
BEA JRockit JDK

Tuning the BEA JRockit 
JVM

JRockit 5.0 Service Pack 2
June 2005



Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License 
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy 
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied, 
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior 
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License 
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR 
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement 
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA 
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF 
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS 
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE 
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR 
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread, 
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign Manager 
for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA WebLogic Commerce Server, BEA WebLogic 
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA 
WebLogic Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic JRockit, 
BEA WebLogic Log Central, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, 
BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup Edition, BEA WebLogic Workshop, and Liquid 
Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support is a service mark of BEA Systems, Inc. 
All other company and product names may be the subject of intellectual property rights reserved by third parties.

All other trademarks are the property of their respective companies. 



Tuning BEA JRockit JVM iii

Contents

Introduction to Tuning BEA JRockit JVM
How BEA JRockit is Tuned  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

JVM Tuning Terminology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

What You’ll Find in Tuning BEA JRockit JVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Tuning BEA JRockit JVM
Setting the Heap Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

Setting the Initial and Minimum Heap Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Setting the Maximum Heap Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Encountering Out of Memory Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Paging (Page Faults) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

Setting the Size of the Nursery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Setting the Thread Stack Size  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Minimum Thread Stack Size  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Basic Tuning Tips and Techniques
Determine What You Want to Tune For . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

Set the Heap Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

Tune the JVM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2



iv Tuning BEA JRockit JVM

Tuning for High Responsiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

Tuning for High Performance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

Analyze the Performance by Using the JRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

Index



Tuning BEA JRockit JVM 1-1

C H A P T E R 1

Introduction to Tuning BEA JRockit JVM

There are some ways that you can improve performance of your BEA JRockit JVM, even though 
most of the tuning that is needed is done automatically when the JVM adapts to its underlying 
hardware and to the applications running on it. For example, you can control how much Java 
memory you want the JVM to use. This guide will help find ways to where it is possible to tune 
JRockit so that it will increase performance and work better for your application and system.

This section includes information on the following subjects:

How BEA JRockit is Tuned

JVM Tuning Terminology

What You’ll Find in Tuning BEA JRockit JVM

How BEA JRockit is Tuned
BEA JRockit JVM has a number of non-standard startup parameters, called -X options, that allow 
you to better tune the JVM for your specific application. This guide documents the different 
startup parameters and what you need to know about setting them to be able to tune the JVM to 
ensure optimal performance for your application.

JVM Tuning Terminology
Before continuing, there are some terms you should understand. You may already be familiar 
with some of the terms, especially if you have read any other documents about garbage collectors.



I n t roduct i on  to  Tun ing  BEA JRock i t  JVM

1-2 Tuning BEA JRockit JVM

Garbage collector
The garbage collector is the key to effectively managing BEA JRockit’s memory system, 
which is the ultimate goal of JVM tuning. Garbage collection is the process of clearing 
dead objects from the heap, thus releasing that space for new objects.

Application throughput
The garbage collector is optimized for application throughput. This means that the 
garbage collector works as effectively as possible, giving as much CPU resources to the 
Java threads as possible. This may, however, cause non-deterministic pauses when the 
garbage collector stops all Java threads for garbage collection.The throughput priority 
should be used when non-deterministic pauses do not impact the application’s behavior.

Pause time
The garbage collector is optimized to limit the length of each garbage collection pause 
where all Java threads are stopped for garbage collection. This may result in lower 
application throughput, as the garbage collector uses more CPU resources in total than 
when running with the throughput priority. The pause time priority should be used when 
the application depends on an even performance. Use -Xpausetarget to set a target 
length for the garbage collection pauses.

What You’ll Find in Tuning BEA JRockit JVM
This guide is divided into these sections:

Tuning BEA JRockit JVM describes the basic tuning parameters for the JVM. The 
instructions in this section describe default and optimal heap and nursery settings and how 
to use them to tune the JVM.

Basic Tuning Tips and Techniques contains some helpful hints for maximizing system 
performance by tuning BEA JRockit to provide either optimal memory throughput or 
minimal garbage collection pause times.



Tuning BEA JRockit JVM 2-1

C H A P T E R 2

Tuning BEA JRockit JVM

To provide the optimal out-of-the-box experience, BEA JRockit JVM comes with default values 
that try to adapt automatically to the specific application you are running on which you are 
running BEA JRockit JVM. Tuning BEA JRockit JVM is accomplished by using extended 
options—or -X command line options that you enter at startup. The -X options are exclusive to 
BEA JRockit JVM and can differ greatly between JVMs on the market. Use them to set the 
behavior of BEA JRockit JVM to better suit the needs of your Java application. 

This section describes how to use these options to tune BEA JRockit. It includes information on 
the following subjects:

Setting the Heap Size

Setting the Thread Stack Size

Note: If BEA JRockit behaves in some unexpected way, please consult the BEA JRockit 
Developers FAQ or you can also search for solutions to your problem in the BEA JRockit 
developer newsgroup.

Setting the Heap Size
System performance is greatly influenced by the size of the Java heap available to the JVM. This 
section describes the command line options you use to define the initial and maximum heap sizes 
and the size of any nursery that would be required by the generational garbage collectors. It also 
includes key guidelines for help you determine the optimal heap size for your BEA JRockit 
implementation.



Tuning  BEA  JRock i t  JVM

2-2 Tuning BEA JRockit JVM

Setting the Initial and Minimum Heap Size
-Xms<size>[k|K][m|M][g|G]

-Xms sets the initial and minimum size of the heap. For this, BEA recommends that you set it to 
the same size as the maximum heap size; for example:
-java -Xgcprio:throughput -Xmx:64m -Xms:64m myClass

Default
-server mode: will set the initial and minimal heap to 25% of the amount of free physical 
memory in the system, up to 64 MB and a minimum of 16 MB.

-client mode: will set the initial and minimal heap to 16 MB. 

To improve start-up performance, set -Xms to at least the approximate amount of live data. If 
-Xms isn't set, or is set too low, frequent garbage collections can slow startup until JRockit has 
grown the heap.

To get a fixed heap size—for example, if you want a controlled environment—set -Xms and -Xmx 
to the same value.

Setting the Maximum Heap Size
-Xmx:<size>[k|K][m|M][g|G]

-Xmx sets the maximum size of the heap.

The default maximum heap size is a dynamic value determined by the amount of free physical 
memory in the system. If -Xmx is not set, the Java heap can grow up to the lesser of 75% of the 
total physical memory or 1 GB unless there is risk that growing the heap will cause paging. 
Paging may still occur, but will be avoided as much as possible.

Default
-server and -client modes: will set the total physical memory to the lesser of 75% of the total 
physical memory or 1 GB.

Setting a low maximum heap (-Xmx) compared to the amount of live data can affect performance 
by forcing JRockit to perform frequent garbage collections. 

Encountering Out of Memory Errors
There are two types of out of memory errors in JRockit:



Set t ing  the  Heap  S i ze

Tuning BEA JRockit JVM 2-3

The result of failed object allocation

The result of failed allocation of native memory for internal use within JRockit

1. When the out of memory is caused by a failed object allocation, the maximum heap size 
(-Xmx) needs to be increased.

2. When the out of memory is caused by failed allocation of native memory, it means that the 
JRockit process uses too much memory in total. This limit is determined by the operating 
system. When this happens, it may help to decrease the maximum heap size (-Xmx) to free 
more memory resources for the rest of the JRockit process.

Paging (Page Faults)
Paging may cause severe performance problems for your application and long garbage collection 
pauses. To avoid paging, do not set -Xmx to more than 75% of the physical memory of the system. 
Also, remember to account for the memory usage of other applications intended to run 
simultaneously with JRockit, as these impact memory availability.

When verbose memory outputs are enabled (-Xverbose:memory) a warning will be printed 
when there are many page faults during garbage collection.

If the amount of free memory in the system varies widely, you might not want to set -Xmx at all. 
This will prevent JRockit from growing the heap when there is too little memory in the system. 
Be aware that this will throw an OutOfMemoryError if object allocation fails with the current 
heap size and the heap cannot grow without causing paging.

Paging may occur even if -Xmx isn't set. JRockit will not shrink the heap if more than half the 
heap is filled with live data. Thus, JRockit might not always be able to shrink the heap if the 
amount of free memory is reduced after JRockit has been started; for example, when another 
application is started.

Setting the Size of the Nursery
-Xns:<size>[k|K][m|M][g|G]

-Xns sets the size of the young generation (nursery) in generational garbage collectors. 
Optimally, you should try to make the nursery as large as possible while still keeping the garbage 
collection pause times acceptably low. This is particularly important if your application is 
creating a lot of temporary objects. 

Note: To display pause times, include the option-Xgcpause when you start BEA JRockit JVM.

The maximum size of a nursery cannot exceed 95% of the maximum heap size.



Tuning  BEA  JRock i t  JVM

2-4 Tuning BEA JRockit JVM

Default
-server mode: the default nursery size is 10 MB per CPU; for example, the default for a 4-CPU 
system would be 40 MB.

-client mode: the default nursery size is 2 MB.

Additionally, the default nursery will never exceed 25% of maximum heap size, unless you use 
-Xns to explicitly set it to something larger. 

Setting the Thread Stack Size
-Xss<size>[k|K][m|M] sets the thread stack size.

Minimum Thread Stack Size
Minimum thread stack size is 16KB. If -Xss is set below the minimum value, thread stack size 
will default to the minimum value automatically.

Default
If the thread stack size has not been set the default value depends on the platform on which BEA 
JRockit is running. Table 2-1 shows these defaults: 

Table 2-1  Default Thread Stack Sizes

O/S 32-bit Default 64-bit Default

Windows 64 KB 320KB

Linux 128 KB 1 MB



Tuning BEA JRockit JVM 3-1

C H A P T E R 3

Basic Tuning Tips and Techniques

When you install BEA JRockit JVM, it includes a host of default start-up options that ensure a 
satisfactory out-of-the-box experience; however, sometimes, these options might not provide 
your application with the optimal performance. Therefore, BEA JRockit JVM comes with 
numerous alternative options and algorithms to suit different applications. This section describes 
some of these options and some basic tuning techniques you can use at startup. You find 
information on the following subjects:

Determine What You Want to Tune For

Set the Heap Size

Tune the JVM

Analyze the Performance by Using the JRA

Determine What You Want to Tune For
Before you start BEA JRockit JVM, you need to determine these two factors:

How much of your system memory do you prefer that the BEA JRockit JVM uses?

What do you want from BEA JRockit JVM, the highest possible responsiveness or the 
highest possible performance?

Once you’ve answered these questions, use the information provided below to tune BEA JRockit 
JVM to achieve those goals.



Bas ic  Tun ing  T ips  and  Techn iques

3-2 Tuning BEA JRockit JVM

Set the Heap Size
Generally, you want to set the maximum heap size as high as possible, but not so high that it 
causes page faults for the application or for some other application on the same computer. Heap 
sizing is accomplished by using the -Xms (minimum heap size) and -Xmx (maximum heap size) 
options. For details on these options and guidelines for sizing the heap, please refer to Setting the 
Heap Size. 

Tune the JVM
As mentioned above, you need to consider how you want JRockit to perform: for the highest 
possible responsiveness or the highest possible performance? This section describes how to tune 
for either type of performance.

Tuning for High Responsiveness
If you want the highest responsiveness from your application and guarantee minimal pause times, 
do the following:

Select a garbage collector that suits your application the best:

– Use the default dynamic garbage collector (-Xgcprio) and set a pause time 
(-Xgcprio:pausetime). 

When you use the option -Xgcprio:pausetime, you can also set a target time for the 
pauses (-Xpausetarget). That way JRockit tries to adapt the pause times to the length 
that you specify. If you do not set the option to a specific time, the default value is used 
(500ms). This is an example of how you can set the pause target: 

-Xgcprio:pausetime -Xpausetarget=400ms

OR

– Use a fixed garbage collector, select the Generational Concurrent garbage collector 
(-Xgc:gencon). 

Set the initial (-Xms) and maximum (-Xmx) heap sizes, as described in Setting the Heap 
Size. If you’re using a fixed, generational concurrent garbage collector, a larger heap 
reduces the frequency of garbage collection. This will prevent longer pauses.

Set the size of the nursery (-Xns). If the application is creating a lot of temporary objects, 
you should use a large nursery, to reduce old collection frequency. Larger nurseries usually 
result in slightly longer pauses, so, while you should try to make the nursery as large as 
possible, don’t make it so large that pause times become unacceptable. 



Tune  the  JVM

Tuning BEA JRockit JVM 3-3

You can see the nursery pause times in BEA JRockit JVM by starting the JVM with 
-Xgcpause.

Tuning for High Performance
If you want the highest possible performance BEA JRockit can provide, you will want to optimize 
for application thoughput. Set these tuning options at startup:

Select a garbage collector that suits your application best:

– Use the default dynamic garbage collector with the throughput priority specified 
(-Xgcprio:throughput)

OR

– Select the parallel (-Xgc:parallel) garbage collector. The parallel garbage collector 
doesn’t use a nursery, so you don’t need to set -Xns.

Set the largest initial (-Xms) and maximum (-Xmx) heap sizes that your system can tolerate, 
as described in Set the Heap Size (not valid for the parallel garbage collector).

Analyze the Performance by Using the JRA
The JRockit Runtime Analyzer (JRA) is a great way to look at the performance of JRockit. The 
JRA records what happens in your system in runtime and then saves the findings in a file that can 
be analyzed through a separate JRA tool. The recording contains information about, for example, 
memory usage, Java heap content, and hot methods. For information on how to use the JRA, see:

Using the JRockit Runtime Analyzer



Bas ic  Tun ing  T ips  and  Techn iques

3-4 Tuning BEA JRockit JVM



Tuning BEA JRockit JVM Index-1

Index

A
application throughput 1-2
avoid paging 2-3

C
client mode 2-4
command line options

-Xgcpause 2-3, 3-3
-Xmx 2-2
-Xns 2-3
-Xss 2-4

D
default values, thread system 2-1

F
failed allocation

native memory 2-3
object 2-3

failed object allocation 2-3
fixed heap size 2-2

G
garbage collection

concurrent 2-3
young generation 2-3

garbage collector 1-2
generational concurrent 2-3

H
heap size 2-2

maximum 3-2
minimum 3-2

J
JRockit Runtime Analyzer 3-3

M
maximum heap size 3-2
minimum heap size 3-2

N
nursery 2-3

O
out of memory 2-3

P
paging, avoiding 2-3
parallel 3-3
pause time 1-2
pausetime 3-2

S
server mode 2-4



Index-2 Tuning BEA JRockit JVM

T
terminology 1-1
thread system 2-1
throughput 3-3

X
-Xgc 3-2

parallel 3-3
-Xgcprio 3-2

pausetime 3-2
throughput 3-3

-Xms 2-2, 3-2
-Xmx 3-2
-Xns 3-2
-Xpausetarget 1-2, 3-2
-Xverbose

memory 2-3


	Introduction to Tuning BEA JRockit JVM
	How BEA JRockit is Tuned
	JVM Tuning Terminology
	What You’ll Find in Tuning BEA JRockit JVM

	Tuning BEA JRockit JVM
	Setting the Heap Size
	Setting the Initial and Minimum Heap Size
	Default

	Setting the Maximum Heap Size
	Default
	Encountering Out of Memory Errors
	Paging (Page Faults)

	Setting the Size of the Nursery
	Default


	Setting the Thread Stack Size
	Minimum Thread Stack Size
	Default



	Basic Tuning Tips and Techniques
	Determine What You Want to Tune For
	Set the Heap Size
	Tune the JVM
	Tuning for High Responsiveness
	Tuning for High Performance
	Analyze the Performance by Using the JRA


	Index

