
BEA JRockit

Developing Java
Applications

Version 5.0 Service Pack 2
June 2005

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign Manager
for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA
WebLogic Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic JRockit,
BEA WebLogic Log Central, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal,
BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup Edition, BEA WebLogic Workshop, and Liquid
Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support is a service mark of BEA Systems, Inc.
All other company and product names may be the subject of intellectual property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Developing Java Applications v

Contents

Introduction

Recommended Coding Practices
Read the Relevant Specifications. 2-4

Example 1: Reflection . 2-4

Example 2: Reflection Revisited . 2-4

Example 3: Serialization . 2-5

Never Use Deprecated Unsafe Methods . 2-5

Minimize the Use of Finalizers . 2-5

Don’t Depend on Thread Priorities . 2-5

Don’t Use Internal sun.* or COM.jrockit.* Classes . 2-6

Override java.Object.hashCode for User Defined Classes When Using java.util.Hashtable .
2-6

Do Careful Thread Synchronization . 2-6

Expect Only Standard System Properties . 2-6

Minimize the Number of Java Processes . 2-7

Avoid Calling System.gc(). 2-7

Troubleshooting
An Application Does Not Run . 3-10

Slow-to-Start Applications. 3-10

Process Counter Does Not Initialize . 3-11

Large Memory Consumption . 3-11

vi Developing Java Applications

Slow Performance vis-a-vis HotSpot . 3-12

Randomly Appearing Bugs . 3-12

BEA JRockit JVM Throws Errors HotSpot Does Not Throw . 3-12

Slow Performance in Development Mode . 3-13

BEA JRockit JVM Does Not Run Jakarta Tomcat as a Windows Service. 3-13

Other Frequently Asked Questions . 3-14

Profiling and Debugging with BEA JRockit
Profiling BEA JRockit . 4-15

Using JVMPI . 4-15

How JVMPI Works. 4-16

Changing the JVMPI Default Behavior . 4-16

Additional JVMPI Documentation . 4-18

Profiling with the HPROF Profiling Agent . 4-18

HPROF Documentation . 4-18

Debugging with BEA JRockit. 4-18

Java Virtual Machine Debugger Interface (JVMDI) . 4-19

How JVMDI Works . 4-19

JVMDI Documentation . 4-19

Migrating to BEA JRockit
About Application Migration . 5-21

Why Migrate? . 5-21

Migration Restrictions . 5-22

Migration Support . 5-22

Migration Procedures . 5-22

Environment Changes . 5-23

Other Tips. 5-23

Developing Java Applications vii

Tuning BEA JRockit JVM for Your Application . 5-23

Testing the Application . 5-24

Why Test? . 5-24

How to Test. 5-24

Submitting Migration Tips . 5-24

viii Developing Java Applications

Developing Java Applications 1-1

C H A P T E R 1

Introduction

Welcome to Developing Java Applications, a guide for Java developers creating Java
applications and then migrating them from third-party JVMs to BEA JRockit JVM. This
document contains the following information:

The best coding practices developers should follow to ensure optimal performance with
any JVM, particularly BEA JRockit 5.0 JDK. See Recommended Coding Practices.

A detailed troubleshooting guide that will lead you through the solutions to some of the
more common problems developers have encountered with BEA JRockit JDK. See
Troubleshooting.

A description of the debugging and profiling tools available with BEA JRockit SDK. See
Profiling and Debugging with BEA JRockit.

Procedures for migrating applications developed on a third-party JVM to BEA JRockit
JDK. See Migrating to BEA JRockit.

In t roduct ion

1-2 Developing Java Applications

C H A P T E R

Developing Java Applications 2-3

2

Recommended Coding Practices

This section contains guidelines for writing applications to run on BEA JRockit. This information
provided here is in no way complete; it merely helps you avoid some common pitfalls. BEA
Systems does not want to compromise Java’s “write once run everywhere” notion. On the
contrary, this sections highlights guidelines that are valid for any Java program. They are,
however, especially important when switching between JVMs in general and between Sun
Microsystem’s HotSpot JVM and BEA JRockit JVM in particular.

The best coding practices are summarized in the following subjects:

Read the Relevant Specifications

Never Use Deprecated Unsafe Methods

Minimize the Use of Finalizers

Don’t Depend on Thread Priorities

Don’t Use Internal sun.* or COM.jrockit.* Classes

Override java.Object.hashCode for User Defined Classes When Using java.util.Hashtable

Do Careful Thread Synchronization

Expect Only Standard System Properties

Minimize the Number of Java Processes

Avoid Calling System.gc()

2-4 Developing Java Applications

Read the Relevant Specifications
Read the Java language specification and Java API specification carefully and do not rely on
unspecified behavior.

A BEA JRockit JVM is based on a number of specifications; for example, The Java Virtual
Machine Specification and the Java API Specification. You should be aware that many
implementations of these specifications exist: BEA JRockit JVM is one. You should never expect
any particular behavior that is not specified in one of these documents. Unspecified behavior
might differ between the Sun JVM and BEA JRockit JVM. Note too that behavior is sometimes
different between individual releases of the Sun JVM and can also change between releases of
BEA JRockit JVM.

You can find these specifications at the following sites:

The Java Language Specification

http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html

Java 2 Platform API Specification,

http://java.sun.com/j2se/1.5.0/docs/api/index.html

The Java Virtual Machine Specification

http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.
 html

The specifications are written to give JVM vendors freedom to optimize their JVMs, and therefore
they leave certain behavior unspecified. You should understand, however, that numerous parts of
the specifications mentioned above are unspecified. The following examples describe three of
these unspecified elements.

Example 1: Reflection
The Java API Specification of the method getMethods() on the java.lang.Class class clearly
states: “The elements in the array returned are not sorted and are not in any particular order.”

Example 2: Reflection Revisited
The toString() method of the java.lang.reflect.Method might include the access modifier
native. Therefore, you should not rely on the result of this call to be equal between JVM
implementations. Some classes in the Java API specification are implemented as native either by
BEA JRockit JVM and the Sun JVM. There is no guarantee that a native implementation on one
JVM has to be native on another one.

Developing Java Applications 2-5

Example 3: Serialization
The Java API Specification of the method defaultReadObject() of the
java.lang.ObjectInputStream class does not specify the order in which fields are
de-serialized; hence no such order can be expected.

Never Use Deprecated Unsafe Methods
The deprecated methods

java.lang.Thread.stop

java.lang.Thread.suspend

java.lang.Thread.resume

java.lang.Runtime.runFinalizersOnExit

are inherently unsafe, and should never be used. For more information see:

http://java.sun.com/j2se/1.5.0/docs/guide/misc/threadPrimitiveDeprecation.html

Minimize the Use of Finalizers
Finalizers are often error prone since they often implicitly depend on the order of execution. This
order differs amongst JVMs, and between consecutive runs on the same JVM. Using finalizers is
also inherently bad for performance since it imposes an additional burden on the memory
management system that needs to handle execution of finalizers and let objects live longer. For
more information on using—and not using—finalizers, please refer to:

http://access1.sun.com/techarticles/weak.references.html

http://www.memorymanagement.org/glossary/r.html#reference.object

Don’t Depend on Thread Priorities
Be careful when using java.lang.Thread.setPriority. Depending on thread priorities might
lead on unwanted or unexpected results since the scheduling algorithm might choose to starve
lower priority threads of CPU time and never execute them. Furthermore the result might differ
between operating systems and JVMs.

The Java API specification states that “Every thread has a priority. Threads with higher priority
are executed in preference to threads with lower priority.”

The priority set by the setPriority() method is a parameter that might be used in the
thread-scheduling algorithm, which shares CPU execution time between executing threads. This

2-6 Developing Java Applications

algorithm might be controlled either by the JVM or by the operating system. It is important to be
aware of the fact that this algorithm normally differs between operating systems and that the
algorithm might change between releases of both the operating system and the JVM. For BEA
JRockit JVM native threads, the algorithm is implemented by the operating system.

Don’t Use Internal sun.* or COM.jrockit.* Classes
The classes that BEA JRockit JDK includes fall into package groups java.*, javax.*, org.*,
sun.* and COM.jrockit.*. All but the sun.* and COM.jrockit packages are a standard part of
the Java platform and will be supported into the future.In general, non-standard packages, which
are outside of the Java platform, can be different across JVM vendors and OS platforms
(Windows, Linux, and so on) and can change at any time without notice with JDK versions.
Programs that contain direct usage of the sun.* and COM.jrockit.* packages are not 100% Pure
Java.

For more information, please refer to the note about sun.* packages at:

http://java.sun.com/products/jdk/faq/faq-sun-packages.html

Override java.Object.hashCode for User Defined Classes When
Using java.util.Hashtable

On BEA JRockit JVM, the current default implementation of hashCode returns a value for the
object determined by the JVM. The value is created using the memory address of the object.
However, because this value can be reused if the object is moved during garbage collection, it is
possible to obtain the same hash code for two different objects. Also, two objects that represent
the same value are guaranteed to have the same hash code only if they are the exact same object.
This implementation is not particularly useful for hashing; therefore, derived classes should
override hashCode().

Do Careful Thread Synchronization
Make sure that you synchronize threads that access shared data. Synchronization bugs often
appear when changing JVMs because the implementation of locks, garbage collection, thread
scheduling and so on, might differ significantly.

Expect Only Standard System Properties
When implementing java.lang.System.getProperties() or
java.lang.System.getProperty(), you should only depend on standard system properties

Developing Java Applications 2-7

being returned; different VMs may return a different set of extended properties. Non-standard
properties should not be returned.

When the JVM starts, it inserts a number of standard properties into the system properties list.
These properties, and the meaning of their values, are listed in the Java API specification. Do not
expect any other non-standard properties.

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/System.html

Minimize the Number of Java Processes
When designing applications there is sometimes a choice between running several processes, i.e.
JVM instances versus running several threads or thread groups within a single process, i.e. JVM
instance. If possible, it is more effective to use as few JVM instances as possible per physical
machine.

Avoid Calling System.gc()
Don’t call java.lang.System.gc(). This method behaves differently with BEA JRockit JVM
than with other JVMs. Instead of doing a complete garbage collection, as with the Sun JVM and
others, when called by an application running with BEA JRockit JVM, System.gc() behaves
depending upon the garbage collector already in use:

If you’re using a generational copy collector, System.gc() does a collection in their
nursery.

For all other collectors, it does a collection only if one is needed. In other words, it does
nothing special on the call.

Note: If you must call System.gc(), you can override BEA JRockit JVM’s behavior by using
the command line option -XXfullsystemgc.

The BEA JRockit JVM garbage collector will generally do a much better job of deciding when to
do garbage collection than will System.gc(). If you are having problems with memory usage,
pause times for garbage collection, and so on, you are better off configuring the BEA JRockit JVM
memory management system appropriately. See Tuning BEA JRockit JVM.

2-8 Developing Java Applications

C H A P T E R

Developing Java Applications 3-9

3

Troubleshooting

While the process of switching to BEA JRockit 1.4.2 JVM from another JVM is relatively easy
and generally problem-free, you might encounter some known issues while or after making this
switch. This section describes some of those issues and describes some simple workarounds. The
issues that might occur are:

An Application Does Not Run

Slow-to-Start Applications

Process Counter Does Not Initialize

Large Memory Consumption

Slow Performance vis-a-vis HotSpot

Randomly Appearing Bugs

BEA JRockit JVM Throws Errors HotSpot Does Not Throw

Slow Performance in Development Mode

BEA JRockit JVM Does Not Run Jakarta Tomcat as a Windows Service

Other Frequently Asked Questions

3-10 Developing Java Applications

An Application Does Not Run
I cannot get my favorite Java application to run on BEA JRockit JVM. What am I doing
wrong?

Many problems with running applications on BEA JRockit JVM is due to erroneous environment
variables or non-standard startup options.

Start by ensuring that your environment variables are set up correctly. Make sure that you have set
your JAVA_HOME environment variable correctly, i.e. set to the directory where BEA JRockit JVM
has been installed, and that “%JAVA_HOME%\bin” is available in your PATH environment variable
before any other directory where any version of java.exe may exist. When running applications as
Windows services it is crucial that you set these environment variables system wide. To do this:

1. Open the Start menu and select Settings>Control Panel>System

2. Select the Advanced tab.

3. Click Environment Variables.

4. To set system wide environment variables you must edit in the lower part of this dialog box,
labeled System variables.

Applications are often started via scripts. Make sure that none of the startup scripts includes
non-standard startup options for java. See Tuning BEA JRockit JVM for complete documentation
of standard and non-standard options.

Slow-to-Start Applications
Why does it take longer for my applications to start with BEA JRockit JVM?

Java programs are compiled into byte code by a Java compiler. Many JVMs, including the Sun
JVM, interprets this byte code each time it is executed. BEA JRockit JVM, however, uses code
generation technology to generate native machine code from the byte code. This is sometimes
called Just-In-Time (JIT) compilation. The code generation step imposes an initial time penalty
before execution. Normally, the subsequent execution of the code is faster than interpreting the
byte code. BEA JRockit JVM is optimized for server applications that normally run for long
periods of times. The initial time penalty is normally negligible in comparison to the performance
gains of code generation over time.

Developing Java Applications 3-11

Process Counter Does Not Initialize
Sometimes, when running BEA JRockit, I encounter a NotAvailableException when the
console tries to connect to JRockit or if the program itself tries to access the CPU load
counters.

Occasionally, the process counter does not initialize. This happens only on Windows installations
where either the security settings are such that the Performance Data Helper (PDH; a Windows
API that reads performance metrics from the operating system) process counter can't be read or
where, for reasons unknown, the PDH process counter is simply turned off. This will deny you the
rights to look at the process counter and throw the error. You will receive this message:

JRockit] WARNING: Could not initialize the virtualbytes counter, some

functionality in jrockit.management.Memory will not be available. Message

was: failed to create counter query. String was: (null)\Virtual Bytes

[JRockit] WARNING: Could not initialize the JVM process load counter, CPU

load generated by the JVM will not be available. Message was: failed to create

counter query. String was: (null)\% Processor Time

Why the process counter is turned off is unknown; however, should you encounter this situation,
you can turn it on again by following the instructions at this location:

http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/

exctrlst-o.asp

If that doesn't work, check your security settings and then make sure the performance counters can
be read using the Windows perfmon tool, running as the same user that the JVM process is running
as.

Large Memory Consumption
Why does my applications consume more memory when running on BEA JRockit JVM?

The Java programming language relies on a mechanism called garbage collection (GC) to free
memory when it is no longer being used. There is no equivalence to the delete operator in the
C++ programming language or the free function in the C programming language. Any Java
virtual machine must include a garbage collector that handles the task of finding unreferenced
objects, possibly invoke their finalizers and free the memory used to hold their state.

The BEA JRockit JVM garbage collectors are described in Selecting and Running a Memory
Management System in Using BEA JRockit DK. Generally, the BEA JRockit JVM garbage

3-12 Developing Java Applications

collection implementations trade high memory usage for speed and minimal program wide halts;
that is, acquiring system wide locks.

Slow Performance vis-a-vis HotSpot
I have a script/program that use BEA JRockit JVM for certain tasks. Why is it slower than
when I use the Sun JVM, HotSpot?

This might be related to the Slow-to-Start Applications above. Scripts or other programs may start
many Java processes and may therefore experience bad performance compared to the Sun JVM,
since BEA JRockit JVM has a code generation penalty when starting up. When starting many Java
processes and running them only for a short time, this penalty can become significant.

Randomly Appearing Bugs
Why does my application have randomly appearing bugs when running on BEA JRockit
JVM that it doesn't have when running on the Sun JVM?

You may be experiencing synchronization bugs in your application. It is not uncommon that such
bugs are revealed when switching JVMs. The JVM specification and the Java language
specification leaves plenty of room for optimization that may cause unsynchronized access to
shared data, to cause different behavior on different JVMs.

For more information see:

http://java.sun.com/docs/books/jls/second_edition/html/memory.doc.html

http://java.sun.com/docs/books/vmspec/2nd-edition/html/Threads.doc.html

BEA JRockit JVM Throws Errors HotSpot Does Not Throw
Why is BEA JRockit JVM throwing IllegalAccessError, ClassFormatError,
IncompatibleClassChangeError or other LinkageError exceptions when the Sun JVM is
not?

Verification ensures that the binary representation of a class or interface is structurally correct. For
example, it checks that every instruction has a valid operation code; that every branch instruction
branches to the start of some other instruction, rather than into the middle of an instruction; that
every method is provided with a structurally correct signature; and that every instruction obeys the
type discipline of the Java programming language.

If an error occurs during verification, then an instance of the following subclass of class
LinkageError will be thrown at the point in the program that caused the class to be verified

Developing Java Applications 3-13

Example: Using JTidy throws IllegalAccessError

In an early version of JTidy from Apache Software Foundation, the compiler had incorrectly
inlined a reference to a private variable belonging to an outer class. This caused an exception to
be thrown since BEA JRockit JVM does stricter verification than the Sun JVM is. The old
Tidy.jar should be replaced with the new and correctly compiled version.

Slow Performance in Development Mode
Why is BEA JRockit JVM slower when BEA WebLogic Server is running in development
mode?

When WebLogic Server is started in development mode, BEA JRockit JVM is by default started
with the -Xdebug option. This makes BEA JRockit JVM run with some overhead.

Note: This option is purely for diagnostics use and should therefore not be used in a production
type environment.

BEA JRockit JVM Does Not Run Jakarta Tomcat as a Windows
Service

I cannot get BEA JRockit JVM to run Jakarta Tomcat as a Windows service. What am I
doing wrong?

The quick answer to this problem is: if you are using jk_nt_service, do everything that you need
to do for the Sun JVM, then exchange the non-standard Sun JVM -Xrs startup option with the
non-standard BEA JRockit JVM -Xnohup in the wrapper.properties configuration file. The
rest of this answer is a slightly more detailed description of this.

1. First make sure that you have completed all the tasks concerning the environment variables in
“I cannot get my favorite Java application to run on BEA JRockit JVM. What am I doing
wrong?” above.

Many people use the jk_nt_service windows service wrapper to run java applications; for
example, Jakarta Tomcat, as a Windows service (see
http://members.ozemail.com.au/~lampante/howto/tomcat/iisnt/). Independently
of what Windows service you may be using you must make sure that it is not using any
non-standard startup options. When using jk_nt_service, the startup is defined in:
<tomcat install dir>\conf\jk\wrapper.properties

2. Make sure that you set the three properties wrapper.tomcat_home, wrapper.java_home
and wrapper.cmd_line are set accordingly:

3-14 Developing Java Applications

– wrapper.tomcat_home must be set with the installation directory of tomcat

– wrapper.java_home must be set to the same value as the JAVA_HOME environment
variable.

– The property wrapper.cmd_line defines the startup command. At the time of writing,
this property should be set to:

wrapper.cmd_line=$(wrapper.javabin) -Xnohup
-Djava.security.policy=="$(wrapper.tomcat_policy)"
-Dtomcat.home="$(wrapper.tomcat_home)" -classpath
$(wrapper.class_path) $(wrapper.startup_

for BEA JRockit JVM. Normally this command includes a non-standard option to stop
the JVM from shutting down the process when a user logs off. For BEA JRockit JVM
this non-standard option is -Xnohup, for the Sun JVM it is -Xrs.

Other Frequently Asked Questions
What is a Java virtual machine?

As described by the Java Virtual Machine Specification:

“The Java virtual machine is the cornerstone of the Java and Java 2 platforms. It is the component
of the technology responsible for its hardware- and operating system- independence, the small size
of its compiled code, and its ability to protect users from malicious programs.”

What is the difference between the Sun JVM and BEA JRockit JVM?

The most well know JVM is the implementation from Sun. The Sun JVM is called HotSpot. The
Sun JVM is shipped in the Java Developer's Kit (JDK) and Java Runtime Environment (JRE) from
Sun.

The BEA JRockit JVM from BEA systems is optimized for reliability and performance for server
side applications. To achieve this, BEA JRockit JVM uses technologies such as code generation,
hot spot detection, code optimization, advanced garbage collection algorithms and tight operating
system integration.

Should I write my applications differently for BEA JRockit JVM?

No! You should not write your applications in any other way for BEA JRockit JVM than you
should for any other JVM. You should, however, design and implement your applications well in
order for them to run well on BEA JRockit JVM.

C H A P T E R

Developing Java Applications 4-15

4

Profiling and Debugging with BEA
JRockit

BEA JRockit SDK includes the JVM profiling interface (JVMPI) and JVM debugging interface
(JVMDI) which enable Java applications to interact with the JVM to assist with profiling and
debugging activities. While developers will need to implement these interfaces within their
application code, users’ exposure to JVMPI and JVMDI will usually be through the profiling and
debugging tools they select for the applications they are running.

This section includes information on the following subjects:

Profiling BEA JRockit

Profiling with the HPROF Profiling Agent

Profiling BEA JRockit
You can use any number of third-party profiling tools to profile BEA JRockit performance. This
section describes how to use the Java Virtual Machine Profiler Interface (JVMPI) to facilitate
using those tools.

Using JVMPI
The JVM Profiler Interface allows you to use third-party profiling tools with BEA JRockit SDK.

Warning: This interface is an experimental feature in the Java 2 JDK and is not yet a standard
profiling interface.

4-16 Developing Java Applications

How JVMPI Works
JVMPI is a two-way function call interface between the Java virtual machine and an in-process
profiler agent. On one hand, the VM notifies the profiler agent of various events, corresponding
to, for example, heap allocation, thread start, and so on. Concurrently, the profiler agent issues
controls and requests for more information through the JVMPI. For example, the profiler agent
can turn on/off a specific event notification, based on the needs of the profiler front-end.

The profiler front-end may or may not run in the same process as the profiler agent. It may reside
in a different process on the same machine, or on a remote machine connected via the network.
The JVMPI does not specify a standard wire protocol. Tools vendors may design wire protocols
suitable for the needs of different profiler front-ends.

A profiling tool based on JVMPI can obtain a variety of information such as heavy memory
allocation sites, CPU usage hot-spots, unnecessary object retention, and monitor contention, for a
comprehensive performance analysis.

JVMPI supports partial profiling; that is, a user can selectively profile an application for certain
subsets of the time the VM is up and can also choose to obtain only certain types of profiling
information.

Note: JVMPI supports only one agent per VM.

Changing the JVMPI Default Behavior
Use the following option to modify the JVMPI default behavior:

-Xjvmpi [:<argument1>=<value1>[,<argumentN>=<valueN>]]

When BEA JRockit runs with a profiling agent attached, by default a number of events are enabled
that can create significant overhead. Since JVMPI doesn’t require all of these events to be sent,

Developing Java Applications 4-17

you can disable them by setting the -Xjvmpi flag. Use the arguments listed in Table 4-1 to modify
the default behavior.:

Table 4-1 Command Line Arguments for -Xjvmpi

Argument Description

entryexit=off|on (default on) Setting this to off disables the following method entry and exit
events sent by JVMPI:
• JVMPI_EVENT_METHOD_ENTRY

• JVMPI_EVENT_METHOD_ENTRY2

• JVMPI_EVENT_METHOD_EXIT

allocs=off|on (default on) Setting this to off disables these object allocation and free events:

JVMPI_EVENT_OBJECT_ALLOC

JVMPI_EVENT_OBJECT_MOVE

JVMPI_EVENT_OBJECT_FREE

JVMPI_EVENT_ARENA_NEW

JVMPI_EVENT_ARENA_DELETE

monitors=off|on (default on) Setting this to off disables these monitor contention events:

JVMPI_EVENT_RAW_MONITOR_CONTENDED_ENTER

JVMPI_EVENT_RAW_MONITOR_CONTENDED_ENTERED

JVMPI_EVENT_RAW_MONITOR_CONTENDED_EXIT

JVMPI_EVENT_MONITOR_CONTENDED_ENTER

JVMPI_EVENT_MONITOR_CONTENDED_ENTERED

JVMPI_EVENT_MONITOR_CONTENDED_EXIT

JVMPI_EVENT_MONITOR_WAIT

JVMPI_EVENT_MONITOR_WAITED

arenadelete=off|on (default off) Setting this to on will enable the JVMPI_EVENT_ARENA_DELETE
event. This event is suppressed by default to be compatible with
Sun’s VM which does not send this event. The event can be enabled
if a profiler wishes to receive the event.

4-18 Developing Java Applications

Additional JVMPI Documentation
As JVMPI is an experimental interface, Sun Microsystems provides the documentation for tools
vendors who have an immediate need for profiling hooks in the Java VM. You can find this
documentation at:

http://java.sun.com/j2se/1.5.0/docs/guide/jvmpi/index.html

Profiling with the HPROF Profiling Agent
An ancillary component to JVMPI is the HPROF profiling agent, which is shipped with the Java
2 JDK. HPROF is a dynamically-linked library that interacts with the JVMPI and writes profiling
information either to a file or to a socket. You can then process that information by using a profiler
front-end tool.

HPROF displays such information as CPU usage, heap allocation statistics, and monitor
contention profiles. It can also report complete heap dumps and states of all the monitors and
threads in BEA JRockit.

To run HPROF, use the -Xrunhprof command at startup; for example:

java -Xrunhprof ClassToProfile

Depending on the type of profiling requested, HPROF instructs the virtual machine to send it the
relevant JVMPI events and processes the event data into profiling information. For example, the
following command obtains the heap allocation profile:

java -Xrunhprof:heap=sites ToBeProfiledClass

HPROF Documentation
HPROF is distributed as part of the J2SE JDK. You can find complete documentation for this
feature at:

http://java.sun.com/j2se/1.5.0/docs/guide/jvmpi/jvmpi.html#hprof

Debugging with BEA JRockit
This section describes the interface by which debugging tools can interface with BEA JRockit to
debug Java applications.

Developing Java Applications 4-19

Java Virtual Machine Debugger Interface (JVMDI)
JVMDI is a low-level debugging interface used by debuggers and other programming tools. It
allows you to inspect the state and to control the execution of applications running in the BEA
JRockit JVM.

JVMDI describes the functionality a JVM provides to enable debugging of Java applications
running within the JVM. JVMDI defines the services a JVM must provide for debugging. JVMDI
services include requests for information (for example, current stack frame), actions (set a
breakpoint), and notification (when a breakpoint has been hit).

How JVMDI Works
JVMDI is a two-way interface:

The JVMDI client can be notified of interesting occurrences through events.

The JVMDI can query and control the application through many different functions, either
in response to events or independent of them.

JVMDI clients run in the same VM as the application being debugged and access JVMDI through
a native interface. The native, in-process interface allows maximum control with minimal
intrusion of a debugging tool. Typically, JVMDI clients are relatively compact. They can be
controlled by a separate process that implements the bulk of a debugger's functionality without
interfering with the target application's normal execution.

JVMDI Documentation
Sun Microsystems provides complete reference documentation for the Java Platform Debug
Architecture and JVMDI. For more information, go to:

http://java.sun.com/j2se/1.4.1/docs/guide/jpda/index.html

4-20 Developing Java Applications

C H A P T E R

Developing Java Applications 5-21

5

Migrating to BEA JRockit

This section describes how to migrate Java applications developed on another JVM to BEA
JRockit so that they perform to their optimal capability when running on BEA WebLogic Server.
It contains information on the following subjects:

About Application Migration

Migration Procedures

Testing the Application

Submitting Migration Tips

About Application Migration
Migrating an application to BEA JRockit JVM is a relatively simple process, requiring some
minor environmental changes and following some simple coding guidelines. This section
provides instructions and tips to successfully completing this simple process. It also describes
some of the benefits and possible problems you might encounter during migration and it discusses
some best J2SE coding practices for you to follow to ensure that your application runs
successfully once it is running on BEA JRockit.

Why Migrate?
BEA JRockit JVM is the default JVM shipped with BEA WebLogic Server. Although there are
other JVMs available on the market today that you can use to develop Java applications, BEA

5-22 Developing Java Applications

Systems recommends that you use BEA JRockit JVM as the production JVM for any application
deployed on WebLogic Server.

Migration Restrictions
Migration is available only for Intel-based Windows systems and Linux systems. For a list of
supported platforms, please refer to:

http://edocs.bea.com/wljrockit/docs142/certif.html

Migration Support
Should you experience any problems or find any bugs while attempting to migrate an application
to BEA JRockit 8.1, please send us an e-mail at support@bea.com. We would appreciate if you
could provide as much information as possible about the problem, for example:

Hardware

Operating system and its version

The program you are attempting to migrate

Stack dumps (if any)

A small code example that will reproduce the error

Copies of any *.dump and *.mdmp files (*.mdmp files are available only on Windows)

Migration Procedures
This section describes basic environmental and implementation changes necessary to migrate to
BEA JRockit JVM from Sun Microsystems HotSpot JVM or any other third-party JVM. It
includes information on the following subjects:

Environment Changes

Other Tips

Tuning BEA JRockit JVM for Your Application

Testing the Application

Submitting Migration Tips

Developing Java Applications 5-23

Environment Changes
To migrate from HotSpot (or any third-party JVM) to BEA JRockit JVM, you need to make the
following changes to the files.

Set the JAVA_HOME environmental variable in <WEBLOGIC_HOME>/common/commEnv.cmd
(or .sh) to the appropriate path.

Set the JAVA_VENDOR environmental variable in <WEBLOGIC_HOME>/common/commEnv.cmd
(or .sh) to BEA.

If you are using a start-up script, remove any Sun-specific (or other JVM provider) options
from the start command line (like -hotspot). If possible, replace them with BEA
JRockit-specific options; for example, -jrockit. Other flags that might need to be changed
include MEM_ARGS and JAVA_VM.

Change config.xml to point the default compiler setting(s) to the BEA JRockit javac
compiler.

Other Tips
For information on other coding practices that will ensure a successful migration of your
application to BEA JRockit JVM, please refer to Recommended Coding Practices.

Tuning BEA JRockit JVM for Your Application
Once you’ve migrated your application to BEA JRockit JVM, you might want to tune the JVM for
optimal performance. For example, you might want to specify a different start-up heap size or set
custom garbage collection parameters. For more information on tuning BEA JRockit JVM, please
refer to the Tuning BEA JRockit JVM.

The non-standard options, that is, options preceded with -X, are critical tools for tuning a JVM at
startup. These options change the behavior of BEA JRockit JVM to better suit the needs of
different Java applications.

While all JVMs use non-standard options, the option names might not be the same from JVM to
JVM; for example, while BEA JRockit JVM will accept the non-standard option -Xns to set the
nursery in generational concurrent and generational copying garbage collectors, Sun’s HotSpot
JVM uses the option -XX:NewSize to set this value.

If you are migrating an application to BEA JRockit, we recommend that you become familiar with
the non-standard options available to you. For more information, please refer to Command Line
Options by Name.

5-24 Developing Java Applications

You should also be aware that, being non-standard, non-standard options are subject to change at
any time.

Testing the Application
Always test your application on BEA JRockit JVM before putting it into production. If you
develop your application on the Sun JVM (HotSpot), you must test your application on JVM
before you put it into production.

Why Test?
Some important reasons for testing are:

Sometimes you might find bugs in your own program that don’t occur on the Sun JVM; for
example, synchronization problems.

You might have used third party class libraries that are not 100% Java and rely on
Sun-specific classes or behavior.

You might have used third-party class files that are not correct. BEA JRockit has been
known to enforce verification more rigorously than the Sun JVM.

How to Test
To test your application on BEA JRockit:

1. Run your application against any test scripts or benchmarks that are appropriate for that
application.

2. If any problems occur, handle them as you normally would for the specific application.

Submitting Migration Tips
The migration tips discussed in this section represent an evolving list. Often, a successful
migration to BEA JRockit depends as much upon the application being migrated as it does to the
VMs being used. BEA Systems welcomes suggestions based upon your experiences with
migrating applications to BEA JRockit. Feel free to submit any migration ideas or comments to
the BEA JRockit SDK migration newsgroup at:

jrockit.developer.interest.migration

	Introduction
	Recommended Coding Practices
	Read the Relevant Specifications
	Example 1: Reflection
	Example 2: Reflection Revisited
	Example 3: Serialization

	Never Use Deprecated Unsafe Methods
	Minimize the Use of Finalizers
	Don’t Depend on Thread Priorities
	Don’t Use Internal sun.* or COM.jrockit.* Classes
	Override java.Object.hashCode for User Defined Classes When Using java.util.Hashtable
	Do Careful Thread Synchronization
	Expect Only Standard System Properties
	Minimize the Number of Java Processes
	Avoid Calling System.gc()

	Troubleshooting
	An Application Does Not Run
	Slow-to-Start Applications
	Process Counter Does Not Initialize
	Large Memory Consumption
	Slow Performance vis-a-vis HotSpot
	Randomly Appearing Bugs
	BEA JRockit JVM Throws Errors HotSpot Does Not Throw
	Slow Performance in Development Mode
	BEA JRockit JVM Does Not Run Jakarta Tomcat as a Windows Service
	Other Frequently Asked Questions

	Profiling and Debugging with BEA JRockit
	Profiling BEA JRockit
	Using JVMPI
	How JVMPI Works
	Changing the JVMPI Default Behavior
	Additional JVMPI Documentation

	Profiling with the HPROF Profiling Agent
	HPROF Documentation

	Debugging with BEA JRockit
	Java Virtual Machine Debugger Interface (JVMDI)
	How JVMDI Works
	JVMDI Documentation

	Migrating to BEA JRockit
	About Application Migration
	Why Migrate?
	Migration Restrictions
	Migration Support

	Migration Procedures
	Environment Changes
	Other Tips
	Tuning BEA JRockit JVM for Your Application

	Testing the Application
	Why Test?
	How to Test

	Submitting Migration Tips

