0?7,

r
S’ 7
L/

BEAWebLogic
JRockit~SDK

Tuning WebLogic JRockit
8.1 JVM

Version 8.1 Service Pack 2
December 2003

Copyright

Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Contents

Introduction
Tuning WebLogic JRockit JVM

Setting Heap Size Parametersttt 2-2
Setting the Initial Heap Size. i 2-2
Default. 2-2

Setting the Maximum Heap Size 2-2
Default. 2-3

Setting -Xmx to Avoid Fragmentation, 2-3
Encountering OutOfMemory Errors oo, 2-3

Setting the Size of the Nursery. i i 2-4
Default. 2-4
Working Around Limits to Expanding Heap Size 2-5
Defining When a Memory Space willbe Cleared. 2-5
Default 2-6
Setting the Type of Thread Allocation, 2-6
Default o 2-6
Setting the Thread Stack Size i i 2-7
Minimum Thread Size 2-7
Default 2-7
32-bitDefaulto 2-7
64-bitDefault 2-7

Tuning WebLogic JRockit 8.1 JVM

Memory Requirements and Garbage Collection Typescoou.... 2-8

Basic Tuning Tips and Techniques

Determine What You Wantto Tune For.......... o .. 3-1
Setting the Heap Sizettt e 3-2
Tuning for High Responsivenesso i, 3-2
Tuning for High Performance. 3-2
Other TUNING TIPS . . . o oottt e e e e e e et e et 3-3
Analyze Garbage Collection and Pause Times 3-3
Modify Threading Options when Using a Large Number of Threads............ 3-3
Analyzing and Improving Your Application 3-4
Step 1: Findthe Hotpaths. i 3-4
Find the Bottleneck Methods i i 3-4

Cluster the Bottleneck Methods Together into Hotpaths 3-5

Step2: Prioritize the Hotpaths 3-5
Step 3: Fixthe Hotpath i, 3-5
Step 4: Repeat Steps 1-3 3-6

Index

iv Tuning WebLogic JRockit 8.1 JVM

Introduction

BEA WebLogic JRockit JVM automatically adapts to its underlying hardware and to the
application running on it. You might wonder, why would anyone need to tune the JVM? The
answer is that there are some things WebLogic JRockit JVM cannot know about your system. For
example, how much memory do you want the JVM to use? You probably don’t want the JVM to
use most of the available memory. Or, how long should the maximum pauses be, to work best
within the tolerances of your application?

WebLogic JRockit JVM has a number of non-standard startup parameters, called -X options, that
allow you to better tune the JVM for your specific application. In WebLogic JRockit JVM there
are two main subsystems that can be optimized separately using different startup parameters: the
memory management system (including the garbage collectors), and the thread system. This
guide documents the different startup parameters and what you need to know about these
subsystems to be able to tune them efficiently. You will find that the memory management
system is the subsystem that gives you the most tuning opportunities. By tuning these parameters
you will likely find the best performance improvements for your application.

Tuning WebLogic JRockit 8.1 JVM 1-1

Introduction

1-2 Tuning WebLogic JRockit 8.1 JVM

GHAPTERa

Tuning WebLogic JRockit JVM

Have you ever seen strange pauses in your application that you haven’t been able to explain?
Have you seen one or all CPUs pegged on 100% utilization and all the others on 0% and still very
few transactions in your system? If you answered yes to either of these two questions, your
application might have been suffering from the effects of a poorly performing garbage collector.
Some fairly simple tuning of the memory management system can improve performance
dramatically for many applications.

To provide the optimal out-of-the-box experience, WebLogic JRockit JVM comes with default
values that adapt automatically to the specific platform on which you are running WebLogic
JRockit JVM. Tuning WebLogic JRockit JVM is accomplished by using non-standard—or -x—
command line options that you enter at startup. -X options are exclusive to WebLogic JRockit
JVM. Use them to set the behavior of WebLogic JRockit JVM to better suit the needs of your
Java applications.

This section describes how to use these options to tune WebLogic JRockit. It includes
information on the following subjects:

e Setting Heap Size Parameters
e Defining When a Memory Space will be Cleared

e Setting the Type of Thread Allocation

Setting the Thread Stack Size

Memory Requirements and Garbage Collection Types

Tuning WebLogic JRockit 8.1 JVM 2-1

Tuning WebLogic JRockit JVYM

Note: If WebLogic JRockit behaves in some unexpected way, please consult the WebLogic
JRockit FAQ. If that doesn't solve your problem, please send an e-mail to
support@bea.com

Setting Heap Size Parameters

2-2

System performance is greatly influenced by the size of the Java heap available to the JVM. This
section describes the commandline options you can use to define the initial and maximum heap
sizes and the size of any nursery that might be required by generational garbage collectors.

Setting the Initial Heap Size

-Xms<size>

-Xms sets the initial size of the heap. For this, we recommend that you set it to the same size as
the maximum heap size; for example:

-java -Xgc:gencon -Xmx:64m -Xms:64m myClass

Default

The default initial heap size is 16 MB if maximum -Xmx is less than 128 MB; otherwise it is 25%
of available physical memory up to, but not exceeding, 64 MB.

Setting the Maximum Heap Size

-Xmx:<size>

-Xmx sets the maximum size of the heap. Use the following guidelines to determine this value:

e On [A32 the maximum possible heap size is about 1.8 GB (which is the largest contiguous
address space the O/S will give a process). This is helpful because, while the O/S
limitation for the maximum memory size per a process is 2 GB on [A-32 platform, you
cannot fully use 2 GB for JVM heap. This is because other purpose spaces are included in
that 2 GB; for example the memory used by WebLogic JRockit internally, native library
space, and so on. Be aware that 1.8 GB is just a suggested heap size; you have to tune it
according to your application.

e Because [A64 machines have a larger address space, the 1.8 GB limit does not apply.

e Typically, for any platform you don't want to use a larger maximum heap size setting than
75% of the available physical memory. This is because you need to leave some memory
space available for internal usage in the JVM.

Tuning WebLogic JRockit 8.1 JVM

Setting Heap Size Parameters

Default

Generally, the default maximum heap size (-xmx) is 75% of the physical memory in the machine.
However, when running WebLogic JRockit with a small initial heap (that is, less than about
32MB) the default maximum heap size will depend on the initial heap size. The default maximum
heap size is -xms? (in megabytes), up to 75% of the physical memory; for example, if -Xms is
8MB, the default maximum heap size will be 8MB2, or 64MB; if -xms is 128MB, the default
maximum heap size would be 1282, or 16384MB (16 GB). Be aware that, if the machine has less
physical memory than the value of -xms?, the default maximum heap will be restricted to 75% of
the physical memory.

Note: These figures are subject to any platform limitations that determine how much
contiguous memory a process can allocate.

Setting -Xmx to Avoid Fragmentation

Be aware that fragmentation can occur if you rely on the default maximum heap size (described
above). Fragmentation can cause paging, which can degrade system performance. This is because
WebLogic JRockit grows the heap aggressively when fragmentation occurs, potentially
out-stripping the physical memory available. To avoid this situation, you should override the
default and manually set -xmx to 75% of the available physical memory, up to 1.8 GB. Note that
if you have other processes running that require large amounts of the physical memory, you will
have to account for their expense when calculating how much memory is available.

Encountering OutOfMemory Errors

Under certain circumstances, the JVM will not have enough memory to continue processing and
throw an OutOfMemory error. This section describes some of the most common reason for those
errors and suggests some ways to work around them.

Can’t Find Memory to Allocate an Object on the Heap

Occasionally, WebLogic JRockit won’t be able to find memory to allocate a Java object on the
heap. If this is happening, enable -xverbose:gc. If the java heap appears full, this is probably
the cause. We recommend that you increase the java heap size.

OOM Errors When Compiling Large Methods

WebLogic JRockit allocates memory outside the java heap for internal structures used for thread
handling, garbage collection, code generation and so on. If the java heap is taking too much of
the total process memory, the JVM could run out of memory during such activities as code

Tuning WebLogic JRockit 8.1 JVM 2-3

Tuning WebLogic JRockit JVYM

generation of a large method. It will then throw an OutOfMemory error. When this happens, we
suggest that you decrease the java heap size. You might also enable -xXverbose : codegen to
detect the methods that take long time to generate. These are probably the methods consuming
the most memory.

Can’t Commit Reserved Memory

WebLogic JRockit might not be able to commit reserved memory needed by the system because
the disk where the swap file resides is full, preventing the swap file from growing. This usually
happens when the process size is not too large, but many other processes are running concurrently
and the disk on which the swap file resides is almost full. We suggest that you release memory

on the disk or shut down some of the other processes.

Setting the Size of the Nursery

-Xns:<size>

-Xns sets the size of the young generation (nursery) in generational concurrent and generational
copying garbage collectors (these are the only collectors that use nurseries). Optimally, you
should try to make the nursery as large as possible while still keeping the garbage
collection-pause times acceptably low. This is particularly important if you are creating a lot of
temporary objects.

Note: To display pause times, include the option-Xgcpause when you start WebLogic JRockit
JVM.

The maximum size of a nursery may not exceed 25% of the total heap size if you’re using gencon
and 15% of the total heap size if you’re using gencopy.

Default

If the nursery size (-Xns) has not been set the default size depends on the type of garbage
collector and the number of CPUs:

e For the generational copying garbage collector (-Xgc:gencopy) the default nursery size is
320 KB per CPU; for example, the default for a ten CPU system using gencopy would be
3200 KB (3.2 MB).

e For the generational concurrent garbage collector (-Xgc:gencon) the default nursery size is
10 MB per CPU; for example, the default for a ten CPU system using gencon would be
100 MB.

2-4 Tuning WebLogic JRockit 8.1 JVM

Defining When a Memory Space will be Cleared

Working Around Limits to Expanding Heap Size

When memory is completely allocated, WebLogic JRockit JVM cannot expand its heap size if
swap space is not available. This often occurs when several applications are running
simultaneously. If it happens, WebLogic JRockit will exit after throwing an OutOfMemory error.
To remedy this condition, increase the available swap space by doing either or both of the
following:

e Allocate more of your disk for virtual memory.

e Limit the number of applications that can run simultaneously.

Y ou might also avoid this problem by setting the command-line flags - Xmx and -Xms to the same
value. This will prevent WebLogic JRockit JVM from trying to expand the heap. If you attempt
this workaround, be aware that the heap cannot expand to the size specified by -Xmx if the
necessary physical and virtual memory is not available.

Defining When a Memory Space will be Cleared

-Xcleartype:<gc|local|alloc>

-Xcleartype defines when the memory space occupied by an object that has been garbage
collected will be cleared. When clearing is actually performed is specified by the selected
parameter, as described in Table 2-1.

Table 2-1 -xXcleartype Parameters

Use this parameter... To clear space...
gc During the garbage collection
local When a thread-local area is allocated

This option is available only if the
-Xallocationtype is set to local.

alloc When that space is allocated for a new object

This option is currently not available on [A64
systems. Additionally, it is the preferred option if
the objects allocated are very large (1 to 2
kilobytes).

The preferable options are either alloc or local.

Tuning WebLogic JRockit 8.1 JVM 2-5

Tuning WebLogic JRockit JVYM

Note these additional conditions:

e The -Xcleartype:local option is available only if the -Xxallocationtype is set to

local.

e The alloc parameter is currently not available on IA64 systems.

Default

If the clear type is not set the default is alloc on IA32 systems and gc on IA64 systems.

Note: The option alloc is currently not available on IA64 systems.

Setting the Type of Thread Allocation

2-6

-Xallocationtype:<global|locals>

-Xallocationtype sets the type of thread allocation, global or local as described in
Table 2-2.

Table 2-2 -xallocationtype Parameters

Use this type... When...

Global The maximum heap size is very small (less then 128 MB) or if the number of threads
used by the application is very high (several hundred). This is because every
thread-local area consumes a fixed amount of memory (approximately 2 kilobytes). If
the number of threads is very high or the heap size very small when using thread-local
allocation the potential waste of space could cause excess fragmentation of the heap.
This leads to more frequent garbage collections and may cause the application to run
out of memory prematurely.

local The maximum heap size is large (more then 128 MB) or if the number of threads used
by the application is low (less than several hundred).

Default

If the allocation type (-Xallocationtype) is not set, the default is global for the generational
copying (gencopy) garbage collector and 1ocal for all others (singlecon, gencon, and
parallel).

Tuning WebLogic JRockit 8.1 JVM

Setting the Thread Stack Size

Setting the Thread Stack Size

-Xss<size> [k|K] [m|M]
-Xss<sizes>[k|K] [m|M] sets the thread stack size in kilobytes.

In addition to setting the thread stack size, if the number of threads is high, you should use
-Xallocationtype:global, as suggested in Setting the Type of Thread Allocation to reduce
heap fragmentation.

Minimum Thread Size

Minimum thread size is determined as follows:
e Thin threads—the minimum thread stack size is 8 kilobytes and the default is 64 kilobytes.

e Native threads—the minimum thread stack size is 16 kilobytes.

If -xss is set below the minimum value, thread stack size will default to the minimum value
automatically.

Default

If the thread stack size has not been set the default value depends on the threading system and the
platform on which WebLogic JRockit is running:

32-hit Default

On either Windows or Linux IA32 machines, the default thread stack size values for native
threads are:

e Win32: 64 kB
e Linux32: 128 kB

64-bit Default

On either Windows or Linux IA64 machines, the default thread stack size values for native
threads are:

e Win64: 320 kB
e Linux64: 1 MB

Tuning WebLogic JRockit 8.1 JVM 2-1

Tuning WebLogic JRockit JVYM

Memory Requirements and Garbage Collection Types

2-8

You should be aware that the memory requirements described in this section are suggestions
based upon out-of-the-box testing. Your actual requirements might vary, particularly as they
apply to the garbage collection method you select and the application you are running. Please
refer to the tuning guidelines in Basic Tuning Tips and Techniques for instructions and tips on
optimally setting your memory requirements.

Tuning WebLogic JRockit 8.1 JVM

CHAPTERa

Basic Tuning Tips and Techniques

When you install WebLogic JRockit 8.1 JVM, the VM includes a host of default start-up options
that ensure a satisfactory out-of-the-box experience; however, often, these options might not
provide your application with the optimal performance you should experience with WebLogic
JRockit 8.1 JVM. Therefore, WebLogic JRockit 8.1 JVM comes with numerous alternative
options and algorithms to suit different applications. This section describes some of these
alternative options and some basic tuning techniques you can use at startup. It includes
information on the following subjects:

e Determine What You Want to Tune For
e Setting the Heap Size

e Tuning for High Responsiveness

Tuning for High Performance
e Other Tuning Tips

e Analyzing and Improving Your Application

Note: The tuning settings discussed in this section refer to standard and non-standard tuning
options which are not thoroughly described in the present context. For more information
on these options, refer to Command Line Options by Name

Determine What You Want to Tune For

Before you start WebLogic JRockit 8.1 JVM, you need to determine these two factors:

Tuning WebLogic JRockit 8.1 JVM 3-1

Basic Tuning Tips and Techniques

e How much of your machine memory do you want WebLogic JRockit 8.1 JVM to use?

e What do you want from WebLogic JRockit 8.1 JVM, the highest possible responsiveness
or the highest possible performance?

Once you’ve answered these questions, use the information provided below to tune WebLogic
JRockit 8.1 JVM to achieve those goals.

Setting the Heap Size

Generally, you want to set the maximum heap size as high as possible, but not so high that
it causes page-faults for the application or for some other application on the same
computer. Set it to something less than the amount of memory in the machine. If you have
multiple applications running on the computer at the same time the value could be much
lower. It is recommend that you set the initial heap size (-Xms) the same size as the
maximum heap size.

Tuning for High Responsiveness

If you want the highest responsiveness from your application and guarantee minimal pause times,
set the following options at startup:

e Seclect the Generational Concurrent garbage collector. Since this is the default garbage
collector, you don’t actually need to set anything for garbage collection.

e Set the initial (-xms) and maximum (-Xmx) heap sizes, as described in Setting the Heap
Size. Since you’re using a generational concurred garbage collector, the heap size will not
cause longer pauses.

e Set the size of the nursery (-Xns).

If you are creating a lot of temporary objects you should have a large nursery. Larger
nurseries usually result in slightly longer pauses, so, while you should try to make the
nursery as large as possible, don’t make it so large that pause times are unacceptable. You
can see the nursery pause times in WebLogic JRockit JVM by starting the JVM with
-Xgcpause.

Tuning for High Performance

If you want the highest possible performance WebLogic JRockit 8.1 JVM can provide, set these
tuning options at startup:

3-2 Tuning WebLogic JRockit 8.1 JVM

Other Tuning Tips

e Select the Parallel garbage collector. A parallel garbage collector doesn’t use a nursery, so
you don’t need to set -Xns.

e Set the largest initial (-Xms) and maximum (-Xmx) heap sizes that your machine can
tolerate, as described in Setting the Heap Size.

Other Tuning Tips

This section describes two other practices you can employ to improve WebLogic JRockit JVM
performance.

Analyze Garbage Collection and Pause Times

Analyzing garbage collection and pause times together will give you a good idea of how well
your application is performing while running with WebLogic JRockit JVM.

e Use the option -Xgcreport to generate and end-of-run report that shows the garbage
collection statistics. You can use this report to determine if you’re using the most effective
garbage collector for your application.

e Use the option -Xverbose:memory to display the pause times for every garbage collection
during a run. Note that this option is used mainly for debugging purposes and causes a lot
of output to the console.

Modify Threading Options when Using a Large Number of
Threads

If you are running with more than 100 threads and you want to improve system performance, try
the following:

e Switch to thin threads by using the option -Xthinthreads. Thin threads are particulalry
effective if you’re running your application on a Linux machine.

Warning: Thin threads is experimental functionality in this version of WebLogic JRockit
JVM and is not recommended for general use. This feature is subject to change
without notice.

e Turn off thread local allocation by using the option -Xallocationtype:global. Every
thread-local area consumes a fixed amount of memory (approximately 2 kilobytes). If the
number of threads is very high and you are using thread-local allocation, the potential
waste of space could cause excess fragmentation of the heap. This leads to more frequent
garbage collections and may cause the application to run out of memory prematurely.

Tuning WebLogic JRockit 8.1 JVM 3-3

Basic Tuning Tips and Techniques

Using thread global allocation will result in less fragmentation, although actual allocation
will be slower.

Analyzing and Improving Your Application

3-4

’

This section describes how you can improve application performance by uncovering “hotpaths,
or bottlenecks in processing, and either working around those hotpaths or eliminating them
completely.

Generally, analyzing and improving your application is a four-step process:
1. Find the hotpaths

2. Prioritize them

3. Fix the most important hotpaths

4. Repeat steps 1 through 3 until application performance is satisfactory

Step 1: Find the Hotpaths

Finding Hotpaths is a two-step process:
e Find the Bottleneck Methods

e Cluster the Bottleneck Methods Together into Hotpaths

Find the Bottleneck Methods

As their name implies, bottleneck methods are those methods that require excessive time and
processing resources to execute. These bottlenecks can greatly affect system performance and
need to be identified. To find bottleneck methods, do the following:

e Use the Intel VTune profiling tool with JRockit to analyze performance. VTune uses
features on the processor to gather information about which code the processor is currently
executing. This is done after a fixed number of either clock ticks (wall clock time) or after
a fixed number of instructions retired (actual instructions executed in the processor).
VTune then uses this data together with symbol information from Java code to present
information about where the application spends most of its time.

e Use the Java Virtual Machine Profiling Interface (JVMPI) by setting the option

-Xjvmpi:allocs=o0ff, monitors=o0ff, entryexit=off.

Tuning WebLogic JRockit 8.1 JVM

Analyzing and Improving Your Application

JVMPI is a two-way function call interface between the Java virtual machine and an
in-process profiler agent. On one hand, the VM notifies the profiler agent of various
events, corresponding to, for example, heap allocation, thread start, and so on.
Concurrently, the profiler agent issues controls and requests for more information through
the JVMPI.

For a list of recommended -Xjvmpi settings, please refer to Table 4.1 in Profiling and
Debugging with WebLogic JRockit

Cluster the Bottleneck Methods Together into Hotpaths

To cluster the bottleneck methods together into hotpaths, do the following:
1. Run your favorite profiler, such as Optimizelt or JProbe.
2. Review the call-traces produced by it.

3. Combine these call-traces with the bottleneck methods discovered in Find the Bottleneck
Methods, above. This combination of bottleneck methods and call-traces will identify your
hotpaths.

Step?: Prioritize the Hotpaths

To prioritize the hotpaths, do the following:
1. Sum all of the time spent in each hotpath to compute a total hotpath time.

2. Remove all individual hotpaths that represent less than a prescribed percentage of the total
hotpath time; for example, a good initial percentage might be 5%. This is the hotpath
threshold.

3. Ignore any hotpath that falls below the hotpath threshold. Any hotpath time above the
threshold should be optimized.

Step 3: Fix the Hotpath

You need to rely on your own judgement and knowledge of the application to fix hotpaths. Once
you’ve identified and prioritized the hotpaths, look at each one and decide if the code is really
needed or if you can make some simple changes, perhaps to the coding or to an algorithm, to
avoid it or eliminate it as a hotpath. If you determine that you cannot remove the hotpath, what
can you do to make it faster? Rewrite the code so it’s more efficient?

Also, are you sure that anything you do will actually improve performance. Any optimization you
attempt should at least double performance of the hotpath or your efforts might be wasted. For

Tuning WebLogic JRockit 8.1 JVM 3-5

Basic Tuning Tips and Techniques

example, a performance increase of 5% or a hotpath that takes only 5% of the time is only going
to improve performance .25%.

Step 4: Repeat Steps 1-3

Continue repeating the optimization process until you attain the desired system performance.

3-6 Tuning WebLogic JRockit 8.1 JVM

APPENDlxa

Command Line Options by Name

This appendix lists the valid WebLogic JRockit JVM command line options in alphabetical order,

by name.

Note: Options that begin with -x are non-standard options (called “-x options”) and are subject

to change at any time.

Table A-1 Command Line Options by Name

Option Description

-classpath Tells WebLogic JRockit JVM where to look for classes and

-cp resources.

-D Tells WebLogic JRockit JVM to set a Java system property. These can
be read by a Java program, using the methods in java.lang. System.

-help Tells WebLogic JRockit JVM to display a short help message.

-showversion Tells WebLogic JRockit JVM to display its product version
number and then continue with startup.

-verbose Tells WebLogic JRockit JVM to display verbose output.

-Xverbose

-version Tells WebLogic JRockit JVM to display its product version number and
then exit.

-X Tells WebLogic JRockit JVM to display a short help message on the

extended options.

Tuning WebLogic JRockit 8.1 JVM A-1

Command Line Options by Name

Table A-1 Command Line Options by Name

Option Description
-Xallotype Sets the type of allocation.
-Xallocationtype Parameters:

* global; global allocation
* local; thread local allocation

For details on these options, please refer to Table 2-2 in Tuning the
WebLogic JRockit JVM.

-Xbootclasspath Sets the search path for bootstrap classes and resources. Specify the

[T}

names of the directories, . zip, and . jar files, separated by “;
(Windows) or “:” (Linux).

-Xcleartype Defines when the memory space occupied by an object that has been
garbage collected will be cleared. The parameters listed below determine
when the space is cleared.

Parameters:

* gc; cleared during garbage collection

* local; cleared when a thread-local area is allocated

* alloc; cleared when that space is allocated for a new object

For details on these options, please refer to Table 2-1 in Tuning the
WebLogic JRockit JVM.

Notes:

* The -Xcleartype:local option is available only if the
-Xallocationtype is set to local.

* The alloc option is not available on IA64 systems.

-Xgc Deploys the specified garbage collector.
Parameters:
* gencopy; Generational Copying
* singlecon; Single Spaced Concurrent
* gencon; Generational Concurrent
* parallel; Parallel

The default is gencopy if -Xmx is less than 128MB; otherwise, it’s
gencon.

-Xgcpause Prints pause times caused by the garbage collector.

A-2 Tuning WebLogic JRockit 8.1 JVM

Table A-1 Command Line Options by Name

Option

Description

-Xgcreport

Causes WebLogic JRockit JVM to print a comprehensive garbage
collection report at program completion. The option -Xgcpause causes
the VM to print a line each time Java threads are stopped for garbage
collection.

-Xjvmpi

Enables and disables groups of JVMPI events when running JVMPI .
The events are:

* entryexit (default is ON)

* allocs (default ON)

* monitors (default (ON)

* arenasdelete (default OFF)

Note: JVMPI is an experimental feature in the Java 2 SDK and is not
yet a standard profiling interface.

-Xmanagement

Enables the management server in the VM, which needs to be started
before the Management Console can connect to WebLogic JRockit

JVM.

-Xms

Sets the initial size of the heap. You should set the initial heap
size (-Xms) to the same size as the maximum heap size.

The default is 16 MB if maximum heap size is limited to less than
128 MB, otherwise 25% of available physical memory, but not
exceeding 64 MB.

This value can be specified in kilobytes (K,k), megabytes (M,m), or
gigabytes (G,g).

-Xmx

Sets the maximum size of the heap. You should set this value as high as
possible, but not so high that it causes page-faults for the application or
for some other application on the same computer.

The default is the lesser of 75% of physical memory and 400 MB when
running gencopy; when running another garbage collector, the default
is the lesser of 75% of physical memory and 1536 MB.

This value can be specified in kilobytes (K,k), megabytes (M,m), or
gigabytes (G,9).

Tuning WebLogic JRockit 8.1 JVM A-3

Command Line Options by Name

A-4

Table A-1 Command Line Options by Name

Option

Description

-Xnativethreads

Enables the Native Threads system. This option is the default, therefore
you only need to specify it when you want to change the method from
thin threads.

-Xnoclassgc

Disables class garbage collection.

-Xnohup

When specified, tells WebLogic JRockit JVM not to watch for or
process CTRL_LOGOFF_EVENT or SIGHUP events.

-Xnoopt

Tells WebLogic JRockit JVM not to optimize code.

-Xns

Sets the size of the young generation (nursery) in generational
concurrent and generational copying garbage collectors (these are the
only collectors that use nurseries). If you are creating a lot of temporary
objects you should have a large nursery.

The default is default is 10 MB per CPU with a gencon garbage
collector and 320 KB per CPU with gencopy.

This value can be specified in kilobytes (K,k), megabytes (M,m), or
gigabytes (G,9).

-Xss

Sets the thread stack size; can be specified in kilobytes (K,k), megabytes
(M,m), or gigabytes (G,9g).

-Xthinthreads

Implements the WebLogic JRockit High Performance Threading
System (Thin Threads). This option is not available on IA64.

Warning: Thin threads is experimental functionality in this
version of WebLogic JRockit, and is not
recommended for general use. This feature is subject
to change without notice.

Tuning WebLogic JRockit 8.1 JVM

Table A-1 Command Line Options by Name

Option Description

-Xverbose Causes WebLogic JRockit to print to the screen, upon startup,
specific information about the system. The information displayed
depends upon the parameter specified with the one of these
options:

® codegen
® cpuinfo
® gc

® load

® memory
® Opt

For a description of these options, please refer to Table 3-1 in
Starting and Configuring WebLogic JRockit.

-Xverify Tells WebLogic JRockit JVM to do complete bytecode verification.

Tuning WebLogic JRockit 8.1 JVM A-5

Command Line Options by Name

A-6 Tuning WebLogic JRockit 8.1 JVM

Index

bage collection
gargenerational copying 2-4

C

command line options
-Xallocationtype 2-6
-Xcleartype 2-5
-Xgcpause 2-4, 3-2

-Xms 2-2, 3-2
-Xmx 2-2
-Xns 2-4
-Xss 2-7
D
default values, thread system 2-1
G
garbage collection

concurrent
generational concurrent 2-4
generational copying 2-4, 2-6
young generation 2-4
garbage collector 2-1
global allocation type 2-7

heap
fragmentation 2-7
size 2-2, 3-2, A-3

Hotpath 3-4

hotpath 3-4, 3-5
threshold 3-5
total hotpath time 3-5

1A322-6
1A64 2-6
1A 64, limitations 2-6

J
JVMPI 3-4, 3-5

N
nursery 2-4

P

product version A-1
profiler agent 3-5

)

starting JRockit 2-2
Support 2-2

T

thread stack size 2-7
thread system
allocation type 2-6
global 2-7

Tuning WebLogic JRockit 8.1 JVM

default values 2-1

1-2 Tuning WebLogic JRockit 8.1 JVM

	Introduction
	Tuning WebLogic JRockit JVM
	Setting Heap Size Parameters
	Setting the Initial Heap Size
	Default

	Setting the Maximum Heap Size
	Default
	Setting -Xmx to Avoid Fragmentation
	Encountering OutOfMemory Errors

	Setting the Size of the Nursery
	Default

	Working Around Limits to Expanding Heap Size

	Defining When a Memory Space will be Cleared
	Default

	Setting the Type of Thread Allocation
	Default

	Setting the Thread Stack Size
	Minimum Thread Size
	Default
	32-bit Default
	64-bit Default

	Memory Requirements and Garbage Collection Types

	Basic Tuning Tips and Techniques
	Determine What You Want to Tune For
	Setting the Heap Size
	Tuning for High Responsiveness
	Tuning for High Performance
	Other Tuning Tips
	Analyze Garbage Collection and Pause Times
	Modify Threading Options when Using a Large Number of Threads

	Analyzing and Improving Your Application
	Step 1: Find the Hotpaths
	Find the Bottleneck Methods
	Cluster the Bottleneck Methods Together into Hotpaths

	Step2: Prioritize the Hotpaths
	Step 3: Fix the Hotpath
	Step 4: Repeat Steps 1-3

	Command Line Options by Name
	Index

