
BEA
 WebLogic 
JRockit� 7.0  
SDK
Performance Tuning 
Guide
Release 7.0 Service Pack 5
March 2004



Copyright

Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems 
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the 
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part, 
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form 
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License 
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR 
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR 
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part 
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED �AS IS� WITHOUT 
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT 
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE 
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS, 
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign 
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic 
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA 
WebLogic JRockit, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA 
WebLogic Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA 
Systems, Inc.

All other trademarks are the property of their respective companies. 



Contents

1. Introduction

2. Tuning the WebLogic JRockit 7.0 JVM Memory Management 
System

Memory Management Terminology.................................................................. 2-2
WebLogic JRockit 7.0 JVM Garbage Collectors .............................................. 2-3

Generational Copying ................................................................................ 2-3
Single Spaced Concurrent .......................................................................... 2-4
Generational Concurrent ............................................................................ 2-4
Parallel........................................................................................................ 2-4

Monitoring Garbage Collection......................................................................... 2-5
More Memory Management Options ................................................................ 2-5
Memory Management System Defaults ............................................................ 2-6

Heap Size.................................................................................................... 2-7
Garbage Collector ...................................................................................... 2-7
Nursery Size ............................................................................................... 2-7
Thread Stack Size....................................................................................... 2-8
Allocation Type.......................................................................................... 2-8
Clear Type .................................................................................................. 2-8

3. Tuning the WebLogic JRockit 7.0 JVM Thread System
BEA WebLogic JRockit 7.0 SDK Performance Tuning Guide iii



iv BEA WebLogic JRockit 7.0 SDK Performance Tuning Guide



CHAPTER
1 Introduction

BEA WebLogic JRockit 7.0 JVM automatically adapts to its underlying hardware and 
to the application running on it. You might wonder, why would anyone need to tune 
the JVM? The answer is that there are some things WebLogic JRockit 7.0 JVM cannot 
know about your system. For example, how much memory do you want the JVM to 
use? You probably don�t want the JVM to use most of the available memory. Or, how 
long should the maximum pauses be, to work best within the tolerances of your 
application?

WebLogic JRockit 7.0 JVM has a number of non-standard startup parameters, called 
-X options, that allow you to better tune the JVM for your specific application. In 
WebLogic JRockit 7.0 JVM there are two main subsystems that can be optimized 
separately using different startup parameters: the memory management system 
(including the garbage collectors), and the thread system. This guide documents the 
different startup parameters and what you need to know about these subsystems to be 
able to tune them efficiently. You will find that the memory management system is the 
subsystem that gives you the most tuning opportunities. By tuning these parameters 
you will likely find the best performance improvements for your application.
BEA WebLogic JRockit 7.0 SDK Performance Tuning Guide 1-1



1 Introduction
1-2 BEA WebLogic JRockit 7.0 SDK Performance Tuning Guide



CHAPTER
2 Tuning the WebLogic 
JRockit 7.0 JVM 
Memory Management 
System

Have you ever seen strange pauses in your application that you haven�t been able to 
explain? Have you seen one or all CPUs pegged on 100% utilization and all the others 
on 0% and still very few transactions in your system? If you answered yes to either of 
these two questions, your application might have been suffering from the effects of a 
poorly performing garbage collector. Some fairly simple tuning of the memory 
management system can improve performance dramatically for many applications.

This section includes information on the following subjects:

! Memory Management Terminology

! WebLogic JRockit 7.0 JVM Garbage Collectors

! Monitoring Garbage Collection

! More Memory Management Options

! Memory Management System Defaults
BEA WebLogic JRockit 7.0 SDK Performance Tuning Guide 2-1



2 Tuning the WebLogic JRockit 7.0 JVM Memory Management System
Memory Management Terminology

Before continuing, there are some terms you should understand. You may already be 
familiar with some of the terms, especially if you have read any other documents about 
garbage collectors.

! Generational garbage collector

A generational garbage collector divides the memory into two or more areas 
called �generations�. Instead of allocating objects in one single space and 
garbage collecting that whole space when it gets full, most of the objects are 
allocated in the �young generation�, called the nursery. As most objects die 
young, most of the time it will be sufficient to garbage collect only the nursery 
and not the entire heap.

! Concurrent garbage collector

A concurrent garbage collector does its work in parallel with ordinary work; that 
is, it does not stop all Java threads to do the complete garbage collection. Most 
garbage collectors today are �stop-the-world� or parallel collectors; these are not 
very efficient. Using a parallel collector, if you have to garbage collect the whole 
of a large heap there could be a pretty long pause, up to several seconds, 
depending on the heap size.

! Parallel garbage collector

A parallel garage collector is a garbage collector that stops all java threads 
completely (stop-the-world) during the whole garbage collection and uses all 
available CPUs to perform the collection.

! Thread-local allocation

Thread-local allocation is not the same thing as thread-local objects, but many 
people tend to confuse the two terms. Thread-local allocation does not determine 
whether the objects can be accessed from a single thread only (i.e., thread-local 
objects); thread-local allocation means that the thread has an area of its own 
where no other thread will create new objects. The objects that the thread creates 
in that area may still be reached from other threads. Thread-local allocation 
removes object allocation contention and reduces the need to synchronize 
between thread performing allocations on the heap. It also gives increased cache 
performance on a multi-CPU system, because it reduces the risk of two threads 
2-2 BEA WebLogic JRockit 7.0 SDK Performance Tuning Guide



WebLogic JRockit 7.0 JVM Garbage Collectors
running on different CPUs having to access the same memory pages at the same 
time.

! Pause time

Garbage collector pause time is the length of time that the garbage collector 
stops all Java threads during a garbage collection. The longer the pause, the 
more unresponsive your system will be. The worst pause time and the average 
pause time are the two most interesting values you can use for tuning the system.

! Memory throughput

Memory throughput measures the time it takes between when an object is no 
longer referenced and the time it gets reclaimed and returned as free memory. 
The higher the memory throughput the shorter is the time between the two 
events. Moreover, the higher the memory throughput the smaller the heap you 
will need.

WebLogic JRockit 7.0 JVM Garbage 
Collectors

This section describes the four garbage collectors available in WebLogic JRockit 7.0 
JVM.

Generational Copying

The first type of WebLogic JRockit 7.0 JVM garbage collector is the generational 
copying garbage collector (-Xgc:gencopy). It is specifically designed as a lightweight 
alternative for use on single CPU systems with a small (less then 128 MB) heap. It is 
suitable for testing applications on your desktop machine; however for a deployment 
environment another garbage collector would in most cases be more efficient.
BEA WebLogic JRockit 7.0 SDK Performance Tuning Guide 2-3



2 Tuning the WebLogic JRockit 7.0 JVM Memory Management System
Single Spaced Concurrent

The second type of WebLogic JRockit 7.0 JVM garbage collector is the single spaced 
concurrent garbage collector (-Xgc:singlecon). What is unique about the concurrent 
garbage collectors is that they remove garbage collection pauses completely. Using 
these garbage collectors, the heaps can be gigabyte-size and there will be no long 
pauses. However, keep in mind that concurrent garbage collectors trade memory 
throughput for reduced pause time. It takes longer between the time the object is 
referenced the last time and the system detects and reclaims it; in other words it takes 
longer for the object to die. The natural consequence of this is that you will most likely 
need a larger heap with a concurrent garbage collector than you need with any other. 
In addition, if your ordinary Java threads create more garbage than the concurrent 
garbage collector manages to collect, there will be pauses while the Java threads are 
waiting for the concurrent garbage collector to complete its cycle.

Generational Concurrent

The third type of WebLogic JRockit 7.0 JVM garbage collector is the generational 
concurrent garbage collector (-Xgc:gencon). In this garbage collector, objects are 
allocated in the young generation. When the young generation (called a nursery) is full, 
WebLogic JRockit 7.0 JVM �stops-the-world� and moves the objects that are still live 
in the young generation to the old generation. An old collector thread runs in the 
background all the time; it marks objects in the old space as live and removes the dead 
objects, returning them to the JVM as free space.

The advantage of the generational concurrent garbage collector compared to the single 
spaced concurrent garbage collector is that it has a higher memory throughput.

Parallel

The fourth type of WebLogic JRockit JVM garbage collector is the parallel garbage 
collector (-Xgc:parallel). When the heap is full, all Java threads are stopped and 
every CPU is used to perform a complete garbage collection of the entire heap. A 
parallel collector can have longer pause times than concurrent collectors, but it 
maximizes throughput. Even on single CPU machines, this maximized performance 
2-4 BEA WebLogic JRockit 7.0 SDK Performance Tuning Guide



Monitoring Garbage Collection
makes parallel the recommended garbage collector, provided that your application can 
tolerate the longer pause times.

Monitoring Garbage Collection

The option -Xgcreport causes WebLogic JRockit 7.0 JVM to print a comprehensive 
garbage collection report at program completion. The option -Xgcpause causes 
WebLogic JRockit 7.0 JVM to print a line each time Java threads are stopped for 
garbage collection. Combining the two is a very good way of examining the memory 
behavior of your application.

More Memory Management Options

The following options allow you to manage your memory more efficiently.

! -Xmx:<size>/-Xms<size>

-Xmx sets the maximum size of the heap. The general recommendation is to set 
this as high as possible, but not so high that it causes page-faults for the 
application or for some other application on the same computer. Set it to 
something less than the amount of memory in the machine. If you have multiple 
applications running on the computer at the same time the value could be much 
lower. The general recommendation is to set the initial heap size (-Xms) to the 
same size as the maximum heap size.

! -Xns:<size>

-Xns sets the size of the young generation (nursery). If you are creating a lot of 
temporary objects you should have a large nursery. Generally, the larger you can 
make the nursery while keeping the GC-pause times acceptably low, the better. 
You can see the nursery pause times in WebLogic JRockit 7.0 JVM by starting 
the JVM with -Xgcpause, but you have to decide yourself what is an acceptable 
GC pause time before your system becomes unresponsive.

! -Xallocationtype:<global|local>
BEA WebLogic JRockit 7.0 SDK Performance Tuning Guide 2-5



2 Tuning the WebLogic JRockit 7.0 JVM Memory Management System
-Xallocationtype sets the type of thread allocation. The allocation type 
local is recommended for the vast majority of applications. However, if the 
maximum heap size is very small (less then 128 MB) or if the number of threads 
used by the application is very high (several hundred) the allocation type 
global might work better, particularly on single CPU systems. The reason for 
this is that every thread-local area consumes a fixed amount of memory 
(approximately 2 kilobytes). If the number of threads is very high or the heap 
size very small when using thread-local allocation the potential waste of space 
could cause excess fragmentation of the heap. This leads to more frequent 
garbage collections and may cause the application to run out of memory 
prematurely. 

! -Xcleartype:<gc|local|alloc>

-Xcleartype defines when the memory space occupied by an object that has 
been garbage collected will be cleared. It can be done during the garbage 
collection (gc), when a thread-local area is allocated (local) or when that space 
is allocated for a new object (alloc). It is recommended that you use local or 
alloc. alloc may work better if the objects allocated are predominately very 
large (1 to 2 kilobytes).

Notes:

The -Xcleartype:local option is available only if the -Xallocationtype 
is set to local. 

On IA64 systems the option alloc is not available.

Memory Management System Defaults

This section describes the default values for the WebLogic JRockit 7.0 JVM Memory 
Management system. To provide the best out-of-the-box performance possible they 
adapt automatically to the specific platform on which the VM is running.
2-6 BEA WebLogic JRockit 7.0 SDK Performance Tuning Guide



Memory Management System Defaults
Heap Size

If the initial heap size (-Xms) is not set the initial heap size will be 75% of the free 
memory. Generally, the default maximum heap size (-Xmx) is 75% of the physical 
memory in the machine. However, when running WebLogic JRockit with a small 
initial heap (that is, less than about 32MB) the default maximum heap size will depend 
on the initial heap size. The default maximum heap size is -Xms2 (in megabytes), up to 
75% of the physical memory; for example, if -Xms is 8MB, the default maximum heap 
size will be 8MB2, or 64MB; if -Xms is 128MB, the default maximum heap size would 
be 1282, or 16384MB (16 GB). Be aware that, if the machine has less physical memory 
than the value of -Xms2, the default maximum heap will be restricted to 75% of the 
physical memory. 

Note: These figures are subject to any platform limitations that determine how much 
contiguous memory a process can allocate. 

Garbage Collector

If the garbage collector (-Xgc) has not been set and the maximum heap size (set by 
using -Xmx or using the default as described above) is less than 128 MB, the default 
garbage collector will be the generational copying (gencopy) garbage collector, 
otherwise the default is the generational concurrent (gencon) garbage collector.

Nursery Size

If the nursery size (-Xns) has not been set the default size depends on the number of 
CPUs. For the generational copying (gencopy) garbage collector the default nursery 
size is 320 KB times the number of CPUs and for the generational concurrent 
(gencon) garbage collector the default nursery size is 10 MB times the number of 
CPUs.
BEA WebLogic JRockit 7.0 SDK Performance Tuning Guide 2-7



2 Tuning the WebLogic JRockit 7.0 JVM Memory Management System
Thread Stack Size

If the thread stack size (-Xss) has not been set the default value depends on the 
threading system and the platform you are running on. When using thin threads the 
minimum thread stack size is 8 kilobytes and the default is 64 kilobytes. When using 
native threads the minimum thread stack size is 16 kilobytes. For Windows the default 
thread stack size when using native threads is 64 kilobytes and for Linux it is 
128 kilobytes.

Note: If -Xss is set to less than the minimum value, the minimum value will be used 
automatically.

Allocation Type

If the allocation type (-Xallocationtype) is not set, the default is global for the 
generational copying (gencopy) garbage collector and local for all others 
(singlecon, gencon, and parallel). 

Clear Type

If the clear type (-Xcleartype) is not set the default is alloc on IA32 systems and 
gc on IA64 systems.

Note: On IA64 systems the option alloc is not available.
2-8 BEA WebLogic JRockit 7.0 SDK Performance Tuning Guide



CHAPTER
3 Tuning the WebLogic 
JRockit 7.0 JVM Thread 
System

WebLogic JRockit 7.0 JVM has two different thread systems, native threads and thin 
threads. The first thing to do when tuning the thread system is to select the thread 
system that works best for your application. What then are the pros and cons of the two 
thread systems and why should you prefer one thread system over another? Begin by 
understanding the differences between the two thread systems. The native thread 
model is the common threading model that most JVMs use, where each Java thread is 
mapped to an operating system thread of its own. The thin thread model is a hybrid 
threading model where WebLogic JRockit 7.0 JVM has a small fixed number of 
operating system threads and consequently runs multiple Java threads on top of the 
same operating system thread. Both models are preemptive threading models, so if one 
thread uses its whole time slice it gets preempted and another Java thread gets to run 
instead.

What are the advantages of the native thread system? The foremost advantage is that 
it is standard, so if you have an application that has native code and that native code 
relies upon the fact that each Java thread is mapped on to a operating system thread of 
its own, this is the only model that works (both DB2 and Oracle level 2 JDBC database 
drivers have been known to rely upon this). The second advantage is that on a 
multiprocessor system when the application has few active threads, the operating 
system scheduling system is better at utilizing the CPUs efficiently. A disadvantage of 
using native threads is that context switching is more costly as it has to be done in the 
operating system instead of only in the JVM. Another disadvantage is that every Java 
thread consumes more resources, because it requires an operating system thread of its 
own.
BEA WebLogic JRockit 7.0 SDK Performance Tuning Guide 3-1



3 Tuning the WebLogic JRockit 7.0 JVM Thread System
When should you use thin threads? The major benefit of using thin threads is that 
switching between java threads is a lot cheaper as it can be done inside the VM rather 
then in the operating system. Therefore the general recommendation is that if there are 
more than a couple of hundred threads you should try the thin thread model and 
determine whether it works better for your application. On Linux you should try the 
thin thread model, especially on a single-CPU system. This is because Linux threads 
in themselves are very expensive to use. In addition, if the number of threads is high, 
you should consider -Xallocationtype:global as suggested above to reduce heap 
fragmentation.
3-2 BEA WebLogic JRockit 7.0 SDK Performance Tuning Guide


	1 Introduction
	2 Tuning the WebLogic JRockit 7.0 JVM Memory Management System
	Memory Management Terminology
	WebLogic JRockit 7.0 JVM Garbage Collectors
	Generational Copying
	Single Spaced Concurrent
	Generational Concurrent
	Parallel

	Monitoring Garbage Collection
	More Memory Management Options
	Memory Management System Defaults
	Heap Size
	Garbage Collector
	Nursery Size
	Thread Stack Size
	Allocation Type
	Clear Type


	3 Tuning the WebLogic JRockit 7.0 JVM Thread System

