
BEA JRockit JDK

Using the Monitoring and
Management APIs

Version 5.0 Service Pack 2
June 2005

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign Manager
for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA
WebLogic Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic JRockit,
BEA WebLogic Log Central, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal,
BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup Edition, BEA WebLogic Workshop, and Liquid
Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support is a service mark of BEA Systems, Inc.
All other company and product names may be the subject of intellectual property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Using the Monitoring and Management APIs 1

Contents

Using JMAPI
Using the Javadoc .1

Getting Started .2

Using JMAPI to Subscribe to Events. .3

Using JMAPI to Access the WebLogic JRockit Profiler .4

Using JMAPI to Access Exception Counting .5

Accessing JMAPI from Code Running in WebLogic JRockit Having a Security Manager .6

2 Using the Monitoring and Management APIs

Using the Monitoring and Management APIs 1

Using JMAPI

This document provides a short introduction to the WebLogic JRockit Monitoring and
Management APIs (JMAPI) an API that provides a way to monitor and manage the WebLogic
JRockit JVM.

This section includes information on the following subjects:

Using the Javadoc

Getting Started

Using JMAPI to Subscribe to Events

Using JMAPI to Access the WebLogic JRockit Profiler

Using JMAPI to Access Exception Counting

Accessing JMAPI from Code Running in WebLogic JRockit Having a Security Manager

Using the Javadoc
This document is simply an overview of JMAPI.While it provides basic instructions on how to
implement this interface and describes some of its capabilities, the best source of documentation
is the javadoc, available at:

http://edocs.bea.com/wljrockit/docs50/jmapi/javadoc/Management API/index.html

Using JMAP I

2 Using the Monitoring and Management APIs

Getting Started
To implement JMAPI, you first need to fetch a reference to an actual instance of JVM by using
the JVMFactory.

JVMFactory provides a static method to fetch an instance of JVM. This is the starting
point for working with the API.

JVM provides basic information about the JVM and is also the interface used to access the
different information subsystems available. These subsystems are:

– ClassLibrary, which provides a way to monitor and manage the set of currently
loaded Classes and ClassLoaders.

– CompilationSystem, which provides a way to monitor and manage the way methods
and constructors are compiled.

– Machine, which provides information about the hardware the JVM is running on, like
CPUs, network adapters and memory.

– MemorySystem, which provides heap and garbage collection data.

– OperatingSystem, which passes information about the OS the JVM is running on.

– ProfilingSystem, which provides a way to perform lightweight profiling of the JVM,
for instance invocation counting.

– ThreadSystem, which provides thread stack dumps, thread snapshots, thread counts
and means to access the threads running in WebLogic JRockit.

To fetch the instance of JVM, you need to add code such as the following:

com.bea.jvm.JVM myJVM = com.bea.jvm.JVMFactory.getJVM();

From the JVM instance you can access the different subsystems, such as the memory system. From
the memory system you can, among other things, ask for heap size information or access the
GarbageCollector. Reading the currently used heap size (in bytes) looks like this:

Listing 1 Reading the Current Heap Size

com.bea.jvm.JVM myJVM = com.bea.jvm.JVMFactory.getJVM();

long heapSize = myJVM.getMemorySystem().getUsedHeapSize();

Using JMAPI to Subscr ibe to Events

Using the Monitoring and Management APIs 3

To check if we are using a parallel garbage collector with a nursery, you might include something
similar to the example in Listing 2:

Listing 2 Checking the Garbage Collector Type

com.bea.jvm.GarbageCollector myGC =

myJVM.getMemorySystem().getGarbageCollector();

boolean isParallelWithNursery = myGC.isParallel() &&

 myGC.isGenerational();

Using JMAPI to Subscribe to Events
You can use JMAPI to subscribe to a number of different events:

ClassLoadEvent, which reports loaded and unloaded classes.

CompilationListener, which reports compiled methods and constructors.

GarbageCollectionEvent, which is fired after a garbage collection.

Listing 3 shows how to add an anonymous ClassLoadListener that prints out the name of the
class that was loaded/unloaded:

Listing 3 Adding and Anonymous ClassLoadListener

JVM myJVM = JVMFactory.getJVM();

myJVM.getClassLibrary().addClassLoadListener(new

 ClassLoadListener()

 {

 public void onClassLoad(ClassLoadEvent event)

 {

 String prefix = (event.getEventType() ==

 ClassLoadEvent.CLASS_LOADED) ? "Loaded" : "Unloaded";

 System.out.println(prefix + " : " +

 event.getClassObject().getName());

 }

 });

Using JMAP I

4 Using the Monitoring and Management APIs

Listing 4 shows how to add an anonymous CompilationListener that prints out the
method/constructor that was compiled and the optimization level used.

Listing 4 Adding an Anonymous CompilationListener

JVM myJVM = JVMFactory.getJVM();
myJVM.getCompilationSystem().addCompilationListener(
 new CompilationListener()
 {
 public void onMethodCompilation(
 CompilationEvent event)
 {
 String prefix = "Compiled " + (event.hasConstructor() ? " constructor " +
 event.getConstructor().getClass().getName() : "method " +
 event.getMethod().getClass().getName());
 System.out.println(prefix + " : Optimization lvl " +
 event.getOptimizationLevel().getDescription());
 }
 });

Using JMAPI to Access the WebLogic JRockit Profiler
The WebLogic JRockit JVM includes a very efficient, low overhead profiler to get method
invocation counts and method timing information.

Listing 6 shows how to call a method in an example class (shown in Listing 5), then print out how
many times it has been invoked and the total time spent in that method.

Listing 5 Example Class A

public class A

{

 public boolean check(Object obj)

 {

 return this.getClass().isInstance(obj);

Using JMAPI to Access Except ion Count ing

Using the Monitoring and Management APIs 5

 }

}

Listing 6 Calling a Method in an Example Class

ProfilingSystem profiler =

 JVMFactory.getJVM().getProfilingSystem();

A a = new A();

Method [] methods = A.class.getDeclaredMethods();

profiler.setInvocationCountEnabled(methods[0], true);

profiler.setTimingEnabled(methods[0], true);

for (int i = 0; i < 100000; i++) a.check(a);

System.out.println("Profiling system: check method invoked " +

 m_jrockit.getProfilingSystem().getInvocationCount(methods[0]) + "

 times");

System.out.println("Time spent in method " +

 m_jrockit.getProfilingSystem().getTiming(methods[0])

 + " ms");

Using JMAPI to Access Exception Counting
JMAPI also provides access to an exception counter that allows you to count how many
exceptions of a certain class—and, optionally, all of its subclasses—have been thrown. Listing 7
shows an example of counting IOExceptions.

Listing 7 Counting IOExceptions with JMAPI

profiler.setExceptionCountEnabled(IOException.class,

 true, false);

for (int i = 0; i < 10000; i++)

{

 try

{

Using JMAP I

6 Using the Monitoring and Management APIs

throw new IOException();

}

catch (Exception e)

{

 // Deliberately left blank.

}

}

System.out.println("Profiling system: exception counts = "

 + m_jrockit.getProfilingSystem().

 getExceptionCount(IOException.class));

Accessing JMAPI from Code Running in WebLogic JRockit
Having a Security Manager

To access JMAPI from code running in WebLogic JRockit that has a security manager, the
permission com.bea.jvm.ManagementPermission “createInstance” must first be granted
to that code. For more information on how to grant code permissions, see Permissions in the Java
2 SDK.

If the code has not been granted the permission, any attempt to access JMAPI will result in a
SecurityException being thrown.

Listing 8 shows a simple policy statement, granting all code the permission to access the JMAPI:

Listing 8 Accessing JMAPI from Code Having a Security Manager

grant{

 // Needed to access the JRockit Management API.

 permission com.bea.jvm.ManagementPermission "createInstance";

 };

	Using the Javadoc
	Getting Started
	Using JMAPI to Subscribe to Events
	Using JMAPI to Access the WebLogic JRockit Profiler
	Using JMAPI to Access Exception Counting
	Accessing JMAPI from Code Running in WebLogic JRockit Having a Security Manager

