0?7,

r
S’ 7
L/

BEALIquid Data for
WebLogic-

XQuery Reference Guide

Version 8.1
Document Date: December 2003
Revised: December 2003

Copyright

Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy the
software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine readable form without prior consent, in writing, from
BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License Agreement
and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR 52.227-19; subparagraph
(¢)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013, subparagraph (d) of the
Commercial Computer Software--Licensing clause at NASA FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER,
BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY,
RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign Manager for
WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA WebLogic Workshop and
How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Contents

About This Document

What YouNeed t0 Know xi
e-docs Web Site xii
How to Print the Documento Xii
Related Information oo xii
Contact Us!. e xii
Documentation Conventionst xiii
XQuery and XML Specification Implementation
Supported XQuery and XML Schema Versions In Liquid Data 1-2
D8 1<) 2 1-2
XQuery Functions and Operatorsc.o.uutiie ittt 1-2
XML SCREMAot e 1-2
WBC XML and XQUETY. . . o oottt ettt ettt ettt ettt ettt 1-3
XQuery Use in Liquid Data and the Data View Builder. it 1-3
Learning More About the XQuery Languagecooiiiiteeeeeiiiiiiineeeeeennns 14
Understanding XQuery in Liquid Data
XQuery Syntax in Liquid Data 2-2
QUETY_PIOLOBUE . . .\ttt ettt et e e e e e e e 2-2
namespace_declaration. i e e 2-2
QUETY_EXPIESSION . . v v vttt ettt ettt e ettt et e e e e 2-3
variable_definition..........cou i 2-3
XQuery Reference Guide iii

iv

qualified_name ...ttt e e 2-4

SOTtDY_EXPIeSSION . . .\ttt ettt et e e e 2-4

XQUETrY EXPressions.ottt ettt et e 2-7
XML Markup EXpression.vveuute e i 2-7
FLWR EXPreSSION. . . oottt ettt e e e 2-9
PATH EXPressions . .. ovv ittt ettt ittt et et e 2-12
Conditional Expressions (if-then-else)............ccvuiiiiiiiiiii i, 2-15
Built-In Functions. 2-16
COMSEANES . . vt 2-16
String Constantsoouuiiiiiii i i i e 2-16

Numeric Constantsouviuiiiiiii i 2-17
Variableso 2-17
(0075321 10) - Rt 2-18
Quantified EXpPressions.vuittiiiiiii i 2-19
QUETY Parameterso 2-20
XQuery Comments and Join Hints. e 2-20
COMIMENES. . ..ottt e 2-20
JoInHINtS . ..o 2-21
Specifying Joins and Unions in XQUeTrY.ttt iiiiiiieeenns 2-21
Using Multiple For Statements to Create aResultot 2-22
Working From a Hierarchical Result Document Backwards: a Technique 2-23
Specifying Aggregates and Groups (Group By)c.coiviiii i, 2-27
Specifying a Union-All QUeTYovtiii i 2-29
Reading the XQuery Syntax Diagrams.ttt 2-30
Text CONVENtIONSo\ttt e 2-30
Follow the Lines and Arrows Coming Into the Diagram............................ 2-30
Blocks with No Arrows Indicate Optional Contentcciiiiiin. 2-31
Blocks with Arrows (Loops) Indicate Repeatable Options. 2-31

XQuery Reference Guide

3. Functions Reference

About Liquid Data XQuery FUunctions.covuuiiiiiiiii e, 3-2
Naming Conventions.uunurtt et i i 3-2
Occurrence INdicatorsovuu i e 3-3
Data T DS . . o vttt e 3-3
Date and Time Patterns. 3-7

Accessor and Node Functions 3-8
XEAABA ..o 3-9
xfidocument (format 1)o e 3-10
xfidocument (format 2) 3-11
XEI0CAl-NAINE. . ..o e 3-12

Aggregate FUNCEIONS.o o e 3-13
D« O 3-13
XECOUND .« ot e 3-14
D4 (L - 3-15
KON . o 3-16
XESUIN. .ottt e 3-17

Boolean Functions 3-18
XELAlSE . 3-18
XEDOD e 3-19
XEETUE. . o 3-19

Cast FUNCEIONS.ot e 3-20
castasxsthoolean.o 3-21
CaSE AS XSIDYte . . et 3-22
CastAS XSiAALeo e 3-22
castasxs:dateTime.ooeei i 3-23
castasxsidecimal.t e 3-24

XQuery Reference Guide

cast aS XS:AOUDIE . ..o 3-25

castasxs:loat 3-25
CaStAS XSIME. ..o e e e 3-26
CASE A8 XSIMbEGET . . . oottt 3-27
CaSE @S XS IOM L oottt 3-27
Cast as XSISROTE. .. oo 3-28
CaSE @S XIS TN . . oottt 3-28
Cast aS XSILIME « ..o v e 3-29
CompariSon OPeIAtOrSttt ettt ettt ettt e 3-30
T A 3-30
LS P 3-31
Bl 3-32
LB L 3-33
P 3-33
TP 3-34
Constructor FUnctionst 3-35
xf:boolean-from-String. e e 3-36
XEDYe . o 3-36
xfidecimal.o 3-38
XBdouble. . ..o 3-38
xBfloat. ..o 3-39
KOG 3-40
D4 41 1Y 1<) 3-41
-4 4 10 4 3-42
XESHOTE ..o 3-43
D4 451 3 (7 3-44
Date and Time Functionso 3-45
XL AAA-AaYS . . oo e 3-46

vi XQuery Reference Guide

XEAAbE ..o e 3-47
XEdateTime e 3-49
xfiget-day-from-datet e 3-50
xfiget-day-from-dateTime. e 3-51
xf:get-hours-from-dateTime e 3-52
xfiget-hours-from-time i e 3-52
xf:get-minutes-from-dateTime. e 3-63
xfiget-minutes-from-time o e 3-54
xf:get-month-from-dateco i e 3-b4
xf:get-month-from-dateTime e 3-b5
xf:get-seconds-from-dateTime 3-56
xfiget-seconds-from-time e 3-57
xfiget-year-from-date i e 3-57
xfiget-year-from-dateTime e 3-58
XEEMeE L. 3-59
xfext:date-from-dateTime. 3-60
xfext:date-from-string-with-format. o i i 3-61
xfext:date-to-string-with-format 3-62
xfext:dateTime-from-string-with-format i il 3-63
xfext:dateTime-to-string-with-format................. .. o i i i 3-64
xfext:time-from-dateTimeo i 3-65
xfext:time-from-string-with-format. 3-66
xfext:time-to-string-with-format 3-67
Logical Operators . ..o v vttt e 3-67
AT .o e e 3-68
) 3-69
P00 (1 1S) o T 0] 0123 2 70) P 3-70

XQuery Reference Guide vii

viii

276 (€) P 3-71
S (SUDEACE) . o v ettt e 3-72
QI Lttt e 3-73
IO . ottt e 3-74
Numeric FUnctions ... 3-75
XL N . . o e e e 3-76
XEEl0OT. ..o 3-76
XEPOUNA. . o oo 3-77
xfext:decimal-round. 3-78
xfext:decimal-truncate 3-79
Other FUNCEIONS.o 3-79
xfextif-then-else ... 3-79
Sequence FUNCHIONS\ttt e e e 3-80
xBdistinet-valuesooou o 3-81
D4 £5) 11141/ 3-82
xfisubsequence (format 1)uiit i e 3-82
xfisubsequence (format 2) ..ottt e 3-83
SEring FUNCHIONS . ..o e 3-85
D 70 1102 3-86
XECONCAL. . oo 3-87
XECONLAINS ..o 3-88
XBends-With . ..o 3-89
XEIOWET-CASE. . . .o v et 3-90
xBstarts-witho 3-90
XEString-length.o e 3-91
xfisubstring (formatl).o 3-92
xfisubstring (format 2)o 3-93

XQuery Reference Guide

xfisubstring-after. e 3-94

xfisubstring-before e 3-95
D B0) (150 T 6 1 P 3-96
XEeXEMAtCh . . . oo e 3-97
xfexttrim. ..o 3-100
XEERE S QIR o e 3-101
Treat FUNCEIONS.o 3-102
treat asxsthoolean 3-103
Breat @S XSIDYte ..\t e e 3-104
treat asxs:date 3-104
treat asxs:dateTimeo.vvu i 3-105
treat asxsidecimalo.vu i 3-105
treat as XS:doubleot 3-106
treatasxsifloat ... 3-106
treat as XSnb.o 3-107
treat as XS e ger. . .ottt e 3-107
Breat @S XS IOME L .\ttt e 3-108
treat asxs:iShort.o 3-108
Breat as XSIStIINg . . v 3-109
treat asXs:itimeo 3-109

4. Supported Data Types

JDBC Typesin Liquid Datao e e 4-2
Java.sqLTypes Data Types. o.vve e 4-2
JDBC Data Type Namest e e 44

Database-Specific Data Type Namescouutiiiiiiii i 4-5
Oracle Data Type Namesovunrtei i e 4-6
Microsoft SQL Server Data Type Names.coviiiiiiiiii i, 4-7

XQuery Reference Guide ix

Index

X

DB2 Data Type Names. o.vve ettt e e e 4-8
Sybase Data Type Names.ouutet i e et 4-8
Informix Data Type Namesourevi e e 4-9

XQuery Reference Guide

About This Document

This document provides reference material for the XQuery language implemented in BEA Liquid Data
for WebLogic. It describes the emerging XQuery standard from the World Wide Web Consortium
(W3C) and includes reference material for the Liquid Data XQuery implementation.

This document covers the following topics:

e Chapter 1, “XQuery and XML Specification Implementation,” indroduces the W3C XQuery
standard and lists the version supported by Liquid Data.

e Chapter 2, “Understanding XQuery in Liquid Data,” describes a query written in the XQuery
language.

e Chapter 3, “Functions Reference,” provides information about complete reference of the World
Wide Web (W3C) functions supported in Liquid Data.

e Chapter 4, “Supported Data Types,” is a reference list of data types supported in Liquid Data.

What You Need to Know

Users creating queries with Data View Builder should have a high-level understanding of XML, XML
schemas, and declarative database query languages. Users creating ad hoc queries to run in a Liquid
Data environment should have the additional skill of being proficient in the W3C standard XQuery
syntax.

XQuery Reference Guide Xi

About This Document

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the BEA home page,
click on Product Documentation or go directly to the “e-docs” Product Documentation page at
e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using the File—>Print
option on your Web browser.

A PDF version of this document is also available on the Liquid Data documentation Home page on the
e-docs Web site (and also on the documentation CD). You can open the PDF using Adobe Acrobat

Reader and print the entire document (or a portion of it) in book format. To access the PDF files, open
the Liquid Data documentation Home page, click PDF files and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can obtain a free version from the Adobe Web site
at www.adobe.com.

Related Information

For more information about XQuery and XML Query languages, see the World Wide Web Consortium
(W3C) Web site at http:/www.w3.org/.

Contact Us!

Xii

Your feedback on the BEA Liquid Data documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed directly
by the BEA professionals who create and update the Liquid Data documentation.

Inyour e-mail message, please indicate that you are using the documentation for the BEA Liquid Data
for WebLogic 1.0 release.

If you have any questions about this version of Liquid Data, or if you have problems installing and
running Liquid Data, contact BEA Customer Support through BEA WebSupport at www.bea.com. You
can also contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:
e Your name, e-mail address, phone number, and fax number

e Your company name and company address

XQuery Reference Guide

Documentation Conventions

e Your machine type and authorization codes

e The name and version of the product you are using

e A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item
boldface text Indicates terms defined in the glossary.
Ctrl+Tab Indicates that you must press two or more keys simultaneously.
italics Indicates emphasis or book titles.
monospace Indicates code samples, commands and their options, data structures and their
text members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz
chmod u+w *
\tux\data\ap
.doc
tux.doc
BITMAP
float
monospace Identifies significant words in code.
boldface
Example:
text
void commit ()
monospace Identifies variables in code.
italic
Example:
text

String expr

XQuery Reference Guide

Xiii

About This Document

Convention Item

UPPERCASE Indicates device names, environment variables, and logical operators.

TEXT Examples:
LPT1
SIGNON
OR

{} Indicates a set of choices in a syntax line. The braces themselves should never
be typed.

[1 Indicates optional items in a syntax line. The brackets themselves should never
be typed.
Example:

buildobjclient [-v] [-o0 name] [-f file-list]...
[-1 file-1list]...

Separates mutually exclusive choices in a syntax line. The symbol itself should
never be typed.

Indicates one of the following in a command line:

e That an argument can be repeated several times in a command line

e That the statement omits additional optional arguments

e That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o0 name] [-f file-list]...
[-1 file-1list]...

Indicates the omission of items from a code example or from a syntax line. The
vertical ellipsis itself should never be typed.

For the conventions on reading the XQuery syntax diagrams, see “Reading the XQuery Syntax
Diagrams” on page 2-30.

Xiv XQuery Reference Guide

CHAPTERo

XQuery and XML Specification
Implementation

This chapter describes the version of the XQuery specification implemented in BEA Liquid Data for
WebLogic. It also briefly describes the XQuery specification and provides links to more information
about XQuery.

The following topics are covered:
e Supported XQuery and XML Schema, Versions In Liquid Data
e W3C XML and XQuery
e XQuery Use in Liquid Data and the Data View Builder
e Learning More About the XQuery Language

XQuery Reference Guide 1-1

XQuery and XML Specification Implementation

Supported XQuery and XML Schema Versions In Liquid Data

1-2

This section lists the XQuery and XML specifications with which Liquid Data complies.

XQuery
The Liquid Data XQuery implemenation is based on the following XQuery specification:

http://www.w3.0rg/TR/2001/WD-xquery-20011220

XQuery Functions and Operators

Liquid Data implements functions and operators based on the following specification:

http://www.w3.0rg/TR/2002/WD-xquery-operators-20020430

For a list and the syntax of the functions and operators implemented in Liquid Data, see “Functions
Reference” on page 3-1.

XML Schema

XML schemas are used in Liquid Data to describe the hierarchical structure of the various data sets
with which you are working. For XML Schema specifications and information, see the following URL:

http://www.w3.org/XML/Schema#dev

XQuery Reference Guide

http://www.w3.org/TR/2001/WD-xquery-20011220
http://www.w3.org/TR/2002/WD-xquery-operators-20020430
http://www.w3.org/XML/Schema#dev

W3C XML and XQuery

W3C XML and XQuery

XML is evolving from a W3C specification for a markup language to an entire family of specifications
and technologies. The W3C has chartered working groups focused on creating, among other things,
specifications for schemas and a query language. The evolving query language is XQuery, which gives
XML developers a structured solution for accessing and querying XML data. The W3C Query Working
Group used a formal approach by defining a data model as the basis for XQuery. XQuery uses a simple
type system and supports query optimization. It is statically typed, which supports compile-time type
checking.

Whereas SQL is a well-known query language for querying relational databases, XQuery is a query
language for querying XML-based information. Developers who are familiar with SQL will find XQuery
to be a natural next step.

However, unlike SQL, which always returns two-dimensional result sets (rows and columns), XQuery
results can conform to a complex XML schema. The XML schema can represent a hierarchy of nested
elements that represent very detailed and complicated business data and information.

For information about the syntax of XQuery in Liquid Data, see “Understanding XQuery in Liquid
Data” on page 2-1.

XQuery Use in Liquid Data and the Data View Builder

Liquid Data models various types of data sources as XML schemas. You can combine elements and
attributes of the schemas in a query written in the XQuery language. The Liquid Data Server then
executes the query and returns the results.

Once you have configured Liquid Data access to the data sources you want to use (relational
databases, Web Services, application views, data views, and so on), you can query the data by issuing
queries written in XQuery to Liquid Data, and the Liquid Data Server will fetch the data from the
underlying data sources and return the query results.

The Data View Builder provided with Liquid Data is a tool that generates queries in the XQuery
language. You can combine data from multiple sources by dragging-and-dropping the XML schemas
and a full complement of functions to generate queries in XQuery. The Data View Builder also allows
you to test, save, and deploy queries. For details on the Data View Builder, see Building Queries and
Data Views.

XQuery Reference Guide 1-3

../querybld/index.html

XQuery and XML Specification Implementation

Learning More About the XQuery Language

1-4

You can learn more about XML schemas on the W3C Web site at http://www.w3.org/XML/Schema and
http://www.w3.org/2001/12/xmlbp/xml-schema-wg-charter.html.

You can learn more about the standard on the W3C Web site at http:/www.w3.org/TR/xquery/.

For a comprehensive list of relevant XQuery references, see “XQuery Links” in the Liquid Data
Product Overview.

For the syntax of XQuery in Liquid Data, see “Understanding XQuery in Liquid Data” on page 2-1.

XQuery Reference Guide

http://www.w3.org/TR/xquery/
../prodover/concepts.html#xquery_links

CHAPTERa

Understanding XQuery in Liquid Data

This chapter describes the syntax for queries written in the Liquid Data implementation of the XQuery
language. The Liquid Data XQuery syntax is based on the syntax described in the December 2001 draft
specification “XQuery 1.0: An XML Query Language” from the W3C:

http://www.w3.0rg/TR/2001/WD-xquery-20011220/#nt-bnf

For more information on the versions of the XQuery and XML Schema specifications supported in
Liquid Data, see “XQuery and XML Specification Implementation” on page 1-1.

The following topics are covered:
e XQuery Syntax in Liquid Data
e XQuery Expressions
e XQuery Comments and Join Hints
e Specifying Joins and Unions in XQuery
e Reading the XQuery Syntax Diagrams

XQuery Reference Guide 2-1

http://www.w3.org/TR/2001/WD-xquery-20011220/#nt-bnf

Understanding XQuery in Liquid Data

XQuery Syntax in Liquid Data

2-2

This section describes the syntax of an XQuery in Liquid Data. The syntax is described in blocks, and
each block is defined in its own subsection. The syntax is shown as ratlroad diagrams. For details on
how to read the railroad diagrams, see “Reading the XQuery Syntax Diagrams” on page 2-30.

Figure 2-1 shows the basic syntax for an XQuery.

Figure 2-1 Basic XQuery Syntax Diagram

query prologue query expression
ul [| b
v)]

An XQuery query expression is typically a combination of XML markup and query logic. The XQuery
language allows you to mix the query logic with literal XML markup in much the same way as you can
combine HTML and Java on a Java Server Page (JSP).

query_prologue

The query prologue includes zero or more namespace declarations and has the syntax shown in
Figure 2-2.

Figure 2-2 Query Prologue Syntax Diagram

> i namespace_declaration »<

namespace_declaration

A namespace declaration defines XML namespaces used in the query. Figure 2-3 shows the syntax.

Figure 2-3 Namespace Declaration Syntax Diagram

-}—V— namespace —— qualified name = —— " URT " —p4

where URT is a valid URI string.
The following example shows a valid namespace declaration:

namespace myspace = "http://mycorp.com/name"

XQuery Reference Guide

XQuery Syntax in Liquid Data

query_expression

Query expressions in XQuery specify the results of a query by iterating over data, applying functions
to expressions, specifying XML markup, and specifying any logic needed to get the desired result.
Figure 2-4 shows the query expression syntax in Liquid Data.

Figure 2-4 Query Expression Syntax Diagram

’— sortby expression —‘

A

v

-}—v XQuery expression

Usage Notes

An XQuery expression can be one of many types of expressions. For details and syntax of the different
types of XQuery expressions, see “XQuery Expressions” on page 2-7.

One of the main building blocks of an XQuery is the FLWR expression, as described in “FLWR
Expression” on page 2-9.

Use curly braces ({}) to surround a query expression if the containing query includes XML markup
(see “XML Markup Expression” on page 2-7) directly before or after the query expression.

The optional sortby expression (see “sortby_expression” on page 2-4) is used to sort the data from
the XQuery expression.

If you separate query expressions with a comma (,), the results are concatenated together.
Depending on the structure of your query, this can form the basis for a union-all operation.

variahle_definition

XQuery variable definitions begin with the dollar sign ($) character and have the syntax shown in
Figure 2-5.

Figure 2-5 Variable Definition Syntax Diagram

Squalified name

v
A

[
|4

For examples of variables, see “Variables” on page 2-17.

XQuery Reference Guide 2-3

Understanding XQuery in Liquid Data

qualified_name

A qualified_name is a qualified name string in XML. The string must begin with a letter and can have
any alpha-numeric character following the letter. It can also use the underscore (), hyphen (-), and
period (.) characters. For more details on qualified name strings (@QName) in XML, see:

http://www.w3.org/TR/REC-xml-names/#NT-QName

Note: For improved query readability, do not qualify variable names with namespace prefixes. While
it is technically permissible to use a namespace prefix in a variable name, it is more readable
to omit the namespace prefix in the qualified name. Also, because the variable is local to the
query (or even to a portion of the query), the namespace is not needed. For example, while a
variable named $pre : order is syntactically legal, it is clearer and easier to read a variable
named $order.

sorthy_expression

Sorts the data in the expression preceding the sortby clause by the specified XQuery expression,
either from smallest to largest (ascending) or from largest to smallest (descending). The sortby
expression has the syntax shown in Figure 2-6.

Figure 2-6 Sort By Expression Syntax Diagram

J— sortby — (—Y¥— XQuery expression

—— descending
—— ascending :i
) <
Usage Notes

The XQuery expression that is the argument of the sortby clause must evaluate to a unit value
(simple type).
If neither ascending nor descending is specified, Liquid Data defaults to ascending sort order.

To sort by multiple values, specify multiple comma-separated arguments. Multiple sort expressions
will first sort by the first expression, then sort by the second expression (within groups that match on
the first expression), and so on (see the second example below).

2-4 XQuery Reference Guide

http://www.w3.org/TR/REC-xml-names/#NT-QName

XQuery Syntax in Liquid Data

The following query sorts the results in descending order:

<root>
{
for $x in (3, 1, 2)
return
<results>
<number>{ $x }</numbers>
</result>
sortby (number descending)

}

</root>
This query produces the following results:

<root>

<results>
<number>3</numbers>

</results>

<result>
<number>2</numbers>

</results>

<results>
<numbers>1</numbers>

</results>

</root>

The following example query uses a sortby expression with multiple arguments:

<root>
{
for $x in (3, 1, 2)
for $y in ("b", "c", "a")
return
<NumbersAndLetters>
<number>{ $x }</numbers
<letter>{ $y } </letter>
</NumbersAndLetterss>
sortby (./number descending, ./letter)
}
</root>

XQuery Reference Guide

Understanding XQuery in Liquid Data

This query produces the following results:

<root>
<NumbersAndLetters>
<numbers>3</numbers>
<lettersa</letters>
</NumbersAndLetters>
<NumbersAndLetters>
<number>3</numbers>
<lettersb</letters>
</NumbersAndLetters>
<NumbersAndLetters>
<number>3</numbers>
<lettersc</letters>
</NumbersAndLetters>
<NumbersAndLetters>
<numbers>2</numbers>
<lettersa</letters>
</NumbersAndLetters>
<NumbersAndLetters>
<number>2</numbers>
<lettersb</letters>
</NumbersAndLetters>
<NumbersAndLetters>
<numbers>2</numbers>
<lettersc</letters>
</NumbersAndLetters>
<NumbersAndLetters>
<numbers>1l</numbers>
<lettersa</letters>
</NumbersAndLetters>
<NumbersAndLetters>
<number>1</numbers>
<lettersb</letters>
</NumbersAndLetters>
<NumbersAndLetters>
<number>1</numbers>
<lettersc</letters>
</NumbersAndLetters>
</root>

2-6 XQuery Reference Guide

XQuery Expressions

XQuery Expressions

Like other query languages, XQuery uses expressions as the building blocks of the query. Expressions
can contain any number of expressions and can be arbitrarily complex.

An XQuery expression can have any combination of functions, operators, and other valid XQuery
expressions. For a description of the functions available in Liquid Data, see “Functions Reference” on
page 3-1. For details about the FLWR expression, see “FLWR Expression” on page 2-9.

This section describes the following building blocks of XQuery expressions:
o XML Markup Expression
e FLWR Expression
e PATH Expressions
e Conditional Expressions (if-then-else)
e Built-In Functions
e Constants
e Variables
e Operators
e Quantified Expressions

e Query Parameters

XML Markup Expression

The output of an XQuery is typically an XML document. You can place XML markup in the XQuery to
create the opening and closing XML tags in the result document. You can add XML markup anywhere
you can add an expression. Some common places for the markup to appear in a query are at the
beginning of the query body, in the return clause of a FLWR expression, and at the end of the query
body.

The Liquid Data Server requires that the results a query returns are well-formed XML. In Liquid Data,
queries that return XML markup that is not well-formed (for example, results that do not have a single
root node) will fail with a runtime exception.

The general syntax of XML markup in an XQuery is shown in Figure 2-7.

XQuery Reference Guide 2-1

Understanding XQuery in Liquid Data

Figure 2-7 XML Markup Expression Syntax Diagram

literal text

| { XQuery expression } _|

VYattr {4~ > </qualified name >
’7/> —‘

< qualified name

v
A

where:
literal text Any text that can appear in the data portion of an XML tag.
attr Avalid XML attribute name/value pair. Can also be an

expression that evaluates to a valid XML attribute
name/value pair.

Usage Notes

The XQuery specification refers to XML Markup Expression as element and attribute constructors.

Curly braces ({}) are used in an XQuery to separate XQuery expressions with XML markup. If there
is an XQuery expression that comes before some XML markup in a query, enclose the XQuery
expression with a curly braces. If there is a closing curly brace (}) before the XML markup, there must
be an opening curly brace ({) earlier in the query.

The following query includes XML markup at the beginning and end of the query and a query
expression between the XML markup in the return clause:

<Founders>

{
for $x in ("Bill", "EA4A", "Alfred")
return

<founder>{$x}</founder>

}

</Founders>

2-8 XQuery Reference Guide

XQuery Expressions

FLWR Expression

The For, Let, Where, Return (FLWR) expression is an important building block of an XQuery query
expression. A FLWR expression is a loop (when there is a for clause) that iterates over XML data and
returns the desired results. By mixing query expressions and XML markup, the output of the FLWR
expressions write out an XML document. You can create FLWR expressions within other FLWR
expressions, nesting FLWR expressions to as many levels as needed. Figure 2-8 shows the basic syntax
of a FLWR expression in Liquid Data.

Figure 2-8 FLWR Expression Syntax Diagram

A

XQuery expression 4

7

v

for — variable definition— in

— >
leti variable definition— := XQuery expression 4
where ____ query expression
| |'Q
» »
p—— return query expression >«

Usage Notes

If you have a for or a 1et clause (or both, or any combination of for or 1et clauses), you must have
a single return clause.

The XQuery Expressions in the for and 1et clause evaluates to a sequence of values. The FLWR
expression then binds the sequence to the variable. A sequence is a set of zero or more values. For
example, the sequence that contains the numbers 1, 2, and 3 can be expressed as (1, 2, 3).The
sequence of values can be expressed as any XQuery expression, including PATH Expressions and
expressions containing literal or derived values (from other expressions, for example).

XQuery is a declarative query language, so when you specify loops or other programming constructs in
an expression, you are specifying a logical expression of the data, not necessarily the physical plan for
the query to be executed. The Liquid Data server will determine the most efficient execution plan for
the query that produces the results declared in the query.

XQuery Reference Guide 2-9

Understanding XQuery in Liquid Data

2-10

Nested FLWR expressions can represents joins between data sources. For details on specifying joins,
see “Specifying Joins and Unions in XQuery” on page 2-21.

for Clause
The for clause binds a series of values to a variable. The variable(s) defined in the for clause
represent an item in a sequence, and the loop is evaluated for each item in the sequence. When a

variable is referenced later in a FLWR expression (in the where or return clauses, for example), it
evaluates to the item in the sequence corresponding to the iteration of the £for loop.

For example, consider the following for clause:
for $i in (1, 2, 3)

This for clause creates a loop whose body will be evaluated three times, first for the value 1, next for
the value 2, and finally for the value 3.

let Clause

The 1et clause binds a whole sequence to a variable. The variable is then available for use in the
FLWR expression. When reading the let clause, you can read the assign string (: =) as the phrase “be
bound to.” For example, consider the following 1et clause:

let $x := (1, 2, 3)

You can read this as “let the variable named x be bound to the sequence containing the items 1, 2,
and 3.”

where Clause

The where clause places a condition on the for and/or 1et clause that precedes the where clause.
A where clause can be any query expression, including another FLWR expression. The where clause
typically filters the number of matches for the FLWR loop. The filter specified by the where clause
can specify a join between two sources. For example, consider the following query:

<results>
{
for $x in (1, 2, 3), Sy in (2, 3, 4)
where $x eq $y
return
<matches>{$x}</matches>

}

</results>

XQuery Reference Guide

XQuery Expressions

The where clause in this query filters (or joins) the results that match two sequences specified in the
for clause. In this case, the numbers 2 and 3 match, and the query returns the following results:

<results>
<matches>2</matches>
<matches>3</matches>

</results>

return Clause

The return clause is evaluated for each successful (non-filtered) variable binding of the for loop. A
return clause often includes XML markup combined with expressions that manipulate data. The
combination of the XML markup and XQuery expressions writes out a portion of the XML result
document that the query returns. For the syntax of XML markup in an XQuery expression, see “XML
Markup Expression” on page 2-7.

XQuery Reference Guide 2-11

Understanding XQuery in Liquid Data

PATH Expressions

Use PATH expressions to specify a node or a sequence of nodes in an XML tree. A PATH expression
has the general syntax described in Figure 2-9 and Figure 2-11.

Note: This is only a partial syntax to highlight common PATH expression use cases in Liquid Data.
For more detailed syntax of PATH expressions, see the PATH section of the XQuery
specification:

http://www.w3.org/TR/2001/WD-xquery-20011220/#id-path-expressions

Figure 2-9 Partial PATH Expression Syntax Diagram

"_[///} neXt_SteP—‘ ” [- predicate- 1 _‘

»>— first step > <
Figure 2-10 First Step of PATH Expression Syntax Diagram
(XQuery expression) ——
function call
variable
> 4

element name

wildcard

@ attribute name

2-12 XQuery Reference Guide

http://www.w3.org/TR/2001/WD-xquery-20011220/#id-path-expressions

XQuery Expressions

Figure 2-11 Next Step of PATH Expression Syntax Diagram

element name

wildcard

A 4

where:

@ attribute name

first step

An expression that specifies the first step of a PATH expression. See Figure 2-10 for the
syntax of the first step.

next_step

An expression that specifies a step of a PATH expression. See Figure 2-11 for the syntax
of a step.

function call

An XQuery function call which specifies the step. For example, you can call the
xf : document function to access many Liquid Data data sources.

variable

An variable accessible to the query. For details on variables, see “Variables” on
page 2-17.

element_name

The qualified name of a node specifying a step. Precede an element name by a colon
(:) if the element name is the same as an XQuery keyword (for example, : for).

attribute name

The name of an attribute for the step (must be proceeded by the @ character).

wildcard A wildcard (*) specifies everything in the context node. Wildcards can also be used in
conjunction with namespace prefixes; the wildcard can represent either the prefix or
the node names. For example, foo : * represents all nodes with the prefix foo, and
* : foo represents all prefixes with a node named foo.

/ The next node in the XML tree (go down one level from this node).

/! All descendants of this node in the XML tree (go down as many levels as there are from
this node).

dot (.) Specifies to use the current node as the step.

predicate An XQuery Expression (see “XQuery Expressions” on page 2-7) that returns a boolean

value. If the boolean evaluates to FALSE for a given value of the sequence of values
produced by the preceding PATH expression, then that value is filtered from the result.
If the boolean evaluates to TRUE for a given value of the sequence of values, then that
value is allowed in the result. PATH expressions in the predicate are evaluated relative
to the step in the tree in which the predicate occurs.

XQuery Reference Guide 2-13

Understanding XQuery in Liquid Data

Usage Notes

You can qualify steps in a PATH expression with a predicate. Predicates in PATH expressions are
surrounded by square brackets ([1).

XQuery expressions in the first step other than the ones specified in Figure 2-10 must be surrounded
by parenthesis (()).

Liquid Data also supports the XPath non-abbreviated step syntax (for example, child: :,
descendant : :, and o on).

Figure 2-12 shows some example PATH expressions and describes their meanings.

Table 2-12 PATH Expression Examples and Their Meanings

PATH Expression Evaluates to...

document ("RTL-CUSTOMER") /db/CUSTOMER/FIRST NAME The FIRST NAME child elements of

CUSTOMER from the RTL - CUSTOMER
relational database. The document
function is used to fetch the schema for
the relational database, and then the
steps take you to the FIRST NAME
elements.

- /number From the current context, find the
children named number. See the
second example in
“sortby_expression” on page 2-4 for
an example of this PATH
expression.

document ("RTL-CUSTOMER") /db/CUSTOMER/FIRST NAME[. eg "Homer"] The FIRST NAME elements

containing the data “Homer”.

This section does not cover all of the expressions you can create with PATH expressions; there are
many more complex expressions you can create with PATH expressions. For more detailed syntax and
examples of PATH expressions, see the PATH section of the XQuery specification:

http://www.w3.0rg/TR/2001/WD-xquery-20011220/#id-path-expressions

2-14 XQuery Reference Guide

http://www.w3.org/TR/2001/WD-xquery-20011220/#id-path-expressions

XQuery Expressions

Conditional Expressions (if-then-else)

You can create conditional expressions using the if then else construct. The conditional
expression syntax is described in Figure 2-13.

Figure 2-13 Conditional Expression Syntax Diagram

> if XQuery expression | 2
3 then XQuery expression 4
b 1 |
S else XQuery expression >«

Usage Notes

You can provide e1sei f logic by nesting another conditional expression as the argument of the else
clause. For example:

if $a + $b 1t 20
then "less than 20"
else
if $a + s$b gt 50
then "greater than 50"

else "between 20 and 50"

The else clause is required, but you can provide if-then logic (with no e1se) by specifying the empty
set for the argument of the else clause. For example, the following query:

<a>

{

for $x in (1, 2), Sy in (3, 4)
return

if $x + Sy 1t 5

then {"less than 5"}
else { () }

}

XQuery Reference Guide 2-15

Understanding XQuery in Liquid Data

2-16

Returns the following results:

<a>
less than 5

You can also use the XQuery function xfext : 1 f-then-else to provide conditional logic, as
described in “xfext:if-then-else” on page 3-79.

Built-In Functions

Liquid Data has many functions available for use in queries. You can include functions in any XQuery
expression. The functions take zero or more inputs and return a single output. For details (including
syntax and examples) on the functions available in Liquid Data, see “Functions Reference” on

page 3-1.

Constants

You can specify constant literal values in an XQuery. String constants are surrounded by
double-quotation marks (); numeric constants are not.

String Constants

You use string constants to specify strings of characters in an XQuery expression. String constants are
surrounded by either single-quotation marks (') or double-quotation marks (). The output of a string
constant has the xs : string data type. Table 2-14 lists some examples of string constants.

Table 2-14 String Constants Expressions and What They Evaluate To

Numeric Constant Evaluates to...
"Hello there." Hello there.
"123.45™" 123.45

XQuery Reference Guide

XQuery Expressions

Numeric Constants

You can specify numeric constants by specifying a number (with or without a decimal point). You can
also specify a number using exponent notation. Table 2-15 lists some examples of numeric constants.

Table 2-15 Numeric Constants Expressions and What They Evaluate To

Numeric Constant Evaluates to...

123 The number 123

123.45 The decimal number 123.45
12345 e -2

The double value equal to 123.45

Variables

The dollar sign character ($) specifies a variable in XQuery. The string that immediately follows the
dollar sign is the variable name. You often specify variables and bind values to them in the for or 1et
clause of a FLWR expression, and then use the variables in an expression in the return clause. For
the syntax of a variable definition, see “variable_definition” on page 2-3.

Table 2-16 shows some examples of variable definitions and uses.

Table 2-16 XQuery Variahle Expressions and their English Translations

XQuery Fragment English Translation

$x Value if a variable named “x”.

let $x := "hello" Let the value of the variable named “x” be bound to the
string “hello”.

let $y := ("hello", "goodbye")

Let the value of the variable named “y” be bound to the
sequence (“hello”, “goodbye™).

You declare variable names and bind them to values in the for or 1et clauses of a FLWR expression.
When you declare a variable that evaluates to a sequence in the for clause, the value of the variable
when referenced in the where or return clause is bound to the item in the sequence corresponding
to the iteration of the loop; the variable value is not the sequence to which the variable was declared
in the for clause.

For example, consider the following query that binds the variable $x in the for clause:

XQuery Reference Guide 2-17

Understanding XQuery in Liquid Data

2-18

<Beatles>
{
for $x in ("JOHN", "PAUL", "GEORGE", "RINGO")
return
<beatle>{$x}</beatle>

}

</Beatles>

This query evaluates the variable $x once for each iteration of the for loop, and in each instance the
value is an item in the sequence. It returns the following result:

<Beatles>
<beatle>JOHN</beatle>
<beatle>PAUL</beatle>
<beatle>GEORGE</beatle>
<beatle>RINGO</beatle>
</Beatles>

Now consider the following query that binds the variable $x in the 1et clause:

<Beatles>
{
let $x := ("JOHN","PAUL", "GEORGE", "RINGO")
return
<beatle>{$x}</beatle>

}

</Beatles>

This query evaluates the variable $x only once, and the value is the sequence to which the variable is
bound in the 1let clause. It returns the following result:

<Beatles>
<beatle>JOHNPAULGEORGERINGO< /beatle>

</Beatles>

Operators

Operators allow you to construct an expression that compares or combines expressions. Use operators
to construct mathematical expressions, logic tests, and tests comparing values (for example, greater
than, less than, and so on). For details (including syntax and examples) on the operators available in
Liquid Data, see “Comparison Operators” on page 3-30, “Logical Operators” on page 3-67, and
“Numeric Operators” on page 3-70.

XQuery Reference Guide

XQuery Expressions

Quantified Expressions

A quantified expression returns a boolean based on the comparison of two XQuery expressions. When
using the construct with the keyword every, it evaluates to t rue if every instance of the satisfies
expression is t rue. When using the keyword some, it evaluates to TRUE if any instance of the
satisfies expression is true. Figure 2-17 shows the syntax of the quantified expression.

Figure 2-17 Quantified Expression Syntax Diagram

every
—}——J:-some :]————————— variable_definition in

v

»>— XQuery expression— satisfies XQuery expression —><

Example
The following query:
<results>
<a>{every $y in (2, 3, 4) satisfies ($y eq 2)}

</results>

returns the following results:

<results>
<a>false

</results>

The reason for the false result data value in this query is because not every instance of the
satisfies expression evaluates to t rue; only the first instance (when the variable $y is bound to
the value 2) evaluates to TRUE. Therefore, the quantified expression returns false. If you substitute
the keyword some for every in this query, the quantified expression will return true.

XQuery Reference Guide 2-19

Understanding XQuery in Liquid Data

Query Parameters

Query parameters are variables whose value is supplied at query runtime. A Liquid Data query
parameter begins with the string $# and has the syntax described in Figure 2-18.

Figure 2-18 Query Parameter Syntax Diagram

P»———— $#qualified name of type —— datatype —— P4

The specified datatype must be a valid Liquid Data data type, as described in “Data Types” on
page 3-3.

XQuery Comments and Join Hints

2-20

You can add comments anywhere in an XQuery. Comments are a useful means of documenting what
the query is trying to accomplish. Also, the Liquid Data Server interprets certain specific comments
as query compilation join hints when compiling and executing the query.

Comments

Any text, except for the hints (described below in Join Hints), between the opening and closing
comment tags is considered a comment and is ignored by the Liquid Data query processor. Figure 2-19
shows the syntax for comments.

Figure 2-19 Query Comment Syntax Diagram

— {—— ——comment _text — -_} — >4
where:
comment_text Any text used for a comment. The text is ignored at query

compile-time and runtime.

Note: You cannot have comments within comments.

XQuery Reference Guide

Specifying Joins and Unions in XQuery

Join Hints

The Liquid Data query processor interprets join hints in a query to force certain optimizations on a
query. Join hints are useful when you know something about the underlying data where one method
of processing might perform better than another.

Table 2-20 describes the hints available in Liquid Data.
Table 2-20 Join Hints in Liquid Data

Join Hint Text Description

{--! ppright !--} Right parameter passing join
{--! ppleft !--} Left parameter passing join
{--! merge !--} Merge join

{--! index !--} Index join

To use these join hints, place them to the right of the operator in the join condition. For more details
on optimizing queries and examples of using join hints, see “Analyzing and Optimizing Queries” in
Building Queries and Data Views.

Specifying Joins and Unions in XQuery

There is often a need to create result documents which combine data sourced from different places,
whether those places are different tables in a relational database, different files containing XML data,
or any other kinds of systems containing data, including combinations of relational, XML, Web
Services, and other data. You can specify joins and unions in XQuery to combine data.

The main building block for specifying a join in XQuery is a set of nested FLWR expressions. Since
FLWR expressions are loops, and since XML data is structured hierarchically, you can recursively loop
over XML documents, taking values from an outer loop and using them in an inner loop.

This section describes some design patterns for specifying joins in XQuery. The following topics are
included:

e Using Multiple For Statements to Create a Result

e Working From a Hierarchical Result Document Backwards: a Technique
e Specifying Aggregates and Groups (Group By)

e Specifying a Union-All Query

XQuery Reference Guide 2-21

../querybld/hints.html

Understanding XQuery in Liquid Data

2-22

Using Multiple For Statements to Create a Result

To specify a join between two sources in an XQuery, use a nested FLWR expression. You iterate over
one of the join documents in the outer loop, then iterate over the other in the inner loop, specifying
the join condition in the where clause.

The following example query iterates over the cusTOMER element of the pPB-wL document, then joins
the PB-wL document with the pB_BR document where the cusTOMER 1D values are equal (where
the same cusTOMER 1D value appears in both documents). Then it prints out the FIRST NaME
element for each cusToMeR 1D that is in both documents.

<RESULTS>

{

for $x in document ("PB-WL") /db/CUSTOMER
for $z in document ("PB-BB") /db/CUSTOMER
where ($z/CUSTOMER_ID eq $x/CUSTOMER ID)
return
<CUSTOMER >

<FIRST NAME>{ xf:data($x/FIRST NAME) }</FIRST NAME>

</CUSTOMER >

}

</RESULTS>

The basic pattern for this join is:

for clause
for clause
where clause (with join conditioms)

return clause (with XML markup and data)

This technique is similar to a join in SQL because it binds values in the for clauses to data source
values, which is analogous to how SQL selects values from tables in the FroM clause. In the where
clause of the XQuery FLWR expression, you can specify join conditions by specifying a condition where
the value in the outer loop compares to the value in the inner loop. The query then returns results that
satisfy these join conditions.

Note: If you want the XML markup to appear in the result document even if there are no matches
found in the query (similar to an outer join in SQL), you can set up the query so there are
return values associated with each part of the for clause. For an example of a query that uses
this pattern, see the query in the following Hierarchical Result Document example.

XQuery Reference Guide

Specifying Joins and Unions in XQuery

Working From a Hierarchical Result Document Backwards: a
Technique

One technique for building a query is to look at the shape of the result document and begin to build
that result document from the innermost elements working towards the outermost elements. This
technique works especially well for schemas that have complex, repeatable elements that are nested
within other complex elements.

Starting with the innermost repeatable elements, place a return clause followed by the XML markup
for that part of the result. Continue this process until you have all of the XML markup for the query.
Next, add the rest of the FLWR expression to correspond to each return clause. Finally, complete the
return clause to add the data needed for each element.

For example, consider a query that needs to display results in the following shape:

<customers>
<Customer>*
<name>
<orders>*
<orderID>
<lineltems>*
<quantitys>
<price>

<product>

In this case, the inner-most repeatable element is 1ineItems. You can build the following return
clause:

return

<lineItems>
<quantity>{ }</quantitys>
<price>{ }</price>
<product>{ }</products>

</lineltems>

XQuery Reference Guide 2-23

Understanding XQuery in Liquid Data

Continuing this to the outside of the result schema yields the following:

return
<Customer>
<name>{ }</name>
return
{
<orders>
<orderID>{ }</orderID>
return
{
<lineItems>
<quantity>{ }</quantity>
<price>{ }</price>
<product>{ }</product>
</lineltems>

}

</orders>

}

<Customer>

2-24 XQuery Reference Guide

Specifying Joins and Unions in XQuery

Next, fill in the outermost XML markup and some syntax details (like the for statements and the
outer XML markup) to yield the following:

<customers>
{
for
return
<Customers>
<name>{ }</name>
{
for
return
<orders>
<orderID>{ }</orderID>
{
for
return
<lineItems>
<quantity>{ }</quantity>
<price>{ }</price>
<product>{ }</product>
</lineltems>

{

</orders>

{

<Customer>

}

</customers>

XQuery Reference Guide 2-25

Understanding XQuery in Liquid Data

You now have the basic structure of the query. To make the query executable, add the variable
bindings for the for clauses, any join conditions or other filters in the where clause, and the query
expressions to fetch the data. The following query is executable against the sample database installed
with Liquid Data:

<customerss>
{
for $cust in document ("PB-BB") /db/CUSTOMER
return
<Customer>
<name>{ xf:data($cust/FIRST NAME) }</name>
{
for $orders in document ("PB-BB") /db/CUSTOMER ORDER
where ($cust/CUSTOMER ID eq
$orders/CUSTOMER_ID)
return
<orders>
<orderID>{ xf:data(Sorders/ORDER ID) }</orderID>
{
for $linelItems in
document("PB—BB")/db/CUSTOMER_ORDER_LINE_ITEM
where ($orders/ORDER ID eq $lineItems/ORDER _ID)
return
<lineItems>
<quantity>{ xf:data($lineItems/QUANTITY) }</quantity>
<price>{ xf:data($lineltems/PRICE) }</price>
<product>{ xf:data($lineltems/PRODUCT NAME) }</products>
</lineItems>

}

</orders>

}

</Customers>

}

</customers>

Note that this example uses the xf : data function to extract just the data portion from the node
specified in the PATH expressions for the order ID, quantity, price, and product. If you omit the

xf : data functions, the results will include the XML tags for those pieces of data in addition to the
data between the tags. For more details on the xf : data function, see “xf:data” on page 3-9.

2-26 XQuery Reference Guide

Specifying Joins and Unions in XQuery

Specifying Aggregates and Groups (Group By)

Queries that use aggregate functions (for example, xf : avg, xf:sum, xf:min, xf:max,

xf : count) often compute results based on the group at which the aggregation function is calculated.
For example, if you want to find the sum of products calculated for each product, the aggregate group
is product. To create queries with aggregate functions that apply at a particular group (analogous to
the croup BY clause in SQL), you must use the xf : distinct -values function for each group of
the aggregate.

For example, if you want to find the sum of sales for each product (that is, the total sales for product a,
the total sales for product b, and so on), then the query must first find the distinct products; then, for
each distinct product, iterate through the data to calculate the sum of orders of that product.

The following query demonstrates an aggregate (sum) grouped by product:
<results>

{-- For each distinct product --}
for SeachProduct in xf:distinct-values
(document ("PB-BB") /db/CUSTOMER_ORDER_LINE_I TEM/PRODUCT_NAME)

{-- Compute the sales for each product and bind the values to a sequence --}

let $listOfLineltemSales :=
for $eachLineItem in document ("PB-BB")/db/CUSTOMER_ORDER_LINE ITEM
{-- This condition restricts the line items to the product --}
where ($eachLineItem/PRODUCT NAME eq SeachProduct)
return {-- the Sales of the product per line item --}

SeachLineItem/QUANTITY * $eachlLineItem/PRICE

return {-- Once for each product, print out the product name and add up
the sum of all items in the list of line item salessales --}
<SalesbyProduct>

<product name>{ $eachProduct }</product name>
<sumOfSalesForProduct>{ xf:sum(slistOfLineltemSales)
}</sumOfSalesForProduct >
</SalesbyProduct>

}

</results>

XQuery Reference Guide 2-27

Understanding XQuery in Liquid Data

If the data included two distinct products, Product A and Product B, then the results of this query are
as follows:

<results>
<SalesByProduct>
<product_name>Product A</product_name>
<sumOfSalesForProduct>526.34</sumOfSalesForProducts>
</SalesByProduct >
<SalesByProduct>
<product name>Product B</product name>
<sumOfSalesForProduct>226.48</sumOfSalesForProduct>
</SalesByProduct>

</results>

2-28 XQuery Reference Guide

Specifying Joins and Unions in XQuery

Specifying a Union-All Query

Use a comma character (,) to concatenate two query expressions into a single result document. For
example, consider the following simple union-all query:

<RESULTS>

{
for $x in (1,2,3)
return

<number>{ $x }</numbers>

{-- insert a comma to specify a Union-All of the 2 query expressions --}

I

for $y in (4,5,6)
return

<number>{ $y }</numbers>

}

</RESULTS>
This query returns the following results:

<RESULTS>

<number>1</numbers>
<number>2</numbers>
<number>3</numbers>
<number>4</numbers>
<number>5</number>

<numbers>6</number>

</RESULTS>

The concatenated expressions are evaluated in the order they appear in the query. To break this down
further, the following list describes the order in which each part of this query is evaluated:

L.
2.
3.

The opening tag <RESULTS> is produced.
The first for loop is evaluated for the value 1, returning <number>1</numbers.
This first for loop evaluates for the value 2, then again for the value 3.

Since the first for loop has completed all the values in the sequence $x, the query continues to
the second for loop. The first iteration of the second for loop returns <number>4</numbers.

The second for loop evaluates for the value 5, then again for the value 6.

The closing tag < /RESULTS > is produced.

XQuery Reference Guide 2-29

Understanding XQuery in Liquid Data

Reading the XQuery Syntax Diagrams

2-30

The XQuery syntax in this document is described using railroad diagrams. Railroad diagrams
describe the language syntax in blocks. You read the diagrams from left-to-right and top-to-bottom,
taking a path defined by the lines and arrows in the diagram. This section describes how to read the
railroad diagrams used to define the XQuery syntax in this reference, and includes the following
subsections.

e Text Conventions
e Follow the Lines and Arrows Coming Into the Diagram
e Blocks with No Arrows Indicate Optional Content

e Blocks with Arrows (Loops) Indicate Repeatable Options

Text Conventions

The following shows the conventions for text in the syntax diagrams:
e Bold indicates literal text.
e [talics indicate a variable. The contents of the variable are described below the diagram.

e Hyperlinks indicate a syntax block which is defined in the section that is the target of the
hyperlink.

Follow the Lines and Arrows Coming Into the Diagram

The syntax diagrams begin with an arrow and end with two facing arrows, as shown in Figure 2-21.
From the left side of the diagram, follow the arrow to navigate through the diagram. Figure 2-21
represents a syntax block with no content. To read the diagram, start from the top line, continue on
the next line when you reach the next arrow, and end at the left and right facing arrows.

Figure 2-21 Syntax Diagram Begin and end Arrows

[[
|4 |4
'§ |
| 4 VN

XQuery Reference Guide

Reading the XQuery Syntax Diagrams

Blocks with No Arrows Indicate Optional Content

Syntax blocks that extend above a line with no arrows indicate optional content. Follow the lines
through the syntax block in one of the possible ways to form the syntax. Figure 2-22 shows a syntax
block that can include either the literal text descending, the literal text ascending, or no text at
all.

Figure 2-22 Optional Non-Repeatahble Content Blocks

—— descending
—— ascending ;:%

Blocks with Arrows (Loops) Indicate Repeatable Options

Syntax blocks that extend above a line with arrows indicate optional and repeatable content that can
loop. Follow the lines through the syntax block in one of the possible ways to form the syntax.
Figure 2-23 shows a syntax block that can include the literal text hel1o and, optionally, can repeat
by placing a comma between instances of the literal text hello.

N |
| 4 V'

Figure 2-23 Optional Repeatable Content Blocks

! A

5V echo >«

Therefore, the following are legal according to this syntax diagram:
® echo
® echo, echo
® echo, echo, echo, echo, echo

The literal text echo echo is invalid according to this diagram (it is missing the comma).

XQuery Reference Guide 2-31

Understanding XQuery in Liquid Data

2-32 XQuery Reference Guide

Functions Reference

The World Wide Web (W3C) specification for XQuery supports a discrete set of functions. BEA Liquid
Data for WebLogic supports a subset of those functions as built-in functions. The Liquid Data built-in
functions are accessible in the Data View Builder from Builder Toolbar—>Toolbox tab—>Functions
panel.

For more information on the functions described here, see also:
e W3C XQuery 1.0 and XPath 2.0 Functions and Operators specification.

e Appendix D, the “Function and Operator Quick Reference” in the XQuery 1.0 and XPath 2.0
Functions and Operators specification

e XML Schema Part 2: Datatypes

This section provides a complete reference of the W3C functions Liquid Data supports, as well as any
extended functions Liquid Data supports. This functions reference is organized by category as follows:

e About Liquid Data XQuery Functions
— Naming Conventions
— Occurrence Indicators
— Data Types

— Date and Time Patterns
e Accessor and Node Functions

e Aggregate Functions

XQuery Reference Guide 3-1

http://www.w3.org/TR/2001/WD-xquery-operators-20011220/

Functions Reference

e Boolean Functions
e (Cast Functions
e Comparison Operators

e Constructor Functions

Date and Time Functions

Logical Operators

Numeric Operators
e Numeric Functions

Other Functions

e Sequence Functions
e String Functions

e Treat Functions

About Liquid Data XQuery Functions

3-2

You can browse the Liquid Data XQuery functions in the Data View Builder. The functions are located
in the Design tab —> Toolbox tab —> XQuery Functions. You can also make your own custom
functions. This section describes the conventions used in the Liquid Data XQuery functions and
describes the XQuery data types.

Naming Conventions

The xf: prefix is a W3C XML naming convention, also known as a namespace. Liquid Data supports
extended functions that are enhancements to the XQuery specification, which you can recognize by
their extended function prefix xfext:. For example, the full XQuery notation for an extended function
is xfext;function_name. Extended functions accept standard input types, but they are limited to
single values.

Liquid Data also supports extensions to XQuery data types that are designated with xsext:datatype
notation. When you encounter the xsext: prefix, it means that the data type may have Liquid
Data-imposed restrictions that are necessary to interface successfully with the Liquid Data Server.

The xfext: prefix identifies an extended function. The prefix identifies the type of function to you but
the Data View Builder does not recognize or process the prefix.

XQuery Reference Guide

About Liquid Data XQuery Functions

Occurrence Indicators

An occurrence indicator indicates the number of items in a sequence. This notation usually appears
on a parent node in a schema. Use these identifiers to determine the repeatability of a node.

e A question mark (?) indicates zero items or one single item.
e An asterisk (*) indicates zero or more items.

e A plus sign (+) indicates one or more items.

These occurrence indicators also communicate information about the data type when they appear in
a function signature. For example:

e xsunteger™ represents a list of zero or more integers.
e string+ represents a list of one or more strings.

e decimal? represents zero or one decimal values. Therefore, the decimal value is optional.

Data Types

Every data element or variable has a data type. Function parameters have data type requirements and
the function result is returned as a data type. The following table describes other data types that
conform to the XQuery specification. Current compliance with the W3C XQuery specification extends
to XQuery 1.0 and XPath 2.0 Functions and Operators specification dated 30 April 2002. Another
helpful reference is XML Schema Part 2: Datatypes.

Table 3-1 Data Types

Data Type Name Description

xs:anyType Represents the most generic data type. All data types including anyAttribute,
anyElement, anySimpleType, anyValue, as well as sequences, items, nodes, strings,
decimals.

xsext:anyValue A subset of xs:anyType including dateTime, boolean, string, numeric values, or any
single value. Does not include anyAttribute, anyElement, item, node, sequence, or
anySimpleType.

xs:boolean A subset of xsext:anyValue. A value that supports the mathematical concept of

binary-valued logic: true or false.

XQuery Reference Guide 3-3

Functions Reference

Table 3-1 Data Types (Continued)

Data Type Name Description

xs:byte A subset of xs:short. A sequence of decimal digits (0-9) with a range of 127 to -128.
If the sign is omitted, plus (+) is assumed.

Examples: -1, 0, 126, +100

xs:date A subset of xsext:anyValue. Represents the leftmost component of dateTime
YYYY-MM-DD where:

e YYYYis the year
e MM is the month
e DD is the day

May be preceded by a leading minus (-) sign to indicate a negative number. If the
sign is omitted, plus (+) is assumed.

May be immediately followed by a Z to indicate Coordinated Universal Time (UTC)
or, to indicate the time zone (the difference between the local time and
Coordinated Universal Time), immediately followed by a sign, + or -, followed by
the difference from UTC represented as hh:mm.

Example:
To specify 1:20 pm on May the 31st, 1999, write: 1999-05-31.

3-4 XQuery Reference Guide

Table 3-1 Data Types (Continued)

About Liquid Data XQuery Functions

Data Type Name Description
xs:dateTime A subset of xsext:anyValue. Represents the format YYYY-MM-DDThh:mm:ss
where:
e YYYYisthe year
e MM is the month
e DD is the day
e Tisthe date/time separator
® hh is the hour
e mm is the minute
e ssisthe second
May be preceded by a leading minus (-) sign to indicate a negative number. If the
sign is omitted, plus (+) is assumed. Additional digits can be used to increase the
precision of fractional seconds if desired (ss.ss...) with any number of digits after
the decimal point is supported.
May be immediately followed by a Z to indicate Coordinated Universal Time (UTC)
or, to indicate the time zone (the difference between the local time and
Coordinated Universal Time), immediately followed by a sign, + or -, followed by
the difference from UTC represented as hh:mm.
Example:
To specify 1:20 pm on May the 31st, 1999 EST, which is five hours behind
Coordinated Universal Time (UTC), write: 1999-05-31T13:20:00-05:00.
xs:decimal A subset of xsext:anyValue. Includes all integer types, such as xs:integer, xs:long,
xs:short, xs:int, or xs:byte.
Represents a finite-length sequence of decimal digits (0-9) separated by an
optional period as a decimal indicator. An optional leading sign is allowed. If the
sign is omitted, plus (+) is assumed. Leading and trailing zeroes are optional. If
the fractional part is zero, the period and following zeroes can be omitted.
Examples: -1.23, 12678967.543233, +100000.00, 210
xs:double A subset of xsext:anyValue. There are no subordinate data types; however, xs:float

and xs:decimal, and all derived types, can be promoted to xs:double in certain
cases, such as function calls.

Represents a double precision 64-bit floating point value. Supports the special
values positive and negative zero, positive and negative infinity and not-a-number
(0, -0, INF, -INF and NaN).

XQuery Reference Guide 3-5

Functions Reference

Table 3-1 Data Types (Continued)

Data Type Name Description

xs:float A subset of xsext:anyValue. There are no subordinate data types; however,
xs:decimal, and all derived types, can be promoted to xs:float in certain cases, such
as function calls.

Represents a Single-precision 32-bit floating point value. Supports the special

values positive and negative zero, positive and negative infinity and not-a-number
(0, -0, INF, -INF and NaN).

xsext:item A subset of xs:anyType. Includes xsext:anyValue and xsext:node. Excludes any
sequence. Represents a list element, individual value, or attribute.

xs:int A subset of xs:long. Represents a finite-length sequence of decimal digits (0-9).
An optional leading sign is allowed. If the sign is omitted, plus (+) is assumed.

Examples: -1, 0, 12678967543233, +100000

xs:integer A subset of xs:decimal. Represents a finite-length sequence of decimal digits (0
9). An optional leading sign is allowed. If the sign is omitted, plus (+) is assumed.

Examples: -1, 0, 12678967543233, +100000

xs:long A subset of xs:decimal. A sequence of decimal digits (0-9) with a range of
9223372036854775807 to -9223372036854775808. If the sign is omitted, plus (+) is
assumed.

Examples: -1, 0, 12678967543233, +100000

xsext:node A subset of xsext:anyValue. A component in a tree structure that represents a data
element.
xs:short A subset of xs:int. A sequence of decimal digits (0-9) with a range of 32767 to

-32768. If the sign is omitted, plus (+) is assumed.
Examples: -1, 0, 12678, +10000

3-6 XQuery Reference Guide

Table 3-1 Data Types (Continued)

About Liquid Data XQuery Functions

Data Type Name Description

xs:string A subset of xsext:anyValue. A sequence that contains alphabetic, numeric, or
special characters.

xs:time A subset of xsext:anyValue. Represents the rightmost segment of the dateTime

format where:
e hh is the hour
e mm is the minute

e s is the second
May contain an optional following time zone indicator.

Examples:

e To indicate 1:20 pm EST, which is five hours behind Coordinated Universal
Time (UTC), write: 13:20:00-05:00.

¢ Midnight is 00:00:00.

Date and Time Patterns

You can construct date and time patterns using standard Java class symbols. The following table shows
the pattern symbols you can use.

Table 3-2 Date and Time Patterns

This Symbol Represents This Data Produces This Result
G Era AD

Yy Year 1996

M Month of year July, 07

d Day of the month 19

h Hour of the day (1-12) 10

H Hour of the day (0-23) 22

m Minute of the hour 30

S Second of the minute b5

XQuery Reference Guide 3-1

Functions Reference

Table 3-2 Date and Time Patterns (Continued)

This Symbol Represents This Data Produces This Result

S Millisecond 978

E Day of the week Tuesday

D Day of the year 27

w Week in the year 27

W Week in the month 2

a am/pm marker AM, PM

k Hour of the day (1-24) 24

K Hour of the day (0-11) 0

z Time zone Pacific Standard Time
Pacific Daylight Time

Repeat each symbol to match the maximum number of characters required to represent the actual
value. For example, to represent 4 July 2002, the pattern is d MMMM yyyy. To represent 12:43 PM, the
pattern is hh:mm a.

Accessor and Node Functions

Accessor and node functions operate on different types of nodes and node values. They accept single
node input and return a value based on the node type. These function are not available in the XQuery
functions section of the Data View Builder, but the Data View Builder will, in some circumstances,
generate queries that use these functions. The functions available are:

o xf:data
e xf:document (format 1)
e xf:document (format 2)

e xf:local-name

3-8 XQuery Reference Guide

Accessor and Node Functions

xf:data

Returns the typed-value of each input node. This function is not available in the XQuery functions section
of the Data View Builder.
Data Types

e Input data type: xsext:node?

e Returned data type: xsext:anyValue?

Notes

The xf : data function is available to Liquid Data, but you cannot explicitly map a node in the Data

View Builder, so you therefore cannot construct a query in the Data View Builder that uses the xf:data
function. In some cases, however, the Data View Builder will implicitly generate queries that use the
xf:data function. The typical case when the Data View Builder generates the xf:data function is when
it does not know the name of the elements at query generation time, and it uses the xf:data function
in a variable expression containing wildcard characters.

If the source value is not a node, the function returns an error.

XQuery Specification Compliance
e Liquid Data does not use a list of nodes; it uses only an optional node.

e Liquid Data does not generate an error when you specify a document node. It returns an empty
list.

Examples

e xf:data(<a>{3}) returns the numeric value 3.
e xf:data(<a/>) returns an empty list ().

e xf:data((<a>{3}, <a>{7})) generates a compile-time error because the
parameter is a list of nodes.

e xf:data(<date location="SD">2002-07-12</date>) returns the string value
"2002-07-12.".

e xf:data(3) generates a compile-time error because 3 is not a node.

XQuery Reference Guide 3-9

Functions Reference

xf:document (format 1)

Returns the specified document. This function is not available in the XQuery functions section of the Data
View Builder.

Data Types
e Input data type: xs:string

e Returned data type: node

Notes

The input of this version of the xf : document function is the logical name of a Liquid Data data
source.

Use the xf : document function to specify an XML document. Because Liquid Data models data
sources as XML documents, the XML document specified can represent a relational database, an XML
file, or other data sources registered in the Liquid Data Administration Console. The xf : document
function is available to Liquid Data, but you cannot explicitly map a node in the Data View Builder. In
many cases, however, the Data View Builder implicitly generates queries that use the xf : document
function.

Example
xf :document ("My Relational DS")

3-10 XQuery Reference Guide

Accessor and Node Functions

xf:document (format 2)

Returns the specified document for the given dynamic data source. This function is not available in the
XQuery functions section of the Data View Builder.

Data Types
e Input data type: xs:string
e Input data type: xs:string

e Returned data type: node

Notes

This version of the xf : document function is used with dynamic XML and delimited file data sources
(a dynamic data source is a data source in which the data file is specified at query runtime). For the
first input, specify the logical name of a Liquid Data data source. For the second input, specify a URL
or file (absolute path or relative to the Liquid Data Repository for the type of data source).

Use the xf : document function to specify an XML document. Because Liquid Data models data
sources as XML document, the XML document specified can represent a relational database, an XML
file, or other data sources registered in the Liquid Data Administration Console. The xf : document
function is available to Liquid Data, but you cannot explicitly map a node in the Data View Builder. In
many cases, however, the Data View Builder implicitly generates queries that use the xf : document
function.

Example
xf :document ("My XML DS", "c:\myFolder\file.xml")

XQuery Reference Guide 3-1

Functions Reference

xf:local-name
Returns a string value that corresponds to the local name of the specified node. This function is not
available in the XQuery functions section of the Data View Builder.
Data Types
e Input data type: xsext:node

e Returned data type: xs:string?

Notes
The xf:local-name function is available to Liquid Data, but you cannot explicitly map a node in the
Data View Builder, so you therefore cannot construct a query in the Data View Builder that uses the
xf:local-name function. In some cases, however, the Data View Builder will implicitly generate queries
that use the xf:local-name function. The typical case when the Data View Builder generates the
xf:local-name function is when it does not know the name of the elements at query generation time,
and it uses the xf:local-name function in a variable expression containing wildcard characters.
XQuery Specification Compliance

e Liquid Data does not support the format that accepts no input parameters.

e Liquid Data supports an optional string as the returned value instead of a required string.

Examples

e xf:local-name (<db:homes/>) returns the string value "homes."

e xf:local-name (73) generates a compile-time error because the parameter is a number and
not a node.

3-12 XQuery Reference Guide

Aggregate Functions

Aggregate Functions

Aggregate functions process a sequence as argument and return a single value computed from values
in the sequence. Except for the Count function, if the sequence contains nodes, the function extracts
the value from the node and uses it in the computation. The following aggregate functions are
available:

o xf:avg
e xf:count
o xfimax
o xfimin

e xf:sum

xf:avg

Returns the average of a sequence of numbers.

Data Types
e Input data type: xs:double™

e Returned data type: xs:double?

Notes

If the source value contains nodes, the value of each node is extracted using the xf:data function. If an
empty list occurs, it is discarded.

If the source value contains only numbers, the Avg function returns the average of the numbers, which
is the sum of the source sequence divided by the count of the source sequence.

If the source value is an empty list, the function returns an empty list.

If the source value contains non-numeric data, the function returns an error.

XQuery Specification Compliance
Liquid Data requires a list of double precision values instead of a list of items.

XQuery Reference Guide 3-13

Functions Reference

Examples
e xf:avg((4, 10)) returns the double precision floating point value 7.0.
e xf:avg((4, (), 10)) alsoreturns the double precision floating point value 7.0.

e xf:avg((4, "10")) generates a compile-time error because the input sequence contains a
string.

xf:count

Returns the number of items in the sequence in an unsigned integer.

Data Types
e Input data type: xs:item™
e Returned data type: xs:integer

Notes
If the source value is an empty list, the function returns an empty list.

XQuery Specification Compliance
Liquid Data returns an integer value (xs:integer) instead of an unsigned int (xs:unsignedInt) value.

Examples
e xf:count ((3, "10")) returns the integer value 2.
e xf:count (()) returns the integer value 0.

e xf:count ((3, "10", (),)) returns the value 3 (the empty list is ignored).

3-14 XQuery Reference Guide

Aggregate Functions

xf:max

Returns the maximum value from a sequence. If there are two or more items with the same value, the
specific item whose value is returned is implementation-dependent.

Data Types
e Input data type: xsext:item™
e Returned data type: xsext:item?

Notes

If the source value contains nodes, the value of each node is extracted using the xf:data function. If an
empty list occurs, it is discarded.

All values in the list must be instances of one of the following types:

® numeric

xs:string

o xsidate

o xs:itime

o xsidateTime

For example, if the list contains items with typed values that represent both decimal values and dates,
an error will occur.

The values in the sequence must have a total order:
e DateTime values must all contain a time zone or omit a time zone.

e Duration values must contain only years and months or contain only days, hours, minutes and
seconds.

Both of these conditions must be true; otherwise, the function returns an error.

XQuery Specification Compliance

e Liquid Data does not support a format with a collation literal.

e Liquid Data has no restrictions on date and time input values.

XQuery Reference Guide 3-15

Functions Reference

3-16

e Liquid Data supports a correct return type of xs:item? instead of xs:anySimpleType?, which is
incorrect.

e Liquid Data supports only numeric, xs:string, xs:date, xs:time, and xs:datelime data types.

Examples

e xf:max((3, 10)) returns the value 10.

® xf:max((<a>{4}, 3, (), {2})) returns <a>{4}.

xf:min
Returns the minimum value from a sequence of numbers. If there are two or more items with the same
value, the specific item whose value is returned is implementation-dependent.
Data Types
e Input data type: sext:item™
e Returned data type: xsext:item?

Notes

If the source value contains nodes, the value of each node is extracted using the Data function. If an
empty list occurs, it is discarded.

After extracting the values from nodes, the sequence must contain only values of a single type.
The values in the sequence must have a total order:
e DateTime values must all contain a time zone or omit a timezone

e Duration values must contain only years and months or contain only days, hours, minutes and
seconds

Both of these conditions must be true; otherwise, the function returns an error.

XQuery Specification Compliance
e Liquid Data does not support a format with a collation literal.

e Liquid Data has no restrictions on date and time input values.

XQuery Reference Guide

Aggregate Functions

e Liquid Data supports a correct return type of xs:item? instead of xs:anySimpleType?, which is
incorrect.

e Liquid Data supports only numeric, xs:string, xs:date, xs:time, and xs:dateTime data types.

Examples

e xf:min((3, 10)) returns the value 3.
e xf:min((<a>{4}, 3, (), {2})) returns {2}.

e xf:min((3, 4, "2")) generates an error because the sequence contains both numeric and
string values.

e xf:min(()) returns an empty list ().

xf:sum

Returns the sum of a sequence of numbers.

Data Types

e Input data type: xsext:anyValue*

e Returned data type: xsext:anyValue?

Notes

If the source value contains nodes, the value of each node is extracted using the Data function. If an
empty list occurs, it is discarded.

If the source value contains only numbers, the Sum function returns the sum of the numbers.
If the source value contains non-numeric data, the function returns an error.

If the input sequence is empty, the function returns an empty list.

XQuery Specification Compliance

e Liquid Data adheres to the prior XQuery specification (December, 2001) by returning an empty
list if the input sequence is empty.

XQuery Reference Guide 3-17

Functions Reference

e Liquid Data output depends on the input type. If the input type is xs:decimal, the returned
value is xs:decimal; if the input type is xs:decimal and xs;float, the returned value is xs;float; if
the input type is xs:double, the returned value is xs:double.

Examples

e xf:sum((3, 8, (), 1)) returnsthevalue 12.
e xf:sum(()) returns an empty list ().
e xf:sum((<a>{4}, 3)) returns a value of 7.

e xf:sum(("7", 3)) generates a compile-time error because the sequence that is passed in to
the function is not homogenous.

Boolean Functions

Boolean functions return true (1) or false(0) values. The following boolean functions are available:
o xf:false
e xfnot

e xfitrue

xf:false

Returns the boolean value false.

Data Types
e Input data type: No input data required.

e Returned data type: xs:boolean

XQuery Specification Compliance

Conforms to the current specification.

Examples

e xf:false () returns false.

e xf:false (34) generates a compile-time error because the function does not accept any
parameters.

3-18 XQuery Reference Guide

Boolean Functions

xf:not

Returns true if the value of the source value is false and false if the value of the source value is
true.

Data Types
e Input data type: as:boolean?

e Returned data type: xs:boolean?

XQuery Specification Compliance
e Liquid Data accepts an optional boolean value instead of a sequence as input.
e Liquid Data returns a true value if the input is an empty list.

e Liquid Data returns an optional boolean value instead of one boolean value.

Examples
e xf:not (xf:false()) returns the boolean value true.
e xf:not (xf:true ()) returns the boolean value false.
e xf:not (32) generates a compile-time error because the input value is not boolean.

e xf:not (()) returns the boolean value true.

xf:true

Returns the boolean value true.

Data Types
o Input data type: No input data required.

e Returned data type: xs:boolean

XQuery Specification Compliance
Conforms to the current specification.

XQuery Reference Guide 3-19

Functions Reference

Examples

® xf:true () returns true.

e xf:true("34") generates a compile-time error because the function does not accept any
parameters.

Cast Functions

Cast functions process a source value as the argument and type cast the output to a different datatype.
Type casting will typically fail if applied to more than one element. An empty list is allowed, but the
result of the type casting will consist of an empty list. Type casting functions are more likely to
generate exceptions at run time if the parameter cannot be converted to the corresponding type.

The following table describes Liquid Data data types that conform to the XQuery specification that you
can use in type casting functions. For more information about data types, see the XQuery 1.0 and
XPath 2.0 Functions and Operators specification. The following cast functions are available:

e cast as xs:boolean
e cast as xs:byte

e cast as xs:date

e cast as xs:dateTime
e cast as xs:decimal
e cast as xs:double
e cast as xs:float

e cast as xs:int

e cast as xs:integer
e cast as xs:long

e cast as xs:short

e cast as xs:string

e cast as xs:time

3-20 XQuery Reference Guide

Cast Functions

cast as xs:boolean

Converts the input to a boolean value (true or false).

If the input parameter is empty, the function returns an empty list. Otherwise, Liquid Data generates
an error.

Data Types
e Input data type: xs:anyValue
e Returned data type: xs:boolean

Notes

This function uses the xf:boolean-from-string function.

XQuery Specification Compliance

Conforms to the current specification; however, Liquid Data does not accept the values “1” and “0” to
represent true and false, as described in the W3C XML Schema document.

Examples
® cast as xs:boolean ("true") returnsthe boolean value true.
® cast as xs:boolean ("FalSE") returnsthe boolean value false.

® cast as xs:boolean (0) generates a runtime error because the value cannot be cast to a
boolean value.

® cast as xs:boolean (1) generates a runtime error because the value cannot be cast to a
boolean value.

e cast as xs:boolean (()) returnsan empty list ().

XQuery Reference Guide 3-21

Functions Reference

cast as xs:byte

Converts the input to a byte value.

Data Types
o Input data type: xs:anyValue
e Returned data type: xs:byte

Notes
This function uses the xf : byte function.

This function will complete sucessfully only if the value cast is a numeric value greater than -128 or
less than 128; all other values will fail.

XQuery Specification Compliance
Conforms to the current specification.

Examples

® cast as xs:byte(22) returns the byte value of 22.

® cast as xs:byte(22.9334) returns the byte value 22.

cast as xs:date

Converts the input to a date value.

Data Types
e Input data type: xs:anyValue
e Returned data type: xs:date

Notes
This function uses the xf:date function.

The string must contain a date in one of these formats:

o YYY-MM-DD

3-22 XQuery Reference Guide

Cast Functions

o YYYY-MM-DDZ
o YYYY-MM-DD-hh:mm

where YYYY represents the year, MM represents the month (as a number), DD represents the day, hh
and mm represents the number of hours and minutes that the timezone differs from GMT (UTC). Z
indicates that the date is in the GMT timezone.

If the string cannot be parsed into a date value, Liquid Data generates an error.

XQuery Specification Compliance

Conforms to the current specification.

Examples
® cast as xs:date ("2002-07-23") returns the date 2002-07-23.

® cast as xs:date ("2002-07") generates a runtime error because the value cannot be
converted to a date.

cast as xs:dateTime

Converts the input to a dateTime value.

Data Types
e Input data type: xs:anyValue
e Returned data type: xs:dateTime

Notes
This function uses the xf:date function.

XQuery Specification Compliance
Conforms to the current specification.

Examples

® cast as xs:dateTime ("2002-07-23T23:04:44") returns the dateTime value July
23rd, 2002 at 11:04:44 PM in the local timezone.

XQuery Reference Guide 3-23

Functions Reference

® cast as xs:dateTime ("2002-07-23T23:04:44-08:00") returns the dateTime value
July 23rd, 2002 at 11:04:44 PM in the a timezone that is offset by -8 hours from GMT (UTC).

® cast as xs:date ("2002-07-23") generates a runtime error because no time value is
specified.

cast as xs:decimal

Converts the input to a decimal value.

Data Types
e Input data type: xs:anyValue
e Returned data type: xs:decimal

Notes
This function uses the xf:decimal function.

XQuery Specification Compliance

e Liquid Data does not support not-a-number (NaN) or the negative and positive infinity values
-INF and INF.

e Liquid Data attempts to support any input value, instead of just string literals, and convert it at
run time.

e Liquid Data supports "e" and "E" to construct floating point integer values.

Examples

® cast as xs:decimal ("213") returns the decimal value 213.
® cast as xs:decimal ("-100") returns the decimal value -100.

® cast as xs:decimal (0) returns the decimal value o.

3-24 XQuery Reference Guide

Cast Functions

cast as xs:double

Converts the input to a double precision value.

Data Types

o Input data type: xs:anyValue
e Returned data type: xs:double

Notes
This function uses the xf:double function.

XQuery Specification Compliance

e Liquid Data does not support not-a-number (NaN) or the negative and positive infinity values
-INF and INF.

e Liquid Data attempts to support any input value, instead of just string literals, and convert it at
run time.

Examples

® cast as xs:double ("21") returns the double precision value 21 . o.
® cast as xs:double ("-3e3") returns the double precision value -3000. 0.
® cast as xs:double (0) returns the double precision value 0. 0.

e cast as xs:double ("abc) generates a runtime error because the string cannot be
converted to a double precision value.

cast as xs:float

Converts the input to a floating point value.

Data Types
e Input data type: xs:anyValue

e Returned data type: xs;float

XQuery Reference Guide 3-25

Functions Reference

3-26

Notes
This function uses the xf:float function.

XQuery Specification Compliance

e Liquid Data does not support not-a-number (NaN), -0, or the negative and positive infinity
values -INF and INF.

e Liquid Data attempts to support any input value, instead of just string literals, and convert it at
run time.

Examples

® cast as xs:float ("21") returns the floating point value 21. o.

® cast as xs:float ("-3e3") returns the floating point value -3000. 0.
® cast as xs:float (0) returns the floating point value o. o.

® cast as xs:float ("abc) generates a runtime error because the string cannot be
converted to a floating point value.

cast as xs:int

Converts the input to an int value.

Data Types

e Input data type: xs:anyValue

e Returned data type: xs:int

Notes
This function uses the xf:int function.

XQuery Specification Compliance

Conforms to the current specification.

XQuery Reference Guide

cast as xs:integer

Converts the input to an integer value.

Data Types
o Input data type: xs:anyValue

e Returned data type: xs:integer

Notes

This function uses the xf:integer function.

XQuery Specification Compliance
Conforms to the current specification.

Cast Functions

cast as xs:long

Converts the input to a long value.

Data Types

e Input data type: xs:anyValue

e Returned data type: xs:long

Notes

This function uses the xf:long function.

XQuery Specification Compliance
Conforms to the current specification.

XQuery Reference Guide

3-21

Functions Reference

cast as xs:short

Converts the input to a short value.

Data Types
o Input data type: xs:anyValue
e Returned data type: xs:short

Notes
This function uses the xf:short function.

XQuery Specification Compliance
Conforms to the current specification.

cast as xs:string

Converts the input to a string value.

Data Types

e Input data type: xs:anyValue
e Returned data type: xs:string

Notes
This function uses the xf:string function.

XQuery Specification Compliance
e Liquid Data treats xf : string as both a constructor and an accessor.
e Liquid Data supports only the string format that requires one node of any type as the input.
e Liquid Data accepts xsext : anyType input instead of a list of items.
e Liquid Data returns an optional string.

e Liquid Data does not recognize entities.

3-28 XQuery Reference Guide

Examples

® cast as
® cast as
® cast as

® cast as

Xs

Xs:

Xs

Xs:

Cast Functions

:string ("abc") returns the string value abc.

string (21) returns the string value 21.

:string (xf:true()) returns the string value true.

string (xf:false()) returns the string value false.

cast as xs:time

Converts the input to a time value.

Data Types

e Input data type: xs:anyValue

e Returned data type: xs:time

Notes

This function uses the xf : t ime function.

XQuery Specification Compliance
Conforms to the current specification.

Examples

® cast as

timezone.

Xs

:time ("09:35:20") returns the time value 9:35:20 AM in the current

® cast as xs:time (<a>09:35:20) returns the time value 9:35:20 AM in the current

timezone.

® cast as xs:time ("9:35:20") generates a runtime error because the time format is
incorrect (hour specified with 1 digit instead of 2) and therefore the string cannot be converted
to a time value.

® cast as xs:time ("21:35:20-08:00") returns the time value 9:35:20 PM in the a
timezone that is offset by -8 hours from GMT (UTC).

XQuery Reference Guide 3-29

Functions Reference

Comparison Operators

3-30

XQuery has operators that are specific to comparisons operations. The following operators are
available:

e eq

® ge

€q

Returns true if Parameterl is exactly equal to Parameter2.

Data Types
e Parameterl data type: xsext:anyValue?
e Parameter2 data type: xsext:anylalue?
e Returned data type: xs:boolean?

Notes

This is a comparison operator that you can use as a function to compare operands.

If either operand is a node, Liquid Data extracts its typed value first, then performs a type check to
ensure that the type of one operand is promotable to the other type; otherwise Liquid Data generates
an error.

If either operand is an empty list, the function returns an empty list.

XQuery Specification Compliance
e Liquid Data does not cast xs:anySimpleType to any other supported type.

e Liquid Data does not support these data types: xs:yearMonthDuration, xs:dayTimeDuration,
gregorian, xs:hexBinary, xs:base64Binary, xs:anyURI, xs:QName, or xs:NOTATION values.

XQuery Reference Guide

Comparison Operators

Examples

e 45 eq 45.0 returns the boolean value true.
e 170 eq 34 returns the boolean value false.

e 3 eq"3" generates an error because the decimal value 3 cannot be promoted to the string value
II3.||

e 1eqxf:itrue() generates an error because the decimal value 1 cannot be promoted to the
boolean value true.

e "abc" eq "abc" returns the boolean value true.

e (1, () eq 1 evaluates to the boolean value true because there is exactly one value in the
leftmost list and that value is equal to the rightmost value.

e (1,2) eq 1 generates a compile-time error because the operator does not evaluate lists.

ge
Returns true if Parameterl is greater than or equal to Parameter2.
Data Types

e Parameterl data type: xsext:anyValue?

e Parameter2 data type: xsext:anylalue?

e Returned data type: xs:boolean?

Notes
This is a comparison operator that you can use as a function to compare operands.

If either operand is a node, Liquid Data extracts its typed value first, then performs a type check to
ensure that the type of one operand is promotable to the other type; otherwise Liquid Data generates
an error.

If either operand is an empty list, the function returns an empty list.

XQuery Specification Compliance
e Liquid Data does not cast xs:anySimpleType to any other supported type.

XQuery Reference Guide 3-31

Functions Reference

3-32

e Liquid Data does not support these data types: xs:yearMonthDuration, xs:dayTimeDuration,
gregorian, xs:hexBinary, xs:base64Binary, xs:anyURI, xs:QName, or xs:NOTATION values.

Examples
See the examples for “eq” on page 3-30.

gt

Returns true if Parameterl is greater than Parameter2.

Data Types

e Parameterl data type: xsext:anyValue?
e Parameter2 data type: xsext:anyValue?

e Returned data type: xs:boolean?

Notes
This is a comparison operator that you can use as a function to compare operands.

If either operand is a node, Liquid Data extracts its typed value first, then performs a type check to
ensure that the type of one operand is promotable to the other type; otherwise Liquid Data generates
an error.

If either operand is an empty list, the function returns an empty list.

XQuery Specification Compliance
Liquid Data does not cast xs:anySimpleType to any other supported type.

Liquid Data does not support these data types: xs:yearMonthDuration, xs:dayTimeDuration, gregorian,
xs:hexBinary, xs:base64Binary, xs:anyURI, xs:QName, or xs:NOTATION values.

Examples
See the examples for the “eq” operator (previous entry in this table).

XQuery Reference Guide

Comparison Operators

e

Returns true if Parameterl is less than or equal to Parameter2.

Data Types

e Parameterl data type: xsext:anyValue?
e Parameter2 data type: xsext:anyValue?

e Returned data type: xs:boolean?

Notes

This is a comparison operator that you can use as a function to compare operands.

If either operand is a node, Liquid Data extracts its typed value first, then performs a type check to
ensure that the type of one operand is promotable to the other type; otherwise Liquid Data generates
an error.

If either operand is an empty list, the function returns an empty list.

XQuery Specification Compliance
Liquid Data does not cast xs:anySimpleType to any other supported type.

Liquid Data does not support these data types: xs:yearMonthDuration, xs:dayTimeDuration, gregorian,
xs:hexBinary, xs:base64Binary, xs:anyURI, xs:QName, or xs:NOTATION values.

Examples
See the examples for for “eq” on page 3-30.

It

Returns true if Parameterl is less than or equal to Parameter2.

Data Types

e Parameterl data type: xsext:anyValue?
e Parameter2 data type: xsext:anylalue?

e Returned data type: xs:boolean?

XQuery Reference Guide 3-33

Functions Reference

3-34

Notes
This is a comparison operator that you can use as a function to compare operands.

If either operand is a node, Liquid Data extracts its typed value first, then performs a type check to
ensure that the type of one operand is promotable to the other type; otherwise Liquid Data generates
an error.

If either operand is an empty list, the function returns an empty list.

XQuery Specification Compliance
Liquid Data does not cast xs:anySimpleType to any other supported type.

Liquid Data does not support these data types: xs:yearMonthDuration, xs:dayTimeDuration, gregorian,
xs:hexBinary, xs:base64Binary, xs:anyURI, xs:QName, or xs:NOTATION values.

Examples
See the examples for for “eq” on page 3-30.

ne

The result is false if both values are false and true if at least one of the values is true. Parameter? is
not evaluated if Parameterl evaluates to true.

Data Types

e Parameterl data type: xsext:boolean?
e Parameter2 data type: xsext:boolean?

e Returned data type: xs:boolean?

Notes

This is a boolean operator that you can use as a function to return a true or false result. It is not a
standard XQuery operator, but necessary to complete certain comparative expressions in Liquid Data.

The arguments and return type are all boolean.

If either operand is a node, Liquid Data extracts its typed value first, then performs a type check to
ensure that the type of one operand is promotable to the other type; otherwise Liquid Data generates
an error.

XQuery Reference Guide

Constructor Functions

If either operand is an empty list, the function returns an empty list.

XQuery Specification Compliance

Liquid Data does not support these data types: xs:yearMonthDuration, xs:dayTimeDuration, gregorian,
xs:hexBinary, xs:base64Binary, xs:anyURI, xs:QName, or xs:NOTATION values.

Examples
See the examples for “eq” on page 3-30.

Constructor Functions

Constructor functions process a source value as the argument. Every data element or variable has a
data type. The data type determines the value that any function parameter can contain and the
operations that can be performed on it. The Liquid Data supports the following type casting functions.
The following constructor functions are available:

e xf:boolean-from-string
e xf:byte

e xf:decimal

e xf:double

o xf:float

e xfiint

o xfiinteger

e xf:long

o xf:short

o xfistring

XQuery Reference Guide 3-35

Functions Reference

3-36

xf:boolean-from-string

Returns a boolean value of true or false from the string source value.

Data Types
o Input data type: xs:string?
e Returned data type: xs:boolean?

Notes

If the input parameter is empty, the function returns an empty list. Otherwise, Liquid Data generates
an error.

XQuery Specification Compliance

e Conforms to the current specification; however, Liquid Data does not accept the values “1” and
“0” to represent true and false, as described in the W3C XML Schema document.

Examples
® xf:boolean-from-string ("true") returns the boolean value true.
® xf:boolean-from-string ("FaLSe") returns the boolean value false.

e xf:boolean-from-string("43") generates a runtime error because the input value cannot
be parsed into a boolean value.

® xf:boolean-from-string (43) generates a compile-time error because the input value is
not a string.

xf: byte

Constructs a byte integer value from the string source value.

Data Types
e Input data type: xsext.anyValue?

e Returned data type: xs:byte?

XQuery Reference Guide

Constructor Functions

Notes
An error occurs if the source value is greater than 127 or less than -128.

Liquid Data truncates the input if it is a non-integer number.

If the number falls outside of the range of byte values, the number wraps.

If the number is an integer that falls within the range, the value is unchanged.
If the input is a string, Liquid Data tries to parse it into a byte value.

If the input is the boolean value true, the function returns 1. If it is false, it returns 0.

XQuery Specification Compliance
e Liquid Data does not support not-a-number (NaN) or -0.

e Liquid Data attempts to support any input value and convert it at run time.

Examples
e xf:byte('127"') returns the byte value one hundred twenty seven.
e xf:byte (38) returns the byte value 38.
e xf:byte("-4") returns the byte value -4.
e xf:byte (128) returns the byte value -128 because the number wraps.
e xf:byte (-129) returns the byte value 127 because the number wraps.
e xf:byte (xf:true()) returns the byte value 1.
e xf:byte (xf:false()) returns the byte value 0.

e xf:byte ("true") generates a runtime error because the string literal cannot be converted to
a byte value.

e xf:byte('128"') returns an error because one hundred twenty eight is invalid for a byte
integer expression.

XQuery Reference Guide 3-37

Functions Reference

xf:decimal

Constructs a decimal value from the source value.

Data Types
e Input data type: xsext.anyValue?

e Returned data type: xs:decimal?

XQuery Specification Compliance

e Liquid Data does not support not-a-number (NaN), -0, or the negative and positive infinity
values -INF and INF.

e Liquid Data attempts to support any input value, instead of just string literals, and convert it at
run time.

e Liquid Data supports "e" and "E" to construct floating point integer values.

Examples
® xf:decimal ("3") returns the decimal value 3.

e xf:decimal (99.1) returns the decimal value 99.1 (the same value that is input to the
function).

® xf:decimal (xf:true()) returns the decimal value 1.
® xf:decimal (xf:false()) returns the decimal value 0.

e xf:decimal ("true") generates a runtime error because the string literal cannot be
converted to a decimal value.

xf:double

Constructs a double precision value from the source value.

Data Types
o Input data type: xsext:anyValue?

e Returned data type: xs:double?

3-38 XQuery Reference Guide

Constructor Functions

XQuery Specification Compliance

e Liquid Data does not support not-a-number (NaN), -0, or the negative and positive infinity
values -INF and INF.

e Liquid Data attempts to support any input value, instead of just string literals, and convert it at
run time.

Examples
e xf:double ("3") returns the double precision floating point value 3.0.
e xf:double(5.1) returns the double precision floating point value 5.1.
e xf:double (xf:true()) returns the double precision floating point value 1.0.
e xf:double (xf:false()) returns the double precision floating point value 0.0.

e xf:double ("true") generates a runtime error because the string literal cannot be converted
to a double precision floating point value.

e xf:double("12345678901234567890") evaluates to the double precision floating point
value 1.2345678901234567E19.

xf:float

Constructs a floating point value from the source value.

Data Types
e Input data type: xsext:anyValue?

e Returned data type: xs;float?

XQuery Specification Compliance

e Liquid Data does not support not-a-number (NaN), -0, or the negative and positive infinity
values -INF and INF.

e Liquid Data attempts to support any input value, instead of just string literals, and convert it at
run time.

XQuery Reference Guide 3-39

Functions Reference

3-40

Examples

e xf:float (1) returns the floating-point value 1.0.

e xf:float ("1") returns the floating-point value 1.0.

e xf:float (xf:true()) returns the floating point value 1.0.
e xf:float (xf:false()) returns the floating-point value 0.0.

e xf:float ("true") generates a runtime error because the string literal cannot be converted
to a floating-point value.

e xf:float ("12345678901234567890") returns the floating-point value 1.2345679E19.

xf:int
Constructs an integer value from the source value. The largest integer value is limited to a 32-bit
expression.

Data Types
e Input data type: xsext:anyValue?
e Returned data type: xs:integer?

Notes

An error occurs if the source value is greater than 2,147,483,647 or less than -2,147,483,648. To the
Liquid Data Server, the xf:int function is exactly the same as the xf:integer function.

XQuery Specification Compliance
e Liquid Data does not support not-a-number (NaN) or -0.

e Liquid Data attempts to support any input value, instead of just string literals, and convert it at
run time.

Examples
e xf:int (4056) returns the int value 4056.

e xf:int ("-35") returns the int value -35.

XQuery Reference Guide

Constructor Functions

e xf:int (xf:true ()) returns the int value 1.
e xf:int (xf:false ()) returns the int value 0.

e xf:int ("true") generates a runtime error because the string literal cannot be converted to
an int value.

xf:integer

Constructs an integer value from the source value. The largest integer value is limited to a 32-bit
expression.

Data Types
e Input data type: xsext:anyValue?

e Returned data type: xs:integer?

Notes

An error occurs if the source value is greater than 2,147,483,647 or less than -2,147,483,648. To the
Liquid Data Server, the xf:integer function is exactly the same as the xf:int function.

XQuery Specification Compliance

e Liquid Data does not support not-a-number (NaN), -0, or the negative and positive infinity
values -INF and INF.

e Liquid Data attempts to support any input value, instead of just string literals, and convert it at
run time.
Examples
e xf:integer (4056) returns the int value 4056.
e xf:integer ("-35") returns the int value -35.
® xf:integer (xf:true()) returns the int value 1.
® xf:integer (xf:false()) returns the int value 0.

e xf:integer ("true") generates a runtime error because the string literal cannot be
converted to an int value.

XQuery Reference Guide 3-4

Functions Reference

3-42

xf:long

Constructs a four-byte integer value from the source value. Use a long integer data type when the value
exceeds the limitations imposed by other integer data types.
Data Types

e Input data type: xsext:anyValue?

e Returned data type: xs:long?

Notes

An error occurs if the source value is greater than 9,223,372,036,854,775,807 or less than
-9,223,372,036,854,775,808.

XQuery Specification Compliance
e Liquid Data does not support not-a-number (NaN) or -0.

e Liquid Data attempts to support any input value, instead of just string literals, and convert it at
run time.

Examples
e xf:1long (1) returns the long integer value 1.
e xf:1long("-91") returns the long integer value -91.
e xf:long (xf:true()) returns the long integer value 1.
e xf:long(xf:false()) returns the long integer value 0.

e xf:long("true") generates a runtime error because the string literal cannot be converted to
a long integer value.

XQuery Reference Guide

Constructor Functions

xf:short

Constructs a two-byte integer value from the source value. The largest short integer value is limited to
a 16-bit expression.

Data Types
e Input data type: xsext:anyValue?
e Returned data type: xs:short?

Notes

An error occurs if the source value is greater than 32,767 or less than -32,768.

XQuery Specification Compliance

e Liquid Data does not support not-a-number (NaN) or -0.

e Liquid Data attempts to support any input value, instead of just string literals, and convert it at
run time.

Examples
e xf:short (1) returns the short integer value 1.
e xf:short ("-91") returns the short integer value -91.
e xf:short (xf:true()) returns the short integer value 1.
e xf:short (xf:false()) returns the short integer value 0.

e xf:short ("true") generates an error because the string literal cannot be converted to a
short integer value.

XQuery Reference Guide 3-43

Functions Reference

xf:string
Constructs a string value from the source value. The source value can be a sequence, a node of any
kind, or a simple value.
Data Types
e Input data type: xs:anyType

e Returned data type: xs:string?

Notes

Liquid Data accepts any simple value, but supports no other accessor types, such as a sequence or
other type of node.
XQuery Specification Compliance

e Liquid Data treats xf:string as both a constructor and an accessor.

e Liquid Data supports only the string format that requires one node of any type as the input.

e Liquid Data accepts xsext:anyType input instead of a list of items.

e Liquid Data returns an optional string.

e Liquid Data does not recognize entities.

Examples
e xf:string (1) returns the string value 1.
e xf:string("-91") returns the string value -91.
e xf:string(xf:true()) returns the string value true.
® xf:string(xf:false()) returns the string value false.

e xf:string("abc", "def") generatesa compile-time error because the function does not
accept two parameters.

e xf:string(("abc", "def")) generates a compile-time error because the function does not
accept a sequence as parameter.

e xf:string(<a/>) returns an empty string value "".

e xf:string(<a>abc) returns the string value abc.

3-44 XQuery Reference Guide

Date and Time Functions

Date and Time functions extract all or part of a dateTime expression and use it in a query. The
following date and time functions are available:

o xf:add-days

o xf:current-dateTime

e xf:date

o xf:dateTime

o xf:get-day-from-date

o xf:get-day-from-dateTime

o xf:get-hours-from-dateTime

o xf:get-hours-from-time

o xf:get-minutes-from-dateTime

e xf:get-minutes-from-time

o xf:get-month-from-date

o xf:get-month-from-dateTime

o xf:get-seconds-from-dateTime

e xf:get-seconds-from-time

o xf:get-year-from-date

o xf:get-year-from-dateTime

o xf'time

o xfext:date-from-dateTime

o xfext:date-from-string-with-format
o xfext:date-to-string-with-format

o xfext:dateTime-from-string-with-format
o xfext:dateTime-to-string-with-format
o xfext:time-from-dateTime

o xfext:time-from-string-with-format

o xfext:time-to-string-with-format

Date and Time Functions

XQuery Reference Guide

3-45

Functions Reference

xf:add-days
Adds the number of days specified by Parameter2 to the date specified by Parameterl. The value of
Parameter2 may be negative.
Data Types
e Parameterl data type: xs:date?
e Parameter2 data type: xs:decimal?

e Returned data type: xs:date?

Notes

If Parameterl has a timezone, it remains unchanged. The returned value is always normalized into a
correct Gregorian calendar date. If either parameter is an empty list, the function returns an empty
list.

XQuery Specification Compliance
Conforms to the current specification.

Examples

® xf:add-days (xf:date("2002-07-15"), -3) returns a date value corresponding to
July 12, 2002.

® xf:add-days (xf:date("2002-07-15"), 0) returns a date value corresponding to
July 15, 2002.

® xf:add-days (xf:date("2002-07-15"), 2) returns a date value corresponding to
July 17, 2002.

e xf:add-days("2002-07-15", 2) generates a compile-time error because the first
parameter is a string and not a date value.

3-46 XQuery Reference Guide

Date and Time Functions

xf:current-dateTime

Returns the current date and time.

Data Types

No parameters required.

Returned data type: xs:dateTime

Notes
The function returns the current date and time in the current timezone.

If the function is called multiple times during the execution of a query, it returns the same value each
time.

XQuery Specification Compliance
Liquid Data returns the time zone where the Liquid Data Server is running.

Example

xf:current-dateTime () canreturn a dateTime value such as 2002-07-25T01:00:38.812-08:00,
which represents July 25th, 2002 at 1:00:38 and 812 thousandths of a second in a time zone that is
offset by -8 hours from GMT (UTC).

xf:date

Takes a string (rather than dateTime) and a parameter and returns a date from a source value, which
must contain a date in one of these formats:

o YYYY-MM-DD

o YYYY-MM-DDZ

o YYYY-MM-DD+hh:mm

o YYYY-MM-DD-hh:mm
where:

e YYYY represents the year

XQuery Reference Guide 3-47

Functions Reference

3-48

e MM represents the month (as a number)

e DD represents the day

e Plus (+) or minus (-) is a positive or negative time zone offset

e hh represents the hours

e mm represents the number minutes that the time zone differs from GMT (UTC)

e 7 indicates that the time is in the GMT time zone

Data Types
e Input data type: xs:string?

e Returned data type: xs:date?

Notes

The representation for date is the leftmost representation for dateTime: YYYY-MM-DD+hh:mm with
an optional following time zone indicator (Z).

Liquid Data supports this year range: 0000-9999.

XQuery Specification Compliance
Conforms to the current specification.

Examples

e xf:date("2002-07-15") returns a date value corresponding to July 15th, 2002 in the
current time zone.

e xf:date("2002-07-15-08:00") returns a date value corresponding to July 15th, 2002 in a
timezone that is offset by -8 hours from GMT (UTC).

e xf:date("2002-7-15") generates a runtime error because the month is not specified with
two digits.

e xf:date("2002-07-15z") returns a date value corresponding to July 15th, 2002 in the GMT
time zone.

e xf:date("2002-02-31") generates a runtime error because the string (02-31) does not
represent a valid date.

XQuery Reference Guide

Date and Time Functions

xf:dateTime

Returns a dateTime value from a source value, which must contain a date and time in one of these
formats:

o YYYY-MM-DDThh:mm:ss

o YYYY-MM-DDThh:mm:ssZ

o YYYY-MM-DDThh:mm:ss+hh:mm
o YYYY-MM-DDThh:mm:ss-hh:mm

where the following is true:
e YYYY represents the year
e MM represents the month (as a number)
e DD represents the day
e T is the date and time separator
e hh represents the number of hours
e mm represents the number of minutes
e ss represents the number of seconds
e Plus (+) or minus (-) is a positive or negative time zone offset
e hh represents the hours
e mm represents the number minutes that the time zone differs from GMT (UTC)

e Zindicates that the time is in the GMT time zone

Data Types
e Input data type: xs:string?

e Returned data type: xs:dateTime?

Notes
Returns a date and time in YYYY-MM-DDT+hh:mm:ss format.

XQuery Reference Guide 3-49

Functions Reference

This expression can be preceded by an optional leading minus (-) sign to indicate a negative number.
If the sign is omitted, positive (+) is assumed.

Use additional digits to increase the precision of fractional seconds if desired. The format ss.ss... with
any number of digits after the decimal point is supported. Fractional seconds are optional.

Liquid Data supports this year range: 0000-9999.

XQuery Specification Compliance
Conforms to the current specification.

Examples

® xf:dateTime ("2002-07-15T21:09:44") returns a date value corresponding to July 15th,
2002 at 9:09PM and 44 seconds in the current time zone.

e xf:dateTime ("2002-07-15T21:09:44.566") returns a date value corresponding to July
15th, 2002 at 9:09PM and 44.566 seconds in the current time zone

® xf:dateTime ("2002-07-15T21:09:44-08:00") returns a date value corresponding to
July 15th, 2002 at 9:09PM and 44 seconds, in a time zone that is offset by -8 hours from GMT
(UTC).

® xf:dateTime ("2002-7-15T21:09:44") generates a runtime error because the month is
not specified using two digits

e xf:dateTime ("2002-07-15T21:09:44%") returns a date value corresponding to July 15th,
2002 at 9:09PM and 44 seconds, in the GMT timezone

xf:get-day-from-date

Returns an integer value representing the day identified in date.

Data Types
o Input data type: xs:date?

e Returned data type: xs:integer?

Notes

The day value ranges from 1 to 31.

3-50 XQuery Reference Guide

Date and Time Functions

If the source value is an empty list, the function returns an empty list.

XQuery Specification Compliance
Conforms to the current specification.

Examples

® xf:get-day-from-date (xf:date("2002-07-15")) returns the integer value 15.

e xf:get-hours-from-dateTime (()) returns an empty list ().

xf:get-day-from-dateTime

Returns an integer value representing the day identified in dateTime.

Data Types
e Input data type: xs:dateTime?
e Returned data type: xs:integer?

Notes

The day value ranges from 1 to 31.

If the source value is an empty list, the function returns an empty list.

XQuery Specification Compliance
Conforms to the current specification.

Examples

® xf:get-day-from-dateTime (xf:dateTime ("2004-01-07T21:09:44")) returns the
integer value 7.

e xf:get-hours-from-dateTime (()) returns an empty list ().

XQuery Reference Guide 3-51

Functions Reference

xf:get-hours-from-dateTime

Returns an integer value representing the hour identified in dateTime.

Data Types
o Input data type: xs:dateTime?

e Returned data type: xs:integer?

Notes

The hour value ranges from 0 to 23.

If the source value is an empty list, the function returns an empty list.

XQuery Specification Compliance

Conforms to the current specification.

Examples

® xf:get-hours-from-dateTime (xf:dateTime ("2002-07-15T21:09:44")) returns the
integer value 21.

® xf:get-hours-from-dateTime (()) returns an empty list O

xf:get-hours-from-time

Returns an integer representing the hour identified in time.

Data Types
o Input data type: xs:time?
e Returned data type: xs:integer?

Notes
The hour value ranges from 0 to 23, inclusive.

If the source value is an empty list, the function returns an empty list.

3-52 XQuery Reference Guide

Date and Time Functions

XQuery Specification Compliance
Conforms to the current specification.

Examples

® xf:get-hours-from-time (xf:time ("21:09:44")) returns the integer value 21

® xf:get-hours-from-time (()) returns an empty list ().

xf:get-minutes-from-dateTime

Returns an integer value representing the minutes identified in dateTime.

Data Types
e Input data type: xs:dateTime?

e Returned data type: xs:integer?

Notes

Returns an integer value representing the minute identified in the source value. The minute value
ranges from 0 to 59, inclusive.

If the source value is an empty list, the function returns the empty list.

XQuery Specification Compliance
Conforms to the current specification.

Examples

® xf:get-minutes-from-dateTime (xf:dateTime ("2002-07-15T21:09:44")) returns
the integer value 9.

e xf:get-minutes-from-dateTime (()) returns an empty list ().

XQuery Reference Guide 3-53

Functions Reference

xf:get-minutes-from-time

Returns an integer value representing the minutes identified in time.

Data Types

o Input data type: xs:time?
e Returned data type: xs:integer?

Notes

The minute value ranges from 0 to 59.

If the source value is an empty list, the function returns an empty list.

XQuery Specification Compliance

Conforms to the current specification.

Examples
® xf:get-minutes-from-time (xf:time ("21:09:44")) returns the integer value 9.

® xf:get-minutes-from-time (()) returnsan empty list ()

xf:get-month-from-date

Returns an integer value representing the month identified in date.

Data Types
o Input data type: xs:date?
e Returned data type: xs:integer?

Notes

Returns an integer value representing the month identified in the source value. The month value
ranges from 1 to 12, inclusive.

If the source value is an empty list, the function returns the empty list.

3-54 XQuery Reference Guide

Date and Time Functions

XQuery Specification Compliance
Conforms to the current specification.

Examples

e xf:get-month-from-date (xf:date ("2004-01-07")) returns the integer value 1.

e xf:get-month-from-date (()) returns an empty list ().

xf:get-month-from-dateTime

Returns an integer value representing the month identified in dateTime.

Data Types
e Input data type: xs:dateTime?
e Returned data type: xs:integer?

Notes
The month value ranges from 1 to 12.

If the source value is an empty list, the function returns an empty list.

XQuery Specification Compliance
Conforms to the current specification.

Examples

® xf:get-month-from-dateTime (xf:dateTime ("2004-01-07T21:09:44")) returns the
integer value 1.

e xf:get-month-from-dateTime (()) returns an empty list ().

XQuery Reference Guide 3-55

Functions Reference

3-56

xf:get-seconds-from-dateTime

Returns an integer value representing the seconds identified in dateTime.

Data Types
o Input data type: xs:dateTime?

e Returned data type: xs:integer?

Notes

The seconds value ranges from 0 to 60.999. The precision (number of digits) of fractional seconds
depends on the relevant facet of the argument.

The value can be greater than 60 seconds to accommodate occasional leap seconds used to keep
human time synchronized with the rotation of the planet.

If the source value is an empty list, the function returns an empty list.

XQuery Specification Compliance
Conforms to the current specification.

Examples

® xf:get-seconds-from-dateTime (xf:dateTime ("2002-07-15T21:09:44")) returns
the integer value 44.

e xf:get-seconds-from-dateTime (()) returns an empty list ().

XQuery Reference Guide

Date and Time Functions

xf:get-seconds-from-time

Returns an integer value representing the seconds identified in time.

Data Types:

o Input data type: xs:time?

e Returned data type: xs:integer?

Notes

The seconds value ranges from 0 to 60.999. The precision (number of digits) of fractional seconds
depends on the relevant facet of the argument.

The value can be greater than 60 seconds to accommodate occasional leap seconds used to keep
human time synchronized with the rotation of the planet.

If the source value is an empty list, the function returns an empty list.

XQuery Specification Compliance
Conforms to the current specification.

Examples
® xf:get-seconds-from-time (xf:time ("21:09:44")) returns the integer value 44.

® xf:get-seconds-from-time (()) returns an empty list ().

xf:get-year-from-date

Returns an integer value representing the year identified in date.

Data Types
e Input data type: xs:date?

e Returned data type: xs:integer?

Notes
The year value ranges from 1000 to 999999.

XQuery Reference Guide 3-57

Functions Reference

3-58

If the source value is an empty list, the function returns an empty list.

XQuery Specification Compliance
Conforms to the current specification.

Examples

® xf:get-year-from-date (xf:date("2004-01-07")) returns the integer value 2004.

e xf:get-year-from-date (()) returns an empty list ().

xf:get-year-from-dateTime

Returns an integer value representing the year identified in dateTime.

Data Types:
e Input data type: xs:dateTime?
e Returned data type: xs:integer?

Notes
The year value ranges from 1000 to 999999.

If the source value is an empty list, the function returns an empty list.

XQuery Specification Compliance
Conforms to the current specification.

Examples

® xf:get-year-from-dateTime (xf:dateTime ("2002-07-15T21:09:44")) returns the
integer value 2004.

® xf:get-year-from-dateTime (()) returns an empty list ().

XQuery Reference Guide

Date and Time Functions

xf:time

Returns a tine from a source value, which must contain the time in one of these formats:
® hh:mm:ss
® hh:mm:ssZ
o hh:mm:ss+hh:mm

o hh:mm:ss-hh.mm

where the following is true:
e hh represents the number of hours
e mm represents the number of minutes
e ss represents the number of seconds
e Plus (+) or minus (-) is a positive or negative time zone offset
e ik represents the number of hours that the time zone differs from GMT (UTC)
e mm represents the number of minutes that the time zone differs from GMT (UTC)

e 7 indicates that the time is in the GMT time zone

Data Types
e Input data type: xs:string?
e Returned data type: xs:time?

Notes

Liquid Data generates an error if it cannot parse the string successfully.

XQuery Specification Compliance
Conforms to the current specification.

Examples

e xf:time("22:04:22") returns a time value corresponding to 10:04PM and 22 seconds in the
current time zone.

XQuery Reference Guide 3-59

Functions Reference

3-60

e xf:time("22:04:22.343") returns a time value corresponding to 10:04PM and 22.343
seconds, in the current time zone.

e xf:time("22:04:22-08:00") returns a time value corresponding to 10:04PM and 22
seconds in a time zone that is offset by -8 hours from GMT (UTC).

e xf:time("22:4:22") generates a runtime error because the minutes are not specified with
two digits.

e xf:time("22:04:22%") returns a time value corresponding to 10:04PM and 22 seconds in
the GMT time zone.

xfext:date-from-dateTime

Can be used to convert a dataTime to a date. Returns the leftmost date portion of a dateTime value.

Data Types
e Input data type: xs:dateTime?

e Returned data type: xs:date?

Notes

This is an extended function. It has an xfext: prefix identifier (namespace), which is the extension to
the standard XQuery function namespace (xf:). For more information about extended functions, see
“Naming Conventions” on page 3-2. For more information about valid formats for dateTime, see
“xf:dateTime” on page 3-49.

XQuery Specification Compliance
Liquid Data supports date-from-dateTime as an extended function.

Examples

e xfext:date-from-dateTime (xf:dateTime ("2002-07-15T21:09:44")) returns a date
value corresponding to July 156th, 2002 in the current time zone.

e xfext:date-from-dateTime (()) returns an empty list ().

XQuery Reference Guide

Date and Time Functions

xfext:date-from-string-with-format

Returns the right-most date portion of a dateTime value according to the pattern specified by
Parameterl. For more information, see “Date and Time Patterns” on page 3-7.
Data Types

e Parameterl data type: xs:string?

e Parameter2 data type: xs:string?

e Returned data type: xs:date?

Notes

This is an extended function. It has an xfext: prefix identifier (namespace), which is the extension to
the standard XQuery function namespace (xf:). For more information about extended functions, see
“Naming Conventions” on page 3-2.

XQuery Specification Compliance

Liquid Data supports date-from-string-with-format as an extended function.

Examples

® xfext:date-from-string-with-format ("yyyy-MM-dd G", "2002-06-22 AD")
returns the specified date in the current time zone.

® xfext:date-from-string-with-format ("yyyy-MM-dd", "2002-July-22")
generates an error because the date string does not match the specified format.

® xfext:date-from-string-with-format ("yyyy-MMM-dd", "2002-July-22") returns
the specified date in the current time zone.

XQuery Reference Guide 3-61

Functions Reference

3-62

xfext:date-to-string-with-format

Returns the date as a string formatted according to the pattern specified by Parameterl. For more
information on the date patterns, see “Date and Time Patterns” on page 3-7.

Data Types
e Parameterl data type: xs:string?
e Parameter2 data type: xs:date?
e Returned data type: xs:string?

Notes

This is an extended function. It has an xfext: prefix identifier (namespace), which is the extension to
the standard XQuery function namespace (xf:). For more information about extended functions, see
“Naming Conventions” on page 3-2.

XQuery Specification Compliance
Liquid Data supports date-to-string-with-format as an extended function.

Examples

® xfext:date-to-string-with-format ("yy-dd-mm", xf:date("2004-07-15"))
returns the string 04-15-07.

® xfext:date-to-string-with-format ("yyyy-mm-dd", xf:date("2004-07-15"))
returns the string 2004-07-15.

XQuery Reference Guide

Date and Time Functions

xfext:dateTime-from-string-with-format

Returns a new dateTime value from a string source value according to the pattern specified by
Parameterl.

Data Types
e Parameterl data type: xs:string?
e Parameter2 data type: xs:string?

e Returned data type: xs:dateTime?

Notes

This is an extended function. It has an xfext: prefix identifier (namespace), which is the extension to
the standard XQuery function namespace (xf:).

For more information about extended functions, see “Naming Conventions” on page 3-2, and see “Date
and Time Patterns” on page 3-7.

XQuery Specification Compliance

Liquid Data supports dateTime-from-string-with-format asan extended function.

Examples

® xfext:dateTime-from-string-with-format ("yyyy-MM-dd G", "2002-06-22 AD")
returns the specified date, 12:00:00AM in the current time zone.

® xfext:dateTime-from-string-with-format ("yyyy-MM-dd 'at' hh:mm",
"2002-06-22 at 11:04") returns the specified date, 11:04:00AM in the current time zone.

® xfext:dateTime-from-string-with-format ("yyyy-MM-dd", "2002-July-22")
generates an error because the date string does not match the specified format.

® xfext:dateTime-from-string-with-format ("yyyy-MMM-dd", "2002-July-22")
returns 12:00:00AM in the current time zone.

XQuery Reference Guide 3-63

Functions Reference

3-64

xfext:dateTime-to-string-with-format

Returns the dateTime as a string formatted according to the pattern specified by Parameterl. For
more information on the date patterns, see “Date and Time Patterns” on page 3-7.

Data Types
e Parameterl data type: xs:string?

e Parameter2 data type: xs:dateTime?

e Returned data type: xs:string?

Notes

This is an extended function. It has an xfext: prefix identifier (namespace), which is the extension to
the standard XQuery function namespace (xf:). For more information about extended functions, see
“Naming Conventions” on page 3-2.

XQuery Specification Compliance

Liquid Data supports dateTime-to-string-with-format as an extended function.

Examples

® xfext:dateTime-to-string-with-format ("dd MMMM yyyy hh:mm a G",
xf:dateTime ("2004-01-07T22:09:44")) returns the string
07 January 2004 10:09 PM AD.

® xfext:dateTime-to-string-with-format ("MM-dd-yyyy",
xf:dateTime ("2004-01-07T22:09:44")) returns the string 01-07-2004.

XQuery Reference Guide

Date and Time Functions

xfext:time-from-dateTime

Returns the time from dateTime.

Data Types
o Input data type: xs:dateTime?

e Returned data type: xs:time?

Notes

This is an extended function. It has an xfext: prefix identifier (namespace), which is the extension to
the standard XQuery function namespace (xf:). For more information about extended functions, see
“Naming Conventions” on page 3-2. For more information about valid formats for dateTime, see
“xf:dateTime” on page 3-49.

XQuery Specification Compliance
Liquid Data supports t ime - from-dateTime as an extended function.

Examples

® xfext:time-from-dateTime (xf:dateTime ("2002-07-15T21:09:44")) returns a date
value corresponding to 9:09:44PM in the current time zone.

e xfext:time-from-dateTime (()) returnsan empty list ().

XQuery Reference Guide 3-65

Functions Reference

3-66

xfext:time-from-string-with-format

Returns a new time value from a string source value according to the pattern specified by Parameterl.

Data Types

e Parameterl data type: xs:string?
e Parameter2 data type: xs:string?

e Returned data type: xs:time?

Notes
This is an extended function. It has an xfext: prefix identifier (namespace), which is the extension to
the standard XQuery function namespace (xf:).

For more information about extended functions, see “Naming Conventions” on page 3-2, and see “Date
and Time Patterns” on page 3-7.

XQuery Specification Compliance

Liquid Data supports t ime-from-string-with-format as an extended function.

Examples
® xfext:time-from-string-with-format ("HH.mm.ss", "21.45.22") returns the time
9:45:22PM in the current time zone.
® xfext:time-from-string-with-format ("hh:mm:ss a", "8:07:22 PM") returns the
time 8:07:22PM in the current time zone.

® xfext:time-from-string-with-format ("hh:mm:ss z", "8:07:22 EST") returns
the time 8:07:22AM in the EST time zone.

XQuery Reference Guide

Logical Operators

xfext:time-to-string-with-format

Returns the time as a string formatted according to the pattern specified by Parameterl. For more
information on the date patterns, see “Date and Time Patterns” on page 3-7.
Data Types

e Parameterl data type: xs:string?

e Parameter2 data type: xs:time?

e Returned data type: xs:string?

Notes

This is an extended function. It has an xfext: prefix identifier (namespace), which is the extension to
the standard XQuery function namespace (xf:). For more information about extended functions, see
“Naming Conventions” on page 3-2.

XQuery Specification Compliance

Liquid Data supports t ime-to-string-with-format as an extended function.

Examples

® xfext:time-to-string-with-format ("hh:mm a", xf:time("22:09:44")) returns
the string 10: 09 pMm.

® xfext:time-to-string-with-format ("HH:mm a", xf:time("22:09:44")) returns
the string 22:09 pMm.

Logical Operators

XQuery has operators that are specific to logical operations. The following logical operators are
available:

e and

® Or

XQuery Reference Guide 3-67

Functions Reference

3-68

and

The result is t rue if both values are true, and false if one of the values is false.

Data Types

e Parameterl data type: xs:boolean?
e Parameter2 data type: xs:boolean?
e Returned data type: xs:boolean?

Notes
This is a boolean operator that you can use as a function to return a t rue or false result.

The arguments and return type are all boolean.

The following table shows how Liquid Data determines the result. The leftmost column contains the
possible values of the first parameter; the top row contains the possible values of the second
parameter.

true false ()
true true false false
false false false false

XQuery Specification Compliance
e Liquid Data does not support error values.

e Liquid Data does not support a list of nodes as an input parameter to a boolean operator.

Examples

e xf:true() and xf:true () returns the boolean value true.
e xf:true() and xf:false () returns the boolean value false.
e xf:false() and xf:false () returnsthe boolean value false.

e xf:true() and (<a/>,) generates a compile-time error because lists are not
supported as input parameters to boolean operators.

e xf:false() and "false" generates a compile-time error because the second parameter is
not a boolean value.

XQuery Reference Guide

Logical Operators

or

The result is false if both values are false and true if at least one of the values is true. Parameter? is
not evaluated if Parameterl is true.
Data Types

e Parameterl data type: xs:boolean?

e Parameter2 data type: xs:boolean?

e Returned data type: xs:boolean?

Notes
This is a boolean operator that you can use as a function to return a true or false result.

The arguments and return type are all boolean.

The following table shows how Liquid Data determines the result. The leftmost column contains the
possible values of the first parameter; the top row contains the possible values of the second
parameter

true false ()
true true true true
false true false false
() true false false

XQuery Specification Compliance
e Liquid Data does not support error values.

e Liquid Data does not support a list of nodes as an input parameter to a boolean operator.

Examples

e xf:true() or xf:true() returnsthe boolean value true.
e xf:true() or xf:false () returns the boolean value true.
e xf:false() or xf:false() returns the boolean value false.

e xf:true() or (<a/>,) generates a compile-time error because lists are not
supported as parameters to boolean operators.

XQuery Reference Guide 3-69

Functions Reference

e xf:false() or "false" generatesa compile-time error because the second parameter is
not a boolean value.

Numeric Operators

XQuery has operators that are specific to numeric operations. The following numeric operators are
available:

* (multiply)

+ (add)

- (subtract)
o div

e mod

* (multiply)

Returns the arithmetic product of the operands: ($operand1*$operand2).

Data Types
e Parameterl data type: xs:anyValue?
e Parameter2 data type: xs:anylalue?
e Returned data type: xs:anylalue?

Notes
This is a numeric operator that you can use as if it were a function to compute numeric results.

The operator accepts two numeric values as parameters, computes their product, and returns the
result.

Liquid Data applies the following rules:

o If both parameters are promotable to xs:decimal, the operator returns their product as a
decimal value.

e I[f both parameters are promotable to xs:float, the operator returns their product as a floating
point value.

3-10 XQuery Reference Guide

Numeric Operators

e If both parameters are promotable to xs:double, the operator returns their product as a double
precision value.

e Otherwise, an error occurs because one of the parameters is not a number.

XQuery Specification Compliance

e Liquid Data supports only numeric multiplication (op:numeric-multiply) and no other backup
functions. It does not support values, such as xs:yearMonthDuration and xs:dayTimeDuration.

e Liquid Data does not support not-a-number (NaN) or the negative and positive infinity values
-INF and INF.

Examples

e 12 * 3returns the decimal value 36.
e xf:integer ("1") =* 3.1 returnsthe decimal value 3.1.

e "abc" * "cde" generates a compile-time error because the operator can be used only with
numbers.

+ (add)

Returns the arithmetic sum of the operands: ($operand1+$operand2).

Data Types
e Parameterl data type: xs:anylalue?
e Parameter2 data type: xs:anyValue?
e Returned data type: xs:anylalue?

Notes

This is a numeric operator that you can use as if it were a function to compute numeric results.
The operator accepts two numeric values as parameters, computes their sum, and returns the result.

Liquid Data applies the following rules:

e I[f both parameters are promotable to xs:decimal, the operator returns their sum as a decimal
value.

XQuery Reference Guide 3-Nn

Functions Reference

e If both parameters are promotable to xs:float, the operator returns their sum as a floating point
value.

o If both parameters are promotable to xs:double, the operator returns their sum as a double
precision value.

e Otherwise, an error occurs because one of the parameters is not a number.

XQuery Specification Compliance

e Liquid Data supports only numeric multiplication (op:numeric-add) and no other backup
functions. It does not support values, such as xs;yearMonthDuration and xs:dayTimeDuration.

e Liquid Data does not support not-a-number (NaN) or the negative and positive infinity values
-INF and INF.

Examples

e 20 + 1 returnsthe decimal value 21.
e xf:integer ("1") + 3.1 returnsthe decimal value 4.1.

® "abc" + "cde" generates a compile-time error because the operator can only be used with
numbers.

- (subtract)

Returns the arithmetic difference of the operands: ($operand1-$operand2).

Data Types
e Parameterl data type: xs:anyValue?
e Parameter2 data type: xs:anylalue?
e Returned data type: xs:anylalue?

Notes

This is a numeric operator that you can use as if it were a function to compute numeric results.

Liquid Data applies the following rules:

3-712 XQuery Reference Guide

Numeric Operators

e If both parameters are promotable to xs:decimal, the operator returns their difference as a
decimal value.

e Ifboth parameters are promotable to xs:float, the operator returns their difference as a floating
point value.

e If both parameters are promotable to xs:double, the operator returns their difference as a
double precision value.

e Otherwise, an error occurs because one of the parameters is not a number.

XQuery Specification Compliance

e Liquid Data supports only numeric multiplication (op:numeric-subtract) and no other backup
functions. It does not support values, such as xs;yearMonthDuration and xs:dayTimeDuration.

e Liquid Data does not support not-a-number (NaN) or the negative and positive infinity values
-INF and INF.

Examples
e 20 - 1 returns the decimal value 19.

e xf:integer ("1") - 3.1 returnsthe decimal value -2.1.

e "abc" - "cde" generates a compile-time error because the operator can only be used with
numbers.

div
Returns the arithmetic quotient of the operands ($operand1/$operand2).

Data Types
e Parameterl data type: xs:anylalue?
e Parameter2 data type: xs:anyValue?
e Returned data type: xs:anylalue?

Notes

This is a numeric operator that you can use as if it were a function to compute numeric results.

Liquid Data applies the following rules:

XQuery Reference Guide 3-13

Functions Reference

3-14

e If both parameters are promotable to xs:decimal, the operator returns their quotient as a
decimal value.

e If both parameters are promotable to xs:float, the operator returns their quotient as a floating
point value.

o If both parameters are promotable to xs:double, the operator returns their quotient as a double
precision value.

e Otherwise, an error occurs because one of the parameters is not a number.

XQuery Specification Compliance

e Liquid Data supports only numeric multiplication (op:numeric-divide) and no other backup
functions. It does not support values, such as xs;yearMonthDuration and xs:dayTimeDuration.

e Liquid Data does not support not-a-number (NaN) or the negative and positive infinity values
-INF and INF.

Examples
e 2 div 5 returns the decimal value 0.
e 3 div 5 returns the decimal value 1.

e 4 div "abc" generates a compile-time error because the operator can only be used with
numbers.

mod

Returns the remainder after dividing the first operand by the second operand:
($operandl mod $operand2).

Data Types

e Parameterl data type: xs:anylalue?
e Parameter2 data type: xs:anyValue?

e Returned data type: xs:anyValue?

Notes

This is a numeric operator that you can use as if it were a function to compute numeric results.

XQuery Reference Guide

Numeric Functions

Liquid Data applies the following rules:

o If both parameters are promotable to xs:decimal, the operator returns the remainder as a
decimal value.

e If both parameters are promotable to xs:float, the operator returns the remainder as a floating
point value.

o If both parameters are promotable to xs:double, the operator returns the remainder as a double
precision value.

e Otherwise, an error occurs because one of the parameters is not a number.

XQuery Specification Compliance

Liquid Data does not support not-a-number (NaN) or the negative and positive infinity values -INF and
INF.

Examples
e 2 mod 5 returns the decimal value 2.
e 3 mod 5 returns the decimal value -2.

e 4 mod "abc" generates a compile-time error because the operator can only be used with
numbers.

Numeric Functions

Numeric functions operate on numeric data types. The following numeric functions are available:
o xf:ceiling
e xf:floor
e xf:round
o xfext:decimal-round

o xfext:decimal-truncate

XQuery Reference Guide 3-15

Functions Reference

3-16

xf:ceiling

Returns the smallest (closest to negative infinity) integer that is not smaller than the source value.

Data Types
o Input data type: xs:double?

e Returned data type: xs:integer?

Notes

If the argument is an empty list, the function returns an empty list.

XQuery Specification Compliance

Conforms to the current specification.

Examples
e xf:ceiling(38.3) returns the integer value 39.
e xf:ceiling (38) returns the integer value 38.
e xf:ceiling(-3.3) returns the integer value -3.

e xf:ceiling("38.3") generates a compile-time error because the parameter is a string and
not a numeric value.

xf:floor

Returns the largest (closest to positive infinity) integer that is not greater than the source value.

Data Types
e Input data type: xs:double?

e Returned data type: xs:integer?

Notes

If the argument is an empty list, the function returns an empty list.

XQuery Reference Guide

Numeric Functions

XQuery Specification Compliance
Conforms to the current specification.

Examples

e xf:floor (38.3) returns the integer value 38.
e xf:floor (38) returns the integer value 38.
e xf:floor (-3.3) returns the integer value -4.

e xf:floor("38.3") generates a compile-time error because the parameter is a string and not
a numeric value.

xf:round

Returns the integer that is closest to the source value.

Data Types
o Input data type: xs:double?

e Returned data type: xs:integer?

Notes

Round(x) produces the same result as the Floor function(x+0.5). If there are two such numbers,
returns the one that is closest to +INF.

If the argument is +INF, returns +INF.
If the argument is -INF, returns -INF.
If the argument is +0, returns +0.

If the source value is an empty list, the function returns an empty list.

XQuery Specification Compliance
Liquid Data does not support not-a-number (NaN) or -0.

Examples

e xf:round (3) returns the integer value 3.

XQuery Reference Guide 3-17

Functions Reference

3-18

e xf:round (3.3) returns the integer value 3.

e xf:round(3.5) returns the integer value 4.

e xf:round (3.7) returns the integer value 4.

e xf:round(-3.3) returns the integer value -3.
e xf:round(-3.5) returns the integer value -3.
e xf:round(-3.7) returns the integer value -4.
e xf:round (-0) returns the integer value 0.

e xf:round("3.3") generates an error because the parameter is a string and not a numeric
value.

xfext:decimal-round

Returns a decimal value rounded to the specified precision (scale).

Data Types
e dec - Input data type: xs:decimal?
e scale - Input data type: xs:integer?
e Returned data type: xs:decimal?

Notes

The scale input is the precision with which to round the decimal input. A scale value of 1 rounds the
input to tenths, a scale value of 2 rounds it to hundreths, and so on.

XQuery Specification Compliance
This is an extended function and is not part of the XQuery specification.

Examples

e xfext:decimal-round(127.444, 2) returns 127.44.

® xfext:decimal-round(0.1234567, 6) returns 0.123457.

XQuery Reference Guide

Other Functions

xfext:decimal-truncate

Returns a decimal value truncated to the specified precision (scale).

Data Types
e dec - Input data type: xs:decimal?
e scale - Input data type: xs:integer?
e Returned data type: xs:decimal?

Notes

The scale input is the precision with which to truncate the decimal input. A scale value of 1 truncates
the input to tenths, a scale value of 2 truncates it to hundreths, and so on.

XQuery Specification Compliance
This is an extended function and is not part of the XQuery specification.

Examples
® xfext:decimal-truncate (127.444, 2) returns 127.44.

® xfext:decimal-truncate(0.1234567, 6) returns 0.123456.

Other Functions

The other functions folder is where the if-then-else function is in the Data View Builder.

xfext:if-then-else

The xfext:if-then-else function accepts the value of a boolean parameter to select one of two other
input parameters.

Data Types

e Parameterl data type: xs:boolean?
e Parameter2 data type: xs:anylalue?
e Parameter3 data type: xs:anyValue?

e Returned data type: xs:anyValue

XQuery Reference Guide 3-19

Functions Reference

Notes
The If-then-else function is an extended function. For more information about extended functions, see
“Naming Conventions” on page 3-2.

Liquid Data examines the value of the first parameter. If the condition is true, Liquid Data returns the
value of the second parameter (then). If the condition is false, Liquid Data returns the value of the
third parameter (else). If the returned condition is not a boolean value, Liquid Data generates an
error.

XQuery Specification Compliance

This is an extended function. Liquid Data converts it to an XQuery if-then-else expression.

Examples
e xfext:if-then-else (xf:true(), 3, "10") returns the value 3.
e xfext:if-then-else (xf:false(), 3, "10") returns the string value 10.

® xfext:if-then-else ("true", 3, "10") generates a compile-time error because the
condition is a string value and not a boolean value.

Sequence Functions

3-80

A sequence is an ordered collection of zero or more items. An item may be a node or a simple typed
value. Therefore, a sequence can be an ordered collection of nodes, a collection of simple typed values,
or any mix of nodes and simple typed values. Sequences may not contain other sequences but may
contain duplicate items. There is no difference between a single item, such as a node or a simple typed
value, and a sequence containing that single item.

o xf:distinct-values
e xf:empty
e xf:subsequence (format 1)

e xf:isubsequence (format 2)

XQuery Reference Guide

Sequence Functions

xf:distinct-values

If the source value contains only nodes, the function removes duplicates and returns a subset of
unique values.

Data Types
e Input data type: asext:item™
e Returned data type: xsext.anyValue*

Notes

The Liquid Data xf : distinct-values function varies from the standard XQuery function by
removing duplicates from the result.

If the source value is an empty list, the function returns an empty list.

XQuery Specification Compliance
e Liquid Data does not support the distinct-values format that accepts collations.
e Liquid Data uses the eq operator instead of xf:deep-equal to identify duplicates.

e Liquid Data does not support duration values.

Examples
e xf:distinct-values(("a", "b", "c", "b")) returns the string abc.

® xf:distinct-values ((<x>a</x>, <x>b</x>, <x>Cc</x>, <x>b</x>)) returns the
string sequence (<x>a</x>, <x>bh</x>, <x>€</X>).

e xf:distinct-values(("a", <x>b</x>, <x>c</x>, "b")) generates a compile-time
error because the list contains mixed nodes and values.

XQuery Reference Guide 3-81

Functions Reference

xf:empty

Returns true if the specified list of items is empty; otherwise, returns false.

Data Types
e Input data type: sext:item™

e Returned data type: xs:boolean?

XQuery Specification Compliance
Liquid Data supports an optional boolean returned value.

Examples
e xf:empty((1, 2, 3)) returnsthe boolean value false.
e xf:empty (1) returns the boolean value false.

e xf:empty (()) returns the boolean value true.

xf:subsequence (format 1)

Returns the contiguous sequence of items described by Parameter 1 beginning at the position
indicated by the Parameter 2 and continuing until the end of the sequence.

Data Types

e Parameterl data type: xsext:item™
e Parameter2 data type: xs:integer
e Returned data type: xsext:item*

Notes

The first item of a sequence is located at position 1, not position 0.
If you omit the length parameter, the function returns all items up to the end of the source sequence.

If the starting location is greater than the number of items in the sequence, the function returns an
empty list.

3-82 XQuery Reference Guide

Sequence Functions

If the item list is empty, Liquid Data returns an empty list.

XQuery Specification Compliance

e Liquid Data supports xs:integer instead of xs:decimal as the starting location and length
parameters.

o If the starting location is greater than the length of the input sequence, Liquid Data returns an
empty list instead of generating an error.
Examples
e xf:subsequence(("a", "b", "c", "d", "e"), 2) returnsthe string value bcde.
e xf:subsequence ("abcde", 2) returns the string value bcde.
e xf:subsequence ("abcde", 6) returnsthe empty string "'
e xf:subsequence ("abcde", 2, 3) returns the string value bcd.

e xf:subsequence ("abcde", 2, 10) returns the string value bcde.

® xf:subsequence ("abcde", ()) returns an empty list ().

xf:subsequence (format 2)

Returns the contiguous sequence of items described by Parameter 1 beginning at the position
indicated by the Parameter 2 and continuing for the number of items indicated by the value of
Parameter 3.

Data Types
e Parameterl data type: xsext:item™
e Parameter2 data type: xs:integer
e Parameter3 data type: xs:integer
e Returned data type: xsext:item*

Notes

The value of Parameter 2 can be greater than the number of items in the value of Parameter 1, in
which case the subsequence includes items to the end of Parameter 3.

XQuery Reference Guide 3-83

Functions Reference

3-84

If the sum of the starting location and the length parameter is greater than the length of the source
sequence, the function returns all items up to the end of the sequence.

The first item of a sequence is located at position 1, not position 0.

If the starting location is greater than the number of items in the sequence, the function returns an
empty list.

If the item list is an empty list, Liquid Data returns an empty list.

Liquid Data is able to process either format of xf:subsequence. Adding a third parameter
automatically invokes Format 2.
XQuery Specification Compliance

e cimal as the starting location and length parameters.

o If the starting location is greater than the length of the input sequence, Liquid Data returns an
empty list instead of generating an error.

Examples

® xf:subsequence(("a", "b", "c", "dn, vwen), 2) returns the string value bcde.
e xf:subsequence ("abcde", 2) returns the string value bcde.

e xf:subsequence ("abcde", 6) returnsthe empty string"".

e xf:subsequence ("abcde", 2, 3) returns the string value bcd.

e xf:subsequence ("abcde", 2, 10) returns the string value bcde.

e xf:subsequence ("abcde", ()) returnsan empty list O

XQuery Reference Guide

String Functions

String Functions

Strings from a character set may need to be sorted differently for different applications. You must
consider the sort order when you invoke string comparisons. Some string functions will require
understanding of the default sort order and any other special collation. The string functions are case
sensitive. For more information, see the Character Model for the World Wide Web 1.0. The following
string functions are available:

e xf:compare

e xf:concat

e xf:contains

e xf:iends-with

o xf:lower-case

o xf:starts-with

o xf'string-length

o xfisubstring (format1)
e xf:substring (format 2)
o xf:substring-after

o xf:substring-before

e xf:upper-case

o xfext:match

o xfext:trim

o xfext:sql-like

XQuery Reference Guide 3-85

http://www.w3.org/TR/2001/WD-xquery-operators-20011220/#charmod

Functions Reference

3-86

xf:compare

Returns -1, 0, or 1, depending on whether the value of Parameterl is less than (-1), equal to (0), or
greater than (1)the value of Parameter2.

Data Types
e Parameterl data type: xs:string?
e Parameter2 data type: xs:string?
e Returned data type: xs:integer?

Notes

If either argument is an empty list, the result is an empty list.

Liquid Data generates an error if either parameter is not a string.

XQuery Specification Compliance

Liquid Data does not support the xf:compare format that accepts collations.

Examples
® xf:compare ("a", "b") returns the integer value -1.
e xf:compare ("a", "a") returns the integer value 0.
e xf:compare ("b", "a") returns the integer value 1.

e xf:compare ("a", 3) generates a compile-time error because the second parameter is not a
string.

e xf:compare("a", ()) returnsan empty list ().

e xf:compare((), "a") returns an empty list ().

XQuery Reference Guide

String Functions

xf:concat

Returns a string that concatenates Parameter1 with Parameter2.

Data Types
e Parameterl data type: xs:string?
e Parameter2 data type: xs:string?

o Returned data type: xs:string?

Notes

The result string may not reflect Unicode or other W3C normalization.

Returns an empty string if the function has no arguments. If any argument is an empty list, it is treated
as an empty string.

Liquid Data generates an error if either parameter is not a string.

XQuery Specification Compliance

Liquid Data does not support a variable number of parameters to be concatenated. Choose only two
strings to concatenate with each operation.

Examples

e xf:concat ("a", "b") returns the string value "ab."

e xf:concat ("a", xf:concat ("b", "c")) returns the string value "abc."
e xf:concat ("abc", ()) returns the string value "abc."

e xf:concat ((), "abc") returns the string value "abc."

e xf:concat ((), ()) returnsan empty list ().

e xf:concat ("a", 4) generatesa compile-time error because the second parameter is not a
string.

XQuery Reference Guide 3-87

Functions Reference

xf:contains

Returns a boolean value of true or false indicating whether Parameterl contains a string that is equal
to Parameter2 at the beginning, at the end, or anywhere within Parameterl.

Data Types
e Parameterl data type: xs:string?

e Parameter2 data type: xs:string?

e Returned data type: xs:boolean?

Notes

If the value of Parameter2 is a zero-length string, the function returns true. If the value of Parameterl
is a zero-length string and the value of Parameter2 is not a zero-length string, the function returns
false.

If the value of Parameterl or Parameter2 is an empty list, the function returns an empty list.

Liquid Data generates an error if either parameter is not a string.

XQuery Specification Compliance
Liquid Data does not support the xf:contains format that accepts collations.

Examples
e xf:contains ("abc", "a") returns the boolean value true.
e xf:contains("abc", "b") returns the boolean value true.
e xf:contains ("abc", "c") returns the boolean value true.
e xf:contains("abc", "d") returns the boolean value false.
e xf:contains("abc", "") returnsthe boolean value true.

e xf:contains("abc", ()) returnsan empty list ().
e xf:contains((), "abc") returns an empty list ().

e xf:contains ("abc", 4) generatesa compile-time error because the second parameter is
not a string.

3-88 XQuery Reference Guide

String Functions

xf:ends-with

Returns a boolean value or true or false indicating whether Parameterl ends with a string that is equal
to Parameter2.
Data Types

e Parameterl data type: xs:string?

e Parameter2 data type: xs:string?

e Returned data type: xs:boolean?

Notes

If Parameter?2 is a zero-length string, then the function returns true. If Parameterl is a zero-length
string and Parameter?2 is not a zero-length string, the function returns false.

If Parameterl or Parameter2 is an empty list, the function returns an empty list.

Liquid Data generates an error if either parameter is not a string.

XQuery Specification Compliance
Liquid Data does not support the xf:ends-with format that accepts collations.

Examples
e xf:ends-with("abc", "a") returns the boolean value false.
e xf:ends-with("abc", "b") returns the boolean value false.
® xf:ends-with("abc", "c") returns the boolean value true.
e xf:ends-with("abc", "d") returns the boolean value false.
® xf:ends-with("abec", "") returns the boolean value true.
e xf:ends-with("abc", ()) returnsan empty list ().

e xf:ends-with((), "abc") returnsan empty list ().

e xf:ends-with("abc", 4) generates a compile-time error because the second parameter is
not a string.

XQuery Reference Guide 3-89

Functions Reference

xf:lower-case

Returns the value of the input string after translating every uppercase letter to its corresponding
lower-case value.
Data Types

e Input data type: xs:string?

e Returned data type: xs:string?

Notes

Every uppercase letter that does not have a lower-case corresponding value and every character that
is not an uppercase letter appears in the output in its original form.

If the source value is an empty list, the function returns an empty list.

XQuery Specification Compliance
Conforms to the current specification.

Examples

e xf:lower-case ("ABc!D") returns the string value abc ! d.
e xf:lower-case ("") returns the empty string "".
e xf:lower-case (()) returnsthe empty list ().

e xf:lower-case (4) generates a compile-time error because the parameter is not a string.

xf:starts-with

Returns a boolean value or true or false indicating whether Parameterl starts with a string that is
equal to Parameter2.

Data Types
e Parameterl data type: xs:string?

e Parameter2 data type: as:string?

3-90 XQuery Reference Guide

String Functions

Returned data type: xs:boolean?

Notes

If Parameter2 is a zero-length string, then the function returns true. If Parameterl is a zero-length
string and tParameter2 is not a zero-length string, the function returns false.

If Parameterl or Parameter2 is an empty list, the function returns an empty list.

Liquid Data generates an error if either parameter is not a string.

XQuery Specification Compliance
Liquid Data does not support the xf:ends-with format that accepts collations.

Examples
® xf:starts-with("abc", "a") returns the boolean value true.
e xf:starts-with("abc", "b") returns the boolean value false.
e xf:starts-with("abc", "c") returns the boolean value false.
e xf:starts-with("abc", "d") returnsthe boolean value false.
® xf:starts-with("abc", "") returns the boolean value true.
e xf:starts-with("abc", ()) returnsthe empty list ().
e xf:starts-with((), "abc") returns the empty list ().
e xf:starts-with("abc", 4) generatesa compile-time error because the second parameter

is not a string.

xf:string-length

Returns an integer equal to the number of characters in the input source string.

Data Types

Input data type: xs:string?

Returned data type: xs:integer?

XQuery Reference Guide 3-91

Functions Reference

3-92

Notes

If the source value is an empty list, the function returns an empty list.

Liquid Data generates an error if either parameter is not a string.

XQuery Specification Compliance

e Liquid Data treats xf:string as both a constructor and an accessor.

e Liquid Data supports only the string format that requires one node of any type as the input.
e Liquid Data accepts xsext:anyType input instead of a list of items.

e Liquid Data returns an optional string.

e Liquid Data does not recognize entities.

Examples
e xf:string-length ("abc") returns the integer value 3.
e xf:string-length (") returns the integer value 0.
® xf:string-length(()) returns the empty list ().

e xf:string-length(4) generates a compile-time error because the parameter is not a string.

xf:substring (formatl)

Returns that part of the Parameterl source string from the starting location specified by Parameter2.

Data Types
e Parameterl data type: xs:string?
e Parameter2 data type: xs:integer?
e Returned data type: xs:string?

Notes
If the starting location is a negative value, or greater than the length of source string, an error occurs.

The first character of a string is located at position 1 (not position 0).

XQuery Reference Guide

String Functions

If Parameterl or Parameter2 is an empty list, the function returns an empty list.
If you omit Parameter3, the function returns characters up to the end of the source string.

Liquid Data generates an error if Parameter1 is not a string or if the starting location is less than 1.

XQuery Specification Compliance

e Liquid Data supports xs:integer instead of xs:decimal as the starting location and length
parameters.

e If the starting location is greater than the length of the input sequence, Liquid Data returns an
empty list instead of generating an error.

xf:substring (format 2)

Returns that part of the Parameterl source string from the starting location specified by Parameter2
and continuing for the number of characters equal to the length specified by Parameter3.

Data Types
e Parameterl data type: xs:string?
e Parameter2 data type: xs:integer?
e Parameter3 data type: xs:integer?

e Returned data type: xs:string?

Notes

If the starting location is a negative value, or greater than the length of the source string, an error
occurs.

The first character of a string is located at position 1 (not position 0).
If you omit length, the substring identifies characters to the end of the source string.

If length exceeds the number of characters in the source string, the function identifies only characters
until the end of the source string.

If Parameterl, Parameter2, or Parameter3 is an empty list, the function returns an empty list.

Liquid Data generates an error if Parameterl is not a string or if the starting location is less than 1.

XQuery Reference Guide 3-93

Functions Reference

3-94

Liquid Data is able to process either format of xf:substring. Adding a third parameter automatically
invokes Format 2.
XQuery Specification Compliance

e Liquid Data supports xs:integer instead of xs:decimal as the starting location and length
parameters.

o If the starting location is greater than the length of the input sequence, Liquid Data returns an
empty list instead of generating an error.

xf:substring-after

Returns that part of the Parameter1 source string that follows the first occurrence of those characters
specified in Parameter2.

Data Types
e Parameterl data type: xs:string?

e Parameter2 data type: xs:string?

e Returned data type: xs:string?

Notes

If Parameter2 is a zero-length string, the function returns the value of Parameterl. If Parameter] is a
zero-length string and Parameter2 is a zero-length string, the function returns a zero-length string.

If Parameter1 does not contain a string that is equal to Parameter2, the function returns a zero-length
string.

If Parameterl or Parameter2 is an empty list, the function returns an empty list.

XQuery Specification Compliance
Liquid Data does not support the xf:substring-after format that accepts collations.

Examples
e xf:substring-after ("abcde", "d") returns the string value "e."
e xf:substring-after ("abcde", ") returns the string value "abcde."

XQuery Reference Guide

String Functions

e xf:substring-after ("abcde", "x") returnsthe empty string "".
e xf:substring-after ("abcde", ()) returnsthe empty list ().
e xf:substring-after((), "x") returnsthe empty list ().

e xf:substring-after ("abc34de", 3) generates a compile-time error because the second
parameter is not a string.

xf:substring-before

Returns that part of the Parameterl source string that precedes the first occurrence of those
characters specified in Parameter2.

Data Types
e Parameterl data type: xs:string?
e Parameter2 data type: xs:string?

e Returned data type: xs:string?

Notes

If Parameter2 is a zero-length string, the function returns the value of Parameterl. If Parameter] is a
zero-length string and Parameter2 is a zero-length string, the function returns a zero-length string.

If Parameter1 does not contain a string that is equal to Parameter2, the function returns a zero-length
string.

If Parameterl or Parameter2 is an empty list, the function returns an empty list.

XQuery Specification Compliance
Liquid Data does not support the xf:substring-before format that accepts collations.

Examples
® xf:substring-before ("abcde", "d") returns the string value abc.
® xf:substring-before ("abcde", "") returns the string value abcde.
® xf:substring-after("abcde", "x") returns the empty string "".

XQuery Reference Guide 3-95

Functions Reference

3-96

e xf:substring-before ("abcde", ()) returnsan empty list ().
e xf:substring-before((), "x") returns an empty list ().

e xf:substring-before ("abc34de", 3) generates a compile-time error because the
second parameter is not a string.

xf:upper-case
Returns the value of the input string after translating every lower-case letter to its uppercase
correspondent.
Data Types
e Input Parameter data type = xs:string?

o Returned data type: xs:string?

Notes

Every lower-case letter that does not have an uppercase corresponding value and every character that
is not a lower-case letter appears in the output in its original form.

If the source value is an empty list, the function returns an empty list.

Liquid Data generates an error if the parameter is not a string.

XQuery Specification Compliance

Conforms to the current specification.

Examples
e xf:upper-case ("ABc!D") returns the string value ABc!D.
e xf:upper-case ("") returns the empty string "".

e xf:upper-case (()) returns the empty list ().

e xf:upper-case (4) generates a compile-time error because the parameter is not a string.

XQuery Reference Guide

String Functions

xfext:match

Returns a list of integers (either an empty list with 0 integers or a list with 2 integers) specifying which
characters in the string input matches the input regular expression. When the function returns a
match, the first integer represents the index of (the position of) the first character of the matching
substring and the second integer represents the number of matching characters starting at the first
match.
Data Types

e source - Input data type: xs:string?

e regularExpression - Input data type: xs:string?

e Returned data type: xs:int?

Notes

The index of the first character of the input source is 1, the index of the second character is 2, and
S0 on.

XQuery Reference Guide 3-97

Functions Reference

The regularExpression input uses a standard regular expression language. The regular expression
language uses the following components:

Table 3-3 Regular expression syntax examples for the xfext:match function

Syntax Example Description
Characters
unicode Matches the specified unicode character.
\ Used to escape metacharacters such as *, +, and 2.
\\ Matches a single backslash (\) character.
\0nnn Matches the specified octal character.
\0xhh Matches the specified 8-bit hexidecimal character.
\\uxhhh Matches the specified 16-bit hexidecimal character.
\t Matches an ASCII tab character.
\n Matches an ASCII new line character.
\r Matches an ASCII return character.
\f Matches an ASCII form feed character.

Simple Character Classes

[bc] Matches the characters b or c.
la-£] Matches any character between a and £.
[“bc]

Matches any character except b and c.

3-98 XQuery Reference Guide

String Functions

Table 3-3 Regular expression syntax examples for the xfext:match function (Continued)

Syntax Example

Description

Predefined Character Classes

Matches any character except the new line character.

\w Matches a word character: an alphanumeric character or the
underscore () character.
\W Matches a non-word character.
\s Matches a white space character.
\S Matches a non-white space character.
\d Matches a digit.
\D Matches a non-digit.
Greedy Closures—match as many characters as possible
A* Matches expression A zero or more times.
A+ Matches expression A one or more times.
A? Matches expression A zero or one times.
A(n) Matches expression A exactly n times.
A(n,) Matches expression A at least n times.
A(n, m) Matches expression A between n and m times.

Reluctant Closures—match as few characters as possible (stops when a match is found)

A*? Matches expression A zero or more times.
A+? Matches expression A one or more times.
A??

Matches expression A zero or one times.

XQuery Reference Guide 3-99

Functions Reference

Table 3-3 Regular expression syntax examples for the xfext:match function (Continued)

Syntax Example Description

Logical Operators

AB Matches expression A followed by expression B.
AlB Matches expression A or expression B.
(&) Used for grouping expressions.

XQuery Specification Compliance

This is an extended function and is not part of the XQuery specification.

Examples

e xfext:match("abede", "bcd") evaluates to the list (2, 3)
e xfext:match ("abecde", ()) evaluates to the empty list ()
e xfext:match((), "bcd") evaluates to the empty list ()

e xfext:match ("abc", 4) generates an error at compile time because the second parameter
is not a string

e xfext:match ("abcccdee", "[bcl") evaluates to the list (2,1)

xfext:trim

Returns the value of the input string with leading and trailing white space removed from the string.
Data Types

e Input data type: xs:string?

e Returned data type: xs:string?

Notes

If the input string is an empty list, the function returns an empty list.

Liquid Data generates an error if the parameter is not a string.

3-100 XQuery Reference Guide

String Functions

XQuery Specification Compliance

The xfext : trim function is an extended function. For more information about extended functions,
see “Naming Conventions” on page 3-2.

Examples
e xfext:trim("abc") returns the string value "abc"
e xfext:trim(" abc ") returns the string value "abc"
e xfext:trim(()) returns the empty list ()

e xfext:trim(5) generates a compile-time error because the parameter is not a string

xfext:sql-like
Tests whether a string contains the specified pattern. Typically, this function is used as a condition for
a query, similar to the SQL LIKXE operator used in a predicate of SQL queries. Returns TRUE if the
pattern is matched in the source expression, otherwise returns FALSE.
Data Types

e Parameterl source Input data type: xs:string?

e Parameter2 pattern Input data type: xs:string?

e Parameter3 escape Input data type: xs:string?

e Returned data type: xs:boolean?

Notes

The percentage character (%) is a wildcard character representing a string of zero or more characters.
The underscore character () is a is a wildcard character representing any single character.

Use the xfext : sql-1ike function to specify query conditions that satisfy a search pattern. For
example, you can use the xfext : sql-1ike function to constrain a query that returns first names to
return only first names that begin with the letter H.

The escape input parameter specifies an escape character. The escape character is needed to specify
one of the wildcard characters (_ and %) in the search pattern.

XQuery Reference Guide 3-101

Functions Reference

XQuery Specification Compliance

The xfext : sql-1ike function is an extended function. For more information about extended
functions, see “Naming Conventions” on page 3-2.

Examples

® xfext:sql-like ($RTL_CUSTOMER.ADDRESS_1/FIRST NAME, "H%","\") returns TRUE
for all FIRST NAME elements in $RTL_CUSTOMER . ADDRESS that start with the character =.

® xfext:sql-like ($RTL_CUSTOMER.ADDRESS_1/FIRST NAME," a%","\") returns TRUE
for all FIRST NAME elements in $RTL_CUSTOMER . ADDRESS that start with any character and
have a second character of the letter a.

® xfext:sqgl-like ($RTL_CUSTOMER.ADDRESS 1/FIRST NAME, "H\%%","\") returns
TRUE for all FIRST NAME elements in SRTL CUSTOMER.ADDRESS that start with the
characters 1%.

Treat Functions

3-102

The treat functions process a source value as the argument and treat that source value as if it is the
datatype in the treat function. These functions are used when mapping optional values (which do not
have to have data associated with them) to mandatory values (which do have to have data associated
with them). From the Query menu Automatic Treat As checkbox, you can set up the Data View Builder
to automatically add treat functions when they are needed, or you can add them manually. Without
the treat functions, some queries that attempt to map optional fields (for example, nullable
relational database columns) to mandatory fields might fail.

Unlike the cast functions, the treat functions do not change the type of the input value; instead
they ensure that an expression has the intended type when it is evaluated for query execution.

A typical use case is when you need to map elements from a nullable relational database column that
you know do not contain any null values.

Another use case is where you need to map non-nullable (mandatory) elements to a function that
produces optional (nullable) output. For example, if you map an xf : string type to a custom
function that outputs an xf : st ring? type, and then map that output to an xf : st ring type, there
will be a type mismatch which will cause the query to fail during compilation. The type mismatch is
because the output type of the function is xf : string?, which mismatches xf : st ring. You can
correct this by placing a treat as xs:string function betweenthe custom function and the
output.

XQuery Reference Guide

Treat Functions

The following table describes Liquid Data data types that conform to the XQuery specification that you
canusein treat as functions. For more information about data types, see the XQuery 1.0 and XPath
2.0 Functions and Operators specification. The following treat as functions are available:

e treat as xs:boolean

treat as xs:byte

treat as xs:date

treat as xs:dateTime

treat as xs:decimal

treat as xs:double

treat as xs:float

treat as xs:int

e treat as xs:integer

treat as xs:long

treat as xs:short

treat as xs:string

e treat as xs:time

treat as xs:boolean

Treats the input value as if it is a boolean value (true or false). Use to map optional boolean elements
to mandatory boolean elements.

Data Types
o Input data type: xs:anyValue?
e Returned data type: xs:anyValue?

Notes

See “Treat Functions” on page 3-102.

XQuery Specification Compliance
Conforms to the current specification.

XQuery Reference Guide 3-103

Functions Reference

treat as xs:byte

Treats the input value as if it is a byte value. Use to map optional boolean elements to mandatory
boolean elements.

Data Types
e Input data type: xs:anyValue?
e Returned data type: xs:anylalue?

Notes
See “Treat Functions” on page 3-102.

XQuery Specification Compliance

Conforms to the current specification.

treat as xs:date

Treats the input value as if it is a date value. Use to map optional boolean elements to mandatory
boolean elements.

Data Types
e Input data type: xs:anyValue?
e Returned data type: xs:anyValue?

Notes

See “Treat Functions” on page 3-102.

XQuery Specification Compliance

Conforms to the current specification.

3-104 XQuery Reference Guide

Treat Functions

treat as xs:dateTime

Treats the input value as if it is a dateTime value. Use to map optional boolean elements to mandatory
boolean elements.

Data Types
e Input data type: xs:anyValue?
e Returned data type: xs:anylalue?

Notes
See “Treat Functions” on page 3-102.

XQuery Specification Compliance

Conforms to the current specification.

treat as xs:decimal

Treats the input value as if it is a decimal value. Use to map optional boolean elements to mandatory
boolean elements.

Data Types
e Input data type: xs:anyValue?
e Returned data type: xs:anyValue?

Notes

See “Treat Functions” on page 3-102.

XQuery Specification Compliance

Conforms to the current specification.

XQuery Reference Guide 3-105

Functions Reference

treat as xs:double

Treats the input value as if it is a double value. Use to map optional boolean elements to mandatory
boolean elements.

Data Types
e Input data type: xs:anyValue?
e Returned data type: xs:anylalue?

Notes
See “Treat Functions” on page 3-102.

XQuery Specification Compliance

Conforms to the current specification.

treat as xs:float

Treats the input value as if it is a float value. Use to map optional boolean elements to mandatory
boolean elements.

Data Types
e Input data type: xs:anyValue?
e Returned data type: xs:anyValue?

Notes

See “Treat Functions” on page 3-102.

XQuery Specification Compliance

Conforms to the current specification.

3-106 XQuery Reference Guide

Treat Functions

treat as xs:int

Treats the input value as if it is a int value. Use to map optional boolean elements to mandatory
boolean elements.

Data Types
e Input data type: xs:anyValue
e Returned data type: xs:int

Notes
See “Treat Functions” on page 3-102.

XQuery Specification Compliance

Conforms to the current specification.

treat as xs:integer

Treats the input value as if it is a integer value. Use to map optional boolean elements to mandatory
boolean elements.

Data Types
e Input data type: xs:anyValue?
e Returned data type: xs:anyValue?

Notes

See “Treat Functions” on page 3-102.

XQuery Specification Compliance

Conforms to the current specification.

XQuery Reference Guide 3-107

Functions Reference

treat as xs:long

Treats the input value as if it is a long value. Use to map optional boolean elements to mandatory
boolean elements.

Data Types
e Input data type: xs:anyValue?
e Returned data type: xs:anylalue?

Notes
See “Treat Functions” on page 3-102.

XQuery Specification Compliance

Conforms to the current specification.

treat as xs:short

Treats the input value as if it is a short value. Use to map optional boolean elements to mandatory
boolean elements.

Data Types
e Input data type: xs:anyValue?
e Returned data type: xs:anyValue?

Notes

See “Treat Functions” on page 3-102.

XQuery Specification Compliance

Conforms to the current specification.

3-108 XQuery Reference Guide

Treat Functions

treat as xs:string

Treats the input value as if it is a string value. Use to map optional boolean elements to mandatory
boolean elements.

Data Types
e Input data type: xs:anyValue?
e Returned data type: xs:anylalue?

Notes
See “Treat Functions” on page 3-102.

XQuery Specification Compliance

Conforms to the current specification.

treat as xs:time

Treats the input value as if it is a time value. Use to map optional boolean elements to mandatory
boolean elements.

Data Types
e Input data type: xs:anyValue?

e Returned data type: xs:anyValue?

Notes

See “Treat Functions” on page 3-102.

XQuery Specification Compliance
Conforms to the current specification.

XQuery Reference Guide 3-109

Functions Reference

3-110 XQuery Reference Guide

Supported Data Types

This section provides information about the data types supported in BEA Liquid Data for WebLogic.
The following topics are included:

e JDBC Types in Liquid Data
— java.sql.Types Data Types
— JDBC Data Type Names

e Database-Specific Data Type Names
Oracle Data Type Names

Microsoft SQL Server Data Type Names
DB2 Data Type Names

Sybase Data Type Names

Informix Data Type Names

XQuery Reference Guide 41

Supported Data Types

JDBC Types in Liquid Data

42

In relational databases, data types are described using two methods. The conventional way is to use a
JDBC number. For example, an integer is 4, varchar is 12, a date is 91, an so on. These numbers are
represented by constants in the java.sqgl . Types class, such as Types . INTEGER = 4 and
Types.VARCHAR = 12.This numbering system describes all the JDBC standardized types. However,
there are many vendor-specific types, and most of them use the default JDBC number 1111, meaning
“other.” For this method, there is a name instead of a number associated with each type.

The Liquid Data query generation engine first looks at the JDBC number for a match. If no match
occurs, then it uses the name. For example, if the number is 1111, then the query generation engine
looks for a name. If there is no match found for either one, the query generation engine treats the
column as a string.

Depending on the type of database you access, you need to map external database fields with a
compatible data type when you invoke Liquid Data functions. You will notice that some external data
types are not supported by Liquid Data. You may need to transform these data types to a supported
type before you access that data in a query. The following tables can help you make these decisions.

java.sql.Types Data Types

The following table maps the java.sql . Types data type to the appropriate data type that you
should use with Liquid Data.

Table 4-1 java.sql.Types and Liquid Data Equivalents

java.sql.Types Data Type Liquid Data Data Type
Types .ARRAY not supported
Types.BIGINT xs:long

Types .BINARY xs:string
Types.BIT xs:boolean
Types .BLOB not supported
Types.CHAR xs:string

Types .CLOB not supported

Types .DATE xs:date

XQuery Reference Guide

JDBC Types in Liquid Data

Table 4-1 java.sql.Types and Liquid Data Equivalents (Continued)

java.sql.Types Data Type Liquid Data Data Type
Types.DECIMAL xs:decimal
Types .DOUBLE xs:double
Types.FLOAT xs:double
Types.INTEGER xs:integer
Types.JAVA OBJECT not supported
Types .LONGVARBINARY xs:string
Types.LONGVARCHAR xs:string
Types .NUMERIC xs:decimal
Types.REAL xs:float
Types.REF xs:string
Types.SMALLINT xs:short
Types.STRUCT not supported
Types.TIME xs:time
Types.TIMESTAMP xs:dateTime
Types.TINYINT xs:byte
Types.VARBINARY xs:string
Types.VARCHAR xs:string

XQuery Reference Guide

Supported Data Types

4-4

JDBC Data Type Names

The following table maps the native JDBC Data Type name to Liquid Data data types.

Table 4-2 JDBC Data Types and Liquid Data Equivalents

JDBC Name Liquid Data Data Type
ARRAY not supported
BIGINT xs:long
BINARY xs:string
BIT xs:boolean
BLOB not supported
CHAR xs:string
CLOB not supported
DATE xs:date
DEC xs:decimal
DECIMAL xs:decimal
DOUBLE xs:double
FLOAT xs:double
INTEGER xs:integer

JAVA OBJECT

not supported

LONGVARBINARY xs:string
LONGVARCHAR xs:string
NUM xs:decimal
NUMERIC xs:decimal
REAL xs:float

REF xs:string

XQuery Reference Guide

Database-Specific Data Type Names

Table 4-2 JDBC Data Types and Liquid Data Equivalents (Continued)

JDBC Name Liquid Data Data Type
SMALLINT xs:short

STRUCT not supported

TIME xs:time
TIMESTAMP xs:dateTime
TINYINT xs:byte
VARBINARY xs:string
VARCHAR xs:string

Database-Specific Data Type Names

This section includes tables showing the database-specific data type names and the corresponding
Liquid Data data types. This section includes the following:

e Oracle Data Type Names

e Microsoft SQL Server Data Type Names

e DB2 Data Type Names
e Sybase Data Type Names

XQuery Reference Guide

4-5

Supported Data Types

Oracle Data Type Names

The following table maps Oracle names to Liquid Data data types.

Table 4-3 Oracle Data Types and Liquid Data Equivalents

Oracle Name Liquid Data Data Type
FLOAT xs:float
BFILE not supported
LONG not supported
LONG RAW not supported
NCHAR xs:string
NCLOB not supported
NUMBER xs:decimal
NVARCHAR2 xs:string
RAW xs:string
ROWID xs:string
UROWID not supported
VARCHAR2 xs:string

4-6 XQuery Reference Guide

Database-Specific Data Type Names

Microsoft SQL Server Data Type Names

The following table maps Microsoft SQL Server names to Liquid Data data types.

Table 4-4 Microsoft SQL Server Data Types and Liquid Data Equivalents

SQL Name Liquid Data Data Type
DATETIME xs:dateTime
IMAGE not supported
INT xs:integer
MONEY xs:float
NTEXT xs:string
NVARCHAR xs:string
SMALLDATETIME xs:dateTime
SMALLMONEY xs:float
SQL_VARIANT xs:string
UNIQUEIDENTIFIER xs:string

XQuery Reference Guide

41

Supported Data Types

DB? Data Type Names

The following table maps DB2 data types to Liquid Data data types.

Table 4-5 IBM DB2 Data Types and Liquid Data Equivalents

DB2 Name Liquid Data Data Type
CHARACTER xs:string
CHARACTER (for bit data) xs:string
DATALINK xs:string
LONG VARCHAR xs:string
LONG VARCHAR (for bit data) xs:string
VARCHAR (for bit data) xs:string

Sybase Data Type Names

The following table maps Sybase data types to Liquid Data data types.

Table 4-6 Sybase Data Types and Liquid Data Equivalents

Sybase Name Liquid Data Data Type
SYSNAME xs:string
TEXT xs:string

4-8 XQuery Reference Guide

Informix Data Type Names

Database-Specific Data Type Names

The following table maps Informix data types to Liquid Data data types.

Table 4-7 Informix Data Types and Liquid Data Equivalents

Informix Name Liquid Data Data Type
BLOB not supported
BYTE not supported
BOOLEAN xs:boolean
CHAR(n) xs:string
CHARACTER (n) xs:string
CLOB not supported
DATE xs:date
DATETIME xs:dateTime
DEC/DECIMAL xs:decimal
DOUBLE PRECISION/FLOAT xs:double
INT/INTEGER xs:integer
INTS8 xs:long
INTERVAL not supported
LVARCHAR xs:string
MONEY xs:float
NCHAR xs:string
NUMERIC xs:decimal
REAL xs:float
SMALLFLOAT xs:float
SMALLINT xs:short
TEXT xs:string

XQuery Reference Guide

4-9

Supported Data Types

4-10 XQuery Reference Guide

Index

- (subtract) operator 3-72

Symbols

* (multiply) operator 3-70
+ (add) operator 3-71

A

add (+) operator 3-71
and operator 3-68

B
BEA corporate Web site -xii

C

cast as xs:boolean function 3-21
cast as xs:byte function 3-22
cast as xs:date function 3-22
cast as xs:dateTime function 3-23
cast as xs:decimal function 3-24
cast as xs:double function 3-25
cast as xs:float function 3-25
cast as xs:int function 3-26

cast as xs:integer function 3-27
cast as xs:long function 3-27
cast as xs:short function 3-28
cast as xs:string function 3-28
cast as xs:time function 3-29

customer support contact information -xii

D
DB2
names for Liquid Data data types 4-8
div operator 3-73
documentation, where to find it -xii

E

element and attribute constructors, see XML
markup
eq operator 3-30

F

functions
cast as xs:boolean 3-21
cast as xs:byte 3-22

cast as xs:date 3-22

cast as xs:dateTime 3-23
cast as xs:decimal 3-24
cast as xs:double 3-25
cast as xs:float 3-25

cast as xs:int 3-26

cast as xs:integer 3-27
cast as xs:long 3-27

cast as xs:short 3-28

cast as xs:string 3-28
cast as xs:time 3-29
treat as xs:boolean 3-103
treat as xs:byte 3-104
treat as xs:date 3-104
treat as xs:dateTime 3-105
treat as xs:decimal 3-105

XQuery Reference Guide

Index-1

treat as xs:double 3-106
treat as xs:float 3-106
treat as xs:int 3-107
treat as xs:integer 3-107

xf:get-seconds-from-time 3-57
xf:get-year-from-date 3-57
xf:get-year-from-dateTime 3-58
xf:int 3-40

treat as xs:long 3-108 xf:integer 3-41

treat as xs:short 3-108 xf:local-name 3-12

treat as xs:string 3-109 xf:long 3-42

treat as xs:time 3-109 xf:lower-case 3-90

W3C XQuery links 3-1 xf:max 3-15

xf:add-days 3-46 xf:min 3-16

xf:avg 3-13 xfnot 3-19

xf:boolean-from-string 3-36 xfiround 3-77

xt:byte 3-36 xf:short 3-43

xf:ceiling 3-76 xf:starts-with function 3-90
xf:compare 3-86 xf:string 3-44

xf:concat 3-87 xf:string-length 3-91

xf:contains 3-88 xf:subsequence (format 1) 3-82
xf:count 3-14 xf:subsequence (format 2) 3-83
xf:current-dateTime 3-47 xf:substring (format 1) 3-92

xf:data 3-9 xf:substring (format 2) 3-93

xf:date 3-47 xf:substring-after 3-94

xf:dateTime 3-49 xf:substring-before 3-95

xf:decimal 3-38 xfisum 3-17

xf:distinct-values 3-81 xf:time 3-59

xf:document (format 1) 3-10 xf:true 3-19

xf:document (format 2) 3-11 xf:upper-case 3-96

xf:double 3-38 xfext:date-from-dateTime 3-60
xf:empty 3-82 xfext:date-from-string-with-format 3-61
xf:ends-with 3-89 xfext:dateTime-from-string-with-format 3-63
xf:false 3-18 xfext:dateTime-to-string-with-format 3-64
xf:float 3-39 xfext:date-to-string-with-format 3-62
xf:floor 3-76 xfext:decimal-round 3-78
xf:get-day-from-date 3-50 xfext:decimal-truncate 3-79
xf:get-day-from-dateTime 3-51 xfext:if-then-else 3-79
xf:get-hours-from-dateTime 3-52 xfext:match 3-97
xf:get-hours-from-time 3-52 xfext:sql-like 3-101

xfext:time-from-dateTime function 3-65
xf:get-minutes-from-time 3-54 xfext:time-from-string-with-format 3-66
xf:get-month-from-date 3-54 xfext:time-to-string-with-format 3-67
xf:get-month-from-dateTime 3-55 xfext:trim 3-100
xf:get-seconds-from-dateTime 3-56

xf:get-minutes-from-dateTime 3-53

Index-2 XQuery Reference Guide

G

ge operator 3-31
gt operator 3-32

if-then-else function 3-79
Informix
names for Liquid Data data types 4-9

J
JDBC
java.sql.Types supported data types for Liquid
Data 4-2
names for Liquid Data data types 4-4
L

le operator 3-33
Liquid Data documentation Home page -xii
It operator 3-33

M
mod operator 3-74
MSQL
server names for Liquid Data data types 4-7
multiply (*) operator 3-70

N
ne operator 3-34
0
operators
div 3-73
eq 3-30
ge 3-31
gt 3-32
le 3-33

1t 3-33

mod 3-74

ne 3-34

or 3-69
or operator 3-69
Oracle

names for Liquid Data data types 4-6
outer join 2-22

P
print, how to -xii
printing product documentation -xii

R

related information -xii

S

subtract (-) operator 3-72
support
technical -xii
Sybase
names for Liquid Data data types 4-8

T

treat as xs:boolean function 3-103
treat as xs:byte function 3-104
treat as xs:date function 3-104
treat as xs:dateTime function 3-105
treat as xs:decimal function 3-105
treat as xs:double function 3-106
treat as xs:float function 3-106
treat as xs:int function 3-107
treat as xs:integer function 3-107
treat as xs:long function 3-108
treat as xs:short function 3-108
treat as xs:string function 3-109
treat as xs:time function 3-109

XQuery Reference Guide

Index-3

w

W3C
XQuery and XML 1-3

X

xf:add-days function 3-46

xf:avg function 3-13
xf:boolean-from-string function 3-36
xf:byte function 3-36

xf:ceiling function 3-76

xf:compare function 3-86

xf:concat function 3-87

xf:contains function 3-88

xf:count function 3-14
xf:current-dateTime function 3-47
xf:data function 3-9

xf:date function 3-47

xf:dateTime function 3-49

xf:decimal function 3-38
xf:distinct-values function 3-81
xf:document (format 1) function 3-10
xf:document (format 2) function 3-11
xf:double function 3-38

xf:empty function 3-82

xf:ends-with function 3-89

xf:false function 3-18

xf:float function 3-39

xf:floor function 3-76
xf:get-day-from-date function 3-50
xf:get-day-from-dateTime function 3-51
xf:get-hours-from-dateTime function 3-52
xf:get-hours-from-time function 3-52
xf:get-minutes-from-dateTime function 3-53
xf:get-minutes-from-time function 3-54
xf:get-month-from-date function 3-54
xf:get-month-from-dateTime function 3-55
xf:get-seconds-from-dateTime function 3-56
xf:get-seconds-from-time function 3-57
xf:get-year-from-date function 3-57
xf:get-year-from-dateTime function 3-58

Index-4 XQuery Reference Guide

xfiint function 3-40

xf:integer function 3-41

xf:local-name function 3-12

xf:long function 3-42

xf:lower-case function 3-90

xf:max function 3-15

xf:min function 3-16

xfnot function 3-19

xf:iround function 3-77

xf:short function 3-43

xf:starts-with function 3-90

xf:string function 3-44

xf:string-length function 3-91

xf:subsequence (format 1) function 3-82
xf:subsequence (format 2) function 3-83
xf:substring (format 1) function 3-92
xf:substring (format 2) function 3-93
xf:substring-after function 3-94
xf:substring-before function 3-95

xf:sum function 3-17

xf:time function 3-59

xf:true function 3-19

xf:upper-case function 3-96
xfext:date-from-dateTime function 3-60
xfext:date-from-string-with-format function 3-61
xfext:dateTime-from-string-with-format function
3-63

xfext:dateTime-to-string-with-format function 3-64
xfext:date-to-string-with-format function 3-62
xfext:decimal-round function 3-78
xfext:decimal-truncate function 3-79
xfext:if-then-else function 3-79

xfext:match function 3-97

xfext:sql-like function 3-101
xfext:time-from-dateTime function 3-65
xfext:time-from-string-with-format function 3-66
xfext:time-to-string-with-format function 3-67
xfext:trim function 3-100

XML -xi

XML Markup, XQuery syntax 2-7

XQuery

as used in Liquid Data 1-3
definition 1-3
links to more information 1-4
supported versions 1-2
W3C 1-3
xquery function and operators specification
supported 1-2
xquery specification supported 1-2
XQuery syntax
XML Markup 2-7

XQuery Reference Guide

Index-5

Index-6 XQuery Reference Guide

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	XQuery and XML Specification Implementation
	Supported XQuery and XML Schema Versions In Liquid Data
	XQuery
	XQuery Functions and Operators
	XML Schema

	W3C XML and XQuery
	XQuery Use in Liquid Data and the Data View Builder
	Learning More About the XQuery Language

	Understanding XQuery in Liquid Data
	XQuery Syntax in Liquid Data
	query_prologue
	namespace_declaration
	query_expression
	variable_definition
	qualified_name
	sortby_expression

	XQuery Expressions
	XML Markup Expression
	FLWR Expression
	PATH Expressions
	Conditional Expressions (if-then-else)
	Built�In Functions
	Constants
	String Constants
	Numeric Constants

	Variables
	Operators
	Quantified Expressions
	Query Parameters

	XQuery Comments and Join Hints
	Comments
	Join Hints

	Specifying Joins and Unions in XQuery
	Using Multiple For Statements to Create a Result
	Working From a Hierarchical Result Document Backwards: a Technique
	Specifying Aggregates and Groups (Group By)
	Specifying a Union�All Query

	Reading the XQuery Syntax Diagrams
	Text Conventions
	Follow the Lines and Arrows Coming Into the Diagram
	Blocks with No Arrows Indicate Optional Content
	Blocks with Arrows (Loops) Indicate Repeatable Options

	Functions Reference
	About Liquid Data XQuery Functions
	Naming Conventions
	Occurrence Indicators
	Data Types
	Date and Time Patterns

	Accessor and Node Functions
	xf:data
	xf:document (format 1)
	xf:document (format 2)
	xf:local-name

	Aggregate Functions
	xf:avg
	xf:count
	xf:max
	xf:min
	xf:sum

	Boolean Functions
	xf:false
	xf:not
	xf:true

	Cast Functions
	cast as xs:boolean
	cast as xs:byte
	cast as xs:date
	cast as xs:dateTime
	cast as xs:decimal
	cast as xs:double
	cast as xs:float
	cast as xs:int
	cast as xs:integer
	cast as xs:long
	cast as xs:short
	cast as xs:string
	cast as xs:time

	Comparison Operators
	eq
	ge
	gt
	le
	lt
	ne

	Constructor Functions
	xf:boolean-from-string
	xf:byte
	xf:decimal
	xf:double
	xf:float
	xf:int
	xf:integer
	xf:long
	xf:short
	xf:string

	Date and Time Functions
	xf:add-days
	xf:current-dateTime
	xf:date
	xf:dateTime
	xf:get-day-from-date
	xf:get-day-from-dateTime
	xf:get-hours-from-dateTime
	xf:get-hours-from-time
	xf:get-minutes-from-dateTime
	xf:get-minutes-from-time
	xf:get-month-from-date
	xf:get-month-from-dateTime
	xf:get-seconds-from-dateTime
	xf:get-seconds-from-time
	xf:get-year-from-date
	xf:get-year-from-dateTime
	xf:time
	xfext:date-from-dateTime
	xfext:date-from-string-with-format
	xfext:date-to-string-with-format
	xfext:dateTime-from-string-with-format
	xfext:dateTime-to-string-with-format
	xfext:time-from-dateTime
	xfext:time-from-string-with-format
	xfext:time-to-string-with-format

	Logical Operators
	and
	or

	Numeric Operators
	* (multiply)
	+ (add)
	- (subtract)
	div
	mod

	Numeric Functions
	xf:ceiling
	xf:floor
	xf:round
	xfext:decimal-round
	xfext:decimal-truncate

	Other Functions
	xfext:if-then-else

	Sequence Functions
	xf:distinct-values
	xf:empty
	xf:subsequence (format 1)
	xf:subsequence (format 2)

	String Functions
	xf:compare
	xf:concat
	xf:contains
	xf:ends-with
	xf:lower-case
	xf:starts-with
	xf:string-length
	xf:substring (format1)
	xf:substring (format 2)
	xf:substring-after
	xf:substring-before
	xf:upper-case
	xfext:match
	xfext:trim
	xfext:sql-like

	Treat Functions
	treat as xs:boolean
	treat as xs:byte
	treat as xs:date
	treat as xs:dateTime
	treat as xs:decimal
	treat as xs:double
	treat as xs:float
	treat as xs:int
	treat as xs:integer
	treat as xs:long
	treat as xs:short
	treat as xs:string
	treat as xs:time

	Supported Data Types
	JDBC Types in Liquid Data
	java.sql.Types Data Types
	JDBC Data Type Names

	Database�Specific Data Type Names
	Oracle Data Type Names
	Microsoft SQL Server Data Type Names
	DB2 Data Type Names
	Sybase Data Type Names
	Informix Data Type Names

	Index

