
FML Programmer’s Guide

B E A M e s s a g e Q V e r s i o n 5 . 0
D o c u m e n t E d i t i o n 5 . 0

O c t o b e r 1 9 9 8

BEA MessageQ

Copyright

Copyright © 1998 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Connect, BEA Jolt, BEA Manager, and BEA MessageQ are trademarks of
BEA Systems, Inc. BEA ObjectBroker is a registered trademark of BEA Systems, Inc. TUXEDO is a registered
trademark in the United States and other countries.

All other company names may be trademarks of the respective companies with which they are associated.

BEA MessageQ FML Programmer’s Guide

Document Edition Date Software Version

Version 5.0 October 1998 BEA MessageQ, Version 5.0

Contents

1. Introduction
About This Guide and FML .. 1-1

What Is FML? .. 1-1

How Does FML32 Fit into the BEA MessageQ System?.......................... 1-2

Who Is This Document For? .. 1-2

Prerequisites ... 1-2

What Does This Document Include? ... 1-3

What Other FML32 Documentation Is There? .. 1-3

Concepts and Definitions ... 1-4

2. Overview
Introduction ... 2-1

Dividing Records into Fields.. 2-1

Structures .. 2-1

Fielded Buffers.. 2-2

Implementing Fielded Buffers with FML32 .. 2-3

FML32 Features .. 2-3

Fielded Buffer Structure... 2-3

Supported Field Types ... 2-4

Field Name to Identifier Mappings .. 2-5

Run-Time: Field Table Files ... 2-6

Compile-Time: Header Files... 2-6

Fielded Buffer Indexes ... 2-7

Multiple Occurrences of Fields .. 2-7

Boolean Expressions and Fielded Buffers ... 2-8

Error Handling... 2-8
BEA MessageQ FML Programmer’s Guide iii

3. Setup
Introduction ... 3-1

Directory Structure .. 3-1

Environment Variables .. 3-2

4. Field Definition and Use
Introduction ... 4-1

Defining Fields .. 4-1

Field Names and Identifiers.. 4-2

Field Table Files ... 4-2

Field Table Example... 4-3

Mapping Functions... 4-4

Loading the Field Tables... 4-4

Field Header Files... 4-5

5. Field Manipulation Functions
Introduction ... 5-1

FML and FML32 ... 5-2

FML32 Parameters .. 5-2

Field Identifier Mapping Functions... 5-3

Fldid32.. 5-3

Fname32 ... 5-4

Fldno32... 5-4

Fldtype32.. 5-4

Ftype32 ... 5-5

Fmkfldid32 ... 5-6

Buffer Allocation and Initialization... 5-6

Fielded32 .. 5-6

Fneeded32... 5-7

Finit32... 5-8

Falloc32 .. 5-8

Ffree32.. 5-9

Fsizeof32 .. 5-10

Funused32... 5-10

Fused32... 5-11
iv BEA MessageQ FML Programmer’s Guide

Frealloc32... 5-11

Functions for Moving Fielded Buffers .. 5-12

Fmove32... 5-13

Fcpy32.. 5-14

Field Access and Modification Functions ... 5-15

Fadd32.. 5-15

Fappend32 .. 5-16

Fchg32.. 5-18

Fcmp32... 5-19

Fdel32... 5-19

Fdelall32... 5-20

Fdelete32 .. 5-21

Ffind32 ... 5-21

Ffindlast32.. 5-23

Ffindocc32.. 5-23

Fget32... 5-25

Fgetalloc32 ... 5-26

Fgetlast32 ... 5-27

Fnext32... 5-27

Fnum32... 5-29

Foccur32... 5-29

Fpres32 ... 5-30

Fvals32 and Fvall32 ... 5-30

Buffer Update Functions ... 5-31

Fconcat32 ... 5-31

Fjoin32 ... 5-32

Fojoin32 ... 5-33

Fproj32 ... 5-33

Fprojcpy32 ... 5-34

Fupdate32 ... 5-34

Conversion Functions.. 5-35

CFadd32 ... 5-35

CFchg32 ... 5-36

CFget32 .. 5-37

CFgetalloc32 .. 5-38
BEA MessageQ FML Programmer’s Guide v

CFfind32... 5-39

CFfindocc32 ... 5-40

Converting Strings.. 5-41

Ftypcvt32 .. 5-41

Conversion Rules.. 5-42

Indexing Functions .. 5-45

Fidxused32 ... 5-46

Findex32 ... 5-46

Frstrindex32.. 5-47

Funindex32 ... 5-47

Example.. 5-47

Input/Output Functions.. 5-48

Fread32 and Fwrite32... 5-48

Fchksum32 ... 5-49

Fprint32 and Ffprint32 ... 5-49

Fextread32 .. 5-50

Boolean Expressions of Fielded Buffers ... 5-51

Boolean Expressions .. 5-52

Field Names and Types .. 5-53

Strings.. 5-54

Constants ... 5-54

Conversion .. 5-54

Primary Expressions.. 5-54

Expression Operators .. 5-55

Sample Boolean Expressions .. 5-59

Boolean Functions .. 5-59

Fboolco32.. 5-60

Fboolpr32 .. 5-60

Fboolev32 and Ffloatev32... 5-61

6. Examples

A. FML Error Messages
vi BEA MessageQ FML Programmer’s Guide

CHAPTER

,

ns
1 Introduction

About This Guide and FML

This chapter describes the contents of the guide, how the Field Manipulation Language
(FML) fits into the BEA MessageQ system, and how you might get the most out of the
guide. We assume that you are familiar with the BEA MessageQ system.

What Is FML?

FML is a set of C language functions for defining and manipulating storage structures
called fielded buffers that contain attribute-value pairs in fields. The attribute is
the field’s identifier, and the associated value represents the field’s data content.

Fielded buffers provide an excellent structure for communicating parameterized data
between cooperating processes, by providing named access to a set of related fields.
Programs that need to communicate with other processes can use the FML software to
provide access to fields without concerning themselves with the structures that contain
them.

The original FML allowed for 16-bit field identifiers, field lengths, field occurrences,
and record lengths. A newer FML32 interface allows for larger identifiers (32-bit),
field lengths, field occurrences, and record lengths. The interfaces are nearly identical;
the only difference is that a suffix of “32” is added to the name of type definitions
header files, functions, and commands.

Note: BEA MessageQ only supports FML32. Do not use the 16-bit FML functio
in developing MessageQ applications.
BEA MessageQ FML Programmer’s Guide 1-1

1 INTRODUCTION

eed

have

n a
 the
How Does FML32 Fit into the BEA MessageQ System?

Within the BEA MessageQ system, FML32 functions are used to manipulate fielded
buffers. In MessageQ applications, messages may be sent as message buffers
(predefined, static data structures) or as FML32 buffers. Using FML32, applications
construct messages containing both the message content and the information needed
by the receiver program to understand what is in the message.

Who Is This Document For?

This guide gives detailed information about the features of FML32 and how the
different FML32 functions are used.

This guide is intended for programmers who need to learn how to use FML32
functions in programming BEA MessageQ applications. This guide also provides
information for users of applications that make use of FML32 with regard to setting up
the environment correctly.

Prerequisites

To make full use of this guide, you should be familiar with the following:

t The UNIX System environment—We assume, for example, that you do not n
a definition of a shell command or an environment variable, and that you
understand what is meant by a UNIX System file or running a process in the
background.

t The C programming language—The functions and macros that make up FML
are intended to be incorporated in C language programs, so we assume you
previously spent some time developing C programs.

t The BEA MessageQ system—We assume, even if you have not yet worked o
BEA MessageQ application, that you at least have an understanding of what
BEA MessageQ system is intended to do, and that you have read about the
application development environment in the BEA MessageQ Programmer’s
Guide.
1-2 BEA MessageQ FML Programmer’s Guide

ABOUT THIS GUIDE AND FML

he

ed
ter

you
vides

 the
es in
What Does This Document Include?

t Concepts and Definitions—Several definitions are provided to explain ideas
and terms that are used in the guide.

t An Overview of FML32—Chapter 2 offers an overview of the software. If you
have not used FML functions before, you may find it helpful to read through t
overview to get a general idea of how things work.

t Setup and Customization—Chapter 3 gives you the information you need to
set up the environment variables, directory structure, and files that are requir
by the BEA MessageQ system in general, and FML32 in particular. This chap
also shows you how to customize your installed FML32 software.

t Defining and Using FML32 Fielded Buffers—Chapter 4 outlines the use of the
FML32 software, and how to set up your C language programs to use the
software.

t FML32 Field Manipulation Functions—Chapter 5 deals with how to use the
FML32 functions to manipulate data.

Code Fragments—There are illustrations throughout Chapters 4 and 5 that show
examples of the functions as they might be used in a C program. Chapter 6 has pro
additional examples.

What Other FML32 Documentation Is There?

In addition to this guide, documentation on FML32 function calls can be found in
reference page for each FML32 function and the following related reference pag
the BEA MessageQ Reference Manual:

Table 1-1 Section 5 reference pages

Reference Page Description

field_tables(5) describes the structure of FML field tables

mkfldhdr32 describes the command used to create header files from field tables
BEA MessageQ FML Programmer’s Guide 1-3

1 INTRODUCTION
Concepts and Definitions

Field Identifier
A field identifier (fldid) is a tag for an individual data item in an FML record
or fielded buffer. The field identifier consists of the name of the field (a
number) and the type of the data in the field.

Fielded Buffer
A fielded buffer is a data structure in which each data item is accompanied by
an identifying tag (a field identifier) that includes the type of the data and a
field number.

Field Types
Fields in FML and fielded buffers are typed. They can be any of the standard
C language types: short, long, float, double, and char. Two other types
are also supported: string (a series of characters ending with a null
character) and carray (character arrays).
1-4 BEA MessageQ FML Programmer’s Guide

CHAPTER
2 Overview

Introduction

This chapter begins by describing two ways in which the idea of fielded records or
fielded buffers can be handled: through structured records and through FML32
records. It then describes the features of the Field Manipulation Language and the
circumstances under which you might want to use them.

A comparison of FML32 records with traditional structured records clearly shows the
advantages of using fielded buffers throughout an application.

Dividing Records into Fields

Unless a data record is a complete and indivisible entity (an unusual situation), you
need to be able to break a record into fields so you can use or change the information
in the record. In BEA MessageQ applications there are two ways to divide records into
fields:

t Through message buffers (predefined C language data structures)

t Through fielded buffers

Structures

One common way of subdividing records is with a structure that divides a contiguous
area of storage into fields. The fields are given names for identification; the kind of
data carried in the field is shown by the data type declaration.
BEA MessageQ FML Programmer’s Guide 2-1

2 OVERVIEW
For example, a data item in a C language program that contains information about an
employee’s identification number, name, address, and sex, may be formatted in a
structure such as the following:

struct S {
 long empid;
 char name[20];
 char addr[40];
 char sex;
};

where the data type of the empid field is declared to be a long integer, name and addr
are declared to be character arrays of 20 and 40 characters respectively, and sex is
declared to be a single character (presumably with a range of m or f).

If, in your C program, the variable p points to a structure of type struct S, the references
p->empid, p->name, p->addr and p->sex can be used to address the fields.

POSSIBLE DISADVANTAGES OF STRUCTURES

While this way of representing data is widely used and often appropriate, it has two
major potential disadvantages:

t Any time the data structure is changed, all programs using the structure have to
be recompiled.

t The size of the structure and the offsets of the component fields are all fixed; as
a result, space if often wasted. (Not all fields will always contain a value and
fields tend to be sized to hold the largest likely entry.)

Fielded Buffers

Fielded buffers provide another way of subdividing a record into fields.

A fielded buffer is a data structure that provides associative access to the fields of a
record; that is, the name of a field is associated with an identifier that includes the
storage location as well as the data type of the field.

The main advantage of the fielded buffer is data independence. Fields can be added to
the buffer, deleted from it, or changed in length without forcing programs that
reference the fields to be recompiled. To achieve this data independence, a field is
referenced by an identifier rather than by the fixed offset prescribed by record
structures, and all access to fields is through function calls.
2-2 BEA MessageQ FML Programmer’s Guide

FML32 FEATURES
Fielded buffers can be used throughout a BEA MessageQ application as the standard
method of representing data sent between cooperating processes.

Implementing Fielded Buffers with FML32

Fielded buffers are created, updated, accessed, input, and output via the Field
Manipulation Language (FML). FML32 has two main objectives:

t To provide a convenient and standard discipline for creating and manipulating
fielded buffers.

t To provide data independence to programs making use of fielded buffers.

FML32 is implemented as a library of functions and macros that can be called from C
programs. There are two major groups of FML32 functions:

t A set of functions for creating, updating, accessing, and manipulating fielded
buffers.

t A set of functions for converting data from one type to another upon input to (or
output from) a fielded buffer structure.

FML32 Features

This section describes the features of FML32 and recommends how to use them in
application programs.

Fielded Buffer Structure

A fielded buffer, as mentioned earlier, is a data structure that provides associative
access to the fields of a record.

Each field in an FML32 fielded buffer is labeled with an integer that combines
information about the data type of the accompanying field with a unique identifying
number. The label is called the field identifier, or fldid32. For variable-length items,
BEA MessageQ FML Programmer’s Guide 2-3

2 OVERVIEW
fldid32 is followed by a length indicator. The buffer can be represented as a sequence
of fldid/data pairs, with fldid/length/data triples for variable-length items.
Figure 2-1 illustrates this.

Figure 2-1 A fielded buffer

In the header file that is #include’d whenever FML32 functions are used (fml32.h),
field identifiers are typedef’d as FLDID32, field value lengths as FLDLEN32, and field
occurrence numbers as FLDOCC32.

Supported Field Types

The supported field types are short, long, float, double, character, string, and
carray (character array). These types are #define’d in fml32.h as shown in
Listing 2-1.

Listing 2-1 FML32 field types as defined in fml32.h

#define FLD_SHORT 0 /* short int */
#define FLD_LONG 1 /* long int */
#define FLD_CHAR 2 /* character */
#define FLD_FLOAT 3 /* single-precision float */
#define FLD_DOUBLE 4 /* double-precision float */
#define FLD_STRING 5 /* string - null terminated */
#define FLD_CARRAY 6 /* character array */

FLD_STRING and FLD_CARRAY are both arrays, but differ in the following ways:

t A FLD_STRING is a variable-length array of non-NULL characters terminated by
a NULL.

t A FLD_CARRAY is a variable-length array of bytes, any of which may be NULL.
2-4 BEA MessageQ FML Programmer’s Guide

FML32 FEATURES

).
ich

y for
 in
Functions that add or change a field have a FLDLEN argument that must be filled in
when you are dealing with FLD_CARRAY fields. The size of a string or carray is limited
to 2 billion bytes for FML32.

It is not a good idea to store unsigned data types in fielded buffers. You should either
convert all unsigned short data to long or cast the data into the proper unsigned data
type whenever you retrieve data from fielded buffers (using the FML32 conversion
functions).

Most FML32 functions do not perform type checking; they expect that the value you
update or retrieve from a fielded buffer matches its native type. For example, if a buffer
field is defined to be a FLD_LONG, you should always pass the address of a long value.
The FML32 conversion functions convert data from a user specified type to the native
field type (and from the field type to a user specified type) in addition to placing the
data in (or retrieving the data from) the fielded buffer.

Field Name to Identifier Mappings

A field is usually referred to by its field identifier (fldid32), an integer. (See
Chapter 4, “Field Definition and Use,” for a detailed description of field identifiers
This allows you to reference fields in a program without using the field name, wh
may change.

There are two ways in which identifiers are assigned (mapped) to field names:

t Through field table files (which are ordinary ASCII files)

t Through C language header (#include) files

A typical application might use one or both of the above methods to map field
identifiers to field names.

In order for FML32 to access the data in fielded records, there must be some wa
FML32 to access the field name/identifier mappings. FML32 gets this information
one of two ways:

t At run-time, through UNIX field table files and FML32 mapping functions

t At compile-time, through C header files
BEA MessageQ FML Programmer’s Guide 2-5

2 OVERVIEW

s” in

nge
er 4.

der
to

 field

.

run

used
pic
Run-Time: Field Table Files

Field name/identifier mappings can be made available to FML32 programs at run-time
through field table files. It is the responsibility of the programmer to set two
environment variables that tell FML32 where the field name/identifier mapping table
files are located.

The environment variable FLDTBLDIR32 contains a list of directories where field
tables can be found. The environment variable FIELDTBLS32 contains a list of the files
in the table directories that are to be used.

Within application programs, the FML32 function Fldid32() provides for a run-time
translation of a field name to its field identifier. Fname32() translates a field identifier
to its field name (see Fldid(3fml) and Fname(3fml)). The first invocation of either
function causes space in memory to be dynamically allocated for the field tables and
the tables to be loaded into the address space of the process. The space can be
recovered when the tables are no longer needed. (See “Loading the Field Table
Chapter 4.)

This method should be used when field name/identifier mappings are likely to cha
throughout the life of the application. This topic is covered in more detail in Chapt

Compile-Time: Header Files

mkfldhdr32(1) is provided to make header files out of field table files. These hea
files are #include'd in C programs, and provide another way to map field names
field identifiers: at compile-time.

Using field header files, the C preprocessor converts all field name references to
identifiers at compile-time; thus, you do not need to use the Fldid32() or Fname32()
functions as you would with the field table files described in the previous section

If you always know the field names needed by your program, you can #include your
field table header file(s), saving some data space and enabling your program to
more quickly.

However, since this method resolves mappings at compile-time, it should not be
if the field name/identifier mappings in the application are likely to change. This to
is covered in more detail in Chapter 4.
2-6 BEA MessageQ FML Programmer’s Guide

FML32 FEATURES
Fielded Buffer Indexes

When a fielded buffer has many fields, access is expedited in FML32 by the use of an
internal index. The user is normally unaware of the existence of this index.

Fielded buffer indexes do, however, take up space in memory and on disk. When you
store a fielded buffer on disk, or transmit a fielded buffer between processes or
between computers, you can save disk space and/or transmittal time by first discarding
the index.

FML32 provides the Funidex32() function for discarding the index. When the fielded
buffer is read from disk (or received from a sending process), the index can be
explicitly reconstructed with the function Findex32().

Note that these space savings do not apply to memory. The function Funidex32() does
not recover in-core memory used by the index of a fielded buffer.

Multiple Occurrences of Fields

A fielded buffer may contain more than one occurrence of any field. Many FML32
functions take an argument that specifies which occurrence of a field is to be retrieved
or modified. If a field occurs more than once, the first occurrence is numbered 0, and
additional occurrences are numbered sequentially. The set of all occurrences
constitutes a logical sequence, but no overhead is associated with the occurrence
number (that is, it is not stored in the fielded buffer).

If another occurrence of a field is added, it is added at the end of the set and is referred
to as the next highest occurrence. When an occurrence other than the highest is deleted,
all higher occurrences of the field are shifted down by one (for example, occurrence 6
becomes occurrence 5, 5 becomes 4, and so on).
BEA MessageQ FML Programmer’s Guide 2-7

2 OVERVIEW
Boolean Expressions and Fielded Buffers

Often, application programs receive a fielded buffer from another source (from a user’s
terminal, from a database record, and so on) and the values of one or more fields
determine the next action taken by the application program. FML32 provides several
functions that create boolean expressions on fielded buffers and determine if a given
buffer meets the criteria specified by the expression.

Once you create a boolean expression, it is compiled into an evaluation tree. The
evaluation tree is then used to determine if a fielded buffer matches the specified
boolean conditions.

For instance, a program may read a data record into a fielded buffer (Buffer A) and
apply a boolean expression to the buffer. If Buffer A meets the conditions specified by
the boolean expression, then an FML32 function is used to update another buffer,
Buffer B, with data from Buffer A.

Error Handling

When an FML32 function detects an error, one of the following values is returned:

t NULL is returned for functions that return a pointer

t BADFLDID is returned for functions that return a FLDID32

t -1 is returned for all others

All FML32 function call returns should be checked against the appropriate value above
to detect errors.

In all error cases, the external integer Ferror32 is set to the error number as defined
in fml32.h.

The F_error32 function is provided to produce a message on the standard error
output. It takes one parameter, a string; prints the argument string appended with a
colon and a blank; and then prints an error message followed by a newline character.
The error message displayed is the one defined for the error number currently in
Ferror32, which is set when errors occur.
2-8 BEA MessageQ FML Programmer’s Guide

ERROR HANDLING
To be most useful, the argument string to the F_error32() function should include the
name of the program that incurred the error.

Fstrerror32() can be used to retrieve (from a message catalog) the text of an error
message; it returns a pointer that can be used as an argument to F_error32().

The error codes that can be produced by an FML32 function are described on the page
that documents the function in the BEA MessageQ Reference Manual.
BEA MessageQ FML Programmer’s Guide 2-9

2 OVERVIEW
2-10 BEA MessageQ FML Programmer’s Guide

CHAPTER

e
3 Setup

Introduction

This chapter deals with the setup of the FML32 environment. Before you can begin to
work with FML32 fielded buffers you must set environment variables appropriate for
your application. These activities are described in this chapter.

Directory Structure

The delivered FML32 software will reside in a subtree of the local file system. Several
of the FML32 modules assume that the structure of this subtree is as described in this
section. The sub-directories are:

t include—contains header files needed by writers of C application code.

t bin—contains the executable commands of FML.

t lib—contains subroutine packages of FML; when compiling a program that
uses FML32 functions, $MESSAGEQ/lib/libfml32.suffix and
$MESSAGEQ/lib/libgp.suffix should be included on the C compiler
command line to resolve external references. (The suffix is .a for POSIX
operating systems without shared objects, .so for use of shared objects, and
.lib for Windows 95 and Windows NT.)

C application software using FML32 must include the following header files in th
order shown:
BEA MessageQ FML Programmer’s Guide 3-1

3 SETUP

es

e

#include <stdio.h>
#include “fml32.h”

Environment Variables

This section describes several environment variables used by FML32.

The following variable is used in FML32 to search for system supplied files:

t TUXDIR—this variable should be set to the topmost node of the installed BEA
MessageQ system software including FML32.

The following variables are used throughout FML32 to access field table files
(described in Chapter 4):

t FIELDTBLS32—This variable should contain a comma-separated list of field
table files for the application. Files given as full path names are used as is; fil
listed as relative path names are searched for through the list of directories
specified by the FLDTBLDIR32 variable. If FIELDTBLS32 is not set, then the
single file name fld.tbl is used (FLDTBLDIR32 still applies; see below.)

t FLDTBLDIR32—This variable specifies a colon-separated list of directories to b
used to find field table files with relative file names. Its usage is similar to the
PATH environment variable. If FLDTBLDIR32 is not set or is null, then its value is
assumed to be the current directory.
3-2 BEA MessageQ FML Programmer’s Guide

CHAPTER
4 Field Definition and
Use

Introduction

Before you can begin to work with FML32 fielded buffers certain details must be taken
care of, such as:

t defining fields

t making field definitions available to applications programs (through field table
files and mapping functions at run-time, or C header files at compile time)

These and related activities are described in this chapter.

Defining Fields

This section discusses

t how fields are defined in field tables for run-time use

t the available functions for run-time use with the field table files
BEA MessageQ FML Programmer’s Guide 4-1

4 FIELD DEFINITION AND USE
Field Names and Identifiers

A field identifier (fieldid) is defined using typedef as a FLDID32 for FML32, and
is composed of two parts: a field type and a field number (the number uniquely
identifies the field).

Field numbers are restricted to be between 1 and 33,554,431, inclusive, for FML32.
Field number 0 and the corresponding field identifier 0 is reserved to indicate a bad
field identifier (BADFLDID). When FML32 is used with other software that also uses
fields, additional restrictions may be imposed on field numbers.

The numbering convention adopted by the BEA MessageQ is as follows:

t field numbers 1-100 are reserved for system use

t field numbers 101-33,554,431 are for application-defined fields with FML32.

The mappings between field identifiers and field names are contained in either field
table files or field header files. Using field table files requires that you convert field
name references in C programs with the mapping functions described later in this
chapter; field header files allow the C preprocessor (cpp(1) in UNIX reference
manuals) to resolve name-to-fieldid mappings when a program is compiled.

The functions and programs that access field tables use the environment variables
FLDTBLDIR32 and FIELDTBLS32 to specify the source directories and field table files,
respectively, which are to be used. These should be set as described in Chapter 3.

The use of multiple field tables allows you to establish separate directories and/or files
for separate groups of fields. Note that field names and field numbers should be unique
across all field tables, since such tables are capable of being converted into C header
files, and field numbers that occur more than once may cause unpredictable results.

Field Table Files

Field table files are created using a standard text editor, such as vi. They have the
following format:

t Blank lines and lines beginning with # are ignored.

t Lines beginning with $ ignored by the mapping functions but are passed through
(without the $) to header files generated by mkfldhdr32(1); for example, this
4-2 BEA MessageQ FML Programmer’s Guide

DEFINING FIELDS
would allow the application to pass C comments, what strings, etc. to the
generated C header file.

t Lines beginning with the string *base contain a base for offsetting subsequent
field numbers; this optional feature provides an easy way to group and renumber
sets of related fields.

t All other lines should have the following form.

name rel-number type flag comment

t where:

t name is the identifier for the field. It should not exceed the C preprocessor
identifier restrictions (that is, it should contain only alphanumeric characters
and the underscore character). Internally, the name is truncated to 30
characters, so names must be unique within the first 30 characters.

t rel-number is the relative numeric value of the field; it is added to the
current base, if *base is specified, to obtain the field number of the field.

t type is the type of the field, and is specified as one of: char, string,
short, long, float, double, carray.

t The flag field is reserved for future use; use a dash (-) in this field.

t comment is an optional field that can be used for clarifying information.

Note that these entries must be separated by white space (blanks or tabs).

Field Table Example

The following is an example field table in which the base shifts from 500 to 700. The
first fields in each group will be numbered 501 and 701, respectively.

Listing 4-1 A UNIX Field Table File

following are fields for EMPLOYEE service
employee ID fields are based at 500
*base 500
#name rel-number type flags comment
#---- ---------- ---- ------ -------
EMPNAME 1 string - emp name
BEA MessageQ FML Programmer’s Guide 4-3

4 FIELD DEFINITION AND USE
EMPID 2 long - emp id
EMPJOB 3 char - job type
SRVCDAY 4 carray - service date
*base 700
all address fields are now relative to 700
EMPADDR 1 string - street address
EMPCITY 2 string - city
EMPSTATE 3 string - state
EMPZIP 4 long - zip code

Mapping Functions

Run-time mapping is done by the Fldid32() and Fname32() functions that consult the
set of field table files specified by the FLDTBLDIR32 and FIELDTBLS32 environment
variables.

Fldid32() maps its argument, a field name, to a fieldid:

char *name;
extern FLDID32 Fldid32();
FLDID32 id;
...
id = Fldid32(name);

Fname() does the reverse translation by mapping its argument, a fieldid, to a field
name:

extern char *Fname32();
name = Fname32(id);
. . .

The identifier-to-name mapping is rarely used; that is, it is rare that one has a field
identifier and wants to know the corresponding name. One place where the field
identifier-to-field name mapping could be used is in a buffer print routine where you
want to display, in an intelligible form, the contents of a fielded buffer.

Loading the Field Tables

Upon the first call, Fldid32() loads the field table files and performs the required
search. Thereafter, the files are kept loaded. Fldid32() returns the field identifier
corresponding to its argument on success, and returns BADFLDID on failure, with
Ferror32 set to FBADNAME.
4-4 BEA MessageQ FML Programmer’s Guide

DEFINING FIELDS
To recover the data space used by the field tables loaded by Fldid32(), the user may
unload all of the files by a call to the Fnmid_unload32() function.

The function Fname32() acts in a fashion similar to Fldid32(), but provides a
mapping from a field identifier to a field name. It uses the same environment variable
scheme for determining the field tables to be loaded, but constructs a separate set of
mapping tables. On success, Fname32() returns a pointer to a character string
containing the name corresponding to the fldid argument. On failure, Fname32()
returns NULL.

Note: The pointer is valid only as long as the table remains loaded.

As with Fldid32(), failure includes either the inability to find or open a field table
(FFTOPEN), bad field table syntax (FFTSYNTAX), or a no-hit condition within the field
tables (FBADFLD). The table space used by the mapping tables created by Fname32()
may be recovered by a call to the function Fidnm_unload32().

Both mapping functions and other FML32 functions that use run-time mapping require
FIELDTBLS32 and FLDTBLDIR32 to be set properly. Otherwise, default values are used
(see Chapter 3 for the defaults).

Field Header Files

The command mkfldhdr32 converts field tables, as described above, into header files
suitable for processing by the C compiler. Each line of the generated header file is of
the following form.

#define fname fieldid

where fname is the name of the field, and fieldid is its field-ID. The field-ID has
both the field type and field number encoded in it. The field number is an absolute
number, that is, base plus rel-number. The resulting file is suitable for inclusion in
a C program.

The header file need not be used if the run-time mapping functions are used as
described in the next sub-section. The advantage of compile-time mapping of names
to identifiers is speed and a decrease of data space requirements. The disadvantage is
that changes made to field name/identifier mappings after, for instance, a service
routine has been compiled will not be propagated to the service routine (that is, it will
use the mappings it has already compiled).
BEA MessageQ FML Programmer’s Guide 4-5

4 FIELD DEFINITION AND USE
mkfldhdr32(1) translates each field-table specified in the FIELDTBLS32 environment
variable to a corresponding header file, whose name is formed by concatenating a .h
suffix to the field-table name. The resulting files are created, by default, in the current
directory. The user may specify a creation directory to mkfldhdr32(1) by specifying
a -d option followed by the name of the directory in which you want the header files
to reside. For example,

FLDTBLDIR32=/project/fldtbls
FIELDTBLS32=maskftbl,DBftbl,miscftbl
export FLDTBLDIR32 FIELDTBLS32
mkfldhdr32

will produce the include files maskftbl.h, DBftbl.h and miscftbl.h in the current
directory by processing ${FLDTBLDIR32}/maskftbl, ${FLDTBLDIR32}/DBftbl
and ${FLDTBLDIR32}/miscftbl. The command

mkfldhdr32 -d${FLDTBLDIR32}

will process the sample input field-table files and produce the same output files, but
will place them in the directory given by ${FLDTBLDIR32}.

You may override the environment variables (or avoid setting them) when using
mkfldhdr32 by specifying on the command line the names of the field tables to be
converted (this does not apply to the run-time mapping functions). In this case,
FLDTBLDIR32 is assumed to be the current directory and FIELDTBLS32 is assumed to
be the list of parameters that the user specified on the command line. For example,

mkfldhdr32 myfields

will convert the field table file myfields to a field header file myfields.h, and place
it in the current directory.
4-6 BEA MessageQ FML Programmer’s Guide

CHAPTER
5 Field Manipulation
Functions

Introduction

This chapter describes all FML32 functions exception run-time mapping (which is
described in Chapter 4). In this chapter you will learn:

t FML32 parameter conventions

t how to use various field identifier mapping functions

t how to allocate and initialize fielded buffers

t how to move fielded buffers

t how to access and modify fielded buffers

t how to update fielded buffers

t how to map fielded buffers to C structures

t how to perform type conversions on data transferred to or from fielded buffers

t how to use indexing functions

t how to use input/output functions

t how to construct boolean expressions to make program decisions based on the
contents of fielded buffers
BEA MessageQ FML Programmer’s Guide 5-1

5 FIELD MANIPULATION FUNCTIONS

a
2

ntion
appear

ns),
er
is
r
FML and FML32

There are two variants of FML. The original FML interface is based on 16-bit values
for the length of fields and contains information identifying fields (hence FML16).
FML16 is limited to 8191 unique fields, individual field lengths of up to 64K bytes,
and a total fielded buffer size of 64K.

A second interface, FML32, uses 32-bit values for field lengths and identifiers. It
allows for about 30 million fields, and field and buffer lengths of about 2 billion bytes.
The definitions, types, and function prototypes for FML32 are in fml32.h. Functions
live in -lfml32.

BEA MessageQ supports only FML32. Do not use 16-bit FML functions in
developing MessageQ applications.

The names of all definitions, types, and functions for FML32 have a “32” suffix (for
example, MAXFBLEN32, FBFR32, FLDID32, FLDLEN32, Fchg32(), and error code
Ferror32()). Also the environment variables are suffixed with “32” (for example,
FLDTBLDIR32 and FIELDTBLS32). For FML32, a fielded buffer pointer is of type
“FBFR32 *”, a field length has the type FLDLEN32, and the number of occurrences of
field has the type FLDOCC32. Also note that the default required alignment for FML3
buffers is 4-byte alignment.

FML32 Parameters

To make it easier to remember the parameters for the FML32 functions, a conve
has been adopted for the sequence of function parameters. FML32 parameters
in the following sequence:

1. For functions that require a pointer to a fielded buffer (FBFR32), this parameter is
first. If a function takes two fielded buffer pointers (such as the transfer functio
the destination buffer comes first followed by the source buffer. A fielded buff
pointer must point to an area that is aligned on a short boundary (or an error
returned with Ferror32() set to FALIGNERR) and the area must be a fielded buffe
(or an error is returned with Ferror32() set to FNOTFLD).
5-2 BEA MessageQ FML Programmer’s Guide

FIELD IDENTIFIER MAPPING FUNCTIONS
2. For the input/output functions, a pointer to a stream follows the fielded buffer
pointer.

3. For functions that need one, a field identifier (type FLDID32) appears next (in the
case of Fnext32(), it is a pointer to a field identifier).

4. For functions that need a field occurrence (type FLDOCC32), this parameter comes
next (for Fnext32(), it is a pointer to an occurrence number).

5. In functions where a field value is passed to or from the function, a pointer to the
beginning of the field value is given next (defined as a character pointer but may
be cast from any other pointer type).

6. When a field value is passed to a function that contains a character array (carray)
field, you must specify its length as the next parameter (type FLDLEN32). For
functions that retrieve a field value, a pointer to the length of the retrieval buffer
must be passed to the function and this length parameter is set to the length of the
value retrieved.

7. A few functions require special parameters and differ from the preceding
conventions; these special parameters appear after the above parameters and will
be discussed in the individual function descriptions.

8. The following NULL values are defined for the various field types: 0 for short
and long; 0.0 for float and double; \0 for string (1 byte in length); and a
zero-length string for carray.

Field Identifier Mapping Functions

Several functions allow the programmer to query field tables or field identifiers for
information about fields during program execution.

Fldid32

Fldid32() returns the field identifier for a given valid field name and loads the field
name/fieldid mapping tables from the field table files, if they do not already exist:
BEA MessageQ FML Programmer’s Guide 5-3

5 FIELD MANIPULATION FUNCTIONS
FLDID32
Fldid32(char *name)

where name is a valid field name.

The space used by the mapping tables in memory can be freed using the
Fnmid_unload32() function. Note that these tables are separate from the tables loaded
and used by the Fname32() function.

Fname32

Fname32() returns the field name for a given valid field identifier and loads the
fieldid/name mapping tables from the field table files, if they do not already exist:

char *
Fname32(FLDID32 fieldid)

where fieldid is a valid field identifier.

The space used by the mapping tables in memory can be freed using the
Fidnm_unload32() function. Note that these tables are separate from the tables loaded
and used by the Fldid32() function.

Fldno32

Fldno32() extracts the field number from a given field identifier:

FLDOCC32
Fldno32(FLDID32 fieldid)

where fieldid is a valid field identifier.

Fldtype32

Fldtype32() extracts the field type (an integer, as defined in fml32.h) from a given
field identifier.
5-4 BEA MessageQ FML Programmer’s Guide

FIELD IDENTIFIER MAPPING FUNCTIONS
int
Fldtype32(FLDID32 fieldid)

where fieldid is a valid field identifier.

Table 5-1 shows the possible values returned by Fldtype32() and their meanings.

Ftype32

Ftype32() returns a pointer to a string containing the name of the type of a field given
a field identifier:

char *
Ftype32(FLDID32 fieldid)

where fieldid is a valid field identifier.

For example:

char *typename
. . .
typename = Ftype32(fieldid);

returns a pointer to one of the following strings: short, long, char, float, double,
string, or carray.

Table 5-1 Field Types Returned by Fldtype

Return Value Meaning

0 short integer

1 long integer

2 character

3 single-precision float

4 double-precision float

5 null-terminated string

6 character array
BEA MessageQ FML Programmer’s Guide 5-5

5 FIELD MANIPULATION FUNCTIONS
Fmkfldid32

As part of an application generator, or to reconstruct a field identifier, it might be
useful to be able to make a field identifier from a type specification and an available
field number. Fmkfldid32() provides this functionality:

FLDID32
Fmkfldid32(int type, FLDID32 num)

where

t type is a valid type (an integer; see Fldtype32(), above)

t num is a field number (it should be an unused field number, to avoid confusion with
existing fields)

Buffer Allocation and Initialization

Most FML32 functions require a pointer to a fielded buffer as an argument. The
typedef FBFR32 is available for declaring such pointers, as in this example:

FBFR32 *fbfr32;

In this chapter, the variable fbfr32 will be used to mean a pointer to a fielded buffer.

Never attempt to declare fielded buffers themselves, only pointers to them. The
functions used to reserve space for fielded buffers are explained in the following pages,
but first we will describe a function that can be used to determine whether a given
buffer is in fact a fielded buffer.

Fielded32

Fielded32() is used to test whether the specified buffer is fielded.

int
Fielded32(FBFR32 *fbfr32)
5-6 BEA MessageQ FML Programmer’s Guide

BUFFER ALLOCATION AND INITIALIZATION
Fielded32() returns true (1) if the buffer is fielded. If the buffer is not fielded,
Fielded32() returns false (0) and does not set Ferror32().

Fneeded32

The amount of memory to allocate for a fielded buffer depends on the maximum
number of fields that buffer will contain and the total amount of space needed for all
the field values. The function Fneeded can be used to determine the amount of space
(in bytes) needed for a fielded buffer; it takes the number of fields and the space needed
for all field values (in bytes) as arguments.

long
Fneeded32(FLDOCC32 F, FLDLEN32 V)

where

t F is the number of fields

t V is the space for field values, in bytes

The space needed for field values is computed by estimating the amount of space that
would be required by each field value if stored in standard structures (for example, a
long is stored as a long and needs four bytes). For a variable length field, you should
estimate the average amount of space needed. The space calculated by Fneeded
includes a fixed overhead for each field in addition to the space needed for the field
values.

Once you obtain the estimate of space from Fneeded32(), you can allocate the desired
number of bytes using malloc(3) and set up a pointer to the allocated memory space.
For example, the following allocates space for a fielded buffer large enough to contain
25 fields and 300 bytes of values:

#define NF 25
#define NV 300
extern char *malloc;
. . .
 if((fbfr32 = (FBFR32 *)malloc(Fneeded32(NF, NV))) == NULL)
 F_error("pgm_name"); /* no space to allocate buffer */

However, this allocated memory space is not yet a fielded buffer. Finit32() must be
used to initialize it.
BEA MessageQ FML Programmer’s Guide 5-7

5 FIELD MANIPULATION FUNCTIONS
Finit32

The Finit32() function initializes an allocated memory space as a fielded buffer.

int
Finit32(FBFR32 *fbfr32, FLDLEN32 buflen)

where

t fbfr32 is a pointer to an uninitialized fielded buffer

t buflen is the length of the buffer, in bytes

A call to Finit32() to initialize the memory space allocated in the example above (in
the Fneeded32() section) would look like the following:

Finit32(fbfr32, Fneeded32(NF, NV));

Now fbfr32 points to an initialized, empty fielded buffer. Up to Fneeded32(NF,
NV) bytes minus a small amount are available in the buffer to hold fields.

Note: The numbers used in the malloc(3) call (see the example in the Fneeded32()
section) and Finit32() call must be the same.

Falloc32

Calls to Fneeded32(), malloc(3) and Finit32() may be replaced by a single call to
Falloc32(), which allocates the desired amount of space and initializes the buffer.

FBFR32 *
Falloc32(FLDOCC32 F, FLDLEN32 V)

where

t F is the number of fields

t V is the space for field values, in bytes

A call to Falloc32() that would replace the examples above would look like the
following:

extern FBFR32 *Falloc32;
. . .
5-8 BEA MessageQ FML Programmer’s Guide

BUFFER ALLOCATION AND INITIALIZATION
 if((fbfr32 = Falloc32(NF, NV)) == NULL)
 F_error(“pgm_name”); /* couldn't allocate buffer */

Storage allocated with Falloc32 () (or Fneeded32 (), malloc (3) and Finit32 ())
should be freed with Ffree32 ().

Ffree32

Ffree32 () is used to free memory space allocated as a fielded buffer.

int
Ffree32(FBFR32 * fbfr32)

where fbfr32 is a pointer to a fielded buffer

For example:

 #include <fml32.h>
 . . .
 if(Ffree32(fbfr32) 0)
 F_error("pgm_name"); /* not fielded buffer */

Ffree32 () is recommended as opposed to free (3), because Ffree32 () will invalidate
a fielded buffer whereas free (3) will not. It is necessary to invalidate fielded buffers
because malloc (3) re-uses memory that has been freed, without clearing it. Thus, if
free (3) were used, it would be possible for malloc to return a piece of memory that
looks like a valid fielded buffer, but is not.

Space for a fielded buffer may also be reserved directly. The buffer must begin on a
short boundary.

The following code is analogous to the preceding example but Fneeded32 () cannot be
used to size the static buffer since it is not a macro.

/* the first line aligns the buffer */
static short buffer[500/sizeof(short)];
FBFR32 *fbfr32=(FBFR32 *)buffer;
. . .
Finit32(fbfr32, 500);

It should be emphasized that the following code is quite wrong:

FBFR32 badfbfr;
. . .
Finit32(&badfbfr, Fneeded32(NF, NV));
BEA MessageQ FML Programmer’s Guide 5-9

5 FIELD MANIPULATION FUNCTIONS
The structure for FBFR32 is not defined in the user header files so this code will
produce a compilation error.

Fsizeof32

Fsizeof32() returns the size of a fielded buffer in bytes:

long
Fsizeof32(FBFR32 *fbfr32)

where fbfr32 is a pointer to a fielded buffer

For example:

long bytes;
. . .
bytes = Fsizeof32(fbfr32);

Fsizeof32() returns the same number that Fneeded32() returned when the fielded
buffer was originally allocated.

Funused32

Funused32() may be used to determine how much space is available in a fielded buffer
for additional data:

long
Funused32(FBFR32 *fbfr32)

where fbfr32 is a pointer to a fielded buffer

For example:

long unused;
. . .
unused = Funused32(fbfr32);

Note that Funused32() does not indicate where, in the buffer, the unused bytes are
located; it indicates only the number of unused bytes.
5-10 BEA MessageQ FML Programmer’s Guide

BUFFER ALLOCATION AND INITIALIZATION
Fused32

Fused32() may be used to determine how much space is used in a fielded buffer for
data and overhead:

long
Fused32(FBFR32 *fbfr32)

where fbfr32 is a pointer to a fielded buffer

For example:

long used;
. . .
used = Fused32(fbfr32);

Note that Fused32() does not indicate where, in the buffer, the used bytes are located;
it indicates only the number of used bytes.

Frealloc32

At some point (such as during the addition of a new field value) the buffer may run out
of space. Frealloc32() can be used to increase (or decrease) the size of the buffer:

FBFR32 *
Frealloc32(FBFR32 *fbfr32, FLDOCC32 nf, FLDLEN32 nv)

where

t fbfr32 is a pointer to a fielded buffer

t nf is the new number of fields or 0

t nv is the new space for field values, in bytes

For example:

FBFR32 *newfbfr32;
. . .
if((newfbfr32 = Frealloc32(fbfr32, NF+5, NV+300)) == NULL)
 F_error32(“pgm_name”); /* couldn't re-allocate space */
else
 fbfr32 = newfbfr32; /* assign new pointer to old */
BEA MessageQ FML Programmer’s Guide 5-11

5 FIELD MANIPULATION FUNCTIONS
In this case, the application needed to remember the number of fields and the number
of bytes of space previously allocated for field values. Note that the arguments to
Frealloc32() (as with its counterpart realloc(3)) are absolute values, not
increments. This example will not work if space needs to be re-allocated several times.

The following example shows a second way of incrementing the allocated space:

/* define the increment size when buffer out of space */
#define INCR 400
FBFR32 *newfbfr32;
. . .
if((newfbfr32 = Frealloc32(fbfr32, 0, Fsizeof(fbfr32)+INCR)) ==
NULL)
 F_error32(“pgm_name”); /* couldn't re-allocate space */
else
 fbfr32 = newfbfr32; /* assign new pointer to old */

Note that you do not need to know the number of fields or the amount of space for field
values with which the buffer was last initialized. Thus, the easiest way to increase the
size is to use the current size plus the increment as the space for field values. The above
example could be executed as many times as needed without remembering past
executions or values. The user need not call Finit32 () after calling Frealloc32 ().

If the amount of additional space requested in the call to Frealloc32 () is contiguous
to the old buffer, newfbfr32 and fbfr32 in the examples above will be the same.
However, defensive programming dictates that the user should declare newfbfr32 as
a safeguard against the case where either a new value or NULL is returned. If
Frealloc32 () fails, do not use fbfr32 again.

Note: You cannot reduce the size of a fielded buffer to less than the amount of space
(in bytes) currently being used in the buffer.

Functions for Moving Fielded Buffers

The only restriction on the location of fielded buffers is that they must be aligned on a
short boundary. Otherwise, fielded buffers are position-independent and may be
moved freely around in memory.
5-12 BEA MessageQ FML Programmer’s Guide

FUNCTIONS FOR MOVING FIELDED BUFFERS
Fmove32

If src points to a fielded buffer and dest points to an area of storage big enough to
hold it, then the following might be used to move the fielded buffer:

FBFR32 *src;
char *dest;
. . .
memcpy(dest, src, Fsizeof32(src));

The function memcpy (one of the C runtime memory management functions) moves the
number of bytes indicated by its third argument from the area pointed to by its second
argument to the area pointed to by its first argument.

While memcpy may be used to copy a fielded buffer, the destination copy of the buffer
looks just like the source copy. In particular, for example, the destination copy has the
same number of unused bytes as the source buffer.

Fmove32() acts like memcpy, but does not need an explicit length (it is computed):

int
Fmove32(char *dest, FBFR32 *src)

where

t dest is a pointer to the destination buffer

t src is a pointer to the source fielded buffer

For example:

FBFR32 *src;
char *dest;
. . .
if(Fmove32(dest,src) < 0)
 F_error("pgm_name");

Fmove32() checks that the source buffer is indeed a fielded buffer, but does not modify
the source buffer in any way.

The destination buffer need not be a fielded buffer (that is, it need not have been
allocated using Falloc32()), but it must be aligned on a short boundary (4-byte
alignment for FML32). Thus, Fmove32() provides an alternative to Fcpy32() (see
BEA MessageQ FML Programmer’s Guide 5-13

5 FIELD MANIPULATION FUNCTIONS
below) when it is desired to copy a fielded buffer to a non-fielded buffer, but
Fmove32() does not check to make sure there is enough room in the destination buffer
to receive the source buffer.

Fcpy32

Fcpy32() is used to overwrite one fielded buffer with another:

int
Fcpy32(FBFR32 *dest, FBFR32 *src)

where

t dest is a pointer to the destination fielded buffer

t src is a pointer to the source fielded buffer

Fcpy32() preserves the overall buffer length of the overwritten fielded buffer; thus,
Fcpy32() is useful for expanding or reducing the size of a fielded buffer. For example:

FBFR32 *src, *dest;
. . .
if(Fcpy32(dest, src) 0)
 F_error32(“pgm_name”);

Unlike Fmove32(), where dest could point to an uninitialized area, Fcpy32 () expects
dest to point to an initialized fielded buffer (allocated using Falloc32 ()) and also
checks to see that it is big enough to accommodate the data from the source buffer.

Note: You cannot reduce the size of a fielded buffer to less than the amount of space
(in bytes) currently being used in the buffer.

As with Fmove32(), the source buffer is not modified by Fcpy32 ().
5-14 BEA MessageQ FML Programmer’s Guide

FIELD ACCESS AND MODIFICATION FUNCTIONS

ore
ce of
st

r to

le)
 the
s type
Field Access and Modification Functions

This section discusses how to update and access fielded buffers using the field types
of the fields without doing any conversions. The functions that allow you to convert
data from one type to another upon transfer to/from a fielded buffer are listed under
“Conversion Functions” later in this chapter.

Fadd32

The Fadd32() function adds a new field value to the fielded buffer.

int
Fadd32(FBFR32 *fbfr32, FLDID32 fieldid, char *value, FLDLEN32 len)

where

t fbfr32 is a pointer to a fielded buffer

t fieldid is a field identifier

t value is a pointer to a new value. Its type is shown as char*, but when it is used,
its type must be the same type as the value to be added (see below)

t len is the length of the value if its type is FLD_CARRAY

If no occurrence of the field exists in the buffer, then the field is added. If one or m
occurrences of the field already exist, then the value is added as a new occurren
the field, and is assigned an occurrence number 1 greater than the current highe
occurrence. (To add a specific occurrence, Fchg32() must be used.)

Fadd32(), like all other functions that take or return a field value, expects a pointe
a field value, never the value itself.

If the field type is such that the field length is fixed (short, long, char, float, or doub
or can be determined (string), the field length need not be given (it is ignored). If
field type is a character array, the length must be specified; the length is defined a
FLDLEN32. For example:

FLDID32 fieldid, Fldid32;
FBFR32 *fbfr32;
BEA MessageQ FML Programmer’s Guide 5-15

5 FIELD MANIPULATION FUNCTIONS
. . .
fieldid = Fldid32("fieldname");
if(Fadd32(fbfr32, fieldid, "new value", (FLDLEN32)9) < 0)
 F_error32("pgm_name");

gets the field identifier for the desired field and adds the field value to the buffer.

It is assumed (by default) that the native type of the field is a character array so that the
length of the value must be passed to the function. If the value being added is not a
character array, the type of value must reflect the type of the value it points to; for
instance, the following example adds a long field value:

long lval;
. . .
lval = 123456789;
if(Fadd32(fbfr32, fieldid, lval, (FLDLEN32)0) < 0)
 F_error32("pgm_name");

For character array fields, null fields may be indicated by a length of 0. For string
fields, the null string may be stored since the NULL terminating byte is actually stored
as part of the field value: a string consisting of only the NULL terminating byte is
considered to have a length of 1. For all other types (fixed length types), you may
choose some special value that is interpreted by the application as a NULL, but the size
of the value will be taken from its field type (e.g., length of four for a long) regardless
of what value is actually passed. Passing a NULL value address will result in an error
(FEINVAL).

Fappend32

The Fappend32() function appends a new field value to the fielded buffer.

int
Fappend32(FBFR32 *fbfr32, FLDID32 fieldid, char *value, FLDLEN32
len)

where

t fbfr32 is a pointer to a fielded buffer

t fieldid is a field identifier

t value is a pointer to a new value. Its type is shown as char *, but when it is used,
its type must be the same type as the value to be appended (see below)
5-16 BEA MessageQ FML Programmer’s Guide

FIELD ACCESS AND MODIFICATION FUNCTIONS
t len is the length of the value if its type is FLD_CARRAY

Fappend32() appends a new occurrence of the field fieldid with a value located at
value to the fielded buffer and puts the buffer into append mode. Append mode
provides optimized buffer construction for large buffers constructed of many rows of
a common set of fields. A buffer that is in append mode is restricted as to what
operations may be performed on the buffer. Only calls to the following FML32
routines are allowed in append mode: Fappend32(), Findex32(), Funindex32(),
Ffree32(), Fused32(), Funused32() and Fsizeof32(). Calls to Findex32() or
Funindex32() will end append mode. The following example shows the construction
of a 500-row buffer with five fields per row using Fappend32().

for (i=0; i 500 ;i++) {
 if ((Fappend32(fbfr32, LONGFLD1, &lval1[i], (FLDLEN32)0) < 0) ||
 (Fappend32(fbfr32, LONGFLD2, &lval2[i], (FLDLEN32)0) < 0) ||
 (Fappend32(fbfr32, STRFLD1, &str1[i], (FLDLEN32)0) < 0) ||
 (Fappend32(fbfr32, STRFLD2, &str2[i], (FLDLEN32)0) < 0) ||
 (Fappend32(fbfr32, LONGFLD3, &lval3[i], (FLDLEN32)0) < 0)) {
 F_error32("pgm_name");
 break;
 }
}
Findex32(fbfr32, 0);

Fappend32(), like all other functions that take or return a field value, expects a pointer
to a field value, never the value itself.

If the field type is such that the field length is fixed (short, long, char, float, or double)
or can be determined (string), the field length need not be given (it is ignored). If the
field type is a character array, the length must be specified; the length is defined as type
FLDLEN32.

It is assumed (by default) that the native type of the field is a character array so that the
length of the value must be passed to the function. If the value being appended is not
a character array, the type of value must reflect the type of the value it points to.

For character array fields, null fields may be indicated by a length of 0. For string
fields, the null string may be stored since the NULL terminating byte is actually stored
as part of the field value: a string consisting of only the NULL terminating byte is
considered to have a length of 1. For all other types (fixed length types), you may
choose some special value that is interpreted by the application as a NULL, but the size
of the value will be taken from its field type (e.g., length of four for a long) regardless
of what value is actually passed. Passing a NULL value address will result in an error,
(FEINVAL).
BEA MessageQ FML Programmer’s Guide 5-17

5 FIELD MANIPULATION FUNCTIONS
Fchg32

Fchg32() changes the value of a field in the buffer.

int
Fchg32(FBFR32 *fbfr32, FLDID32 fieldid, FLDOCC32 oc, char *value,
FLDLEN32 len)

where

t fbfr32 is a pointer to a fielded buffer

t fieldid is a field identifier

t oc is the occurrence number of the field

t value is a pointer to a new value. Its type is shown as char *, but when it is used,
its type must be the same type as the value to be added (see Fadd32())

t len is the length of the value if its type is FLD_CARRAY

For example, to change a field of type carray to a new value stored in value:

FBFR32 *fbfr32;
FLDID32 fieldid;
FLDOCC32 oc;
FLDLEN32 len;
char value[50];
. . .
strcpy(value, "new value");
flen = strlen(value);
if(Fchg32(fbfr32, fieldid, oc, value, len) < 0)
 F_error32("pgm_name");

If oc is -1, then the field value is added as a new occurrence to the buffer. If oc is 0 or
greater and the field is found, then the field value is modified to the new value
specified. If oc is 0 or greater and the field is not found, then NULL occurrences are
added to the buffer until the value can be added as the specified occurrence. For
example, changing field occurrence 3 for a field that does not exist on a buffer will
cause three NULL occurrences to be added (occurrences 0, 1 and 2), followed by
occurrence 3 with the specified field value. Null values consist of the NULL string
“\0” (1 byte in length) for string and character values, 0 for long and short fields, 0.0
for float and double values, and a zero-length string for a character array.
5-18 BEA MessageQ FML Programmer’s Guide

FIELD ACCESS AND MODIFICATION FUNCTIONS
The new or modified value is contained in value. If it is a character array, its length is
given in len (len is ignored for other field types). If the value pointer is NULL and
the field is found, then the field is deleted. If the field occurrence to be deleted is not
found, it is considered an error (FNOTPRES).

The buffer must have enough room to contain the modified or added field value, or an
error is returned (FNOSPACE).

Fcmp32

Fcmp32() compares the field identifiers and field values of two fielded buffers.

int
Fcmp32(FBFR32 *fbfr321, FBFR32 *fbfr322)

where

t fbfr321 and fbfr322 are pointers to fielded buffers

The function returns a 0 if the buffers are identical; it returns a -1 on any of the
following conditions:

t the fieldid of a fbfr321 field is less than the field id of the corresponding field
of fbfr322

t the value of a fbfr321 field is less than the value of the corresponding field of
fbfr322

t fbfr1 is shorter than fbfr322

Fcmp32() returns a 1 if the reverse of any of the above conditions is true (for example,
if the field ID of a fbfr322 field is less than the field ID of the corresponding field of
fbfr321, and so on).

Fdel32

The Fdel32() function deletes the specified field occurrence.

int
Fdel32(FBFR32 *fbfr32, FLDID32 fieldid, FLDOCC32 oc)
BEA MessageQ FML Programmer’s Guide 5-19

5 FIELD MANIPULATION FUNCTIONS
where

t fbfr32 is a pointer to a fielded buffer

t fieldid is a field identifier

t oc is the occurrence number

For example,

FLDOCC32 occurrence;
. . .
occurrence=0;
if(Fdel32(fbfr32, fieldid, occurrence) < 0)
 F_error32("pgm_name");

deletes the first occurrence of the field indicated by the specified field identifier. If it
does not exist, the function returns -1 (Ferror32() is set to FNOTPRES).

Fdelall32

Fdelall32() deletes all occurrences of the specified field from the buffer:

int
Fdelall32(FBFR32 *fbfr32, FLDID32 fieldid)

where

t fbfr32 is a pointer to a fielded buffer

t fieldid is a field identifier

For example:

if(Fdelall32(fbfr32, fieldid) < 0)
 F_error32("pgm_name"); /* field not present */

If the field is not found, the function returns -1 (Ferror32() is set to FNOTPRES).
5-20 BEA MessageQ FML Programmer’s Guide

FIELD ACCESS AND MODIFICATION FUNCTIONS
Fdelete32

Fdelete32() deletes all occurrences of all fields listed in the array of field identifiers,
fieldid[]:

int
Fdelete32(FBFR32 *fbfr32, FLDID32 *fieldid)

where

t fbfr32 is a pointer to a fielded buffer

t fieldid is a pointer to the list of field identifiers to be deleted

The update is done directly to the fielded buffer. The array of field identifiers does not
need to be in any specific order, but the last entry in the array must be field identifier
0 (BADFLDID). For example:

#include "fld.tbl.h"
FBFR32 *dest;
FLDID32 fieldid[20];
. . .
fieldid[0] = A; /* field id for field A */
fieldid[1] = D; /* field id for field D */
fieldid[2] = BADFLDID; /* sentinel value */
if(Fdelete32(dest, fieldid) < 0)
 F_error32("pgm_name");

If the destination buffer has fields A, B, C, and D, this example will result in a buffer
that contains only occurrences of fields B and C.

Fdelete32() is a more efficient way of deleting several fields from a buffer than using
several Fdelall32() calls.

Ffind32

Ffind32() finds the value of the specified field occurrence in the buffer:

char *
Ffind32(FBFR32 *fbfr32, FLDID32 fieldid, FLDOCC32 oc, FLDLEN32
*len)

where
BEA MessageQ FML Programmer’s Guide 5-21

5 FIELD MANIPULATION FUNCTIONS

 be

ot be

n not
t fbfr32 is a pointer to a fielded buffer

t fieldid is a field identifier

t oc is the occurrence number

t len is the length of the value found

In the declaration above the return value to Ffind32() is shown as a character pointer
data type (char* in C). The actual type of the pointer returned is the same as the type
of the value it points to.

An example of the use of the function is:

#include "fld.tbl.h"
FBFR32 *fbfr32;
FLDLEN32 len;
char* Ffind32, *value;
. . .
if((value=Ffind32(fbfr32,ZIP,0, &len)) == NULL)
 F_error32("pgm_name");

If the field is found, its length is returned in len (if len is NULL, the length is not
returned), and its location is returned as the value of the function. If the field is not
found, NULL is returned, and Ferror32() is set to FNOTPRES.

Ffind32() is useful for gaining “read-only” access to a field. The value returned by
Ffind32() should not be used to modify the buffer. Field value modification should
done only by the function Fadd32() or Fchg32().

The value returned by Ffind32() is valid only so long as the buffer remains
unmodified. The value is guaranteed to be aligned on a short boundary but may n
aligned on a long or double boundary, even if the field is of that type (see the
conversion functions described later in this document for aligned values). On
processors that require proper alignment of variables, referencing the value whe
aligned properly will cause a system error, as in the following example:

long *l1,l2;
FLDLEN32 length;
char *Ffind32;
. . .
if((l1=(long *)Ffind32(fbfr32, ZIP, 0, &length)) == NULL)
 F_error32("pgm_name");
else
 l2 = *l1;

and should be re-written as:
5-22 BEA MessageQ FML Programmer’s Guide

FIELD ACCESS AND MODIFICATION FUNCTIONS
if((l1==(long *)Ffind32(fbfr32, ZIP, 0, &length)) == NULL)
 F_error32("pgm_name");
else
 memcpy(&l2,l1,sizeof(long));

Ffindlast32

This function finds the last occurrence of a field in a fielded buffer and returns a pointer
to the field, as well as the occurrence number and length of the field occurrence:

char *
Ffindlast32(FBFR32 *fbfr32, FLDID32 fieldid, FLDOCC32 *oc, FLDLEN32
*len)

where

t fbfr32 is a pointer to a fielded buffer

t fieldid is a field identifier

t oc is a pointer to the occurrence number of the last field occurrence found

t len is a pointer to the length of the value found

In the declaration above the return value to Ffindlast is shown as a character pointer
data type (char* in C). The actual type of the pointer returned is the same as the type
of the value it points to.

Ffindlast32() acts like Ffind32(), except that you do not specify a field occurrence.
Instead, both the occurrence number and the value of the last field occurrence are
returned. However, if you specify NULL for occurrence on calling the function, the
occurrence number will not be returned.

The value returned by Ffindlast32() is valid only as long as the buffer remains
unchanged.

Ffindocc32

Ffindocc32() looks at occurrences of the specified field on the buffer and returns the
occurrence number of the first field occurrence that matches the user-specified field
value:
BEA MessageQ FML Programmer’s Guide 5-23

5 FIELD MANIPULATION FUNCTIONS

ield
FLDOCC32
Ffindocc32(FBFR32 *fbfr32, FLDID32 fieldid, char *value, FLDLEN32
len;)

where

t fbfr32 is a pointer to a fielded buffer

t fieldid is a field identifier

t value is a pointer to a new value. Its type is shown as char*, but when it is used,
its type must be the same type as the value to be added (see Fadd32())

t len is the length of the value if type carray

For example,

#include "fld.tbl.h"
FBFR32 *fbfr32;
FLDOCC32 oc;
long zipvalue;
. . .
zipvalue = 123456;
if((oc=Ffindocc32(fbfr32,ZIP,&zipvalue, 0)) < 0)
 F_error32("pgm_name");

would set oc to the occurrence for the specified zip code.

Regular expressions are supported for string fields. For example,

#include "fld.tbl.h"
FBFR32 *fbfr32;
FLDOCC32 oc;
char *name;
. . .
name = "J.*"
if ((oc = Ffindocc32(fbfr32, NAME, name, 1)) < 0)
 F_error("pgm_name");

would set oc to the occurrence of NAME that starts with “J”.

Note: To enable pattern matching on strings, the fourth argument to Ffindocc32()
must be nonzero. If it is zero, a simple string compare is performed. If the f
value is not found, -1 is returned.
5-24 BEA MessageQ FML Programmer’s Guide

FIELD ACCESS AND MODIFICATION FUNCTIONS

e in

s to

d a

of

ned.
For upward compatibility, a circumflex (^) and dollar sign ($) are assumed to
surround the regular expression; thus, the above example is actually interpreted as
“^(J.*)$”. This means that the regular expression must match the entire string valu
the field.

Fget32

Fget32() should be used to retrieve a field from a fielded buffer when the value i
be modified:

int
Fget32(FBFR32 *fbfr32, FLDID32 fieldid, FLDOCC32 oc, char *loc, FLDLEN32 *maxlen)

where

t fbfr32 is a pointer to a fielded buffer

t fieldid is a field identifier

t oc is the occurrence number

t loc is a pointer to a buffer to copy the field value into

t maxlen is a pointer to the length of the source buffer on calling the function, an
pointer to the length of the field on return

The caller provides Fget32 with a pointer to a private buffer, as well as the length
the buffer. If maxlen is specified as NULL, then it is assumed that the destination
buffer is large enough to accommodate the field value, and its length is not retur

Fget32() returns an error if the desired field is not in the buffer (FNOTPRES), or if the
destination buffer is too small (FNOSPACE). For example,

FLDLEN32 len;
char value[100];
. . .
len=sizeof(value);
if(Fget32(fbfr32, ZIP, 0, value, &len) < 0)
 F_error32("pgm_name");

gets the zip code assuming it is stored as a character array (carray) or string. If it is
stored as a long, then it would be retrieved by:
BEA MessageQ FML Programmer’s Guide 5-25

5 FIELD MANIPULATION FUNCTIONS
FLDLEN32 len;
long value;
. . .
len = sizeof(value);
if(Fget32(fbfr32, ZIP, 0, value, &len) < 0)
 F_error32("pgm_name");

Fgetalloc32

Like Fget32(), Fgetalloc32() finds and makes a copy of a buffer field, but it acquires
space for the field via a call to malloc(3):

char *
Fgetalloc32(FBFR32 *fbfr32, FLDID32 fieldid, FLDOCC32 oc, FLDLEN32
*extralen)

where

t fbfr32 is a pointer to a fielded buffer

t fieldid is a field identifier

t oc is the occurrence number

t extralen is a pointer to the additional length to be acquired on calling the
function, and a pointer to the actual length acquired on return

In the declaration above the return value to Fgetalloc32() is shown as a character
pointer data type (char* in C). The actual type of the pointer returned is the same as
the type of the value to which it points.

On success, Fgetalloc32() returns a valid pointer to the copy of the properly aligned
buffer field; on error it returns NULL. If malloc(3) fails, Fgetalloc32() returns an
error (Ferror32() is set to FMALLOC).

The last parameter to Fgetalloc32() specifies an extra amount of space to be acquired
if, for instance, the gotten value is to be expanded before re-insertion into the fielded
buffer. On success, the length of the allocated buffer is returned in extralen. For
example:

FLDLEN32 extralen;
FBFR32 *fieldbfr
char *Fgetalloc32;
. . .
5-26 BEA MessageQ FML Programmer’s Guide

FIELD ACCESS AND MODIFICATION FUNCTIONS
extralen = 0;
if (fieldbfr = (FBFR32 *)Fgetalloc32(fbfr32, ZIP, 0, &extralen) ==
NULL)
 F_error32("pgm_name");

It is the responsibility of the caller to free space acquired by Fgetalloc32().

Fgetlast32

Fgetlast32() is used to retrieve the last occurrence of a field from a fielded buffer
when the value is to be modified:

int
Fgetlast32(FBFR32 *fbfr32, FLDID32 fieldid, FLDOCC32 *oc, char *loc, FLDLEN32
*maxlen)

where

t fbfr32 is a pointer to a fielded buffer

t fieldid is a field identifier

t oc is a pointer to the occurrence number of the last field occurrence

t loc is a pointer to a buffer to copy the field value into

t maxlen is a pointer to the length of the source buffer on calling the function, and a
pointer to the length of the field on return

The caller provides Fgetlast32() with a pointer to a private buffer, as well as the
length of the buffer. Fgetlast32() acts like Fget32(), except that you do not specify
a field occurrence. Instead, both the occurrence number and the value of the last field
occurrence are returned. However, if you specify NULL for occ on calling the
function, the occurrence number will not be returned.

Fnext32

Fnext32() finds the next field in the buffer after the specified field occurrence:

int
Fnext32(FBFR32 *fbfr32, FLDID32 *fieldid, FLDOCC32 *oc, char *value, FLDLEN32
*len)
BEA MessageQ FML Programmer’s Guide 5-27

5 FIELD MANIPULATION FUNCTIONS
where

t fbfr32 is a pointer to a fielded buffer

t fieldid is a pointer to a field identifier

t oc is a pointer to the occurrence number

t value is a pointer of the same type as the value contained in the next field

t len is a pointer to the length of *value

A fieldid of FIRSTFLDID should be specified to get the first field in a buffer; the
field identifier and occurrence number of the first field occurrence are returned in the
corresponding parameters; if the field is not NULL, its value is copied into the memory
location addressed by the value pointer; the len parameter is used to determine if
value has enough space allocated to contain the field value (Ferror32() is set to
FNOSPACE if it does not); and, the length of the value is returned in the len parameter.
Note that if the value of the field is non-null, then the len parameter is also assumed
to contain the length of the currently allocated space for value.

If the field value is NULL, then the value and length parameters are not changed.

If no more fields are found, Fnext32() returns 0 (end of buffer) and fieldid,
occurrence, and value are left unchanged.

If the value parameter is not NULL, the length parameter is also assumed to be
non-NULL.

The following example reads all field occurrences in the buffer:

FLDID32 fieldid;
FLDOCC32 occurrence;
char *value[100];
FLDLEN32 len;
. . .
for(fieldid=FIRSTFLDID,len=sizeof(value);
 Fnext32(fbfr32,fieldid,&occurrence,value,&len) > 0;
 len=sizeof(value)) {
 /* code for each field occurrence */
}

5-28 BEA MessageQ FML Programmer’s Guide

FIELD ACCESS AND MODIFICATION FUNCTIONS
Fnum32

Fnum32() returns the number of fields contained in the specified buffer, or -1 on error:

FLDOCC32
Fnum(FBFR32 *fbfr32)

where

t fbfr32 is a pointer to a fielded buffer

For example:

if((cnt=Fnum32(fbfr32)) < 0)
 F_error32("pgm_name");
else
 fprintf(stdout,"%d fields in buffer\n",cnt);

would print the number of fields in the specified buffer.

Foccur32

Foccur32() returns the number of occurrences for the specified field in the buffer:

FLDOCC32
Foccur32(FBFR32 *fbfr32, FLDID32 fieldid)

where

t fbfr32 is a pointer to a fielded buffer

t fieldid is a field identifier

Zero is returned if the field does not occur in the buffer and -1 is returned on error. For
example:

FLDOCC32 cnt;
. . .
if((cnt=Foccur32(fbfr32,ZIP)) < 0)
 F_error32("pgm_name");
else
 fprintf(stdout,"Field ZIP occurs %d times in buffer\n",cnt);

would print the number of occurrences of the field ZIP in the specified buffer.
BEA MessageQ FML Programmer’s Guide 5-29

5 FIELD MANIPULATION FUNCTIONS
Fpres32

Fpres32() returns true (1) if the specified field occurrence exists and false (0)
otherwise:

int
Fpres32(FBFR32 *fbfr32, FLDID32 fieldid, FLDOCC32 oc)

where

t fbfr32 is a pointer to a fielded buffer

t fieldid is a field identifier

t oc is the occurrence number

For example:

Fpres32(fbfr32,ZIP,0)

would return true if the field ZIP exists in the fielded buffer pointed to by fbfr32.

Fvals32 and Fvall32

Fvals32() works like Ffind32() for string values but guarantees that a pointer to a
value is returned. Fvall32() works like Ffind32() for long and short values, but
returns the actual value of the field as a long, instead of a pointer to the value.

char*
Fvals32(FBFR32 *fbfr32,FLDID32 fieldid,FLDOCC32 oc)

char*
Fvall32(FBFR32 *fbfr32,FLDID32 fieldid,FLDOCC32 oc)

where in both functions

t fbfr32 is a pointer to a fielded buffer

t fieldid is a field identifier

t oc is the occurrence number
5-30 BEA MessageQ FML Programmer’s Guide

BUFFER UPDATE FUNCTIONS
For Fvals32(), if the specified field occurrence is not found, the NULL string, \0, is
returned. This function is useful for passing the value of a field to another function
without checking the return value. This function is valid only for fields of type string;
the NULL string is automatically returned for other field types (i.e., no conversion is
done).

For Fvall32(), if the specified field occurrence is not found, then 0 is returned. This
function is useful for passing the value of a field to another function without checking
the return value. This function is valid only for fields of type long and short; 0 is
automatically returned for other field types (that is, no conversion is done).

Buffer Update Functions

The functions listed in this section access and update entire fielded buffers, rather than
individual fields in the buffers. These functions use at most three parameters, dest,
src, and fieldid, where

t dest is a pointer to a destination fielded buffer

t src is a pointer to a source fielded buffer

t fieldid is a field identifier or an array of field identifiers

Fconcat32

Fconcat32() adds fields from the source buffer to the fields that already exist in the
destination buffer.

int
Fconcat32(FBFR32 *dest, FBFR32 *src)

Occurrences in the destination buffer are maintained (i.e., retained and not modified)
and new occurrences from the source buffer are added with greater occurrence
numbers than any existing occurrences for each field (the fields are maintained in field
identifier order).

In the following example:
BEA MessageQ FML Programmer’s Guide 5-31

5 FIELD MANIPULATION FUNCTIONS
FBFR32 *src, *dest;
. . .
if(Fconcat32(dest,src) < 0)
 F_error32("pgm_name");

if dest has fields A, B, and two occurrences of C, and src has fields A, C, and D, the
resultant dest will have two occurrences of field A (destination field A and source
field A), field B, three occurrences of field C (two from dest and the third from src),
and field D.

This operation will fail if there is not enough space to contain the new fields
(FNOSPACE); in this case, the destination buffer remains unchanged.

Fjoin32

Fjoin32() is used to join two fielded buffers based on matching fieldid/occurrence.

int
Fjoin32(FBFR32 *dest, FBFR32 *src)

For fields that match on fieldid/occurrence, the field value is updated in the destination
buffer with the value from the source buffer. Fields in the destination buffer that have
no corresponding fieldid/occurrence in the source buffer are deleted. Fields in the
source buffer that have no corresponding fieldid/occurrence in the destination buffer
are not added to the destination buffer. Thus,

if(Fjoin32(dest,src) < 0)
 F_error32("pgm_name");

Using the input buffers in the previous example will result in a destination buffer that
has source field value A and source field value C. This function may fail due to lack
of space if the new values are larger than the old (FNOSPACE); in this case, the
destination buffer will have been modified. However, if this happens, the destination
buffer may be re-allocated (using Frealloc32()) and the Fjoin32() function may be
repeated. (Even if the destination buffer has been partially updated, repeating the
function will give the correct results.)
5-32 BEA MessageQ FML Programmer’s Guide

BUFFER UPDATE FUNCTIONS
Fojoin32

Fojoin32() is similar to Fjoin32(), but it does not delete fields from the destination
buffer that have no corresponding fieldid/occurrence in the source buffer.

int
Fojoin32(FBFR32 *dest, FBFR32 *src)

Note that fields that exist in the source buffer that have no corresponding
fieldid/occurrence in the destination buffer are not added to the destination buffer. For
example:

if(Fojoin32(dest,src) < 0)
 F_error32("pgm_name");

Using the input buffers from the previous example, dest will contain the source field
value A, the destination field value B, the source field value C, and the second
destination field value C. As with Fjoin32(), this function can fail for lack of space
(FNOSPACE) and can be re-issued again after allocating more space to complete the
operation.

Fproj32

Fproj32() is used to update a buffer in place so that only the desired fields are kept (in
other words, so that the result is a projection on specified fields).

int
Fproj32(FBFR32 *fbfr32, FLDID32 *fieldid)

These fields are specified in an array of field identifiers passed to the function. The
update is performed directly in the fielded buffer. For example:

#include "fld.tbl.h"
FBFR32 *fbfr32;
FLDID32 fieldid[20];
. . .
fieldid[0] = A; /* field id for field A */
fieldid[1] = D; /* field id for field D */
fieldid[2] = BADFLDID; /* sentinel value */
if(Fproj32(fbfr32, fieldid) < 0)
 F_error32("pgm_name");
BEA MessageQ FML Programmer’s Guide 5-33

5 FIELD MANIPULATION FUNCTIONS
If the buffer has fields A, B, C, and D, the example results in a buffer that contains only
occurrences of fields A and D. Note that the entries in the array of field identifiers do
not need to be in any specific order, but the last value in the array of field identifiers
must be field identifier 0 (BADFLDID).

Fprojcpy32

Fprojcpy32() is similar to Fproj32() but the projection is done into a destination
buffer.

int
Fprojcpy32(FBFR32 *dest, FBFR32 *src, FLDID32 *fieldid)

Any fields in the destination buffer are first deleted and the results of the projection on
the source buffer are copied into the destination buffer. Using the above example,

if(Fprojcpy32(dest, src, fieldid) < 0)
 F_error32("pgm_name");

will place the results of the projection in the destination buffer. The entries in the array
of field identifiers may be re-arranged; the field identifier array is sorted if they are not
in numeric order.

Fupdate32

Fupdate32() updates the destination buffer with the field values in the source buffer.

int
Fupdate32(FBFR32 *dest, FBFR32 *src)

For fields that match on fieldid/occurrence, the field value is updated in the destination
buffer with the value in the source buffer (like Fjoin32()). Fields in the destination
buffer for which there are no corresponding fields on the source buffer are left
untouched (as in Fojoin32()). Fields in the source buffer for which there are no
corresponding field on the destination buffer are added to the destination buffer (as in
Fconcat32()). For example:

if(Fupdate32(dest,src) < 0)
 F_error32("pgm_name");
5-34 BEA MessageQ FML Programmer’s Guide

CONVERSION FUNCTIONS

If the src buffer has fields A, C, and D, and the dest buffer has fields A, B, and two
occurrences of C, the updated destination buffer will contain: the source field value A,
the destination field value B, the source field value C, the second destination field
value C, and the source field value D.

Conversion Functions

FML32 provides a set of routines that perform data conversion upon reading or writing
a fielded buffer.

Generally, the functions behave like their non-conversion counterparts, except that
they provide conversion from a user type to the native field type when writing to a
buffer, and from the native type to a user type when reading from a buffer.

The native type of a field is the type specified for it in its field table entry and encoded
in its field identifier. (The only exception to this rule is CFfindocc32(), which,
although it is a read operation, converts from the user-specified type to the native type
before calling Ffindocc32().) The function names are the same as their
non-conversion FML32 counterparts except that they have a “C” prefix.

CFadd32

The CFadd32() function adds a user supplied item to a buffer creating a new field
occurrence within the buffer:

int
CFadd32(FBFR32 *fbfr32, FLDID32 fieldid, char *value, FLDLEN32 len,
int type)

where

t fbfr32 is a pointer to a fielded buffer

t fieldid is the field identifier of the field to be added

t value is a pointer to the value to be added

t len is the length of the value, if of type carray
BEA MessageQ FML Programmer’s Guide 5-35

5 FIELD MANIPULATION FUNCTIONS

ed
e

d
t type is the type of the value

Before the field addition, the data item is converted from a user supplied type to the
type specified in the field table as the fielded buffer storage type of the field. If the
source type is FLD_CARRAY (character array), the length argument should be set to the
length of the array. For example,

if(CFadd32(fbfr32,ZIP,"12345",(FLDLEN32)0,FLD_STRING) < 0)
 F_error32("pgm_name");

If the ZIP (zip code) field were stored in a fielded buffer as a long integer, the function
would convert “12345” to a long integer representation, before adding it to the field
buffer pointed to by fbfr32. (Note that the field value length is given as 0 since th
function can determine it; the length is needed only for type FLD_CARRAY.) The
following code fragment:

long zipval;
. . .
zipval = 12345;
if(CFadd32(fbfr32,ZIP,&zipval,(FLDLEN32)0,FLD_LONG) < 0)
 F_error32("pgm_name");

puts the same value into the fielded buffer, but does so by presenting it as a long,
instead of as a string. Note that the value must first be put into a variable, since C
does not permit the construct &12345L. CFadd32() returns 1 on success, and -1 on
error, in which case Ferror32() is set appropriately.

CFchg32

The function CFchg32() acts like CFadd32(), except that it changes the value of a fiel
(after conversion of the supplied value):

int
CFchg32(FBFR32 *fbfr32, FLDID32 fieldid, FLDOCC32 oc, char *value, FLDLEN32 len,
int type)

where

t fbfr32 is a pointer to a fielded buffer

t fieldid is the field identifier of the field to be changed

t oc is the occurrence number of the field to be changed
5-36 BEA MessageQ FML Programmer’s Guide

CONVERSION FUNCTIONS
t value is a pointer to the value to be added

t len is the length of the value, if of type carray

t type is the type of the value

For example,

FLDOCC32 occurrence;
long zipval;
. . .
zipval = 12345;
occurrence = 0;
if(CFchg32(fbfr32,ZIP,occurrence,&zipval,(FLDLEN32)0,FLD_LONG) <
0)
 F_error32("pgm_name");

would change the first occurrence (occurrence 0) of field ZIP to the specified value,
doing any needed conversion.

If the specified occurrence is not found, then null occurrences are added to pad the
buffer with multiple occurrences until the value can be added as the specified
occurrence.

CFget32

CFget32() is the conversion analog of Fget32(). The difference is that it copies a
converted value to the user-supplied buffer:

int
CFget32(FBFR32 *fbfr32, FLDID32 fieldid, FLDOCC32 oc, char *buf, FLDLEN32 *len,
int type)

where

t fbfr32 is a pointer to a fielded buffer

t fieldid is the field identifier of the field to be retrieved

t oc is the occurrence number of the field

t buf is a pointer to the post-conversion buffer

t len is the length of the value, if of type carray
BEA MessageQ FML Programmer’s Guide 5-37

5 FIELD MANIPULATION FUNCTIONS
t type is the type of the value

Using the previous example,

FLDLEN32 len;
. . .
len=sizeof(zipval);
if(CFget32(fbfr32,ZIP,occurrence,&zipval,&len,FLD_LONG) < 0)
 F_error32("pgm_name");

would get the value that was just stored in the buffer, no matter what format, and
convert it back to a long integer. If the length pointer is NULL, then the length of the
value retrieved and converted is not returned.

CFgetalloc32

CFgetalloc32() is like Fgetalloc32(); you are responsible for freeing the malloc’d
space for the returned (converted) value with free:

char *
CFgetalloc32(FBFR32 *fbfr32, FLDID32 fieldid, FLDOCC32 oc, int type, FLDLEN32
*extralen)

where

t fbfr32 is a pointer to a fielded buffer

t fieldid is the field identifier of the field to be converted

t oc is the occurrence number of the field

t type is the type to which the value is converted

t extralen on calling the function is a pointer to the extra allocation amount; on
return, it is a pointer to the size of the total allocated area

In the declaration above the return value to CFgetalloc32() is shown as a character
pointer data type (char* in C). The actual type of the pointer returned is the same as
the type of the value to which it points.

The previously stored value could be retrieved into space allocated automatically for
you by the following code:

char *value;
FLDLEN32 extra;
5-38 BEA MessageQ FML Programmer’s Guide

CONVERSION FUNCTIONS
. . .
extra = 25;
if((value=CFgetalloc32(fbfr32,ZIP,0,FLD_LONG,&extra)) == NULL)
 F_error32("pgm_name");

The value extra in the function call indicates that the function should not only allocate
enough space for the retrieved value but an additional 25 bytes and the total amount of
space allocated will be returned in this variable.

CFfind32

CFfind32() returns a pointer to a converted value of the desired field:

char *
CFfind32(FBFR32 *fbfr32, FLDID32 fieldid, FLDOCC32 oc, FLDLEN32
len, int type)

where

t fbfr32 is a pointer to a fielded buffer

t fieldid is the field identifier of the field to be retrieved

t oc is the occurrence number of the field

t len is the length of the post-conversion value

t type is the type to which the value is converted

In the declaration above the return value to CFfind32() is shown as a character pointer
data type (char* in C). The actual type of the pointer returned is the same as the type
of the value to which it points.

Like Ffind32(), this pointer should be considered read only. For example:

char *CFfind32;
FLDLEN32 len;
long *value;
. . .
if((value=(long *)CFfind32(fbfr32,ZIP,occurrence,&len,FLD_LONG))== NULL)
 F_error32("pgm_name");
BEA MessageQ FML Programmer’s Guide 5-39

5 FIELD MANIPULATION FUNCTIONS
would return a pointer to a long containing the value of the first occurrence of the ZIP
field. If the length pointer is NULL, then the length of the value found is not returned.
Unlike Ffind32(), the value returned is guaranteed to be properly aligned for the
corresponding user-specified type.

Note: The duration of the validity of the pointer returned by CFfind32() is
guaranteed only until the next buffer operation, even if it is non-destructive,
since the converted value is retained in a single private buffer. This differs
from the value returned by Ffind32(), which is guaranteed until the next
modification of the buffer.

CFfindocc32

CFfindocc32() looks at occurrences of the specified field in the buffer and returns the
occurrence number of the first field occurrence that matches the user-specified field
value after it has been converted (it is converted to the type of the field identifier).

FLDOCC32
CFfindocc32(FBFR32 *fbfr32, FLDID32 fieldid, char *value, FLDLEN32 len, int type)

where

t fbfr32 is a pointer to a fielded buffer

t fieldid is the field identifier of the field to be retrieved

t value is a pointer to the unconverted matching value

t len is the length of the unconverted matching value

t type is the type of the unconverted matching value

For example,

#include "fld.tbl.h"
FBFR32 *fbfr32;
FLDOCC32 oc;
char zipvalue[20];
. . .
strcpy(zipvalue,"123456");
if((oc=CFfindocc32(fbfr32,ZIP,zipvalue,0,FLD_STRING)) < 0)
 F_error32("pgm_name");
5-40 BEA MessageQ FML Programmer’s Guide

CONVERSION FUNCTIONS
would convert the string to the type of fieldid ZIP (possibly a long) and set oc to the
occurrence for the specified zip code. If the field value is not found, -1 is returned.

Note: Since CFfindocc32() converts the user-specified value to the native field type
before examining the field values, regular expressions will work only when the
user-specified type and the native field type are both FLD_STRING. Thus,
CFfindocc32() has no utility with regular expressions.

Converting Strings

A set of functions (Fadds32(), Fchgs32(), Fgets32(), Fgetsa32(), and Ffinds32())
has been provided to handle the case of conversion to/from a user type of FLD_STRING.
These functions call their non-string-function counterparts, providing a type of
FLD_STRING, and a len of 0. Note that the duration of the validity of the pointer
returned by Ffinds32() is the same as that described for CFfind32().

Ftypcvt32

The functions CFadd32(), CFchg32(), CFget32(), CFgetalloc32(), and CFfind32()
use the function Ftypcvt32() to perform the appropriate data conversion. The
synopsis of Ftypcvt32() usage is as follows (it does not follow the parameter order
conventions):

char *
Ftypcvt32(FLDLEN32 *tolen, int totype, char *fromval, int fromtype, FLDLEN32
fromlen)

where

t tolen is a pointer to the length of the converted value

t totype is the type to which to convert

t fromval is a pointer to the value from which to convert

t fromtype is the type from which to convert

t fromlen is the length of the from value if the from type is FLD_CARRAY
BEA MessageQ FML Programmer’s Guide 5-41

5 FIELD MANIPULATION FUNCTIONS
Ftypcvt32() converts from the value *fromval, which has type fromtype, and
length fromlen if fromtype is type FLD_CARRAY (otherwise fromlen is inferred from
fromtype), to a value of type totype. Ftypcvt32() returns a pointer to the converted
value, and sets *tolen to the converted length, upon success. Upon failure,
Ftypcvt32() returns NULL. As an example of how Ftypcvt is used, the function
CFchg32() is presented:

CFchg32(fbfr32,fieldid,oc,value,len,type)
FBFR32 *fbfr32; /* fielded buffer */
FLDID32 fieldid; /* field to be changed */
FLDOCC32 oc; /* occurrence of field to be changed */
char *value; /* location of new value */
FLDLEN32 len; /* length of new value */
int type; /* type of new value */
{
 char *convloc; /* location of post-conversion value */
 FLDLEN32 convlen; /* length of post-conversion value */
 extern char *Ftypcvt32;

 /* convert value to fielded buffer type */
 if((convloc = Ftypcvt32(&convlen,FLDTYPE(fieldid),value,type,len)) == NULL)
 return(-1);

 if(Fchg32(fbfr32,fieldid,oc,convloc,convlen) < 0)
 return(-1);
 return(1);
}

The user may call Ftypcvt32 directly to do field value conversion without adding or
modifying a fielded buffer.

Conversion Rules

A description of conversion rules is now presented. In this description, oldval
represents a pointer to the data item being converted, and newval a pointer to the
post-conversion value:

t When both types are identical, *newval is identical to *oldval.

t When both types are numeric (that is, when the values of both types are long,
short, float, or double), the conversion is done by the C assignment operator,
with proper type casting. For example, converting a short to a float is done by:
5-42 BEA MessageQ FML Programmer’s Guide

CONVERSION FUNCTIONS

,

it can
ified

g

*((float *)newval) = *((short *) oldval)

t When converting from a numeric to a string, an appropriate sprintf is used. For
example, converting a short to a string is done by:

sprintf(newval,"%d",*((short *)oldval))

t When converting from a string to a numeric, the appropriate function (for
example, atof, atol) is used, with the result assigned to a typecasted receiving
location, for example:

*((float *)newval) = atof(oldval)

t When converting from type char to any numeric type, or from a numeric type to a
char, the char is considered to be a “shorter short.” For example,

*((float *)newval) = *((char *)oldval)

is the method used to convert a char to a float. Similarly,

*((char *)newval) = *((short *)oldval)

is used to convert a short to a char.

t A char is converted to a string by appending a NULL character. In this regard
a char is not a “shorter short.” If it were, assignment would be done by
converting it to a short, and then converting the short to a string via sprintf.
In the same sense, a string is converted to a char by assigning the first character
of the string to the character.

t The carray type is used to store an arbitrary sequence of bytes. In this sense,
encode any user data type. Nevertheless, the following conversions are spec
for carray types:

t A carray is converted to a string by appending the NULL byte to the
carray. In this sense, a carray could be used to store a string, less the
overhead of the trailing NULL (note that this does not always save space,
since fields are aligned on short boundaries within a fielded buffer). A strin
is converted to a carray by removing its terminating NULL byte.

t When a carray is converted to any numeric, it is first converted to a string,
and the string is then converted to a numeric. Likewise, a numeric is
converted to a carray, by first converting it to a string, and then converting
the string to a carray.
BEA MessageQ FML Programmer’s Guide 5-43

5 FIELD MANIPULATION FUNCTIONS
t A carray is converted to a char by assigning the first character of the array
to the char. Likewise, a char is converted to a carray by assigning it as the
first byte of the array, and setting the length of the array to 1.

Note that a carray of length 1 and a char have the following differences:

t A char has only the overhead of its associated fieldid, while a carray
contains a length code, in addition to the associated fieldid.

t A carray is converted to numeric by first becoming a string, and then
undergoing an atoi call; a char becomes a numeric by typecasting. For
example, a char with value ASCII ’1’ (decimal 49) converts to a short of value
49; a carray of length 1, with the single byte an ASCII ’1’ converts to a short
of value 1. Likewise a char ’a’ (decimal 97) converts to a short of value 97;
the carray ’a’ converts to a short of value 0 (since atoi("a") produces a 0
result).

t When converting to or from a dec_t type, the associated conversion function as
described in decimal(3) is used (_gp_deccvasc, _gp_deccvdbl,
_gp_deccvflt, _gp_deccvint, _gp_deccvlong, _gp_dectoasc,

_gp_dectodbl, _gp_dectoflt, _gp_dectoint, and _gp_dectolong).

Table 5-2 summarizes the conversion rules presented in this section.

Table 5-2 Summary of Conversion Rules

src typ dest type

- char short long float double string carray dec_t

char - cast cast cast cast st[0]=c array[0]=c d

short cast - cast cast cast sprintf sprintf d

long cast cast - cast cast sprintf sprintf d

float cast cast cast - cast sprintf sprintf d

double cast cast cast cast - sprintf sprintf d

string c=st[0] atoi atol atof atof - drop 0 d

carray c=array[
0]

atoi atol atof atof add 0 - d

dec_t d d d d d d d -
5-44 BEA MessageQ FML Programmer’s Guide

INDEXING FUNCTIONS
Table 5-3 defiines the entries in Table 5-2.

Indexing Functions

When a fielded buffer is initialized by Finit32() or Falloc32(), an index is
automatically set up. This index is used to expedite fielded buffer accesses and is
transparent to you. As fields are added to or deleted from the fielded buffer, the index
is automatically updated.

Table 5-3 Meanings of Entries in the Summary of Conversion Rules

Entry Meaning

- no conversion need be done (src and dest are same type)

cast conversion done using C assignment with type casting

sprintf conversion done using sprintf function

atoi conversion done using atoi function

atof conversion done using atof function

atol conversion done using atol function

add 0 conversion done by concatenating NULL byte

drop 0 conversion done by dropping terminating NULL byte

c=array[0] character set to first byte of array

array[0]=c first byte of array is set to character

c=st[0] character set to first byte of string

st[0]=c first byte of string set to c

d decimal(3c) conversion function
BEA MessageQ FML Programmer’s Guide 5-45

5 FIELD MANIPULATION FUNCTIONS
However, when storing a fielded buffer on a long-term storage device, or when
transferring it between cooperating processes, it may be desirable to save space by
eliminating its index and regenerating it upon receipt. The functions described in this
section may be used to perform such index manipulations.

Fidxused32

This function returns the amount of space used by the index of a buffer:

long
Fidxused32(FBFR32 *fbfr32)

where fbfr32 is a pointer to a fielded buffer

You can use this function to determine the size of the index of a buffer and whether
significant time or space would be saved by deleting the index.

Findex32

The function Findex32() may be used at any time to index an unindexed fielded
buffer:

int
Findex32(FBFR32 *fbfr32. FLDOCC32 intvl)

where

t fbfr32 is a pointer to a fielded buffer

t intvl is the indexing interval

The second argument to Findex32() specifies the indexing interval for the buffer. If 0
is specified, the value FSTDXINT (defined in fml32.h) is used. The user may ensure
that all fields are indexed by specifying an interval of 1.

Note that more space may be made available in an existing buffer for user data by
increasing the indexing interval, and re-indexing the buffer. This represents a
space/time trade-off, however, since reducing the number of index elements (by
5-46 BEA MessageQ FML Programmer’s Guide

INDEXING FUNCTIONS

s

ex
increasing the index interval), means, in general, that searches for fields will take
longer. Most operations will attempt to drop the entire index if they run out of space
before returning a “no space” error.

Frstrindex32

This function can be used instead of Findex32() in cases where the fielded buffer ha
not been altered since its index was removed:

int
Frstrindex32(FBFR32 *fbfr32, FLDOCC32 numidx)

where

t fbfr32 is a pointer to a fielded buffer.

t numidx is the value returned by the Funindex32 function.

Funindex32

Funindex32() discards the index of a fielded buffer and returns the number of ind
entries the buffer had before the index was stripped:

FLDOCC32
Funindex32(FBFR32 *fbfr32)

where fbfr32 is a pointer to a fielded buffer

Example

To transmit a fielded buffer without its index, something similar to the following
should be done:

1. Remove the index:

save = Funindex32(fbfr32);
BEA MessageQ FML Programmer’s Guide 5-47

5 FIELD MANIPULATION FUNCTIONS
2. Get the number of bytes to send (that is, the number of significant bytes from the
beginning of the buffer):

num_to_send = Fused32(fbfr32);

3. Send the buffer without the index:

transmit(fbfr32,num_to_send);

4. Restore the index to the buffer:

Frstrindex32(fbfr32,save);

On the receiving side, the index could be regenerated with the following statement:

Findex32(fbfr32);

Note that the receiving process cannot call Frstrindex32() because it did not remove
the index itself, and the index was not sent with the file.

Note: The space used in memory by the index is not freed by calling Funindex32();
this function either saves space when storing a buffer on a disk or reduces
transmission costs when sending a buffer to another process. Of course, you
are always free to send a fielded buffer and its index to another process and
avoid using these functions.

Input/Output Functions

The functions described in this section provide for input and output of fielded buffers
to standard I/O or to file streams.

Fread32 and Fwrite32

The I/O functions Fread32() and Fwrite32() work with the Standard I/O Library:

int Fread32(FBFR32 *fbfr32, FILE *iop)
int Fwrite32(FBFR32 *fbfr32, FILE *iop)
5-48 BEA MessageQ FML Programmer’s Guide

INPUT/OUTPUT FUNCTIONS
The stream to or from which the I/O is directed is determined by a FILE pointer
argument. This argument must be set up using the normal Standard I/O Library
functions.

A fielded buffer may be written into a Standard I/O stream with the function
Fwrite32(), like this:

if (Fwrite32(fbfr32, iop) < 0)
 F_error32("pgm_name");

 A buffer written with Fwrite32 may be read with Fread32(), as in:

if(Fread32(fbfr32, iop) < 0)
 F_error32("pgm_name");

Although the contents of the fielded buffer pointed to by fbfr32 are replaced by the
fielded buffer read in, the capacity of the fielded buffer (size of the buffer) remains
unchanged.

Fwrite32() discards the buffer index, writing only as much of the fielded buffer as has
been used (as returned by Fused32()).

Fread32() restores the index of a buffer by calling Findex32(). The buffer is indexed
with the same indexing interval with which it was written by Fwrite32().

Fchksum32

A checksum may be calculated for verifying I/O:

long chk;
. . .
chk = Fchksum32(fbfr32);

The user is responsible for calling Fchksum32(), writing the checksum value out along
with the fielded buffer, and checking it on input. Fwrite32() does not write the
checksum automatically.

Fprint32 and Ffprint32

The function Fprint32() prints a fielded buffer on the standard output in ASCII
format:
BEA MessageQ FML Programmer’s Guide 5-49

5 FIELD MANIPULATION FUNCTIONS
Fprint32(FBFR32 *fbfr32)

where fbfr32 is a pointer to a fielded buffer

Ffprint32() is similar to Fprint32(), except the text is printed to a specified output
stream:

Ffprint32(FBFR32 *fbfr32, FILE *iop)

where

t fbfr32 is a pointer to a fielded buffer

t iop is a pointer of type FILE to the output stream

Each of these print functions prints, for each field occurrence, the field name and the
field value, separated by a tab and followed by a new-line. Fname32() is used to
determine the field name; if the field name cannot be determined, then the field
identifier is printed. Non-printable characters in the field values for strings and
character arrays are represented by a backslash followed by their two-character
hexadecimal value. Backslashes occurring in the text are escaped with an extra
backslash. A blank line is printed following the output of the printed buffer.

Fextread32

Fextread32() may be used to construct a fielded buffer from its printed format, that
is, from the output of Fprint32() (hexadecimal values output by Fprint32() are
interpreted properly).

int
Fextread32(FBFR32 *fbfr32, FILE *iop)

Fextread32() accepts an optional flag preceding the field-name/field-identifier
specification in the output of Fprint32(), as shown in Table 5-4.

Table 5-4 Fextread Flags

flag indicates

+ field should be changed in the buffer

- field should be deleted from the buffer
5-50 BEA MessageQ FML Programmer’s Guide

BOOLEAN EXPRESSIONS OF FIELDED BUFFERS

to:

se

 for
lded
If no flag is given, the default action is to Fadd32() the field to the buffer.

Field values may be extended across lines by having the overflow lines begin with a
tab (the tab is discarded). A single blank line signals end of buffer; successive blank
lines yield a null buffer.

If an error has occurred, -1 is returned, and Ferror32() is set accordingly. If end of
file is reached before a blank line, Ferror32() is set to FSYNTAX.

Boolean Expressions of Fielded Buffers

The functions described in this section evaluate boolean expressions in which the
“variables” are the values of fields in a fielded buffer. These functions allow you

t compile a boolean expression into a compact form suitable for evaluation

t evaluate a boolean expression against a fielded buffer, returning a true or fal
answer

t print a compiled boolean expression

A function is provided that compiles the expression into a compact form suitable
efficient evaluation. A second function evaluates the compiled form against a fie
buffer to produce a true or false answer.

= one field should be assigned to another

comment line - ignored

Table 5-4 Fextread Flags

flag indicates
BEA MessageQ FML Programmer’s Guide 5-51

5 FIELD MANIPULATION FUNCTIONS

e
ater
Boolean Expressions

This section describes, in detail, the expressions accepted by the boolean compilation
function and how each expression is evaluated. Table 5-5 shows the Backus-Naur
Form (BNF) definitions of accepted boolean expressions.

Standard C language operators not supported include the shift operators (<< and >>),
the bitwise “or” and “and” operators (|| and &&), the conditional operator (?), the
prefix and postfix incrementation and decrementation operators (++ and --), the
address and indirection operators (& and *), the assignment operator (=), and th
comma operator (,). The following sections describe boolean expressions in gre
detail.

Table 5-5 BNF Definitions of Boolean Expressions

Expression Definition

<boolean> <boolean> || <logical and> | <logical and>

<logical and> <logical and> & <xor expr> | <xor expr>

<xor expr> <xor expr> ^ <equality expr> | <equality expr>

<equality expr> <equality expr> <eq op> <relational expr> | <relational expr>

<eq op> == | != | %% | !%

<relational expr> <relational expr> <rel op> <additive expr> | <additive expr>

<rel op> < | <= | >= | > |

<additive expr> <additive expr> <add op> <multiplicative expr> | <multiplicative
expr>

<add op> + | -

<multiplicative
expr>

<multiplicative expr> <mult op> <unary expr> | <unary expr>

<mult op> * | / | %

<unary expr> <unary op> <primary expr> | <primary expr>
5-52 BEA MessageQ FML Programmer’s Guide

BOOLEAN EXPRESSIONS OF FIELDED BUFFERS
Field Names and Types

The only variables allowed in boolean expressions are field references. There are
several restrictions on field names. Names are made up of letters and digits; the first
character must be a letter. The underscore (_) counts as a letter; it is useful for
improving the readability of long variable names. Up to 30 characters are significant.
There are no reserved words.

For a fielded buffer evaluation, any field that is referenced in a boolean expression
must exist in a field table. This implies that the FLDTBLDIR32 and FIELDTBLS32
environment variables are set, as described in Chapter 3, before using the boolean
compilation function. The field types used in booleans are those allowed for FML32
fields; namely, short, long, float, double, char, string, and carray. Along with the field
name, the field type is kept in the field table. Thus, the field type can always be
determined.

<unary op> + | - | ~ | !

<primary expr> (<boolean>) | <unsigned constant> | <field ref>

<unsigned
constant>

<unsigned number> | <string>

<unsigned number> <unsigned float> | <unsigned int>

<string> ’ <character> {<character>. . .} ’

<field ref> <field name> | <field name>[<field occurrence>]

<field occurrence> <unsigned int> | <meta>

<meta> ?

Table 5-5 BNF Definitions of Boolean Expressions

Expression Definition
BEA MessageQ FML Programmer’s Guide 5-53

5 FIELD MANIPULATION FUNCTIONS

Strings

A string is a group of characters within single quotes. The ASCII code for a character
may be substituted for the character via an escape sequence. An escape sequence takes
the form of a backslash followed by exactly two hexadecimal digits. NOTE THAT
THIS IS NOT AS IT IS IN C where a hexadecimal escape sequence starts with \x.

As an example, consider ’hello’ and ’hell\\6f’. They are equivalent strings because the
hexadecimal code for an ’o’ is 6f.

Octal escape sequences and escape sequences such as “\n” are not supported.

Constants

Numeric integer and floating point constants are accepted, as in C (octal and
hexadecimal constants are not recognized). Integer constants are treated as longs and
floating point constants are treated as doubles (decimal constants for the dec_t type
are not supported).

Conversion

To evaluate a boolean expression, the boolean compiler performs the following
conversions:

t short and int values are converted to longs

t float and decimal values are converted to doubles

t characters are converted to strings

t when comparing a non-quoted string within a field with a numeric, the string
is converted to a numeric value

t when comparing a constant (that is, quoted) string with a numeric, the numeric
is converted to a string, and a lexical comparison is done

t when comparing a long and a double, the long is converted to a double

Primary Expressions

Boolean expressions are built from primary expressions, which can be any of the
following:
5-54 BEA MessageQ FML Programmer’s Guide

BOOLEAN EXPRESSIONS OF FIELDED BUFFERS

ipt
annot
med.

nal
ld

fer

ntical

g the
t field name—a field name

t field name[constant]—a field name and a constant subscript

t field name[?]—a field name and the '?' subscript

t constant—a constant

t (expression)—an expression in parentheses

A field name or a field name followed by a subscript is a primary expression. The
subscript indicates which occurrence of the field is being referenced. The subscr
may be either an integer constant, or ? indicating any occurrence; the subscript c
be an expression. If the field name is not subscripted, field occurrence 0 is assu

If a field name reference appears without an arithmetic, unary, equality, or relatio
operator, then its value is the long integer value 1 if the field exists and 0 if the fie
does not exist. This may be used to test the existence of a field in the fielded buf
regardless of field type (note that there is no * indirection operator).

A constant is a primary expression. Its type may be long, double, or carray, as
discussed in the conversion section.

A parenthesized expression is a primary expression whose type and value are ide
to those of the unadorned expression. Parentheses may be used to change the
precedence of operators, which is discussed in the next section.

Expression Operators

Table 5-6 lists the precedence of expression operators, with the operators havin
highest precedence at the top of the list.

Table 5-6 Boolean Expression Operators

Type Operators

unary +, -, !, ~

multiplicative *, /, %

additive +, -

relational < , >, <=, >=, ==, !=
BEA MessageQ FML Programmer’s Guide 5-55

5 FIELD MANIPULATION FUNCTIONS
Within each operator type, the operators have the same precedence. The following
sections discuss each operator type in detail. As in C, you can override the precedence
of operators by using parentheses.

UNARY OPERATORS

The unary operators recognized are the unary plus operator (+), the unary minus
operator (-), the one’s complement operator (~), and the logical not operator (!).
Expressions with unary operators group right-to-left:

+ expression
- expression
~ expression
! expression

The unary plus operator has no effect on the operand (it is recognized and ignored).
The result of the unary minus operator is the negative of its operand. The usual
arithmetic conversions are performed. Unsigned entities do not exist in FML32 and
thus cause no problems with this operator.

The result of the logical negation operator is 1 if the value of its operand is 0, and 0 if
the value of its operand is non-zero. The type of the result is long.

The result of the one’s complement operator is the one’s complement of its operand.
The type of the result is long.

MULTIPLICATIVE OPERATORS

The multiplicative operators *, /, and % group left-to-right. The usual arithmetic
conversions are performed.

equality and matching ==, !=, %%, !%

exclusive OR ^

logical AND &&

logical OR ||

Table 5-6 Boolean Expression Operators

Type Operators
5-56 BEA MessageQ FML Programmer’s Guide

BOOLEAN EXPRESSIONS OF FIELDED BUFFERS
expression * expression
expression / expression
expression % expression

The binary * operator indicates multiplication. The * operator is associative and
expressions with several multiplications at the same level may be rearranged by the
compiler.

The binary / operator indicates division. When positive integers are divided truncation
is toward 0, but the form of truncation is machine-dependent if either operand is
negative.

The binary % operator yields the remainder from the division of the first expression by
the second. The usual arithmetic conversions are performed. The operands must not be
float or double.

ADDITIVE OPERATORS

The additive operators + and - group left-to-right. The usual arithmetic conversions are
performed.

expression + expression
expression - expression

The result of the + operator is the sum of the operands. The operator + is associative
and expressions with several additions at the same level may be rearranged by the
compiler. The operands must not both be strings; if one is a string, it is converted to
the arithmetic type of the other.

The result of the - operator is the difference of the operands. The usual arithmetic
conversions are performed. The operands must not both be strings; if one is a string, it
is converted to the arithmetic type of the other.

EQUALITY AND MATCH OPERATORS

These operators group left-to-right.

expression == expression
expression != expression
expression %% expression
expression !% expression

The == (equal to) and the != (not equal to) operators yield 0 if the specified relation is
false and 1 if it is true. The type of the result is long. The usual arithmetic conversions
are performed.
BEA MessageQ FML Programmer’s Guide 5-57

5 FIELD MANIPULATION FUNCTIONS
The %% operator takes, as its second expression, a regular expression against which it
matches its first expression. The second expression (the regular expression) must be a
quoted string. The first expression may be an FML32 field name or a quoted string.
This operator yields a 1 if the first expression is fully matched by the second expression
(the regular expression). The operator yields a 0 in all other cases.

The !% operator is the not regular expression match operator. It takes exactly the same
operands as the %% operator, but yields exactly the opposite results. The relationship
between %% and !% is analogous to the relationship between == and !=.

RELATIONAL OPERATORS

These operators group left-to-right.

expression < expression
expression > expression
expression <= expression
expression >= expression

The operators < (less than), > (greater than), <= (less than or equal to) and >= (greater
than or equal to) all yield 0 if the specified relation is false and 1 if it is true. The type
of the result is long. The usual arithmetic conversions are performed.

EXCLUSIVE OR OPERATOR

The ^ operator groups left-to-right.

expression ^ expression

It returns the bitwise exclusive OR function of the operands. The result is always a
long.

LOGICAL AND OPERATOR

expression && expression

The && operator groups left-to-right. It returns 1 if both its operands are non-zero, 0
otherwise. The && operator guarantees left-to-right evaluation. Unlike in C, however,
it is not guaranteed that the second operand is not evaluated if the first operand is 0.
The operands need not have the same type. The result is always a long.
5-58 BEA MessageQ FML Programmer’s Guide

BOOLEAN EXPRESSIONS OF FIELDED BUFFERS

is

ns as
LOGICAL OR OPERATOR

The || operator groups left-to-right.

expression || expression

It returns 1 if either of its operands is non-zero, and 0 otherwise. The || operator
guarantees left-to-right evaluation. However, it is not guaranteed that the second
operand is not evaluated if the first operand is non-zero; this is different from the C
language. The operands need not have the same type, and the result is always a long.

Sample Boolean Expressions

The following field table defines the fields used for the sample boolean expressions:

EMPID 200 carray
SEX 201 char
AGE 202 short
DEPT 203 long
SALARY 204 float
NAME 205 string

Recall that boolean expressions always evaluate to either true or false. Consider the
following example:

"EMPID[2] %% ’123.*’ && AGE < 32"

The expression is true if field occurrence 2 of EMPID exists and begins with the
characters “123” and the age field (occurrence 0) appears and is less than 32. Th
example uses a constant integer as a subscript to EMPID. The ? subscript is used in the
following example:

"PETS[?] == ’dog’"

This expression is if PETS exists and any occurrence of it contains the characters
“dog”.

Boolean Functions

The following sections describe the various functions that take boolean expressio
arguments.
BEA MessageQ FML Programmer’s Guide 5-59

5 FIELD MANIPULATION FUNCTIONS
Fboolco32

Fboolco32() compiles a boolean expression for FML32 and returns a pointer to an
evaluation tree:

char *
Fboolco32(char *expression)

where *expression is a pointer to an expression to be compiled.

Space is allocated using malloc(3) to hold the evaluation tree. For example,

#include "<stdio.h>"
#include "fml32.h"
extern char *Fboolco32;
char *tree;
. . .
if((tree=Fboolco32("FIRSTNAME %% ’J.*n’ && SEX == ’M’")) == NULL)
 F_error32("pgm_name");

would compile a boolean expression that checks whether the FIRSTNAME field is in the
buffer, begins with ’J’ and ends with ’n’ (e.g., John, Joan, etc.), and whether the SEX
field is equal to ’M’.

The first and second characters of the tree array form the least significant byte and the
most significant byte, respectively, of an unsigned 16 bit quantity that gives the length,
in bytes, of the entire array. This value is useful for copying or otherwise manipulating
the array.

The evaluation tree produced by Fboolco32() is used by the other boolean functions
listed below; thus, the expressiondoes not have to be re-compiled constantly.

free(3) should be used to free the space allocated to an evaluation tree when the
boolean expression will no longer be used. Compiling many boolean expressions
without freeing the evaluation tree when no longer needed may cause a program to run
out of data space.

Fboolpr32

Fboolpr32() prints a compiled expression to the specified file stream. The expression
is fully parenthesized, as it was parsed (as indicated by the evaluation tree),

void
Fboolpr32(char *tree, FILE *iop)
5-60 BEA MessageQ FML Programmer’s Guide

BOOLEAN EXPRESSIONS OF FIELDED BUFFERS

 a
where

t *tree is a pointer to a boolean tree previously compiled by Fboolco32

t *iop is a pointer of type FILE to an output file stream

This function is useful for debugging.

Executing Fboolpr32() on the expression compiled above would yield the following:

(((FIRSTNAME[0]) %% (’J.*n’)) && ((SEX[0]) == (’M’)))

Fboolev32 and Ffloatev32

These functions evaluate a fielded buffer against a boolean expression.

int Fboolev32(FBFR32 *fbfr32,char *tree)

double Ffloatev32(FBFR32 *fbfr32,char *tree)

where

t fbfr32 is the fielded buffer referenced by an evaluation tree produced by
Fboolco32

t tree is a pointer to an evaluation tree that references the fielded buffer pointed to
by fbfr32

Fboolev32() returns true (1) if the fielded buffer matches the boolean conditions
specified in the evaluation tree. This function does not change either the fielded buffer
or the evaluation tree. Using the evaluation tree compiled above, the following code
would print “Buffer selected.”

#include <stdio.h>
#include "fml32.h"
#include "fld.tbl.h"
FBFR32 *fbfr32;
. . .
Fchg32(fbfr32,FIRSTNAME,0,"John",0);
Fchg32(fbfr32,SEX,0,"M",0);
if(Fboolev32(fbfr32,tree) > 0)
 fprintf(stderr,"Buffer selected\n");
else
 fprintf(stderr,"Buffer not selected\n");

Ffloatev32() is similar to Fboolev32(), but returns the value of the expression as
double. For example, the following code would print “6.6.”
BEA MessageQ FML Programmer’s Guide 5-61

5 FIELD MANIPULATION FUNCTIONS
#include <stdio.h>
#include "fml32.h"
FBFR32 *fbfr32;
. . .
main() {
 char *Fboolco32;
 char *tree;
 double Ffloatev32;
 if (tree=Fboolco32("3.3+3.3")) {
 printf("%lf",Ffloatev32(fbfr32,tree));
 }
}

If Fboolev32() were used in place of Ffloatev32() in the above example, a 1 would
be printed.
5-62 BEA MessageQ FML Programmer’s Guide

CHAPTER
6 Examples

The BEA MessageQ kit includes an example of building, sending, receiving, and
interpreting an FML32 message. Refer to examples/x/x_fml.c in your BEA
MessageQ kit.
BEA MessageQ FML Programmer’s Guide 6-1

6 EXAMPLES
6-2 BEA MessageQ FML Programmer’s Guide

APPENDIX
A FML Error Messages

The following table lists the error codes, numbers, and messages that you might see if
an error occurs during the execution of an FML program:

Table A-1 FML Error Codes and Messages

Error Code # Error Message

FALIGN 1 fielded buffer not aligned

FNOTFLD 2 buffer not fielded

FNOSPACE 3 no space in fielded buffer

FNOTPRES 4 field not present

FBADFLD 5 unknown field number or type

FTYPERR 6 illegal field type

FEUNIX 7 UNIX system call error

FBADNAME 8 unknown field name

FMALLOC 9 malloc failed

FSYNTAX 10 bad syntax in boolean expression

FFTOPEN 11 cannot find or open field table

FFTSYNTAX 12 syntax error in field table

FEINVAL 13 invalid argument to function

FBADTBL 14 destructive concurrent access to field table
BEA MessageQ FML Programmer’s Guide A-1

A FML ERROR MESSAGES
A-2 BEA MessageQ FML Programmer’s Guide

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	1. Introduction
	2. Overview
	3. Setup
	4. Field Definition and Use
	5. Field Manipulation Functions
	6. Examples
	A. FML Error Messages

	1 Introduction
	About This Guide and FML
	What Is FML?
	How Does FML32 Fit into the BEA MessageQ System?
	Who Is This Document For?
	Prerequisites
	What Does This Document Include?
	What Other FML32 Documentation Is There?
	Table 1�1 Section 5 reference pages

	Concepts and Definitions
	Field Identifier
	Fielded Buffer
	Field Types

	2 Overview
	Introduction
	Dividing Records into Fields
	Structures
	Possible Disadvantages of Structures

	Fielded Buffers

	Implementing Fielded Buffers with FML32

	FML32 Features
	Fielded Buffer Structure
	Figure 2�1 A fielded buffer

	Supported Field Types
	Listing 2-1 FML32 field types as defined in fml32.h

	Field Name to Identifier Mappings
	Run-Time: Field Table Files
	Compile-Time: Header Files

	Fielded Buffer Indexes
	Multiple Occurrences of Fields
	Boolean Expressions and Fielded Buffers

	Error Handling

	3 Setup
	Introduction
	Directory Structure
	Environment Variables

	4 Field Definition and Use
	Introduction
	Defining Fields
	Field Names and Identifiers
	Field Table Files
	Field Table Example
	Listing 4-1 A UNIX Field Table File

	Mapping Functions
	Loading the Field Tables

	Field Header Files

	5 Field Manipulation Functions
	Introduction
	FML and FML32
	FML32 Parameters
	1. For functions that require a pointer to a fielded buffer (FBFR32), this parameter is first. If...
	2. For the input/output functions, a pointer to a stream follows the fielded buffer pointer.
	3. For functions that need one, a field identifier (type FLDID32) appears next (in the case of Fn...
	4. For functions that need a field occurrence (type FLDOCC32), this parameter comes next (for Fne...
	5. In functions where a field value is passed to or from the function, a pointer to the beginning...
	6. When a field value is passed to a function that contains a character array (carray) field, you...
	7. A few functions require special parameters and differ from the preceding conventions; these sp...
	8. The following NULL values are defined for the various field types: 0 for short and long; 0.0 f...

	Field Identifier Mapping Functions
	Fldid32
	Fname32
	Fldno32
	Fldtype32
	Table 5�1 Field Types Returned by Fldtype

	Ftype32
	Fmkfldid32

	Buffer Allocation and Initialization
	Fielded32
	Fneeded32
	Finit32
	Falloc32
	Ffree32
	Fsizeof32
	Funused32
	Fused32
	Frealloc32

	Functions for Moving Fielded Buffers
	Fmove32
	Fcpy32

	Field Access and Modification Functions
	Fadd32
	Fappend32
	Fchg32
	Fcmp32
	Fdel32
	Fdelall32
	Fdelete32
	Ffind32
	Ffindlast32
	Ffindocc32
	Fget32
	int Fget32(FBFR32 *fbfr32, FLDID32 fieldid, FLDOCC32 oc, char *loc, FLDLEN32 *maxlen)

	Fgetalloc32
	Fgetlast32
	int Fgetlast32(FBFR32 *fbfr32, FLDID32 fieldid, FLDOCC32 *oc, char *loc, FLDLEN32 *maxlen)

	Fnext32
	int Fnext32(FBFR32 *fbfr32, FLDID32 *fieldid, FLDOCC32 *oc, char *value, FLDLEN32 *len)

	Fnum32
	Foccur32
	Fpres32
	Fvals32 and Fvall32

	Buffer Update Functions
	Fconcat32
	Fjoin32
	Fojoin32
	Fproj32
	Fprojcpy32
	Fupdate32

	Conversion Functions
	CFadd32
	CFchg32
	int CFchg32(FBFR32 *fbfr32, FLDID32 fieldid, FLDOCC32 oc, char *value, FLDLEN32 len, int type)

	CFget32
	int CFget32(FBFR32 *fbfr32, FLDID32 fieldid, FLDOCC32 oc, char *buf, FLDLEN32 *len, int type)

	CFgetalloc32
	char * CFgetalloc32(FBFR32 *fbfr32, FLDID32 fieldid, FLDOCC32 oc, int type, FLDLEN32 *extralen)

	CFfind32
	char *CFfind32; FLDLEN32 len; long *value; . . . if((value=(long *)CFfind32(fbfr32,ZIP,occurrence...

	CFfindocc32
	FLDOCC32 CFfindocc32(FBFR32 *fbfr32, FLDID32 fieldid, char *value, FLDLEN32 len, int type)

	Converting Strings
	Ftypcvt32
	char * Ftypcvt32(FLDLEN32 *tolen, int totype, char *fromval, int fromtype, FLDLEN32 fromlen)
	CFchg32(fbfr32,fieldid,oc,value,len,type) FBFR32 *fbfr32; /* fielded buffer */ FLDID32 fieldid; /...

	Conversion Rules
	Table 5�2 Summary of Conversion Rules
	Table 5�3 Meanings of Entries in the Summary of Conversion Rules

	Indexing Functions
	Fidxused32
	Findex32
	Frstrindex32
	Funindex32
	Example
	1. Remove the index:
	2. Get the number of bytes to send (that is, the number of significant bytes from the beginning o...
	3. Send the buffer without the index:
	4. Restore the index to the buffer:

	Input/Output Functions
	Fread32 and Fwrite32
	Fchksum32
	Fprint32 and Ffprint32
	Fextread32
	Table 5�4 Fextread Flags

	Boolean Expressions of Fielded Buffers
	Boolean Expressions
	Table 5�5 BNF Definitions of Boolean Expressions

	Field Names and Types
	Strings
	Constants
	Conversion
	Primary Expressions
	Expression Operators
	Table 5�6 Boolean Expression Operators
	Unary Operators
	Multiplicative Operators
	Additive Operators
	Equality and Match Operators
	Relational Operators
	Exclusive OR Operator
	Logical AND Operator
	Logical OR Operator

	Sample Boolean Expressions

	Boolean Functions
	Fboolco32
	Fboolpr32
	Fboolev32 and Ffloatev32

	6 Examples
	A FML Error Messages
	Table A�1 FML Error Codes and Messages

