
BEA
 WebLogic JRockit
7.0
Limited Availability
for Red Hat Linux
Advanced Server
2.1 - IPF

User Guide
Release 7.0 Limited Availability for Red Hat Linux Advanced Server
2.1 - IPF
November 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic JRockit, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA
Systems, Inc.

All other trademarks are the property of their respective companies.

Contents

1. Introduction to BEA WebLogic JRockit
What is JRockit?.. 1-1

Why Should I Use JRockit? .. 1-2

What Platforms Does JRockit Support? .. 1-3

How to Print the Document... 1-3

Documentation Conventions ... 1-3

JRockit Support ... 1-5

2. Understanding JRockit
Code Generation.. 2-1

Memory Management ... 2-1

Threads .. 2-2

3. Configuring and Running JRockit
Setting Up JRockit by Using Standard Command Line Options 3-1

Setting Standard Output Options... 3-2

Changing JRockit Behavior for Other Java Applications by Using -X Options3-3

Configuring Garbage Collection and Thread Management by Using -X Options..
3-3

4. Configuring the JRockit Thread System
Native Threads... 4-1

Thin Threads.. 4-2

Choosing a Thread System.. 4-2

Pros and Cons... 4-3

Threading System Selection Matrix ... 4-4

Implementing a Thread System... 4-4
BEA WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide v

Configuring the Thread System... 4-5

Setting the Type of Thread Allocation... 4-5

Setting the Thread Stack Size... 4-5

5. Configuring the JRockit Memory Management System
Memory Management Terminology.. 5-2

JRockit Garbage Collectors... 5-3

Generational Copying Garbage Collectors .. 5-3

Concurrent Garbage Collectors .. 5-3

Single Spaced Concurrent ... 5-4

Generational Concurrent ... 5-4

Parallel Garbage Collectors.. 5-4

Choosing a Garbage Collection Method ... 5-5

Pros and Cons... 5-5

Garbage Collector Selection Matrix... 5-6

Implementing a Garbage Collector ... 5-7

Configuring the Garbage Collector ... 5-7

Printing a Comprehensive Report .. 5-7

Setting the Initial and Maximum Heap Size .. 5-8

Setting the Size of the Nursery... 5-8

Setting the Type of Thread Allocation... 5-8

Defining When a Memory Space will be Cleared...................................... 5-9

Printing the Pause Times.. 5-9

System Defaults... 5-9

Heap Size.. 5-10

Garbage Collector .. 5-10

Nursery Size ... 5-10

Thread Stack Size... 5-10

Allocation Type.. 5-11

Clear Type .. 5-11

6. Using the JRockit Management Console
Console Overhead ... 6-1

Starting the Console .. 6-2

Enable the Management Server.. 6-2
BEA WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide vi

Start the JRockit Management Console ... 6-2

Set the Port ... 6-3

Change the Number of Connections .. 6-3

Parts of the Console... 6-3

Setting Up the Console.. 6-6

Making Connections .. 6-6

Creating a New Folder .. 6-6

Creating a New Connection .. 6-7

Connecting a Connection to JRockit... 6-8

Disconnecting a Connection from JRockit ... 6-8

Renaming a Connection or Folder .. 6-8

Removing a Connection or Folder .. 6-9

Hiding Disconnected Connections.. 6-10

Enabling Console Settings ... 6-10

Setting the Operation Mode .. 6-10

Setting Other Preferences.. 6-11

Customizing the Display... 6-13

Using the Settings File .. 6-16

Using the Console.. 6-16

Information Tabs .. 6-16

Overview Tab.. 6-16

Memory Tab.. 6-18

Processor Tab.. 6-19

System Tab.. 6-21

Notification Tab .. 6-22

View Historical Data.. 6-29

Using Advanced Features of the Console .. 6-31

View Thread Stack Dump... 6-31

Method Profiling Tab.. 6-32

Exception Counting Tab ... 6-35

Closing the Console ... 6-36
BEA WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide vii

viii BEA WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

CHAPTER
1 Introduction to BEA
WebLogic JRockit

Welcome to BEA WebLogic JRockit 7.0 Limited Availability for Red Hat Linux
Advanced Server 2.1 - IPF, the first commercial server-side Java Virtual Machine.
JRockit was developed uniquely for server-side applications and optimized for Intel
architectures to ensure reliability, scalability, manageability, and flexibility for Java
applications. This user guide provides instructions for using JRockit on the Window
and Linux platforms.

This section contains information on the following subjects:

! What is JRockit?

! Why Should I Use JRockit?

! What Platforms Does JRockit Support?

! How to Print the Document

! Documentation Conventions

! JRockit Support

What is JRockit?

BEA WebLogic JRockit 7.0 Limited Availability for Red Hat Linux Advanced Server
2.1 - IPF is the only credible high performance Java Virtual Machine (JVM) developed
uniquely for server-side applications and optimized for Intel architectures designed to
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 1-1

1 Introduction to BEA WebLogic JRockit
ensure reliability, scalability, manageability, and flexibility for Java applications. A
crucial component of the BEA WebLogic Platform, WebLogic JRockit delivers a new
level of performance for Java applications deployed on any kind of hardware
architecture at significantly lower costs to the enterprise. Furthermore, it is the only
enterprise-class JVM optimized for Intel Architecture, providing seamless
interoperability across multiple hardware and operating system configurations.

Why Should I Use JRockit?

There are two critical reasons for using BEA WebLogic JRockit:

! JRockit is designed for server-side applications.

If you are running server-side applications, JRockit is the most effective VM you
can use. A server-side VM is designed with server applications in mind.
Server-side applications have very different requirements than client-side
applications and demand different behavior from a VM. These applications
generally do not use graphical user interfaces, run for longer periods of time, and
are usually parallel and thread intensive. To fully exploit server-side applications
and ensure optimal performance, you VM should employ a server-specific
design policy.

! JRockit employs adaptive optimization to significantly improve runtime
performance.

Adaptive optimization is a JRockit feature that detects and removes bottlenecks
in a running program, significantly improving program performance. Adaptive
optimization can result in code with better performance than statically compiled
code because it has access to more information regarding the running program.
Another advantage is that the code does not lose any of the dynamic
characteristics of interpreted languages.
1-2 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

What Platforms Does JRockit Support?
What Platforms Does JRockit Support?

JRockit 7.0 Limited Availability for Red Hat Linux Advanced Server 2.1 - IPF,
running with JS2E version 1.4.1, supports Red Hat Linux Advanced Server 2.1 IPF
(Intel Itanium 2 servers).

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the JRockit 7.0 Limited Availability
for Red Hat Linux Advanced Server 2.1 - IPF documentation Home page on the e-docs
Web site. A PDF version of this document is also available in the documentation kit
on the product CD. Or you can download the documentation kit from the JRockit
portion of the BEA Download site. You can open the PDF in Adobe Acrobat Reader
and print the entire document (or a portion of it) in book format. To access the PDF
files, open the JRockit 7.0 Limited Availability for Red Hat Linux Advanced Server
2.1 - IPF documentation Home page, click the PDF files button and select the
document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 1-3

1 Introduction to BEA WebLogic JRockit
Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

Convention Item
1-4 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

JRockit Support
JRockit Support

Should you experience any problems or find any bugs, please send us an e-mail at
support@bea.com. We would appreciate if you could provide as much information
as possible about the problem, for example:

! Hardware

! Version

! The program you ran

! Stack dumps (if any)

! A small code example that will reproduce the error.

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

! That an argument can be repeated several times in a command line

! That the statement omits additional optional arguments

! That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 1-5

1 Introduction to BEA WebLogic JRockit
1-6 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

CHAPTER
2 Understanding JRockit

This section includes information on the following subjects:

! Code Generation

! Memory Management

! Threads

Code Generation

Code generation is the process of converting Java code to assembly language. JRockit
contains a very good optimizing JIT compiler with cutting-edge performance. It is
unique because it doesn’t perform bytecode interpretation at all, instead everything is
compiled. While this can lead to slightly longer startup times, the long-term result is
faster performance for typical server-side applications.

Memory Management

JRockit manages memory by employing four different garbage collectors. These
collectors work during runtime to clear the memory stack of expired objects, or
“garbage.” JRockit’s four garbage collectors are:

! Generational Stop 'n' Copy, which divides the memory into two or more areas
called “generations.” Instead of allocating objects in one single space and
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 2-1

2 Understanding JRockit
garbage collecting that whole space when it gets full, most of the objects are
allocated in the “young generation”, called the nursery.

! Single-Spaced Concurrent, one of two types of concurrent collectors, which
does its work in parallel with ordinary processing; that is, it does not stop all
Java threads to do the complete garbage collection. This is designed to support
garbage collection without disruption and to improve multiprocessor garbage
collection performance.

! Generational Concurrent is the second type of concurrent collector JRockit
employs. Although very similar to a single-spaced concurrent collector, a
generational concurrent garbage collector does its actual object allocation in a
“nursery,” reducing the need to do collection of the entire heap so often.

! Parallel garbage collection, which stops all Java threads and uses every CPU to
perform a complete garbage collection of the entire heap.

To implement and configure a garbage collector, see Chapter 5, “Configuring the
JRockit Memory Management System.”

Threads

BEA WebLogic JRockit can use one of two thread systems to maximize processing:

! High Performance Threading System, or thin threads, wherein multiple Java
threads are run on a singe operating system thread. This allows JRockit to
optimize thread scheduling, thread switching, and thread synchronization, while
using less memory.

! Native Threads which maps Java threads directly to the operating system
threads, directly taking advantage of the operating system's thread scheduling
and load balancing policies. Native Threads is the default thread system for BEA
WebLogic JRockit.

To implement and configure a Thread system, see Chapter 4, “Configuring the JRockit
Thread System.”
2-2 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

CHAPTER
3 Configuring and
Running JRockit

This section describes how to use JRockit’s command line options. JRockit supports
all the standard Java command line options plus numerous extended options.

This section includes information on the following subjects:

! Setting Up JRockit by Using Standard Command Line Options

! Setting Standard Output Options

! Changing JRockit Behavior for Other Java Applications by Using -X Options

! Configuring Garbage Collection and Thread Management by Using -X Options

Note: If JRockit behaves in some unexpected way, please consult the JRockit FAQ.
If that doesn't solve your problem, please send an e-mail to support@bea.com

Setting Up JRockit by Using Standard
Command Line Options

The following are the standard command line options you can use with JRockit:

! -classpath <directories and zips/jars separated by : or ;>

Tells JRockit where to look for classes and resources.
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 3-1

3 Configuring and Running JRockit
Use a colon to separate entries on Linux. Alternately, you can use the option -cp

to represent -classpath; for example:

-cp <directories and zips/jars separated by : or ;>

! -D<name>[=<value>]

Tells JRockit to set a Java system property. These can be read by a Java
program, using the methods in java.lang.System.

Setting Standard Output Options

The following options determine if the system will provide messages to the operator
and what the form and content of those messages should be.

! -version

Tells JRockit to display its product version number and then exit.

! -showversion

Tells JRockit to display its product version number and then continue.

! -verbose[:<components separated by ,>]

Tells JRockit to display verbose output. This option is used mainly for
debugging purposes and causes a lot of output to the console. Supported
components are memory, load and codegen. If no component is given, JRockit
will display verbose information on everything.

! -help

Tells JRockit to display a short help message.

! -X

Tells JRockit to display a short help message on the extended options.
3-2 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

Changing JRockit Behavior for Other Java Applications by Using -X Options
Changing JRockit Behavior for Other Java
Applications by Using -X Options

The -X command line options are used to change the behavior of JRockit to better suit
the needs of different Java applications. These options are non-standard and are subject
to change at any time.

! -Xnoopt

Tells JRockit not to optimize code.

! -Xverify

Tells JRockit to do complete bytecode verification.

! -Xquiet

Prevents JRockit from dumping output to stdout or stderr.

Configuring Garbage Collection and Thread
Management by Using -X Options

Additional -X options, specific to garbage collection and threading, are described in
Chapter 4, “Configuring the JRockit Thread System” and Chapter 5, “Configuring the
JRockit Memory Management System.”
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 3-3

3 Configuring and Running JRockit
3-4 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

CHAPTER
4 Configuring the
JRockit Thread System

JRockit supports two types of thread systems:

! Native Threads

! Thin Threads

These systems allow you to configure JRockit to take optimal advantage of the
resources upon which you are running it. This section describes how to select and
configure these thread systems. It includes information on the following subjects:

! Native Threads

! Thin Threads

! Choosing a Thread System

! Implementing a Thread System

! Configuring the Thread System

Native Threads

This system maps Java threads directly to the operating system threads, directly taking
advantage of the operating system's thread scheduling and load balancing policies.
Native Threads is the default thread system for BEA WebLogic JRockit.
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 4-1

4 Configuring the JRockit Thread System
Thin Threads

Called the BEA JRockit High Performance Threading System, or Thin Threads, these
Java threads are more specific and demand fewer resources than an operating
system thread. Thus, using operating system threads to run Java threads can be a waste
of resources.

Thin threads are independent of platform-specific (native) threads. They are
implemented in JRockit and are not part of the operating system; that is, several threads
are simulated by one (or more) native threads that represent the running program.
Context switches and scheduling is done internally within JRockit, and is therefore
much lighter-weight than context switching done within native threads by the OS.

In the High Performance Threading System, several Java threads are run in the same
operating system thread. This allows JRockit to perform optimized thread scheduling,
thread switching, and thread synchronization with less memory. This makes it possible
to run a drastically higher number of threads at a higher speed than with any other Java
VM.

To fully utilize system resources on a multi-processor system, JRockit is not restricted
to running all Java threads in the same operating system thread. A variety of operating
system threads can be used which splits the Java threads among them. A Java thread is
not bound to a specific operating system thread - it can move between them to allow
for optimal load balancing.

Choosing a Thread System

This section includes some tools that will help you determine which threading model
is right for your JRockit implmentation. It contains a list of the pros and cons of each
method and a decision matrix that will help you identify the optimal threading model.
4-2 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

Choosing a Thread System
Pros and Cons

Table 4-1 lists the pros and cons of each thread system.

Table 4-1 Thread System Pros and Cons

Thread System Pros Cons

Native Threads ! Takes advantage of the operating
system's thread scheduling and load
balancing policies.

! Are standard, giving you an
application with native code, which
relies upon the fact that each Java
thread is mapped on to a operating
system thread of its own, this is the
only model that works (both DB2 and
Oracle level 2 JDBC database drivers
have been known to rely upon this).

! On a multiprocessor system when the
application has few active threads, the
operating system scheduling system is
better at utilizing the CPUs efficiently.

! Context switching is more costly as it has
to be done in the operating system instead
of only in the JVM.

! Every Java thread consumes more
resources, because it requires an
operating system thread of its own.

Thin Threads ! Since several Java threads are run in
the same operating system thread,
JRockit can perform optimized thread
scheduling, thread switching, and
thread synchronization with less
memory.

! A variety of operating system threads
can be used, splitting the Java threads
among them. A Java thread is not
bound to a specific operating system
thread, so it can move between them to
allow for optimal load balancing.
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 4-3

4 Configuring the JRockit Thread System
Threading System Selection Matrix

Use the If... column in Table 4-2 to locate a condition that matches your JRockit
implementation and select the thread system indicated in the Select this Method...
column.

Implementing a Thread System

To implement a thread system, include one of the options listed in Table 4-3 when you
start JRockit:

Table 4-2 Threading System Selection Matrix

If... Select this Method...

You have in excess of a couple hundred threads Thin Threads

You are running Linux on a single-CPU system Thin Thread. This is because Linux threads are very expensive
to use.

Table 4-3 Options Used to Implement Threading

To Use... Include this Option...

Native Threads -Xnativethreads

This option is the default, therefore you only need to specify it
when you want to change the method from thin threads.

Thin Threads -Xthinthreads

This option is not available on IA64.
4-4 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

Configuring the Thread System
Configuring the Thread System

To provide the optimal out-of-the-box experience with JRockit comes with default
values that adapt automatically to the specific platform on which you are running
JRockit. You can modify these values to configure your thread system by specifying
at the command line any of the options listed in this section.

Setting the Type of Thread Allocation

-Xallocationtype:<global|local>

-Xallocationtype sets the type of thread allocation. The allocation type local is
recommended for the vast majority of applications. However, if the maximum heap
size is very small (less then 128 MB) or if the number of threads used by the
application is very high (several hundred) the allocation type global might work better,
particularly on single CPU systems. The reason for this is that every thread-local area
consumes a fixed amount of memory (approximately 2 kilobytes). If the number of
threads is very high or the heap size very small when using thread-local allocation the
potential waste of space could cause excess fragmentation of the heap. This leads to
more frequent garbage collections and may cause the application to run out of memory
prematurely.

Setting the Thread Stack Size

-Xss<size>[k|K]

-Xss<size>[k|K] sets the thread stack size in kilobytes.

In addition to setting the thread stack size, if the number of threads is high, you should
use -Xallocationtype:global, as suggested in “Setting the Type of Thread
Allocation” to reduce heap fragmentation.
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 4-5

4 Configuring the JRockit Thread System
4-6 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

CHAPTER
5 Configuring the
JRockit Memory
Management System

Have you ever seen strange pauses in your application that you haven’t been able to
explain? Have you seen one or all CPUs pegged on 100% utilization and all the others
on 0% and still very few transactions in your system? If you answered yes to either of
these two questions, your application might have been suffering from the effects of a
poorly performing garbage collector. Some fairly simple tuning of the memory
management system can improve performance dramatically for many applications.

This section includes information on the following subjects:

! Memory Management Terminology

! JRockit Garbage Collectors

! Choosing a Garbage Collection Method

! Implementing a Garbage Collector

! Configuring the Garbage Collector

! System Defaults
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 5-1

5 Configuring the JRockit Memory Management System
Memory Management Terminology

Before continuing, there are some terms you should understand. You may already be
familiar with some of the terms, especially if you have read any other documents about
garbage collectors.

Thread-local allocation
Thread-local allocation is not the same thing as thread-local objects, but many
people tend to confuse the two terms. Thread-local allocation does not
determine whether the objects can be accessed from a single thread only (that
is, thread-local objects); thread-local allocation means that the thread has an
area of its own where no other thread will create new objects. The objects that
the thread creates in that area may still be reached from other threads.
Thread-local allocation removes object allocation contention and reduces the
need to synchronize between thread performing allocations on the heap. It also
gives increased cache performance on a multi-CPU system, because it reduces
the risk of two threads running on different CPUs having to access the same
memory pages at the same time.

Pause time
Garbage collector pause time is the length of time that the garbage collector
stops all Java threads during a garbage collection. The longer the pause, the
more unresponsive your system will be. The worst pause time and the average
pause time are the two most interesting values you can use for tuning the
system.

Memory throughput
Memory throughput measures the time it takes between when an object is no
longer referenced and the time it gets reclaimed and returned as free memory.
The higher the memory throughput the shorter is the time between the two
events. Moreover, the higher the memory throughput the smaller the heap you
will need.
5-2 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

JRockit Garbage Collectors
JRockit Garbage Collectors

This section describes the garbage collectors available in JRockit. These collectors are:

! Generational Copying Garbage Collectors

! Concurrent Garbage Collectors

! Parallel Garbage Collectors

Generational Copying Garbage Collectors

The first type of JRockit garbage collector is the generational copying garbage
collector (-Xgc:gencopy).

A generational garbage collector divides the memory into two or more areas called
“generations”. Instead of allocating objects in one single space and garbage collecting
that whole space when it gets full, most of the objects are allocated in the “young
generation”, called the nursery. As most objects die young, most of the time it will be
sufficient to garbage collect only the nursery and not the entire heap.

A generational copying garbage collector is specifically designed as a lightweight
alternative for use on single CPU systems with a small (less then 128 mB) heap. It is
suitable for testing applications on your desktop machine; however for a deployment
environment another garbage collector would in most cases be more efficient.

Concurrent Garbage Collectors

A concurrent garbage collector does its work in parallel with ordinary work; that is, it
does not stop all Java threads to do the complete garbage collection. Most garbage
collectors today are “stop-the-world,” or parallel, collectors and are not very efficient.
Using a parallel collector, if you have to garbage collect the whole of a large heap,
there could be a pause of up to several seconds, depending on the heap size. Concurrent
garbage collectors are designed to rectify this condition.

JRockit can employ two types of concurrent garbage collectors:
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 5-3

5 Configuring the JRockit Memory Management System
! Single Spaced Concurrent

! Generational Concurrent

Single Spaced Concurrent

The second type of JRockit garbage collector is the single spaced concurrent garbage
collector (-Xgc:singlecon). What is unique about the concurrent garbage collectors
is that they remove garbage collection pauses completely. Using these garbage
collectors, the heaps can be gigabyte-size and there will be no long pauses. However,
keep in mind that concurrent garbage collectors trade memory throughput for reduced
pause time. It takes longer between the time the object is referenced the last time and
the system detects and reclaims it; in other words it takes longer for the object to die.
The natural consequence of this is that you will most likely need a larger heap with a
concurrent garbage collector than you need with any other. In addition, if your ordinary
Java threads create more garbage than the concurrent garbage collector manages to
collect, there will be pauses while the Java threads are waiting for the concurrent
garbage collector to complete its cycle.

Generational Concurrent

The third type of JRockit garbage collector is the generational concurrent garbage
collector (-Xgc:gencon). In this garbage collector, objects are allocated in the young
generation. When the young generation (called a nursery) is full, JRockit
“stops-the-world” and moves the objects that are still live in the young generation to
the old generation. An old collector thread runs in the background all the time; it marks
objects in the old space as live and removes the dead objects, returning them to JRockit
as free space.

The advantage of the generational concurrent garbage collector compared to the single
spaced concurrent garbage collector is that it has a higher memory throughput.

Parallel Garbage Collectors

The fourth type of JRockit garbage collector is the parallel garbage collector
(-Xgc:parallel). When the heap is full all Java threads are stopped and every CPU
is used to perform a complete garbage collection of the entire heap. This behavior
5-4 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

Choosing a Garbage Collection Method
causes longer pause times than for the concurrent collectors but maximizes memory
throughput. On a machine with four CPUs or better this is the recommended garbage
collector, provided that your application can tolerate the slightly longer pause times.

Choosing a Garbage Collection Method

Each of the four garbage collectors has its benefits and its drawbacks. In an effort to
help you choose the collector that best suits your needs, this section discusses the pros
and con of each collector and provides a matrix to help you decide which one to use.

Pros and Cons

Table 5-1 lists the pros and cons of each garbage collector.

Table 5-1 Garbage Collector Pros and Cons

Garbage Collector Pros Cons

Generational Copying ! Works well with single CPU
systems with a heap smaller than
128mB.

! Good for testing on a single
machine.

! Not effective with large (>128mB)
heaps.

! Not recommended in a deployment
environment.

Single Spaced Concurrent ! Virtually removes all pauses.

! Can handle gigabyte-sized heaps.

! Trades memory for fewer pauses.

! If ordinary Java threads create more
garbage than this collector can
collect, pauses occur while these
threads are waiting for the collector
to complete its cycle.

Generational Concurrent ! Virtually removes all pauses.

! Has a higher memory throughput
than single spaced concurrent
garbage collector

! Trades memory for fewer pauses.

! If ordinary Java threads create more
garbage than this collector can
collect, pauses occur while these
threads are waiting for the collector
to complete its cycle.
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 5-5

5 Configuring the JRockit Memory Management System
Garbage Collector Selection Matrix

Table 5-2 is a matrix that you can use to determine which garbage collector is right for
your JRockit implementation. Use the If... column to locate a condition that matches
your JRockit implementation and select the garbage collector indicated in the Select
this Method... column.

Parallel ! Maximizes memory throughput. ! “Stop the world” might cause a
longer than desirable pause in
processing.

Table 5-1 Garbage Collector Pros and Cons

Garbage Collector Pros Cons

Table 5-2 Garbage Collector Selection Matrix

If You... Select this Garbage Collector...

! Want lightweight alternative for use on
single CPU systems with a small (less then
128 mB) heap.

! Are testing applications on your desktop
machine.

Generational Copying

! Cannot tolerate pauses of any length.

! Employ gigabyte-sized heaps.

! Willing to trade memory thoughput for
eliminating pauses.

Single Spaced Concurrent

! Cannot tolerate pauses of any length.

! Employ gigabyte-sized heaps.

! Willing to trade some memory thoughput
for eliminating pauses.

! Want better memory throughput than
possible with Single Spaced Concurrent

Generational Concurrent

! Using a machine with four CPUs or better.

! Can tolerate the occasional long pause

! Need to maximize memory throughput

Parallel
5-6 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

Implementing a Garbage Collector
Implementing a Garbage Collector

To implement a garbage collector, simply enter at the command line the option for the
desired collector. Table 5-3 lists these options:

When started, JRockit will run with the specified garbage collector.

Configuring the Garbage Collector

To provide the optimal out-of-the-box experience with JRockit comes with default
values that adapt automatically to the specific platform on which you are running
JRockit (see “System Defaults” on page 9). You can modify these values to tune your
garbage collector by specifying at the command line any of the options listed in this
section.

Printing a Comprehensive Report

-Xgcreport

Table 5-3 Garbage Collector Implementation Options

Garbage Collector Option

Generational Copying -Xgc:gencopy

Single Spaced Concurrent -Xgc:singlecon

Generational Concurrent -Xgc:gencon

Parallel -Xgc:parallel
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 5-7

5 Configuring the JRockit Memory Management System
-Xgcreport causes JRockit to print a comprehensive garbage collection report at
program completion. The option -Xgcpause causes JRockit to print a line each time
Java threads are stopped for garbage collection. Combining the two is a very good way
of examining the memory behavior of your application.

Setting the Initial and Maximum Heap Size

-Xmx:<size>/-Xms<size>

-Xmx sets the maximum size of the heap. The general recommendation is to set this as
high as possible, but not so high that it causes page-faults for the application or for
some other application on the same computer. Set it to something less than the amount
of memory in the machine. If you have multiple applications running on the computer
at the same time the value could be much lower. The general recommendation is to set
the initial heap size (-Xms) to the same size as the maximum heap size.

Setting the Size of the Nursery

-Xns:<size>

-Xns sets the size of the young generation (nursery). If you are creating a lot of
temporary objects you should have a large nursery. Generally, the larger you can make
the nursery while keeping the GC-pause times acceptably low, the better. You can see
the nursery pause times in JRockit by starting the JVM with -Xgcpause, but you have
to decide yourself what is an acceptable GC pause time before your system becomes
unresponsive.

Setting the Type of Thread Allocation

-Xallocationtype:<global|local>

-Xallocationtype sets the type of thread allocation. The allocation type local is
recommended for the vast majority of applications. However, if the maximum heap
size is very small (less then 128 MB) or if the number of threads used by the
application is very high (several hundred) the allocation type global might work
better, particularly on single CPU systems. The reason for this is that every
5-8 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

System Defaults
thread-local area consumes a fixed amount of memory (approximately 2 kilobytes). If
the number of threads is very high or the heap size very small when using thread-local
allocation the potential waste of space could cause excess fragmentation of the heap.
This leads to more frequent garbage collections and may cause the application to run
out of memory prematurely.

Defining When a Memory Space will be Cleared

-Xcleartype:<gc|local|alloc>

-Xcleartype defines when the memory space occupied by an object that has been
garbage collected will be cleared. It can be done during the garbage collection (gc),
when a thread-local area is allocated (local) or when that space is allocated for a new
object (alloc). You should use local or alloc. alloc might work better if the
objects allocated are very large (1 to 2 kilobytes).

Note these additional conditions:

! The -Xcleartype:local option is available only if the -Xallocationtype is
set to local.

! The alloc parameter is not available on IA64 systems.

Printing the Pause Times

-Xgcpause

-Xgcpause prints pause times caused by the garbage collector.

System Defaults

This section describes the default values for the JRockit memory management system.
To provide the best out-of-the-box performance possible these defaults adapt
automatically to the specific platform on which JRockit is running.
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 5-9

5 Configuring the JRockit Memory Management System
Heap Size

If the initial heap size (-Xms) is not set, the default initial heap size depends on the
maximum heap size (-Xmx) value and on the amount of available physical memory. If
the maximum heap size or the available physical memory is less than 128 MB the
initial heap size will be 16 MB. If the maximum heap size is larger than 128 MB the
initial heap size will be 75% of the available physical memory up to 64 MB.

Garbage Collector

If the garbage collector (-Xgc) has not been set and the maximum heap size (set by
using -Xmx or using the default as described above) is less than 128 MB, the default
garbage collector is generational copying (gencopy); otherwise the default is
generational concurrent (gencon).

Nursery Size

If the nursery size (-Xns) has not been set the default size depends on the number of
CPUs. For the generational copying (gencopy) garbage collector the default nursery
size is 640 KB times the number of CPUs and for the generational concurrent
(gencon) garbage collector the default nursery size is 10 MB times the number of
CPUs.

Thread Stack Size

If the thread stack size (-Xss) has not been set the default value depends on the
threading system and the platform you are running on. When using thin threads the
minimum thread stack size is 8 kilobytes and the default is 64 kilobytes. When using
native threads the minimum thread stack size is 16 kilobytes. For Linux the default
thread stack size when using native threads is 128 kilobytes.

Note: If -Xss is set below the minimum value, thread stack size will default to the
minimum value automatically.
5-10 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

System Defaults
Allocation Type

If the allocation type (-Xallocationtype) is not set, the default is global for the
generational copying (gencopy) garbage collector and local for all others
(singlecon, gencon, and parallel).

Clear Type

If the clear type (-Xcleartype) is not set the default is alloc on IA32 systems and
gc on IA64 systems.

Note: The option alloc is not available on IA64 systems.
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 5-11

5 Configuring the JRockit Memory Management System
5-12 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

CHAPTER
6 Using the JRockit
Management Console

The JRockit Management Console can be used to supervise and monitor running
instances of JRockit. It provides real-time information about the running application’s
characteristics, which can be used both during development—for example, to find
where in an application’s life cycle it consumes more memory—and in a deployed
environment—for example, to monitor the system health of a running application
server.

This section includes information on the following subjects:

! Console Overhead

! Starting the Console

! Parts of the Console

! Setting Up the Console

! Using the Console

Console Overhead

The extra cost of running the JRockit Management Console against a running JRockit
is very small and can almost be disregarded. This provides for a very low cost
monitoring and profiling of your application.
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 6-1

6 Using the JRockit Management Console
Starting the Console

Starting the JRockit Management Console is a two-step process:

1. Enable the Management Server

2. Start the JRockit Management Console

Additionally, you might want to also complete these tasks as part of the start-up
process:

! Set the Port

! Change the Number of Connections

Enable the Management Server

Before the Management Console can connect to JRockit, the management server in the
virtual machine needs to be started. The server is disabled by default. To enable the
management server, start JRockit set the -Xmanagement option:

-Xmanagement

Start the JRockit Management Console

Start the JRockit Management Console from the command prompt by typing:

java -jar ManagementConsole.jar

Note: Before starting the Management Console, you must specify the JRE and the
path to the .jar file.
6-2 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

Parts of the Console
Set the Port

When JRockit is started with the -Xmanagement option set—and provided JRockit is
not running in “quiet” mode—it should print out a short message following the
command line indicating that the management server is running and which port it is
using. You can optionally choose which port to use by setting the port in the port
property:

-Djrockit.managementserver.port=<portnumber>

The default port the management server uses to connect is 7090. It is strongly
recommended that you block this port in your firewall, otherwise unauthorized users
might access the management server.

Change the Number of Connections

You can change the number of connections allowed to the server by setting the
maxconnect property:

-Djrockit.managementserver.maxconnect=<maximum number of
connections>

The default limit is four concurrent connections. While this should be enough for most
users, you can change it, if necessary. The connection limit protects against Denial of
Service (DoS) attacks by intruders.

Parts of the Console

When the JRockit Management Console window appears, the console has started, as
shown in Figure 6-1:
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 6-3

6 Using the JRockit Management Console
Figure 6-1 JRockit Management Console

The JRockit Management Console window is divided into two panes: a connection
browser tree in the left pane (Figure 6-2) and a tabbed interface in the right pane
(Figure 6-3).
6-4 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

Parts of the Console
Figure 6-2 Connection Browser

Figure 6-3 Information Tabs (Administrator Mode)

The first tab shows an Overview of information for the selected JRockit connection(s)
(as highlighted in the connection browser pane). The other tabs contain detailed
information about different areas of JRockit, as will be described in “Information
Tabs” on page 16.

Figure 6-3 shows the information tabs available in the console’s Administrator
operation mode. When the console is in the Developer mode, additional tabs appear,
as shown in Figure 6-4. These two operation modes are described in “Setting the
Operation Mode” on page 10.

Figure 6-4 Information Tabs (Developer Mode)

The console includes a toolbar that contains command buttons for some of the menu
options (Figure 6-5). To toggle the Toolbar on or off, on the View menu select Tool
Bar.

Figure 6-5 Management Console Toolbar

The status bar (Figure 6-6) at the bottom of the window displays information messages
and tool tips when you hover over a toolbar button or select something in a menu. It
also indicates whether the JRockit Management Console is connected to one or several
JRockit implementations or not. To toggle the Status Bar on or off, on the View menu,
select Status Bar.
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 6-5

6 Using the JRockit Management Console
Figure 6-6 Status Bar

Setting Up the Console

Once the console is running, you will need to configure it to suit your needs.
Configuring—or “setting up”—the console includes these tasks:

! Making Connections

! Enabling Console Settings

Making Connections

The connection browser displays a collection of saved connections to JRockit
organized in folders. If necessary, you can add your own folders and connection nodes
to the tree structure. Active connections currently connected to a running JRockit are
indicated by a green icon; those disconnected are indicated by a red icon.

Creating a New Folder

To create your own folder in the connection browser, do the following:

1. Select an existing folder (for example, Connections) for which you want to create
a subfolder.

2. Open the New Folder dialog box by doing one of the following:

" Choose Connection→New Folder.

" Press the right mouse button to open a context menu and select New Folder.

" Press Ctrl+N.

" Click the New Folder button on the toolbar.

The Add new folder dialog box (Figure 6-7) appears:
6-6 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

Setting Up the Console
Figure 6-7 Add New Folder Dialog Box

3. Enter the name of the new folder in the text field and click OK.

The new folder will appear in the connection browser.

Creating a New Connection

To create a new connection to JRockit in the connection browser, do the following:

1. Select the folder in which the connection should be placed

2. Open the New Connection dialog box by doing one of the following:

" Open the Connection menu and select New Connection.

" Press the right mouse button to open a context menu and select New
Connection.

" Click the New Connection button on the toolbar.

The Add new connection dialog box (Figure 6-8) appears:

Figure 6-8 Add New Connection Dialog Box

3. Enter the name of the server, the port and the new connection in the appropriate
text fields or retain the default values. Then, select or deselect Connect now and
click Add Connection.
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 6-7

6 Using the JRockit Management Console
Connecting a Connection to JRockit

To connect to JRockit, do the following:

1. Select the JRockit connection to connect, a subfolder of connections to connect, or
the folder Connections to connect all existing connections.

2. Do one of the following to connect the selected connection(s):

" Open the Connection menu and select Connect.

" Press the right mouse button to open a context menu and select Connect.

" Press Ctrl+O.

" Click the Connect button on the toolbar.

When the connection is made, the status bar will read “Connected” and activity
on the console will commence.

Disconnecting a Connection from JRockit

To disconnect a connection from JRockit, do the following:

1. Select the JRockit connection to connect, a subfolder of connections to connect, or
the folder Connections to disconnect all existing connections.

2. Do one of the following to disconnect the selected connection(s):

" Open the Connection menu and select Disconnect.

" Press the right mouse button to open a context menu and select Disconnect.

" Press Ctrl+D.

" Click the Disconnect button on the toolbar.

The connection will be lost and the status bar will indicate that you’ve been
disconnected. All activity on the console will cease.

Renaming a Connection or Folder

To rename a connection or a folder of connection, do the following:

1. Select the JRockit connection or folder to rename.
6-8 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

Setting Up the Console
2. Do one of the following to rename the selected connection or folder:

" Open the Connection menu and select Rename.

" Press the right mouse button to open a context menu and select Properties.

" Press F2.

" Click the name label of the item (see Note, below).

The Folder properties dialog box (Figure 6-9) appears:

Figure 6-9 Folder Properties Dialog Box

3. Enter a new name into the text field and click OK

Note: If you select the last option (click the item label), the Folder properties dialog
box will not appear. Instead, the label itself will be enabled for direct editing.
Simply type the new name over the old and click away from the label.

Removing a Connection or Folder

To remove a connection or folder, do the following:

1. Select a connection or a subfolder to remove.

2. Do one of the following to remove the selected item:

" Open the Connection menu and select Remove.

" Press the right mouse button to open a context menu and select Remove.

" Press Delete.

3. Click Yes on the confirmation dialog box that appears.

The selected item disappears from the connection browser.
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 6-9

6 Using the JRockit Management Console
Hiding Disconnected Connections

Sometimes you might want to show just information about active JRockit connections.
To hide information about disconnected connections, do one of the following:

! Open the View menu and select Hide Disconnected.

! Click the Hide Disconnected button on the toolbar.

To show the information about disconnected connections again, simply deselect Hide
Disconnected in same way that you made the selection.

Enabling Console Settings

This section describes how to enable various JRockit Management Console settings.

Setting the Operation Mode

The Management Console can be run in two different operating modes:

! Administrator Mode; This is the default mode, designed for system
administrators who are interested in observing the state of the JRockit system.

! Developer Mode; The developer mode is for developers and provides additional
features such as a rudimentary method profiler and exception count functionality.
Additional pages appearing in the developer mode are the Method Profiler page
and the Exception Count page.

To set the operation mode, do the following:

1. From the Tools menu, select Preferences...

The Preferences dialog box (Figure 6-10) appears:
6-10 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

Setting Up the Console
Figure 6-10 Preferences Menu (General Tab)

2. Click the Mode of operation drop-down control to display the list of operation
modes (Figure 6-11).

Figure 6-11 List of Operation Modes

3. Select the mode you want to use and click OK.

Depending upon the mode to which you are toggling, the tabs on the console
will change. See Figure 6-3 and Figure 6-4 for examples.

Setting Other Preferences

In addition to setting the operation mode, you can use the Preferences dialog box to
change these settings:

! Default e-mail settings for the notification system

! Persistence behavior.

To change either of these values, open the Preferences dialog box from the Tools menu
and proceed are described in the following sections:
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 6-11

6 Using the JRockit Management Console
Setting E-mail Preferences

To change e-mail preferences, do the following:

1. Display the General tab on the Preferences dialog box

2. In the appropriate text fields, enter the new e-mail information (SMTP server and
E-mail address), as shown in Figure 6-12.

3. Click OK

Figure 6-12 E-mail Preferences Panel

Enabling Persistence

Enabling the persistence means that aspect values are saved to a file and can be
reviewed in charts by opening the View menu and selecting View Historical Data
(“View Historical Data” on page 29).

Selecting Aspects to Persist To set persistence preferences, do the following:

1. Disconnect any JRockit connections.

Note: If you have not disconnected the connections and attempt to use this dialog
box, you will be prompted to disconnect.

The checkboxes in the Aspects to persist panel become enabled (Figure 6-13):
6-12 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

Setting Up the Console
Figure 6-13 Aspects to Persist Panel

2. Select the aspects you want to persist.

3. Click OK.

The selected aspect values are saved to a file that you can review in charts as
described in “View Historical Data” on page 29.

Specifying the Persistence Directory In addition to setting preferences for the
aspects to persist, you can also specify where to save the file that contains the aspect
value (the “Persistence directory”). To do so:

1. Click Choose (next to the Persistence directory field).

If you are still connected to JRockit, you will be prompted to disconnect; click
Yes to proceed. A standard Open dialog box appears.

2. Locate the directory where you want to save the file and click Open.

The Open dialog box closes, returning you to the Preferences dialog box.

3. Click OK.

The new Persistence directory will appear in that field.

Erasing Persistence Value Logs Finally, you can erase all persistence value logs
by clicking Clear all aspect logs. You will see a confirmation message to which you
should respond Yes.

Customizing the Display

You can customize the console and change the way some of the monitoring data is
displayed, as described in this section.
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 6-13

6 Using the JRockit Management Console
Customizing Gauges and Bars

The gauges and bars are graphical devices showing memory and processor usage
(Figure 6-14).

Figure 6-14 Gauges and Bars

! To change from a gauge display to bar display, press the right mouse button
when pointing at the gauge and select Bar display, as shown in Figure 6-15.

Figure 6-15 Gauge Context Menu (Bar Display Selected)

The selected gauge will appear as a bar (Figure 6-16).

Figure 6-16 Gauges and Bars with Gauge Converted to a Bar Display

! To change back to a gauge, repeat the above, but select Gauge display.
6-14 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

Setting Up the Console
! To reset the watermark—which indicates the highest level measured so far—
press the right mouse button when pointing at the gauge or bar and select Reset
Watermark.

Customizing Charts

Charts appear on the JRockit Management Console to show specified information
about JRockit.

! To change scale on any of the chart, select the desired scale unit (seconds,
minutes or hours) to the right of the chart (Figure 6-17) to be changed.

Figure 6-17 Range Selection Radio Buttons

! To hide a chart click the vertical tab at the left of the diagram you want to hide.
When the diagram is hidden, the tab appears horizontally (Figure 6-18).

Figure 6-18 Hiding a Chart

! To show the diagram again, click the horizontal tab again.

Chart Displayed

Chart Hidden

Click this tab to
display/hide the chart.
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 6-15

6 Using the JRockit Management Console
Using the Settings File

When you exit the JRockit Management Console, your settings are automatically
saved in a file called consolesettings.xml. This file is located in the folder:

<user home directory>\ManagementConsole

The exact path to the user home directory will vary on different platforms.

If no settings file exists in this directory it will be automatically created the next time
the Management Console is closed.

Warning: Do not edit this file by hand! Doing so can make it unusable and may
cause the Management Console to crash on startup.

If you are experiencing problems with the settings file, you can always delete it and let
the Management Console create a new one for you.

Using the Console

The JRockit Management Console monitors different “aspects” of JRockit. An aspect
is data that can be measured; for example, used heap size or JRockit uptime.

Information Tabs

Information tabs are pages containing details about different areas of the monitored
JRockit. You can change tab by clicking on it or by accessing the View menu. This
section describes the tabs available on the JRockit Management Console.

Overview Tab

The Overview tab (Figure 6-19) shows an overview of selected connections. To select
more than one connection, select the folder containing the connections you want to
view. They will appear simultaneously. The page is divided into a “dash board” with
gauges in the upper part and charts in the lower part.
6-16 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

Using the Console
Figure 6-19 Overview Tab

! The Used Memory gauge shows the percentage of occupied physical memory
on the computer.

! The Used Heap gauge shows the percentage of occupied Java heap memory in
the virtual machine.

! The CPU Load bar shows the occupancy rate of the processor - or the average
processor load on a multi-processor machine.

! The Heap Usage chart shows the percentage of occupied Java heap over time.

! The CPU Usage chart shows the average occupancy rate of the processor(s)
over time.
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 6-17

6 Using the JRockit Management Console
Memory Tab

The Memory tab (Figure 6-20) shows information about the memory status of the
system, as shown.

Figure 6-20 Memory Tab

! The Used Memory gauge shows the percentage of occupied memory.

! The Used Heap gauge shows the percentage of occupied Java heap.

! The Heap Usage chart shows the percentage of occupied heap over time.

! The Time in GC chart shows the average time spent on garbage collection over
time. This chart is only updated when running JRockit with the Parallel garbage
collector, and an actual garbage collection occurs.
6-18 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

Using the Console
At the bottom of the page the following text information is displayed (in kilobytes):

! Used Heap shows the occupied heap space.

! Free Heap shows the free heap space.

! Total Heap shows the heap size.

! Used Memory shows the amount of occupied physical memory.

! Free Memory shows the amount of free physical memory.

! Total Memory shows the total physical memory size.

Processor Tab

The Processor tab (Figure 6-21) shows information about the processor status of the
system.
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 6-19

6 Using the JRockit Management Console
Figure 6-21 Processor Tab

! The CPU Load bar shows the average processor load as a percentage. The
overall load is displayed in green while the load of the JVM process(es) is
displayed in yellow.

! The CPU Usage chart shows the average processor load as a percentage over
time.

At the bottom of the page the following text information is displayed:

! Number of Processors shows the number of processors.

! CPU Load shows the overall processor load as a percentage.

! JVM Process Load shows the load of the JRockit JVM process(es), expressed
as a percentage.
6-20 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

Using the Console
System Tab

The System tab (Figure 6-22) shows various information about the system status.

Figure 6-22 System Tab

! Garbage Collection System shows which garbage collector JRockit is running.

! JRockit Uptime shows how long JRockit has been running.

! Connection Uptime shows how long the currently displayed connection has
been connected.

! Process Affinity contains buttons that correspond to processors. It displays a
green icon if JRockit is running on this processor and a red icon if it is not. By
selecting a button, the JRockit process can be bound to one or more processors.
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 6-21

6 Using the JRockit Management Console
JRockit might be released from such a connection by deselecting the button
again. This is only a suggested affinity: the operating system might not follow
the suggestion. The Process Affinity display is only activated when the
Management Console is in the Developer mode, described in “Setting the
Operation Mode” on page 10.

! System Properties shows the Java System Properties loaded in JRockit.

Notification Tab

Use the Notification tab (Figure 6-23) to define alerts that notify users when certain
events occur. You can create your own notification rules based on different triggers,
with optional constraints, that alert you with a prescribed notification.
6-22 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

Using the Console
Figure 6-23 Notification Tab (No Rules Defined)

A notification trigger can be a certain event, for example, that the connection to
JRockit was lost, or that an aspect reaches a certain value, for example, the used
memory reaches 95%. A notification constraint can limit when a rule is triggered for
example by not sending alerts at night or on certain dates.

The notification action is how the alert is communicated to the user. It can be one of
the following:

! E-mail shows an e-mail with the notification is sent to the specified address by
using the specified SMTP server.

! System out action displays the notification in the command window where you
started the JRockit Management Console.
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 6-23

6 Using the JRockit Management Console
! Application alert displays the notification in an alert dialog in the Management
Console.

! Log to file logs the notification to the specified file.

Creating a New Rule

Rules determine when and how to issue a notification. To create a new rule, do the
following:

1. Click New Rule.

The Name rule dialog box appears (Figure 6-24):

Figure 6-24 Name Rule Dialog Box

2. Enter the name of the new rule in Rule name: and click Next.

The Select trigger dialog box appears (Figure 6-25):
6-24 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

Using the Console
Figure 6-25 Select Trigger Dialog Box

3. Select a trigger (the individual triggers are described in the right panel).

4. Enter a threshold in the text box below the trigger list, if required (Figure 6-26;
this box will be marked either Min value or Max value, depending on the type of
trigger selected), and select further options under the Option tab.

Figure 6-26 Trigger Threshold and Options Text Boxes

5. Click Next.

The Select Action dialog box appears (Figure 6-27):

Options tab
opened
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 6-25

6 Using the JRockit Management Console
Figure 6-27 Select Action Dialog Box

6. Select an action and enter settings data, if required.

7. If necessary, add a constraint to the rule (this step is optional; if you don’t want to
add a constraint, go to step 8):

a. Click Next.

The Add Constraint dialog box appears (Figure 6-28):

Figure 6-28 Add Constraint Dialog Box
6-26 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

Using the Console
b. Select a constraint and click Add.

The constraint name will appear in the add list, as shown in Figure 6-29.

Figure 6-29 Constraint Added

c. Enter constraint settings in the text fields under the list of constraints
(Figure 6-29).

8. Click Finish.

The new rule appears in the All available rules list on the Notification tab, as
shown in Figure 6-30.

Figure 6-30 New Rule in List

9. Add the rule to your connection as described in “Add a Rule to JRockit” on
page 28

Constraint settings;
Day of week
selected.
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 6-27

6 Using the JRockit Management Console
Editing a Rule

To edit a rule, do the following:

1. In the Available rules list, select the rule to be edited and click Edit Rule.

2. Check the name of the rule, edit it, if necessary, and click Next.

3. Check the trigger and trigger settings, edit them, if necessary, and click Next.

4. Check the action and the action settings and edit them if necessary.

5. To continue editing the rule, the do the following (optional; if you don’t want to
add a constraint, go to step 6):

a. Click Next.

b. Check the constraints and the constraint settings. Edit them, if necessary.

6. To finish the editing a rule, click Finish.

Add a Rule to JRockit

To add a rule to JRockit, do the following:

1. Select the rule to be added in the Available rules list.

2. Click Add to JRockit.

The rule appears in the Active rules for this connection list, as shown in
Figure 6-31.

Figure 6-31 Rule Added to Active rules for This Connection List

Remove a Rule from JRockit

To remove a rule from JRockit, do the following:

1. Select the rule to be removed in the Active rules for this connection list.

2. Click Remove from JRockit.
6-28 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

Using the Console
The rule will now be removed from the Active rules for this connection list.

Remove a Rule

To remove a rule from the Available rules list, do the following:

1. Select the rule to be removed.

2. Click Remove Rule.

A removal confirmation dialog box appears.

3. Click Yes

4. The rule disappears from the Available rules list.

View Historical Data

The historical data window displays a chart where historical data for an aspect can be
viewed. This is useful for observing trends over time and, for example, finding when
a server running with JRockit has its peak loads.

To open this window, do the following:

1. Select the connection for which you want to view data.

2. Open the View menu and select View Historical Data.

3. Select the aspect for which you want to view historical data, as shown in
Figure 6-32.

Figure 6-32 View Menu with Historical Data Submenu Open
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 6-29

6 Using the JRockit Management Console
Historical data for the selected aspect appears (Figure 6-33).

Figure 6-33 Historical Data (CPU Load Selected)

4. Navigate through time either by using the arrows or changing the start time in the
Chart display settings.

To be able to observe historical data, aspect data from JRockit must first have been
persisted, that is, written to file. See “Setting Other Preferences” on page 11 to enable
or disable persistence. The following aspects are possible to persist, and thus display,
historical data for:

! Used heap (as a percentage)

! CPU load (as a percentage)

! Average time spent garbage collecting (as a percentage)
6-30 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

Using the Console
As soon as data has been created by a connected connection, it is available for
historical observation.

Using Advanced Features of the Console

This section describes the more advanced features of the Management Console. Some
of these are only available when running in the Developer mode, described in “Setting
the Operation Mode” on page 10.

View Thread Stack Dump

The stack dump contains a list of all running threads in JRockit with a method call
stack trace for each thread.

To view the thread stack dump, open the Tool menu and select View Thread Stack
Dump. A dialog box containing the stack dump appears (Figure 6-34).

Figure 6-34 Thread Stack Dump
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 6-31

6 Using the JRockit Management Console
Method Profiling Tab

Note: You must be in the developer operation mode before you can perform the tasks
described in this section. For more information on entering the developer
operation mode, see “Setting the Operation Mode” on page 10

The Method Profiler tab allows the developer to monitor method execution in a
non-intrusive way. The Method Profiler can provide information about the average
time spent in selected methods and the number of times methods are invoked.

Method Templates are collections of methods that can be re-used on different
connections. There is a Default template, but the user may also create new templates.

Adding a Method to a Template

To add a method to a template, do the following:

1. Select the template to be modified from the Select template list.

2. Click Add Method.

The Enter class name dialog box appears (Figure 6-35).

Figure 6-35 Enter Class Name Dialog Box

3. Enter a fully qualified class name, for example, java.util.Vector, in the text
field and click Next.
6-32 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

Using the Console
The Select method dialog box appears (Figure 6-36):

Figure 6-36 Select Method Dialog Box

4. Select the methods to be added to the template and press Finish.

The method name will appear on the Method profiling information list, as shown
in Figure 6-37.

Figure 6-37 Method Profiling Information List with Method Added

Removing a Method from a Template

To remove a method from a template, do the following:

1. From the Select template list, select the template you want to modify.

2. From the Method Profiling Information list, select the method(s) to be removed
from the template.

3. Click Remove Method.
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 6-33

6 Using the JRockit Management Console
Creating a New Template

To create a new template, do the following:

1. Click New template.

The New template dialog box appears (Figure 6-38).

Figure 6-38 New Template Dialog Box

2. Enter a name for the new template in the text field.

3. Click OK.

Removing a Template

To remove a template, do the following:

1. From the Select template list select the template to be removed.

2. Click Remove.

A confirmation dialog box appears.

3. Click Yes.

Starting and Stopping Method Profiling

To start the method profiling, do the following:

1. From the Select template list, select the template to be started.

2. Click Start/Stop.

If you select Start, numbers in the Invocation count cells for each method begin
to increment. If you select Stop, this activity will cease.
6-34 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

Using the Console
Method Profiling Settings

You can switch between using qualified method names or short names in the method
profiling table.

! To enable invocation count, select the Invocation count checkbox at the bottom
of the page.

! To enable timing, select the Timing checkbox at the bottom of the page.

Exception Counting Tab

The Exception Count Tab (Figure 6-39) shows exceptions thrown in JRockit. It counts
the number of exceptions of a certain type thrown.

Figure 6-39 Exception Counting Tab
WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide 6-35

6 Using the JRockit Management Console
Add an Exception

To add an exception to observe, do the following:

1. Enter the fully qualified name of the exception into the text field at the top of the
page, e.g., “java.io.IOException”.

2. Choose whether or not all subclasses of that exception should be included in the
count by selecting or deselecting the Include subclasses checkbox.

3. Click Add. You can only add subclasses of java.lang.Throwable which are
loaded in JRockit and you can only add exceptions while connected.

The exception should now be displayed in the table.

Starting, Stopping, and Removing an Exception Count

To start the exception count, click Start. The results should now appear next to the
name of the exception being counted. Similarly, to stop the exception count, click Stop.

To remove an exception from the count, select the exception to be removed and click
Remove.

Closing the Console

To close the JRockit Management Console and disconnect all connections, open the
Connection menu and select Exit. Clicking X in the top right corner of the window will
also close the JRockit Management Console.
6-36 WebLogic JRockit 7.0 Limited Availability for Red Hat Linux AS 2.1 - IPF User Guide

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	1. Introduction to BEA WebLogic JRockit
	2. Understanding JRockit
	3. Configuring and Running JRockit
	4. Configuring the JRockit Thread System
	5. Configuring the JRockit Memory Management System
	6. Using the JRockit Management Console

	1 Introduction to BEA WebLogic JRockit
	What is JRockit?
	Why Should I Use JRockit?
	What Platforms Does JRockit Support?
	How to Print the Document
	Documentation Conventions
	JRockit Support

	2 Understanding JRockit
	Code Generation
	Memory Management
	Threads

	3 Configuring and Running JRockit
	Setting Up JRockit by Using Standard Command Line Options
	Setting Standard Output Options
	Changing JRockit Behavior for Other Java Applications by Using -X Options
	Configuring Garbage Collection and Thread Management by Using -X Options

	4 Configuring the JRockit Thread System
	Native Threads
	Thin Threads
	Choosing a Thread System
	Pros and Cons
	Table 4�1 Thread System Pros and Cons

	Threading System Selection Matrix
	Table 4�2 Threading System Selection Matrix

	Implementing a Thread System
	Table 4�3 Options Used to Implement Threading

	Configuring the Thread System
	Setting the Type of Thread Allocation
	Setting the Thread Stack Size

	5 Configuring the JRockit Memory Management System
	Memory Management Terminology
	Thread-local allocation
	Pause time
	Memory throughput

	JRockit Garbage Collectors
	Generational Copying Garbage Collectors
	Concurrent Garbage Collectors
	Single Spaced Concurrent
	Generational Concurrent

	Parallel Garbage Collectors

	Choosing a Garbage Collection Method
	Pros and Cons
	Table 5�1 Garbage Collector Pros and Cons

	Garbage Collector Selection Matrix
	Table 5�2 Garbage Collector Selection Matrix

	Implementing a Garbage Collector
	Table 5�3 Garbage Collector Implementation Options

	Configuring the Garbage Collector
	Printing a Comprehensive Report
	Setting the Initial and Maximum Heap Size
	Setting the Size of the Nursery
	Setting the Type of Thread Allocation
	Defining When a Memory Space will be Cleared
	Printing the Pause Times

	System Defaults
	Heap Size
	Garbage Collector
	Nursery Size
	Thread Stack Size
	Allocation Type
	Clear Type

	6 Using the JRockit Management Console
	Console Overhead
	Starting the Console
	1. Enable the Management Server
	2. Start the JRockit Management Console
	Enable the Management Server
	Start the JRockit Management Console
	Set the Port
	Change the Number of Connections

	Parts of the Console
	Figure 6�1 JRockit Management Console
	Figure 6�2 Connection Browser
	Figure 6�3 Information Tabs (Administrator Mode)
	Figure 6�4 Information Tabs (Developer Mode)
	Figure 6�5 Management Console Toolbar
	Figure 6�6 Status Bar

	Setting Up the Console
	Making Connections
	Creating a New Folder
	1. Select an existing folder (for example, Connections) for which you want to create a subfolder.
	2. Open the New Folder dialog box by doing one of the following:
	Figure 6�7 Add New Folder Dialog Box
	3. Enter the name of the new folder in the text field and click OK.

	Creating a New Connection
	1. Select the folder in which the connection should be placed
	2. Open the New Connection dialog box by doing one of the following:
	Figure 6�8 Add New Connection Dialog Box
	3. Enter the name of the server, the port and the new connection in the appropriate text fields o...

	Connecting a Connection to JRockit
	1. Select the JRockit connection to connect, a subfolder of connections to connect, or the folder...
	2. Do one of the following to connect the selected connection(s):

	Disconnecting a Connection from JRockit
	1. Select the JRockit connection to connect, a subfolder of connections to connect, or the folder...
	2. Do one of the following to disconnect the selected connection(s):

	Renaming a Connection or Folder
	1. Select the JRockit connection or folder to rename.
	2. Do one of the following to rename the selected connection or folder:
	Figure 6�9 Folder Properties Dialog Box
	3. Enter a new name into the text field and click OK

	Removing a Connection or Folder
	1. Select a connection or a subfolder to remove.
	2. Do one of the following to remove the selected item:
	3. Click Yes on the confirmation dialog box that appears.

	Hiding Disconnected Connections

	Enabling Console Settings
	Setting the Operation Mode
	1. From the Tools menu, select Preferences...
	Figure 6�10 Preferences Menu (General Tab)
	2. Click the Mode of operation drop-down control to display the list of operation modes (Figure�6...

	Figure 6�11 List of Operation Modes
	3. Select the mode you want to use and click OK.

	Setting Other Preferences
	Setting E-mail Preferences
	1. Display the General tab on the Preferences dialog box
	2. In the appropriate text fields, enter the new e-mail information (SMTP server and E-mail addre...
	3. Click OK
	Figure 6�12 E-mail Preferences Panel

	Enabling Persistence
	1. Disconnect any JRockit connections.
	Figure 6�13 Aspects to Persist Panel
	2. Select the aspects you want to persist.
	3. Click OK.
	1. Click Choose (next to the Persistence directory field).
	2. Locate the directory where you want to save the file and click Open.
	3. Click OK.

	Customizing the Display
	Customizing Gauges and Bars
	Figure 6�14 Gauges and Bars
	Figure 6�15 Gauge Context Menu (Bar Display Selected)
	Figure 6�16 Gauges and Bars with Gauge Converted to a Bar Display

	Customizing Charts
	Figure 6�17 Range Selection Radio Buttons
	Figure 6�18 Hiding a Chart

	Using the Settings File

	Using the Console
	Information Tabs
	Overview Tab
	Figure 6�19 Overview Tab

	Memory Tab
	Figure 6�20 Memory Tab

	Processor Tab
	Figure 6�21 Processor Tab

	System Tab
	Figure 6�22 System Tab

	Notification Tab
	Figure 6�23 Notification Tab (No Rules Defined)
	Creating a New Rule
	1. Click New Rule.
	Figure 6�24 Name Rule Dialog Box
	2. Enter the name of the new rule in Rule name: and click Next.

	Figure 6�25 Select Trigger Dialog Box
	3. Select a trigger (the individual triggers are described in the right panel).
	4. Enter a threshold in the text box below the trigger list, if required (Figure�6�26; this box w...

	Figure 6�26 Trigger Threshold and Options Text Boxes
	5. Click Next.

	Figure 6�27 Select Action Dialog Box
	6. Select an action and enter settings data, if required.
	7. If necessary, add a constraint to the rule (this step is optional; if you don’t want to add a ...
	a. Click Next.

	Figure 6�28 Add Constraint Dialog Box
	b. Select a constraint and click Add.

	Figure 6�29 Constraint Added
	c. Enter constraint settings in the text fields under the list of constraints (Figure�6�29).
	8. Click Finish.

	Figure 6�30 New Rule in List
	9. Add the rule to your connection as described in “Add a Rule to JRockit” on page�28

	Editing a Rule
	1. In the Available rules list, select the rule to be edited and click Edit Rule.
	2. Check the name of the rule, edit it, if necessary, and click Next.
	3. Check the trigger and trigger settings, edit them, if necessary, and click Next.
	4. Check the action and the action settings and edit them if necessary.
	5. To continue editing the rule, the do the following (optional; if you don’t want to add a const...
	a. Click Next.
	b. Check the constraints and the constraint settings. Edit them, if necessary.
	6. To finish the editing a rule, click Finish.

	Add a Rule to JRockit
	1. Select the rule to be added in the Available rules list.
	2. Click Add to JRockit.
	Figure 6�31 Rule Added to Active rules for This Connection List

	Remove a Rule from JRockit
	1. Select the rule to be removed in the Active rules for this connection list.
	2. Click Remove from JRockit.

	Remove a Rule
	1. Select the rule to be removed.
	2. Click Remove Rule.
	3. Click Yes
	4. The rule disappears from the Available rules list.

	View Historical Data
	1. Select the connection for which you want to view data.
	2. Open the View menu and select View Historical Data.
	3. Select the aspect for which you want to view historical data, as shown in Figure�6�32.
	Figure 6�32 View Menu with Historical Data Submenu Open
	Figure 6�33 Historical Data (CPU Load Selected)
	4. Navigate through time either by using the arrows or changing the start time in the Chart displ...

	Using Advanced Features of the Console
	View Thread Stack Dump
	Figure 6�34 Thread Stack Dump

	Method Profiling Tab
	Adding a Method to a Template
	1. Select the template to be modified from the Select template list.
	2. Click Add Method.
	Figure 6�35 Enter Class Name Dialog Box
	3. Enter a fully qualified class name, for example, java.util.Vector, in the text field and click...

	Figure 6�36 Select Method Dialog Box
	4. Select the methods to be added to the template and press Finish.

	Figure 6�37 Method Profiling Information List with Method Added

	Removing a Method from a Template
	1. From the Select template list, select the template you want to modify.
	2. From the Method Profiling Information list, select the method(s) to be removed from the template.
	3. Click Remove Method.

	Creating a New Template
	1. Click New template.
	Figure 6�38 New Template Dialog Box
	2. Enter a name for the new template in the text field.
	3. Click OK.

	Removing a Template
	1. From the Select template list select the template to be removed.
	2. Click Remove.
	3. Click Yes.

	Starting and Stopping Method Profiling
	1. From the Select template list, select the template to be started.
	2. Click Start/Stop.

	Method Profiling Settings

	Exception Counting Tab
	Figure 6�39 Exception Counting Tab
	Add an Exception
	1. Enter the fully qualified name of the exception into the text field at the top of the page, e....
	2. Choose whether or not all subclasses of that exception should be included in the count by sele...
	3. Click Add. You can only add subclasses of java.lang.Throwable which are loaded in JRockit and ...

	Starting, Stopping, and Removing an Exception Count

	Closing the Console

