
BEALiquid Data for
WebLogic™

Building Queries and
Data Views

Version 8.1
Document Date: December 2003
Revised: December 2003

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy the
software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine readable form without prior consent, in writing, from
BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License Agreement
and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR 52.227-19; subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013, subparagraph (d) of the
Commercial Computer Software--Licensing clause at NASA FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER,
BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY,
RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign Manager for
WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA WebLogic Workshop and
How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Building Queries and Data Views iii

Contents

About This Document
What You Need to Know . xiv

e-docs Web Site . xiv

How to Print the Document . xiv

Related Information .xv

Contact Us!. .xv

Documentation Conventions .xv

1. Introduction
Data View Builder Overview. 1-1

Benefits of the Data View Builder . 1-2

How the Data View Builder Works. 1-2

Key Concepts of Query Building . 1-3

Data Sources . 1-4

Source and Target Schemas . 1-4

Queries and Query Joins, Unions, Aggregates, and Functions . 1-5

Joins . 1-5

Unions . 1-5

XQuery Functions . 1-6

Query Parameters . 1-6

Constants . 1-6

Stored Queries. 1-7

iv Building Queries and Data Views

Ad Hoc Queries .1-7

Query Plans .1-7

How This Book is Organized .1-7

Next Steps. .1-8

2. Data View Builder GUI Reference
Starting the Data View Builder .2-1

Data View Builder GUI Tour .2-3

Design Tab .2-3

Overview Picture of Design Tab Components. .2-4

1. Menu Bar for the Design Tab .2-6

2. Toolbar for the Design Tab .2-11

3. Builder Toolbar .2-11

4. Source Schemas. .2-16

5. Target Schema .2-17

6. Conditions Tab .2-18

7. Mappings Tab .2-20

8. Sort By Tab .2-21

9. Status Bar. .2-22

Optimize Tab .2-22

Test Tab. .2-23

Overview Picture of Test Tab Components .2-23

1. Menu Bar for the Test Tab .2-25

2. Toolbar for the Test Tab .2-26

3. Builder-Generated XQuery .2-27

4. Query Parameters: Submitted at Query Runtime .2-28

5. Query Results - Large Results .2-28

6. Run Query. .2-28

Building Queries and Data Views v

7. Result of a Query. 2-29

Working With Liquid Data Projects. 2-29

Using Schemas Saved With Projects . 2-30

Save Target Schema to Repository . 2-30

Next Steps: Building and Testing Sample Queries . 2-30

3. Data Sources
Relational Databases . 3-2

XML Files . 3-3

Web Services . 3-3

Application Views . 3-3

Data Views . 3-3

SQL Calls . 3-3

Delimited Files . 3-4

4. Schemas and Namespaces in Liquid Data
Source and Target Schemas. 4-2

Source Schemas . 4-2

Using Source Schemas Multiple Times in Constructing Queries. 4-4

Target Schemas . 4-7

Guidelines for Working With Target Schemas . 4-10

Managing Target Schemas . 4-11

Using Schemas Saved With Projects . 4-12

Schema Import Resolution Rules . 4-12

Understanding XML Namespaces . 4-13

XML Namespace Overview. 4-13

Predefined Namespaces in XQuery. 4-15

Other XML Namespace References . 4-15

vi Building Queries and Data Views

Using XML Namespaces in Liquid Data Queries and Schemas .4-15

Namespace Declarations in XQuery Prolog .4-17

Defining Namespaces in Target Schema. .4-17

Data Sources that Require Namespace Declarations .4-18

Migrating Liquid Data 1.0 Queries. .4-19

5. Building Queries
Defining Query Requirements .5-1

Examples Set-up .5-2

Using the Function Editor .5-5

Managing Query Components. .5-7

Data Sources .5-7

Creating and Using Constants .5-8

Using Constants with Functions .5-9

Creating and Using Query Parameters .5-10

Using XQuery Functions .5-14

Mapping Elements to Functions .5-16

Working With Source and Target Schema Elements .5-17

Supported Drag-and-Drop Actions in the Data View Builder .5-17

Mapping to Target Schemas .5-18

Mapping Elements and Attributes Between Source and Target Schema5-18

Complex Element Mappings. .5-20

Expanding Mapped Complex Elements. .5-21

Removing Mappings .5-24

Modifying Target Schemas .5-24

Managing Target Schema Properties. .5-26

Examples Illustrating How Repeatable and Optional Properties Can be Used to Better

Filter Query Results .5-32

Building Queries and Data Views vii

Setting Query Conditions . 5-37

Working With the Conditions Panel . 5-38

Enabling or Disabling Conditions . 5-38

Removing Conditions . 5-38

Editing Conditions . 5-39

Understanding Condition Scoping . 5-39

Where Scope Applies . 5-40

Setting Condition Scope. 5-40

Scope Recursion Errors . 5-43

Scoping Example. 5-43

Task Flow Model for Advanced View Manual Scoping . 5-49

Sorting Query Results . 5-51

Using Existential Condition Checking in Queries . 5-53

An Existential Example . 5-54

Using Automatic Type Casting. 5-59

Automatic Type Casting Transformations . 5-60

Exceptions to Automatic Type Casting . 5-63

6. Running, Saving, and Deploying Queries
Test Mode. 6-1

Viewing a Generated Query . 6-2

Editing a Generated Query . 6-2

Running a Query . 6-3

Stopping a Running Query . 6-4

Specifying Large Results Sets . 6-5

Specifying Query Parameters . 6-5

Setting and Changing Query Parameters . 6-5

Saving a Query. 6-6

viii Building Queries and Data Views

Security Considerations .6-6

Query Naming Conventions .6-6

Using the stored_queries Folder .6-7

Caching Query Results .6-7

Steps to Save a Query to the Repository .6-7

Deploying a Query .6-8

Deploy Query Command .6-8

Saving the Current Schema and Current Query. .6-9

Deploying Your Query .6-10

Deploying a Stored Query with a Data View .6-11

7. Analyzing and Optimizing Queries
Query Analysis .7-1

Viewing the Query Plan. .7-1

Getting Information on the Query .7-3

Factors in Query Performance .7-4

Optimizing Queries .7-4

Source Order Optimization. .7-5

Example of Source Order Optimization .7-6

Optimization Hints .7-6

Determining When Hints Are Needed .7-7

Using the Liquid Data Built-in Optimizer .7-8

Using Parameter Passing Hints (ppleft or ppright). .7-8

Using Merge Hints .7-10

8. Using Data Views
The Enterprise and the Data View. .8-1

Understanding Data Views .8-2

Building Queries and Data Views ix

A Data View Use Case. 8-3

Simple and Parameterized Data Views. 8-3

Using Data Views as Data Sources . 8-4

Creating a Data View . 8-4

Creating and Saving the Query to the Liquid Data Repository . 8-4

Configuring a Data View Data Source Description . 8-4

Adding a Data View as a Data Source . 8-5

Creating a Parameterized Data View . 8-5

Data View Query Samples . 8-11

9.

Using Complex Parameter Types in Queries
Understanding Complex Parameter Types. 9-2

A CPT Use Case . 9-2

Understanding CPT Schema and Data . 9-3

Sample CPT Schema. 9-3

Sample XML Data Stream . 9-5

Notes on Hand-Crafting CPT XQueries. 9-6

Unique Namespace . 9-6

XQuery of type element Declaration. 9-6

Creating a Complex Parameter Type . 9-7

Step 1. Create a CPT Schema . 9-7

Step 2. Create Your Runtime Source . 9-8

Step 3. Define Your CPT in the Administration Console . 9-8

Step 4. Build Your Query . 9-8

Step 5. Run Your Query. 9-8

Complex Parameter Type Query Samples . 9-11

x Building Queries and Data Views

10.Accessing SQL Calls: Stored Procedures and SQL Queries
Defining Stored Procedures to Liquid Data .10-2

To Define Stored Procedures to Liquid Data .10-2

SQL Call Description File .10-3

Basic Structure .10-3

Type Definitions. .10-3

Function Definitions .10-4

Schema Definition File for SQL Call Description File. .10-4

Element and Attribute Reference for SQL Call Description File .10-6

Supported Datatypes .10-8

Rules for Specifying SQL Call Description Files. .10-8

Rules for Element and Attribute Names .10-9

Rules for Procedure Names Containing a Semi-Colon. .10-10

Rules and Examples of <type> Declarations to Use in the <function> return_type Attribute

10-10

Example 1: Type Definition with No Return Value .10-11

Example 2: Type Definition with Simple Return Value .10-11

Example 3: Type Definition for Complex Row Set Type. .10-12

Example 4: Type Definition with Complex Return Value. .10-13

Example 5: Type Definition with Simple Return Value and Two Row Sets 10-13

Rules for the mode Attribute output_only <argument> Element10-14

Rules for Transforming the Function Signature When Hand Writing an XQuery10-14

Namespace Declaration .10-14

Function Transformation .10-15

Sample SQL Call Description Files .10-17

DB2 Simple input_only, output_only, and input_output Example.10-18

Oracle Cursor Output Parameter Example. .10-20

Building Queries and Data Views xi

DB2 Multiple Result Set Example. 10-21

Oracle Cursor as return_value . 10-23

Oracle SQL Statement With Subquery . 10-25

Stored Procedure Support by Database . 10-27

Oracle. 10-27

Microsoft SQL Server . 10-28

Sybase . 10-29

IBM DB2. 10-31

Informix . 10-32

Using Stored Procedures in Queries . 10-33

Define Stored Procedures to Liquid Data . 10-33

Example: Defining and Using a Customer Orders Stored Procedure 10-34

Business Scenario. 10-34

View a Demo . 10-34

Step 1: Create the Stored Procedure in the Database . 10-34

Step 2: Create the SQL Call Description File . 10-35

Step 3: Specify the SQL Call Description File in the Liquid Data Console 10-36

Step 4: Open the Data View Builder to See Your Stored Procedures 10-36

Step 5: Use the Stored Procedure in a Query. 10-36

Step 6: Run the Query. 10-37

Index

xii Building Queries and Data Views

Building Queries and Data Views xiii

About This Document

Read this document to learn how to build and test queries in XQuery language that can retrieve
real-time information from heterogeneous data sources using the BEA Liquid Data for WebLogic
server.

This document describes how to use the Data View Builder to design and generate XML-based queries
with the Builder drag-and-drop tools, functions, source and target schemas. The focus of this
document is on how to use the Data View Builder to create queries in Liquid Data. Liquid Data accepts
queries written in XQuery, which is an Extensible Markup Language (XML) Query language that
adheres to the standards described by the World Wide Web Consortium (W3C). The XQuery standard,
version 1.0, is the structured query language used by the Liquid Data server.

This document covers the following topics:

Chapter 1, “Introduction,” introduces key concepts such as XQuery, ad hoc queries, and
Builder-generated queries.

Chapter 2, “Data View Builder GUI Reference,” explains how to start the Data View Builder and
provides a graphical user interface (GUI) tour and reference.

Chapter 5, “Building Queries,” explains how to design a query using the Data View Builder to
define conditions; map source data to target schemas; use joins, unions, and functions; and how
to apply explicit scope to a target schema for well-defined query results. Provides examples of
building basic queries.

Chapter 4, “Schemas and Namespaces in Liquid Data,” describes how to use source and target
schemas to generate queries in Data View Builder.

About Th is Document

xiv Building Queries and Data Views

Chapter 7, “Analyzing and Optimizing Queries,” describes some advanced concepts that can
improve query performance and refine query output. It also has more information about using
some Data View Builder features.

Chapter 6, “Running, Saving, and Deploying Queries,” describes how you run the query and view
the results.

Chapter 8, “Using Data Views,” has information and examples about saving and reusing data
views as new query resources.

Appendix A, “Type Casting Reference,”describes how the Data View Builder implements data
type transformation for automatic type casting.

What You Need to Know
Users creating queries with Data View Builder should have a high-level understanding of XML, XML
schemas, and declarative database query languages. Users creating ad hoc queries to run in a Liquid
Data environment should have the additional skill of being proficient in the W3C standard XQuery
syntax.

e-docs Web Site
BEA product documentation is available on the BEA corporate Web site. From the BEA home page,
click on Product Documentation or go directly to the “e-docs” Product Documentation page at
e-docs.bea.com.

How to Print the Document
You can print a copy of this document from a Web browser, one file at a time, by using the File—>Print
option on your Web browser.

A PDF version of this document is also available on the Liquid Data documentation Home page on the
e-docs Web site (and also on the documentation CD). You can open the PDF using Adobe Acrobat
Reader and print the entire document (or a portion of it) in book format. To access the PDF files, open
the Liquid Data documentation Home page, click PDF files and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can obtain a free version from the Adobe Web site
at www.adobe.com.

Re lated Inf ormat ion

Building Queries and Data Views xv

Related Information
For more information about XQuery and XML Query languages, see the World Wide Web Consortium
(W3C) Web site at http://www.w3.org/.

Contact Us!
Your feedback on the BEA Liquid Data documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed directly
by the BEA professionals who create and update the Liquid Data documentation.

In your e-mail message, please indicate that you are using the documentation for the BEA Liquid Data
for WebLogic 1.0 release.

If you have any questions about this version of Liquid Data, or if you have problems installing and
running Liquid Data, contact BEA Customer Support through BEA WebSupport at www.bea.com. You
can also contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

About Th is Document

xvi Building Queries and Data Views

monospace
text

Indicates code samples, commands and their options, data structures and their
members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{} Indicates a set of choices in a syntax line. The braces themselves should never
be typed.

[] Indicates optional items in a syntax line. The brackets themselves should never
be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself should
never be typed.

Convention Item

Documentat i on Convent ions

Building Queries and Data Views xvii

... Indicates one of the following in a command line:

• That an argument can be repeated several times in a command line

• That the statement omits additional optional arguments

• That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line. The
vertical ellipsis itself should never be typed.

Convention Item

About Th is Document

xviii Building Queries and Data Views

Building Queries and Data Views 1-1

C H A P T E R 1

Introduction

This section introduces the Data View Builder, a programming tool you can use to plan, design, build,
and test queries using BEA Liquid Data for WebLogic.

The following topics are covered:

Data View Builder Overview

Key Concepts of Query Building

Next Steps

The Liquid Data Data View Builder is a major component in an end-to-end query development and
testing system. The Data View Builder is ideal for trying out and refining queries in relationship to
target XML schemas, or more usually referred to as target schemas, that provide additional, needed
instructions as to how the results of your query should be represented.

For the complete overview of the Liquid Data system see the Concepts Guide.

Data View Builder Overview
The Data View Builder is a GUI-based tool for designing and generating target schemas and XQueries
(in W3C XQuery syntax). You can then run the queries against multiple diverse data sources to retrieve
and consolidate data. The Data View Builder provides a graphical, drag-and-drop mapping approach
to query design and construction. You can use it to free yourself from having to manage the intricacies
of query languages such as SQL while allowing you to give full attention to:

Information design

../prodover/index.html

In t roduc t i on

1-2 Building Queries and Data Views

The conceptual synthesis of information coming from multiple sources

The content and shape of the information you want in the query result.

Using Liquid Data, you can directly access distributed, heterogeneous data sources as
integrated logical views and build up a picture of how you want that consolidated information to
be structured.

Benefits of the Data View Builder
The Data View Builder lets you create queries using an intuitive, drag-and-drop mapping strategy. The
XML schema representations and mappings of source and target data are packaged and saved as a
project. Using Liquid Data projects you can retrieve the full picture of the query, complete with source
schemas and target mappings. Queries can also be stored as data views that can be treated as data
sources themselves in Liquid Data and re-used.

How the Data View Builder Works
Once a data source has been configured in Liquid Data using the Liquid Data node of the WebLogic
Administration Console (see the Liquid Data Administration Guide), it becomes available to the
Data View Builder. The structure of the data stored in relational databases, Web services, application
views, data views, delimited files, and XML files themselves are all represented as XML schemas.

Key Concepts o f Query Bui l d ing

Building Queries and Data Views 1-3

Figure 1-1 Sample Relational and XML Source Schema

By representing disparate data sources as XML schemas, Data View Builder makes it easy for you to
represent relationships among different types of data sources.

To build up your query you simply drag and drop elements and attributes among XML schema
representations of data sources to create joins, unions, and so on. The default source condition is a
join. It uses a built-in equality [eq] function; more complex XQuery functions are also available.

You can also map elements from source schemas to a target schema to shape the structure of the
query. Target schemas can be created “on the fly” from existing data source representations or created
externally. Optimization hints can be added to queries to improve query performance.

Queries can be automatically generated at any point in the development process. When you run the
query the underlying data sources are accessed and the results appear in tree-view or XML. The query
can also be deployed for use in BEA WebLogic Workshop web applications, among other technologies.

Key Concepts of Query Building
The following terms and concepts are introduced here:

Data Sources

In t roduc t i on

1-4 Building Queries and Data Views

Source and Target Schemas

Queries and Query Joins, Unions, Aggregates, and Functions

Stored Queries

Ad Hoc Queries

Query Plans

Data Sources
Liquid Data supports multiple types of data sources in addition to RDBMS (relational database
management systems) including:

XML Files

Web Services

Application Views

Data Views

SQL Calls

Delimited Files

See Chapter 3, “Data Sources,” for a complete survey.

Source and Target Schemas
XML schemas are used in Liquid Data to describe the hierarchical structure of the various data sets.
The Data View Builder uses XML schema representations as follows:

Source Schemas. XML schemas that describe the structure of the source data.

Target Schemas. An XML schema that describes the structure of the target data; that is, the
structure of the query result.

Liquid Data queries require identified data sources. Each data source requires an associated schema.
For relational databases, the schema is automatically created based on the metadata available
through the database JDBC driver. For XML files, Views, Complex Parameter Types, Stored
Procedures, or Web Services, you specify the schema when you define the data source to Liquid Data.

For more information on source and target schemas in Liquid Data, see “Source and Target Schemas”
on page 4-2.

Key Concepts o f Query Bui l d ing

Building Queries and Data Views 1-5

Queries and Query Joins, Unions, Aggregates, and Functions
A query can be thought of as a way of filtering through large amounts of data or information to extract
only the specifics relevant to a particular problem.

A number of tools and techniques are available to develop or expand business logic around the data
base schemas. These tools and techniques include:

Joins

Unions

XQuery Functions

Query Parameters

Constants

Joins
A query with a join operation combines information in two data source schemas when there is a match
on a common field.

For example, you could specify first and last names of all customers in two data sources — BroadBand
and Wireless — and they use a join to limit the output (query result described by the target schema)
to the subset of those customers with matching customer IDs in both source schemas.

Unions
Union operations enable you to combine data from multiple sources into a single set of results
described by the structure of the target schema. Even though the content of the source schemas can
be the same, or different, you can use a union type query to consolidate elements in source schemas
into a tailored view of the data. For example, you could construct a query that reports all customer
orders from multiple sources into a single result. This is a very typical use of Liquid Data target
schemas.

In t roduc t i on

1-6 Building Queries and Data Views

XQuery Functions
Liquid Data provides a large number of XQuery functions. These built-in functions can by used by any
Liquid Data query.

Aggregates
You can create queries in Liquid Data that aggregate query results, providing summary information
on a set of data. Typical aggregate functions are average [avg], count, maximum [max], minimum
[min], and sum. You can use aggregate operations to perform various business calculations such as
finding the total number of customers, calculating purchases by a single customer, calculating the
average salary of workers, and so on.

Other Built-in Functions
All conditions are set through functions. The default function for a simple equality function [eq[. If
you drag and drop one data source element onto another you have created a simple join using the
equals function with two parameters (the two data source elements) which gets expressed as value1
eq value2 in the Data View Builder-generated XQuery.

For information on W3C standard functions supported by Liquid Data, see “Functions Reference” in
the XQuery Reference Guide.

You can also create and use custom functions. See “Configuring Access to Custom Functions” in the
Liquid Data Administration Guide.

Query Parameters
There are two types of query parameters:

A function may have parameters that become elements in a source schema.

You can define generic placeholders for a variable value and specify that value at query run
time. For example, a query parameter could be defined as lastname, which is a placeholder for
a real last name that you identify when the query runs.

Constants
Although not as flexible as query parameters, numeric and string constants are easily created and
used.

../xquery/functions.html
../admin/function.html

How Th is Book i s O rgan ized

Building Queries and Data Views 1-7

Stored Queries
A stored query is a query that has been saved to the stored_queries folder Liquid Data repository.
Queries must be saved with a .xq extension to be recognized as stored queries in Liquid Data.

The query result for a stored query can be cached.

Caching of query results for stored queries is configurable through the Liquid Data node of the
WebLogic Administration Console (see Configuring the Query Results Cache in the Liquid Data
Administration Guide). Using this feature, you can specify whether or not to cache query results for
stored queries.

Ad Hoc Queries
An ad hoc query is a query that has not been stored in the Liquid Data repository, but rather is passed
to the Liquid Data server at run time.

Query Plans
A query plan is a compiled query. Before a query is run, Liquid Data compiles the XQuery into an
optimized query plan. Optionally, you can compile the query plan without running the query.

At runtime, Liquid Data executes the query plan against physical data sources and returns the query
results.

How This Book is Organized
Building Queries and Data Views can be thought of as having several sections:

Focus Chapters

Introduction • Chapter 1, “Introduction”
• Chapter 2, “Data View Builder GUI Reference”

Query Components • Chapter 3, “Data Sources”

• Chapter 4, “Schemas and Namespaces in Liquid Data”

In t roduc t i on

1-8 Building Queries and Data Views

This book does assume some familiarity with the purpose and operation of the Liquid Data graphical
query development tool called Data View Builder. You can familiarize yourself with this tool in several
ways:

Getting Started provides a details, stepped example showing how to set up both the Data View
Builder and Liquid Data node of the WebLogic Administration Console.

A Getting Started Demo can be found on the Liquid Data Demo page. This animated demo runs
10-15 minutes and shows the development of a sample Liquid Data query and web application
that uses that query.

Next Steps
If you have not already done so, try working through the steps in Getting Started, which takes
you through the basic tasks of configuring some data sources and using the Data View Builder
to design a query using an Order Query example.

To learn how to start the Data View Builder and understand the GUI tools and views, see
Chapter 2, “Data View Builder GUI Reference.”

To learn more about planning and designing queries and using the Data View Builder to build
them, see Chapter 5, “Building Queries.”

For information on query optimization and performance, see Chapter 7, “Analyzing and
Optimizing Queries.”

For information on defining stored procedures to Liquid Data, see Chapter 10, “Accessing SQL
Calls: Stored Procedures and SQL Queries.”

Query Design • Chapter 5, “Building Queries”

• Chapter 6, “Running, Saving, and Deploying Queries”

• Chapter 5, “Building Queries”

• Chapter 7, “Analyzing and Optimizing Queries”

Special Data
Sources

• Chapter 8, “Using Data Views”

• Chapter 9, “Using Complex Parameter Types in Queries”

• Chapter 10, “Accessing SQL Calls: Stored Procedures and SQL Queries”

Focus Chapters

../interm/demopage.html

Next S teps

Building Queries and Data Views 1-9

For details on creating queries by using custom functions, see “Using Custom Functions” in the
Application Developer’s Guide.

For numerous examples of building different types of queries using advanced functions and
tools, see “Liquid Data by Example.”

../samples/index.html

In t roduc t i on

1-10 Building Queries and Data Views

Building Queries and Data Views 2-1

C H A P T E R 2

Data View Builder GUI Reference

This chapter provides a graphical interface reference for the Data View Builder, including menus and
other visual components used in accessing data sources, target XML schemas, query parameters,
constants, XQuery functions and other features that are used in designing, optimizing, testing, and
deploying a Builder-generated query and saving any resulting projects.

The following topics are covered:

Starting the Data View Builder

Data View Builder GUI Tour

– Design Tab

– Optimize Tab

– Test Tab

Working With Liquid Data Projects

Next Steps: Building and Testing Sample Queries

Starting the Data View Builder
Note: The Liquid Data Getting Started guide contains detailed instructions on starting and using

the Data View Builder to create a sample query and then use that query in a WebLogic
Workshop application.

../qkstart/index.html

Data Vi ew Bu i lde r GU I Refe rence

2-2 Building Queries and Data Views

To start the Data View Builder, follow these basic steps.

1. Start the Data View Builder.

– On a Windows platform, choose the menu item:
Star t —> Programs —> BEA WebLogic Platform 8.1 —> BEA Liquid Data for WebLogic
8.1 —> Data View Builder

You can also start the Data View Builder by double-clicking on the file:
BEA_Home\WL_HOME\liquiddata\DataViewBuilder\bin\DVBuilder.cmd

A login window is displayed. This is for logging in to a Liquid Data server.

2. Connect to the Liquid Data server where your data sources are located. Initially you may want to
connect to the Liquid Data Samples server. See the Liquid Data Getting Started guide for
details.

a. The username and password for the Data View Builder is specified in the WebLogic Server
(WLS) Compatibility Security via the Liquid Data node of the WebLogic Administration
Console for the server to which you want to connect. For more information, see Implementing
Security in the Liquid Data Administration Guide. If the server allows guest users, you do not
need to enter a username and password — you can leave these fields blank.

b. Enter the URL for the Liquid Data server. For example, to connect to a server running on your
own machine as a local host you enter the following:

t3://localhost:7001

c. Click the Login button.

The Data View Builder work area and tools appear, as shown in Figure 2-1.

Data V iew Bui l de r GUI Tour

Building Queries and Data Views 2-3

Figure 2-1 Starting Data View Builder

Data View Builder GUI Tour
The Data View Builder consists of three main views or modes that you can get to by clicking on the
associated tabs. Each tab represents a phase in the process of designing and testing a query.
Generally, you will use the Design and Test tabs to design and run the query, respectively. Some
queries benefit from optimization, available on the Optimize tab.

Design Tab

Optimize Tab

Test Tab

Design Tab
The Design tab is where you construct the query by working with source and target schemas to specify
conditions and source-to-target mappings. The following sections describe the features available on
the Design tab.

Overview Picture of Design Tab Components

1. Menu Bar for the Design Tab

Data Vi ew Bu i lde r GU I Refe rence

2-4 Building Queries and Data Views

2. Toolbar for the Design Tab

3. Builder Toolbar

4. Source Schemas

5. Target Schema

6. Conditions Tab

7. Mappings Tab

8. Sort By Tab

9. Status Bar

Overview Picture of Design Tab Components
The following figure and accompanying numerically-coded sections describe the components on the
Design tab.

Data V iew Bui l de r GUI Tour

Building Queries and Data Views 2-5

Figure 2-2 Design Tab

Note: Menus, horizontal shortcut toolbar and status bar are also covered in detail in this section.
Although most menu options and shortcuts are available in all modes, others are mode
specific and described in the appropriate section.

5

7

4

Source Schemas

Target Schema (only one)

Conditions, Mappings, Sort-By tabs

1 Menu bar

2

9 Status Bar

6 8
(Conditions tab is shown)

Toolbar

Builder Toolbar
with Sources and Toolbox
sub-tabs (Sources tab is
shown here)

3

Data Vi ew Bu i lde r GU I Refe rence

2-6 Building Queries and Data Views

1. Menu Bar for the Design Tab
The menus provide File, Schema, View, and Window menus as detailed inTable 2-3.

Data V iew Bui l de r GUI Tour

Building Queries and Data Views 2-7

Table 2-3 Menu Bar for the Design Tab

Menu Description of Menu Options

File Menu Provides project-related actions (creating a new project, saving a project, and so on) along
with an Exit option that closes the Data View Builder application. (For more information, see
“Working With Liquid Data Projects” on page 2-29.)
• Connect... Resets your connection to a Liquid Data Server. Choosing this command

closes any open projects or schemas.
• New Project. Creates a new project. If you choose this option when you have an unsaved

project in the workspace you are given the option to first save your current work to a
project. If you choose not to save, any previously generated query and associated
conditions and schema mappings will be lost.

• Open Project. Opens an existing project that you specify through the file browser.
• Close Project. Closes the current project. If you have not saved your work, you are given

an opportunity to do so.
• Open Query. Opens an existing saved query. When you open a saved query, you only see

the Test Tab; the Design and Optimize tabs are not available. You can then edit, run, and
save the query.

• Save Project. Saves the current project. Data View Builder projects are saved with a
.qpr filename extension and may be saved to any directory.

• Save Project As. Saves the current project under a different file name.
• Add Selected Schema. Adds/opens the source schema that is selected in the Builder

Toolbar to the current project. This is the same as dragging a data source schema into
the work area.

• Set Target Schema. Brings up a file browser from which you can select a schema file
from your local system, a network drive, or a Liquid Data Server repository. The file you
select is added to the current project as the target schema.

• Set Selected Source Schema as Target Schema. Causes the source schema that is
selected from the list of data sources (Builder Toolbar) to be set as the target schema in
the current project. (A right-click short-cut “Set as target schema” is also available when
you click on a data source.)

• Save Target Schema. Saves the current target schema to the Liquid Data repository or
to a folder location and filename you choose. If you choose Repository when saving a
target schema, a relative path to the file is saved in the project file. This makes the target
schema available to other Liquid Data users and servers.

If you save a target schema to a local file, the fully qualified path is saved in
the project file, making the schema accessible only on the local machine.

• Save Query. For a description of this option, see Table 2-18, “Menu Bar for the Test Tab,”
on page 2-25.

• Exit. Closes the Data View Builder application.

Data Vi ew Bu i lde r GU I Refe rence

2-8 Building Queries and Data Views

Edit Menu Provides standard edit features. Availability of these commands is based on previous actions
you may have takes and what item is selected. For example, if you highlight an element in a
target schema and select Delete, the highlighted element will be deleted.

• Cut

• Copy

• Paste

• Delete

• Select All

Table 2-3 Menu Bar for the Design Tab (Continued)

Menu Description of Menu Options

Data V iew Bui l de r GUI Tour

Building Queries and Data Views 2-9

View Menu As an alternative to using the Design mode tabs the View menu provides a means for you to
navigate to the following UI views:

• Design. Same as clicking on Design tab.

• Optimize. Same as clicking on Optimize tab.

• Test. Same as clicking on Test tab.

• Sources and Tools. Provides navigation to the tabs (Sources and Toolbox) and panels on
the Builder Toolbar. Same as clicking on the associated tab and panel. For example,
choosing View —> Sources and Tools —> Relational Databases is the same as clicking
on the Sources Tab and then clicking Relational Databases.

To help with screen real estate and workspace, the View menu provides toggles to show or
hide various windows, tools, and tabs in the Design view. You can show or hide the following:

• Toolbars. Includes submenu with options to show/hide horizontal shortcut Toolbar or
Builder Toolbar.

• Panels. Includes submenu with options to show/hide various windows and tabs.

• Messages. Brings up a Messages dialog for you to attach notes to particular queries.

• Data Types. Toggle to show/hide data types for all source and target elements in the
schema windows, as well as required function parameter types. Clear the Data Types
check box to disable this feature.

On the menu, an “X“ by an option indicates it is currently displayed. By default, all tools,
windows and tabs are shown when you first open the Data View Builder.

• Lines. Includes a submenu of options to show:

– all lines between data sources and your target schema

– no lines

– only lines of a selected data source

If the Show lines option is enabled and you highlight a schema element that
is mapped to a target schema (or highlight a target schema element), a
dashed yellow line will show the correction and the names of the elements
will be highlighted.
Lines are drawn only for mappings where the source and target elements are both
visible. A solid gray lines represents a mapping from a source element whose containing
window is in the background on the desktop.

Table 2-3 Menu Bar for the Design Tab (Continued)

Menu Description of Menu Options

Data Vi ew Bu i lde r GU I Refe rence

2-10 Building Queries and Data Views

Query Menu • Compile Query. Compiles the current query without executing it. This is particularly
useful when trying to validate large queries. If you do not see an error message after
running Compile Query, it means that your query has compiled successfully and can be
run at your convenience.The Compile Query option can also be accessed through a
button on the menu bar.

After you compile a query it will be cached. The query will be recompiled if it does not
exactly match the text in the cache.

• Run Query. Runs the current query. (See “Table , “6. Run Query,” on page 2-28)

• Stop Query Execution. Stops a running query. (See Table , “Stopping a Running Query,”
on page 2-29.)

• Allow Existential Condition Generation. Toggle to turn existential condition
generation on or off. A checkmark next to this option indicates that existential condition
generation is on. For more information see “Using Existential Condition Checking in
Queries” on page 5-53.

• Automatic Type Casting. Toggle to turn automatic type casting on or off. A checkmark
next to this option indicates that automatic type casting is on. For more information see
“Using Automatic Type Casting” on page 5-59.

• Automatic Treat-as. Toggle to turn automatic treat-as on or off. A checkmark next to
this option indicates that automatic treat-as is on. When automatic treat-as is on, treat
functions are automatically placed in the query whenever there is a type mismatch. For
details on the treat functions, see “Treat Functions” in the “Functions Reference”
section of the XQuery Reference Guide.

• Condition Targets —> Advanced View. Toggle to turn Advanced View for manual
scoping on/off. For more information on using scoping in Advanced View see “Managing
Target Schema Properties” on page 5-26.

• Target Namespace. Opens a dialog box where you can enter a prefix and URI for the
target schema.

For a description of the other options in the Query menu (Compile Query, Run Query, or Stop
Query Execution) that are relevant only for running/testing a query, see Table 2-3, “Menu Bar
for the Design Tab,” on page 2-7.

Window Menu The Window menu provides various options for window management such as next, previous,
close, and close all.

Source schema windows that you open are listed in the Window menu.

Help Menu Provides links to Data View Builder online documentation.

Table 2-3 Menu Bar for the Design Tab (Continued)

Menu Description of Menu Options

../xquery/functions.html#treat
../xquery/functions.html

Data V iew Bui l de r GUI Tour

Building Queries and Data Views 2-11

2. Toolbar for the Design Tab
The toolbar, located directly below the menus, provides shortcuts to a subset of commonly used
actions that are also available from the menus.

Figure 2-4 Toolbar

3. Builder Toolbar
The Builder Toolbar includes two subtabs:

Sources. Provides access to the XML schema representations for data sources configured in the
Liquid Data Server. This is where you can get source schema windows for a data source.

Toolbox. Provides access to functions, constants, query parameters, and other components
used in query design.

Sources Tab
The Sources tab on the Builder Toolbar contains the data sources configured on the Liquid Data
Server to which you are connected. Note that a data source type only shows up as a button on the
Builder Toolbar if it has been configured in the Liquid Data Server to which you are connecting.
Potentially available data sources include:

XML Files

Delimited Files

Web Services

Application Views

Data Views

SQL Calls

Delimited Files

Create a new project
Open a project

Save the project
Add selected schema

Set as the target schema

Connect to a server

Data Vi ew Bu i lde r GU I Refe rence

2-12 Building Queries and Data Views

Note: For a detailed introduction to Liquid Data data sources, see Chapter 3, “Data Sources.” See
also Chapter 4, “Schemas and Namespaces in Liquid Data,” for details on using data source
schemas in constructing queries.

Figure 2-5 Builder Toolbar: Sources Tab

Toolbox Tab
The Toolbox tab on the Builder Toolbar provides the following tools you can use in constructing and
tailoring your query:

XQuery Functions (information on the Function Editor is included here)

Custom Functions

Constants

Query Parameters

Complex Parameter Types

Data V iew Bui l de r GUI Tour

Building Queries and Data Views 2-13

Components

Figure 2-6 Builder Toolbar: Toolbox Tab

XQuery Functions
XQuery Functions are built-in code modules that return a value when they run. The XQuery Functions
panel provides a library of standard W3C functions compliant with the W3C XQuery 1.0 and XPath 2.0
Functions and Operators specification. (See Figure 2-6, “Builder Toolbar: Toolbox Tab,” on page 2-13
for an example of the Functions panel.)

In the Data View Builder, Functions are displayed in the Builder Toolbar on the Toolbox tab XQuery
Functions panel by category names such as Aggregate Functions, Boolean Functions, Cast Functions,
and so on. To view all the functions in a category or group, expand the group element. For details on
using XQuery functions see “Using XQuery Functions” on page 5-14.

Data Vi ew Bu i lde r GU I Refe rence

2-14 Building Queries and Data Views

Function Editor
The functions editor provides the ability to create functions using drag-and-drop and to view existing
functions in your project.

Figure 2-7 Function Editor

You can open the Functions Editor to view or modify an existing function by selecting a condition in a
particular row and then clicking the edit button.

Figure 2-8 Button to Access the Functions Editor

For details see “Using the Function Editor” on page 5-5.

Custom Functions
If you have custom functions configured through the Liquid Data node of the WebLogic Administration
Console, these will appear in the Custom Functions section of the Data View Builder toolbar. For
details on creating queries by using custom functions, see “Using Custom Functions” in the
Application Developer’s Guide.

Constants
You can use the Constants panel to create function parameters with constant values.

Data V iew Bui l de r GUI Tour

Building Queries and Data Views 2-15

Figure 2-9 Setting Constants Dialog Box

For details see “Creating and Using Constants” on page 5-8.

Query Parameters
You can create named query parameters and associate them with a data type. For details see “Creating
and Using Query Parameters” on page 5-10.

Complex Parameter Types
If you have complex parameter types configured through the WebLogic Administration Console, these
will appear in the Data View Builder on the Toolbar Functions tree under Complex Parameter Types.
For more information, see Chapter 9, “Using Complex Parameter Types in Queries” and Configuring
Access to Complex Parameter Types in the Administration Guide.

...then drag and drop one
of the associated

Type constant in
one of the fields

constant icons into the
Functions Editor or
elsewhere to build
the function

Data Vi ew Bu i lde r GU I Refe rence

2-16 Building Queries and Data Views

Components
The Components panel shows the structure of the current project in Design View. All elements of the
query except the target schema appear in this view of the project, including any data source schemas
you are using or functions that you map with parameters.

If a particular component schema is unavailable when a project is re-opened, the schema will still be
listed, but it will be flagged as unavailable (off-line) and a red mark will appear over the schema name.

Figure 2-10 Builder Toolbar: Toolbox Tab: Components

Any component that appears in this panel can be minimized on the Liquid Data desktop by double-
clicking the appropriate node. Click again and the component reappears on the desktop.

You can hide the Builder Toolbar using a checkbox located under View —-> Toolbars.

4. Source Schemas
Source schema windows show XML schema representations of the structure of the data in the selected
data source. Source schemas are used in creating conditions and mappings to a target XML schema.
You can have as many data source schemas open on the Liquid Data desktop as needed.

Data V iew Bui l de r GUI Tour

Building Queries and Data Views 2-17

Figure 2-11 Sample Source Schemas

5. Target Schema
The Target Schema window shows the XML schema representation for the structure of the target data
(query result). For additional information see “Source and Target Schemas” on page 4-2.

You can also choose the menu item File —> Set Selected Source Schema as Target Schema to add a
source schema selected on the Builder Toolbar as the target schema.

Text search

Open search icon

Close search icon

Data Vi ew Bu i lde r GU I Refe rence

2-18 Building Queries and Data Views

Figure 2-12 Target Schema

The Target Schema can be hidden using a checkbox in View —> Panels.

6. Conditions Tab
The Conditions tab shows:

In Basic mode, conditions defined for the source data (see “Conditions Section” on page 2-20)

In Advanced mode, conditions defined that potentially define Scope for the target data or query
result (see “Advanced View (Setting Condition Scope Manually)” on page 5-41)

The Conditions area lists underlying query conditions that can inspect or change. Whenever you do a
drag-and-drop operation that changes query conditions, the Conditions tab is automatically updated
and displayed.

The Conditions tab includes the following features:

Conditions Section. List of conditions (filters) that can optionally be applied when the query is
generated.

Data V iew Bui l de r GUI Tour

Building Queries and Data Views 2-19

Function editor. To edit an existing condition, select it and click on the Function editor icon, to
the right of the Trashcan. You can also access the Functions editor by dragging and dropping a
function from the Functions panel on the Toolbox panel into an empty Conditions row. See also
“XQuery Functions” on page 2-13 and ““Function Editor” on page 2-14.

Trashcan. To remove a condition, select the row that contains the condition you want to
remove and click the Trashcan.

Enabled checkbox. Each query condition can be enabled (or disabled) using an Enabled
checkbox. By default all conditions are enabled. To disable a condition click the checkbox.

Disabled conditions are not part of the query.

Figure 2-13 Conditions Tab on the Design tab

Drag and drop to specify conditions within source schemas

Details of conditions
shown on Conditions tab

Trashcan for
deleting conditions

Functions Editor
button

Display filter

Checkbox to enable
or disable a condition

Data Vi ew Bu i lde r GU I Refe rence

2-20 Building Queries and Data Views

Conditions Section
The Conditions section displays conditions for source data. As you build up the query by creating
drag-and-drop source-to-source element relationships among data source schemas, the implied
condition statements are recorded and reflected as equality joins (eq) under the Conditions.

Figure 2-14 Conditions Tab in Basic View

For details on using the query Conditions section in basic and Advanced View mode see “Managing
Target Schema Properties” on page 5-26.

7. Mappings Tab
The Mappings tab shows source-to-target mappings that will define the structure of the query result.
As you drag-and-drop source elements onto target elements among the schema windows, the
Mappings tab records these relationships, which build up the shape the data will take in the query
result. For example, dragging and dropping FIRST_NAME and LAST_NAME elements from
CUSTOMER in a source schema to the associated CUSTOMER elements in the target schema specifies
that in the query result customers will be identified with first and last names as defined.

A checkbox below the list of query conditions allows you to optionally show or hide the full path to the
mapping elements.

Whenever you do a drag-and-drop operation that causes an update to Mappings, the Mappings tab is
automatically displayed.

Data V iew Bui l de r GUI Tour

Building Queries and Data Views 2-21

Figure 2-15 Mappings Tab

The Conditions Tab can be hidden using a checkbox in View —> Panels.

8. Sort By Tab
Target schema elements associated with complex elements with the repeatable attribute set can be
sorted in ascending or descending order. In addition, the order that elements are sorted can be easily
changed. See “Sorting Query Results” on page 5-51 for details.

Drag and drop to map elements from source to target schemas

Trashcan for
deleting conditions
and mappings

Functions Editor
button

Display filter

Details of mapping
on Mappings tab

Data Vi ew Bu i lde r GU I Refe rence

2-22 Building Queries and Data Views

9. Status Bar
The Status Bar is a horizontal bar at the bottom of the Data View Builder that provides status
information about current actions and processes. The Status Bar can optionally be hidden using a
checkbox in View —> Panels.

Figure 2-16 Status Bar

Optimize Tab
Use the Optimize tab to add clarifying hints to improve query performance.

Figure 2-17 Optimize Tab

For detailed information on how to optimize a query by ordering source schemas, see Chapter 7,
“Analyzing and Optimizing Queries.”

Join Pair Hints (pairs of data elements in each join and associated Optimize Hint)

Hints available to modify processing of joins for improved query performance

Source Order Optimization (order sources in this query for best performance)

Data V iew Bui l de r GUI Tour

Building Queries and Data Views 2-23

Test Tab
The Test tab is where you view the generated XQuery from the query elements you developed on the
Design and Optimize tabs. From this view, you can provide different parameters to the query before
you run it.The following sections (numerically keyed to Figure 2-1, “Data View Builder Test Mode,” on
page 2-24) describe the graphical features available on the Test tab:

1. Menu Bar for the Test Tab

2. Toolbar for the Test Tab

3. Builder-Generated XQuery

4. Query Parameters: Submitted at Query Runtime

5. Query Results - Large Results

6. Run Query

7. Result of a Query

Overview Picture of Test Tab Components
The following figure and accompanying sections describe the components on the Test tab. (Click the
tab to access it.)

Data Vi ew Bu i lde r GU I Refe rence

2-24 Building Queries and Data Views

Figure 2-1 Data View Builder Test Mode

Run Query Button

Builder-Generated XQuery

Query Parameters

Result of Query (shows when run)7

3

4

5

6

2 Toolbar

1 Menu Bar

Large Results
option

Data V iew Bui l de r GUI Tour

Building Queries and Data Views 2-25

1. Menu Bar for the Test Tab

Table 2-18 Menu Bar for the Test Tab

Menu Description of Menu Options

File Menu Many of the File menu commands available in Test mode, including:

• Connect...

• New Project

• Open Project

• Open Query

• Save Query

• Exit

For a complete description of File menu items, including the above, see “Menu Bar
for the Design Tab” on page 2-7.

Edit Menu Provides standard edit features.

• Cut

• Copy

• Paste

• Delete

• Select All

For a complete description of File menu items, including the above, see “Menu Bar
for the Design Tab” on page 2-7.

View Menu As an alternative to using the tabs the View menu lets you navigate to the
following UI views. For a complete description of View menu items, including the
above, see “Menu Bar for the Design Tab” on page 2-7.

Data Vi ew Bu i lde r GU I Refe rence

2-26 Building Queries and Data Views

2. Toolbar for the Test Tab
The toolbar, located directly below the menus, provides shortcuts to commonly used actions also
available from the menus in addition to Undo and Redo commands.

Query Menu Provides the following options related to running a query:

• Compile Query. Compiles the current query without executing it. This is
particularly useful when trying to validate large queries. If you do not see an
error message after running Compile Query, it means that your query has
compiled successfully and is ready to be run.The Compile Query option can
also be accessed through a button on the menu bar.

• Run Query. Runs the query. (See “6. Run Query” on page 2-28)

• Stop Query Execution. Stops a running query. (See “Stopping a Running
Query” on page 2-29.)

• Deploy Query... Stores the current query with its target schema in the
stored_query directory. Options allow simultaneous deployment as a
data view. See “Deploying Your Query” on page 6-10.

Note: If Liquid Data security is enabled, you must log into the Data View
Builder as a user who is a member of either the LDConsoleUsers or
LDAdministrators group. If the user is not a member of one of these
groups, attempts to deploy a query will fail with a security error.

• The Query menu options for Automatic Type Casting and Condition Targets—
>Advanced View are described in “1. Menu Bar for the Design Tab” on
page 2-6.

Window Menu The Window menu provides various options for window management such as next,
previous, close, and close all.

As you open source schema windows they are listed in the Window menu so that
you choose an open schema from the menu to navigate to it.

Help Menu Provides links to online documentation for the Data View Builder.

Table 2-18 Menu Bar for the Test Tab

Menu Description of Menu Options

Data V iew Bui l de r GUI Tour

Building Queries and Data Views 2-27

Figure 2-19 Test Tab Toolbar Icons

3. Builder-Generated XQuery
The query you developed on the Design and Optimize tabs is shown in XQuery language in the “Query”
window on the upper left panel on the Test tab.

Figure 2-20 Builder-Generated XQuery Shown in Query Window

Run Query

Stop Query Execution

Save Query

Compile Query

Deploy Query

Undo and Redo
Editing Commands

Data Vi ew Bu i lde r GU I Refe rence

2-28 Building Queries and Data Views

4. Query Parameters: Submitted at Query Runtime
You can use the Query Parameters panel (located below the Query area) to change variable values to
a query each time you run it. The list of variables depends on the number of variables you defined as
Query Parameters (see “Creating and Using Query Parameters” on page 5-10).

Figure 2-21 Query Parameters Settings on Test Tab

Note: Complex Parameter Type data sources are also identified in the Query Parameter Settings
area. For more information, see “Using Complex Parameter Types in Queries” on page 9-1 and
Configuring Access to Complex Parameter Types in the Administration Guide.

5. Query Results - Large Results
If you anticipate a large set of data coming back when the query is run, click Large Results (an X in
the box indicates this feature is on). The default is off (no X).

When this option is on, Liquid Data uses swap files to temporarily store results on disk in order to
prevent an out-of-memory errors.

Figure 2-22 Specifying Large Results

6. Run Query
To run a query, click the Run Query button on the toolbar in the upper left of the Test tab. (You can
also choose the Run Query option from the Query menu.)

Figure 2-23 Run Query Button

Run Query
button

Working Wi th L iqu id Data P ro jec ts

Building Queries and Data Views 2-29

The query is run against your data sources and the result is displayed in the Results panel in
XML format.

Stopping a Running Query
You can stop a running query before it has completed by clicking the Stop Query Execution button in
the Toolbar. (Alternatively choose the Stop Query option from the Query menu.)

Figure 2-24 Stop Query Execution Button

7. Result of a Query
Query results are reported in several forms. By default, results appear in structure XML.You can also
view the query plan and statistics on the query once it has been run. For details see “Running, Saving,
and Deploying Queries” on page 6-1.

Working With Liquid Data Projects
It is a good practice to save your project file frequently since it will allow you to immediately restore
your query and the schemas and other relationships that were defined to create it.

To save a project choose File —> Save Project or File —> Save Project As or click the “Save the
project” toolbar button. Data View Builder projects are saved with a .qpr filename extension. (For a
complete description of options available for handling projects, see “1. Menu Bar for the Design Tab”
on page 2-6.

Notes:

Saving a project creates a Data View Builder .qpr file that includes the conditions and
mappings for source and target schemas used in a particular query. However, saving a project
does not make the query in that project available as a stored query. For more information on
stored queries see “Using the stored_queries Folder” on page 6-7.

A copy of any mapped function is saved automatically with the project. The saved function (with
associated parameters) appears in the Components panel when you reopen the project.

Stop Query Execution
button

Data Vi ew Bu i lde r GU I Refe rence

2-30 Building Queries and Data Views

If you are working with a project that was last saved under Liquid Data 8.1 SP1 or earlier, the
Query menu’s Allow Existential Condition Generation option will be selected. For more
information see “Using Existential Condition Checking in Queries” on page 5-53.

Using Schemas Saved With Projects
When you save a project, the schema definitions of all source and target schemas that you mapped in
the project are saved. When you reopen the project, Data View Builder first looks for the schema
definitions in the Liquid Data repository.

If a schema definition is unavailable, the schema definition saved in the project file is used. Data View
Builder adds the schema to the list of available resources, but flags it as offline by putting a red mark
over the schema name. A warning is also generated in the WebLogic Administration Console log that
queries using this schema will not run.

Offline resources are available only to the previously associated project.

Save Target Schema to Repository
In order for your project to be portable you should save your target schema to the Liquid Data Server
repository on the server where the project will be used.

Next Steps: Building and Testing Sample Queries
If you have not already done so, consider working through the steps in Getting Started, which takes
you through the basic tasks of configuring some data sources and using the Data View Builder to
design a query using an Order Query sample. (For more information about Liquid Data samples, see
the Samples introduction page.) Working through the sample in Getting Started is a good, hands-on
way to get familiar with working with schema representations of data sources and using the basic
query-building tools, task flow, and workspaces in the Data View Builder.

If you are ready to get started on building some other basic queries see Liquid Data by Example. It
provides examples of queries of using more advanced features and functions such as creating unions,
using date and time functions, using aggregate functions, using hints to optimize queries, and using
data views in queries.

../samples/index.html

Building Queries and Data Views 3-1

C H A P T E R 3

Data Sources

The best known and most pervasive traditional data source is the relational database. An RDBMS can
be thought of as a tabular data storage and retrieval resource.

The reality is that the development of global business and distributed systems has generated
information in many other forms as well such as in packaged enterprise information system (EIS)
applications (PeopleSoft, Siebel, etc.), and in emerging net-based technologies like Web services and
XML documents.

Liquid Data and Data View Builder give you the ability to query and create views into data that resides
in all these types of information sources.

In this chapter the following LD-supported data sources are briefly described:

Relational Databases

XML Files

Web Services

Application Views

Data Views

SQL Calls

Delimited Files

Data source descriptions available in the connected Liquid Data Server are easily accessed from the
Data View Builder.

Data Sources

3-2 Building Queries and Data Views

Figure 3-1 Liquid Data Sample Data Sources As Displayed in the Data View Builder

.

Relational Databases
All types of businesses and other organizations use a RDBMS (relational database management
system) to store information. Relational refers to the way the database maintains information — in
logical tables with rows and columns. Instead of a series of static records with one or more data fields
that can be redundant from one file to another, information is directly accessible using queries.

Note: When Data View Builder inspects the metadata for a relational database, if the schema
contains any columns that start with numeric values, the Data View Builder adds an
underscore character (_) to the beginning of the element name that represents the column.
For example, if you have a column in the database named 123_COLUMN, the element
corresponding to that column in the Data View Builder is labeled _123_COLUMN.

Also, the following characters from any catalog, schema, table, or column names are replaced
with an underscore character:

: < > \ / $, <tab>, <newline>, and <spaces>

XML F i l es

Building Queries and Data Views 3-3

For example, a table named <customer><$table> can be referenced as
customer___table (three underscore characters replace the three special characters).

Additionally, if you are hand-editing queries, the element or attribute names that refer to
column names that start with a numeric value must begin with an underscore character (_)
when used in XPath expressions.

XML Files
Extensible Markup Language (XML) files are proving to be a convenient and portable format for
storing many different kinds of information for document processing and information exchange.
Liquid Data and Data View Builder supports use of XML files as data sources.

Web Services
A web service is a self-contained, platform-independent unit of business logic, located somewhere on
the Internet, that is accessible through standards-based Internet protocols like HTTP or SMTP. Web
services facilitate application-to-application communication over the Internet or within and across
enterprises. A familiar example of an externalized web service is a weather portlet or stock quotes that
you can integrate into your web browser. You can use web services to encapsulate information and
operations. Web services are becoming important resources of global business information. Liquid
Data and the Data View Builder support the use of web services as data sources.

Application Views
Enterprise Information Systems (EIS) and custom applications store information that you might need
to aggregate for a complete view of data. You can query and retrieve subsets of relevant information
from applications such as SAP, Siebel, PeopleSoft, Oracle Financial and so on and treat the results as
application view data sources in your data integration solution.

Data Views
A Data View is a special type of data source in which the result of a query is used as a data source. The
query result will change if your underlying data changes. In this way, you can build on the queries you
design to create "views on data views" for an up-to-date picture of continually changing information.
To learn more about Data Views see Chapter 8, “Using Data Views”.

SQL Calls
Two types of SQL queries can appear as data sources under SQL Calls:

Data Sources

3-4 Building Queries and Data Views

Stored Procedures. For relational databases that support stored procedures, you can create
stored procedures in the RDBMS and expose them to Liquid Data. Liquid Data treats a stored
procedure as a function which requires one or more inputs to produce zero or more outputs. A
stored procedure allows database programmers to combine business logic with database
queries, and they provide a powerful way to efficiently and securely produce information from
relational databases. Also, stored procedures allow the database administrators to tune the
queries run by the stored procedures, thus ensuring good performance and minimizing impact
on database performance.

SQL Statements. These are stored SQL queries available for execution against relational data
sources. These statements can be used as virtual tables as you would any other Liquid Data
data source.

Delimited Files
Spreadsheets provide a useful means of storing and manipulating information, especially information
which needs to be changed quickly. You can use spreadsheet data that has been saved in comma
separated value (CSV) file format in Liquid Data queries and data views. Although the separator field
is conventionally referred to as a comma you can set the separator to be any ASCII character using the
Liquid Data node of the WebLogic Administration Console. See “Configuring Access to Delimited
Files” in the Liquid Data Administration Guide.

Building Queries and Data Views 4-1

C H A P T E R 4

Schemas and Namespaces in Liquid
Data

This chapter describes source and target XML schemas, also called target schemas, as used in the
Data View Builder to define queries. It also describes how XML namespaces can be used in your
queries.

The following topics are covered:

Source and Target Schemas

Schema Import Resolution Rules

Using Schemas Saved With Projects

Understanding XML Namespaces

Schemas and Namespaces in L iqu id Data

4-2 Building Queries and Data Views

Source and Target Schemas
XML schemas are used in Liquid Data to represent the hierarchical structure of various data sets and
the query structure. The Data View Builder uses XML schema representations as follows:

Source Schemas. XML schemas that describe the structure of underlying source data.

Target Schema. An XML schema that describes how the target data is to be structured; that is,
the structure of the query result.

For relational databases accessed through JDBC drivers, a schema is automatically generated based
on available metadata.

For XML files, views, complex parameter types (CPTs), stored procedures, delimited files, or web
services, you first develop and then specify the schema using the WebLogic Administration Console.

Note: For the versions of the XQuery and XML specifications implemented in Liquid Data see
“Supported XQuery and XML Schema Versions In Liquid Data” in the XQuery Reference
Guide.

Source Schemas
The Data View Builder provides graphical representation of source schemas in a tree structure format.
The visual representations can be expanded and collapsed for convenience and readability.

../xquery/xqspec.html#XMLSchemaVersions

Source and Ta rge t Schemas

Building Queries and Data Views 4-3

Figure 4-1 Sample source schemas

If you are building a query that depends upon more than one data source, you will use multiple source
schemas (one for each data source).

Searching Text in Schemas and Other Work Area Elements
You can apply a keyword search to any source or target schema, as well as to functions. Simply click
the Open search icon at the top of the pane and a search field will appear. Enter any valid search string
(case does not matter) and if it exists in the pane the string will be highlighted.

Wildcard symbols (? or *) are not allowed. However, any word or partial word will be found if it appears
in the pane. For example, if you search on the string TAT the element STATE will be found it if exists
in the pane.

Text search is circular beginning at the currently highlighted element. In other words, if the search
will be satisfied by an element above the currently highlighted line it will eventually be found if you
keep clicking the Search button.

Schemas and Namespaces in L iqu id Data

4-4 Building Queries and Data Views

Using Source Schemas Multiple Times in Constructing Queries
In the Data View Builder you can use source schemas as many times as needed, simply by dragging an
additional copy of the data source scheme into the work area.

A source is said to be replicated if the source schema appears multiple times in a query. In XQuery, a
source is replicated if document_name appears multiple times in the XQuery, usually appearing in
two different for clauses. Similarly, in SQL a source is said to be replicated if the source (table)
appears twice in a FROM clause (or in two different FROM clauses).

Source replication is necessary whenever you want to use a data source in a way that will require
iterating over the source twice. Another way to state this is when two different tuples from a source
will be required at the same time.

When More Than a Single Copy of a Source Schema is Needed
Sometimes it is helpful to use more than one copy of a data source schema to improve query
performance. In other cases, however, having more than one copy of a data source schema is
necessary.

Take, for example, a very simple problem: you want to build a target schema that lists product list
prices over a certain amount and under a certain amount. XQuery functions exist for the greater-than
[gt] and less-than-or-equal-to [le] test conditions. Using Advanced view you could disable where
clause conditions to make the query valid (see “Sorting Query Results” on page 5-51).

But a clearer and cleaner approach would be to use two source instances that each reference the same
data source. From the first instance of the source schema, PB-BB, PRODUCTS would be projected
under Expensive products. From the second instance, PB-BB2, PRODUCTS would be projected under
Cheap products (Figure 5-34). In both cases, Copy and Paste and Map are used. (See “Mapping to
Target Schemas” on page 5-18 for more information on mapping of complex elements to target
schemas.)

Source and Ta rge t Schemas

Building Queries and Data Views 4-5

Figure 4-2 Project Illustrating Use of Two Copies of a Data Source Schema

Then it is a simple matter of creating the [ge]/[lt] conditions as described in “To resolve this
problem click Advanced view in the Conditions section. You will notice that instead of the two
conditions you created, four are listed. This is because Advanced view shows you the actual where
clause conditions used in the query, based on application of the Data View Builder best-guess
autoscope rules.” on page 5-47.

The XQuery generated by this project (Listing 4-1) illustrates this approach.

Listing 4-1 XQuery returning product list prices in two groups

<results>
<expensive_products>
{
for $PB_BB.PRODUCTS_15 in document("PB-BB")/db/PRODUCTS
where ($PB_BB.PRODUCTS_15/LIST_PRICE gt 100)
return
$PB_BB.PRODUCTS_15
}

</expensive_products>
<cheap_products>
{
for $PB_BB2.PRODUCTS_21 in document("PB-BB")/db/PRODUCTS

Schemas and Namespaces in L iqu id Data

4-6 Building Queries and Data Views

where ($PB_BB2.PRODUCTS_21/LIST_PRICE le 100)
return
$PB_BB2.PRODUCTS_21
}

</cheap_products>
</results>

In the above query PRODUCTS with list prices greater than or equal to [gt] 100 are returned for the
PB_BB data source. Similarly, PRODUCTS with list prices less than 100 are returned for the PB_BB2
data source. Of course the underlying data source is the same.

The Self-Join
Another example of necessary source replication would be a self-join in SQL. In the classic example
of a self-join, the query retrieves all employee names that match a particular manager ID.

SELECT emp.name, mgr.name
FROM employee emp, employee mgr
WHERE emp.manager_id = mgr.id

In XQuery, the query would appear similar to that in Listing 4-2.

Listing 4-2 Query retrieves records where employee manager ID field matches a particular manager ID

<employee_managers>

{

for $emp in document(“employee”)//employee

for $mgr in document(“employee”)//employee

where $emp.manager_id eq $mgr.id

return

<employee_manager>

<employee> {$emp.name} </employee>

<manager> {$mgr.name} </manager>

</employee_manager>

}

</employee_managers>

Source and Ta rge t Schemas

Building Queries and Data Views 4-7

In both of these examples, given the sources, there is no way to write these queries without replicating
the source schemas.

Enhancing Readability or Code Efficiency With Duplicate Source Schemas
In ambiguous cases, both replicating and not replicating a source would lead to reasonable queries.
For example, a self-join to get employee-manager pairs was shown in a previous example. Without
replicating the source, you could:

1. Map name to the target (get the employee name)

2. Join manager_id with id (join to get the manager)

3. Map name to the target (get the manager name)

Of course, the Data View Builder would interpret this query as: “give me all employees who are their
own manager”. Under such circumstances the option of creating multiple copies of a source schema
reduces possible confusion or confusing results.

Target Schemas
A target schema describes the structure of a query result that will be produced when the query runs.
As with source schemas, the Data View Builder provides a graphical representation of target schemas
in a tree structure format.

Schemas and Namespaces in L iqu id Data

4-8 Building Queries and Data Views

Figure 4-3 Sample Target Schema

Target schemas have these main purposes:

Provide a template for the mapping data from source schemas in order to generate a query.

Provide a schema for Liquid Data Web Service and Data View definitions.

Determine the structure and order of the XML document generated by the XQuery.

You can specify a target schema in the Data View Builder in the following ways:

Select a schema from the Liquid Data repository.

Build a new target schema from scratch (using right-click menu commands).

To open and set a target schema for a project:

1. Choose the menu item File —> Set Target Schema.

This brings up a file browser.

Source and Ta rge t Schemas

Building Queries and Data Views 4-9

Figure 4-4 Liquid Data Repository Highlighted in File Browser

If you choose Repository in the Open dialog, the Data View Builder displays target schemas in
the Liquid Data repository.

2. Navigate to the schema you want to use, select the file and click Open.

Figure 4-5 Schema File Selected

The target schema is displayed and docked on the right side of the Design tab work area.

Schemas and Namespaces in L iqu id Data

4-10 Building Queries and Data Views

(You can also choose the menu item File —> Set Selected Source Schema as Target Schema to
create a target schema that is, at least initially, based exactly on a source schema.)

Guidelines for Working With Target Schemas
Use these guidelines when working with target schemas:

1. Make sure the target schema has proper cardinality. For example, if you intend to project customer
orders in your result, the target schema should reflect the parent-child relationship between
customer and orders. All examples in “Building Queries” on page 5-1 demonstrate this
guideline.

2. Project at least one element from each data source that is part of the query to the target
schema.

3. It is generally unnecessary to map every element in a target schema. For example, you could
choose the same schema for both the source and target data structure, but then map only some
of the source elements to the target schema. The query result will show only those source data
elements that are actually mapped to elements in the target schema.

4. Understand how target schema conformity works and use it efficiently. (See “Managing Target
Schema Properties” on page 5-26 for details on schema element property settings.)

– A plus sign [+] next to a element indicates that the element is repeatable and required. (In
other words, there must be one or more occurrences of this.) Since this setting requires
extra checking of the data, most queries that use it pay a performance penalty.

– An asterisk [*] next to an element indicates that the element is repeatable and optional.
(In other words, there can be 0 or more occurrences of this.)

Use this setting when possible to avoid unnecessary data checking and the associated
performance hit. Use this especially if you know that the underlying data sources enforce
referential integrity between parent-child items.

Of the several examples included in this section the following particularly demonstrate these
guidelines:

– “Example 1: Retrieve All BroadBand Customers, Returning Their Wireless Orders, If Any
(ORDER is Repeatable and Optional)” on page 5-32

– “Example 2: Retrieve Only BroadBand Customers Who Have At Least One Wireless Order;
Return Their Wireless orders (ORDER Is Repeatable And Required)” on page 5-34

Source and Ta rge t Schemas

Building Queries and Data Views 4-11

5. If your plan is to create a data view from your query, your target schema should only contain
required elements that are utilized in the query. For example, if the Customer table contains
first_name, last_name, email, and phone elements and each of those elements is required
in the target schema, then you need to map each element of your query before saving it.

For a detailed description of target schemas, see “Schemas and Namespaces in Liquid Data” on
page 4-1.

Managing Target Schemas
Target schemas are composed of complex elements, simple elements (child elements), and
attributes. You can set element properties using the Properties dialog box, which you access by
right-clicking on the element.

Figure 4-6 Properties Dialog

The following properties can be set:

Local name. Allows you to change the element name.

Namespace. Allows you to specify a previously created XML namespace. (See “Understanding
XML Namespaces” on page 4-13 for a discussion of namespaces.)

Content type. Allows you to choose a content type such as a string or Boolean from a drop-down
list.

Repeatable attribute. Provides for schema elements and their sub-elements to be repeatable.

Optional attribute. Provides for schema elements to be optional rather than required.

Schemas and Namespaces in L iqu id Data

4-12 Building Queries and Data Views

Using Schemas Saved With Projects
When you save a project, the schema definitions of all source and target schemas that you mapped in
the project are saved. When you reopen the project, Data View Builder first looks for the schema
definitions in the Liquid Data repository.

If a schema definition is unavailable, the schema definition saved in the project file is used. Data View
Builder adds the schema to the list of available resources, but flags it as offline by putting a red mark
over the schema name. A warning is also generated in the WebLogic Administration Console log that
queries using this schema will not run.

Offline resources are available only to the previously associated project.

Schema Import Resolution Rules
If a schema file has an import statement with a relative path to another schema file, Liquid Data
resolves the location of the imported files according to the following rules:

1. Attempt to resolve the filename in the <ldrepository>/schemas directory.

2. If the file is not found in the <ldrepository>/schemas directory, attempt to resolve it
relative to the directory in which the schema file (the first one with the import statement) is
saved.

3. If imported schema files in turn import other schema files, they are resolved first from the
<ldrepository>/schemas directory.

In the case of the Liquid Data Server Samples repository, the first attempt to resolve the search
will be in the following directory:

<WL_HOME>/samples/domain/liquiddata/ldrepository/schemas

and then from the location relative to the original schema file (the first one with the import
statement).

For example, if you have a schema file in the following location in the repository:

<ldrepository>/schemas/dir1/dir2/s.xsd

and it contains the following import statement:

import dir3/file.xsd

then Liquid Data first looks for a schema file named:

<ldrepository>/schemas/dir3/file.xsd

and, if it does not find it relative to the root level of the repository, Liquid Data looks for it in:

Unders tand ing XML Namespaces

Building Queries and Data Views 4-13

<ldrepository>/schemas/dir1/dir2/dir3/file.xsd

As a further example, assume the file.xsd import was resolved in:

<ldrepository>/schemas/dir3/file.xsd

If file.xsd in turn has the following import statement:

import dir4/another.xsd

then Liquid Data first attempts to resolve this import statement relative to the root of the repository:

<ldrepository>/schemas/dir4/another.xsd

If the file is not there, it then resolves it relative to the original
<ldrepository>/schemas/dir1/dir2/s.xsd file, as follows:

<ldrepository>/schemas/dir1/dir2/dir4/another.xsd

Understanding XML Namespaces
XML namespaces are a mechanism by which you can ensure that there are no name conflicts (or
ambiguity) when combining XML documents or referencing an XML element.

Liquid Data supports XML namespaces and includes namespaces in the queries generated in Data
View Builder.

This section includes the following topics:

XML Namespace Overview

Using XML Namespaces in Liquid Data Queries and Schemas

Migrating Liquid Data 1.0 Queries

XML Namespace Overview
XML namespaces appear in queries as a string followed by a colon. For example, the xs:integer
data type uses the XML namespace xs. Actually, xs is an alias (called a prefix) for the URI name of
the namespace. (See Table 4-7 for the full set of predefined XQuery namespaces.)

Prefix URI Name

xs http://www.w3.org/2001/XMLSchema

Schemas and Namespaces in L iqu id Data

4-14 Building Queries and Data Views

XML namespaces ensure that names do not collide when combining data from heterogeneous XML
documents.

For example, there could be an element <tires> in a document related to automobile
manufacturers. In a document related to bicycle tire manufacturers, there is also a <tires> element.
Obviously, combining these elements would be problematic under most circumstances. XML
namespaces easily avoid such name collisions by referring to the elements as <automobile:tires>
and <bicycle:tires>.

In a XML schema namespaces — including the target namespace — are declared in the schema tag.
Here is an example:

<schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:bea="http://www.bea.com/public/schemas"
targetnamespace="http://www.bea.com/public/schemas"
...

The first line of the above schema contains the default namespace, which is the namespace of all the
unqualified elements in the schema.

For example, if you see the following element in a schema document:

<element name="appliance" type="string"/>

the element element, and the attribute name and type all belong to the default namespace, as do
unprefixed types such as string.

The second line of the schema contains a namespace declaration — bea — which is simply an
association of a URI with a prefix. There can be any number of such declarations in a schema.

Lastly, comes the target namespace, declared with the targetNamespace attribute. It this case, the
target namespace is bound to the namespace declared on the second line, meaning that all element
and attribute names declared in this document belong to:

http://www.bea.com/public/schemas

References to types declared in this schema document must be prefixed. For example:

<complexType name="AddressType">
<sequence>
<element name="street_address" type="string"/>

...

</sequence>
</complexType>

<element name="address" type="bea:AddressType"/>

Unders tand ing XML Namespaces

Building Queries and Data Views 4-15

Predefined Namespaces in XQuery
The following table shows predefined namespaces used in XQuery:

Other XML Namespace References
The following are some Internet links where you can find more information on XML namespaces:

http://www.w3.org/TR/REC-xml-names/

See also “Supported XQuery and XML Schema Versions In Liquid Data” in the XQuery Reference
Guide.

Using XML Namespaces in Liquid Data Queries and Schemas
The Data View Builder automatically generates the correct namespace declarations when generating
a query.

However, when a target schema is created in the Data View Builder, its elements and attributes are
unqualified, meaning that the target namespace is not automatically part of the element or
attribute name.

Table 4-7 Predefined Namespaces in XQuery

Namespace Prefix Description Examples

xf The prefix for XQuery functions. xf:data

xf:sum

xf:substring

xfext The prefix for Liquid Data-specific
extensions to the standard set of
XQuery functions.

xfext:match

xfext:trim

xs The prefix for XML schema types. xs:element

xs:string

xsext The prefix for Liquid Data-specific
extensions to the standard set of
XML schema types.

xsext:myownstringtype

../xquery/xqspec.html#XMLSchemaVersions

Schemas and Namespaces in L iqu id Data

4-16 Building Queries and Data Views

Figure 4-8 Example of a schema with unqualified attributes and elements

If you want elements and attributes appear as qualified, you need to use an editor outside Data View
Builder to modify the generated schema for either or both attributeFormDefault and
elementFormDefault to be set to qualified. See Listing 4-3.

Listing 4-3 Schema Tag Setting Elements and Attributes to Qualified (emphasis added)

<xsd:schema targetNamespace="urn:schemas-bea-com:ld-cocpt"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:cocpt="urn:schemas-bea-com:ld-cocpt" attributeFormDefault="qualified"
elementFormDefault="qualified">

Once attributes and elements have been set to qualified, they will appear as such in the Data View
Builder when the target schema is set to your newly edited file.

Figure 4-9 Example of a schema with qualified attributes and elements

Note: If you are hand-coding your queries (not using the Data View Builder as a query generator),
you must include the necessary namespace declaration(s) to satisfy Liquid Data server

Unders tand ing XML Namespaces

Building Queries and Data Views 4-17

requirements. For a list of data sources that require namespace declarations, see “Data
Sources that Require Namespace Declarations” on page 4-18.

Namespace Declarations in XQuery Prolog
The beginning portion of an XQuery is known as the prolog. For Liquid Data queries, the namespace
declarations appear in the XQuery prolog. There can be zero or more namespace declarations in a
query prolog. Each namespace has the following form:

namespace <logical_name> = "<URI>"

where <logical_name> is a string used as a prefix in the query and <URI> is a uniform resource
indicator.

Consider the following simple query:

namespace view = "urn:views"

<CustomerOrderID>
{
for $view:MY_VIEW.order_2 in

view:MY_VIEW()/results/result/BroadBand/order
return

<ORDER_ID>{ xf:data($view:MY_VIEW.order_2/ORDER_ID) }
</ORDER_ID>

}
</CustomerOrderID>

The line in the prolog:

namespace view = "urn:views"

is the namespace declaration in this query. Each time the object (in this case, MY_VIEW) is referenced
in the query, the object name is prefixed with the logical name view.

You must define namespaces in the XQuery prolog in order to use them in a query (except for the
predefined namespaces described in “Predefined Namespaces in XQuery” on page 4-15). If you do not
define namespaces in the XQuery prolog, the query will fail with a compilation error.

Defining Namespaces in Target Schema
When you use the Data View Builder to create or modify target schemas, you can specify a namespace
for an element or an attribute. Such a specified namespace is added to the XML markup in the query
(and therefore to the query results).

You can set or change a target namespace using the Target Namespace menu option, available from
the Data View Builder Query menu when in Design mode.

Schemas and Namespaces in L iqu id Data

4-18 Building Queries and Data Views

Figure 4-10 Target Namespace Dialog Box

Figure 4-11 shows adding a local name called db to an element of the target schema named crm2
from the Properties dialog box. If multiple namespaces are available, you can select one from the
drop-down list box.

You can access the Properties dialog box by right-clicking on an element in your target schema.

Figure 4-11 Properties Dialog Box

The query results for this target schema definition are of a form similar to:

<crm2:db xmlns:crm2="urs:schemas-bea-com:ld-crmp"> 100.0 </crm2:db>

Data Sources that Require Namespace Declarations
All data sources except relational databases and XML files require the namespace declaration in the
XQuery prolog. Thus the following data sources require namespace declarations in the XQuery prolog:

Data Views

Web Services

Application Views

Stored Procedures

Complex Parameter Types

Unders tand ing XML Namespaces

Building Queries and Data Views 4-19

Migrating Liquid Data 1.0 Queries
Liquid Data 1.0 did not support XML namespaces, and any queries used in Liquid Data 1.0 must be
migrated to work in Liquid Data 8.1. If you have queries that are generated in a Data View Builder
project file, you can open the project file in Data View Builder 8.1. When you click the Test tab, the
Data View Builder automatically generates the new query with the proper namespace declarations in
the query prolog.

If you have stored queries and data views, you must use the queryMigrate tool to migrate the
queries so they work properly in Liquid Data 8.1. For information on the queryMigrate tool, see
Migrating from Liquid Data 1.0 to 8.1 in the Liquid Data Migration Guide.

Schemas and Namespaces in L iqu id Data

4-20 Building Queries and Data Views

Building Queries and Data Views 5-1

C H A P T E R 5

Building Queries

This chapter explains how to design and build a BEA Liquid Data for WebLogic query using the Data
View Builder, including manually applying condition scoping rules. The following topics are covered:

Defining Query Requirements

Managing Query Components

Working With Source and Target Schema Elements

Setting Query Conditions

Sorting Query Results

Using Existential Condition Checking in Queries

Using Automatic Type Casting

Defining Query Requirements
The first step in constructing a query (or, as often, a set of queries) is design: drawing on business
requirements to answer the following questions:

What is the description of the data integration problem to be solved?

How do I want the query result to look? In other words, how do I want to structure the output?

What types of data sources does my query need?

Bui ld i ng Que r ies

5-2 Building Queries and Data Views

What is the structure of each data source; that is, what are the input (if any) and output XML
schemas for the source?

How does source data map to the target?

What conditions do I need to define? (Conditions filter source data in a specific way.)

What target XML schema design pattern should I use? More specifically, what is the
appropriate cardinality of each element in the target schema? Proper design of the target XML
schema is a key factor in building a successful and efficient query.

Once you have designed the query and defined an outline strategy for accomplishing the information
mapping and filtering, you are ready to build a test version of your query. For other than very simple
queries, you will probably revise, refine and test the query several times.

Examples Set-up
This chapter contains several illustrated, stepped examples. If you want to work through these
examples in the Data View Builder, you can easily do so.

Unless otherwise indicated each example requires the following set-up instructions.

1. Move schemas for the following two data sources into the Data View Builder work area:

Relational Database: PB-WL

XML File: XM-BB-C

2. With the Data View Builder open click the Design tab.

3. On the Builder Toolbar, click the Sources tab (on the bottom of the left vertical panel).

– Click Relational Databases and then double-click on PB-WL data source to open the
associated XML schema showing Wireless customers.

– Click XML Files and then double-click on XM-BB-C data source to open the associated XML
schema showing BroadBand customers.

The schemas for each of the data sources appear.

Position the schema windows so you can view the data elements in each schema. You can
expand the data elements by clicking the plus [+] sign next to the element name. For example,
in the PB-WL data source, CUSTOMER is a complex element with subordinate simple elements.

Def in ing Query Requ i rements

Building Queries and Data Views 5-3

Figure 5-1 Example with Data Sources Expanded

4. To create and set the target schema for this example cut-and-paste the XML in Listing 5-1 into a
plain text file and save it to the Liquid Data Server repository under the file name:

amtByState.xsd

The path to the schemas folder in the Liquid Data Server repository is:

<ldrepository>/schemas

An example of a full path to the Liquid Data Server repository is:

/bea81/weblogic81/samples/domains/liquiddata/ldrepository

Listing 5-1 XML source for amtByState.xsd target schema

<?xml version = "1.0" encoding = "UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema">
 <xsd:element name="customers">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="STATE" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>

Bui ld i ng Que r ies

5-4 Building Queries and Data Views

 <xsd:element name="state" type="xsd:string" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="CUSTOMER" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="FIRST_NAME" type="xsd:string"/>
 <xsd:element name="LAST_NAME" type="xsd:string"/>
 <xsd:element name="AVERAGE_ORDER" type="xsd:string"/>
 <xsd:element name="CUSTOMER_ID" type="xsd:string"/>
 <xsd:element name="STATE" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

5. Navigate to the Liquid Data Server repository, the topmost directory in the browser.

6. Choose amtByState.xsd and click Open.

Figure 5-2 Selecting the Newly Created Schema as Target Schema

The new target schema is displayed as a docked schema window on the right side of the workspace.

Def in ing Query Requ i rements

Building Queries and Data Views 5-5

Figure 5-3 Example Showing Data Sources and Target Schema

Using the Function Editor
You can use the Data View Builder Function Editor to build up XQuery functions (see “Using XQuery
Functions” on page 5-14 for more information).

Figure 5-4 Function Editor

To use the Function Editor:

1. Drag and drop an XQuery equals function [eq] from the Toolbox panel to the first empty row in
the Conditions tab.

2. Drag a source schema element and drop it into the same row of the Condition column. Drag a
second source schema element and drop it into the same row of the Condition column.

To edit an existing function:

Bui ld i ng Que r ies

5-6 Building Queries and Data Views

1. Open the Functions Editor by clicking the Edit button.

2. Edit the statement as needed. You will need to delete the current parameters or function using
the Trashcan or Delete key. Then drag and drop a new function or source elements/attributes to
the Functions Editor.

Figure 5-5 Mapping Elements to Functions

To get the view shown in Figure 5-5, click on the Conditions tab, select the row with the condition to
be edited, then click the Edit button.

You can drag and drop different functions into the Functions Editor from the XQuery Functions panel
on the Builder Toolbar —> Toolbox tab.

Managi ng Quer y Components

Building Queries and Data Views 5-7

For more information about using the Functions Editor and working with functions see “XQuery
Functions” on page 2-13 and “Function Editor” on page 2-14.

Managing Query Components
If you think of selected data elements as nouns (what you want to work on), the functions as verbs
(the action), then the mapping among the data elements creates a logical sentence that expresses
the query.

Results and query performance can change significantly depending on how you:

Map (or project) source data from one or more sources to the target schema

Specify conditions (filter source data)

Tune the target schema

Although you can simply type in an XQuery and run it from the Data View Builder, the more common
way to create a query is build it up through the following operations:

Map simple or complex elements from source schemas to target schemas

Define constants and/or query parameters

Create join relationships between source schema elements

Transform information using built-in or custom functions

Filter data using conditions

In the Data View Builder these operations can occur in any order and are fully reversible.

If you have taken the time to outline a design for the query first, constructing it will be a matter of
drag-and-drop query building. Then you can test, fine-tune, and modify your project as needed to
produce variations on the results, or to optimize the query for better performance.

In addition to data sources (see “Data Sources” on page 3-1), constants, query parameters, and
XQuery functions are used in constructing a Liquid Data XQuery graphically.

Data Sources
A data source is represented in the Data View Builder through a source XML schema. You can use
multiple data source schemas in your query. In some cases you may need to use a single source schema
multiple times. Some data sources require input data as well.

Bui ld i ng Que r ies

5-8 Building Queries and Data Views

Using the Sources tab on the Data View Builder Toolbar you can access available data sources, grouped
by type, that are configured on the Liquid Data Server to which you are connected. Note that a data
source group (such as Relational Databases) appears only if at least one source of that type has been
configured in the Liquid Data Server to which you are connected.

See Liquid Data Getting Started and Administration Guide for examples of configuring and using
data sources.

Creating and Using Constants
You can add constants to functions or use constants as part of any query condition.

Figure 5-6 Toolbox Constants Panel

To create a constant choose Toolbox —>Constants. Four options are available:

String Constant. Strings are alphanumeric values that typically contain alphabetic letters,
special characters, and digits used in non-numeric comparisons. Names, zip codes, phone
numbers, and street addresses are typical examples of string values.

Number Constant. Numbers can be integers (positive or negative), decimal values, or floating
point expressions.

../qkstart/index.html
../admin/index.html

Managi ng Quer y Components

Building Queries and Data Views 5-9

Empty List (null value). Creates an empty list in the generated XQuery such as:

<CUSTOMER_ID>{ () }</CUSTOMER_ID>

Empty Element. Creates an empty element in the generated XQuery such as:

<STATE/>

Using Constants with Functions
To include a constant as a function parameter, follow steps similar to those in the following example:

1. Drag the desired XQuery function to a row on the Condition tab or to the Liquid Data desktop. For
example: choose the starts-with function. You get the following placeholder in the Functions
Editor:

xf:starts-with(str1,str2)

2. Drag an appropriate source element onto the first string placeholder (str1). For example,
choose CustomerID from a source schema.

3. Type a value in the String constant text box. For example, CellPhone. Drag the Constants icon
onto the second string placeholder (str2).

The condition appears in the Functions Editor as shown in Figure 5-7.

Figure 5-7 Condition with starts-with Constant in Functions Editor

Close the Functions Editor by clicking the Close button. The new condition you created appears
in the Source column on the Condition tab.

Bui ld i ng Que r ies

5-10 Building Queries and Data Views

Figure 5-8 Condition with starts-with Constant in Row on Conditions Tab

Note: If you design a query with a constant, and then design another query using a query parameter
that specifies exactly the same value, the generated queries will differ somewhat even though
the functionality will be the same.

Creating and Using Query Parameters
Using a query parameter you can change a value in your query each time it is run. This is ideal for ad
hoc queries based around changes in a customer name or order number.

The Query Parameter section of the Toolbox provides a text field where you can enter a new parameter
name. To create a query parameter:

1. Name your query parameter.

2. Select the parameter type from the drop-down list (See Table 5-10, “Query Parameter Types,” on
page 5-12).

3. Click Create. Your new parameter will appear in the Query Parameter resource tree (Figure 5-9).

Managi ng Quer y Components

Building Queries and Data Views 5-11

Figure 5-9 Query Parameters Dialog Box

To expand the list of query parameters right-click on the Simple Types folder. You can then right-click
on the query parameter name to rename or delete the parameter.

To use a simple query parameter, drag and drop a parameter name to the appropriate item of source
data. Then, when you run your query, a window will appear where you can enter your test parameter.

For an example showing use of a query parameter, see the Getting Started demo:

http://e-docs.bea.com/liquiddata/docs81/interm/demopage.html

http://e-docs.bea.com/liquiddata/docs81/interm/demopage.html

Bui ld i ng Que r ies

5-12 Building Queries and Data Views

Table 5-10 Query Parameter Types

Parameter Type Examples

xs:boolean (Boolean) Boolean expressions test true or false. You can specify that the
Boolean query parameter has an implicit definition of True or
False, then use it as query resource.

xs:byte (byte) A positive or negative whole number. The maximum value is 127
and the minimum value is -128. For example:
• -1

• 0

• 126

• +100

xs:date (date) Input must be in this format: MMM dd, YYYY

For example:

JUN 12, 2002

xs:dateTime
(datatype)

Input must be in this format:
MMM dd, YYYY HH:MM:SS AM/PM

For example:

MAY 12, 2002 12:12:11 AM

xs:decimal (decimal) A precise real number (negative or positive) that can contain a
fractional part. If the fractional part is zero, the period and
following zero(s) can be omitted. For example:
• -1.23

• 12678967.543233

• +100000.00

• 210.

xs:double (double) A real number (negative or positive) that can contain fractional
part. For example: 3.159

Liquid Data does not support floating point formats expressed in
fractions (½) or IEEE floating point notation (3E-5).

Managi ng Quer y Components

Building Queries and Data Views 5-13

xs:float
(floating point)

A real number (negative or positive) that can contain a fractional
part. For example:
• 100.0

• -100.5

Note: Liquid Data does not support floating point formats
expressed in fractions (½) or IEEE floating point notation
(3E-5).

xs:int (int) A positive or negative whole number. The maximum value is
2147483647 and minimum value is -2147483648. For example:
• -1

• 0

• 126789675

• +100000

xs:integer (integer) A positive or negative whole number. The maximum value is
2147483647 and minimum value is -2147483648. For example:
• 1

• -100

• +100

xs:long (long) A positive or negative whole number. The maximum value is
9223372036854775807 and minimum value is
-9223372036854775808. For example:
• -1

• 0

• 12678967543233

• +100000

xs:short (short) A positive or negative whole number. The maximum value is 32767
and minimum is -32768. For example:
• -1

• 0

• 126789

• +10000

Table 5-10 Query Parameter Types

Parameter Type Examples

Bui ld i ng Que r ies

5-14 Building Queries and Data Views

Using XQuery Functions
In Liquid Data, XQuery functions are a set of built-in functions that allow you to graphically establish
functional relationships between data elements or to apply business logic to data.

You can double-click or drag and drop a function to move it the Liquid Data desktop. The function will
appear in a structured format that displays the number and type of input parameters required, as well
as the output parameter.

For most XQuery functions you drag-and-drop one or more information element to the function. The
information element can be source data, variables, or constant values. Functions return results based
on input and the output element with which the results are associated.

String (xs:string) An alphanumeric expression such as:
• Smith

• Jones

• 12345 State St.

Note: An unspecified value for a query parameter of type String
is considered an empty string.

Time (xs:time) Input must be in this format: HH:MM:SS AM/PM

For example:

01:02:15 AM

Table 5-10 Query Parameter Types

Parameter Type Examples

Managi ng Quer y Components

Building Queries and Data Views 5-15

Figure 5-11 Sample XQuery Function as it Appears in the Data View Builder Work Area

For example, if you want to find out how many customer IDs in the BroadBand database are not equal
to those in the Wireless database you can use the [ne] (not-equal-to) function.

To access this function go to Builder Toolbar —> Toolbox tab —> XQuery Functions area, expand the
Operators element, and drag the [ne] function into the work area.

Bui ld i ng Que r ies

5-16 Building Queries and Data Views

Figure 5-12 XQuery Functions Panel Showing Aggregate and Boolean Functions Tab Expanded

Note: Automatic type casting is available to help ensure that input parameters used in functions
and mappings are appropriate to the function in which they are used. When Automatic Type
Casting is active, Liquid Data verifies (and if necessary promotes) the data types of input
parameters for all source-to-target mappings and functions. For more information about
automatic type casting, see “Using Automatic Type Casting” on page 5-59.

Most XQuery functions in the Data View Builder are standard XQuery functions supported by the W3C.
(For related information about using functions, see “Functions Reference” in the XQuery Reference
Guide. For more detailed information, see the W3C XQuery 1.0 and XPath 2.0 Functions and
Operators specification.)

Mapping Elements to Functions
When you drag and drop a source element onto another source element (either within the same source
schema or among different source schemas) you are automatically creating a join which is
represented in the Data View Builder as an equality relationship between the two elements/attributes
using the [eq] (equals) function.

../xquery/functions.html
http://www.w3.org/TR/2001/WD-xquery-operators-20011220/
http://www.w3.org/TR/2001/WD-xquery-operators-20011220/

Working Wi th Source and Targe t Schema Elements

Building Queries and Data Views 5-17

You can also create the same equality relationship by dragging and dropping the eq function onto a
row in the Conditions tab and then dragging and dropping two source elements/attributes into the
same row.

Working With Source and Target Schema Elements
Mapping schema elements involves establishing a visual relationship among data source elements,
attributes, and functions and to a target schema.

There are two types of schema elements: simple and complex. Complex elements contain elements
and/or attributes. Simple elements can hold content and have attributes, but do not contain other
elements.

Figure 5-13 Expanded Schema Showing Complex and Simple Elements

To expand a complex element, right-click on it and choose Expand (or just double-click). If you do this
for the topmost element in the schema, all the complex elements will be expanded.

Supported Drag-and-Drop Actions in the Data View Builder
The Data View Builder supports the drag-and-drop actions that are described in the following table.

Table 5-14 Supported Mapping Relationships

Action Description

Map simple element from one
source to another simple element
in another source

Creates an equality [eq] relationship between the two
elements/attributes using the [eq] (equals) function. These can be in
the same or different source schemas.

Schemas can contain complex and simple elements

Bui ld i ng Que r ies

5-18 Building Queries and Data Views

Mapping to Target Schemas
The Data View Builder automatically generates queries based on target schemas and the mappings
into them. (See Liquid Data Getting Started for an example.)

The Data View Builder supports two types of mappings: value mappings and complex element
mappings. Value mappings map (assign) only the value of an element or attribute from a source to
the value of its target element or attribute. Element mappings allow mapping source elements (simple
or complex) to target elements.

For more details on creating source and target schemas see “Source and Target Schemas” on page 4-2.

Mapping Elements and Attributes Between Source and Target Schema
Value mappings of elements and attributes allow you to map source contents to corresponding target
elements.

Map simple element to a function A data element is used as an input parameter to a function. (You can
also provide constants and variables as function parameters.)

Each function has its own specification of parameters. The output from
a function can be input to another function. See Example 2: Aggregates
in Liquid Data by Example (specifically, the Add the count
function within the Aggregates example).

Map simple element to a target
element

Projects data element onto the target schema. Most query examples
provided in this documentation show how to map source schema
elements/attributes to target elements/attributes.

Map function output to target
schema

A function (f1) output can be input to an element in a source schema.

Copy, then Paste a complex
element to a target schema

Copies the structure of the complex element, including its simple
elements and attributes, to the target schema. In order for these
elements to be included in the generated query they must first be
individually mapped.

Copy, then Paste and Map a
complex element to a target
schema

Copies the complex element to the target schema. Content of the
element are shown in italics for information only. A generated query
will treat the complex element as a unit. See “Complex Element
Mappings” on page 5-20.

Action Description

../samples/index.html
../qkstart/index.html

Working Wi th Source and Targe t Schema Elements

Building Queries and Data Views 5-19

Figure 5-15 illustrates a simple join of the source element STATE in the BroadBand source schema
(XM-BB-C) with a source element STATE in the Wireless source schema (PB-WL). This action joins
the common elements in each schema and disregards those that do not occur in both schemas.

To project a result, you can designate how the output of this relationship should look when the query
runs. Because you are collecting only information about states and defining only one element in the
target schema, you are in effect asking the Data View Builder to fill only that data element in the result
when the query runs.

If you are following along in the Data View Builder, drag and drop the STATE element in PB-WL source
schema onto the state? element (under STATE*) in the target schema.

Symbols next to the element name such as [*], [?], and [+] represent repeatable and optional
conditions. For details see “Managing Target Schema Properties” on page 5-26.

Figure 5-15 Mapping Elements in the Data View Builder

Drag-and-drop STATE in source schemas to define
functional condition of equality between elements

Drag-and-drop STATE from source
to target element maps element in
source to target schema

Bui ld i ng Que r ies

5-20 Building Queries and Data Views

Complex Element Mappings
Complex element mappings provide a quick and efficient way to copy entire sub-parts of source
elements to your target schema. This is useful where parts of the target result are (or should be)
identical or nearly identical to parts of the sources.

There are many situations which you will find it convenient to map elements to your target schema,
including:

When you are creating a target schema from scratch.

When you are sure that your source schema matches your target schema in terms of both
elements and attributes.

When you want elements individually mapped but it is easier to map complex elements, expand
the mappings to include values, and then add or delete some mappings using right-click target
schema management commands.

There are several benefits of mapping or projecting elements:

1. One-to-one mapping of multiple elements is less often needed.

2. The query is easier to read compared to a query where individual elements are mapped.

3. The query runs faster, due to fewer element or attribute constructors.

4. If the underlying structure of the complex element changes — an element is added, deleted, or
an attribute is changed — the generated query does not change.

Figure 5-16 shows the results of the mapping of a complex element to the target schema. The mapping
was accomplished by:

1. Choosing File —> New Project in the Data View Builder. This clears any data sources, target
schema or other settings.

2. In Design mode double-clicking on the XM-WL-CO XML data source.

3. Right-clicking on the complex element named CUSTOMER_ORDER.

4. Choosing Copy.

5. Right-clicking on results.

6. Choosing Paste and Map. Mapped elements appear in italics, indicating that the elements are
mapped without values.

Working Wi th Source and Targe t Schema Elements

Building Queries and Data Views 5-21

Figure 5-16 Mapping a Complex Element

When you select Test mode, an XQuery is generated that returns all the child elements of
CUSTOMER_ORDER.

Listing 5-2 XQuery resulting from mapping of CUSTOMER_ORDER complex element

<results>
{
for $XM_WL_CO.CUSTOMER_ORDER_1 in

document("XM-WL-CO")/db/CUSTOMER_ORDER
return
$XM_WL_CO.CUSTOMER_ORDER_1

}
</results>

Expanding Mapped Complex Elements
Here are two examples where you might find it useful to use element mapping even when there is not
an exact match between the source and target schema:

Bui ld i ng Que r ies

5-22 Building Queries and Data Views

A complex element called Customer may contain FIRST_NAME, LAST_NAME, PHONE,
ADDRESS, and so on. Even if you don’t want every one of these elements mapping it may be
easier to map all first and then delete a few mappings.

You may have a target schema that is close to the source, but not an exact match. In such a
case it may be easier to:

– Delete the target schema element(s)

– Copy, then paste-and-map the source element(s)

– Expand the mapping to include values

– Edit the target schema as needed

Figure 5-17 shows the results of the mapping a set of simple elements to their corresponding elements
in the target schema. Although this mapping could have been accomplished by drag-and-drop of each
element individually, it was easier to follow the steps for mapping a complex element (Figure 5-16)
and then to right-click on the complex element name and select Expand complex mapping. The
results is exactly as if you had individually mapped all the simple elements from source to target
schema. In this case no further editing of the target schema was done.

Figure 5-17 Mapping Simple Elements

Working Wi th Source and Targe t Schema Elements

Building Queries and Data Views 5-23

When Test mode is selected a query is generated based on the value mapping of all sub-elements
associated with CUSTOMER_ORDER.

Listing 5-3 XQuery resulting from the mapping of individual CUSTOMER_ORDER elements

<results>

{

for $XM_WL_CO.CUSTOMER_ORDER_1 in document("XM-WL-CO")/db/CUSTOMER_ORDER

return

<CUSTOMER_ORDER>

<ORDER_DATE>{ xf:data($XM_WL_CO.CUSTOMER_ORDER_1/ORDER_DATE)

}</ORDER_DATE>

<ORDER_ID>{ xf:data($XM_WL_CO.CUSTOMER_ORDER_1/ORDER_ID)

}</ORDER_ID>

<CUSTOMER_ID>{ xf:data($XM_WL_CO.CUSTOMER_ORDER_1/CUSTOMER_ID)

}</CUSTOMER_ID>

<SHIP_METHOD>{ xf:data($XM_WL_CO.CUSTOMER_ORDER_1/SHIP_METHOD)

}</SHIP_METHOD>

<TOTAL_ORDER_AMOUNT>{

xf:data($XM_WL_CO.CUSTOMER_ORDER_1/TOTAL_ORDER_AMOUNT)

}</TOTAL_ORDER_AMOUNT>

</CUSTOMER_ORDER>

}

</results>

Notes:

You cannot clone a complex element using the Paste and Map option. Instead either rename or
delete the complex element in the target schema first or map it to a different location in the
schema.

You cannot map the same element from more than one source schema to a single element in
the target schema. For example, if you map STATE (under CUSTOMER) from the BroadBand
database to cust_state in the target schema and then map STATE from a second source
schema to cust_state in the target schema, only the latter mapping will apply.

Bui ld i ng Que r ies

5-24 Building Queries and Data Views

Removing Mappings
Mapped elements/attributes in a query are displayed on the Mappings tab. You can delete mappings
between elements and attributes by:

1. Highlighted the element or attribute row you want to delete.

2. Clicking the Trashcan icon or pressing the Delete key (see Figure 5-11).

Figure 5-18 Removing a Mapping

Modifying Target Schemas
You can make changes to a target schema by right-clicking an element. A pop-up menu displays
available options.

To remove a mapping, select it and click the trash can

Option Effect

Expand Expands to show any hidden child elements.

Properties Allows you to set or inspect element properties. Depending on the
element selected, properties that may be changed include local name,
namespace, content type, repeatable, and optional.

Copy Copies the selected schema element or attribute to the clipboard.

Working Wi th Source and Targe t Schema Elements

Building Queries and Data Views 5-25

Paste Appends the copied element and any children to the selected element.
If a copied element contains cloned elements/attributes, the Data View
Builder pastes them as regular elements/attributes. Only the
hierarchical structure transfers.

Notes:

• If a pasted element is a duplicate, Data View Builder renames the
element as NAME(2), NAME(3) and so on.

• The Paste function works only with elements. You cannot paste an
element to an attribute.

• This menu item is only available when you have data on the
clipboard.

Paste and Map Appends a complex element as a child to the selected element.
Properties of the copied source complex elements and its children
cannot be changed.

Notes:

• Sub-elements are shown as mapped and in italics. Any generated
query treats complex elements as a unit.

• You cannot Paste and Map a complex element of the same name to
the same level of the target schema. If you try to do so you will get
a “Clones of mapped element types are not allowed” error. Options
include deleting or renaming the original complex element in the
target schema.

Expand Complex Mappings Converts an element mapped to a set of individual value mappings.

Notes:

• After expanding complex mappings you can delete individual
mappings using the Trashcan or Delete key.

• The only way to Undo this operation is to delete the mappings and
Paste and Map again.

Add Attribute Allows you to add an attribute to the selected element. Attribute
properties include local name, namespace, content type, and optional.
By default the name of the new attribute is new_attribute.

Add Attribute works only on an element.

Add Child Appends a new element as a child to the selected element. By default
the name of the new attribute is new_attribute.

Add Child works only on an element.

Option Effect

Bui ld i ng Que r ies

5-26 Building Queries and Data Views

Managing Target Schema Properties
Liquid Data provides for the setting of combinations of Optional and Repeatable properties on target
schema elements. The Data View Builder uses these properties settings to determine the shape of the
result set when generating a query.

The following modified version of the customerOrderReport sample schema has FIRST_NAME taking
the default condition (no repeat, mandatory), followed by examples of elements with repeatable [+],
optional [?], and optional and repeatable [*] properties.

Add Parent Creates a new element as a parent of the selected element or attribute.
This also increases the nesting level of the selected element.

The name of the new element is, by default, new_element.

Delete Removes a selected element/attribute. If the element/attribute to be
deleted is mapped, Data View Builder will first display a warning.

Move up Moves the element/attribute (and children, if any) higher in the list of
siblings in the schema tree. An element or attribute can only move up
or down among siblings.

Move down Moves the element/attribute (and children, if any) lower in the list of
sibling on the schema tree. An element or attribute can only move up or
down among siblings.

Clone Duplicates the selected element to the same level of the schema
hierarchy. Unlike a Copy/Paste operation, cloning does not change your
physical schema. You would use cloning if you were, for example, adding
a second data source for the same type of information (such as
customer orders).

The Union example in Liquid Data by Example illustrates a use of the
clone command.

Option Effect

../samples/cookbook.html#unionCookbookExample

Working Wi th Source and Targe t Schema Elements

Building Queries and Data Views 5-27

Figure 5-19 Various Target Schema Element Attribute Settings

Listing 5-4 shows how these settings are rendered in the generated target XML schema:

Listing 5-4 Various element attribute settings in a generated target schema

<xsd:element name="CUSTOMER">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="FIRST_NAME" type="xsd:string"/>
<xsd:element name="LAST_NAME" type="xsd:string" maxOccurs="unbounded"/>
<xsd:element name="CUSTOMER_ID" type="xsd:string" minOccurs="0"/>
<xsd:element name="STATE" type="xsd:string" minOccurs="0"

maxOccurs="unbounded"/>
<xsd:element name="EMAIL_ADDRESS" type="xsd:string"/>
<xsd:element name="TELEPHONE_NUMBER" type="xsd:long"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

The following table summarizes the rendering of element properties in the Data View Builder and the
generated target schema.

Bui ld i ng Que r ies

5-28 Building Queries and Data Views

Table 5-20 Rendering of Element Attributes in Data View Builder and Target Schema XML

Repeatable Property Settings
When you set a simple or complex element in a target schema to Repeatable (plus [+] or asterisk [*])
it means that the element can repeat within the confines of its enclosed parent in the form:

<groupA>
<item1>
<item2>

<groupB>
<item1>
<item2>

..

If the Repeatable (+ or *) attribute is not selected, then query results would appear in the form:

<groupA>
<item1>

<groupB>
<item1>

<groupA>
<item2>

<groupB>
<item2>

..

Thus the Repeatable element setting is important in maximizing the readability of your query results.

Consider the following target schema:

Symbol Repeatable? Optional? XML Equivalent

[None] No No [None]

+ [plus symbol] Yes No maxOccurs=”unbounded”

? [question-mark symbol] No Yes minOccurs=”0”

* [asterisk symbol] Yes Yes minOccurs=”0”
maxOccurs=”unbounded”

Working Wi th Source and Targe t Schema Elements

Building Queries and Data Views 5-29

Figure 5-21 Target schema with a non-repeatable elements

In this target schema, the firstname and lastname elements are non-repeatable and the
custrecord element is defined as repeatable and required. If you map data to the firstname and
lastname elements, this target schema will generate results similar to the following:

<customers>
 <custrecord>
 <firstname>John</firstname>
 <lastname>Parker</lastname>
 </custrecord>
 <custrecord>
 <firstname>John</firstname>
 <lastname>Warfin</lastname>
 </custrecord>
..
..

</customers>

If you modify the target schema so the firstname and lastname elements are also repeatable (see
example in Figure 5-22), the resulting schema for the generated query will be different.

Figure 5-22 Target Schema Properties Dialog with Repeatable Attribute Selected

Bui ld i ng Que r ies

5-30 Building Queries and Data Views

With the changed target schema, the Data View Builder will now generate a query with results similar
to:

<customers>
 <custrecord>
 <firstname>John</firstname>
 <firstname>John</firstname>

..

..
<lastname>Parker</lastname>

 <lastname>Warfin</lastname>
..
..

 </custrecord>
</customers>

In this case it is likely that the query designer would want the result set to display the first and last
names together for the same customer, and would therefore desire the firstname and lastname
elements to be non-repeatable.

Optional Attribute Settings
By default target schema elements are required.

If a complex or simple element in a target schema is set to Optional, a question mark [?] or asterisk
[*] appears next to its name, meaning that the element can occur zero or more times. If the Suppress
when empty checkbox is selected (see Figure 5-23), then the element can only occur one or more
times; in other words, the element will not appear if it has no content.

Figure 5-23 Target Schema Properties Dialog with Suppress When Empty Option Selected

Listing 5-5 shows an XQuery that is generated with the firstname element set to Optional and Suppress
when empty. Not that the for loop associated with firstname will affect query efficiency.

Working Wi th Source and Targe t Schema Elements

Building Queries and Data Views 5-31

Listing 5-5 XQuery returning all BroadBand customers and their Wireless order items, if any. The first_name
element is optional and suppressed when empty (code emphasis added)

<customers>
{
for $PB_BB.CUSTOMER_1 in document("PB-BB")/db/CUSTOMER
return
<customer>
{
for $firstname_3 in $PB_BB.CUSTOMER_1/FIRSTNAME/text()
return
<firstname>{ xf:data($PB_BB.CUSTOMER_1/FIRSTNAME) }</first_name>
}
<lastname>{ xf:data($PB_BB.CUSTOMER_1/LASTNAME) }</last_name>
<orders>

<order>
{
for $PB_WL.CUSTOMER_ORDER_LINE_ITEM_4 in

document("PB-WL")/db/CUSTOMER_ORDER_LINE_ITEM
where xf:not(xf:empty(

for $PB_WL.CUSTOMER_ORDER_5 in document("PB-WL")/db/CUSTOMER_ORDER
where ($PB_BB.CUSTOMER_1/CUSTOMER_ID eq

$PB_WL.CUSTOMER_ORDER_5/CUSTOMER_ID)
 and ($PB_WL.CUSTOMER_ORDER_5/ORDER_ID eq

$PB_WL.CUSTOMER_ORDER_LINE_ITEM_4/ORDER_ID)
return
xf:true()))

return
<line_item product={$PB_WL.CUSTOMER_ORDER_LINE_ITEM_4/PRODUCT_NAME}

expected_ship_date={$PB_WL.CUSTOMER_ORDER_LINE_ITEM_4/EXPECTED_SHIP_DATE} />
}

</order>
</orders>

</customer>
}

</customers>

Optional Attribute and Data Views
In additional to performance considerations — described in “Building Queries” on page 5-1 — you
should use the Optional attribute if you plan to use the target schema as part of a data view. The
Optional attribute will prevent an unmapped element from appearing as a data source element in the
data view.

Bui ld i ng Que r ies

5-32 Building Queries and Data Views

Caution: If you attempt to use a data view unmapped element as a source element in a new query,
the query will fail with a “not mapped” error.

To understand how these attributes affect the query results, experiment with different property
settings, run the queries, and compare the results.

Examples Illustrating How Repeatable and Optional Properties Can be Used
to Better Filter Query Results
The following two examples show how the combination of elements and joins can be used to filter out
data that does not match the query requirements.

Example Set-up
To set up Data View Builder for the following examples, follow these steps:

1. Create a new project.

2. Move the following relational database schemas into the work area:

– PB-BB (BroadBand orders RDBMS)

– PB-WL (Wireless orders RDBMS)

3. Set your target schema to customerLineItems.xsd

Example 1: Retrieve All BroadBand Customers, Returning Their Wireless Orders, If Any
(ORDER is Repeatable and Optional)
In this case, the target schema is CUSTOMERS(CUSTOMER*(ORDER*)). The target schema allows for
customers with zero orders. This means that the query returns customers even if they have no orders.
Practically, this makes the query a left outer-join between customers and orders.

By following these steps you can create this query:

1. Map the following elements from the BroadBand source to the target schema:

Source: [PB-BB]/db/ Target: [customerLineItems.xsd]/customers/

CUSTOMER/FIRST_NAME CUSTOMER/FIRST_NAME

CUSTOMER/LAST_NAME CUSTOMER/LAST_NAME

Working Wi th Source and Targe t Schema Elements

Building Queries and Data Views 5-33

2. Map the following elements from the Wireless source to the target schema:

3. Create an equal joins [eq] between the following pair of elements by dragging one element over
the other:

4. Enter Test mode. You should see a query similar to that shown in Listing 5-6.

Listing 5-6 Xquery returning all BroadBand customers and returns Wireless orders, if any

<customers>
{
for $PB_BB.CUSTOMER_1 in document("PB-BB")/db/CUSTOMER
return
<customer>
<first_name>{ xf:data($PB_BB.CUSTOMER_1/FIRST_NAME) }</first_name>
<last_name>{ xf:data($PB_BB.CUSTOMER_1/LAST_NAME) }</last_name>
<orders>
{
for $PB_WL.CUSTOMER_ORDER_6 in document("PB-WL")/db/CUSTOMER_ORDER
where ($PB_BB.CUSTOMER_1/CUSTOMER_ID eq

$PB_WL.CUSTOMER_ORDER_6/CUSTOMER_ID)
return
<order id={$PB_WL.CUSTOMER_ORDER_6/ORDER_ID}

date={$PB_WL.CUSTOMER_ORDER_6/ORDER_DATE} />
}
</orders>

</customer>
}

</customers>

Source: [PB-WL]/db/ Target: [customerLineItems.xsd]/customers/

CUSTOMER_ORDER/ORDER_DATE orders/order/date

CUSTOMER_ORDER/ORDER_ID orders/order/id

Join Element Join Element

[PB-BB]/db/CUSTOMER/CUSTOMER_ID [PB-WL]/db/CUSTOMER_ORDER/CUSTOMER_ID

Bui ld i ng Que r ies

5-34 Building Queries and Data Views

Results

Notice that the third customer, John Parker, has no orders (Figure 5-24).

Figure 5-24 Example 1: Query Results (First Four Complex Elements Shown)

Example 2: Retrieve Only BroadBand Customers Who Have At Least One Wireless Order;
Return Their Wireless orders (ORDER Is Repeatable And Required)
In this example the goal is to be able to check for existence of at least one element before you generate
the parent. Generation of required repeatable elements is promoted to the nearest optional
repeatable ancestor (or the root of the result, if there is no such element). There the list of elements
is computed inside a let clause. After that, the result (list) of the let clause is checked to see if it is
empty or not before producing the rest of the result.

Working Wi th Source and Targe t Schema Elements

Building Queries and Data Views 5-35

The ORDER element is required so you need to check for the existence of orders before producing a
customer. This means that you need to generate the list of orders for each customer, and output the
customer only if this list is not empty.

The only change needed to the target schema used in Example 2-A is to change the order element
from:

repeatable + optional

to

repeatable + required

To do so right-click on the order element (below orders). When the Properties dialog box appears,
de-select the Optional checkbox.

Figure 5-25 Orders Element Set to Repeatable and Required

Now your target schema no longer allows for customers with zero orders. This means that the query
will not return customers without orders. This makes the query a natural join between customers and
orders.

When you enter Test mode a query similar to that shown in Listing 5-7 will appear.

Bui ld i ng Que r ies

5-36 Building Queries and Data Views

Listing 5-7 XQuery returning only BroadBand customers with at least one Wireless order (emphasis added)

<customers>
{
for $PB_BB.CUSTOMER_1 in document("PB-BB")/db/CUSTOMER
let $order_6 :=
 for $PB_WL.CUSTOMER_ORDER_7 in document("PB-WL")/db/CUSTOMER_ORDER
 where ($PB_BB.CUSTOMER_1/CUSTOMER_ID eq

$PB_WL.CUSTOMER_ORDER_7/CUSTOMER_ID)
 return
 <order id={$PB_WL.CUSTOMER_ORDER_7/ORDER_ID}

date={$PB_WL.CUSTOMER_ORDER_7/ORDER_DATE} />
where xf:not(xf:empty($order_6))
return
<customer>
<first_name>{ xf:data($PB_BB.CUSTOMER_1/FIRST_NAME) }</first_name>
<last_name>{ xf:data($PB_BB.CUSTOMER_1/LAST_NAME) }</last_name>
<orders>
{ $order_6 }
</orders>

</customer>
}

</customers>

Results

The first four elements returned by the query are shown in Figure 5-26. Since the query filtered out
customers without Wireless orders, John Parker no longer appears in the list of customers.

Set t ing Quer y Condi t i ons

Building Queries and Data Views 5-37

Figure 5-26 Example 2: Query Results (First Three Result Sets Only)

Setting Query Conditions
In the Data View Builder you can define query conditions through XQuery functions in conjunction
with constants, query parameters, and custom functions.

You can create conditions (or filters) on source data in two ways:

Drag-and-drop a source element/attribute onto another source element/attribute to build a
conditional statement that defines the default [eq] (equality) functional relationship between
the mapped elements/attributes. (See “Supported Drag-and-Drop Actions in the Data View
Builder” on page 5-17.)

Drag-and-drop source elements/attributes and functions directly into a row on the Conditions
tab to build a conditional statement with any of the XQuery functions available from Design tab
—> Toolbox tab —> Functions panel.

Bui ld i ng Que r ies

5-38 Building Queries and Data Views

Working With the Conditions Panel
Conditions are displayed in a panel accessed by the Conditions tab (Figure 5-27). It is in the
Conditions area that you can view and change query scoping rules (see “Understanding Condition
Scoping” on page 5-39.)

Enabling or Disabling Conditions
To enable or disable a condition, click the Enabled box to the left of the Condition (see Figure 5-27.)

Figure 5-27 Enabling or Disabling a Condition

Removing Conditions
Conditions are displayed in the Design view on the Conditions tab. You can remove a condition by
selecting the row that contains it and then clicking the Trashcan button or Delete key. (See
Figure 5-28.)

Figure 5-28 Removing a Condition

To enable/disable a condition, click the Enabled box

To remove a condition, select the line and click Trash

Set t ing Quer y Condi t i ons

Building Queries and Data Views 5-39

Editing Conditions
To add or delete a condition parameter select the row that contains the condition you want to edit and
click the Edit button to bring up the Functions Editor.

In the Functions Editor, you can select the parameter you want to delete and click the Trashcan,
Delete key, or use the Cut, Copy, Paste options on the Edit menu to modify the condition statement.

For additional information see “Using the Function Editor” on page 5-5.

Understanding Condition Scoping
When you add a condition to a query, the Data View Builder makes a “best guess” as to the parts of the
target schema to which the condition applies. This is known as automatic condition scoping or
autoscope, and is determined by:

Structure of the target schema

Mappings from source schemas to the target schema

The conditions themselves

Autoscope should be sufficient for most cases. However, there may be situations in which you want to
control condition scoping explicitly. In such cases, you should switch to manual scoping by clicking
the checkbox next to Advanced view in the Conditions panel (Figure 5-29).

In Advanced view you can explicitly control the extent that a particular condition applies to the result.
For example, you can set scope manually in order to specify which part of a data view is the focal point
for a particular condition in the query.

Bui ld i ng Que r ies

5-40 Building Queries and Data Views

Figure 5-29 Conditions Tab in Basic View

The following sub-topics are discussed in this section:

Where Scope Applies

Setting Condition Scope

Scoping Example

Where Scope Applies
There are three areas where conditions can be scoped:

Repeatable elements in the target schema

Repeatable input elements in functions

Root of the target schema

Note: A repeatable element is identified with either an asterisk [*] or plus [+] sign. (See
“Managing Target Schema Properties” on page 5-26.)

Setting Condition Scope
A common case involving scoping issues occurs when a condition logically applies in two places, but
you only want it to appear in one place. You may first notice this when examining the XQuery where
clauses or when running the query.

A less common case occurs when you want to create an assertion. For example, you may want to devise
your query so that the Liquid Data Server returns a result only when a certain condition occurs. You
can accomplish this if you switch to the Advanced view, create the condition, and set the scope for the
condition to be the root of the target schema.

Advanced View checkbox for manual scoping settings

Set t ing Quer y Condi t i ons

Building Queries and Data Views 5-41

Advanced View (Setting Condition Scope Manually)
When Advanced view is selected, the Conditions tab expands to show scoping information. The initial
display corresponds to the autoscope setting provided by the Data View Builder.

As an example of Advanced view scope setting in Figure 5-30 the first line (line 0) is selected. The
current scoping for that line appears near the top of the Conditions pane:
([customerOrderReport.xsd]/CustomerOrderReport).

Figure 5-30 Conditions Tab in Advanced View Showing Explicit Scope

Note: When you switch to Advanced view, it is unnecessary to change any of the explicit scope
settings. However, if you add new conditions when in Advanced view, or change existing
conditions, you need to manually set the scope for each query condition.

Here are some things to keep in mind when manually setting scope using Advanced view:

When switching to Advanced view the Current Scope settings initially show the target schema
root. Before you map schema sections and create conditions, you can drag a repeatable target
schema or function input element to the Current Scope for a complete section of the target
schema. Thereafter, the value in the Current Scope text box determines what will appear
automatically in a Scope column cell for any new condition that you create.

You can also drag the appropriate repeatable element in the target schema to the Scope column
of a particular row. This permits you to refine your query by narrowing where the condition
applies.

The Enabled column contains a switch to include or exclude a condition when the query runs.
This operates the same whether in autoscope or manual mode.

The Condition column shows the source element, condition, and condition target element. This
information is the same whether in autoscope or manual mode.

To define an explicit scope for a condition,
drag and drop target elements into the Scope column.

Current scope refers an
element in target schema

Bui ld i ng Que r ies

5-42 Building Queries and Data Views

The Scope column shows which target schema element Liquid Data will use to focus the result.
You can also drag a repeatable target schema element directly to a cell in the Scope column to
change the scope for that condition.

The Reset button in the upper right area of the Conditions panel (Figure 5-31) recalculates all
scope settings and returns them to the autoscope settings selected by Liquid Data.

When you explicitly define scope you are forcing the XQuery where clause to a specific place in the
query or, perhaps, forcing it to be there at all.

Note: Condition and Target pairs appear row by row. If there are multiple scope settings for a
condition, the condition reappears in separate rows showing each unique scope setting.

Figure 5-31 Advanced View

The Current Scope field shows the default scope setting for every condition that you add. If you add a
new condition in Advanced view, the default scope is the target schema root until you change that
value.

To define an explicit scope for a condition, drag and drop
target elements/attributes into the Scope column.

To return to default scoping settings for all condition
click the Reset button.

Set t ing Quer y Condi t i ons

Building Queries and Data Views 5-43

Returning to Autoscope

Caution: When you toggle Advanced view off, Data View Builder returns to autoscope mode. Any
changes you made in Advanced view mode are lost and the Current Scope field and
Targets column disappear. You will see an alert to this effect when deselecting Advanced
view.

Scope Recursion Errors
It is possible to create a query where a condition depends on the values returned by a function, but
the function input depends on the condition. For example:

1. Select the xf:count function and map a source element to be the input of xf:count.

2. Create a condition that uses the output of the xf:count function.

3. In Advanced view, set the condition target to the input of the xf:count function.

The xf:count function input must be filtered by applying the condition, but the condition input is
the output of xf:count.

Data View Builder does not allow this to happen when in autoscope mode. However, if you set scope
manually, it is possible such a circular dependency can happen. Data View Builder cancels the action
and generates the error message:

Setting Scope/Target of condition {condition} to {scope element}
creates a circular dependency

Recommended Action
If the recursion error message appears, consider resetting all condition scope targets using the Reset
button (see Figure 5-31). Or override the automatic settings one at a time, switch to Test view to
examine the query, run it, and assess the results.

Scoping Example
This section contains an example illustrating uses of manual scoping.

Resolving Extraneous Joins Through Advanced View Manual Scoping
Advanced View can be used to resolve ambiguous joins.

If you want to create a query that divides products into two groups based on their list price you would
create two conditions:

list_price greater-than-or-equal-to $100

Bui ld i ng Que r ies

5-44 Building Queries and Data Views

list_price less-than $100

Obviously, if both these conditions are applied to the same set of data no data will be returned.

One way to resolve this is to create a second version of the data source schema (see “Using Source
Schemas Multiple Times in Constructing Queries” on page 4-4 for an example of this approach).
However Advanced Scoping can be used to the same effect, as the following steps show:

1. Open the Data View Builder and drag the relational data source PB-BB onto the desktop. Expand
the data source.

2. Right-click on the new element in the target schema area; select Add Child.

3. Enter expensive_products as the local name; click Ok.

4. Repeat Steps 2 and 3, using cheap_products as the local name.

5. Back in the data source right-click on the Products complex element; choose Copy.

6. In the target schema area, right-click on expensive_products; choose Paste and Map. The
PRODUCTS complex element will be projected to the target schema under
expensive_products.

7. Right-click on cheap_products; choose Paste and Map. The cheap_products complex
element is similarly associated with data.

Set t ing Quer y Condi t i ons

Building Queries and Data Views 5-45

Figure 5-32 List Price Comparison Project

Once you create the project, you need to set your query conditions:

1. Click on the Conditions tab below the Data View Builder work area.

2. Click on XQuery Functions. Under Comparison Operators locate the greater-than-or-equal-to
[ge] function and drag it to the first Conditions line.

3. When the Functions editor appears, map the LIST_PRICE element and 100 constant as shown
below. Then click Close.

4. From the Comparison Operator function list locate the less-than [lt] function and drag it to the
first empty Conditions line.

Source Target: Comparison Function

[PB-BB]/db/PRODUCTS/LIST_PRICE [ge]/anyValue1

[CONSTANT]/100 [ge]/anyValue2

Bui ld i ng Que r ies

5-46 Building Queries and Data Views

5. In the Functions editor map the LIST_PRICE element and 100 constant appropriately. Then
click Close.

If you just Test the query (Listing 5-8) at this point no results will appear, as expected, since nothing
can fulfill both where clause conditions.

Listing 5-8 List Price XQuery illustrating self-cancelling conditions (emphasis added)

<results>

<expensive_products>

{

for $PB_BB.PRODUCTS_15 in document("PB-BB")/db/PRODUCTS

where ($PB_BB.PRODUCTS_15/LIST_PRICE ge 100)

 and ($PB_BB.PRODUCTS_15/LIST_PRICE lt 100)

return

$PB_BB.PRODUCTS_15

}

</expensive_products>

<cheap_products>

{

for $PB_BB.PRODUCTS_21 in document("PB-BB")/db/PRODUCTS

where ($PB_BB.PRODUCTS_21/LIST_PRICE ge 100)

 and ($PB_BB.PRODUCTS_21/LIST_PRICE lt 100)

return

$PB_BB.PRODUCTS_21

}

</cheap_products>

</results>

Source Target: Comparison Function

[PB-BB]/db/PRODUCTS/LIST_PRICE [lt]/anyValue1

[CONSTANT]/100 [lt]/anyValue2

Set t ing Quer y Condi t i ons

Building Queries and Data Views 5-47

6. To resolve this problem click Advanced view in the Conditions section. You will notice that
instead of the two conditions you created, four are listed. This is because Advanced view shows
you the actual where clause conditions used in the query, based on application of the Data View
Builder best-guess autoscope rules.

Figure 5-33 Advanced View of Conditions in List Price Project

If you disable the inappropriate conditions (Figure 5-34), Advanced View will appear as we expected
it should, with a single WHERE condition for each section of the query.

Figure 5-34 Advanced View With Two Conditions Disabled

The newly generated XQuery is correct (Listing 5-9).

Listing 5-9 List Price XQuery after extraneous conditions are disabled

<results>

<expensive_products>

{

for $PB_BB.PRODUCTS_15 in document("PB-BB")/db/PRODUCTS

where ($PB_BB.PRODUCTS_15/LIST_PRICE ge 100)

return

$PB_BB.PRODUCTS_15

}

</expensive_products>

Bui ld i ng Que r ies

5-48 Building Queries and Data Views

<cheap_products>

{

for $PB_BB.PRODUCTS_21 in document("PB-BB")/db/PRODUCTS

where ($PB_BB.PRODUCTS_21/LIST_PRICE lt 100)

return

$PB_BB.PRODUCTS_21

}

</cheap_products>

</results>

And the results (Figure 5-35) conform with the query.

Figure 5-35 List Price XQuery Results Show Three “Expensive” Products and Two “Cheap” Products

Set t ing Quer y Condi t i ons

Building Queries and Data Views 5-49

Task Flow Model for Advanced View Manual Scoping
If you decide to override automatic scope settings, there is a workflow model that can help you design
the query, create conditions, and determine the scope. By following this methodology, you will find it
is easy to create a query where you control the scope. Consider the project shown in Figure 5-36 which
has two source schemas: PB-BB and PB-WL, and the target schema customerLineItems.xsd.

Figure 5-36 Schemas for Manual Scope Example

The target schema, customerLineItems.xsd, has a hierarchical structure. There are three
distinct sections in the schema that represent repeatable data. Elements customer and order each
have an asterisk [*] as the occurrence indicator. The element line_item has a plus sign [+] as its
occurrence indicator. This means that the child nodes without an asterisk or plus are non-repeating.

For each customer, there is one occurrence of first_name, last_name, and id. Each customer may
have zero or more orders. When an order exists, each order has one id, date, and amount. If an order
exists, there must be at least one line_item. Work on sections that appear under a repeatable node.

This workflow model assumes that you can build your query in steps, focusing on each section in the
target schema as you go. Follow these steps for each section in the target schema where you want a
result to appear:

1. Choose a repeatable section of the target schema for the scope. A section is a repeatable node
(parent) and its children. It is recommended that you work from the outside in. In this case, the
outermost section is the customer* section. (For this example you want to collect first_name,
last_name, and id in the result.)

Bui ld i ng Que r ies

5-50 Building Queries and Data Views

2. Set the highest repeatable node in this section as the default scope, which in this case is
customer*. Drag that element from the target schema onto the Current Scope text box on the
Conditions tab. (For this example we drag and drop customerLineItems.xsd onto the
Current Scope text box.)

3. Map selected source elements/attributes to that repeatable section in the target schema.

For this example, we do the following mappings:

– Map [PB-WL]/db/CUSTOMER*/FIRST_NAME to
[customerLineItems.xsd]/customers/customer*/first_name

– Map [PB-WL]/db/CUSTOMER*/LAST_NAME to
[customerLineItems.xsd]/customers/customer*/last_name

– Map [PB-WL]/db/CUSTOMER*/CUSTOMER_ID to
[customerLineItems.xsd]/customers/customer*/id

4. Set any conditions that connect and filter the mapped sources.

By setting the default scope before creating the condition, Data View Builder sets the condition
scope to that value.

By mapping one section at a time and using the repetitive ancestor node as the default scope,
your conditions will apply exactly where you need them to appear in the result.

For this example, you set as a condition a join between CUSTOMER_ID in the PB-BB schema
and CUSTOMER_ID in the PB-WL schema (Figure 5-37).

Sor t ing Query Resu l ts

Building Queries and Data Views 5-51

Figure 5-37 Project Showing Join on CUSTOMER_ID

5. Repeat these steps for each section of the target schema where you want data to appear in the
result. Work on one section at a time and work from the outside (more general) to the inside
(most specific). Ensure that you set the default target, map, and define the conditions, before
you move to the next section. The general rule is that any mapping with an associated condition
requires a scope setting.

In a small number of cases, you may apply a condition on the argument (input) to a function that
requires choosing the function as the default scope. This is not common but will occur when you
choose a complex aggregate function.

Sorting Query Results
The Sort By tab allows you to specify how query results should be ordered. The screen shot of the Sort
By Tab Dialog Box (Figure 5-38) contains a single data source with a repeatable and optional complex
element called PROMOTION_PLAN.

Bui ld i ng Que r ies

5-52 Building Queries and Data Views

Figure 5-38 Sort By Tab Dialog Box

The Sort By tab allows you to define the output order for any repeatable element, as identified by a
plus [+] or asterisk [*] next to its name. An element can be sorted by one or more sub-elements
(including itself in the case of a simple element). (You can change an attribute setting of a complex
element to repeatable. For details see “Managing Target Schema Properties” on page 5-26.)

Follow these steps to change sorting order of an element:

1. Select an element from the Sort drop-down list.

2. To specify a sub-element to sort by, select the sub-element from the By column, then set the
direction.

3. The relevant sorting order can be modified by selecting a line and using the Up or Down arrows.

Repeatable Elements List

Usi ng Ex is tent ia l Condi t i on Check ing in Quer ies

Building Queries and Data Views 5-53

In the case of the project shown in Figure 5-38, you are sorting elements in PROMOTION_PLAN first by
PROMOTION_NAME and then by PLAN_NAME. The PROMOTION_NAME element will be sorted in
ascending order while PLAN_NAME will be Descending.

If you set the topmost sort element to PRICE and the direction to Descending, the result of the query
will be ordered appropriately. See Figure 5-39.

Figure 5-39 Results Sorting by Price in Descending Order

Using Existential Condition Checking in Queries
An existential condition tests for the existence of an underlying data relationship that fits specific
criteria.

The Data View Builder offers an option that potentially introduces additional existential conditions in
a XQuery. This condition or conditions can be used to further filter query results such as eliminating
duplicates being returned by a query. Because extra processing is involved, adding existential
conditions can impact query performance.

Bui ld i ng Que r ies

5-54 Building Queries and Data Views

To activate the option select Allow Existential Condition Generation from the Query menu. A
checkmark next to the option indicates that it is active.

The following pseudocode shows an existential condition test. The where-for routine will return an
xf:true() if the enclosed conditions are fulfilled and execution will proceed. If the conditions are
not fulfilled, the return data will not be executed.

...

where xf:not(xf:empty(
for ...

where ...
return
xf:true()))

return
data

An Existential Example
The following example illustrates a case where the existential condition generation option affects
query results.

To set up Data View Builder, follow these steps:

1. Create a new project.

2. Move the following relational database schemas into the work area:

– PB-BB (BroadBand orders RDBMS)

– PB-WL (Wireless orders RDBMS)

3. Set your target schema to customerLineItems.xsd

4. Map the following elements from the BroadBand source to the target schema:

Source: [PB-BB]/db/ Target: [customerLineItems.xsd]/customers/

CUSTOMER/LAST_NAME CUSTOMER/last_name

CUSTOMER/CUSTOMER_ID CUSTOMER/id

Usi ng Ex is tent ia l Condi t i on Check ing in Quer ies

Building Queries and Data Views 5-55

5. Map the following elements from the Wireless source to the target schema:

6. To ensure referential integrity create joins between the following pairs of elements by dragging
one element over the other:

Note that no order_id is projected to the target schema. Therefore all products ordered by a
particular customer will be returned in a single group. The generated query makes this relationship
clear.

Listing 5-10 Example XQuery With Existential Condition Generation Off (Default Condition)

<customers>
{
for $PB_BB.CUSTOMER_1 in document("PB-BB")/db/CUSTOMER
return
<customer id={$PB_BB.CUSTOMER_1/CUSTOMER_ID}>

<last_name>{ xf:data($PB_BB.CUSTOMER_1/LAST_NAME) }</last_name>
<orders>

<order>
{
for $PB_WL.PRODUCTS_4 in document("PB-WL")/db/PRODUCTS
for $PB_WL.CUSTOMER_5 in document("PB-WL")/db/CUSTOMER
for $PB_WL.CUSTOMER_ORDER_6 in document("PB-WL")/db/CUSTOMER_ORDER

Source: [PB-WL]/db/ Target: [customerLineItems.xsd]/customers

PRODUCTS/PRODUCT_NAME orders/order/line_item/product

CUSTOMER/CUSTOMER_ID CUSTOMER/id

Join Element Join Element

[PB-BB]/db/CUSTOMER/CUSTOMER_ID [PB-WL]/db/CUSTOMER/CUSTOMER_ID

[PB-WL]/db/CUSTOMER/CUSTOMER_ID [PB-WL]/db/CUSTOMER_ORDER/CUSTOMER_ID

[PB-BB]/db/CUSTOMER_ORDER/ORDER_
ID

[PB-WL]/db/CUSTOMER_ORDER_LINE_ITEM/O
RDER_ID

[PB-BB]/db/CUSTOMER_ORDER_LINE_I
TEM/PRODUCT_NAME

[PB-WL]/db/PRODUCTS/PRODUCT_NAME

Bui ld i ng Que r ies

5-56 Building Queries and Data Views

for $PB_WL.CUSTOMER_ORDER_LINE_ITEM_7 in
document("PB-WL")/db/CUSTOMER_ORDER_LINE_ITEM

where ($PB_BB.CUSTOMER_1/CUSTOMER_ID eq
$PB_WL.CUSTOMER_5/CUSTOMER_ID)

 and ($PB_WL.CUSTOMER_5/CUSTOMER_ID eq
$PB_WL.CUSTOMER_ORDER_6/CUSTOMER_ID)

 and ($PB_WL.CUSTOMER_ORDER_6/ORDER_ID eq
$PB_WL.CUSTOMER_ORDER_LINE_ITEM_7/ORDER_ID)

 and ($PB_WL.CUSTOMER_ORDER_LINE_ITEM_7/PRODUCT_NAME eq
$PB_WL.PRODUCTS_4/PRODUCT_NAME)

return
<line_item product={$PB_WL.PRODUCTS_4/PRODUCT_NAME} />
}

</order>
</orders>

</customer>
}

</customers>

The query in Listing 5-10 returns a list of every item ordered by the particular customer, including
duplicates, if any. (See Listing 5-11.)

Listing 5-11 Query Results for CUSTOMER_1 With Existential Condition Checking Inactive

<customers>

 <customer id="CUSTOMER_1">

 <last_name>KAY_1</last_name>

 <orders>

 <order>

 <line_item product="E110"/>

 <line_item product="E110"/>

 <line_item product="E900"/>

 <line_item product="E900"/>

 <line_item product="NOK9250"/>

 <line_item product="NOK9250"/>

 <line_item product="S625"/>

 <line_item product="S625"/>

 <line_item product="SS8"/>

 <line_item product="SS8"/>

 </order>

Usi ng Ex is tent ia l Condi t i on Check ing in Quer ies

Building Queries and Data Views 5-57

 </orders>

 </customer>

...

</customers

When the Allow Existential Condition Generation option is active, a where xf:not(xf:empty)
condition is applied that effectively filters out the return of duplicate order items. The resulting query
is shown in Figure 5-12.

Listing 5-12 Example XQuery With Existential Condition Generation On (emphasis added)

<customers>

{

for $PB_BB.CUSTOMER_1 in document("PB-BB")/db/CUSTOMER

return

<customer id={$PB_BB.CUSTOMER_1/CUSTOMER_ID}>

<last_name>{ xf:data($PB_BB.CUSTOMER_1/LAST_NAME) }</last_name>

<orders>

<order>

{

for $PB_WL.PRODUCTS_4 in document("PB-WL")/db/PRODUCTS

where xf:not(xf:empty(

for $PB_WL.CUSTOMER_5 in document("PB-WL")/db/CUSTOMER

for $PB_WL.CUSTOMER_ORDER_6 in document("PB-WL")/db/CUSTOMER_ORDER

for $PB_WL.CUSTOMER_ORDER_LINE_ITEM_7 in

document("PB-WL")/db/CUSTOMER_ORDER_LINE_ITEM

where ($PB_BB.CUSTOMER_1/CUSTOMER_ID eq

$PB_WL.CUSTOMER_5/CUSTOMER_ID)

 and ($PB_WL.CUSTOMER_5/CUSTOMER_ID eq

$PB_WL.CUSTOMER_ORDER_6/CUSTOMER_ID)

 and ($PB_WL.CUSTOMER_ORDER_6/ORDER_ID eq

$PB_WL.CUSTOMER_ORDER_LINE_ITEM_7/ORDER_ID)

 and ($PB_WL.CUSTOMER_ORDER_LINE_ITEM_7/PRODUCT_NAME eq

$PB_WL.PRODUCTS_4/PRODUCT_NAME)

return

xf:true()))

Bui ld i ng Que r ies

5-58 Building Queries and Data Views

return

<line_item product={$PB_WL.PRODUCTS_4/PRODUCT_NAME} />

}

</order>

</orders>

</customer>

}

</customers>

As noted above, both results are valid. For performance reasons it is recommended that where
appropriate queries be run without the additional existential condition generation. In many cases
duplicate results reporting may be sought or acceptable. In other cases the underlying data may make
such existential condition checks unnecessary.

Listing 5-13 Query Results for CUSTOMER_1 With Existential Condition Checking Active

<customers>

 <customer id="CUSTOMER_1">

 <last_name>KAY_1</last_name>

 <orders>

 <order>

 <line_item product="E110"/>

 <line_item product="E900"/>

 <line_item product="NOK9250"/>

 <line_item product="S625"/>

 <line_item product="SS8"/>

 </order>

 </orders>

 </customer>

..

</customers>

Note: Opening a project saved with Liquid Data 8.1 SP1 or earlier will make the Allow Existential
Condition Generation active in order to preserve backward compatibility.

Using Automat ic T ype Cast ing

Building Queries and Data Views 5-59

Using Automatic Type Casting
Automatic type casting helps ensure that input parameters used in functions and mappings are
appropriate to the function in which they are used.

Select Automatic Type Casting on the Query menu to ensure that Liquid Data will assign (cast) a new
data type when:

1. The source element data type does not match the mapped target element data type and

2. The source element is eligible to be type cast to the target element data type.

An checkmark next to the Automatic Type Casting option on the Query menu indicates that it is on.

When function parameters have a numeric type mismatch, the Liquid Data Server can promote the
input source to the input type required by the function if the promotion adheres to the prescribed
promotion hierarchy. The promotion hierarchy exists only for numeric values.

Table 5-40 Numeric Data Type Promotions

If the type mismatch requires casting in reverse order, the Liquid Data Server does not attempt type
casting. In this case, the Data View Builder attempts to type cast but the results may be unpredictable.

An example: If the required function input type is xs:decimal, then source data that is integer, long,
int, short, or byte can easily be promoted to a data type with more precision or larger number of digits.
The server will complete that task. However, if the input function type is xs:double or xs:float
and the required input type is xs:integer or xs:byte, the Data View Builder tries to cast, but there may

Type Promoted Type

byte short

short int

int long

long integer

integer decimal

decimal float

float double

Bui ld i ng Que r ies

5-60 Building Queries and Data Views

be unpredictable rounding or truncating of the result. All other type mismatches, such as xs:date,
xs:dateTime, or xs:string, require a type cast to avoid a type mismatch error.

Clear the Automatic Type Casting check box to disable this feature.

Automatic Type Casting Transformations
This section provides specifics on how the Data View Builder implements data type transformation for
automatic type casting. The following topics are included:

Automatic Type Casting to a Numeric Target

Automatic Type Casting to a Non-Numeric Target

Automatic Type Casting Function Parameters

You can use the information in the following sections to predict automatic type casting behavior.

Automatic Type Casting to a Numeric Target
The following table shows whether Liquid Data transforms a source element data type to the numeric
data type of the target element.

Target:
xs:byte

Target:
xs:short

Target:
xs:int

Target:
xs:long

Target:
xs:integer

Target:
xs:decimal

Target:
xs:float

Target:
xs:double

xs:byte N Y Y Y Y Y Y Y

xs:short Y N Y Y Y Y Y Y

xs:int Y Y N Y Y Y Y Y

xs:long Y Y Y N Y Y Y Y

xs:integer Y Y Y Y N Y Y Y

xs:decimal Y Y Y Y Y N Y Y

xs:float Y Y Y Y Y Y N Y

xs:double Y Y Y Y Y Y Y N

xs:string Y Y Y Y Y Y Y Y

xs:boolean Y Y Y Y Y Y Y Y

Using Automat ic T ype Cast ing

Building Queries and Data Views 5-61

Automatic Type Casting to a Non-Numeric Target
The following table shows whether Liquid Data transforms a source element data type to the
non-numeric data type of the target element.

xs:date N N N N N N N N

xs:time N N N N N N N N

xs:dateTime N N N N N N N N

xsext:anyValue
xsext:anyType
xsext:item

Y Y Y Y Y Y Y Y

Target:
xs:byte

Target:
xs:short

Target:
xs:int

Target:
xs:long

Target:
xs:integer

Target:
xs:decimal

Target:
xs:float

Target:
xs:double

Target:
xs:byte

Target:
xs:boolean

Target:
xs:date

Target:
xs:time

Target:
xs:dateTime

Target:
xsext:anyValue
xsext:anyType
xsext:item

xs:byte Y Y N N N N

xs:short Y Y N N N N

xs:int Y Y N N N N

xs:long Y Y N N N N

xs:integer Y Y N N N N

xs:decimal Y Y N N N N

xs:float Y Y N N N N

xs:double Y Y N N N N

xs:string N Y Y Y Y N

xs:boolean Y N N N N N

xs:date Y N N N N N

Bui ld i ng Que r ies

5-62 Building Queries and Data Views

Note: The type cast from xs:dateTime to xs:date and xs:time uses
xfext:date-from-dateTime() and xfext:time-from-dateTime.

Automatic Type Casting Function Parameters
In some cases, Liquid Data can transform the data type for a function parameter when a mismatch
occurs.

xs:time Y N N N N N

xs:dateTime Y N Y (see
note)

Y (see
note)

N N

xsext:anyValue
xsext:anyType
xsext:item

Y Y Y Y Y N

Target:
xs:byte

Target:
xs:boolean

Target:
xs:date

Target:
xs:time

Target:
xs:dateTime

Target:
xsext:anyValue
xsext:anyType
xsext:item

Target:
xs:byte

Target:
xs:short

Target:
xs:int

Target:
xs:long

Target:
xs:integer

Target:
xs:decimal

Target:
xs:float

Target:
xs:double

xs:byte N N N N N N N N

xs:short Y N N N N N N N

xs:int Y Y N N N N N N

xs:long Y Y Y N N N N N

xs:integer Y Y Y Y N N N N

xs:decimal Y Y Y Y Y N N N

xs:float Y Y Y Y Y Y N N

xs:double Y Y Y Y Y Y Y N

Using Automat ic T ype Cast ing

Building Queries and Data Views 5-63

Exceptions to Automatic Type Casting
Liquid Data does not type cast comparison operators (such as eq, le, ge, ne, gt, lt, or ne) or any
functions that accept xsext:anytype.

Type casting does not apply to function parameters or to target schema elements/attributes that
require the following data types:

xsext:item

xsext:anyValue

xsext:anyType

Any other data type that cannot be cast

If the source data is not compatible with the data type of the target element, automatic type casting
will not improve query results. For example, mapping a date to a numeric type may not produce useful
results.

Note: You may not see an error on a type mismatch until the Liquid Data Server tries to run the
query.

Bui ld i ng Que r ies

5-64 Building Queries and Data Views

Building Queries and Data Views 6-1

C H A P T E R 6

Running, Saving, and Deploying
Queries

This topic describes how to run BEA Liquid Data for WebLogic queries, as well as how to save and
deploy queries. The following sections are included:

Test Mode

Running a Query

Saving a Query

Deploying a Query

Test Mode
Test mode in the Data View Builder allows you to:

View the generated XQuery that is based upon your mapping and optimization inputs

Enter any needed query parameters

Enter complex parameter type (CPT) reference file names

View and analyze the query plan

Run your query against data sources and verify the result

Get statistical information on the query after it has run

Experiment with hand editing a generated query or write and test a query from scratch

Click the Test tab to switch to the Test mode.

Runn ing , Sav ing , and Dep loy ing Quer i es

6-2 Building Queries and Data Views

Figure 6-1 Test Tab

Viewing a Generated Query
Whenever you enter Test mode an XQuery is automatically created based upon the input provided
through the Design and Optimize tabs. (See “Target Schemas” on page 4-7 for details.)

The query appears in the upper-left pane of the Test tab (Figure 6-1). Whenever you save a query, it is
saved exactly as it appears.

Editing a Generated Query
Although queries are generally automatically generated, you can make changes to the generated query
or create one from scratch. In addition to standard Cut, Copy, and Paste, and Delete editing functions,
buffered Undo and Redo editing commands are available through the Test tab toolbar (Figure 6-2).

Figure 6-2 Click the Run Query Button to Run the Query

Run Query Button

Builder-Generated XQuery

Query Parameters

Large Results

Result of Query (shows when run)7

3

4

5

6

2 Toolbar

1 Menu Bar

Undo and
Redo editing
commands

Runn ing a Query

Building Queries and Data Views 6-3

Running a Query
To run your query, click the Run Query button on the Toolbar or select Run Query from the Query
menu.

Figure 6-3 Run Query Button

Queries are run against available data sources made available through a Liquid Data Server.
Results appear in the Results panel as an XML tree (Figure 6-3).

Figure 6-4 Expanded Query Results

Alternatively, you can view the query results as XML source (Figure 6-5). To view as XML select the
checkbox at the bottom of the query Results panel. You can also right-click on the results pane to
change the results format to XML source.

Run Query
button

Query Result

Runn ing , Sav ing , and Dep loy ing Quer i es

6-4 Building Queries and Data Views

Figure 6-5 Query Result in XML Source Format

Once generated in XML, query results can easily be formatted in a variety of printed reports or
displayed in web pages. For an example of the use of Liquid Data data as part of a web application see
the Getting Started Demo and “Understanding the Avitek Customer Service Sample Application” in
Liquid Data by Example.

Stopping a Running Query
You can stop a running query before it has finished by clicking the Stop Query Execution button in the
Toolbar (Figure 6-6).

Figure 6-6 Stop Query Execution Button

Stop Query
Execution
button

..//interm/demopage.html
../samples/sampleapp.html

Runn ing a Query

Building Queries and Data Views 6-5

Specifying Large Results Sets
If you expect your query to produce a result set that may exceed available memory, choose the Large
Results option, available from the Test mode page (lower left, Figure 6-1) prior to running your query.

If the Large Results option is selected for a query, Liquid Data will use swap files to temporarily store
intermediate results. Although your query will run more slowly, this option will avoid possible
out-of-memory errors.

Note: Before using this option, increase heap size on the server. This is further discussed in the
chapter “Tuning Performance” in the Liquid Data Deployment Guide.

You can explicitly specify a directory for swap files using the Administration Console. For more
information, see “Configuring Liquid Data Server Settings” in the Administration Guide.

Specifying Query Parameters
You can use the Query Parameters panel (located below the generated query area) to enter or change
variable values prior to running a query.

The types of variables that may appear include:

Query parameters defined in Design mode (see “Creating and Using Query Parameters” on
page 5-10).

Complex Parameter Type (CPT) data source file names, which are selected using a file browser
(see Chapter 9, “Using Complex Parameter Types in Queries” and “Configuring Access to
Complex Parameter Types” in the Administration Guide).

Figure 6-7 Sample Query Parameter and Complex Parameter Type (CPT) Settings

Setting and Changing Query Parameters
To set or change query parameters click in a cell in the Value column. You can either delete what is
currently there or edit it using simple character insert and delete commands.

For examples of using query parameters see the following example queries in “Liquid Data by
Example.”

“Example 1: Simple Joins”

Runn ing , Sav ing , and Dep loy ing Quer i es

6-6 Building Queries and Data Views

“Example 2: Aggregates”

“Example 3: Date and Time Duration”

Saving a Query
From the Test tab, you can save a query by choosing File —> Save Query or by clicking on the Save
Query button on the toolbar.

Figure 6-8 Click the Save Query Button

Security Considerations
In order to save or update files to a Liquid Data repository that has security restrictions in place, you
need to either belong to the proper security group or specifically have appropriate access permissions
granted to you by your Liquid Data administrator.

If you have such permissions, whenever you start the Data View Builder you need to enter the exact,
case-sensitive user name and password that was assigned to you by your Liquid Data administrator.

Liquid Data security is based on the WebLogic Server security policy system. For details see “Security
in Liquid Data” in the Administration Guide which contains additional references to WebLogic
Server security documentation.

Note: By default, the Liquid Data Samples repository does not have any security restrictions so you
can freely create or delete items, including queries in the stored_queries repository
directory without having to enter a user name or password.

Query Naming Conventions
There are a few Liquid Data query naming conventions:

Stored queries always have an .xq extension. Queries saved to the Liquid Data repository
much have an .xq extension. If you save the query via the Data View Builder, the .xq
extension is automatically appended.

Save Query
button

../admin/security.html
../admin/security.html

Saving a Query

Building Queries and Data Views 6-7

Names of queries to be generated as Web services must follow W3C XML tag naming
conventions. If you want to use Liquid Data to generate a web service from a query, the query
name must adhere to the same naming conventions as an XML tag. This is because the query
name is converted to an XML tag in the web service-generation process. (For information on
how to generate a web service from a stored query, see “Generating and Publishing Web
Services” in the Liquid Data Administration Guide.)

XML naming conventions require that a name (which will be converted to an XML tag name)
must be alphanumeric and must begin with an alphabetic character (letter) — not a number.
No special characters (such as a hyphen) are allowed in the name. For example, myquery.xq
and my12query.xq are both query names that will work with web services generation,
whereas 12query.xq will not.

For a complete description of naming conventions for schema tags see W3C XML Schema
document at http://www.w3.org/XML/Schema

Using the stored_queries Folder
The advantages of saving your queries to the stored_queries folder of the Liquid Data repository
include:

Providing the Liquid Data administrator with the ability to create access control at the stored
query level

The query can be used in a WebLogic Workshop

The query can be turned into a web service

The query can be turned into a data view

Caching Query Results
When your query resides in the Liquid Data repository you also have the option to configure caching
on the query result. Caching of query results for stored queries is configurable through the Liquid Data
node of the WebLogic Administration Console (see “Configuring the Query Results Cache” in the
Liquid Data Administration Guide).

Steps to Save a Query to the Repository
If the query is saved into the <ld_repository>/stored_queries folder, it becomes a stored
query in Liquid Data.

To save a query follow these steps:

Runn ing , Sav ing , and Dep loy ing Quer i es

6-8 Building Queries and Data Views

1. On the Test tab, choose File —> Save Query from the menus. (The File —> Save Query menu
option is available only from the Test view.)

2. Use the file browser to navigate to the Liquid Data Repository; it is the topmost directory listed.

3. Enter a name for the query in the File name field of the file browser and click Save. The query is
saved to the stored_queries folder in the Repository with a .xq extension.

You can reload a stored query using the Liquid Data File —> Open Query command after navigating
to the directory containing your stored queries.

Once a stored query has been loaded, it is ready to be run. See “Running a Query” on page 6-3.

Deploying a Query
In a Liquid Data query, data is drawn from heterogeneous sources and then normalized (through
automatic and manual casting) to elements in the Data View Builder target XML schema. This
information is automatically available when a query is run from the Data View Builder. However, in
order for it to be available to applications such as the WebLogic Workshop Liquid Data Control the
relationship must be formalized in the Liquid Data Server.

A deployed query is a query that has been saved to the Liquid Data repository and then associated
with a target schema that is also in the repository. See “To Configure (Deploy) a Stored Query” in the
Administration Guide.

A query can be deployed through the Data View Builder or the Liquid Data node of the WebLogic
Administration Console. In the Administration Console this operation is known as query
configuration.

A data view is functionally identical to a deployed query. The difference is that a data views function
as data sources for other queries. See Chapter 8, “Using Data Views.”

Deploy Query Command
The Deploy Query command is available from the Query menu when in Test mode. There are two
requirements for deploying queries:

You can only deploy a query if you have adequate permissions. See “Security Considerations” on
page 6-6.

You cannot “re-deploy” a query. In essence deploying a stored query means that the stored
query has been configured to be associated with a specific target schema. The Liquid Data
Server tracks the association of these two Liquid Data repository components: a query and a
schema, using the name of the query. The association is dynamic so any changes you make to

../admin/storedquery.html#storedquery
../admin/storedquery.html#storedquery

Dep loy ing a Query

Building Queries and Data Views 6-9

the schema or query file in the repository will automatically be available to the consuming
application.

Note: Data views follow the same “no re-deployment” model. You can always delete and recreate
a data view of the same name with different components.

To redeploy a stored query or data view, use the Liquid Data node of the WebLogic Administration
Console. See “Configuring Stored Queries” in the Liquid Data Administration Guide for additional
information on managing stored queries.

Saving the Current Schema and Current Query
When you initially select the Deploy Query menu option, you are asked if you want to save your current
target schema and query since only saved target schemas and queries can be part of a deployed query.

Figure 6-9 Schema is Current Confirmation

Answer Yes unless you do not want your current schema to be part of the deployed query.

If you select Yes a file browser will appear, open to the <LD_REPOSITORY>/schemas directory.
Select a current schema or save the schema under a new name.

If you select No you will be able to select a schema file in the Deploy Query dialog box.

../admin/storedquery.html#1052528

Runn ing , Sav ing , and Dep loy ing Quer i es

6-10 Building Queries and Data Views

Figure 6-10 Save Schema Dialog Box

Follow the same approach in deciding whether to save your query to your
<LD_REPOSITORY>/stored_queries directory.

Note: Queries can be stored in subdirectories of the stored_queries folder and accessed
similarly to a path expression. For example, if a query is saved under, for example:

stored_queries/uCustomer/custQuery.xq

it could be executed from a .JSP with:

<lds:query name=”uCustomer.custQuery”>
</lds:query>

Although a query can be deployed immediately upon entering Test mode, it is a good practice to first
run the query to make sure that the results match your expectations.

Deploying Your Query
The Deploy Stored Query dialog box gives you the option of creating a data view at the same time you
deploy your query.

Dep loy ing a Query

Building Queries and Data Views 6-11

Figure 6-11 Deploy Query Dialog

Follow these steps to deploy your query:

1. Select Your Query. If you selected to save your query, the Query field will already contain the name
of the query you saved. Optionally, browse to another query in the stored_query directory of the
repository.

2. Select a Schema. If you selected to save your schema, the Schema field will contain the name of
the schema you saved. Optionally, you can use the Select... button to browse to a different
schema.

3. Optionally, select a name for your data view. For details see “Deploying a Stored Query with a
Data View” on page 6-11.

4. Deploy Your Query. Click the Deploy button to resave your query with schema information.

Note: Once you have deployed a query to a particular name, you cannot “redeploy” to the same name
from the Data View Builder. There is also no need to do this. As long as you are happy with the
particular schema you have associated with the stored query, any changes made to these files
will automatically be made available from the Liquid Data Server to the application program,
including the Data View Builder.See “Configuring Stored Queries” in the Liquid Data
Administration Guide for additional information on managing stored queries.

Deploying a Stored Query with a Data View
When you deploy a query, you can optionally create a data view. (The difference between a deployed
query and a Data View is that your Data View can be used as a data source in the Data View Builder.
See Chapter 8, “Using Data Views,” for additional information.)

Create Data
View option

../admin/storedquery.html#1052528

Runn ing , Sav ing , and Dep loy ing Quer i es

6-12 Building Queries and Data Views

Figure 6-12 Deploy Query Dialog with Create Data View Option Enabled

The additional steps to deploying a query and a Data View are:

1. Check the Also Deploy As View checkbox.

2. Enter a name for your Data View (choose a name that is not already in use).

3. Click the Deploy button. In addition to deploying your stored query, a Data View will be created
in the Liquid Data <ld_repository>/dataview directory.

For information on creating and managing data views see “Configuring Access to Data Views” in the
Liquid Data Administration Guide.

../admin/dataview.html

Building Queries and Data Views 7-1

C H A P T E R 7

Analyzing and Optimizing Queries

This chapter describes techniques for optimizing Liquid Data queries.

Note: Tuning Performance in the Deployment Guide contains a general discussion of factors
related to tuning and performance of Liquid Data including query design, data sources, and
platform considerations.

The following sections are included:

Query Analysis

Factors in Query Performance

Optimizing Queries

Query Analysis
Two tools are available to help you analyze how the query you created executes on the Liquid Data
Server and to measure the performance of the query against its various data sources:

Query Plan

Performance Information

Viewing the Query Plan
The query plan is designed to help you:

Understand how a query is executed \\

Ana l y z ing and Opt imiz ing Quer i es

7-2 Building Queries and Data Views

Identify areas where query tuning may improve performance

Only the parts of the plan that may have significant performance impact on execution time are
displayed when you select the Plan tab in the Results pane. The returned plan identifies the following
query components:

Join

Outer join

Select

Sources

Custom function calls

Order-bys

Remove duplicates

Source access operator

The query plan also appears if you select the Compile Query menu option or, in Design mode, the
Compile Query icon.

Figure 7-1 Query Plan (DB-XML Sample Project: e2e-order.qpr)

Join

Source identification

Statements

Plan component

Plan

Query Ana lys is

Building Queries and Data Views 7-3

Getting Information on the Query
Information available on a query after it has been compiled or executed in the Data View Builder
includes:

Compilation time

Execution time

Retrieval time and number of invocations for each data source

Query statement

Listing 7-1 Sample Information After Running a Query (DB-XML Sample Project: e2e-order.qpr)

Compilation time: 2.403 sec

Execution time: 1.052 sec

Source: PB-WL{1}

Data retrieval time: 0.02 sec

Invocations: 1

Statement: SELECT t1."CUSTOMER_ID", t1."ORDER_DATE", t1."ORDER_ID",

t1."SHIP_METHOD", t1."TOTAL_ORDER_AMOUNT"

FROM "WIRELESS"."CUSTOMER_ORDER" t1

WHERE (t1."CUSTOMER_ID") = ('CUSTOMER_1')

Source: PB-WL{0}

Data retrieval time: 0.111 sec

Invocations: 1

Statement: SELECT t1."TELEPHONE_NUMBER", t1."CUSTOMER_ID", t1."FIRST_NAME",

t1."LAST_NAME", t1."STATE", t1."EMAIL_ADDRESS"

FROM "WIRELESS"."CUSTOMER" t1 WHERE (t1."CUSTOMER_ID") = ('CUSTOMER_1')

Source: XM-BB-CO{2}

Data retrieval time: 0.631 sec

Invocations: 0

Statement: parser

Ana l y z ing and Opt imiz ing Quer i es

7-4 Building Queries and Data Views

Factors in Query Performance
If you have a good understanding of your data sources and relationships, you will be in a good position
to try to improve query performance. It help greatly if you:

Know your data sources from a size and schema point of view.

Evaluate the relationships between your data. Consider factors like expected query result size,
memory requirements, and ability to leverage stored queries, as appropriate.

Taking such factors into account you are in a position to add effective optimization hints that may
greatly improve query performance.

This section covers some key factors related to performance and memory that you should consider
while designing and building queries with the Data View Builder. Examples and recommendations for
some typical scenarios and use cases are provided.

Optimizing Queries
To access tools to improve query performance, click on the Optimize tab. (See Figure 7-2.)

Opt im iz ing Quer ies

Building Queries and Data Views 7-5

Figure 7-2 Optimize Tab

Source Order Optimization
When a query uses data from several sources, the Liquid Data Server creates intermediate results into
memory combining data from the different sources. The size of these intermediate results depends on
the amount of data retrieved from each data source. If you specify more than two sources, the Liquid
Data Server combines the first two sources, then continues to integrate each additional resource, one
at a time, in the order that they appear in for clauses.

The size of a source is the number of tuples, or records, retrieved by the query from that source. The
size of the intermediate result depends on the input size of the first source multiplied by the input size
of the second sources and so on. A query is generally more efficient when it minimizes the size of
intermediate results.

The order of the peer XQuery for clauses in the query matches the order of the data sources in the
Source Order list. In general, you should order sources in ascending order, by size. That is, the smallest
resource should appear first in the list and the largest resource should appear last.

You can re-order source schemas on the top frame on the Optimize tab to improve query performance.
To move a schema up or down, select the schema and click the up or down arrow buttons to the right
of the list of schemas.

Hints available to modify processing of joins for improved query performance

Source Order Optimization (order sources in this query for best performance)

Reordering arrows

Join Pair Hints (pairs of data elements in each join and associated Optimize Hint)

Ana l y z ing and Opt imiz ing Quer i es

7-6 Building Queries and Data Views

Example of Source Order Optimization
Consider a query designed to find all managers and the departments they manage that contains a join
across three sources: Employees, Employees2 (Employees opened a second time), and Departments.

Note: You will notice that join selectivity is not considered in the following discussion. This is for
the sake of simplicity.

This query joins the Employees schema ID field and the Employees2 schema Manager_id field to
return all managers. It joins on the Employees schema Dept_id and Departments schema
Department_no to return the corresponding department information. The generated XQuery
language looks like the following example:

for $EMP1 in document("Employees")/db/EMP
for $EMP2 in document("Employees")/db/EMP
for $DEPT in document("Department")/db/DEPT
where $EMP1/id eq $EMP2/manager_id and

$EMP1/dept_id eq $DEPT/department_no
...

This creates a cross-product of Employees ID and Employees Manager_id, then a cross-product with
Departments Department_no. If there are 100 employees, and five departments, the query would
generate (100 * 100) + (10,000 * 5) intermediate results for a total of 150,000. More accurately, the
query would generate a fraction of this number, depending on the join selectivity of the two sources.

A better plan would be to combine Employees with Departments first, then combine that result with
Employees2. This is easily accomplished in the Source Order Optimization pane by clicking on the
“Department” data source and then on the up-arrow (see Figure 7-2).

The effect is to generates (100 * 5) + (500 * 100) intermediate results for a total of 50,500
intermediate results, a considerable potential processing reduction.

The generated XQuery language looks like the following example.

for $EMP1 in document("Employees")/db/EMP
for $DEPT in document("Department")/db/DEPT
for $EMP2 in document("Employees")/db/EMP
where $EMP1/id eq $EMP2/manager_id and

$EMP1/dept_id eq $DEPT/department_no
...

Optimization Hints
A critical factor in query performance is the way disparate data sources are joined by the Liquid Data
Server. The Liquid Data Server offers three different join methods. The Liquid Data Server optimizer
applies heuristics to determine the best method for each case. However, you can apply a join hint in

Opt im iza t i on H in ts

Building Queries and Data Views 7-7

cases where you wish to override the method chosen by the optimizer. In some cases query
performance can be greatly improved by properly applying query hints. In some cases query hints can
greatly improve performance.

The Optimize tab on the Data View Builder provides a drop-down list of data source pairs and a table
that shows the joins that have been applied to each pair. For each join in the table you can provide a
hint about how to join the data most efficiently. (See Figure 7-2.)

When used, query hints appear in the query as special-purpose strings enclosed within comment
brackets: {--! hint !--}. They specify which join algorithm should be selected when the query
runs. The Join Hints frame contains a drop-down list of data source pairs, and a table that shows all
the joins for each pair. Only source pairs that have join conditions across them appear in the
drop-down list. For each join condition in the table, you can provide a hint about how to join the data
most efficiently.

You can easily experiment with different query hints to determine the optimal settings.

Determining When Hints Are Needed
By default no hints are specified, meaning that the Liquid Data built-in optimizer is used. To add a
hint to a particular join, select the join and choose a hint from the drop-down Query Hints list. The
available hints are shown in Table 7-3.

Apply these rules to determine the correct hint to choose.

Table 7-3 Optimization Hints

Hint Description Syntax

None (optimizer) The Liquid Data optimizer takes a best
guess at optimizing the statement.

n/a

Left Parameter Pass to the Left (ppleft) {--! ppleft !--}

Right Parameter Pass to the Right (ppright) {--! ppright !--}

Merge Merge {--! merge !--}

Index Index(es) will be used. {--! index !--}

Ana l y z ing and Opt imiz ing Quer i es

7-8 Building Queries and Data Views

Notes:

Using optimization hints can help you improve performance on equijoin conditions, which
contain only one equality. If the query performs complex join conditions such as (A eq B) OR (C
eq D), the join conditions will not appear on the Optimizer tab as the engine does not need a
hint for these join conditions. Only the join conditions that are equi-join such as (A eq B), can
be given a hint in the Optimizer pane or by manually editing a query.

Choosing the wrong direction for a parameter passing hint can degrade performance.

The following sections provide more detail regarding each type of hint setting.

Using the Liquid Data Built-in Optimizer
When no hints are provided Liquid Data attempts to optimize the query based on an analysis of the
query plan based on the frequently correct premise that the most selective kinds of conditions
becomes the driving source that passes parameters to the rest of the query, as appropriate.

Using Parameter Passing Hints (ppleft or ppright)
Choose a Parameter Passing hint when one of the sources has a fairly small number of data objects.
In order to use the parameter passing hints (ppleft and ppright) effectively, you need to know
which data sources contain the larger data sets.

Table 7-4 When to Use Which Hint

Hint When To Use

None (optimizer) • Uses the built-in Liquid Data query optimizer. In many cases
this will yield the best results.

Merge • Both relational database sources are large and cannot fit into
memory.

Parameter Passing
(Left or Right)

• One of the sources has fewer objects than the other. See “Using
Parameter Passing Hints (ppleft or ppright)” on page 7-8.

Index • The size of the source identified on the right side of the hint is
small enough to fit into memory.

• The left and right sources are generally equal in size.

• There is at least one non-relational source used in the join.

Opt im iza t i on H in ts

Building Queries and Data Views 7-9

When you choose the direction for the Parameter Passing hint, always choose the data source to the
left or right with the larger number of items as the receiver. For example, if there are more items on
the right side of the equality, then pass the parameter to the right. The direction indicated in the hint
identifies the side in the equation that receives the parameter. In other words, the hints are named
for the receiver.

Consider the following example, which is described fully in “Example 1: Simple Joins” in Liquid Data
by Example.

Listing 7-2 XQuery with ppright Hints

{--Generated by Data View Builder 8.1 --}

<customers>

{for $PB-WL.CUSTOMER_1 in document("PB-WL")/db/CUSTOMER
where ($#first_name of type xs:string eq $PB-WL.CUSTOMER_1/FIRST_NAME)
return

<customer id={$PB-WL.CUSTOMER_1/CUSTOMER_ID}>
<first_name>{ xf:data($PB-WL.CUSTOMER_1/FIRST_NAME) }</first_name>
<last_name>{ xf:data($PB-WL.CUSTOMER_1/LAST_NAME) }</last_name>

<orders>
{

for $PB-BB.CUSTOMER_ORDER_3 in document("PB-BB")/db/CUSTOMER_ORDER
where

($PB-WL.CUSTOMER_1/CUSTOMER_ID eq {--! ppright !--}
$PB-BB.CUSTOMER_2/CUSTOMER_ID)

return
<order id={$PB-BB.CUSTOMER_ORDER_3/ORDER_ID}
date={$PB-BB.CUSTOMER_ORDER_3/ORDER_DATE}></order>

}
</orders>

<customer>
}
</customers>

Note: The second join in the example; the join between PB-WL customer IDs and PB-BB customer
IDs:

../samples/cookbook.html#1038497

Ana l y z ing and Opt imiz ing Quer i es

7-10 Building Queries and Data Views

where
($PB-WL.CUSTOMER_1/CUSTOMER_ID eq {--! ppright !--}
$PB-BB.CUSTOMER_2/CUSTOMER_ID)

In the example above, the where clause indicates that the PB-WL data source CUSTOMER table will
output only one customer ID. This assumes that the PB-BB data source has a larger amount of
customer IDs. You can optimize the join by providing the hint shown above (ppright), which tells the
server to retrieve the PB-WL customer information first and then pass the CUSTOMER ID as a
parameter to the right to look for matches in the PB-BB data source. The engine will thus require
much less memory and respond faster than if no hint was provided.

Using Merge Hints
Choose a merge hint when both relational database sources are large and cannot fit into memory.

The following example shows the XQuery for a merge hint.

Listing 7-3 XQuery with Merge Hint

<root>
{
for $Wireless.CUSTOMER_1 in document("Wireless")/db/CUSTOMER
for $BroadBand.CUSTOMER_2 in document("BroadBand")/db/CUSTOMER
where ($Wireless.CUSTOMER_1/CUSTOMER_ID eq {--!merge!--}

$BroadBand.CUSTOMER_2/CUSTOMER_ID)
return
<row>
<CUSTOMER_ID>{ xf:data($BroadBand.CUSTOMER_2/CUSTOMER_ID) }</CUSTOMER_ID>
</row>
}

</root>

A merge join requires a minimal amount of memory to operate; however, the input must be sorted on
join attributes. A query using a merge join might have a slower response time than a query without a
hint, but the memory footprint is typically much smaller with the merge join.

Note: A merge join in a character column might yield unexpected results because the collating
sequence for each database may be vary. See Table 7-5 for an example of how incompatible
ordering sequences for strings from two different vendors can affect query results.

Opt im iza t i on H in ts

Building Queries and Data Views 7-11

Table 7-5 Collation Sequences for Some Data Types Vary by Database Vendor

To ensure predictable results you should use an index join when merging character
(varchar, string, and so forth) columns from different data sources.

Oracle MS SQL

ORDER_ID_8009_4 ORDER_ID_8009_4

ORDER_ID_8010_0 ORDER_ID_801_0

ORDER_ID_8011_0 ORDER_ID_8010_0

ORDER_ID_8012_0 ORDER_ID_8011_0

ORDER_ID_801_0 ORDER_ID_8011_1

ORDER_ID_801_1 ORDER_ID_8012_0

Ana l y z ing and Opt imiz ing Quer i es

7-12 Building Queries and Data Views

Building Queries and Data Views 8-1

C H A P T E R 8

Using Data Views

Data views play a central role in the Liquid Data enterprise development model.

The Enterprise and the Data View

Understanding Data Views

Creating a Data View

Creating a Parameterized Data View

Data View Query Samples

The Enterprise and the Data View
In Liquid Data, data views are central to solving the data integration problem one time (as opposed to
once per query) and providing a basis for simpler application development work on top of that
integrated view. In this model:

A data architect with an intimate knowledge of the relationship of the available diverse data
sources develops a set of data views based on the needs of various parts of the enterprise.

For example, a view of an employee developed for an enterprise might include employee salary
and address information from one data source; information about their health insurance from
another data source; information from their company assets (computer, phone, etc.) might be
included from a third data source.

Liquid Data is then used to create, refine, and validate each of the data views through queries
built up through the Data View Builder.

Using Data V iews

8-2 Building Queries and Data Views

Once validated, a reusable representation of each data view is developed through the Data View
Builder and Liquid Data node of the WebLogic Administration Console as a new data view.

Then the Liquid Data data view can be used throughout the enterprise as a virtual data source
for queries. For example, a query for a new payroll division application might select salary
information from this view.

In this model a data view provides an appropriate architectural view of corporate data that is available
for specialized queries and sharable throughout the enterprise.

Understanding Data Views
In Liquid Data a stored query and a target XML schema comprise a data view.

Figure 8-1 Components of a Data View

To create a data view from a query:

You first create a query and save it.

Then you configure a data view data source description for the query in the Liquid Data node of
the WebLogic Administration Console.

To create a virtual data source in this way, you must first create a query and save it to the Liquid Data
server repository, then configure a data view data source description for the query in the WebLogic
Administration Console. It is recommended that you create the query and save it to the repository
using the Data View Builder, but it is also possible to use hand-coded queries in generally the same
way.

The following sections explain what a data view is and how to use a data view data source with the
assumption that you are using the Data View Builder to construct the query. Also included is a
clarification of the relationship between a query and a a data view.

Stored
Query
 + =

Target
Schema Dataview

Understand ing Data Views

Building Queries and Data Views 8-3

Functionally, a data view extends the power of a stored query through its association with a target
schema that describes the data. This combination allows a data view to be identified in the Data View
Builder as a data source for additional queries.

The following sections describe in detail how to create Liquid Data data views and use such views as
data sources. Also included is a discussion of the relationship between a query and a data view.

A Data View Use Case
eWorld Co, a company that through multiple mergers and acquisitions has 50,000 employees,
also has multiple payroll systems. Using Liquid Data, information in each of these systems can
be accessed. The company also has two relational databases from separate vendors for tracking
incentive bonuses. Human Resources very frequently gets questions about when such bonus
payments will show up in affected employee’s paychecks.

– To enable HR to get answers to employees quickly and economically, an Information
Technology data architect creates a query using Liquid Data that can access relevant
information from the multiple payroll systems and the company’s incentive bonus
databases.

– Once satisfied that the query works, the IT architect creates a data view and makes it
available to an HR data specialist. This specialist can then use Liquid Data to quickly get
answers to inquiries from individual employees about their bonus payments.

The benefits of this approach are significant:

– A single integrated view can be created for use throughout an enterprise. Access to
sensitive information is controlled and consistency is maintained.

– HR can quickly get the information it needs without having to either staff up with its own
data architect or get in the queue for expensive and low-availability IT custom programming
services.

– Since data views are typically created by information architects, more time can be spent
designing and testing the generalized query.

Simple and Parameterized Data Views
The difference between a simple and a parameterized data view is that a parameterized data view has
one or more input parameters. Specifically views that centrally contain functional sources such as an
application view, web service, custom function, or stored procedure often require an input parameter.

Using Data V iews

8-4 Building Queries and Data Views

Using Data Views as Data Sources
From the Data View Builder, you access a data view as you would any other data source. There is no
limit to the number of data views that can be used in creating a new query, although currently there
may be performance implications to nesting data views. A data view can reference on another data
view.

Creating a Data View
The following sections explain the steps needed to turn a query into a data view data source:

Creating and Saving the Query to the Liquid Data Repository

Configuring a Data View Data Source Description

Adding a Data View as a Data Source

Creating and Saving the Query to the Liquid Data Repository
Follow these steps to create and save a query to the Liquid Data repository:

1. Construct the query in the Design view as described in Chapter 5, “Building Queries.”

2. Test the query in the Test Query view as described in Chapter 6, “Running, Saving, and
Deploying Queries.”

3. Save the query to the Liquid Data repository as a stored query as described in Steps to Save a
Query to the Repository in Chapter 6, “Running, Saving, and Deploying Queries.”

Note: When you are creating a data view, it is important that the query and its target schema be in
conformance. In the current release this means that all required elements in a target schema
must be mapped if the query is to be turned into a view. See “Source and Target Schemas”
and subsequent discussions for details.

Alternatively you can load queries and target schemas into the Liquid Data repository directly using
the Liquid Data node of the WebLogic Administration Console. See Uploading Files to the Server
Repository for details.

Configuring a Data View Data Source Description
In the WebLogic Administration Console, configure a data view for the query as described in
Configuring Access to Data Views in the Liquid Data Administration Guide. Then follow these steps:

1. In the Liquid Data node of the WebLogic Administration Console click the Repository tab.

Creat ing a Paramete r i zed Data V iew

Building Queries and Data Views 8-5

2. Double-click on the Stored Queries folder.

3. Find the stored query you want to use and inspect the Data Source Configuration column.

4. If Create Data View is available, click on that link to create you data view. (If a data view already
exists based on the stored query, you will see Data View Created.)

This links you into the Data View configuration tab, automatically copies the stored query to the
data_views folder for you, and assigns an xv extension to the name you select for your data
view.

See “Managing the Liquid Data Server Repository” in the Liquid Data Administration Guide for
additional details.

Adding a Data View as a Data Source
After you have created the data view, reconnect to the Liquid Data server using the File ->
Connect menu command. Your new data view should appear under Data Views when the Sources tab
in Design mode is selected (see Figure 8-4).

Creating a Parameterized Data View
You can use the following simple example to create a stored query and then turn it into a
parameterized data view that retrieves customer order information based on a unique customer ID.

Note: To follow along with the creation of this example data view, you should have the Liquid Data
sample server installed and running and be familiar with the sample. If not, please see the
Liquid Data Getting Started guide.

1. Open the Data View Builder, drag the relational database source pb-bb onto the Liquid Data
desktop. Set your target schema to customerOrders.xsd. Map elements to your target schema
as shown in Figure 8-2.

Using Data V iews

8-6 Building Queries and Data Views

Figure 8-2 Creating a Parameterized Query in the Data View Builder

1. From the Liquid Data Toolbox tab, choose Query Parameter. Create a single query parameter,
CUST_ID and using the pulldown Type menu. Assign it a type string of xs:string.

2. Drag cust_id to the CUSTOMER_ID field of the CUSTOMER table in the PB_BB data source
(also shown in Figure 8-2).

3. Drag CUSTOMER_ID in the Customer table to CUSTOMER_ID in the Customer Order table to
create a join.

4. In Test mode supply CUSTOMER_1 as a value for CUST_ID and run the query.

Note: Values are case-sensitive.

The Data View Builder will display an XML report containing information on the orders made by
this particular customer.

Creat ing a Paramete r i zed Data V iew

Building Queries and Data Views 8-7

5. Using the File -> Save Query menu command in the Data View Builder, save your query
under the name param_dv to the Repository folder. It will automatically be placed in the
ld_repository\stored_query folder and the extension .xq appended.

6. Now you can use the Liquid Data node of the WebLogic Administration Console to create your
data view from your newly saved query.

a. Start the WebLogic Administration Console.

b. Click the Liquid Data node.

c. Select the Repository tab.

d. Go to stored_queries.

e. Choose the query param-dv.xq

f. Select the Data View Data Source option.

g. Enter information as shown in Figure 8-3.

h. Click Create.

Your new data view should appear in the Liquid Data node of the WebLogic Administration
Console list of available data views.

Using Data V iews

8-8 Building Queries and Data Views

Figure 8-3 Creating the Data View in the Administration Console

See “Creating Data Views from Stored Queries” in the Liquid Data Administration Guide for
information on how to generate data views from stored queries.

7. Return to the Data View Builder. Select File -> Connect. When you click on Data Views,
your newly created data view should appear.

Creat ing a Paramete r i zed Data V iew

Building Queries and Data Views 8-9

Figure 8-4 Data View on the Liquid Data Desktop

8. Drag the data view onto the Liquid Data desktop as you would any other data source
(Figure 8-4).

9. Add a valid target schema. In this case, you can use the File menu Set Selected Source as
Target Schema command. (The generated schema is shown in Figure 8-5.)

You may see a message asking if it is OK to close the existing target schema since that will
remove all its mappings in the Data View Builder. Click Yes.

Using Data V iews

8-10 Building Queries and Data Views

Figure 8-5 Setting Input and Associating Columns With Target Schema

10. Using the Data View Builder toolbox create a string constant called CUSTOMER_3 and drag it
into the data view input CUST_ID (see Figure 8-5).

You could have provided an input parameter from a built-in XQuery function, custom function,
an input from a web service, or another source.

11. Map all the elements in your target schema.

12. Test, then run your new query.

Data V iew Query Samples

Building Queries and Data Views 8-11

Figure 8-6 XQuery and Generated XML Report

Data View Query Samples
Two additional Data View Query samples are installed with the Liquid Data samples. These samples
show how to create a data view, configure it as a data source, and then use that data source in other
data views.

Instructions for running the samples are provided in readme files located at:

<LDHome>/samples/buildQuery/view/readme.htm

<LDHome>/samples/buildQuery/parameter_view/readme.htm

Also see the Liquid Data Samples page for more information on other available query samples.

Using Data V iews

8-12 Building Queries and Data Views

Building Queries and Data Views 9-1

C H A P T E R 9

Using Complex Parameter Types in
Queries

You can use complex parameter types (CPTs) to make one or several streaming data sources available
for Liquid Data queries. Such content is variously called runtime source, data stream, real-time data,
or in-flight XML. As long as an XML schema can model the runtime source, you can use it with Liquid
Data queries. Liquid Data complex parameter types enable the on-the-fly aspect of this query.

The following subjects are discussed in this chapter:

Understanding Complex Parameter Types

Creating a Complex Parameter Type

Complex Parameter Type Query Samples

Using Complex Paramete r T ypes in Quer i es

9-2 Building Queries and Data Views

Understanding Complex Parameter Types
A complex parameter type is a user-defined variable that allows modelling of runtime data as a data
source for a Liquid Data query. Complex parameter types (CPTs) are defined through an XML schema.
In other words, a CPT is a user-defined variable whose signature is expressed in via an XML schema.

In order to use CPTs, you need:

An XML schema that models the type of the user-defined variable as a CPT.

A complex parameter type definition that you configure through the Liquid Data node of the
WebLogic Administration Console (see “Configuring Access to Complex Parameter Types” in the
Liquid Data Administration Guide).

A runtime source that provides XML data conforming to the XML schema mentioned above.

You can use the Data View Builder to develop and test the query that uses CPT. When testing a
complex parameter types using the Data View Builder, you must assign an XML file to the CPT
variable.

When you are satisfied with your ability to run your query using a runtime data source, the query can
be invoked via a EJB API or via a JSP. For details on invoking queries programmatically and the Liquid
Data API see:

“Setting Complex Parameter Types” and “Invoking Queries in EJB Clients” in the Application
Developer’s Guide.

Liquid Data 8.1 API Reference (Javadoc).

There is also a Liquid Data EJB API sample in the directory:

<WL_HOME>/samples/<liquiddata>/ejbAPI

A CPT Use Case
Complex parameter types allow you to access information that may not be available from traditional
static data sources. For example, an enterprise frequently needs to bring together highly diverse
pieces of information to complete a business activity or analysis.

Use Case

A corporation typically receives large electronically-transmitted orders for customized computer
chips from companies and governments all over the world. Orders are transmitted using an
agreed-upon XML schema provided by eWorld. When an order is received, a variety of commissions and
bonuses become payable.

../admin/userdefineddatatype.html
../javadoc/index.html

Understand ing Complex Pa rameter Types

Building Queries and Data Views 9-3

Some information about the transaction is readily available from existing data sources such as:

products database

sales discount schedule (from sales management software)

a partner commission structure (from a spreadsheet maintained by the regional sales
organization)

However, some data only becomes available when the order is received including:

customer identification

item

quantity

salesperson

When an order arrives, Liquid Data uses information from all these data sources, including the
runtime order information. As the order is received as an in-flight XML document, a query is run and
an XML report generated that calculates costs and commissions, taking into account both the order
and cumulative discount and commission schedules for the buyers, middlemen, and sales people
involved in the transaction.

Understanding CPT Schema and Data
This section describes elements of a sample CPT schema and its XML instance. It uses the DB-CPTCO
sample installed with Liquid Data when describing a CPT schema and XML data source. The sample
is installed in the following directory:

<WL_HOME>/samples/<liquiddata>/buildQuery/db-cptco

The project file is coCPTSample.

Sample CPT Schema
The CPT schema shown in Listing 9-1 (coCptSample2.xsd) is from the DB-CPTCO sample. It is
located in the Liquid Data repository schemas directory.

<WL_HOME>/samples/domains/<liquiddata>/ldrepository/schemas

This simple example defines a complex variable type containing four data elements: customer_id,
product_name, quantity, and price. The complex type you design will vary depending on the
signature of your runtime source.

Using Complex Paramete r T ypes in Quer i es

9-4 Building Queries and Data Views

Listing 9-1 DB-CPTCO Sample CPT Schema (coCptSample2.xsd)

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="urn:schemas-bea-com:ld-cocpt"

xmlns:cocpt="urn:schemas-bea-com:ld-cocpt"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="CustOrder">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="CUSTOMER_ORDER" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="CUSTOMER_ID" type="xsd:string"/>
<xsd:element name=

"NEW_ORDER_LINE_ITEM"type="cocpt:NEW_ORDER_LINE_ITEMType"
minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:complexType name="NEW_ORDER_LINE_ITEMType">
<xsd:sequence>
<xsd:element name="PRODUCT_NAME" type="xsd:string"/>
<xsd:element name="QUANTITY" type="xsd:decimal"/>
<xsd:element name="PRICE" type="xsd:decimal"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Components of the sample schema shown in Listing 9-1 include:

xmlns:cocpt="urn:schemas-bea-com:ld-cocpt"

Declares a namespace cocpt associated with the URI.

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

Declares a namespace xsd to the standard XML schema URI.

<xsd:element name="CustOrder">

Declares CustOrder as the schema root element.

Understand ing Complex Pa rameter Types

Building Queries and Data Views 9-5

It is the unique combination of namespace and schema root element that defines the portion of a
schema used as a complex parameter type.

Note: Only one instance of a CPT (that is, a unique combination of namespace and schema root
element) can be available in the Data View Builder. If you try and duplicate a CPT under
another alias name, a red mark will appear over the duplicate CPT name to indicate that it is
unavailable.

Sample XML Data Stream
When you are first developing your query, you will likely want to create a sample XML data file to test
your query with an EJB client such as the data in the Data View Builder. In the following listing from
the DB-CPTCO sample XML data stream, note that the namespace must match that in the DB-CPTCO
sample schema.

Listing 9-2 DB-CPTCO Sample XML Data Stream (coCptSample2.xml)

<?xml version="1.0" encoding="UTF-8"?>

<cocpt:CustOrder xmlns:cocpt="urn:schemas-bea-com:ld-cocpt"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="urn:schemas-bea-com:ld-cocpt

coCptSample2.xsd">

<CUSTOMER_ORDER>

<CUSTOMER_ID>CUSTOMER_1</CUSTOMER_ID>

<NEW_ORDER_LINE_ITEM>

<PRODUCT_NAME>RBBC01</PRODUCT_NAME>

<QUANTITY>1000</QUANTITY>

<PRICE>20</PRICE>

</NEW_ORDER_LINE_ITEM>

<NEW_ORDER_LINE_ITEM>

<PRODUCT_NAME>CS2610</PRODUCT_NAME>

<QUANTITY>1000</QUANTITY>

<PRICE>20</PRICE>

</NEW_ORDER_LINE_ITEM>

</CUSTOMER_ORDER>

</cocpt:CustOrder>

Using Complex Paramete r T ypes in Quer i es

9-6 Building Queries and Data Views

The DB-CPTCO sample XML file is located in the Liquid Data repository xml_files directory.

<WL_HOME>/samples/domains/<liquiddata>/ldrepository/schemas

Components in the sample XML data stream shown in Listing 9-2 include:

cocpt:CustOrder xmlns:cocpt="urn:schemas-bea-com:ld-cocpt"

Defines urn:schemas-bea-com:ld-cocpt as the namespace aliased to cocpt and
CustOrder as the complex data type:

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Declares the standard XML schema instance URI.

xsi:schemaLocation="urn:schemas-bea-com:ld-cocpt coCptSample2.xsd"

Identifies the schema location to resolve the name space declaration. Note that Liquid Data
automatically looks in the repository schema directory for the specified file. Otherwise a
full path name to coCptSample2.xsd is needed.

Notes on Hand-Crafting CPT XQueries
There are two issues to remember when hand crafting an XQuery that accesses a Complex Parameter
Type:

Unique Namespace

XQuery of type element Declaration

Unique Namespace
The namespace of your Complex Parameter Type must be unique. It is a good design pattern to have
a namespace defined in your schema file and specified when you define your Complex Parameter Type
to Liquid Data. If a namespace is specified in the Complex Parameter Type definition, all XQueries
that access the Complex Parameter Type must specify the namespace. Regardless of whether you use
namespaces, uniqueness is required.

XQuery of type element Declaration
When you use a Complex Parameter Type in a query, you need to specify a query parameter with the
following declaration.

type element [<namespace>:]<root element>

Creat ing a Complex Pa ramete r T ype

Building Queries and Data Views 9-7

The namespace is optional, but the specified root element must be unique. For example, consider the
following query:

namespace cocpt = "urn:schemas-bea-com:ld-cocpt"

<cocpt:CustOrder>

{

for $CO_CPTSAMPLE.CUSTOMER_ORDER_2 in

($#QParamForCO-CPTSAMPLE of type element cocpt:CustOrder)

/CUSTOMER_ORDER

return

<CUSTOMER_ORDER>

<CUSTOMER_ID>

{xf:data($CO_CPTSAMPLE.CUSTOMER_ORDER_2/CUSTOMER_ID) }

</CUSTOMER_ID>

</CUSTOMER_ORDER>

}

</cocpt:CustOrder>

The alias cocpt is used in the namespace declaration of this query, and the bold section (which uses
the cocpt alias) defines the XML input stream for the Complex Parameter Type.

Creating a Complex Parameter Type
This section describes the steps needed to create and run a complex parameter type.

Step 1. Create a CPT Schema

Step 2. Create Your Runtime Source

Step 3. Define Your CPT in the Administration Console

Step 4. Build Your Query

Step 5. Run Your Query

Step 1. Create a CPT Schema
Create a schema that models the runtime source. See the “Sample CPT Schema” on page 9-3 for a
small schema example.

Note: In some design situations you may first create a CPT schema and then develop a model for the
runtime source. The important point is that there is a tightly coupled relationship between

Using Complex Paramete r T ypes in Quer i es

9-8 Building Queries and Data Views

the schema and the runtime data that it models. Both must work together and, once working,
the structure of the documents cannot be changed independently.

Step 2. Create Your Runtime Source
Create an instance of your runtime source. The runtime source needs to be in XML.

Step 3. Define Your CPT in the Administration Console
Through the Liquid Data node of the WebLogic Administration Console, define a complex parameter
type. for a detailed procedure, see Configuring Access to Complex Parameter Types in the
Administration Guide.

Figure 9-1 Creating a Complex Parameter Type in the Administration Console

A valid CPT definition includes an alias identifier and a schema. It is also a good programming practice
to provide both a namespace URI and a schema root element name to uniquely identify your CPT.

Step 4. Build Your Query
Create your query either using the Data View Builder or by hand. See “Key Concepts of Query Building”
on page 1-3 for information on designing queries in Liquid Data.

Step 5. Run Your Query
Once you have created a CPT schema, have a data sample available, and have defined the CPT in the
WebLogic Administration Console, you are ready to use a complex parameter type in a query.

Creat ing a Complex Pa ramete r T ype

Building Queries and Data Views 9-9

Note: Complex parameter types are not type aware and are always of the type xs:string in Liquid
Data. You need to cast each element appropriately.

The Liquid Data DB-CPT sample cptSample.qpr uses a CPT to supply a promotion plan name for a
given state. The sample is installed in the following directory:

<WL_HOME>/samples/<liquiddata>/buildQuery/db-cptco

When the query runs details of one or more matching promotion plans names are retrieved from a
database.

Figure 9-2 shows the DB-CPT project. Notice that there are two complex parameter types available for
use. CPTSAMPLE is the complex parameter type used in the query.

Figure 9-2 DB-CPT Project (CPTSAMPLE.QPR) with Complex Parameter Types Displayed

To test your query the name of an XML data file that is modeled on the CPT schema must be entered
in the Data View Builder (see Figure 9-3). To locate the Liquid Data sample XML file click on the Value
field to open the Liquid Data file browser to the following directory:

<WL_HOME>/samples/domains/<liquiddata>/ldrepository/xml_files

Using Complex Paramete r T ypes in Quer i es

9-10 Building Queries and Data Views

Figure 9-3 DB-CPT Project in Test Mode

Figure 9-4 shows the DB-CPT (CPTSAMPLE.QPR) project when the query is run.

Supply the CPT data source file
name from the repository
xml_files directory:

crm-p-cptSample.xml

Complex Paramete r T ype Que ry Samples

Building Queries and Data Views 9-11

Figure 9-4 DB-CPT Project (CPTSAMPLE.QPR) in Run Mode

Complex Parameter Type Query Samples
For a step by step example of building a query with a CPT, see “Example 6: Complex Parameter Type
(CPT)” in Liquid Data by Example.

There are also two CPT query samples installed with the Liquid Data samples. These samples show
how to create a complex parameter type, configure it as a complex parameter type, and then run the
query.

Instructions for running the samples can be found under “Complex Parameter Type (CPT) Sample
Queries” in Liquid Data by Example. The examples can be found under:

<WL_HOME>/samples/<liquiddata>/buildQuery/db-cpt

<WL_HOME>/samples/<liquiddata>/buildQuery/db-cptco

Also see the Liquid Data Samples page for information on other available query samples.

../samples/installedsamples.html#1125131
../samples/installedsamples.html#1125131

Using Complex Paramete r T ypes in Quer i es

9-12 Building Queries and Data Views

Building Queries and Data Views 10-1

C H A P T E R 10

Accessing SQL Calls: Stored Procedures
and SQL Queries

If you have stored procedures defined in your databases, you can expose them to Liquid Data as a data
source and use them in your Liquid Data queries.

You can also expose any query from the database as a data source. You expose these “SQL Calls” to
Liquid Data through a SQL Call Description File. This chapter describes how to define stored
procedures and SQL queries in a SQL Call Description File, and contains the following sections:

Defining Stored Procedures to Liquid Data

SQL Call Description File

Rules for Specifying SQL Call Description Files

Sample SQL Call Description Files

Stored Procedure Support by Database

Using Stored Procedures in Queries

For an example and a demo of defining a stored procedure and using it in a query, see “Example:
Defining and Using a Customer Orders Stored Procedure” on page 10-34. For information on samples
installed with Liquid Data, including a stored procedure sample and a SQL Call example, see “Samples
Installed with Liquid Data” in Liquid Data by Example.

../samples/installedsamples.html
../samples/installedsamples.html

Access ing SQL Ca l l s : S tor ed P rocedures and SQL Quer i es

10-2 Building Queries and Data Views

Defining Stored Procedures to Liquid Data

To use stored procedures in Liquid Data, you must create a SQL Call Description File. The SQL Call
Description File is an XML schema file that defines the types and the functions for a set of stored
procedures. For details on defining a SQL Call Description File, see “SQL Call Description File” on
page 10-3 and “Rules for Specifying SQL Call Description Files” on page 10-8. For database-specific
information, see “Stored Procedure Support by Database” on page 10-27.

To Define Stored Procedures to Liquid Data
Perform the following steps to define a stored procedure for use with Liquid Data.

1. Create your stored procedures in the underlying database, if they do not already exist. For details
about Liquid Data support of stored procedures for your database, see “Stored Procedure Support
by Database” on page 10-27.

2. In the WebLogic Console, create a JDBC Connection Pool to access your database, if one does
not already exist.

3. In the WebLogic Console, create a JDBC Data Source for the connection pool created in the
previous step.

4. Create a SQL Call Description File for your stored procedures and save it to the sql_calls
directory of the Liquid Data repository. For details, see “SQL Call Description File” on page 10-3
and “Rules for Specifying SQL Call Description Files” on page 10-8.

5. In the WebLogic Administration Console (to access the Liquid Data Console, click the Liquid
Data link at the bottom of the list on the WebLogic Administration Console), click the Data
Sources tab.

6. Click the Relational Databases tab.

7. Click the Configure a New Relational Data Source Description Link (or open an existing Data
Source to modify it).

8. If you are creating a new data source, enter values for Name, Data Source Name, and Schema
fields in the Configure Relational Data Source Description screen. For more details on
configuring relational data sources, see Configuring Access to Relational Databases in the
Administration Guide.

9. In the Configure Relational Data Source Description screen, specify a SQL Call Description File
by clicking the Browse Repository link next to the SQL Call Description File field.

SQL Ca l l Descr ipt i on F i l e

Building Queries and Data Views 10-3

10. In the Repository Browser, select the file you created containing your stored procedure
definitions. After making your selection, click the Select button.

11. In the Configure Relational Data Source Description screen, click the Apply button to save your
Data Source definition.

12. Check the WebLogic Server log file for any errors, and correct them as necessary.

You can now access your stored procedures in the Data View Builder. If you are already connected to
the server in the Data View Builder, you must re-connect by selecting File —> Connect from Data
View Builder menu. The Stored Procedures tab appears in the Design view under the sources tab of
the Data View Builder. You can now use your stored procedures as you do other building blocks (for
example, data sources, XQuery functions, and so on) to build queries.

SQL Call Description File
The SQL Call Description File is an XML file that defines stored procedures to Liquid Data. This
section describes the schema of the SQL Call Description File, and contains the following sections:

Basic Structure

Schema Definition File for SQL Call Description File

Element and Attribute Reference for SQL Call Description File

Supported Datatypes

For sample SQL Call Description Files, see “Sample SQL Call Description Files” on page 10-17.

Basic Structure
The SQL Call Description File has the following main sections:

Type Definitions

Function Definitions

Type Definitions
The type definitions section of the SQL Call Description File is defined in the <types> element. This
element defines namespaces and complex types for the stored procedures defined in the SQL Call
Description File.

Access ing SQL Ca l l s : S tor ed P rocedures and SQL Quer i es

10-4 Building Queries and Data Views

Function Definitions
The function definitions section of the SQL Call Description File is defined in the <functions>
element. Within the <functions> element are <function> elements, each of which defines the
signature of a stored procedure. You can define one or more stored procedures in a single SQL Call
Description File.

Schema Definition File for SQL Call Description File
The following is the schema definition file for the SQL Call Description File:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<xsd:element name="definitions">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="types"/>

<xsd:element ref="functions"/>

</xsd:sequence>

<xsd:attribute name="targetNamespace" use="optional"

type="xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:element name="types">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="schema"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="schema" type="xsd:anyType"/>

<xsd:element name="functions">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="function" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

SQL Ca l l Descr ipt i on F i l e

Building Queries and Data Views 10-5

<xsd:element name="function">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="argument" minOccurs="0"

maxOccurs="unbounded"/>

<xsd:element ref="presentation" minOccurs="0"/>

<xsd:element ref="description" minOccurs="0"/>

</xsd:sequence>

<xsd:attribute name="name" use="required"

type="xsd:string"/>

<xsd:attribute name="return_type" use="required"

type="xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:element name="argument">

<xsd:complexType>

<xsd:attribute name="type" use="required"

type="xsd:string"/>

<xsd:attribute name="label" use="required"

type="xsd:string"/>

<xsd:attribute name="mode" use="required" type="modeType"/>

</xsd:complexType>

</xsd:element>

<xsd:simpleType name="modeType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="input_only"/>

<xsd:enumeration value="output_only"/>

<xsd:enumeration value="input_output"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:element name="presentation">

<xsd:complexType>

<xsd:attribute name="group" use="required"

type="xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:element name="description" type="xsd:string"/>

</xsd:schema>

Access ing SQL Ca l l s : S tor ed P rocedures and SQL Quer i es

10-6 Building Queries and Data Views

Element and Attribute Reference for SQL Call Description File
Table 10-1 lists and describes the elements and attributes of the SQL Call Description File.

Table 10-1 SQL Call Description File XML elements and descriptions

Element Attribute Description

<definitions> targetNameSpace The namespace declared for the stored
procedures.

<types> Declares any primitive or complex data
types used in the stored procedure.

<functions> Contains the function definitions for all
of the stored procedures represented in
this file.

<function> Function definition for a single stored
procedure.

name Name of the stored procedure as defined
in the database. If the stored procedure
is part of a package, the name is the fully
qualified name of the stored procedure
(for example,
packagename.sp_name).

If you are using procedure groups in
Sybase or Microsoft SQL Server, see
“Rules for Procedure Names Containing
a Semi-Colon” on page 10-10.

return_type Return type of the stored procedure. The
type is defined in the <types> element
of this file. Note that this type differs
from the type which the stored
procedure returns. If you are
hand-coding your own XQueries, you
must perform a function signature
transformation; for details, see “Rules
for Transforming the Function Signature
When Hand Writing an XQuery” on
page 10-14.

SQL Ca l l Descr ipt i on F i l e

Building Queries and Data Views 10-7

Note: An element within the types definition with a name specified with
name="return_value" is reserved to specify the return value from a function or a
procedure. For an example, see “Example 2: Type Definition with Simple Return Value” on
page 10-11.

<sql_statement> Contains the SQL statement text for a
query against the data source. The query
can then be used as a data source.

<argument> Contains the argument declarations for
the inputs and/or outputs of the stored
procedure.

label The name of the argument input or
output. This name is used in queries and
is displayed in clients such as the Data
View Builder.

type Type of the argument. The type can be
one of the types listed in “Supported
Datatypes” on page 10-8, or it can be a
complex type declared in the SQL Call
Description File.

mode Lists whether the argument is part of the
input, output, or both. Possible values
are:
• input_only

• output_only

• input_output

<presentation

group>
Currently not supported.

<description> Comment text describing the stored
procedures used in the SQL Call
Description File.

Table 10-1 SQL Call Description File XML elements and descriptions

Element Attribute Description

Access ing SQL Ca l l s : S tor ed P rocedures and SQL Quer i es

10-8 Building Queries and Data Views

Supported Datatypes
The stored procedures you define in the SQL Call Description Files must use the XML data types
shown in Table 10-2. You must map the database data types to one of the types in this table. For data
type support by database, see “Stored Procedure Support by Database” on page 10-27.

Except for user-defined complex data types, the types are all primitive data types.

For JDBC and database-specific type mapping, see “Supported Datatypes” in the XQuery Reference
Guide.

Rules for Specifying SQL Call Description Files
This section describes rules for the return_type attribute of the <function> element and the
mode attribute of the <argument> element. This section includes the following rules:

Rules for Element and Attribute Names

Rules for Procedure Names Containing a Semi-Colon

Rules and Examples of <type> Declarations to Use in the <function> return_type Attribute

Rules for the mode Attribute output_only <argument> Element

Table 10-2 XML data types and their Java equivalents for SQL Call Description Files

XML Data Type Equivalent Java Data Type

xs:boolean java.lang.boolean

xs:byte java.lang.byte

xs:short java.lang.short

xs:integer java.lang.Integer

xs:int java.lang.Integer

xs:long java.lang.Long

xs:float java.lang.float

xs:double java.lang.double

xs:decimal java.math.BigDecimal

xs:string java.lang.String

xs:dateTime java.util.Date

Complex Element Type org.w3c.dom.Element

../xquery/datatypes.html

Rules f or Spec i f y i ng SQL Cal l Desc r ip t ion F i l es

Building Queries and Data Views 10-9

Rules for Transforming the Function Signature When Hand Writing an XQuery

Rules for Element and Attribute Names
XML requires that element and attribute names begin with a non-numeric character. Therefore, when
you specify the name attribute of the <xs:element> element in a SQL Call Description File, you must
specify a name that does not start with a numeric character. For example, if you have a stored
procedure that returns a cursor, and the cursor returns columns that start with a numeric character,
you must map those column names to valid XML element names in your SQL Call Description File.

For the W3C definition of a valid name for an attribute or element, see:

http://www.w3.org/TR/2000/WD-xml-2e-20000814#dt-name

For example, consider a cursor named MY_CURSOR is declared with the following SQL statement:

open MY_CURSOR for

select 1_column, 2_column, 3_column

from MY_TABLE

return MY_CURSOR

When you define the cursor type in the <types> section of your SQL Call Description File, you must
map the column names from the cursor output to start with a non-numeric character so the resulting
XML generated is valid. You could use the following type definition for this cursor, which starts each
numeric column name with an underscore character (_):

<types>

<xs:element name="MY_CURSOR" minOccurs="0"

maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="_1_column" type="xs:integer"/>

<xs:element name="_2_column" type="xs:string"/>

<xs:element name="_3_column="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</types>

For some notes on relational database object names and how to specify them so they can be used in
an XQuery, see “Relational Databases” on page 3-2.

Access ing SQL Ca l l s : S tor ed P rocedures and SQL Quer i es

10-10 Building Queries and Data Views

Rules for Procedure Names Containing a Semi-Colon
Sybase and Microsoft SQL Server databases provide the ability to group stored procedures by using a
semicolon character (;) to separate a procedure name with a number. For example, you can have two
stored procedures with the following names:

MY_SP;1

MY_SP;2

When you specify these procedures in the SQL Call Description File, use the database name (the name
with the semicolon character). When you use these procedure names in an XQuery, however, you must
substitute an underscore character (_) for the semicolon character. The Data View Builder
automatically substitutes the underscore character for the semicolon character in the XQuery it
generates.

For example, consider the following definition for a stored procedure in a SQL Call Description File:

<function name="MY_SP;2" return_type="Results">

<argument label="COLUMN_123" mode="input_only"

type="xs:string"/>

<argument label="ANOTHER_COLUMN" mode="output_only"

type="xs:int"/>

</function>

When you reference this function in an XQuery, it is referred to as follows:

MY_SP_2

Rules and Examples of <type> Declarations to Use in the
<function> return_type Attribute
The return_type attribute of the <function> element specifies the complex type for the stored
procedure. The complex type must be declared in the <types> section of the SQL Call Description
File. For example, the following element opening tag shows a function named myFunction with a
return_type of myReturnType:

<function name="myFunction" return_type="myReturnType" >

The return type myReturnType must be declared in the <types> section. The type must contain the
actual return value of the stored procedure (if it has a return value) and the row set definitions (if
applicable). The row set definitions must appear in the order in which the stored procedure returns
them.

Rules f or Spec i f y i ng SQL Cal l Desc r ip t ion F i l es

Building Queries and Data Views 10-11

When a stored procedure returns a primitive type, you must declare the primitive type using the
return_value keyword for the name attribute. For an example of this, see “Example 2: Type
Definition with Simple Return Value” on page 10-11.

Example 1: Type Definition with No Return Value
The following is a type definition for a stored procedure that has no return value and returns no row
sets.

<types>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="EmptyOutput">

<xs:complexType>

<xs:sequence>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

</types>

Use a similar type definition in a stored procedure that does not have any return value. This
EmptyOutput type definition is required for all stored procedures and functions that do not return
anything.

Example 2: Type Definition with Simple Return Value
The following is a type definition for a stored procedure that has a simple return value (xs:integer)
and returns no row sets.

<types>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="SimpleOutput">

<xs:complexType>

<xs:sequence>

<xs:element name="return_value"

type="xs:integer" />

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

</types>

Access ing SQL Ca l l s : S tor ed P rocedures and SQL Quer i es

10-12 Building Queries and Data Views

Use a similar type definition with a stored procedure that returns a status code or a single value.

Example 3: Type Definition for Complex Row Set Type
The following is a type definition for a stored procedure that returns a row set, which is a complex type.

<types>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="customerTable">

<xs:complexType>

<xs:sequence>

<xs:element name="CUSTOMER"

minOccurs="0"

maxOccurs="unbounded" >

<xs:complexType>

<xs:sequence>

<xs:element

name="C_NAME"

type="xs:string"/>

<xs:element

name="C_ACCTBAL"

type="xs:decimal"/>

</xs:sequence>

</xs:complexType>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

</types>

Use a similar type definition with a stored procedure that returns a result set (for example, in Sybase,
Microsoft SQL Server, or DB2).

Rules f or Spec i f y i ng SQL Cal l Desc r ip t ion F i l es

Building Queries and Data Views 10-13

Example 4: Type Definition with Complex Return Value
The following is a type definition for a stored procedure that returns a complex type. Assume that the
customerTable complex type (shown in the previous example) is defined in the same Stored
Procedure Definition file.

<types>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="return_value" type="customerTable">

</xs:element>

</xs:schema>

</types>

Use a similar type definition with an Oracle stored procedure that returns a cursor with a complex
type.

Example 5: Type Definition with Simple Return Value and Two Row Sets
The following is a type definition for a stored procedure that has a simple return value (xs:integer)
and returns two row sets.

<types>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

......

......{-- Definitions for complex types customerTable and

ordersTable go here --}

......

<xs:element name="OutputName">

<xs:complexType>

<xs:sequence>

<xs:element name="return_value"

type="xs:integer" />

<xs:element ref="customerTable" />

{-- customerTable defined

above--}

<xs:element ref="ordersTable" />

{-- ordersTable defined above --}

</xs:sequence>

</xs:complexType>

</xs:element>

Access ing SQL Ca l l s : S tor ed P rocedures and SQL Quer i es

10-14 Building Queries and Data Views

</xs:schema>

</types>

Rules for the mode Attribute output_only <argument>
Element
If you define a function that has an <argument> element that has the mode output_only, then you
need only reference the type definition in the function definition. The following example references
the customerTable type (defined in the <types> section of the SQL Call Description File, as
described in “Example 3: Type Definition for Complex Row Set Type” on page 10-12). Assume that the
customerTable type maps to a cursor returned from an Oracle stored procedure.

<function name="GetAllCustomersByState" return_type="EmptyOutput">

<argument label="state" mode="input_only" type="xs:string"/>

<argument label="CustomersOutput" mode="output_only"

type="customerTable"/>

</function>

Rules for Transforming the Function Signature When Hand
Writing an XQuery
There are two issues to remember when hand crafting an XQuery that accesses a stored procedure:

Namespace Declaration

Function Transformation

Namespace Declaration
All queries that access stored procedures must have a unique namespace with a URI of the of the
following form:

urn:<Liquid_Data_Relational_data_source_name>

Declare the namespace in the query prolog. The namespace declaration has the following syntax:

namespace <alias>="<URI>"

For example:

namespace SY_WL_NS="urn:SY-WL"

Rules f or Spec i f y i ng SQL Cal l Desc r ip t ion F i l es

Building Queries and Data Views 10-15

You can then access the stored procedure using the namespace alias and the name of the stored
procedure object. For example:

SY_WL_NS:wireless.dbo.RetAndOpParamTransformation("CUSTOMER_11")

Function Transformation
For stored procedures that return both a return value (for example, an integer return value) and have
output or input_output parameters, the function signature in the SQL Call Description File is
different from the signature that is used to write queries that access the stored procedure. If you look
at the schema that displays in the Stored Procedures palette of the Data View Builder, you will see the
transformed signature.

The transformed signature combines the return value and any output or input_output
parameters.

For example, consider an example using a Sybase stored procedure with the following signature:

create proc RetAndOpParamTransformation (@custidPattern varchar(64),

@custCount numeric(10) output)

 as

 select @custCount = count(*) from CUSTOMER

 where CUSTOMER.CUSTOMER_ID Like '%' + @custidPattern + '%'

RETURN 1

The following is the SQL Call Description File for this stored procedure:

<?xml version="1.0" encoding="UTF-8"?>

<definitions>

<types>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<!-- The stored procedure returns an integer, which is mapped as the

return_value, a reserved element name for stored procedure with a return.

-->

<xs:element name="RetAndOpParamTransformation">

<xs:complexType>

<xs:sequence>

<xs:element name="return_value"

type="xs:integer"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Access ing SQL Ca l l s : S tor ed P rocedures and SQL Quer i es

10-16 Building Queries and Data Views

</xs:schema>

</types>

<!-- The stored procedure signature mapping. The element

RetAndOpParamTransformation wraps the return_value of the stored procedure.

This stored procedure has custidPattern as an input parameter. custCount is

defined as an output parameter of type integer (because it returns an integer

count).

-->

<functions>

<function name="wireless.dbo.RetAndOpParamTransformation"

return_type="RetAndOpParamTransformation">

<argument label="custidPattern" mode="input_only"

type="xs:string"/>

<argument label="custCount" mode="output_only"

type="xs:integer"/>

<presentation group="Sample to show transformation of

return_value and output prameter in a stored procedure"/>

</function>

</functions>

</definitions>

Because this stored procedure has a return value and an output parameter, the output of the function
is transformed to the following schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="RetAndOpParamTransformation">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="return_value"

type="xsd:integer"/>

<xsd:element name="custCount" type="xsd:integer"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

where the return_value is the return from the stored procedure and custCount is the output
parameter. If you view this stored procedure in the Data View Builder, you will see the transformed
schema.

Sample SQL Cal l Desc r ip t ion F i l es

Building Queries and Data Views 10-17

The following is a query against this stored procedure:

namespace SY-WL-NS = "urn:SY-WL"

let $SY_WL_SP_Return :=

SY-WL-NS:wireless.dbo.RetAndOpParamTransformation("CUSTOMER_11")

return

<RetAndOpParamTransformation>

<return_value>{

xf:data($SY_WL_SP_Return/RetAndOpParamTransformation/return_value) }

</return_value>

<custCount>{

xf:data($SY_WL_SP_Return/RetAndOpParamTransformation/custCount) }

</custCount>

</RetAndOpParamTransformation>

In this query, the XPath expressions for return_value and for custCount have the same parent
element.

Sample SQL Call Description Files
This section shows several sample SQL Call Description Files. For simplicity and readability, each of
the examples shown defines a single stored procedure and its supporting type; your SQL Call
Description Files can define multiple stored procedures and multiple types. For information on
samples installed with Liquid Data, including a stored procedure sample and a SQL Call example, see
“Samples Installed with Liquid Data” in Liquid Data by Example.

This section includes the following examples:

DB2 Simple input_only, output_only, and input_output Example

Oracle Cursor Output Parameter Example

DB2 Multiple Result Set Example

Oracle Cursor as return_value

Oracle SQL Statement With Subquery

../samples/installedsamples.html

Access ing SQL Ca l l s : S tor ed P rocedures and SQL Quer i es

10-18 Building Queries and Data Views

DB2 Simple input_only, output_only, and input_output
Example
The following SQL Call Description File describes a DB2 stored procedure that returns simple data
types with input_only, output_only, and input_output parameters.

<?xml version="1.0" encoding="UTF-8"?>

<definitions>

<types>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="EmptyOutput">

<xs:complexType>

<xs:sequence>

</xs:sequence>

</xs:complexType>

</xs:schema>

</types>

<functions>

<!-- given a customer id if valid, returns as output

parameters all the customer details -->

<function name="CALLINCALLOUT" return_type="EmptyOutput">

<argument label="custid" mode="input_only" type="xs:string"/>

<argument label="fname" mode="output_only" type="xs:string"/>

<argument label="lname" mode="output_only" type="xs:string"/>

<argument label="telephoneNumber" mode="output_only"

type="xs:long"/>

<argument label="customerSinceAsData" mode="output_only"

type="xs:date"/>

<argument label="customerSinceAsTimeStamp"

mode="output_only" type="xs:dateTime"/>

<presentation group="DB2 stored procedures"/>

 </function>

</functions>

</definitions>

The following is the stored procedure signature for this SQL Call Description File. This signature
creates a procedure that has one simple input and returns five simple outputs.

Sample SQL Cal l Desc r ip t ion F i l es

Building Queries and Data Views 10-19

CREATE PROCEDURE DB2ADMIN.CALLINCALLOUT (

IN CUSTID varchar(64), OUT FNAME varchar(4000),

OUT LNAME varchar(4000), OUT TELEPHONENUMBER bigint,

OUT CUSTOMERSINCE date, OUT CUSTOMERSINCE1 timestamp)

EXTERNAL NAME

'"DB2ADMIN".SQL30205005750980:db2test.CallInCallOut.callInCallOut'

SPECIFIC DB2ADMIN.CALLINCALLOUT

RESULT SETS 0

LANGUAGE JAVA

PARAMETER STYLE JAVA

NOT DETERMINISTIC

FENCED NO

DBINFO NULL

CALL MODIFIES SQL DATA

Access ing SQL Ca l l s : S tor ed P rocedures and SQL Quer i es

10-20 Building Queries and Data Views

Oracle Cursor Output Parameter Example
The following SQL Call Description File describes an Oracle stored procedure that returns an output
parameter as a cursor.

<?xml version="1.0" encoding="UTF-8"?>

<definitions>

<types>

<xs:element name="OutCursor">

<xs:complexType>

<xs:sequence>

<xs:element name="CUSTOMER" minOccurs="0"

maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="C_CUSTKEY" type="xs:integer"/>

<xs:element name="C_FNAME" type="xs:string"/>

<xs:element name="C_LNAME" type="xs:string"/>

<xs:element name="C_STATE" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="Output">

<xs:complexType>

<xs:sequence/>

</xs:complexType>

</xs:element>

</xs:schema>

</types>

<functions>

<function name="TEST_PACKAGE.GETCUSTOMER" return_type="Output">

<argument label="CUSTID" mode="input_only" type="xs:string"/>

<argument label="customer_OUT" mode="output_only"

type="OutCursor"/>

<presentation group="OR-TEST stored procedures"/>

</function>

Sample SQL Cal l Desc r ip t ion F i l es

Building Queries and Data Views 10-21

</functions>

</definitions>

The following is the stored procedure signature for this SQL Call Description File. This signature
creates a procedure that returns a cursor as an output parameter.

create or replace package test_package as
-- Stored procedure that returns a cursor as an output parameter
procedure getCustomer

(CUSTOMERID IN VARCHAR, cust_cursor1 OUT ref_cursor);
end test_package ;

DB2 Multiple Result Set Example
The following SQL Call Description File describes a DB2 stored procedure that returns multiple result
sets.

<?xml version="1.0" encoding="UTF-8"?>

<definitions>

<types>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="CustomerAndOrders">

<xs:complexType>

<xs:sequence>

<xs:element ref="resultSetCustomer"/>

<xs:element ref="resultSetCustomerOrders"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="resultSetCustomer">

<xs:complexType>

<xs:sequence>

<xs:element name="customerRow" minOccurs="1"

maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="C_CUSTKEY" type="xs:string"/>

<xs:element name="C_FNAME" type="xs:string"/>

<xs:element name="C_LNAME" type="xs:string"/>

<xs:element name="C_STATE" type="xs:string"/>

Access ing SQL Ca l l s : S tor ed P rocedures and SQL Quer i es

10-22 Building Queries and Data Views

<xs:element name="C_SINCE" type="xs:date"/>

<xs:element name="C_TELEPHONENO" type="xs:long"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="resultSetCustomerOrders">

<xs:complexType>

<xs:sequence>

<xs:element name="orderRow" minOccurs="1"

maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="C_CUSTKEY" type="xs:string"/>

<xs:element name="CO_ORDERKEY" type="xs:string"/>

<xs:element name="CO_ORDERDATE" type="xs:date"/>

<xs:element name="CO_SHIPMETHOD" type="xs:date"/>

<xs:element name="CO_TOTALORDERAMT" type="xs:decimal"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

</types>

<functions>

 <!-- result one returns a customer, result 2 has the

orders for that customer -->

<function name="CALLMULTIPLERESULTSET"

return_type="CustomerAndOrders">

<argument label="custid" mode="input_only" type="xs:string"/>

<presentation group="DB2 stored procedures"/>

</function>

Sample SQL Cal l Desc r ip t ion F i l es

Building Queries and Data Views 10-23

</functions>

</definitions>

The following is the stored procedure signature for this SQL Call Description File. This signature
creates a procedure that returns multiple result sets.

CREATE PROCEDURE DB2ADMIN.CALLMULTIPLERESULTSET (

IN CUSTID varchar(64))

EXTERNAL NAME

'"DB2ADMIN".SQL30206110348560:db2test.CallMultipleResultSet.callMulti

pleResultSet'

SPECIFIC DB2ADMIN.CALLMULTIPLERS

RESULT SETS 2

LANGUAGE JAVA

PARAMETER STYLE JAVA

NOT DETERMINISTIC

FENCED NO

DBINFO NULL

CALL MODIFIES SQL DATA

Oracle Cursor as return_value
The following SQL Call Description File describes an Oracle stored procedure that returns a cursor as
a return_value.

<?xml version="1.0" encoding="UTF-8"?>

<definitions>

<types>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Output_TEST_PACKAGE.GETCUSTOMERBYID">

<xs:complexType>

<xs:sequence>

<xs:element name="return_value">

<xs:complexType>

<xs:sequence>

<xs:element maxOccurs="unbounded" minOccurs="0"

name="customer">

<xs:complexType>

<xs:sequence>

<xs:element name="FIRST_NAME" type="xs:string"/>

Access ing SQL Ca l l s : S tor ed P rocedures and SQL Quer i es

10-24 Building Queries and Data Views

<xs:element name="LAST_NAME" type="xs:string"/>

<xs:element name="CUSTOMER_ID" type="xs:string"/>

<xs:element name="STATE" type="xs:string"/>

<xs:element name="ZIPCODE" type="xs:string"/>

<xs:element name="CITY" type="xs:string"/>

<xs:element name="STREET_ADDR2"

type="xs:string"/>

<xs:element name="STREET_ADDR1"

type="xs:string"/>

<xs:element name="CUSTOMER_SINCE"

type="xs:dateTime"/>

<xs:element name="EMAIL_ADDRESS"

type="xs:string"/>

<xs:element name="TELEPHONE_NUMBER"

type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

</types>

<functions>

<function name="TEST_PACKAGE.GETCUSTOMERBYID"

return_type="Output_TEST_PACKAGE.GETCUSTOMERBYID">

<argument label="CUSTID" mode="input_only" type="xs:string"/>

</function>

</functions>

</definitions>

The following is the stored procedure signature for this SQL Call Description File. This signature
creates a procedure that returns a cursor.

Sample SQL Cal l Desc r ip t ion F i l es

Building Queries and Data Views 10-25

create or replace package body test_package as
-- SP that returns a cursor
FUNCTION getCustomerByID (custID varchar)

RETURN CUST_CURSOR IS cur CUST_CURSOR;
BEGIN

open cur for
select first_name, last_name, customer_id, state,

zipCode,city, street_address2, street_address1,
customer_since, email_address, telephone_number

from wireless.customer
where customer_id = custID;

return cur;
END;

end test_package ;

Oracle SQL Statement With Subquery
The following SQL Call Description File defines a SQL statement with a subquery and syntax specific
to Oracle.

<?xml version="1.0" encoding="UTF-8"?>

<definitions>

<types>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Customers">

<xs:complexType>

<xs:sequence>

<xs:element ref="resultSetCustomer"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="resultSetCustomer">

<xs:complexType>

<xs:sequence>

<xs:element name="customerRow" minOccurs="0"maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="CUSTOMER_ID" type="xs:string"/>

<xs:element name="ORDER_ID" type="xs:string"/>

<xs:element name="LINE_ID" type="xs:string"/>

Access ing SQL Ca l l s : S tor ed P rocedures and SQL Quer i es

10-26 Building Queries and Data Views

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

</types>

<functions>

<function name="GetOrderInfoSQL" return_type="Customers" >

<sql_statement>

SELECT t1.customer_id, t2.order_id, t3.line_id from

customer t1,

(SELECT * from customer_order where customer_id != 'CUSTOMER_1') t2,

customer_order_line_item t3

where t1.customer_id = ? and t2.customer_id (+) = t1.customer_id and

t3.order_id(+)=t2.order_id

</sql_statement>

<argument label="customer_id" mode="input_only" type="xs:string"/>

<presentation group="Oracle SQL Call"/>

</function>

</functions>

</definitions>

Stor ed P rocedure Suppor t by Database

Building Queries and Data Views 10-27

Stored Procedure Support by Database
This section lists stored procedure support by database vendor. Each vendor supports the data types
supported in their respective databases. The following databases are supported:

Oracle

Microsoft SQL Server

Sybase

IBM DB2

Informix

Oracle
Table 10-3 describes the stored procedure support for Oracle databases. Table 10-4 describes Oracle
stored procedures return values.

Table 10-3 Oracle Stored Procedure parameter support

Parameter Mode Data Types Supported Notes and Restrictions

input_only Only database data types that you
can map to one of the Liquid Data
primitive types defined in
“Supported Datatypes” on page 10-8.

• The PL/SQL %TYPE
definitions must be translated
to the XML schema types
defined in “Supported
Datatypes” on page 10-8.

output_only • A Cursor

• Only database data types that
you can map to one of the Liquid
Data primitive types defined in
“Supported Datatypes” on
page 10-8.

input_output Only database data types that you
can map to one of the Liquid Data
primitive types defined in
“Supported Datatypes” on page 10-8.

Access ing SQL Ca l l s : S tor ed P rocedures and SQL Quer i es

10-28 Building Queries and Data Views

Microsoft SQL Server
Table 10-5 describes the stored procedure support for Microsoft SQL Server databases. Table 10-6
describes Microsoft SQL Server stored procedures return values.

Table 10-4 Oracle Stored Procedure returned values support

Return Value Types Supported

Primitive type An primitive type such as an integer, a
string, etc.

Return cursor See Table 10-3.

Table 10-5 Microsoft SQL Server Stored Procedure parameter support

Parameter Mode Data Types Supported Notes and Restrictions

input_only Only database data types that you
can map to one of the Liquid Data
primitive types defined in
“Supported Datatypes” on page 10-8.

• You must map TINYINT
values to xs:short in the
SQL Call Description File.

output_only Only database data types that you
can map to one of the Liquid Data
primitive types defined in
“Supported Datatypes” on page 10-8.

• You must map TINYINT
values to xs:short in the
SQL Call Description File.

Table 10-6 Microsoft SQL Server Stored Procedure returned values support

Return Value Types Supported Notes and Restrictions

Return Status code An integer value.

Row Set Single or multiple result sets. • You must map TINYINT values to
xs:short in the SQL Call
Description File.

Stor ed P rocedure Suppor t by Database

Building Queries and Data Views 10-29

If you are using procedure groups, see “Rules for Procedure Names Containing a Semi-Colon” on
page 10-10 for information on mapping the procedure names to the SQL Call Description File and
using the names in an XQuery.

Microsoft SQL Server parameter names begin with the @ character, but the name must appear in the
SQL Call Description File without the @ character. For example, a parameter named
@myInputParameter must be mapped as myInputParameter.

Sybase
Table 10-7 describes the stored procedure support for Sybase databases. Table 10-8 describes Sybase
stored procedures return values.

If you are using procedure groups, see “Rules for Procedure Names Containing a Semi-Colon” on
page 10-10 for information on mapping the procedure names to the SQL Call Description File and
using the names in an XQuery.

Table 10-7 Sybase Stored Procedure parameter support

Parameter Mode Data Types Supported Notes and Restrictions

input_only Only database data types that you
can map to one of the Liquid Data
primitive types defined in
“Supported Datatypes” on page 10-8.

• You must map TINYINT
values to xs:short in the
SQL Call Description File.

output_only Only database data types that you
can map to one of the Liquid Data
primitive types defined in
“Supported Datatypes” on page 10-8.

• You must map TINYINT
values to xs:short in the
SQL Call Description File.

Table 10-8 Sybase Stored Procedure returned values support

Return Value Types Supported Notes and Restrictions

Return Status code An integer value.

Row Set Single or multiple result sets. • You must map TINYINT values to
xs:short in the SQL Call
Description File.

Access ing SQL Ca l l s : S tor ed P rocedures and SQL Quer i es

10-30 Building Queries and Data Views

Sybase parameter names begin with the @ character, but the name must appear in the SQL Call
Description File without the @ character. For example, a parameter named @myInputParameter
must be mapped as myInputParameter.

Stor ed P rocedure Suppor t by Database

Building Queries and Data Views 10-31

IBM DB2
Table 10-9 describes the stored procedure support for IBM DB2 databases. Table 10-10 describes IBM
DB2 stored procedures return values.

Table 10-9 IBM DB2 Stored Procedure parameter support

Parameter Mode Data Types Supported

input_only Only database data types that you can map to one
of the Liquid Data primitive types defined in
“Supported Datatypes” on page 10-8.

output_only Only database data types that you can map to one
of the Liquid Data primitive types defined in
“Supported Datatypes” on page 10-8.

input_output Only database data types that you can map to one
of the Liquid Data primitive types defined in
“Supported Datatypes” on page 10-8.

Table 10-10 IBM DB2 Stored Procedure returned values support

Return Value Types Supported

Primitive type An primitive type such as an integer, a
string, etc.

Row Set Single or multiple result sets.

Access ing SQL Ca l l s : S tor ed P rocedures and SQL Quer i es

10-32 Building Queries and Data Views

Informix
Table 10-11 describes the stored procedure support for Informix databases. Table 10-12 describes
Informix stored procedures return values.

Table 10-11 Informix Stored Procedure parameter support

Parameter Mode Data Types Supported

input_only Only database data types that you can map to
one of the Liquid Data primitive types defined in
“Supported Datatypes” on page 10-8.

Table 10-12 Informix Stored Procedure returned values support

Return Value Types Supported

Row Set Single or multiple result sets.

Using S to red Pr ocedures in Quer ies

Building Queries and Data Views 10-33

Using Stored Procedures in Queries
You can use stored procedures to build queries in the Data View Builder just like you use other data
sources. Drag and drop input elements into the inputs of the procedure and drag and drop output
elements to combine with other sources or to map onto a target XML schema.

Figure 10-13 Drag and Drop Input Elements into the Elements of the Stored Procedure

This section shows an example of defining a stored procedure and then using it in a query, and is
divided into the following sections:

Define Stored Procedures to Liquid Data

Example: Defining and Using a Customer Orders Stored Procedure

Define Stored Procedures to Liquid Data
You must define the stored procedures to Liquid Data before you can use them in queries. For details,
see “To Define Stored Procedures to Liquid Data” on page 10-2. To use a stored procedure in the Data

Access ing SQL Ca l l s : S tor ed P rocedures and SQL Quer i es

10-34 Building Queries and Data Views

View Builder, select Stored Procedures from the Sources tab, navigate to your stored procedure, then
drag and drop it into the design workspace. You can then connect data by dragging and dropping
inputs and outputs.

Example: Defining and Using a Customer Orders Stored
Procedure
This example details the steps to define a stored procedure to Liquid Data and then use it in a query.
This example is similar to the example installed in the following directory:

BEA_HOME/liquiddata/samples/buildQuery/stored-procedure

The demo in this directory includes the SQL Call Description File and a Data View Builder project file.

Business Scenario
The stored procedure in this example answers the following business question: For all orders greater
than or equal to $500.00, find the number of orders and the total value of all of those orders for a given
customer.

View a Demo
Stored Procedure Demo... If you are looking at this documentation online, you can click the “Demo”
button to see a viewlet demo showing how to define a stored procedure and use it in a query. This demo
previews the steps described in detail in the following sections.

Step 1: Create the Stored Procedure in the Database
You must have stored procedures defined in your database before you can access them through Liquid
Data.

Every database has its own way of creating stored procedures. This sample uses a Pointbase database,
and Pointbase uses Java stored procedures. The source code for the sample stored procedure is
installed with Liquid Data in the following file:

BEA_HOME/liquiddata/samples/buildQuery/stored-procedure/pbsp.java

The signature for this stored procedure is created with the following SQL statements:

create procedure

GetOrderInfo(IN P1 VARCHAR(20), IN P2 INTEGER,

OUT P3 INTEGER, OUT P4 INTEGER)

LANGUAGE JAVA

Using S to red Pr ocedures in Quer ies

Building Queries and Data Views 10-35

SPECIFIC GetOrderInfo

EXTERNAL NAME "com.bea.ldi.sample.pbsp::GetOrderInfo"

PARAMETER STYLE SQL;

Step 2: Create the SQL Call Description File
For details on the structure of the SQL Call Description File, see “SQL Call Description File” on
page 10-3 and “Rules for Specifying SQL Call Description Files” on page 10-8.

The SQL Call Description File for this example defines an empty complex type in the <types> section
and defines a function that returns that complex type in the <functions> section. The function
definition contains <argument> elements for each input and output argument. The <argument>
elements specify the name (label attribute), parameter type (mode attribute), and data type (type
attribute) for each input and output of the stored procedure.

The following is a code listing of the SQL Call Description File for this example.

<?xml version="1.0" encoding="UTF-8"?>

<definitions>

<types>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Results">

<xs:complexType>

<xs:sequence>

 </xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

</types>

<functions>

<function name="GetOrderInfo" return_type="Results">

<argument label="customer_id" mode="input_only"

type="xs:string"/>

<argument label="order_amount" mode="input_only"

type="xs:integer"/>

<argument label="totalsum" mode="output_only"

type="xs:integer"/>

<argument label="totalorder" mode="output_only"

Access ing SQL Ca l l s : S tor ed P rocedures and SQL Quer i es

10-36 Building Queries and Data Views

type="xs:integer"/>

<presentation group="Pointbase stored procedures"/>

</function>

</functions>

</definitions>

Step 3: Specify the SQL Call Description File in the Liquid Data Console
Perform the following steps to specify the SQL Call Description File in the data source description:

1. In the WebLogic Administration Console (to access the Liquid Data Console, click the Liquid Data
link at the bottom of the list on the WebLogic Administration Console), click the Data Sources tab.

2. Click the Relational Databases tab.

3. Select an existing relational data source and edit it or create a new relational data source.

If you are creating a new data source, you must also configure a JDBC Connection Pool to
access your database and a JDBC Data Source for the connection pool.

4. In the Configure Relational Data Source Description screen, enter values for Name, Data Source
Name, and Schema fields, if they are not already entered. For more details on configuring
relational data sources, see Configuring Access to Relational Databases in the Administration
Guide.

5. In the Configure Relational Data Source Description screen, click the Browse Repository link
next to the SQL Call Description File field.

6. In the Repository Browser, select the file you created containing your stored procedure
definitions. After making your selection, click the Select button.

7. In the Configure Relational Data Source Description screen, click the Apply button to save your
Data Source definition.

Step 4: Open the Data View Builder to See Your Stored Procedures
Start the Data View Builder and connect to the Liquid Data server. If you are already connected, run
the File > Connect command to reconnect. If you configured the Stored procedure correctly, it
appears in the Sources tab as one of the stored procedures.

Step 5: Use the Stored Procedure in a Query
Perform the following steps in the Data View Builder to create a query that uses the stored procedure.

Using S to red Pr ocedures in Quer ies

Building Queries and Data Views 10-37

1. Start a new Data View Builder project (File —> New Project).

2. Open the source and target schemas.

– Drag and drop Source —> Stored Procedure —> PB-WL —> getOrderInfo into the
design area.

– Set the target schema to getorderinfo.xsd (in the repository).

3. Create a query parameter named CUST_ID of type xs:string for customer_id.

4. Drag the CUST_ID query parameter into the customer_id stored procedure input.

5. Create a numeric constant of 500 and drag it into the order_amount input parameter.

6. Drag the totalsum stored procedure output to the totalsum element of the target schema.

7. Drag the totalorder stored procedure output to the totalorder element of the target
schema.

Step 6: Run the Query
Perform the following to run this query:

1. Click the test tab in the Data View Builder.

2. Enter a value for the CUST_ID query parameter. For example, enter CUSTOMER_1.

3. Click the Run button. The results will look similar to the following:

<Results>

<totalsum>7000</totalsum>

<totalorder>3</totalorder>

</Results>

Access ing SQL Ca l l s : S tor ed P rocedures and SQL Quer i es

10-38 Building Queries and Data Views

Building Queries and Data Views Index-1

Index

Symbols
../admin/userdefineddatatype.html#1047392 2-15,
2-28, 6-5

A
ad hoc query 1-7
application view

as supported data source 3-3
automatic type casting 5-59

B
BEA corporate Web site -xiv

C
comma separated value (CSV) files

as supported data source 3-4
compile query 2-10
complex parameter types

defining in Toolbox tab 2-12
Complex Parameter Types, Using 9-1
components

accessing from the Toolbar 2-13
constants

accessing from Toolbox tab 2-12
CPT (Complex Paramater Type) 9-1
custom functions

accessing from Toolbox tab 2-12
use cases for 9-2

customer support contact information -xv

D
data sources

order optimization 7-5
data view

as supported data source 3-3
data views

simple and parameterized 8-3
using as data sources 8-4, 9-7

Design tab 2-3
documentation, where to find it -xiv

F
functions

accessing from Toolbox tab 2-12
introduction to use of in Data View Builder 1-6

H
hints

for parameter passing 7-8
merge 7-10
optimizing queries with 7-6
ppleft 7-8
ppright 7-8

I
IBM DB2

stored procedure support 10-31
Informix

stored procedure support 10-32

Index-2 Building Queries and Data Views

J
join

adding hints for optimizing query performance
7-6

definition 1-5

L
Liquid Data documentation Home page -xiv

M
Microsoft SQL Server

stored procedure support 10-28

N
namespaces, XML 4-13
naming conventions

for queries 6-6
for stored queries to be generated as Web

services 6-7

O
optimization

data source order in query 7-5
hints for joins 7-6

Optimize tab 2-22
optional element, suppress when empty 5-30
Oracle

stored procedure support 10-27

P
parameter

types 5-12
parameters

introduction to use of in functions 1-6
ppleft 7-8
ppright 7-8
print, how to -xiv

printing product documentation -xiv

Q
query

ad hoc 1-7
optimizing source order in 7-5
plans 1-7
running 6-3
saving 6-6
saving as a stored query 6-7
stopping while running 6-4
stored 1-7
testing 6-3

query parameters 5-10
defining in Toolbox tab 2-12
introduction to use of in functions 1-6
submitting at query runtime 2-28
types 5-12

query plan
definition 1-7

R
related information -xv

S
schemas

off-line (unavailable) 2-30, 4-12
resolving imported schemas 4-12
source-introduction 1-4, 4-2
target-introduction 1-4, 4-2

source
order optimization 7-5

source schema
introduction 1-4, 4-2

SQL Call Description File
DB2 multiple result sets 10-21
elements and attributes 10-6
Oracle cursor as a return_value 10-23
Oracle cursor output parameter 10-20

Building Queries and Data Views Index-3

overview 10-3
rules for specifying 10-8
sample files 10-17
schema definition file 10-4

SQL query in scdf file 10-25
stored procedure

support by database 10-27
stored procedures

as supported data source 3-3
defining to Liquid Data 10-2
example 10-34
overview 10-1
using in queries 10-33

stored query
definition 1-7
saving as 6-7

support
technical -xv

Sybase
stored procedure support 10-29

T
target schema

introduction 1-4, 4-2
namespaces 4-17
understanding 4-7

Test tab 2-23
type casting

automatic in Data View Builder 5-59

U
union

definition 1-5

W
Web services

definition 3-3
naming conventions for queries 6-7

World Wide Web Consortium (W3C) -xiii

X
XML -xiii, -xiv

XML files as supported data source 3-3
XML file

definition 3-3
XML namespaces 4-13
XQuery -xiii

Index-4 Building Queries and Data Views

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	Introduction
	Data View Builder Overview
	Benefits of the Data View Builder
	How the Data View Builder Works

	Key Concepts of Query Building
	Data Sources
	Source and Target Schemas
	Queries and Query Joins, Unions, Aggregates, and Functions
	Joins
	Unions
	XQuery Functions
	Query Parameters
	Constants

	Stored Queries
	Ad Hoc Queries
	Query Plans

	How This Book is Organized
	Next Steps

	Data View Builder GUI Reference
	Starting the Data View Builder
	Data View Builder GUI Tour
	Design Tab
	Overview Picture of Design Tab Components
	1. Menu Bar for the Design Tab
	2. Toolbar for the Design Tab
	3. Builder Toolbar
	4. Source Schemas
	5. Target Schema
	6. Conditions Tab
	7. Mappings Tab
	8. Sort By Tab
	9. Status Bar

	Optimize Tab
	Test Tab
	Overview Picture of Test Tab Components
	1. Menu Bar for the Test Tab
	2. Toolbar for the Test Tab
	3. Builder-Generated XQuery
	4. Query Parameters: Submitted at Query Runtime
	5. Query Results - Large Results
	6. Run Query
	7. Result of a Query

	Working With Liquid Data Projects
	Using Schemas Saved With Projects
	Save Target Schema to Repository

	Next Steps: Building and Testing Sample Queries

	Data Sources
	Relational Databases
	XML Files
	Web Services
	Application Views
	Data Views
	SQL Calls
	Delimited Files

	Schemas and Namespaces in Liquid Data
	Source and Target Schemas
	Source Schemas
	Using Source Schemas Multiple Times in Constructing Queries

	Target Schemas
	Guidelines for Working With Target Schemas
	Managing Target Schemas

	Using Schemas Saved With Projects
	Schema Import Resolution Rules
	Understanding XML Namespaces
	XML Namespace Overview
	Predefined Namespaces in XQuery
	Other XML Namespace References

	Using XML Namespaces in Liquid Data Queries and Schemas
	Namespace Declarations in XQuery Prolog
	Defining Namespaces in Target Schema
	Data Sources that Require Namespace Declarations

	Migrating Liquid Data 1.0 Queries

	Building Queries
	Defining Query Requirements
	Examples Set-up
	Using the Function Editor

	Managing Query Components
	Data Sources
	Creating and Using Constants
	Using Constants with Functions

	Creating and Using Query Parameters
	Using XQuery Functions
	Mapping Elements to Functions

	Working With Source and Target Schema Elements
	Supported Drag-and-Drop Actions in the Data View Builder
	Mapping to Target Schemas
	Mapping Elements and Attributes Between Source and Target Schema
	Complex Element Mappings
	Expanding Mapped Complex Elements
	Removing Mappings

	Modifying Target Schemas
	Managing Target Schema Properties
	Examples Illustrating How Repeatable and Optional Properties Can be Used to Better Filter Query R...

	Setting Query Conditions
	Working With the Conditions Panel
	Enabling or Disabling Conditions
	Removing Conditions
	Editing Conditions

	Understanding Condition Scoping
	Where Scope Applies
	Setting Condition Scope
	Scope Recursion Errors
	Scoping Example
	Task Flow Model for Advanced View Manual Scoping

	Sorting Query Results
	Using Existential Condition Checking in Queries
	An Existential Example

	Using Automatic Type Casting
	Automatic Type Casting Transformations
	Exceptions to Automatic Type Casting

	Running, Saving, and Deploying Queries
	Test Mode
	Viewing a Generated Query
	Editing a Generated Query

	Running a Query
	Stopping a Running Query
	Specifying Large Results Sets
	Specifying Query Parameters
	Setting and Changing Query Parameters

	Saving a Query
	Security Considerations
	Query Naming Conventions
	Using the stored_queries Folder
	Caching Query Results
	Steps to Save a Query to the Repository

	Deploying a Query
	Deploy Query Command
	Saving the Current Schema and Current Query
	Deploying Your Query
	Deploying a Stored Query with a Data View

	Analyzing and Optimizing Queries
	Query Analysis
	Viewing the Query Plan
	Getting Information on the Query

	Factors in Query Performance
	Optimizing Queries
	Source Order Optimization
	Example of Source Order Optimization

	Optimization Hints
	Determining When Hints Are Needed
	Using the Liquid Data Built-in Optimizer
	Using Parameter Passing Hints (ppleft or ppright)
	Using Merge Hints

	Using Data Views
	The Enterprise and the Data View
	Understanding Data Views
	A Data View Use Case
	Simple and Parameterized Data Views
	Using Data Views as Data Sources

	Creating a Data View
	Creating and Saving the Query to the Liquid Data Repository
	Configuring a Data View Data Source Description
	Adding a Data View as a Data Source

	Creating a Parameterized Data View
	Data View Query Samples

	Using Complex Parameter Types in Queries
	Understanding Complex Parameter Types
	A CPT Use Case
	Understanding CPT Schema and Data
	Sample CPT Schema
	Sample XML Data Stream

	Notes on Hand-Crafting CPT XQueries
	Unique Namespace
	XQuery of type element Declaration

	Creating a Complex Parameter Type
	Step 1. Create a CPT Schema
	Step 2. Create Your Runtime Source
	Step 3. Define Your CPT in the Administration Console
	Step 4. Build Your Query
	Step 5. Run Your Query

	Complex Parameter Type Query Samples

	Accessing SQL Calls: Stored Procedures and SQL Queries
	Defining Stored Procedures to Liquid Data
	To Define Stored Procedures to Liquid Data

	SQL Call Description File
	Basic Structure
	Type Definitions
	Function Definitions

	Schema Definition File for SQL Call Description File
	Element and Attribute Reference for SQL Call Description File
	Supported Datatypes

	Rules for Specifying SQL Call Description Files
	Rules for Element and Attribute Names
	Rules for Procedure Names Containing a Semi-Colon
	Rules and Examples of <type> Declarations to Use in the <function> return_type Attribute
	Example 1: Type Definition with No Return Value
	Example 2: Type Definition with Simple Return Value
	Example 3: Type Definition for Complex Row Set Type
	Example 4: Type Definition with Complex Return Value
	Example 5: Type Definition with Simple Return Value and Two Row Sets

	Rules for the mode Attribute output_only <argument> Element
	Rules for Transforming the Function Signature When Hand Writing an XQuery
	Namespace Declaration
	Function Transformation

	Sample SQL Call Description Files
	DB2 Simple input_only, output_only, and input_output Example
	Oracle Cursor Output Parameter Example
	DB2 Multiple Result Set Example
	Oracle Cursor as return_value
	Oracle SQL Statement With Subquery

	Stored Procedure Support by Database
	Oracle
	Microsoft SQL Server
	Sybase
	IBM DB2
	Informix

	Using Stored Procedures in Queries
	Define Stored Procedures to Liquid Data
	Example: Defining and Using a Customer Orders Stored Procedure
	Business Scenario
	View a Demo
	Step 1: Create the Stored Procedure in the Database
	Step 2: Create the SQL Call Description File
	Step 3: Specify the SQL Call Description File in the Liquid Data Console
	Step 4: Open the Data View Builder to See Your Stored Procedures
	Step 5: Use the Stored Procedure in a Query
	Step 6: Run the Query

	Index

