
RFTagAware™

Programmer Guide

Version 1.3

June 2005

ConnecTerra, Inc.
100 CambridgePark Drive

Cambridge, Massachusetts 02140

Phone: (617) 441-2200

Facsimile: (617) 492-5837

Web Site: www.connecterra.com

Email: info@connecterra.com

ConnecTerra® is a leading provider of enterprise software for device computing.

The information in this document is furnished for informational use only, is subject to change without notice,
and should not be construed as a commitment by ConnecTerra, Inc. ConnecTerra, Inc. assumes no responsibil-
ity or liability for any errors or inaccuracies that may appear in this document, nor for incidental or conse-
quential damages resulting from the furnishing, performance, or use of this material.

This guide contains information protected by copyright. No part of this guide may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any language in any form without prior written
consent from ConnecTerra, Inc.

ConnecTerra is a registered trademark and RFTagAware and Compliance Jump Start are trademarks of Connec-
Terra, Inc.

BEA and WebLogic are registered trademarks of BEA Systems, Inc. Java is a trademark and Sun is a registered
trademark of Sun Microsystems, Inc. JBoss is a registered trademark and servicemark of JBoss Inc. IBM and
WebSphere are a registered trademarks of International Business Machines Corporation. Microsoft amd Win-
dows are trademarks of Microsoft Corporation. TIBCO is a registered trademark of TIBCO Software Inc. UNIX is
a registered trademark of The Open Group in the United States and other countries.

Other brand and product names belong to their respective holders.

Copyright © 2005 ConnecTerra, Inc. All rights reserved.

Contents

Preface ..vii

Purpose of This Manual ... vii
Audience ... vii
Related Documents ... vii
What’s in This Manual .. vii
Contacting Technical Support .. viii

Chapter 1: Introduction ... 1-1

RFTagAware Architecture ..1-2
Edge Server ..1-2
Administration Console ...1-2

Standards Compliance ...1-3
The ALE API..1-4

Overview ..1-4
Basic ALE Operation ...1-4
Benefits ...1-5
Programming Languages..1-5

Directory Structure Concepts ...1-6
Defaults and Allowed Install Locations...1-6
Directory Structure ...1-6
Directory Tree Overview...1-6

Chapter 2: Reading and Writing Tags .. 2-1

Application Level Events (ALE)..2-2
Reading Tag Data ...2-2

Read Cycles and Event Cycles ..2-2
Interacting with ALE..2-4
Reports..2-5

Writing Tag Data ..2-6
Programming Cycles...2-6
EPC Caches and Pools...2-8
Reports..2-10

Comparison of Event Cycles and Programming Cycles...2-10
RFTagAware 1.3 Programmer Guide Page iii

Table of Contents RFTagAware 1.3 Programmer Guide
Specifying Readers to the Edge Server..2-12
Configuring Readers ...2-12
Physical Readers vs. Logical Readers ...2-12
Adding a Transient Filter ...2-13
Using Composite Readers..2-14

Chapter 3: Asynchronous Notification Mechanisms .. 3-1

Overview..3-2
XML via HTTP POST ..3-2
XML via TCP Socket ...3-3
XML via JMS Message...3-3

Examples ..3-5
Setting up the JMS Notification Driver...3-6

XML Written to a File ...3-6
XML Displayed on the Edge Server Console ..3-7
The Null Delivery Method..3-7

Chapter 4: Triggers.. 4-1

Introduction...4-2
OLE for Process Control (OPC) Trigger Driver ..4-2
Additional Trigger Drivers ..4-2

Chapter 5: Reading Tags Using the ALE API.. 5-1

Introduction to the ALE API Specification...5-2
ALE: Main Tag Reading Interface ...5-3

State Diagram ..5-5
Primary ECSpec Data Types ..5-6
ECSpec...5-6

ECBoundarySpec ..5-7
ECReportSpec ...5-10
ECReportSetSpec..5-12
ECFilterSpec ..5-12
ECGroupSpec ...5-13
ECReportOutputSpec ..5-16

ECReports ...5-17
ECTerminationCondition..5-19
ECReport ...5-19
ECReportGroup..5-20
ECReportGroupList...5-21
ECReportGroupListMember..5-21
ECReportGroupCount ..5-22
Page iv RFTagAware 1.3 Programmer Guide

RFTagAware 1.3 Programmer Guide Table of Contents
Other ALE API Types ..5-23
ECSpecInfo (RFTagAware Extension) ...5-23
ECSubscriptionInfo (RFTagAware Extension) ...5-24
ECSubscriptionControls (RFTagAware Extension) ...5-24

XML Representations ..5-25
ECSpec - Example ..5-25
ECReports - Example ..5-26

Using the ALE Tag Reading API from Java ..5-27
Using XML Serializers and Deserializers from Java ..5-28

Chapter 6: Writing Tags Using the ALE API ... 6-1

Introduction to the ALE API Specification...6-2
ALEPC: Main Tag Writing Interface ..6-3
PCSpec ...6-5

PCSpecInfo ..6-6
PCSubscriptionControls ..6-7
PCSubscriptionInfo ..6-7

PCWriteReport..6-7
PCStatus..6-9
PCTerminationCondition ..6-10

EPCCacheSpec ...6-10
EPCCacheReport ..6-11
EPCCacheSpecInfo ..6-11
EPCPatterns...6-12

XML Representations ..6-12
PCSpec - Example ..6-13
PCWriteReport - Example...6-14
EPCCacheSpec - Example ..6-14
EPCCacheReport - Example...6-15
XML Schema for PCSpec, PCWriteReport, EPCCacheSpec, and EPCCacheReport.......................6-15

Using the ALE Tag Writing API from Java ...6-15
Using XML Serializers and Deserializers from Java ..6-16

Chapter 7: Sample Java Applications .. 7-1

Overview..7-2
Setting Up Your Development Environment..7-2
Compiling and Running the Samples ..7-2
ImmediateSample: Getting Started Reading Tags ...7-3

Using ImmediateSample With the Administration Console ..7-5
ImmediateSample: Event Cycles and Reliability..7-7
ImmediateSample: Reading from Different Readers ..7-8
RFTagAware 1.3 Programmer Guide Page v

Table of Contents RFTagAware 1.3 Programmer Guide
SubscribeSample: Exploring Asynchronous Event Cycle Delivery..7-8
SubscribeSample Command Line Options ...7-12

ImmediateProgramSample: Writing Tags...7-12
Using ImmediateProgramSample with the Reader Simulator..7-15

ProgrammingSample: Exploring Programming Cycles and EPC Caches ...7-16
JMS Samples ..7-21

BEA...7-21
IBM ...7-22
JBoss..7-26
Sun...7-27
TIBCO..7-29

Chapter 8: Sample .NET Applications.. 8-1

Overview..8-2
Setting Up Your Development Environment..8-2

Interfacing with the Edge Server ..8-2
Using the Reader Simulator with the Samples ...8-5

Configuring the Simulator ...8-5
Starting the Simulator ...8-5

Running the Samples..8-7
How to Run the Samples ...8-7

SQLNotificationSample.NET..8-8
Additional Requirements ...8-8
How to Install ..8-8
How to Run SQLNotification.exe ...8-9
Programming Notes ...8-11

ALESample.NET ...8-11
Additional Requirements ...8-12
How to Install ..8-12
How to Run ALESample.NET ..8-12
Programming Notes ...8-15

ALEPCSample.NET..8-17
Additional Requirements ...8-17
How to Run ALEPC.NET..8-17
Programming Notes ...8-21

BizTalkSample.NET ..8-24
Additional Requirements ...8-24
How to Install ..8-24

Index... 1
Page vi RFTagAware 1.3 Programmer Guide

Preface

Purpose of This Manual
This manual describes the Application Level Events (ALE) API. This API lets applications use the
RFTagAware Edge Server to access information from RFID tag readers.

Audience
• IT procurement specialists.

• Software engineers and other developers using the Application Level Events (ALE) API.

• Network architects and engineers.

• Technology strategists and senior managers.

Users should know how to program in JavaTM.

Related Documents
• RFTagAware Deployment Guide

• RFTagAware Reader Configuration Guide

What’s in This Manual
• Chapter 1: Introduction

This chapter provides an overview of RFTagAware.

• Chapter 2: Reading and Writing Tags

This chapter describes how to use RFTagAware to read and write tags.

• Chapter 3: Asynchronous Notification Mechanisms

This chapter describes the asynchronous notification mechanisms RFTagAware uses to
deliver reports.

• Chapter 4: Triggers

This chapter describes trigger mechanisms that start and end event cycles.

• Chapter 5: Reading Tags Using the ALE API
RFTagAware 1.3 Programmer Guide Page vii

Contacting Technical Support Preface
This chapter describes the ALE API programming components you use to read tags.

• Chapter 6: Writing Tags Using the ALE API

This chapter describes the ALEPC API programming components you use to write tags.

• Chapter 7: Sample Java Applications

This chapter walks you through sample Java applications that use the ALE and ALEPPC
APIs.

• Chapter 8: Sample .NET Applications

This chapter walks you through sample .NET applications that use the ALE and ALEPC
APIs.

Contacting Technical Support
For technical support, call:

617-441-2280

Monday-Friday 9am-5:30pm Eastern Time.

ConnecTerra, Inc.
100 CambridgePark Drive
Cambridge MA 02140

Voice: +1-617-441-2200
FAX: +1-617-492-5837

support@connecterra.com
Page viii RFTagAware 1.3 Programmer Guide

Chapter 1: Introduction

Contents

This chapter describes the RFTagAware architecture and its Application Programming Interface
(API).

• RFTagAware Architecture (page 1-2)

- Edge Server (page 1-2)

- Administration Console (page 1-2)

• Standards Compliance (page 1-3)

• The ALE API (page 1-4)

- Overview (page 1-4)

- Benefits (page 1-5)

- Basic ALE Operation (page 1-4)

- Programming Languages (page 1-5)

• Directory Structure Concepts (page 1-6)
RFTagAware 1.3 Programmer Guide Page 1-1

RFTagAware Architecture Introduction
RFTagAware Architecture

RFTagAware software has two main components:

• Edge Server (page 1-2)

• Administration Console (page 1-2).

Edge Server

The Edge Server is software deployed at a remote site where there are RFID readers.

There are two main subcomponents within the Edge Server:

• The first is an Application Level Events (ALE) processing engine. The ALE Engine is
responsible for receiving and processing RFID tag data on behalf of user applications.

• The second is a monitoring and management agent that allows the health and functioning of
readers and Edge Server software to be monitored and managed remotely through the
RFTagAware Administration Console.

Administration Console

The Administration Console is software typically deployed at a centralized enterprise site, where
operations staff may use it to monitor and manage the RFID infrastructure. The Administration
Console is also useful for on-site tuning and debugging. The Administration Console includes an
interactive user interface for all of these operations.
Page 1-2 RFTagAware 1.3 Programmer Guide

Introduction Standards Compliance
Standards Compliance

RFTagAware is compliant with all relevant standards of EPCglobal. ConnecTerra is committed to
revising RFTagAware so that it is always in compliance with these standards.

RFTagAware conforms to EPCglobal standards in the following way:

• RFTagAware works with RFID readers that implement the following protocols:

- EPCglobal Class 0, Class 0+, and Class 1 RF Protocols.

- ISO 15693 RF Interface protocol.

- ISO 18000-6B RF Interface protocol.

RFTagAware will also work with RFID readers that implement the forthcoming EPCglobal
UHF Generation 2 RF protocols, when such readers become available.

• RFTagAware supports the EPCglobal Tag Data Standard. This standard governs the bit-level
encoding of object identity and other information onto RFID tags. It also specifies a URI-
based syntax for exchange of tag data between software application components, and a
second URI-based syntax for the description of filtering patterns. RFTagAware fully
implements all of these standards.

• RFTagAware includes components that play the filtering and collecting role as defined within
the EPCglobal Architecture Framework. RFTagAware fully implements the EPCglobal
Application Level Events (ALE) specification, which is the standard interface to filtering and
collection functionality as defined by EPCglobal (replacing earlier “Savant” specifications).
RFTagAware also provides other value add functionality in the areas of reader management,
application integration, and tag writing.

The EPCglobal Application Level Events (ALE) API was developed by ConnecTerra and
other EPCglobal member companies under the auspices of the EPCglobal Software Action
Group. ALE is in the final stages of standardized within EPCglobal. ConnecTerra is
committed to the continued evolution of ALE as a standard.
RFTagAware 1.3 Programmer Guide Page 1-3

The ALE API Introduction
The ALE API

This section describes the Application Level Events (ALE) application programming interface (API).

• Overview (page 1-4)

• Benefits (page 1-5)

• Basic ALE Operation (page 1-4)

• Programming Languages (page 1-5)

Overview

Applications interact with the Edge Server through an application programming interface (API)
called Application Level Events, or ALE. ALE provides a high-level, declarative way for applications
to read and write RFID data, without requiring application programmers to interact directly with
RFID readers or perform any low-level real-time processing or scheduling operations. ALE therefore
logically occupies a position between application business logic and low-level RFID tag reads and tag
writes, providing a strong degree of insulation between the two.

In RFTagAware, ALE processing takes place within the Edge Server, so that the large volumes of
RFID read data can be reduced to interesting business events prior to having to travel over local or
wide-area enterprise networks to applications.

Basic ALE Operation

The basic concept of ALE is quite simple. An application makes a request to the ALE interface to
write or read tags. The ALE engine within the RFTagAware Edge Server processes the data from the
readers, and generates reports back to the application based on the conditions specified in the
request.

A tag reading request may be a one-time request that is satisfied synchronously (“give me a list of the
EPC codes that are currently stable in the field of readers at Dock Door 5”) or may be a standing
request that generates asynchronous notifications when events of interest happen (“every ten minutes
tell me how many new things have shown up”).

A tag writing request may also be satisfied synchronously (“write the following tag now”) or may be a
standing request that writes a tag and generates a report when some external event happens (“when
the case crosses the electric eye beam, write the tag”).
Page 1-4 RFTagAware 1.3 Programmer Guide

Introduction The ALE API
Benefits

The ALE API as implemented in ConnecTerra’s RFTagAware provides a number of unique benefits:

• Rapid development and deployment — different teams can independently get new projects
quickly up and running with a minimum amount of programming.

• Flexibility to adapt to changes quickly — individual applications can be easily modified while
the Administration Console enables rapid reconfiguration of the overall deployment.

• Variety of deployment scenarios — enterprise applications can be distributed across remote
sites using a wide range of network transports and protocols.

• Built-in support for multiple applications sharing readers — the Edge Server includes logic
and security to handle multiple independent applications simultaneously.

• Manageability, security and integrity — centralized management of the control of the overall
deployment supports use of RFID data in enterprise applications.

• Scalability of readers, applications, servers and sites — scalable number of readers per
RFTagAware, number of RFTagAware instances per site, and number of sites in the overall
application. Designed with future readers in mind.

• Standards leadership and support.

• RFTagAware’s implementation of the ALE API includes RFTagAware-specific extensions.
RFTagAware extensions are explicitly noted throughout this document.

Overall these benefits mean that simple applications are developed and deployed quickly, the solution
scales gracefully with new readers and applications, and the resulting solution meets enterprise
requirements for business critical infrastructure.

Programming Languages

To use ALE from a program, use one of the following methods:

• You can use standard SOAP-based web services development tools to generate an ALE client
stub for any programming language. The RFTagAware installation provides WSDL files that
you may use for this purpose. The WSDL files are in your RFTagAware installation directory
at:
/share/schemas/EPCglobal-ale-1_0.wsdl
/share/schemas/ALEPCService.wsdl

• RFTagAware provides a Remote Client library for the Java programming language, which Java
programs may use to access an RFTagAware Edge Server via the ALE API.
RFTagAware 1.3 Programmer Guide Page 1-5

Directory Structure Concepts Introduction
Directory Structure Concepts

Defaults and Allowed Install Locations

RFTagAware’s default installation directories are:

• Windows: C:\Program Files\ConnecTerra\RFTagAware

• UNIX: /opt/ConnecTerra/RFTagAware

You can choose different primary install locations.

Directory Structure

Regardless of where you put your primary install directory, RFTagAware creates two main
subdirectories beneath the primary install directory:

• control

Version-independent location for the master startup scripts for RFTagAware’s various
components. These scripts act like pointers or symbolic links to the actual scripts for a
particular version. This lets you continue to use the same /control/bin/script_name path to
run a script, no matter how many times you upgrade.

• version_number, for example: 1.3.0

Contains the files for a specific version of RFTagAware.

Directory Tree Overview

Here are some highlights from a sample installed directory tree:

control

control/bin Use these master scripts to start the Administration Console, Edge Server,
Reader Simulator, and Quick Test utility:
RunAdminConsole

RunEdgeServer

RunReaderSim

RunQuickTest

These scripts will always invoke the version of RFTagAware that you have most
recently installed.
Page 1-6 RFTagAware 1.3 Programmer Guide

Introduction Directory Structure Concepts
Shortened Pathnames in Documentation

RFTagAware documentation refers to the RFTagAware subdirectories (for example, bin and etc)
directly, without the preceding full pathname. In all cases, these shortened pathnames refer to
subdirectories within the default or user-specified RFTagAware installation directory.

1.3

1.3/bin Version-specific scripts used by RFTagAware. Use these scripts to start a
particular version of RFTagAware, even if it is not the version you most recently
installed.

1.3/etc Properties and logging files for the Administration Console, Edge Server, and
JMS Notification Driver:
admin-console.props

edge.props

jms.options

logging.props.admin-console

logging.props.edge

1.3/lib Java libraries used by RFTagAware components.
1.3/samples Sample Java source code that illustrates how to program the ALE API.
1.3/share/schemas Schema used to represent RFTagAware data types in XML and WSDL files

describing the ALE API.
1.3/UninstallerData Files used by the installer during uninstallation.
1.3/var Files created and used by RFTagAware during operation, including log files. The

edgestate subdirectory contains state data about ECSpec, PCSpec, and
EPCCacheSpec instances and their subscribers, and reader configuration data
for readers configured using the Administration Console, as well as other
persistent data that you create using the ALE API.
RFTagAware 1.3 Programmer Guide Page 1-7

Directory Structure Concepts Introduction
Page 1-8 RFTagAware 1.3 Programmer Guide

Chapter 2: Reading and Writing Tags

Contents

This chapter describes how to use RFTagAware to read and write tags.

• Application Level Events (ALE) (page 2-2)

• Reading Tag Data (page 2-2)

- Read Cycles and Event Cycles (page 2-2)

- Interacting with ALE (page 2-4)

- Reports (page 2-5)

• Writing Tag Data (page 2-6)

- Programming Cycles (page 2-6)

- EPC Caches and Pools (page 2-8)

- Reports (page 2-10)

• Comparison of Event Cycles and Programming Cycles (page 2-10)

• Specifying Readers to the Edge Server (page 2-12)

- Configuring Readers (page 2-12)

- Physical Readers vs. Logical Readers (page 2-12)

- Adding a Transient Filter (page 2-13)

- Using Composite Readers (page 2-14)
RFTagAware 1.3 Programmer Guide Page 2-1

Application Level Events (ALE) Reading and Writing Tags
Application Level Events (ALE)

The basic concept of ALE is quite simple. An application makes a request to the ALE interface to
write or read tags. The ALE engine within the RFTagAware Edge Server processes the data from the
readers, and generates reports back to the application based on the conditions specified in the
request. For more information on ALE, see Basic ALE Operation on page 1-4

The remainder of this chapter provides a functional overview of ALE tag reading and writing.

Reading Tag Data

To read tag data, applications define event cycle specifications (ECSpec), which specify what RFID data is
of interest. An example of the content of an ECSpec is “give me a report every 60 seconds of what
objects have been added or removed to warehouse shelves #4 and #5, including Acme products only
and excluding pallet-level data.”

Once an application defines an ECSpec, the application receives RFID data through event cycle reports
(ECReports). In the previous example, the ALE engine within the RFTagAware Edge Server would
generate a new ECReports instance every 60 seconds, containing a list of objects added or removed
from the warehouse shelves as specified.

For a detailed overview of ECSpec and ECReports, see ECSpec on page 5-6 and ECReports on
page 5-17.

An application may define and subscribe to an ECSpec programmatically by using the ALE Remote
Client to access the ALE API directly. Through the API, user application code may define an ECSpec
and subscribe one or more destinations to an ECSpec for asynchronous delivery of ECReports. The
API also permits user application code to request the delivery of an ECReports instance on demand,
in a synchronous manner.

Read Cycles and Event Cycles

RFID readers generally scan for tags much more frequently than real-world applications require data.
In addition, the likelihood of an RFID reader actually reading a tag during any one attempt is sensitive
to a large number of factors, including the position and motion of tags, presence of objects or people,
and even the activity of other readers. Because of this, applications generally use the data accumulated
from a number of RFID reads.

In recognition of this, the ALE interface distinguishes between the rate at which readers scan for tags
from the rate at which applications receive data. A Read Cycle refers to a single complete scan of all
tags in a single reader antenna’s field. This generally happens a few times a second. An Event Cycle is
one or more read cycles, from one or more readers, that are to be treated as a unit from an application
Page 2-2 RFTagAware 1.3 Programmer Guide

Reading and Writing Tags Reading Tag Data
perspective. The data of an event cycle consists of all the tags seen in any of the read cycles by any of
the readers.

At the completion of an event cycle, the ALE engine within the RFTagAware Edge Server processes
the set of tags the readers saw during that cycle and generates one or more reports to the requesting
application. Each report specification may include different criteria for reporting, such as whether to
report all tags or only changes, whether to include actual tag IDs or just counts, whether to include or
exclude certain tags based on their identities, and how filtered EPCs are grouped together for
reporting. Because different applications may be interacting with a single Edge Server, there may be
many overlapping event cycles in progress at any one time, sharing the data from overlapping sets of
readers in arbitrary ways.

The following picture shows the relationship of read cycles, event cycles and reports.

There are a number of ways to specify the boundaries of event cycles relative to read cycles:

• Time: the event cycle is specified to last a certain amount of time, independent of how many
read cycles are involved.

• Number of read cycles: the event cycle is specified to last a fixed number of read cycles.

EPC 1
EPC 2
EPC 3

Read Cycle 1

EPC 1
EPC 2

EPC 4

Read Cycle 2

EPC 3

EPC 5

Read Cycle 3

EPC 3

EPC 5

Read Cycle 4

EPC 3
EPC 4
EPC 5

Read Cycle 5

EPC 3

EPC 5

Read Cycle 6

EPC 3

EPC 5

Read Cycle 7

App 1 Event Cycle 1

App 2 Event Cycle 1 App 2 Event Cycle 2

App 3
Event

Cycle 1

Report Report

Report

Report

Report

Report
RFTagAware 1.3 Programmer Guide Page 2-3

Reading Tag Data Reading and Writing Tags
• Field stability: the event cycle is specified to complete when the set of tags read by a reader
has been stable for a specified period of time.

• External events: the event cycle is specified to begin or end when an external event happens,
such as a container passing an electric eye beam, or a human pressing a button.

Multiple end conditions may be specified, with the event cycle concluding when any of the conditions
are met. An example may be to specify an event cycle to last 10 seconds or if the field is stable for at
least 5 seconds.

Smoothing Read Cycles with Transient Filtering

RFTagAware provides a transient filtering mechanism that can be used to help produce smoother
results when tags are not read reliably by readers. You can use the transient filter when you wish to
filter out tags that appear only briefly, keeping those tags that are read several times within a specified
interval of time. The transient filter may also be used to smooth over gaps when tags disappear briefly
(though accumulation of multiple read cycles into an event cycle has a similar effect, even without
transient filtering).

For instructions on adding a transient filter, see Adding a Transient Filter on page 2-13.

Interacting with ALE

Applications interact with the ALE engine through event cycle specifications (ECSpec) and event
cycle reports (ECReports). An ECSpec identifies the specific information or events that an application
is looking for in each event cycle. The ECSpec defines what locations (logical readers) are to be
included, what external events or time parameters define the start and stop of an event cycle, and a set
of report specifications, each defining a subset of the data of interest. RFTagAware’s ALE engine can
process large numbers of ECSpec instances from different applications simultaneously.

There are three modes of interaction between an application and the RFTagAware Edge Server:

• Immediate: The application uses the ALE interface to send an ECSpec, and the ALE engine
within the Edge Server fulfills the specification by completing one event cycle, after which the
application receives the corresponding reports.

• Immediate with predefined request (“poll”): Applications can request a single event cycle
from a previously defined ECSpec and receive the reports in the response.

• Asynchronous (“subscribe”): An application subscribes to a previously defined ECSpec
using the subscribe operation, indicating an address to which reports should be delivered.
The ALE engine within the Edge Server then sends reports to the application as each event
cycle completes, continuing to do so until the application cancels the subscription.

An application or user can define a standing ECSpec at any time. The Edge Server remembers all such
ECSpec instances until an application or the user explicitly undefines them; thus, numerous
applications can poll or subscribe to the same ECSpec.
Page 2-4 RFTagAware 1.3 Programmer Guide

Reading and Writing Tags Reading Tag Data
The Edge Server remembers all subscribers until they unsubscribe. Thus, if the application subscribes
and then exits, the Edge Server will continue to send reports.

The immediate and poll methods are synchronous, insofar as the application blocks after making its
request until the ALE engine responds with the corresponding reports. The subscribe method is
asynchronous, as control is returned to the application immediately after processing the subscribe
call, with subsequent reports being delivered via an asynchronous channel.

Reports

An ECSpec specifies one or more reports that may be generated at the end of each event cycle. The
report is based on the complete list of tags that were detected by the specified readers during the
event cycle. Each tag that was read appears once in the list, even if it was detected in multiple read
cycles on one reader or on multiple readers. Based on this list of tags, each report has a number of
options:

1. What tags should be included for consideration: all tags read during this event cycle, only
those tags that are new relative to the last event cycle for the same request (additions), or only
those tags that were present during last event cycle for the same request but which no longer
are present (deletions). Note that the latter two choices do not apply to a one-time, immediate
request as there is no previous event cycle to compare against.

2. What filters should be applied to the list of tags from Step 1. A filter may specify that certain
tags should be excluded from consideration (“do not include any Acme products”), or that
only certain tags should be included (“only include pallet-level tags”). EPC Patterns on
page 5-13 includes a detailed description of filter options.

3. If there are no tags left after Step 2, whether a report should be generated or not.

4. How filtered EPCs are grouped together for reporting.

5. When a report is generated, should the report enumerate the actual tag identities that result
from Steps 1, 2, and 4, or merely include a count of the number of tags left in each group
after Steps 1, 2, and 4.

The option in Step 3 is useful for specifying that applications receive reports only for event cycles
where something of interest actually occurred. For example, in a warehouse application that is
monitoring what goods are present on a shelf, the option in Step 3 may be used so that the ALE
engine sends a report only when something is placed on or removed from the shelf.

For more information on reports, see Chapter 5: Reading Tags Using the ALE API.
RFTagAware 1.3 Programmer Guide Page 2-5

Writing Tag Data Reading and Writing Tags
Writing Tag Data

The process of instructing a reader to encode an EPC value onto an RFID tag is called both
“writing” and “programming.” Tag writing can be performed both by RFID readers, and by RFID-
enabled printers, which can print labels with embedded tags. For a complete list of the readers and
printers for which RFTagAware supports tag writing, as well as the specific tag formats which are
supported for each device, see the supported RFID readers section of the RFTagAware Reader
Configuration Guide.

To write tag data, applications define programming cycle specifications (PCSpec), which specify an interval
of time during which a single tag is written and verified. At the end of a programming cycle,
applications receive a write report (PCWriteReport), which tells the applications whether the write
was successful.

When several tags are to be written, one after another, each tag should be assigned a distinct EPC
value. The Edge Server provides a mechanism for ensuring that each tag has a unique value. An EPC
cache is a set of distinct EPC values, which may be used to provide EPC values to consecutive
programming cycles without further application intervention. Applications receive cache reports
(EPCCacheReport) to indicate when a cache is low or empty.

Programming Cycles

Tag writing services provided by the ALE API are organized around the notion of a programming
cycle. Like an event cycle (see Read Cycles and Event Cycles on page 2-2), a programming cycle is an
interval of time during which a specified operation takes place, at the conclusion of which a report is
issued. And, like an event cycle, a programming cycle is specified through declarative specifications, in
this case called programming cycle specifications (PCSpec).

A programming cycle is an interval of time during which a single tag is written and verified. Within a
programming cycle, the reader attempts to ensure that there is a single tag in the field, write the tag,
then read the tag to verify whether the write succeeded. The number of write attempts is configurable
through parameters set within the PCSpec.

The overall pattern within a programming cycle consists of one or more “check” operations followed
by one or more “verification cycles,” each verification cycle consisting of a write attempt followed by
one or more read attempts.

A check operation is a read carried out to verify that exactly one tag is in the field.

A verification cycle is said to succeed if the correct value is read from the tag, otherwise it fails. The
programming cycle as a whole terminates successfully as soon as a successful verification cycle is
completed.
Page 2-6 RFTagAware 1.3 Programmer Guide

Reading and Writing Tags Writing Tag Data
In the diagram above, Programming Cycle 1 first checks that a single tag is in the field. It then
performs a verification cycle, in which a write operation is performed followed by a read operation.
In the example, the read operation shows no tags, so it is repeated, and a tag value other than what
was written is seen. Thus, this verification cycle is deemed a failure. A second verification cycle is
performed, which succeeds. Note that a “check” operation is not needed before the second
verification cycle, because the first verification cycle’s read operations serve to verify that a single tag
is (still) in the field.

Programming Cycle 2’s check operation sees two tags in the field, so the programming cycle
immediately fails.

In Programming Cycle 3, each verification cycle’s read shows the tag having a value other than the
value written, so after trials attempts (see below), the programming cycle fails.

The following parameters govern execution of a programming cycle:
• trials

The number of times an attempt is made to write the tag. If the PCSpec involves multiple
logical readers, then each trial includes all logical readers.

• duration

The total amount of time allotted to attempting to program the tag.

A programming cycle as a whole terminates when the first successful verification cycle completes, or
after trials is exhausted, or duration elapses, or a stop trigger is received, whichever comes first.

YYY

Check

Programming Cycle 1 (EPC 4) Programming Cycle 3
(EPC 6)

Success
Report

Failure
Report

Write Read

XXX

Read Write

EPC 4

Read

Pgm
Cycle 2
(EPC 5)

Failure
Report

AAA
BBB

Check

YYY

Check Write

YYY

Read

Verification Cycle Verification Cycle Verification Cycle
RFTagAware 1.3 Programmer Guide Page 2-7

Writing Tag Data Reading and Writing Tags
Reader Implementation of Programming Cycle

Various reader manufacturers expose varying capabilities for tag writing. RFTagAware maps between
the definition of programming cycles (described in Programming Cycles on page 2-6) and the actual
capabilities available on various types of readers.

For example, one vendor’s reader provides a “verify” function that can be used to probe the field for
tags, even unprogrammed or invalid tags, but does not return distinct codes for “no tag” vs. “multiple
tags in field”. So this vendor’s reader cannot directly implement RFTagAware’s “check” notion.
However, the vendor’s “program” function performs RFTagAware’s “check”, “write” and “read”
operations together, so RFTagAware can map its programming cycle onto the vendor’s reader
capabilities.

In general, RFTagAware presents a tag writing interface based on programming cycles as defined
above, and maps programming cycles onto each kind of supported reader. Sometimes the mapping is
exact, and other times the mapping is approximate but yields correct results.

EPC Caches and Pools

Programming cycles are designed to support a variety of use cases for tag writing. In the simplest
case, an application makes an immediate request to write a single tag with a specified EPC value. In
more complex cases, it is desirable for the ALE engine to write many tags (through consecutive
programming cycles) without intervention by an application to specify the EPC value for each
programming cycle. These use cases are handled through the use of EPC caches.

A PCSpec may be associated with an EPC cache, which is a collection of EPC values. Multiple PCSpec
instances may share the same EPC cache. RFTagAware maintains the defined PCSpec instances and
their EPC caches as part of its persistent state. Each time a PCSpec is activated, it takes the next EPC
value from its EPC cache, and attempts to write that to a tag. When multiple PCSpec instances share a
single cache, each will get a different EPC value each time it is activated. Hence, caches serve to
ensure uniqueness of the EPC values written to tags.

When a PCSpec’s EPC cache has at least one EPC value available for writing, the cache is said to be
replenished. When it has no EPC values, it is said to be depleted. A PCSpec whose EPC cache is depleted
cannot program tags. Applications can receive asynchronous notifications when cache instances are
depleted or nearing depletion. Applications may also add more EPC values to an existing cache
(whether or not the cache is currently depleted) through the replenishEPCCache API operation.
There is also an API operation called depleteEPCCache that removes all remaining IDs from a the
EPC cache; this is useful when an application knows that it will no longer use the cache, and wishes
to reclaim any unassigned EPC values for later use.

An application creates an EPC cache using the defineEPCCache operation, giving the name of the
cache, and an EPCCacheSpec that specifies reporting parameters (these are described later).
Optionally, initial contents of the EPC cache may be supplied to the defineEPCCache operation, in
which case the EPC cache is initialized in the replenished state. Alternatively, an application may omit
Page 2-8 RFTagAware 1.3 Programmer Guide

Reading and Writing Tags Writing Tag Data
the initial contents in the define operation, in which case it must later call replenishEPCCache in
order for the PCSpec to be able to write tags.

Abstractly, an EPC cache is an ordered list of EPC values. Concretely, the ALE API provides a simple
way to specify EPC caches using the EPC Pattern URN notation. An EPC cache is specified by an
ordered list of Pattern URNs. Each Pattern URN represents a range of EPC values ordered
lexicographically; the contents of the EPC cache is the concatenation of the ranges corresponding to
Pattern URNs in the list.

Here are some examples of how to create tag caches.

This first example (GID-64-i tag format) is not in the EPC Tag Specification but will work with our
simulator and help you to learn how to create tag patterns.

Here is an example of creating a tag cache of SGTIN-64 tags.

Here is an example of creating a tag cache of GID-96 tags.

Typically, only one component of the pattern is a range.

Note that while the EPC values generated from any one EPC Pattern URN are distinct and in
ascending order, different patterns used to replenish the same cache may overlap or appear in non-
ascending sequence. If an application wishes to ensure uniqueness of EPCs generated from the same

Pattern URNs Cache Contents

urn:epc:pat:gid-64-i:1000.1000.1000
urn:epc:pat:gid-64-i:1000.1000.[2000-2002]
urn:epc:pat:gid-64-i:1000.[100-101].[300-301]

urn:epc:tag:gid-64-i:1000.1000.1000
urn:epc:tag:gid-64-i:1000.1000.2000
urn:epc:tag:gid-64-i:1000.1000.2001
urn:epc:tag:gid-64-i:1000.1000.2002
urn:epc:tag:gid-64-i:1000.100.300
urn:epc:tag:gid-64-i:1000.100.301
urn:epc:tag:gid-64-i:1000.101.300
urn:epc:tag:gid-64-i:1000.101.301

Pattern URNs Cache Contents

urn:epc:pat:sgtin-64:0.047400.126279.1
urn:epc:pat:sgtin-64:0.047400.126279.[10-13]

urn:epc:tag:sgtin-64:0.047400.126279.1
urn:epc:tag:sgtin-64:0.047400.126279.10
urn:epc:tag:sgtin-64:0.047400.126279.11
urn:epc:tag:sgtin-64:0.047400.126279.12
urn:epc:tag:sgtin-64:0.047400.126279.13

Pattern URNs Cache Contents

urn:epc:pat:gid-96:1000.1000.1000
urn:epc:pat:gid-96:1000.1000.[2000-2002]
urn:epc:pat:gid-96:1000.[100-101].[300-301]

urn:epc:tag:gid-96:1000.1000.1000
urn:epc:tag:gid-96:1000.1000.2000
urn:epc:tag:gid-96:1000.1000.2001
urn:epc:tag:gid-96:1000.1000.2002
urn:epc:tag:gid-96:1000.100.300
urn:epc:tag:gid-96:1000.100.301
urn:epc:tag:gid-96:1000.101.300
urn:epc:tag:gid-96:1000.101.301
RFTagAware 1.3 Programmer Guide Page 2-9

Comparison of Event Cycles and Programming Cycles Reading and Writing Tags
cache (as is commonly the case), the application must always replenish the cache with unique
patterns.

Reports

When a programming cycle completes, it sends a report to interested applications to say what
happened. Unlike event cycle reports, however, the reports issued by a programming cycle are more
limited in nature.

The RFTagAware Edge Server’s tag programming facility can issue two kinds of report:

• Write report

Issued when a programming cycle completes, either successfully having written a tag value or
because an error occurred. For a successful tag write, the report includes the EPC value that
was written. For a failed tag write, the report contains information describing the error.

• Cache report

Issued when an EPC cache’s number of remaining EPC values drops to (or below) a specified
level.

PCSpec instances do not contain any parameters describing the write reports to be generated; this is in
contrast to ECSpec instances which include one or more ECReportSpec instances describing the
various reports generated by event cycles. EPCCacheSpec instances do contain parameters that
describe the cache reports to be generated, including the threshold at which a cache report should be
generated.

Comparison of Event Cycles and Programming Cycles

RFTagAware’s approaches to tag reading (as embodied in event cycles) and tag writing (as embodied
in programming cycles) are very similar, but differ in certain respects. The following table summarizes
the similarities and differences of event cycles and programming cycles.
Page 2-10 RFTagAware 1.3 Programmer Guide

Reading and Writing Tags Comparison of Event Cycles and Programming Cycles
Event Cycle Programming Cycle

Direction The flow of tag data is in one direction:
from tag, through the RFTagAware
Edge Server, to application.

The flow of tag data is bidirectional: tag data
flows from application to the Edge Server to say
what tag ID should be written; tag data flows
back from a tag through the Edge Server to the
application when the write to the tag is verified.

Readers One or more logical readers; each may
be a single antenna or multiple antennas
or a composite of other logical readers

Same, but multiple antennas are used differently.
In the reading case, the event cycle combines the
set of tags seen by all of the antennas. In the
writing case, the programming cycle tries writing
with each antenna in turn until the tag is
successfully written. The “check” and “read”
operations (see above) are carried out using all
antennas.

Cycle start
condition

Start trigger, repeat interval, or
immediate/poll by application

Start trigger, or immediate/poll by application.
There can be no repeat interval.

Cycle end
condition

Stop trigger, duration, stable field
interval, or all applications unsubscribe

Successful tag write, unless stopped first by stop
trigger, duration, trials, application undefine/
suspend.

Reports One or more tag read reports, each
specifying report type, report set,
report groups, and filters

Reports of specific events, including:
• Successful tag write

• Failed tag write

• EPC cache level low
Report
Subscriptions

Applications that want to know what
tags are in the field.

Two kinds of subscription:
• Applications that subscribe to write reports

are notified whenever a tag programming
operation completes.

• Applications that subscribe to low-cache
reports are notified when the cache is low.

API operations Define, undefine, subscribe,
unsubscribe, poll, immediate

PCSpec operations: define, undefine, subscribe,
unsubscribe, poll, immediate.
EPCCacheSpec operations: defineEPCCache,
undefineEPCCache, replenishEPCCache,
depleteEPCCache, subscribeEPCCache,
unsubscribeEPCCache.
RFTagAware 1.3 Programmer Guide Page 2-11

Specifying Readers to the Edge Server Reading and Writing Tags
Specifying Readers to the Edge Server

Configuring Readers

You configure the Edge Server to recognize your physical readers by editing the edge.props file or
entering configuration information via the Admin Console. The physical reader driver parameters,
acceptable values, and defaults for readers recognized by RFTagAware are covered in detail in the
RFTagAware Reader Configuration Guide.

Physical Readers vs. Logical Readers

In specifying an event cycle or programming cycle, an application names one or more readers of
interest. This is necessary because a single Edge Server may manage many readers that are used for
unrelated purposes. For example, in a large warehouse, there may be three readers covering each of
ten loading dock doors; in such a case, a typical ALE request may be directed at the three readers for
a particular door, but it is unlikely that an application tracking the flow of goods into trucks would
want the reads from all 30 readers to be combined into a single event cycle.

This raises the question of how applications specify which readers are to be used for a given cycle.
One possibility is to use identities associated with the readers themselves; e.g., a unique name, serial
number, IP address, etc. This is undesirable for several reasons:

• The exact identities of readers deployed in the field are likely to be unknown at the time an
application is authored and configured.

• If a reader is replaced, this unique reader identity will change, forcing the application
configuration to be changed.

• If the number of readers must change — for example, because it is discovered that four
readers are required instead of three to obtain adequate coverage of a particular loading dock
door — then the application must be changed.

To avoid these problems, ALE introduces the notion of a “logical reader.” Logical readers are abstract
names that an application uses to refer to one or more readers that have a single logical purpose; e.g.,
readers positioned around a door might be called DockDoor42. Logical readers may be usefully
thought of as being equivalent to “locations.” Within the Edge Server, an association is maintained
between logical names such as DockDoor42 and the physical readers assigned to fulfill that purpose.
Any event cycle or programming cycle specification that refers to DockDoor42 is understood by the
Edge Server to refer to the physical reader (or readers) associated with that name.

In many cases, a single RFID reader may support the use of more than one antenna, with the ability
to treat each antenna independently. The Edge Server permits such readers to be configured so that
each antenna is exposed through ALE as a separate logical reader. This gives flexibility to applications
to use antennas independently or in concert, by simply specifying one or more logical readers in an
ECSpec.
Page 2-12 RFTagAware 1.3 Programmer Guide

Reading and Writing Tags Specifying Readers to the Edge Server
Adding a Transient Filter

You can apply a transient (tag) filter to any logical reader that you configure in edge.props. Different
logical readers may share the same filter settings, or have different settings.

For each transient filter you add, three parameters that control its operation:

• minReads – The number of times a tag must be read before being included in the filter (i.e.,
visible to the event cycle).

• firmInterval – The maximum time (in milliseconds) allowed between reads that increase the
minReads count.

• expiredInterval – The maximum duration (in milliseconds) for a tag not to be read before
expiring from the filter.

These parameters control the filter in the following way. A tag is considered “soft” until it has been
read minReads times, with no more than firmInterval milliseconds passing between each of those
reads. A “soft” tag is not included in the filter’s output, and therefore will not be considered by any
active event cycles. If a “soft” tag is not read for more than firmInterval milliseconds, then the
count starts over again the next time the tag is read.

When the count reaches minReads, the tag becomes “firm”. A “firm” tag is included in the filter’s
output, and will be considered by any active event cycles that use this logical reader. A “firm” tag
remains “firm” even if the tag is not read in every read cycle, until it is not read for expiredInterval
milliseconds. When that happens the tag is considered “expired.” The next time the tag is read, it will
be considered “soft”, and the filter process starts again.

When all event cycles associated with a reader enter the unrequested state, then all filters for that
reader will be reset. This means that all counts will be reset to zero, and all tags will be considered
“soft” the next time they are seen. Setting firmInterval to -1 means that the count for a given tag
will continue to increase towards minReads regardless of the time between reads, until the filter is
reset. Setting expiredInterval to -1 causes any “firm” tag will remain “firm” until the filter is reset.

When choosing values for firmInterval and expiredInterval, you must be aware of the rate at
which the logical reader performs read cycles. For most physical reader types, this is the defaultRate
parameter times the number of active logical readers. If the firmInterval is less than this, then tags
will never become “firm” and no tags will be reported to any event cycle. Likewise, if the
expiredInterval is less than the defaultRate parameter times the number of active logical readers,
then it is equivalent to specifying an expiredInterval of zero.

To add a transient filter to a logical reader, add the following settings in the edge.props file. First,
add the following lines to define a named filter (in the example, the filter is named myfilter1):

com.connecterra.ale.filter.myfilter1.class=
com.connecterra.ale.filtertypes.TransientFilterFactory

com.connecterra.ale.filter.myfilter1.minReads = 3
com.connecterra.ale.filter.myfilter1.firmInterval = 1400
com.connecterra.ale.filter.myfilter1.expiredInterval = 1400
RFTagAware 1.3 Programmer Guide Page 2-13

Specifying Readers to the Edge Server Reading and Writing Tags
Then, for each logical reader to which you want to add the filter, add a line like this (in the example,
the logical reader is named myreader):

com.connecterra.ale.logicalReader.myreader.filters = myfilter1

To apply the same filter parameters to more than one logical reader, you may specify the same
filter name for more than one reader. Even though more than one logical reader refers to the same
filter name, each logical reader is processed by a different filter instance.

Using Composite Readers

You can create additional logical readers by combining existing logical readers. A logical reader
created in this way is called a composite reader. By defining composite readers, you can decouple
applications from decisions you take at deployment time about how many readers are needed to cover
a single location.

For example, suppose that you have four logical readers covering a location called LoadingDock23:
• LoadingDock23_Reader1

• LoadingDock23_Reader2

• LoadingDock23_Reader3

• LoadingDock23_Reader4

You specify these reader names in each ECSpec that you create for LoadingDock23.

Then suppose you discover that you really need five readers to cover that location. If you specified
single logical reader names in each ECSpec, then you would need to:

• Reconfigure the RFTagAware Edge Server to add the fifth reader.

• Go back and edit each ECSpec to include the new fifth reader.

Changing every ECSpec is undesirable, especially if some applications generate ECSpec instances for
LoadingDock23 on the fly.

The alternative is to define a composite reader called LoadingDock23. Initially, this composite reader
is configured to contain LoadingDock23_Reader1 through LoadingDock23_Reader4. Applications that
want to get data from all readers in LoadingDock23 simply specify LoadingDock23 as the sole logical
reader in their ECSpec instances.

Then, when you add your fifth reader, all you have to do is:

• Edit the edge.props file or use the Administration Console RFID Devices node to:

- Add the fifth reader.

- Change the definition of the LoadingDock23 composite reader to include the fifth reader.

• Leave your ECSpec instances unchanged.
Page 2-14 RFTagAware 1.3 Programmer Guide

Chapter 3: Asynchronous Notification
Mechanisms

Contents

This chapter describes the asynchronous notification mechanisms RFTagAware uses to deliver
reports.

• Overview (page 3-2)

• XML via HTTP POST (page 3-2)

• XML via TCP Socket (page 3-3)

• XML via JMS Message (page 3-3)

• XML Written to a File (page 3-6)

• XML Displayed on the Edge Server Console (page 3-7)

• The Null Delivery Method (page 3-7)
RFTagAware 1.3 Programmer Guide Page 3-1

Overview Asynchronous Notification Mechanisms
Overview

Applications may define specifications (ECSpec, PCSpec, and EPCCacheSpec) and later subscribe for
asynchronous delivery of corresponding reports (ECReports, PCWriteReport, EPCCacheReport).
RFTagAware provides a number of ways to deliver asynchronous reports. When an application makes
a new subscription, it specifies a delivery address in the form of a Uniform Resource Identifier (URI).
The URI specifies a particular method of notification delivery, and provides parameters that further
identify the receiver.

The RFTagAware Edge Server provides an extensible mechanism for adding new delivery
mechanisms. RFTagAware also provides five out-of-box event delivery drivers that are applicable in a
wide range of circumstances. The following sections define the delivery mechanisms supported out-
of-box by RFTagAware, and describe how to construct the URIs to provide to the subscribe method
of the ALE interface in order to use them.

All of the notification delivery mechanisms described below encode reports into XML. For additional
information, see:

• XML Representations on page 5-25 (for ECSpec and ECReports objects)

• XML Representations on page 6-12 (for PCSpec, PCWriteReport, EPCCacheSpec, and
EPCCacheReport objects)

XML via HTTP POST

The Edge Server may deliver reports by sending an HTTP POST request, where the payload is the
report instance encoded using XML. The general form of the subscription URI is:

http://host:port/remainder-of-URL

The payload of the notification is the report instance (ECReports, PCWriteReport, EPCCacheReport)
for the subscribed event or programming cycle, encoded into XML.

The response code returned by the HTTP server is used to determine whether the notification
succeeded or not. A response code of 200 through 299 is considered successful; any other response
code is considered a failure.

host host is the DNS name or IP address of the host where the receiver is listening for
incoming HTTP connections.

port port is the TCP port on which the receiver is listening for incoming HTTP
connections. The port and the preceding colon character may be omitted, in which
case the port defaults to 80.

remainder-of-URL remainder-of-URL is the URL path to which the HTTP POST operation will be
directed.
Page 3-2 RFTagAware 1.3 Programmer Guide

Asynchronous Notification Mechanisms XML via TCP Socket
XML via TCP Socket

The Edge Server may deliver reports by opening a TCP socket to a designated receiver, sending an
XML report, then closing the connection. The general form of the subscription URI is:

tcp://host:port

The payload of the notification is the report instance (ECReports, PCWriteReport, EPCCacheReport)
for the subscribed event or programming cycle, encoded into XML.

XML via JMS Message

The Edge Server can deliver event cycle reports by sending a JMS Message to a JMS Topic or a JMS
Queue where the message is a javax.jms.TextMessage that contains the ECReports instance encoded
using XML.

The general form of the URI is:
jms:/topic/conn_factory/topic_name>[?queryParams]
jms:/queue/conn_factory/queue_name>[?queryParams]

Optional segments are enclosed in square brackets [].

host host is the DNS name or IP address of the host where the receiver is listening for
incoming TCP socket connections.

port port is the TCP port on which the receiver is listening for incoming TCP socket
connections.

URI Segment
Optional/
Required Description

topic | queue Required Indicates whether the JMS notification driver adds messages to a queue
or if it publishes messages to a topic.

conn_factory Required The JNDI name of the connection factory for obtaining a topic/queue
connection.
RFTagAware 1.3 Programmer Guide Page 3-3

XML via JMS Message Asynchronous Notification Mechanisms
The Edge Server also adds three additional properties to the TextMessage:

The driver sends JMS messages in a non-transactional context.

Note: All string values in the various segments of the URI have to be properly URI escaped.
For example, to specify a forward slash (/) character in the URI, where that character
is part of either the JNDI name or the connection factory, or the JNDI name of the

topic_name|
queue_name

Required The name of the topic or queue to which the JMS notification driver
sends its messages.

queryParams Optional You can specify additional URI query parameters if needed. To specify
just one query parameter, append a string like ?param1=value1 to the
URI string. When you need to specify more than one parameter, append
a string like ?param1=value1¶m2=value2¶m3=value3
You can use the following query parameters:

• username
The user name that is used when creating a JMS topic connection or
queue connection. Also see the password query parameter, below.

• password
The password of the user specified in the URI.

• ackMode
The acknowledgement mode that is used when the queue or topic
session is created. Recognized values are:
auto

client

dups_ok

If you do not specify ackMode, then a default value of auto is used.

• Query parameters whose names start with jndi: are added to the
javax.naming.Context environment when one is constructed to
access a naming service to perform the necessary JNDI lookups. If
javax.naming.Context properties are specified in the URI as well
as being configured on the Edge Server, then those properties that
are specified in the URI will override the ones configured on the
Edge Server. (See Setting up the JMS Notification Driver on page 3-
6).

• If you specify any other parameters, they will be added to the
javax.jms.TextMessage as String properties, where the query
parameter name is the property name and the query parameter value
is the property value

specName The name of the ECSpec associated with this ECReport.
savantID The Edge Server ID that is originating this ECReport.
date The date of the ECReport. A time in milliseconds, as returned from

System.currentTimeMillis().

URI Segment
Optional/
Required Description
Page 3-4 RFTagAware 1.3 Programmer Guide

Asynchronous Notification Mechanisms XML via JMS Message
queue or the topic, you need to use %2F instead of the forward slash character. See
RFC 2396 for more information (http://www.ietf.org/rfc/rfc2396.txt).

Examples

The following example causes the Edge Server to send XML reports via JMS to a queue named
MyECReportSpecQueue. The JNDI/Naming service is accessed using iiop at jms.example.com via
port 1099. The JNDI name of the connection factory to be used is ConnectionFactory.

jms:/queue/ConnectionFactory/MyECReportSpecQueue?jndi:java.naming.provider.url=
iiop://jms.example.com:1099

The next example causes the Edge Server to send XML reports via JMS to a topic named
MyECReportSpecTopic. The JNDI/Naming service is accessed using iiop at jms.example.com via
port 1099. The JNDI name of the connection factory to be used is called ConnectionFactory.

jms:/topic/ConnectionFactory/MyECReportSpecTopic?jndi:java.naming.provider.url=
iiop://jms.example.com:1099

Here is a more complex example. This example incorporates JMS security as well as JNDI/Naming
service security while using a queue. It uses the jndi: query parameters to set a security principal and
security credential of guest/PasswordForGuest to access the JNDI/Naming service, and uses the
username/password combination of bob/PasswordForBob to open a connection to the queue.

jms:/queue/ConnectionFactory/MyECReportSpecQueue?username=bob&password=PasswordForBob&
jndi:java.naming.provider.url=iiop://jms.example.com:1099&
jndi:java.naming.security.principal=guest&
jndi:java.naming.security.credentials=PasswordForGuest

The next example uses all the elements of the previous example while overriding the default naming
context factory class being used by the JMS driver. The class
org.jnp.interfaces.NamingContextFactory will be used instead of the one the driver is configured
with when performing JNDI lookups.

jms:/queue/ConnectionFactory/
MyECReportSpecQueue?username=bob&password=PasswordForBob&secPrincipal=guest&jndi:java.
naming.provider.url=iiop://
jms.example.com:1099&jndi:java.naming.security.principal=guest&jndi:java.naming.securi
ty.credentials=PasswordForGuest&jndi:java.naming.factory.initial=org.jnp.interfaces.Na
mingContextFactory

The next example adds additional query parameters, field1 and field2 that will be added onto the
JMS text message.

jms:/queue/ConnectionFactory/
MyECReportSpecQueue?username=bob&password=PasswordForBob&secPrincipal=guest&jndi:java.
naming.provider.url=iiop://
jms.example.com:1099&jndi:java.naming.security.principal=guest&jndi:java.naming.securi
ty.credentials=PasswordForGuest&jndi:java.naming.factory.initial=org.jnp.interfaces.Na
mingContextFactory&field1=value1&field2=value2
RFTagAware 1.3 Programmer Guide Page 3-5

XML Written to a File Asynchronous Notification Mechanisms
Setting up the JMS Notification Driver

To use the JMS Notification driver, you need to edit the following two Edge Server configuration
files. Both are in the etc directory:

• edge.props

• jms.options

For information on how to edit these files, see the RFTagAware Deployment Guide.

XML Written to a File

The Edge Server may deliver event or programming cycle reports by creating or appending XML to
files in the Edge Server’s local file system. The general form of the subscription URI is:

file:///filename

where filename is either the name of a file, a directory, or a pattern as described below.

If filename names a specific file that already exists, the ECReports, PCWriteReport, or
EPCCacheReport instance is encoded as XML and appended to the file. If more than one cycle
completes, the resulting file is not a well-formed XML document, but a concatenation of XML
documents.

If filename does not name an existing file but the directory portion names an existing directory, then
the file is created, and the ECReports, PCWriteReport, or EPCCacheReport instance is encoded as
XML and written to the file. If another cycle completes, the prior case applies and the file will be a
concatenation of XML documents.

If filename names a directory, then the ECReports, PCWriteReport, or EPCCacheReport instance is
written as a new file in that directory with a unique name of the form:

specName-yyyyMMddhhmmssSSS.xml

where specName is the name of the ECSpec, PCSpec, or EPCCacheSpec that defined the cycle, and
yyyyMMddhhmmssSSS is the timestamp in the ECReports, PCWriteReport, or EPCCacheReport instance,
in the local timezone (SSS is the millisecond, which helps insure the uniqueness of the filename even
if several reports are generated per second).

If filename contains parentheses, the text within the parentheses is considered to be a pattern string
for the timestamp, and the resulting filename after substitution is treated as above. For example, given
this subscription URI:

file:///mydir/myprefix-(yyyy-MM-dd).xml

then all reports generated on Christmas Day 2003 would be appended to the file
/mydir/myprefix-2003-12-25.xml
Page 3-6 RFTagAware 1.3 Programmer Guide

Asynchronous Notification Mechanisms XML Displayed on the Edge Server Console
In all cases, the XML is as described in XML Representations on page 5-25 and XML
Representations on page 6-12.

XML Displayed on the Edge Server Console

The Edge Server may deliver event cycle reports by displaying XML in the console window where the
Edge Server was started. This is typically useful only in debugging situations. The general form of the
subscription URI is:

console:heading

where heading is an arbitrary text string (conforming to URI syntax restrictions). The heading is
printed prior to each report instance (ECReports, PCWriteReport, or EPCCacheReport). This may be
useful to distinguish reports arising from different subscriptions. URI syntax restrictions prohibit the
heading from being empty.

The Null Delivery Method

The Edge Server permits a null subscription URI, having the following form:
null:ignoredText

where ignoredText is any non-empty text string (it is ignored by the Edge Server, but is necessary to
conform to URI syntax restrictions). Subscribing an ECSpec to this URI will cause the ECSpec to
activate, but the reports will not be delivered anywhere (unless there are other subscribers to the same
ECSpec). This URI is used when you want to force the readers and the Edge Server to perform
activity, but you are not interested in the results. Typically this need arises only in testing situations.
RFTagAware 1.3 Programmer Guide Page 3-7

The Null Delivery Method Asynchronous Notification Mechanisms
Page 3-8 RFTagAware 1.3 Programmer Guide

Chapter 4: Triggers

Contents
• Introduction (page 4-2)

• OLE for Process Control (OPC) Trigger Driver (page 4-2)

• Additional Trigger Drivers (page 4-2)
RFTagAware 1.3 Programmer Guide Page 4-1

Introduction Triggers
Introduction

Applications may define event cycle specifications (ECSpec) and programming cycle specifications
(PCSpec) where the beginning and/or end of each cycle is triggered by external events. RFTagAware
provides an extensible mechanism for connecting sources of external events to the ALE engine.

OLE for Process Control (OPC) Trigger Driver

OPC is a series of standards specifications that define a standard set of objects, interfaces and
methods for use in process control and manufacturing automation applications to facilitate
interoperability. (For more information on OPC, see http://www.opcfoundation.org.)

RFTagAware includes a driver for OPC triggers. An event or programming cycle in the Edge Server
may be triggered by polling for a change in an OPC item. The Edge Server communicates with the
OPC service using the OPC XML-DA protocol, which is a SOAP interface to an OPC Data Access
provider. The OPC XML-DA implementation is provided by a third party.

The general form of the trigger URI is:
opcpoll:itemName=item;http://hostname/location

where:

• item is the name of the OPC item that the driver polls for changes.

• http://hostname/location is the URL that is used to create the connection to the OPC
OPC XML-DA server.

When an event cycle or programming cycle that uses an OPC trigger is first requested (that is, when
the event cycle or programming cycle is invoked using the poll or immediate method or subscribed
using subscribe), the Edge Server polls the OPC XML-DA server for the current value of the
specified OPC item. Afterwards, each time the value of the OPC item changes, a trigger will be
delivered to the event cycle or programming cycle.

Additional Trigger Drivers

Please contact ConnecTerra support (see Contacting Technical Support on page viii) for more
information about obtaining additional trigger drivers.
Page 4-2 RFTagAware 1.3 Programmer Guide

Chapter 5: Reading Tags Using the ALE
API

Contents

This chapter describes the ALE API programming components you use to read tags.

• Introduction to the ALE API Specification (page 5-2)

• ALE: Main Tag Reading Interface (page 5-3)

• Primary ECSpec Data Types (page 5-6)

• ECSpec (page 5-6)

• ECReports (page 5-17)

• Other ALE API Types (page 5-23)

- ECSpecInfo (RFTagAware Extension) (page 5-23)

- ECSubscriptionInfo (RFTagAware Extension) (page 5-24)

- ECSubscriptionControls (RFTagAware Extension) (page 5-24)

• XML Representations (page 5-25)

- ECSpec - Example (page 5-25)

- ECReports - Example (page 5-26)

• Using the ALE Tag Reading API from Java (page 5-27)
RFTagAware 1.3 Programmer Guide Page 5-1

Introduction to the ALE API Specification Reading Tags Using the ALE API
Introduction to the ALE API Specification

This section provides a formal, abstract specification of the ALE API for reading tags. The external
interface is defined by the ALE class (See ALE: Main Tag Reading Interface on page 5-3). This
interface makes use of a number of complex data types that are documented in the sections starting at
ECSpec on page 5-6. The ALE API is compliant with the EPCglobal ALE 1.0 specification.

The general interaction model is that there are one or more clients that make method calls to the
ALE interface. Each method call is a request, which causes the ALE engine to take some action and
return results. Thus, methods of the ALE interface are synchronous.

The ALE interface also provides a way for clients to subscribe to events that are delivered
asynchronously. This is done through methods that take a URI as an argument. Such methods return
immediately, but subsequently the ALE engine within the Edge Server may asynchronously deliver
information to the consumer denoted by the URI argument.

In the sections below, the API is described using UML class diagram notation, as shown below:

The box as a whole refers to a conceptual class, having the specified data members and methods.
Within the UML descriptions, data members/methods are marked as belonging to one of the
following categories:

• The EPCglobal ALE specification.

• RFTagAware extensions to the EPCglobal ALE specification.

The ALE API is realized in several equivalent forms within RFTagAware:

• There is a binding of the ALE API to a SOAP web service, described by a WSDL file.

• The complex data types have a standard representation as XML documents, defined by an
XSD schema.

• There is a binding of the ALE API to Java, in which it takes the form of a collection of Java
interface and class definitions.

Each of these concrete forms of the ALE API has a slightly different structure and gives slightly
different names to the different conceptual classes, data members, and methods defined in UML
within this section. This is unavoidable, owing to syntactic constraints and stylistic norms within
these different implementation technologies.

dataMember1 : Type1

dataMember2 : Type2

method1(ArgName:ArgType, ArgName:ArgType, …) : ReturnType

method2(ArgName:ArgType, ArgName:ArgType, …) : ReturnType
Page 5-2 RFTagAware 1.3 Programmer Guide

Reading Tags Using the ALE API ALE: Main Tag Reading Interface
In most cases, the mapping from conceptual UML to the concrete details of any particular binding is
very straightforward; where it is not, the specific documentation for each binding will make clear the
relationship to the UML. The UML-level descriptions in this section should be considered normative.

• For specifics of the Java binding, see the Javadoc that is included in the RFTagAware
installation.

• For specifics of the WSDL binding, see the WSDL file:
EPCglobal-ale-1_0.wsdl

This file is located in your RFTagAware installation directory under share/schemas.

• For specifics of the XML representation of the complex data types, see the following XSD
files:
- EPCglobal-ale-1_0.xsd

Defines EPCglobal ALE schema; references RFTagAware extensions.
- EPCglobal.xsd

Defines the EPCglobal common types, Document and EPC, referred to by
EPCglobal-ale-1_0.xsd.

- EPCglobal-ale-1_0-RFTagAware-extensions.xsd

Defines the RFTagAware schema extensions.

These files are located in your RFTagAware installation directory under share/schemas.

See also XML Representations on page 5-25.

ALE: Main Tag Reading Interface

Java implementation package: com.connecterra.ale.api

EPCglobal ALE

define(ecSpecName:string, spec:ECSpec) : void

undefine(ecSpecName:string) : void

getECSpec(ecSpecName:string) : ECSpec

getECSpecNames() : List // returns a List of strings naming ECSpec instances
subscribe(ecSpecName:string, notificationURI:URI) : void

unsubscribe(ecSpecName:string, notificationUri:URI) : void

getSubscribers(ecSpecName:string) : List // returns a List of subscriber URIs
poll(ecSpecName:string) : ECReports

immediate(spec:ECSpec) : ECReports

getStandardVersion() : string

getVendorVersion() : string
RFTagAware 1.3 Programmer Guide Page 5-3

ALE: Main Tag Reading Interface Reading Tags Using the ALE API
An ECSpec is a complex type that defines how an event cycle is to be calculated.

There are two ways to cause event cycles to occur:

• A standing ECSpec may be posted using the define method. Subsequently, one or more
clients may subscribe to that ECSpec using the subscribe method. The ECSpec will generate
event cycles as long as there is at least one subscriber.

A poll call is like subscribing then unsubscribing immediately after one event cycle is
generated (except that the results are returned from poll instead of being sent to a URI).

• An ECSpec can be submitted for immediate execution using the immediate method. This is
equivalent to defining an ECSpec, performing a single poll operation, and then undefining it.

The execution of ECSpec instances is defined formally as follows. ECSpec instances are each in one of
three states: unrequested, requested, and active. An ECSpec is said to be requested if any of the
following is true:

• It has previously been defined using define, it has not yet been undefined, and there has
been at least one subscribe call for which there has not yet been a corresponding
unsubscribe call.

• It has previously been defined using define, it has not yet been undefined, a poll call has
been made, and the first event cycle since the poll was received has not yet been completed.

• It was defined using the immediate method, and the first event cycle has not yet been
completed.

Once requested, an ECSpec is said to be active if reads are currently being accumulated into an event
cycle based on the ECSpec. Standing ECSpec instances that are requested using subscribe may
transition between active and inactive multiple times. ECSpec instances that are requested using
poll or created using immediate will transition between active and inactive just once (though in
the case of poll, the ECSpec remains defined afterward so that it could be subsequently polled again
or subscribed to).

RFTagAware Extensions

getECSpecInfo(ecSpecName:string) : ECSpecInfo

redefine (ecSpecName:string, spec:ECSpec) : void

subscribe(ecSpecName: string, notificationURI: URI, controls:
ECSubscriptionControls) : void

suspend (ecSpecName:string) : void

unsuspend (ecSpecName:string) : void

listLogicalReaderNames() : List

// returns a List of Strings in sorted order naming all logical readers known to the ALE engine
getECSubscriptionInfo(ecSpecName:string, notificationURI:URI):ECSubscriptionInfo
Page 5-4 RFTagAware 1.3 Programmer Guide

Reading Tags Using the ALE API ALE: Main Tag Reading Interface
Two other methods are provided to manipulate ECSpec instances while preserving existing
subscriptions:

• The suspend and unsuspend methods let you temporarily “suspend” an ECSpec without
removing its subscriptions. While an ECSpec is suspended, you can add and remove
subscriptions using the subscribe and unsubscribe methods, but the ECSpec behaves as
though it is in the unrequested state — it causes no read cycles to take place, and generates no
ECReports.

• The redefine method lets you replace the definition of an ECSpec. It is roughly equivalent to
unsubscribing all subscribers, undefining the ECSpec, defining a new ECSpec with the same
name, then replacing the subscribers. The redefine method is intended for development and
not production use, as it may cause a gap in event cycle processing.

State Diagram

The effects of these methods on an ECSpec is summarized in the state diagram below.

Unre-
quested

Re-
quested

Active

define subscribe or poll

unsubscribe of last subscriber
undefine

Start trigger
received or

repeatPeriod
elapsed

Stop trigger received, duration
elapsed, or field stable for

stableFieldInterval

subscribe or poll,
when no startTrigger specified

immediate

immediate, when no startTrigger specified

Stop condition reached, and
only requester was poll

Stop condition reached, and
only requester was immediate
RFTagAware 1.3 Programmer Guide Page 5-5

Primary ECSpec Data Types Reading Tags Using the ALE API
The two methods getStandardVersion and getVendorVersion provide information about
compliance with EPCglobal specifications:

• getStandardVersion returns a string that identifies what version of the EPCglobal ALE
specification this implementation complies with. In RFTagAware 1.3, this method always
returns the string 1.0.

• getVendorVersion returns a string that identifies what vendor extensions this implementation
provides. In RFTagAware 1.3, this method always returns the string:
http://version.connecterra.com/ALE/1

Primary ECSpec Data Types

The primary data types associated with the ALE API are

• ECSpec, which specifies how an event cycle is to be calculated and reported

• ECReports, which contains one or more reports generated from one activation of an ECSpec.

ECReports instances are returned from the poll and immediate methods, and also sent to
URIs when ECSpec instances are subscribed to using the subscribe method.

For detailed information on the ECSpec and ECReports data types, see ECSpec on page 5-6 and
ECReports on page 5-17.

ECSpec

Java implementation package: com.connecterra.ale.api

An ECSpec is a complex type describing an event cycle and one or more reports that are to be
generated from it. It contains:

• A list of readers whose reader cycles are to be included in the event cycle. Each member of
this list may be a single logical reader, or the name of a composite reader. For information on
composite readers, see Using Composite Readers on page 2-14.

• A specification of how the boundaries of event cycles are to be determined.

• A list of report specifications, each of which describes a report to be generated from this
event cycle.

• A boolean value indicating whether or not to include the complete ECSpec as part of every
ECReports instance generated by this ECSpec.

It also contains an optional “application data” string, which is simply copied unmodified into every
ECReports instance generated from this ECSpec.
Page 5-6 RFTagAware 1.3 Programmer Guide

Reading Tags Using the ALE API ECSpec
ECSpec UML Diagram

Java Implementation Notes: Note that in the Java API, ECSpec does not include a boundaries data
member that references an ECBoundarySpec. Rather, in Java, ECSpec provides getter and setter
methods for accessing ECBoundarySpec’s data members (startTrigger, repeatPeriod, etc.) directly.
See the Javadoc and ECBoundarySpec on page 5-7.

ECBoundarySpec

An ECBoundarySpec specifies how the beginning and end of event cycles are to be determined.

EPCglobal ALE

readers : List // List of logical or composite reader names

boundaries : ECBoundarySpec

reportSpecs : List // List of one or more ECReportSpec instances

includeSpecInReports : boolean

RFTagAware Extensions

applicationData : string

EPCglobal ALE

startTrigger : ECTrigger

repeatPeriod : ECTime

stopTrigger : ECTrigger

duration : ECTime
RFTagAware 1.3 Programmer Guide Page 5-7

ECSpec Reading Tags Using the ALE API
The time values duration and stableSetInterval can be expressed in either of two units:
milliseconds or read cycles. One read cycle unit denotes whatever interval of time is required to
complete one read cycle for every reader that is included in the event cycle. This may be dynamic with
the number of physical reading elements in the Logical Reader. The time values must be non-
negative. Zero means “unspecified” (in which case the value of the corresponding units argument is
irrelevant).

startTrigger and repeatPeriod are mutually exclusive.

The conditions under which an event cycle is started depends on the settings for startTrigger and
repeatPeriod:

• If startTrigger is specified, an event cycle is started when:

- The ECSpec is in the requested state and the specified start trigger is received.

• If startTrigger is not specified and repeatPeriod is specified, an event cycle is started when

- The ECSpec transitions from the unrequested state to the requested state; or

- The repeatPeriod has elapsed from the start of the last event cycle, and in that interval the
ECSpec has never transitioned to the unrequested state.

• If neither startTrigger nor repeatPeriod are specified, an event cycle is started when:

- The ECSpec transitions from the unrequested state to the requested state; or

- Immediately after the previous event cycle, if the ECSpec is in the requested state.

An event cycle, once started, extends until one of the following is true:

• The duration or durationReadCycles, when specified, expires.

• When the stableSetInterval or stableSetIntervalReadCycles is specified, no new EPCs
have been reported by any reader in the specified interval.

• The stopTrigger, when specified, is received.

• The ECSpec transitions to the unrequested state.

Note that the first of these conditions to become true terminates the event cycle. For example, if both
duration and stableSetInterval are specified, then the event cycle terminates when the duration
expires, even if the reader field has not been stable for stableSetInterval. But if the field is stable
for stableSetInterval, the event cycle terminates even if the total time is shorter than the specified

stableSetInterval : ECTime

RFTagAware Extensions

durationReadCycles: int

stableSetIntervalReadCycles: int

Page 5-8 RFTagAware 1.3 Programmer Guide

Reading Tags Using the ALE API ECSpec
duration. Likewise, if both duration and durationReadCycles are specified, the event cycle
terminates when the first of these time periods elapses.

In all the descriptions above, note that an ECSpec presented via the immediate method means that the
ECSpec transitions from unrequested to requested immediately upon calling immediate, and transitions
from requested to unrequested immediately after completion of the event cycle.

URIs specify an event cycle’s start or stop triggers. Please contact ConnecTerra customer support for
more information about trigger URIs.

It is possible to specify both duration and stableSetInterval in units of milliseconds and/or units
of read cycles. Be careful when using units of read cycles. If any reader experiences a failure during
the event cycle, it will not complete read cycles, and hence time as measured in read cycles may never
reach the limits set for duration or stableSetInterval. For this reason, it is highly recommended to
include a duration in units of milliseconds, to act as an overall timeout for the event cycle.

ECBoundarySpec Implementation Notes

Java: ECBoundarySpec, ECTime, ECTimeUnit and ECTrigger are not visible in the Java API. Instead,
they are encapsulated by the ECSpec methods:

• get/setDurationMillis

• get/setDurationReadCycles

• get/setStableSetIntervalMillis

• get/setStableSetIntervalReadCycles

• get/setRepeatPeriodMillis

• get/setStartTrigger

• get/setStopTrigger

See the Javadoc for information on these methods.

XML: To express duration and stableSetInterval in read cycles (rather than milliseconds), use the
ECBoundarySpec elements durationReadCycles and stableSetIntervalReadCycles.

ECTime

ECTime denotes a span of time measured in physical time units. Used to specify time values in
ECBoundarySpec. See ECBoundarySpec on page 5-7 and ECBoundarySpec Implementation Notes
on page 5-9.

EPCglobal ALE

duration : long

unit : ECTimeUnit

RFTagAware 1.3 Programmer Guide Page 5-9

ECSpec Reading Tags Using the ALE API
ECTimeUnit

ECTimeUnit is an enumerated type denoting different units of physical time that may be used in an
ECBoundarySpec. See ECBoundarySpec on page 5-7 and ECBoundarySpec Implementation Notes
on page 5-9. ECTimeUnit currently supports only one time unit (milliseconds).

ECTrigger

ECTrigger denotes a URI that is used to specify a start or stop trigger for an event cycle. See
ECBoundarySpec on page 5-7 and ECBoundarySpec Implementation Notes on page 5-9.

ECReportSpec

Java implementation package: com.connecterra.ale.api

An ECReportSpec specifies one report to be returned from executing an event cycle. An ECSpec may
contain one or more ECReportSpec instances.

The reportSet parameter specifies what set of EPCs is considered for reporting: all currently read,
additions from the previous event cycle, or deletions from the previous event cycle. The filter
parameter specifies how the raw EPCs are filtered before inclusion in the report. The group
parameter (of type ECGroupSpec) specifies how the filtered EPCs are grouped together for reporting.

EPCglobal ALE

<<Enumerated Type>>

MS // Milliseconds

EPCglobal ALE

trigger : URI

EPCglobal ALE

reportName : string

reportSet : ECReportSetSpec

filter : ECFilterSpec

group : ECGroupSpec

output : ECReportOutputSpec

reportIfEmpty : boolean

reportOnlyOnChange : boolean

RFTagAware Extensions

essential : boolean

applicationData : string

Page 5-10 RFTagAware 1.3 Programmer Guide

Reading Tags Using the ALE API ECSpec
If no group parameter is specified, then all EPCs are placed in a single default group. The output
parameter specifies whether to return the EPCs themselves, a count, or both.

The reportIfEmpty parameter specifies whether this report should be included in the final
ECReports instance if the final, filtered list of EPCs is empty (i.e., if the final EPC list would be empty,
or if the final count would be zero). If the parameter is set to:

• false – (default) This report is omitted when empty.

• true – This report is always included, even if it is empty.

If reportOnlyOnChange set to true, in the case of a standing report request, then reports will not be
sent to subscribers unless the filtered list of EPCs is different than the previous event cycle’s filtered
list of EPCs. This comparison takes place before the filtered list has been modified based on
reportSet or output parameters. The comparison also disregards whether the previous report was
actually sent due to the effect of this boolean, or the reportIfEmpty boolean.

The essential parameter specifies whether this report is considered “essential” for the containing
event cycle. “Essential” means that this report must be present for an ECReports instance to be
generated at all. In the event that more than one report is marked “Essential”, all such reports must
be present for an ECReports instance to be generated.

For example, in a shipment receiving application there may be an event cycle with two ECReportSpec
instances. The first, for which essential=true, has a filter set to include only those tags that match
the tags expected in a particular shipment. The second, for which essential=false, has a count of all
tags read. If a shipment is received that contains at least one item on the expected list, then an
ECReports instance is delivered that contains a list of the tags expected, and a total count of all tags
read. If, however, a shipment contains no tags from the expected list, the essential setting on the
first report will suppress the generation of any report at all, and no notification will be delivered.

Note: If the report has been marked essential=true, consider whether to change the
default “empty report” behavior (omit the report when it is empty) controlled by the
reportIfEmpty parameter.

The reportName parameter is an arbitrary string that is copied to the ECReport instance created when
this event cycle completes. The purpose of the reportName parameter is so that clients can distinguish
which of the ECReport instances it receives corresponds to which ECReportSpec instance contained in
the original ECSpec. This is especially useful in cases where fewer reports are delivered than there
were ECReportSpec instances in the ECSpec, because false reportIfEmpty settings suppressed the
generation of some reports.

ECReportSpec Implementation Notes

Java: ECFilterSpec, ECGroupSpec, and ECReportOutputSpec are not visible in the Java API. Instead,
they are encapsulated in the ECReportSpec methods:
RFTagAware 1.3 Programmer Guide Page 5-11

ECSpec Reading Tags Using the ALE API
• get/set/addIncludePattern and get/set/addExcludePattern

See ECFilterSpec on page 5-12.
• get/setGroupSpec

See ECGroupSpec on page 5-13.

• includeList, includeCount

See ECReportOutputSpec on page 5-16.

ECReportSetSpec

Java implementation package: com.connecterra.ale.api

ECReportSetSpec is an enumerated type denoting what set of EPCs is to be considered for filtering
and output: all EPCs read in the current event cycle, additions from the previous event cycle, or
deletions from the previous event cycle.

ECFilterSpec

An ECFilterSpec specifies what EPCs are to be included in the final report.

The ECFilterSpec implements a flexible filtering scheme based on two pattern lists. Each list
contains zero or more URI-formatted EPC patterns. Each EPC pattern denotes a single EPC, a
range of EPCs, or some other set of EPCs. (Patterns are described in detail below in EPC Patterns on
page 5-13.)

An EPC is included in the final report if (a) the EPC does not match any pattern in the
excludePatterns list, and (b) the EPC does match at least one pattern in the includePatterns list.
The (b) test is omitted if the includePatterns list is empty.

This can be expressed in mathematical notation as follows:
F(R) = { epc | epc in R & epc in I1 & … & epc in In & epc not in E1 & … & epc
not in En }

where Ii denotes the set of EPCs matched by the ith pattern in the includePatterns list, and Ei
denotes the set of EPCs matched by the ith pattern in the excludePatterns list.

<<Enumerated Type>>

CURRENT

ADDITIONS

DELETIONS

includePatterns : List // List of URI-formatted EPC patterns

excludePatterns : List // List of URI-formatted EPC patterns
Page 5-12 RFTagAware 1.3 Programmer Guide

Reading Tags Using the ALE API ECSpec
Java Implementation Notes: ECFilterSpec is not visible in the Java API. Instead, it is encapsulated
by the ECReportSpec methods:

• get/set/addIncludePattern

• get/set/addExcludePattern

See the Javadoc for information on these methods.

EPC Patterns

EPC Patterns are used to specify filters within an ECFilterSpec. The complete syntax is defined by
the EPCglobal Tag Data Standards, Version 1.1 Revision 1.27. Please consult that document (available at
http://www.epcglobalinc.org/standards_technology/specifications.html) for full details; highlights
are summarized here.

A single EPC pattern is a URI-formatted string that denotes a single EPC or set of EPCs. The
general format is:

urn:epc:pat:TagEncodingName:Filter.DomainManager.ObjectClass.SerialNumber

where the four fields Filter, DomainManager, ObjectClass, and SerialNumber correspond to fields
of an EPC. (Depending on the TagEncodingName, some of these fields may not actually be present.
Consult the EPCglobal Tag Data Standards for details.) In an EPC pattern, each of those fields may be
(a) a decimal integer, meaning that a matching EPC must have that specific value in the
corresponding field; (b) an asterisk (*), meaning that a matching EPC may have any value in that field;
or (c) a range denoted like [lo-hi], meaning that a matching EPC must have a value between the
decimal integers lo and hi, inclusive. (The tag data standards document includes restrictions and
further details not documented here.)

Here are some examples. In these examples, assume that 20 is the Domain Manager for XYZ
Corporation, and 300 is the Object Class for its UltraWidget product, and that GID-96 tag encodings
are used.

ECGroupSpec

ECGroupSpec defines how filtered EPCs are grouped together for reporting.

urn:epc:pat:gid-96:20.300.4000 Matches the tag for UltraWidget serial number 4000.
urn:epc:pat:gid-96:20.300.* Matches any UltraWidget, regardless of serial number.
urn:epc:pat:gid-96:20.*.[5000-9999] Matches any XYZ Corporation product whose serial

number is between 5000 and 9999, inclusive.
urn:epc:pat:gid-96:*.*.* Matches any GID-96.

patternList : List
// List of pattern URIs

RFTagAware 1.3 Programmer Guide Page 5-13

ECSpec Reading Tags Using the ALE API
For detailed information, see:

• About Group Reports (page 5-14)

Java Implementation Notes: ECGroupSpec is not visible in the Java API. Instead, it is encapsulated
by the ECReportSpec methods getGroupSpec and setGroupSpec.

See the Javadoc for information on these methods.

About Group Reports

Sometimes it is useful to group EPCs read during an event cycle based on portions of the EPC or
attributes of the objects identified by the EPCs. For example, in a shipment receipt verification
application, it is useful to know the quantity of each type of case (for example, each distinct case
GTIN), but not necessarily the serial number of each case. This requires slightly more complex
processing, based on grouping patterns.

You specify groups by supplying one or more group patterns in the patternList field of
ECGroupSpec. Each element of the pattern list is an EPC Pattern URI as defined by the EPCglobal Tag
Data Standards, extended by allowing the character X in each position where a * character is allowed.
Pattern URIs used in an ECGroupSpec are interpreted as follows:

Here are examples of pattern URIs used as grouping patterns:

In the corresponding ECReport, each group is named by another EPC Pattern URI that is identical to
the grouping pattern URI, except that the group name URI has an actual value in every position
where the grouping pattern URI had an X character.

Pattern URI Field Meaning

X Create a different group for each distinct value of this field.
* All values of this field belong to the same group.
Number Only EPCs having Number in this field will belong to this group.
[Lo-Hi] Only EPCs whose value for this field falls within the specified range will belong to

this group.

Pattern URI Meaning

urn:epc:pat:sgtin-64:X.*.*.* Groups by filter value (for example, case/pallet).
urn:epc:pat:sgtin-64:*.X.*.* Groups by company prefix.
urn:epc:pat:sgtin-64:*.X.X.* Groups by company prefix and item reference (groups by

specific product).
urn:epc:pat:sgtin-64:X.X.X.* Groups by company prefix, item reference, and filter.
urn:epc:pat:sgtin-64:3.X.*.[0-100] Creates a different group for each company prefix, including

in each such group only EPCs having a filter value of 3 and
serial numbers in the range 0 through 100, inclusive.
Page 5-14 RFTagAware 1.3 Programmer Guide

Reading Tags Using the ALE API ECSpec
For example, if these are the filtered EPCs read for the current event cycle:
urn:epc:tag:sgtin-64:3.0036000.123456.400
urn:epc:tag:sgtin-64:3.0036000.123456.500
urn:epc:tag:sgtin-64:3.0029000.111111.100
urn:epc:tag:sscc-64:3.0012345.31415926

Then a pattern list consisting of just one element, like this:
urn:epc:pat:sgtin-64:*.X.*.*

would generate the following groups in the report:

Every filtered EPC that is part of the event cycle is part of exactly one group. If an EPC does not
match any of the EPC Pattern URIs in the pattern list, it is included in a special “default group.” The
name of the default group is null. In the above example, the SSCC EPC did not match any pattern in
the pattern list, and so was included in the default group.

As a special case of the above rule, if the pattern list is empty (or if the group parameter of the
ECReportSpec is null or omitted), then all EPCs are part of the default group.

In order to insure that each EPC is part of only one group, there is an additional restriction that all
patterns in the pattern list must be pairwise disjoint. Disjointness of two patterns is defined as
follows. Let Pat_i and Pat_j be two pattern URIs, written as a series of fields as follows:

Pat_i = urn:epc:pat:type_i:field_i_1.field_i_2.field_i_3...
Pat_j = urn:epc:pat:type_j:field_j_1.field_j_2.field_j_3...

Then Pat_i and Pat_j are disjoint if:

• type_i is not equal to type_j

• type_i = type_j but there is at least one field k for which field_i_k and field_j_k are
disjoint, as defined by the table below:

Group Name EPCs in Group

urn:epc:pat:sgtin-64:*.0036000.*.* urn:epc:tag:sgtin-64:3.0036000.123456.400
urn:epc:tag:sgtin-64:3.0036000.123456.500

urn:epc:pat:sgtin-64:*.0029000.*.* urn:epc:tag:sgtin-64:3.0029000.111111.100

[default group] urn:epc:tag:sscc-64:3.0012345.31415926

X * Number [Lo-Hi]

X Not disjoint Not disjoint Not disjoint Not disjoint

* Not disjoint Not disjoint Not disjoint Not disjoint

Number Not disjoint Not disjoint Disjoint if the numbers are
different

Disjoint if the number is not
included in the range

[Lo-Hi] Not disjoint Not disjoint Disjoint if the number is not
included in the range

Disjoint if the ranges do not
overlap
RFTagAware 1.3 Programmer Guide Page 5-15

ECSpec Reading Tags Using the ALE API
The formal definition of grouping is as follows. A group operator G is specified by a list of pattern
URIs:

G = (Pat_1, Pat_2, ..., Pat_N)

Let each pattern be written as a series of fields, where each field_i_j is either X, *, Number, or
[Lo-Hi].

Pat_i = urn:epc:pat:type_i:field_i_1.field_i_2.field_i_3...

Then the definition of G(epc), the group name associated with a specific EPC, is as follows. Let epc
be written like this:

urn:epc:tag:type_epc:field_epc_1.field_epc_2.field_epc_3...

The epc is said to match Pat_i if

• type_epc = type_i; and

• For each field k, one of the following is true:

- field_i_k = X

- field_i_k = *

- field_i_k is a number, equal to field_epc_k

- field_i_k is a range [Lo-Hi], and Lo is less than or equal to field_epc_k, which is less than or
equal to Hi

Because of the disjointedness constraint specified above, the epc is guaranteed to match at most one
of the patterns in G.

The group name G(epc) is then defined as follows:

• If epc matches Pat_i for some i, then
G(epc) = urn:epc:pat:type_epc:field_g_1.field_g_2.field_g_3...

where for each k, field_g_k = *, if field_i_k = *; or field_g_k = field_epc_j, otherwise.

• If epc does not match Pat_i for any i, then G(epc) = the default group.

ECReportOutputSpec

ECReportOutputSpec specifies how the final set of EPCs is to be reported.

includeEPC : boolean

includeTag : boolean

includeRawHex : boolean

includeRawDecimal : boolean

includeCount : boolean

Page 5-16 RFTagAware 1.3 Programmer Guide

Reading Tags Using the ALE API ECReports
If any of the four booleans includeEPC, includeTag, includeRawHex, or includeRawDecimal is true,
the report includes a list of the EPCs in the final set for each group. Each element of this list, when
included, includes the formats specified by these four booleans. If includeCount is true, the report
includes a count of the EPCs in the final set for each group. Both may be true, in which case each
group includes both a list and a count. If all five booleans includeEPC, includeTag, includeRawHex,
includeRawDecimal, and includeCount are false, then the define and immediate methods raise an
exception.

Java Implementation Notes: ECReportOutputSpec is not visible in the Java API. Instead, it is
encapsulated by these ECReportSpec methods:

• setIncludeEPC

• setIncludeTag

• setIncludeRawHex

• setIncludeRawDecimal

• setIncludeCount

See the Javadoc for information on these methods.

ECReports

Java implementation package: com.connecterra.ale.api

ECReports UML Diagram
RFTagAware 1.3 Programmer Guide Page 5-17

ECReports Reading Tags Using the ALE API
ECReports is the output from an event cycle.

The “meat” of an ECReports instance is the list of ECReport instances, each corresponding to an
ECReportSpec instance in the event cycle’s ECSpec. In addition to the reports themselves, ECReports
contains a number of “header” fields that provide useful information about the event cycle:

EPCglobal ALE

specName : string

date : dateTime

ALEID : string

totalMilliseconds : long

terminationCondition : ECTerminationCondition

spec : ECSpec

reports : List // List of ECReport instances

schemaURL : URI

RFTagAware Extensions

totalReadCycles : int

applicationData : string

physicalReaders : List // List of strings, each naming a physical reader

failedLogicalReaders : List // List of strings, each naming a logical reader

Field Description

specName The name of the ECSpec that controlled this event cycle. In the case of an
ECSpec that was requested using the immediate method, this name is one
chosen by the Edge Server.

date The date and time when the event cycle ended.
ALEID An identifier for the deployed instance of the Edge Server. This value is set by

the ale.savantID property in the edge.props file and can be set in the
installer.

totalMilliseconds The total time, in milliseconds, from the start of the event cycle to the end of
the event cycle.

terminationCondition Indicates what kind of event caused the event cycle to terminate: the receipt of
an explicit stop trigger, the expiration of the event cycle duration, or the set of
EPCs being stable for the prescribed amount of time. These correspond to the
possible ways of specifying the end of an event cycle as defined in
ECBoundarySpec on page 5-7.

spec A copy of the ECSpec that generated this ECReports instance. Only included if
the ECSpec has includeSpecInReports set to true.

schemaURL Specifies a URL where the XML schema for ALE API as used in this version of
RFTagAware may be found. This schema includes RFTagAware extensions to
the EPCglobal ALE specification.
Page 5-18 RFTagAware 1.3 Programmer Guide

Reading Tags Using the ALE API ECReports
ECTerminationCondition

Java implementation package: com.connecterra.ale.api

ECTerminationCondition is an enumerated type that describes how an event cycle was ended.

The first three values, TRIGGER, DURATION, and STABLE_SET, correspond to the receipt of an explicit
stop trigger, the expiration of the event cycle duration, or the set of EPCs being stable for the event
cycle stableSetInterval, respectively. These are the possible stop conditions described in
ECBoundarySpec on page 5-7.

The last value, UNREQUEST, corresponds to an event cycle being terminated because there were no
longer any clients requesting it. By definition, this value cannot actually appear in an ECReports
instance sent to any client.

ECReport

Java implementation package: com.connecterra.ale.api

totalReadCycles The total time, in read cycles, from the start of the event cycle to the end of the
event cycle. When more than one reader contributed read cycles to this event
cycle, this number is the number of read cycles contributed by the reader that
contributed the fewest number of read cycles.

applicationData A copy of the applicationData field of the ECSpec that controlled this event
cycle.

physicalReaders A list of strings, each identifying one of the physical readers that contributed to
this event cycle. The mapping of physical and logical reader names is specified
in the edge.props file.

failedLogicalReaders A list of strings, each identifying a logical reader that reported failures during
this event cycle. This list is always a subset of the logicalReaders field of the
ECSpec that controlled this event cycle. If no failures occurred,
failedLogicalReaders is empty.

<<Enumerated Type>>

EPCglobal ALE

TRIGGER

DURATION

STABLE_SET

UNREQUEST

Field Description
RFTagAware 1.3 Programmer Guide Page 5-19

ECReports Reading Tags Using the ALE API
ECReport represents a single report within an ECReports instance generated by an event cycle.

The reportName field is a copy of the reportName field from the corresponding ECReportSpec within
the ECSpec that controlled this event cycle. The groups field is a list containing one element for each
group in the report as controlled by the group field of the corresponding ECReportSpec. When no
grouping is specified, the groups list contains the single default group. Each element of the list is an
instance of ECReportGroup.

Java Implementation Notes: The Java API provides two methods (hasCount and hasList) that
indicate whether each contained ECReportGroup instance includes an ECReportGroupCount instance
and an ECReportGroupList instance, respectively.

ECReportGroup

Java implementation package: com.connecterra.ale.api

ECReportGroup represents one group within an ECReport.

The groupName is null for the default group (in XML, the group name is omitted to indicate the
default group). Otherwise, the groupName is a string calculated as specified in About Group Reports
on page 5-14.

The groupList field is null if the includeEPC, includeTag, includeRawHex, and includeRawDecimal
fields of the corresponding ECReportOutputSpec are all false.

The groupCount field is null if the includeCount field of the corresponding ECReportOutputSpec is
false.

Java Implementation Notes: The Java API provides two methods (hasCount and hasList) that
indicate whether this ECReportGroup instance includes an ECReportGroupCount instance and an
ECReportGroupList instance, respectively.

EPCglobal ALE

reportName : string

groups : List // List of ECReportGroup instances

RFTagAware Extensions

applicationData : string

EPCglobal ALE

groupName : string

groupList : ECReportGroupList

groupCount : ECReportGroupCount

Page 5-20 RFTagAware 1.3 Programmer Guide

Reading Tags Using the ALE API ECReports
ECReportGroupList

An ECReportGroupList is included in an ECReportGroup when any of the four boolean fields
includeEPC, includeTag, includeRawHex, and includeRawDecimal of the corresponding
ECReportOutputSpec is true.

The order in which EPCs are enumerated within the list is unspecified.

Java Implementation Notes: ECReportGroupList is not visible in the Java API. Instead, it is
encapsulated by the ECReportGroup method getGroupList. See the Javadoc for information on this
method.

ECReportGroupListMember

Java implementation package: com.connecterra.ale.api

Each member of the ECReportGroupList is an ECReportGroupListMember as defined below. The
reason for having ECReportGroupListMember is to allow multiple EPC formats to be included, and to
provide an extension point for adding per-EPC information to the list report.

Each of these fields either contains a URI as described below or is null, depending on the value of a
boolean in the corresponding ECReportOutputSpec. For example, the epc field is non-null if and only
if the includeEPC field of ECReportOutputSpec is true.

When non-null, the epc field contains an EPC represented as a pure identity URI according to the
EPCglobal Tag Data Standards (urn:epc:id:…). A pure identity URI contains just the EPC, with no
additional information such as tag type, filter bits, etc. If the information on the tag cannot be
successfully decoded into a pure identity URI, the epc field contains a raw decimal URI instead.

When non-null, the tag field contains an EPC represented as a tag URI according to the EPCglobal
Tag Data Standards (urn:epc:tag:…). A tag URI contains all information on the tag, including the
EPC, tag type, and filter bits (when applicable). The tag URI is also suitable for use in writing tags
using the ALEPC API (see Chapter 2: Reading and Writing Tags and Chapter 6: Writing Tags Using

EPCglobal ALE

members : List // List of EPCReportGroupListMember instances

EPCglobal ALE

epc : URI

tag : URI

rawHex : URI

rawDecimal : URI

RFTagAware 1.3 Programmer Guide Page 5-21

ECReports Reading Tags Using the ALE API
the ALE API). If the information on the tag cannot be successfully decoded into a tag URI, the tag
field contains a raw decimal URI instead.

When non-null, the rawDecimal field contains a raw tag value represented as a raw decimal URI
according to the EPCglobal Tag Data Standards (urn:epc:raw:…).

When non-null, the rawHex field contains a raw tag value represented as a raw hexadecimal URI
according to the following extension to the EPCglobal Tag Data Standards. The URI is determined by
concatenating the following: the string urn:epc:raw:, the length of the tag value in bits, a dot (.)
character, a lowercase x character, and the tag value considered as a single hexadecimal integer. The
length value preceding the dot character has no leading zeros. The hexadecimal tag value following
the dot has a number of characters equal to the length of the tag value in bits divided by four and
rounded up to the nearest whole number, and uses only uppercase letters for the hexadecimal digits
A, B, C, D, E, and F.

Each distinct tag value included in the report has a distinct ECReportGroupListMember element in the
ECReportGroupList, even if those ECReportGroupListMember elements would be identical due to the
formats selected. In particular, it is possible for two different tags to have the same pure identity EPC
representation; for example, two SGTIN-64 tags that differ only in the filter bits. If both tags are read
in the same event cycle, and ECReportOutputSpec specified includeEPC true and all other formats
false, then the resulting ECReportGroupList has two ECReportGroupListMember elements, each
having the same pure identity URI in the epc field. In other words, the result should be equivalent to
performing all duplicate removal, additions/deletions processing, grouping, and filtering before
converting the raw tag values into the selected representation(s).

The situation in which this rule applies is expected to be extremely rare. In theory, no two tags should
be programmed with the same pure identity, even if they differ in filter bits or other fields not part of
the pure identity.

See the EPCglobal Tag Data Standards for more information on URI representations of Electronic
Product Codes.

ECReportGroupCount

An ECReportGroupCount is included in an ECReportGroup when the includeCount field of the
corresponding ECReportOutputSpec is true.

The count field is the total number of distinct EPCs that are part of this group.

EPCglobal ALE

count : int

Page 5-22 RFTagAware 1.3 Programmer Guide

Reading Tags Using the ALE API Other ALE API Types
Java Implementation Notes: ECReportGroupCount is not visible in the Java API. Instead, it is
encapsulated by the ECReportGroup method getGroupCount. See the Javadoc for information on this
method.

Other ALE API Types

This section defines other types that are used in the RFTagAware ALE API:

• ECSpecInfo (RFTagAware Extension) (page 5-23)

• ECSubscriptionInfo (RFTagAware Extension) (page 5-24)

• ECSubscriptionControls (RFTagAware Extension) (page 5-24)

These types are all RFTagAware extensions to the EPCglobal specification.

ECSpecInfo (RFTagAware Extension)

Java implementation package: com.connecterra.ale.api

ECSpecInfo gives information about the current state of a defined ECSpec.

XML Implementation Notes: ECSpecInfo values are expressed in the element
EventCycleSpecInfo.

RFTagAware Extensions

subscriberCount : int

activationCount : int

lastActivated : timestamp

lastReported : timestamp

isSuspended : boolean

Field Description

subscriberCount The number of current subscribers for this ECSpec.
activationCount The number of times the ECSpec has transitioned into the active state since it was

first defined.
lastActivated When the ECSpec last transitioned into the active state.
lastReported When the ECSpec last delivered a report to subscribers. This may be different than

lastActivated because the settings in ECReportSpecs might cause the ECSpec not
to deliver a report if no matching tags were read.

isSuspended Indicates whether or not the ECSpec is in a suspended state.
RFTagAware 1.3 Programmer Guide Page 5-23

Other ALE API Types Reading Tags Using the ALE API
ECSubscriptionInfo (RFTagAware Extension)

Java implementation package: com.connecterra.ale.api

ECSubscriptionInfo gives information about a specific subscriber to an ECSpec.

XML Implementation Notes: ECSubscriptionInfo values are expressed in the element
EventCycleSubscriptionInfo.

ECSubscriptionControls (RFTagAware Extension)

Java implementation package: com.connecterra.ale.api

ECSubscriptionControls contains parameters that govern when subscriptions are automatically
unsubscribed in case of delivery failures. Most subscriptions are governed by a default set of
parameters that are configured when the Edge Server is deployed (see the RFTagAware Deployment
Guide). When a client wants to override these settings for a specific subscription, the client may use
the form of the ALE subscribe call that takes an explicit ECSubscriptionControls argument.

XML Implementation Notes: ECSubscriptionControl values are expressed in the element
EventCycleSubscriptionControls.

controls : ECSubscriptionControls

consecutiveFailureCount : int

lastSuccessTime : timestamp

Field Description

controls The controls that govern when the subscription is automatically
unsubscribed in case of delivery failures.

consecutiveFailureCount The number of consecutive times that reports were unable to be delivered.
This is zero if the most recent report was delivered successfully, one if the
most recent report was not delivered but the one before that was, and so
forth.

lastSuccessTime The date and time a report was last successfully delivered.

failureLimitCount : int

failureLimitInterval : long

Field Description

failureLimitCount The maximum number of failed notification deliveries before a subscription is
unsubscribed.

failureLimitInterval The maximum interval of time (in milliseconds) during which notification
delivery may fail before a subscription is unsubscribed.
Page 5-24 RFTagAware 1.3 Programmer Guide

Reading Tags Using the ALE API XML Representations
XML Representations

The focal points of the ALE tag reading interface from an application’s perspective are the ECSpec
and ECReports objects. The Edge Server provides a standard way of representing ECSpec and
ECReports instances in XML. The XML form of ECReports is used by most of the asynchronous
event cycle delivery mechanisms, as described in Chapter 3: Asynchronous Notification Mechanisms.
User applications may also find the XML forms very useful as a means of interchange, and for
persistent storage.

The XML forms of ECSpec and ECReports are defined by the XSD files:
• EPCglobal-ale-1_0.xsd

Defines EPCglobal ALE schema; references RFTagAware extensions. ECSpec and ECReports
are both defined in this schema. The top-level element for ECSpec is ECSpec; for ECReports
the top-level element is ECReports.

• EPCglobal.xsd

Defines the EPCglobal common types, Document and EPC, referred to by
EPCglobal-ale-1_0.xsd.

• EPCglobal-ale-1_0-RFTagAware-extensions.xsd

Defines the RFTagAware schema extensions.

These files are located in your RFTagAware installation directory under share/schemas.

The Java binding for ALE provides XML serializer and deserializer classes for translating between the
XML representation and the Java representation of the ECSpec and ECReports types. Applications
may use these facilities to process reports received via the Edge Server’s asynchronous event cycle
delivery mechanisms, and for other purposes. The sample applications bundled with RFTagAware
illustrate the use of the serializer and deserializer classes. See Using XML Serializers and Deserializers
from Java (page 5-28) for more information.

The remainder of this section presents examples of ECSpec and ECReports as rendered into XML.
These examples include additional line breaks and whitespace for the sake of readability. RFTagAware
permits (but does not require) this whitespace when reading XML; usually RFTagAware omits this
whitespace when writing XML.

ECSpec - Example

Here is an example ECSpec rendered into XML:

<?xml version="1.0" encoding="UTF-8"?>

<ale:ECSpec xmlns:ale="urn:epcglobal:ale:xsd:1"
 xmlns:aleext="http://schemas.connecterra.com/EPCglobal-extensions/ale"
 creationDate="2004-11-15T16:18:43.500Z"
 schemaVersion="1.0"
RFTagAware 1.3 Programmer Guide Page 5-25

XML Representations Reading Tags Using the ALE API
 includeSpecInReports="false" >

<logicalReaders>
<logicalReader>ConnecTerra1</logicalReader>

</logicalReaders>

<boundarySpec>
<duration unit="MS">2000</duration>

</boundarySpec>

<reportSpecs>
<reportSpec reportName="SubscribeSample Report">
<reportSet set="CURRENT" />
<output includeCount="true"

 includeEPC="false"
 includeRawDecimal="false"
 includeRawHex="false"
 includeTag="true" />

</reportSpec>
</reportSpecs>

<aleext:applicationData>application-specific data here</aleext:applicationData>

</ale:ECSpec>

ECReports - Example

Here is an example ECReports rendered into XML:

<ale:ECReports ALEID="EdgeServerID" creationDate="2005-01-06T16:47:57.296Z"
date="2005-01-06T16:47:57.296Z"
 schemaURL="http://schemas.connecterra.com/EPCglobal/ale-1_0.xsd"
 schemaVersion="1"
 specName="sampleECSpec"
 terminationCondition="DURATION"
 totalMilliseconds="2015"
 xmlns:ale="urn:epcglobal:ale:xsd:1"
 xmlns:aleext="http://schemas.connecterra.com/EPCglobal-extensions/ale">

<reports>
 <report reportName="SubscribeSample Report">
 <group>
 <groupList>
 <member>
 <tag>urn:epc:tag:gid-64-i:10.50.5</tag>
 </member>
 <member>
 <tag>urn:epc:tag:gid-64-i:10.40.4</tag>
 </member>
 <member>
 <tag>urn:epc:tag:gid-64-i:10.10.1</tag>
 </member>
 <member>
 <tag>urn:epc:tag:gid-64-i:10.30.3</tag>
 </member>
 <member>
 <tag>urn:epc:tag:gid-64-i:10.70.7</tag>
Page 5-26 RFTagAware 1.3 Programmer Guide

Reading Tags Using the ALE API Using the ALE Tag Reading API from Java
 </member>
 <member>
 <tag>urn:epc:tag:gid-64-i:10.20.2</tag>
 </member>
 <member>
 <tag>urn:epc:tag:gid-64-i:10.60.6</tag>
 </member>
 </groupList>
 <groupCount>
 <count>7</count>
 </groupCount>
 </group>
 </report>
</reports>

<aleext:applicationData>application-specific data here</aleext:applicationData>

<aleext:failedLogicalReaders/>

<aleext:physicalReaders>
 <aleext:physicalReader>SimReadr</aleext:physicalReader>
</aleext:physicalReaders>

<aleext:totalReadCycles>8</aleext:totalReadCycles>

</ale:ECReports>

Using the ALE Tag Reading API from Java

When you use the Java binding of the ALE API, there are additional Java interfaces and classes
available to you beyond what is described previously in this chapter. This section gives a brief
introduction to those additional interfaces and classes. For full documentation, see the Javadoc that is
included in the RFTagAware installation.

To use the ALE tag reading API from Java, you create an instance of the SOAPALEClient class
provided in the com.connecterra.ale.client package. This class implements the ALE interface as
described in ALE: Main Tag Reading Interface on page 5-3 and provides all of the methods described
there. It also provides an additional method, getALEFactory, which returns a factory for creating
instances of other types, described below. The SOAPALEClient interacts with an RFTagAware Edge
Server over the network using SOAP over HTTP. When you construct an instance of SOAPALEClient,
you provide a service URL for the Edge Server with which you wish to interact.

When using the SOAPALEClient class, you need to create instances of ECSpec and other types
described in Chapter 5: Reading Tags Using the ALE API. The ALEFactory interface (in package
com.connecterra.ale.api) provides methods for creating instances of those types. You obtain an
instance of the ALEFactory interface by calling the getALEFactory method provided by the
SOAPALEClient class. When passing arguments to methods of a specific SOAPALEClient instance, you
must always use the factory instance provided by that SOAPALEClient instance.
RFTagAware 1.3 Programmer Guide Page 5-27

Using the ALE Tag Reading API from Java Reading Tags Using the ALE API
Using XML Serializers and Deserializers from Java

The Java binding of the ALE API provides some additional utility classes for reading and writing
XML representations of the data types used in the ALE API. With these classes, you can convert a
Java object representation of a particular data type into XML (“serialization”), and likewise convert an
XML representation of a particular data type back into a Java object (“deserialization”). The XML
schemas may be found in your RFTagAware installation directory at:

/share/schemas/EPCglobal-ale-1_0.xsd
/share/schemas/EPCglobal.xsd
/share/schemas/EPCglobal-ale-1_0-RFTagAware-extensions.xsd

To read and write XML for types used in the ALE tag reading API, you use an instance of the
XMLSerializationFactory provided in the com.connecterra.ale.encoding package. There is only
one static instance of this class, which you obtain using the static method getInstance(), passing the
argument XMLSerializationSyntax.EPCglobal_ale_1_0. Using the XMLSerializationFactory
instance, you can create instances of XMLSerializer and XMLDeserializer to serialize and deserialize
instances of the following classes: ECSpec, ECReports, ECSpecInfo, ECSubscriptionInfo, and
ECSubscriptionControls.
Page 5-28 RFTagAware 1.3 Programmer Guide

Chapter 6: Writing Tags Using the ALE API

Contents

This chapter describes the ALE API programming components you use to write tags.

• Introduction to the ALE API Specification (page 6-2)

• ALEPC: Main Tag Writing Interface (page 6-3)

• PCSpec (page 6-5)

- PCSpecInfo (page 6-6)

- PCSubscriptionControls (page 6-7)

- PCSubscriptionInfo (page 6-7)

• PCWriteReport (page 6-7)

- PCStatus (page 6-9)

- PCTerminationCondition (page 6-10)

• EPCCacheSpec (page 6-10)

- EPCCacheReport (page 6-11)

- EPCCacheSpecInfo (page 6-11)

- EPCPatterns (page 6-12)

• XML Representations (page 6-12)

- PCSpec - Example (page 6-13)

- PCWriteReport - Example (page 6-14)

- EPCCacheSpec - Example (page 6-14)

- EPCCacheReport - Example (page 6-15)

- XML Schema for PCSpec, PCWriteReport, EPCCacheSpec, and EPCCacheReport
(page 6-15)

• Using the ALE Tag Writing API from Java (page 6-15)

- Using XML Serializers and Deserializers from Java (page 6-16)
RFTagAware 1.3 Programmer Guide Page 6-1

Introduction to the ALE API Specification Writing Tags Using the ALE API
Introduction to the ALE API Specification

This section provides a formal, abstract specification of the ALE API for writing tags. The external
interface is defined by the ALEPC interface (See ALEPC: Main Tag Writing Interface on page 6-3).
This interface makes use of a number of complex data types that are documented in the sections
starting at PCSpec on page 6-5.

The general interaction model is that there are one or more clients that make method calls to the
ALEPC interface. Each method call is a request, which causes the ALE engine to take some action and
return results. Thus, methods of the ALEPC interface are synchronous.

The ALEPC interface also provides a way for clients to subscribe to events that are delivered
asynchronously. This is done through methods that take a URI as an argument. Such methods return
immediately, but subsequently the ALE engine within the Edge Server may asynchronously deliver
information to the consumer denoted by the URI argument.

In the sections below, the API is described using UML class diagram notation, as shown below:

The box as a whole refers to a conceptual class, having the specified data members and methods.

The ALE API is realized in several equivalent forms within RFTagAware:

• There is a binding of the ALE API to Java, in which it takes the form of a collection of Java
interface and class definitions.

• There is another binding of the ALE API to a SOAP web service, described by a WSDL file.

• The complex data types have a standard representation as XML documents, defined by an
XSD schema.

Each of these concrete forms of the ALE API has a slightly different structure and gives slightly
different names to the different conceptual classes, data members, and methods defined in UML
within this section. This is unavoidable, owing to syntactic constraints and stylistic norms within
these different implementation technologies.

In most cases, the mapping from conceptual UML to the concrete details of any particular binding is
very straightforward; where it is not, the specific documentation for each binding will make clear the
relationship to the UML. The UML-level descriptions in this section should be considered normative.

• For specifics of the Java binding, see the Javadoc that is included in the RFTagAware
installation.

dataMember1 : Type1

dataMember2 : Type2

method1(ArgName:ArgType, ArgName:ArgType, …) : ReturnType

method2(ArgName:ArgType, ArgName:ArgType, …) : ReturnType
Page 6-2 RFTagAware 1.3 Programmer Guide

Writing Tags Using the ALE API ALEPC: Main Tag Writing Interface
• For specifics of the WSDL binding, see the WSDL file that is included in your RFTagAware
installation directory at:
share/schemas/ALEPCService.wsdl

• For specifics of the XML representation of the complex data types, see the XSD file that is
included in your RFTagAware installation directory at:
share/schemas/ALEPC.xsd

See also XML Representations on page 6-12.

ALEPC: Main Tag Writing Interface

ALEPC is the main interface for programming tags. The term “tag programming” refers to the act of
causing an EPC value to become associated with some physical entity, such as an RFID tag or a
printed label.

Java implementation package: com.connecterra.alepc.api

define(specName:String, spec:PCSpec) : void

redefine(specName:String, spec:PCSpec) : void

suspend(specName:String) : void

unsuspend(specName:String) : void

undefine(specName:String) : void

get(specName:String) : PCSpec

getPCSpecInfo(specName:String) : PCSpecInfo

listPCSpecNames() : List

subscribe(specName:String, uri:URI, controls:PCSubscriptionControls) : void

unsubscribe(specName:String, uri:URI) : void

listSubscribers(specName:String) : List

getPCSubscriptionInfo(specName:String,subscriber:URI) : PCSubscriptionInfo

poll(specName:String, epcVal:URI) : PCWriteReport

immediate(spec:PCSpec, epcVal:URI) : PCWriteReport

defineEPCCache(cacheName:String, spec:EPCCacheSpec,
replenishment:EPCPatterns) : void

redefineEPCCache(cacheName:String, newSpec:EPCCacheSpec) : void

undefineEPCCache(cacheName:String) : EPCPatterns

getEPCCache(cacheName:String) : EPCCacheSpec

getEPCCacheSpecInfo(cacheName:String, includeCacheContent:boolean) :
EPCCacheSpecInfo

listEPCCacheSpecNames() : List

replenishEPCCache(cacheName:String, replenishment:EPCPatterns) : void

depleteEPCCache(cacheName:String) : EPCPatterns

subscribeEPCCache(cacheName:String, uri:URI,
controls:PCSubscriptionControls) : void
RFTagAware 1.3 Programmer Guide Page 6-3

ALEPC: Main Tag Writing Interface Writing Tags Using the ALE API
unsubscribeEPCCache(cacheName:String, uri:URI) : void

listEPCCacheSubscribers(cacheName:String) : List

getEPCCacheSubscriptionInfo(cacheName:String, subscriber:URI) : PCSubscriptionInfo

listLogicalReaderNames() : List

Field Description

define Define a new programming cycle specification for use with the poll and
subscribe methods.

defineEPCCache Define an EPC cache that can be used by programming cycles to obtain EPC
values for programming operations.

depleteEPCCache Cause the indicated EPC cache to become depleted (empty).
get Look up and return a previously defined programming cycle specification by

name.
getEPCCache Look up and return a previously defined EPC cache specification by name.
getEPCCacheSpecInfo Return administrative information about an EPC cache.
getEPCCacheSubscription
Info

Return administrative information about an EPC cache subscriber.

getPCSpecInfo Return administrative information about a programming cycle specification.
getPCSubscriptionInfo Return administrative information about a programming cycle subscriber.
immediate Immediately define a programming cycle specification and activate it for one

programming cycle, synchronously returning a report.
listEPCCacheSpecNames Return a list of the names of all EPC caches currently defined.
listEPCCacheSubscribers Return a list of URIs that are subscribed to asynchronous reports for the

specified EPC cache name.
listLogicalReaderNames Return a list of all logical reader names that can be used for programming.
listPCSpecNames Return a list of the names of all programming cycle specifications currently

defined.
listSubscribers Return a list of URIs that are subscribed to asynchronous reports for the

specified PCSpec name.
poll Activate a previously defined programming cycle specification for one

programming cycle, synchronously returning a report.
redefine Replace the PCSpec for a programming cycle with a new PCSpec.
redefineEPCCache Replace the EPCCacheSpec having the specified name with a new

EPCCacheSpec. All subscriptions and other metadata remain unchanged, and
the cache contents are not altered.

replenishEPCCache Append a set of EPC pattern URIs to the indicated EPC cache.
subscribe Subscribe to asynchronous report delivery from a programming cycle

specification.
subscribeEPCCache Subscribe to asynchronous report delivery from an EPC cache.
suspend Suspend the named programming cycle.
undefine Undefine a programming cycle specification.
Page 6-4 RFTagAware 1.3 Programmer Guide

Writing Tags Using the ALE API PCSpec
PCSpec

Java implementation package: com.connecterra.alepc.api

A PCSpec is a complex type describing a programming cycle. A programming cycle is an interval of
time during which a single tag is written and verified.

A PCSpec contains:

• A list of readers that should try to write the tag. Each member of this list may be a single
logical reader, or the name of a composite reader. For information on composite readers, see
Using Composite Readers on page 2-14.

• Optional start and stop triggers, which provide one way of starting and ending the
programming cycle.

• How many times the reader(s) should try to write the tag. This can be expressed as a number
of attempts (trials) or as a length of time (duration).

• Optional name of an EPC cache from which this programming cycle obtains EPC values. For
information on EPC caches, see EPC Caches and Pools on page 2-8.

It also contains an optional “application data” string, which is simply copied unmodified into every
PCWriteReport instance generated from this PCSpec.

For a narrative description programming cycles and their use of PCSpec instances, see Programming
Cycles on page 2-6.

undefineEPCCache Undefine an EPC cache.
unsubscribe Unsubscribe a specified destination from receiving asynchronous delivery of

reports from a specified programming cycle specification.
unsubscribeEPCCache Unsubscribe a specified destination from receiving asynchronous delivery of

reports from a specified EPC cache.
unsuspend Return a suspended programming cycle to its normal state.

logicalReaders : List

readerParameters: Map

applicationData: string

cacheName: string

duration: long

startTrigger: URI

stopTrigger: URI

trials: int

Field Description
RFTagAware 1.3 Programmer Guide Page 6-5

PCSpec Writing Tags Using the ALE API
PCSpecInfo

Java implementation package: com.connecterra.alepc.api

Describes administrative information for a PCSpec.

Field Description

logicalReaders List of logical or composite reader names.
readerParameters Maps parameter names to parameter values. This can be used to pass information

to a reader. For example, a RFID label printer might define a reader parameter that
it uses to obtain the text and graphics to be printed on labels. See the RFTagAware
Reader Configuration Guide for information about the capabilities of specific reader
and printer devices.

applicationData A string that is copied unmodified into every PCWriteReport instance generated
from this PCSpec.

cacheName The name of the EPC cache from which this programming cycle obtains EPC
values.

duration The maximum amount of time to run EPC writing trials before failing a
programming cycle.

startTrigger Trigger that begins a programming cycle.
stopTrigger Trigger that ends a programming cycle.
trials Maximum number of EPC writing trials to run before failing a programming cycle.

activationCount : int

cacheSize: long

lastActivated: long

lastReported: long

subscriberCount: int

isSuspended: boolean

Field Description

activationCount The number of times the programming cycle for the PCSpec has been activated
since it was defined.

cacheSize How many entries remain in the PCSpec's associated EPC cache.
lastActivated The last time the programming cycle for the PCSpec was activated.
lastReported The last time a write report was generated by the programming cycle for the PCSpec.
subscriberCount The number of URIs subscribed to a PCSpec.
isSuspended True if the PCSpec processing is suspended.
Page 6-6 RFTagAware 1.3 Programmer Guide

Writing Tags Using the ALE API PCWriteReport
PCSubscriptionControls

Java implementation package: com.connecterra.alepc.api

Describes how to handle failures in notification delivery. Used by PCSubscriptionInfo (see
PCSubscriptionInfo on page 6-7) and ALEPC.subscribe(String, URI, PCSubscriptionControls)
(see ALEPC: Main Tag Writing Interface on page 6-3).

PCSubscriptionInfo

Java implementation package: com.connecterra.alepc.api

Describes administrative information about a subscription.

PCWriteReport

Java implementation package: com.connecterra.alepc.api

failureLimitCount : int

failureLimitInterval : long

Field Description

failureLimitCount The maximum number of failed notification deliveries before a
subscription is unsubscribed.

failureLimitInterval The maximum interval of time notification delivery may fail before a
subscription is unsubscribed.

consecutiveFailureCount : int

controls : PCSubscriptionControls

lastSuccessTime: long

Field Description

consecutiveFailureCount The number of failed notifications since the subscription was created, or
since the last successful notification.

controls The notification failure controls for this subscription. See
PCSubscriptionControls on page 6-7.

lastSuccessTime The absolute time in milliseconds of the most recent successful notification.
RFTagAware 1.3 Programmer Guide Page 6-7

PCWriteReport Writing Tags Using the ALE API
Report that describes a programming cycle’s tag writing operation.

date : timestamp

savantID : string

specName : string

cacheName : string

applicationData : string

wasSuccessful : boolean

status : PCStatus

physicalReader : List

failedLogicalReaders : List

totalMilliseconds : long

totalTrials : int

cacheSize : long

EPC : URI

successfulLogicalReader : string

failureInfo : string

terminationCondition : PCTerminationCondition

Field Description

applicationData String that you set in the PCSpec. See PCSpec on page 6-5.
cacheName The name of the EPC cache associated with this PCSpec.
cacheSize How many EPC cache entries were left when the programming cycle

completed.
date The date and time the report was generated.
EPC The EPC value that was written to the tag.
failedLogicalReaders The logical readers that had some sort of failure during the programming

cycle that generated this report.
failureInfo Additional information about the failure, if available.
physicalReader Names of physical readers that were involved in the programming cycle that

generated this report.
savantID The identifier for the Edge Server that generated this report.
specName Name of the PCSpec that describes the just-completed programming cycle.
status The status of the programming cycle. See PCStatus on page 6-9.
successfulLogicalReader The logical reader that actually performed the successful tag write.
terminationCondition The condition that terminated the failed programming cycle activation. See

PCTerminationCondition on page 6-10.
totalMilliseconds The total time in milliseconds during which the programming cycle was

active.
Page 6-8 RFTagAware 1.3 Programmer Guide

Writing Tags Using the ALE API PCWriteReport
PCStatus

Java implementation package: com.connecterra.alepc.api

An enumerated type that identifies the termination status of a programming cycle.

totalTrials The total number of trials for which the programming cycle was active.
wasSuccessful True if the programming cycle succeeded. False if the programming cycle

failed.

<<Enumerated Type>>

SUCCESSFUL

NONE_IN_FIELD

NOT_WRITTEN

VERIFY_ERROR

MULTIPLE_IN_FIELD

LOCKED

INCOMPATIBLE_TAG_TYPE

READ_ONLY

CACHE_EMPTY

READER_BUSY

READER_ERROR

ENGINE_ERROR

Value Description

CACHE_EMPTY A programming cycle could not be started because the EPC cache was empty.
ENGINE_ERROR The ALE engine itself has some kind of problem.
INCOMPATIBLE_TAG_TYPE The tag (or reader) is a of a type that is not compatible with the EPC value that

was supplied to be written to the tag (for example, a 96-bit EPC written to a 64-
bit tag).

LOCKED The tag is locked and therefore cannot be programmed.
MULTIPLE_IN_FIELD Multiple tags were in the field of the programming cycle’s reader(s).
NONE_IN_FIELD No tags were in the field of the programming cycle’s reader(s).
NOT_WRITTEN The tag was not written (the verification readback yielded the original tag value).
READ_ONLY The tag is a read-only type and therefore cannot be programmed.
READER_BUSY One or more of the programming cycle’s readers is already in use by a

programming cycle or by an event cycle.
READER_ERROR One or more of the programming cycle's readers has some kind of problem.
SUCCESSFUL The programming cycle completed successfully.
VERIFY_ERROR The tag was mis-programmed (the verification readback yielded a CRC error or

value other than the intended one).

Field Description
RFTagAware 1.3 Programmer Guide Page 6-9

EPCCacheSpec Writing Tags Using the ALE API
PCTerminationCondition

Java implementation package: com.connecterra.alepc.api

An enumerated type that describes the conditions that can cause a programming cycle to terminate
with a failure

EPCCacheSpec

Java implementation package: com.connecterra.alepc.api

Describes a tag cache.

<<Enumerated Type>>

DURATION

FAILURE

TRIALS

TRIGGER

UNDEFINE

Value Description

DURATION The programming cycle was terminated due to exhausting the duration value specified in
the PCSpec. A tag may still have been written.

FAILURE The programming cycle was terminated due to a condition (such as multiple tags in field) for
which retrying does not make sense.

TRIALS The programming cycle was terminated due to exhausting the trials value specified in the
PCSpec.

TRIGGER The programming cycle was terminated due to receipt of a stop trigger. A tag may still have
been written.

UNDEFINE The programming cycle was terminated because the PCSpec was undefined or suspended.

applicationData: string

includeCacheContent : boolean

threshold : long

Field Description

applicationData String that will be returned in EPCCacheReport instances. See EPCCacheReport
on page 6-11.
Page 6-10 RFTagAware 1.3 Programmer Guide

Writing Tags Using the ALE API EPCCacheSpec
EPCCacheReport

Java implementation package: com.connecterra.alepc.api

Report that indicates that an EPC cache is low.

EPCCacheSpecInfo

Java implementation package: com.connecterra.alepc.api

Describes administrative information about an EPC cache.

includeCacheContent Indicates whether EPCCacheReport instances should include a description of the
current cache contents (true) or just the count of the remaining cache entries
(false).

threshold Specifies a limit, such that when a cache's number of remaining EPC values
drops to (or below) the limit, an EPCCacheReport is issued to subscribers.
0 means issue the EPCCacheReport when the EPC cache count drops to empty.

applicationData : string

cacheContent : EPCPatterns

cacheName : string

cacheSize : long

date : timestamp

savantID : string

threshold : long

Field Description

applicationData String that you set in the EPCCacheSpec. See EPCCacheSpec on page 6-10.
cacheContent Describes the remaining content of the EPC cache. See EPCPatterns on page 6-12.
cacheName The name of the EPC cache that this report describes.
cacheSize How many EPC cache entries remain.
date The time the report was generated.
savantID Identifier for the Edge Server that generated this report.
threshold The low-cache reporting threshold defined for the EPCCacheSpec.

subscriberCount : int

pcSpecs : List

activationCount : int

lastActivated : long

Field Description
RFTagAware 1.3 Programmer Guide Page 6-11

XML Representations Writing Tags Using the ALE API
EPCPatterns

Java implementation package: com.connecterra.alepc.api

A list of EPC pattern URIs.

XML Representations

The focal points of the ALE tag writing interface from an application’s perspective are the PCSpec,
PCWriteReport, EPCCacheSpec, and EPCCacheReport objects. The Edge Server provides a standard
way of representing instances of these objects in XML. The XML form of PCWriteReport and
EPCCacheReport is used by most of the asynchronous delivery mechanisms, as described in Chapter 3:
Asynchronous Notification Mechanisms. User applications may also find the XML forms very useful
as a means of interchange, and for persistent storage.

replenishCount : int

lastReplenished : long

lastReported : long

cacheSize : long

cacheContent : EPCPatterns

Field Description

activationCount The number of times an EPC value has been obtained from this EPC cache since it
was defined.

cacheContent The EPCs in this cache. See EPCPatterns on page 6-12.
cacheSize How many entries remain in the EPC cache.
lastActivated The last time an EPC value was obtained from this EPC cache.
lastReplenished The last time this EPC cache was replenished.
lastReported The last time an EPCCacheReport was generated by this EPC cache.
pcSpecs Returns the names of the PCSpec instances, if any, that are using this EPC cache.
replenishCount The number of times this EPC cache has been replenished since it was defined.
subscriberCount The number of URIs subscribed to this EPC cache.

patterns : List

Field Description

patterns EPC pattern URIs. The ordering of EPC patterns is significant. See EPC Patterns
on page 5-13 and EPC Caches and Pools on page 2-8.
Page 6-12 RFTagAware 1.3 Programmer Guide

Writing Tags Using the ALE API XML Representations
The XML forms are defined by the XSD schema. This schema is in the RFTagAware installation in
the file share/schemas/ALEPC.xsd.

The Java binding for ALE provides XML serializer and deserializer classes for translating between the
XML representation and the Java representation of the PCSpec, PCWriteReport, EPCCacheSpec, and
EPCCacheReport types. Applications may use these facilities to process reports received via the Edge
Server’s asynchronous delivery mechanisms, and for other purposes. See Using XML Serializers and
Deserializers from Java (page 6-16) for more information.

The remainder of this section presents examples of PCSpec, PCWriteReport, EPCCacheSpec, and
EPCCacheReport as rendered into XML. These examples include additional line breaks and
whitespace for the sake of readability. RFTagAware permits (but does not require) this whitespace
when reading XML; usually RFTagAware omits this whitespace when writing XML.

• PCSpec - Example (page 6-13)

• PCWriteReport - Example (page 6-14)

• EPCCacheSpec - Example (page 6-14)

• EPCCacheReport - Example (page 6-15)

PCSpec - Example
<?xml version="1.0" encoding="UTF-8"?>
<PCSpec xmlns="http://schemas.connecterra.com/alepc">

 <!-- The name of the EPC cache from which this PCSpec obtains EPC
 values for tag programming operations. Optional. -->
 <cacheName>mycache</cacheName>

 <!-- Specifies a string to be included in PCWriteReport instances
 generated by this PCSpec. Optional. -->
 <applicationData>application-specific data here</applicationData>

 <logicalReaders>
 <!-- determines which logical reader(s) will be used by this
 PCSpec. Logical reader names are defined in edge.props. -->
 <logicalReader>TagWriteStation</logicalReader>
 </logicalReaders>

 <!-- Specifies name/value pairs to be passed down to reader drivers used
 by this PCSpec's programming cycles. Optional. -->
 <readerParameters>
 <readerParameter name="paramName">paramValue</readerParameter>
 <readerParameter name="anotherParamName">another parameter value</
readerParameter>
 </readerParameters>

 <!-- Determines when this programming cycle starts and stops. -->
 <boundarySpec>
 <!-- Trigger that starts a programming cycle. Optional -->
 <startTrigger> trigger URI here... </startTrigger>
RFTagAware 1.3 Programmer Guide Page 6-13

XML Representations Writing Tags Using the ALE API
 <!-- Trigger that stops a programming cycle. Optional -->
 <stopTrigger> trigger URI here... </stopTrigger>

 <!-- Specifies maximum number of tag writing trials. Optional,
 default is unlimited number of trials. -->
 <trials>1</trials>

 <!-- Specifies maximum number of milliseconds to spend retrying failed
 tag writing operations. Optional, default is no time limit. -->
 <duration>1000</duration>
 </boundarySpec>

</PCSpec>

PCWriteReport - Example
<?xml version="1.0" encoding="UTF-8"?>
<PCWriteReport date="2004-05-27T18:56:31.179Z"
 savantID="test-edge-server"
 specName="testspec"
 totalMilliseconds="10"
 totalTrials="1"
 xmlns="http://schemas.connecterra.com/alepc">

 <applicationData>application-specific data here</applicationData>

 <wasSuccessful>true</wasSuccessful>

 <status>SUCCESSFUL</status>

 <physicalReaders>
 <physicalReader>tws1</physicalReader>
 </physicalReaders>

 <failedLogicalReaders/>

 <cacheName>mycache</cacheName>

 <cacheSize>11</cacheSize>

 <epc>urn:epc:tag:gid-64-i:1.5.1</epc>

 <successfulLogicalReader>TagWriteStation</successfulLogicalReader>

</PCWriteReport>

EPCCacheSpec - Example
<?xml version="1.0" encoding="UTF-8"?>
<EPCCacheSpec xmlns="http://schemas.connecterra.com/alepc">

 <!-- Specifies a string to be included in EPCCacheReport instances
 generated by this EPCCacheSpec. Optional. -->
 <applicationData>cache-specific data here</applicationData>

 <!-- Specifies that when this cache's size drops to (or below) the
Page 6-14 RFTagAware 1.3 Programmer Guide

Writing Tags Using the ALE API Using the ALE Tag Writing API from Java
 given number of EPC values, a EPCCacheReport should be issued. -->
 <threshold>2500</threshold>

 <!-- Specifies that EPCCacheReport instances should include the current
 contents of the cache. Optional, default is false. -->
 <includeCacheContent>true</includeCacheContent>

</EPCCacheSpec>

EPCCacheReport - Example
<?xml version="1.0" encoding="UTF-8"?>
<EPCCacheReport date="2004-05-27T18:59:32.890Z"
 savantID="test-edge-server"
 xmlns="http://schemas.connecterra.com/alepc">

 <cacheName>mycache</cacheName>

 <applicationData>cache-specific data goes here</applicationData>

 <cacheSize>10</cacheSize>

 <cacheContent>
 <pattern>urn:epc:pat:gid-64-i:1.5.[3-12]</pattern>
 </cacheContent>

 <threshold>2500</threshold>

</EPCCacheReport>

XML Schema for PCSpec, PCWriteReport, EPCCacheSpec, and
EPCCacheReport

This share/schemas/ALEPC.xsd file in the RFTagAware installation defines an XML representation
for PCSpec, PCWriteReport, EPCCacheSpec, and EPCCacheReport instances, using the W3C XML
Schema language.

Using the ALE Tag Writing API from Java

To use the ALE tag writing API, you create an instance of the AxisALEPCClient class provided in the
com.connecterra.alepc.client package. This class implements the ALEPC interface as described in
ALEPC: Main Tag Writing Interface on page 6-3 and provides all of the methods described there. It
also provides an additional method, getALEPCFactory, which returns a factory for creating instances
of other types, described below. The AxisALEPCClient interacts with an RFTagAware Edge Server
over the network using SOAP over HTTP. When you construct an instance of AxisALEPCClient, you
provide a service URL for the Edge Server with which you wish to interact.
RFTagAware 1.3 Programmer Guide Page 6-15

Using the ALE Tag Writing API from Java Writing Tags Using the ALE API
When using the AxisALEPCClient class, you need to create instances of PCSpec, EPCCacheSpec, and
other types described in this chapter. The ALEPCFactory interface (in package
com.connecterra.alepc.api) provides methods for creating instances of those types. You obtain an
instance of the ALEPCFactory interface by calling the getALEPCFactory method provided by the
AxisALEPCClient class. When passing arguments to methods of a specific AxisALEPCClient instance,
you must always use the factory instance provided by that AxisALEPCClient instance.

Using XML Serializers and Deserializers from Java

The Java binding of the ALE API provides some additional utility classes for writing XML
representations of the data types used in the ALE API. With these classes, you can convert a Java
object representation of a particular data type into XML (“serialization”), and likewise convert an
XML representation of a particular data type back into a Java object (“deserialization”). The XML
schemas may be found in your RFTagAware installation directory at:

/share/schemas/EPCglobal-ale-1_0.xsd
/share/schemas/EPCglobal.xsd
/share/schemas/EPCglobal-ale-1_0-RFTagAware-extensions.xsd
/share/schemas/ALEPC.xsd

To read and write XML for types used in the ALE tag writing API, you use an instance of the
PCXMLSerializationFactory provided in the com.connecterra.alepc.encoding package. There is
only one static instance of this class, which you obtain using the static method getInstance(), with
no argument. Using the PCXMLSerializationFactory instance, you can create instances of
PCXMLSerializer and PCXMLDeserializer to serialize and deserialize instances of the following
classes: PCSpec, PCWriteReport, PCSpecInfo, PCSubscriptionInfo, PCSubscriptionControls,
EPCCacheSpec, EPCCacheReport, and EPCCacheSpecInfo.
Page 6-16 RFTagAware 1.3 Programmer Guide

Chapter 7: Sample Java Applications

Contents

This chapter describes how to use the sample Java applications provided in your RFTagAware
installation. The sample applications illustrate the use of the Java language binding for the ALE
interface. Unlike other parts of RFTagAware, the sample applications are free for you to use and
modify for your own purposes. You may use them as a starting point for developing your own
applications.

• Overview (page 7-2)

• Setting Up Your Development Environment (page 7-2)

• Compiling and Running the Samples (page 7-2)

• ImmediateSample: Getting Started Reading Tags (page 7-3)

• ImmediateSample: Event Cycles and Reliability (page 7-7)

• ImmediateSample: Reading from Different Readers (page 7-8)

• SubscribeSample: Exploring Asynchronous Event Cycle Delivery (page 7-8)

• ImmediateProgramSample: Writing Tags (page 7-12)

• ProgrammingSample: Exploring Programming Cycles and EPC Caches (page 7-16)

• JMS Samples (page 7-21)

- BEA (page 7-21)

- IBM (page 7-22)

- JBoss (page 7-26)

- Sun (page 7-27)

- TIBCO (page 7-29)
RFTagAware 1.3 Programmer Guide Page 7-1

Overview Sample Java Applications
Overview

There are several samples provided with RFTagAware:

• ImmediateSample — shows how to use the XML serializer and deserializer, and the ALE
immediate method. The sample program reads an ECSpec from an XML file, activates it for
one event cycle using the ALE immediate method, and displays the results in XML to the
console.

• SubscribeSample — shows how to use the ALE subscribe and unsubscribe methods, as well
as several other administrative methods within the ALE API. The sample provides a simple
command-line interface that lets you define ECSpec instances from XML files, subscribe a
delivery address to a previously defined ECSpec, unsubscribe a delivery address, and list
existing ECSpec instances and subscriptions. As well as illustrating the use of several ALE
methods, this sample serves as a useful command-line utility program in its own right.

• ImmediateProgramSample — shows a simple example of how to use the ALEPC API to
program an Electronic Product Code (EPC) value into a tag using a specified logical reader.
The programming cycle specification is read from an XML file, and the programming cycle
reports are printed as XML.

• ProgrammingSample — shows how to use the ALEPC methods to manipulate Programming
Cycles and EPC Caches.

Setting Up Your Development Environment

To compile and run the sample applications, you need to install both the Java Development Kit
(JDKTM) 1.4 or later, and the RFTagAware software.

For detailed information about system requirements, prerequisite software, and how to install
RFTagAware, see the RFTagAware Deployment Guide.

Compiling and Running the Samples

The instructions for running all samples are the same:

1. From the control/bin subdirectory of your RFTagAware installation, run the following
scripts in this order:

RunReaderSim (if you are using the Reader Simulator)

RunEdgeServer (required)

RunAdminConsole (optional)

These files end with the suffix .sh or .bat, depending on your platform.
Page 7-2 RFTagAware 1.3 Programmer Guide

Sample Java Applications ImmediateSample: Getting Started Reading Tags
2. Go to the directory for the sample program you want to run (one of the subdirectories within
the samples subdirectory of your RFTagAware installation).

3. Run the “build” script (build.sh or build.bat depending on your platform) from the
command line. This compiles the sample program.

4. Run the “run” script (run.sh or run.bat depending on your platform) from the command
line. This runs the sample program you just compiled.

Some samples require additional command line arguments to the “run” script:

- SubscribeSample, see SubscribeSample: Exploring Asynchronous Event Cycle Delivery
on page 7-8. The sample program connects to your Edge Server, carries out its task, and
then exits.

- ImmediateProgramSample, see ImmediateProgramSample: Writing Tags on page 7-12. You
need to provide information about the EPC value you want to write to the tag.

- ProgrammingSample, see ProgrammingSample: Exploring Programming Cycles and EPC
Caches on page 7-16. This sample shows you how to manipulate programming cycles and
EPC caches.

For some tutorial walk throughs of the samples, see:

• ImmediateSample: Getting Started Reading Tags (page 7-3)

• ImmediateSample: Event Cycles and Reliability (page 7-7)

• ImmediateSample: Reading from Different Readers (page 7-8)

• SubscribeSample: Exploring Asynchronous Event Cycle Delivery (page 7-8)

• ImmediateProgramSample: Writing Tags (page 7-12)

• ProgrammingSample: Exploring Programming Cycles and EPC Caches (page 7-16)

ImmediateSample: Getting Started Reading Tags

The ImmediateSample program shows how to use the XML serializer and deserializer, and the ALE
immediate method. The sample program reads an ECSpec from an XML file, activates it for one event
cycle using the ALE immediate method, and displays the results in XML to the console.

In the following description, it is assumed that you are using the Reader Simulator provided with
RFTagAware. You may, however, use an actual reader and tags if you have them.

The sample program reads an ECSpec from the file ECSpec.xml in the sample program folder. The file
as provided with RFTagAware is reproduced below. (The file provided with RFTagAware includes
comments that are omitted below.) After you become familiar with the sample, you are encouraged to
experiment by changing this file to see what happens.
RFTagAware 1.3 Programmer Guide Page 7-3

ImmediateSample: Getting Started Reading Tags Sample Java Applications
ECSpec.xml example

We specify the logical reader as ConnecTerra1 (which is mapped to “Antenna 1” in the
ReaderSimulator by default if you installed the Reader Simulator. If you installed your own reader,
you may need to change the ECSpec to refer to one of your logical readers). We also specify that our
event cycle is to be exactly one read cycle — this is far smaller than you are likely to use in any real
situation (as we will demonstrate), but we will leave it alone for now to illustrate how the ALE
interface works. The final section defines a report specification. Basically, we want to get both a count
and a list of all the CURRENT tags visible to logical reader ConnecTerra1.

Now, run the sample following the instructions in Compiling and Running the Samples on page 7-2.
You should see output similar to the following:

Immediate Sample, XML-based
sending request to Edge Server...
 ...received response.

Received the following ECReports:

<ale:ECReports ALEID="EdgeServerID" creationDate="2005-01-06T17:01:09.093Z"
date="2005-01-06T17:01:09.093Z" schemaURL="http://schemas.connecterra.com/EPCglobal/
ale-1_0.xsd" schemaVersion="1" specName="$immediate=10"
terminationCondition="DURATION" totalMilliseconds="234"
xmlns:ale="urn:epcglobal:ale:xsd:1" xmlns:aleext="http://schemas.connecterra.com/
EPCglobal-extensions/ale">
 <reports>
 <report reportName="ImmediateSample Report">
 <group>
 <groupList>

<?xml version="1.0" encoding="UTF-8"?>

<ale:ECSpec xmlns:ale="urn:epcglobal:ale:xsd:1"
 xmlns:aleext="http://schemas.connecterra.com/EPCglobal-extensions/ale"
 creationDate="2004-11-15T16:18:43.500Z"
 schemaVersion="1.0"
 includeSpecInReports="false" >
<logicalReaders>

<logicalReader>ConnecTerra1</logicalReader>
</logicalReaders>

<boundarySpec>
<aleext:durationReadCycles>1</aleext:durationReadCycles>

</boundarySpec>

<reportSpecs>
<reportSpec reportName="ImmediateSample Report">
<reportSet set="CURRENT" />
<output includeCount="true" includeTag="true"/>
</reportSpec>

</reportSpecs>

<aleext:applicationData>application-specific data here</aleext:applicationData>

</ale:ECSpec>
Page 7-4 RFTagAware 1.3 Programmer Guide

Sample Java Applications ImmediateSample: Getting Started Reading Tags
 <member>
 <tag>urn:epc:tag:gid-64-i:10.50.5</tag>
 </member>
 <member>
 <tag>urn:epc:tag:gid-64-i:10.40.4</tag>
 </member>
 <member>
 <tag>urn:epc:tag:gid-64-i:10.10.1</tag>
 </member>
 <member>
 <tag>urn:epc:tag:gid-64-i:10.30.3</tag>
 </member>
 <member>
 <tag>urn:epc:tag:gid-64-i:10.70.7</tag>
 </member>
 <member>
 <tag>urn:epc:tag:gid-64-i:10.20.2</tag>
 </member>
 <member>
 <tag>urn:epc:tag:gid-64-i:10.60.6</tag>
 </member>
 </groupList>
 <groupCount>
 <count>7</count>
 </groupCount>
 </group>
 </report>
 </reports>
 <aleext:applicationData>application-specific data here</aleext:applicationData>
 <aleext:failedLogicalReaders/>
 <aleext:physicalReaders>
 <aleext:physicalReader>SimReadr</aleext:physicalReader>
 </aleext:physicalReaders>
 <aleext:totalReadCycles>1</aleext:totalReadCycles>
</ale:ECReports>Press any key to continue . . .

The number of epc elements in the list report should be equal to the number of tags you have
checked under “Antenna 1” in the Reader Simulator. (If you are using a real reader, you may not see
all the tags you have placed near your antenna.)

Using ImmediateSample With the Administration Console

If you are running the Administration Console, you may want to run ImmediateSample again,
watching its effects as described below:

1. First, set up your desktop so you can see both the Administration Console and the
ImmediateSample console window at the same time.

2. In the Administration Console, click SimReadr in the device browser on the left, then click
the Telemetry tab in the right pane.
RFTagAware 1.3 Programmer Guide Page 7-5

ImmediateSample: Getting Started Reading Tags Sample Java Applications
Reader Telemetry Tab

Keep your eye on the uhfAntenna1.readCycles display. uhfAntenna1 corresponds to the logical
reader ConnecTerra1 that we specified in the sample ECSpec.xml. Looking at this display will
show you when the ImmediateSample program activates the antenna for one event cycle,
using the ALE immediate method

3. Run the sample using the instructions in Compiling and Running the Samples on page 7-2.

uhfAntenna1 is seeing the seven tags that the Reader Simulator is configured for.

ImmediateSample’s event cycle was set to just one read cycle,shown below.
Page 7-6 RFTagAware 1.3 Programmer Guide

Sample Java Applications ImmediateSample: Event Cycles and Reliability
You will see that uhfAntenna1 (logical reader ConnecTerra1) is activated for exactly one read
cycle — which is exactly what we specified for a boundarySpec in ECSpec.xml:
<boundarySpec>
 <durationReadCycles>1</durationReadCycles>
</boundarySpec>

ImmediateSample: Event Cycles and Reliability

We will now use the ImmediateSample application to illustrate some aspects of event cycles and how
they can be used to address situations where not every tag can be read in a single read cycle. This is a
very common situation, and can arise either because of the inherently unreliable nature of RFID tags,
or because the business situation simply implies that not all tags for an application level event are in
front of the antenna at the same time (for example, because a large pallet is moving slowly past an
antenna).

To simulate this situation, we will use the “reliability” field provided as part of the Reader Simulator.
Change the Reliability field in the Reader Simulator to 50%. This tells the Reader Simulator to report
each selected tag with only 50% probability in any given read cycle. Now run ImmediateSample as
you did in ImmediateSample: Getting Started Reading Tags on page 7-3. In all likelihood, you will see
fewer tags in the report than you did previously.

Now, we will see how the event cycle combines tags from multiple read cycles into a single report,
and how this counteracts the limitations of dealing with read cycles individually. Follow these steps:

1. Open the file ECSpec.xml in a text editor.

2. Change the line that reads:
<aleext:durationReadCycles>1</aleext:durationReadCycles>

so that it reads:
<aleext:durationReadCycles>3</aleext:durationReadCycles>

3. Save the file.

4. Leave the reliability on the Reader Simulator set to 50%.

Now run the sample again. This time, you should see most if not all of the tags.

It is usually difficult to guess how many read cycles are required to read all tags of interest. In some
cases, external events dictate which read cycles should be grouped into an event cycle — the
startTrigger and stopTrigger features of the ALE interface (see ECBoundarySpec on page 5-7)
may be used for this purpose. In other cases, you want an event cycle to continue as long as needed
until all tags have been read. In such cases, you can use the stableSetInterval feature of the ALE
interface.
RFTagAware 1.3 Programmer Guide Page 7-7

ImmediateSample: Reading from Different Readers Sample Java Applications
ImmediateSample: Reading from Different Readers

The ALE interface makes it very easy to select different readers without altering application code,
even changing the number of readers. To illustrate, follow these steps:

1. Open the file ECSpec.xml in a text editor.

2. Immediately after the line that reads:
<logicalReaderName>ConnecTerra1</logicalReaderName>

add a second line so that together they look like this:
<logicalReaderName>ConnecTerra1</logicalReaderName>
<logicalReaderName>ConnecTerra2</logicalReaderName>

3. Save the file.

Now run ImmediateSample again. In the report, you’ll see tags read from both readers.

SubscribeSample: Exploring Asynchronous Event Cycle
Delivery

The SubscribeSample program shows how to use the ALE subscribe and unsubscribe methods, as
well as several other administrative methods within the ALE API. The sample provides a simple
command line interface that lets you define ECSpec instances from XML files, subscribe a delivery
address to a previously defined ECSpec, unsubscribe a delivery address, and list existing ECSpec
instances and subscriptions. As well as illustrating the use of several ALE methods, this sample serves
as a useful command line utility program in its own right.

Like the ImmediateSample, the SubscribeSample works with XML files to define event cycle
specifications. However, SubscribeSample differs from ImmediateSample in several respects:

• Any number of event cycle specifications can be defined, each with their own name. You
invoke the SubscribeSample program with the define command for each event cycle you
want to define.

• To obtain event cycle reports, you add one or more subscribers for the event cycle(s) you have
defined, by invoking the SubscribeSample program with the subscribe command.

• Once you have defined event cycle(s) and added one or more subscriptions, the Edge Server
executes event cycles and sends reports to the subscribers. This takes place asynchronously,
even when the SubscribeSample program is not running.
Page 7-8 RFTagAware 1.3 Programmer Guide

Sample Java Applications SubscribeSample: Exploring Asynchronous Event Cycle Delivery
Here are step-by-step instructions for working with the SubscribeSample program.

1. From the control/bin subdirectory of your RFTagAware installation, run the following
scripts in this order:

RunReaderSim (if you are using the Reader Simulator)

RunEdgeServer (required)

RunAdminConsole (optional, but strongly suggested for this tutorial)

These files end with the suffix .sh or .bat, depending on your platform.

2. Find the console window for the Edge Server and leave it open on your desktop. Later you
will be looking at console subscriber output sent to this window.

3. Go to the RFTagAware directory:
samples/SubscribeSample

4. In a shell, type:
./run.sh define mycmdlinespec ECSpec.xml

(On Windows, type .\run.bat instead of ./run.sh. Do this replacement for the rest of the
examples in this section.)

You will see some output messages from the SubscribeSample program indicating that an
event cycle specification has been defined. At this point, the ECSpec is defined but is not
active, because there are no subscribers.

Note: You can define as many different ECSpec instances as you want, as long as you give
them distinct names. We used the name mycmdlinespec for the ECSpec we defined; we
will be referring to this ECSpec again using its name.

5. If you are running the Administration Console, set up your desktop so you can see both the
Administration Console and the SubscribeSample shell at same time.

In the Administration Console, click ECSpecs in the device browser. Note that the ECSpec
you just defined (mycmdlinespec) is listed in the right pane.

Note: Defining an ECSpec is NOT the same as activating it. You have not yet told a reader to
read any tags, or done anything else with the ECSpec yet. You have simply defined a
set of actions (read cycles, delivery activities, and so on) that can take place some time
in the future once the ECSpec is activated by a method such as immediate, poll, or, in
this example, subscribe.
RFTagAware 1.3 Programmer Guide Page 7-9

SubscribeSample: Exploring Asynchronous Event Cycle Delivery Sample Java Applications
ECSpecs Pane

6. To prove that defining and activating an ECSpec are different, display the telemetry tab for
the Reader Simulator, and then define a second ECSpec in the SubscribeSample shell:
./run.sh define myspec2 ECSpec.xml

Keep your eye on the uhfAntenna1.readCycles telemetry trace. You will not see any read cycles
take place. (This uhfAntenna1.readCycles trace corresponds to the logical reader that ECSpec.xml
is referencing.)

7. To demonstrate some other features of SubscribeSample, return to the SubscribeSample
shell and type:
./run.sh list-specs

This prints a list of the names of the ECSpec instances that are currently defined in the Edge
Server. You should see mycmdlinespec and any other event cycle specifications you have
defined.

8. In the shell, type:
./run.sh subscribe mycmdlinespec console:test

Look in the Edge Server window — the Edge Server is now printing event cycle reports to
the console.

Also, take a look at the Administration Console telemetry display:
Page 7-10 RFTagAware 1.3 Programmer Guide

Sample Java Applications SubscribeSample: Exploring Asynchronous Event Cycle Delivery
Reader Simulator Telemetry (activated ECSpec

As you can see, the subscribe method that you invoked when you ran SubscribeSample this
last time has activated the Reader Simulator, and it is now performing read cycles as specified
in the ECSpec called mycmdlinespec.

9. Now we'll experiment with a different kind of event delivery driver. Create a new directory in
a file system accessible to the Edge Server. For example:
mkdir /tmp/ale

On the Windows platform, the equivalent command would be:
mkdir c:\temp\ale

10. In the shell, type:
./run.sh subscribe mycmdlinespec file:///tmp/ale

or on the Windows platform, type:
.\run.bat subscribe mycmdlinespec file:///c:/temp/ale

11. Use a file system tool to examine the contents of the /tmp/ale (or c:\temp\ale) directory.
You will see that the Edge Server is creating XML files, each containing a single event cycle
report. Alternately, if the subscription URI were to refer to a file (as opposed to a directory),
then the successive event cycle reports would be appended to that file.

12. In the shell, type:
./run.sh list-subs mycmdlinespec

This prints a list of the URIs that have been subscribed to the ECSpec named mycmdlinespec.

13. In the shell, type:
./run.sh unsubscribe mycmdlinespec console:test

Look in the Edge Server window — the Edge Server is no longer printing event cycle reports
to its console. But look in the temporary directory you created earlier — the Edge Server is
still writing XML report files into this directory, because the other subscription is still active.
RFTagAware 1.3 Programmer Guide Page 7-11

ImmediateProgramSample: Writing Tags Sample Java Applications
SubscribeSample Command Line Options

For information about SubscribeSample’s command line options, you can navigate to the
SubscribeSample directory and type run. This displays the command help shown below. Note that
the help distinguishes EPCglobal functions from RFTagAware extensions.

Usage:
EPCglobal ALE 1.0 commands
define <specName> <ecSpecFilename>
or undefine <specName>
or getECSpec <specName>
or getECSpecNames
or subscribe <specName> <notificationURI>
or unsubscribe <specName> <notificationURI>
or getSubscribers <specName>
or poll <specName>
or immediate <ecSpecFilename>
or getStandardVersion
or getVendorVersion

RFTagAware extensions:
get-spec-info <specName>
or redefine <specName> <ecSpecFilename>
or suspend <specName>
or unsuspend <specName>
or stop <specName>

ImmediateProgramSample: Writing Tags

This sample shows how to use the ALE API to program an Electronic Product Code (EPC) value
into a tag using a specified logical reader. The programming cycle specification is read from an XML
file, and the programming cycle reports are printed as XML. You can run this sample with the
simulator, or with any of the printers or readers for which RFTagAware supports tag writing. See the
supported RFID readers section of the RFTagAware Reader Configuration Guide for this information.

If you plan to run this sample with the simulator, see Using ImmediateProgramSample with the
Reader Simulator on page 7-15.

Here are step-by-step instructions for working with the ImmediateProgramSample program.

1. From the control/bin subdirectory of your RFTagAware installation, run the following
scripts in this order:

RunReaderSim (if you are using the simulator)

RunEdgeServer (required)

RunAdminConsole (optional)

These files end with the suffix .sh or .bat, depending on your platform.
Page 7-12 RFTagAware 1.3 Programmer Guide

Sample Java Applications ImmediateProgramSample: Writing Tags
If you are using the simulator, be sure to read the section Using ImmediateProgramSample
with the Reader Simulator on page 7-15.

2. Find the console window for the Edge Server and leave it open on your desktop. Later you
will be looking at output that this sample program sends to this window.

3. Go to the RFTagAware directory:
samples/ImmediateProgramSample

This sample uses the file PCSpec.xml as part of its input. This file defines the programming
cycle (see PCSpec on page 6-5). Part of the file is reproduced here — you can take a look at
the complete file in the samples directory:

PCSpec.xml example

4. With a text editor, edit PCSpec.xml to replace the “placeholder” line:
<logicalReader>TagWriteStation</logicalReader>

with the logical reader you will actually use to write the tag. For example, if you are using the
Reader Simulator, you might specify:
<logicalReader>ConnecTerra1</logicalReader>

<?xml version="1.0" encoding="UTF-8"?>

<PCSpec xmlns="http://schemas.connecterra.com/alepc">

 <!-- Specifies a string to be included in PCWriteReport instances
 generated by this PCSpec. Optional. -->
 <applicationData>application specific data can go here</applicationData>

 <logicalReaders>
 <!-- determines which logical reader(s) will be used by this
 programming cycle. Logical reader names are defined in edge.props. -->
 <logicalReader>TagWriteStation</logicalReader>
 </logicalReaders>

 <boundarySpec>
 <!-- the boundarySpec determines when this programming cycle starts
 and stops. Because this sample program uses
 ALEPC.immediate(), a programming cycle starts whenever
 ALEPC.immediate() is called. -->

 <!-- Specifies maximum number of tag writing trials. Optional,
 default is unlimited number of trials. -->
 <trials>1</trials>

 <!-- Specifies maximum number of milliseconds to spend retrying failed
 tag writing operations. Optional, default is no time limit. -->
 <duration>4000</duration>
 </boundarySpec>

</PCSpec>
RFTagAware 1.3 Programmer Guide Page 7-13

ImmediateProgramSample: Writing Tags Sample Java Applications
5. In a shell, type:
./run.sh epcValue

where epcValue is the EPC to write to the tag (e.g., urn:epc:tag:gid-64-i:1.4.10).

(On Windows, type .\run.bat instead of ./run.sh. Do this replacement for the rest of the
examples in this section.)

6. In the console window, you should see output similar to the following:

ImmediateProgramSample Run Output

The console output includes a PCWriteReport, expressed in XML. (See PCWriteReport on
page 6-7.) PCWriteReport describes the programming cycle’s tag writing operation.

First, the <applicationData> element displays the information that the originating
PCSpec.xml included in its <applicationData> element.

In this example, the <wasSuccessful> element (set to true) indicates that this programming
cycle was successful. The <status> element is correspondingly set to SUCCESSFUL.

If the programming cycle had encountered problems, the <status> element would have
provided diagnostic information about the termination status of programming cycle
(CACHE_EMPTY, READER_ERROR, and so on. (See PCStatus on page 6-9.)

The <physicalReaders> element indicates which physical readers were involved in this tag
writing operation, in this case just one physical reader, alr1.

<failedLogicalReaders> is empty, because no logical readers failed during this programming
cycle.

C:\Program Files\ConnecTerra\RFTagAware\1.2\samples\ImmediateProgramSample>run
urn:epc:tag:gid-64-i:1.4.10
Immediate Program Sample, XML-based
 sending request to ALE engine...
 ...received response.

Received the following PCWriteReport:

<?xml version="1.0" encoding="UTF-8"?>
<PCWriteReport date="2004-05-27T19:14:34.597Z" savantID="EdgeServerID"
specName="$immediate=3" totalMilliseconds="10" to
talTrials="1" xmlns="http://schemas.connecterra.com/alepc">
 <applicationData>application specific data can go here</applicationData>
 <wasSuccessful>true</wasSuccessful>
 <status>SUCCESSFUL</status>
 <physicalReaders>
 <physicalReader>alr1</physicalReader>
 </physicalReaders>
 <failedLogicalReaders/>
 <cacheSize>0</cacheSize>
 <epc>urn:epc:tag:gid-64-i:1.4.10</epc>
 <successfulLogicalReader>Alien1</successfulLogicalReader>
</PCWriteReport>Press any key to continue . . .
Page 7-14 RFTagAware 1.3 Programmer Guide

Sample Java Applications ImmediateProgramSample: Writing Tags
<cacheSize> is set to zero — in this simple example, you passed in an EPC value as a
parameter to the sample program, the programming cycle used this value, and there are no
other values available. In other situations <cacheSize> will tell you how many EPC values are
left in the EPC cache associated with the originating PCSpec. (See EPCCacheSpec on page 6-
10.)

<epc> displays the EPC value that was written to the tag, in this case:
urn:epc:tag:gid-64-i:1.4.10

Finally, <successfulLogicalReader> indicates that the logical reader Alien1 was the logical
reader that wrote this tag.

Using ImmediateProgramSample with the Reader Simulator

You can use the Reader Simulator to simulate tag writes with the ImmediateProgramSample
application. This section contains notes on how to do this.

The PCSpec.xml files in the samples/ImmediateProgramSample and samples/ProgrammingSample
directories use TagWriteStation as the logical reader name on which the tags will be written. This
logical reader is not defined during the product installation. There are a number of ways to address
this:

• Edit the PCSpec.xml file in the appropriate samples directory to change the name of the
logicalReader to the name of your Reader Simulator, or

• Edit the edge.props file to add/change the name of a simulated reader to TagWriteStation,
or

• Edit the edge.props file to add a composite reader called TagWriteStation, where the only
member of this composite reader is one antenna of your simulated reader. For example, using
the default install, you would add the line
com.connecterra.ale.compositeReader.TagWriteStation.members=ConnecTerra1

The Reader Simulator provides support for writing six tag types only: GID-64-i, GID-96, SGTIN-64,
SGTIN-96, SSCC-64, and SSCC-96. The Reader Simulator needs access to a valid Company Prefix
Index Table to process SGTIN-64 and SSCC-64 tags. This file can be specified in the
bin/RunReaderSim (.bat/.sh) script as one of the command parameters to the Java invocation:

-epcIndexTableURL http://onsepc.com/ManagerTranslation.xml

This file must be the same as the value of the com.connecterra.ale.epcIndexTable property in the
etc/edge.props file. If the two files are different, then unpredictable results may occur.

As with a real RFID reader, there must be only one tag to be written in range of the antenna. With the
Reader Simulator, you must unselect all but one of the tags checked in the GUI. Otherwise the tag
write will fail with a MULTIPLE_IN_FIELD error.
RFTagAware 1.3 Programmer Guide Page 7-15

ProgrammingSample: Exploring Programming Cycles and EPC Caches Sample Java Applications
GID-64-i tags are outside the EPCglobal Tag Data Standards. For standard tags, there are strict
definitions of what are valid data in the various fields of the tag. This is one area where leading zeros
are considered important. The following non-normative descriptions are provided for guidance —
the document referenced above is definitive.

An SGTIN-64 tag is made up of a Filter field, a Company Prefix, an Item Reference code and a Serial
Number. The Company Prefix and the Item Reference together must total 13 decimal digits. So this
is a valid tag:

urn:epc:tag:sgtin-64:1.5413149.000001.1

while this is an invalid tag:
urn:epc:tag:sgtin-64:1.5413149.1.1

An SSCC-64 tag is made up of a Filter field, a Company Prefix and a Serial Reference. The Company
Prefix and the Serial Reference together must total 17 decimal digits. So this is a valid tag:

urn:epc:tag:sscc-64:1.0353265.0000010000

while this is an invalid tag:
urn:epc:tag:sscc-64:1.0353265.100000

When using the sample code, any attempt to write a poorly formatted tag may generate a non-specific
java.net.URISyntax exception with the (example) detail:

non valid uri syntax for epc tag: null: urn:epc:tag:sscc-64:1.0353265.100000

The Reader Simulator does not support other 64-bit or 96-bit tag types for writing. Any attempt to
write (for example) a GRAI-64, GIAI-64, or SGLN-64 tag will fail.

ProgrammingSample: Exploring Programming Cycles
and EPC Caches

The ProgrammingSample program shows how to use the ALEPC methods to manipulate
Programming Cycles and EPC Caches. The sample provides a simple command line interface that
lets you define PCSpec instances from XML files, subscribe or unsubscribe a delivery address to a
previously defined PCSpec to receive PCWriteReport instances, and list existing PCSpec instances and
subscriptions. In addition, you can define EPCCacheSpec instances from XML files, subscribe or
unsubscribe for EPCCacheReport instances, and replenish or deplete defined EPC caches.

As well as illustrating the use of several ALEPC methods, this sample serves as a useful command
line utility program in its own right.

Like the ImmediateProgramSample, the ProgrammingSample works with XML files to define
programming cycle specifications. However, ProgrammingSample differs from
ImmediateProgramSample in several respects:
Page 7-16 RFTagAware 1.3 Programmer Guide

Sample Java Applications ProgrammingSample: Exploring Programming Cycles and EPC Caches
• The ProgrammingSample uses EPC caches to obtain EPC values to be programmed to tags.
You invoke the ProgrammingSample program with the define-cache command for each EPC
cache you want to define, and use the replenish command to load an EPC cache with EPC
patterns that define its contents.

• Any number of programming cycle specifications can be defined, each with its own name.
You invoke the ProgrammingSample program with the define command for each
programming cycle you want to define.

• To obtain programming cycle write reports, you add one or more subscribers for the
programming cycle(s) you have defined, by invoking the ProgrammingSample program with
the subscribe command.

• To obtain cache-low reports, you add one or more subscribers for the EPC cache(s) you have
defined, by invoking the ProgrammingSample program with the subscribe-cache command.

• Once you have defined programming cycle(s), EPC cache(s), and added one or more
subscriptions, you invoke the ProgrammingSample program with the poll command to cause
a programming cycle to commence. The PCSpec you poll will obtain an EPC value from its
associated EPC cache and perform a tag programming operation using that EPC value.

Here are step-by-step instructions for working with the ProgrammingSample program.

1. Configure the Edge Server to use the Reader Simulator or any of the printers or readers for
which RFTagAware supports tag writing. See the supported RFID readers section of the
RFTagAware Reader Configuration Guide for information.

Assign this reader the logical reader name TagWriteStation, which is the logical reader name
specified in the ProgrammingSample’s PCSpec.xml file that we will use later. Alternately, you
can pick a different logical reader name, as long as you edit edge.props and PCSpec.xml to
both reflect the logical reader name you chose. If you are using the Reader Simulator, please
read the section Using ImmediateProgramSample with the Reader Simulator on page 7-15 to
understand the constraints of the simulator.

2. From the control/bin subdirectory of your RFTagAware installation, run the following
scripts in this order:

RunReaderSim (if you are using the simulator)

RunEdgeServer (required)

RunAdminConsole (optional)

These files end with the suffix .sh or .bat, depending on your platform.

3. Find the console window for the Edge Server and leave it open on your desktop. Later you
will be looking at console subscriber output sent to this window.

4. Go to the RFTagAware directory:
samples/ProgrammingSample

5. In a shell, type:
./run.sh define-cache mycache CacheSpec.xml
RFTagAware 1.3 Programmer Guide Page 7-17

ProgrammingSample: Exploring Programming Cycles and EPC Caches Sample Java Applications
(On Windows, type .\run.bat instead of ./run.sh. Do this replacement for the rest of the
examples in this section.)

You will see an output message from the ProgrammingSample indicating that an EPC cache
has been defined.

Note: You can define as many different EPC caches as you want, as long as you give them
distinct names. In the command line above, we gave the name mycache for the EPC
cache we defined; we will shortly be defining a PCSpec that refers to this cache.

6. In a shell, type:
./run.sh list-caches

This prints a list of the names of the EPC caches that are currently defined in the Edge
Server. You should see mycache and any other EPC caches you have defined.

7. In a shell, type:
./run.sh subscribe-cache mycache console:test

Look in the Edge Server window — a low-cache report has been issued to the subscription
we just created:

<!-- test -->
<?xml version="1.0" encoding="UTF-8"?>
<EPCCacheReport date="2004-06-10T14:04:03.040Z" savantID="EdgeServerID"
xmlns="http://schemas.connecterra.com/alepc">
 <cacheName>mycache</cacheName>
 <applicationData>application-specific data here</applicationData>
 <cacheSize>0</cacheSize>
 <cacheContent/>
 <threshold>10</threshold>
</EPCCacheReport>

A low-cache report was issued because the cache we defined does not yet have any EPCs, and
so is below the low-cache reporting threshold (10) defined in CacheSpec.xml. Whenever a
cache is below its reporting threshold, it issues low-cache reports to its subscribers. In this
case, such a report was issued as soon as a new subscriber was defined.

8. In a shell, type:
./run.sh replenish mycache urn:epc:pat:gid-64-i:1.5.[1-15]

This stocks the EPC cache we defined earlier with a range of 15 EPC values.

9. In a shell, type:
./run.sh cache-info mycache
Page 7-18 RFTagAware 1.3 Programmer Guide

Sample Java Applications ProgrammingSample: Exploring Programming Cycles and EPC Caches
The ProgrammingSample prints:

info for EPC cache mycache: Received the following EPCCacheSpecInfo:
<?xml version="1.0" encoding="UTF-8"?>
<EPCCacheSpecInfo xmlns="http://schemas.connecterra.com/alepc">
 <subscriberCount>1</subscriberCount>
 <pcSpecs/>
 <activationCount>0</activationCount>
 <replenishCount>1</replenishCount>
 <lastReplenished>2004-06-10T14:28:34.495Z</lastReplenished>
 <lastReported>2004-06-10T14:04:03.040Z</lastReported>
 <cacheSize>15</cacheSize>
 <cacheContent>
 <pattern>urn:epc:pat:gid-64-i:1.5.[1-15]</pattern>
 </cacheContent>
</EPCCacheSpecInfo>

We can see that the EPC cache we defined has one subscriber, no PCSpec instances using it
(yet), has been replenished once but never activated (used to write tags), and is currently
stocked with 15 EPCs from a single range pattern.

10. In a shell, type:
./run.sh define myspec PCSpec.xml

You will see an output message from the ProgrammingSample indicating that a PCSpec has
been defined.

Note: You can define as many different PCSpec instances as you want, as long as you give
them distinct names. In the command line above, we gave the name myspec for the
PCSpec we defined.

11. In a shell, type:
./run.sh cache-info mycache

The ProgrammingSample prints information about mycache, similar to what was printed
earlier. The important difference is that the empty <pcSpecs/> element has been replaced
with:
<pcSpecs>
 <pcSpec>myspec</pcSpec>
</pcSpecs>

This indicates that the PCSpec we just defined is using the mycache EPC cache we defined
earlier. Whenever myspec performs a tag programming operation, it will obtain an EPC value
from mycache.

12. Place a single writable RFID tag in the field of the RFID reader you configured the Edge
Server to use.

13. In a shell, type:
./run.sh poll myspec

The ProgrammingSample performs a tag programming operation and, if successful, prints a
PCWriteReport similar to:

polling myspec...
 ...received response.
RFTagAware 1.3 Programmer Guide Page 7-19

ProgrammingSample: Exploring Programming Cycles and EPC Caches Sample Java Applications
Received the following PCWriteReport:

<?xml version="1.0" encoding="UTF-8"?>
<PCWriteReport date="2004-06-10T14:43:31.525Z" savantID="EdgeServerID"
specName="myspec" totalMilliseconds="10" totalTrials="1" xmlns="http://
schemas.connecterra.com/alepc">
 <applicationData>application-specific data here</applicationData>
 <wasSuccessful>true</wasSuccessful>
 <status>SUCCESSFUL</status>
 <physicalReaders>
 <physicalReader>console</physicalReader>
 </physicalReaders>
 <failedLogicalReaders/>
 <cacheName>mycache</cacheName>
 <cacheSize>14</cacheSize>
 <epc>urn:epc:tag:gid-64-i:1.5.1</epc>
 <successfulLogicalReader>TagWriteStation</successfulLogicalReader>
</PCWriteReport>

The report indicates the status of the tag programming operation, and if successful (as in the
example above), contains the EPC value that was written to the tag, and also indicates how
many EPC values remain in the EPC cache. In this example, note that the EPC cache, which
previously had 15 EPC values, now has only 14 EPC values remaining.

14. Repeat the poll command several more times, and watch the Edge Server’s console window.
At some point, the number of EPC values remaining in the cache will drop to the reporting
threshold (10), and a low-cache report will be issued to the console subscriber you defined
earlier. Each subsequent poll operation will cause a further low-cache report to be issued,
unless you first use the replenish command to re-stock the EPC cache.

15. Keep repeating the poll command until the EPC cache is empty, as indicated in the
PCWriteReport indicating a tag programming failure:

polling myspec...
 ...received response.

Received the following PCWriteReport:

<?xml version="1.0" encoding="UTF-8"?>
<PCWriteReport date="2004-06-10T14:59:03.385Z" savantID="EdgeServerID"
specName="myspec" totalMilliseconds="6289" totalTrials="1" xmlns="http://
schemas.connecterra.com/alepc">
 <applicationData>application-specific data here</applicationData>
 <wasSuccessful>false</wasSuccessful>
 <status>CACHE_EMPTY</status>
 <physicalReaders>
 <physicalReader>console</physicalReader>
 </physicalReaders>
 <failedLogicalReaders/>
 <cacheName>mycache</cacheName>
 <cacheSize>0</cacheSize>
 <failureInfo>EPC cache 'mycache' empty for PCSpec myspec</failureInfo>
 <terminationCondition>FAILURE</terminationCondition>
</PCWriteReport>
Page 7-20 RFTagAware 1.3 Programmer Guide

Sample Java Applications JMS Samples
JMS Samples

The samples in this section show how to configure JMS options and naming properties on the
RFTagAware Edge Server for vendor-specific JNDI (Java Naming and Directory Interface) providers
and JMS servers. The samples also provide deployment units to be deployed into J2EE application
servers in enterprise systems and provides sample message receiving programs for message queue
servers.

For vendor-specific J2EE application servers, a JMSTest.ear enterprise archive file is available for
deployment. The enterprise archive file contains a Message Driven Bean (JMSTestMDB) which receives
JMS messages from specified queues and prints them out to the console.

For message queue servers (WebSphere MQ and TIBCO Enterprise for JMS), sample message
receiver programs are provided to receive JMS messages from specified queues and to print them out
to the console.

BEA

WebLogic Server

To run the sample JMSTest enterprise program within a BEA WebLogic Application Server
deployment, perform the following:

1. Configure the JNDI provider and JMS server as specified in the RFTagAware Deployment
Guide.

2. Configure RFTagAware Edge Server:

- Copy the sample jms.options and naming.props files from the /samples/JMSSamples/
BEA/etc directory into the /etc directory of the RFTagAware installation directory.

- Modify the jms.options file in the /etc directory of the RFTagAware installation
directory with the appropriate paths for the specified environment variables.

- Modify the naming.props file in the /etc directory of the RFTagAware installation
directory with the appropriate values for the java.naming.provider.url property.

- Modify the edge.props file in the /etc directory of the RFTagAware installation directory
to set the
com.connecterra.ale.notificationDriver.jms.default.namingPropertiesFile
property to the fully-qualified file name for naming.props.

- (only if you are running the Edge Server as a Windows Service) Modify the edge.wrapper.conf file
in the /etc directory of the RFTagAware installation directory to point to ALL the
relevant JMS_LIB .jar files listed in jms.options. You can use either fully qualified or
relative pathnames. Specify one .jar file per line, using the format shown below.
RFTagAware 1.3 Programmer Guide Page 7-21

JMS Samples Sample Java Applications
For example, assume that InstallRoot is the root of the application server, or path to the
top directory of the application server. If you are using a fully qualified pathname, you
might add an entry like this to edge.wrapper.conf:
wrapper.java.classpath.31=c:\InstallRoot\AppServer\lib\someJarFile.jar

You can also use a relative pathname. For example, assume the .jar files are in a folder
called AppServerLib, located directly under the RFTagAware installation directory. In this
case you might add an entry like this to edge.wrapper.conf:
wrapper.java.classpath.31=../AppServerLib/someJarFile.jar

Create separate wrapper.java.classpath entries for each JMS_LIB .jar file listed in
jms.options.

3. Build the sample JMSTest enterprise archive by invoking build.bat or build.sh (set the
environment variables appropriate to the build environment).

4. Deploy the sample JMSTest enterprise archive into the Application Server:

- Start the application server via the startWebLogic command.

- Copy JMSTest.ear from /samples/JMSSamples/BEA/deploy into the user_projects/
domains/mydomain/applications directory of the BEA WebLogic installation directory.

- Using the BEA WebLogic Server Administration Console (http://<wl_host>:7001/
console), install the JMSTest.ear as follows:
mydomain, Deployments, Applications, Deploy a New Application, applications

Select and deploy JMSTest.ear

5. Run the Edge Server.

6. Define an ECSpec to the Edge Server.

For example, use the SubscribeSample to define myECSpec
(via run define myECSpec ECSpec.xml)

7. Set a JMS subscriber to the defined ECSpec.

For example, set a JMS subscriber for myECSpec reports (via run subscribe myECSpec
jms:/queue/weblogic.jms.ConnectionFactory/jms%2FTestQ)

Note: BEA provides weblogic.jms.ConnectionFactory and
weblogic.jms.XAConnectionFactory as default connection factories.

8. View JMSTest MDB messages showing ECReports for the defined ECSpec in the console
corresponding to the startWebLogic command.

IBM
• Application Server (page 7-23)

• WebSphere MQ (page 7-24)
Page 7-22 RFTagAware 1.3 Programmer Guide

Sample Java Applications JMS Samples
Application Server

To run the sample JMSTest enterprise program within an IBM WebSphere Application Server
deployment, perform the following:

1. Configure the JNDI provider and JMS server as specified in the RFTagAware Deployment
Guide.

2. Configure RFTagAware Edge Server:

- Copy the sample jms.options and naming.props files from the /samples/JMSSamples/
IBM/<was_configuration>/etc directory into the /etc directory of the RFTagAware
installation directory.

- Modify the jms.options file in the /etc directory of the RFTagAware installation
directory with the appropriate paths for the specified environment variables

- Modify the naming.props file in the /etc directory of the RFTagAware installation
directory with the appropriate values for the java.naming.provider.url property.

- Modify edge.props in the /etc directory of the RFTagAware installation directory to set
the com.connecterra.ale.notificationDriver.jms.default.namingPropertiesFile
property to the fully-qualified file name for naming.props.

- (only if you are running the Edge Server as a Windows Service) Modify the edge.wrapper.conf file
in the /etc directory of the RFTagAware installation directory to point to ALL the
relevant JMS_LIB .jar files listed in jms.options. You can use either fully qualified or
relative pathnames. Specify one .jar file per line, using the format shown below.

For example, assume that InstallRoot is the root of the application server, or path to the
top directory of the application server. If you are using a fully qualified pathname, you
might add an entry like this to edge.wrapper.conf:
wrapper.java.classpath.31=c:\InstallRoot\AppServer\lib\someJarFile.jar

You can also use a relative pathname. For example, assume the .jar files are in a folder
called AppServerLib, located directly under the RFTagAware installation directory. In this
case you might add an entry like this to edge.wrapper.conf:
wrapper.java.classpath.31=../AppServerLib/someJarFile.jar

Create separate wrapper.java.classpath entries for each JMS_LIB .jar file listed in
jms.options.

- Modify RunEdgeServer.bat or RunEdgeServer.sh in the control/bin directory of the
RFTagAware installation directory to set the JAVA_HOME environment variable to the fully-
qualified path of an IBM JRE.

Note that if an IBM JRE is not specified, CORBA.INITIALIZE errors will be reported.

3. Build the sample JMSTest enterprise archive by invoking build.bat or build.sh (set the
environment variables appropriate to the build environment).
RFTagAware 1.3 Programmer Guide Page 7-23

JMS Samples Sample Java Applications
4. Deploy the sample JMSTest enterprise archive into the Application Server:

- Start the application server.

- Using the WebSphere Application Server Administration Console
(http://<was_host>:9090/admin), install JMSTest.ear from /samples/JMSSamples/IBM/
<was_configuration>/deploy directory as follows:

Applications, Install New Application, Local Path:

Specify fully-qualified path for JMSTest.ear

Next, Next, Check “Deploy EJBs”

Next, Next, Specify Listener Port Name (JMSTestListener)

Next, Next, Finish

5. Run the Edge Server.

6. Define an ECSpec to the Edge Server.

For example, use the SubscribeSample to define myECSpec
(via run define myECSpec ECSpec.xml)

7. Set a JMS subscriber to the defined ECSpec.

For example, set a JMS subscriber for myECSpec reports (via run subscribe myECSpec jms:/
queue/jms%2FTestQCF/jms%2FTestQ)

8. View JMSTest MDB messages showing ECReports for the defined ECSpec in the logs/
server1/SystemOut.log file of the WebSphere Application Server installation directory.

WebSphere MQ

To run the MQReceiver sample program within an IBM WebSphere MQ deployment, perform the
following:

1. Configure the JNDI provider and JMS server as specified in the RFTagAware Deployment
Guide.

2. Configure RFTagAware Edge Server:

- Copy the sample jms.options and naming.props files from the /samples/JMSSamples/
IBM/Standalone_WMQ_Sample/etc directory into the /etc directory of the RFTagAware
installation directory.

- Modify the jms.options file in the /etc directory of the RFTagAware installation
directory with the appropriate paths for the specified environment variables.

- Modify the naming.props file in the /etc directory of the RFTagAware installation
directory with the appropriate values for the java.naming.provider.url property.
Page 7-24 RFTagAware 1.3 Programmer Guide

Sample Java Applications JMS Samples
- Modify the edge.props file in the /etc directory of the RFTagAware installation directory
to set the
com.connecterra.ale.notificationDriver.jms.default.namingPropertiesFile
property to the fully-qualified file name for naming.props.

- (only if you are running the Edge Server as a Windows Service) Modify the edge.wrapper.conf file
in the /etc directory of the RFTagAware installation directory to point to ALL the
relevant JMS_LIB .jar files listed in jms.options. You can use either fully qualified or
relative pathnames. Specify one .jar file per line, using the format shown below.

For example, assume that InstallRoot is the root of the application server, or path to the
top directory of the application server. If you are using a fully qualified pathname, you
might add an entry like this to edge.wrapper.conf:
wrapper.java.classpath.31=c:\InstallRoot\AppServer\lib\someJarFile.jar

You can also use a relative pathname. For example, assume the .jar files are in a folder
called AppServerLib, located directly under the RFTagAware installation directory. In this
case you might add an entry like this to edge.wrapper.conf:
wrapper.java.classpath.31=../AppServerLib/someJarFile.jar

Create separate wrapper.java.classpath entries for each JMS_LIB .jar file listed in
jms.options.

- Modify RunEdgeServer.bat or RunEdgeServer.sh in the 1.2/bin directory of the
RFTagAware installation directory to set the JAVA_HOME environment variable to the fully-
qualified path of an IBM JRE.

Note: If an IBM JRE is not specified, CORBA.INITIALIZE errors will be reported.

3. Build the MQReceiver sample program by invoking build.bat or build.sh (set the
environment variables appropriate to the build environment).

4. Run /samples/JMSSamples/IBM/Standalone_WMQ_Sample/MQReceiver.bat (or .sh) to start a
queue receiver for a specified queue name (for example, MQReceiver MQ_JMS_Q).

5. Run the Edge Server.

6. Define an ECSpec to the Edge Server.

For example, use the SubscribeSample to define myECSpec
(via run define myECSpec ECSpec.xml)

7. Set a JMS subscriber to the defined ECSpec.

- For example, set a JMS subscriber for myECSpec reports (via run subscribe myECSpec
jms:/queue/jms%2FTestQCF/jms%2FTestQ)

- For an LDAP provider, the JMS URI would take the following form:
jms:/queue/cn=MQTestQCF/cn=MQTestQ

8. View MQReceiver messages showing ECReports for the defined ECSpec in the console where
MQReceiver was started.
RFTagAware 1.3 Programmer Guide Page 7-25

JMS Samples Sample Java Applications
JBoss

Application Server

To run the sample JMSTest enterprise program within a JBoss Application Server deployment,
perform the following:

1. Configure the JNDI provider and JMS server as specified in the RFTagAware Deployment
Guide.

2. Configure RFTagAware Edge Server:

- Copy the sample jms.options and naming.props files from the /samples/JMSSamples/
JBoss/etc directory into the /etc directory of the RFTagAware installation directory.

- Modify the jms.options file in the /etc directory of the RFTagAware installation
directory with the appropriate paths for the specified environment variables

- Modify the naming.props file in the /etc directory of the RFTagAware installation
directory with the appropriate values for the java.naming.provider.url property.

- Modify the edge.props file in the /etc directory of the RFTagAware installation directory
to set the
com.connecterra.ale.notificationDriver.jms.default.namingPropertiesFile
property to the fully-qualified file name for naming.props.

- (only if you are running the Edge Server as a Windows Service) Modify the edge.wrapper.conf file
in the /etc directory of the RFTagAware installation directory to point to ALL the
relevant JMS_LIB .jar files listed in jms.options. You can use either fully qualified or
relative pathnames. Specify one .jar file per line, using the format shown below.

For example, assume that InstallRoot is the root of the application server, or path to the
top directory of the application server. If you are using a fully qualified pathname, you
might add an entry like this to edge.wrapper.conf:
wrapper.java.classpath.31=c:\InstallRoot\AppServer\lib\someJarFile.jar

You can also use a relative pathname. For example, assume the .jar files are in a folder
called AppServerLib, located directly under the RFTagAware installation directory. In this
case you might add an entry like this to edge.wrapper.conf:
wrapper.java.classpath.31=../AppServerLib/someJarFile.jar

Create separate wrapper.java.classpath entries for each JMS_LIB .jar file listed in
jms.options.

3. Build the sample JMSTest enterprise archive by invoking build.bat or build.sh (set the
environment variables appropriate to the build environment).
Page 7-26 RFTagAware 1.3 Programmer Guide

Sample Java Applications JMS Samples
4. Deploy the sample JMSTest enterprise archive into the Application Server:

- Run build.bat in the /samples/JMSSamples/JBOSS subdirectory.

- Copy JMSTest.ear from /samples/JMSSamples/JBOSS/deploy into server/default/
deploy of the JBoss installation directory.

- Start the application server to automatically deploy the JMSTest enterprise archive.

5. Run the Edge Server.

6. Define an ECSpec to the Edge Server.

For example, use the SubscribeSample to define myECSpec
(via run define myECSpec ECSpec.xml)

7. Set a JMS subscriber to the defined ECSpec.

For example, set a JMS subscriber for myECSpec reports (via run subscribe myECSpec jms:/
queue/ConnectionFactory/queue%2FTestQ)

8. View JMSTest MDB messages showing ECReports for the defined ECSpec in the console
where the JBoss Application Server was started.

Sun

Java System Application Server

To run the sample JMSTest enterprise program within a Sun Java System Application Server
deployment, perform the following:

1. Configure the JNDI provider and JMS server as specified in the RFTagAware Deployment
Guide.

2. Configure RFTagAware Edge Server:

- Copy the sample jms.options and naming.props files from the /samples/JMSSamples/
Sun/etc directory into the /etc directory of the RFTagAware installation directory.

- Modify the jms.options file in the /etc directory of the RFTagAware installation
directory with the appropriate paths for the specified environment variables.

- Modify the naming.props file in the /etc directory of the RFTagAware installation
directory with the appropriate values for the java.naming.provider.url property.

- Modify the edge.props file in the /etc directory of the RFTagAware installation directory
to set the
com.connecterra.ale.notificationDriver.jms.default.namingPropertiesFile
property to the fully-qualified file name for naming.props.
RFTagAware 1.3 Programmer Guide Page 7-27

JMS Samples Sample Java Applications
- (only if you are running the Edge Server as a Windows Service) Modify the edge.wrapper.conf file
in the /etc directory of the RFTagAware installation directory to point to ALL the
relevant JMS_LIB .jar files listed in jms.options. You can use either fully qualified or
relative pathnames. Specify one .jar file per line, using the format shown below.

For example, assume that InstallRoot is the root of the application server, or path to the
top directory of the application server. If you are using a fully qualified pathname, you
might add an entry like this to edge.wrapper.conf:
wrapper.java.classpath.31=c:\InstallRoot\AppServer\lib\someJarFile.jar

You can also use a relative pathname. For example, assume the .jar files are in a folder
called AppServerLib, located directly under the RFTagAware installation directory. In this
case you might add an entry like this to edge.wrapper.conf:
wrapper.java.classpath.31=../AppServerLib/someJarFile.jar

Create separate wrapper.java.classpath entries for each JMS_LIB .jar file listed in
jms.options.

3. Build the sample JMSTest enterprise archive by invoking build.bat or build.sh (set the
environment variables appropriate to the build environment).

4. Deploy the sample JMSTest enterprise archive into the Application Server:

- Start the application server (default server).

- Using the Sun Application Server Administration Console
(http://<sun_host>:4848/asadmin), install JMSTest.ear from /samples/JMSSamples/
Sun/deploy directory as follows:

Application Server, Enterprise Applications, Deploy:

Specify fully-qualified path for JMSTest.ear

Next

Specify Application Name, enabled status

Finish

5. Run the Edge Server.

6. Define an ECSpec to the Edge Server.

For example, use the SubscribeSample to define myECSpec
(via run define myECSpec ECSpec.xml)

7. Set a JMS subscriber to the defined ECSpec.

For example, set a JMS subscriber for myECSpec reports (via run subscribe myECSpec jms:/
queue/jms%2FTestQCF/jms%2FTestQ)

8. View JMSTest MDB messages showing ECReports for the defined ECSpec in the domains/
domain1/logs/server.log file of the Sun Java System Application Server installation
directory.
Page 7-28 RFTagAware 1.3 Programmer Guide

Sample Java Applications JMS Samples
TIBCO

TIBCO Enterprise for JMS

To run the TestQueueReceiver sample program within a TIBCO Enterprise for JMS deployment,
perform the following:

1. Configure the JNDI provider and JMS server as specified in the RFTagAware Deployment
Guide.

2. Configure RFTagAware Edge Server:

- Copy the sample jms.options and naming.props files from the /samples/JMSSamples/
TIBCO/etc directory into the /etc directory of the RFTagAware installation directory.

- Modify the jms.options file in the /etc directory of the RFTagAware installation
directory with the appropriate paths for the specified environment variables

- Modify the naming.props file in the /etc directory of the RFTagAware installation
directory with the appropriate values for the java.naming.provider.url property.

- Modify the edge.props file in the /etc directory of the RFTagAware installation directory
to set the
com.connecterra.ale.notificationDriver.jms.default.namingPropertiesFile
property to the fully-qualified file name for naming.props.

- (only if you are running the Edge Server as a Windows Service) Modify the edge.wrapper.conf file
in the /etc directory of the RFTagAware installation directory to point to ALL the
relevant JMS_LIB .jar files listed in jms.options. You can use either fully qualified or
relative pathnames. Specify one .jar file per line, using the format shown below.

For example, assume that InstallRoot is the root of the application server, or path to the
top directory of the application server. If you are using a fully qualified pathname, you
might add an entry like this to edge.wrapper.conf:
wrapper.java.classpath.31=c:\InstallRoot\AppServer\lib\someJarFile.jar

You can also use a relative pathname. For example, assume the .jar files are in a folder
called AppServerLib, located directly under the RFTagAware installation directory. In this
case you might add an entry like this to edge.wrapper.conf:
wrapper.java.classpath.31=../AppServerLib/someJarFile.jar

Create separate wrapper.java.classpath entries for each JMS_LIB .jar file listed in
jms.options.

3. Build the TestQueueReceiver sample program by invoking build.bat or build.sh (set the
environment variables appropriate to the build environment).

4. Run /samples/JMSSamples/TIBCO/TestQueueReceiver.bat (or .sh) to start a queue receiver
for a specified queue connection factory and queue name (for example, TestQueueReceiver
TestQCF TestQ).
RFTagAware 1.3 Programmer Guide Page 7-29

JMS Samples Sample Java Applications
5. Run the Edge Server.

6. Define an ECSpec to the Edge Server.

For example, use the SubscribeSample to define myECSpec (via run define myECSpec
ECSpec.xml).

7. Set a JMS subscriber to the defined ECSpec.

For example, set a JMS subscriber for myECSpec reports (via run subscribe myECSpec jms:/
queue/TestQCF/TestQ).

8. View TestQueueReceiver messages showing ECReports for the defined ECSpec in the console
where TestQueueReceiver was started.
Page 7-30 RFTagAware 1.3 Programmer Guide

Chapter 8: Sample .NET Applications

Contents

This chapter describes how to use the sample .NET applications provided in your RFTagAware
installation. Unlike other parts of RFTagAware, the sample applications are free for you to use and
modify for your own purposes. You may use them as a starting point for developing your own
applications.

• Overview (page 8-2)

• Setting Up Your Development Environment (page 8-2)

• Using the Reader Simulator with the Samples (page 8-5)

• Running the Samples (page 8-7)

• SQLNotificationSample.NET (page 8-8)

• ALESample.NET (page 8-11)

• ALEPCSample.NET (page 8-17)

• BizTalkSample.NET (page 8-24)
RFTagAware 1.3 Programmer Guide Page 8-1

Overview Sample .NET Applications
Overview

There are several .NET samples provided with RFTagAware:

• SQLNotificationSample.NET — shows how to subscribe for delivery of ALE event cycle
reports via TCP and persist the report information in an SQL database. This sample is
written in VB.NET.

• ALESample.NET — shows how to use the ALE API to define, undefined, redefine subscribe,
unsubscribe, suspend and unsuspend an event cycle specification (ECSpec). This sample is
written in C#.

• ALEPCSample.NET — shows how to use the APEPC API to program tags via a cache
specification (EPCCacheSpec) and programming cycle specification (PCSpec). This sample is
written in C#.

• BizTalkSample.NET — shows how to include tag reading into a business workflow. This
sample is a BizTalk Orchestration.

Setting Up Your Development Environment

To run samples, you need only the .NET runtime environment, which is available free of charge from
Microsoft for the Windows operating system. You should also be familiar with the .NET SDK,
SOAP interfaces, and IIS or other webservers.

For detailed information about system requirements, prerequisite software, and how to install
RFTagAware, see the RFTagAware Deployment Guide.

Interfacing with the Edge Server

The .NET samples use Simple Object Access Protocol (SOAP) over HTTP to communicate with the
RFTagAware Edge Server. SOAP is an XML based computer to computer interface that is
lightweight and intended for the exchange of structured information in a decentralized, distributed
environment.

WSDL Files

Web Services Description Language (WSDL) defines the “contract” between client and server in the
exchange of SOAP messages. The IDE will automatically generate a proxy for you from WSDL files.
This proxy will present the SOAP messages as a collection of method calls (one method per SOAP
message). The result is an interface which is almost as easy to use as a ‘C’ DLL.
Page 8-2 RFTagAware 1.3 Programmer Guide

Sample .NET Applications Setting Up Your Development Environment
The WSDL files you need are located in the share\schemas subdirectory:
EPCglobal-ALE-1_0.wsdl
ALEPCService.wsdl

The associated schemas are also in share\schemas:
EPCglobal-ALE-1_0.xsd
ALEPC.xsd

Using a Virtual Directory

A virtual directory is a reference to a directory managed through a Web Server. You configure a Web
Server to be aware of certain directories on your computer or network by defining a Web Server
directory that maps to a physical one. This linkage (called a virtual directory) is how a Web Server
exerts control over access to information.

From the webserver, define a virtual directory that points to the WSDL files or place the WSDL and
schema files in an existing virtual directory.

Setting Up the Microsoft IDE

You need to configure the Microsoft IDE to let applications use these interfaces to the Edge Server.

1. From the IDE, select Project, Add Web Reference.

The start browsing for web services page appears.

2. Click on Web services on the local machine.
RFTagAware 1.3 Programmer Guide Page 8-3

Setting Up Your Development Environment Sample .NET Applications
The web services on the local machine page appears.

3. Select the service for which you want to generate a proxy. In this example we selected the
EPCglobal-ale-1_0 service. This is the service used in the SQLNotificationSample.NET and
the ALE.NET samples.

The service description page appears.

4. Click the Add Reference button.

At this point, your application is ready to use the ALE SOAP interface. See the detailed
sample descriptions later in this chapter for information on how to use the methods in this
interface.
Page 8-4 RFTagAware 1.3 Programmer Guide

Sample .NET Applications Using the Reader Simulator with the Samples
Using the Reader Simulator with the Samples

Before you run the samples, you may want to quickly familiarize yourself with the Reader Simulator
that comes with RFTagAware. The simulator is software that emulates a reader and writer of tags.
The Edge Server communicates with the Reader Simulator exactly as it would with a real tag reading
device or real printer/tag programming device. Using the simulator, you can test your software in a
controlled environment where you can model many “real world” events.

Like actual read and write devices, the simulator is passive, in that it does nothing unless instructed.
There are no “start” or “stop” commands, nor are there any user configurable options. From the time
you start the simulator, it is simply capable of processing requests from the Edge Server.

The simulator emulates the ThingMagic Mercury4 Reader.

This section provides a quick summary of the simulator; for more detailed information, see the
RFTagAware Deployment Guide.

Configuring the Simulator

The default edge.props file that is initially installed on your system contains the following block of
properties definitions for the Reader Simulator:

com.connecterra.ale.reader.SimReadr.class =
com.connecterra.ale.readertypes.ThingMagicMercury4PhysicalReader
com.connecterra.ale.reader.SimReadr.hostname = localhost
com.connecterra.ale.reader.SimReadr.port = 5050
com.connecterra.ale.reader.SimReadr.defaultRate = 0
com.connecterra.ale.reader.SimReadr.uhf2LogicalReaderName = ConnecTerra2
com.connecterra.ale.reader.SimReadr.uhf1LogicalReaderName = ConnecTerra1

This block of properties defines a ThingMagic Mercury4 reader with two antennas running on your
local system on port 5050. This set of properties actually refers to the RFTagAware Reader Simulator.

Starting the Simulator

From the control\bin directory, run the script:
RunReaderSim
RFTagAware 1.3 Programmer Guide Page 8-5

Using the Reader Simulator with the Samples Sample .NET Applications
When you run this script, the Reader Simulator appears:

By default, the simulator has two antennas. Each antenna has its own tags.

You read from and write to each antenna separately. When the Edge Server is configured as described
above, the logical reader name ConnecTerra1 refers to Antenna 1, and the logical reader name
ConnecTerra2 refers to Antenna 2.

The antenna status shows when it is being read.

Each tag has:

• A checkbox that indicates whether the tag is considered to be within range of the antenna.
Unchecking this box is like moving the tag away from the antenna.

• Drop down dialog box where you can select the EPC format to emulate.

• 3-4 text boxes (depending on format) that contain the values of each of the fields of the tag's
EPC code.

When reading:

• The tag values that you see in the simulator are sent to the Edge Server.

When writing:

• Uncheck all but one tag. There must be only one tag in the “field” of the antenna. More
than one tag is an ambiguous write situation and will generate an error.

• The tag is written in the format you define in the EPCCache specification or replenishment
command.
Page 8-6 RFTagAware 1.3 Programmer Guide

Sample .NET Applications Running the Samples
When either reading and writing:

• Reliability setting allows for random failures on attempted commands.

• Simulation of downtime is useful when testing read failure handling vs. no data.

Running the Samples

The samples are in the samples directory. Each sample has its own subdirectory:
• samples\SQLNotificationSample.NET

• samples\ALESample.NET

• samples\ALEPCSample.NET

• samples\BizTalkSample.NET

Each subdirectory contains:

• Executable(s) to run the sample.

• Source files that produced the executable(s).

• project.sln (and support) files for bringing up the application in the .NET IDE.

• Any scripts needed to set up the runtime environment.

• ECSpecs subdirectory containing the XML specification files necessary for that particular
example.

• Icons and .GIF files used in building the application.

How to Run the Samples

The instructions for running all samples are the same:

1. Make sure the Edge Server is running.

The Edge Server is installed as a service, so:

- From the Start menu, select Settings, Control Panel, Administrative Tools, Services.

- Double click RFTagAware Edge Server.

- Click Start.

2. Start the Reader Simulator:

- From the control\bin directory, run the script:
RunReaderSim
RFTagAware 1.3 Programmer Guide Page 8-7

SQLNotificationSample.NET Sample .NET Applications
3. Then, depending on which sample you want to run, follow the instructions in:

SQLNotificationSample.NET (page 8-8)

ALESample.NET (page 8-11)

ALEPCSample.NET (page 8-17)

BizTalkSample.NET (page 8-24)

SQLNotificationSample.NET

This sample shows you how to:

• Connect to the Edge Server on a specified host and port.

• Define and undefine an ECSpec.

• Subscribe and unsubscribe for notifications via a TCP URI.

• Specify a database server name.

• Start and stop an SQLNotification listener.

This sample demonstrates how to receive notifications from an Edge Server and persist notification
data into SQL Server database. For the sake of simplicity, it does not provide extended capabilities.

Additional Requirements
• SQL Server 2000

• Create Schema privilege

How to Install
1. Navigate to the directory:

samples\SQLNotificationSample.NET\SQLScripts

2. Run the script:
CreateDataBase.bat

This launches the SQL script to define a schema.

By default, CreateDataBase.bat sets the host name of the SQL Server to localhost. If your
host name is different, modify CreateDataBase.bat to specify the correct SQL Server.

Note: Make sure your SQL server is installed with Authentication mode as “SQL Server and
Windows”. (You can check this in the properties window, Security tab.) If you prefer
to run this example with “Windows only” mode, you will need to modify your SQL
script as well as the sample code connection string to use a trusted connection.
Page 8-8 RFTagAware 1.3 Programmer Guide

Sample .NET Applications SQLNotificationSample.NET
3. Navigate back to the directory:
SQLNotificationSample.NET

How to Run SQLNotification.exe
1. From the SQLNotificationSample.NET directory, double click:

SQLNotification.exe

The SQL notification form appears.

2. Fill in the following fields:

Server Name: the name of the host running the RFTagAware Edge Server from which to
request reports. The default is localhost, meaning the same host as the one running the
SQLNotificationSample.NET application.

Port: The port number assigned to the Edge Server when it was installed. The default port
assignment is 6060.

ECSpecName: what you would like to call the ECSpec (any user defined name).

NotificationURI: a string consisting of tcp://, followed by an IP address or name of the
machine running the application. Since this URI will be used to make a TCP socket, it must
refer to the local machine or the attempt will fail. The port assignment for this URI is 11000
but if this port is already being used by another application, it can be set to any unused port.

DisplayECReports: Make sure this checkbox is selected.

3. Click DefineECSpec.
RFTagAware 1.3 Programmer Guide Page 8-9

SQLNotificationSample.NET Sample .NET Applications
A dialog appears, asking you to select an event cycle (ECSpec) file. We provide a default,
prewritten ECSpec.xml file, but as you get more comfortable with the sample application, you
may want to experiment with changing some of the values in this file. See Chapter 5: Reading
Tags Using the ALE API for information about the different values that you can specify in an
ECSpec.

4. For now, choose the prewritten ECSpec XML file:
ECSpecs\ECSpec.xml

5. Click the Subscribe button, followed by the Start Listener button. You should see:

- ECReports being generated every 2 or 3 seconds. These reports contain tags that the Edge
Server got from the Reader Simulator.

- SQL Database being populated. To check this:

Start SQL Server Enterprise Manager.

Open Server Groups.

Open your SQL Server.

Open Databases.

Open RFTagData.

Open ECReports Table, select rows. The amount of data in a table depends on the kinds
of reports received. ECReports Table logs each report captured. It will be the more
populated of the tables.
Page 8-10 RFTagAware 1.3 Programmer Guide

Sample .NET Applications ALESample.NET
Programming Notes

This application is meant as a teaching tool, and is provided “as is.” To get your development
environment set up to work with this sample:

• Install and configure Visual Studio.

• Double click SQLNotification.sln. The IDE is launched with all source files

The SQLNotificationSample.NET sample has following 4 components,

• Edge Server web service proxy.

Edge Server proxy/stub class that allows this sample application to talk to the Edge Server
for defining and subscribing notifications. This functionality is in the file:
EDgeServerWebserviceStub\Web References\localhost\Reference.cs

• User interface window.

Simple Windows form that captures user parameters like Edge Server name and port,
database server, and TCP notification URI. It allows the user to subscribe to an ECReports
instance and start/stop listening for notifications as well as see message details. This form
actually starts up the TCP listener on separate thread when the user clicks the Start Listener
button. This functionality is in the file:
SQLNotificationForm.vb

• TCP Listener.

This simple socket handler object starts a server socket for TCP notifications from the Edge
Server and starts listening on the socket for notifications. When notifications are received, it
fires up new instances of SQLNotificationHandler to handle persistence in separate threads.
This functionality is in the file:
TCPListener.vb

• Notification data extractor.

The SQLNotificationHandler class is designed to handle notifications and persist the data
from these notifications into database tables according to the table schema. This functionality
is found in the file:
SQLNotificationHandler.vb

ALESample.NET

This sample shows you how to use the ALE API to read EPC tags. Specifically, it shows you how to
use the ALE API to define, undefine, redefine subscribe, unsubscribe, suspend and unsuspend an
event cycle specification (ECSpec).
RFTagAware 1.3 Programmer Guide Page 8-11

ALESample.NET Sample .NET Applications
Additional Requirements

None

How to Install

No additional installation steps necessary.

How to Run ALESample.NET
1. Navigate to the directory:

samples\ALESample.NET

2. Double click:
ALE.NET.exe

The ALESample GUI appears.

The application will walk you through the instantiation and use of an ECSpec instance. This
application allows you to define an ECspec and sign up for the ensuing notifications. The
Command drop down menu selects a method of the ALE API. Other fields below the
Command menu let you specify arguments to the specified method (which fields are
available depend on which command you select). After you specify arguments, the Execute
Command button sends the command to the Edge Server.

3. The first step is to define the ECspec. In the Command drop down menu, select define
(default first command).

4. Click the ECSpec button.
Page 8-12 RFTagAware 1.3 Programmer Guide

Sample .NET Applications ALESample.NET
This opens a dialog box where you can navigate to the XML file that contains the definition
of your ECSpec. In this example, navigate to ALESample.NET/ECSpecs and select the
predefined XML file: ECSpec.xml.

5. With a text editor, open the ECSpec.xml file you just selected. Here are some excerpts from
this file:

ImmediateProgramSample Run Output

We specify the logical reader as ConnecTerra1, which is mapped to “Antenna 1” in the Reader
Simulator by default. We also specify that our event cycle is to be 2 seconds long (2000 MS),
repeated each 10 seconds (10000 MS). The final section defines a report specification that
requests both a count and a list of all the CURRENT tags visible to logical reader ConnecTerra1.

As you get more comfortable with this sample, you can experiment with changing the values
in ECSpec.xml. For now, use the default values.

6. Now, returning to the ALE sample GUI, press the Execute Command button.

This invokes the define method, which now creates an ECSpec object based on the
information we provided in ECSpec.xml.

<?xml version="1.0" encoding="UTF-8"?>
<ale:ECSpec targetNamespace="urn:epcglobal:ale:xsd:1"
xmlns:ale="urn:epcglobal:ale:xsd:1"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified"
 xmlns:aleext="http://schemas.connecterra.com/EPCglobal-extensions/ale"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 creationDate="2004-11-15T16:18:43.500Z"
 schemaVersion="1.0"
 includeSpecInReports="false" >

<logicalReaders>
<logicalReader>ConnecTerra1</logicalReader>

</logicalReaders>

<boundarySpec>
<repeatPeriod unit="MS">10000</repeatPeriod>
<duration unit="MS">2000</duration>

</boundarySpec>

<reportSpecs>
<reportSpec reportName="SubscribeSample Report" reportIfEmpty="true">
<reportSet set="CURRENT" />
<output includeCount="true"

 includeEPC="false"
 includeRawDecimal="false"
 includeRawHex="false"
 includeTag="true" />

</reportSpec>
</reportSpecs>
<aleext:applicationData>application-specific data here
</aleext:applicationData>

</ale:ECSpec>
RFTagAware 1.3 Programmer Guide Page 8-13

ALESample.NET Sample .NET Applications
Defining an ECSpec is NOT the same as activating it. You have not yet told a reader to read
any tags or done anything else with the ECSpec yet. You have simply defined a list of actions
(read cycles, delivery activities, and so on) that can take place some time in the future once the
ECSpec is activated by a method such as poll or subscribe.

7. Take a look at the status bar at the bottom of the form. Note that the status changes to
Defined.

8. From the command drop down menu, select Subscribe.

We now need to define a location where we can receive reports. For now, write to a file by
typing the following in the URI for Output box:
file:///C:/Temp/ECSpec.out

Note forward slashes and no spaces in pathname.

9. Press the Execute Command button.

The ECSpec we defined is now being activated by the Edge Server.

10. Take a look at the ECSpec.out file we specified in the URI for Output box.

- Recall that the ECSpec we defined said to report on tags every 10 seconds — note that the
file is being updated every 10 seconds.

- Compare the tag entries in ECSpec.out with the values shown in the Reader Simulator. You
can see that the Edge Server is obtaining the tag values from the simulator, and reporting
these values in the reports it writes to ECSpec.out.

Feel free to change the values on the simulator and inspect the corresponding report.

11. Now let’s use the ALE Sample GUI to look at ECspec information. From the Command
drop down menu, select get spec info.

12. Press the Execute Command button.

Note that the form now displays the (active) status of the ECspec we defined.

13. Try the suspend command — from the Command drop down menu, select suspend, then
press the Execute Command button.

This tells the Edge Server to suspend the ECSpec.

14. Retry the get spec info command — from the Command drop down menu, select get spec
info, then press the Execute Command button.

Notice that the ECSpec is now suspended (not reporting). Unsuspending will re-enable the
notifications

15. To close the application:

- Select and execute Unsubscribe.

- Select and execute Undefine.

- Application status should say Stopped.
Page 8-14 RFTagAware 1.3 Programmer Guide

Sample .NET Applications ALESample.NET
The Edge Server will continue to produce reports until it is told to stop via the unsubscribe
command. This is true even across restarts of the Edge Server. Therefore, be sure to
unsubscribe your ECSpec when you end the sample application. If you forget to do that, the
application will remind you on exiting.

Programming Notes

The ECExample class (ECExample.cs) handles all events from the main GUI. Most events have to do
with gathering data from the form and saving data into private member variables or assisting the user
in entering data into the form. There are two types of assistance:

• Helping the user find a file (done via the standard File Open Dialog that all Windows
applications use).

• Helping the user generate a name for the ECSpec (parsing out the body of the XML filename
as the ECSpec name).

With all of these event processing methods, the flow is disconnected. The process flow begins with
them being called, they perform a small amount of work and then they return.

The flow of execution really starts when the user presses the Execute Command button. When the
user presses this button Windows calls the OKButton_Click method. This is largely a long case
statement that switches on Command.

The processing of each command involves communication with the service layer class of the applet
called ALEServiceFacade (ALEServiceFacade.cs). The appropriate properties on the form are given
to the ALEServiceFacade class via its set methods and the command is executed via the appropriate
do method. The ALEServiceFacade class contains set methods for ECSpec (name and file),
NotificationURI, and ServiceURI (Location of the Edge Server). There is a do method for each
supported command.

The ALEServiceFacade class communicates back to the ECExample class in one of three ways:

• If a callback is defined when the class is constructed, status information will be send back to
this callback. This is the way ALEServiceFacade is “new’ed” so status information is returned
which is displayed on the status line appearing at the bottom of the main GUI.

• If there is an error, an exception is thrown. Exceptions from the SOAP layer are deliberately
not caught by ALEServiceFacade and allowed to go back to the GUI class for processing (the
only exception is when a file stream needs to be closed in which case it is caught, the stream
closed and the exception re-thrown). This error is displayed in the status bar prefaced by
Failed and then the message in the exception (NOTE: the SOAP layer does not supply any
message text, the description of the failure is found in
SoapException_instance.Detail.FirstChild.InnerText.

• There is a return value from the method that is largely useless (almost always true) unless the
method is a request for a status. In this case a string is returned that contains the status
information.
RFTagAware 1.3 Programmer Guide Page 8-15

ALESample.NET Sample .NET Applications
If a status string is returned from the ALEServiceFacade class, a second form is evoked that
presents that data to the user. This is a very simple form that has a text box containing the
status information and a Done button.

Using the ALE API

The ALEServiceFacade class is the class that actually used the SOAP proxy as generated by the IDE.
This class is only instantiated once by this application but the concept behind this class is that an
instance can be instantiated for every active ECSpec. When this class is constructed, the constructor
creates an instance of the EPCglobalALEService object. EPCglobalALEService is the SOAP proxy. Its
methods are equivalent to the ALE API methods described in ALE: Main Tag Reading Interface on
page 5-3.

The first step the user performs in the application is to provide an ECSpec to define the logical group
of readers and their properties. We read this in the setSpec method via the XmlSerializer class.
Note the explicit namespace of urn:epcglobal:ale:xsd:1. This is required in order to correctly
resolve all the references in the XML. This builds our ECSpec object. This object has all the
information from our original XML file — logical reader name, boundary conditions, report
specifications, etc.

Next we have a series of “do” methods. Each method is named doAction where Action is the ALE
command that the user selected in the GUI command drop down menu. Each time you press the
Execute Command button in the GUI, the “do” method corresponding to the selected command is
called.

The act of sending the SOAP message to RFTagAware is very similar from method to method. We
will walk through the doDefine method to show how this is done. The doDefine method sends our
newly created ECSpec object to the Edge Server. The arguments for the ALE define method are
encapsulated in an object called Define which the proxy generator builds. This object contains the
arguments that will be passed to the Edge Server. The define method requires an ECSpec object and
a name for that object. If you inspect the Define object, you will see that it is largely just a struct with
two strings — spec and specname. Set both those names with an appropriate value and call the
service.define method and you have just made a call to the Edge Server.

Note the exception handling that is done in this method. If there is a SoapException, the application
will try to determine if the problem is that a pre-existing definition of the same name exists and will
synchronize the application with what the Edge Server is doing via the syncWithService() method.
Note that error text from the Edge Server is not contained in the exception.message member but
rather in SoapException.Detail.FirstChild.InnerText.

Now that the Edge Server is aware of our newly created ECSpec object, we can use other “do”
methods to read tags following the ECSpec’s instructions. For example, doSubscribe subscribes
notifications to a URI. doSubscribe behaves similarly to doDefine. It first creates a Subscribe object,
then populates that object with relevant parameters — the name of an ECSpec and a notification URI.
Finally, it invokes the relevant ALE API method from the EPCglobalALEService object (in this case,
subscribe) to communicate with the Edge Server.
Page 8-16 RFTagAware 1.3 Programmer Guide

Sample .NET Applications ALEPCSample.NET
The other “do” methods behave similarly — they create their own object, populate the object with
relevant parameters, then invoke an ALE API method from the EPCglobalALEService object to
communicate with the Edge Server.

ALEPCSample.NET

This sample shows you how to use ALEPC API to write EPCs onto tags. It uses the following
ALEPC API calls:

• Define Cache

• Define PC Specification

• Subscribe Cache

• Subscribe PC Specification

• Poll

• Cache Information

• List Caches

• List PC Specifications

• PC Specification Information

• Deplete Cache

• Replenish Cache

• Unsubscribe Cache

• Unsubscribe PC Specification

• Undefine PC Specification

• Undefine Cache

Additional Requirements

None.

How to Run ALEPC.NET
1. Navigate to the directory:

samples\ALEPCSample.NET

2. Double click:
ALEPC.NET.exe
RFTagAware 1.3 Programmer Guide Page 8-17

ALEPCSample.NET Sample .NET Applications
The ALEPCSample GUI appears.

This application programs tags via the Edge Server. It is intended as a teaching aid. To that
end the interface has been oriented to a single thread of execution. The user will define an
EPCCacheSpec and a PCSpec, sign up for notifications via subscribe (EPCCacheSpec) and
subscribe (PCSpec), and then (optionally) the user can look at a series of reports to see how
they are viewed by the Edge Sever (list specs, list caches, get cache information, get PCSpec
information).

The tag programming is done via the poll command where the results of the programming
attempt are shown in a results window.

Note that with each command selected, only the fields legal for that command will accept
input.

To provide a mechanized writing capability, this application defines an EPCCacheSpec and a
PCSpec that give instructions on how to write tags in a repetitive fashion.

3. The first thing to do is define a cache via a cache spec. From the Command drop down
menu, select Define Cache (default first selection).

4. Click the CacheSpec button.

This opens a dialog box where you can navigate to the XML file that contains the definition
of your cache spec. In this example, navigate to the subdirectory:
ALEPCSample.NET/ECSpecs
Page 8-18 RFTagAware 1.3 Programmer Guide

Sample .NET Applications ALEPCSample.NET
and select the predefined XML file:
CacheSpec.xml

5. With a text editor, open the CacheSpec.xml file you just selected. Here are some excerpts
from this file:

<?xml version="1.0" encoding="UTF-8"?>
<EPCCacheSpec xmlns="http://schemas.connecterra.com/alepc">
<applicationData>application-specific data here</applicationData>
<threshold>10</threshold>
<includeCacheContent>true</includeCacheContent>
</EPCCacheSpec>

This cache spec specifies a low-cache reporting threshold of 10. This means that whenever a
cache is below its reporting threshold, it issues low-cache reports to its subscribers. Also note
that the EPCCacheReport instances associated with this cache will include a description of the
current cache contents (true), not just the count of the remaining cache entries (false).

6. Now, returning to the ALEPC sample GUI, press the Execute Command button.

Note that the status line at the bottom of the application now indicates that the cache is
defined.

7. Next, define a PC Specification — from the Command drop down menu, select PCSpec
Command.

8. Click the PCSpec button.

This opens a dialog box where you can navigate to the XML file that contains the definition
of your PCSpec. In this example, navigate to the subdirectory:
ALEPCSample.NET/ECSpecs

and select the predefined XML file:
PCSpec.xml

9. With a text editor, open the PCSpec.xml file you just selected. Here are some excerpts from
this file:

<?xml version="1.0" encoding="UTF-8"?>
<PCSpec xmlns="http://schemas.connecterra.com/alepc">
<cacheName>CacheSpec</cacheName>
<applicationData>application-specific data here</applicationData>

<logicalReaders>
<logicalReader>ConnecTerra2</logicalReader>

</logicalReaders>

<boundarySpec>
<trials>1</trials>
<duration>4000</duration>

</boundarySpec>
</PCSpec>

This PCSpec indicates that we will call the cache we just defined by the name CacheSpec. Note
that this is the name of the programming object that represents the cache of EPC values — it has
RFTagAware 1.3 Programmer Guide Page 8-19

ALEPCSample.NET Sample .NET Applications
no relation to the XML file name that initially contained information about the cache. From
here on out, we refer to the cache by its programming object name, CacheSpec.

We will write the tag using logical reader ConnecTerra2, which maps to the Reader Simulator's
Antenna 2. We will attempt to write the tag only once. We will spend, at most, 4 seconds
(4000 MS) retrying failed tag writing operations.

10. Returning to the ALEPC sample GUI, press the Execute Command button.

Note that the status line at the bottom of the application now indicates that the PCSpec is
defined.

11. Next, subscribe to notification events:

- In the Command drop down menu, select Subscribe Cache.

- In the Notification URI field, type
console:///

- Click the Execute Command button.

- In the Command drop down menu, select Subscribe PCSpec, then press the Execute
Command button.

12. Now we can start programming tags — in the Command drop down menu, select Poll, then
click the Execute Command button.

This command produces an error. Examining the report shows that our cache has no tags:
<status>CACHE_EMPTY</status>

13. We need to replenish the stock of EPC values for tags — in the Command drop down menu,
select Replenish.

14. In the Tag Pattern box, define 300 tags by typing in the pattern:
urn:epc:pat:sgtin-64:3.0036000.5.[1-300]

15. Click the Execute Command button.

16. Check on the replenishment — in the Command drop down menu, select Cache
Information, then click the Execute Command button.

Note that the report indicates that our cache now has 300 tags:
<cacheSize>300</cacheSize>

17. Click the OK button.

18. Now we can try our tag writing operation again — in the Command drop down menu, select
Poll, then click the Execute Command button.

This command also produces an error.
<status>MULTIPLE_IN_FIELD</status>

The logical reader ConnecTerra2 sees too many tags in its field, and it does not know which
one to write to. In order to write a tag, it must see only ONE tag in its field.
Page 8-20 RFTagAware 1.3 Programmer Guide

Sample .NET Applications ALEPCSample.NET
To correct this error, go to the Reader Simulator and deselect all but one tag checkbox for
Antenna 2 (logical reader ConnecTerra2 maps to Antenna 2).

19. Try once again — in the Command drop down menu, select Poll, then click the Execute
Command button.
<status>SUCCESSFUL</status>

Take a look at the tag value we wrote:
<epc>urn:epc:tag:sgtin-64:3.0036000.000005.5</epc>

20. Write another tag and look at its EPC value:
<epc>urn:epc:tag:sgtin-64:3.0036000.000005.6</epc>

21. If we kept writing all the tags we defined in the replenishment, we would eventually reach the
low threshold value specified in the CacheSpec (10 tags left). At this point we would receive a
report notifying us of the low threshold status.

22. Now deplete tags so they can be used later — in the Command drop down menu, select
Deplete Cache, then click the Execute Command button.

Running the Cache Information command will verify they are gone.

23. Now “unwind” out of the application:

- Execute Unsubscribe PCSpec.

- Then Unsubscribe CacheSpec.

- Then Undefine PCSpec.

- Then Undefine CacheSpec.

Status fields should both say stopped.

You have successfully programmed EPC tags.

Programming Notes

This example comes with all the source and necessary project files to build in the .NET IDE. The
executable is also precompiled and placed in the directory:

\sample\ALEPCSample.NET\

This is an overview of the samples source.
RFTagAware 1.3 Programmer Guide Page 8-21

ALEPCSample.NET Sample .NET Applications
Double click on the solution file:
ALEPC.NET.sln

This solution file is loaded with all the source files.

The PCSpecExample class (PCSpecExample.cs) handles all events from the main GUI. Most of these
events have to do with gathering the data from the form and saving data into private member
variables or assisting the user in entering data into the form. There are two types of assistance:

• Helping the user find a file (done via the standard File Open Dialog that all Windows
applications use).

• Helping the user generate a name for the file (parsing out the body of the filename as the
CacheSpec or PCSpec name).

With all of these event processing methods, the flow is disconnected. The process flow begins with
them being called, they perform a small amount of work and then they return.

The flow of execution really starts when the user presses the Execute Command button. When the
user presses this button Windows calls the ExecuteCommandButton_Click method. This is largely a
long case statement that switches on Command. The processing of each command involves
communication with the service layer class of the applet called ALEPCServiceFacade
(ALEPCServiceFacade.cs). The appropriate properties on the form are given to the
ALEPCServiceFacade class via its set methods and the command is executed via the appropriate do
method. The ALEPCServiceFacade class contains a set method for CacheSpec, PCSpec (name and file),
NotificationURI, and ServiceURI (Location of the Edge Server). There is a do method for each
supported command.

The ALEPCServiceFacade class communicates back to the PCSpecExample class in one of three ways:

• If a callback is defined when the class is constructed, status information will be send back to
this callback. This is the way RFIDPC is “new'ed” so status information is returned which is
displayed on the status line appearing at the bottom of the main GUI.

• If there is an error, an exception is thrown. Exceptions from the SOAP layer are deliberately
not caught by ALEPCServiceFacade and allowed to go back to the GUI class for processing.

• There is a return value from the method that is largely useless (always true) unless the method
is a request for a status. In this case a string is returned that contains the status information.

If a status string is returned from the ALEPCServiceFacade class, a second form is evoked that
presents that data to the user. This is a very simple form that has a text box containing the
status information and an OK button.

Note: The applet does not maintain its state information across restarts. It will assume you
are in a stopped state when you start the applet. If you left a CacheSpec or PCSpec
active in the Edge Server when you exited the applet, the two applications will be out
of sync (the attempt to define your CacheSpec or PCSpec will be rejected by the Edge
Server and the application will attempt to determine the appropriate state).
Page 8-22 RFTagAware 1.3 Programmer Guide

Sample .NET Applications ALEPCSample.NET
The Stop command can be used to undefine the specification, regardless of the state.

Using the ALEPC API

The ALEPCServiceFacade class is the class that actually used the SOAP proxy as generated by the
IDE. It is very similar to the ALEServiceFacade class in the ALE.NET example (see ALESample.NET
on page 8-11). This class is only instantiated once by this application but the concept behind this class
is that an instance can be instantiated for every active ECSpec. When this class is constructed, the
constructor creates an instance of the ALEPCService object. ALEPCService is the SOAP proxy. The
methods are equivalent to the ALEPC API methods described in ALEPC: Main Tag Writing
Interface on page 6-3.

The first step the user performs in the application is to provide a CacheSpec to define the properties
(behavior) of a collection of tag values and how they will be assigned. We read this in the
setCacheSpec method via the XmlSerializer class. (Note the additional namespace of http://
schemas.connecterra.com/alepc) This builds our CacheSpec object.

Next we have a series of “do” methods. Each method is named doAction where Action is the
ALEPC command that the user selected in the GUI command drop down menu. Each time you
press the Execute Command button in the GUI, the “do” method corresponding to the selected
command is called.

The act of sending the SOAP message to RFTagAware is very similar from method to method. We
will walk through the doDefine method to show how this is done. The doDefine method sends our
newly created PCSpec object to the Edge Server. The arguments for the ALEPC define method are
encapsulated in an object called Define which the proxy generator builds. This object contains the
arguments that will be passed to the Edge Server. The define method requires a PCSpec object and a
name for that object. If you inspect the Define object, you will see that it is largely just a struct with
two strings — spec and specname. Set both those names with an appropriate value and call the
service.define method and you have just made a call to the Edge Server.

Note the exception handling that is done in this method. If there is a SoapException, the application
will try to determine if the problem is that a pre-existing definition of the same name exists and will
synchronize the application with what the Edge Server is doing. Note that error text from the Edge
Server is not contained in the exception.message member but rather in
SoapException.Detail.FirstChild.InnerText.

Now that the Edge Server is aware of our newly created PCSpec object, we can use other “do”
methods to write tags following the PCSpec’s instructions. For example, doSubscribe subscribes
notifications to a URI. This enables this PCspec to subscribe to a cache and receive notification
information from the Edge Server at the address defined in the notificationURI parameter
RFTagAware 1.3 Programmer Guide Page 8-23

BizTalkSample.NET Sample .NET Applications
doSubscribe behaves similarly to doDefine. It first creates a Subscribe object, then populates that
object with relevant parameters — the name of a PCSpec and a notification URI. Finally, it invokes
the relevant ALEPC API method from the ALEPCService object (in this case, subscribe) to
communicate with the Edge Server.

The other “do” methods behave similarly — they create their own object, populate the object with
relevant parameters, then invoke an ALEPC API method from the ALEPCService object to
communicate with the Edge Server.

BizTalkSample.NET

This sample shows you how to use BizTalk to:

• Connect to an Edge Server inside your orchestration.

• Define an event cycle specification (ECSpec).

• Subscribe for notification via file URI.

• Receive ECReport notifications in two forms:

- XML file

- SQL database persistence

• Unsubscribe notification.

• Undefine the ECSpec for clean up.

Additional Requirements
• BizTalk

• Visual Studio

• Database schema creation/access privilege

How to Install
1. Make sure the Reader Simulator and Edge Server are both started. (From a command line in

the control\bin directory, run the scripts RunReaderSim.bat and RunEdgeServer.bat).

2. Navigate to the directory:
samples\BizTalkSample.NET\ConsumeConnecterraEdgeService

3. Run the script:
Setup.bat

This creates a database table for the ECReport notification, build solution, deploy, bind and
start orchestrations.
Page 8-24 RFTagAware 1.3 Programmer Guide

Sample .NET Applications BizTalkSample.NET
This script will bind SQLNotificationPort to use a trusted connection to the database.
Therefore, make sure you are currently logged in with database access privileges. If you would
like to use the script-generated SQL account rogerdb/rogerdb, change the connection string
of the SQLNotificationPort send port manually. During the solution building step, if you see
XSD-related warnings or errors, disregard them as long as the solution builds successfully.

This script will also create the directories In, Out, ECReportDrop, and ECReports under
ConsumeConnecterraEdgeService. These directory names are defaults, and may be changed
by editing the Setup.bat file and re-running it.

4. By default, the script configures the binding file ConsumeEdgeServiceBinding.xml with the
Edge Server URL: http://localhost:6060/axis/services/EPCglobalALEService

If your Edge Server is running on a different port, change the port in this URL to point to the
correct Edge Server. For this example, the Edge Server must be running on a local machine.

5. Copy the file DefineECSpecArguments.xml to the In directory under
ConsumeConnecterraEdgeService. (Do not move it because it will be picked up by the
orchestration.) This file contains sample ECSpec and ECReport notification information that is
used for orchestration.

6. With a text editor, open the DefineECSpecArguments.xml file you just copied. Here are some
excerpts from this file:

DefineECSpecArguments for BizTalkSample.NET

<?xml version="1.0" encoding="UTF-8"?>
<n:DefineECSpecArguments xmlns:n="http://
ConsumeEdgeServiceSchemas.DefineECSpecArgs">
<ECSpecName>myspec</ECSpecName>
<ECSpec creationDate="2004-11-15T16:18:43.500Z" schemaVersion="1.0"
includeSpecInReports="false">
<logicalReaders>

<logicalReader>ConnecTerra1</logicalReader>
</logicalReaders>

<boundarySpec>
<duration unit="MS">2000</duration>

</boundarySpec>

<reportSpecs>
<reportSpec reportName="SubscribeSample Report">
<reportSet set="CURRENT"/>
<output includeCount="true" includeEPC="false" includeRawDecimal="false"

includeRawHex="false" includeTag="true"/>
</reportSpec>

</reportSpecs>
</ECSpec>
<NotificationURL>[NOTIFICATIONDROPURI]</NotificationURL>
<EmptyParms/>
</n:DefineECSpecArguments>
RFTagAware 1.3 Programmer Guide Page 8-25

BizTalkSample.NET Sample .NET Applications
We specify the logical reader as ConnecTerra1, which is mapped to “Antenna 1” in the Reader
Simulator by default. We also specify that our event cycle is to be 2 seconds long (2000 MS).
The final section defines a report specification that requests both a count and a list of all the
CURRENT tags visible to logical reader ConnecTerra1.

7. Navigate to the directory:
samples\BiztalkSample.NET\ConsumeConnecterraEdgeService\Out

You should see XML message files being written to this directory. These messages tell you
stage the orchestration is currently in, for example:

<?xml version="1.0" encoding="utf-8"?>
<n:Result xmlns:n="http://ConsumeEdgeServiceSchemas.Result" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://
ConsumeEdgeServiceSchemas.Result Result.xsd">

<Success>Notification url is unsubscribed</Success>
</n:Result>

8. Navigate to the directory:
samples\BiztalkSample.NET\ConsumeConnecterraEdgeService\ECReports

You should see XML ECReport notification messages coming in.

Each message contains an ECReport instance, reflecting the report specifications we set in the
DefineECSpecArguments.xml file. Note that by default, messages arrive for a total duration of
20 seconds. This duration is set in the orchestration file, Orchestration.odx, located in the
ConsumeConnecterraEdgeService directory. You can change the duration to a different value
if you like.

The figure below shows some excerpts from one of these ECReport message files. Note that,
as specified in the DefineECSpecArguments.xml file, this ECReport includes both a count and
a list of all the CURRENT tags visible to logical reader ConnecTerra1.

Check the ECReports database table for ECReport instances. Note that the table entries
contain the same information as the message files.
Page 8-26 RFTagAware 1.3 Programmer Guide

Sample .NET Applications BizTalkSample.NET
ECReport for BizTalkSample.NET

9. After 20 seconds you will see a total of five messages in the directory:
samples\BiztalkSample.NET\ConsumeConnecterraEdgeService\Out

Each message contains orchestration step result details.

10. Place another DefineECSpecArguments.xml file in the directory:
samples\BiztalkSample.NET\ConsumeConnecterraEdgeService\In

You will see an orchestration running again for this new file.

11. Navigate to the directory:
samples\BizTalkSample.NET\ConsumeConnecterraEdgeService

12. Run the script:
Cleanup.bat

This uninstalls the sample from the BizTalk server.

<ale:ECReports ALEID="EdgeServerID" creationDate="2005-02-11T19:42:54.500Z"
date="2005-02-11T19:42:54.500Z" schemaURL="http://schemas.connecterra.com/
EPCglobal/ale-1_0.xsd" schemaVersion="1" specName="myspec"
terminationCondition="DURATION" totalMilliseconds="2000"
xmlns:ale="urn:epcglobal:ale:xsd:1" xmlns:aleext="http://schemas.connecterra.com/
EPCglobal-extensions/ale">

<reports>
<report reportName="SubscribeSample Report">
<group>
<groupList>
<member>
<tag>urn:epc:tag:gid-64-i:10.50.5</tag>
</member>
<member>
<tag>urn:epc:tag:gid-64-i:10.10.1</tag>
</member>
<member>
<tag>urn:epc:tag:gid-64-i:10.70.7</tag>
</member>
</groupList>
<groupCount>
<count>3</count>
</groupCount>
</group>
</report>

</reports>

<aleext:applicationData>application-specific data here</aleext:applicationData>
<aleext:failedLogicalReaders/>
<aleext:physicalReaders>

<aleext:physicalReader>SimReadr</aleext:physicalReader>
</aleext:physicalReaders>
<aleext:totalReadCycles>7</aleext:totalReadCycles>

</ale:ECReports>
RFTagAware 1.3 Programmer Guide Page 8-27

BizTalkSample.NET Sample .NET Applications
Page 8-28 RFTagAware 1.3 Programmer Guide

Index

A
Administration Console

overview 1-2
ALE

main tag reading interface 5-3
ALE API 1-4

application interaction 2-4
basic operation 1-4, 2-2
benefits 1-5
event cycles 2-2
introduction to specification 5-2
overview 1-4
read cycles 2-2
reports 2-5

ALEPC
main tag writing interface 6-3

ALEPCSample.NET 8-17
ALESample.NET 8-11
Applications

asynchronous (“subscribe”) mode 2-4
immediate mode 2-4
immediate with predefined request (“poll”) mode 2-4
interaction with API 2-4

Architecture 1-2
Asynchronous notification mechanisms

Null delivery method 3-7
XML displayed on the Edge Server console 3-7
XML via HTTP POST 3-2, 3-3
XML via JMS Message 3-3
XML written to a file 3-6

B
BEA JMS sample 7-21
BizTalkSample.NET 8-24

C
Composite readers 2-14
control directory 1-6

D
Deserializers 5-28, 6-16

E
ECBoundarySpec 5-7
ECReport 5-19, 5-20, 5-21, 5-21, 5-22
ECReportOutputSpec 5-16
ECReports 5-17
ECReportSetSpec 5-12
ECReportSpec 5-10
ECSpec 5-6, 5-6
ECTerminationCondition 5-19
Edge Server

overview 1-2
subcomponents 1-2

EPC cache 2-8
EPC Patterns 5-13
EPCCacheReport 6-11
EPCCacheSpec 6-10
EPCCacheSpecInfo 6-11
EPCPatterns 6-12
Event cycle specification

example 2-2
Event cycles 2-2

H
HTTP POST delivery 3-2

I
IBM JMS sample 7-22
ImmediateProgramSample 7-2, 7-12
ImmediateSample 7-2, 7-3, 7-7, 7-8

J
Java 1-5
Java binding 5-3

tag reading 5-27
tag writing 6-15
XML serializers and deserializers 5-28, 6-16

JBoss JMS sample 7-26
JMS message delivery 3-3
JMS samples 7-21

BEA 7-21
IBM 7-22
JBoss 7-26
Sun 7-27
TIBCO 7-29
RFTagAware 1.3 Programmer Guide Page 1

Index RFTagAware 1.3 Programmer Guide
N
Null delivery method 3-7

P
PCSpec 6-5
PCSpecInfo 6-6
PCStatus 6-9
PCSubscriptionControls 6-7
PCSubscriptionInfo 6-7
PCTerminationCondition 6-10
PCWriteReport 6-7
Programming cycles 2-6

definition 2-6
how they differ from event cycles 2-10
reader implementation of 2-8
specification (PCSpec) 2-6

Programming languages supported 1-5
ProgrammingSample 7-2, 7-16

R
Read cycles 2-2
Readers

composite 2-14
configuring 2-12
physical and logical 2-12
transient filtering 2-4

Reading tag data 2-2
Reports

tag reading 2-5
tag writing 2-10

RFTagAware
standards compliance 1-3

S
Sample applications

ALEPCSample.NET 8-17
ALESample.NET 8-11
BizTalkSample.NET 8-24
ImmediateProgramSample 7-2, 7-12
ImmediateSample 7-2, 7-3, 7-7, 7-8
ProgrammingSample 7-2, 7-16
sample .NET applications 8-1
sample Java applications 7-1
SQLNotificationSample.NET 8-8
SubscribeSample 7-2, 7-8

Serializers 5-28, 6-16
Setting up your environment 8-2
SQLNotificationSample.NET 8-8
Standards compliance 1-3
SubscribeSample 7-2, 7-8
Sun JMS sample 7-27

T
Tag writing sample application 7-12, 7-16
TIBCO JMS sample 7-29
Transient filtering 2-4
Triggers 4-1

W
Writing tag data 2-6
WSDL binding 5-3

X
XML

ECReports example 5-26
ECSpec example 5-25
EPCCacheReport example 6-15
EPCCacheSpec example 6-14
PCSpec example 6-13
PCWriteReport example 6-14
representation of tag reading objects 5-25
representation of tag writing objects 6-12
schema for tag writing 6-15

XML displayed on the Edge Server console 3-7
XML via HTTP POST 3-2, 3-3
XML via JMS Message 3-3
XML written to a file 3-6
Page 2 RFTagAware 1.3 Programmer Guide

	Contents
	Preface
	Purpose of This Manual
	Audience
	Related Documents
	What’s in This Manual
	Contacting Technical Support

	Chapter 1: Introduction
	Contents
	RFTagAware Architecture
	Edge Server
	Administration Console

	Standards Compliance
	The ALE API
	Overview
	Basic ALE Operation
	Benefits
	Programming Languages

	Directory Structure Concepts
	Defaults and Allowed Install Locations
	Directory Structure
	Directory Tree Overview

	Chapter 2: Reading and Writing Tags
	Contents
	Application Level Events (ALE)
	Reading Tag Data
	Read Cycles and Event Cycles
	Interacting with ALE
	Reports

	Writing Tag Data
	Programming Cycles
	EPC Caches and Pools
	Reports

	Comparison of Event Cycles and Programming Cycles
	Specifying Readers to the Edge Server
	Configuring Readers
	Physical Readers vs. Logical Readers
	Adding a Transient Filter
	Using Composite Readers

	Chapter 3: Asynchronous Notification Mechanisms
	Contents
	Overview
	XML via HTTP POST
	XML via TCP Socket
	XML via JMS Message
	Examples
	Setting up the JMS Notification Driver

	XML Written to a File
	XML Displayed on the Edge Server Console
	The Null Delivery Method

	Chapter 4: Triggers
	Contents
	Introduction
	OLE for Process Control (OPC) Trigger Driver
	Additional Trigger Drivers

	Chapter 5: Reading Tags Using the ALE API
	Contents
	Introduction to the ALE API Specification
	ALE: Main Tag Reading Interface
	State Diagram

	Primary ECSpec Data Types
	ECSpec
	ECBoundarySpec
	ECReportSpec
	ECReportSetSpec
	ECFilterSpec
	ECGroupSpec
	ECReportOutputSpec

	ECReports
	ECTerminationCondition
	ECReport
	ECReportGroup
	ECReportGroupList
	ECReportGroupListMember
	ECReportGroupCount

	Other ALE API Types
	ECSpecInfo (RFTagAware Extension)
	ECSubscriptionInfo (RFTagAware Extension)
	ECSubscriptionControls (RFTagAware Extension)

	XML Representations
	ECSpec - Example
	ECReports - Example

	Using the ALE Tag Reading API from Java
	Using XML Serializers and Deserializers from Java

	Chapter 6: Writing Tags Using the ALE API
	Contents
	Introduction to the ALE API Specification
	ALEPC: Main Tag Writing Interface
	PCSpec
	PCSpecInfo
	PCSubscriptionControls
	PCSubscriptionInfo

	PCWriteReport
	PCStatus
	PCTerminationCondition

	EPCCacheSpec
	EPCCacheReport
	EPCCacheSpecInfo
	EPCPatterns

	XML Representations
	PCSpec - Example
	PCWriteReport - Example
	EPCCacheSpec - Example
	EPCCacheReport - Example
	XML Schema for PCSpec, PCWriteReport, EPCCacheSpec, and EPCCacheReport

	Using the ALE Tag Writing API from Java
	Using XML Serializers and Deserializers from Java

	Chapter 7: Sample Java Applications
	Contents
	Overview
	Setting Up Your Development Environment
	Compiling and Running the Samples
	ImmediateSample: Getting Started Reading Tags
	Using ImmediateSample With the Administration Console

	ImmediateSample: Event Cycles and Reliability
	ImmediateSample: Reading from Different Readers
	SubscribeSample: Exploring Asynchronous Event Cycle Delivery
	SubscribeSample Command Line Options

	ImmediateProgramSample: Writing Tags
	Using ImmediateProgramSample with the Reader Simulator

	ProgrammingSample: Exploring Programming Cycles and EPC Caches
	JMS Samples
	BEA
	IBM
	JBoss
	Sun
	TIBCO

	Chapter 8: Sample .NET Applications
	Contents
	Overview
	Setting Up Your Development Environment
	Interfacing with the Edge Server

	Using the Reader Simulator with the Samples
	Configuring the Simulator
	Starting the Simulator

	Running the Samples
	How to Run the Samples

	SQLNotificationSample.NET
	Additional Requirements
	How to Install
	How to Run SQLNotification.exe
	Programming Notes

	ALESample.NET
	Additional Requirements
	How to Install
	How to Run ALESample.NET
	Programming Notes

	ALEPCSample.NET
	Additional Requirements
	How to Run ALEPC.NET
	Programming Notes

	BizTalkSample.NET
	Additional Requirements
	How to Install

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

