'll"

Ak
BEA MessageQ

FML Programmer’s Guide

BEA MessageQ Version 5.0
Document Edition 5.0
October 1998

Copyright

Copyright © 1998 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Connect, BEA Jolt, BEA Manager, and BEA MessageQ are trademarks of
BEA Systems, Inc. BEA ObjectBroker is a registered trademark of BEA Systems, Inc. TUXEDO is a registered
trademark in the United States and other countries.

All other company names may be trademarks of the respective companies with which they are associated.
BEA MessageQ FML Programmer’s Guide

Document Edition Date Software Version

Verson 5.0 October 1998 BEA MessageQ, Version 5.0

Contents

1. Introduction

About ThisGuIde and FIMLccooveiiiiieceeeee e 1-1
WHEE ISFIMIL? .ottt ettt ettt st e et e et et 1-1
How Does FML 32 Fit into the BEA MessageQ System?........c.cccceveevenene 1-2
Who IS ThiS DOCUMENE FOI?......c..ooieiieeeceeeee et 1-2
L= = 0 TS S S TSRS 1-2
What Does This Document INCIUE?coveie e 1-3
What Other FML32 Documentation IS There?.........cccccveeveceececeiecceceneenen, 1-3
Concepts and DEfiNitioNScocooeeirireee s 1-4

2. Overview

F g oo (171 o o OSSR 2-1
Dividing Records into Fields...........cccoeoeiicii i 2-1
SEIUCIUIES ...ttt et et e ne e sn e 2-1

Fielded BUFfErS.......coie e e 2-2
Implementing Fielded Buffers with FIML 32cooiiiiiie e 2-3
FIML32 FEAIUIES ...ttt sttt et e e e nre e 2-3
Fielded BUFfer SEPUCLUIE..........oivieeiee e e 2-3
SUPPOIEd FIEld TYPES ..ot e s e eere e 2-4
Field Name to Identifier MappingS.......ccccoeerereneie e 2-5
Run-Time: Field Table FileS......oooiieee e 2-6
Compile-Time: Header FIles... ..o 2-6

Fielded BUFfer INAEXES.......cooi i 2-7
Multiple Occurrences of Fields.........coooviiiieninee e 2-7
Boolean Expressions and Fielded BUFfers ... inncvcinncnc e 2-8
(o =T o 1] oo OSSN 2-8

BEA MessageQ FML Programmer’s Guide iii

3. Setup

INEFOAUCTION ...t e sr et st eraesreen e nneens 31
DITECIONY SEIUCIUIE ...e ettt ettt a e se e e see e eenee s 31
Environment Variabl€S.........coo vt s 3-2
4. Field Definition and Use

INEFOAUCTION ...t e sr e r e e eraesreen e nneens 4-1
DefiNiNG FIEIAS ... e s 4-1
Field Names and [dentifiers........ccoovoeiee e 4-2
Field TabIE FIlES....uo et area 4-2
Field Table EXaMPIE.....cooiie et e s 4-3
MaPPIiNG FUNCLIONS........ooiiee e e s 4-4
Loading the Field Tabl€s.......ccccoecieiicieececcece e 4-4

Field HEAEr FIlES.......cueieieeeeeeeeeee et e 4-5

5. Field Manipulation Functions

INEFOAUCTION ...t e sr et st eraesreen e nneens 5-1
FML AN FIMIL32 ...ttt ettt st st sraenee e 5-2
FML32 ParametersSceiiieciectiesieieceee et stteesaee st e e e e es e e saaesanesstaenneenneens 5-2
Field Identifier Mapping FUNCLIONS..........cooviiiie e s 5-3
FIAIAS2.....ceeee e e e er e ere e saesreas 5-3
T2 1010 1RSSR 5-4
FIANO3B2......oeeeeeee ettt st st st eb et e eens 54
FLALYPE3B2 ..t et e s 5-4
L 17 01 7SS USSP 5-5
FMKFIAIAB2 ... oot er e saeereas 5-6
Buffer Allocation and Initialization..........cccceeeeiieiieiiecieceeceeeee e e e 5-6
FIEIAEdB2 ... e reas 5-6
FNEEAEAB2........c e ere e nrea 5-7
T T 2 72RO 5-8
FAIIOC32....eee ettt r e e er e naenrens 5-8
L 0= 72PN 5-9
FSIZEOT32 ...t 5-10
FUNUSEAB2.....coe ettt et sttt st et st en e e e ee e 5-10
FUSEASZ. ...t e ettt st e et e e sae st e n e erpenneeneean 5-11

iv BEA MessageQ FML Programmer’s Guide

FIEAIIOC32.....coeeeeeee e ettt ettt ae e e e et ae e e e e s srane e 5-11

Functionsfor Moving Fielded BUFfers..........ocooeiniiininie e 5-12
FIMOVESZ......ce ettt et sb e e saennn 5-13
010V Y2 TP TR 5-14

Field Access and Modification FUNCLIONS..........cooveieicieieee e 5-15
=0 [0 1SS 5-15
= 10701 010 1 72 OSSR 5-16
[00 1C 72PN 5-18
FOMIP3B2.. e ettt ettt eb e e srennn 5-19
FABIB2....c et e e e 5-19
FABIAIIS2..... et e e e 5-20
FABIELESZ ...t e e e s 5-21
FFINOAS2 ..t e e e 5-21
FRINAIASE32....c.eeee et e e e e 5-23
FFINAOCC32....c.eeee ettt e e e 5-23
FOEES2. et e e e et e enen 5-25
[0 [= = oo v R 5-26
FOEHASEB2 ..o e e 5-27
FNEXESB2.... et et e 5-27
FNUMB2.....cc e et er e s sre i 5-29
FOCCUI3Z.....eeee ettt et sr e se e sr e seesrennne 5-29
FPIES32 ... e et e 5-30
Frals32 and FVall32 ... s 5-30

Buffer Update FUNCLIONSooieiriree et e e 5-31
FCONCAESZ ...t ettt et s sne i 5-31
FJOINS2 ... e s r et e er e saesnaenne 5-32
[0 o] 1 722 OSSR 5-33
[0] (0] 1C 72RO 5-33
L 0 (0] o3 Y2 2SR 5-34
FUPBLESZ ...ttt sr e er e e sraenae s 5-34

CONVErSION FUNCLIONS.......cuiiieieiieeie et et se s 5-35
CRAAAB2 ... e e e 5-35
(O o110 152 5-36
CQEL32 ...t ettt bt et ee e e et n e 5-37
(1o = = 1 Fo o R 5-38

BEA MessageQ FML Programmer's Guide v

Vi

CRFINUB2....coee s 5-39

CFFINAOCCS2 ...ttt et 5-40
CONVEIING SEFNQGS. ...civeieeee ettt ettt et e es et et see e e e 5-41
FEYPCOVLS2 ..ttt st e et e e 5-41
CONVErSION RUIES.....c..eie ettt et 5-42
INAEXING FUNCLIONS ..ottt st s s a e srae s eaeens 5-45
FIAXUSEASZ ..ottt e e enen 5-46
FINAEXB2. ...ttt et e b e 5-46
S 100 [T Y2 STUR 5-47
FUNINABX3Z ...ttt et e s b e ne e e 5-47
EXAMPIE.. ettt e e et enen 5-47
[NPUL/OULPUL FUNCLIONS. ...ttt et s 5-48
Fread32 and FWIILE32.......c.co it e 5-48
FCOKSUMSZ ...t et e e 5-49
Fprint32 and FIPrint32 ..o e 5-49
FEXITEAOA32 ...ttt e e e 5-50
Boolean Expressions of Fielded BUFfers ..o seinecne e 5-51
B00I€8N EXPIrESSIONScviieeieiieiie sttt et e s b sre e 5-52
Field NameS and TYPES ...c.uoiiieiieeie ettt e e sb e s 5-53

1 110 LTSRS 5-54
CONSIANES ...ttt et e e e sn e e seeeneas 5-54

(@0 0117 (= To o U TSRS 5-54

Primary EXPreSSIONS........cccureriirieeieieeniiie e et esie e sresee e see e seens 5-54
EXPression OPEratOrSc.covieeerieriere e seenees e esasie e sae e 5-55

Sample Boolean EXPreSSiONS........ccocvvveeveerieesesie et ene e 5-59
B00l€aN FUNCLIONS......c.ciuiieiiiie et et 5-59
FDOOICO32.....c. e e 5-60

[0T0T0] o] C 722 5-60
Fboolev32 and Floatev32.........ccociiiiiie e 5-61

6. Examples

A. FML Error Messages

BEA MessageQ FML Programmer’s Guide

CHAPTER

1 Introduction

About This Guide and FML

Thischapter describesthe contents of the guide, how the Field Mani pulation Language
(FML) fitsinto the BEA MessageQ system, and how you might get the most out of the
guide. We assume that you are familiar with the BEA MessageQ system.

What Is FML?

FML isaset of Clanguage functions for defining and manipulating storage structures
caledfi el ded buffers that contain attribute-value pairsin fields. The attribute is
the field's identifier, and the associated value represents the field's data content.

Fielded buffers provide an excellent structure for communicating parameterized data
between cooperating processes, by providing named access to a set of related fields.
Programs that need to communicate with other processes can usethe FML software to
provide accessto fields without concerning themsel ves with the structures that contain
them.

Theorigina FML allowed for 16-bit field identifiers, field lengths, field occurrences,
and record lengths. A newer FML 32 interface allows for larger identifiers (32-bit),

field lengths, field occurrences, and record lengths. Theinterfacesare nearly identical;

the only difference is that a suffix of “32” is added to the name of type definitions,
header files, functions, and commands.

Note: BEA MessageQ only supports FML32. Do not use the 16-bit FML functions
in developing MessageQ applications.

BEA MessageQ FML Programmer’s Guide 1-1

1

INTRODUCTION

How Does FML32 Fit into the BEA MessageQ System?

Within the BEA MessageQ system, FML 32 functions are used to manipulate fielded
buffers. In MessageQ applications, messages may be sent as message buffers
(predefined, static data structures) or as FML 32 buffers. Using FML 32, applications
construct messages containing both the message content and the information needed
by the receiver program to understand what is in the message.

Who Is This Document For?

This guide gives detailed information about the features of FML 32 and how the
different FML32 functions are used.

This guide isintended for programmers who need to learn how to use FML32
functions in programming BEA MessageQ applications. This guide also provides
information for users of applicationsthat make use of FML 32 with regard to setting up
the environment correctly.

Prerequisites

1-2

To make full use of this guide, you should be familiar with the following:

4 The UNIX System environment—We assume, for example, that you do not need

a definition of a shell command or an environment variable, and that you
understand what is meant by a UNIX System file or running a process in the
background.

4 The C programming language—The functions and macros that make up FML
are intended to be incorporated in C language programs, so we assume you hav

previously spent some time developing C programs.

4 The BEA MessageQ system—We assume, even if you have not yet worked on a
BEA MessageQ application, that you at least have an understanding of what the

BEA MessageQ system is intended to do, and that you have read about the
application development environment in EA MessageQ Programmer’s
Guide

BEA MessageQ FML Programmer’s Guide

ABOUT THIS GUIDE AND FML

What Does This Document Include?

4 Conceptsand Definitions—Several definitions are provided to explain ideas
and terms that are used in the guide.

4 An Overview of FML 32—Chapter 2 offers an overview of the software. If you
have not used FML functions before, you may find it helpful to read through the
overview to get a general idea of how things work.

4 Setup and Customization—Chapter 3 gives you the information you need to
set up the environment variables, directory structure, and files that are required
by the BEA MessageQ system in general, and FML32 in particular. This chapter
also shows you how to customize your installed FML32 software.

4 Defining and Using FM L 32 Fielded Buffers—Chapter 4 outlines the use of the
FML32 software, and how to set up your C language programs to use the
software.

¢ FML32Field Manipulation Functions—Chapter 5 deals with how to use the
FML32 functions to manipulate data.

Code Fragments—There are illustrations throughout Chapters 4 and 5 that show you
examples of the functions as they might be used in a C program. Chapter 6 has provides
additional examples.

What Other FML32 Documentation Is There?

In addition to this guide, documentation on FML32 function calls can be found in the
reference page for each FML32 function and the following related reference pages in
the BEA MessageQ Reference Manual :

Table 1-1 Section 5 reference pages

Refer ence Page Description

fiel d_tabl es(5) describes the structure of FML field tables

nkf | dhdr 32 describes the command used to create header files from field tables

BEA MessageQ FML Programmer’s Guide 1-3

1 IntrobucTiON

Concepts and Definitions

Field Identifier
A fieldidentifier (f1 di d) isatagfor anindividual dataiteminanFML record
or fielded buffer. The field identifier consists of the name of thefield (a
number) and the type of the datain the field.

Fielded Buffer
A fielded buffer isadata structure in which each dataitem is accompanied by
an identifying tag (afield identifier) that includes the type of the dataand a
field number.

Field Types
Fieldsin FML and fielded buffers are typed. They can be any of the standard
Clanguagetypes: short, | ong, fl oat, doubl e, andchar . Two other types
are also supported: st ri ng (aseries of characters ending with anull
character) and car r ay (character arrays).

1-4 BEA MessageQ FML Programmer’s Guide

CHAPTER

2

Overview

Introduction

This chapter begins by describing two waysin which theidea of fielded records or
fielded buffers can be handled: through structured records and through FML32
records. It then describes the features of the Field Manipulation Language and the
circumstances under which you might want to use them.

A comparison of FML 32 records with traditional structured records clearly showsthe
advantages of using fielded buffers throughout an application.

Dividing Records into Fields

Structures

Unless adata record is a complete and indivisible entity (an unusual situation), you
need to be able to break arecord into fields so you can use or change the information
intherecord. In BEA MessageQ applications there aretwo ways to divide records into
fields:

4 Through message buffers (predefined C language data structures)
4 Through fielded buffers

One common way of subdividing records iswith a structure that divides a contiguous
area of storage into fields. The fields are given names for identification; the kind of
data carried in the field is shown by the data type declaration.

BEA MessageQ FML Programmer’s Guide 2-1

2 OVERVIEW

For example, adataitem in a C language program that contains information about an
employee's identification number, name, address, and sex, may be formatted in a
structure such as the following:

struct S {
| ong enpi d;
char nane[20];
char addr[40];
char sex;

}s

wherethe datatype of theenpi d field isdeclared to be along integer, name and addr
are declared to be character arrays of 20 and 40 characters respectively, and sex is
declared to be a single character (presumably with a range of mor f).

If, inyour C program, the variable p pointsto astructure of type struct S, thereferences
p- >enpi d, p- >nane, p- >addr and p- >sex can be used to address the fields.

POSSIBLE DISADVANTAGES OF STRUCTURES

While this way of representing dataiswidely used and often appropriate, it hastwo
major potential disadvantages:

4 Any timethe data structure is changed, all programs using the structure have to
be recompil ed.

4 Thesize of the structure and the offsets of the component fields are all fixed; as
aresult, spaceif often wasted. (Not dl fields will always contain a value and
fieldstend to be sized to hold the largest likely entry.)

Fielded Buffers

Fielded buffers provide another way of subdividing arecord into fields.

A fielded buffer is a data structure that provides associative access to the fields of a
record; that is, the name of afield is associated with an identifier that includes the
storage location as well as the data type of the field.

The main advantage of the fielded buffer is dataindependence. Fields can be added to
the buffer, deleted from it, or changed in length without forcing programs that
reference the fields to be recompiled. To achieve this data independence, afield is
referenced by an identifier rather than by the fixed offset prescribed by record
structures, and all accessto fieldsis through function calls.

2-2 BEA MessageQ FML Programmer’s Guide

FML32 FEATURES

Fielded buffers can be used throughout a BEA MessageQ application as the standard
method of representing data sent between cooperating processes.

Implementing Fielded Buffers with FML32

Fielded buffers are created, updated, accessed, input, and output via the Field
Manipulation Language (FML). FML32 has two main objectives:

4 To provide a convenient and standard discipline for creating and manipulating
fielded buffers.

4 To provide data independence to programs making use of fielded buffers.

FML32isimplemented as alibrary of functions and macros that can becaled from C
programs. There are two major groups of FML 32 functions:

4+ A setof functionsfor creating, updating, accessing, and manipulating fielded
buffers.

4 A setof functionsfor converting data from one type to another upon input to (or
output from) afielded buffer structure.

FML32 Features

This section describes the features of FML 32 and recommends how to use them in
application programs.

Fielded Buffer Structure

A fielded buffer, as mentioned earlier, is adata structure that provides associative
access to the fields of arecord.

Each field in an FML32 fielded buffer is labeled with an integer that combines
information about the data type of the accompanying field with a unique identifying
number. Thelabel iscalled thefield identifier, or f | di d32. For variable-length items,

BEA MessageQ FML Programmer’s Guide 2-3

2 OVERVIEW

f1di d32 isfollowed by alengthindicator. The buffer can be represented as asequence
of f1 di d/datapairs, with f | di d/length/data triplesfor variable-length items.
Figure 2-1 illustrates this.

Figure2-1 A fielded buffer

fldid data fldid len data fldid data

In the header filethat is#i ncl ude’d whenever FML 32 functions are used (f m 32. h),
fieldidentifiersaret ypedef 'dasFLDI D32, field value lengths as FLDLEN32, and field
occurrence numbers as FLDOCC32.

Supported Field Types

Thesupported field typesareshort , I ong, f | oat ,doubl e, charact er, st ri ng,and
carray (character array). Thesetypes are #defi ne’d in f m 32. h asshown in
Listing 2-1.

Listing2-1 FML 32 field typesasdefined in fml32.h

/* short int */

/* long int */

/* character */

/* single-precision float */
/* doubl e-precision float */
/* string - null term nated */
/* character array */

#def i ne FLD_SHORT
#def i ne FLD_LONG
#def i ne FLD_CHAR
#def i ne FLD FLOAT
#def i ne FLD _DOUBLE
#def i ne FLD_STRI NG
#def i ne FLD_CARRAY

OO~ WNEO

FLD_STRI NGand FLD_CARRAY are both arrays, but differ in the following ways:

4 A FLD_STRINGisavariable-length array of non-NULL characters terminated by
aNULL.

4 A FLD _CARRAY isavariable-length array of bytes, any of which may be NULL.

2-4 BEA MessageQ FML Programmer’s Guide

FML32 FEATURES

Functions that add or change afield have a FLDLEN argument that must be filled in
when you are dealing with FLD_CARRAY fields. The size of astring or carray islimited
to 2 billion bytes for FML32.

Itisnot agood ideato store unsigned data typesin fielded buffers. Y ou should either
convert all unsigned short datato long or cast the datainto the proper unsigned data
type whenever you retrieve data from fielded buffers (using the FM L 32 conversion
functions).

Most FML32 functions do not perform type checking; they expect that the value you
update or retrieve from afielded buffer matchesits nativetype. For example, if abuffer
field isdefined to beaFLD_LONG, you should always pass the address of along value.
The FML32 conversion functions convert datafrom a user specified typeto the native
field type (and from the field type to a user specified type) in addition to placing the
datain (or retrieving the data from) the fielded buffer.

Field Name to Identifier Mappings

A field isusually referred to by itsfield identifier (f 1 di d32), an integer. (See

Chapter 4, “Field Definition and Use,” for a detailed description of field identifiers).
This allows you to reference fields in a program without using the field name, which
may change.

There are two ways in which identifiers are assigned (mapped) to field names:
4 Through field table files (which are ordinary ASCII files)
4 Through C language headei cl ude) files

A typical application might use one or both of the above methods to map field
identifiers to field names.

In order for FML32 to access the data in fielded records, there must be some way for
FML32 to access the field name/identifier mappings. FML32 gets this information in
one of two ways:

4 At run-time, through UNIX field table files and FML32 mapping functions

4 At compile-time, through C header files

BEA MessageQ FML Programmer’s Guide 2-5

2 OVERVIEW

Run-Time: Field Table Files

Field name/identifier mappings can be made availableto FML 32 programs at run-time
through field table files. It is the responsibility of the programmer to set two
environment variables that tell FML 32 where the field name/identifier mapping table
files are located.

The environment variable FLDTBLDI R32 contains a list of directories where field
tables can befound. The environment variable FI ELDTBLS32 containsalist of thefiles
in the table directories that are to be used.

Within application programs, the FML 32 function FI di d32() providesfor arun-time
trandation of afield nametoitsfieldidentifier. Fname32() trandatesafield identifier
toitsfield name (see FI di d(3fml) and Fname(3fml)). The first invocation of either

function causes space in memory to be dynamically allocated for the field tables and

the tables to be loaded into the address space of the process. The space can be

recovered when the tables are no longer needed. (See “Loading the Field Tables” ir
Chapter 4.)

This method should be used when field name/identifier mappings are likely to chang
throughout the life of the application. This topic is covered in more detail in Chapter 4

Compile-Time: Header Files

nkf | dhdr 32(1) is provided to make header files out of field table files. These header
files are#i ncl ude'd in C programs, and provide another way to map field names to
field identifiers: at compile-time.

Using field header files, the C preprocessor converts all field name references to fiel
identifiers at compile-time; thus, you do not need to useltbed32() orFnanme32()
functions as you would with the field table files described in the previous section.

If you always know the field names needed by your program, yoti cahude your
field table header file(s), saving some data space and enabling your program to run
more quickly.

However, since this method resolves mappings at compile-time, it should not be use
if the field name/identifier mappings in the application are likely to change. This topic
is covered in more detail in Chapter 4.

2-6 BEA MessageQ FML Programmer’s Guide

FML32 FEATURES

Fielded Buffer Indexes

When afielded buffer has many fields, accessis expedited in FML 32 by the use of an
internal index. The user is normally unaware of the existence of this index.

Fielded buffer indexes do, however, take up space in memory and on disk. When you
store afielded buffer on disk, or transmit afielded buffer between processes or
between computers, you can save disk space and/or transmittal time by first discarding
the index.

FML32 providesthe Funi dex32() function for discarding theindex. When the fielded
buffer is read from disk (or received from a sending process), the index can be
explicitly reconstructed with the function Fi ndex32().

Notethat these space savings do not apply to memory. The function Funi dex32() does
not recover in-core memory used by the index of afielded buffer.

Multiple Occurrences of Fields

A fielded buffer may contain more than one occurrence of any field. Many FML32
functions take an argument that specifieswhich occurrence of afield isto beretrieved
or modified. If afield occurs more than once, the first occurrence is numbered 0, and
additional occurrences are numbered sequentially. The set of all occurrences
congtitutes alogical sequence, but no overhead is associated with the occurrence
number (that is, it is not stored in the fielded buffer).

If another occurrence of afield isadded, it is added at the end of the set and isreferred
to asthe next highest occurrence. When an occurrence other than the highest is deleted,
all higher occurrences of the field are shifted down by one (for example, occurrence 6
becomes occurrence 5, 5 becomes 4, and so on).

BEA MessageQ FML Programmer’s Guide 2-7

2 OVERVIEW

Boolean Expressions and Fielded Buffers

Often, application programs receive afielded buffer from another source (from a user's
terminal, from a database record, and so on) and the values of one or morefields
determine the next action taken by the application program. FML 32 provides several
functions that create boolean expressions on fielded buffers and determineif a given
buffer meets the criteria specified by the expression.

Once you create a boolean expression, it is compiled into an evaluation tree. The
evaluation tree is then used to determine if afielded buffer matches the specified
boolean conditions.

For instance, a program may read a data record into a fielded buffer (Buffer A) and
apply aboolean expression to the buffer. If Buffer A meetsthe conditions specified by
the boolean expression, then an FML 32 function is used to update another buffer,
Buffer B, with data from Buffer A.

Error Handling

When an FML 32 function detects an error, one of the following valuesis returned:
4 NULL isreturned for functions that return a pointer

4 BADFLDI Disreturned for functionsthat return a FLDI D32

4 -lisreturned for al others

All FML32 function call returns should be checked against the appropriate value above
to detect errors.

In all error cases, the external integer Ferr or 32 is set to the error number as defined
infm 32. h.

The F_error 32 function is provided to produce a message on the standard error
output. It takes one parameter, a string; prints the argument string appended with a
colon and a blank; and then prints an error message followed by a newline character.
The error message displayed is the one defined for the error number currently in

Fer r or 32, which is set when errors occur.

2-8 BEA MessageQ FML Programmer’s Guide

ERROR HANDLING

To bemost useful, theargument string to the F_er r or 32() function should include the
name of the program that incurred the error.

Fstrerror32() can be used to retrieve (from a message catal og) the text of an error
message; it returns a pointer that can be used as an argument to F_er r or 32().

Theerror codes that can be produced by an FML 32 function are described on the page
that documents the function in the BEA MessageQ Reference Manual.

BEA MessageQ FML Programmer’s Guide 2-9

2 OVERVIEW

2-10 BEA MessageQ FML Programmer’s Guide

CHAPTER

3 Setup

Introduction

This chapter deals with the setup of the FML32 environment. Before you can begin to
work with FML32 fielded buffersyou must set environment variables appropriate for
your application. These activities are described in this chapter.

Directory Structure

Thedelivered FML 32 software will reside in asubtree of thelocal file system. Several
of the FML32 modules assume that the structure of this subtreeis as described in this
section. The sub-directories are:

4 incl ude—contains header files needed by writers of C application code.
4 bi n—contains the executable commands of FML.

4 | i b—contains subroutine packages of FML; when compiling a program that
uses FML32 functions§MESSAGEQ | i b/ 1'i bf M 32. suffi x and
$MESSAGEQ |i b/ | i bgp. suf fi x should be included on the C compiler
command line to resolve external references. (The suffiz fer POSIX
operating systems without shared objeats for use of shared objects, and
.1i b for Windows 95 and Windows NT.)

C application software using FML32 must include the following header files in the
order shown:

BEA MessageQ FML Programmer’s Guide 3-1

3 SETUP

#i ncl ude <stdio. h>
#include “fml32.h”

Environment Variables

This section describes several environment variables used by FML32,
Thefollowing variable is used in FML 32 to search for system supplied files:

4 TUXDIR—this variable should be set to the topmost node of the installed BEA
MessageQ system software including FML32.

The following variables are used throughout FML32 to access field table files
(described in Chapter 4):

4 FI ELDTBLS32—This variable should contain a comma-separated list of field
table files for the application. Files given as full path names are used as is; files
listed as relative path names are searched for through the list of directories
specified by thesLDTBLDI R32 variable. IfFI ELDTBLS32 is not set, then the
single file nameé | d. t bl is used FLDTBLDI R32 still applies; see below.)

4 FLDTBLDI R32—This variable specifies a colon-separated list of directories to be
used to find field table files with relative file names. Its usage is similar to the
PATH environment variable. ELDTBLDI R32 is not set or is null, then its value is
assumed to be the current directory.

3-2 BEA MessageQ FML Programmer’s Guide

CHAPTER

4 Field Definition and
Use

Introduction

Before you can begin to work with FML 32 fielded buffers certain detail s must be taken
care of, such as:

¢ defining fields

4+ making field definitions available to applications programs (through field table
files and mapping functions at run-time, or C header files at compile time)

These and related activities are described in this chapter.

Defining Fields

This section discusses
¢ how fields are defined in field tables for run-time use

4 theavailable functions for run-time use with the field table files

BEA MessageQ FML Programmer’s Guide 4-1

4 FIELD DEFINITION AND USE

Field Names and Identifiers

A field identifier (fi el di d) isdefined using t ypedef asaFLDI D32 for FML32, and
is composed of two parts: afield type and a field number (the number uniquely
identifies the field).

Field numbers are restricted to be between 1 and 33,554,431, inclusive, for FML32.

Field number 0 and the corresponding field identifier O is reserved to indicate a bad

field identifier (BADFLDI D). When FML 32 is used with other software that also uses
fields, additional restrictions may be imposed on field numbers.

The numbering convention adopted by the BEA MessageQ is as follows:
¢ field numbers 1-100 are reserved for system use
4 field numbers 101-33,554,431 are for application-defined fields with FML32.

The mappings between field identifiers and field names are contained in either field
table files or field header files. Using field table files requires that you convert field
name references in C programs with the mapping functions described | ater in this
chapter; field header files allow the C preprocessor (cpp(1) in UNIX reference
manuals) to resolve name-to-fiel did mappings when a program is compiled.

The functions and programs that access field tables use the environment variables
FLDTBLDI R32 and FI ELDTBLS32 to specify the source directories and field tabl efiles,
respectively, which are to be used. These should be set as described in Chapter 3.

Theuse of multiple field tablesallowsyou to establish separate directoriesand/or files
for separate groups of fields. Note that field names and fiel d humbers should be unique
across dl field tables, since such tables are capable of being converted into C header
files, and field numbers that occur more than once may cause unpredictable results.

Field Table Files

Field table files are created using a standard text editor, such asvi . They have the
following format:

4 Blank lines and lines beginning with # are ignored.
4 Linesbeginning with $ ignored by the mapping functions but are passed through
(without the $) to header files generated by nkf | dhdr 32(1); for example, this

4-2 BEA MessageQ FML Programmer’s Guide

DEFINING FIELDS

would allow the application to pass C comments, what strings, etc. to the
generated C header file.

4 Lines beginning with the string * base contain a base for offsetting subseguent
field numbers; this optional feature provides an easy way to group and renumber
sets of related fields.

4 All other lines should have the following form.
nane rel - nunber type flag comment
4 where:

4 nane istheidentifier for the field. It should not exceed the C preprocessor
identifier restrictions (that is, it should contain only alphanumeric characters
and the underscore character). Internally, the name istruncated to 30
characters, so hames must be unique within the first 30 characters.

4 rel -nunber istherelative numeric value of the field; it is added to the
current base, if *base isspecified, to obtain the field number of the field.

¢ type isthetype of thefield, and is specified asone of: char, string,
short, long, float, double, carray.

4 Thefl ag fieldisreserved for future use; use adash (-) in thisfield.

4 conment isanoptional field that can be used for clarifying information.

Note that these entries must be separated by white space (blanks or tabs).

Field Table Example

The following is an example field table in which the base shifts from 500 to 700. The
first fieldsin each group will be numbered 501 and 701, respectively.

Listing4-1 A UNIX Field Table File

following are fields for EMPLOYEE servi ce
enployee ID fields are based at 500

*pase 500

#nane rel - nunber type flags comrent
Ho-o- o oo--- Ceo- oo e
EMPNAME 1 string - enp name

BEA MessageQ FML Programmer’s Guide 4-3

4 FIELD DEFINITION AND USE

EMPI D 2 | ong - emp id

EMPJ OB 3 char - job type
SRVCDAY 4 carray - servi ce date
*pase 700

all address fields are now relative to 700

EMPADDR 1 string - street address
EMPCI TY 2 string - city
EMPSTATE 3 string - state

EMPZI P 4 | ong - Zi p code

Mapping Functions

Run-time mapping isdone by the FI di d32() and Fnanme32() functionsthat consult the
set of field table files specified by the FLDTBLDI R32 and FI ELDTBLS32 environment
variables.

Fl di d32() mapsitsargument, afield name, toafi el di d:

char *nane;
extern FLDI D32 Fldi d32();
FLDI D32 i d;

id = Fldid32(nane);

Fnane() does the reverse trand ation by mapping itsargument, afi el di d, to afield
name:

extern char *Fnane32();
nane = Fnanme32(id);

Theidentifier-to-name mapping is rarely used; that is, it israre that one has afield
identifier and wantsto know the corresponding name. One place where the field
identifier-to-field name mapping could be used isin abuffer print routine where you
want to display, in an intelligible form, the contents of a fielded buffer.

Loading the Field Tables

4-4

Upon thefirst call, FI di d32() loadsthefield table files and performs the required
search. Thereafter, the files are kept loaded. FI di d32() returnsthefield identifier
corresponding to its argument on success, and returns BADFLDI D on failure, with
Fer r or 32 set to FBADNAME.

BEA MessageQ FML Programmer’s Guide

DEFINING FIELDS

To recover the data space used by the field tablesloaded by FI di d32() , the user may
unload al of the filesby acall to the Fnni d_unl oad32() function.

The function Fname32() actsin afashion similar to Fl di d32(), but provides a
mapping from afield identifier to afield name. It uses the same environment variable
scheme for determining the field tables to be loaded, but constructs a separate set of
mapping tables. On success, Fnanme32() returns a pointer to a character string
containing the name corresponding to the f I di d argument. On failure, Fname32()
returns NULL.

Note: The pointer isvalid only aslong as the table remains |oaded.

Aswith FI di d32(), failure includes either the inability to find or open afield table

(FFTOPEN), bad field table syntax (FFTSYNTAX), or a no-hit condition within the field
tables (FBADFLD). The table space used by the mapping tables created by Fname32()
may be recovered by a call to the function Fi dnm_unl oad32() .

Both mapping functionsand other FM L 32 functionsthat use run-time mapping require
Fl ELDTBLS32 and FLDTBLDI R32 to be set properly. Otherwise, default values are used
(see Chapter 3 for the defaults).

Field Header Files

The command nkf | dhdr 32 convertsfield tables, as described above, into header files
suitable for processing by the C compiler. Each line of the generated header fileis of
the following form.

#defi ne fnane fieldid

where f nane isthe name of thefield, and fi el di disitsfield-ID. Thefield-1D has
both the field type and field number encoded in it. The field number is an absolute
number, that is, base plusr el - nunber . The resulting file is suitable for inclusion in
a C program.

The header file need not be used if the run-time mapping functions are used as
described in the next sub-section. The advantage of compile-time mapping of hames
to identifiersis speed and adecrease of data space requirements. The disadvantage is
that changes made to field name/identifier mappings after, for instance, a service
routine has been compiled will not be propagated to the service routine (that is, it will
use the mappingsit has already compiled).

BEA MessageQ FML Programmer’s Guide 4-5

4 FIELD DEFINITION AND USE

4-6

nkf | dhdr 32(1) translates each field-table specified in the FI ELDTBLS32 environment
variable to a corresponding header file, whose name isformed by concatenatinga . h
suffix to the field-table name. The resulting files are created, by default, in the current
directory. The user may specify a creation directory to nkf | dhdr 32(1) by specifying
a- d option followed by the name of the directory in which you want the header files
to reside. For example,

FLDTBLDI R32=/ project/fl dtbls

FI ELDTBLS32=nmaskft bl , DBft bl , m scfthl
export FLDTBLDI R32 FI ELDTBLS32

nkf | dhdr 32

will produce theinclude filesmaskf t bl . h, DBf t bl . h and mi scft bl . hinthe current
directory by processing ${ FLDTBLDI R32}/ maskft bl , ${ FLDTBLDI R32}/ DBft bl
and ${ FLDTBLDI R32}/ mi scf t bl . The command

nkf | dhdr 32 - d${ FLDTBLDI R32}

will process the sasmpleinput field-table files and produce the same output files, but
will place them in the directory given by ${ FLDTBLDI R32}.

Y ou may override the environment variables (or avoid setting them) when using

nkf | dhdr 32 by specifying on the command line the names of the field tablesto be
converted (this does not apply to the run-time mapping functions). In this case,
FLDTBLDI R32 isassumed to be the current directory and FI ELDTBLS32 isassumed to
be the list of parameters that the user specified on the command line. For example,

nkf | dhdr 32 nyfields

will convert thefieldtablefilenyf i el ds to afield header filenyfi el ds. h, and place
it in the current directory.

BEA MessageQ FML Programmer’s Guide

CHAPTER

5 Field Manipulation
Functions

Introduction

This chapter describes all FML32 functions exception run-time mapping (which is
described in Chapter 4). In this chapter you will learn:

4 FML32 parameter conventions
how to use various field identifier mapping functions
how to allocate and initialize fielded buffers
how to move fielded buffers
how to access and modify fielded buffers

how to update fielded buffers

¢

¢

¢

¢

¢

4 how to map fielded buffersto C structures

4+ how to perform type conversions on data transferred to or from fielded buffers
4 how to use indexing functions

4+ how to use input/output functions

¢

how to construct boolean expressions to make program decisions based on the
contents of fielded buffers

BEA MessageQ FML Programmer’s Guide 5-1

5 FIELD MANIPULATION FUNCTIONS

FML and FML32

There are two variants of FML. The original FML interface is based on 16-bit values
for the length of fields and contains information identifying fields (hence FML16).
FML16 islimited to 8191 unique fields, individual field lengths of up to 64K bytes,
and atotal fielded buffer size of 64K.

A second interface, FML 32, uses 32-bit valuesfor field lengths and identifiers. It
allows for about 30 million fields, and field and buffer lengths of about 2 billion bytes.

The definitions, types, and function prototypes for FML32 arein f m 32. h. Functions
livein-1fm 32.

BEA MessageQ supports only FML32. Do not use 16-bit FML functionsin
developing MessageQ applications.

The names of all definitions, types, and functions for FML32 haa2'asuffix (for
example MAXFBLEN32, FBFR32, FLDI D32, FLDLEN32, Fchg32(), and error code

Fer r or 32()). Also the environment variables are suffixed wis2™ (for example,
FLDTBLDI R32 andFI ELDTBLS32). For FML32, a fielded buffer pointer is of type
“FBFR32 *”, a field length has the typel DLEN32, and the number of occurrences of a
field has the typ€LDOCC32. Also note that the default required alignment for FML32
buffers is 4-byte alignment.

FML32 Parameters

5-2

To make it easier to remember the parameters for the FML32 functions, a conventio
has been adopted for the sequence of function parameters. FML32 parameters app
in the following sequence:

1. For functions that require a pointer to a fielded buff&FR32), this parameter is
first. If a function takes two fielded buffer pointers (such as the transfer functions),
the destination buffer comes first followed by the source buffer. A fielded buffer
pointer must point to an area that is aligned on a short boundary (or an error is
returned withFer r or 32() set toFALI GNERR) and the area must be a fielded buffer
(or an error is returned witker r or 32() set toFNOTFLD).

BEA MessageQ FML Programmer’s Guide

FIELD IDENTIFIER MAPPING FUNCTIONS

. For the input/output functions, a pointer to a stream follows the fielded buffer

pointer.

. For functions that need one, afield identifier (type FLDI D32) appears next (in the

case of Fnext 32(), it isapointer to afield identifier).

. For functions that need afield occurrence (type FLDOCC32), this parameter comes

next (for Fnext 32(), it isa pointer to an occurrence number).

. Infunctionswhere afield value is passed to or from the function, a pointer to the

beginning of the field value is given next (defined as a character pointer but may
be cast from any other pointer type).

. When afield value is passed to a function that contains a character array (carray)

field, you must specify its length as the next parameter (type FLDLEN32). For
functionsthat retrieve afield value, a pointer to the length of the retrieval buffer
must be passed to the function and this length parameter is set to the length of the
value retrieved.

. A few functions require special parameters and differ from the preceding

conventions; these special parameters appear after the above parameters and will
be discussed in the individual function descriptions.

. Thefollowing NULL values are defined for the various field types: 0 for short

and long; 0. 0 for float and double; \ 0 for string (1 bytein length); and a
zero-length string for carray.

Field Identifier Mapping Functions

Fidid32

Severa functions allow the programmer to query field tables or field identifiers for
information about fields during program execution.

FI di d32() returnsthe field identifier for agiven valid field name and loads the field
name/fieldid mapping tables from the field table files, if they do not already exist:

BEA MessageQ FML Programmer’s Guide 5-3

5 FIELD MANIPULATION FUNCTIONS

Fname32

Fldno32

FLDI D32
Fl di d32(char *nane)

where nane isavalid field name.

The space used by the mapping tables in memory can be freed using the
Fnmi d_unl oad32() function. Note that these tables are separate from the tables|oaded
and used by the Fname32() function.

Fnane32() returnsthe field name for a given valid field identifier and loads the
fieldid/name mapping tables from the field table files, if they do not already exist:

char *
Fname32(FLDI D32 fi el di d)

wherefi el di disavalid field identifier.

The space used by the mapping tablesin memory can be freed using the
Fi dnm_unl oad32() function. Note that thesetables are separate from thetables|oaded
and used by the FI di d32() function.

Fl dno32() extractsthe field number from a given field identifier:

FLDOCC32
Fl dno32(FLDI D32 fi el di d)

wherefi el di disavalid field identifier.

Fldtype32

Fl dt ype32() extracts the field type (an integer, as defined in f ni 32. h) from agiven
field identifier.

5-4 BEA MessageQ FML Programmer’s Guide

FIELD IDENTIFIER MAPPING FUNCTIONS

Ftype32

int
FI dt ype32(FLDI D32 fi el di d)

wherefi el di disavalid field identifier.

Table 5-1 shows the possible values returned by FI dt ype32() and their meanings.

Table5-1 Field Types Returned by Fldtype

Return Value M eaning

0 short integer

1 long integer

2 character

3 single-precision float

4 double-precision float
5 null-terminated string
6 character array

Ft ype32() returns a pointer to astring containing the name of thetype of afield given
afield identifier:

char *
Ft ype32(FLDI D32 fi el di d)

where fi el di disavalidfield identifier.
For example:

char *typenane

iybeharm = Ftype32(fieldid);

returns a pointer to one of the following strings: short, I ong, char, f | oat, doubl e,
string,oOrcarray.

BEA MessageQ FML Programmer’s Guide 5-5

5 FIELD MANIPULATION FUNCTIONS

Fmkfldid32

As part of an application generator, or to reconstruct afield identifier, it might be
useful to be able to make afield identifier from atype specification and an available
field number. Fnkf | di d32() provides this functionality:

FLDI D32
Frkfl di d32(int type, FLDI D32 num

where
¢ typeisavadidtype (an integer; see Fl dt ype32(), above)

¢ numisafield number (it should be an unused field number, to avoid confusion with
existing fields)

Buffer Allocation and Initialization

Most FML 32 functions require a pointer to afielded buffer as an argument. The
typedef FBFR32 is availablefor declaring such pointers, as in this example:

FBFR32 *fbfr32;
In this chapter, the variable f bf r 32 will be used to mean a pointer to afielded buffer.

Never attempt to declare fielded buffers themselves, only pointers to them. The
functions used to reserve space for fielded buffers are explained in thefollowing pages,
but first we will describe a function that can be used to determine whether a given
buffer isin fact afielded buffer.

Fielded32

Fi el ded32() is used to test whether the specified buffer is fielded.

int
Fi el ded32(FBFR32 * f bf r 32)

5-6 BEA MessageQ FML Programmer’s Guide

BUFFER ALLOCATION AND INITIALIZATION

Fi el ded32() returnstrue (1) if the buffer is fielded. If the buffer is not fielded,
Fi el ded32() returnsfalse (0) and does not set Fer r or 32().

Fneeded32

The amount of memory to allocate for a fielded buffer depends on the maximum
number of fieldsthat buffer will contain and the total amount of space needed for all
the field values. The function Fneeded can be used to determine the amount of space
(in bytes) needed for afielded buffer; it takes the number of fieldsand the space needed
for al field values (in bytes) as arguments.

| ong
Fneeded32(FLDOCC32 F, FLDLEN32 V)

where
¢ Fisthe number of fields
4 Visthe spacefor field values, in bytes

The space needed for field valuesis computed by estimating the amount of space that
would be required by each field value if stored in standard structures (for example, a
long is stored as along and needs four bytes). For avariable length field, you should
estimate the average amount of space needed. The space calculated by Fneeded
includes afixed overhead for each field in addition to the space needed for the field
values.

Onceyou obtain the estimate of space from Fneeded32(), you can alocate the desired
number of bytes using mal | oc(3) and set up a pointer to the allocated memory space.
For example, the following all ocates space for afielded buffer large enough to contain
25 fields and 300 bytes of values:

#define NF 25
#define NV 300
extern char *mall oc;

i f((fbfr32 = (FBFR32 *)mal | oc(Fneeded32(NF, NV))) == NULL)
F error("pgmnanme"); /* no space to allocate buffer */

However, this allocated memory space is not yet afielded buffer. Fi ni t 32() must be
used to initialize t.

BEA MessageQ FML Programmer’s Guide 5-7

5 FIELD MANIPULATION FUNCTIONS

Finit32

Falloc32

The Fi ni t 32() function initializes an allocated memory space as afielded buffer.

int
Fini t32(FBFR32 *fbfr32, FLDLEN32 buflen)

where
4 fbfr32 isapointer to an uninitialized fielded buffer
4+ bufl enisthelength of the buffer, in bytes

A call toFi ni t 32() to initialize the memory space allocated in the example above (in
the Fneeded32() section) would look like the following:

Finit32(fbfr32, Fneeded32(NF, NV));

Now f bf r 32 pointsto an initialized, empty fielded buffer. Up to Fneeded32(NF,
NV) bytes minus a small amount are available in the buffer to hold fields.

Note: Thenumbers used inthemal | oc(3) call (see the examplein the Fneeded32()
section) and Fi ni t 32() call must be the same.

Callsto Fneeded32(), mal | oc(3) and Fi ni t 32() may be replaced by asingle call to
Fal | oc32(), which allocates the desired amount of space and initializes the buffer.

FBFR32 *
Fal | oc32(FLDOCC32 F, FLDLEN32 V)

where
4 Fisthe number of fields
4 Visthe spacefor field values, in bytes

A call to Fal 1 oc32() that would replace the examples above would look like the
following:

extern FBFR32 *Fal | 0c32;

5-8 BEA MessageQ FML Programmer’s Guide

BUFFER ALLOCATION AND INITIALIZATION

Ffree32

if((fbfr32 = Fall oc32(NF, NV)) == NULL)
F_error(“pgm_name”); /* couldn't allocate buffer */

Storage allocated with Falloc32 () (or Fneeded32 (), malloc (3) and Finit32 ()
should be freed with Ffree32 ().

Ffree32 () isused to free memory space allocated as a fielded buffer.

int
Ffree32(FBFR32 * f bfr 32)

where f bf r 32 isapointer to afielded buffer
For example:
#include <fmi32.h>

if(Ffree32(fbfr32) 0)
F_error("pgm_name"); /* not fielded buffer */

Ffree32 () isrecommended asopposedtofree (3), becauseFfree32 () will invalidate
afielded buffer whereasfree (3) will not. It is necessary to invalidate fielded buffers
because malloc (3) re-uses memory that has been freed, without clearing it. Thus, if
free (3) were used, it would be possible for malloc to return a piece of memory that
looks like avalid fielded buffer, but is not.

Space for afielded buffer may a so be reserved directly. The buffer must begin on a
short boundary.

Thefollowing codeisanal ogousto the preceding example but Fneeded32 () cannot be
used to size the static buffer since it is not a macro.

/* the first line aligns the buffer */

static short buffer[500/sizeof(short)];

FBFR32 *fbfr32=(FBFR32 *)buffer;

Finit32(fbfr32, 500);

It should be emphasized that the following codeis quite wrong:
FBFR32 badfbfr;

Finit32(&badfbfr, Fneeded32(NF, NV));

BEA MessageQ FML Programmer’s Guide 5-9

5 FIELD MANIPULATION FUNCTIONS

The structure for FBFR32 is not defined in the user header files so this code will
produce a compilation error.

Fsizeof32

Fsi zeof 32() returns the size of afielded buffer in bytes:

| ong
Fsi zeof 32(FBFR32 * f bfr32)

where f bfr 32 isapointer to afielded buffer
For example:

| ong bytes;

.byi e.s = Fsi zeof 32(fbfr32);

Fsi zeof 32() returns the same number that Fneeded32() returned when the fielded
buffer was originally allocated.

Funused32

Funused32() may be used to determine how much spaceisavailablein afielded buffer
for additiona data:

| ong
Funused32(FBFR32 *f bfr32)

where f bfr 32 isapointer to afielded buffer
For example:

| ong unused;

;Jnijs;ad = Funused32(fbfr32);

Note that Funused32() does not indicate where, in the buffer, the unused bytes are
located; it indicates only the number of unused bytes.

5-10 BEA MessageQ FML Programmer’s Guide

BUFFER ALLOCATION AND INITIALIZATION

Fused32

Fused32() may be used to determine how much spaceis used in afielded buffer for
data and overhead:

| ong
Fused32(FBFR32 *f bfr 32)

where f bf r 32 isapointer to afielded buffer
For example:

| ong used,;

used = Fused32(fbfr32):

Note that Fused32() does not indicate where, in the buffer, the used bytes are located;
it indicates only the number of used bytes.

Frealloc32

At some point (such asduring the addition of anew field value) the buffer may run out
of space. Freal | oc32() can be used to increase (or decrease) the size of the buffer:

FBFR32 *
Freal | oc32(FBFR32 *fbfr32, FLDOCC32 nf, FLDLEN32 nv)

where

4 fbfr32 isapointer to afielded buffer

¢ nf isthe new number of fieldsor O

4+ nvisthe new spacefor field values, in bytes

For example:

FBFR32 *newf bfr 32;

i f((newfbfr32 = Frealloc32(fbfr32, NF+5, NV+300)) == NULL)
F_error32(“pgm_name”); /[*couldn't re-allocate space */

else
fbfr32 = newfbfr32; /* assign new pointer to old */

BEA MessageQ FML Programmer’s Guide 5-11

5 FIELD MANIPULATION FUNCTIONS

In this case, the application needed to remember the number of fields and the number
of bytes of space previously allocated for field values. Note that the arguments to
Freal | oc32() (aswith its counterpart r eal | oc(3)) are absolute values, not
increments. This example will not work if space needsto be re-allocated several times.

The following example shows a second way of incrementing the all ocated space:

/* define the increnment size when buffer out of space */
#define I NCR 400
FBFR32 *newf bf r 32;

if((newfbfr32 = Frealloc32(fbfr32, 0, Fsizeof (fbfr32)+I NCR)) ==
NULL)
F_error 32("pgm_name”); /* couldn't re-allocate space */
else
fbfr32 = newfbfr32; /* assign new pointer to old */

Notethat you do not need to know the number of fields or the amount of spacefor field
values with which the buffer was last initialized. Thus, the easiest way to increase the
sizeisto usethe current size plusthe increment as the spacefor field values. The above
exampl e could be executed as many times as needed without remembering past
executions or values. The user need not call Finit32 () after calling Frealloc32 ().

If the amount of additional space requested in the call to Frealloc32 () is contiguous
to the old buffer, newfofr32 and fbfr32 in the examples above will be the same.
However, defensive programming dictates that the user should declare newfbfr32 as
a safeguard against the case where either a new value or NULL is returned. If
Frealloc32 () fails, do not use fbfr32 again.

Note: Y ou cannot reduce the size of afielded buffer to less than the amount of space
(in bytes) currently being used in the buffer.

Functions for Moving Fielded Buffers

The only restriction on the location of fielded buffersisthat they must be aligned on a
short boundary. Otherwise, fielded buffers are position-independent and may be
moved freely around in memory.

5-12 BEA MessageQ FML Programmer’s Guide

FUNCTIONS FOR MOVING FIELDED BUFFERS

Fmove32

If src pointsto afielded buffer and dest points to an area of storage big enough to
hold it, then the following might be used to move the fielded buffer:

FBFR32 *src;
char *dest;

;Te;n:by(dest, src, Fsizeof32(src));

Thefunction mencpy (oneof the C runtime memory management functions) movesthe
number of bytesindicated by its third argument from the area pointed to by its second
argument to the area pointed to by itsfirst argument.

While mencpy may be used to copy afielded buffer, the destination copy of the buffer
looksjust like the source copy. In particular, for example, the destination copy hasthe
same number of unused bytes as the source buffer.

Frove32() acts like mencpy, but does not need an explicit length (it is computed):

int
Frove32(char *dest, FBFR32 *src)

where

4 dest isapointer to the destination buffer
4 srcisapointer to the source fielded buffer
For example:

FBFR32 *src;
char *dest;

i. f (F;mve32(dest ,src) < 0)
F_error("pgm nanme");

Frmove32() checksthat the source buffer isindeed afielded buffer, but does not modify
the source buffer in any way.

The destination buffer need not be afielded buffer (that is, it need not have been
allocated using Fal | oc32()), but it must be aligned on ashor t boundary (4-byte
alignment for FML32). Thus, Frove32() provides an aternative to Fcpy32() (see

BEA MessageQ FML Programmer’s Guide 5-13

5 FIELD MANIPULATION FUNCTIONS

Fcpy32

below) when it is desired to copy afielded buffer to a non-fielded buffer, but
Frnove32() does not check to make sure there is enough room in the destination buffer
to receive the source buffer.

Fcpy32() isused to overwrite one fielded buffer with another:

i nt
Fcpy32(FBFR32 *dest, FBFR32 *src)

where
4 dest isapointer to the destination fielded buffer
4 srcisapointer to the source fielded buffer

Fcpy32() preserves the overall buffer length of the overwritten fielded buffer; thus,
Fcpy32() isuseful for expanding or reducing the size of afielded buffer. For example:

FBFR32 *src, *dest;

i f(Fcpy32(dest, src) 0)
F_error32(“pgm_name”);

Unlike Fmove32(), where dest could point to an uninitialized area, Fcpy32 () expects
dest to point to an initialized fielded buffer (allocated using Falloc32 ()) and also
checksto seethat it is big enough to accommodate the data from the source buffer.

Note: Y ou cannot reduce the size of afielded buffer to less than the amount of space
(in bytes) currently being used in the buffer.

As with Fmove32(), the source buffer is not modified by Fcpy32 ().

5-14 BEA MessageQ FML Programmer’s Guide

FIELD ACCESS AND MODIFICATION FUNCTIONS

Field Access and Modification Functions

Fadd32

This section discusses how to update and access fielded buffers using the field types
of the fields without doing any conversions. The functions that allow you to convert
data from one type to another upon transfer to/from a fielded buffer are listed under
“Conversion Functions” later in this chapter.

TheFadd32() function adds a new field value to the fielded buffer.

int
Fadd32(FBFR32 *fbfr32, FLDI D32 fieldid, char *val ue, FLDLEN32 [en)

where
¢ fbfr32 is a pointer to a fielded buffer
¢ fieldidis afield identifier

4 val ue is a pointer to a new value. Its type is showntas *, but when it is used,
its type must be the same type as the value to be added (see below)

4 | enis the length of the value if its typeHSD_CARRAY

If no occurrence of the field exists in the buffer, then the field is added. If one or more
occurrences of the field already exist, then the value is added as a new occurrence of
the field, and is assigned an occurrence number 1 greater than the current highest
occurrence. (To add a specific occurrerredg32() must be used.)

Fadd32(), like all other functions that take or return a field value, expects a pointer to
a field value, never the value itself.

If the field type is such that the field length is fixed (short, long, char, float, or double)
or can be determined (string), the field length need not be given (it is ignored). If the
field type is a character array, the length must be specified; the length is defined as type
FLDLEN32. For example:

FLDI D32 fieldid, Fldid32;
FBFR32 *fbfr32;

BEA MessageQ FML Programmer’s Guide 5-15

5 FIELD MANIPULATION FUNCTIONS

fieldid = FIdid32("fiel dnane");
i f(Fadd32(fbfr32, fieldid, "new value", (FLDLEN32)9) < 0)
F _error32("pgm nane");

gets the field identifier for the desired field and adds the field value to the buffer.

It isassumed (by default) that the native type of thefield isacharacter array so that the
length of the value must be passed to the function. If the value being added is not a
character array, the type of val ue must reflect the type of the value it points to; for
instance, the following example adds along field value:

long Ival;

| val = 123456789;
i f(Fadd32(fbfr32, fieldid, Ival, (FLDLEN32)0) < 0)
F_error32("pgm nane");

For character array fields, null fields may be indicated by alength of 0. For string
fields, the null string may be stored sincethe NULL terminating byteis actually stored
as part of the field value: a string consisting of only the NULL terminating byteis
considered to have alength of 1. For all other types (fixed length types), you may
choose some specia valuethat isinterpreted by the applicationasaNULL, but thesize
of thevaluewill be taken from itsfield type (e.g., length of four for al ong) regardless
of what value is actually passed. Passing aNULL value address will result in an error
(FEI NVAL).

Fappend32

5-16

The Fappend32() function appends a new field value to the fielded buffer.

i nt

Fappend32(FBFR32 *fbfr32, FLDI D32 fieldid, char *val ue, FLDLEN32
| en)

where

¢ fbfr32 isapointer to afielded buffer

¢ fieldidisafieldidentifier

4 val ueisapointer toanew vaue. Itstypeisshownaschar *, but whenitisused,
its type must be the same type as the value to be appended (see below)

BEA MessageQ FML Programmer’s Guide

FIELD ACCESS AND MODIFICATION FUNCTIONS

4 | enisthelength of the valueif itstypeis FLD_CARRAY

Fappend32() appends a new occurrence of thefield fi el di d with avalue located at
val ue to the fielded buffer and puts the buffer into append mode. Append mode
provides optimized buffer construction for large buffers constructed of many rows of
acommon set of fields. A buffer that isin append mode isrestricted as to what
operations may be performed on the buffer. Only calls to the following FML 32
routines are allowed in append mode: Fappend32(), Fi ndex32(), Funi ndex32(),

Ff r ee32(), Fused32(), Funused32() and Fsi zeof 32(). Callsto Fi ndex32() or

Funi ndex32() will end append mode. The following example shows the construction
of a500-row buffer with five fields per row using Fappend32().

for (i=0; i 500 ;i++) {
if ((Fappend32(fbfr32, LONGFLD1, &l val 1[i], (FLDLEN32)0) < 0) ||
I

(Fappend32(fbfr32, LONGFLD2, & val2[i], (FLDLEN32)0) < 0)
(Fappend32(fbfr32, STRFLD1, &stril[i], (FLDLEN32)0) < 0) ||
(Fappend32(fbfr32, STRFLD2, &str2[i], (FLDLEN32)0) < 0) ||
(Fappend32(fbfr32, LONGFLD3, & val 3[i], (FLDLEN32)0) < 0)) {
F_error32("pgm name");
br eak;

}
}
Fi ndex32(fbfr32, 0);

Fappend32(), likeall other functionsthat take or return afield value, expects a pointer
to afield value, never the value itself.

If thefield type issuch that the field length is fixed (short, long, char, float, or double)
or can be determined (string), the field length need not be given (it isignored). If the
field typeisacharacter array, thelength must be specified; thelength isdefined astype
FLDLEN32.

It isassumed (by default) that the native type of thefield isacharacter array so that the
length of the value must be passed to the function. If the value being appended is not
acharacter array, the type of val ue must reflect the type of the value it pointsto.

For character array fields, null fields may be indicated by alength of 0. For string
fields, thenull string may be stored since the NUL L terminating byteisactually stored
as part of thefield value: a string consisting of only the NULL terminating byte is
considered to have alength of 1. For al other types (fixed length types), you may
choose some special valuethat isinterpreted by the application asaNULL, but the size
of the value will be taken from itsfield type (e.g., length of four for along) regardless
of what valueisactually passed. Passing aNULL value addresswill resultin an error,
(FEI NVAL).

BEA MessageQ FML Programmer’s Guide 5-17

5 FIELD MANIPULATION FUNCTIONS

Fchg32

Fchg32() changes the value of afield in the buffer.

int
Fchg32(FBFR32 *fbfr32, FLDI D32 fieldid, FLDOCC32 oc, char *val ue,
FLDLEN32 /en)

where

¢ fbfr32 isapointer to afielded buffer
¢ fieldidisafieldidentifier

4 oc isthe occurrence number of thefield
¢

val ueisapointer to anew vaue. Itstypeisshownaschar *, but whenitisused,
its type must be the same type as the value to be added (see Fadd32())

4 | enisthelength of thevalueif itstypeis FLD_CARRAY
For example, to change afield of type car r ay to anew value stored in val ue:

FBFR32 *f bfr32;
FLDI D32 fiel did;
FLDOCC32 oc;
FLDLEN32 | en;
char val ue[50] ;

strcpy(val ue, "new val ue");

flen = strlen(val ue);

i f(Fchg32(fbfr32, fieldid, oc, value, len) < 0)
F _error32("pgm nane");

If oc is- 1, then thefield value is added as anew occurrenceto the buffer. If oc isOor
greater and the field is found, then the field value is modified to the new value
specified. If oc is0 or greater and the field is not found, then NULL occurrences are
added to the buffer until the value can be added as the specified occurrence. For
example, changing field occurrence 3 for afield that does not exist on a buffer will
cause three NULL occurrences to be added (occurrences 0, 1 and 2), followed by
occurrence 3 with the specified field value. Null values consist of the NULL string
“\0” (1 byte in length) for string and character valuefr long and short fields,. 0
for float and double values, and a zero-length string for a character array.

5-18 BEA MessageQ FML Programmer’s Guide

FIELD ACCESS AND MODIFICATION FUNCTIONS

Fcmp32

Fdel32

The new or modified valueiscontained in val ue. If it isacharacter array, itslengthis
giveninlen (I en isignored for other field types). If the value pointer isNULL and
thefield isfound, then thefield is deleted. If the field occurrence to be deleted is not
found, it is considered an error (FNOTPRES).

The buffer must have enough room to contain the modified or added field value, or an
error isreturned (FNOSPACE).

Fcrmp32() comparesthe field identifiers and field values of two fielded buffers.

int
Fcnp32(FBFR32 * fbfr321, FBFR32 *fbfr322)

where
¢ fbfr321and fbfr322 are pointersto fielded buffers

The function returns a 0 if the buffers are identical; it returnsa- 1 on any of the
following conditions:

¢ thefieldidofafbfr321fiddislessthanthefieldid of the corresponding field
of fbfr322

4 thevalueof afbfr321 field isless than the value of the corresponding field of
fbfr322

¢ f{bfr1isshorter than f bfr 322

Fcrp32() returnsa 1 if the reverse of any of the above conditionsis true (for example,
if thefield ID of af bfr 322 field isless than the field ID of the corresponding field of
fbfr321, and so on).

The Fdel 32() function deletes the specified field occurrence.

int
Fdel 32(FBFR32 *fbfr32, FLDI D32 fieldid, FLDOCC32 oc)

BEA MessageQ FML Programmer’s Guide 5-19

5 FIELD MANIPULATION FUNCTIONS

where

¢ fbfr32 isapointer to afielded buffer

¢ fieldidisafieldidentifier

4 oc isthe occurrence number

For example,

FLDOCC32 occurrence;

.oc;:u.rrence=0;

i f(Fdel 32(fbfr32, fieldid, occurrence) < 0)
F_error32("pgm nane");

deletes the first occurrence of the field indicated by the specified field identifier. If it
does not exit, the function returns - 1 (Fer r or 32() is set to FNOTPRES).

Fdelall32

Fdel al | 32() deletes all occurrences of the specified field from the buffer:

int
Fdel al | 32(FBFR32 *fbfr32, FLD D32 fi el did)

where

¢ fbfr32 isapointer to afielded buffer
¢ fieldidisafieldidentifier

For example:

i f(Fdelall32(fbfr32, fieldid) < 0)
F _error32("pgm nane"); /* field not present */

If the field is not found, the function returns - 1 (Fer r or 32() is set to FNOTPRES).

5-20 BEA MessageQ FML Programmer’s Guide

FIELD ACCESS AND MODIFICATION FUNCTIONS

Fdelete32

Ffind32

Fdel et e32() deletes all occurrences of all fieldslisted in the array of field identifiers,
fieldid[]:

int

Fdel et e32(FBFR32 *fbfr32, FLDI D32 *fi el di d)

where
4 fbfr32 isapointer to afielded buffer
¢ fieldidisapointer tothelist of field identifiersto be deleted

Theupdateisdonedirectly to thefielded buffer. The array of field identifiers does not
need to be in any specific order, but the last entry in the array must be field identifier
0 (BADFLDI D). For example:

#i nclude "fld.tbl.h"
FBFR32 *dest ;
FLDI D32 fi el di d[20];

fieldid[O] A /* fieldid for field A */
fieldid[1] D; /* fieldid for field D */
fieldid[f2] = BADFLDI D; /* sentinel value */
i f(Fdel ete32(dest, fieldid) < 0)

F error32("pgm nanme");

If the destination buffer hasfields A, B, C, and D, this example will result in a buffer
that contains only occurrences of fields B and C.

Fdel et e32() isamore efficient way of deleting several fields from abuffer than using
severa Fdel al | 32() calls.

Ff i nd32() finds the value of the specified field occurrence in the buffer:

char *
Ffi nd32(FBFR32 *fbfr32, FLDI D32 fieldid, FLDOCC32 oc, FLDLEN32
* [en)

where

BEA MessageQ FML Programmer’s Guide 5-21

5 FIELD MANIPULATION FUNCTIONS

5-22

¢ fbfr32 isapointer to afielded buffer
¢ fieldidisafieldidentifier

4 oc isthe occurrence number

4 | enisthelength of the value found

In the declaration above the return value to Ff i nd32() is shown as a character pointer
datatype (char * in C). The actual type of the pointer returned is the same as the type
of the value it points to.

An example of the use of the functionis:

#include "fld.thl.h"
FBFR32 *f bfr32;
FLDLEN32 | en;

char* Ffind32, *val ue;

i f((val ue=Ffi nd32(fbfr32, ZIP,0, &en)) == NULL)
F _error32("pgm nane");

If thefield isfound, itslength isreturned in| en (if 1 en isNULL, the length is not
returned), and its location is returned as the value of the function. If thefield is not
found, NULL isreturned, and Fer r or 32() is set to FNOTPRES.

Ffi nd32() isuseful for gaining “read-only” access to a field. The value returned by
Ffi nd32() should not be used to modify the buffer. Field value modification should be
done only by the functioradd32() or Fchg32().

The value returned bsf i nd32() is valid only so long as the buffer remains
unmodified. The value is guaranteed to be aligned on a short boundary but may not |
aligned on a long or double boundary, even if the field is of that type (see the
conversion functions described later in this document for aligned values). On
processors that require proper alignment of variables, referencing the value when n
aligned properly will cause a system error, as in the following example:

long *11,12;
FLDLEN32 | engt h;
char *Ffind32;

if((l1=(long *)Ffind32(fbfr32, zIP, 0, & ength)) == NULL)
F _error32("pgm nanme");

el se
12 = *|1;

and should be re-written as:

BEA MessageQ FML Programmer’s Guide

FIELD ACCESS AND MODIFICATION FUNCTIONS

if((l1l==(long *)Ffind32(fbfr32, zIP, 0, & ength)) == NULL)
F _error32("pgm nane");

el se
mencpy(& 2,11, sizeof (long));

Ffindlast32

Thisfunction findsthelast occurrence of afield in afiel ded buffer and returnsapointer
to the field, as well asthe occurrence number and length of the field occurrence:

*
(I;P?:]dl ast 32(FBFR32 *fbfr32, FLDI D32 fiel did, FLDOCC32 * oc, FLDLEN32
*[en)

where

4 fbfr32 isapointer to afielded buffer

¢ fieldidisafiedidentifier

4 oc isapointer to the occurrence number of the last field occurrence found

4 | enisapointer to the length of the value found

In the declaration abovethereturn valueto Ff i ndl ast isshown asacharacter pointer
datatype (char * in C). The actual type of the pointer returned is the same as the type
of the value it points to.

Ffi ndl ast 32() actslikeFf i nd32(), except that you do not specify afield occurrence.
Instead, both the occurrence number and the value of the last field occurrence are
returned. However, if you specify NULL for occurrence on calling the function, the
occurrence number will not be returned.

The value returned by Ff i ndl ast 32() isvalid only as long as the buffer remains
unchanged.

Ffindocc32

Ff i ndocc32() looks at occurrences of the specified field on the buffer and returnsthe
occurrence number of the first field occurrence that matches the user-specified field
value:

BEA MessageQ FML Programmer’s Guide 5-23

5 FIELD MANIPULATION FUNCTIONS

FLDOCC32
Ffindocc32(FBFR32 *fbfr32, FLDI D32 fieldid, char *value, FLDLEN32
len;)

where
¢ fbfr32 isapointer to afielded buffer
¢ fieldidisafieldidentifier

4 val ueisapointer to anew vaue. Itstype is shown as char *, but when it is used,
its type must be the same type as the value to be added (see Fadd32())

4 | enisthelength of thevalueif typecarr ay

For example,

#include "fld.tbl.h"
FBFR32 *f bfr32;
FLDOCC32 oc;

| ong zi pval ue;

zi pval ue = 123456;
i f((oc=Ffindocc32(fbfr32,zI P, &i pval ue, 0)) < 0)
F_error32("pgm nane");

would set oc to the occurrence for the specified zip code.
Regular expressions are supported for string fields. For example,

#include "fld.tbl.h"
FBFR32 *fbfr32;
FLDOCC32 oc;

char *nane;

name = "J.*"
if ((oc = Ffindocc32(fbfr32, NAME, name, 1)) < 0)
F error("pgmnane");

would set oc to the occurrence of NAVE that starts with “J”.

Note: To enable pattern matching on strings, the fourth argumett tedocc32()
must be nonzero. If it is zero, a simple string compare is performed. If the field
value is not found, 1 is returned.

5-24 BEA MessageQ FML Programmer’s Guide

FIELD ACCESS AND MODIFICATION FUNCTIONS

Fget32

int
Fget 32(FBFR32

For upward compatibility, a circumflex () and dollar sign ($) are assumed to

surround the regular expression; thus, the above exampleis actually interpreted as

“NJ.%)$”. This means that the regular expression must match the entire string value in
the field.

Fget 32() should be used to retrieve a field from a fielded buffer when the value is to
be modified:

*fbfr32, FLDID32 fieldid, FLDOCC32 oc, char */oc, FLDLEN32 *naxl en)
where

¢ fbfr32 is a pointer to a fielded buffer

¢ fieldidis afield identifier

4 oc is the occurrence number

4 /oc is a pointer to a buffer to copy the field value into

4+ nax/ enis a pointer to the length of the source buffer on calling the function, and a

pointer to the length of the field on return

The caller provideSget 32 with a pointer to a private buffer, as well as the length of
the buffer. Ifmax! en is specified as NULL, then it is assumed that the destination
buffer is large enough to accommodate the field value, and its length is not returned.

Fget 32() returns an error if the desired field is not in the buffelof PRES), or if the
destination buffer is too smak OSPACE). For example,

FLDLEN32 | en;
char val ue[100];

| en=si zeof (val ue) ;
if(Fget32(fbfr32, zZIP, 0, value, &en) < 0)
F_error32("pgm nane");

gets the zip code assuming it is stored as a character asrayy) orstri ng. Ifitis
stored as &ong, then it would be retrieved by:

BEA MessageQ FML Programmer’s Guide 5-25

FIELD MANIPULATION FUNCTIONS

FLDLEN32 | en;
| ong val ue;

I en = sizeof (val ue);
i f(Fget32(fbfr32, zIP, 0, value, & en) < 0)
F _error32("pgm nane");

Fgetalloc32

5-26

LikeFget 32(), Fget al | oc32() findsand makesacopy of abuffer field, but it acquires
space for thefield viaacall to mal | oc(3):

char *
Fget al | oc32(FBFR32 *fbfr32, FLDI D32 fieldid, FLDOCC32 oc, FLDLEN32
*extral en)

where

¢ fbfr32 isapointer to afielded buffer
¢ fieldidisafieldidentifier

4 oc isthe occurrence number
¢

ext r al enisapointer to the additional length to be acquired on calling the
function, and a pointer to the actual length acquired on return

In the declaration above the return value to Fget al | oc32() is shown as a character
pointer datatype (char * in C). The actua type of the pointer returned isthe same as
the type of the value to which it points.

On success, Fget al | oc32() returnsavalid pointer to the copy of the properly aligned
buffer field; on error it returns NULL. If nal | oc(3) fails, Fget al | oc32() returns an
error (Ferr or 32() is set to FMALLOC).

Thelast parameter to Fget al | oc32() specifiesan extraamount of spaceto beacquired
if, for instance, the gotten value is to be expanded before re-insertion into the fielded
buffer. On success, the length of the allocated buffer isreturned in ext r al en. For
example:

FLDLEN32 extral en;
FBFR32 *fiel dbfr
char *Fgetal |l oc32;

BEA MessageQ FML Programmer’s Guide

FIELD ACCESS AND MODIFICATION FUNCTIONS

extralen = O;
if (fieldbfr = (FBFR32 *)Fgetal |l oc32(fbfr32, ZIP, 0, &xtralen) ==
NULL)

F _error32("pgm nane");

It is the responsibility of the caller to f r ee space acquired by Fget al | oc32().

Fgetlast32

Fget | ast 32() is used to retrieve the last occurrence of afield from afielded buffer
when the value isto be modified:

int
Fgetl ast 32(FBFR32 *fbfr32, FLDID32 fieldid, FLDOCC32 *oc, char */oc, FLDLEN32
* max/ en)

where

4 fbfr32 isapointer to afielded buffer

¢ fieldidisafiedidentifier

4 oc isapointer to the occurrence number of the last field occurrence
4 | oc isapointer to abuffer to copy the field value into
¢

maxl en isapointer to thelength of the source buffer on calling the function, and a
pointer to the length of the field on return

The caller provides Fget | ast 32() with a pointer to a private buffer, as well asthe
length of the buffer. Fget | ast 32() actslike Fget 32(), except that you do not specify
afield occurrence. Instead, both the occurrence number and the value of the last field
occurrence are returned. However, if you specify NULL for occ on calling the
function, the occurrence number will not be returned.

Fnext32

Fnext 32() finds the next field in the buffer after the specified field occurrence:
int
Fnext 32(FBFR32 *fbfr32, FLDID32 *fijeldid, FLDOCC32 *oc, char *value, FLDLEN32
* [en)

BEA MessageQ FML Programmer’s Guide 5-27

5 FIELD MANIPULATION FUNCTIONS

where

¢ fbfr32 isapointer to afielded buffer

4 fieldidisapointer toafieldidentifier

4 oc isapointer to the occurrence number

4 val ueisapointer of the same type as the value contained in the next field
4 | enisapointer to the length of * val ue

A fiel di d of FI RSTFLDI D should be specified to get the first field in a buffer; the
field identifier and occurrence number of the first field occurrence are returned in the
corresponding parameters; if thefieldisnot NULL, itsvalueis copied into the memory
location addressed by the val ue pointer; thel en parameter is used to determine if
val ue has enough space allocated to contain the field value (Fer r or 32() is set to
FNOSPACE if it does not); and, the length of the valueisreturned in thel en parameter.
Note that if the value of the field is non-null, then the | en parameter is also assumed
to contain the length of the currently allocated space for val ue.

If thefield valueisNULL, then the val ue and | engt h parameters are not changed.

If no morefields are found, Fnext 32() returns 0 (end of buffer) andfi el di d,
occurrence, and val ue are left unchanged.

If the val ue parameter isnot NULL, thel engt h parameter is also assumed to be
non-NULL.

Thefollowing example reads al field occurrences in the buffer:

FLDI D32 fieldid;
FLDOCC32 occurrence;
char *val ue[100] ;
FLDLEN32 | en;

for(fieldid=FIRSTFLD D, | en=si zeof (val ue) ;
Fnext 32(f bfr32,fieldid, &ccurrence, val ue, & en) > 0;
| en=si zeof (val ue)) {
/* code for each field occurrence */

5-28 BEA MessageQ FML Programmer’s Guide

FIELD ACCESS AND MODIFICATION FUNCTIONS

Fnum32

Foccur32

Fnun82() returnsthe number of fields contained in the specified buffer, or - 1 on error:

FLDOCC32
Fnun(FBFR32 * f bf r 32)

where
¢ fbfr32 is a pointer to afielded buffer
For example:
if((cnt=FnunB2(fbfr32)) < 0)
F error32("pgm nane");
el se

fprintf(stdout,"%d fields in buffer\n",cnt);

would print the number of fieldsin the specified buffer.

Foccur 32() returns the number of occurrences for the specified field in the buffer:

FLDOCC32
Foccur32(FBFR32 *fbfr32, FLDI D32 fiel did)

where
4 fbfr32 isapointer to afielded buffer
¢ fieldidisafiedidentifier

Zeroisreturned if thefield does not occur in the buffer and - 1 isreturned on error. For
example:

FLDOCC32 cnt;

if((cnt=Foccur32(fbfr32,2ZIP)) < 0)
F _error32("pgm nane");
el se
fprintf(stdout,"Field ZIP occurs % times in buffer\n",cnt);

would print the number of occurrences of the field zI P in the specified buffer.

BEA MessageQ FML Programmer’s Guide 5-29

5 FIELD MANIPULATION FUNCTIONS

Fpres32

Fpr es32() returnstrue (1) if the specified field occurrence exists and false (0)
otherwise:

int
Fpres32(FBFR32 *fbfr32, FLD D32 fieldid, FLDOCC32 oc)

where

¢ fbfr32 isapointer to afielded buffer
¢ fieldidisafieldidentifier

4 oc isthe occurrence number

For example:

Fpres32(fbfr32,ZIP,0)

would return true if the field zI P existsin the fielded buffer pointed to by f bf r 32.

Fvals32 and Fvali32

Fval s32() workslike Ff i nd32() for st ri ng values but guaranteesthat a pointer to a
valueis returned. Fval | 32() workslike Ff i nd32() for | ong and shor t values, but
returns the actual value of thefield asal ong, instead of a pointer to the value.

char*
Fval s32(FBFR32 *fbfr32, FLDI D32 fi el di d, FLDOCC32 oc)

char*

Fval | 32(FBFR32 *fbfr32, FLDI D32 fi el di d, FLDOCC32 oc)
where in both functions

¢ fbfr32 isapointer to afielded buffer

¢ fieldidisafieldidentifier

4 oc isthe occurrence number

5-30 BEA MessageQ FML Programmer’s Guide

BUFFER UPDATE FUNCTIONS

For Fval s32(), if the specified field occurrence is not found, the NULL string, \ 0, is
returned. This function isuseful for passing the value of afield to another function
without checking thereturnvalue. Thisfunctionisvalid only for fieldsof type st ri ng;
the NULL string is automatically returned for other field types (i.e., no conversionis
done).

For Fval I 32(), if the specified field occurrenceis not found, then O is returned. This
function is useful for passing the value of afield to another function without checking
the return value. Thisfunction isvalid only for fields of type | ong and short; 0 is
automatically returned for other field types (that is, no conversion is done).

Buffer Update Functions

Thefunctionslisted in this section access and update entire fielded buffers, rather than
individual fieldsin the buffers. These functions use at most three parameters, dest,
src, and fieldid, where

4 dest isapointer to a destination fielded buffer
4 srcisapointer to asource fielded buffer

¢ fieldidisafiedidentifier or an array of field identifiers

Fconcat32

Fconcat 32() adds fields from the source buffer to the fields that already exist in the
destination buffer.

int

Fconcat 32(FBFR32 *dest, FBFR32 *src)

Occurrencesin the destination buffer are maintained (i.e., retained and not modified)
and new occurrences from the source buffer are added with greater occurrence

numbersthan any existing occurrencesfor each field (the fieldsare maintained in field
identifier order).

In the following example:

BEA MessageQ FML Programmer’s Guide 5-31

5 FIELD MANIPULATION FUNCTIONS

Fjoin32

FBFR32 *src, *dest;

i f(Fconcat 32(dest,src) < 0)
F_error32("pgm nane");

if dest hasfields A, B, and two occurrencesof C, and sr ¢ hasfields A, C, and D, the
resultant dest will have two occurrences of field A (destination field A and source
field A), field B, three occurrences of field C (two from dest and thethird fromsr c),
and field D.

This operation will fail if there is not enough space to contain the new fields
(FNOSPACE); in this case, the destination buffer remains unchanged.

Fj oi n32() isused to join two fielded buffers based on matching fieldid/occurrence.

i nt

Fj oi n32(FBFR32 *dest, FBFR32 *src)

For fields that match on fieldid/occurrence, thefield value isupdated in the destination
buffer with the value from the source buffer. Fields in the destination buffer that have
no corresponding fieldid/occurrence in the source buffer are deleted. Fieldsin the
source buffer that have no corresponding fieldid/occurrence in the destination buffer
are not added to the destination buffer. Thus,

i f(Fjoin32(dest,src) < 0)
F error32("pgm name");

Using the input buffersin the previous example will result in a destination buffer that
has source field value A and source field value C. Thisfunction may fail due to lack
of spaceif the new values are larger than the old (FNOSPACE); in this case, the
destination buffer will have been modified. However, if this happens, the destination
buffer may be re-allocated (using Fr eal | oc32()) andtheFj oi n32() function may be
repeated. (Even if the destination buffer has been partially updated, repeating the
function will give the correct results.)

5-32 BEA MessageQ FML Programmer’s Guide

BUFFER UPDATE FUNCTIONS

Fojoin32

Fproj32

Foj oi n32() issimilar to Fj oi n32(), but it does not delete fields from the destination
buffer that have no corresponding fieldid/occurrence in the source buffer.

int

Foj oi n32(FBFR32 *dest, FBFR32 *src)

Note that fields that exist in the source buffer that have no corresponding

fieldid/occurrence in the destination buffer are not added to the destination buffer. For
example:

i f(Fojoin32(dest,src) < 0)
F _error32("pgm nane");

Using the input buffers from the previous example, dest will contain the source field
value A, the destination field value B, the source field value C, and the second
destination field value C. Aswith Fj oi n32(), thisfunction can fail for lack of space
(FNOSPACE) and can be re-issued again after allocating more space to compl ete the
operation.

Fpr oj 32() isused to update a buffer in place so that only the desired fields are kept (in
other words, so that the result is a projection on specified fields).

int

Fproj 32(FBFR32 *fbfr32, FLDI D32 *fiel did)

These fields are specified in an array of field identifiers passed to the function. The
update is performed directly in the fielded buffer. For example:

#i nclude "fld.thl.h"
FBFR32 *fbfr32;
FLDI D32 fi el di d[20];

fieldid[O] A /* fieldid for field A */
fieldid[1] D; /* fieldid for field D */
fieldid[2] = BADFLDI D; /* sentinel value */
if(Fproj32(fbfr32, fieldid) < 0)

F _error32("pgm nane");

BEA MessageQ FML Programmer’s Guide 5-33

5 FIELD MANIPULATION FUNCTIONS

If the buffer hasfields A, B, C, and D, theexampleresultsin a buffer that contains only
occurrences of fields A and D. Note that the entriesin the array of field identifiers do
not need to be in any specific order, but the last value in the array of field identifiers
must be field identifier 0 (BADFLDI D).

Fprojcpy32

Fpr oj cpy32() issimilar to Fpr oj 32() but the projection is done into a destination
buffer.

i nt

Fproj cpy32(FBFR32 *dest, FBFR32 *src, FLDI D32 *fieldid)

Any fieldsin the destination buffer arefirst del eted and the results of the projection on
the source buffer are copied into the destination buffer. Using the above example,

i f(Fprojcpy32(dest, src, fieldid) < 0)

F _error32("pgm nanme");
will place the results of the projection in the destination buffer. The entriesin the array
of field identifiersmay bere-arranged; the field identifier array issorted if they are not
in numeric order.

Fupdate32

5-34

Fupdat e32() updates the destination buffer with the field values in the source buffer.

int

Fupdat e32(FBFR32 *dest, FBFR32 *src)

For fields that match on fieldid/occurrence, thefield value isupdated in the destination
buffer with the value in the source buffer (like Fj oi n32()). Fieldsin the destination
buffer for which there are no corresponding fields on the source buffer are | eft
untouched (asin Foj oi n32()). Fieldsin the source buffer for which there are no
corresponding field on the destination buffer are added to the destination buffer (asin
Fconcat 32()). For example:

i f (Fupdat e32(dest,src) < 0)
F error32("pgm nane");

BEA MessageQ FML Programmer’s Guide

CONVERSION FUNCTIONS

If the sr ¢ buffer hasfidlds A, C, and D, and the dest buffer hasfields A, B, and two
occurrences of C, the updated destination buffer will contain: the sourcefield value A,
the destination field value B, the source field value C, the second destination field
vaue C, and the source field value D.

Conversion Functions

FML32 providesaset of routinesthat perform data conversion upon reading or writing
afielded buffer.

Generally, the functions behave like their non-conversion counterparts, except that
they provide conversion from a user type to the native field type when writing to a
buffer, and from the native type to a user type when reading from a buffer.

The nativetype of afield isthetype specified for it initsfield table entry and encoded
initsfield identifier. (The only exception to this rule is CFf i ndocc32(), which,
although it is aread operation, converts from the user-specified type to the native type
before calling Ff i ndocc32().) The function names are the same as their
non-conversion FML 32 counterparts except that they have a“C” prefix.

CFadd32

The CFadd32() function adds a user supplied item to a buffer creating a new field
occurrence within the buffer:

ICgfaddBZ(FBFR32 *fbfr32, FLDI D32 fiel did, char *val ue, FLDLEN32 / en,
int type)
where
¢ fbfr32 is a pointer to a fielded buffer
fiel didis the field identifier of the field to be added

¢
4 val ue is a pointer to the value to be added
¢

I en is the length of the value, if of typerr ay

BEA MessageQ FML Programmer’s Guide 5-35

5 FIELD MANIPULATION FUNCTIONS

CFchg32

int

4+ typeisthetype of thevalue

Before the field addition, the dataitem is converted from a user supplied type to the
type specified in the field table as the fielded buffer storage type of the field. If the
sourcetypeis FLD_CARRAY (character array), the length argument should be set to the
length of the array. For example,

i f(CFadd32(fbfr32,ZIP,"12345", (FLDLEN32) 0, FLD _STRI NG < 0)
F _error32("pgm name");

If the zI P (zip code) field were stored in afielded buffer asalong integer, the function
would convert “12345” to a long integer representation, before adding it to the fielded
buffer pointed to by bf r 32. (Note that the field value length is given as 0 since the
function can determine it; the length is needed only for Btie CARRAY.) The

following code fragment:

I ong zipval;

zi pval = 12345;
i f(CFadd32(fbfr32, ZI P, &i pval , (FLDLEN32) 0, FLD_LONG < 0)
F _error32("pgm nane");

puts the same value into the fielded buffer, but does so by presenting itras a
instead of as at ri ng. Note that the value must first be put into a variable, since C
does not permit the constructl&345L. CFadd32() returnsl on success, and. on
error, in which cas€er r or 32() is set appropriately.

The functionCFchg32() acts likeCFadd32(), except that it changes the value of a field
(after conversion of the supplied value):

CFchg32(FBFR32 *fbfr32, FLDI D32 fieldid, FLDOCC32 oc, char *val ue, FLDLEN32 /en,

int type)

where
¢ fbfr32 is apointer to a fielded buffer
¢ fieldidis the field identifier of the field to be changed

4 oc is the occurrence number of the field to be changed

5-36 BEA MessageQ FML Programmer’s Guide

CONVERSION FUNCTIONS

4 val ue isapointer to the value to be added
4 | enisthelength of the value, if of typecarr ay
¢ typeisthetype of the value

For example,

FLDOCC32 occurrence;
I ong zipval;
zi pval = 12345;
occurrence = 0;
i f(CFchg32(fbfr32,Zl P,occurrence, &i pval , (FLDLEN32) 0, FLD LONG) <
0)
F _error32("pgm nanme");

would change the first occurrence (occurrence 0) of field zI P to the specified value,
doing any needed conversion.

If the specified occurrence is not found, then null occurrences are added to pad the
buffer with multiple occurrences until the value can be added as the specified
occurrence.

CFget32

Crget 32() isthe conversion analog of Fget 32(). The differenceisthat it copiesa
converted value to the user-supplied buffer:

IClrlz]et 32(FBFR32 *fbfr32, FLDI D32 fieldid, FLDOCC32 oc, char *buf, FLDLEN32 */en,
int type)

where

4 fbfr32 isapointer to afielded buffer

¢ fieldidisthefield identifier of the field to be retrieved

4 oc isthe occurrence number of the field

4 buf isapointer to the post-conversion buffer

4 | enisthelength of thevalue, if of typecarr ay

BEA MessageQ FML Programmer’s Guide 5-37

5 FIELD MANIPULATION FUNCTIONS

4+ typeisthetype of thevalue

Using the previous example,

FLDLEN32 | en;

| en=si zeof (zi pval) ;
i f(CFget 32(fbfr32, ZI P, occurrence, &i pval , & en, FLD LONG < 0)

F _error32("pgm nanme");

would get the value that was just stored in the buffer, no matter what format, and
convert it back to along integer. If the length pointer is NULL, then the length of the
value retrieved and converted is not returned.

CFgetalloc32

CFget al | oc32() islikeFget al | oc32(); you areresponsiblefor freeing thenal | oc'd
space for the returned (converted) value with f r ee:

char *

CFgetal | oc32(FBFR32 *fbfr32, FLDI D32 fieldid, FLDOCC32 oc, int type, FLDLEN32

*extral en)

where

L4

¢
¢
¢
¢

f bf r 32 isapointer to afielded buffer

fiel di disthefield identifier of the field to be converted
oc isthe occurrence number of thefield

t ype isthe type to which the vaue is converted

ext r al en on caling the function is a pointer to the extra all ocation amount; on
return, it isa pointer to the size of the total allocated area

In the declaration above the return value to CFget al | oc32() is shown as a character
pointer datatype (char * in C). The actua type of the pointer returned isthe same as
the type of the value to which it points.

The previously stored value could be retrieved into space allocated automatically for
you by the following code:

char *val ue;
FLDLEN32 extra;

5-38 BEA MessageQ FML Programmer’s Guide

CONVERSION FUNCTIONS

extra = 25;
i f((val ue=CFgetal | oc32(fbfr32,ZI P, 0, FLD LONG, &xtra)) == NULL)
F _error32("pgm nane");

Thevaueext r ainthefunction call indicatesthat the function should not only allocate
enough spacefor the retrieved value but an additional 25 bytes and the total amount of
space alocated will be returned in this variable.

CFfind32

CFf i nd32() returns a pointer to a converted value of the desired field:

char *
CFfind32(FBFR32 *fbfr32, FLDI D32 fieldid, FLDOCC32 oc, FLDLEN32
len, int type)

where
4 fbfr32 isapointer to afielded buffer

¢ fieldidisthefield identifier of the field to be retrieved
4 oc isthe occurrence number of thefield

4 | enisthelength of the post-conversion value

4 typeisthetypeto which thevalueis converted

In the declaration abovethereturn valueto CFf i nd32() isshown as acharacter pointer
datatype (char * in C). The actual type of the pointer returned is the same as the type
of the value to which it points.

Like Ff i nd32(), this pointer should be considered read only. For example:

char *CFfind32;
FLDLEN32 | en;
I ong *val ue;

if((value=(long *)CFfind32(fbfr32,Zl P,occurrence, & en, FLD_ LONG)) == NULL)
F_error32("pgm nanme");

BEA MessageQ FML Programmer’s Guide 5-39

5 FIELD MANIPULATION FUNCTIONS

would return apointer to al ong containing the value of the first occurrence of thezi P
field. If the length pointer isNULL, then the length of the value found is not returned.
Unlike Ff i nd32(), the value returned is guaranteed to be properly aligned for the
corresponding user-specified type.

Note: Theduration of the validity of the pointer returned by CFf i nd32() is
guaranteed only until the next buffer operation, even if it is non-destructive,
since the converted value is retained in a single private buffer. This differs
from the value returned by Ff i nd32(), which is guaranteed until the next
modification of the buffer.

CFfindocc32

CFf i ndocc32() looksat occurrences of the specified field in the buffer and returnsthe
occurrence number of the first field occurrence that matches the user-specified field
value &fter it has been converted (it is converted to the type of the field identifier).

FLDOCC32
CFf i ndocc32(FBFR32 *fbfr32, FLDID32 fieldid, char *val ue, FLDLEN32 /en, int type)

where

¢ fbfr32 isapointer to afielded buffer

¢ fieldidisthefieldidentifier of thefield to be retrieved
4 val ueisapointer to the unconverted matching value
4 | enisthelength of the unconverted matching value
4 typeisthetype of the unconverted matching value
For example,

#include "fld.tbl.h"

FBFR32 *f bfr32;

FLDOCC32 oc;

char zipval ue[20];

.st r cby(zi pval ue, "123456") ;

i f((oc=CFfindocc32(fbfr32, 2z P, zipval ue, 0, FLD STRING) < 0)
F _error32("pgm nanme");

5-40 BEA MessageQ FML Programmer’s Guide

CONVERSION FUNCTIONS

would convert the string to the type of f i el di d ZI P (possibly along) and set oc to the
occurrence for the specified zip code. If the field valueis not found, - 1 is returned.

Note: SinceCFf i ndocc32() convertsthe user-specified valueto the nativefield type

beforeexamining thefield values, regular expressionswill work only whenthe
user-specified type and the native field type are both FLD_STRI NG. Thus,
CFf i ndocc32() has no utility with regular expressions.

Converting Strings

A set of functions (Fadds32(), Fchgs32(), Fget s32(), Fget sa32(), and Ffi nds32())
has been provided to handle the case of conversion to/from auser typeof FLD_STRI NG.
These functions call their non-string-function counterparts, providing at ype of
FLD_STRI NG, and al en of 0. Note that the duration of the validity of the pointer
returned by Ff i nds32() is the same asthat described for CFf i nd32().

Ftypcvi32

The functions CFadd32(), CFchg32(), CFget 32(), CFget al | oc32(), and CFf i nd32()
use the function Ft ypcvt 32() to perform the appropriate data conversion. The
synopsis of Ft ypcvt 32() usageis as follows (it does not follow the parameter order
conventions):

char *
Ft ypcvt 32(FLDLEN32 *tolen, int totype, char *fronval, int frontype, FLDLEN32
fron en)

where

4 tol enisapointer to the length of the converted value

¢
¢
¢
¢

t ot ype isthe type to which to convert
fronval isapointer to the value from which to convert
front ype isthe type from which to convert

froni en isthe length of the from value if the from type is FLD_CARRAY

BEA MessageQ FML Programmer’s Guide 5-41

5 FIELD MANIPULATION FUNCTIONS

Ftypcvt 32() convertsfrom the value *f r omval , which hastype f r ont ype, and
lengthfrom eniffrontypeistypeFLD CARRAY (otherwisef r onl enisinferred from
front ype), to avalue of typet ot ype. Ft ypcvt 32() returns apointer to the converted
value, and sets*t ol en to the converted length, upon success. Upon failure,

Ftypcvt 32() returns NULL. Asan example of how Ft ypcvt is used, the function
CFchg32() is presented:

CFchg32(fbfr32,fieldid, oc, val ue, | en, type)

FBFR32 *f bfr32; /* fielded buffer */

FLDI D32 fieldid; /* field to be changed */

FLDOCC32 oc; /* occurrence of field to be changed */
char *val ue; /* |l ocation of new value */

FLDLEN32 | en; /* length of new val ue */

int type; /* type of new value */

{

char *convl oc; /* location of post-conversion val ue */
FLDLEN32 convl en; /* length of post-conversion val ue */

extern char *Ftypcvt32;

/* convert value to fielded buffer type */
i f((convloc = Ftypcvt32(&convlen, FLDTYPE(fi el di d), val ue, type, |l en)) == NULL)
return(-1);

i f (Fchg32(fbfr32,fieldid,oc, convloc, convlen) < 0)
return(-1);
return(l);

}

The user may call Ft ypcvt 32 directly to do field value conversion without adding or
modifying afielded buffer.

Conversion Rules

A description of conversion rulesis now presented. In this description, ol dval
represents a pointer to the data item being converted, and newal a pointer to the
post-conversion value:

4 When both types areidentical, *newval isidentical to*ol dval .

4 When both types are numeric (that is, when the values of both types arel ong,
short, float, or doubl), the conversion is done by the C assignment operator,
with proper type casting. For example, convertinga short toafl oat isdoneby:

5-42 BEA MessageQ FML Programmer’s Guide

CONVERSION FUNCTIONS

*((float *)newal) = *((short *) oldval)

When converting fromanumerictoast ri ng, an appropriatespri nt f isused. For
example, converting ashort toastri ng isdone by:

sprintf(newal, "%",*((short *)oldval))

When converting from ast ri ng to a numeric, the appropriate function (for
example, at of , at ol) is used, with the result assigned to a typecasted receiving
location, for example:

*((float *)newal) = atof(oldval)

When converting from type char to any numeric type, or from anumeric typeto a
char, thechar isconsidered to be a“shortershort .” For example,

*((float *)newal) = *((char *)oldval)
is the method used to convertizar to af | oat . Similarly,
*((char *)newal) = *((short *)oldval)

is used to convertshort to achar.

A char is converted to at ri ng by appending a NULL character. In this regard,
achar is not a “shorteshort .” If it were, assignment would be done by
converting it to ahor t, and then converting tlsort to astring viasprintf.

In the same sensesar i ng is converted to ahar by assigning the first character
of the string to the character.

Thecarr ay type is used to store an arbitrary sequence of bytes. In this sense, it can
encode any user data type. Nevertheless, the following conversions are specified

for carray types:

4 Acarray is converted to a string by appending the NULL byte to the
carray. In this sense, @ar ray could be used to store a string, less the
overhead of the trailing NULL (note that this does not always save space,

since fields are aligned on short boundaries within a fielded buffer). A string

is converted to aar r ay by removing its terminating NULL byte.

4 When acarr ay is converted to any numeric, it is first converted to a string,
and the string is then converted to a numeric. Likewise, a numeric is
converted to a&ar r ay, by first converting it to a string, and then converting
the string to aarr ay.

BEA MessageQ FML Programmer’s Guide 5-43

5 FIELD MANIPULATION FUNCTIONS

4 A carray isconverted to achar by assigning the first character of the array

tothechar. Likewise, achar isconvertedto acarray by assigning it asthe
first byte of the array, and setting the length of the array to 1.

Note that acarr ay of length 1 and achar have the following differences:

4 A char hasonly the overhead of itsassociated fi el di d, whileacarr ay

contains alength code, in addition to the associated f i el di d.

A carray isconverted to numeric by first becoming a st ri ng, and then
undergoing an at oi call; achar becomes a numeric by typecasting. For
example, achar withvalue ASCII "1’ (decimal 49) convertstoashort of value
49; acarr ay of length 1, with the single bytean ASCII "1’ convertsto ashor t
of value 1. Likewise achar '@ (decimal 97) convertsto ashort of value 97;
thecarr ay 'a convertsto ashort of value O (sinceat oi ("a") producesa0
result).

4 When converting to or from adec_t type, the associated conversion function as
described in deci nal (3) isused (_gp_deccvasc, _gp_deccvdbl,
_gp_deccvflt, _gp_deccvint, _gp_deccvlong, _gp_dectoasc,
_gp_dectodbl, _gp_dectoflt, _gp_dectoint, and_gp_dect ol ong).

Table 52 summarizes the conversion rules presented in this section.

Table5-2 Summary of Conversion Rules

srctyp dest type

- char short | ong float double string carray dec_t
char - cast cast cast cast st[0]=c array[0O]=c d
short cast - cast cast cast sprintf sprintf d
| ong cast cast - cast cast sprintf sprintf d
fl oat cast cast cast - cast sprintf sprintf d
doubl e cast cast cast cast - sprintf sprintf d
string c=st [0] at oi at ol at of at of - drop O d
carray c=array[atoi at ol at of at of add 0 - d

0]
dec_t d d d d d d d -
5-44 BEA MessageQ FML Programmer’s Guide

INDEXING FUNCTIONS

Table 5-3 defiines the entries in Table 5-2.

Table 5-3 Meaningsof Entriesin the Summary of Conversion Rules

Entry M eaning

- no conversion need be done (src and dest are same type)

cast conversion done using C assignment with type casting
sprintf conversion doneusing spr i nt f function

at oi conversion done using at oi function

at of conversion done using at of function

at ol conversion done using at ol function

add 0 conversion done by concatenating NULL byte

drop O conversion done by dropping terminating NULL byte

c=array[0] character set to first byte of array

array[0] =c first byte of array is set to character

c=st[0] character set to first byte of string
st[0] =c first byte of string set to ¢
d deci mal (3c) conversion function

Indexing Functions

When afielded buffer isinitialized by Fi ni t 32() or Fal | oc32(), anindex is
automatically set up. Thisindex is used to expedite fielded buffer accessesand is
transparent to you. Asfields are added to or deleted from the fielded buffer, the index
is automatically updated.

BEA MessageQ FML Programmer’s Guide 5-45

5 FIELD MANIPULATION FUNCTIONS

However, when storing a fielded buffer on along-term storage device, or when
transferring it between cooperating processes, it may be desirable to save space by
eliminating its index and regenerating it upon receipt. The functions described in this
section may be used to perform such index manipulations.

Fidxused32

Findex32

5-46

This function returns the amount of space used by the index of a buffer:

| ong
Fi dxused32(FBFR32 *fbfr32)

where f bfr 32 isapointer to afielded buffer

Y ou can use this function to determine the size of the index of a buffer and whether
significant time or space would be saved by deleting the index.

Thefunction Fi ndex32() may be used at any time to index an unindexed fielded
buffer:

int
Fi ndex32(FBFR32 *fbfr32. FLDOCC32 intvl)

where
¢ fbfr32 isapointer to afielded buffer
4 intvl istheindexing interval

The second argument to Fi ndex32() specifiesthe indexing interval for the buffer. If O
is specified, the value FSTDXI NT (defined in f m 32. h) isused. The user may ensure
that all fields are indexed by specifying an interval of 1.

Note that more space may be made available in an existing buffer for user data by
increasing the indexing interval, and re-indexing the buffer. This represents a
space/time trade-off, however, since reducing the number of index elements (by

BEA MessageQ FML Programmer’s Guide

INDEXING FUNCTIONS

increasing the index interval), means, in general, that searches for fields will take
longer. Most operations will attempt to drop the entire index if they run out of space
before returning a “no space” error.

Frstrindex32

This function can be used instead-ohdex32() in cases where the fielded buffer has
not been altered since its index was removed:

int
Frstrindex32(FBFR32 *fbfr32, FLDOCC32 num dx)

where
4 fbfr32 is a pointer to a fielded buffer.

¢ num dx is the value returned by tiFeni ndex32 function.

Funindex32

Example

Funi ndex32() discards the index of a fielded buffer and returns the number of index
entries the buffer had before the index was stripped:

FLDOCC32
Funi ndex32(FBFR32 *f bfr32)

wheref bf r 32 is a pointer to a fielded buffer

To transmit a fielded buffer without its index, something similar to the following
should be done:

1. Remove the index:

save = Funi ndex32(fbfr32);

BEA MessageQ FML Programmer’s Guide 5-47

5 FIELD MANIPULATION FUNCTIONS

2. Get the number of bytesto send (that is, the number of significant bytes from the
beginning of the buffer):

num to_send = Fused32(fbfr32);
3. Send the buffer without the index:
transmt(fbfr32, numto_send);
4. Restoretheindex to the buffer:
Frstrindex32(fbfr32, save);
On the receiving side, theindex could be regenerated with the following statement:
Fi ndex32(fbfr32);

Notethat the receiving process cannot call Fr st ri ndex32() becauseit did not remove
the index itself, and theindex was not sent with thefile.

Note: The space used in memory by theindex is not freed by calling Funi ndex32();
this function either saves space when storing a buffer on adisk or reduces
transmission costs when sending a buffer to another process. Of course, you
are dways free to send afielded buffer and its index to another process and
avoid using these functions.

Input/Output Functions

The functions described in this section provide for input and output of fielded buffers
to standard 1/0O or to file streams.

Fread32 and Fwrite32

The /O functions Fr ead32() and Fwr i t e32() work with the Standard 1/0 Library:

int Fread32(FBFR32 *fbfr32, FILE *iop)
int Fwite32(FBFR32 *fbfr32, FILE *iop)

5-48 BEA MessageQ FML Programmer’s Guide

INPUT/OUTPUT FUNCTIONS

The stream to or from which the I/O is directed is determined by a FI LE pointer
argument. This argument must be set up using the normal Standard 1/0O Library
functions.

A fielded buffer may be written into a Standard 1/0 stream with the function
Fwrite32(), likethis:

if (Fwite32(fbfr32, iop) < 0)
F error32("pgm nane");

A buffer written with Fwr i t e32 may be read with Fr ead32(), asin:

if(Fread32(fbfr32, iop) < 0)
F _error32("pgm nane");

Although the contents of the fielded buffer pointed to by f bf r 32 are replaced by the
fielded buffer read in, the capacity of the fielded buffer (size of the buffer) remains
unchanged.

Fwr i t e32() discardsthe buffer index, writing only as much of the fielded buffer ashas
been used (as returned by Fused32()).

Fr ead32() restorestheindex of a buffer by calling Fi ndex32(). The buffer isindexed
with the same indexing interval with which it was written by Fwr i t e32().

Fchksum32

A checksum may be calculated for verifying 1/O:
| ong chk;
chk = FchksunB2(f bf r32);

Theuser isresponsiblefor calling FchksunB2(), writing the checksum value out along
with the fielded buffer, and checking it oninput. Fwri t e32() does not write the
checksum automatically.

Fprint32 and Ffprint32

The function Fpr i nt 32() prints afielded buffer on the standard output in ASCI|
format:

BEA MessageQ FML Programmer’s Guide 5-49

5 FIELD MANIPULATION FUNCTIONS

Fpri nt 32(FBFR32 *f bf r 32)
wheref bf r 32 isapointer to afielded buffer

Ff print 32() issimilar to Fpri nt 32(), except thetext is printed to a specified output
stream:

Ff print 32(FBFR32 *fhfr32, FILE *iop)
where

¢ fbfr32 isapointer to afielded buffer

4 iopisapointer of type FI LE to the output stream

Each of these print functions prints, for each field occurrence, the field name and the
field value, separated by atab and followed by a new-line. Fnane32() is used to
determine the field name; if the field name cannot be determined, then the field
identifier is printed. Non-printable characters in the field values for strings and
character arrays are represented by a backslash followed by their two-character
hexadecimal value. Backslashes occurring in the text are escaped with an extra
backslash. A blank lineis printed following the output of the printed buffer.

Fextread32

5-50

Fext r ead32() may be used to construct a fielded buffer from its printed format, that
is, from the output of Fpri nt 32() (hexadecimal values output by Fpri nt 32() are
interpreted properly).

i nt

Fext read32(FBFR32 *fbfr32, FILE *iop)

Fext r ead32() accepts an optional flag preceding the field-name/field-identifier
specification in the output of Fpri nt 32(), as shown in Table 5-4.

Table 5-4 Fextread Flags

flag indicates

+ field should be changed in the buffer

- field should be deleted from the buffer

BEA MessageQ FML Programmer’s Guide

BOOLEAN EXPRESSIONS OF FIELDED BUFFERS

Table 5-4 Fextread Flags

flag indicates

= one field should be assigned to another

comment line - ignored

If no flag is given, the default action isto Fadd32() the field to the buffer.

Field values may be extended across lines by having the overflow lines begin with a
tab (the tab is discarded). A single blank line signals end of buffer; successive blank
linesyield anull buffer.

If an error has occurred, - 1 isreturned, and Fer r or 32() is set accordingly. If end of
fileis reached before ablank line, Ferr or 32() is set to FSYNTAX.

Boolean Expressions of Fielded Buffers

The functions described in this section eval uate boolean expressions in which the
“variables” are the values of fields in a fielded buffer. These functions allow you to:

4 compile a boolean expression into a compact form suitable for evaluation

4 evaluate a boolean expression against a fielded buffer, returning a true or false
answer

4 print a compiled boolean expression

A function is provided that compiles the expression into a compact form suitable for
efficient evaluation. A second function evaluates the compiled form against a fielded
buffer to produce a true or false answer.

BEA MessageQ FML Programmer’s Guide 5-51

5 FIELD MANIPULATION FUNCTIONS

Boolean Expressions

This section describes, in detail, the expressions accepted by the boolean compilation
function and how each expression is evaluated. Table 5-5 shows the Backus-Naur
Form (BNF) definitions of accepted boolean expressions.

Standard C language operators not supported include the shift operators (<< and >>),

the bitwise “or” and “and” operatorg |(and &&), the conditional operator (?), the
prefix and postfix incrementation and decrementation operators (++ and --), the
address and indirection operators (& and *), the assignment operator (=), and the
comma operator (,). The following sections describe boolean expressions in greatel
detail.

Table 5-5 BNF Definitions of Boolean Expressions

Expression Definition

<boolean> <boolean>| | <logical and>| <logical and>
<logical and> <logical and> & <xor expr>| <xor expr>

<xor expr> <xor expr> " <eguality expr>| <equality expr>

<equality expr>

<equality expr> <eq op> <relational expr>| <relational expr>

<eqg op>

== I1=| %%]| %

<relational expr>

<relational expr> <rel op> <additive expr>| <additive expr>

<rel op>

<| <=| >=]| >|

<additive expr>

<additive expr> <add op> <multiplicative expr>| <multiplicative
expr>

<add op>

+| -

<multiplicative
expr>

<multiplicative expr> <mult op> <unary expr>| <unary expr>

<mult op>

1 1] %

<unary expr>

<unary op> <primary expr>| <primary expr>

BEA MessageQ FML Programmer’s Guide

BOOLEAN EXPRESSIONS OF FIELDED BUFFERS

Table 5-5 BNF Definitions of Boolean Expressions

Expression Definition

<unary op> +] -] ~]!

<primary expr> (<boolean>) | <unsigned constant>| <field ref>
<unsigned <unsigned number> | <string>

constant>

<unsigned number> <unsigned float>| <unsigned int>

<string> ' <character> { <character>. . .} ’

<field ref> <field name> | <field name>[<field occurrence>]

<field occurrence> <unsigned int>| <meta>

<meta> ?

Field Names and Types

The only variables allowed in boolean expressions arefield references. There are
several restrictions on field names. Names are made up of letters and digits; the first
character must be a letter. The underscore (_) counts as a letter; it is useful for
improving the readability of long variable names. Up to 30 characters are significant.
There are no reserved words.

For afielded buffer evaluation, any field that is referenced in a boolean expression
must exist in afield table. Thisimplies that the FLDTBLDI R32 and FI ELDTBLS32
environment variables are set, as described in Chapter 3, before using the boolean
compilation function. The field types used in booleans are those alowed for FML32
fields, namely, short, long, float, double, char, string, and carray. Along with thefield
name, the field type iskept in the field table. Thus, the field type can always be
determined.

BEA MessageQ FML Programmer’s Guide 5-53

5 FIELD MANIPULATION FUNCTIONS

Strings

A string is a group of characterswithin single quotes. The ASCII code for acharacter
may be substituted for the character via an escape sequence. An escape sequence takes
the form of a backslash followed by exactly two hexadecimal digits. NOTE THAT
THISISNOT ASIT ISIN C where a hexadecimal escape sequence starts with \x.

As an example, consider 'hello’ and 'hel \\6f'. They are equivalent strings because the
hexadecimal code for an’o’ is 6f.

Octal escape sequences and escape sequences such as “\n” are not supported.

Constants

Numeric integer and floating point constants are accepted, as in C (octal and
hexadecimal constants are not recognized). Integer constants are treategsand
floating point constants are treatecdasbl es (decimal constants for thiec_t type
are not supported).

Conversion

To evaluate a boolean expression, the boolean compiler performs the following
conversions:

4 short andi nt values are converted tongs

4 float and decimal values are convertedioabl es
4 characters are converted tetri ngs
¢

when comparing a non-quotedr i ng within a field with a numeric, thet ri ng
is converted to a numeric value

4 when comparing a constant (that is, quotad)i ng with a numeric, the numeric
is converted to at ri ng, and a lexical comparison is done

4 when comparing ong and adoubl e, thel ong is converted to doubl e

Primary Expressions

Boolean expressions are built from primary expressions, which can be any of the
following:

5-54 BEA MessageQ FML Programmer’s Guide

BOOLEAN EXPRESSIONS OF FIELDED BUFFERS

¢ field name—a field name

4 field nane[constant]—a field name and a constant subscript
¢ field nane[?] —a field name and the '?' subscript

4 const ant —a constant

4 (expressi on)—an expression in parentheses

A field name or a field name followed by a subscript is a primary expression. The
subscript indicates which occurrence of the field is being referenced. The subscript
may be either an integer constant, or ? indicating any occurrence; the subscript cannot
be an expression. If the field name is not subscripted, field occurrence 0 is assumed.

If a field name reference appears without an arithmetic, unary, equality, or relational
operator, then its value is the long integer value 1 if the field exists and 0 if the field

does not exist. This may be used to test the existence of a field in the fielded buffer

regardless of field type (note that there is no * indirection operator).

A constant is a primary expression. Its type may &ey, doubl e, orcarr ay, as
discussed in the conversion section.

A parenthesized expression is a primary expression whose type and value are identical
to those of the unadorned expression. Parentheses may be used to change the
precedence of operators, which is discussed in the next section.

Expression Operators

Table 5-6 lists the precedence of expression operators, with the operators having the
highest precedence at the top of the list.

Table 5-6 Boolean Expression Operators

Type Operators

unary + -1~
multiplicative * |, %

additive +, -

relational <,>, <=,>= ==, 1=

BEA MessageQ FML Programmer’s Guide 5-55

5 FIELD MANIPULATION FUNCTIONS

5-56

Table 5-6 Boolean Expression Operators

Type Operators
equdity and matching ==, 1=, %%, !%
exclusive OR A

logical AND &&

logical OR I

Within each operator type, the operators have the same precedence. The following
sections discuss each operator typein detail. Asin C, you can override the precedence
of operators by using parentheses.

UNARY OPERATORS

The unary operators recognized are the unary plus operator (+), the unary minus
operator (-), the one’'s complement operator (~), and thelogical not operator (!).
Expressions with unary operators group right-to-left:

+ expression
- expression
~ expression
I expression

The unary plus operator has no effect on the operand (it is recognized and ignored).
Theresult of the unary minus operator is the negative of its operand. The usual
arithmetic conversions are performed. Unsigned entities do not exist in FML 32 and
thus cause no problems with this operator.

Theresult of the logical negation operator is 1if the value of its operandis 0, and O if
the value of its operand is non-zero. The type of the result islong.

Theresult of the one’'s complement operator is the one’'s complement of its operand.
Thetype of the result islong.
MULTIPLICATIVE OPERATORS

The multiplicative operators *, /, and % group left-to-right. The usual arithmetic
conversions are performed.

BEA MessageQ FML Programmer’s Guide

BOOLEAN EXPRESSIONS OF FIELDED BUFFERS

expressi on * expression
expression / expression
expressi on % expression

The binary * operator indicates multiplication. The* operator is associative and
expressions with several multiplications at the same level may be rearranged by the
compiler.

Thebinary / operator indicates division. When positive integersare divided truncation
istoward 0O, but the form of truncation is machine-dependent if either operand is
negative.

The binary % operator yields the remainder from the division of thefirst expression by
the second. The usual arithmetic conversionsare performed. The operands must not be
float or double.

ADDITIVE OPERATORS

Theadditive operators + and - group left-to-right. The usual arithmetic conversionsare
performed.

expressi on + expression
expressi on - expression

The result of the + operator is the sum of the operands. The operator + is associative
and expressions with several additions at the same level may be rearranged by the
compiler. The operands must not both be strings; if oneisastring, it is converted to
the arithmetic type of the other.

The result of the - operator is the difference of the operands. The usual arithmetic
conversions are performed. The operands must not both be strings; if oneisastring, it
is converted to the arithmetic type of the other.

EQUALITY AND MATCH OPERATORS

These operators group left-to-right.

expressi on == expressi on
expression ! = expressi on
expressi on %% expressi on
expression ! % expressi on

The == (equal to) and the != (not equal to) operatorsyield 0 if the specified relation is
falseand 1 if it istrue. The type of the result islong. The usual arithmetic conversions
are performed.

BEA MessageQ FML Programmer’s Guide 5-57

5 FIELD MANIPULATION FUNCTIONS

5-58

The %% operator takes, asits second expression, aregular expression against which it
matchesits first expression. The second expression (the regular expression) must bea
quoted string. The first expression may be an FML 32 field name or a quoted string.
Thisoperator yieldsalif thefirst expressionisfully matched by the second expression
(the regular expression). The operator yieldsa 0 in all other cases.

The!% operator isthe not regular expression match operator. It takes exactly the same
operands as the %% operator, but yields exactly the opposite results. The relationship
between %% and % is analogous to the relationship between == and !=.

RELATIONAL OPERATORS
These operators group |eft-to-right.

expr essi on < expression
expr essi on > expression
expr essi on <= expression
expr essi on >= expression

The operators < (less than), > (greater than), <= (less than or equal to) and >= (greater
than or equal to) all yield O if the specified relationisfalseand 1 if it istrue. The type
of the result islong. The usual arithmetic conversions are performed.

ExcLUSIVE OR OPERATOR
The~ operator groups left-to-right.
expressi on expression

It returns the bitwise exclusive OR function of the operands. The result isalways a
long.

LoGicAL AND OPERATOR
expressi on && expression

The & & operator groups left-to-right. It returns 1 if both its operands are non-zero, 0
otherwise. The & & operator guarantees|eft-to-right evaluation. Unlikein C, however,
it is not guaranteed that the second operand is not evaluated if the first operand is 0.
The operands need not have the same type. The result isalways al ong.

BEA MessageQ FML Programmer’s Guide

BOOLEAN EXPRESSIONS OF FIELDED BUFFERS

LoGIcAL OR OPERATOR
The| | operator groups left-to-right.
expression || expression

It returns 1 if either of its operands is non-zero, and O otherwise. The | | operator
guarantees | eft-to-right evaluation. However, it is not guaranteed that the second
operand is not evaluated if the first operand is non-zero; thisis different from the C
language. The operands need not have the same type, and the result is always along.

Sample Boolean Expressions

The following field table defines the fields used for the sample boolean expressions:

EMPI D 200 carray

SEX 201 char
AGE 202 short
DEPT 203 | ong
SALARY 204 fl oat
NAVE 205 string

Recall that boolean expressions always evaluate to either true or false. Consider the
following example:

"EMPI O 2] 9%’ 123.*" && AGE < 32"

The expression is true if field occurrence 2 of EMPI D exists and begins with the
characters “123” and the age field (occurrence 0) appears and is less than 32. This
example uses a constant integer as a subscEyPt®. The ? subscript is used in the
following example:

"PETS[?] == 'dog "

This expression is PETS exists and any occurrence of it contains the characters
udogn.

Boolean Functions

The following sections describe the various functions that take boolean expressions as
arguments.

BEA MessageQ FML Programmer’s Guide 5-59

5 FIELD MANIPULATION FUNCTIONS

Fboolco32

Fboolpr32

Fbool co32() compiles aboolean expression for FML 32 and returns a pointer to an
evaluation tree:

char *
Fbool co32(char *expression)

where * expr essi on is apointer to an expression to be compiled.
Space is allocated using nal | oc(3) to hold the evaluation tree. For example,

#i ncl ude "<stdio.h>"
#include "fm 32. h"
extern char *Fbool co32;
char *tree;

i f((tree=Fbool co32("FIRSTNAME %6’ J.*n’ && SEX == "M ")) == NULL)
F _error32("pgm nane");

would compile abool ean expression that checks whether the FI RSTNAMVE field isinthe
buffer, begins with 'J and ends with 'n’ (e.g., John, Joan, etc.), and whether the SEX
fieldisequal to’ M .

Thefirst and second characters of the tree array form the least significant byte and the
most significant byte, respectively, of an unsigned 16 bit quantity that givesthe length,
in bytes, of theentire array. Thisvalueisuseful for copying or otherwise manipulating
the array.

The evaluation tree produced by Fbool co32() isused by the other boolean functions
listed bel ow; thus, the expressiondoes not have to be re-compiled constantly.

f r ee(3) should be used to free the space allocated to an evaluation tree when the
boolean expression will no longer be used. Compiling many boolean expressions
without freeing the eval uation tree when no longer needed may cause aprogram to run
out of data space.

Fbool pr 32() printsacompiled expression to the specified file stream. The expression
isfully parenthesized, asit was parsed (as indicated by the evaluation tree),

voi d
Fbool pr32(char *tree, FILE *iop)

5-60 BEA MessageQ FML Programmer’s Guide

BOOLEAN EXPRESSIONS OF FIELDED BUFFERS

where

4 *treeisapointer to aboolean tree previously compiled by Fbool c032

4 *i op isapointer of type FI LE to an output file stream

Thisfunction is useful for debugging.

Executing Fbool pr 32() on the expression compiled above would yield the following:

(((FIRSTNAME[O]) 986 (' J.*n")) && ((SEX[0]) == ("M)))

Fboolev32 and Ffloatev32

These functions evaluate a fielded buffer against a boolean expression.

int Fbool ev32(FBFR32 *fbfr32, char *tree)

doubl e Ffl oatev32(FBFR32 *fbfr32,char *tree)
where

¢ fbfr32 isthefielded buffer referenced by an evaluation tree produced by
Fbool co32

4 treeisapointer to an evaluation tree that references the fielded buffer pointed to
by f bf r 32

Fbool ev32() returnstrue (1) if the fielded buffer matches the boolean conditions
specified in the evaluation tree. This function does not change either the fielded buffer
or the evaluation tree. Using the evaluation tree compiled above, the following code
would print “Buffer selected.”

#i ncl ude <stdio. h>
#i ncl ude "fn 32. h"
#i nclude "fld.tbl.h"
FBFR32 *fbfr32;

Fchg32(f bf r 32, FI RSTNAME, 0, "John", 0);
Fchg32(fbfr32, SEX, 0, "M, 0);
i f(Fbool ev32(fbfr32,tree) > 0)
fprintf(stderr,"Buffer selected\n");
el se
fprintf(stderr,"Buffer not selected\n");

Ff | oat ev32() is similar toFbool ev32(), but returns the value of the expression as a
double. For example, the following code would print “6.6.”

BEA MessageQ FML Programmer’s Guide 5-61

5 FIELD MANIPULATION FUNCTIONS

#i ncl ude <stdio. h>
#include "fm 32. h"
FBFR32 *fbfr32;
mai n() {
char *Fbool co32;
char *tree;
doubl e Ffl oatev32;
if (tree=Fbool co32("3.3+3.3")) {
printf("%f", Ffloatev32(fbfr32,tree));

}

If Fbool ev32() were used in place of Ff | oat ev32() in the above example, a1 would
be printed.

5-62 BEA MessageQ FML Programmer’s Guide

CHAPTER

6 Examples

The BEA MessageQ kit includes an example of building, sending, receiving, and
interpreting an FML 32 message. Refer to exanpl es/ x/ x_f nl . ¢ in your BEA

MessageQ kit.

BEA MessageQ FML Programmer’s Guide 6-1

6 ExampLes

6-2 BEA MessageQ FML Programmer’s Guide

APPENDIX

A FML Error Messages

Thefollowing table liststhe error codes, numbers, and messages that you might see if
an error occurs during the execution of an FML program:

Table A-1 FML Error Codes and Messages

Error Code # Error Message

FALI GN 1 fielded buffer not aligned
FNOTFLD 2 buffer not fielded

FNOSPACE 3 no space in fielded buffer
FNOTPRES 4 field not present

FBADFLD 5 unknown field number or type
FTYPERR 6 illegal field type

FEUNI X 7 UNIX system call error
FBADNAME 8 unknown field name

FMALLOC 9 mal | oc failed

FSYNTAX 10 bad syntax in boolean expression
FFTOPEN 11 cannot find or open field table
FFTSYNTAX 12 syntax error in field table

FEI NVAL 13 invalid argument to function
FBADTBL 14 destructive concurrent accessto field table

BEA MessageQ FML Programmer’s Guide A-1

A EML ERROR MESSAGES

A-2 BEA MessageQ FML Programmer’s Guide

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	1. Introduction
	2. Overview
	3. Setup
	4. Field Definition and Use
	5. Field Manipulation Functions
	6. Examples
	A. FML Error Messages

	1 Introduction
	About This Guide and FML
	What Is FML?
	How Does FML32 Fit into the BEA MessageQ System?
	Who Is This Document For?
	Prerequisites
	What Does This Document Include?
	What Other FML32 Documentation Is There?
	Table 1�1 Section 5 reference pages

	Concepts and Definitions
	Field Identifier
	Fielded Buffer
	Field Types

	2 Overview
	Introduction
	Dividing Records into Fields
	Structures
	Possible Disadvantages of Structures

	Fielded Buffers

	Implementing Fielded Buffers with FML32

	FML32 Features
	Fielded Buffer Structure
	Figure 2�1 A fielded buffer

	Supported Field Types
	Listing 2-1 FML32 field types as defined in fml32.h

	Field Name to Identifier Mappings
	Run-Time: Field Table Files
	Compile-Time: Header Files

	Fielded Buffer Indexes
	Multiple Occurrences of Fields
	Boolean Expressions and Fielded Buffers

	Error Handling

	3 Setup
	Introduction
	Directory Structure
	Environment Variables

	4 Field Definition and Use
	Introduction
	Defining Fields
	Field Names and Identifiers
	Field Table Files
	Field Table Example
	Listing 4-1 A UNIX Field Table File

	Mapping Functions
	Loading the Field Tables

	Field Header Files

	5 Field Manipulation Functions
	Introduction
	FML and FML32
	FML32 Parameters
	1. For functions that require a pointer to a fielded buffer (FBFR32), this parameter is first. If...
	2. For the input/output functions, a pointer to a stream follows the fielded buffer pointer.
	3. For functions that need one, a field identifier (type FLDID32) appears next (in the case of Fn...
	4. For functions that need a field occurrence (type FLDOCC32), this parameter comes next (for Fne...
	5. In functions where a field value is passed to or from the function, a pointer to the beginning...
	6. When a field value is passed to a function that contains a character array (carray) field, you...
	7. A few functions require special parameters and differ from the preceding conventions; these sp...
	8. The following NULL values are defined for the various field types: 0 for short and long; 0.0 f...

	Field Identifier Mapping Functions
	Fldid32
	Fname32
	Fldno32
	Fldtype32
	Table 5�1 Field Types Returned by Fldtype

	Ftype32
	Fmkfldid32

	Buffer Allocation and Initialization
	Fielded32
	Fneeded32
	Finit32
	Falloc32
	Ffree32
	Fsizeof32
	Funused32
	Fused32
	Frealloc32

	Functions for Moving Fielded Buffers
	Fmove32
	Fcpy32

	Field Access and Modification Functions
	Fadd32
	Fappend32
	Fchg32
	Fcmp32
	Fdel32
	Fdelall32
	Fdelete32
	Ffind32
	Ffindlast32
	Ffindocc32
	Fget32
	int Fget32(FBFR32 *fbfr32, FLDID32 fieldid, FLDOCC32 oc, char *loc, FLDLEN32 *maxlen)

	Fgetalloc32
	Fgetlast32
	int Fgetlast32(FBFR32 *fbfr32, FLDID32 fieldid, FLDOCC32 *oc, char *loc, FLDLEN32 *maxlen)

	Fnext32
	int Fnext32(FBFR32 *fbfr32, FLDID32 *fieldid, FLDOCC32 *oc, char *value, FLDLEN32 *len)

	Fnum32
	Foccur32
	Fpres32
	Fvals32 and Fvall32

	Buffer Update Functions
	Fconcat32
	Fjoin32
	Fojoin32
	Fproj32
	Fprojcpy32
	Fupdate32

	Conversion Functions
	CFadd32
	CFchg32
	int CFchg32(FBFR32 *fbfr32, FLDID32 fieldid, FLDOCC32 oc, char *value, FLDLEN32 len, int type)

	CFget32
	int CFget32(FBFR32 *fbfr32, FLDID32 fieldid, FLDOCC32 oc, char *buf, FLDLEN32 *len, int type)

	CFgetalloc32
	char * CFgetalloc32(FBFR32 *fbfr32, FLDID32 fieldid, FLDOCC32 oc, int type, FLDLEN32 *extralen)

	CFfind32
	char *CFfind32; FLDLEN32 len; long *value; . . . if((value=(long *)CFfind32(fbfr32,ZIP,occurrence...

	CFfindocc32
	FLDOCC32 CFfindocc32(FBFR32 *fbfr32, FLDID32 fieldid, char *value, FLDLEN32 len, int type)

	Converting Strings
	Ftypcvt32
	char * Ftypcvt32(FLDLEN32 *tolen, int totype, char *fromval, int fromtype, FLDLEN32 fromlen)
	CFchg32(fbfr32,fieldid,oc,value,len,type) FBFR32 *fbfr32; /* fielded buffer */ FLDID32 fieldid; /...

	Conversion Rules
	Table 5�2 Summary of Conversion Rules
	Table 5�3 Meanings of Entries in the Summary of Conversion Rules

	Indexing Functions
	Fidxused32
	Findex32
	Frstrindex32
	Funindex32
	Example
	1. Remove the index:
	2. Get the number of bytes to send (that is, the number of significant bytes from the beginning o...
	3. Send the buffer without the index:
	4. Restore the index to the buffer:

	Input/Output Functions
	Fread32 and Fwrite32
	Fchksum32
	Fprint32 and Ffprint32
	Fextread32
	Table 5�4 Fextread Flags

	Boolean Expressions of Fielded Buffers
	Boolean Expressions
	Table 5�5 BNF Definitions of Boolean Expressions

	Field Names and Types
	Strings
	Constants
	Conversion
	Primary Expressions
	Expression Operators
	Table 5�6 Boolean Expression Operators
	Unary Operators
	Multiplicative Operators
	Additive Operators
	Equality and Match Operators
	Relational Operators
	Exclusive OR Operator
	Logical AND Operator
	Logical OR Operator

	Sample Boolean Expressions

	Boolean Functions
	Fboolco32
	Fboolpr32
	Fboolev32 and Ffloatev32

	6 Examples
	A FML Error Messages
	Table A�1 FML Error Codes and Messages

