINES INPUT-DATA PIC X(8).

Produces Java code similar to the following:

private byte[] m_redef23;
private DataView m_redef23DV;
public InputDataV getInputData();
public String getOutputData();
public void setOutputData(String value);
public static class InputDataV extends DataView
{
// Class definition.
}

COBOL Data Types

This section summarizes the COBOL data types supported by WebLogic JAM
software. Table A-3 lists the COBOL data item definitions recognized by the eGen
utility. Table A-4 lists the syntactical features and data types recognized by the eGen
utility. If a COBOL feature is unsupported and it is not listed as ignored in the table,
an error message is generated.
A-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

COBOL Data Types
Table A-3 Major COBOL Features

COBOL Feature Support

IDENTIFICATION DIVISION Unsupported

ENVIRONMENT DIVISION Unsupported

DATA DIVISION Partially Supported

WORKING-STORAGE SECTION Partially Supported

Data record definition Supported

PROCEDURE DIVISION Unsupported

COPY Unsupported

COPY REPLACING Unsupported

EJECT, SKIP1, SKIP2, SKIP3 Supported

Table A-4 COBOL Data Types

COBOL Type Java Type

COMP, COMP-4, BINARY (integer) Short/Int/Long

COMP, COMP-4, BINARY (fixed) BigDecimal

COMP-3, PACKED-DECIMAL BigDecimal

COMP-5 Unsupported

COMP-X Unsupported

DISPLAY numeric (zoned) BigDecimal

BLANK WHEN ZERO (zoned) String

SIGN IS LEADING (zoned) Unsupported

SIGN IS LEADING SEPARATE (zoned) String

SIGN IS TRAILING (zoned) String
BEA WebLogic Java Adapter for Mainframe Programming Guide A-7

A DataView Programming Reference
SIGN IS TRAILING SEPARATE (zoned) String

edited numeric String

COMP-1, COMP-2 (float) Unsupported

edited float numeric String

DISPLAY (alphanumeric) String

edited alphanumeric String

INDEX Int

POINTER Int

PROCEDURE-POINTER Unsupported

JUSTIFIED RIGHT Unsupported (ignored)

SYNCHRONIZED Unsupported (ignored)

REDEFINES Supported

66 RENAMES Unsupported

66 RENAMES THRU Unsupported

77 level Supported

88 level (condition) Unsupported (ignored)

group record Inner Class

OCCURS (fixed array) Array

OCCURS DEPENDING (variable-length array) Array

OCCURS INDEXED BY Unsupported (ignored)

OCCURS KEY IS Unsupported (ignored)

Table A-4 COBOL Data Types

COBOL Type Java Type
A-8 BEA WebLogic Java Adapter for Mainframe Programming Guide

Other Access Methods for Generated DataView Classes
Other Access Methods for Generated
DataView Classes

WebLogic JAM allows you to access DataView classes through several methods as
described in the following sections:

n Mainframe Access to DataView Classes

n XML Access to DataView Classes

n Hashtable Access to DataView Classes

Mainframe Access to DataView Classes

This section describes how mainframe format data may be moved into and out of
DataView classes. The eGen Application Generator writes this code for you, so this
information is provided as reference.

Mainframe format data may be extracted from a DataView class through the use of the
MainframeWriter class. Listing A-1 shows a sample of code that may be used to
perform the extraction.

Listing A-1 Sample Code for Extracting Mainframe Format Data from a
DataView Class

import com.bea.base.io.MainframeWriter;
import com.bea.dmd.dataview.DataView;

 ...

 /**
 * Get mainframe format data from a DataView into a byte[].
 */
 byte[] getMainframeData(DataView dv)
 {
 try
 {
BEA WebLogic Java Adapter for Mainframe Programming Guide A-9

A DataView Programming Reference
 MainframeWriter mw = new MainframeWriter();
 // To override the DataView’s codepage, change the
 // above constructor call to something like:
 // ...new MainframeWriter("cp1234");

 return dv.toByteArray(mw);
 }
 catch (java.io.IOException e)
 {
 // Some conversion failure occurred…
 }
 }

If you want to override the codepage provided when the DataView was generated, you
may provide another codepage as a String argument to the MainframeWriter
constructor, as shown in the comment in Listing A-2.

Loading mainframe data into a DataView is a similar process, in this case requiring the
use of the MainframeReader class. Listing A-2 shows a sample of code that may be
used to perform the load.

Listing A-2 Sample Code for Loading Mainframe Data into a DataView Class

import com.bea.base.io.MainframeReader;
import com.bea.dmd.dataview.DataView;

 ...

 /**
 * Put a byte[] containing mainframe format data into a DataView.
 */
 MyDataView putMainframeData(byte[] buffer)
 {
 MainframeReader mr = new MainframeReader(buffer);
 // To override the DataView's codepage, change the above
 // constructor call to something like:
 // …new MainframeReader("cp1234", buffer);
 .
 .
 .
 MyDataView dv;
 .
 .
A-10 BEA WebLogic Java Adapter for Mainframe Programming Guide

Other Access Methods for Generated DataView Classes
 .
 try
 {
 // Construct a new DataView with the mainframe data.
 dv = new MyDataView(mr);

 // Or, to load a pre-existing DataView with mainframe data.
 // dv.mainframeLoad(mr);
 }
 catch (java.io.IOException e)
 {
 // Some conversion failure occurred.
 }

 return dv;
 }

XML Access to DataView Classes

Facilities are provided to move XML data into and out of DataView classes. These
operations are performed through the use of the XmlLoader and XmlUnloader
classes.

n XmlLoader is used to load XML data into a DataView.

n XmlUnloader is used to unload data from a DataView into XML.

n If the eGen script used to produce the DataView specifies the "support xml"
option, then both a DTD and an XML/Schema that describe the XML format for
this DataView are produced.

Listing A-3 shows an example of the code used to load XML data into a DataView.

Listing A-3 Sample Code for Loading XML Data into a DataView

import com.bea.dmd.dataview.DataView;
import com.bea.dmd.dataview.XmlLoader;

 ...

 void loadXmlData(String xml, DataView dv)
BEA WebLogic Java Adapter for Mainframe Programming Guide A-11

A DataView Programming Reference
 {
 XmlLoader xl = new XmlLoader();
 try
 {
 // Load the xml. Note that the xml argument may be either
 // a String or a org.w3c.dom.Element object.
 xl.load(xml, dv);
 }
 catch (Exception e)
 {
 // Some conversion error occurred.
 }
 }

Listing A-4 shows an example of the code used to unload a DataView into XML.

Listing A-4 Sample Code for Unloading a DataView into XML

import com.bea.dmd.dataview.DataView;
import com.bea.dmd.dataview.XmlUnloader;

 ...

 String unloadXmlData(DataView dv)
 {
 XmlUnloader xu = new XmlUnloader();

 try
 {
 String xml = xu.unload(dv);
 return xml;
 }
 catch (Exception e)
 {
 // Some conversion error occurred.
 }
 }
A-12 BEA WebLogic Java Adapter for Mainframe Programming Guide

Other Access Methods for Generated DataView Classes
Hashtable Access to DataView Classes

WebLogic JAM also provides facilities to load and unload DataView objects using
Hashtable objects. Hashtable objects are most often used to move data from one
DataView to another similar DataView.

When DataView fields are moved into Hashtables, each field is given a key that is a
string reflecting the location of the field within the original copybook data structure.
Listing A-5 shows a sample of a COBOL Copybook.

Listing A-5 Sample emprec.cpy COBOL Copybook

1 *--
2 * emprec.cpy
3 * An employee record.
4 *--
5
6 02 emp-record.
7
8 04 emp-ssn pic 9(9) comp-3.
9
10 04 emp-name.
11 06 emp-name-last pic x(15).
12 06 emp-name-first pic x(15).
13 06 emp-name-mi pic x.
14
15 04 emp-addr.
16 06 emp-addr-street pic x(30).
17 06 emp-addr-st pic x(2).
18 06 emp-addr-zip pic x(9).
19
20 * End

The fields for the COBOL Copybook in Listing A-5 are stored into a Hashtable as
shown in Table A-5.
BEA WebLogic Java Adapter for Mainframe Programming Guide A-13

A DataView Programming Reference
Table A-5 COBOL Copybook Hashtable

Code for Unloading and Loading Hashtables

Following is an example of the code used to unload a DataView into a Hashtable.

 Hashtable ht = new HashtableUnloader().unload(dv);

Following is an example of the code used to load a Hashtable into an existing
DataView.

 new HashtableLoader().load(dv);

Rules for Unloading and Loading Hashtables

The basic rules of Hashtable unloading are:

n All data elements in the DataView are placed into the Hashtable.

n Each data item is stored as an object of its Java type. Elements of
int/short/long type are converted to Integer/Short/Long.

n Arrays are mentioned at the appropriate level in the key as an index enclosed in
"[", "]" pairs. For instance, if empAddr was an array, then one key into the
Hashtable might be empRecord.empAddr[2].empAddrStreet.

Key String Content Type

empRecord.empSsn BigDecimal

empRecord.empName.empNameLast String

empRecord.empName.empNameFirst String

empRecord.empName.empNameMi String

empRecord.empAddr.empAddrStreet String

empRecord.empAddr.empAddrSt String

empRecord.empAddr.empAddrZip String
A-14 BEA WebLogic Java Adapter for Mainframe Programming Guide

Other Access Methods for Generated DataView Classes
The basic rules of Hashtable loading are:

n All data elements in the DataView attempt to acquire a value from the
Hashtable. If no matching key exists, the element retains its original value.

n Hashtable members of the wrong type result in a ClassCastException being
thrown.

Name Translator Interface Facility

A name translator interface facility is available to provide Hashtable name mappings.
Both HashtableLoader and HashtableUnloader provide a constructor that accepts
an argument of type com.bea.dmd.dataview.NameTranslator. Table A-6 lists the
descriptions of the public interface methods that must be implemented.

Table A-6 Name Translator Interface

You can write classes that implement this interface for your application. These
implementations are used to translate the key strings before the Hashtable is accessed.

Following are some useful implementations that are included in the WebLogic JAM
library:

The HashtableLoader, HashtableUnloader, and the various name translator
classes are included in the "com.bea.dmd.dataview" package.

Method Description

translate(String input) This method received a String object as an input
parameter and returns a String object.

Class Constructor Purpose

NameFlattener() Reduces the key to the portion following the
final period character.

PrefixChanger(String old, String add) Removes an old prefix & adds a new one.

PrefixChanger(String old) Removes a prefix.
BEA WebLogic Java Adapter for Mainframe Programming Guide A-15

A DataView Programming Reference
Known Limitations of WebLogic JAM
working with COBOL Copybooks

Following are some of the known limitations of this version of the WebLogic JAM
product.

n Continuation lines are not recognized in COBOL copybooks. This is only a
problem for long character literals occurring within VALUES clauses. Comment
out the relevant clause to fix the problem.

n COBOL copybooks with array (table) data items having an OCCURS DEPENDING
ON clause must be structured so that the depending-on counter data item is not
contained within the same group data item as the one containing the array.

n USAGE clauses on group data items in COBOL copybooks are not properly
propagated to their subordinated member data items.
A-16 BEA WebLogic Java Adapter for Mainframe Programming Guide

CHAPTER
B eGen Application
Generator Reference

This section contains reference pages for the WebLogic JAM eGen Application
Generator (eGen utility). This information includes the rules for writing the script file
that controls the code generator.

Synopsis

The eGen utility maps a COBOL copybook into a Java class.

Invoke the utility with the following command:

java com.bea.jam.egen.EgenCobol scriptfile

where:

java

is the name of the Java virtual machine executable in the Java Development Kit
(JDK).

com.bea.jam.egen.EgenCobol
is the full class name of the eGen utility.

scriptfile

is the script file that controls the eGen utility. You must write this script file on
an application-by-application basis. (See Listing B-1 for an example).
BEA WebLogic Java Adapter for Mainframe Programming Guide B-1

B eGen Application Generator Reference
If the WebLogic JAM installation bin directory has been added to your path, the eGen
utility may also be invoked with the following command:

egencobol scriptfile

Listing B-1 Example of scriptfile.egen

example script
#

view demo.CustomDataView from emprec.cpy

service demoService accepts CustomDataView returns CustomDataView

page demoPage "Demo Page"
{
 view demo.CustomDataView

 buttons
 {
 "Try It" service(demoService) shows demoPage
 }
}

servlet demo.DemoServlet shows demoPage

Script Syntax Reserved Words

The reserved words shown below must be used as specified in the Grammar section.

Note: A reserved word can be used as an identifier if it is enclosed in either single or
double quotation marks (refer to General Rules).

accepts buttons class client codepage ejb

from generate group is method page
B-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

General Rules
General Rules

n The ‘#’ character and all following characters on the same line are a comment.
Use the ‘#’ character to specify commented text.

n The character sequence “//” and all following characters on the same line are a
comment. Use the “//” characters to specify commented text.

n The character sequence “/*” and all following characters until the occurrence of
the sequence “*/” are a comment. Use the “/*” characters to specify
commented text that extends beyond one line.

n White space (including new lines) is not significant, except when it is used to
separate tokens. White space includes new lines, carriage returns, tabs, spaces,
etc.

n Any sequence of letters, digits, underscores, or periods is a word.

n Any word that does not match a reserved word is an identifier.

n Any sequence of characters is treated as an identifier if it is enclosed in either
single or double quotes. This allows the use of reserved words and sequences
that contain spaces.

Grammar

The eGen script grammar uses a modified Backus-Naur Form (BNF) syntax, which is
used in many industry-standard software reference guides. BNF syntax specifies a
context-free grammar. Reserved words are shown in bold. Comments are in italics
preceded by a dash (—).

reset returns server service servlet shows

support view transaction xml
BEA WebLogic Java Adapter for Mainframe Programming Guide B-3

B eGen Application Generator Reference
script:
definition | script definition

fulldefinition:
generate definition | definition

definition:
viewdef | servicedef | servletdef | ejbdef | classdef |
pagedef

viewdef:
view viewname from copybook | viewdf viewmodifier

viewmodifier:
codepage codepagename | support xml

servicedef:
service servicename accepts fullViewname returns fullViewname

servletdef:
servlet classname shows pagename

ejbdef:
clientejb | serverejb

clientejb:
client ejb classname ejbspec { clientmethods }

serverejb:
server ejb classname ejbspec { servermethoddef }

classdef:
client class classname { clientmethods }

ejbspec:
ejbregistration | ejbregistration transactiondef

transactiondef:
transaction [NotSupported | Required | Supports |
RequiresNew | Mandatory | Never]

pagedef:
page pagename title { view viewname buttons { buttonlist } }

buttonlist:
 buttondef | buttonlist buttondef

buttondef:
servicebutton | ejbbutton
B-4 BEA WebLogic Java Adapter for Mainframe Programming Guide

Grammar
clientmethods:
clientmethoddef | clientmethods clientmethoddef

clientmethoddef:

 method methodname is servicename

servermethoddef:
 method methodname (fullviewname) returns fullviewname

servicebutton:
buttonname service (servicename) shows pagename

ejbbutton:
buttonname ejbmethod () shows pagename

viewname:
classname

fullViewname:

viewname | viewname [codepagename]

copybook:
identifier

—An identifier that names a file containing a COBOL data definition.

servicename:
identifier

—An identifier that matches a resource definition in your jcrmgw.cfg file

pagename:
identifier

—An identifier that names a page definition.

codepagename:
identifier

—The name of a codepage to be used for character translation to/from
mainframe data formats. This must be a codepage supported by the JDK being
used.

methodname:
identifier

—The name to be given to a generated Java method.

classname:
identifier

—An identifier that names a Java class, including any package name.
BEA WebLogic Java Adapter for Mainframe Programming Guide B-5

B eGen Application Generator Reference
ejbregistration:
identifier

—The name that will be used to register the home interface for an EJB.

title:
identifier

—The title to be placed into the HTML generated for a page.

buttonname:
identifier

—A button name that will be used in the HTML generated for a page.

ejbmethod:
identifier

—An EJB classname and method specification that should look like this:
package.ejbclass.method

or
ejbclass.method

Results of Running the eGen Application
Generator

n The specified COBOL copybook is parsed for each DataView definition
(described in DataView Programming Reference) and a Java source file for the
specified DataView class is generated in the current directory.

If XML support was requested, then the following files are also produced:

l viewname.dtd - DTD file

l viewname.xsd - XML Schema file

n For each servlet definition, a Java source file is generated in the current directory
for the specified class.

n For each client class definition, a Java source file is generated in the current
directory for the specified class.
B-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

Results of Running the eGen Application Generator
n For each EJB definition, three Java source files, a WebLogic deployment
information file, and a deployment descriptor text file are generated in the
current directory. The names of the generated files are listed in below.

Name of File Purpose

classnameHome.java EJB Home Interface

classnameBean.java EJB Implementation class

classname.java EJB Remote Interface

classname-jar.xml EJB Deployment descriptor

wl-classname-jar.xml WebLogic Deployment Info
BEA WebLogic Java Adapter for Mainframe Programming Guide B-7

B eGen Application Generator Reference
B-8 BEA WebLogic Java Adapter for Mainframe Programming Guide

CHAPTER
C Understanding How
WebLogic JAM Uses
XML

BEA WebLogic Java Adapter for Mainframe (WebLogic JAM) uses the capabilities
of XML to exchange data between different applications and operating systems.
Understanding basic XML terms will help you to understand WebLogic JAM’s XML
capabilities and how they are used.

This section discusses the following topics:

n What is XML?

l Document Type Definition

l DTD Generated from eGen Application Generator (emprec.dtd)

n How WebLogic JAM Uses XML

What is XML?

Extensible Markup Language, or XML, is a text format for exchanging data between
different systems. It allows data to be described in a simple, standard, text-only format.
Since the data is presented in a standard form, applications on disparate systems can
interpret the data using simple text parsing tools, instead of having to interpret data in
proprietary binary formats.
BEA WebLogic Java Adapter for Mainframe Programming Guide C-1

C Understanding How WebLogic JAM Uses XML
XML documents come in two varieties: data and metadata.

n XML Data Document

Data records can be converted into XML documents, which can then be
transmitted to other applications. The XML data documents contain a single
top-level entity (or tag) that represents the entire data record. Fields within the
record are represented by other subordinate entities nested within the top-level
entity. Each entity has a unique tag name, which corresponds to a field within
the original data record. Each entity has content, which is the actual data value
of the field. Entities may also have attributes, which are values attached to the
entities that augment the normal content values. The XML data document file
name ends with a .xml extension.

See Listing C-2 for an example XML data document.

n XML Metadata

Every XML document consists of a top-level entity, which in turn may be
composed of subordinate entities. The structure of these entities, which included
their tag names, the order in which they occur, the type and length of their
content values, and their allowed attribute values, is described by a metadata
definition. Metadata definitions can take the form of XML documents
themselves. There are two standard formats for XML metadata documents: XML
Document Type Definition (DTD) and XML Schema.

Document Type Definition

A Document Type Definition, or DTD, defines the legal building blocks of an XML
document. It defines the document structure with a list of legal elements (tags). While
XML provides an application independent way of sharing data, the DTD provides a
common definition for interchanging data.

Your application can use a standard DTD to verify that data that you receive from the
outside world is valid. You can also use a DTD to verify your own data.

The XML DTD file name ends with a .dtd extension.

See Listing C-3 for an example XML DTD document.
C-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

How WebLogic JAM Uses XML
XML Schema

A schema specifies the structure of an XML document and constraints on its content.
While XML is the meta-language that provides the rules for defining tag languages, an
XML Schema document is a formal specification of the grammar for a particular tag
language. The schema defines the elements that can appear within the document and
the attributes that can be associated with an element. It also defines the structure of the
document: which elements are child elements of others, the sequence in which the
child elements can appear, and the number of child elements. It defines whether an
element is empty or can include text. The schema can also define default values for
attributes.

XML Schema is more precise than DTD, providing more descriptive information
about each XML element. It is likely that XML Schema will eventually replace XML
DTD as the dominant standard metadata format.

A schema is useful for validating the document content to determine whether a
document is a valid instance of the grammar expressed by that schema and for
describing your grammar for use by others.

The XML Schema file name ends with a .xsd extension.

See Listing C-4 for an example XML Schema document.

How WebLogic JAM Uses XML

The WebLogic JAM eGen Application Generator provides the ability to generate both
XML Schema and XML DTD (Document Type Definition) documents for a given
COBOL copybook record definition. The WebLogic JAM runtime environment
provides the capability of converting data records into XML data documents formatted
according to their corresponding schema or DTD definitions.

The following listings show examples of the XML files generated by the eGen utility
from the COBOL Copybook for an employee information record.

Listing C-1 shows an example of an employee information record from a COBOL
Copybook. The eGen utility generates an XML Schema and a DTD from the employee
information record. Listing C-2 shows the corresponding XML document that
BEA WebLogic Java Adapter for Mainframe Programming Guide C-3

C Understanding How WebLogic JAM Uses XML
conforms to the XML Schema and DTD generated from the employee record
information, Listing C-3 shows the corresponding DTD, and Listing C-4 shows the
corresponding XML Schema.

Listing C-1 COBOL Copybook for Employee Information Record (emprec.cpy)

*--
* emprec.cpy
* Employee record.
*
* @(#)$Id: emprec.cpy,v 1.2 1999/11/12 01:16:41 $
*---
 02 emp-record.

 04 emp-ssn pic 9(9) comp-3.

 04 emp-name.
 06 emp-name-last pic x(15).
 06 emp-name-first pic x(15).
 06 emp-name-mi pic x.

 04 emp-addr.
 06 emp-addr-street pic x(30).
 06 emp-addr-st pic x(2).
 06 emp-addr-zip pic x(9).

* End

Listing C-2 Example XML Document that Conforms to a DTD and XML
Schema Generated from the eGen Application Generator (emprec.xml)

<emprec>
 <empRecord>
 <empSsn>660337645</empSsn>
 <empName>
 <empNameLast>Doe</empNameLast>
 <empNameFirst>John</empNameFirst>
 <empNameMi>P</empNameMi>
 </empName>
 <empAddr>
 <empAddrStreet>3235 Possum Park Ln.</empAddrStreet>
 <empAddrSt>TX</empAddrSt>
 <empAddrZip>758050000</empAddrZip>
C-4 BEA WebLogic Java Adapter for Mainframe Programming Guide

How WebLogic JAM Uses XML
 </empAddr>
 </empRecord>
</emprec>

Listing C-3 DTD Generated from eGen Application Generator (emprec.dtd)

<!--
! DTD emprec 1.0
!
! Definition: emprec
! Version: 1.0
! Source: ../symbol/emprec.cpy
! Generated: 2000-09-27T19:18:25.084Z
! Created: 2000-09-27T19:18:24.937Z
! Modified: 1999-11-12T01:16:41.000Z
!-->

<!ELEMENT emprec
 (empRecord)>

<!ATTLIST emprec
 date CDATA #DEFAULT "unknown">
 <!-- format="ccyy-mm-ddThh:mm:ss.mmmZ" -->

<!ATTLIST emprec
 version CDATA #DEFAULT "1.0">

<!-- empRecord -->
<!ELEMENT empRecord
 (empSsn ,
 empName ,
 empAddr)>

<!-- empRecord.empSsn -->
<!ELEMENT empSsn
 (#PCDATA)>

<!-- empRecord.empName -->
<!ELEMENT empName
 (empNameLast ,
 empNameFirst ,
 empNameMi)>

<!-- empRecord.empName.empNameLast -->
BEA WebLogic Java Adapter for Mainframe Programming Guide C-5

C Understanding How WebLogic JAM Uses XML
<!ELEMENT empNameLast
 (#PCDATA)>

<!-- empRecord.empName.empNameFirst -->
<!ELEMENT empNameFirst
 (#PCDATA)>

<!-- empRecord.empName.empNameMi -->
<!ELEMENT empNameMi
 (#PCDATA)>

<!-- empRecord.empAddr -->
<!ELEMENT empAddr
 (empAddrStreet ,
 empAddrSt ,
 empAddrZip)>

<!-- empRecord.empAddr.empAddrStreet -->
<!ELEMENT empAddrStreet
 (#PCDATA)>

<!-- empRecord.empAddr.empAddrSt -->
<!ELEMENT empAddrSt
 (#PCDATA)>

<!-- empRecord.empAddr.empAddrZip -->
<!ELEMENT empAddrZip
 (#PCDATA)>

<!-- End -->

Listing C-4 XML Schema Generated from eGen Application Generator
(emprec.xsd)

<?xml version="1.0"?>
<schema
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">

 <xsd:annotation>
 <xsd:documentation>
 Schema: emprec
 Version: 1.0
 Source: ../symbol/emprec.cpy
 Generated: 2000-09-27T19:19:42.857Z
 Created: 2000-09-27T19:19:43.708Z
C-6 BEA WebLogic Java Adapter for Mainframe Programming Guide

How WebLogic JAM Uses XML
 Modified: 1999-11-12T01:16:41.000Z
 </xsd:documentation>
 </xsd:annotation>

 <xsd:element name="emprec">
 <xsd:complexType>

 <xsd:attribute name="date"
 type="xsd:timeInstant"/>

 <xsd:attribute name="version"
 type="xsd:string"
 use="default"
 value="1.0"/>

 <xsd:element name="empRecord">
 <xsd:complexType>

 <xsd:element name="empSsn">
 <xsd:simpleType base="xsd:integer">
 <xsd:precision value="9"/>
 <xsd:minInclusive value="0">
 </xsd:simpleType>
 <!-- <%picture value="9(9)"/> -->
 </xsd:element>

 <xsd:element name="empName">
 <xsd:complexType>

 <xsd:element name="empNameLast"
 type="xsd:string"
 length="15"/>
 <!-- <%picture value="x(15)"/> -->

 <xsd:element name="empNameFirst"
 type="xsd:string"
 length="15"/>
 <!-- <%picture value="x(15)"/> -->

 <xsd:element name="empNameMi"
 type="xsd:string"
 length="1"/>
 <!-- <%picture value="x"/> -->

 </xsd:complexType>
 </xsd:element> <!--"empName"-->

 <xsd:element name="empAddr">
 <xsd:complexType>
BEA WebLogic Java Adapter for Mainframe Programming Guide C-7

C Understanding How WebLogic JAM Uses XML
 <xsd:element name="empAddrStreet"
 type="xsd:string"
 length="30"/>
 <!-- <%picture value="x(30)"/> -->

 <xsd:element name="empAddrSt"
 type="xsd:string"
 length="2"/>
 <!-- <%picture value="x(2)"/> -->

 <xsd:element name="empAddrZip"
 type="xsd:string"
 length="9"/>
 <!-- <%picture value="x(9)"/> -->

 </xsd:complexType>
 </xsd:element> <!--"empAddr"-->

 </xsd:complexType>
 </xsd:element> <!--"empRecord"-->

 </xsd:complexType>
 </xsd:element> <!--"emprec"-->

</schema>
C-8 BEA WebLogic Java Adapter for Mainframe Programming Guide

Index

A
accessors A-4
alphanumeric field

rules for mapping A-3
Application models

inbound 3-1, 3-7
outbound 3-2, 3-15

array field
rules for mapping A-5

B
BigDecimal

rules for mapping to A-3
BLANK WHEN ZERO field

rules for mapping A-3

C
CLASSPATH 3-21
Client loopback 7-5
Client stub operation 7-6
COBOL copybook

creating 2-4
existing 2-5
LINKAGE SECTION 2-4
obtaining 2-4
processing by eGen Application

Generator B-6
rules for mapping into a Java class A-1
rules for mapping REDEFINES A-6

sample 2-5
COBOL data types

syntax features and data types supported
by eGen Application Generator
A-6

context-free grammar
rules for eGen script B-3

D
DataView 2-6
Deployment

quick start 4-7
sample 4-4

Deployment descriptors
merging 4-4
renaming 4-2

E
edited numeric field

rules for mapping A-3
eGen Application Generator

rules for generating code A-1
rules for writing script file B-1

eGen script
application section 3-3
components of client EJB 3-21
components of HTML page definition 3-

30
components of server EJB 3-7
components of servlet definition 3-32
BEA WebLogic Java Adapter for Mainframe Programming Guide I-1

components of stand-alone client 3-16
DataView section 2-7
general form 3-3
processing 2-8
writing 2-6

eGenClient
locating Gateways 6-3
making mainframe requests 6-4
using directly for translation 6-2

EJB
Home Interface class generated by eGen

Application Generator B-7
Implementation class generated by eGen

Application Generator B-7
Remote Interface class generated by

eGen Application Generator B-
7

EJB application
customizing 3-13, 3-26, 3-33
deploying 4-1

elementary field
rules for mapping A-4

F
field name

rules for mapping into Java name A-2

G
group field

nested, rules for mapping A-4
groups

rules for mapping A-3

I
Inbound application models 1-5, 3-1, 3-7
INDEX field

rules for mapping A-3

J
jar file

jam_11.jar file on product CDROM A-1
Java application

customizing a client EJB application 3-
26

customizing a server EJB application 3-
13

customizing servlet-only 3-33
Java application code 3-2
Java application models 3-1
Java code

compiling 2-9
Java data types

converting to COBOL data types 2-4
Java Development Kit (JDK) B-1
JMS 3-36
JUSTIFIED RIGHT field

rules for mapping A-3

M
MainframeReader

public interface 6-12
translating data buffers 6-15

MainframeWriter
creating data buffers 6-10
public interface 6-5

N
numeric field

rules for mapping A-3

O
Outbound application models 3-2, 3-15

R
REDEFINES clause
I-2 BEA WebLogic Java Adapter for Mainframe Programming Guide

rules for mapping A-6

S
Security

configuring in client program 3-35
identify 3-34
local 3-34
verify 3-34

Servlet
deploying 4-1

SIGN IS TRAILING field
rules for mapping A-3

X
XML

DTD C-2
Schema C-2
varieties C-2
What XML is C-3
BEA WebLogic Java Adapter for Mainframe Programming Guide I-3

I-4 BEA WebLogic Java Adapter for Mainframe Programming Guide

	Restricted Rights Legend
	Trademarks or Service Marks
	1 Introduction to Generating Applications
	Understanding How WebLogic JAM Uses DataViews
	Understanding How WebLogic JAM Provides Programmatic Access to Services
	Application Model Overview
	Mainframe to WebLogic Server Application Models
	WebLogic Server to Mainframe Application Models

	Roadmap for WebLogic JAM Programming

	2 Generating a Java Application with the eGen Application Generator
	Understanding eGen
	Working With COBOL Copybooks
	Obtaining a COBOL Copybook
	Creating a New COBOL Copybook
	Using an Existing COBOL Copybook

	Limitations of the eGen Utility

	Writing an eGen Script
	Writing the DataView Section of an eGen Script

	Processing eGen Scripts with the eGen Utility
	Creating an Environment for Generating and Compiling the Java Code
	Generating the Java DataView Code
	Special Considerations for Compiling the Java Code

	3 Basic Programming Techniques
	Choosing an eGen Java Application Model
	Generating the Java Application Code

	General Form of an eGen Script
	Writing the Application Section of an eGen Script
	List of Services
	List of Application Components

	Mainframe to WebLogic Server Application Models
	Generating a Server Enterprise Java Bean-Based Application
	Components of an eGen Server EJB Script
	Generated Files
	SampleServer.java Source File
	SampleServerBean.java Source File
	SampleServerHome.java Source File
	SampleServer-jar.xml Source File
	wl-SampleServer-jar.xml Source File

	Customizing a Server Enterprise Java Bean-Based Application
	Compiling and Deploying

	WebLogic Server to Mainframe Application Models
	Generating a Stand-Alone Client Application
	Components of an eGen Stand-Alone Application Script
	Generated Files
	Customizing a Stand-Alone Java Application

	Generating a Client Enterprise Java Bean-Based Application
	Components of an eGen Client EJB Script
	Generated Files
	SampleClient.java Source File
	SampleClientBean.java Source File
	SampleClientHome.java Source File
	SampleClient-jar.xml Source File
	wl-SampleServer-jar.xml Source File

	Customizing an Enterprise Java Bean-Based Application
	Compiling and Deploying

	Generating a Servlet Application
	Components of an eGen HTML Page Definition
	Components of an eGen Servlet Definition
	Generated Files
	Customizing a Servlet WebLogic JAM Application

	Supplying Security Credentials
	Security Levels
	Supplying Security Credentials in a WebLogic JAM Client Program

	WebLogic JAM to JMS

	4 Deploying Applications
	Deploying a WebLogic JAM eGen EJB
	Renaming Deployment Descriptors
	Adding Business Logic to a Generated EJB
	Merging Multiple Deployment Descriptors
	Sample EJB Deployment

	Deploying a WebLogic JAM eGen Servlet (Quick-Start Deployment)

	5 Understanding Programming Flows
	Distributed Program Link Programming Flows
	Java Client Request/Response to CICS DPL
	CICS Request/Response DPL to WebLogic Server EJB
	CICS DPL Asynchronous No Reply to WebLogic Server Application
	Transactional Java Client Request/Response to CICS DPL
	Transactional CICS Request/Response DPL to WebLogic Server EJB

	IMS Implicit APPC Programming Flows
	Java Client Request/Response to IMS Transaction Program
	IMS Asynchronous No Reply Transaction Program to Java Server
	Transactional Java Client Request/Response to IMS Transaction Program

	Common Programming Interface for Communications Programming Flows
	Java Client Request/Response to Host CPI-C
	Host CPI-C Request/Response to WebLogic Server EJB
	Host CPI-C Asynchronous No Reply to Java Server
	Transactional Java Client Request/Response to Host CPI-C
	Transactional Host CPI-C Request/Response to WebLogic Server EJB

	6 Performing Your Own Data Translation
	Why Perform Your Own Data Translation?
	Using EgenClient Directly
	How EgenClient Locates a WebLogic JAM Gateway
	Using EgenClient to Make a Mainframe Request

	Translating Buffers from Java to Mainframe Representation
	MainframeWriter Public Interface
	Using MainframeWriter to Create Data Buffers

	Translating Buffers from Mainframe Format to Java
	MainframeReader Public Interface
	Using MainframeReader to Translate Data Buffers

	7 Diagnostics
	Gateway Statistics
	Gateway Tracing
	Low-Level Client Diagnostics
	Client Loopback
	Client Stub Operation

	CRM Tracing
	Viewing Trace Output

	APPC API Tracing
	Viewing APPC Trace Output

	Field Name Mapping Rules
	Field Type Mappings
	Group Field Accessors
	Elementary Field Accessors
	Array Field Accessors
	Fields with REDEFINES Clauses
	COBOL Data Types
	Other Access Methods for Generated DataView Classes
	Mainframe Access to DataView Classes
	XML Access to DataView Classes
	Hashtable Access to DataView Classes
	Code for Unloading and Loading Hashtables
	Rules for Unloading and Loading Hashtables
	Name Translator Interface Facility

	Known Limitations of WebLogic JAM working with COBOL Copybooks
	Synopsis
	Script Syntax Reserved Words
	General Rules
	Grammar
	Results of Running the eGen Application Generator
	What is XML?
	Document Type Definition
	XML Schema

	How WebLogic JAM Uses XML

	Index

