
BEAWebLogic RFID
Edge Server™

Programming with the
ALE and ALEPC APIs

Version 2.1
Revised: June 29, 2006

Programming with the ALE and ALEPC APIs iii

Contents

1. Introduction and Roadmap
Document Scope and Audience . 1-1

Guide to This Document . 1-2

Related Documentation . 1-2

EPCglobal Standards Compliance . 1-3

Using RFID Samples to Develop Applications . 1-3

2. Reading and Writing Tags
Overview of the ALE API and ALE Operation . 2-1

BEA Implementation of the ALE API . 2-2

Benefits of the BEA Implementation. 2-3

Programming Methods. 2-4

Reading Tag Data. 2-4

Read Cycles and Event Cycles . 2-5

Smoothing Read Cycles with Transient Filtering . 2-7

How Applications Interact with the Edge Server ALE Engine 2-7

ECSpec Reports . 2-8

Writing Tag Data . 2-9

Programming Cycles. 2-9

Reader Implementation of Programming Cycles . 2-11

EPC Caches. 2-12

Creating Tag Caches . 2-12

iv Programming with the ALE and ALEPC APIs

PCSpec Reports . 2-14

Comparison of Event Cycles and Programming Cycles . 2-14

3. Asynchronous Notification Mechanisms
Overview of Asynchronous Notification Mechanisms . 3-1

Encoded XML Through HTTP POST . 3-2

Encoded XML Through TCP Socket . 3-2

Encoded XML in JMS Message . 3-3

Examples of Report Delivery by Using XML with JMS. 3-5

XML Written to a File. 3-6

XML Displayed on the Edge Server Console . 3-7

XML Sent to a Workflow Module . 3-8

4. Reading Tags by Using the ALE API
Overview of the ALE API Implementation . 4-2

ALE: Main Tag Reading Interface with UML Diagrams . 4-3

State Diagram. 4-6

Primary ALE API Data Types . 4-7

ECSpec Data Type . 4-7

ECBoundarySpec . 4-10

ECBoundarySpec Implementation Notes . 4-12

ECTime . 4-12

ECTimeUnit . 4-13

ECTrigger . 4-13

ECReportSpec . 4-13

ECReportSpec Implementation Notes . 4-15

ECReportSetSpec. 4-16

ECFilterSpec . 4-16

Programming with the ALE and ALEPC APIs v

EPC Patterns . 4-17

ECGroupSpec . 4-18

About Group Reports . 4-18

Examples of Pattern URIs Used as Grouping Patterns 4-19

ECReportOutputSpec . 4-22

ECReports Data Type . 4-23

ECTerminationCondition . 4-25

ECReport . 4-26

ECReportGroup . 4-27

ECReportGroupList . 4-27

ECReportGroupListMember . 4-28

ECReportGroupCount . 4-30

ECReportGroupListMemberMemory . 4-30

Other ALE API Types: BEA Extensions. 4-31

 ECSpecInfo (WebLogic RFID Edge Server Extension) . 4-31

ECSubscriptionInfo (WebLogic RFID Edge Server Extension) 4-32

ECSubscriptionControls (WebLogic RFID Edge Server Extension) 4-33

XML Representations . 4-33

ECSpec - Example . 4-34

ECReports - Example . 4-35

Using the ALE Tag Reading API from Java . 4-37

Using XML Serializers and Deserializers from Java . 4-37

Gen2 Read Support . 4-38

includedMemory. 4-38

getMemoryItem . 4-38

5. Writing Tags by Using the ALEPC API
Overview of the ALEPC API Implementation . 5-2

vi Programming with the ALE and ALEPC APIs

ALEPC: Main Tag Writing Interface with UML Diagrams . 5-3

PCSpec . 5-7

PCSpecInfo . 5-9

PCSubscriptionControls. 5-10

PCSubscriptionInfo . 5-10

AccessSpec. 5-11

OpSpec . 5-12

DataSpec . 5-16

PCWriteReport . 5-17

AccessReport . 5-19

TagReport. 5-20

OpReport . 5-20

PCStatus . 5-21

PCTerminationCondition . 5-22

EPCCacheSpec . 5-23

EPCCacheReport . 5-24

EPCCacheSpecInfo . 5-25

EPCPatterns . 5-26

XML Representations . 5-27

PCSpec - Example . 5-28

PCWriteReport - Example . 5-29

EPCCacheSpec - Example . 5-29

EPCCacheReport - Example . 5-30

XML Schema for PCSpec, PCWriteReport, EPCCacheSpec, and EPCCacheReport5-30

Using the ALEPC Tag Writing API from Java. 5-30

Using XML Serializers and Deserializers from Java. 5-31

BEA Gen2 Write Support . 5-31

Extended API Support . 5-32

Programming with the ALE and ALEPC APIs vii

Multiple Tags in Field . 5-36

Parameter Substitutions . 5-36

Gen2 PCSpec Examples . 5-37

readEPCBank.xml . 5-37

readAbsolute.xml . 5-38

readPassword.xml. 5-38

writePassword.xml . 5-39

writePasswords.xml . 5-39

writeTagMemory.xml . 5-40

writeTagMemory.xml and PCWriteReport.xml . 5-40

kill.xml . 5-41

lock.xml . 5-42

stackLight.xml . 5-42

6. Sample Java Applications
Overview of Sample Java Applications. 6-2

Setting Up Your Development Environment . 6-2

Compiling and Running the Samples . 6-2

ImmediateSample: Getting Started Reading Tags. 6-3

Using ImmediateSample with the Administration Console . 6-6

ImmediateSample: Event Cycles and Reliability . 6-7

ImmediateSample: Reading from Different Readers . 6-8

SubscribeSample: Exploring Asynchronous Event Cycle Delivery 6-8

SubscribeSample Command Line Options. 6-11

ImmediateProgramSample: Writing Tags . 6-12

Using ImmediateProgramSample with the Reader Simulator 6-14

ProgrammingSample: Exploring Programming Cycles and EPC Caches. 6-16

JMS Samples . 6-21

viii Programming with the ALE and ALEPC APIs

Workflow Sample XML Files. 6-23

Index

Programming with the ALE and ALEPC APIs 1-1

C H A P T E R 1

Introduction and Roadmap

The following sections describe the scope and organization of this document, Programming with
the ALE and ALEPC APIs:

“Document Scope and Audience” on page 1-1

“Guide to This Document” on page 1-2

“Related Documentation” on page 1-2

“EPCglobal Standards Compliance” on page 1-3

“Using RFID Samples to Develop Applications” on page 1-3

Document Scope and Audience
This programming guide describes how to use the BEA implementation of the ALE API
specification to develop applications that create EPC tag-reading requests in the form of Event
Cycle Specifications (ECSpecs). The guide also describes how to use the BEA ALEPC API to
develop applications that create EPC tag-writing requests in the form of Programming Cycle
Specifications (PCSpecs).

The ALE API is defined by The Application Level Events (ALE) Specification Version 1.0 and
by the extensions to that specification provided by BEA. ECSpecs are defined by the EPCglobal
ALE specification. The ALEPC API is a BEA-defined interface for writing tag data.

The guide documents the API defined by the specification and the value-added extensions
provided by BEA. A prerequisite for using this programming guide is a thorough understanding

http://www.epcglobalinc.org/standards/

I n t roduct i on and Roadmap

1-2 Programming with the ALE and ALEPC APIs

of the ALE specification, which in addition to defining the API provides necessary background
information.

Although the intended audience for this guide is primarily application programmers,
administrators might find the general descriptions of the ALE interface useful.

Guide to This Document
This chapter, Introduction and Roadmap, describes the organization of this document.

 Reading and Writing Tags provides a general overview of how tags are read and written
through the ALE API. The chapter introduces the concepts and terminology used
throughout this guide.

 Asynchronous Notification Mechanisms describes supported mechanisms for delivering
reports.

 Reading Tags by Using the ALE API describes the methods available for reading tag data.

 Writing Tags by Using the ALEPC API describes the methods available for writing tag
data.

Sample Java Applications describes how to set up, run, and work with the bundled
examples, which are an optional part of the installation process. You can use these
applications as a starting point for developing your own applications.

Related Documentation
This document is a part of the WebLogic RFID Edge Server documentation set. The other
documents are:

Installing WebLogic RFID Edge Server describes how to install and configure WebLogic
RFID Edge Server.

Using the RFID Edge Server Administration Console is online help that describes how to
use the RFID Administration Console GUI to configure ECSpecs, ECReports, RFID
devices, filters, and workflows.

Using the Reader Simulator describes how to use the reader simulator software included
with RFID Server. The Reader Simulator minimally simulates a ThingMagic Mercury4
RFID reader.

http://e-docs.bea.com/rfid/edge_server/docs30/install/index.html
http://e-docs.bea.com/rfid/edge_server/docs30/console/index.html
http://e-docs.bea.com/rfid/edge_server/docs30/simulator/index.html

EPCglobal S tandards Compl iance

Programming with the ALE and ALEPC APIs 1-3

RFID Reader Reference describes how to configure the RFID devices supported by the
RFID Server.

RFID Workflow Reference describes how to configure and use the workflow modules
included with the WebLogic RFID Edge Server.

ALE and ALEPC Javadoc provides reference documentation for the ALE and ALEPC
packages that are provided with WebLogic RFID Edge Server.

The Application Level Events (ALE) Specification Version 1.0

EPCglobal EPC Tag Data Standard Version 1.1 rev 1.27

EPCglobal Standards Compliance
WebLogic RFID Edge Server is compliant with all relevant EPCglobal standards:

WebLogic RFID Edge Server works with RFID readers that implement the following
protocols:

– EPCglobal Class 0, Class 0+, and Class 1 RF Protocols

– EPCglobal UHF Class 1 Gen 2 Tag Protocol (ISO 18000-6C)

– ISO 15693 RF Interface protocol

– ISO 18000-6B RF Interface protocol

WebLogic RFID Edge Server supports EPC Tag Data Standard Version 1.1 rev 1.27. This
standard governs the bit-level encoding of object identity and other information onto RFID
tags. It also specifies a URI-based syntax for exchange of tag data between software
application components, and a second URI-based syntax for the description of filtering
patterns.

WebLogic RFID Edge Server includes components that collect and filter tag data as
defined within the EPCglobal Architecture Framework. WebLogic RFID Edge Server fully
implements the The Application Level Events (ALE) Specification Version 1.0, which is
the standard interface to filtering and collection as defined by EPCglobal (replacing earlier
“Savant” specifications). WebLogic RFID Edge Server provides extensions in the areas of
reader management, application integration, and tag writing.

Using RFID Samples to Develop Applications
If you install the RFID Sample Code component, the following programming samples are
installed by default in the RFID_EDGE_HOME/samples directory, where RFID_EDGE_HOME

http://e-docs.bea.com/rfid/edge_server/docs30/reader_reference/index.html
http://e-docs.bea.com/rfid/edge_server/docs30/workflow_reference/index.html
http://e-docs.bea.com/rfid/edge_server/docs30/javadocs/index.html
http://www.epcglobalinc.org/standards/
http://www.epcglobalinc.org/standards/
http://www.epcglobalinc.org/standards/
http://www.epcglobalinc.org/standards/

I n t roduct i on and Roadmap

1-4 Programming with the ALE and ALEPC APIs

represents the product installation directory. You can modify these sample applications and use
them as a starting point for developing your own applications.

 “Sample Java Applications” on page 6-1 provides procedures for setting up your development
environment, as well as instructions for compiling, running, and working with some of the sample
applications.

ImmediateProgramSample

An example of how to use the ALEPC API to program an Electronic Product Code (EPC)
value into a tag using a specified logical reader. The programming cycle specification is
read from an XML file, and the programming cycle reports are printed as XML.

ImmediateSample

An example of how to use the ALE API to retrieve a list of Electronic Product Code (EPC)
tags from a specified logical reader. The event cycle specification is read from an XML
file, and the event cycle reports are printed as XML.

JMSSamples

Vendor-specific JMS examples for:

– BEA

– IBM

– Sun

– JBoss

– TIBCO

NonXMLSample

An example of how to use the ALE API to retrieve a list of EPC tags from a specified tag
reader. The immediate() method of the ALE client interface is used to perform the tag
read operation.

PollingSample

An example of how to define an event cycle specification (ECSpec) and use it to poll() the
Edge Server for tag updates.

ProgrammingSample

An example of how to define a programming cycle specification (PCSpec) by reading it
from an XML-formatted file, how to administer an EPC cache in the Edge Server, and how
to invoke tag programming operations.

SubscribeSample

Us ing RF ID Samples to Deve lop App l icat ions

Programming with the ALE and ALEPC APIs 1-5

An example of how to define an event cycle specification (ECSpec) by reading it from an
XML-formatted file, and how to set up a handler that subscribes to event cycle completion
notifications.

Workflow

XML samples for use with the examples provided in the Configuring and Using
Workflows section of the RFID Workflow Reference manual.

http://e-docs.bea.com/rfid/edge_server/docs30/workflow_reference/config_use.html
http://e-docs.bea.com/rfid/edge_server/docs30/workflow_reference/config_use.html
http://e-docs.bea.com/rfid/edge_server/docs30/workflow_reference/index.html

I n t roduct i on and Roadmap

1-6 Programming with the ALE and ALEPC APIs

Programming with the ALE and ALEPC APIs 2-1

C H A P T E R 2

Reading and Writing Tags

The following sections provide an overview of the ALE API and describe how client applications
use the ALE API to define requests for tag data:

“Overview of the ALE API and ALE Operation” on page 2-1

“BEA Implementation of the ALE API” on page 2-2

“Benefits of the BEA Implementation” on page 2-3

“Programming Methods” on page 2-4

“Reading Tag Data” on page 2-4

“Writing Tag Data” on page 2-9

“Comparison of Event Cycles and Programming Cycles” on page 2-14

Note: In the sections of this programming guide that deal with reading tags, it is assumed that
you have read The Application Level Events (ALE) Specification Version 1.0, which in
addition to defining the API provides necessary background information. If you do not
have a copy of the specification, you can find one at the EPCglobal site:
http://www.epcglobalinc.org.

Overview of the ALE API and ALE Operation
Applications interact with an Edge Server through the ALE API. The application uses the ALE
API to define tag reading requests and uses the BEA-provided ALEPC API to define tag writing

http://www.epcglobalinc.org/standards/
http://www.epcglobalinc.org

Read ing and Wr i t ing Tags

2-2 Programming with the ALE and ALEPC APIs

requests. This section uses the term ALE API to refer to both APIs. The Javadoc for the ALE and
ALEPC APIs is available online at the following URL:

http://e-docs.bea.com/rfid/edge_server/docs20/javadocs/index.html

ALE provides a high-level, declarative way to read and write RFID data, without requiring
application programmers to interact directly with RFID readers or to perform any low-level
real-time processing or scheduling operations. ALE logically occupies a position between
application business logic and low-level RFID tag reads and tag writes, thereby providing a
strong degree of insulation between the two.

Note: For information on configuring readers, see Installing WebLogic RFID Edge Server and
RFID Reader Reference.

ALE processing takes place within the WebLogic RFID Edge Server, so that large volumes of
RFID read data can be reduced to pertinent business events prior to traveling over local or
wide-area enterprise networks to applications.

The basic concepts of ALE operation are straightforward:

An application sends a request through the ALE interface in the form of an ECSpec to read
tags, or in the form of a PCSpec to write tags.

The ALE engine within the Edge Server processes the request, performs the requested
actions (for example, filtering tag data during a read operation), and generates reports
based on the conditions specified in the ECSpec or PCSpec.

A tag-reading request can be a one-time request that is satisfied synchronously (for example,
“supply a list of the EPC codes that are currently stable in the field of readers at Dock Door 5”).
Or the tag-reading request can be a standing request that generates asynchronous notifications
when events of interest occur (“every ten minutes, how many new items have arrived”).

A tag writing request can also be satisfied synchronously (for example,“write the following tag
now”). Or the tag-writing request can be a standing request that writes a tag and generates a report
when an external event occurs (“when the case crosses the electric eye beam, write the tag”).

BEA Implementation of the ALE API
The BEA implementation of the ALE API provides:

Support of the standard EPCGlobal Application Level Events (ALE) Specification

http://e-docs.bea.com/rfid/edge_server/docs20/javadocs/index.html
http://e-docs.bea.com/rfid/edge_server/docs30/install/index.html
http://e-docs.bea.com/rfid/edge_server/docs30/reader_reference/index.html

Benef i t s o f the BEA Implementat i on

Programming with the ALE and ALEPC APIs 2-3

API support for advanced tag features, including all features of the EPCglobal Class-1
Generation-2 UHF RFID Air Interface Specification (commonly called Gen2). This
specification includes changes to the ALE API and the ALE schema and WSDL.

Extensions to the standard ALE API, such as extra boundaries and Gen2 read support.

ALEPC extensions for tag writing and advanced Gen2 support

Reliable messaging using JMS or Web Services (WS-Reliable Messaging)

Out-of-the-box RFID workflow samples

Support of the standard Java or J2EE programming model for workflows

An RFID tag simulator for testing and development

For a full list of all the features in this release, see the Introduction and Roadmap section in the
Product Overview manual.

Benefits of the BEA Implementation
The BEA implementation of the ALE API provides a number of unique benefits:

Rapid development and deployment: Different teams can independently get new projects
up and running quickly with a minimum amount of programming.

Flexibility: Individual applications can be easily modified while the Administration
Console enables rapid reconfiguration of the overall deployment.

Variety of deployment scenarios: Enterprise applications can be distributed across remote
sites through a wide range of network transports and protocols.

Built-in support for multiple applications to share readers: The Edge Server includes
logic and security to handle multiple independent applications simultaneously.

Manageability, security, and integrity: Centralized management of the control of the
overall deployment supports use of RFID data in enterprise applications.

Scalability: The ALE API supports a scalable number of readers per WebLogic RFID
Edge Server, number of RFID Server instances per site, and number of sites in the overall
application.

Standards leadership and support: The BEA implementation of the ALE API supports
and extends Version 1.0 of the ALE Specification.

http://e-docs.bea.com/rfid/edge_server/docs30/overview/intro.html

Read ing and Wr i t ing Tags

2-4 Programming with the ALE and ALEPC APIs

WebLogic RFID Edge Server-specific extensions: WebLogic RFID Edge Server
extensions to the ALE API are explicitly noted throughout this document.

Programming Methods
To use ALE from a program, use one of the following methods:

You can use standard SOAP-based Web Services development tools to generate an ALE
client stub for any programming language. The WebLogic RFID Edge Server installation
provides WSDL files that you can use for this purpose. The WSDL files are in your
WebLogic RFID Edge Server installation directory at:

/share/schemas/EPCglobal-ale-1_0.wsdl

/share/schemas/ALEPCService.wsdl

WebLogic RFID Edge Server provides a Remote Client library for the Java programming
language, which Java programs can use to access a WebLogic RFID Edge Server through
the ALE API.

Reading Tag Data
The following sections describe how tag data is read and reported:

“Read Cycles and Event Cycles” on page 2-5

“How Applications Interact with the Edge Server ALE Engine” on page 2-7

“ECSpec Reports” on page 2-8

Applications define event cycle specifications (ECSpecs), which specify to the ALE engine what
RFID data is of interest. An example of the content of an ECSpec is “send a report every 60
seconds of what objects have been added or removed to warehouse shelves #4 and #5, including
Acme products only and excluding pallet-level data.”

Once an application defines an ECSpec, the application receives RFID data through event cycle
reports (ECReports). In the previous example, the ALE engine within the WebLogic RFID Edge
Server generates a new ECReports instance every 60 seconds, containing a list of objects added
or removed from the warehouse shelves as specified.

For a detailed overview of ECSpec and ECReports, see “ECSpec Data Type” on page 4-7 and
“ECReports Data Type” on page 4-23, respectively.

An application can define and subscribe to an ECSpec programmatically by using the ALE
Remote Client to access the ALE API directly. Through the API, you can define an ECSpec and

Reading Tag Data

Programming with the ALE and ALEPC APIs 2-5

subscribe one or more destinations to an ECSpec for asynchronous delivery of ECReports. You
can also use the API to request the delivery of an ECReports instance on demand, in a
synchronous manner.

Read Cycles and Event Cycles
RFID readers generally scan for tags much more frequently than real-world applications require
data. In addition, the likelihood of an RFID reader actually reading a tag during any one attempt
depends on many factors, including the position and motion of tags, presence of objects or people,
and even the activity of other readers. Because of these factors, applications generally use the data
accumulated from a number of RFID reads, and the ALE interface distinguishes between the rate
at which readers scan for tags and the rate at which applications receive data.

A read cycle refers to a single complete scan of all tags in a single reader antenna’s field. This
scan generally happens a few times a second. An event cycle is one or more read cycles, from one
or more readers, that are to be treated as a unit from an application perspective. The data of an
event cycle consists of all tags seen in any read cycles by any of the readers.

At the completion of an event cycle, the ALE engine within the Edge Server processes the set of
tags the readers saw during that cycle and generates one or more reports to the requesting
application. Each report specification can include different criteria for reporting, such as whether
to report all tags or only changes; whether to include actual tag IDs or just counts; whether to
include or exclude certain tags based on their identities; and how filtered EPCs are grouped
together for reporting. Because different applications can interact with a single Edge Server,
many overlapping event cycles can be in progress at any one time, sharing the data from
overlapping sets of readers in arbitrary ways.

Read ing and Wr i t ing Tags

2-6 Programming with the ALE and ALEPC APIs

The following picture shows the relationship of read cycles, event cycles, and reports.

There are a number of ways to specify the boundaries of event cycles relative to read cycles:

Duration: Specify the event cycle to last a certain amount of time, independent of how
many read cycles are involved.

Number of read cycles: Specify the event cycle to last a fixed number of read cycles.

Field stability: Specify the event cycle to complete when the set of tags read by a reader
has been stable for a specified period of time (no new tags are seen during that period).

External events: Specify the event cycle to begin or end when an external event occurs,
such as a container passing an electric eye beam, or a human pressing a button.

EPC 1
EPC 2
EPC 3

Read Cycle 1

EPC 1
EPC 2

EPC 4

Read Cycle 2

EPC 3

EPC 5

Read Cycle 3

EPC 3

EPC 5

Read Cycle 4

EPC 3
EPC 4
EPC 5

Read Cycle 5

EPC 3

EPC 5

Read Cycle 6

EPC 3

EPC 5

Read Cycle 7

App 1 Event Cycle 1

App 2 Event Cycle 1 App 2 Event Cycle 2

App 3
Event

Cycle 1

Report Report

Report

Report

Report

Report

Reading Tag Data

Programming with the ALE and ALEPC APIs 2-7

Multiple end conditions can be specified, with the event cycle concluding when any of the
conditions are met. For example, you can specify that an event cycle last 10 seconds OR the field
is stable for at least 5 seconds.

Smoothing Read Cycles with Transient Filtering
WebLogic RFID Edge Server provides a transient filtering mechanism that can help produce
smoother results when tags are not read reliably by readers. You can use the transient filter when
you want to filter out tags that appear only briefly, keeping those tags that are read several times
within a specified interval of time. The transient filter can also be used to smooth over gaps when
tags disappear briefly (though accumulation of multiple read cycles into an event cycle has a
similar effect, even without transient filtering). See Installing WebLogic RFID Edge Server for
information on transient filtering.

How Applications Interact with the Edge Server ALE Engine
Applications interact with the RFID Edge Server ALE engine through event cycle specifications
(ECSpecs) and event cycle reports (ECReports). An ECSpec identifies the specific information
or events that an application is looking for in each event cycle. The ECSpec also defines which
locations (logical readers) are to be included; which external events or time parameters define the
start and stop of an event cycle; and a set of report specifications, each defining a subset of the
data of interest. The WebLogic RFID Edge Server ALE engine can process large numbers of
ECSpec instances from different applications simultaneously.

Three modes of interaction can occur between an application and an Edge Server:

Immediate: The application uses the ALE interface to send an ECSpec, and the ALE
engine within the Edge Server fulfills the specification by completing one event cycle,
after which the application receives the corresponding reports.

Immediate with predefined request (“poll”): Applications can request a single event
cycle from a previously defined ECSpec and receive the reports in the response.

Asynchronous (“subscribe”): An application subscribes to a previously defined ECSpec
by using the subscribe operation, indicating an address to which reports should be
delivered. The ALE engine within the Edge Server then sends reports to the application as
each event cycle completes, continuing to do so until the application cancels the
subscription.

http://e-docs.bea.com/rfid/edge_server/docs30/install/index.html

Read ing and Wr i t ing Tags

2-8 Programming with the ALE and ALEPC APIs

An application or user can define a standing ECSpec at any time. The Edge Server remembers all
such ECSpec instances until an application or the user explicitly undefines them; thus, numerous
applications can poll or subscribe to the same ECSpec.

The Edge Server remembers all subscribers until they unsubscribe. Thus, if the application
subscribes and then exits, the Edge Server continues to send reports.

The immediate and poll methods are synchronous, insofar as the application blocks after
making its request until the ALE engine responds with the corresponding reports. The
subscribe method is asynchronous, as control is returned to the application immediately after
processing the subscribe call. Subsequent reports are delivered through an asynchronous
channel.

ECSpec Reports
An ECSpec specifies one or more reports that may be generated at the end of each event cycle.
The report is based on the complete list of tags that were detected by the specified readers during
the event cycle. Each tag that was read is listed once, even if it was detected in multiple read
cycles on one reader or on multiple readers. Starting with this list of tags, each report is defined
according to criteria applied in the following sequence:

1. What tags should be included for consideration: all tags read during this event cycle, only
those tags that are new relative to the last event cycle for the same request (additions), or only
those tags that were present during the last event cycle for the same request, but which are no
longer present (deletions). Note that the latter two choices do not apply to a one-time,
immediate request as there is no previous event cycle to compare against.

2. What filters should be applied to the list of tags from Step 1. A filter might specify that certain
tags should be excluded from consideration (“do not include any Acme products”), or that
only certain tags should be included (“only include pallet-level tags”). “EPC Patterns” on
page 4-17 includes a detailed description of filter options.

3. If there are no tags left after Step 2, should a report should be generated or not?

4. How filtered EPCs are grouped together for reporting.

5. When a report is generated, should the report enumerate the actual tag identities that result
from Steps 1, 2, and 4, or merely include a count of the number of tags left in each group after
Steps 1, 2, and 4?

The option in Step 3 is useful for specifying that applications receive reports only for event cycles
where something of interest actually occurred. For example, in a warehouse application that is

Wr i t ing Tag Data

Programming with the ALE and ALEPC APIs 2-9

monitoring what goods are present on a shelf, the option in Step 3 might be used so that the ALE
engine sends a report only when something is placed on or removed from the shelf.

For more information on reports, see Chapter 4, “Reading Tags by Using the ALE API.”

Writing Tag Data
The process of instructing a reader to encode an EPC value onto an RFID tag is called both
“writing” and “programming.” Tag writing can be performed both by RFID readers, and by
RFID-enabled printers, which can print labels with embedded tags. For a complete list of the
readers and printers for which WebLogic RFID Edge Server supports tag writing, as well as the
specific tag formats which are supported for each device, see the supported RFID readers section
of the RFID Reader Reference.

Applications define programming cycle specifications (PCSpecs), which specify an interval of
time during which a single tag is written and verified. At the end of a programming cycle,
applications receive a write report (PCWriteReport), which tells the applications whether the
write was successful.

When several tags are to be written, one after another, each tag should be assigned a distinct EPC
value. The Edge Server provides a mechanism for ensuring that each tag has a unique value. An
EPC cache is a set of distinct EPC values, which can be used to provide EPC values to
consecutive programming cycles without further application intervention. Applications receive
cache reports (EPCCacheReport) to indicate when a cache is low or empty.

The following sections provide information about various aspects of writing tag data:

“Programming Cycles” on page 2-9

“EPC Caches” on page 2-12

“PCSpec Reports” on page 2-14

Programming Cycles
Tag writing services provided by the ALE API are organized around the notion of a programming
cycle. A programming cycle is an interval of time during which a single tag is written and
verified. Within a programming cycle, the reader attempts to ensure that there is a single tag in
the field, write the tag, then read the tag to verify whether the write succeeded.

Like an event cycle, a programming cycle is an interval of time during which a specified
operation takes place, at the conclusion of which a report is issued. And, like an event cycle, a

http://e-docs.bea.com/rfid/edge_server/docs30/reader_reference/index.html

Read ing and Wr i t ing Tags

2-10 Programming with the ALE and ALEPC APIs

programming cycle is specified through declarative specifications, in this case called
programming cycle specifications (PCSpecs).

The overall pattern within a programming cycle consists of one or more “check” operations
followed by one or more “verification cycles,” each verification cycle consisting of a write
attempt followed by one or more read attempts.

A check operation is a read carried out to verify that exactly one tag is in the field.

A verification cycle succeeds if the correct value is read from the tag, otherwise it fails. The
programming cycle as a whole terminates successfully as soon as a successful verification cycle
is completed.

In the diagram above, Programming Cycle 1 first checks that a single tag is in the field. It then
performs a verification cycle, in which a write operation is performed, followed by a read
operation. In the example, the read operation shows no tags, so it is repeated, and a tag value other
than what was written is seen. Thus, this verification cycle is deemed a failure. A second
verification cycle is performed, which succeeds.

YYY

Check

Programming Cycle 1 (EPC 4) Programming Cycle 3
(EPC 6)

Success
Report

Failure
Report

Write Read

XXX

Read Write

EPC 4

Read

Pgm
Cycle 2
(EPC 5)

Failure
Report

AAA
BBB

Check

YYY

Check Write

YYY

Read

Verification Cycle Verification Cycle Verification Cycle

Wr i t ing Tag Data

Programming with the ALE and ALEPC APIs 2-11

Note: A check operation is not needed before the second verification cycle, because the first
verification cycle’s read operations verify that a single tag is (still) in the field.

In Programming Cycle 2, the check operation sees two tags in the field, so the programming cycle
immediately fails.

In Programming Cycle 3, each verification cycle’s read shows the tag having a value other than
the value written, so after trials attempts, the programming cycle fails.

The following parameters govern execution of a programming cycle:

trials

The number of times an attempt is made to write the tag. If the PCSpec involves multiple
logical readers, then each trial includes all logical readers.

duration

The total amount of time allotted to attempting to program the tag.

A programming cycle as a whole terminates when the first successful verification cycle
completes, or after trials is exhausted, or duration elapses, or a stop trigger is received,
whichever comes first.

Reader Implementation of Programming Cycles
Various reader manufacturers expose varying capabilities for tag writing. WebLogic RFID Edge
Server maps between the definition of programming cycles, described in “Programming Cycles”
on page 2-9, and the actual capabilities available on various types of readers.

For example, one vendor’s reader provides a “verify” function which can be used to probe the
field for tags, even unprogrammed or invalid tags, but does not return distinct codes for “no tag”
versus “multiple tags in field.” Therefore, this vendor’s reader cannot directly implement
WebLogic RFID Edge Server’s “check” notion. However, the vendor’s “program” function
performs WebLogic RFID Edge Server’s “check,” “write,” and “read” operations together, so
WebLogic RFID Edge Server can map its programming cycle onto the vendor’s reader
capabilities.

In general, WebLogic RFID Edge Server presents a tag writing interface based on programming
cycles as defined previously, and maps programming cycles onto each kind of supported reader.
Sometimes the mapping is exact, and other times the mapping is approximate but yields correct
results.

Read ing and Wr i t ing Tags

2-12 Programming with the ALE and ALEPC APIs

EPC Caches
Programming cycles support a variety of use cases for tag writing. In the simplest case, an
application makes an immediate request to write a single tag with a specified EPC value. In more
complex cases, it is desirable for the ALE engine to write many tags (through consecutive
programming cycles) without intervention by an application that specifies the EPC value for each
programming cycle. These use cases are handled through the use of EPC caches.

A PCSpec can be associated with an EPC cache, which is a collection of EPC values. Multiple
PCSpec instances can share the same EPC cache. WebLogic RFID Edge Server maintains the
defined PCSpec instances and their EPC caches as part of its persistent state. Each time a PCSpec
is activated, it takes the next EPC value from its EPC cache, and attempts to write that to a tag.
When multiple PCSpec instances share a single cache, each will get a different EPC value each
time it is activated. Hence, caches serve to ensure uniqueness of the EPC values written to tags.

When a PCSpec’s EPC cache has at least one EPC value available for writing, the cache is said
to be replenished. When it has no EPC values, it is said to be depleted. A PCSpec whose EPC
cache is depleted cannot program tags. Applications can receive asynchronous notifications when
cache instances are depleted or nearing depletion. Applications can also add more EPC values to
an existing cache (whether or not the cache is currently depleted) through the
replenishEPCCache API operation. There is also an API operation called depleteEPCCache
that removes all remaining IDs from a the EPC cache; this is useful when an application knows
that it will no longer use the cache, and wants to reclaim any unassigned EPC values for later use.

An application creates an EPC cache using the defineEPCCache operation, giving the name of
the cache, and an EPCCacheSpec that specifies reporting parameters (these are described later).
Optionally, initial contents of the EPC cache might be supplied to the defineEPCCache
operation, in which case the EPC cache is initialized in the replenished state. Alternatively, an
application might omit the initial contents in the define operation, in which case it must later call
replenishEPCCache in order for the PCSpec to be able to write tags.

Abstractly, an EPC cache is an ordered list of EPC values. Concretely, the ALE API provides a
simple way to specify EPC caches using the EPC Pattern URN notation. An EPC cache is
specified by an ordered list of Pattern URNs. Each Pattern URN represents a range of EPC values
ordered lexicographically; the contents of the EPC cache is the concatenation of the ranges
corresponding to Pattern URNs in the list.

Creating Tag Caches
Here are some examples of how to create tag caches.

Wr i t ing Tag Data

Programming with the ALE and ALEPC APIs 2-13

This first example (GID-64-i tag format) is not in the EPC Tag Specification but will work with
the Reader Simulator and help you to learn how to create tag patterns. For information about the
simulator, see Using the Reader Simulator.

Here is an example of creating a tag cache of SGTIN-64 tags.

Here is an example of creating a tag cache of GID-96 tags.

Typically, only one component of the pattern is a range.

Pattern URNs Cache Contents

urn:epc:pat:gid-64-i:1000.1000.1000
urn:epc:pat:gid-64-i:1000.1000.[2000-2002]
urn:epc:pat:gid-64-i:1000.[100-101].[300-301]

urn:epc:tag:gid-64-i:1000.1000.1000
urn:epc:tag:gid-64-i:1000.1000.2000
urn:epc:tag:gid-64-i:1000.1000.2001
urn:epc:tag:gid-64-i:1000.1000.2002
urn:epc:tag:gid-64-i:1000.100.300
urn:epc:tag:gid-64-i:1000.100.301
urn:epc:tag:gid-64-i:1000.101.300
urn:epc:tag:gid-64-i:1000.101.301

Pattern URNs Cache Contents

urn:epc:pat:sgtin-64:0.047400.126279.1
urn:epc:pat:sgtin-64:0.047400.126279.[10-13]

urn:epc:tag:sgtin-64:0.047400.126279.1
urn:epc:tag:sgtin-64:0.047400.126279.10
urn:epc:tag:sgtin-64:0.047400.126279.11
urn:epc:tag:sgtin-64:0.047400.126279.12
urn:epc:tag:sgtin-64:0.047400.126279.13

Pattern URNs Cache Contents

urn:epc:pat:gid-96:1000.1000.1000
urn:epc:pat:gid-96:1000.1000.[2000-2002]
urn:epc:pat:gid-96:1000.[100-101].[300-301]

urn:epc:tag:gid-96:1000.1000.1000
urn:epc:tag:gid-96:1000.1000.2000
urn:epc:tag:gid-96:1000.1000.2001
urn:epc:tag:gid-96:1000.1000.2002
urn:epc:tag:gid-96:1000.100.300
urn:epc:tag:gid-96:1000.100.301
urn:epc:tag:gid-96:1000.101.300
urn:epc:tag:gid-96:1000.101.301

http://e-docs.bea.com/rfid/edge_server/docs30/simulator/index.html

Read ing and Wr i t ing Tags

2-14 Programming with the ALE and ALEPC APIs

Note that while the EPC values generated from any one EPC Pattern URN are distinct and in
ascending order, different patterns used to replenish the same cache might overlap or appear in
non-ascending sequence. If an application wants to ensure uniqueness of EPCs generated from
the same cache (as is commonly the case), the application must always replenish the cache with
unique patterns.

PCSpec Reports
When a programming cycle completes, it sends a report to interested applications to say what
happened. Unlike event cycle reports, however, the reports issued by a programming cycle are
more limited in nature.

The Edge Server’s tag programming facility can issue two kinds of report:

Write report

Issued when a programming cycle completes, either successfully having written a tag value
or because an error occurred. For a successful tag write, the report includes the EPC value
that was written. For a failed tag write, the report contains information describing the error.

Cache report

Issued when an EPC cache’s number of remaining EPC values drops to (or below) a
specified level.

PCSpec instances do not contain any parameters describing the write reports to be generated; this
is in contrast to ECSpec instances which include one or more ECReportSpec instances describing
the various reports generated by event cycles. EPCCacheSpec instances do contain parameters
that describe the cache reports to be generated, including the threshold at which a cache report
should be generated.

Comparison of Event Cycles and Programming Cycles
WebLogic RFID Edge Server’s approaches to tag reading (as embodied in event cycles) and tag
writing (as embodied in programming cycles) are very similar, but differ in certain respects.
Table 2-1summarizes the similarities and differences between event cycles and programming
cycles.

Compar ison o f Event Cyc les and Programming Cyc l es

Programming with the ALE and ALEPC APIs 2-15

Table 2-1 Comparing Event Cycles and Programming Cycles

Metric Event Cycle Programming Cycle

Direction The flow of tag data is in one direction:
from tag, through the Edge Server, to
application.

The flow of tag data is bidirectional: tag
data flows from application to the Edge
Server to say what tag ID should be written;
tag data flows back from a tag through the
Edge Server to the application when the
write to the tag is verified.

Readers One or more logical readers; each can be
a single antenna, or multiple antennas, or
a composite of other logical readers.

Same, but multiple antennas are used
differently. In the reading case, the event
cycle combines the set of tags seen by all of
the antennas. In the writing case, the
programming cycle tries writing with each
antenna in turn until the tag is successfully
written. The “check” and “read” operations
are carried out using all antennas.

Cycle start
condition

Start trigger, repeat interval, or
immediate/poll by application.

Start trigger, or immediate/poll by
application. There can be no repeat interval.

Cycle end
condition

Stop trigger, duration, stable field
interval, or all applications
unsubscribe.

Successful tag write, unless stopped first by
stop trigger, duration, trials, application
undefine/suspend.

Reports One or more tag read reports, each
specifying report type, report set, report
groups, and filters.

Reports of specific events, including:
• Successful tag write
• Failed tag write
• EPC cache level low

Read ing and Wr i t ing Tags

2-16 Programming with the ALE and ALEPC APIs

Report
Subscriptions

Applications that subscribe to know what
tags are in the field.

Two kinds of subscription:
• Applications that subscribe to write

reports are notified whenever a tag
programming operation completes.

• Applications that subscribe to
low-cache reports are notified when the
cache is low.

API
operations

define, undefine, subscribe,
unsubscribe, poll, immediate.

PCSpec operations: define, undefine,
subscribe, unsubscribe, poll,
immediate.

EPCCacheSpec operations:
defineEPCCache,
undefineEPCCache,
replenishEPCCache,
depleteEPCCache,
subscribeEPCCache,
unsubscribeEPCCache.

Programming with the ALE and ALEPC APIs 3-1

C H A P T E R 3

Asynchronous Notification Mechanisms

The following sections describe the asynchronous notification mechanisms WebLogic RFID
Edge Server uses to deliver reports to client applications:

“Overview of Asynchronous Notification Mechanisms” on page 3-1

“Encoded XML Through HTTP POST” on page 3-2

“Encoded XML Through TCP Socket” on page 3-2

“Encoded XML in JMS Message” on page 3-3

“XML Written to a File” on page 3-6

“XML Displayed on the Edge Server Console” on page 3-7

“XML Sent to a Workflow Module” on page 3-8

Overview of Asynchronous Notification Mechanisms
You can define specifications (ECSpec, PCSpec, and EPCCacheSpec) for your applications and
later subscribe the application to asynchronous delivery of corresponding reports (ECReports,
PCWriteReport, EPCCacheReport). WebLogic RFID Edge Server provides a number of ways to
deliver asynchronous reports. A subscription specifies a delivery address in the form of a
Uniform Resource Identifier (URI). The URI specifies a particular method of notification
delivery, and provides parameters that further identify the receiver.

In addition to out-of-the-box event delivery drivers that are applicable in a wide range of
circumstances, the WebLogic RFID Edge Server provides an extensible mechanism for adding

Asynchronous No t i f i cat ion Mechan isms

3-2 Programming with the ALE and ALEPC APIs

new delivery mechanisms. The following sections define the delivery mechanisms supported
out-of-the-box by BEA, and describe how to construct the URIs to provide to the subscribe
method of the ALE interface in order to use them.

All of the notification delivery mechanisms described below encode reports into XML. For
additional information, see:

“XML Representations” on page 4-33 (for ECSpec and ECReports objects)

“XML Representations” on page 5-27 (for PCSpec, PCWriteReport, EPCCacheSpec, and
EPCCacheReport objects)

Encoded XML Through HTTP POST
The RFID Edge Server can deliver reports by sending an HTTP POST request, where the payload
is the report instance encoded in XML. The general form of the subscription URI is:

http://host:port/remainder-of-URL

Table 3-1 Report Delivery Format: Encoded XML Through HTTP Post

The notification payload is the XML-encoded report instance (ECReports, PCWriteReport,
EPCCacheReport) for the subscribed event or programming cycle.

The response code returned by the HTTP server is used to determine whether the notification
succeeded or not. A response code of 200 through 299 indicates success; any other response code
indicates failure.

Encoded XML Through TCP Socket
The Edge Server can deliver reports by opening a TCP socket to a designated receiver, sending
an XML report, then closing the connection. The general form of the subscription URI is:

host The DNS name or IP address of the host where the receiver is listening for
incoming HTTP connections.

port The TCP port on which the receiver is listening for incoming HTTP
connections. The port and the preceding colon character can be omitted, in
which case the port defaults to 80.

remainder-of-URL The URL path to which the HTTP POST operation will be directed.

Encoded XML in JMS Message

Programming with the ALE and ALEPC APIs 3-3

tcp://host:port

Table 3-2 Report Delivery Format: Encoded XML Through TCP Socket

The notification payload is the XML-encoded report instance (ECReports, PCWriteReport,
EPCCacheReport) for the subscribed event or programming cycle.

Encoded XML in JMS Message
The Edge Server can deliver event cycle reports by sending a JMS Message to a JMS Topic or a
JMS Queue where the message is a javax.jms.TextMessage that contains the ECReports
instance encoded using XML.

The general form of the URI is:

jms:/topic/conn_factory/topic_name[?queryParams]

jms:/queue/conn_factory/queue_name[?queryParams]

Optional segments are enclosed in square brackets [].

Table 3-3 Report Format: Encoded XML in JMS Message

host The DNS name or IP address of the host where the receiver listens for incoming TCP
socket connections.

port The TCP port on which the receiver is listening for incoming TCP socket connections.

URI Segment Optional or
Required

Description

topic | queue Required Indicates whether the JMS notification driver adds messages
to a queue or publishes messages to a topic.

conn_factory Required The JNDI name of the connection factory for obtaining a topic
or queue connection.

Asynchronous No t i f i cat ion Mechan isms

3-4 Programming with the ALE and ALEPC APIs

The RFID Server also adds three additional properties to the TextMessage.

topic_name|
queue_name

Required The name of the topic or queue to which the JMS notification
driver sends its messages.

queryParams Optional Specify additional URI query parameters if necessary. To
specify just one query parameter, append a string formatted as
?param1=value1 to the URI string. When you need to
specify more than one parameter, append a string formatted
as:
?param1=value1¶m2=value2¶m3=value3

Use the following query parameters:
• username

The user name that you specified when you created a JMS
topic connection or queue connection. Also see the
password query parameter, below.

• password
The password of the user specified in the URI.

• ackMode
The acknowledgment mode that is used when the queue or
topic session is created. Recognized values are:
auto
client
dups_ok
If you do not specify ackMode, a default value of auto
is used.

• Query parameters whose names start with jndi: are
added to the javax.naming.Context environment
when one is constructed to access a naming service to
perform the necessary JNDI lookups. If
javax.naming.Context properties are specified in
the URI as well as being configured on the Edge Server,
then those properties that are specified in the URI will
override the ones configured on the Edge Server.

• If you specify any other parameters, they will be added to
the javax.jms.TextMessage as String properties,
where the query parameter name is the property name and
the query parameter value is the property value

Encoded XML in JMS Message

Programming with the ALE and ALEPC APIs 3-5

Table 3-4 Text Message Properties Added by RFID Edge Server

The driver sends JMS messages in a non-transactional context.

Note: All string values in the various segments of the URI have to be properly URI escaped.
For example, to specify a forward slash (/) character in the URI, where that character is
part of either the JNDI name or the connection factory, or the JNDI name of the queue or
the topic, you need to use %2F instead of the forward slash character. For more
information, see RFC 2396 at http://www.ietf.org/rfc/rfc2396.txt.

Examples of Report Delivery by Using XML with JMS
In the following example the Edge Server is instructed to send XML reports through JMS to a
queue named MyECReportSpecQueue. The JNDI service is accessed using iiop at
jms.example.com through port 1099. The JNDI name of the connection factory to be used is
ConnectionFactory.

jms:/queue/ConnectionFactory/MyECReportSpecQueue?jndi:java.naming.provider

.url=iiop://jms.example.com:1099

In the following example the Edge Server is instructed to send XML reports through JMS to a
topic named MyECReportSpecTopic. The JNDI service is accessed using iiop at
jms.example.com via port 1099. The JNDI name of the connection factory to be used is called
ConnectionFactory.

jms:/topic/ConnectionFactory/MyECReportSpecTopic?jndi:java.naming.provider

.url=iiop://jms.example.com:1099

The following example is more complex. This example incorporates JMS security as well as
JNDI service security while using a queue. It uses the jndi: query parameters to set a security
principal and security credential of guest/PasswordForGuest to access the JNDI service, and
uses the username and password combination of bob/PasswordForBob to open a connection to
the queue.

specName The name of the ECSpec associated with this ECReport.

savantID The RFID Edge Server ID that is originating this ECReport.

date The date of the ECReport. A time in milliseconds, as returned from
System.currentTimeMillis().

http://www.ietf.org/rfc/rfc2396.txt

Asynchronous No t i f i cat ion Mechan isms

3-6 Programming with the ALE and ALEPC APIs

jms:/queue/ConnectionFactory/MyECReportSpecQueue?username=bob&password=Pas

swordForBob&

jndi:java.naming.provider.url=iiop://jms.example.com:1099&

jndi:java.naming.security.principal=guest&

jndi:java.naming.security.credentials=PasswordForGuest

The following example uses all the elements of the previous example while overriding the default
naming context factory class being used by the JMS driver. The class
org.jnp.interfaces.NamingContextFactory will be used instead of the one the driver is
configured with when performing JNDI lookups.

jms:/queue/ConnectionFactory/MyECReportSpecQueue?username=bob&password=Pas

swordForBob&secPrincipal=guest&jndi:java.naming.provider.url=iiop://jms.ex

ample.com:1099&jndi:java.naming.security.principal=guest&jndi:java.naming.

security.credentials=PasswordForGuest&jndi:java.naming.factory.initial=org

.jnp.interfaces.NamingContextFactory

The following example adds additional query parameters, field1 and field2 that will be added
onto the JMS text message.

jms:/queue/ConnectionFactory/MyECReportSpecQueue?username=bob&password=Pas

swordForBob&secPrincipal=guest&jndi:java.naming.provider.url=iiop://jms.ex

ample.com:1099&jndi:java.naming.security.principal=guest&jndi:java.naming.

security.credentials=PasswordForGuest&jndi:java.naming.factory.initial=org

.jnp.interfaces.NamingContextFactory&field1=value1&field2=value2

XML Written to a File
The Edge Server can deliver event or programming cycle reports by creating or appending XML
to files in the Edge Server’s local file system. The general form of the subscription URI is:

file:///filename

where filename is either the name of a file, a directory, or a pattern as described below.

If filename names a specific file that already exists, the ECReports, PCWriteReport, or
EPCCacheReport instance is encoded as XML and appended to the file. If more than one cycle
completes, the resulting file is not a well-formed XML document, but a concatenation of XML
documents.

If filename does not name an existing file but the directory portion names an existing directory,
then the file is created, and the ECReports, PCWriteReport, or EPCCacheReport instance is

XML D isp layed on the Edge Serve r Conso le

Programming with the ALE and ALEPC APIs 3-7

encoded as XML and written to the file. If another cycle completes, the prior case applies and the
file will be a concatenation of XML documents.

If filename names a directory, then the ECReports, PCWriteReport, or EPCCacheReport
instance is written as a new file in that directory with a unique name of the form:

specName-yyyyMMddhhmmssSSS.xml

where specName is the name of the ECSpec, PCSpec, or EPCCacheSpec that defined the cycle,
and yyyyMMddhhmmssSSS is the timestamp in the ECReports, PCWriteReport, or
EPCCacheReport instance, in the local timezone (SSS is the millisecond, which helps ensure the
uniqueness of the filename even if several reports are generated per second).

If filename contains parentheses, the text within the parentheses is considered to be a pattern
string for the timestamp, and the resulting filename after substitution is treated as above. For
example, given this subscription URI:

file:///mydir/myprefix-(yyyy-MM-dd).xml

then all reports generated on December 28, 2005 would be appended to the file

/mydir/myprefix-2005-12-28.xml

In all cases, the XML is as described in:

 “XML Representations” on page 4-33 (for ECSpec and ECReports objects)

“XML Representations” on page 5-27 (for PCSpec, PCWriteReport, EPCCacheSpec, and
EPCCacheReport objects)

XML Displayed on the Edge Server Console
The WebLogic RFID Edge Server can deliver event cycle reports by displaying XML in the
console window where the Edge Server was started. This is typically useful only in debugging
situations. The general form of the subscription URI is:

console:heading

where heading is an arbitrary text string conforming to URI syntax restrictions. The heading is
printed prior to each report instance: ECReports, PCWriteReport, or EPCCacheReport. This
might be useful to distinguish reports arising from different subscriptions. URI syntax restrictions
prohibit the heading from being empty.

Asynchronous No t i f i cat ion Mechan isms

3-8 Programming with the ALE and ALEPC APIs

XML Sent to a Workflow Module
A workflow is a series of actions triggered by the observation of an EPC. The WebLogic RFID
Edge Server can deliver ECReport data to workflow modules. Because the current release does
not expose the workflow configuration APIs, use the Edge Server Administration Console for
that purpose.

Programming with the ALE and ALEPC APIs 4-1

C H A P T E R 4

Reading Tags by Using the ALE API

The following sections describe the ALE API programming components that you use to read tags
and include a formal, abstract specification of the ALE API. The external interface of the ALE
API for reading tags is defined by the ALE class (See “ALE: Main Tag Reading Interface with
UML Diagrams” on page 4-3). This interface uses complex data types that are documented in the
sections starting at “ECSpec Data Type” on page 4-7. The ALE API is compliant with the
EPCglobal ALE 1.0 specification.

“Overview of the ALE API Implementation” on page 4-2

“ALE: Main Tag Reading Interface with UML Diagrams” on page 4-3

“Primary ALE API Data Types” on page 4-7

“ECSpec Data Type” on page 4-7

“ECReports Data Type” on page 4-23

“Other ALE API Types: BEA Extensions” on page 4-31

“XML Representations” on page 4-33

“Using the ALE Tag Reading API from Java” on page 4-37

“Gen2 Read Support” on page 4-38

Read ing Tags by Us ing the ALE AP I

4-2 Programming with the ALE and ALEPC APIs

Overview of the ALE API Implementation
One or more clients make method calls to the ALE interface. Each method call is a request, which
causes the ALE engine to take an action and return results. Thus, methods of the ALE interface
are synchronous.

The ALE interface also enables clients to subscribe to events that are delivered asynchronously,
by using methods that take a URI as an argument. Such methods return results immediately, but
subsequently the ALE engine within the Edge Server can asynchronously deliver information to
the consumer denoted by the URI argument.

In the sections that follow, the API is described using Unified Modeling Language (UML) class
diagram notation, as shown below:

The box as a whole refers to a conceptual class, having the specified data members and methods.
Within the UML descriptions, data members and methods are marked as belonging to one of the
following categories:

The EPCglobal ALE specification.

BEA extensions to the EPCglobal ALE specification.

The ALE API is realized in several equivalent forms within the RFID Edge Server:

There is a binding of the ALE API to a SOAP Web service, described by a WSDL file.

The complex data types have a standard representation as XML documents, defined by an
XSD schema.

There is a binding of the ALE API to Java, in which the ALE API takes the form of a
collection of Java interface and class definitions.

Each of these concrete forms of the ALE API has a slightly different structure and gives slightly
different names to the different conceptual classes, data members, and methods defined in UML

dataMember1 : Type1

dataMember2 : Type2

method1(ArgName:ArgType, ArgName:ArgType, …) : ReturnType

method2(ArgName:ArgType, ArgName:ArgType, …) : ReturnType

ALE : Main Tag Read ing In te r face wi th UML D iagrams

Programming with the ALE and ALEPC APIs 4-3

within this section. These differences are unavoidable, owing to syntactic constraints and stylistic
norms within these different implementation technologies.

In most cases, the mapping from conceptual UML to the concrete details of any particular binding
is very straightforward. Where it is not, the specific documentation for each binding makes clear
the relationship to the UML. The UML-level descriptions in these sections are normative.

For specifics of the Java binding, see the online Javadoc.

For specifics of the WSDL binding, see the WSDL file in your installation directory under
./share/schemas:

EPCglobal-ale-1_0.wsdl

For specifics of the XML representation of the complex data types, see the following XSD
files in your installation directory under ./share/schemas:

– EPCglobal-ale-1_0.xsd

Defines EPCglobal ALE schema; references BEA extensions.

– EPCglobal.xsd

Defines the EPCglobal common types, Document and EPC, referred to by
EPCglobal-ale-1_0.xsd.

EPCglobal-ale-1_0-RFTagAware-extensions.xsd

Defines the schema extensions.

Also see “XML Representations” on page 4-33.

ALE: Main Tag Reading Interface with UML Diagrams
ALE is the main Application Level Events (ALE) application programming interface.

Java implementation package: com.connecterra.ale.api

EPCglobal ALE

define(ecSpecName: String, spec:ECSpec) : void

undefine(ecSpecName: String) : void

getECSpec(ecSpecName: String) : ECSpec

http://e-docs.bea.com/rfid/edge_server/docs30/javadocs/index.html

Read ing Tags by Us ing the ALE AP I

4-4 Programming with the ALE and ALEPC APIs

An ECSpec is a complex type that defines how an event cycle is to be calculated.

An event cycle can be triggered in two ways:

A standing ECSpec can be posted using the define method. Subsequently, one or more
clients subscribe to that ECSpec using the subscribe method. The ECSpec generates
event cycles as long as there is at least one subscriber.

getECSpecNames() : List // returns a List of strings naming ECSpec
instances

subscribe(ecSpecName: String, notificationURI:URI) : void

unsubscribe(ecSpecName: String, notificationUri:URI) : void

getSubscribers(ecSpecName: String) : List // returns a List of subscriber
URIs

poll(ecSpecName: String) : ECReports

immediate(spec:ECSpec) : ECReports

getStandardVersion() : String

getVendorVersion() : String

WebLogic RFID Edge Server Extensions

getECSpecInfo(ecSpecName: String) : ECSpecInfo

redefine (ecSpecName: String, spec:ECSpec) : void

subscribe(ecSpecName: String, notificationURI: URI, controls:
ECSubscriptionControls) : void

suspend (ecSpecName: String) : void

unsuspend (ecSpecName: String) : void

listLogicalReaderNames() : List
// returns a List of Strings in sorted order naming all logical readers
known to the ALE engine

getECSubscriptionInfo(ecSpecName: String, notificationURI:URI) :
ECSubscriptionInfo

ALE : Main Tag Read ing In te r face wi th UML D iagrams

Programming with the ALE and ALEPC APIs 4-5

A poll call is like subscribing then unsubscribing immediately after one event cycle is
generated (except that the results are returned from poll instead of being sent to a URI).

An ECSpec can be submitted for immediate execution using the immediate method. This
is equivalent to defining an ECSpec, performing a single poll operation, and then
undefining it.

The execution of ECSpec instances is defined formally as follows. Each ECSpec instance is in
one of three states: unrequested, requested, and active. An ECSpec is in the requested state it
meets one or more of the following conditions:

The ECSpec has previously been defined using define, it has not yet been undefined,
and there has been at least one subscribe call for which there has not yet been a
corresponding unsubscribe call.

The ECSpec has previously been defined using define, it has not yet been undefined, a
poll call has been made, and the first event cycle since the poll was received has not yet
been completed.

The ECSpec was defined using the immediate method, and the first event cycle has not
yet been completed.

Once requested, an ECSpec is in the active state if reads are currently being accumulated into an
event cycle based on the ECSpec. Standing ECSpec instances that are requested using subscribe
can transition between active and inactive multiple times. ECSpec instances that are requested
using poll or created using immediate will transition between active and inactive just once
(though in the case of poll, the ECSpec remains defined afterward so that it could be
subsequently polled again or subscribed to).

Two other methods are provided to manipulate ECSpec instances while preserving existing
subscriptions:

The suspend and unsuspend methods let you temporarily “suspend” an ECSpec without
removing its subscriptions. While an ECSpec is suspended, you can add and remove
subscriptions using the subscribe and unsubscribe methods, but the ECSpec behaves as
though it is in the unrequested state — it causes no read cycles to take place, and generates
no ECReports.

The redefine method lets you replace the definition of an ECSpec. It is roughly
equivalent to unsubscribing all subscribers, undefining the ECSpec, defining a new ECSpec
with the same name, then replacing the subscribers. The redefine method is intended for
development and not production use, because it might cause a gap in event cycle
processing.

Read ing Tags by Us ing the ALE AP I

4-6 Programming with the ALE and ALEPC APIs

State Diagram
Figure 4-1 shows how the methods described in “ALE: Main Tag Reading Interface with UML
Diagrams” on page 4-3 affect an ECSpec.

Figure 4-1 State Diagram

In addition, the two methods getStandardVersion and getVendorVersion return information
about compliance with EPCglobal specifications:

Unre-
quested

Re-
quested

Active

define subscribe or poll

unsubscribe of last subscriber
undefine

Start trigger
received or

repeatPeriod
elapsed

Stop trigger received, duration
elapsed, or field stable for

stableFieldInterval

subscribe or poll,
when no startTrigger specified

immediate

immediate, when no startTrigger specified

Stop condition reached, and
only requester was poll

Stop condition reached, and
only requester was immediate

Unre-
quested

Re-
quested

Active

define subscribe or poll

unsubscribe of last subscriber
undefine

Start trigger
received or

repeatPeriod
elapsed

Stop trigger received, duration
elapsed, or field stable for

stableFieldInterval

subscribe or poll,
when no startTrigger specified

immediate

immediate, when no startTrigger specified

Stop condition reached, and
only requester was poll

Stop condition reached, and
only requester was immediate

Pr imary ALE AP I Data Types

Programming with the ALE and ALEPC APIs 4-7

getStandardVersion returns a string that identifies which version of the EPCglobal ALE
specification this implementation complies with. For this version of WebLogic RFID Edge
Server, the method returns the string 1.0.

getVendorVersion returns a string that identifies the vendor extensions this
implementation provides. For this version of WebLogic RFID Edge Server, this method
returns the string http://version.connecterra.com/ALE/1.

Primary ALE API Data Types
The primary data types associated with the ALE API are:

ECSpec, which specifies how an event cycle is to be calculated and reported

ECReports, which contains one or more reports generated from one activation of an
ECSpec.

ECReports instances are returned from the poll and immediate methods, and also sent to
URIs when ECSpec instances are subscribed to using the subscribe method.

For detailed information on the ECSpec and ECReports data types, see “ECSpec Data Type” on
page 4-7 and “ECReports Data Type” on page 4-23.

ECSpec Data Type
Java implementation package: com.connecterra.ale.api.

An ECSpec is a complex type that describes an event cycle and one or more reports that are to
be generated from it. The following sections provide information about ECSpecs:

“State Diagram” on page 4-6

“ECBoundarySpec” on page 4-10

“ECReportSpec” on page 4-13

“ECReportSetSpec” on page 4-16

“ECFilterSpec” on page 4-16

“ECGroupSpec” on page 4-18

“ECReportOutputSpec” on page 4-22

An ECSpec contains:

Read ing Tags by Us ing the ALE AP I

4-8 Programming with the ALE and ALEPC APIs

A list of readers whose reader cycles are to be included in the event cycle. Each member of
this list is either a single logical reader or the name of a composite reader.

A specification of how the boundaries of event cycles are to be determined.

A list of report specifications, each of which describes a report to be generated from this
event cycle.

A Boolean value that indicates whether or not to include the complete ECSpec as part of
every ECReports instance generated by this ECSpec.

An optional “application data” string, which is copied unmodified into every ECReports
instance generated from this ECSpec.

Figure 4-2 ECSpec UML Diagram

EPCglobal ALE

readers : List // List of logical or composite reader names

boundaries : ECBoundarySpec

ECSpec Data Type

Programming with the ALE and ALEPC APIs 4-9

Java Implementation Notes: In the Java API, ECSpec does not include a boundaries data
member that references an ECBoundarySpec. Rather, in Java, ECSpec provides getter and
setter methods for accessing ECBoundarySpec data members (startTrigger,
repeatPeriod, and so on) directly. See the Javadoc and “ECBoundarySpec” on page 4-10.

Both an ECSpec’s associated ECBoundarySpec and ECReportSpec can contain an optional
<stableCount> element. This element modifies the Stable Set Interval (SSI) stop condition on
an Event Cycle by modifying the requirements that must be fulfilled before the SSI will cause an
Event Cycle to terminate. Java access is provided by the following methods:

com.connecterra.ale.ECSpec.getStableCount() : int

com.connecterra.ale.ECSpec.setStableCount(int) : void

Note: It is an error to specify a stableCount element in a reportSpec that uses an
ECReportSetSpec of DELETIONS.

If no stableCount elements are present, the stable set condition's semantics are identical to
those in prior releases: the number of tags in the event cycle must be constant for the specified
duration before the SSI will end the Event Cycle.

If one or more reports specify a stableCount, but the ECSpec has no top-level stableCount,
the stable set interval is calculated only with respect to those reports that include the count. A
report is considered stable if its included tag count has been stable for the entire stable set interval,
and the included tag count is greater than or equal to the specified stableCount. The stable set
interval ends the Event Cycle once all reports that contain a stableCount are stable.

If stableCount is specified at the ECSpec level, and no reports contain a stableCount, the
count of tags in the event cycle must reach the specified value before the SSI condition will
trigger the end of the event cycle.

If stableCount is present in reports and at the top level, both of the preceding conditions must
be met before the SSI will cause the event cycle to end. Each report with an associated

reportSpecs : List // List of one or more ECReportSpec instances

includeSpecInReports : boolean

WebLogic RFID Edge Server Extensions

applicationData : String

stableCount: int

http://e-docs.bea.com/rfid/edge_server/docs30/javadocs/index.html

Read ing Tags by Us ing the ALE AP I

4-10 Programming with the ALE and ALEPC APIs

stableCount must be stable, and the number of tags in the event cycle must be stable and greater
than or equal to the top-level stableCount before the SSI triggers.

If stableCount is specified but Stable Set Interval is specified (with either
stableSetInterval or stableSetIntervalReadCycles), the rules apply as if the stable set
interval is specified as 0, and ends the event cycle immediately when the stable count conditions
are met. It is an error to specify an ECSpec with an implicit or explicit stable set interval of 0
unless at least one stableCount is specified nonzero.

ECBoundarySpec
An ECBoundarySpec specifies how the beginning and end of event cycles are determined, as
described in the following sections:

“ECBoundarySpec Implementation Notes” on page 4-12

“ECTime” on page 4-12

“ECTimeUnit” on page 4-13

“ECTrigger” on page 4-13
.

The time values duration and stableSetInterval can be expressed in either of two units:
milliseconds or read cycles. One read cycle unit denotes the time required to complete one read

EPCglobal ALE

startTrigger : ECTrigger

repeatPeriod : ECTime

stopTrigger : ECTrigger

duration : ECTime

stableSetInterval : ECTime

WebLogic RFID Edge Server Extensions

durationReadCycles: int

stableSetIntervalReadCycles: int

ECSpec Data Type

Programming with the ALE and ALEPC APIs 4-11

cycle for every reader that is included in the event cycle. The time values must be non-negative.
Zero means “unspecified” (in which case the value of the corresponding units argument is
irrelevant).

startTrigger and repeatPeriod are mutually exclusive.

The conditions under which an event cycle is started depends on the settings for startTrigger
and repeatPeriod:

If startTrigger is specified, an event cycle is started when:

– The ECSpec is in the requested state and the specified start trigger is received.

If startTrigger is not specified and repeatPeriod is specified, an event cycle is started
when:

– The ECSpec transitions from the unrequested state to the requested state; or

– The repeatPeriod has elapsed from the start of the last event cycle, and in that
interval the ECSpec has never transitioned to the unrequested state.

If neither startTrigger nor repeatPeriod are specified, an event cycle is started when:

– The ECSpec transitions from the unrequested state to the requested state; or

– Immediately after the previous event cycle, if the ECSpec is in the requested state.

An event cycle, once started, extends until one of the following is true:

The duration or durationReadCycles, when specified, expires.

When the stableSetInterval or stableSetIntervalReadCycles is specified, no new
EPCs have been reported by any reader in the specified interval.

The stopTrigger, when specified, is received.

The ECSpec transitions to the unrequested state.

Note: The first of these conditions to become true terminates the event cycle. For example, if
both duration and stableSetInterval are specified, then the event cycle terminates
when the duration expires, even if the reader field has not been stable for
stableSetInterval. But if the field is stable for stableSetInterval, the event cycle
terminates even if the total time is shorter than the specified duration. Likewise, if both
duration and durationReadCycles are specified, the event cycle terminates when the
first of these time periods elapses.

Read ing Tags by Us ing the ALE AP I

4-12 Programming with the ALE and ALEPC APIs

In all the preceding descriptions, an ECSpec presented through the immediate method means
that the ECSpec transitions from unrequested to requested immediately upon calling immediate,
and transitions from requested to unrequested immediately after completion of the event cycle.

Note: URIs specify an event cycle’s start or stop triggers. See Triggers for more information
about trigger URIs.

It is possible to specify both duration and stableSetInterval in units of milliseconds and/or
units of read cycles. Be careful when you use units of read cycles. If any reader experiences a
failure during the event cycle, it will not complete its read cycles, and thus time as measured in
read cycles might never reach the limits set for duration or stableSetInterval. For this
reason, it is highly recommended that you include a duration in units of milliseconds, to act as
an overall timeout for the event cycle.

ECBoundarySpec Implementation Notes
Java: ECBoundarySpec,ECTime, ECTimeUnit, and ECTrigger are not visible in the Java
API. Instead, they are encapsulated by the ECSpec methods:

get/setDurationMillis

get/setDurationReadCycles

get/setStableSetIntervalMillis

get/setStableSetIntervalReadCycles

get/setRepeatPeriodMillis

get/setStartTrigger

get/setStopTrigger

See the Javadoc for information on these methods.

XML: To express duration and stableSetInterval in read cycles (rather than milliseconds),
use the ECBoundarySpec elements durationReadCycles and
stableSetIntervalReadCycles.

ECTime
ECTime denotes a span of time in an ECBoundarySpec, measured in physical time units. See
“ECBoundarySpec” on page 4-10 and “ECBoundarySpec Implementation Notes” on page 4-12.

http://e-docs.bea.com/rfid/edge_server/docs30/reader_reference/triggers.html
http://e-docs.bea.com/rfid/edge_server/docs30/javadocs/index.html

ECSpec Data Type

Programming with the ALE and ALEPC APIs 4-13

ECTimeUnit
ECTimeUnit is an enumerated type denoting different units of physical time that can be used in
an ECBoundarySpec. See “ECBoundarySpec” on page 4-10 and “ECBoundarySpec
Implementation Notes” on page 4-12. ECTimeUnit currently supports only one time unit
(milliseconds).

ECTrigger
ECTrigger denotes a URI that specifies a start or stop trigger for an event cycle. See
“ECBoundarySpec” on page 4-10 and “ECBoundarySpec Implementation Notes” on page 4-12.

ECReportSpec
Java implementation package: com.connecterra.ale.api

An ECReportSpec specifies one report to be returned from executing an event cycle. An ECSpec
contains one or more ECReportSpec instances.

EPCglobal ALE

duration : long

unit : ECTimeUnit

EPCglobal ALE

<<Enumerated Type>>

MS // Milliseconds

EPCglobal ALE

trigger: URI

Read ing Tags by Us ing the ALE AP I

4-14 Programming with the ALE and ALEPC APIs

The reportSet parameter specifies the set of EPCs to be considered for reporting: all currently
read, additions from the previous event cycle, or deletions from the previous event cycle. The
filter parameter specifies how the raw EPCs are filtered before inclusion in the report. The
group parameter (of type ECGroupSpec) specifies how the filtered EPCs are grouped together
for reporting. If no group parameter is specified, then all EPCs are placed in a single default
group. The output parameter specifies whether to return the EPCs themselves, a count, or both.

The reportIfEmpty parameter specifies whether this report should be included in the final
ECReports instance if the final, filtered list of EPCs is empty; that is, if the final EPC list would
be empty, or if the final count would be zero. If the parameter is set to:

false – (default) This report is omitted when empty.

true – This report is always included, even if it is empty.

EPCglobal ALE

reportName : String

reportSet : ECReportSetSpec

filter : ECFilterSpec

group : ECGroupSpec

output : ECReportOutputSpec

reportIfEmpty : boolean

reportOnlyOnChange : boolean

WebLogic RFID Edge Server Extensions

essential : boolean

applicationData : String

stableCount : int

includedMemoryFields : List // of includedMemoryField : URI (see
“includedMemory” on page 4-38)

ECSpec Data Type

Programming with the ALE and ALEPC APIs 4-15

If reportOnlyOnChange set to true, in the case of a standing report request, then reports will not
be sent to subscribers unless the filtered list of EPCs is different from the previous event cycle’s
filtered list of EPCs. This comparison takes place before the filtered list has been modified based
on reportSet or output parameters. The comparison also disregards whether the previous
report was actually sent due to the effect of this boolean, or the reportIfEmpty boolean.

The essential parameter specifies whether this report is considered “essential” for the
containing event cycle. “Essential” means that this report must be present for an ECReports
instance to be generated. In the event that more than one report is essential, all such reports must
be present for an ECReports instance to be generated.

For example, in a shipment-receiving application there might be an event cycle with two
ECReportSpec instances. The first, for which essential=true, has a filter set to include
only those tags that match the tags expected in a particular shipment. The second, for which
essential=false, has a count of all tags read. If a shipment is received that contains at least
one item on the expected list, then an ECReports instance is delivered that contains a list of the
tags expected, and a total count of all tags read. If, however, a shipment contains no tags from the
expected list, the essential setting on the first report suppresses the generation of any other
report, and no notification is delivered.

Note: If the report has been marked essential=true, consider whether to change the default
“empty report” behavior (omit the report when it is empty), which is controlled by the
reportIfEmpty parameter.

The reportName parameter is an arbitrary string that is copied to the ECReport instance created
when this event cycle completes. The reportName parameter enables a client to distinguish
which ECReport instance that it receives corresponds to which ECReportSpec instance
contained in the original ECSpec. This capability is especially useful in cases where fewer reports
are delivered than there were ECReportSpec instances in the ECSpec, because false
reportIfEmpty settings suppressed the generation of some reports.

ECReportSpec Implementation Notes
Java Implementation Notes: ECFilterSpec, ECGroupSpec, and ECReportOutputSpec are not
visible in the Java API. Instead, they are encapsulated in the ECReportSpec methods:

get/set/addIncludePattern and get/set/addExcludePattern

See “ECFilterSpec” on page 4-16.

get/setGroupSpec

See “ECGroupSpec” on page 4-18.

Read ing Tags by Us ing the ALE AP I

4-16 Programming with the ALE and ALEPC APIs

includeList, includeCount

See “ECReportOutputSpec” on page 4-22.

ECReportSetSpec
Java implementation package: com.connecterra.ale.api

ECReportSetSpec is an enumerated type that specifies the set of EPCs to be considered for
filtering and output: all EPCs read in the current event cycle, additions from the previous event
cycle, or deletions from the previous event cycle.

ECFilterSpec
An ECFilterSpec specifies what EPCs are to be included in the final report.

The ECFilterSpec implements a flexible filtering scheme based on two pattern lists. Each list
contains zero or more URI-formatted EPC patterns. Each EPC pattern denotes a single EPC, a
range of EPCs, or some other set of EPCs. (Patterns are described in detail in “EPC Patterns” on
page 4-17.)

An EPC is included in the final report if (a) the EPC does not match any pattern in the
excludePatterns list, and (b) the EPC does match at least one pattern in the includePatterns
list. The (b) test is omitted if the includePatterns list is empty.

This can be expressed in mathematical notation as follows:

F(R) = { epc | epc in R & epc in I1 & … & epc in In & epc not in E1 & … &

epc not in En }

<<Enumerated Type>>

CURRENT

ADDITIONS

DELETIONS

includePatterns : List // List of URI-formatted EPC patterns

excludePatterns : List // List of URI-formatted EPC patterns

ECSpec Data Type

Programming with the ALE and ALEPC APIs 4-17

where Ii denotes the set of EPCs matched by the ith pattern in the includePatterns list, and
Ei denotes the set of EPCs matched by the ith pattern in the excludePatterns list.

Java Implementation Notes: ECFilterSpec is not visible in the Java API. Instead, it is
encapsulated by the ECReportSpec methods:

get/set/addIncludePattern

get/set/addExcludePattern

See the Javadoc for information on these methods.

EPC Patterns
EPC Patterns are used to specify filters within an ECFilterSpec. The complete syntax is defined
by the EPCglobal EPC Tag Data Standard Version 1.1 rev 1.27. Consult that document, available
at http://www.epcglobalinc.org/standards_technology/specifications.html, for full details.
Highlights are summarized here.

A single EPC pattern is a URI-formatted string that denotes a single EPC or set of EPCs. The
general format is:

urn:epc:pat:TagEncodingName:Filter.DomainManager.ObjectClass.SerialNumber

where the four fields Filter, DomainManager, ObjectClass, and SerialNumber correspond
to fields of an EPC. (Depending on the TagEncodingName, some of these fields might not be
present. Consult the EPCglobal EPC Tag Data Standard for details.) In an EPC pattern, each of
those fields can be (a) a decimal integer, meaning that a matching EPC must have that specific
value in the corresponding field; (b) an asterisk (*), meaning that a matching EPC might have any
value in that field; or (c) a range denoted like [lo-hi], meaning that a matching EPC must have
a value between the decimal integers lo and hi, inclusive. (The tag data standards document
includes restrictions and further details not documented here.)

Here are some examples. In these examples, assume that 20 is the Domain Manager for XYZ
Corporation, and 300 is the Object Class for its UltraWidget product, and that GID-96 tag
encodings are used.

urn:epc:pat:gid-96:20.300.4000 Matches the tag for UltraWidget serial number 4000.

urn:epc:pat:gid-96:20.300.* Matches any UltraWidget, regardless of serial number.

http://e-docs.bea.com/rfid/edge_server/docs30/javadocs/index.html
http://www.epcglobalinc.org/standards/

Read ing Tags by Us ing the ALE AP I

4-18 Programming with the ALE and ALEPC APIs

ECGroupSpec
ECGroupSpec defines how filtered EPCs are grouped together for reporting.

For detailed information, see “About Group Reports” on page 4-18

Java Implementation Notes: ECGroupSpec is not visible in the Java API. Instead, it is
encapsulated by the ECReportSpec methods getGroupSpec and setGroupSpec.

See the Javadoc for information on these methods.

About Group Reports
Sometimes it is useful to group EPCs read during an event cycle based on portions of the EPC or
attributes of the objects identified by the EPCs. For example, in a shipment receipt verification
application, it is useful to know the quantity of each type of case (for example, each distinct case
GTIN), but not necessarily the serial number of each case. This requires slightly more complex
processing, based on grouping patterns.

You specify groups by supplying one or more group patterns in the patternList field of
ECGroupSpec. Each element of the pattern list is an EPC Pattern URI as defined by the
EPCglobal EPC Tag Data Standard, extended by allowing the character X in each position where
a * character is allowed. Pattern URIs used in an ECGroupSpec are interpreted as follows:

urn:epc:pat:gid-96:20.*.[5000-
9999]

Matches any XYZ Corporation product whose serial
number is between 5000 and 9999, inclusive.

urn:epc:pat:gid-96:*.*.* Matches any GID-96.

patternList : List // List of pattern URIs

Pattern URI Field Meaning

X Create a different group for each distinct value of this field.

* All values of this field belong to the same group.

http://e-docs.bea.com/rfid/edge_server/docs30/javadocs/index.html

ECSpec Data Type

Programming with the ALE and ALEPC APIs 4-19

Examples of Pattern URIs Used as Grouping Patterns
Here are examples of pattern URIs used as grouping patterns:

In the corresponding ECReport, each group is named by another EPC Pattern URI that is
identical to the grouping pattern URI, except that the group name URI has an actual value in every
position where the grouping pattern URI had an X character.

For example, if these are the filtered EPCs read for the current event cycle:

urn:epc:tag:sgtin-64:3.0036000.123456.400

urn:epc:tag:sgtin-64:3.0036000.123456.500

urn:epc:tag:sgtin-64:3.0029000.111111.100

urn:epc:tag:sscc-64:3.0012345.31415926

Then a pattern list consisting of just one element, like this:

urn:epc:pat:sgtin-64:*.X.*.*

would generate the following groups in the report:

Number Only EPCs having Number in this field will belong to this group.

[Lo-Hi] Only EPCs whose value for this field falls within the specified range will belong
to this group.

Pattern URI Meaning

urn:epc:pat:sgtin-64:X.*.*.* Groups by filter value (for example, case/pallet).

urn:epc:pat:sgtin-64:*.X.*.* Groups by company prefix.

urn:epc:pat:sgtin-64:*.X.X.* Groups by company prefix and item reference (groups
by specific product).

urn:epc:pat:sgtin-64:X.X.X.* Groups by company prefix, item reference, and filter.

urn:epc:pat:sgtin-64:3.X.*.[0
-100]

Creates a different group for each company prefix,
including in each such group only EPCs having a filter
value of 3 and serial numbers in the range 0 through
100, inclusive.

Read ing Tags by Us ing the ALE AP I

4-20 Programming with the ALE and ALEPC APIs

Every filtered EPC that is part of the event cycle is part of exactly one group. If an EPC does not
match any of the EPC Pattern URIs in the pattern list, it is included in a special “default group.”
The name of the default group is null. In the above example, the SSCC EPC did not match any
pattern in the pattern list, and so was included in the default group.

As a special case of the above rule, if the pattern list is empty (or if the group parameter of the
ECReportSpec is null or omitted), then all EPCs are part of the default group.

In order to ensure that each EPC is part of only one group, there is an additional restriction that
all patterns in the pattern list must be pairwise disjoint. Disjointness of two patterns is defined as
follows. Assume Pat_i and Pat_j are two pattern URIs, written as a series of fields:

Pat_i = urn:epc:pat:type_i:field_i_1.field_i_2.field_i_3...

Pat_j = urn:epc:pat:type_j:field_j_1.field_j_2.field_j_3...

Then Pat_i and Pat_j are disjoint if:

type_i is not equal to type_j

type_i = type_j but there is at least one field k for which field_i_k and field_j_k
are disjoint, as defined by the following table:

Group Name EPCs in Group

urn:epc:pat:sgtin-64:*.0036000.*.* urn:epc:tag:sgtin-64:3.0036000.12
3456.400
urn:epc:tag:sgtin-64:3.0036000.12
3456.500

urn:epc:pat:sgtin-64:*.0029000.*.* urn:epc:tag:sgtin-64:3.0029000.11
1111.100

[default group] urn:epc:tag:sscc-64:3.0012345.314
15926

X * Number [Lo-Hi]

X Not disjoint Not disjoint Not disjoint Not disjoint

* Not disjoint Not disjoint Not disjoint Not disjoint

ECSpec Data Type

Programming with the ALE and ALEPC APIs 4-21

The formal definition of grouping is as follows. A group operator G is specified by a list of pattern
URIs:

G = (Pat_1, Pat_2, ..., Pat_N)

If each pattern is written as a series of fields, where each field_i_j is either X, *, Number, or
[Lo-Hi].

Pat_i = urn:epc:pat:type_i:field_i_1.field_i_2.field_i_3...

Then the definition of G(epc), the group name associated with a specific EPC, is as follows:

urn:epc:tag:type_epc:field_epc_1.field_epc_2.field_epc_3...

The epc is said to match Pat_i if

type_epc = type_i; and

For each field k, one of the following is true:

– field_i_k = X

– field_i_k = *

– field_i_k is a number, equal to field_epc_k

– field_i_k is a range [Lo-Hi], and Lo is less than or equal to field_epc_k, which is
less than or equal to Hi

Because of the disjointedness constraint specified above, the epc is guaranteed to match at most
one of the patterns in G.

The group name G(epc) is then defined as follows:

If epc matches Pat_i for some i, then:
G(epc) = urn:epc:pat:type_epc:field_g_1.field_g_2.field_g_3...

Number Not disjoint Not disjoint Disjoint if the
numbers are
different

Disjoint if the
number is not
included in the
range

[Lo-Hi] Not disjoint Not disjoint Disjoint if the
number is not
included in the
range

Disjoint if the
ranges do not
overlap

Read ing Tags by Us ing the ALE AP I

4-22 Programming with the ALE and ALEPC APIs

where for each k, field_g_k = *, if field_i_k = *; or field_g_k = field_epc_j,
otherwise.

If epc does not match Pat_i for any i, then G(epc) = the default group.

ECReportOutputSpec
ECReportOutputSpec specifies how the final set of EPCs is to be reported.

If any one of the four Booleans includeEPC, includeTag, includeRawHex, or
includeRawDecimal is true, the report includes a list of the EPCs in the final set for each group.
Each element of this list, when included, includes the formats specified by these four Booleans.
If includeCount is true, the report includes a count of the EPCs in the final set for each group.
Both might be true, in which case each group includes both a list and a count. If all five Booleans
includeEPC, includeTag, includeRawHex, includeRawDecimal, and includeCount are
false, then the define and immediate methods raise an exception.

Java Implementation Notes: ECReportOutputSpec is not visible in the Java API. Instead, it is
encapsulated by these ECReportSpec methods:

setIncludeEPC

setIncludeTag

setIncludeRawHex

setIncludeRawDecimal

setIncludeCount

See the Javadoc for information on these methods.

includeEPC : boolean

includeTag : boolean

includeRawHex : boolean

includeRawDecimal : boolean

includeCount : boolean

http://e-docs.bea.com/rfid/edge_server/docs30/javadocs/index.html

ECRepo r ts Data Type

Programming with the ALE and ALEPC APIs 4-23

ECReports Data Type
Java implementation package: com.connecterra.ale.api

The following sections provide information related to ECReports:

“ECTerminationCondition” on page 4-25

“ECReport” on page 4-26

“ECReportGroup” on page 4-27

“ECReportGroupList” on page 4-27

“ECReportGroupListMember” on page 4-28

“ECReportGroupCount” on page 4-30

“ECReportGroupListMemberMemory” on page 4-30

Figure 4-3 ECReports UML Diagram

Read ing Tags by Us ing the ALE AP I

4-24 Programming with the ALE and ALEPC APIs

ECReports is the output from an event cycle.

The most important part of an ECReports instance is the list of ECReport instances, each
corresponding to an ECReportSpec instance in the event cycle’s ECSpec. In addition to the
reports themselves, ECReports contains a number of “header” fields that provide useful
information about the event cycle.

EPCglobal ALE

specName : String

date : dateTime

ALEID : String

totalMilliseconds : long

terminationCondition : ECTerminationCondition

spec : ECSpec

reports : List // List of ECReport instances

schemaURL : URI

WebLogic RFID Edge Server Extensions

totalReadCycles : int

applicationData : String

physicalReaders : List // List of strings, each naming a physical
reader

failedLogicalReaders : List // List of strings, each naming a logical
reader

ECReports Header Field Description

specName The name of the ECSpec that controlled this event cycle. In the case of
an ECSpec that was requested using the immediate method, this
name is one chosen by the Edge Server.

date The date and time when the event cycle ended.

ECRepo r ts Data Type

Programming with the ALE and ALEPC APIs 4-25

ECTerminationCondition
Java implementation package: com.connecterra.ale.api

ECTerminationCondition is an enumerated type that describes how an event cycle was ended.

ALEID An identifier for the deployed instance of the Edge Server. This value is
set by the ale.savantID property in the edge.props file and can
be set in the installer.

totalMilliseconds The total time, in milliseconds, from the start of the event cycle to the
end of the event cycle.

terminationCondition Indicates what kind of event caused the event cycle to terminate: the
receipt of an explicit stop trigger, the expiration of the event cycle
duration, or the set of EPCs being stable for the prescribed amount of
time. These correspond to the possible ways of specifying the end of an
event cycle as defined in “ECBoundarySpec” on page 4-10.

spec A copy of the ECSpec that generated this ECReports instance. Only
included if the ECSpec has includeSpecInReports set to true.

schemaURL Specifies a URL for the XML schema for ALE API used in this version
of WebLogic RFID Edge Server. This schema includes the BEA
extensions to the EPCglobal ALE specification.

totalReadCycles The total time, in read cycles, from the start of the event cycle to the end
of the event cycle. When more than one reader contributed read cycles
to this event cycle, this number is the number of read cycles contributed
by the reader that contributed the fewest number of read cycles.

applicationData A copy of the applicationData field of the ECSpec that controlled
this event cycle.

physicalReaders A list of strings, each identifying one of the physical readers that
contributed to this event cycle. The mapping of physical and logical
reader names is specified in the edge.props file.

failedLogicalReaders A list of strings, each identifying a logical reader that reported failures
during this event cycle. This list is always a subset of the
logicalReaders field of the ECSpec that controlled this event
cycle. If no failures occurred, failedLogicalReaders is empty.

ECReports Header Field Description

Read ing Tags by Us ing the ALE AP I

4-26 Programming with the ALE and ALEPC APIs

The first three values, TRIGGER, DURATION, and STABLE_SET, correspond to the receipt of an
explicit stop trigger, the expiration of the event cycle duration, or the set of EPCs being stable
for the event cycle stableSetInterval, respectively. These are the possible stop conditions
described in “ECBoundarySpec” on page 4-10.

The last value, UNREQUEST, corresponds to an event cycle being terminated because there were
no longer any clients requesting it. By definition, this value cannot actually appear in an
ECReports instance sent to any client.

ECReport
Java implementation package: com.connecterra.ale.api

ECReport represents a single report within an ECReports instance that is generated by an event
cycle.

The reportName field is a copy of the reportName field from the corresponding ECReportSpec
within the ECSpec that controlled this event cycle. The groups field is a list containing one

<<Enumerated Type>>

EPCglobal ALE

TRIGGER

DURATION

STABLE_SET

UNREQUEST

EPCglobal ALE

reportName: String

groups: List // List of ECReportGroup instances

WebLogic RFID Edge Server Extensions

applicationData: String

ECRepo r ts Data Type

Programming with the ALE and ALEPC APIs 4-27

element for each group in the report as controlled by the group field of the corresponding
ECReportSpec. When no grouping is specified, the groups list contains the single default group.
Each element of the list is an instance of ECReportGroup.

Java Implementation Notes: The Java API provides two methods (hasCount and hasList) that
indicate whether each contained ECReportGroup instance includes an ECReportGroupCount
instance and an ECReportGroupList instance, respectively.

ECReportGroup
Java implementation package: com.connecterra.ale.api

ECReportGroup represents one group within an ECReport.

The groupName is null for the default group (in XML, the group name is omitted to indicate the
default group). Otherwise, the groupName is a string calculated as specified in “About Group
Reports” on page 4-18.

The groupList field is null if the includeEPC, includeTag, includeRawHex, and
includeRawDecimal fields of the corresponding ECReportOutputSpec are all false.

The groupCount field is null if the includeCount field of the corresponding
ECReportOutputSpec is false.

Java Implementation Notes: The Java API provides two methods (hasCount and hasList) that
indicate whether this ECReportGroup instance includes an ECReportGroupCount instance and
an ECReportGroupList instance, respectively.

ECReportGroupList
An ECReportGroupList is included in an ECReportGroup when any one of the four Boolean
fields includeEPC, includeTag, includeRawHex, and includeRawDecimal of the
corresponding ECReportOutputSpec is true.

EPCglobal ALE

groupName: String

groupList: ECReportGroupList

groupCount: ECReportGroupCount

Read ing Tags by Us ing the ALE AP I

4-28 Programming with the ALE and ALEPC APIs

The order in which EPCs are enumerated within the list is unspecified.

Java Implementation Notes: ECReportGroupList is not visible in the Java API. Instead, it is
encapsulated by the ECReportGroup method getGroupList. See the Javadoc for information
on this method.

ECReportGroupListMember
Java implementation package: com.connecterra.ale.api

Each member of the ECReportGroupList is an ECReportGroupListMember as defined below.
ECReportGroupListMember allows multiple EPC formats to be included and provides an
extension point for adding per-EPC information to the list report.

Each of the URI fields either contains a URI or is null, depending on the value of a boolean in the
corresponding ECReportOutputSpec. For example, the epc field is non-null if and only if the
includeEPC field of ECReportOutputSpec is true.

When non-null, the epc field contains an EPC represented as a pure identity URI according to the
EPCglobal EPC Tag Data Standard (urn:epc:id:…). A pure identity URI contains just the EPC,

EPCglobal ALE

members : List // List of EPCReportGroupListMember instances

EPCglobal ALE

epc : URI

tag : URI

rawHex : URI

rawDecimal : URI

WebLogic RFID Edge Server Extensions

memoryItems : List // See “ECReportGroupListMemberMemory” on page 4-30.

http://e-docs.bea.com/rfid/edge_server/docs30/javadocs/index.html

ECRepo r ts Data Type

Programming with the ALE and ALEPC APIs 4-29

with no additional information such as tag type, filter bits, and so on. If the information on the tag
cannot be successfully decoded into a pure identity URI, the epc field contains a raw decimal
URI instead.

When non-null, the tag field contains an EPC represented as a tag URI according to the
EPCglobal EPC Tag Data Standard (urn:epc:tag:…). A tag URI contains all information on the
tag, including the EPC, tag type, and filter bits (when applicable). The tag URI is also suitable for
use in writing tags using the ALEPC API (see Chapter 2, “Reading and Writing Tags” and
Chapter 5, “Writing Tags by Using the ALEPC API”). If the information on the tag cannot be
successfully decoded into a tag URI, the tag field contains a raw decimal URI instead.

When non-null, the rawDecimal field contains a raw tag value represented as a raw decimal URI
according to the EPCglobal EPC Tag Data Standard (urn:epc:raw:…).

When non-null, the rawHex field contains a raw tag value represented as a raw hexadecimal URI
according to the following extension to the EPCglobal EPC Tag Data Standard. The URI is
determined by concatenating the following: the string urn:epc:raw:, the length of the tag value
in bits, a dot (.) character, a lowercase x character, and the tag value considered as a single
hexadecimal integer. The length value preceding the dot character has no leading zeros. The
hexadecimal tag value following the dot has a number of characters equal to the length of the tag
value in bits divided by four and rounded up to the nearest whole number, and uses only
uppercase letters for the hexadecimal digits A, B, C, D, E, and F.

Each distinct tag value included in the report has a distinct ECReportGroupListMember element
in the ECReportGroupList, even if those ECReportGroupListMember elements would be
identical due to the formats selected. In particular, it is possible for two different tags to have the
same pure identity EPC representation; for example, two SGTIN-64 tags that differ only in the
filter bits. If both tags are read in the same event cycle, and ECReportOutputSpec specified
includeEPC true and all other formats false, then the resulting ECReportGroupList has two
ECReportGroupListMember elements, each having the same pure identity URI in the epc field.
In other words, the result should be equivalent to performing all duplicate removal,
additions/deletions processing, grouping, and filtering before converting the raw tag values into
the selected representation(s).

The situation in which this rule applies is expected to be extremely rare. In theory, no two tags
should be programmed with the same pure identity, even if they differ in filter bits or other fields
not part of the pure identity.

See the EPCglobal Tag Data Standard for more information on URI representations of Electronic
Product Codes.

Read ing Tags by Us ing the ALE AP I

4-30 Programming with the ALE and ALEPC APIs

ECReportGroupCount
An ECReportGroupCount is included in an ECReportGroup when the includeCount field of
the corresponding ECReportOutputSpec is true.

The count field is the total number of distinct EPCs that are part of this group.

Java Implementation Notes: ECReportGroupCount is not visible in the Java API. Instead, it is
encapsulated by the ECReportGroup method getGroupCount. See the Javadoc for information
on this method.

ECReportGroupListMemberMemory
An ECReportGroupListMemberMemory provides access to the individual memory values
returned in the ECReport from the Edge Server.

.

There are two URI forms for specifying a memory location on a tag:

 Absolute addressing (by bank, offset, and length)

 Symbolic name

When performing absolute addressing, the URI needs to include a selection for the memory bank,
an offset within the memory bank, and a length of the memory extent, in bits.

urn:connecterra:tagmem:@bankid.length[.offset]

Where bankid is, in Gen2, one of the four values: epc, tid, user, or reserved. Length and
offset are integer values in bits, specified as decimal. The default offset value is 0.

When referring to a symbolic name, the URI simply includes the name.

urn:connecterra:tagmem:name

EPCglobal ALE

count : int

field : URI

value : URI

http://e-docs.bea.com/rfid/edge_server/docs30/javadocs/index.html

Other ALE AP I Types : BEA Ex tens ions

Programming with the ALE and ALEPC APIs 4-31

In the current implementation, the only valid value for name is epc.

Data is padded before being returned as a 64-, 96-, or 128-bit value. For example, 48 bits of data
would be returned as a padded 64-bit value.

Other ALE API Types: BEA Extensions
The following sections define other types that are used in the WebLogic RFID Edge Server ALE
API. These types are all BEA extensions to the EPCglobal specification.

“ECSpecInfo (WebLogic RFID Edge Server Extension)” on page 4-31

“ECSubscriptionInfo (WebLogic RFID Edge Server Extension)” on page 4-32

“ECSubscriptionControls (WebLogic RFID Edge Server Extension)” on page 4-33

 ECSpecInfo (WebLogic RFID Edge Server Extension)
Java implementation package: com.connecterra.ale.api

ECSpecInfo gives information about the current state of a defined ECSpec.

WebLogic RFID Edge Server Extensions

subscriberCount : int

activationCount : int

lastActivated : timestamp

lastReported : timestamp

isSuspended : boolean

Field Description

subscriberCount The number of current subscribers for this ECSpec.

activationCount The number of times the ECSpec has transitioned into the active state since
it was first defined.

Read ing Tags by Us ing the ALE AP I

4-32 Programming with the ALE and ALEPC APIs

XML Implementation Notes: ECSpecInfo values are expressed in the element
EventCycleSpecInfo.

ECSubscriptionInfo (WebLogic RFID Edge Server Extension)
Java implementation package: com.connecterra.ale.api

ECSubscriptionInfo gives information about a specific subscriber to an ECSpec.

XML Implementation Notes: ECSubscriptionInfo values are expressed in the element
EventCycleSubscriptionInfo.

lastActivated When the ECSpec last transitioned into the active state.

lastReported When the ECSpec last delivered a report to subscribers. This might be
different than lastActivated because the settings in ECReportSpecs
might cause the ECSpec not to deliver a report if no matching tags were read.

isSuspended Indicates whether or not the ECSpec is in a suspended state.

controls : ECSubscriptionControls

consecutiveFailureCount : int

lastSuccessTime : timestamp

Field Description

controls The controls that govern when the subscription is automatically
unsubscribed in case of delivery failures.

consecutiveFailureCount The number of consecutive times that reports were unable to be
delivered. This value is 0 if the most recent report was delivered
successfully, 1 if the most recent report was not delivered but the
preceding report was delivered, and so forth.

lastSuccessTime The date and time a report was last successfully delivered.

Field Description

XML Representat ions

Programming with the ALE and ALEPC APIs 4-33

ECSubscriptionControls (WebLogic RFID Edge Server
Extension)
Java implementation package: com.connecterra.ale.api

ECSubscriptionControls contains parameters that govern when subscriptions are
automatically unsubscribed in case of delivery failures. Most subscriptions are governed by a
default set of parameters that are configured when the Edge Server is deployed. When a client
wants to override these settings for a specific subscription, the client uses the form of the ALE
subscribe call that takes an explicit ECSubscriptionControls argument.

XML Implementation Notes: ECSubscriptionControl values are expressed in the element
EventCycleSubscriptionControls.

XML Representations
The focal points of the ALE tag reading interface from an application perspective are the ECSpec
and ECReports objects. The Edge Server provides a standard way of representing ECSpec and
ECReports instances in XML. The XML form of ECReports is used by most asynchronous
event cycle delivery mechanisms, as described in Chapter 3, “Asynchronous Notification
Mechanisms.” User applications can also use the XML forms as a means of interchange, and for
persistent storage.

The XML forms of ECSpec and ECReports are defined by the XSD files:

EPCglobal-ale-1_0.xsd

failureLimitCount : int

failureLimitInterval : long

Field Description

failureLimitCount The maximum number of failed notification deliveries before a
subscription is unsubscribed.

failureLimitInterval The maximum interval of time (in milliseconds) during which
notification delivery can fail before a subscription is unsubscribed.

Read ing Tags by Us ing the ALE AP I

4-34 Programming with the ALE and ALEPC APIs

Defines EPCglobal ALE schema; references BEA extensions. ECSpec and ECReports are
both defined in this schema. The top-level element for ECSpec is ECSpec; for ECReports
the top-level element is ECReports.

EPCglobal.xsd

Defines the EPCglobal common types, Document and EPC, referred to by
EPCglobal-ale-1_0.xsd.

EPCglobal-ale-1_0-RFTagAware-extensions.xsd

Defines the BEA schema extensions.

These files are located in your installation directory under share/schemas.

The Java binding for ALE provides XML serializer and deserializer classes for translating
between the XML representation and the Java representation of the ECSpec and ECReports
types. Applications use these facilities to process reports received via the Edge Server’s
asynchronous event cycle delivery mechanisms, and for other purposes. The sample applications
bundled with WebLogic RFID Edge Server illustrate the use of the serializer and deserializer
classes. See “Using XML Serializers and Deserializers from Java” on page 4-37 for more
information.

The remainder of this section presents examples of ECSpec and ECReports as rendered into
XML:

“ECSpec - Example” on page 4-34

“ECReports - Example” on page 4-35

These examples include additional line breaks and whitespace for the sake of readability.
WebLogic RFID Edge Server permits (but does not require) this whitespace when reading XML;
usually the server omits this whitespace when writing XML.

ECSpec - Example
Here is an example ECSpec rendered into XML:

<?xml version="1.0" encoding="UTF-8"?>

<ale:ECSpec xmlns:ale="urn:epcglobal:ale:xsd:1"

xmlns:aleext="http://schemas.connecterra.com/EPCglobal-extensions/ale"

 creationDate="2004-11-15T16:18:43.500Z"

 schemaVersion="1.0"

 includeSpecInReports="false" >

XML Representat ions

Programming with the ALE and ALEPC APIs 4-35

<logicalReaders>

<logicalReader>ConnecTerra1</logicalReader>

</logicalReaders>

<boundarySpec>

<duration unit="MS">2000</duration>

</boundarySpec>

<reportSpecs>

<reportSpec reportName="SubscribeSample Report">

<reportSet set="CURRENT" />

<output includeCount="true"

 includeEPC="false"

 includeRawDecimal="false"

 includeRawHex="false"

 includeTag="true" />

</reportSpec>

</reportSpecs>

<aleext:applicationData>application-specific data

here</aleext:applicationData>

</ale:ECSpec>

ECReports - Example
Here is an example ECReports rendered into XML:

<ale:ECReports ALEID="EdgeServerID"

creationDate="2005-01-06T16:47:57.296Z" date="2005-01-06T16:47:57.296Z"

 schemaURL="http://schemas.connecterra.com/EPCglobal/ale-1_0.xsd"

 schemaVersion="1"

 specName="sampleECSpec"

 terminationCondition="DURATION"

 totalMilliseconds="2015"

 xmlns:ale="urn:epcglobal:ale:xsd:1"

 xmlns:aleext="http://schemas.connecterra.com/EPCglobal-extensions/ale">

<reports>

 <report reportName="SubscribeSample Report">

 <group>

 <groupList>

Read ing Tags by Us ing the ALE AP I

4-36 Programming with the ALE and ALEPC APIs

 <member>

 <tag>urn:epc:tag:gid-64-i:10.50.5</tag>

 </member>

 <member>

 <tag>urn:epc:tag:gid-64-i:10.40.4</tag>

 </member>

 <member>

 <tag>urn:epc:tag:gid-64-i:10.10.1</tag>

 </member>

 <member>

 <tag>urn:epc:tag:gid-64-i:10.30.3</tag>

 </member>

 <member>

 <tag>urn:epc:tag:gid-64-i:10.70.7</tag>

 </member>

 <member>

 <tag>urn:epc:tag:gid-64-i:10.20.2</tag>

 </member>

 <member>

 <tag>urn:epc:tag:gid-64-i:10.60.6</tag>

 </member>

 </groupList>

 <groupCount>

 <count>7</count>

 </groupCount>

 </group>

 </report>

</reports>

<aleext:applicationData>application-specific data

here</aleext:applicationData>

<aleext:failedLogicalReaders/>

<aleext:physicalReaders>

 <aleext:physicalReader>SimReadr</aleext:physicalReader>

</aleext:physicalReaders>

<aleext:totalReadCycles>8</aleext:totalReadCycles>

</ale:ECReports>

Us ing the ALE Tag Reading AP I f r om Java

Programming with the ALE and ALEPC APIs 4-37

Using the ALE Tag Reading API from Java
When you use the Java binding of the ALE API, there are additional Java interfaces and classes
available to you beyond what is described previously in this chapter. This section gives a brief
introduction to those additional interfaces and classes. For full documentation, see the Javadoc.

To use the ALE tag reading API from Java, you create an instance of the SOAPALEClient class
provided in the com.connecterra.ale.client package. This class implements the ALE
interface as described in “ALE: Main Tag Reading Interface with UML Diagrams” on page 4-3
and provides all of the methods described there. It also provides an additional method,
getALEFactory, which returns a factory for creating instances of other types, described below.
The SOAPALEClient interacts with a WebLogic RFID Edge Server over the network using
SOAP over HTTP. When you construct an instance of SOAPALEClient, you provide a service
URL for the Edge Server with which you want to interact.

When using the SOAPALEClient class, you need to create instances of ECSpec and other types
described in this chapter. The ALEFactory interface (in package com.connecterra.ale.api)
provides methods for creating instances of those types. You obtain an instance of the
ALEFactory interface by calling the getALEFactory method provided by the SOAPALEClient
class. When passing arguments to methods of a specific SOAPALEClient instance, you must
always use the factory instance provided by that SOAPALEClient instance.

Using XML Serializers and Deserializers from Java
The Java binding of the ALE API provides some additional utility classes for reading and writing
XML representations of the data types used in the ALE API. With these classes, you can convert
a Java object representation of a particular data type into XML (“serialization”), and likewise
convert an XML representation of a particular data type back into a Java object
(“deserialization”). The XML schemas are in the product installation directory at:

/share/schemas/EPCglobal-ale-1_0.xsd

/share/schemas/EPCglobal.xsd

/share/schemas/EPCglobal-ale-1_0-RFTagAware-extensions.xsd

To read and write XML for types used in the ALE tag reading API, you use an instance of the
XMLSerializationFactory provided in the com.connecterra.ale.encoding package.
There is only one static instance of this class, which you obtain by using the static method
getInstance(), passing the argument XMLSerializationSyntax.EPCglobal_ale_1_0.
Using the XMLSerializationFactory instance, you can create instances of XMLSerializer

http://e-docs.bea.com/rfid/edge_server/docs30/javadocs/index.html

Read ing Tags by Us ing the ALE AP I

4-38 Programming with the ALE and ALEPC APIs

and XMLDeserializer to serialize and deserialize instances of the following classes: ECSpec,
ECReports, ECSpecInfo, ECSubscriptionInfo, and ECSubscriptionControls.

Gen2 Read Support
In support of the UHF Generation 2 Air Interface Protocol, BEA provides the following
properties:

“includedMemory” on page 4-38

“getMemoryItem” on page 4-38

includedMemory
ECReportSpec has a new <includeMemory field="URI"> element, which can be specified
multiple times. An includeMemory property is a list of URI objects, each of which corresponds
to a tag memory section to read. Java access is provided by the following methods:

com.connecterra.ale.api.ECReportSpec.getIncludedMemoryFields() :List

com.connecterra.ale.api.ECReportSpec.set(includedMemoryFields :List) :
void

com.connecterra.ale.api.ECReportSpec.addIncludedMemoryField(includedMemo
ryField :URI) : void

When this element is specified, the associated ECReportGroupListMember in the report will
have a <memory field="URI">…</memory> element whose contents are a URI representing the
contents of the requested memory segment. When the field in the includeMemory element is an
EPC field, the contents are converted to a URI following the procedure as presented in the
EPCglobal EPC Tag Data Standard. If the EPC must be returned raw, it is an EPC raw hex URI.

The value read is right-aligned; the LSB of the memory read is the LSB of the returned value,
even when the width of the field is not a multiple of 8 bits.

getMemoryItem
The getMemoryItems() interface is an addition to the ECReportGroupListMember; the new
interface provides access to the memory values returned in the ECReport from the Edge Server.

Programming with the ALE and ALEPC APIs 5-1

C H A P T E R 5

Writing Tags by Using the ALEPC API

The following sections describe the ALEPC API programming components that you use to write
tags and include a formal, abstract specification of the ALEPC API. The external interface is
defined by the ALEPC interface (See “ALEPC: Main Tag Writing Interface with UML Diagrams”
on page 5-3). This interface makes use of a number of complex data types that are documented
in the sections starting at “PCSpec” on page 5-7. BEA extensions to the interface are described
in “BEA Gen2 Write Support” on page 5-31.

“Overview of the ALEPC API Implementation” on page 5-2

“ALEPC: Main Tag Writing Interface with UML Diagrams” on page 5-3

“PCSpec” on page 5-7

“PCWriteReport” on page 5-17

“EPCCacheSpec” on page 5-23

“XML Representations” on page 5-27

“Using the ALEPC Tag Writing API from Java” on page 5-30

“BEA Gen2 Write Support” on page 5-31

“Gen2 PCSpec Examples” on page 5-37

Wri t ing Tags by Us ing the ALEPC API

5-2 Programming with the ALE and ALEPC APIs

Overview of the ALEPC API Implementation
One or more clients make method calls to the ALEPC interface. Each method call is a request,
which causes the ALE engine to take some action and return results. Thus, methods of the ALEPC
interface are synchronous.

The ALEPC interface also enables clients to subscribe to events that are delivered asynchronously.
You implement this capability by invoking methods that take a URI as an argument. Such
methods return immediately, but subsequently the ALE engine within the Edge Server can
asynchronously deliver information to the consumer denoted by the URI argument.

In the sections that follow, the API is described by using UML class diagram notation, as shown
below:

The box as a whole refers to a conceptual class, having the specified data members and methods.

The ALEPC API is realized in several equivalent forms within WebLogic RFID Edge Server:

There is a binding of the ALEPC API to Java, in which it takes the form of a collection of
Java interface and class definitions.

There is another binding of the ALEPC API to a SOAP Web service, described by a
WSDL file.

The complex data types have a standard representation as XML documents, defined by an
XSD schema.

Each of these concrete forms of the ALEPC API has a slightly different structure and gives
slightly different names to the different conceptual classes, data members, and methods defined
in the UML within these sections. This variation is unavoidable, owing to syntactic constraints
and stylistic norms within these different implementation technologies.

In most cases, the mapping from conceptual UML to the concrete details of any particular binding
is very straightforward; where it is not, the specific documentation for each binding will make

dataMember1 : Type1

dataMember2 : Type2

method1(ArgName:ArgType, ArgName:ArgType, …) : ReturnType

method2(ArgName:ArgType, ArgName:ArgType, …) : ReturnType

ALEPC: Main Tag Wr i t ing In te r face w i th UML Diagrams

Programming with the ALE and ALEPC APIs 5-3

clear the relationship to the UML. The UML-level descriptions in these sections should be
considered normative.

For specifics of the Java binding, see the online Javadoc.

For specifics of the WSDL binding, see the WSDL file that is included in your installation
directory at:

share/schemas/ALEPCService.wsdl

For specifics of the XML representation of the complex data types, see the XSD file that is
included in your installation directory at:

share/schemas/ALEPC.xsd

See also “XML Representations” on page 5-27.

ALEPC: Main Tag Writing Interface with UML Diagrams
ALEPC is the main interface that you use to program tags. The term “tag programming” refers to
the act of associating an EPC value with some physical entity, such as an RFID tag or a printed
label.

The Java implementation package is com.connecterra.alepc.api. Also see “BEA Gen2
Write Support” on page 5-31.

getALEID() : String

define(specName:String, spec:PCSpec) : void

redefine(specName:String, spec:PCSpec) : void

suspend(specName:String) : void

unsuspend(specName:String) : void

undefine(specName:String) : void

get(specName:String) : PCSpec

getPCSpecInfo(specName:String) : PCSpecInfo

listPCSpecNames() : List

http://e-docs.bea.com/rfid/edge_server/docs30/javadocs/index.html

Wri t ing Tags by Us ing the ALEPC API

5-4 Programming with the ALE and ALEPC APIs

subscribe(specName:String, uri:URI, controls:PCSubscriptionControls) :
void

unsubscribe(specName:String, uri:URI) : void

listSubscribers(specName:String) : List

getPCSubscriptionInfo(specName:String,subscriber:URI) :
PCSubscriptionInfo

poll(specName:String, epcVal:URI) : PCWriteReport

poll(specName : String, parametermap : Map<String, String>) :
PCWriteReport

immediate(spec:PCSpec, epcVal:URI) : PCWriteReport

immediate(specName : String, parametermap : Map<String, String>) :
PCWriteReport

defineEPCCache(cacheName:String, spec:EPCCacheSpec,
replenishment:EPCPatterns) : void

redefineEPCCache(cacheName:String, newSpec:EPCCacheSpec) : void

undefineEPCCache(cacheName:String) : EPCPatterns

getEPCCache(cacheName:String) : EPCCacheSpec

getEPCCacheSpecInfo(cacheName:String, includeCacheContent:boolean) :
EPCCacheSpecInfo

listEPCCacheSpecNames() : List

replenishEPCCache(cacheName:String, replenishment:EPCPatterns) : void

depleteEPCCache(cacheName:String) : EPCPatterns

subscribeEPCCache(cacheName:String, uri:URI,
controls:PCSubscriptionControls) : void

unsubscribeEPCCache(cacheName:String, uri:URI) : void

listEPCCacheSubscribers(cacheName:String) : List

ALEPC: Main Tag Wr i t ing In te r face w i th UML Diagrams

Programming with the ALE and ALEPC APIs 5-5

Table 5-1 Methods of the ALEPC Interface, in Alphabetical Order

getEPCCacheSubscriptionInfo(cacheName:String, subscriber:URI) :
PCSubscriptionInfo

listLogicalReaderNames() : List

Method Description

getALEID Return the value provided for savantID in the
edge.props file.

define Define a new programming cycle specification for use with
the poll and subscribe methods.

defineEPCCache Define an EPC cache that can be used by programming
cycles to obtain EPC values for programming operations.

depleteEPCCache Cause the indicated EPC cache to become depleted (empty).

get Look up and return a previously defined programming cycle
specification by name.

getEPCCache Look up and return a previously defined EPC cache
specification by name.

getEPCCacheSpecInfo Return administrative information about an EPC cache.

getEPCCacheSubscriptionInfo Return administrative information about an EPC cache
subscriber.

getPCSpecInfo Return administrative information about a programming
cycle specification.

getPCSubscriptionInfo Return administrative information about a programming
cycle subscriber.

immediate Immediately define a programming cycle specification and
activate it for one programming cycle, synchronously
returning a report. Use the overloaded method to provide a
full map of parameters, which provide substitution values
with the PCSpec.

listEPCCacheSpecNames Return a list of the names of all EPC caches currently
defined.

Wri t ing Tags by Us ing the ALEPC API

5-6 Programming with the ALE and ALEPC APIs

listEPCCacheSubscribers Return a list of URIs that are subscribed to asynchronous
reports for the specified EPC cache name.

listLogicalReaderNames Return a list of all logical reader names that can be used for
programming.

listPCSpecNames Return a list of the names of all programming cycle
specifications currently defined.

listSubscribers Return a list of URIs that are subscribed to asynchronous
reports for the specified PCSpec name.

poll Activate a previously defined programming cycle
specification for one programming cycle, synchronously
returning a report. Use the overloaded method to provide a
full map of parameters, which provide substitution values
with the PCSpec.

redefine Replace the PCSpec for a programming cycle with a new
PCSpec.

redefineEPCCache Replace the EPCCacheSpec having the specified name with
a new EPCCacheSpec. All subscriptions and other
metadata remain unchanged, and the cache contents are not
altered.

replenishEPCCache Append a set of EPC pattern URIs to the indicated EPC
cache.

subscribe Subscribe to asynchronous report delivery from a
programming cycle specification.

subscribeEPCCache Subscribe to asynchronous report delivery from an EPC
cache.

suspend Suspend the named programming cycle.

undefine Undefine a programming cycle specification.

undefineEPCCache Undefine an EPC cache.

unsubscribe Unsubscribe a specified destination from receiving
asynchronous delivery of reports from a specified
programming cycle specification.

Method Description

PCSpec

Programming with the ALE and ALEPC APIs 5-7

PCSpec
A PCSpec is a complex type that describes a programming cycle. A programming cycle is an
interval of time during which a single tag is written and verified.

Java implementation package: com.connecterra.alepc.api. See also “BEA Gen2 Write
Support” on page 5-31.

The following sections provide information about a PCSpec:

“PCSpecInfo” on page 5-9

“PCSubscriptionControls” on page 5-10

“PCSubscriptionInfo” on page 5-10

“AccessSpec” on page 5-11

A PCSpec contains:

A list of readers that should try to write the tag. Each member of this list is either a single
logical reader or the name of a composite reader.

Optional start and stop triggers, which provide one way of starting and ending the
programming cycle.

How many times the reader(s) should try to write the tag. This can be expressed as a
number of attempts (trials) or as a length of time (duration).

Optional name of an EPC cache from which this programming cycle obtains EPC values.
For information on EPC caches, see “EPC Caches” on page 2-12.

A PCSpec also contains an optional “application data” string, which is simply copied unmodified
into every PCWriteReport instance generated from this PCSpec.

For a narrative description of programming cycles and their use of PCSpec instances, see
“Programming Cycles” on page 2-9.

unsubscribeEPCCache Unsubscribe a specified destination from receiving
asynchronous delivery of reports from a specified EPC
cache.

unsuspend Return a suspended programming cycle to its normal state.

Method Description

Wri t ing Tags by Us ing the ALEPC API

5-8 Programming with the ALE and ALEPC APIs

.

Table 5-2 PCSpec Fields

logicalReaders : List

readerParameters: Map

applicationData: String

cacheName: String

duration: long

startTrigger: URI

stopTrigger: URI

trials: int

accessSpecs: List

restrictSingleTag: boolean

Field Description

logicalReaders List of logical or composite reader names.

readerParameters Maps parameter names to parameter values, and can be used to pass
information to a reader. For example, a RFID label printer might define a
reader parameter that it uses to obtain the text and graphics to be printed on
labels. See the RFID Reader Reference for information about the capabilities
of specific reader and printer devices.

applicationData A string that is copied unmodified into every PCWriteReport instance
generated from this PCSpec.

cacheName The name of the EPC cache from which this programming cycle obtains EPC
values.

duration The maximum amount of time to run EPC writing trials before failing a
programming cycle.

startTrigger Trigger that begins a programming cycle.

stopTrigger Trigger that ends a programming cycle.

http://e-docs.bea.com/rfid/edge_server/docs30/reader_reference/index.html

PCSpec

Programming with the ALE and ALEPC APIs 5-9

PCSpecInfo
Java implementation package: com.connecterra.alepc.api

Describes administrative information for a PCSpec.

Table 5-3 PCSpecInfo Fields

trials Maximum number of EPC writing trials to run before failing a programming
cycle.

accessSpecs List of AccessSpec objects. See “AccessSpec” on page 5-11.

restrictSingleTa
g

Boolean that when true will cause a PCSpec to fail before a programming
cycle if more than one tag is detected.

activationCount : int

cacheSize: long

lastActivated: long

lastReported: long

subscriberCount: int

isSuspended: boolean

Field Description

activationCount The number of times the programming cycle for the PCSpec has been
activated since it was defined.

cacheSize Number of entries that remain in the EPC cache associated with the PCSpec.

lastActivated The last time the programming cycle for the PCSpec was activated.

lastReported The last time a write report was generated by the programming cycle for the
PCSpec.

Field Description

Wri t ing Tags by Us ing the ALEPC API

5-10 Programming with the ALE and ALEPC APIs

PCSubscriptionControls
Java implementation package: com.connecterra.alepc.api

Describes how to handle failures in notification delivery. It is used by PCSubscriptionInfo
(see “PCSubscriptionInfo” on page 5-10) and ALEPC.subscribe(String, URI,
PCSubscriptionControls). Also see “ALEPC: Main Tag Writing Interface with UML
Diagrams” on page 5-3).

Table 5-4 PCSubscriptionControls Fields

PCSubscriptionInfo
Java implementation package: com.connecterra.alepc.api

Describes administrative information about a subscription.

subscriberCount The number of URIs subscribed to a PCSpec.

isSuspended True if the PCSpec processing is suspended.

failureLimitCount : int

failureLimitInterval : long

Field Description

Field Description

failureLimitCount The maximum number of failed notification deliveries before a
subscription is unsubscribed.

failureLimitInterval The maximum interval of time a notification delivery can fail before a
subscription is unsubscribed.

consecutiveFailureCount : int

controls : PCSubscriptionControls

PCSpec

Programming with the ALE and ALEPC APIs 5-11

AccessSpec
An AccessSpec contains an ordered list of OpSpec objects and a name. The list of OpSpecs
represent the sequence of operations to be performed on each tag in field. The base OpSpec class
is abstract; each subclass of OpSpec refers to a specific command.

The Java implementation package is com.connecterra.alepc.api.See also “BEA Gen2
Write Support” on page 5-31.

The following sections provide information related to an AccessSpec:

“OpSpec” on page 5-12

“DataSpec” on page 5-16
.

lastSuccessTime: long

Field Description

consecutiveFailureCount The number of failed notifications since the subscription was
created, or since the last successful notification.

controls The notification failure controls for this subscription. See
“PCSubscriptionControls” on page 5-10.

lastSuccessTime The absolute time in milliseconds of the most recent successful
notification.

name : String

opSpecs : List

Wri t ing Tags by Us ing the ALEPC API

5-12 Programming with the ALE and ALEPC APIs

Java and XML Implementation Notes:

An <accessSpec> element (repeatable) in a PCSpec describes what commands to issue to each
tag in a field, as they are “singulated.” An accessSpec has a name in order to match it with an
accessReport included in a PCWriteReport.

An accessSpec can contain a <stopOnError> subelement, which contains a Boolean value. If
stopOnError is true, for any given tag, any error in an operation will halt processing for that tag.
The inventory round then continues to the next tag in the field, and processing starts on that tag
with the first operation. If omitted, stopOnError is assumed to be false.

A PCSpec that contains no accessSpec element acts as if it has a single implicit accessSpec
element with a single write operation. If the PCSpec contains a cacheName element, the
writeOpSpec uses that value for its epcCache. This is the only point at which the top-level
cacheName element is used. Otherwise, the write specifies a param value of epc, which will be
substituted using the data from the poll or immediate ALEPC API call.

If restrictSingleTag was specified in the PCSpec, explicitly or implicitly (through the lack of
accessSpecs), the PCWriteReport contains the epc element which contains the EPC value of
the single tag written. This element is omitted in the PCWriteReport of any PCSpec that does
not restrict operations to a single tag, whether one more multiple tags were discovered in the field.
Additionally, a PCSpec that contains no accessSpec element will use the older form of
PCWriteReport, containing no opReport.

OpSpec
Java implementation package: com.connecterra.alepc.api

The base OpSpec class is abstract; each subclass of OpSpec refers to a specific command:
LockOpSpec, KillOpSpec, PasswordOpSpec, ReadOpSpec, WriteOpSpec.

.

Field Description

name Name of AccessSpec object.

opSpecs List of OpSpec objects. See “OpSpec” on page 5-12.

field : URI // Used by read and write

dataSpec: DataSpec // Used by kill, password, and write

PCSpec

Programming with the ALE and ALEPC APIs 5-13

Table 5-5 OpSpec Fields

Each <accessSpec> element contains an <operations> subelement, which is the list of
opSpecs that describe the commands to issue to each tag ("operations"). These operations are
read, write, password, lock, and kill.

There are two URI forms for specifying a memory location on a tag for a read or write operation:

 Absolute addressing (by bank, offset, and length)

 Symbolic name

For absolute addressing, the URI needs to include a selection for bank, an offset within the
memory bank, and a length of the memory extent, in bits.

urn:connecterra:tagmem:@bankid.length[.offset]

Where bankid is, in Gen2, one of the four values: epc, tid, user, or reserved. Length and
offset are integer values in bits, specified as decimal. The default offset value is 0.

When referring to a symbolic name, the URI simply includes the name.

urn:connecterra:tagmem:name

In the current implementation, the only valid value for name is epc.

For a stack light device, the bankid has one value: stacklight. The memory bank is 20-bits
wide, and each 4-bit segment corresponds to one light. For example,
urn.connecterra:tagmem:@stacklight.4.12 and value urn:epc:raw:64.x9 will turn on
the amber light.

mask : URI // Used by lock

value : URI // Used by lock

Field Description

field URI describing location on tag.

dataSpec A DataSpec object. See “DataSpec” on page 5-16.

opSpecs List of OpSpec objects.

Wri t ing Tags by Us ing the ALEPC API

5-14 Programming with the ALE and ALEPC APIs

The following code fragment demonstrates programmatic stack light control. The update value
of 092F0 will turn off the White light (0), turn on the Blue light until next update (9), turn on the
Green light for 10 seconds (2), do nothing to the Amber light (F), and turn off the Red light (0):

ALEPC alePCClient = new AxisALEPCClient(<alepcServiceURL>);

ALEPCFactory alePCFactory = AxisALEPCFactory.getInstance();

PCSpec pcSpec = alePCFactory.createPCSpec();

pcSpec.addLogicalReaderName("StackLight");

alePCClient.immediate(

 pcSpec, new URI("urn:connecterra:stacklight:update=092F0"));

For more information on stack light control, see Configuring and Controlling Stack Lights in the
RFID Reader Reference manual.

A <read field="..."> element is used to read from a segment of tag memory. The field
attribute contains the URI to the tag memory location. The resulting opReport contains the status
and the read memory value. Data is padded as a 64-, 96-, or 128-bit value before being returned.
For example, 48 bits of data would be returned as a padded 64-bit value.

A <write field=”...”> element is used to write a segment of tag memory. The field attribute
contains the URI to the segment tag memory location to write. The write operation contains one
of three elements that can provide the data to be written to the specified memory. These elements,
called data elements, are:

<literal>dataURI</literal>: The dataURI is a raw or EPC URI that provides the
data. The length of the data provided must match the length of the field.

Note: For writing, there are two URIs: one is an address, the other is a value. The
<literal> element includes the value URI. A value URI is also used to specify
access and kill passwords, and lock bits. The address URI is also used to specify
additional memory locations which should be read, in PCSpecs and ECSpecs.

<epcCache>cacheName</epcCache>: Used to retrieve a value from the named EPC
Cache.

<param>parameterName</param>: Used to perform a lookup in the parameters provided
the ALEPC poll() or immediate() call to find the value to write.

A <password> element attempts to transition the tag to secured mode. The password operation
contains one of the data elements specified above in the <write> element description - this data
is used as the password in the Gen2 "access" operation. It is an error to use an epcCache data
element for this element.

http://e-docs.bea.com/rfid/edge_server/docs30/reader_reference/stack_light.html

PCSpec

Programming with the ALE and ALEPC APIs 5-15

A <lock> element contains a mask element and a value element, both of which should contain a
raw URI that provides an integer value. These raw URIs should be 10-bits wide when operating
with Gen2 tags. For any of the bits in the mask element that are set, the corresponding lock bit on
the tag is set to the bit in value at that position.

User memory is represented by the low 2 bits - 0x3

TID is the next two - 0xC

EPC is 0x30

Access password is 0xC0

Kill password is 0x300

 A 10-bit value is provided for the "mask" and "value" of the lock command. In the mask, the
bits that are set map to the bits in the value, to be applied to the state.

 In each field, the high bit represents the "lock" value for that field, while the low bit represents
the field's "permalock" value.

For the EPC, TID, and User memory fields:

For the password fields:

lock permalock Description

0 0 Associated memory bank is writable.

0 1 Associated memory bank is writable.

1 0 Associated memory bank can only be written with a password.

1 1 Associated memory bank is permanently read-only.

lock permalock Description

0 0 Associated password is readable and writable.

0 1 Associated password is permanently readable and writable.

Wri t ing Tags by Us ing the ALEPC API

5-16 Programming with the ALE and ALEPC APIs

Note the differences between the meanings for the bits in the two types of fields.

Lock operations are described in fuller detail in EPC Radio-Frequency Identity Protocols Class-1
Generation-2 UHF RFID Protocol for Communications at 860 MHz-960 MHz, Version 1.0.9.

A <kill> element contains the kill password, which will be used to kill the tag. You specify this
password using the same data subelement that the <password> element uses. It is an error to use
an epcCache data element for this element.

For XML examples, see “Gen2 PCSpec Examples” on page 5-37.

DataSpec
Java implementation package: com.connecterra.alepc.api

The base DataSpec class is abstract. Public implementations are: LiteralDataSpec,
EPCCacheDataSpec, and ParamDataSpec.

.

Table 5-6 DataSpec Fields

1 0 Associated password can only be read or written with a
password.

1 1 Associated password is permanently unreadable and inheritable.

value : URI // Used by LiteralDataSpec

EPCCache : String // Used by EPCCacheDataSpec

paramName : String // Used by ParamDataSpec

Field Description

value An EPC URI or a raw URI.

lock permalock Description

http://www.epcglobalinc.org/standards/
http://www.epcglobalinc.org/standards/

PCWr i teRepor t

Programming with the ALE and ALEPC APIs 5-17

PCWriteReport
Java implementation package: com.connecterra.alepc.api

A PCWriteReport describes the tag writing operation of a programming cycle.

The following sections provide information related to a PCWriteReport:

“AccessReport” on page 5-19

“TagReport” on page 5-20

“OpReport” on page 5-20

“PCStatus” on page 5-21

“PCTerminationCondition” on page 5-22

EPCCache Then name of an EPC Cache.

paramName A parameter which is looked up in the map provided in an ALEPC
poll or immediate call; the value associated with the parameter
is used.

Field Description

date : timestamp

savantID : String

specName : String

cacheName : String

applicationData : String

wasSuccessful : boolean

status : PCStatus

physicalReader : List

failedLogicalReaders : List

Wri t ing Tags by Us ing the ALEPC API

5-18 Programming with the ALE and ALEPC APIs

Table 5-7 PCWriteReport Fields

totalMilliseconds : long

totalTrials : int

cacheSize : long

EPC : URI

successfulLogicalReader : String

failureInfo : String

terminationCondition : PCTerminationCondition

accessReport: AccessReport

Field Description

applicationData String that you set in the PCSpec. See “PCSpec” on page 5-7.

cacheName The name of the EPC cache associated with this PCSpec.

cacheSize Number of EPC cache entries remaining after the programming
cycle completed.

date The date and time the report was generated.

EPC The EPC value that was written to the tag.

failedLogicalReaders The logical readers that had some sort of failure during the
programming cycle that generated this report.

failureInfo Additional information about the failure, if available.

physicalReader Names of physical readers that were involved in the programming
cycle that generated this report.

savantID The identifier for the Edge Server that generated this report.

specName Name of the PCSpec that describes the just-completed
programming cycle.

PCWr i teRepor t

Programming with the ALE and ALEPC APIs 5-19

AccessReport
Java implementation package: com.connecterra.alepc.api

An AccessReport contains the name of the associated accessSpec. Each <accessReport>
element contains a list of <tag epc="epc"> elements, one per tag detected in field.

.

Table 5-8 AccessReport Fields

status The status of the programming cycle. See “PCStatus” on
page 5-21.

successfulLogicalReader The logical reader that actually performed the successful tag write.

terminationCondition The condition that terminated the failed programming cycle
activation. See “PCTerminationCondition” on page 5-22.

totalMilliseconds The total time in milliseconds during which the programming
cycle was active.

totalTrials The total number of trials for which the programming cycle was
active.

wasSuccessful True if the programming cycle succeeded. False if the
programming cycle failed.

accessReport A report based on an AccessSpec. See “AccessReport” on
page 5-19 and “AccessSpec” on page 5-11.

name : String

tag : List

Field Description

name Name of AccessReport object. See “AccessReport” on page 5-19.

tag List of TagReport objects. See “TagReport” on page 5-20.

Field Description

Wri t ing Tags by Us ing the ALEPC API

5-20 Programming with the ALE and ALEPC APIs

TagReport
Java implementation package: com.connecterra.alepc.api

A TagReport contains the EPC of the tag, and an ordered list of OpReport objects. There is a
one-to-one correspondence between each OpReport in the named AccessReport and each
OpSpec in the corresponding AccessSpec, and the ordering is preserved.

.

Table 5-9 TagReport Fields

OpReport
Java implementation package: com.connecterra.alepc.api

An OpReport contains a status element that reports the operation was successful or provides
failure information. For read and write operations, the opReport also contains memory operation
results. These results include a field element that matches the memory bank URI specified in the
original opSpec, and a value element that gives the value of the memory as a URI.

In the case of a write, the format of the value URI is exactly as provided as input - the literal write
value, the parameter value, or the EPC URI provided by the cache. For a read, the value is
formatted as described in the “includedMemory” on page 4-38

.

EPC : URI

opReports : List

Field Description

EPC The EPC of the tag. The tag <epc> value is formatted as a tag
URI, as specified in the tag format data standard. If the tag is
not a recognized type, it is formatted as a raw hex URI.

opReports List of OpReport objects. See “OpReport” on page 5-20.

operationStatus : PCStatus

field : URI

PCWr i teRepor t

Programming with the ALE and ALEPC APIs 5-21

Table 5-10 OpReport Fields

PCStatus
Java implementation package: com.connecterra.alepc.api

PCStatus is an enumerated type that identifies the termination status of a programming cycle.

value : URI

Field Description

field See “OpSpec” on page 5-12.

value See “OpSpec” on page 5-12.

<<Enumerated Type>>

SUCCESSFUL

NONE_IN_FIELD

NOT_WRITTEN

VERIFY_ERROR

LOCKED

MULTIPLE_IN_FIELD

LOCKED

INCOMPATIBLE_TAG_TYPE

READ_ONLY

CACHE_EMPTY

READER_BUSY

Wri t ing Tags by Us ing the ALEPC API

5-22 Programming with the ALE and ALEPC APIs

Table 5-11 PCStatus Values

PCTerminationCondition
Java implementation package: com.connecterra.alepc.api

PCTerminationCondition is an enumerated type that describes the conditions that can cause a
programming cycle to terminate with a failure.

READER_ERROR

ENGINE_ERROR

Value Description

CACHE_EMPTY A programming cycle could not be started because the EPC cache
was empty.

ENGINE_ERROR The ALE engine itself has some kind of problem.

INCOMPATIBLE_TAG_TYPE The tag (or reader) is a of a type that is not compatible with the
EPC value that was supplied to be written to the tag (for example,
a 96-bit EPC written to a 64-bit tag).

LOCKED Reserved for future use.

MULTIPLE_IN_FIELD Multiple tags were in the field of the programming cycle’s
reader(s).

NONE_IN_FIELD No tags were in the field of the programming cycle’s reader(s).

NOT_WRITTEN The tag was not written (the verification readback yielded the
original tag value).

READ_ONLY The tag is a read-only type and therefore cannot be programmed.

READER_BUSY One or more of the programming cycle’s readers is already in use
by another programming cycle or by an event cycle.

READER_ERROR One or more of the programming cycle's readers has a problem.

SUCCESSFUL The programming cycle completed successfully.

VERIFY_ERROR The tag was mis-programmed (the verification readback yielded a
CRC error or value other than the intended one).

EPCCacheSpec

Programming with the ALE and ALEPC APIs 5-23

Table 5-12 PCTerminationCondition Values

EPCCacheSpec
Java implementation package: com.connecterra.alepc.api

An EPCCacheSpec describes a tag cache.

The following sections provide information related to an EPCCacheSpec:

“EPCCacheReport” on page 5-24

“EPCCacheSpecInfo” on page 5-25

“EPCPatterns” on page 5-26

<<Enumerated Type>>

DURATION

FAILURE

TRIALS

TRIGGER

UNDEFINE

Value Description

DURATION The programming cycle was terminated because it exceeded the duration
value specified in the PCSpec. A tag might still have been written.

FAILURE The programming cycle was terminated because of a condition (such as multiple
tags in field) for which retrying does not make sense.

TRIALS The programming cycle was terminated because the trials value specified in
the PCSpec. was exceeded.

TRIGGER The programming cycle was terminated because of receipt of a stop trigger. A tag
might still have been written.

UNDEFINE The programming cycle was terminated because the PCSpec was undefined or
suspended.

Wri t ing Tags by Us ing the ALEPC API

5-24 Programming with the ALE and ALEPC APIs

Table 5-13 EPCCacheSpec Fields

EPCCacheReport
Java implementation package: com.connecterra.alepc.api

An EPCCacheReport indicates that an EPC cache is low.

applicationData: string

includeCacheContent : boolean

threshold : long

Field Description

applicationData String that will be returned in EPCCacheReport instances. See
“EPCCacheReport” on page 5-24.

includeCacheContent Indicates whether EPCCacheReport instances should include a
description of the current cache contents (true) or just the count of the
remaining cache entries (false).

threshold Specifies a limit, such that when the number of remaining EPC values in
a cache drops to (or below) the limit, an EPCCacheReport is issued to
subscribers.

Zero (0) means issue the EPCCacheReport when the EPC cache count
drops to empty.

applicationData : String

cacheContent : EPCPatterns

cacheName : String

cacheSize : long

date : timestamp

savantID : String

EPCCacheSpec

Programming with the ALE and ALEPC APIs 5-25

Table 5-14 EPCCacheReport Fields

EPCCacheSpecInfo
Java implementation package: com.connecterra.alepc.api

Describes administrative information about an EPC cache.

threshold : long

Field Description

applicationData String that you set in the EPCCacheSpec. See “EPCCacheSpec” on
page 5-23.

cacheContent Describes the remaining content of the EPC cache. See “EPCPatterns” on
page 5-26.

cacheName The name of the EPC cache that this report describes.

cacheSize How many EPC cache entries remain.

date The time the report was generated.

savantID Identifier for the Edge Server that generated this report.

threshold The low-cache reporting threshold defined for the EPCCacheSpec.

subscriberCount : int

pcSpecs : List

activationCount : int

lastActivated : long

replenishCount : int

lastReplenished : long

lastReported : long

cacheSize : long

Wri t ing Tags by Us ing the ALEPC API

5-26 Programming with the ALE and ALEPC APIs

Table 5-15 EPCCacheSpecInfo

EPCPatterns
Java implementation package: com.connecterra.alepc.api

A list of EPC pattern URIs.

cacheContent : EPCPatterns

Field Description

activationCount The number of times an EPC value has been obtained from this EPC cache
since it was defined.

cacheContent The EPCs in this cache. See “EPCPatterns” on page 5-26.

cacheSize How many entries remain in the EPC cache.

lastActivated The last time an EPC value was obtained from this EPC cache.

lastReplenished The last time this EPC cache was replenished.

lastReported The last time an EPCCacheReport was generated by this EPC cache.

pcSpecs Returns the names of the PCSpec instances, if any, that are using this EPC
cache.

replenishCount The number of times this EPC cache has been replenished since it was
defined.

subscriberCount The number of URIs subscribed to this EPC cache.

patterns : List

XML Representat ions

Programming with the ALE and ALEPC APIs 5-27

Table 5-16 EPCPatterns Field

XML Representations
The focal points of the ALEPC tag writing interface from an application perspective are the
PCSpec, PCWriteReport, EPCCacheSpec, and EPCCacheReport objects. The RFID Edge
Server provides a standard means of representing instances of these objects in XML. The XML
form of PCWriteReport and EPCCacheReport is used by most of the asynchronous delivery
mechanisms, as described in Chapter 3, “Asynchronous Notification Mechanisms.” The XML
forms are also very useful to user applications as a means of interchange, and for persistent
storage.

The XML forms are defined by the XSD schema. This schema is in the RFID Edge Server
installation in the file share/schemas/ALEPC.xsd.

The Java binding for ALE provides XML serializer and deserializer classes for translating
between the XML representation and the Java representation of the PCSpec, PCWriteReport,
EPCCacheSpec, and EPCCacheReport types. Applications can use these facilities to process
reports received via the Edge Server’s asynchronous delivery mechanisms, and for other
purposes. See “Using XML Serializers and Deserializers from Java” on page 5-31 for more
information.

The following sections present examples of PCSpec, PCWriteReport, EPCCacheSpec, and
EPCCacheReport as rendered into XML. These examples include additional line breaks and
whitespace for the sake of readability. RFID Edge Server permits (but does not require) this
whitespace when reading XML; usually RFID Edge Server omits this whitespace when writing
XML.

“PCSpec - Example” on page 5-28

“PCWriteReport - Example” on page 5-29

“EPCCacheSpec - Example” on page 5-29

“EPCCacheReport - Example” on page 5-30

For PCSpec examples that demonstrate Gen2 capabilities, see “Gen2 PCSpec Examples” on
page 5-37.

Field Description

patterns EPC pattern URIs. The ordering of EPC patterns is significant. See “EPC
Patterns” on page 4-17 and “EPC Caches” on page 2-12.

Wri t ing Tags by Us ing the ALEPC API

5-28 Programming with the ALE and ALEPC APIs

PCSpec - Example
<?xml version="1.0" encoding="UTF-8"?>

<PCSpec xmlns="http://schemas.connecterra.com/alepc">

<!-- The name of the EPC cache from which this PCSpec obtains EPC

values for tag programming operations. Optional. -->

<cacheName>mycache</cacheName>

 <!-- Specifies a string to be included in PCWriteReport instances

generated by this PCSpec. Optional. -->

<applicationData>application-specific data here</applicationData>

 <logicalReaders>

 <!-- determines which logical reader(s) will be used by this

 PCSpec. Logical reader names are defined in edge.props. -->

 <logicalReader>TagWriteStation</logicalReader>

 </logicalReaders>

 <!-- Specifies name/value pairs to be passed down to reader drivers used

 by this PCSpec's programming cycles. Optional. -->

 <readerParameters>

 <readerParameter name="paramName">paramValue</readerParameter>

 <readerParameter name="anotherParamName">another parameter

 value</readerParameter>

 </readerParameters>

 <!-- Determines when this programming cycle starts and stops. -->

 <boundarySpec>

 <!-- Trigger that starts a programming cycle. Optional -->

 <startTrigger> trigger URI here... </startTrigger>

 <!-- Trigger that stops a programming cycle. Optional -->

 <stopTrigger> trigger URI here... </stopTrigger>

 <!-- Specifies maximum number of tag writing trials. Optional,

 default is unlimited number of trials. -->

 <trials>1</trials>

 <!-- Specifies maximum number of milliseconds to spend retrying failed

 tag writing operations. Optional, default is no time limit. -->

 <duration>1000</duration>

XML Representat ions

Programming with the ALE and ALEPC APIs 5-29

 </boundarySpec>

</PCSpec>

PCWriteReport - Example
<?xml version="1.0" encoding="UTF-8"?>

<PCWriteReport date="2004-05-27T18:56:31.179Z"

 savantID="test-edge-server"

 specName="testspec"

 totalMilliseconds="10"

 totalTrials="1"

 xmlns="http://schemas.connecterra.com/alepc">

 <applicationData>application-specific data here</applicationData>

 <wasSuccessful>true</wasSuccessful>

 <status>SUCCESSFUL</status>

 <physicalReaders>

 <physicalReader>tws1</physicalReader>

 </physicalReaders>

 <failedLogicalReaders/>

 <cacheName>mycache</cacheName>

 <cacheSize>11</cacheSize>

 <epc>urn:epc:tag:gid-64-i:1.5.1</epc>

 <successfulLogicalReader>TagWriteStation</successfulLogicalReader>

</PCWriteReport>

EPCCacheSpec - Example
<?xml version="1.0" encoding="UTF-8"?>

<EPCCacheSpec xmlns="http://schemas.connecterra.com/alepc">

 <!-- Specifies a string to be included in EPCCacheReport instances

 generated by this EPCCacheSpec. Optional. -->

 <applicationData>cache-specific data here</applicationData>

 <!-- Specifies that when this cache's size drops to (or below) the

 given number of EPC values, a EPCCacheReport should be issued. -->

 <threshold>2500</threshold>

Wri t ing Tags by Us ing the ALEPC API

5-30 Programming with the ALE and ALEPC APIs

 <!-- Specifies that EPCCacheReport instances should include the current

 contents of the cache. Optional, default is false. -->

 <includeCacheContent>true</includeCacheContent>

</EPCCacheSpec>

EPCCacheReport - Example
<?xml version="1.0" encoding="UTF-8"?>

<EPCCacheReport date="2004-05-27T18:59:32.890Z"

 savantID="test-edge-server"

 xmlns="http://schemas.connecterra.com/alepc">

 <cacheName>mycache</cacheName>

 <applicationData>cache-specific data goes here</applicationData>

 <cacheSize>10</cacheSize>

 <cacheContent>

 <pattern>urn:epc:pat:gid-64-i:1.5.[3-12]</pattern>

 </cacheContent>

 <threshold>2500</threshold>

</EPCCacheReport>

XML Schema for PCSpec, PCWriteReport, EPCCacheSpec,
and EPCCacheReport
The share/schemas/ALEPC.xsd file in the RFID Edge Server installation defines an XML
representation for PCSpec, PCWriteReport, EPCCacheSpec, and EPCCacheReport instances,
using the W3C XML Schema language.

Using the ALEPC Tag Writing API from Java
To use the ALEPC tag writing API, you create an instance of the AxisALEPCClient class
provided in the com.connecterra.alepc.client package. This class implements the ALEPC
interface as described in “ALEPC: Main Tag Writing Interface with UML Diagrams” on page 5-3
and provides all of the methods described there. It also provides an additional method,
getALEPCFactory, which returns a factory for creating instances of other types, described
below. The AxisALEPCClient interacts with an WebLogic RFID Edge Server over the network
using SOAP over HTTP. When you construct an instance of AxisALEPCClient, you provide a
service URL for the Edge Server with which you want to interact.

BEA Gen2 Wr i te Suppor t

Programming with the ALE and ALEPC APIs 5-31

When using the AxisALEPCClient class, you need to create instances of PCSpec,
EPCCacheSpec, and other types described in this chapter. The ALEPCFactory interface. in
package com.connecterra.alepc.api, provides methods for creating instances of those types.
You obtain an instance of the ALEPCFactory interface by calling the getALEPCFactory method
provided by the AxisALEPCClient class. When passing arguments to methods of a specific
AxisALEPCClient instance, you must always use the factory instance provided by that
AxisALEPCClient instance.

Using XML Serializers and Deserializers from Java
The Java binding of the ALE API provides some additional utility classes for writing XML
representations of the data types used in the ALE API. With these classes, you can convert a Java
object representation of a particular data type into XML (“serialization”), and likewise convert
an XML representation of a particular data type back into a Java object (“deserialization”). The
XML schemas are located in your RFID Edge Server installation directory at:

/share/schemas/EPCglobal-ale-1_0.xsd

/share/schemas/EPCglobal.xsd

/share/schemas/EPCglobal-ale-1_0-RFTagAware-extensions.xsd

/share/schemas/ALEPC.xsd

To read and write XML for types used in the ALE tag writing API, you use an instance of the
PCXMLSerializationFactory provided in the com.connecterra.alepc.encoding
package. There is only one static instance of this class, which you obtain using the static method
getInstance(), with no argument. Using the PCXMLSerializationFactory instance, you
can create instances of PCXMLSerializer and PCXMLDeserializer to serialize and deserialize
instances of the following classes: PCSpec, PCWriteReport, PCSpecInfo,
PCSubscriptionInfo, PCSubscriptionControls, EPCCacheSpec, EPCCacheReport, and
EPCCacheSpecInfo.

BEA Gen2 Write Support
The following sections summarize BEA support for Gen2 command access:

“Extended API Support” on page 5-32

“Multiple Tags in Field” on page 5-36

“Parameter Substitutions” on page 5-36

Wri t ing Tags by Us ing the ALEPC API

5-32 Programming with the ALE and ALEPC APIs

Extended API Support
In support of the UHF Generation 2 Air Interface Protocol, BEA provides extensions to the
following classes:

com.connecterra.alepc.api.ALEPC

– poll(specName :String, parameterMap :Map<String,String>) :
PCWriteReport

– immediate(specName :String, parameterMap :Map<String,String>) :
PCWriteReport

See “ALEPC: Main Tag Writing Interface with UML Diagrams” on page 5-3.

com.connecterra.alepc.api.PCSpec

– getAccessSpecs() : List

– setAccessSpecs(accessSpecs :List) : void

– addAccessSpec(accessSpec :AccessSpec) : void

– isRestrictSingleTag() : boolean

– setRestrictSingleTag(restrictSingleTag :boolean) : void

accessSpecs is a list of AccessSpec objects, defaulting to null. If accessSpecs is null,
restrictSingleTag is ignored. Only when accessSpecs is set is the
restrictSingleTag property meaningful: when retrictSingleTag is set true, the
<restrictSingleTag/> element is added to the PCSpec and the Edge Server attempts to
detect multiple tags in field (and fails the PCSpec if it detects that condition before
programming). See“PCSpec” on page 5-7 and “AccessSpec” on page 5-11 for more
information.

com.connecterra.alepc.api.AccessSpec

– getName() : String

– setName(name :String) : void

– getOpSpecs() : List

– setOpSpecs(opSpecs :List) : void

– addOpSpec(opSpec :OpSpec) : void

See “AccessSpec” on page 5-11 and “OpSpec” on page 5-12 for more information.

com.connecterra.alepc.api.WriteOpSpec

BEA Gen2 Wr i te Suppor t

Programming with the ALE and ALEPC APIs 5-33

– getField() : URI

– getDataSpec() : DataSpec

WriteOpSpec specifies a write operation to a memory bank on the tag. It contains the
memory bank URI specifying which tag field to write, and a DataSpec telling the Edge

Server how to calculate the value to write to that memory. See “OpSpec” on page 5-12 for
more information.

com.connecterra.alepc.api.PasswordOpSpec

– getDataSpec() : DataSpec

PasswordOpSpec represents an "access" command in the Gen2 tag protocol, which, if
successful, moves the tag into "secured" state. The PasswordOpSpec contains a
DataSpec, which tells the Edge Server how to compute the password for the tag. The
provided DataSpec cannot be an EPCCacheDataSpec. See “OpSpec” on page 5-12 for
more information.

com.connecterra.alepc.api.KillOpSpec

– getDataSpec() : DataSpec

KillOpSpec represents a "kill" command in the Gen2 tag protocol, which, if successful,
permanently moves the tag into "killed" state. The KillOpSpec contains a DataSpec,
which tells the Edge Server how to compute the kill password for the tag. The provided
DataSpec cannot be an EPCCacheDataSpec. See “OpSpec” on page 5-12 for more
information.

com.connecterra.alepc.api.ReadOpSpec

– getField() : URI

ReadOpSpec specifies a read operation from a memory bank on the tag. It contains the
memory bank URI that specifies which tag memory to read. The associated OpReport in
the PCWriteReport will contain the value read. See “OpSpec” on page 5-12 for more
information.

com.connecterra.alepc.api.LockOpSpec

– getMask() : URI

– getValue() : URI

LockOpSpec specifies a lock operation on the tag. It contains the mask and value for the
lock operation. As the Gen2 specification describes, the lock operation attempts to modify
the lock bits, using the bits of mask for the mask bits, and the bits of value for the "action"

Wri t ing Tags by Us ing the ALEPC API

5-34 Programming with the ALE and ALEPC APIs

bits. See section 6.3.2.10.3.5 of the EPCglobal Gen2 spec. For Gen2 tags, the mask and
value should be 10-bit raw EPC URIs. See “OpSpec” on page 5-12 for more information.

com.connecterra.alepc.api.DataSpec

There are three public implementations of DataSpec: LiteralDataSpec,
EPCCacheDataSpec, and ParamDataSpec.

– LiteralDataSpec holds a URI, either an EPC URI, or a raw URI.

• getValue() : URI

– EPCCacheDataSpec names an EPC Cache. The value provisioned by the cache is
used.

• getEPCCache() : String

– ParamDataSpec names a parameter. The parameter is looked up in the map provided
in the ALEPC poll or immediate call, and the associated value is used.

• getParamName() : String

The data provided must be compatible with the memory specified. For a specific memory
bank range, the data provided by the DataSpec must be of the same size as the specified
memory segment. The associated OpReport in the PCWriteReport will contain the value
written. See “DataSpec” on page 5-16 for more information.

com.connecterra.alepc.api.ALEPCFactory

– createAccessSpec(name :String) : AccessSpec

– createPasswordOpSpec(opDataSpec :DataSpec) : PasswordOpSpec

– createLiteralPasswordOpSpec(password :URI) : PasswordOpSpec

– createParamPasswordOpSpec(paramName :String) : PasswordOpSpec

– createKillOpSpec(opDataSpec :DataSpec) : KillOpSpec

– createLiteralKillOpSpec(password :URI) : KillOpSpec

– createParamKillOpSpec(paramName :String) : KillOpSpec

– createReadOpSpec(field :URI) : ReadOpSpec

– createWriteOpSpec(field :URI, opDataSpec :DataSpec) : WriteOpSpec

– createLiteralWriteOpSpec(field :URI, value :URI) : WriteOpSpec

– createEPCCacheWriteOpSpec(field :URI, epcCacheName :String) :
WriteOpSpec

BEA Gen2 Wr i te Suppor t

Programming with the ALE and ALEPC APIs 5-35

– createParamWriteOpSpec(field :URI, paramName :String) : WriteOpSpec

– createLockOpSpec(mask :URI, value :URI) : LockOpSpec

– createLiteralDataSpec(value :URI) : LiteralDataSpec

– createEPCCacheDataSpec(epcCacheName :String) : EPCCacheDataSpec

– createParamDataSpec(paramName :String) : ParamDataSpec

com.connecterra.alepc.api.PCWriteReport

– getAccessReports() : List

An AccessReport contains a list of TagReports, each of which represents one tag
detected in field. Each TagReport contains a list of OpReports, one for each operation
performed on the tag. See “PCWriteReport” on page 5-17 and “AccessReport” on
page 5-19 for more information.

com.connecterra.alepc.api.AccessReport

– getName() : String

– getTagReports() : List

An AccessReport has a name and a list of TagReports. The name matches the name of
the AccessSpec that is associated with this access’s AccessReport. There is one
TagReport for each tag that was processed by the AccessSpec.

The accessReport property of the PCWriteReport is null if the PCWriteReport
returns no accessReports. See “AccessReport” on page 5-19 and “TagReport” on
page 5-20 for more information.

com.connecterra.alepc.api.TagReport

– getEPC() : URI

– getOpReports() : List

The TagReport contains the EPC of the tag, and an ordered list of OpReports. There is a
one-to-one correspondence between OpReports in the named AccessReport and
OpSpecs in the corresponding AccessSpec, and the ordering is preserved. See
“TagReport” on page 5-20 and “OpReport” on page 5-20 for more information.

com.connecterra.alepc.api.OpReport

getOperationStatus() : PCStatus

getField() : URI

Wri t ing Tags by Us ing the ALEPC API

5-36 Programming with the ALE and ALEPC APIs

getValue() : URI

The OpReport contains the status of an OpSpec in the AccessSpec. The OpReports for
ReadOpSpec and WriteOpSpec contain a field URI describing the memory that was
operated on, and, if the operation was successful, the associated value from the memory.
See “OpReport” on page 5-20 for more information.

Multiple Tags in Field
In Gen2, it becomes meaningful to perform work while multiple tags are in the reader field. For
backward-compatibility, a PCSpec that is not identifiably Gen2 (a PCSpec that does not contain
one or more AccessSpecs) will require that the field contain only a single tag, while a PCSpec
that contains Gen2 elements will allow multiple tags by default.

A new <restrictSingleTag/> element has been added to the PCSpec to restrict a Gen2
PCSpec to return an error if there are multiple tags in field. This element is implicit in a PCSpec
that contains no AccessSpecs. This restriction is on a best-effort basis, and does not represent a
guarantee. The current release will only work on a single tag in field.

Parameter Substitutions
The ALEPC poll() and immediate() calls add PCSpec parameters, providing values for use
within the processing of the Programming Cycle. The poll and immediate calls accept a
parameter map: a map from parameter name to parameter value. The old-style ALEPC calls,
which only take a single EPC value, will generate a parameter map from the parameter epc to the
provided value.

The values in this parameter map can be used in three ways:

Written to tag memory using the <param> value type

Used as a password for password or kill commands (again using the <param> value
type)

Used to override reader parameters used by the driver

The write, password, and kill operations can take a <param> element for the data needed for
the operation. The contents of that element are used as the key into the parameter map, and the
associated parameter value is used as the data. For example, the PCSpec can specify the epc cache
and a user memory value that indicates the manufacturer, and poll() can specify a date code.

Users of the readerParameters of the PCSpec have been modified to check these parameters
for a match before searching the readerParameters.

Gen2 PCSpec Examples

Programming with the ALE and ALEPC APIs 5-37

Gen2 PCSpec Examples
The following PCSpec examples demonstrate XML encoding of some Gen2 features:

“readEPCBank.xml” on page 5-37

“readAbsolute.xml” on page 5-38

“readPassword.xml” on page 5-38

“writePassword.xml” on page 5-39

“writePasswords.xml” on page 5-39

“writeTagMemory.xml” on page 5-40

“writeTagMemory.xml and PCWriteReport.xml” on page 5-40

“kill.xml” on page 5-41

“lock.xml” on page 5-42

“stackLight.xml” on page 5-42

The following examples are complete: readEPCBank.xml, writeTagMemory.xml and
PCWriteReport, and stackLight.xml. The remaining examples show only the <accessSpec>
portion of the PCSpec. They use the same <logicalReaders> and <boundarySpec> elements
as readEPCBank.xml.

readEPCBank.xml
For all tags in field, report the EPC value of that tag.

<PCSpec xmlns="http://schemas.connecterra.com/alepc">

 <applicationData>application specific data can go here</applicationData>

 <logicalReaders>

 <logicalReader>ConnecTerra1</logicalReader>

 </logicalReaders>

 <boundarySpec>

 <trials>1</trials>

 <duration>4000</duration>

 </boundarySpec>

 <accessSpec>

 <operations>

Wri t ing Tags by Us ing the ALEPC API

5-38 Programming with the ALE and ALEPC APIs

 <operation>

 <read field="urn:connecterra:tagmem:epc"/>

 </operation>

 </operations>

 </accessSpec>

</PCSpec>

readAbsolute.xml
For all tags in field, read the raw EPC bank including the CRC and control bits, and report that
value.

 <accessSpec>

 <operations>

 <operation>

 <read field="urn:connecterra:tagmem:@epc.96"/>

 </operation>

 </operations>

 </accessSpec>

readPassword.xml
For all tags in field, use 0x0000AAAA as the (32-bit) access password and report the first 32 bits
of the reserved bank, followed by the next 32 bits. In a Gen2 tag these areas of the tag are the kill
password, and the access password, respectively.

 <accessSpec>

 <operations>

 <operation>

 <password>

 <literal>urn:epc:raw:96.x0000AAAA</literal>

 </password>

 </operation>

 <operation>

 <read field="urn:connecterra:tagmem:@reserved.32"/>

 </operation>

 <operation>

 <read field="urn:connecterra:tagmem:@reserved.32.32"/>

 </operation>

Gen2 PCSpec Examples

Programming with the ALE and ALEPC APIs 5-39

 </operations>

 </accessSpec>

writePassword.xml
For all tags in field, use 0x11111111 as the access password and write the EPC value specified
there to the EPC bank.

 <accessSpec>

 <operations>

 <operation>

 <password><literal>urn:epc:raw:64.x11111111</literal></password>

 </operation>

 <operation>

 <write field="urn:connecterra:tagmem:epc">

 <literal>urn:epc:tag:sgtin-96:1.0037000.123456.1</literal>

 </write>

 </operation>

 </operations>

 </accessSpec>

writePasswords.xml
For all tags in field, write 0x00000001 as the kill password and write 0x00000002 as the access
password.

 <accessSpec>

 <operations>

 <operation>

 <!-- write x00000001 into the KILL password -->

 <write field="urn:connecterra:tagmem:@reserved.32">

 <literal>urn:epc:raw:64.1</literal>

 </write>

 </operation>

 <operation>

 <!-- write x00000002 into the ACCESS password -->

 <write field="urn:connecterra:tagmem:@reserved.32.32">

 <literal>urn:epc:raw:64.2</literal>

 </write>

 </operation>

Wri t ing Tags by Us ing the ALEPC API

5-40 Programming with the ALE and ALEPC APIs

 </operations>

 </accessSpec>

writeTagMemory.xml
For all tags in field, write that raw value to the full EPC bank, overwriting the CRC and control
bits.

 <accessSpec>

 <operations>

 <operation>

 <write field="urn:connecterra:tagmem:@epc.128">

 <literal>urn:epc:raw:128.973572063680812240853843738361866</literal>

 </write>

 </operation>

 </operations>

 </accessSpec>

writeTagMemory.xml and PCWriteReport.xml
<PCSpec xmlns="http://schemas.connecterra.com/alepc">

 <applicationData>Write Tag Memory</applicationData>

 <logicalReaders>

 <logicalReader>ConnecTerra1</logicalReader>

 </logicalReaders>

 <boundarySpec>

 <trials>1</trials>

 <duration>4000</duration>

 </boundarySpec>

 <accessSpec>

 <operations>

 <operation>

 <write field="urn:connecterra:tagmem:epc">

 <literal>urn:epc:tag:sgtin-96:1.0037000.123456.1</literal>

 </write>

 </operation>

 </operations>

 </accessSpec>

</PCSpec>

Gen2 PCSpec Examples

Programming with the ALE and ALEPC APIs 5-41

<PCWriteReport date="2006-04-04T21:45:55.369Z" savantID="Warren"

 specName="write" totalMilliseconds="1141" totalTrials="0"

 xmlns="http://schemas.connecterra.com/alepc">

 <applicationData>Write Tag Memory</applicationData>

 <wasSuccessful>true</wasSuccessful>

 <status>SUCCESSFUL</status>

 <physicalReaders>

 <physicalReader>SimReadr</physicalReader>

 </physicalReaders>

 <failedLogicalReaders/>

 <cacheSize>0</cacheSize>

 <accessReport>

 <tag epc="urn:epc:tag:sgtin-96:1.0037000.123456.1">

 <opReport>

 <status>SUCCESSFUL</status>

 <field>urn:connecterra:tagmem:epc</field>

 <value>urn:epc:tag:sgtin-96:1.0037000.123456.1</value>

 </opReport>

 </tag>

 </accessReport>

</PCWriteReport>

kill.xml
For all tags in field, try to kill the tag with the provided (32-bit) kill password (0x22222222):

 <accessSpec>

 <operations>

 <operation>

 <kill>

 <literal>urn:epc:raw:64.572662306</literal>

 </kill>

 </operation>

 </operations>

 </accessSpec>

Wri t ing Tags by Us ing the ALEPC API

5-42 Programming with the ALE and ALEPC APIs

lock.xml
For all tags in field, try to perform the specified lock operation with the provided password
(0x11111111):

 <accessSpec>

 <operations>

 <operation>

 <password>

 <literal>urn:epc:raw:64.286331153</literal>

 </password>

 </operation>

 <operation>

 <lock>

 <mask>urn:epc:raw:64.3</mask>

 <value>urn:epc:raw:64.3</value>

 </lock>

 </operation>

 </operations>

 </accessSpec>

stackLight.xml
Write tag memory with stack light information, turning on the Amber stack light indefinitely:

<?xml version="1.0" encoding="UTF-8"?>

<PCSpec xmlns="http://schemas.connecterra.com/alepc">

 <applicationData>

 Turn on Amber stack light indefinitely

 (starting from bit 12, 4 bits)

 </applicationData>

 <logicalReaders>

 <logicalReader>StackLight</logicalReader>

 </logicalReaders>

 <boundarySpec>

 <trials>1</trials>

 <duration>4000</duration>

 </boundarySpec>

 <accessSpec>

Gen2 PCSpec Examples

Programming with the ALE and ALEPC APIs 5-43

 <operations>

 <operation>

 <!-- write EPC memory -->

 <write field="urn:connecterra:tagmem:@stacklight.4.12">

 <literal>urn:epc:raw:64.x9</literal>

 </write>

 </operation>

 </operations>

 </accessSpec>

</PCSpec>

For more information on stack light control, see Configuring and Controlling Stack Lights in the
RFID Reader Reference manual.

http://e-docs.bea.com/rfid/edge_server/docs30/reader_reference/stack_light.html

Wri t ing Tags by Us ing the ALEPC API

5-44 Programming with the ALE and ALEPC APIs

Programming with the ALE and ALEPC APIs 6-1

C H A P T E R 6

Sample Java Applications

The following sections describe how to use the sample Java applications provided in your
WebLogic RFID Edge Server installation. The sample applications illustrate the use of the Java
language binding for the ALE interface. Unlike other parts of WebLogic RFID Edge Server, the
sample applications are free for you to use and modify for your own purposes. You can use them
as a starting point for developing your own applications.

“Overview of Sample Java Applications” on page 6-2

“Setting Up Your Development Environment” on page 6-2

“Compiling and Running the Samples” on page 6-2

“ImmediateSample: Getting Started Reading Tags” on page 6-3

“ImmediateSample: Event Cycles and Reliability” on page 6-7

“ImmediateSample: Reading from Different Readers” on page 6-8

“SubscribeSample: Exploring Asynchronous Event Cycle Delivery” on page 6-8

“ImmediateProgramSample: Writing Tags” on page 6-12

“ProgrammingSample: Exploring Programming Cycles and EPC Caches” on page 6-16

“JMS Samples” on page 6-21

“Workflow Sample XML Files” on page 6-23

Sample Java App l i cat ions

6-2 Programming with the ALE and ALEPC APIs

Overview of Sample Java Applications
Several samples are provided with WebLogic RFID Edge Server:

ImmediateSample — Shows how to use the XML serializer and deserializer, and the
immediate method. The sample program reads an ECSpec from an XML file, activates it
for one event cycle using the immediate method, and displays the results in XML to the
RFID Edge Server console.

SubscribeSample — Shows how to use the subscribe and unsubscribe methods, as
well as several other administrative methods within the ALE API. The sample provides a
simple command-line interface that lets you define ECSpec instances from XML files,
subscribe a delivery address to a previously defined ECSpec, unsubscribe a delivery
address, and list existing ECSpec instances and subscriptions. As well as illustrating the use
of several ALE methods, this sample serves as a useful command-line utility program in its
own right.

ImmediateProgramSample — Shows a simple example of how to use the ALEPC API to
program an Electronic Product Code (EPC) value into a tag using a specified logical
reader. The programming cycle specification is read from an XML file, and the
programming cycle reports are printed as XML.

ProgrammingSample — Shows how to use the ALEPC methods to manipulate
Programming Cycles and EPC Caches.

Workflow — Contains sample XML files that define workflows.

Setting Up Your Development Environment
To compile and run the sample applications, you need to install both the Java Development Kit
(JDKTM) 1.4 or later, and the WebLogic RFID Edge Server software.

For detailed information about system requirements, prerequisite software, and how to install
WebLogic RFID Edge Server, see Installing WebLogic RFID Edge Server.

Compiling and Running the Samples
The instructions for running all samples are the same:

1. From the RFID_EDGE_HOME/bin subdirectory of your WebLogic RFID Edge Server
installation, run these scripts in the following sequence:

– RunReaderSim (if you are using the Reader Simulator)

http://e-docs.bea.com/rfid/edge_server/docs30/install/index.html

Immed iateSample : Get t ing Star ted Read ing Tags

Programming with the ALE and ALEPC APIs 6-3

– RunEdgeServer (required)

– RunAdminConsole (optional)

These files end with the suffix .sh or .bat, depending on your platform.

2. Go to the directory for the sample program you want to run (one of the subdirectories within
the samples subdirectory of your WebLogic RFID Edge Server installation).

3. Run the “build” script (build.sh or build.bat depending on your platform) from the
command line. This script compiles the sample program.

4. Run the “run” script (run.sh or run.bat depending on your platform) from the command
line. This script runs the sample program you just compiled.

Some samples require additional command line arguments to the “run” script:

– SubscribeSample, see “SubscribeSample: Exploring Asynchronous Event Cycle
Delivery” on page 6-8. The sample program connects to your Edge Server, carries out
its task, and then exits.

– ImmediateProgramSample, see “ImmediateProgramSample: Writing Tags” on
page 6-12. You need to provide information about the EPC value you want to write to
the tag.

– ProgrammingSample, see “ProgrammingSample: Exploring Programming Cycles and
EPC Caches” on page 6-16. This sample shows you how to manipulate programming
cycles and EPC caches.

For tutorial walk throughs of the samples, see:

“ImmediateSample: Getting Started Reading Tags” on page 6-3

“ImmediateSample: Event Cycles and Reliability” on page 6-7

“ImmediateSample: Reading from Different Readers” on page 6-8

“SubscribeSample: Exploring Asynchronous Event Cycle Delivery” on page 6-8

“ImmediateProgramSample: Writing Tags” on page 6-12

“ProgrammingSample: Exploring Programming Cycles and EPC Caches” on page 6-16

ImmediateSample: Getting Started Reading Tags
The ImmediateSample program shows how to use the XML serializer and deserializer, and the
ALE immediate method. The sample program reads an ECSpec from an XML file, activates it

Sample Java App l i cat ions

6-4 Programming with the ALE and ALEPC APIs

for one event cycle using the ALE immediate method, and displays the results in XML to the
console.

In the following description, it is assumed that you are using the Reader Simulator provided with
WebLogic RFID Edge Server. However, if you have an actual reader and tags, you can use them.

The sample program reads an ECSpec from the file ECSpec.xml, which is shown in the following
example, without the comments that are in the real file. After you become familiar with the
sample program, you are encouraged to experiment by changing this file to see what happens.

<?xml version="1.0" encoding="UTF-8"?>

<ale:ECSpec xmlns:ale="urn:epcglobal:ale:xsd:1"

xmlns:aleext="http://schemas.connecterra.com/EPCglobal-extensions/ale"

creationDate="2004-11-15T16:18:43.500Z"

schemaVersion="1.0"

includeSpecInReports="false" >

 <logicalReaders>

<logicalReader>ConnecTerra1</logicalReader>

</logicalReaders>

<boundarySpec>

<aleext:durationReadCycles>1</aleext:durationReadCycles>

</boundarySpec>

<reportSpecs>

<reportSpec reportName="ImmediateSample Report">

<reportSet set="CURRENT" />

</reportSpec>

</reportSpecs>

<aleext:applicationData>Application specific data can go here

</aleext:applicationData>

</ale:ECSpec>

The logical reader is specified as ConnecTerra1, which is mapped to “Antenna 1” in the Reader
Simulator by default. (If you installed your own reader, modify the ECSpec to refer to one of your
logical readers.) The event cycle is exactly one read cycle — this is far smaller than you are likely
to use in any real situation, but it will illustrate how the ALE interface works. The final section
defines a report specification, which will return both a count and a list of all the CURRENT tags
visible to logical reader ConnecTerra1.

Immed iateSample : Get t ing Star ted Read ing Tags

Programming with the ALE and ALEPC APIs 6-5

Now, run the sample following the instructions in “Compiling and Running the Samples” on
page 6-2. You should see output similar to the following:

Immediate Sample, XML-based

sending request to Edge Server...

...received response.

Received the following ECReports:

<ale:ECReports ALEID="EdgeServerID"

creationDate="2005-01-06T17:01:09.093Z" date="2005-01-06T17:01:09.093Z"

schemaURL="http://schemas.connecterra.com/EPCglobal/ale-1_0.xsd"

schemaVersion="1" specName="$immediate=10" terminationCondition="DURATION"

totalMilliseconds="234" xmlns:ale="urn:epcglobal:ale:xsd:1"

xmlns:aleext="http://schemas.connecterra.com/EPCglobal-extensions/ale">

 <reports>

 <report reportName="ImmediateSample Report">

 <group>

 <groupList>

 <member>

 <tag>urn:epc:tag:gid-64-i:10.50.5</tag>

 </member>

 <member>

 <tag>urn:epc:tag:gid-64-i:10.40.4</tag>

 </member>

 <member>

 <tag>urn:epc:tag:gid-64-i:10.10.1</tag>

 </member>

 <member>

 <tag>urn:epc:tag:gid-64-i:10.30.3</tag>

 </member>

 <member>

 <tag>urn:epc:tag:gid-64-i:10.70.7</tag>

 </member>

 <member>

 <tag>urn:epc:tag:gid-64-i:10.20.2</tag>

 </member>

 <member>

 <tag>urn:epc:tag:gid-64-i:10.60.6</tag>

Sample Java App l i cat ions

6-6 Programming with the ALE and ALEPC APIs

 </member>

 </groupList>

 <groupCount>

 <count>7</count>

 </groupCount>

 </group>

 </report>

 </reports>

 <aleext:applicationData>application-specific data here

</aleext:applicationData>

 <aleext:failedLogicalReaders/>

 <aleext:physicalReaders>

 <aleext:physicalReader>SimReadr</aleext:physicalReader>

 </aleext:physicalReaders>

 <aleext:totalReadCycles>1</aleext:totalReadCycles>

</ale:ECReports>Press any key to continue . . .

The number of epc elements in the list report should be equal to the number of tags you have
checked under “Antenna 1” in the Reader Simulator. (If you are using a real reader, you might
not see all the tags you have placed near your antenna.)

Using ImmediateSample with the Administration Console
If you are running the Administration Console, you might want to run ImmediateSample again,
as follows:

1. Set up your desktop so you can see both the Administration Console and the
ImmediateSample console window at the same time.

2. In the Administration Console, click SimReadr in the device browser on the left, then click
the Telemetry tab in the right pane.

Keep your eye on the uhfAntenna1.readCycles display; uhfAntenna1 corresponds to
the logical reader ConnecTerra1 that was specified in the sample ECSpec.xml. Looking
at this display shows you when the ImmediateSample program activates the antenna for
one event cycle, using the ALE immediate method

3. Run the sample using the instructions in “Compiling and Running the Samples” on page 6-2.

You see that uhfAntenna1 (logical reader ConnecTerra1) is activated for exactly one
read cycle — which is exactly what was specified for a boundarySpec in ECSpec.xml:

ImmediateSample : Event Cyc l es and Re l iab i l i t y

Programming with the ALE and ALEPC APIs 6-7

<boundarySpec>
 <durationReadCycles>1</durationReadCycles>
</boundarySpec>

ImmediateSample: Event Cycles and Reliability
 The ImmediateSample application illustrates several aspects of event cycles and how they can
be used to address situations where not every tag can be read in a single read cycle. This is a very
common situation, and can arise either because of the inherently unreliable nature of RFID tags,
or because the business situation simply implies that not all tags for an application level event are
in front of the antenna at the same time (for example, because a large pallet is moving slowly past
an antenna).

To simulate this situation, this example uses the “reliability” field provided as part of the Reader
Simulator. Change the Reliability field in the Reader Simulator to 50%. This tells the Reader
Simulator to report each selected tag with only 50% probability in any given read cycle. Now run
ImmediateSample as you did in “ImmediateSample: Getting Started Reading Tags” on page 6-3.
In all likelihood, you will see fewer tags in the report than you did previously.

In the following procedure, you see how the event cycle combines tags from multiple read cycles
into a single report, and how this counteracts the limitations of dealing with read cycles
individually.

1. Open the file ECSpec.xml in a text editor.

2. Change the line that reads:

<aleext:durationReadCycles>1</aleext:durationReadCycles>

so that it reads:

<aleext:durationReadCycles>3</aleext:durationReadCycles>

3. Save the file.

4. Leave the reliability on the Reader Simulator set to 50%.

5. Run the sample again. This time you should see most, if not all, of the tags.

It is usually difficult to guess how many read cycles are required to read all tags of interest. In
some cases, external events dictate which read cycles should be grouped into an event cycle —
the startTrigger and stopTrigger features of the ALE interface (see “ECBoundarySpec” on
page 4-10) can be used for this purpose. In other cases, you want an event cycle to continue as
long as needed until all tags have been read. In such cases, you can use the stableSetInterval
feature of the ALE interface.

Sample Java App l i cat ions

6-8 Programming with the ALE and ALEPC APIs

ImmediateSample: Reading from Different Readers
The ALE interface makes it very easy to select different readers without altering application code,
even changing the number of readers. To illustrate, follow these steps:

1. Open the file ECSpec.xml in a text editor.

2. Immediately after the line that reads:

<logicalReaderName>ConnecTerra1</logicalReaderName>

add a second line so that together they look like this:

<logicalReaderName>ConnecTerra1</logicalReaderName>
<logicalReaderName>ConnecTerra2</logicalReaderName>

3. Save the file.

4. Run ImmediateSample again. In the report, you will see tags read from both readers.

SubscribeSample: Exploring Asynchronous Event Cycle
Delivery

The SubscribeSample program shows how to use the ALE subscribe and unsubscribe
methods, as well as several other administrative methods within the ALE API. The sample
provides a simple command line interface that lets you define ECSpec instances from XML files;
subscribe a delivery address to a previously defined ECSpec; unsubscribe a delivery address; and
list existing ECSpec instances and subscriptions. As well as illustrating the use of several ALE
methods, this sample serves as a useful command line utility program in its own right.

 The SubscribeSample works with XML files to define event cycle specifications, as does the
ImmediateSample. However, SubscribeSample differs from ImmediateSample in several
respects:

Any number of event cycle specifications can be defined, each with their own name. You
invoke the SubscribeSample program with the define command for each event cycle
you want to define.

To obtain event cycle reports, you add one or more subscribers for the event cycle(s) you
have defined, by invoking the SubscribeSample program with the subscribe command.

Once you define event cycle(s) and add one or more subscriptions, the Edge Server
executes event cycles and sends reports to the subscribers. This takes place
asynchronously, even when the SubscribeSample program is not running.

Subsc r ibeSample : Exp lo r ing Asynchronous Event Cyc le De l i ve r y

Programming with the ALE and ALEPC APIs 6-9

Here are step-by-step instructions for working with the SubscribeSample program.

1. From the ./bin subdirectory of your WebLogic RFID Edge Server installation, run the
following scripts in this order:

RunReaderSim (if you are using the Reader Simulator)

RunEdgeServer (required)

RunAdminConsole (optional, but strongly suggested for this tutorial)

These files end with the suffix .sh or .bat, depending on your platform.

2. Find the console window for the Edge Server and leave it open on your desktop. Later you
will be looking at console subscriber output sent to this window.

3. Go to the SubscribeSample directory:

./samples/SubscribeSample

4. In a shell, type:

./run.sh define mycmdlinespec ECSpec.xml

(On Windows, type run.bat instead of run.sh. Do this replacement for the rest of the
examples in this section.)

You will see some output messages from the SubscribeSample program indicating that
an event cycle specification has been defined. At this point, the ECSpec is defined but is
not active, because there are no subscribers.

Note: You can define as many different ECSpec instances as you want, as long as you give
them distinct names. The name mycmdlinespec is used here.

5. If you are running the Administration Console, set up your desktop so you can see both the
Administration Console and the SubscribeSample shell at same time.

In the Administration Console, click ECSpecs in the device browser. Note that the ECSpec
you just defined, mycmdlinespec, is listed in the right pane.

Note: Defining an ECSpec is not the same as activating it. You have not yet told a reader to
read any tags, or done anything else with the ECSpec yet. You have simply defined a
set of actions (read cycles, delivery activities, and so on) that can take place some
time in the future, after the ECSpec is activated by a method such as immediate,
poll, or, in this example, subscribe.

6. To prove that defining and activating an ECSpec are different, display the telemetry tab for
the Reader Simulator, and then define a second ECSpec in the SubscribeSample shell:

Sample Java App l i cat ions

6-10 Programming with the ALE and ALEPC APIs

./run.sh define myspec2 ECSpec.xml

Keep your eye on the uhfAntenna1.readCycles telemetry trace. You will not see any
read cycles take place. (This uhfAntenna1.readCycles trace corresponds to the logical
reader that ECSpec.xml is referencing.)

7. To demonstrate some other features of SubscribeSample, return to the SubscribeSample
shell and type:

./run.sh list-specs

This prints a list of the names of the ECSpec instances that are currently defined in the
Edge Server. You should see mycmdlinespec and any other event cycle specifications you
have defined.

8. In the shell, type:

./run.sh subscribe mycmdlinespec console:test

Look in the Edge Server window — the Edge Server is now printing event cycle reports to
the console.

Also, take a look at the Administration Console telemetry display:

As you can see, the subscribe method that you invoked when you ran SubscribeSample
this last time has activated the Reader Simulator, and it is now performing read cycles as
specified in the ECSpec called mycmdlinespec.

9. To experiment with a different kind of event delivery driver, first create a new directory in a
file system that is accessible to the Edge Server. For example:

mkdir /tmp/ale

On the Windows platform, the equivalent command would be, for example:

mkdir c:\temp\ale

10. In the shell, type:

./run.sh subscribe mycmdlinespec file:///tmp/ale

or on the Windows platform, type:

.\run.bat subscribe mycmdlinespec file:///c:/temp/ale

11. Use a file system tool to examine the contents of the /tmp/ale (or c:\temp\ale) directory.
You will see that the Edge Server is creating XML files, each containing a single event cycle
report. Alternately, if the subscription URI were to refer to a file (as opposed to a directory),
then the successive event cycle reports would be appended to that file.

Subsc r ibeSample : Exp lo r ing Asynchronous Event Cyc le De l i ve r y

Programming with the ALE and ALEPC APIs 6-11

12. In the shell, type:

./run.sh list-subs mycmdlinespec

This prints a list of the URIs that have been subscribed to the ECSpec named
mycmdlinespec.

13. In the shell, type:

./run.sh unsubscribe mycmdlinespec console:test

Look in the Edge Server window — the Edge Server is no longer printing event cycle
reports to its console. But look in the temporary directory you created earlier — the Edge
Server is still writing XML report files into this directory, because the other subscription is
still active.

SubscribeSample Command Line Options
For information about SubscribeSample’s command line options, you can navigate to the
SubscribeSample directory and type run. This displays the command help shown below. Note
that the help distinguishes EPCglobal functions from WebLogic RFID Edge Server extensions
(which are listed as RFTagAware extensions in this release).

Usage:

EPCglobal ALE 1.0 commands

define <specName> <ecSpecFilename>

or undefine <specName>

or getECSpec <specName>

or getECSpecNames

or subscribe <specName> <notificationURI>

or unsubscribe <specName> <notificationURI>

or getSubscribers <specName>

or poll <specName>

or immediate <ecSpecFilename>

or getStandardVersion

or getVendorVersion

RFTagAware extensions:

get-spec-info <specName>

or redefine <specName> <ecSpecFilename>

or suspend <specName>

Sample Java App l i cat ions

6-12 Programming with the ALE and ALEPC APIs

or unsuspend <specName>

or stop <specName>

ImmediateProgramSample: Writing Tags
This sample shows how to use the ALE API to program an Electronic Product Code (EPC) value
into a tag by using a specified logical reader. The programming cycle specification is read from
an XML file, and the programming cycle reports are printed as XML. You can run this sample
with the simulator, or with any of the printers or readers for which WebLogic RFID Edge Server
supports tag writing. See the supported RFID readers section of the RFID Reader Reference
manual for this information.

If you plan to run this sample with the simulator, see “Using ImmediateProgramSample with the
Reader Simulator” on page 6-14.

Here are step-by-step instructions for working with the ImmediateProgramSample program.

1. From the RFID_EDGE_HOME/bin directory of your WebLogic RFID Edge Server installation,
run the following scripts in this order:

– RunReaderSim (if you are using the simulator)

– RunEdgeServer (required)

– RunAdminConsole (optional)

These files end with the suffix .sh or .bat, depending on your platform.

Important: If you are using the simulator, be sure to read the section “Using
ImmediateProgramSample with the Reader Simulator” on page 6-14.

2. Find the console window for the Edge Server and leave it open on your desktop. Later you
will be looking at output that this sample program sends to this window.

3. Go to the WebLogic RFID Edge Server directory:

./samples/ImmediateProgramSample

This sample uses the file PCSpec.xml as part of its input. This file defines the
programming cycle (see “PCSpec” on page 5-7). Part of the file is reproduced here — you
can take a look at the complete file in the samples directory:

<?xml version="1.0" encoding="UTF-8"?>
<PCSpec xmlns="http://schemas.connecterra.com/alepc">
 <applicationData>application specific data can go<

here</applicationData>
 <logicalReaders>

http://e-docs.bea.com/rfid/edge_server/docs30/reader_reference/index.html

Immedia teProgramSample : Wr i t ing Tags

Programming with the ALE and ALEPC APIs 6-13

 <logicalReader>ConnecTerra1</logicalReader>
 </logicalReaders>

 <boundarySpec>
 <trials>1</trials>
 <duration>4000</duration>
 </boundarySpec>
</PCSpec>

4. In a shell, type:

./run.sh epcValue

where epcValue is the EPC to write to the tag, for example:

 urn:epc:tag:gid-64-i:1.4.10

(On Windows, type run.bat instead of run.sh. Do this replacement for the rest of the
examples in this section.)

5. In the console window, you should see output similar to the following:

./run.sh urn:epc:tag:gid-64-i:1.4.10

Immediate Program Sample, XML-based
sending request to Edge Server...
...received response.

Received the following PCWriteReport:
<PCWriteReport date="2006-03-02T13:45:50.199Z" savantID="EdgeServerID"
 specName="$immediate=2" total Milliseconds="800" totalTrials="0"
 xmlns="http://schemas.connecterra.com/alepc">
 <applicationData>application specific data can go

here</applicationData>
 <wasSuccessful>true</wasSuccessful>
 <status>SUCCESSFUL</status>
 <physicalReaders>
 <physicalReader>SimReadr</physicalReader>
 </physicalReaders>
 <failedLogicalReaders/>
 <cacheSize>0</cacheSize>
 <epc>urn:epc:tag:gid-64-i:1.4.10</epc>
</PCWriteReport>

The console output includes a PCWriteReport, expressed in XML. (See “PCWriteReport”
on page 5-17.) PCWriteReport describes the programming cycle’s tag writing operation.

First, the <applicationData> element displays the information that the originating
PCSpec.xml included in its <applicationData> element.

Sample Java App l i cat ions

6-14 Programming with the ALE and ALEPC APIs

In this example, the <wasSuccessful> element (set to true) indicates that this
programming cycle was successful. The <status> element is correspondingly set to
SUCCESSFUL.

If the programming cycle had encountered problems, the <status> element would have
provided diagnostic information about the termination status of programming cycle (for
example: CACHE_EMPTY or READER_ERROR; for the complete list of status codes, see
“PCStatus” on page 5-21.)

Note: If you are using the Reader Simulator and see a MULTIPLE_IN_FIELD status message,
you probably have more that one active tag in the simulator. Make sure that you only
have one active tag, and that the value of the tag is the same as the one you specify
when invoking run.sh. Refer to “Using ImmediateProgramSample with the Reader
Simulator” on page 6-14 for information on configuring the reader simulator for use
with this example.

The <physicalReaders> element indicates which physical readers were involved in this
tag writing operation, in this case just one physical reader, SimReadr.

The <failedLogicalReaders> element is empty, because no logical readers failed during
this programming cycle. The <cacheSize> is set to zero — in this simple example, you
passed in an EPC value as a parameter to the sample program, the programming cycle used
this value, and there are no other values available. In other situations <cacheSize> will
tell you how many EPC values are left in the EPC cache associated with the originating
PCSpec. (See “EPCCacheSpec” on page 5-23.)

The <epc> element contains the EPC value that was written to the tag, in this case:

urn:epc:tag:gid-64-i:1.4.10

Using ImmediateProgramSample with the Reader Simulator
You can use the Reader Simulator to simulate tag writes with the ImmediateProgramSample
application. This section contains a short procedure on how to run the sample application using
the Reader Simulator, followed by additional information on which tag types are recognized by
the simulator:

1. Start the Reader Simulator and go to the Reader Simulator GUI.

2. Turn off (uncheck) all the tags for Antenna 2.

3. Turn off (uncheck) all but one of the tags for Antenna 1 (only one tag can be active in order
for the sample program to run successfully).

Immedia teProgramSample : Wr i t ing Tags

Programming with the ALE and ALEPC APIs 6-15

4. Make the value of the remaining tag the same as the tag you will supply as an argument to
run.sh, for example: gid-64-i:1.4.10.

5. Run the example using the tag defined in the previous step. For example:

$./run.sh urn:epc:tag:gid-64-i:1.4.10

You should see output similar to that shown in “ImmediateProgramSample: Writing
Tags” on page 6-12.

The Reader Simulator provides support for writing the following tag types:

The Reader Simulator needs access to a valid Company Prefix Index Table to process SGTIN-64
and SSCC-64 tags. This file can be specified in the ./bin/RunReaderSim (.bat | .sh) script
as one of the command parameters to the Java invocation:

-epcIndexTableURL http://onsepc.com/ManagerTranslation.xml

This file must be the same as the value of the com.connecterra.ale.epcIndexTable property
in the ./etc/edge.props file. If the two files are different, unpredictable results can occur.

As with a real RFID reader, there must be only one tag to be written in range of the antenna. With
the Reader Simulator, you must unselect all but one of the tags checked in the GUI. Otherwise
the tag write will fail with a MULTIPLE_IN_FIELD error.

GID-64-i tags are outside the EPCglobal Tag Data Standard. For standard tags, there are strict
definitions of what are valid data in the various fields of the tag. This is one area where leading
zeros are considered important. The following non-normative descriptions are provided for
guidance — the document referenced above is definitive.

An SGTIN-64 tag is made up of a Filter field, a Company Prefix, an Item Reference code and a
Serial Number. The Company Prefix and the Item Reference together must total 13 decimal
digits. So this is a valid tag:

urn:epc:tag:sgtin-64:1.5413149.000001.1

while this is an invalid tag:

urn:epc:tag:sgtin-64:1.5413149.1.1

gid-64-i sgln-64 sgtin-96 sgln-96 usdod-64

sgtin-64 giai-64 sscc-96 giai-96 usdod-96

sscc-64 grai-64 gid-96 grai-96

Sample Java App l i cat ions

6-16 Programming with the ALE and ALEPC APIs

An SSCC-64 tag is made up of a Filter field, a Company Prefix and a Serial Reference. The
Company Prefix and the Serial Reference together must total 17 decimal digits. So this is a valid
tag:

urn:epc:tag:sscc-64:1.0353265.0000010000

while this is an invalid tag:

urn:epc:tag:sscc-64:1.0353265.100000

When using the sample code, any attempt to write a poorly formatted tag might generate a
non-specific java.net.URISyntax exception with the (example) detail:

non valid uri syntax for epc tag: null: urn:epc:tag:sscc-64:1.0353265.100000

ProgrammingSample: Exploring Programming Cycles
and EPC Caches

The ProgrammingSample program shows how to use the ALEPC methods to manipulate
Programming Cycles and EPC Caches. The sample provides a simple command line interface
that lets you define PCSpec instances from XML files, subscribe or unsubscribe a delivery
address to a previously defined PCSpec to receive PCWriteReport instances, and list existing
PCSpec instances and subscriptions. In addition, you can define EPCCacheSpec instances from
XML files, subscribe or unsubscribe for EPCCacheReport instances, and replenish or deplete
defined EPC caches.

As well as illustrating the use of several ALEPC methods, this sample serves as a useful
command line utility program in its own right.

Like the ImmediateProgramSample, the ProgrammingSample works with XML files to define
programming cycle specifications. However, ProgrammingSample differs from
ImmediateProgramSample in several respects:

The ProgrammingSample uses EPC caches to obtain EPC values to be programmed to
tags. You invoke the ProgrammingSample program with the define-cache command for
each EPC cache you want to define, and use the replenish command to load an EPC
cache with EPC patterns that define its contents.

Any number of programming cycle specifications can be defined, each with its own name.
You invoke the ProgrammingSample program with the define command for each
programming cycle you want to define.

ProgrammingSample : Exp lo r ing Programming Cyc l es and EPC Caches

Programming with the ALE and ALEPC APIs 6-17

To obtain programming cycle write reports, you add one or more subscribers for the
programming cycle(s) you have defined, by invoking the ProgrammingSample program
with the subscribe command.

To obtain cache-low reports, you add one or more subscribers for the EPC cache(s) you
have defined, by invoking the ProgrammingSample program with the subscribe-cache
command.

Once you have defined programming cycle(s), EPC cache(s), and added one or more
subscriptions, you invoke the ProgrammingSample program with the poll command to
cause a programming cycle to commence. The PCSpec you poll will obtain an EPC value
from its associated EPC cache and perform a tag programming operation using that EPC
value.

Here are step-by-step instructions for working with the ProgrammingSample program.

1. Configure the Edge Server to use the Reader Simulator or any of the printers or readers for
which WebLogic RFID Edge Server supports tag writing. See the supported RFID readers
section of the RFID Reader Reference for information.

Assign this reader the logical reader name ConnecTerra1, which is the logical reader
name specified in the ProgrammingSample’s PCSpec.xml file that we will use later.
Alternately, you can pick a different logical reader name, as long as you edit edge.props
and PCSpec.xml to both reflect the logical reader name you chose. If you are using the
Reader Simulator, please read the section “Using ImmediateProgramSample with the
Reader Simulator” on page 6-14 to understand the constraints of the simulator.

2. From the ./bin subdirectory of your WebLogic RFID Edge Server installation, run the
following scripts in this order:

RunReaderSim (if you are using the simulator)

RunEdgeServer (required)

RunAdminConsole (optional)

These files end with the suffix .sh or .bat, depending on your platform.

3. Find the console window for the Edge Server and leave it open on your desktop. Later you
will be looking at console subscriber output sent to this window.

4. Go to the WebLogic RFID Edge Server directory:

./samples/ProgrammingSample

5. In a shell, type:

Sample Java App l i cat ions

6-18 Programming with the ALE and ALEPC APIs

./run.sh define-cache mycache CacheSpec.xml

(On Windows, type run.bat instead of run.sh. Do this replacement for the rest of the
examples in this section.)

You will see an output message from the ProgrammingSample indicating that an EPC
cache has been defined.

Note: You can define as many different EPC caches as you want, as long as you give them
distinct names. In the command line above, we gave the name mycache for the EPC
cache we defined; we will shortly be defining a PCSpec that refers to this cache.

6. In a shell, type:

./run.sh list-caches

This prints a list of the names of the EPC caches that are currently defined in the Edge
Server. You should see mycache and any other EPC caches you have defined.

7. In a shell, type:

./run.sh subscribe-cache mycache console:test

Look at the console window for the Edge Server (not the Administration Console). A
low-cache report has been issued to the subscription you just created:

<!-- test -->
<EPCCacheReport date="2006-03-16T16:38:01.734Z" savantID="EdgeServerID"
xmlns="http://schemas.connecterra.com/alepc">
 <cacheName>mycache</cacheName>
 <applicationData>application specific data can go here
 </applicationData>
 <cacheSize>0</cacheSize>
 <cacheContent/>
 <threshold>10</threshold>
</EPCCacheReport>

A low-cache report was issued because the cache we defined does not yet have any EPCs,
and so is below the low-cache reporting threshold (10) defined in CacheSpec.xml.
Whenever a cache is below its reporting threshold, it issues low-cache reports to its
subscribers. In this case, such a report was issued as soon as a new subscriber was defined.

8. In a shell, type:

./run.sh replenish-cache mycache urn:epc:pat:gid-64-i:1.5.[1-15]

This stocks mycache with a range of 15 EPC values.

9. In a shell, type:

ProgrammingSample : Exp lo r ing Programming Cyc l es and EPC Caches

Programming with the ALE and ALEPC APIs 6-19

./run.sh cache-info mycache

The ProgrammingSample prints:

Programming Sample
info for EPC cache mycache: Received the following EPCCacheSpecInfo:
<EPCCacheSpecInfo xmlns="http://schemas.connecterra.com/alepc">
 <subscriberCount>1</subscriberCount>
 <pcSpecs/>
 <activationCount>0</activationCount>
 <replenishCount>1</replenishCount>
 <lastReplenished>2006-03-16T16:39:05.097Z</lastReplenished>
 <lastReported>2006-03-16T16:38:01.734Z</lastReported>
 <cacheSize>15</cacheSize>
 <cacheContent>
 <pattern>urn:epc:pat:gid-64-i:1.5.[1-15]</pattern>
 </cacheContent>
</EPCCacheSpecInfo>

We can see that the EPC cache we defined has one subscriber, no PCSpec instances using it
(yet), has been replenished once but never activated (used to write tags), and is currently
stocked with 15 EPCs from a single range pattern.

10. In a shell, type:

./run.sh define myspec PCSpec.xml

You will see an output message from the ProgrammingSample indicating that a PCSpec
has been defined.

Note: You can define as many different PCSpec instances as you want, as long as you give
them distinct names. In the command line above, the name myspec is given to the
PCSpec you defined.

11. In a shell, type:

./run.sh cache-info mycache

The ProgrammingSample prints information about mycache, similar to what was printed
earlier. The important difference is that the empty <pcSpecs/> element has been replaced
with:

<pcSpecs>
<pcSpec>myspec</pcSpec>
</pcSpecs>

This indicates that the PCSpec we just defined is using the mycache EPC cache we defined
earlier. Whenever myspec performs a tag programming operation, it will obtain an EPC
value from mycache.

Sample Java App l i cat ions

6-20 Programming with the ALE and ALEPC APIs

12. Place a single writable RFID tag in the field of the RFID reader you configured the Edge
Server to use.

13. In a shell, type:

./run.sh poll myspec

The ProgrammingSample performs a tag programming operation and, if successful, prints a
PCWriteReport similar to:

Programming Sample
polling myspec...
 ...received response.

Received the following PCWriteReport:

<PCWriteReport date="2006-03-16T16:42:15.454Z" savantID="EdgeServerID"
specName="myspec" totalMilliseconds="540" totalTrials="0"
xmlns="http://schemas.connecterra.com/alepc">

 <applicationData>application specific data can go here
 </applicationData>
 <wasSuccessful>true</wasSuccessful>
 <status>SUCCESSFUL</status>
 <physicalReaders>
 <physicalReader>SimReadr</physicalReader>
 </physicalReaders>
 <failedLogicalReaders/>
 <cacheName>mycache</cacheName>
 <cacheSize>14</cacheSize>
 <epc>urn:epc:tag:gid-64-i:1.5.1</epc>
</PCWriteReport>

The report indicates the status of the tag programming operation, and if successful (as in
the example above), contains the EPC value that was written to the tag, and also indicates
how many EPC values remain in the EPC cache. In this example, note that the EPC cache,
which previously had 15 EPC values, now has only 14 EPC values remaining.

14. Repeat the poll command several more times, and watch the Edge Server’s console window.
At some point, the number of EPC values remaining in the cache will drop to the reporting
threshold (10), and a low-cache report will be issued to the console subscriber you defined
earlier. Each subsequent poll operation will cause a further low-cache report to be issued,
unless you first use the replenish command to re-stock the EPC cache.

15. Keep repeating the poll command until the EPC cache is empty, as indicated in the
PCWriteReport indicating a tag programming failure:

polling myspec...
...received response.

JMS Samples

Programming with the ALE and ALEPC APIs 6-21

Received the following PCWriteReport:

<PCWriteReport date="2006-03-16T16:53:16.758Z"
savantID="EdgeServerID-bea" specName="myspec" totalMilliseconds="300"
totalTrials="0" xmlns="http://schemas.connecterra.com/alepc">

 <applicationData>application specific data can go here
 </applicationData>
 <wasSuccessful>false</wasSuccessful>
 <status>CACHE_EMPTY</status>
 <physicalReaders>
 <physicalReader>SimReadr</physicalReader>
 </physicalReaders>
 <failedLogicalReaders>
 <logicalReader>ConnecTerra1</logicalReader>
 </failedLogicalReaders>
 <cacheName>mycache</cacheName>
 <cacheSize>0</cacheSize>
 <failureInfo>EPC cache 'mycache' empty for PCSpec myspec</failureInfo>
 <terminationCondition>FAILURE</terminationCondition>

JMS Samples
The samples in this section show how to configure JMS options and naming properties on the
WebLogic RFID Edge Server for vendor-specific JNDI (Java Naming and Directory Interface)
providers and JMS servers. The samples also provide deployment units to be deployed into J2EE
application servers in enterprise systems and provides sample message receiving programs for
message queue servers.

For vendor-specific J2EE application servers, a JMSTest.ear enterprise archive file is available
for deployment. The enterprise archive file contains a Message Driven Bean (JMSTestMDB)
which receives JMS messages from specified queues and prints them out to the console.

For message queue servers (WebSphere MQ and TIBCO Enterprise for JMS), sample message
receiver programs are provided to receive JMS messages from specified queues and to print them
out to the console.

To run the sample JMSTest enterprise program within a BEA WebLogic Server deployment,
perform the following steps:

1. Configure the JNDI provider and JMS server.

2. Configure the WebLogic RFID Edge Server:

Sample Java App l i cat ions

6-22 Programming with the ALE and ALEPC APIs

– Copy the sample jms.options and naming.props files from the
./samples/JMSSamples/BEA/etc directory into the ./etc directory of the
installation directory.

– Modify the jms.options file in the ./etc directory of the installation directory with
the appropriate paths for the specified environment variables.

– Modify the naming.props file in the ./etc directory of the installation directory with
the appropriate values for the java.naming.provider.url property.

– Modify the edge.props file in the ./etc directory of the installation directory to set
the following property to the fully qualified name for naming.props:

com.connecterra.ale.notificationDriver.jms.default.namingPropertiesF
ile

– (Only if you are running the Edge Server as a Windows Service) Modify the
edge.wrapper.conf file in the ./etc directory of the installation directory to point to
ALL the relevant JMS_LIB .jar files listed in jms.options. You can use either fully
qualified or relative pathnames. Specify one .jar file per line, using the format shown
below.

For example, assume that InstallRoot is the root of the application server, or path to
the top directory of the application server. If you are using a fully qualified pathname,
you might add an entry like the following one to edge.wrapper.conf:

wrapper.java.classpath.31=c:\InstallRoot\AppServer\lib\someJarFile.j
ar

You can also use a relative pathname. For example, assume the .jar files are in a
folder called AppServerLib, located directly under the installation directory. In this
case you might add an entry like this to edge.wrapper.conf:

wrapper.java.classpath.31=../AppServerLib/someJarFile.jar

Create separate wrapper.java.classpath entries for each JMS_LIB .jar file listed
in jms.options.

3. Build the sample JMSTest enterprise archive by invoking build.bat or build.sh (set the
environment variables appropriate to the build environment).

4. Using the startWeblogic script provided by BEA, start the WebLogic Server from a console
window.

5. From a Web browser, log in to the WebLogic Server Administration Console:

http://localhost:7001/console

Workf low Sample XML F i l es

Programming with the ALE and ALEPC APIs 6-23

6. From the WebLogic Server Administration Console, deploy the JMSTest.ear file, which is
located in the RFID_EDGE_HOME/samples/JMSSamples/BEA/deploy directory. (For
information on deploying applications, see the WebLogic Server documentation at
http://e-docs.bea.com.)

7. Start the RFID Edge Server.

8. Define an ECSpec to the Edge Server. For example, use the SubscribeSample to define
myECSpec:

run define myECSpec ECSpec.xml

9. Set a JMS subscriber to the defined ECSpec. For example, set a JMS subscriber for myECSpec
reports with the following command (shown as two lines here, but entered as one line):

run subscribe myECSpec
jms:/queue/weblogic.jms.ConnectionFactory/jms%2FTestQ)

Note: BEA provides weblogic.jms.ConnectionFactory and
weblogic.jms.XAConnectionFactory as default connection factories.

10. View JMSTest MDB messages showing ECReports for the defined ECSpec in the console
corresponding to the startWebLogic command.

Workflow Sample XML Files
The RFID_EDGE_HOME/samples/Workflow directory contains three sample directories whose
contents are XML files that define workflows. The three sample directories are:

DirectionalPortal

ObservePortal

PalletPortal

For information on how to define workflows and import files, see the RFID Workflow Reference
manual.

http://e-docs.bea.com
http://e-docs.bea.com/rfid/edge_server/docs30/workflow_reference/index.html

Sample Java App l i cat ions

6-24 Programming with the ALE and ALEPC APIs

Programming with the ALE and ALEPC APIs Index-1

Index

A
AccessReport 5-19
AccessSpec 5-11
ALE

main tag reading interface 4-3
ALE API

application interaction 2-7
benefits 2-3
event cycles 2-5
introduction to specification 4-2
overview 2-1
read cycles 2-5
reports 2-8

ALEPC
main tag writing interface 5-3

Applications
asynchronous (subscribe) mode 2-7
immediate mode 2-7
immediate with predefined request (poll)

mode 2-7
interaction with API 2-7

applications
sample 6-1

Asynchronous notification mechanisms
XML displayed on the Edge Server console

3-7
XML via HTTP POST 3-2
XML via JMS Message 3-3
XML written to a file 3-6

D
Deserializers 4-37, 5-31

E
ECBoundarySpec 4-10
ECReport 4-26, 4-27, 4-28, 4-30
ECReportOutputSpec 4-22
ECReports 4-23
ECReportSetSpec 4-16
ECReportSpec 4-13
ECSpec 4-7
ECTerminationCondition 4-25
EPC cache 2-12
EPC Patterns 4-17
EPCCacheReport 5-24
EPCCacheSpec 5-23
EPCCacheSpecInfo 5-25
EPCPatterns 5-26
Event cycle specification

example 2-4
Event cycles 2-5
examples 1-3

ImmediateProgramSample 1-4
ImmediateSample 1-4
JMSSamples 1-4
NonXMLSample 1-4
PollingSample 1-4
ProgrammingSample 1-4
SubscribeSample 1-4
Workflow 1-5

H
HTTP POST delivery 3-2

Index-2 Programming with the ALE and ALEPC APIs

I
ImmediateProgramSample 1-4, 6-2, 6-12
ImmediateSample 1-4, 6-2, 6-3, 6-7, 6-8
includedMemory 4-38

J
Java 2-4
Java binding 4-3

tag reading 4-37
tag writing 5-30
XML serializers and deserializers 4-37, 5-31

Java sample applications 6-1
JMS message delivery 3-3
JMS samples 6-21
JMSSamples 1-4

K
KillOpSpec 5-12

L
LockOpSpec 5-12

N
NonXMLSample 1-4

O
OpDataSpec 5-16
OpReport 5-20
OpSpec 5-12

P
PasswordOpSpec 5-12
PCSpec 5-7
PCSpecInfo 5-9
PCStatus 5-21
PCSubscriptionControls 5-10

PCSubscriptionInfo 5-10
PCTerminationCondition 5-22
PCWriteReport 5-17
PollingSample 1-4
Programming cycles 2-9

definition 2-9
how they differ from event cycles 2-14
reader implementation of 2-11
specification (PCSpec) 2-9

Programming languages supported 2-4
ProgrammingSample 1-4, 6-2, 6-16

R
Read cycles 2-5
Readers

transient filtering 2-7
Reading tag data 2-4
ReadOpSpec 5-12
Reports

tag reading 2-8
tag writing 2-14

RFID Edge Server
standards compliance 1-3

S
Sample applications

ImmediateProgramSample 6-2, 6-12
ImmediateSample 6-2, 6-3, 6-7, 6-8
ProgrammingSample 6-2, 6-16
SubscribeSample 6-2, 6-8
Workflow 6-2

sample applications 6-1
samples 1-3

ImmediateProgramSample 1-4
ImmediateSample 1-4
JMSSamples 1-4
NonXMLSample 1-4
PollingSample 1-4
ProgrammingSample 1-4
SubscribeSample 1-4

Programming with the ALE and ALEPC APIs Index-3

Workflow 1-5
Serializers 4-37, 5-31
stableCount 4-9
Standards compliance 1-3
SubscribeSample 1-4, 6-2, 6-8

T
Tag writing sample application 6-12, 6-16
TagReport 5-20
Transient filtering 2-7

W
Workflow example 1-5
workflow module

XML delivery of ECReport data 3-8
Workflow sample 6-2
WriteOpSpec 5-12
Writing tag data 2-9
WSDL binding 4-3

X
XML

deliver ECReport data to workflow module
3-8

ECReports example 4-35
ECSpec example 4-34
EPCCacheReport example 5-30
EPCCacheSpec example 5-29
PCSpec example 5-28
PCWriteReport example 5-29
representation of tag reading objects 4-33
representation of tag writing objects 5-27
schema for tag writing 5-30

XML displayed on the Edge Server console 3-7
XML via HTTP POST 3-2
XML via JMS Message 3-3
XML written to a file 3-6

Index-4 Programming with the ALE and ALEPC APIs

	Introduction and Roadmap
	Document Scope and Audience
	Guide to This Document
	Related Documentation
	EPCglobal Standards Compliance
	Using RFID Samples to Develop Applications

	Reading and Writing Tags
	Overview of the ALE API and ALE Operation
	BEA Implementation of the ALE API
	Benefits of the BEA Implementation
	Programming Methods
	Reading Tag Data
	Read Cycles and Event Cycles
	Smoothing Read Cycles with Transient Filtering
	How Applications Interact with the Edge Server ALE Engine
	ECSpec Reports

	Writing Tag Data
	Programming Cycles
	Reader Implementation of Programming Cycles
	EPC Caches
	Creating Tag Caches
	PCSpec Reports

	Comparison of Event Cycles and Programming Cycles

	Asynchronous Notification Mechanisms
	Overview of Asynchronous Notification Mechanisms
	Encoded XML Through HTTP POST
	Encoded XML Through TCP Socket
	Encoded XML in JMS Message
	Examples of Report Delivery by Using XML with JMS

	XML Written to a File
	XML Displayed on the Edge Server Console
	XML Sent to a Workflow Module

	Reading Tags by Using the ALE API
	Overview of the ALE API Implementation
	ALE: Main Tag Reading Interface with UML Diagrams
	State Diagram

	Primary ALE API Data Types
	ECSpec Data Type
	ECBoundarySpec
	ECBoundarySpec Implementation Notes
	ECTime
	ECTimeUnit
	ECTrigger

	ECReportSpec
	ECReportSpec Implementation Notes

	ECReportSetSpec
	ECFilterSpec
	EPC Patterns

	ECGroupSpec
	About Group Reports
	Examples of Pattern URIs Used as Grouping Patterns

	ECReportOutputSpec

	ECReports Data Type
	ECTerminationCondition
	ECReport
	ECReportGroup
	ECReportGroupList
	ECReportGroupListMember
	ECReportGroupCount
	ECReportGroupListMemberMemory

	Other ALE API Types: BEA Extensions
	ECSpecInfo (WebLogic RFID Edge Server Extension)
	ECSubscriptionInfo (WebLogic RFID Edge Server Extension)
	ECSubscriptionControls (WebLogic RFID Edge Server Extension)

	XML Representations
	ECSpec - Example
	ECReports - Example

	Using the ALE Tag Reading API from Java
	Using XML Serializers and Deserializers from Java

	Gen2 Read Support
	includedMemory
	getMemoryItem

	Writing Tags by Using the ALEPC API
	Overview of the ALEPC API Implementation
	ALEPC: Main Tag Writing Interface with UML Diagrams
	PCSpec
	PCSpecInfo
	PCSubscriptionControls
	PCSubscriptionInfo
	AccessSpec
	OpSpec
	DataSpec

	PCWriteReport
	AccessReport
	TagReport
	OpReport
	PCStatus
	PCTerminationCondition

	EPCCacheSpec
	EPCCacheReport
	EPCCacheSpecInfo
	EPCPatterns

	XML Representations
	PCSpec - Example
	PCWriteReport - Example
	EPCCacheSpec - Example
	EPCCacheReport - Example
	XML Schema for PCSpec, PCWriteReport, EPCCacheSpec, and EPCCacheReport

	Using the ALEPC Tag Writing API from Java
	Using XML Serializers and Deserializers from Java

	BEA Gen2 Write Support
	Extended API Support
	Multiple Tags in Field
	Parameter Substitutions

	Gen2 PCSpec Examples
	readEPCBank.xml
	readAbsolute.xml
	readPassword.xml
	writePassword.xml
	writePasswords.xml
	writeTagMemory.xml
	writeTagMemory.xml and PCWriteReport.xml
	kill.xml
	lock.xml
	stackLight.xml

	Sample Java Applications
	Overview of Sample Java Applications
	Setting Up Your Development Environment
	Compiling and Running the Samples
	ImmediateSample: Getting Started Reading Tags
	Using ImmediateSample with the Administration Console

	ImmediateSample: Event Cycles and Reliability
	ImmediateSample: Reading from Different Readers
	SubscribeSample: Exploring Asynchronous Event Cycle Delivery
	SubscribeSample Command Line Options

	ImmediateProgramSample: Writing Tags
	Using ImmediateProgramSample with the Reader Simulator

	ProgrammingSample: Exploring Programming Cycles and EPC Caches
	JMS Samples
	Workflow Sample XML Files

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

