
BEA JRockit
Using BEA JRockit JDK

JRockit 5.0 Service Pack 2
June 2005

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign Manager
for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA
WebLogic Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic JRockit,
BEA WebLogic Log Central, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal,
BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup Edition, BEA WebLogic Workshop, and Liquid
Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support is a service mark of BEA Systems, Inc.
All other company and product names may be the subject of intellectual property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Using BEA JRockit JDK iii

Contents

Introduction
What’s In the User Guide?. 1-1

Finding Additional Information . 1-2

BEA JRockit Support . 1-2

Supported Platforms . 1-2

Tuning BEA JRockit. 1-2

Starting and Configuring BEA JRockit JVM
Before Starting BEA JRockit . 2-1

Starting BEA JRockit. 2-1

Setting the JRockit Type . 2-2

Sample Start-up Command . 2-2

Configuring BEA JRockit . 2-2

Using Standard Command Line Options . 2-3

Setting General Command Line Options. 2-3

Providing Information to the User. 2-3

Using Extended Options . 2-4

Setting Behavioral Options . 2-4

Providing Information to the User. 2-4

Including a Timestamp with Logging Information . 2-10

Using the BEA JRockit Memory Management System
The Mark-and-Sweep Garbage Collection Model . 3-2

Using BEA JRockit JDK iv

Garbage Collector Options . 3-2

Two-generational Garbage Collection . 3-2

Single-generational Garbage Collection. 3-2

Concurrent Garbage Collection . 3-3

Parallel Garbage Collection . 3-3

The Dynamic Garbage Collector . 3-3

Using Backward-compatible Garbage Collectors . 3-4

Overriding Garbage Collectors. 3-5

Garbage Collector Selection Matrix . 3-5

Viewing Garbage Collection Behavior . 3-6

Using the Java Plug-in
Supported Operating Systems and Browsers. .A-2

Installing the Plug-in .A-2

Note on Installing the BEA JRockit Plug-in and Sun Plug-inA-2

Plug-in Reference .A-2

Using Web Start with BEA JRockit
Platforn Support. B-1

What You Can Do with Web Start . B-1

Web Start Security. B-2

Installing and Launching Web Start . B-2

Windows Platforms . B-2

Linux Platforms . B-2

Comprehensive Web Start Documentation . B-3

Using jstat with BEA JRockit
Statistics Options and Output . C-1

-class statOption . C-2

Using BEA JRockit JDK v

-compiler statOption . C-2

-printjit statOption . C-2

-printopt statOption . C-3

-gc statOption . C-3

-gcpause statOption . C-4

Monitoring Thread Activity With Thread Dumps
Lock Information in Thread Dumps .D-1

Detecting Deadlocks .D-3

What is a “Lock Chain”? .D-3

Formal Definition of a Lock Chain .D-4

Lock Chain Dump .D-4

Index

Using BEA JRockit JDK vi

Using BEA JRockit JDK 1-1

C H A P T E R 1

Introduction

Welcome to Using BEA JRockit JDK. This document contains procedures and other information
necessary for you to gain optimal performance from BEA Systems’ industry-leading Java Virtual
Machine, BEA JRockit.

This Introduction includes information on the following subjects:

What’s In the User Guide?

Finding Additional Information

What’s In the User Guide?
This user guide is organized as follows:

Starting and Configuring BEA JRockit JVM describes how to start and configure your
JRockit for the best performance for your application. You also find information on how to
use the extended options in JRockit.

Using the BEA JRockit Memory Management System describes how to use the best
memory management system—or garbage collection method—for your application.

Using the Java Plug-in describes how to install and run the Java Plug-in for your web
browser.

Using Web Start with BEA JRockit describes how to install and use Web Start on your
system.

In t roduct ion

1-2 Using BEA JRockit JDK

Monitoring Thread Activity With Thread Dumps describes how you use your stack dumps
to follow the thread activity in JRockit.

Finding Additional Information
You can find additional information about BEA JRockit throughout the documentation set. For a
complete list of available documents, please refer to BEA JRockit JDK Online Documentation.
The following list cites the most commonly referenced information.

BEA JRockit Support
To get support for BEA JRockit, you need a service agreement with BEA. If you want to be part
of the JRockit discussion group, please go to the BEA JRockit news group:
http://forums.bea.com/bea/category.jspa?categoryID=2010

Supported Platforms
For a list of platforms supported by BEA JRockit, please refer to “Supported Platforms”.

Tuning BEA JRockit
Tuning information can be found in Tuning BEA JRockit JVM.

Using BEA JRockit JDK 2-1

C H A P T E R 2

Starting and Configuring BEA JRockit
JVM

This section describes how to start BEA JRockit and how to configure it by using standard and
non-standard command line options. It includes information on the following subjects:

Before Starting BEA JRockit

Starting BEA JRockit

Configuring BEA JRockit

Before Starting BEA JRockit
Before starting BEA JRockit, ensure that you have the following directory set in your PATH
environment variable:

<jrockit-install-directory>/bin (for Linux)

<jrockit-install-directory>\bin (for Windows)

Starting BEA JRockit
To start BEA JRockit, at the command line enter the following:

java <configuration and tuning options> myClass

Where <configuration and tuning options> are the optional configuration and tuning
options you want to use. The configuration options are described in Configuring BEA JRockit,
below. See Tuning BEA JRockit JVM for details on the tuning options available for this version
of BEA JRockit.

Star t ing and Conf igur ing BEA JRock i t JVM

2-2 Using BEA JRockit JDK

Note: You can alternatively start JRockit by specifying the full path to the file; for example,
/usr/local/java/bin/java (depending on where it is installed) on Linux and
c:\bea\jrockitxxx\bin\java (depending on where it is installed) on Windows.

Setting the JRockit Type
The following commands set the type of JRockit you want to run, server-side or client-side:

-server

Starts BEA JRockit as a server-side JVM. This option is default.

-client

Starts BEA JRockit as a client-side JVM. This option is helpful if you have a smaller heap
and are anticipating shorter runtimes for your application.

By setting the JVM type (or accepting the default) will also set the garbage collection algorithm
that will be used during runtime. -server will start the dynamic garbage collector optimized for
throughput while -client will start a a single-spaced, concurrent mark, concurrent sweep
garbage collector. If you want to use a specific fixed garbage collector, you can override the
default by using the -Xgc command line option.

Sample Start-up Command
A sample start-up command, with some tuning options specified, might look like this:

java -Xverbose:memory -Xmx:256m -Xms:64m myClass

In this example, the following options are set:

-Xverbose:memory—Displays verbose output about memory usage.

-Xmx:256m—The maximum heap size is set to 256 megabytes.

-Xms:64m—The initial and minimum heap size is set to 64 megabytes.

myClass—Identifies the class that contains the main method.

Configuring BEA JRockit
When you start BEA JRockit, you can set behavioral parameters by using both standard and
non-standard command line options. This section describes some of these options and how to use
them at startup to configure BEA JRockit. It contains information on the following subjects:

Conf igur ing BEA JRock i t

Using BEA JRockit JDK 2-3

Using Standard Command Line Options for:

– Setting General Command Line Options

– Providing Information to the User

Using Extended Options for:

– Setting Behavioral Options

– Providing Information to the User

– Including a Timestamp with Logging Information

Using Standard Command Line Options
The standard command line options work the same regardless of the JVM; in other words, these
options work the same whether you are running BEA JRockit, Sun Microsystem’s HotSpot JVM,
or any other third party JVM.

Setting General Command Line Options
The following standard command line options set general information about BEA JRockit:

-classpath <directories and zips/jars separated by : (Linux) or ;
(Windows)>

Specifies the location of classes and resources.

Alternately, you can use the option -cp to represent -classpath; for example:
-cp <directories and zips/jars separated by : or ;>

-D<name>[=<value>]

Specifies a Java system property. These can be read by a Java program, using the methods
in java.lang.System.

Providing Information to the User
The following options determine if the system will provide messages to the operator and what the
form and content of those messages should be.

-help

Displays a short help message.

-version

Star t ing and Conf igur ing BEA JRock i t JVM

2-4 Using BEA JRockit JDK

Displays the product version of JRockit and then exits.

-showversion

Displays the product version of JRockit and then continues with the operation.

-verbose

Displays verbose output. This option is used mainly for debugging purposes and causes a
lot of output to the console.

Using Extended Options
Extended command line options, proceeded with the letter -X, are options that are exclusive to
BEA JRockit and changes the behavior of JRockit to better suit the needs of different Java
applications. These options will not work on other JVMs (conversely, the extended options used
by other JVMs won’t work with JRockit).

The option -X displays a short help message on the extended options.

Note: Since these options are an extension to JRockit and non-standard, they are subject to
change between releases, see the BEA JRockit JDK Compatibility Statement.

Setting Behavioral Options
The following are examples on extended options that define general BEA JRockit JVM behavior:

-Xns

Sets the size of the nursery in a generational garbage collector.

-Xms

Sets the initial size of the heap.

-Xgc

Sets a specific fixed garbage collector.

-Xgcprio

Sets the dynamic garbage collector.

Providing Information to the User
When using the startup option -Xverbose, BEA JRockit prints, on screen, specific information
about the system. The information printed depends upon the parameter that you have specified

Conf igur ing BEA JRock i t

Using BEA JRockit JDK 2-5

with the option. Supported parameters are, for example, memory, load, gc, opt, and cpuinfo. If
you do not specify any parameter, everything will be printed.

Note: To use more than one parameter, separate them with a comma, for example:
-Xverbose:gc,opt

Listing 2-1 through Listing 2-6 combined with Table 2-1 through Table 2-6 lists and explains
examples of different verbose output. These output examples are to hint you to how the verbose
output can look like. The output that you see in these listings can greatly differ from what you see
on your system depending on, for example, the version of BEA JRockit that you are running.

Listing 2-1 Print out for -Xverbose:codegen

[codegen] #1 ? (0x2) n

jrockit/vm/Allocator.prepareNextChunkAndAlloc(IIII)Ljava/lang/Object;

[codegen] #1 ? (0x2) n @0x6b3543f0-0x6b354465 1.43 ms (1.43 ms)

Table 2-1 Explanation of Listing 2-1

Code snippet Explanation

[codegen] #1 ? (0x2) n This is the first (#1) method to be generated with a
normal (n) or non-optimized code generation.

n means non-optimized code generation

o means optimized code generation

q means quick code generation

jrockit/vm/Allocator.prepareNext
ChunkAndAlloc(IIII)Ljava/lang/Ob
ject;

This is the name and location of the method that has
been generated.

@0x6b3543f0-0x6b354465 The address in the memory where the method resides.

1.43 ms The time it took to generate the code.

(1.43 ms) The total time that JRockit has generated code.

Star t ing and Conf igur ing BEA JRock i t JVM

2-6 Using BEA JRockit JDK

Listing 2-2 Print out for -Xverbose:opt

[opt] #1 4 (0x8) o

jrockit/vm/Locks.waitForThinRelease(Ljava/lang/Object;I)I

[opt] #1 4 (0x8) o @0x324D0000-0x324D00A1 26.80 ms (26.80 ms)

Listing 2-3 Print out for -Xverbose:cpuinfo

[cpuinfo] Vendor: GenuineIntel

[cpuinfo] Type: Original OEM

[cpuinfo] Family: Pentium 4

[cpuinfo] Brand: Intel(R) Xeon(TM) CPU 2.80GHz

[cpuinfo] Supports: On-Chip FPU

[cpuinfo] Supports: Virtual Mode Extensions

[cpuinfo] Supports: Debugging Extensions

Table 2-2 Explanation of Listing 2-2

Code snippet Explanation

[opt] #1 4 (0x8) o This is the first (#1) method to be generated with an
optimized (o) code generator.

n means non-optimized code generation

o means optimized code generation

q means quick code generation

jrockit/vm/Locks.waitForThinRele
ase(Ljava/lang/Object;I)I

This is the name and location of the method that has
been generated.

@0x324D0000-0x324D00A1 The address in the memory where the method resides.

26.80 ms The time it took to generate the code.

(26.80 ms) The total time that JRockit has generated code.

Conf igur ing BEA JRock i t

Using BEA JRockit JDK 2-7

Listing 2-4 Print out for -Xverbose:load

[load] opened zip
/localhome/jrockits/jrockit-jdk1.5.0_02/jre/lib/jrockit.jar

[load] opened zip /localhome/jrockits/jrockit-jdk1.5.0_02/jre/lib/rt.jar
[load] opened zip
/localhome/jrockits/jrockit-jdk1.5.0_02/jre/lib/jsse.jar

[load] opened zip
/localhome/jrockits/jrockit-jdk1.5.0_02/jre/lib/jce.jar

[load] opened zip
/localhome/jrockits/jrockit-jdk1.5.0_02/jre/lib/charsets.jar

[load] opened zip
/localhome/jrockits/jrockit-jdk1.5.0_02/jre/lib/managementapi.jar

[load] initiated ? (0x2) 0 (nil)/java/lang/Object

[load] define ? (0x2) # 0 java/lang/Object loader=(nil),
src=/localhome/jrockits/jrockit-jdk1.5.0_02/jre/lib/jrockit.jar

[load] loading ? (0x2) 0 (nil)/java/lang/Object success (0.59 ms)

Table 2-3 Explanation of Listing 2-3

Code snippet Explanation

[cpuinfo] Vendor: GenuineIntel
[cpuinfo] Type: Original OEM
[cpuinfo] Family: Pentium 4
[cpuinfo] Brand: Intel(R)
Xeon(TM) CPU 2.80GHz

This is information about the CPU chip itself, i.e.
vendor, type of chip, family name, and the brand name.
This information differs depending on the type of CPU
you are using.

[cpuinfo] Supports: On-Chip FPU
[cpuinfo] Supports: Virtual Mode
Extensions
[cpuinfo] Supports: Debugging
Extensions
.
.
.

This lists all features that the CPU supports. For more
information about your specific CPU, please contact
the vendor.

Star t ing and Conf igur ing BEA JRock i t JVM

2-8 Using BEA JRockit JDK

Listing 2-5 Print out for -Xverbose:memory (dynamic garbage collector)

[memory] GC strategy: System optimized over throughput (initial strategy

singleparpar)

[memory] heap size: 65536K, nursery size: 16384K

[memory] <s>-<end>: GC <before>K-><after>K (<heap>K), <pause> ms

[memory] <s/start> - start time of collection (seconds since jvm start)

[memory] <end> - end time of collection (seconds since jvm start)

[memory] <before> - memory used by objects before collection (KB)

[memory] <after> - memory used by objects after collection (KB)

[memory] <heap> - size of heap after collection (KB)

[memory] <pause> - total pause time during collection (milliseconds)

[memory] Changing GC strategy to generational, parallel mark and parallel

sweep

[memory] 1.719-1.731: GC 65536K->3176K (65536K), 11.000 ms

Table 2-4 Explanation of Listing 2-4

Code snippet Explanation

[load] opened zip
/localhome/jrockits/jrockit-jdk1
.5.0_02/jre/lib/jrockit.jar

This is information about the classes loaded in JRockit.

java/lang/Object The name of the class loaded for your application.

src=/localhome/jrockits/jrockit-
jdk1.5.0_02/jre/lib/jrockit.jar

The address from where the class is loaded.

success Shows if the class loaded successfully. If it failed, the
print out is fail.

Conf igur ing BEA JRock i t

Using BEA JRockit JDK 2-9

Listing 2-6 Print out for -Xverbose:memory (parallel, single-spaced garbage collector)

[memory] GC strategy: parallel

[memory] heap size: 65536K

[memory] <s>-<end>: GC <before>K-><after>K (<heap>K), <pause> ms

[memory] <s/start> - start time of collection (seconds since jvm start)

[memory] <end> - end time of collection (seconds since jvm start)

[memory] <before> - memory used by objects before collection (KB)

[memory] <after> - memory used by objects after collection (KB)

[memory] <heap> - size of heap after collection (KB)

[memory] <pause> - total pause time during collection (milliseconds)

[memory] 1.561-1.572: GC 65536K->1420K (65536K), 10.000 ms

Table 2-5 Explanation of Listing 2-5

Code snippet Explanation

[memory] GC strategy: System
optimized over throughput
(initial strategy singleparpar)

Information about the garbage collector strategy that is
used. This is the default dynamic garbage collector that
optimizes over throughput.

[memory] heap size: 65536K,
nursery size: 16384K

This is the initial heap and nursery size.

[memory] <s>-<end>: GC
<before>K-><after>K (<heap>K),
<pause> ms

This is the format of the verbose print. The text that
follow is an explanation of the different parts of the
print-out.

[memory] 1.719-1.731: GC
65536K->3176K (65536K), 11.000 ms

This the first verbose print of a successful garbage
collection.

Star t ing and Conf igur ing BEA JRock i t JVM

2-10 Using BEA JRockit JDK

Including a Timestamp with Logging Information
Use the startup options -Xverbose:memory and -Xverbosetimestamp or -Xverbose:opt and
-Xverbosetimestamp to view a time and date stamp preceded by the other verbose information,
as shown here:

[Thu Apr 21 10:24:11 2005][5656][memory] 4.578: parallel nursery GC

22067K->7457K (65536K), 8.905 ms

[Thu Apr 21 10:24:11 2005][5656][memory] 4.781: parallel nursery GC

22157K->7549K (65536K), 9.954 ms

Sample of timestamp information for -Xverbose:opt and -Xverbosetimestamp:

[Thu Apr 21 10:24:19 2005][5576][opt] #3 4 (0x8) o

jrockit/vm/Locks.monitor Enter(Ljava/lang/Object;)Ljava/lang/Object;

[Thu Apr 21 10:24:19 2005][5576][opt] #3 4 (0x8) o

@0x324D0A90-0x324D0AD4 3.29 ms (235.46 ms) 17.26 ms (252.72 ms)

Table 2-6 Explanation of Listing 2-6

Code snippet Explanation

[memory] GC strategy: parallel Information about the garbage collector strategy that is
used. Here it is a static parallel, single-spaced garbage
collector.

[memory] heap size: 65536K This is the initial heap size.

[memory] <s>-<end>: GC
<before>K-><after>K (<heap>K),
<pause> ms

This is the format of the verbose print. The text that
follow is an explanation of the different parts of the
print-out.

[memory] 1.561-1.572: GC
65536K->1420K (65536K), 10.000 ms

This the first verbose print of a successful garbage
collection.

Using BEA JRockit JDK 3-1

C H A P T E R 3

Using the BEA JRockit Memory
Management System

Memory management relies on effective “garbage collection,” the process of clearing dead
objects from the heap, thus releasing that space for new objects. BEA JRockit uses a dynamic
garbage collector that is based upon one of two priorities that you set: application throughput or
duration of the pause times caused by garbage collection. The dynamic garbage collector uses
predefined heuristics to determine, in runtime, which garbage collection algorithm to use for each
application.

In some instances, dynamic garbage collection might not be the most effective way to recycle
memory. In those cases, BEA JRockit also provides a number of “static” garbage collectors that
can be started by specifying the actual collector (-Xgc:<collectorName>) at startup.

This section describes how to use all of these garbage collection methods. It contains information
on the following subjects:

The Mark-and-Sweep Garbage Collection Model

Garbage Collector Options

The Dynamic Garbage Collector

Using Backward-compatible Garbage Collectors

Overriding Garbage Collectors

Viewing Garbage Collection Behavior

Using the BEA JRock i t Memory Management Sys tem

3-2 Using BEA JRockit JDK

The Mark-and-Sweep Garbage Collection Model
The garbage collector models in JRockit are all mark-and-sweep garbage collectors that run
either as generational or single-spaced; that is, with or without a “nursery” (see Two-generational
Garbage Collection, below). The mark-and-sweep garbage collection is implemented as either a
concurrent or parallel algorithm.

A mark-and-sweep garbage collector frees all unreferenced objects and works as described in
these steps:

1. The “mark” phase, traverses all pointers, starting at the accessible roots of a program
(conventionally, globals, the stack, and registers) and marks each object traversed.

2. The “sweep” phase, re-walks the heap linearly and removes all objects that are not marked.

Garbage Collector Options
JRockit’s garbage collector can be a combination of the following two garbage collector options:

Two-generational Garbage Collection

Single-generational Garbage Collection

and two garbage collection algorithms:

Concurrent Garbage Collection

Parallel Garbage Collection

Two-generational Garbage Collection
During a two-generational garbage collection, the heap is divided into two sections: an old
generation and a young generation—also called the “nursery.” Objects are allocated in the
nursery and when it is full, JRockit stops all Java threads and moves the live objects from the
nursery, young generation, to the old generation.

Single-generational Garbage Collection
The single-spaced option of garbage collection means that all objects live out their lives in a
single space on the heap, regardless of their age. In other words, a single-spaced garbage collector
does not have a nursery.

The Dynamic Garbage Co l l ec to r

Using BEA JRockit JDK 3-3

Concurrent Garbage Collection
The concurrent garbage collection algorithm does its marking and sweeping “concurrently” with
all other processing; that is, it does not stop Java threads to do the complete garbage collection.

Parallel Garbage Collection
The parallel garbage collection algorithm stops Java threads when the heap is full and uses every
CPU to perform a complete mark and sweep of the entire heap. A parallel garbage collector can
have longer pause times than concurrent garbage collectors, but it maximizes application
throughput. Even on single CPU machines, this maximized performance makes parallel the
recommended garbage collector, provided that your application can tolerate the longer pause
times.

The Dynamic Garbage Collector
The dynamic garbage collector is the default garbage collector in JRockit and it combines the
options and algorithms described above within the mark-and-sweep model to perform a garbage
collection. Depending upon the heuristics used, the garbage collector will employ a
two-generational or single-spaced collector with either a concurrent or parallel mark phase and a
concurrent or parallel sweep phase.

The main benefit of a dynamic garbage collector is that the only determination you need to make
for the best performance of your application is whether your application responds best to optimal
throughput or minimized pause times during garbage collection. You do not need to understand
the garbage collection algorithms themselves, or the various permutations thereof, just the
behavior of your application.

To start the dynamic garbage collector, use the -Xgcprio command line option with either the
throughput or pausetime parameter, depending upon which priority you want to use:

-Xgcprio:<throughput|pausetime>

If you set the pausetime option, you can also specify a target pause time for the garbage
collection, for example:

-Xgcpausetarget=400ms

Using the BEA JRock i t Memory Management Sys tem

3-4 Using BEA JRockit JDK

Table 3-1 describes the priorities under which you can start a dynamic garbage collector and the
parameters used to select that priority.

Upon selecting the priority and starting the JVM, the dynamic garbage collector will then try to
choose the garbage collection state that optimizes performance based upon the priority. It will
seek modes that optimize throughput when -Xgcprio:throughput is set or that minimize the
pause times (as much as possible) when -Xgcprio:pausetime is set.

Using Backward-compatible Garbage Collectors
In some cases, you might not want to use a dynamic garbage collector. In those cases, you can
specify one of the three static garbage collectors. The static garbage collectors will not attempt to
optimize performance by changing algorithms. These garbage collectors are the original garbage
collectors of earlier versions of JRockit. Depending on the circumstances, the performance of
these collectors might meet your needs better than the dynamic garbage collector. Additionally,
if you want to use scripts written for the earlier versions of JRockit that implement these
collectors, those scripts will continue to work without requiring any modification—unless they
use the copying garbage collectors, which are no longer available.

The available garbage collectors (and the command to start them) are:

Table 3-1 -Xgcprio Option Priorities

Priority Description

Application Throughput

(-Xgcprio:throughput)

The garbage collector is optimized for application throughput. This
means that the garbage collector works as effectively as possible, giving
as much CPU resources to the Java threads as possible. This may,
however, cause non-deterministic pauses when the garbage collector
stops all Java threads for garbage collection.The throughput priority
should be used when non-deterministic pauses do not impact the
application’s behavior.

Pause Time

(-Xgcprio:pausetime)

The garbage collector is optimized to limit the length of each garbage
collection pause where all Java threads are stopped for garbage
collection. This may result in lower application throughput, as the
garbage collector uses more CPU resources in total than when running
with the throughput priority. The pausetime priority should be used when
the application depends on an even performance. Use -Xpausetarget
to set a target length for the garbage collection pauses.

Garbage Co l lec to r Se lec t i on Mat r i x

Using BEA JRockit JDK 3-5

Single-spaced Concurrent (-Xgc:singlecon; this is the default garbage collector when
BEA JRockit is run in the -client mode)

Generational Concurrent (-Xgc:gencon)

Parallel (-Xgc:parallel)

Overriding Garbage Collectors
Setting -Xgc will override -Xgcprio and any default settings.

Garbage Collector Selection Matrix
Table 3-2 is a matrix that you can use to determine which garbage collector is right for your
application. Use the If You... column to locate a condition that matches what you want for your
application and select the garbage collector indicated in the Use this Garbage Collector...
column. The third column, Or use..., lists an alternate supported garbage collector.

Table 3-2 Garbage Collector Selection Matrix

If You... Use this Garbage
Collector...

Or use...

• Want to have as short pause times as possible.
• Are willing to trade (some) application thoughput

for shorter pauses.
• Have a single CPU machine with a lot of memory.
• Want better application throughput than possible

with single-spaced concurrent.

-Xgcprio:pausetime -Xgc:singlecon

-Xgc:gencon

• Using a machine with four CPUs or better or a
single CPU machine with a lot of memory.

• Can tolerate the occasional long pause.
• Need to maximize application throughput.

-Xgcprio:throughput -Xgc:parallel

• Do not want a dynamic garbage collector. -Xgc:parallel -Xgc:singlecon

Using the BEA JRock i t Memory Management Sys tem

3-6 Using BEA JRockit JDK

Viewing Garbage Collection Behavior
To observe garbage collection behavior, use one or all of the possibilities described here. Using
this helps you evaluate the effectiveness of the selected garbage collector and makes it possible
to make correct tuning decisions.

If you want to view garbage collection during real-time, use the BEA JRockit Management
Console tool. See the Using BEA JRockit Management Console document for information
on how to use the tool.

If you want information about the garbage collection during run-time, set the
-Xverbose:memory option at startup. The information will appear in your console
window.

If you want to see a comprehensive report of garbage collection activity, enter the
-Xgcreport option at startup. With this option JRockit prints a comprehensive garbage
collection report when application run is completed.

If you want to see the garbage collection activity when it occurs, enter the -Xgcpause
option.This option causes the VM to print a line each time Java threads are stopped for
garbage collection.

You can combine the -Xgcreport and -Xgcpause at start up to examine the memory
behavior of your application, for example, like this:
java -Xgcreport -Xgcpause myClass

Using BEA JRockit JDK A-1

A P P E N D I X A

Using the Java Plug-in

Popular web browsers, such as Netscape Navigator and Microsoft Internet Explorer, can be
connected to the Java platform by using the Java Plug-in, under which applets are run, already
installed. If you want to run applets under BEA JRockit JRE, you can install the Java Plug-in that
ships with this product.

Available only on ia32 platforms, the BEA JRockit Java Plug-in extends the functionality of your
web browser, allowing applets and Java beans to run with JRockit. The Java Plug-in is part of the
BEA JRockit JRE and is installed when the JRE is installed on a computer. It works with
Netscape, Mozilla, and Internet Explorer.

This section includes information on the following subjects:

Supported Operating Systems and Browsers

Installing the Plug-in

Plug-in Reference

Us ing the Java P lug- in

A-2 Using BEA JRockit JDK

Supported Operating Systems and Browsers
Table A-1 lists the operating systems and browsers supported by the BEA JRockit Java Plug-in.

Installing the Plug-in
The Java Plug-in is installed automatically for Windows machines when you install the BEA
JRockit JRE, as described in “Installing the JRE.” For Linux machines, you can install it as
described in either of these documents from Sun Microsystems:

Manual Installation/Registration of Java Plug-in—Linux (manual installation and
registration)

Control Panel Script Options for Plug-in Registration (automatic installation and
registration)

Note on Installing the BEA JRockit Plug-in and Sun Plug-in
If you install the Sun JRE after installing the BEA JRockit JRE, the Sun JRE becomes the default
Java Plug-in on the system. If this happens, you can uninstall and reinstall the BEA JRockit JRE.

Plug-in Reference
Generally, once the plug-in is installed, its behavior will be transparent and require little, if any,
user intervention. However, there are many other related topics that you may want to understand.
Sun Microsystems provides helpful information on the Java Plug-in that is fully compatible with
the BEA JRockit Java plug-in. You can find this information at:

http://java.sun.com/products/plugin/index.jsp

Table A-1 Java Plug-in O/S and Browser

Operating System
Support

For a list of supported operating systems, see the list of supported ia32 platforms at BEA
JRockit JDK Platform Support.

Browser Support Internet Explorer 5.5+; Netscape 4.5+ , 4.79*, Netscape 6.2+, and Mozilla 1.4+.

Note: *Netscape 4.79 will only run applets that are specifically tagged to be run by
1.5.0.

Using BEA JRockit JDK B-1

A P P E N D I X B

Using Web Start with BEA JRockit

This version of BEA JRockit includes an implementation of Java Web Start, a tool that allows
you to start Java applications with a single click in your browser. With Web Start, you can
download and launch applications directly from the browser and avoid complex and
time-consuming installation procedures. Any Java application can be started by using Web Start.

This section includes information on the following subjects:

Platforn Support

What You Can Do with Web Start

Web Start Security

Installing and Launching Web Start

Comprehensive Web Start Documentation

Platforn Support
Java Web Start is available only on Windows IA32 and Linux IA32 systems.

What You Can Do with Web Start
With Java Web Start, you launch applications simply by clicking on a Web page link. If the
application is not present on your computer, Java Web Start automatically downloads all
necessary files. It then caches the files on your computer so the application is always ready to be
relaunched anytime you want—either from an icon on your desktop or from the browser link.

Us ing Web S ta r t w i th BEA JRock i t

B-2 Using BEA JRockit JDK

And no matter which method you use to launch the application, the most current version of the
application is always presented to you.

Web Start Security
Java Web Start includes the security features of the Java platform to ensure the integrity of your
data and files. It also enables you to use the latest Java 2 technology with any browser.

Installing and Launching Web Start
Java Web Start is installed as part of the public JRE installation (see Installing the BEA JRockit
JRE).

Windows Platforms
Upon installation, a new icon will appear on your desktop (Figure B-1) and a new program group
appears in your Start menu, under Programs.

Figure B-1 Java Web Start Icon

Use either of these to launch Java Web Start:

<jre_home>/bin/javaws

where <jre_home> is you JRE home directory, for example:

C:\Program File\Java\jrockit-jdk1.5.0_02\jre).

Linux Platforms
The Linux installation itself does not change with Web Start added; however, you can only launch
Web Start from the command line. Do so by entering the command:

<jre_home>/bin/javaws

Note: JPackage RPMs will install Java Web Start and you can start by using the same command
used for other Linux platforms.

Comprehens ive Web S tar t Documentat ion

Using BEA JRockit JDK B-3

Comprehensive Web Start Documentation
Java Web Start is a Sun Microsystems product and the BEA JRockit implementation is no
different than Sun’s. Please refer to the following documents for more complete information on
using this feature:

Java Web Start Developers Section:
http://java.sun.com/products/javawebstart/developers.html

Java Web Start API Specification:
http://java.sun.com/products/javawebstart/reference/api/index.html

Code Samples and Applications:
http://java.sun.com/products/javawebstart/reference/codesamples/index.html

Technical Articles & Tips:
http://java.sun.com/products/javawebstart/reference/techart/index.html

FAQs:
http://java.sun.com/products/javawebstart/faq.html

Us ing Web S ta r t w i th BEA JRock i t

B-4 Using BEA JRockit JDK

Using BEA JRockit JDK C-1

A P P E N D I X C

Using jstat with BEA JRockit

The JVM Statistics Monitoring Tool, jstat, attaches to a Java virtual machine and collects and
logs performance statistics as specified by the command line options. This tool is developed by
Sun Microsystems Inc. and it is included in the installation package of BEA JRockit. For a
complete description on how jstat works, please refer to:
http://java.sun.com/j2se/1.5.0/docs/tooldocs/share/jstat.html. This appendix lists differences in
the output when running the tool with BEA JRockit.

Statistics Options and Output
The following table lists all available statistical options, statOption, when using BEA JRockit.
The tables that follow, summarize the columns that jstat outputs for each statOption.

statOption Displays

-class Statistics on the behavior of the class loader.

-compiler Statistics of the behavior of the JRockit compiler.

-gc Statistics of the behavior of the garbage collected heap.

-gcpause Statistics of garbage collection pauses.

-printjit Statistic on the latest JIT compiler operations.

-printopt Statistic on the latest optimizing compiler operations.

Us ing j s tat w i th BEA JRock i t

C-2 Using BEA JRockit JDK

-class statOption

-compiler statOption

-printjit statOption

Column Description

Loaded Number of classes loaded.

Bytes Number of Kbytes loaded.

Unloaded Number of classes unloaded.

Bytes Number of Kbytes unloaded.

Column Description

Compiled Number of compilation tasks performed.

Jitted Number of JIT compilation tasks performed.

Optimized Number of optimization compilation tasks performed.

Time Time spent performing compilation tasks.

TotalTimeJit Time spent performing JIT compilation tasks.

TotalTimeOpt Time spent performing optimizing compilation tasks.

Column Description

Jitted Number of JIT compilation tasks performed.

TotalTimeJit Time spent performing JIT compilation tasks.

LastJitMethod The last method compiled by the JIT.

Stat is t i cs Opt ions and Output

Using BEA JRockit JDK C-3

-printopt statOption

-gc statOption

Column Description

Optimized Number of optimization compilation tasks performed.

TotalTimeOpt Time spent performing optimizing compilation tasks.

LastOptMethod The last method compiled by the optimizing compiler.

Column Description

HeapSize Heap size (KB).

NurserySize Nursery size (KB).

UsedHeapSize Used heap size (KB).

YC Number of young generation collections.

OC Number of old generation collections.

YCTime Young generation garbage collection time (s).

OCTime Old generation garbage collection time (s).

GCTime Total garbage collection time (s).

YCPauseTime Young generation pause time (s).

OCPauseTime Old generation pause time (s).

PauseTime Total pause time (s).

Finalizers Number of pending finalizers.

Us ing j s tat w i th BEA JRock i t

C-4 Using BEA JRockit JDK

-gcpause statOption

Column Description

YC Number of young generation collections.

OC Number of old generation collections.

YCPauseTime Young generation pause time (s).

OCPauseTime Old generation pause time (s).

PauseTime Total pause time (s).

Using BEA JRockit JDK D-1

A P P E N D I X D

Monitoring Thread Activity With Thread
Dumps

Thread dumps, or “thread stack traces,” reveal information about an application’s activity that
can help you diagnose problems and better optimize application and JVM performance; for
example, thread dumps can show the occurrence of “deadlock” conditions, which can seriously
impact application performance.

You can create a thread dump by invoking a control break (usually by pressing Ctrl-Break or
Ctrl-\ or SIGQUIT on linux). This section provides information on working with thread dumps.
It includes information on these subjects:

Lock Information in Thread Dumps

Detecting Deadlocks

Lock Information in Thread Dumps
When printing stack traces with Control-Break or SIGQUIT on linux, BEA JRockit also shows
the status of active locks (monitors). For each thread, BEA JRockit prints the following
information if the thread is in a waiting state:

If the thread is trying to take a lock (to enter a synchronized block), but the lock is already
held by another thread, this is indicated at the top of the stack trace, as “Blocked trying to
get lock”.

If the thread is waiting for a notification on a lock (by calling Object.wait()), this is
indicated at the top of the stack trace as “Waiting for notification”.

Moni to r ing Thread Ac t i v i t y W i th Thread Dumps

D-2 Using BEA JRockit JDK

If the thread has taken any locks, this is shown in the stack trace. After a line in the stack
trace describing a function call is a list of the locks taken by the thread in that function.
This is described as ^-- Holding lock (where the ^-- serves as a reminder that the lock
is taken in the function written above the line with the lock).

Caution: The lines with the lock information might not always be correct, due to compiler
optimizations. This means two things:

If a thread, in the same function, takes first lock A and then lock B, the order in which they
are printed is unspecified.

Sometimes, if a thread, in method foo() calls method bar(), and takes a lock A in bar(),
the lock might be printed as being taken in foo().

Normally, this shouldn't be a problem. The order of the lock lines should never move much from
their correct position. Also, lock lines will never be missing—you can be assured that all locks
taken by a thread are shown in the stack dump.

The semantics for waiting (for notification) on an object in Java is somewhat complex. First you
must take the lock for the object, and then you call wait() on that object. In the wait method, the
lock is released before the thread actually goes to sleep waiting for a notification. When it
receives a notification, wait re-takes the lock before returning. So, if a thread has taken a lock,
and is waiting (for notification) on that lock, the line in the stack trace that describes when the
lock was taken is not shown as “Holding lock,” but as “Lock released while waiting.”

All locks are described as Classname@0xLockID[LockType]; for example:

java/lang/Object@0x105BDCC0[thin lock]

Where:

Classname@0xLockID describe the object the to which the lock belongs. The classname is
an exact description, the fully qualified class name of the object. LockID, on the other
hand, is a temporary ID which is only valid for a single thread stack dump. That is, you
can trust that if a thread A holds a lock java/lang/Object@0x105BDCC0, and a thread B
is waiting for a lock java/lang/Object@0x105BDCC0, in a single thread stack dump, then
it is the same lock. If you do any subsequent stack dumps however, LockID is not
comparable and, even if a thread holds the same lock, it might have a different LockID
and, conversely, the same LockID does not guarantee that it holds the same lock.

LockType describes the kind of BEA JRockit internal lock type the lock is. Currently,
three kinds of locks exist:

– fat locks: locks with a history of contention (several threads trying to take the lock
simultaneously), or that have been waited on (for notification).

Detect ing Dead locks

Using BEA JRockit JDK D-3

– thin locks: locks that have had no contention.

– recursive locks: locks occur when a thread takes a lock it already holds.

Listing 3-1 shows an example of what a stack trace for a single thread can look like.

Listing 3-1 Example: Stack Trace for a Single Thread

"Open T1" prio=5 id=0x680 tid=0x128 waiting

 -- Waiting for notification on: java/lang/Object@0x1060FFC8[fat lock]

 at jrockit/vm/Threads.waitForSignalWithTimeout(Native Method)@0x411E39C0

 at jrockit/vm/Locks.wait(Locks.java:1563)@0x411E3BE5

 at java/lang/Thread.sleep(Thread.java:244)@0x41211045

 ^-- Lock released while waiting: java/lang/Object@0x1060FFC8[fat lock]

 at test/Deadlock.loopForever(Deadlock.java:67)@0x412304FC

 at test/Deadlock$LockerThread.run(Deadlock.java:57)@0x4123042E

 ^-- Holding lock: java/lang/Object@0x105BDCC0[recursive]

 ^-- Holding lock: java/lang/Object@0x105BDCC0[thin lock]

 at java/lang/Thread.startThreadFromVM(Thread.java:1690)@0x411E5F73

 --- End of stack trace

Detecting Deadlocks
After the normal stack dumps, BEA JRockit performs a deadlock detection. This is done by
finding “lock chains” in the Java application. If a lock chain is found to be circular, the application
is considered caught in a deadlock.

What is a “Lock Chain”?
Although they appear somewhat complex, lock chains are fairly straightforward. Informally, lock
chains can be described as a sequence of threads, each waiting for a lock held by the next thread
in the chain. An open lock chain ends with a thread that is not trying to take a lock, but is instead
doing actual work or possibly waiting for some external event. A circular chain is a deadlock—
it will never be resolved. A closed chain depends on another lock chain, and is in effect
deadlocked if the other chain is deadlocked, and open if the other chain is open. Closed chains
mean that several threads are trying to take the same lock.

Moni to r ing Thread Ac t i v i t y W i th Thread Dumps

D-4 Using BEA JRockit JDK

Formal Definition of a Lock Chain
1. If thread Tb holds lock Lb, and thread Ta is trying to take lock Lb, then they form the lock

chain Ta->Tb.

2. If Ta->Tb is a lock chain, and thread Tc is holding the lock Lc, which thread Tb is trying to
take, then Ta->Tb->Tc is also a lock chain.

3. If Ta->...->Tn is a lock chain, and there exist no lock La held by Ta and a thread Tx such
that Tx is trying to take La, then the lock chain is starting at Ta.

4. If Ta->...->Tn is a lock chain starting at Ta, and there exist no lock Lx such that thread Tn
is trying to take Lx, then Ta->...->Tn is an open lock chain, ending on Tn.

5. If Ta->...->Tn is a lock chain starting at Ta, and thread Tn is trying to take lock Lo, which
is held by a thread To, and thread To is involved in a separate, complete lock chain, then
Ta->...->Tn is a closed lock chain, ending on Tn.

6. If Ta->...->Tn is a lock chain, and thread Tn is trying to take lock La held by thread Ta,
then Ta->...->Tn is a circular (deadlocked) lock chain.

7. A lock chain is complete if it is either an open, closed or circular lock chain.

From the definitions follows that all threads that are trying to take a lock belong to exactly one
complete lock chain

Lock Chain Dump
BEA JRockit will find all complete lock chains, and will group them into open, closed and
circular lock chains. All open and closed lock chains will be printed from their starting elements
to their end. Circular lock chains has neither a start nor an end—BEA JRockit will chose an
element arbitrarily and treat it like the start.

The division between a closed lock chain and the other lock chain is arbitrary. Closed chains arise
whenever two different threads are blocked trying to take the same lock; for example: Thread A
holds lock Lock A while Thread B is waiting for Lock A; Thread C is also waiting for Lock A.
BEA JRockit will interpret this in one of the following ways:

B > A as an open lock chain and C > A as a closed lock chain.

C > A as an open lock chain and B > A as a closed lock chain.

Detect ing Dead locks

Using BEA JRockit JDK D-5

A deadlocked lock chain can never be resolved, and the application will be stuck waiting
indefinitely. If you have long (but open) lock chains, your application might be spending
unnecessary time waiting for locks.

Moni to r ing Thread Ac t i v i t y W i th Thread Dumps

D-6 Using BEA JRockit JDK

Using BEA JRockit JDK Index-1

Index

A
application throughput 3-4

B
blocked trying to get lock D-1

C
circular chain D-3
class C-2
Classname@0xLockID D-2
classpath 2-3
client-side JVM 2-2
closed chain D-3
command line options

classpath 2-3
client 2-2
D 2-3
help 2-3
server 2-2
showversion 2-4
verbose 2-4
version 2-3
Xgc 2-4
Xgcpause 3-6
Xgcprio 2-4
Xms 2-4
Xmx 2-2
Xns 2-4
Xverbose 2-4
Xverbosetimestamp 2-10

compiler C-2

control-break D-1
copying garbage collector 3-4

D
deadlocked D-4
definition of lock chain D-4
dynamic garbage collector 2-4

E
extended options 2-4

F
fat locks D-2
fixed garbage collector 2-4

G
garbage collection 2-2

choosing 3-5
dynamic 3-4
generational 3-2
old generation 3-2
single-spaced 3-2
single-spaced concurrent 3-5
young generation 3-2

garbage collection strategy
parallel 2-10
throughput 2-9

garbage collector 3-4
backward compability 3-4

gc C-3

Index-2 Using BEA JRockit JDK

gcpause C-4

H
help message 2-3

I
initial heap 2-9, 2-10
initial heap size 2-4

J
Java system property 2-3
Java thread 3-3, 3-6
java.lang.System 2-3
jstat C-1

L
lock chain, definition D-4
LockType D-2

M
memory throughput 3-4

N
non-optimized 2-6
nursery size 2-4, 2-9

O
optimized 2-6

P
pause time 3-4
printjit C-2
printopt C-3
product version 2-4

Q
quick 2-6

R
recursive locks D-3

S
server-side JVM 2-2
showversion 2-4
SIGQUIT D-1
single-spaced concurrent 3-5
start-up command 2-2
statistics option

class C-1
compiler C-1
gc C-1
gcpause C-1
printjit C-1
printopt C-1

statOption C-1
system property for Java 2-3

T
take a lock D-1
thin locks D-3
thread stack traces D-1

V
vendor 2-7
verbose output 2-2, 2-4
version 2-3

W
waiting for notification D-1

Using BEA JRockit JDK Index-3

X
X 2-4
Xgc 2-4

gencon 3-5
parallel 3-5
singlecon 3-5

Xgcprio 2-4
pausetime 3-5
throughput 3-5

Xgcreport 3-6
Xms 2-4
Xmx 2-2
Xns 2-4
Xverbose 3-6

codegen 2-5
cpuinfo 2-6
load 2-7
memory 2-8, 2-9
opt 2-6

Index-4 Using BEA JRockit JDK

	Introduction
	What’s In the User Guide?
	Finding Additional Information
	BEA JRockit Support
	Supported Platforms
	Tuning BEA JRockit

	Starting and Configuring BEA JRockit JVM
	Before Starting BEA JRockit
	Starting BEA JRockit
	Setting the JRockit Type
	Sample Start-up Command

	Configuring BEA JRockit
	Using Standard Command Line Options
	Setting General Command Line Options
	Providing Information to the User

	Using Extended Options
	Setting Behavioral Options
	Providing Information to the User
	Including a Timestamp with Logging Information

	Using the BEA JRockit Memory Management System
	The Mark-and-Sweep Garbage Collection Model
	Garbage Collector Options
	Two-generational Garbage Collection
	Single-generational Garbage Collection
	Concurrent Garbage Collection
	Parallel Garbage Collection

	The Dynamic Garbage Collector
	Using Backward-compatible Garbage Collectors
	Overriding Garbage Collectors

	Garbage Collector Selection Matrix
	Viewing Garbage Collection Behavior

	Using the Java Plug-in
	Supported Operating Systems and Browsers
	Installing the Plug-in
	Note on Installing the BEA JRockit Plug-in and Sun Plug-in

	Plug-in Reference

	Using Web Start with BEA JRockit
	Platforn Support
	What You Can Do with Web Start
	Web Start Security
	Installing and Launching Web Start
	Windows Platforms
	Linux Platforms

	Comprehensive Web Start Documentation

	Using jstat with BEA JRockit
	Statistics Options and Output
	-class statOption
	-compiler statOption
	-printjit statOption
	-printopt statOption
	-gc statOption
	-gcpause statOption

	Monitoring Thread Activity With Thread Dumps
	Lock Information in Thread Dumps
	Detecting Deadlocks
	What is a “Lock Chain”?
	Formal Definition of a Lock Chain

	Lock Chain Dump

	Index

