o’

Ak
BEA MessageQ

LU6.2 Services for OpenVMS
User’s Guide

BEA MessageQ LUG6.2 Services for OpenVMS V4.0A
Document Edition 4.0A
February 1999

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and TUXEDO are registered trademarks of BEA Systems, Inc. BEA Builder,
BEA Connect, BEA Manager, BEA MessageQ, Jolt and M3 are trademarks of BEA Systems, Inc.
All other company names may be trademarks of the respective companies with which they are associated.

BEA MessageQ LUG6.2 Services for OpenVMS User’s Guide

Document Edition Date Software Version

4.0A February 1999 BEA MessageQ LU6.2 Services for
OpenVMS, Version 4.0A

Contents

Preface
Who Should Read ThiS DOCUMENL.........ccceriiiiie e e Vii
How This Document ISOrganized.............cccoeeveiieciecieniecceeeeeeee e Vii
Opening the Document in aWeh BrOWSEr........cccoveieeoeeinienie e iX
Printing from aWebh BroOWSEScc.eocvieeiece e Xi
Documentation CONVENLIONS...........couerireeieie e eeesecses e s seeiesee e sneeaeeeas Xi
BEA MessageQ LU6.2 Services for OpenVMS Documentation Xiii
BEA PUDIICATIONS ...ttt st e e Xiii
DOoCUMENEaLi ON SUPPOIT. ...c.eeeeeeeireirieeie et see e s en e s eee e Xiv
CUSLOMET SUPPOMeviieieeeireeie e re e et se et eae e e e sae s e e eneeseeseeneensesesneas Xiv

1. Introducing BEA MessageQ LU6.2 Services

BasiC Terms and CONCEPLScouereerieie et ettt e ee s e e sresreseesne 1-1
The BEA MessageQ LUBG.2 Services Productcoeceeeeveenecinenncnene 1-2
SNA LUB.2 SESSIONS.....ecviieriieriieriieseete ettt e eseneeseneesene s ieses e 1-2
Advanced Program-to-Program Communications (APPC)ccccceeue... 1-3
BEA MessageQ LUG6.2 Services Application Components..........c.ccce...... 1-3

SNA APPC/LUB.2 FUNDBMENLAIS.......vereeereieeieie ettt 1-5
Logical Unit TYPe 6.2 OVEIVIEW.......coceeieeeriiriie it 1-6
Inbound and Outbound CONVErSationS............coeeriererierenierenenee e 1-6
Using the LU6.2 Port Server for Applications Connections...................... 1-8
Writing Y our OWN POIt SEIVEYccvveieeeeicie et 1-8

Developing Applications Using BEA MessageQ LU6.2 Services

Applications DevelopmeENt OVENVIEWoeioerererienieie e eeeseereeee s 2-1
INbouNd APPLICAITIONS.......coueiie et e 2-2
Outbound APPlICALTIONScoveieeie e e s 2-2

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide iii

Hybrid ApPliCatioNSceoieee e e e 2-2
Target REQISIAtioNcoiieuieee e e e 2-3
Structure of BEA MessageQ LUG.2 Services Applications.........ccccoccveeeeieenee. 2-3
Simple Linear CONVEISAtiONScc.coereruereereeieie e seeiesies e see e s 2-4
State MaChiNES.........coiie e s 2-4
Overview of State/Event/Action Tablecooovieiiiiine e 2-6
Inbound State/Event/Action LiStingccoveevveveieveeseeie e 2-6
Outbound State/Event/Action Listingccocoveeeneineeie s 2-8
Development CheCKIiSt..........coeerire et e e 2-8
Step 1: Define the Application Boundaries..........cccooeeeeeeneicisienecsei 2-9
Step 2: Identify the Communicating Partnersc.cccceeveeneieieeneienennes 2-10
Step 3: Design the Application CoNVErsations............ccoeveernereserenenns 2-12
Step 4: Develop the APPlICALION.c.oouiiiriireciee e 2-13
Step 5: Define the Communications Environmentccccoeveeerenenne. 2-13
Step 6: Test the APPlICALTONoooeieiieeee e 2-14
Developing a Sample AppliCation..........ccovereieinnnieeirer e 2-15
3. Configuring the LU6.2 Port Server
POIt SErVEr FUNCLIONS ..ottt e ee e e e 32
Port Server Limits of Operationcoccooiveeieie e s 32
Configuring the POIt SENVES ... e 35
Building the LU Configuration File..........ccoco i 3-6
Building the Target Configuration File...........cooeoeiiiiinninee e 39
Configuring Inbound and Outbound Connections............ccccoccceieeveeceeceeeneane, 3-15
Configuring Inbound CONNECLIONS..........cccveviieieeseieiecreeee e e 3-15
Configuring Outbound CONNECLIONS.........c.ccoveiiiieieiecee e st 3-16
Defining LogiCal NAMES.......ccoocuiiiiieeie sttt et 3-16
Logical Names for the On-Disk StruCture..........ccccoeevueeeceiecieeceeceeeenne 3-17
Logical Names for Port Server Control...........cccceveeeieeecienecseese e 3-17
Managing the LUB.2 POIt SEIVENccccceveeie et se e s sre s 3-20
Starting POMt SEIVENS........cue ittt st st s raenaesreens 3-20
WaLChiNG BEVENES.......ooceee et st 321
Defining Logical Names with DMQLU62_SERVER_LOGICALS.COM.....
3-21
StoppiNg LUB.2 POIt SEIVENS.....cc.oovieeiiieieeeie et st 3-22

iv BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

4. Port Server Messages

Port Server CONtrol MESSAgESc.ciuerurieereeeiie st ettt see e e e e anessenee e 4-1
ADD . LU oottt 4-3
ADD_TARGET ...ttt e s s 4-4
SHUTDOWN ..ottt ettt se e e e e sae e 4-5

Port Server ConNNECtioN MESSAJES.......cooiueeririeririe et eres e sre b e 4-6
CHANGE_DIRECTION ..ottt se e 4-8
CONNECT_ACCEPT ...ttt s e s 4-9
CONNECT_REJECT ...ttt neen 4-10
CONNECT_REQUESToviieee et 4-11
CONNECTION_TERMINATED.......coiiie et 4-12
DATA_MESSAGE ...t 4-13
REGISTER_TARGET ..ot 4-15

Example of Port Server Messages Used for Client Communications............. 4-16

5. LU6.2 Port Server Application Programming Interface
PORT_CONNECT ..ottt e 5-3
PORT _RECV ...ttt sttt e s sae e 55
PORT_REGISTER ...ttt e s 5-8
PORT _SEND ..ottt sttt st se e s 5-10

6. LU6.2 User Callback Services

LUB.2 User Calback OVEIVIBWcccooiieuirierinie e esee e ene e 6-1
Using the LUB.2 User Callback Interfaceccooerve i 6-3
MUltithreading SEIVICEScoceueririere ettt 6-4
INbOUN CONVEISALIONS.......coiieiee ettt e eeb e eees 6-4
OutbouNd CONVEISALIONS.......c.coueeerereeeieiee e e e eree e 6-4
Example of User Callback Message FIOWcccoveieieinieecciececen 6-6

APPC User Callback MESSAQES..........ccueiuiceeceeceeeecee et 6-7
LUBZ _ACTIVATE ...ttt e e e 6-9
LUBZ2 ALLOCATE ...ttt 6-12
LUB2 _CONFIRMED.......cociiiiiieiiie et 6-15
LUB2_CONFIRM_RECVoooieeeieeeeeeeeeeeeeseese s ces e s 6-16
LUB2 CONFIRM_REQ.....oiieeieieeieeeeeeeeeeeseeseeese s s ese s ese 6-17
LUB2_ CONFIRM _SEND......ooueeeieeeeeetse s eeeeseeseeerese s e s s 6-18

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide v

Vi

LUB2_CONNECTED ..ottt 6-19

LUB2 DEALLOCATE ..o eeeeeeeeeeee e eeeeeesee e 6-20
LUB2 DEALLOCATED w..ooooeeeeeeeeeeeeeeeeeeeeee s eeeeeeesee s 6-21
(UL o= = N = I T 6-22
(UL 0= = N =i = 6-25
(UL o1 =3 = U 6-27
LUB2 ERROR ...ooveeeeereeeeseseeeeeeeeeeeeeeeeeseeeeesese s eeseeseess e eseseseeens 6-29
LUBZ INIT oo e eeeee 6-32
LUB2 OK_TO_SEND ...ooveeeeeeeeeeeee oo seee s eeeeeesee s eeeeeneene 6-33
LUB2 RECV _DATA ..ooteeeoeeeeeeeeeeeeeeeeeeeeeeesees e seesees s seseeees 6-34
LUB2 REQ_CONFIRMoomvveeeeeeeeeeeeeeeeecesseeeeeesssseeseseeesessseseeees 6-35
UL 1= o TR (O XES =N o J 6-36
LUB2_SEND_CONFIRMccorreeeeereeeeseeeeeeeeeeeeeeeees e sess s 6-37
UL = N o)N - S 6-38
LUB2_SEND_ERROR........c.ccoeeeeeesemseeeeesseseeeseeseeeeessseesssseeeeeseeee 6-39

A. LU6.2 User Callback Interface Logical Names and Error Codes

User Callback Logical NaMES.........cociiie e A-1
Linking aUser-Written POrt SEIVEr ...t e A-2
Error Handling.......coe oottt e s sraenn A-3

B. Notes on IMS
C. Examples of BEA MessageQ LU6.2 Inbound and Outbound

Applications
Sample INbouNd APPIICALTONcueiiee et s C-1
Sample Outbound APPHICALTONccvieeieie e e C-13

D. Examples of CICS Inbound and Outbound Applications

Sample CICS Inbound APPliCatiONco.eieiereeeeeeee e D-1
Sample CICS Outbound AppliCaLioNcoerereirirre e D-6
Index

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Preface

Purpose of This Document

This document describes the BEA MessageQ LU6.2 Services for OpenVMS product.
It also provides instructions for devel oping applications using this software and for
configuring the LU6.2 Port Server.

Who Should Read This Document

This document is intended for system administrators, network administrators, and
developers who are interested in enabling communications between BEA MessageQ
and IBM applications.

How This Document Is Organized

The BEA MessageQ LU6.2 Services for OpenVMS User’s Gsiotganized as
follows:

4 Chapter 1, “Introducing BEA MessageQ LU6.2 Services,” provides an overview
of the BEA MessageQ LUB6.2 Services for OpenVMS, including basic concepts
and terms.

4 Chapter 2, “Developing Applications Using BEA MessageQ LU6.2 Services,”
provides an overview of how to use BEA MessageQ LUG6.2 Services for
OpenVMS to develop programs that communicate between IBM mainframes
and VAX or Alpha systems running OpenVMS.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide vii

4 Chapter 3, “Configuring the LU6.2 Port Server,” describes how to configure,
start up, and manage the LU6.2 Port Server.

4 Chapter 4, “Port Server Messages,” describes the messages used by the LU6.2
Port Server: port server control messages and port server connection messages
(BEA MessageQ messages).

4 Chapter 5, “LU6.2 Port Server Application Programming Interface,” presents a
sample application programming interface (API) for LU6.2 Services for
OpenVMS.

4 Chapter 6, “LU6.2 User Callback Services,” introduces the LU6.2 User Callback
Services (UCB) and contains detailed descriptions of all LU6.2 User Callback
APPC messages alphabetized by message type.

4 Appendix A, “LU6.2 User Callback Interface Logical Names and Error Codes,”
describes the LU6.2 user callback logical names and error codes.

4 Appendix B, “Notes on IMS,” provides information on the restrictions present
when using APPC verbs with the IMS LU6.1 Adapter.

4 Appendix C, “Examples of BEA MessageQ LU6.2 Inbound and Outbound
Applications,” provides sample Inbound and Outbound applications that
exchange data with an APPC application in an SNA network.

4+ Appendix D, “Examples of CICS Inbound and Outbound Applications,”
provides sample CICS Inbound and Outbound applications.

How to Use This Document

This documentBEA MessageQ LU6.2 Services for OpenVMS User’s Gisde
designed primarily as an online, hypertext document. If you are reading this on paper,
notethat to get full use from thisdocument you should install and accessit asan online
document viaa Web browser.

Thefollowing sections explain how to view this document online, and how to print a
copy of this document.

Viii BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Opening the Document in a Web Browser

To accessthe online version of thisdocument, open thefollowing HTML fileinaWeb
browser:

/ beadi r/ doc/ bng/ | u62_40a/ user gde/ i ndex. ht m

Note: The online documentation requires a Web browser that supports HTML
version 3.0. We recommend Netscape Navigator version 4.0 or Microsoft
Internet Explorer version 4.0 or later.

Figure 1 shows the online document with the clickable navigation bar and table of
contents.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide ix

Figure 1 Online Document Displayed in a Netscape Web Browser

Table of Contents Navigation Bar

Click on a topic to view it. Click a button to view another book.

-BEA Messagell LUG.2 Services for DpenVMS User's Guide - Netscape

ile Edit “igw Go Communicator Help

@Z/ 2 3 X = b siﬁw &

Back Fopward Reload Home Search Metzcape Erirat:

3 - Home T lient . | PDF Documents
Contents :" et [otiom] r
Preface 3 _:'_ :\

THE ENTERPERISE MiDMLEWARE SoLUTION

YWho Should Read
This Document

Howe This Docurnent |s
Organized

.. | BEA MessageQ |

Browser

Brinting from a YWeh
Browser

Docurnentation
Conventions

e Mesenet LUG.2 Services for OpenVMS
Qoo U}ér’s Guide

o

£ B2 E N2 g

Clocurnentatio hd
[» 1

’E == | | Document: Done

Document Display Area

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Printing from a Web Browser

Y ou can print a copy of this document, one file at atime, from the Web browser.
Before you print, make sure that the chapter or appendix you want is displayed and
selected in your browser. (To select a chapter or appendix, click anywhere inside the
chapter or appendix you want to print. If your browser offers a Print Preview feature,
you can use the feature to verify which chapter or appendix you are about to print.)

The BEA MessageQ Online Documentation CD also includes Adobe Acrobat PDF
files of all of the online documents. Y ou can use the Adobe A crobat Reader to print all
or aportion of each document.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention ltem

boldfacetext Indicatesterms defined in the glossary in the BEA MessageQ Introduction
to Message Queuing.

Ctrl+Tab Indicates that you must press two or more keys sequentially.

italics Indicate emphasis or book titles.

nonospace Indicates code samples, commands and their options, data structures and

t ext their members, data types, directories, and file names and their extensions.

Monospace text also indicates text that you must enter from the keyboard.
Examples:

#i ncl ude stdio

pans_attach_q

\brmg\ 1 u62_40a\ i ncl ude

.htm

bng. doc

Bl TMAP

fl oat

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide xi

Xii

Convention

Item

nonospace I dentifies significant wordsin code.
bol df ace Example:
text
put _nsg(nsg_ptr, class, type)
nonospace Identifies variables in code.
italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
PATH
OR
{1} Indicates a set of choices in asyntax line. The braces themsel ves should

never be typed.

Indicates optional itemsin a syntax line. The brackets themselves should
never be typed.

Example:

int32 pans_get _nsg (nsg_area, priority ...
[-sel _filter] [psb] [show buffer]...)

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

4 That an argument can be repeated several timesin acommand line

4 That the statement omits additiona optional arguments

4 That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

int32 pans_get _nsg (nsg_area, priority ...
[-sel _filter] [psb] [show buffer]...)

Indicates the omission of items from a code example or from a syntax line.
The vertical dlipsisitself should never be typed.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Related Documentation

The following sections list the documentation provided with the BEA MessageQ
software, and other publications related to messaging-oriented middleware
technology.

BEA MessageQ LUG6.2 Services for OpenVMS
Documentation

The BEA MessageQ LU6.2 Services for OpenV M S information set consists of the
following documents:

BEA MessageQ LU6.2 Services for OpenVMS User’'s Guide
BEA MessageQ LU6.2 Services for OpenVMS Installation Guide
BEA MessageQ LU6.2 Services for OpenVMS Release Notes

Note: TheBEA MessageQ Online Documentation CD &l so includes Adobe Acrobat
PDF files of all of the online documents. Y ou can use the Adobe Acrobat
Reader to print all or a portion of each document.

BEA Publications

The following BEA publications are also available:

BEA MessageQ Introduction to Message Queuing

BEA MessageQ Programmer’s Guide

BEA MessageQ Installation and Configuration for OpenVMS
BEA MessageQ Client for OpenVMS User’s Guide

BEA MessageQ for OpenVMS Release Notes for Version 4.0A

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide xiii

Contact Information

The following sections provide information about how to obtain support for the
documentation and software.

Documentation Support

If you have questions or comments on the documentation, you can contact the BEA
Information Engineering Group by e-mail at docsupport@beasys.com. (For
information about how to contact Customer Support, refer to the following section.)

Customer Support

If you have any questions about this version of BEA MessageQ LU6.2 Services for
OpenVMS, or if you have problems installing and running BEA MessageQ LUG6.2
Servicesfor OpenVMS, contact BEA Customer Support through BEA WebSupport at
www. beasys. com You can also contact Customer Support by using the contact
information provided on the Customer Support Card, which isincluded in the product
package.

When contacting Customer Support, be prepared to provide the following information:

L4

¢
¢
¢
¢

Your name, e-mail address, phone number, and fax number
Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Xiv BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

CHAPTER

1 Introducing BEA

MessageQ LUG.2
Services

The BEA MessageQ LU6.2 Services for OpenVMS product allows users to
communicate with IBM application programs using Advanced Program-to-Program
Communications (APPC) over System Network Architecture (SNA) LU6.2 sessions.
APPC/LUB6.2 communications are connection-oriented and half-duplex. This means
that before two partners can exchange messages, they must first establish aconnection
(connection-oriented), and that one partner is sending when the other is receiving
(half-duplex).

This chapter includes the following topics:
4 Basic Terms and Concepts

4 SNA APPC/LUG6.2 Fundamentals

Basic Terms and Concepts

This section provides general information about BEA MessageQ applications, APPC,
the Port Server, and other application components.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 1-1

1

Introducing BEA MessageQ LU6.2 Services

The BEA MessageQ LUG6.2 Services Product

The BEA MessageQ system is a connectionless, stateless communications system.
This means that a connection need not be established before programs can
communicate with each other. It also meansthat communicating programs do not care
what state their partner isin.

Using BEA MessageQ LU6.2 Services is like using the postal mail system—you car
send a letter to anyone whose address you know, whether or not the addressee is ho
and regardless of the addressee's desire to speak to you. Addressees can check th
mailboxes at their convenience.

The BEA MessageQ system supports network-independent addressing and makes
of an application programming interface (API) common to all platforms that support
the MessageQ system.

SNA LUG6.2 Sessions

1-2

SNA is connection-oriented systems networking architecture. Connections are
established between network-addressable units. Applications are interdsigidah

units (LUs) that are the “end users” of a network. The connection between LUs is an
SNA session.

The LU that requests a session is calledotimary logical unit or PLU. The LU that
accepts the session is called sheondary logical unit or SLU. The capabilities of an

LU are defined by the LU type. Only one type of LU supports APPC: LU type 6.2 (also
known as LUG6.2).

An LUG6.2 session is the type of SNA connection used by APPC applications for
communications with each other. The session is like the telephone connection receive
when you dial another number—if the other number does not answer, you cannot
speak.

Without an SNA session, APPC conversations cannot take place. An LU is the
software equivalent of a telephone—it has a specific address in the network, and othi
LUs have to know that address in order to establish sessions with it.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Basic Terms and Concepts

Advanced Program-to-Program Communications (APP()

A program that wants to communicate with other programs must first establish a

connection to each potential partner, and the communicating programs must be aware

of each other’s state (for example, ready to receive, ready to send, and shutting down).
This requirement is similar to the requirements of the telephone system: before you can
talk to someone, you must call someone up; the call recipient must answer the phone,
and agree to listen to you; after you have finished speaking, the other party can speak
to you; and so on.

BEA MessageQ LU6.2 Services for OpenVMS applications use Advanced
Program-to-Program Communications (APPC) to establish connections to partners
and communicate state information before initiating conversations. APPC is a
connection-oriented, half-duplex, state-oriented communications system. It uses the
following concepts:

4 Conversation—a structured exchange of messages between two partners,
conducted over a previously established LU6.2 session.

4 Allocation—the act of establishing a conversation.
4 Deallocation—the act of terminating an existing conversation.

4+ Sync-level—the highest degree of synchronization permitted on a given
conversation. Sync-level parameters are 0 (None), 1 (Confirm), and 2
(Syncpoint). The BEA MessageQ LU6.2 Services for OpenVMS product uses
only sync-levels 0 and 1.

APPC provides a set of functions calledPC verbsto manage conversations.
(See Chapter 6 for more information on APPC verbs.)

BEA MessageQ LU6.2 Services Application Components

Figure 1-1 shows the components of a typical BEA MessageQ LU6.2 Services
application.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 1-3

1 Introducing BEA MessageQ LU6.2 Services

Figure1-1 BEA MessageQ LU6.2 Components

BEA MessageQ
Client

BEA MessageQ Message Bus

LUG6.2 Port
Server
[111
SNA
Gateway
[111
NCP / VTAM

CICS | IMS | TSO

Applications
Programs

The components are:

4 The BEA MessageQ client that communicates with the BEA MessageQ LU6.2
Port Server by sending and receiving messages over the BEA MessageQ
message bus. By sending specific, predefined message types, the BEA
MessageQ client can ask the Port Server to:

¢
¢

Establish a connection to an IBM LU6.2 application (a Connect request)

Send traffic received from incoming connections to a specific BEA
MessageQ client (a Register Target request)

Send or receive data over a previously established connection (a data
message)

Manage a previously established connection (a Change Direction request or a
Connection Terminated notice)

4 The BEA MessageQ LU6.2 Port Server that establishes and maintains SNA
sessions for use by BEA MessageQ clients and applications residing on remote
IBM systems.

1-4 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

SNA APPC/LUG6.2 Fundamentals

The LUG.2 Port Server is a connection point manager: a software process that
understands the “language” of network applications located in different networks
on opposite sides of a “connection point,” the place where the two networks
attach to each other.

A Port Server manages communication resources on behalf of client processes
(resource sharing), reduces application complexity by “hiding” the details of
resource management, and optionally provides other value-added services (like
multithreading).

The SNA sessions are created using the services of the SNA Gateway (either a
DECnet/SNA Gateway, a Domains Gateway, or a Peer Server). SNA sessions
are assigned to BEA MessageQ clients on a first-come, first-served basis when
the clients send Connect requests.

4 The SNA Gateway that performs the lower-level protocol and message format
translations required to connect a DECnet network with an SNA network.

4 NCP andVTAM, software components crucial to the operation of the networked
SNA systems. SNA Gateways, communications lines, and LUs must be properly
defined to NCP and VTAM before communication with the IBM applications is
possible.

4 CICS, TSO, andIMS, application subsystems that run on the MVS operating
system and support the use of APPC over LU6.2 sessions.

BEA MessageQ LUG6.2 Services are most frequently used to communicate with
application programs that run under these application subsystems.

SNA APPC/LU6.2 Fundamentals

The information that follows is a short summary of SNA APPC LU6.2 fundamentals.
For more detailed information, refer @A Transaction Programmer’s Reference
Manual for LU Type 6.2.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 1-5

1 Introducing BEA MessageQ LU6.2 Services

Logical Unit Type 6.2 Overview

LU6.2 isagenera-purpose architecture that enables IBM products to communicate
with each other. The LU6.2 architecture defines a set of protocols. To communicate
with each other, products must implement LU6.2 according to these protocols. There
are two general implementations of LU6.2:

4 The “open-box” protocol provides a programming interface to allow customized
solutions.

4 The “closed-box” protocol provides no programming interface but does offer
turnkey solutions.

Transaction programs (TPs) are programs that can process a specific set of input da
trigger specific job executions, or produce specific output data. Distributed
transactions within an SNA network communicate by exchanging information during
a conversation, which is a temporary logical path established between two cooperatin
TPs. This path is treated as a shared resource between TPs.

IBM's architectural definition for LU6.2 provides a set of procedures cedids that

is used to design distributed transactions. CICS ISC implements the verb functions
with EXEC C €S commands and OpenVMS TPs implement the verb functions with
OpenVMS procedures.

The APPC verb set consists of function verbs that are implemented as BEA Message
messages. The logic of how these verbs are used (verb flow) is the same regardless
whether you are programming in an OpenVMS environment or an IBM environment.
Refer to Chapter 6, “LU6.2 User Callback Services,” for detailed informatidssem
Callback Services and APPC verbs.

Inbound and Outbound Conversations

Conversation allocations may be initiated either by the OpenVMS TP (inbound) or by
the IBM TP (outbound). Figure 1-2 illustrates a typical SNA conversation session. The
LUG.2 type of SNA LUs can be configured as independent or dependent. The BEA
MessageQ LU6.2 Services for OpenVMS product uses dependent LUs.

1-6 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

SNA APPC/LUG6.2 Fundamentals

Figure1-2 SNA Session for Dependent LUs

PLU /SSCP

Step 1: SLU sends
SNA INIT SELF
to SSCP, asking for
BIND from PLU

Step 2: SSCP notifies PLU
that SLU wants a BIND

Step 3: PLU sends
BIND to SLU

@
SLU PLU

—_—

Step 4: SLU accepts BIND.
Session is established.

Inbound allocation causes the gateway to transmit an | NI T SELF to the IBM SSCP

that builds a suggested Bl ND and passes it to the application subsystem (which may

modify it). The application passesthe Bl NDback to the gateway. If the gateway accepts

the Bl ND, the session is established and the OpenVMS and IBM TPs are in a “session.”

Outbound allocation causes the gateway to wait in the active-listening mode for the
IBM TP to send @&l ND followed by anATTACH. If the gateway accepts tiSTACH,

the session is established and the OpenVMS and IBM TPs are in a session. They are
also in a state of conversation (also called “between brackets”).

Contention for session resources occurs when both partners attempt to begin
conversation simultaneously on the same session. The contention is resolved
according to the polarity agreed upon when the session was established. The
contention winner (first speaker) always receives the session resources, and the
contention loser (bidder) always has to wait. The contention winner/loser is negotiated
in theBI ND.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 1-7

1 Introducing BEA MessageQ LU6.2 Services

Using the LU6.2 Port Server for Applications Connections

Exchanging information between the connectionless, stateless environment of the
BEA MessageQ system and the connection-oriented, state-oriented environment of
APPC (atask similar to that of connecting systems as different as the postal mail and
the telephone) requires the services of an intermediary that understands both. The
intermediary provided by BEA MessageQ LU6.2 Servicesisthe LU6.2 Port Server.

The LU6.2 Port Server understands how to:

4 Get connections to APPC applications when asked to do so by BEA MessageQ
applications (inbound connections)

4 Convert data messages from one network into the form required by the other
network

4+ Accept connections from APPC applications and deliver the incoming data to
BEA MessageQ applications (outbound connections)

4 Detect errors from one network and deliver the proper error notifications to the
other network

In addition, the LU6.2 Port Server performs numerous “housekeeping” tasks (such a
error recovery, automatic restart of communication links, and error and trace logging]
that are desirable in distributed applications.

Refer to Chapter 3, “Configuring the LU6.2 Port Server,” for more information on the
LUG.2 Port Server.

The BEA MessageQ LUG6.2 Services product uses the Stream Output Facility for
logging and tracing. This facility provides time stamps on both the logging and tracing
output as well as dynamic tracing. See Bie\ MessageQ Installation and

Configuration Guide for OpenVMS for more information on dynamic tracing and the
BEA MessageQ for OpenVMS Event Logger Utility.

Writing Your Own Port Server

When installed, the BEA MessageQ LU6.2 Services software provides a typical LUG.Z
Port Server that uses seven predefined messages to simplify setting and managing |
application connections of the BEA MessageQ clients to remote partners.

1-8 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

SNA APPC/LUG6.2 Fundamentals

However, if the standard LU6.2 Port Server programming interface does not meet the
needs of an application, does not offer afunction required by all client applications, or
does not meet some other unusual requirements, a specialized Port Server may be
developed using the LU6.2 User Callback Services.

The BEA MessageQ L UG6.2 Services provide you with the option of writing your own
Port Server using 21 BEA MessageQ messages that map to the APPC verb set.

Note: RefertoChapter 3, “Configuring the LU6.2 Port Server,” and Chapter 4, “Port
Server Messages,” for LU6.2 Port Server information. Refer to Chapter 6,
“LUB.2 User Callback Services,” for LU6.2 user callback information.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 1-9

1 Introducing BEA MessageQ LU6.2 Services

1-10 BEA MessageQ LUG6.2 Services for OpenVMS User’s Guide

CHAPTER

2 Developing

Applications Using BEA
MessageQ LU6.2
Services

This chapter provides an overview of how to use BEA MessageQ LUB6.2 Servicesfor
OpenVM S to develop programs that communicate between |BM mainframes and
VAX or Alpha systems running OpenVMS.

This chapter describes:
4+ Applications Development Overview
4 Structure of BEA MessageQ LUB.2 Services Applications

4 Development Checklist

Applications Development Overview

BEA MessageQ LUG6.2 Services can be used to develop awide range of distributed
applications that integrate BEA MessageQ applications and LU6.2 APPC clients.

BEA MessageQ LUG6.2 Services support three types of applications:

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 2-1

2 Developing Applications Using BEA MessageQ LU6.2 Services

4 Inbound applications
4 Outbound applications
4+ Hybrid applications

Inbound Applications

Inbound applicationsinitiate APPC conversations with partner programs in the SNA
network based on eventsthat occur in the BEA MessageQ network (for example, user
input at aterminal or workstation, receipt of a message from another BEA MessageQ
client program, and so on). Inbound applications are typically used to trigger
application actionsin the SNA network based on events and datagenerated inthe BEA
M essageQ network.

Outbound Applications

Outbound applications accept APPC conversationsinitiated by partner programsinthe
SNA network based on events that occur in the SNA network (such as user input at a
terminal or workstation, receipt of a message from other APPC client programs, and
thelike). Outbound applications are typically used to trigger application actionsinthe
BEA MessageQ network based on events and data generated in the SNA network.

Hybrid Applications

Hybrid applications both initiate APPC conversations with partner programsin the
SNA network and accept APPC conversationsinitiated by partner programsin the
SNA network. Hybrid applications are typically used to route application traffic
among BEA MessageQ and APPC clients based on application-specific criteria

The LUB6.2 Services port server is avery general form of a hybrid application: it both
initiates inbound APPC conversations and accepts outbound conversations.

2-2 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Structure of BEA MessageQ LU6.2 Services Applications

Target Registration

A BEA MessageQ client that isto receive messages on outbound sessions must be
registered with the LU6.2 Port Server before a connection can be established. A BEA
MessageQ client is registered by sending a message to the LU6.2 Port Server. This
message contains the following information:

4 The name of the target (as known to the LU6.2 Port Server) to be used by the
IBM client to establish communication with the BEA MessageQ client

4 The BEA MessageQ group ID and queue number of the BEA MessageQ client

After registering the target, the system returnsthe REG STER_TARGET message to the
BEA MessageQ client.

A BEA MessageQ client can register itself or it can be registered by another
application. Each target may be registered by only one BEA MessageQ client
application. Applications are automatically deregistered when they exit.

Note: A permanent outbound target is permanently registered with the BEA
M essageQ group | D and queue number provided onthetarget definition. BEA
M essageQ clientsthat receive output from permanent outbound targetsdo not
need to register.

Structure of BEA MessageQ LU6.2 Services
Applications

BEA MessageQ LU6.2 Services applicationsare BEA MessageQ applicationsthat use
the services of the BEA MessageQ LUB6.2 Services Port Server to conduct APPC
conversations with partner programs running in the SNA network.

Inits simplest form, such an application will attach a queue, by calling

pams_at t ach_q, and conduct adial og with the port server, by callingpans_put _nsg
and panms_get _nsg (or pams_get _nsgw), to exchange the seven predefined port
server message types with the port server.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 2-3

2 Developing Applications Using BEA MessageQ LU6.2 Services

Simple Linear Conversations

It ispossible to write an application that performsthis dialog in alinear manner. In its
simplest form, an application may conduct an LU6.2 conversation as follows:

pans_attach_q

pans_put _nsg(connect _req)

pans_get nsgw(connect _accept)

pans_put _nsg(data_nmessage+change_di recti on)
pans_get nmsgw dat a_nessage)

pans_get _nmsgw(change_directi on)

pans_put _nsg(connection_term nated
pans_exit()

However, this approach assumes that the message to be received by apans_get _nsg
isthe message that the application expects. Because the BEA MessageQ systemisa
distributed queuing system, and because many things can happen in a distributed
application, the message that arrives might not be the message expected by the
application logic at that point in the conversation.

A better approach isto design the application as a simple state machine that performs
initial application housekeeping and receives messages. Otherwise, extensive
exception processing must be added to the logic to handle unexpected message types,
which leads to more complex applications and a possible increase in logic errors.

State Machines

A simple state machine application performsinitial application housekeeping, entersa
loop in which apans_get _msgw isissued to receive a message, and processes the
message based on its type (see Figure 2-1).

In the routing that deals with the particular message type received, the application
checksthe current stateto seeif the messageisavalid one, processesthe message, sets
anew state, and returns to the top of the loop.

For the application loop described in Figure 2-1, assume that the application must
receive a Type 1 message before it can receive a Type 2 message, and that all types
other than 1 and 2 are invalid. A simple state machine implementsthis scheme as
follows:

The application begins at STATE=0.

2-4 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Structure of BEA MessageQ LU6.2 Services Applications

If a Type 1 message arrives and STATE=0, the message is valid and the new
STATEis 1.

If a Type 2 message arrives and STATE=1, the message is valid, the new STATE
is 0, and the process starts over.

Q

Attach Queue

Figure2-1 Application Loop

Application Set State =0
Initialization
get_msgw
Type 1 Type 2
If STATE = 0, If STATE = 1, U”e%‘pegted
set STATE = 1 set STATE =0 yp

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 2-5

2 Developing Applications Using BEA MessageQ LU6.2 Services

Overview of State/Event/Action Table

State machines can be simply documented using a state/event/action table. Table 2-1
describes the preceding application and shows each possible state in column 1, all
events that can occur in that state in column 2, the action to be taken when that event
occursin column 3, and the new state in column 4.

Table 2-1 Sample State/Event/Action Table

State Event Action New State
STATE=0 Type 1 msgs processmessage STATE=1
Other msgs report error STATE=0
STATE=1 Type 2 msgs processmessage STATE=0
Other msgs report error STATE=1

In some cases, the new stateisthe sameastheoriginal state; thisallowsthe application
to deal with unexpected events. In STATE 0, for example, receiving anything other than
aType 1 message leaves the application in STATE 0, so the next message received is
subject to the samerules. Thiskeeps the application from processing any mesagesuntil
a Type 1 message has been received.

Thefollowing sections provide basic State/Event/Action tables for inbound and
outbound L U6.2 applications. The events listed in the Event column are the messages
used to communicate with the port server (refer to Chapter 3). These tables were used
to build the example programs listed in Appendix F.

Inbound State/Event/Action Listing

Table 2-2 describes an application that asks for a connection to an APPC partner
program, sends it a message, waits for a response, and disconnects the conversation.
This State/Event/Action table handles unexpected events and unexpected message

types.

Table 2-2 Inbound Sate/Event/Action Table

2-6 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Structure of BEA MessageQ LU6.2 Services Applications

State Event Action New State
connecting N/A send connect wai t _connect
wai t _connect connect _accept send data message and wai t _response

change direction
connect _rej ect log error exiting
other log error wai t _connect
wai t _response dat a_nessage process response wai t _conplete

change_direction

log error and send abort
message

exiting

wai t _conplete

other log error wai t _response

change_direction send connection exiting
terminated (normal)

dat a_nessage log error and send abort exi ti ng

message

other

log error

wai t _conplete

exi ting

N/A

cal pans_exit ()

appl i cation done

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 2-7

2 Developing Applications Using BEA MessageQ LU6.2 Services

Outbound State/Event/Action Listing

Table 2-3 describes an application that registers to accept connections from a remote
APPC partner program and then waitsfor data. After receiving adatamessage, it waits
to become the sender, sends a response, and waits for a disconnect from the remote

partner program.

Table 2-3 Outbound Sate/Event/Action Table

State

Event

Action

New State

regi stering

N/A

send register target
message

wai t _register

wai t _register regi ster_target N/A wai t _data
connection_term nated log error exiting
other log error wai t _register
wai t _data dat a_nessage jprocess message wait_to_send
change_direction log error and send abort ~ exi ting
message
other log error wai t _dat a
wait_to_send change_direction send data message plus wai t _di sconnect
change_direction
dat a_nmessage log error and send abort ~ exi ting
message
other log error wait_to_send
wai t _di sconnect connection_term nated N/A exiting
other log error wai t _di sconnect
exi ting N/A call pans_exi t () application done

Development Checklist

When developing a distributed application, make sure that your process includes the

following devel opment steps:

1. Define the application boundaries.

2-8 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Development Checklist

| dentify the communicating partners.
Design the application conversations.
Develop the application.

Define the communications environment.

S L T

Test the application.

Step 1: Define the Application Boundaries

Thefirst step in developing a distributed application, especially one that will runin a
heterogeneous network, isto determine the application boundaries. This process
consists of analyzing the functions that must be performed and the data that those
functionswill act upon, and then identifying the location (domain) in the network
where those data and functions “naturally” reside.

For example, if the application is intended to integrate customer order entry with
manufacturing control, you might determine that the customer order database is stored
in DB2 under CICS on an MVS system, and the shop floor control database is stored
in Rdb on an OpenVMS system. Functions that manipulate the customer order data
will “naturally” reside on the MVS system and functions that manipulate the shop floor
control data will “naturally” reside on the OpenVMS system. Figure 2-2 describes
application domains.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 2-9

2 Developing Applications Using BEA MessageQ LU6.2 Services

Figure2-2 Integrated Application Domains

N\ 4)
Manufacturing Customer Control

Control Functions Functions
Mfg. Data Order Data
VAX/VMS MVS/CICS

. J . J
BEA MessageQ SNA Domain

Domain

Step 2: Identify the Communicating Partners

After the functions and data have been associated with network locations (the BEA
MessageQ part of the network and the SNA part of the network, respectively), the
functions must be mapped onto the processes that will implement them. Asshownin
Figure 2-2, you can assume that the customer order functions and manufacturing
control functions have already been implemented in the existing application systems.
In this case, you are concerned with identifying the new processes that will implement
the new communications functions. Assume you must add the following functions:

4 New Order Transfer: When the Customer Order system accepts a new order,

the order is to be transferred immediately to the manufacturing control system
for execution.

2-10 BEA MessageQ LUG6.2 Services for OpenVMS User’s Guide

Development Checklist

4 Order Satus Update: Asthe order is moved through the manufacturing
process, a status update isto be delivered to the Customer Order system
indicating:

4 Last manufacturing step completed
4 Scheduled start and end time of the next operation
4 Updated estimated time of delivery of the finished order

4 Order Completion: When the order is completed and ready for shipment, an
order complete status must be delivered to the Customer Order system.

Each of these three functions requires two communicating partners---one in the BEA
MessageQ domain and onein the SNA domain (see Figure 2-3).

Figure2-3 Communication Partnersin Application

BEA MessageQ

. SNA Domain
Domain
(N\ 4 N
New Order New Order
Receive Send
Status Status
Update Update
Send Receive
Order Order
Completion Completion
Send Receive
_ § J

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide?-11

2 Developing Applications Using BEA MessageQ LU6.2 Services

Now you can seewhat new processes must be added to the applications running in each
domain, who the communicating partners will be, and how the communications flow
will be initiated.

In this example, there is one outbound conversation, initiated by the New Order Send
function, and two inbound conversations, initiated by the Status Update Send and
Order Completion Send functions, respectively.

Step 3: Design the Application Conversations

For each pair of communicating partners, you must design the application
conversation. Thisisthe actual exchange of messages between communicating
partners.

To design the application dialog, you must know:
Who will initiate the conversation
Theformat of each message

¢
¢
4 How and when the roles of sender and receiver will be exchanged
4 Who will terminate the conversation

¢

How errorswill be handled

For this example, assume that the rules are very simple (which is usually true):
4 Theparty initiating the conversation is responsible for terminating it.

4+ All errors are fatal; the conversation is terminated immediately when an error
occurs.

4+ All conversations consist of one or more messages sent by the initiating party.
4 When theinitiating party isfinished sending, it becomes the receiver.

4 When the accepting party seesthe initiating party become areceiver, it sends an
acknowledgment, and switches itself back to areceiver.

4 When theinitiating party receives acknowledgment and regains control of the
conversation (in other words, becomes the sender), it terminates the
conversation.

2-12 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Development Checklist

The application conversation between New Order Send and New Order Receive looks

like this:

New Order Send New Order Receive
Initiate conversation Accept new conversation
Send New Order message Receive New Order message
Become receiver Receive OK_TO_SEND
Receive acknowledgment Send acknowledgment
Receive OK_TO_SEND Become receiver
Terminate conversation Accept termination

Step 4: Develop the Application

After the application conversations and message formats have been defined, the
normal processes of application development (detail design, coding, and unit testing)
can take place.

Note: Refer to Chapter 3, “Configuring the LU6.2 Port Server,” Chapter 4, “Port
Server Messages,” and Chapter 6, “LU6.2 User Callback Services,” for
information on Port Server and User Callback messages.

Note: Refer to theBEA MessageQ Programmer’s Guide for BEA MessageQ
programming information.

Step 5: Define the Communications Environment

Before integration testing can occur, the communications environment must be
defined. The full set of definitions that must be in place varies, based on the specific
hardware, operating systems, and application subsystems involved.

Assuming a typical configuration consisting of a channel-attached SNA Gateway and
MVS with VTAM and CICS, the following definitions must be available:

4 Physical devices (the gateway) must be defined to VTAM.

4 LUG6.2 logical units that the gateway will provide must be defined to VTAM.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide?-13

2 Developing Applications Using BEA MessageQ LU6.2 Services

4 LUG6.2 “terminals” must be defined to CICS and mapped onto the LUs defined to
VTAM.

Note: Most sites use the CICS Resource Definition Online task to manage this
function.

4 CICS programs must be assigned Transaction Program Names (TPNs).

4 Access names must be defined to identify the specific groups of gateway LUs
that BEA MessageQ LUG6.2 Services will use.

4 BEA MessageQ programs that will accept outbound conversations must be
assigned TPNs.

4 An LU configuration file must be created that defines the gateway node names,
access names, and specific LUs that LU6.2 Services will use (defined earlier in
this step).

4 A target configuration file must be created that defines the “target” names used
by BEA MessageQ applications in connecting the LU6.2 Port Server and maps
them onto TPNs defined in steps 4 and 6.

Note: Refer to Chapter 3, “Configuring the LU6.2 Port Server,” for more
information on LU and target configuration files and the use of the LU6.2 Port
Server.

Step 6: Test the Application

With the communications environment defined, you can now begin testing your
application. If your application implements a state machine that is documented with ¢
state/event/action table, developing a test plan that will validate correct behavior in
each state is relatively straightforward.

Refer to Appendix C, “Examples of BEA MessageQ LU6.2 Inbound and Outbound
Applications,” for samples of inbound and outbound applications.

2-14 BEA MessageQ LUG6.2 Services for OpenVMS User’s Guide

Development Checklist

Developing a Sample Application

The following are the specifications of a sample application. For the purposes of the
example, assume that:

4 The gateway node name is SNAGWY.

4 The access name is ORDERS.

4 Thisapplication isassigned LU numbers 1, 2, and 3.
¢

The two inbound CICS programs are given the following TPNs:
4 ORDU—Order Update Receive

4 ORDG—Order Completion Receive

4 One outbound BEA MessageQ program is given the following NENORDER
—New Order Receive

Using the development process described in this section, this example produces the
two BEA MessageQ LU6.2 Port Server initialization fileRDERS. LU (inbound or
resources file) andrRDERS. TGT (outbound or target file). Refer to Chapter 3,
“Configuring the LU6.2 Port Server,” for information about recalling and editing these
initialization files.

Listing 2-1 shows these two initialization files.

Listing 2-1 Sample Resources and Target Initialization Files

ORDERS. LU

I One LU for use by OUTBOUND Conver sations
!
I Resource Gat eway Access LU Type
Cl csaut SNAGWY ORDERS 1 2
!
I Two LUs for use by INBOUND Conversations
!
I Resource Gat eway Access LU Type
CI CSIN SNAGWY ORDERS 2 1
CI CSIN SNAGWY ORDERS 3 1

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide?-15

2 Developing Applications Using BEA MessageQ LU6.2 Services

ORDERS. TGT
!

I One Target definition for OQUTBOUND Conversations
|

! Target TPN Resour ce Type Conmm Deal | ocat e
! Type Type
NEWDORDER NEWORDER acsour 2 2 1

I Two Target Definitions for | NBOUND Coi nversations
|

! Target TPN Resour ce Type Conmm Deal | ocat e
! Type Type

UPDATE ORDU Cl CSI N 1 2 1
COVPLETE ORDC Cl CSI N 1 2 1

2-16 BEA MessageQ LUG6.2 Services for OpenVMS User’s Guide

CHAPTER

3

Configuring the LU6.2
Port Server

This chapter describes how to configure, start up, and manage the LU6.2 Port Server.

Note: Beforeyou configure or use your LU6.2 Port Server, make sure that the BEA

MessageQ LUB6.2 Services software is properly installed and operational on
your system. Refer to | nstalling BEA MessageQ LU6.2 Servicesfor OpenVMS
for installation information.

Specific topics covered in this chapter include:

¢
¢
¢
¢
¢
¢

Port Server Functions

Port Server Limits of Operation

Configuring the Port Server

Configuring Inbound and Outbound Connections
Defining Logical Names

Managing the LU6.2 Port Server

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 3-1

3 Configuring the LUG6.2 Port Server

Port Server Functions

The LUG.2 Port Server is a connection-point management software tool that provides
network applications (in this case, LU6.2 type) connection and namespace mapping
services. The LUB.2 Port Server uses predefined messages (verbs) to simplify setting
and managing applications’ connections of the BEA MessageQ clientsto remote
partners.

To provide these functions, the LU6.2 Port Server must know:
4 What SNA resources are available
4 What names exist in both BEA MessageQ and SNA namespaces

Therefore, before you can use the LU6.2 Port Server, you need to set up the context
(targets and resources) in which it operates. This means that you must determine and
prepare the information that the LUG6.2 Port Server requires to configureitself when it
isinitialized.

To summarize, to configure a port server, you must configure the following:

4 |IBM system(s)

4 SNA gateway(s)
¢ Targets

4 Resources

¢

Startup options

Port Server Limits of Operation

Useof theLU6.2 Port Server isrestricted by thelimitsdescribed in Table 3-1. Y ou can
configure the LU6.2 Port Server only within these limits.

3-2 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Port Server Limits of Operation

Table 3-1 Port Server Operational Limits

Limit Description

Targets Targets are defined by a user as part of the LU6.2 Port Server
configuration process. A maximum of 512 targets can bedefined for any
LUG.2 Port Server.

SNA Logical A maximum of 256 SNA LUs can be defined for any LU6.2 Port Server.

Units

Concurrent A maximum of 256 concurrent LU6.2 sessions are supported for any

Sessions LU6.2 Port Server. The available pool of LUsis divided into inbound
and outbound groups; the sum of the active sessionsin each group
cannot exceed 256 at any one time.

Message Size The maximum data message size is 31982 bytes. This limit isimposed
by the BEA MessageQ maximum message size of 32000 bytes. An
18-byteheader isgenerated internally by LU6.2 Servicesfor OpenVMS,
leaving 31982 bytes for user data.

Target Sync The LUG6.2 Port Server supports both SYNC_LEVEL 0 (NONE) and

Level SYNC_LEVEL 1 (CONFI RM. Support for SYNC_LEVEL iscontrolled

globally by the DMQLU62$SELECT_SYNC and

DMQLUB2$DI SABLE_CONFI RMlogical names, and at the individual
target level through the SYNC_LEVEL option on an extended target
definition.

If the logical name DMQLUG2$SELECT _SYNC is not defined, defining
the logical name DMQLU62$DI SABLE_CONFI RMdisables
SYNC_LEVEL 1 support.

SYNC_LEVEL 1 issupported asfollows: A Change Direction request

fromaBEA MessageQ client resultsinaPREPARE_TO_RECEI VE verb
beingissued at SYNC_LEVEL 1.A Terminate Connection request from
aBEA MessageQ client results in a DEALLOCATE verb being issued at
SYNC_LEVEL 1.

The LU6.2 Port Server automatically and unconditionally issues a
CONFI RVED message in response to any CONFI RMverb issued by an
IBM client.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 3-3

3 Configuring the LUG6.2 Port Server

Multiple
Connections for

BEA MessageQ
Clients

BEA MessageQ clientsare allowed multiple active connectionsto IBM
clients. However, a BEA MessageQ Client can have only one active
connection to any one IBM client (see Figure 3-1). The LU6.2 Port
Server provides context information when each connection is
established, enabling the BEA MessageQ client to distinguish
connections from each other.

Itisthe responsibility of the BEA MessageQ client to present the correct
context information to the LUG6.2 Port Server when using a previously
established connection.

Multiple
Connections for
IBM Clients

IBM clients can initiate connectionsto multiple BEA MessageQ clients.
However, any IBM Client can have only one active connection to any
onetarget (see Figure 3-1). Because BEA MessageQ clients can register
themselves with multipletarget names, an IBM client can have multiple
connections to asingle BEA MessageQ client.

Security

Support for inbound conversation security is provided to those VTAM
application programs that support this APPC feature, such as CICS.
BEA MessageQ clients can present a user name, password, and profile
when obtaining a connection through the LU6.2 Port Server.

The LUG6.2 Port Server presents these values to the VTAM application
program when allocating the conversation on behalf of the BEA
MessageQ client.

Security File

Security support for inbound connection requestsis provided through a
security file. The file specifies which permanent processes are allowed
toinitiate an inbound connect request. Y ou can create asecurity filewith
any text editor. Each record must have a group and queue number. A
logical namein the LNM process table, DMQLUG2$SECURI TY_FI LE,
must be defined asthe full path name of the security file. Thefileisread
at Port Server startup, and only processes defined in thisfile are allowed
to initiate inbound conversations. If no logical name is defined, no
security checking will occur. A sample security file follows:

! Dng LU62 Security File

I Goup Queue
3 4
3 5

305 12

Figure 3-1 describes valid and invalid connections between the BEA MessageQ
(SNA) and IBM (CICS) clients and partners. Theinvalid connections are the multiple
connections (two or more) between two network partners.

3-4 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Configuring the Port Server

Figure3-1 Valid and Invalid BEA MessageQ and IBM M ultiple Connections

BEA MessageQ IBM Clients

Valid Connections

Invalid Connections

Configuring the Port Server

When initialized, the LU6.2 Port Server builds two table$+~€ONFI G and
TARGET_CONFI G. These tables must contain the following information:

4 LU CONFI G—SNA Resources

Each resource definition identifies an SNA Gateway node name, access hame,
and session, as well as tRESOURCE NAME to which the definition belongs.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 3-5

3 Configuring the LUG6.2 Port Server

Thetable of SNA resourcesis used at run time to maintain context information
about each active connection that requires an SNA LU.

4 Valid Destinations (TARGET_CONFI G)

Target definitions translate BEA M essageQ names into |BM names. Each target
definition identifies the RESOURCE NAME used to establish a connection to that
target.

Thetable of valid destinations is used at run time to establish connections and to
find entriesin the table of SNA resources to track the connections asthey are
established.

Thesetablesare built by reading two text files, known as configuration files, which are
identified by the following logical names:

4 DMQLUG2$SERVER LU CONFI G which contains entries for the table of SNA
resources, LU _CONFI G. TXT

4 DMQLUG2$SERVER TARGET_CONFI G which contains entries for the table of valid
destinations, TARGET _CONFI G. TXT

Thefollowing two sections describe how to prepare the configuration files that the
LU6.2 Port Server usesto build the LU and TARGET configuration tables.

Building the LU Configuration File

The LU configuration file defines the SNA resources required by the LU6.2 port
server:

Resource name (LU_SYSTEM | D)
Gateway node (LU_GATEWAY)
Gateway access name (LU_ACCESS)
Gateway session (LU_SESSI ON)
Resource type (LU_TYPE)

Translation option

* & & & & o o

Sync-level

3-6 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Configuring the Port Server

To create or edit the LU configuration file, type

$ edit DMQLUB2$SERVER LU CONFI G

Note: Inthe LU configuration file, data items are delimited by spaces or tab
characters; any text following dataitemsis treated as comments; and lines
beginning with an exclamation point (!) or an asterisk (*) are treated as
comments.

Listing 3-1 presents the LU configuration file format.

Listing 3-1 LU Configuration File Format

LU CONFI GURATI ON FI LE

LOG CAL NAME: DMQLUB2$SERVER LU CONFI G

|

|

|

|

! FUNCTI ON: DEFI NES ALL SNA RESOURCES FOR PORT SERVER

! FORVAT: FREE- FORM PCSI TI ONAL, \\HI TESPACE DELI M TED

! LEADI NG WHI TESPACE REMOVED BEFCRE PROCESS! NG
! LINES BEG NNING WTH "!" OR "*" ARE COMMVENTS
|

! FI ELDS: LU SYSTEM I D UP TO 8 CHAR

! LU_GATEWAY UP TO 6 CHAR

! LU_ACCESS UP TO 8 CHAR

! LU_SESSI ON 3 NUMERI C, 0 = ANY

! LU _TYPE 2 NUMERI C (1,2 DEFI NED)

|

|

P'ALL TEXT FOLLOW NG THE POSI TI ONAL FI ELDS 1S A COMVENT

!
' 4 LU DEFINI TIONS | NBOQUND TO C CS ADDRESS SPACE 1
!
!

I LU SYSTEM | D LU GATEWAY LU ACCESS LU SESSI ON LU TYPE

a CSs01 SNAGM DECLW6G2 O 1 LU FOR | NBQUND USE TO CI CSO01
G CSs01 SNAGM DECLW6G2 O 1 LU FOR | NBQUND USE TO CI CSO01
G CSs01 SNAGM DECLW6G2 O 1 LU FOR | NBQUND USE TO CI CSO01
a Cs01 SNAGM DECLW6G2 O 1 LU FOR | NBQUND USE TO CI CSO01
!

' 2 INBOUND LUS FOR A CS 2

!
a Cs02 SNAGML DECLUG2B O 1 LU FOR | NBOUND USE TO ClI CS02
a Cs02 SNAGM DECLUG2B O 1 LU FOR | NBOUND USE TO ClI CS02

!
I '3 LU DEFI NI TI ONS OUTBOUND FROM ClI CS ADDRESS SPACE 1

a csaurl SNAGM DECLUG2 200 2 LU FOR OQUTBCQUND USE FROM Cl CSO1

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 3-7

3 Configuring the LUG6.2 Port Server

Cl csauT1 SNAGM DECLUG2
Cl csauT1 SNAGM DECLUG2

201 2 LU FOR QUTBOUND USE FROM Cl CSO01
202 2 LU FOR QUTBOUND USE FROM Cl CSO1

I ONE QUTBOUND TRANSPARENT LU FOR | M5 TO USE

I MSTRANS SNAGM DECLUG2

I END

210 3 TRANSPARENT OUTBOUND LU FCR | MS

The data items required to define each resource are described in Table 3-2.

Table 3-2 LU Configuration File Data |l tems

Data Item

Description

LU SYSTEM | D

The system ID that uniquely identifies all LUs with common
characterigtics. It is used to locate an entry in the LU configuration

file when a connection request is received for a given destination
(target). The entry in the TARGET_CONFI G configuration file for

this destination uses the LU_SYSTEM | Dto identify the

LU_CONFI Gentriesthat can be used to create and manage
connections to this target. See “Building the Target Configuration
File” for more information. Th& U _SYSTEM | D can be used to
reserve blocks of LUs for use by particular processes. The degree
of port contention can be controlled by adjusting the number of
entries in the block. To eliminate contention, make the size of the
block equal to the number of concurrent connections required.

LU GATEWAY

The SNA Gateway through which this LU is accessed.

LU _ACCESS

The SNA Gateway access name by which this LU is accessed.

LU _SESSI ON

The SNA Gateway session humber. The session number is required
for LU_TYPE 2 OUTBOUND andLU TYPE 3 QUTBOUND
TRANSPARENT connections (described next) because the specific
session number is required to activate the specified sessions for use
by VTAM. We recommend using theJ TYPE 1 | NBOUND

session humber connection to facilitate problem diagnosis.

3-8 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Configuring the Port Server

LU TYPE The type of connection for which the LU is being reserved. Three
types of connections are available:

1=1NBOUND The LU is used for communication with
IBM transactions on demand, when requested by an
OpenVMS process.

2 = OUTBOUND The LU isused for communication with
OpenVM S transactions on demand when requested by
an IBM process.

3 = OUTBOUND TRANSPARENT The LU isused for
communication with OpenVMS transactions on
demand when reguested by an IBM process. Received
datais not trand ated from EBCDIC data format to
ASCII dataformat.
No LU can be used for both inbound and outbound traffic. This
restriction prevents contention for resources between the LU6.2
port server and VTAM.

Building the Target Configuration File

The Target configuration file defines all valid destinations known to the LU6.2 Port
Server. Thefile translates the target name that is known to the sender program into a
name that is known by the receiver program. Thisisolates sender programs from
changesin the receiver program system.

Target definitionsinclude:

Target name (for BEA MessageQ destinations) (TARGET_NANE)
TP name (for IBM) (TARGET_TPN)

Resource name (TARGET_SYSTEM | D)

Target type (TARGET_TYPE)

Communication type (COVMUNI CATI ON_TYPE)

Deallocation rule (DEALLOCATE_TYPE)

* & & & O o o

Delivery mode

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 3-9

3 Configuring the LUG6.2 Port Server

To create or edit thisfile, type
$ edit DMQLUG2$SERVER_TARGET_CONFI G

Note: Inthetarget configuration file, dataitems are delimited

by spaces or tab

characters; any text following dataitemsistreated as comments; and lines
beginning with an exclamation point (!) or an asterisk (*) are treated as

comments.

Listing 3-2 presents the target configuration file format.

Listing3-2 TARGET Configuration File Format

TARGET CONFI GURATI ON FI LE

LOG CAL NAME: DMQLUG2$SERVER_TARGET_CONFI G

FUNCTI ON\: DEFI NES ALL SNA RESOURCES FOR PORT SERVER
FORMAT: FREE- FORM PCSI TlI ONAL, WHI TESPACE DELI M TED
LEADI NG WH TESPACE REMOVED BEFORE PROCESSI NG
LINES BEGNNING WTH "!I'" OR "*" ARE COMMENTS
FI ELDS: TARGET_NAME UP TO 8 CHAR
TARGET_TPN UP TO 8 CHAR
TARGET_SYSTEM | D UP TO 8 CHAR
TARGET_TYPE 1 NUMERI C (1, 2, 3, 4 DEFI NED)
COVMUNI CATI ON_TYPE 1 NUMERI C (1,2 DEFI NED)
DEALLOCATE_TYPE 1 NUMERI C (1, 2 DEFI NED)

TRANS1 TRN1L a Cso1 1 2 2
TRANS2 TRN2 a Cso1 1 2 2
P THE SAME TRANSACTI ONS ARE ALSO ON QI CS 2
!
TRANS1A TRN1L a Cso02 1 2 2
TRANS2A TRN2 a Cso02 1 2 2

! TP NAMES TO BE ALLCCATED BY C CS

VX01 VX01 VAX01 2
VX02 VX02 VAX01 2

3-10 BEA MessageQ LUG6.2 Services for OpenVMS User’s Guide

Cl CS TRANSACTI ON PROGRAM NAMES FOR | NBOQUND DUPLEX TRANSACTI ONS TO CI CS 01

TARGET_NAME TARGET_TPN TARGET_SYS | D TARGET_TYPE COVM TYPE DEALLCC TYPE

I NBQUND TRANS 1
I NBQUND TRANS 2

I NBQUND TRANS 1

I NBQUND TRANS 2

OUTBOUND TRANS 1
OUTBOUND TRANS 2

Configuring the Port Server

| NBOUND EXTENDED TARGET

+ | TRANSLATI ON! =! SYNC LEVEL!
Cl CS02 3 2 2 0 1 No Transl ati on

QUTBOUND EXTENDED TARGET

I TRANSLATI ON SEND OPT! PERM GRP! QUEUE!

VAX01 4 1 1 011110

The data items required to define each destination are described in Table 3-3.

Table 3-3 Target Configuration FileData Items

Data ltem

Description

TARGET_NAME

The target name asit isknown to BEA MessageQ application programs. For
IBM targets, thisisthe name that OpenV M S application programs providein
the CONNECT_REQUEST message. For OpenVM S targets, thisis the name
that OpenV M S application programs provide in the REGl STER_TARGET

message.

Note: The CONNECT_REQUEST and REG STER TARGET messages are
described in Port Server Connection Messages.

TARGET_TPN

The actual TPN known to the IBM system. The specific use varies as a
function of TARGET_TYPE. For inbound targets, the TARGET_TPNisthe
IBM TPN asitisknowntothe VTAM application (CICS/VSor IMS/VS). For
outbound targets, the TARGET_TPNisthe TPN used by the IBM application
program to allocate conversations with the LU6.2 Port Server.

TARGET_SYSTEM | D

The LU_SYSTEM | Dused asakey when searching the LU configurationfile
for avalid entry to use in tracking the progress of the connection. For IBM
targets, the LU_NAME in the selected LU configuration entry is used in the
LUB2_ALLOCATE message. For OpenVMS targets, the LU_SYSTEM | D
entry in the LU configuration file is used to store context information, but it
does not contribute any information used in establishing the connection.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide3-11

3 Configuring the LUG6.2 Port Server

TARGET_TYPE

The method used to establish connections to the target. Valid values are:
4 1 = I NBOUND

Inbound targets reside on IBM systems and are activated when
application programs request connections to them. Inbound
targets are nontransparent, which means that the LU6.2 Port
Server trand ates messages sent to inbound targets from ASCI|
data format to EBCDIC data format.

2 = OUTBOUND

Outbound targets reside on any system connected to the BEA

M essageQ message queuing bus. Outbound application
programs must be registered with the LU6.2 Port Server for the
target names that they support before conversation allocation
from IBM application programs is accepted for those targets.
Outbound targets are nontransparent, which means that the
LUG.2 Port Server trang ates messages sent to outbound targets
from the EBCDIC data format to ASCI| data format.

TARGET_TYPE (cont.)

3 = TNBOUND EXTENDED

Inbound extended targets reside on the IBM system and are
activated when OpenVM S application programs request
connections to them. If TARGET_TYPE is | NBOUND EXTENDED,
you must aso indicate the TRANSLATE OPTI ON and SYNC LEVEL

values.

Note: You must specify these values after you specify the TARGET _NAME,

TARGET_TPN, TARGET_SYSTEM | D, TARGET_TYPE,
COVMUNI CATI ON_TYPE, and DEALLOCATE_TYPE.

This means that you must specify the major TARGET_TABLE
configuration file data items first, then you specify any additional
TARGET_TYPE data items required. (See Listing 3-2 for
clarification.) The TRANSLATE OPTI ON controls whether data
tranglation service is provided for thistarget. Valid values are:

0—Do not translate (transparent)
1—Translate (nontransparent)

The SYNC_LEVEL determines the synchronization level permitted
on conversations with this target. Valid values are:

0—SYNC_LEVEL=NONE
1—SYNC_LEVEL=CONFI RM

3-12 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Configuring the Port Server

TARGET_TYPE (cont.) ¢ 4 = OUTBAUND EXTENDED

Outbound extended targets reside on any system connected to the
BEA M essageQ message queuing bus. Outbound application
programs must be registered with the LU6.2 Port Server for the
target names that they support before conversation allocation
from IBM application programsis accepted for those targets.

If the TARGET_TYPE is OUTBOUND EXTENDED, you must also
indicate the TRANSLATE OPTI QN, the SEND OPTI ON, and
whether it isa PERVANENT TARGET. If it is a PERVANENT
TARGET, then you must indicate the PERMANENT GROUP and the
PERVANENT QUEUE.

Note: You must specify these values after you specify the TARGET_NANE,
TARCET_TPN, TARGET_SYSTEM | D, TARGET_TYPE,
COVMUNI CATI ON_TYPE, and DEALL OCATE_TYPE.

This means that you must specify the major TARGET_TABLE
configuration file data items first, then you specify any additional
TARGET_TYPE dataitemsrequired. See Listing 3-2 for
clarification.

The TRANSLATE OPTI ON controls whether data trandlation
service is provided for thistarget. Valid values are:

0—Do not translate (transparent)
1—Translate (nontransparent)

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide3-13

3 Configuring the LUG6.2 Port Server

TARGET_TYPE (cont.) The SEND OPTI ON controlsthe DELI VERY MODE parameter used on
pans_put _nsg callsthat write messages to the message queue currently
registered for the target. Valid values are:

0=PDEL_MODE_NN_MEM PDEL_UMA RI SC

1 =PDEL_MODE_WF_MEM PDEL_UMA _RI SC

2 = PDEL_MODE_WF_DQF, PDEL_UNVA_SAF
The PERMANENT TARGET value indicates whether thisis a permanent
outbound target. Valid values are:

0—This is not a permanent target
1—This is a permanent target

Note: If the PERMANENT TARGET valueisset to 1, you must specify
PERMANENT GROUP and PERVANENT QUEUE.

The PERMANENT GROUP specifies the BEA MessageQ group ID
permanently registered for this target. The PERMANENT QUEUE value
specifies the BEA MessageQ queue number permanently registered for this
target.

COVMUNI CATI ON_TYPE The type of communication supported by the target. Valid values are:

1 = SI MPLEX The initiator of the conversation is always the
sender program. The sender program and the receiver program
cannot exchange roles.

2 = DUPLEX The initiator of the conversation is the initial
sender program. The initial sender program can become the
receiver program by exchanging roles with the remote partner
program.
DEALLOCATE_TYPE The partner that is allowed to deallocate the conversation. Note that only the
partner in send state can issue anormal deallocate, regardless of the
dedllocate type. Valid values are:

1 = I NI TI ATOR- ONLY Only the partner thanitiated the
conversation is allowed to deallocate the conversation.

2 = OPEN Either partner can deallocate the conversation when
in the send state.

3-14 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Configuring Inbound and Outbound Connections

Configuring Inbound and Outbound
Connections

The following tables provide the data that you must enter to properly configure
inbound and outbound connections.

Configuring Inbound Connections

Use the following datato configure inbound connections (targets) supported by the
LU6.2 Port Server. Table 3-4 liststhe dataitems that you specify to configureinbound
targets properly.

Table 3-4 Dataltemsfor Configuring Inbound Targets

Data Item Value

TARGET_NAME The target name presented by the OpenVM S end client in the
OONNECT _REQUEST message.

TARGET_TPN The TPN of theIBM program asknown to the VTAM application (CICS/VS
or IMSIVS).

TARGET_SYSTEM | D The vaue of an LU_SYSTEM | Dinthe LU_TABLE configuration file for an
LU_TYPE 1 INBOUND LU as known to the VTAM application (CICS/VS
or IMSIVS).

TARGET_TYPE 1 =1 NBOUND.

COVMUNI CATI ON_TYPE Specify 1 (simplex) if the BEA MessageQ client does not receive messages
from the IBM system.

Specify 2 (duplex) if the BEA MessageQ client receives messages from the
IBM system.

DEALLOCATE_TYPE Specify 1if the IBM client does not issue LU62_DEALL OCATE messages.

Specify 2 if COMMUNI CATI ON_TYPE = 2 and the IBM client issues
LUG62_DEALLOCATE messages.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide3-15

3 Configuring the LUG6.2 Port Server

Configuring Outbound Connections

Usethefollowing datato configure outbound connections supported by the LU6.2 Port
Server. Table 3-5 lists the data items that you specify to configure outbound
connections (targets) properly.

Table 3-5 Data Itemsfor Configuring Outbound Tar gets

Data Item Value
TARGET_NAME The TARGET_NAME presented by the OpenVMS end client in the
REG STER_TARGET message.
TARGET_TPN The OpenVMS TPN asit is known to the IBM end client.

TARGET_SYSTEM | D

Thevalueof anLU_SYSTEM | DintheLU_TABLE configurationfilefor an
LU_TYPE 1 INBOUND LU known to the VTAM application (CICS/VS or
IMS/VS).

TARGET_TYPE

2—OUTBOUND.

COMMUNI CATI ON_TYPE

Specify 1 81 MPLEX) if the BEA MessageQ client does not send messages to
the IBM system.

Specify 2 PUPLEX) if the BEA MessageQ client sends messages to the IBM
system.

DEALLOCATE_TYPE

Specify 1 if the BEA MessageQ client does not idsug@2_DEALLOCATE
messages.

Specify 2 ifCOMMUNI CATI ON_TYPE = 2 and the BEA MessageQ client
issued U62_DEALL OCATE messages.

Defining Logical Names

Two sets of logical names are provided for LUG.2 Services for OpenVMS. One setis
provided for convenience in using and managing LU6.2 Services for OpenVMS by
allowing easy access to the LU6.2 on-disk structure; the second set is used to set
startup options in the LU6.2 Port Server.

3-16 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Defining Logical Names

Logical Names for the On-Disk Structure

The logical names used to access the LU6.2 Services for OpenVMS on-disk structure
are asfollows:

¢ DMQLUG2$SERVER EXE

The device and directory specification of the directory containing the . EXE, .COM
and .Ul Dfilesfor the LUG.2 Port Server.

¢ DMQLUG2$SERVER LI B

The device and directory specification of the directory that contains the message
structure definitions for programs written in C, Pascal, PL/1, BASIC,
FORTRAN, BLISS, and MACRO. Thisdirectory aso contains the object files
necessary to relink the LU6.2 Port Server.

¢ DMQLUG2$SERVER SRC

The directory specifications of the C source for the application programming
interface (API) shell are given in Chapter 5, “LU6.2 Port Server Application
Programming Interface.”

4 DMQLU62$SERVER EXAMPLES

The device and directory specification of the directory containing example
programs.

4 DMQLUG2$SERVER DCC

The device and directory specification of the directory that contains the LU6.2
Port Server documentation.

Logical Names for Port Server Control

The logical hames used to control the LU6.2 Port Server are:

4 DMLU62$SERVER LU CONFI G
The file specification of the file containing the LU definitioh&) (CONFI G. TXT)

¢ DMOLUB2$SERVER TARGET CONFI G

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide3-17

3 Configuring the LUG6.2 Port Server

Thefile specification of the file containing the target definitions
(TARGET_CONFI G. TXT)

4 DMQLU62$SERVER PAMS_PROCESS

The BEA MessageQ queue number to use in the pans_at t ach_q call. If not
specified, the default is queue number 63.

¢ DMQLUG2$SERVER UCB_ADDR

The BEA MessageQ queue number to use when sending messages to the LU6.2
user callback. If not specified, the default is queue number 62.

4 DMQLU62$SERVER BROADCAST_STREAM

The BEA MessageQ broadcast stream to use when sending event messages. If
not specified, the default is 4801.

¢ DMQLUB2$SERVER RECONNECT TI MER

Thetime to wait, in seconds, before sending a new LU62_ACTI VATE message for
any LUs on which the prior activation attempt failed. The default is 900 (15
minutes); the minimum valueis 60.

4 DMQLU62$SERVER LOG | NFO

Define this logical name as any arbitrary value to enable logging for al
successful conversation connects and disconnects, as well as the following
operations:

Connect Request
Security Check
Connected
Connect Accept

* & & o o

Disconnect

For thislogical nameto take effect, defineit in the LNM table for the BEA
MessageQ Bus and Group in which the Port Server is running.

Unsuccessful conversation requests are always logged, regardless of whether or
not thislogical name is defined.

Disabling log information reduces the size of the log files for Port Servers that
have many conversation requests.

3-18 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Defining Logical Names

4 DMQLUG2$SECURI TY_FI LE

Thislogical name is used to define the full path name of the security file. If this
logical name is not defined, no security checking will occur.

4 DMLUG2$SERVER MULTI _CONNECT

Definethis logical name as any arbitrary value to allow multiple connections to
the same INBOUND IBM target from a single BEA MessageQ program.

4 DMLU62$SERVER | M5_ADAPTER

Define this logical name as any arbitrary value to inform the LU6.2 port server
that the IBM clients are being accessed using the IMS LU6.1 Adapter for LU6.2
applications.

The LU6.2 Port Server changes its error-handling procedures to comply with the
following restrictions imposed by the Adapter. Specificaly, it does not issue:

4 The SEND ERRORAPPC verb
4 The DEALLOCATE(ABEND PROGRAM) verb

Note: When using the IMS LU6.1 Adapter, you must provide for application-level
dataintegrity checks because the normal facilities for obtaining confirmation
(SYNC_LEVEL 1) and signaling errors are not available due to restrictions
imposed by the IMS LU6.1 Adapter.

Refer to Appendix B, “Notes on IMS,” for more information on the IMS
LU6.1 Adapter.

In addition to the logical names specifically checked by the LU6.2 Port Server,
there are four logical names that affect the behavior of the LU6.2 User Callback,
upon which the LU6.2 Port Server is based. These logical names are:

¢ DMQLU62$BUFFER S| ZE

¢ DMQLUS2$BUFFER_COUNT

¢ DMQLUS2$SELECT_SYNC

¢ DMQLUG2$DI SABLE_CONFI RM

These logical names are described in Appendix A, “LU6.2 User Callback
Interface Logical Names and Error Codes.”

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide3-19

3 Configuring the LUG6.2 Port Server

Managing the LU6.2 Port Server

This section describes the DCL command procedures and utility programs that are
provided to start up, stop, and manage the LU6.2 Port Server.

Starting Port Servers

Run the DMQLU62_SERVER STARTUP. COMprocedureto start LUG6.2 Port Servers. This
command procedure is stored in DMQLU62$SERVER_EXE and performs the following
functions:

L4

¢
¢
¢

Definesthe LU6.2 Port Server logical names
Establishes the LU6.2 Port Server utilities as OpenVMS foreign commands
Starts the L U6.2 Port Server as a detached process

Runs the Event Watcher utility (described in “Watching Events”) so you can
observe the result of the LU6.2 Port Server initialization

The command format is:

@MALU62_SERVER _STARTUP Y que id ps_id lu_config file target_config file

The command procedure takes the following arguments, all of which are optional:

L4

Y or N—SpecifyY to start the servers. Specifyto set up logicals without
starting the servers.

que_i d—The BEA MessageQ queue number to be assigned to the port server

ps_i dc—The BEA MessageQ broadcast stream to be assigned to the port server
for Event Messages

lu_config_fil e—TheLU_CONFI Gconfiguration file to be used

target_config_fil e—TheTARGET_CONFI G configuration file to be used

3-20 BEA MessageQ LUG6.2 Services for OpenVMS User’s Guide

Managing the LU6.2 Port Server

Watching Events

Use the DMQLU62_EVENT _WATCH utility to watch the result of the LU6.2 Port Server
initialization.

DMQLUGB2 EVENT_WATCH. EXE listens to the BEA MessageQ broadcast stream defined
by thelogical name DMQLU62$SERVER BROADCAST_STREAM(if thelogical nameisnot

defined, it defaults to address 4801) and displays the event messages received on that
stream.

The utility is stored in DMQLUG2$SERVER_EXE and is defined as the foreign command
DMQLUB2_EVENT_WATCH by the DMQLUB2_SERVER_STARTUP. COMprocedure. The
utility accepts a Stream MOT (Multipoint Outbound Target) address as the P1
command-line parameter. This allows multiple EVENT_WATCH programsin asingle
group to monitor different log stream MOTS. Therefore, when multiple Port Servers
arerunin asingle group, each may be monitored by a separate EVENT_WATCH utility.
The event watch display screen border shows the name of the log stream MOT on
which it islistening. Pressing any key terminates the event watch utility after a
5-second delay.

The DMQLU62_SERVER STARTUP. COMprocedure starts the Event Watch program with
aforeign command, and passes the defined MOT address as the P1 parameter.

When the Event Watch program is run interactively, it may be started by arun
command or aforeign command. If started with arun command, the program transl ates
the DMQLU62$SERVER BROADCAST_STREAMIf present or defaults to 4801 if absent.
When started by aforeign command, the P1 parameter is used asthe log stream MOT.

Defining Logical Names with
DMAQLU62_SERVER_LOGICALS.COM

Use the DMQLU62_SERVER _LOG CALS. COMprocedure to define LU6.2 Port Server
logical names.

The command format is:

@MALU62_SERVER LOG CALS device install_dir VAO-VAX que_id ps_id lu _config file
target _config file

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide3-21

3 Configuring the LUG6.2 Port Server

The command procedure takes the following arguments:

devi ce—The device on which the LU6.2 option is installed

i nst al I _di r—The directory on which the LU6.2 option is installed

V40- VAX—The version and architecture of the LU6.2 option that is installed
que_i dThe BEA MessageQ queue number to be assigned to the port server
ps_id——The BEA MessageQ broadcast stream to be assigned to the port serve

lu_config file —TheLU_CONFI G configuration file to be used

* & & & & o o

target_config file—TheTARGET_CONFI G configuration file to be used

Stopping LU6.2 Port Servers

RunDMQLU62_SERVER STOP to stop LU6.2 Port Servers. The
DMQLU62_SERVER_STOP utility program sends 8HUTDOM message to a designated
BEA MessageQ address.

The utility is stored iDMYLU62$SERVER_EXE and is defined as the foreign command
DMQLU62_SERVER STOP by theDMQLU62_SERVER STARTUP. COMprocedure. The

utility takes two arguments: the BEA MessageQ group ID and the queue number of th
LUG.2 Port Server to be stopped.

For example:
$ DMQLU62_SERVER STOP 5 63

where 5 =group_| Dand63 = port_server_queue_nunber .

3-22 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

CHAPTER

4 Port Server Messages

BEA MessageQ clients establish and manage L U6.2 connections through the LU6.2
Port Server using predefined messages. There are two types of predefined messages
used by the LU6.2 Port Server: port server control messages and port server connection

messages (BEA MessageQ messages).

These messages are sent viathe BEA MessageQ API function pans_put _nsg.
Message class and type definitions, which are used as argumentsto pans_put _nsg,
are provided in the BEA MessageQ Class and Type file (DMBTYPCLS. TXT) at
installation. Refer to Appendix B inthe BEA MessageQ Installation and Configuration
Guide for OpenVMS for a sample of DMBTYPCLS. TXT.

This chapter discusses the following topics:

4 Port Server Control Messages

4 Port Server Connection Messages

4 Example of Port Server Messages Used for Client Communications

Port Server Control Messages

This section describes messages that control the LU6.2 Port Server.

M essage Description
ADD_LU Dynamically adds an LU definition while the LU6.2 Port Server is
running
ADD_TARGET Dynamically addsatarget definition whilethe LU6.2 Port Serveris
running

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 4-1

4 Pport Server Messages

SHUTDOWN Instructs the LU6.2 Port Server to exit

To send these control messages, use the pans_put _nsg with the target of the port
server and the message type of message.

4-2 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Port Server Control Messages

ADD_LU

The ADD_LU message dynamically adds an LU definition while the LU6.2 port server
isrunning. The ADD_LUmessageisformatted asavalid configurationfile entry for LUs
and TYPE 1 targets. See Chapter 3, “Configuring the LU6.2 Port Server,” for more
information about configuration files.

Listing 4-1 shows the C message structure forthie LU service.

Listing4-1 C Message Structurefor ADD_LU

typedef struct _add lu {
char sysid[9];

char gat eway|[7] ;

char lu_access[9];
char lu_sess[4];

char lu_type[3];

intlé lu_session_dir;

} add_| u;

intl6 nmsg_si ze;

cl ass MBG_CLAS APPC,
type MBG TYPE_LU62_ADD LU,
nmeg_size = sizeof (struct add_|u);

drmg_status = pans_put _nmsg(
&add_| u,
&riority,
&server _queue,
&cl ass,
& ype,
&del i very,
&nsQg_si ze,
&t i neout ,
&put _psb,
&uma,
(g_address *) O,
(int32 *) 0,
(char *) 0,
(char *) 0);

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 4-3

4 Pport Server Messages

ADD_TARGET

TheADD

the LUG.
configur

Listing 4-2 shows the C message structure forafhie TARGET service.

Listing 4-2 C Message Structurefor ADD_TARGET

typedef struct _add tgt {
char targ_name[9];
char targ tpn[9];
char targ_sysid[9]
intl6 commtype;
intl6 dealloc;
} add_tgt;
class = MSG_CLAS_APPC;
type = MSG TYPE_LU62_ADD TGT;
nsg_si ze = si zeof (struct add_tgt);
dny_status = pans_put _nmsg(
&add_t gt
&priority,
&server _queue,
&cl ass,
&t ype,
&del i very,
&nsg_si ze,
&t i meout ,
&put _pshb,
&uma,
(g_address *) O,
(int32 *) 0O,
(char *) O,
(char *) 0);

4-4 BEA MessageQ

LUG.2 Services for OpenVMS User’s Guide

TARGET message dynamically addsa TYPE 1 inbound target definition while

2 port server isrunning. The ADD_TARGET message is formatted asavalid

ation file entry for LUs and targets. See Chapter 3, “Configuring the LU6.2
Port Server,” for more information about configuration files.

Port Server Control Messages

SHUTDOWN

The SHUTDOAN message instructsthe LU6.2 port server to exit. The SHUTDOWN message
has no content; the BEA MessageQ message type is sufficient to convey the
information.

Listing 4-3 shows the C message structure for the SHUTDOWN service.

Listing4-3 C Message Structurefor SHUTDOWN

char nsg_buf[1024];
intl6 neg_si ze;

cl ass MBG_CLAS APPC,
type VBG_TYPE_LU62_SHUTDOWN;
nsg_size = 0;

dng_status = panms_put_nsg(
&nrsg_buf,
&riority,
&server _queue,
&cl ass,
& ype,
&del i very,
&nsQg_si ze,
&t i neout ,
&put _psb,
&uma,
(g_address *) O,
(int32 *) 0,
(char *) 0,
(char *) 0);

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 4-5

4 Pport Server Messages

Port Server Connection Messages

This section describes messages either received from or sent to BEA MessageQ clients
by the LU6.2 Port Server. These seven predefined messages allow BEA MessageQ
clientsto use the LU6.2 Port Server to establish and manage LU6.2 connectionsto
remote partners using the port server as the standard API.

Table 4-1 lists the seven predefined port server messages.

Table4-1 Summary of LU6.2 Port Server Messages
This message Isusedto...
CHANGE_DI RECTI ON Indicate change of direction of connection. It may mean that the remote

IBM client has become the receiver program, and that the BEA
M essageQ client is now the sender program, or vice versa.

CONNECT_ACCEPT Indicate that the requested connection has been established

CONNECT_REJECT Indicate that the requested connection could not be established

CONNECT_REQUEST Request a connection for aBEA MessageQ client to aremote LU6.2
partner

CONNECTI ON_TERM NATED When sent to a BEA MessageQ client, indicate that the remote IBM

client has terminated the connection. When sent by a BEA MessageQ
client, request termination of the connection.

DATA_MESSAGE When sent to a BEA MessageQ client, carry a data message received
from the remote partner. When sent by a Message client, carry adata
message to be transmitted to the remote partner.

REG STER TARGET Map to aBEA MessageQ client atarget name (including group 1D and
queue number) for registration purposes

Figure 4-1 shows a typical program structure that uses BEA M essageQ messages
(verbs) to establish and manage data connections.

4-6 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Port Server Connection Messages

Figure4-1 Typical Program Structure

DECLARE to
BEA
MessageQ
1
Get Initial
Data to Send

Send Connect
Request

o

pams_get_msgw

ﬂ\

Connect Connect Connection Data
Accept Reject Terminated Message
Handle Get next Process
Send Data Data to Data
Errors
Send Message

Note: If the message field value is shorter than the required field length, it is
necessary to enter null terminators (hex 0s).

The following sections describe each port server message and its format.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 4-7

4 Pport Server Messages

CHANGE_DIRECTION

The CHANGE_DI RECTI ON message indicates a change in the direction of the
connection.

When the CHANGE_DI RECTI ON message is sent to the BEA MessageQ client, it
indicates that the remote IBM client has become the receiver program, and that the
BEA MessageQ client is now the sender program.

When the CHANGE_DI RECTI ON message is sent by the BEA MessageQ client, it
indicates that theremote IBM client has become the sender program, and that the BEA
MessageQ client is now the receiver.

Listing 4-4 shows the C message structure for the CHANGE_DI RECTI ON service.

Listing 4-4 C Message Structurefor CHANGE_DIRECTION

typedef struct _change_direction {
i nt 32 connecti on_i ndex;
} change_direction;

MESSAGE DATA
FIELDS

Field Data Type Description

CONNECTI ON_I NDEX word Context value that uniquely identifies the
connection that has changed direction

4-8 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Port Server Connection Messages

CONNECT_ACCEPT

The CONNECT_ACCEPT messageis sent to the BEA MessageQ client to indicate that the
requested connection has been established. This message contains aword (16-bit)
context variable used by the LU6.2 port server to identify the connection. The context
variable value must be stored by the BEA MessageQ client and provided in any
subsequent message sent over the connection.

Listing 4-5 shows the C message structure for the CONNECT_ACCEPT service.

Listing4-5 C Message Structurefor CONNECT_ACCEPT

typedef struct _connect_accept {
int16 connection_index;
char target_nane [8];
} connect _accept;

MESSAGE DATA
FIELDS
Field Data Type Description
CONNECT! ON_| NDEX word Context value that uniquely identifiesthe
connection
TARGET_NAME text 8 char Name of the target connected

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 4-9

4 Pport Server Messages

CONNECT_REJECT

The CONNECT_REJECT messageis sent to the BEA MessageQ client to indicatethat the
reguested connection could not be established. Thereason for therejection isindicated
in the body of the message.

Listing 4-6 shows the C message structure for the CONNECT_REJECT service.

Listing 4-6 C Message Structurefor CONNECT_REJECT

typedef struct _connect _reject {
char target _nanme [8];
int32 reject_reason;
} connect _reject;

MESSAGE DATA
FIELDS
Field Data Type Description
TARGET_NAME text 8 char Name of the target rejected
REJECT_REASON int32 Reason for the connect reject
CONNECT 4 PAMSLUG2_ALREADYCON
REJECT 4 PAMSLU62_BADSYSI D
REASON
CODES ¢ PAVBLUG2_BADTARGNANE
4 PAMBLU62_BUSY
4 PAVBLU62_WVRONGTYPE

4-10 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Port Server Connection Messages

CONNECT_REQUEST

MESSAGE DATA
FIELDS

The CONNECT_REQUEST message is sent by the BEA M essageQ client to request a
connection to aremote LUB6.2 partner. This message contains the target name of the
remote partner and, optionally, can contain security information to be presented to the
VTAM application program when the conversation is allocated by the L U6.2 Port
Server.

Listing 4-7 shows the C message structure for the CONNECT_REQUEST service.

Listing4-7 C Message Structurefor CONNECT_REQUEST

typedef struct _connect_request {
char target_nane [8];
char usernane [10];
char password [10];
char profile [10];
} connect_request;

Field Data Type Description

TARGET_NAME text 8 char Name of the target for connection
USER_NAME text 10 char User name for security authentication
PASSWORD text 10 char Password for security authentication
PROFI LE text 10 char Security profile for security

authentication

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide4-11

4 Pport Server Messages

CONNECTION_TERMINATED

When sent to a BEA MessageQ client, the CONNECTI ON_TERM NATED message
indicates that the remote IBM client has terminated the connection. This message
contains afield indicating the termination status (normal or abnormal).

When sent by aBEA MessageQ client, the CONNECTI ON_TERM NATED message
reguests termination of the connection. This message can be used to terminate the
connection normally when the BEA MessageQ client is the sender program and no
data messages are being sent. This message can also be used to terminate the
connection abnormally, regardless of the current state (send or receive).

Listing 4-8 showsthe C message structure for the CONNECTI ON_TERM NATED service.

Listing 4-8 C Message Structurefor CONNECTION_TERMINATED

typedef struct _connection_termnated {
i nt 16 connecti on_i ndex;
intl6 term nate_type;
int32 term nate_reason;
} connection_term nated;

MESSAGE DATA

FIELDS Field

Data Type

Description

CONNECTI ON_I NDEX

word

Context value that uniquely identifies the
connection to which thismessageisto be

applied

TERM NATE_TYPE

word

Specifies the type of termination. Valid
values are:

1—Disconnect (normal)
2—Disconnect (error)

TERM NATE_REASON

int32

Reason for termination This field is filled
in by the LUG6.2 port server when a
connection is abnormally terminated by
the IBM system. The field is ignored on
messages setd the LU6.2 port server.

4-12 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Port Server Connection Messages

DATA_MESSAGE

When sent to a BEA MessageQ client, the DATA_MESSAGE message contains the text
of a data message received from the remote partner. The LUG6.2 Port Server transates
the data message from EBCDIC to ASCII before sending it, provided that translation
is requested in the target definition.

When sent by aBEA MessageQ client, the DATA_MESSAGE message contains the text
of adata message to be transmitted to the remote partner. The LU6.2 Port Server
translates the data message from ASCII to EBCDIC before transmitting it, provided
that translation is requested in the target definition. Control fields in DATA_ MESSAGE
allow the BEA MessageQ client application program to:

4 Indicate that thisis the last message
4 Reguest adirection change and become the receiver program
4 Terminate the connection, normally or abnormally

Listing 4-9 shows the C message structure for the DATA_ MESSAGE service.

Listing4-9 C Message Structurefor DATA_MESSAGE

typedef struct _data_nessage {
int16 | ast_nessage;
int16 change_direction;
int16 di sconnect;
int16 connecti on_index;
char data [31982];
} dat a_nessage;

MESSAGE DATA
FIELDS
Field Data Type Description
LAST_MESSAGE word Indicates that the current message is the
last in the current set. Vaid values are:
0—False
1—True

When set, the LU6.2 port server issues an
explicit FLUSH.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guided-13

4 Pport Server Messages

CHANGE_DI RECTI ON

word

Indicates that the BEA MessageQ client
wants to be the receiver program. Valid
values are:

0—False

1—True

When set, the LU6.2 Port Server issues a
PREPARE_TO_RECEIVE message.

DI SCONNECT

word

Indicates that the BEA MessageQ client
wants to terminate the connection. Valid
values are:

0—False
1—Disconnect (normal)
2—Disconnect (error)

CONNECTI ON_I NDEX

word

Context value that uniquely identifies the
connection to which this message is to be
applied.

DATA

text

0 to 31982 bytes of data to be sent to the
remote LUG.2 partner program.

4-14 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Port Server Connection Messages

REGISTER_TARGET

MESSAGE DATA
FIELDS

When sent by a BEA MessageQ client, the REG STER_TARGET message maps a target
name. This message contains the target name for the registration request and the BEA
M essageQ queue address (group |D and queue number) of the application program to
be registered.

Listing 4-10 shows the C message structure for the REG STER_TARGET service.

Listing4-10 C Message Structurefor REGISTER_TARGET

typedef struct _register_target {
char target_nane [8];
int16 target _group;
intl16 target process;
} register_target;

Field Data Type Description

TARGET_NAME text 8 char Name of the target to register

TARGET_CGROUP word BEA MessageQ group ID of the
application program to register

TARCGET_PROCESS word BEA MessageQ queue humber of the

application program to register

BEA MessageQ LU6.2 Services for OpenVMS User’s Guided-15

4 Pport Server Messages

Example of Port Server Messages Used for
Client Communications

Listing 4-11 shows port server messages used in a program to support LU6.2 client
communications.

Listing4-11 LUG6.2 Port Server Program

typedef struct _connect request {
char target _nanme [8];
char usernanme [10];
char password [10];
char profile [10];
} connect _request;

strncpy(connect _request.target _nanme, "M _TARGET", 8);
strncpy(connect _request.usernanme, "M _USERNAME', 10);
strncpy(connect _request.password, "TOPSECRET", 10);
strncpy(connect _request.profile, "THEPROFILE', 10);

= MSG_CLAS_APPC;
type = MSG TYPE_CONNECT REQUEST;
r = &connect _request;

status = put_nsg(nsg_ptr, class,type);
i f(status)
return(status);

status = get_nsg(nmsg_ptr, class, type);
}whil e(status == CONTI NUE) ;

status

put _nsg(msg_ptr, class, type)

char *meg_ptr;

intlé class;
intlé type;

4-16 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Example of Port Server Messages Used for Client Communications

dng_status = pans_put _nsg(
nmsg_ptr,
&riority,
&server _queue,
&cl ass,
& ype,
&del i very,
&nsg_si ze,
&t i neout ,
&put _psb,
&uma,
(g_address *) O,
(int32 *) O,
(char *) 0,
(char *) 0);
return(dng_status);

st atus
put _nsg(msg_ptr, class, type)
char *msg_ptr;
intl6 class;
intle type;
{

drmg_status = pans_get _nsg(
msg_ptr,
&riority,
&sour ce,
&cl ass,
& ype,
&rsg_area_ |l en,
&si ze,
(int32 *) sel _filter,
(struct PSB *) O,
(struct show buffer *) O,
(int32 *) O,
(int32 *) O,
(int32 *) O,
(char *) 0);
i f (dng_stat us)
return(dng_status);

BEA MessageQ LU6.2 Services for OpenVMS User’s Guided-17

4 Pport Server Messages

switch(type) {

case MSG _TYPE_CONNECT_ACCEPT:
send_dat a();
br eak;

case MSG TYPE_CONNECT_REJECT:
error_routine();
br eak;

case MSG TYPE_CHANGE_ DI RECTI ON:
change_state();
br eak;

case MSG TYPE_DATA MESSAGE:
process_data_mnsg();
br eak;

case MSG _TYPE_CONNECTI ON_TERM NATED:
handl e_term nati on();

br eak;
def aul t

br eak;
}
return();
}

4-18 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

CHAPTER

5

LU6.2 Port Server
Application
Programming Interface

Users can simplify the development of BEA MessageQ application programs that use
the LU6.2 Port Server by hiding the details of BEA MessageQ LUB6.2 Services for
OpenVM S within a shell of procedure calls.

This chapter presents a sample application programming interface (API) for LU6.2
Servicesfor OpenVMS. The sample API consists of the following four procedure
cals:

4 PORT_CONNECT—ESstablishes a connection to the specified inbound target.

4 PORT_RECV—Receives a message through any existing connection or through a
new connection resulting from a previous registration.

4 PORT_REG STER—Specifies the register to receive output directed at the
specified outbound target.

4 PORT_SEND—Sends a message through a previously established connection.
The source code for these procedures is found in the following file:
DMQLU62$SERVER SRC: PORT_FUN. C

Note: The procedure calls are portable to non-OpenVMS platforms with minimal
code changes.

This chapter provides information, organized in the format of reference manual
entries, about the following procedure calls:

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 5-1

S5 LU6.2 Port Server Application Programming Interface

PORT_CONNECT
PORT_RECV
PORT_REG STER

> & & o

PORT_SEND

5-2 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

PORT_CONNECT

Syntax

Arguments

Argument
definitions

DESCRIPTION

RETURNS

RETURN
VALUES

This procedure establishes a connection to a specified inbound target.

COND_VALUE=PORT_CONNECT(t ar get _nare, port_queue)

Argument DataType Mechanism Prototype Access
target_nane char reference char * passed
connection_i ndex word reference short * returned
port_group word value short passed
port_queue word value short passed
target nane
The name of the target to which to establish the connection.
connecti on_i ndex
The unique identifier of the requested connection.
port_group
The BEA MessageQ group ID of the LU6.2 Port Server that connects to the
specified target.

port_queue
The BEA MessageQ queue number of the LUB6.2 Port Server that connectsto
the specified target.

This procedure sends a CONNECT_REQUEST message for the specified target to the
designated generic port server and waits for aresponse.

Argument Data Type Mechanism Prototype Access
cond_val ue longword value long returned
Return Code Description

SS$_NORNMAL A connection is successfully completed.

PAVSLUG2_ALREADYCON A connection has already been established to the

named target.

The port server target definition specifies an
undefined value for SYS | D.

PAMSLUG2_BADSYSI D

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 5-3

S5 LU6.2 Port Server Application Programming Interface

PAVSLUG2_BADTARGNAMVE The named target has not been defined to the port
server.

PAVSLUG2_BUSY All paths to the named target are currently in use.

PAVSLUG2_WRONGTYPE The named target is defined as OUTBOUND.

PAMS_XXXXXXXX Thisindicates any PAMS status code returned by

panms_put _nsg or pans_get _nsgw.

Example Thefollowingis an example of the PORT_CONNECT procedure call.

#i ncl ude stdio
#include "port_fun.h"
#include "p_entry. h"

#define TRUE 1
#define FALSE O

mai n()
{
int32 p_status;
int32 req;
| ong status;
gq_addr ess used,;
short send_connecti on;

req = 0;

p_status = pans_attach_q(& eq, &sed);
if (!(p_status & 1)) return(p_status);

status = port_connect (" MY_TARGET",
&send_connecti on,
3,
63);

if (!(status & 1))
{

p_status = panms_exit();
return(p_status);

5-4 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

PORT_RECV

Syntax

Arguments

Argument
definitions

This procedure receives a data message from aremote IBM application program
through a previously established connection or through a new connection resulting
from a previous PORT_REG STER procedure call.

COND_VALUE=PORT_RECV(nessage, buf_size, ... port_queue)
Argument DataType Mechanism Prototype Access
nessage char reference char * returned
buf_size word value short passed
neg_size word reference short * returned
connect i on_i ndex word reference short * returned
change _dir word reference short * returned
di sconnect word reference short * returned
abort word reference short * returned
port_group word reference short * returned
port_queue word reference short * returned

nessage

The user buffer to contain the message received from the IBM application
program.

buf_size

The size of the user buffer to contain the received message. M essages too
largeto fit in the buffer are truncated to the buffer size.

nsg_size
The size of the returned message, or the buffer size, if the messageis larger
than the buffer.

connection_i ndex
The unique identifier of the connection on which the message was received.

change dir
Indicates that the direction of the connection was reversed.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 5-5

S5 LU6.2 Port Server Application Programming Interface

di sconnect
When set to a non-zero value, indicates that the remote IBM client has
terminated the conversation normally.

abort
When set to a hon-zero value, indicates that the remote IBM client has
terminated the conversation abnormally.

port_group
The BEA MessageQ group ID of the generic port server that sent the
message.

port_queue
The BEA MessageQ queue number of the generic port server that sent the

message.

Description This procedure waits to receive a message from aremote IBM application program.
The message can be received through an established connection or through a
connection initiated by the remote IBM application program using a PORT_REG STER
procedure call. The connection on which the message arrivesisidentified by the
connect i on_i ndex argument. By setting the change_di r, di sconnect , or abort
flags, the direction of the message flow can be changed, buffers at the generic port
server can be flushed, or the connection can be terminated (normally or abnormally).

Returns
Argument DataType Mechanism Prototype Access
cond_val ue longword value long returned
Return values
Return Code Description
SS$_NORVAL Indi cates successful completion.
PAMSLUG2_BADI NDEX The connect i on_i ndex provided isinvalid.
PAVSLUG2_ The connection has been aborted by the port server dueto a
CONABORTDATA nontrand atable ASCII character in the body of the message.
PAVSLUG2_CONABORTSTATE The connection has been aborted by the port server dueto a
violation of the selected application protocol.
PAMSLUG2_NOCONNECT No connection has been established.
PAMS_XXXXXXXX Any PAMS status code returned by pams_put _nsg.

5-6 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Example Thefollowing isan example of the PORT_RECV procedure call.

#i ncl ude stdio

#i ncl ude signa

#i ncl ude "port _fun. h"
#i nclude "p_entry. h"
#i nclude "p_return. h"

#define TRUE 1
#defi ne FALSE 0O

mai n()

{
int32 p_status;
long status;
char reply[1024];
short get _disc = 0;
short buf_si z;

buf _size = sizeof (reply);

while (!get _disc)
{

status = port_recv(reply,
buf _siz,
&ns(g_si z,

& ecv_connecti on,
&get _cdi
&get di sc,

&get _abort,

&sour ce_group,
&sour ce_process);

if (!((status & 1)||(status == PAVS__TI MEQUT)))
p_status = panms_exit();

return(p_status);

}

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 5-7

S5 LU6.2 Port Server Application Programming Interface

PORT_REGISTER

This procedure specifies the queue to receive the output directed to a specified target
by aremote IBM application program.

Syntax ~COND_VALUE=PORT_REG STER(target_nane, ... reg_queue)
Arguments
Argument DataType Mechanism Prototype Access
t ar get _nane char reference char * passed
port_group word value short passed
port_queue word value short passed
reg_group word value short passed
reg_queue word value short passed
Argument t arget_nane
definitions The name of the target with which to register.
port_group
The BEA MessageQ group ID of the generic port server that connects to the
specified target.

port_queue
The BEA MessageQ queue number of the generic port server that connectsto
the specified target.

reg_group
The BEA MessageQ group ID of the process to register.

reg_queue
The BEA MessageQ queue number of the process to register.

Description This procedure sends a REG STER_TARGET message for the specified target to the
designated generic port server and waits for a response.

Returns
Argument DataType Mechanism Prototype Access
cond_val ue longword value long returned
Return values
Return Code Description
SS$_NORVAL The procedure is successfully completed.

5-8 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

PAVSLU62_ALREADYREG The process has already registered with the

named target.

PAMSLUG62_BADSYSI D The port server target definition specifies an
undefined value for SYS | D.

PAMSLUG62_BADTARGNAVE The named target has not been defined to the
port server.

PAMS__ XXXXXXXX Thisindicates any PAMS status code returned

by panms_put _nmsg(w).

Example Thefollowing isan example of the PORT_REG STER procedure call.

#i ncl ude stdio

#i ncl ude "port _fun. h"
#i nclude "p_entry. h"
#i nclude "p_return. h"

#define TRUE 1
#defi ne FALSE 0O

mai n()

{
int32 p_status;
long status;
int32 req;
g_address used;

req = 0;
p_status = panms_attach_q(& eq, &sed);
if (!(p_status & 1)) return(p_status);

status = port_register("MY_TARCGET",
3,
63,
used. au. group,
used. au. process);

if (!(status & 1))
{
p_status = panms_exit();
return(p_status);

}

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 5-9

S5 LU6.2 Port Server Application Programming Interface

PORT_SEND

This procedure sends a data message to aremote IBM application program through a
previously established connection. The maximum size of a data message is 31982

bytes.

Syntax ~ COND_VALUE=PORT_SEND(nessage,

connecti on_i ndex,

port_queue)

Arguments
Argument Data Type Mechanism Prototype Access
nmessage char reference char * passed
connecti on_i ndex word value short passed
change_dir word value short passed
| ast word value short passed
di sconnect word value short passed
abort word value short passed
port_group word value short passed
port_queue word value short passed

Argument nessage

definitions The message text (up to 31982 bytes) to be sent to the IBM application

program.

connecti on_i ndex

The unique identifier of the connection returned by the previous
PORT_CONNECT procedure call.

change dir

Changes direction of message flow from Send to Receive when set to a

nonzero val ue.

| ast

Indicates the last message in a series. When set to anon-zero value, this
argument causes the port server to transmit any untransmitted traffic on the
indicated connection. To deallocate the LU6.2 conversation, use the

di sconnect argument.

di sconnect

Indicates the last message in a series. When set to anon-zero value, this
argument causes the port server to transmit any untransmitted traffic on the
indicated connection and deall ocates the LUG6.2 conversation normally.

5-10 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Description

Returns

Return values

abort
Indicatesan error. When set to anon-zero value, this argument causes the port
server to deall ocate the LU6.2 conversation abnormally.

port_group
The BEA MessageQ group ID of the generic port server that connects to the
specified target.

port_queue
The BEA MessageQ queue number of the generic port server that connectsto
the specified target.

This procedure sends a message to the remote IBM application program through a
previously established connection identified by the connect i on_i ndex argument. By
setting the change_di r, I ast, di sconnect , or abor t flags, the direction of message
flow can be changed, buffersat the LU6.2 Port Server can beflushed, or the connection
can be terminated (normally or abnormally).

Argument DataType Mechanism Prototype Access

cond_val ue longword value long returned

Return Code Description

SS$_NORMAL The procedure is successfully completed.

PAMSLUG2_BADI NDEX The connect i on_i ndex provided isinvalid.

PAMSLUG2_CONABORTDATA The connection has been aborted by the port server
due to anontranslatable ASCI| character in the
body of the message.

PAMSLUG2_ The connection has been aborted by the port server

CONABORTSTATE due to aviolation of the selected application
protocol.

PAMSLUG2_NOCONNECT No connection has been established.

PAMS__ XXXXXXXX Indicates any PAMS status code returned by

panms_put _nsg.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guides-11

S5 LU6.2 Port Server Application Programming Interface

Example Thefollowing is an example of the PORT_SEND procedure call.

#i ncl ude stdio

#i ncl ude signa

#i ncl ude "port_fun.h"
#i nclude "p_entry. h"

#define TRUE 1
#defi ne FALSE 0O

mai n()
{
int32 p_status;
| ong status;
short send_connecti on;

status = port_send(argv[2],
send_connecti on,

TRUE, /* change direction */
FALSE, /* do not FLUSH */
FALSE, /* do not di sconnect */
FALSE, /* do not abort */
3,

63);

if (!(status & 1))
{

p_status = panms_exit();
return(p_status);

}

5-12 BEA MessageQ LUG6.2 Services for OpenVMS User’s Guide

CHAPTER

O LU6.2 User Callback
Services

This chapter introduces the LU6.2 User Callback Services (UCB) and contains
detailed descriptions of all LU6.2 User Callback APPC messages al phabetized by
message type. Each description lists the message type code name, the operating
environment in which the message is available for use, and a detail ed explanation of
how to define the message area and supply required argumentsto send messages using
the BEA MessageQ API or scripts.

Specifically, this chapter addresses the following topics:
4 LUG6.2 User Cdlback Overview

¢ Using the LU6.2 User Callback Interface

¢ APPC User Callback Messages

LUG6.2 User Callback Overview

The simplest way to establish and maintain a connection between SNA and CICS
applicationsis through the LU6.2 Port Server. The Port Server uses predefined
messages to help you set up and manage the application connections between BEA
MessageQ clients and remote partners.

If the standard LU6.2 port server programming interface does not meet all application
needs, a specialized port server can be developed using the LU6.2 User Callback
Services.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 6-1

© LUG6.2 User Callback Services

The LU6.2 User Callback allows you to engage in APPC conversations between any
OpenV M S application program and one or more CICS transaction programs using
BEA MessageQ panms_put _nmsg and panms_get _nsg callable services. The remote
CICStransaction program appearsto the OpenV M S program as a source and recipient

of BEA MessageQ messages.

Note: Unlike applications that use the LU6.2 Port Server, all applications using the
LU6.2 User Callback Services must reside on an OpenVMS platform.

TheLUG6.2 User Callback uses a set of predefined messages to define and delete LUS,
establish LU6.2 conversations, send and receive data, request and send confirmations,
and process errors.

The APPC verb set consists of 21 BEA MessageQ messages. The verb flow logic is
the same, regardless of whether you are programming in an OpenVMS or IBM
environment.

Some of the messages are both sent by the pans_put _nsg call and received by the
pams_get _nsg call.

Each message sent or received by the LU6.2 User Callback is prefixed by a header.
Some user callback messages contain no fields other than the header fields. In this
case, the type of message is sufficient to cause the desired action.

Conversations can be initiated either by an OpenVMS program, which is called
inbound conver sation allocation; or by a CICS transaction program, which is called
outbound conversation allocation. Each user program can have a maximum of 256
conversations active at any time.

Note: To usetheLUG6.2 User Callback interface, the OpenVM S programmer should
have general knowledge of APPC and the CICS programmer should have
specific knowledge of CICS APPC. Because the OpenV M S programmer uses
the familiar BEA MessageQ interface to perform the APPC functions, no
knowledge of the DECnet/SNA OpenVMS APPC/LUG6.2 Programming
Interface is required.

Thetool kit provided with the BEA MessageQ LU6.2 Services contains the
object library (DMQLUB2_LI B. OLB), PAMSLUG2_MBG message structures, and
the DMQLUG2_TEST. C example program.

The following messages are issued by the LU6.2 User Callback:
4 LUG2_ACTI VATE

6-2 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Using the LU6.2 User Callback Interface

LU62_ALLOCATE
LUB2_CONFI RVED
LUB2_CONFI RM_RECV
LU62_CONFI RM REQ
LUB2_CONFI RM_SEND
LUB62_CONNECTED
LU62_DEALLCCATE
LU62_DEALLOCATED
LU62_DEFI NE_LU
LU62_DEFI NE_TP
LU62_DELETE LU
LU62_ERROR

LUB2 INIT

LU62_OK_TO SEND
LU62_RECV_DATA
LU62_REQ CONFI RM
LU62_REQUEST TO SEND
LU62_SEND_CONFI RM
LU62_SEND DATA

@ & S & G G G O O O O O O O O O O o o o

LU62_SEND_ERROR

Using the LU6.2 User Callback Interface

The LU6.2 User Callback interface isinitialized by sending an LU62_I NI T message.
Remote LUs are defined by sending one or more LU62_DEFI NE_LU messages. The
User Callback returnsthe LU62_DEFI NE_LU message if the define operation is
successful. It returnsan LUs2_ERRORmMessage if the define operation is not successful.
A datafield in the LU62_DEFI NE_LU message indicates whether the LU is to be used
for inbound or outbound conversations.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 6-3

6

LUG6.2 User Callback Services

Multithreading Services

BEA MessageQ L U6.2 supports the development of multithread servers (for example,
the LU6.2 port server). Multithreading is based on the use of context informationin the
special LU6.2 message header.

TheLU62_REQUESTER and LU62_CONV_I D fieldsin the LU6.2 message header allow
aprocess to handle multiple concurrent LU6.2 conversations. The LU62_CONV_I D
uniquely identifies each active conversation. The LU62_REQUESTER identifies the
originator of an LU62_DEFI NE_LU, LU62_DEFI NE_TP, LU62_ALLCCATE, and
LUG2_ACTI VATE. If asession terminates abnormally whileaconversationisnot active,
the LU62_REQUESTER value is returned in the LU62_ERROR message.

Inbound Conversations

An inbound (to CICS) conversation is requested using the LU62_ ALL OCATE message.
The User Callback returns one of the following messages:

4 AnLUB2_ERROR message, if the LU62_ALLOCATE message is hot successful.

4 AnLUB2_ALLOCATE message, if the LU62_ALLOCATE message is successful.

The LUB2_ALLOCATE message returns a unique conversation ID for this
conversation in the LU62_CONV_I Dfield. Thisvalueis returned by the User
Callback for each conversation alocated. The OpenVMS programmer must keep
track of the conversation ID (LU62_CONV_I D) for each active conversation.

After asuccessful LU62_ALL OCATE message, the remaining message types can be used
to conduct the conversation.

Outbound Conversations

6-4

An outbound conversation is requested by CICS transaction programs. For a CICS
transaction program to all ocate a conversation with an OpenV M Stransaction program,
the OpenV M S transaction program must perform the following operations:

4 Send an LU62_DEFI NE_LU message to define each remote LU that supports an
outbound conversation

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Using the LU6.2 User Callback Interface

4 Send an LUs2_DEFI NE_TP message to define each TPN that is requested by a
remote CICS transaction program

4 Send an LU62_ACTI VATE message to explicitly activate an SNA session for each
LU that supports an outbound conversation

When aremote CICS transaction program allocates a conversation with one of the
TPNSs, the OpenV M Stransaction program receivesan LUs2_ CONNECTED message. The
local LU name of the LU that received the connection is returned in the
LU62_CONNECTED LU NAME field.

The LU62_CONNECTED message also returns a unique conversation 1D for this
conversation in the LU62_CONV_I Dfield. Thisvalue is returned by the User Callback
for each conversation alocated. The OpenVMS programmer must keep track of the
LU62_CONV_I Dfor each active conversation.

Following receipt of an LUs2_CONNECTED message, the remaining message types can
be used to conduct the conversation.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 6-5

© LUG6.2 User Callback Services

Example of User Callback Message Flow

Table 6-1 shows atypical message exchange between aBEA MessageQ client and the
LU6.2 User Callback. The "Messages Sent to User Callback:" column lists the
messages that a BEA MessageQ client sends to the User Callback. The "Messages
Received from User Callback:" column liststhe messagesthat the User Callback sends
back to the BEA MessageQ client in response to messages received from the client.

Table 6-1 BEA MessageQ Client—User Callback Message Exchange

Messages Sent to Messages Received
User Callback from User Callback
LUGZ2_INIT

LU62_DEFI NE_LU

LU62_DEFI NE_LU

LU62_ALLOCATE

LU62_ALLOCATE

LU62_SEND DATA

LU62_SEND DATA
LU62_CONFI RM_RECV

LU62_CONFI RVED
LU62_RECV_DATA

LU62_RECV_DATA

LU62_CONFI RM_REQ

LU62_DEALLOCATE

LU62_DEALLOCATED

—DONE—

6-6 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages

APPC User Callback Messages

The following sections describe APPC User Callback messages (verbs) individually.
Asan example, Figure 6-1 shows the session logic and corresponding OpenVMS
(SNA), IBM (CICS), and BEA MessageQ messages (verbs) used in designing a
distributed transaction.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 6-7

LUG6.2 User Callback Services

Figure 6-1 BEA MessageQ LU6.2 Session—Typical Verb Sequence

6-8

CICS
. SNA (Inbound BEA Message
Logic Steps () (Outbound) g9eQ
Verbs Messages
Verbs
Initialize local LU SNALUG62$DEFINE_ Initialize local LU LU62_DEFINE_LU
parameters REMOTE parameters LU62_DEFINE_TP
Activate LU-to-LU SNALUB2SACTIVATE_ EXEC CICS LU62_ACTIVATE
session: SESSION ALLOCATE
-Bind is processed
-TPs are now in
session
1
Allocate a conversation SNALU62$ALLOCATE EXEC CICS LU62_ALLOCATE
over the session: CONNECT
-ATTACH is sent PROCESS
-TPs are now in
conversation |
-Send or receive data
desired RECEIVE, and LU62_CONFIRM_RECV
CONVERSE LU62_RECV_DATA
|
Deallocate (end) the SNALU62$ EXEC CICS SEND
conversation DEALLOCATE LAST
| | I
Deactivate the SNALU62DEACTIVATE_| | EXEC CICS FREE LU62_ALLOCATE
session SESSION
| |
Delete (release) the SNALU62$DELETE EXEC CICS RETURN

local LU parameters

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages

LU62_ACTIVATE

C Message
Structure

Message Data
Fields

When sent to the CICS (IBM) partner, the LU62_ACTI VATE message explicitly
activatesan SNA sessiononthe LU indicated inthe LU62_ ACTI VATE_LOCAL_LUfield.

Note: The behavior of the LU62_ACTI VATE message depends on the value of the
LU62_DEFI NE_I NI T_TYPE field provided when the LU specified in the
message was defined.

For LUs defined with LUs2_DEFI NE_I NI T_TYPE =1, the LU62_ACTI VATE message

enablesthe LU for outbound (from CICS) session activation. The LU isreserved at the
gateway, but an SNA session isnot started until atransaction program from the remote
system requests one.

For all other values of LUs2_DEFI NE_I NI T_TYPE, the LU62_ACTI VATE message
causes the creation of an SNA session on the specified LU. After asessionisactivated,
it is available for use by either partner.

When received from the CICS (IBM) partner, the LU62_ACTI VATE message indicates
that a previous request to activate a session has been completed by the interface.

struct |u62_activate_struct {
struct {
int32 | u62_requester;
int32 [u62_conv_id;
char 1u62 tpn [8];
int16 | u62_nsg_|len;
} 1u62_header_struct;
char lu62_activate local |u [8];
char lu62_activate polarity;

} o

Header Fields

Field

Data Type Description

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 6-9

© LUG6.2 User Callback Services

LU62 REQUESTER longword

Identifies the originator of an

LU62_ACTI VATE request. Thisfield is
returned to the user with the status of the
request. A copy of therequest isreturned to the
user if the request is successful. The
LU62_ERROR message is returned to the user
if the request is unsuccessful. Thisvalueis
ignored by the User Callback Interface. This
field isintended for use in building
applications that handle multiple concurrent
conversations. In the event of an abnormal
session termination while aconversation is not
active, thisvalue is returned on the
LU62_ERROR message that contains the
PAMSLUG2_SESSFAI LED error code
(described in Appendix A, “LU6.2 User
Callback Interface Logical Names and Error
Codes.”).

M essage Fields

Field Data Type

Description

LU62_ACTI VATE_LOCAL_LU text 8 char

The LU name identifying the session to be
activated. Th&U62_DEFI NE_SESSI ON
field must have been explicitly defined in the
LU62_DEFI NE_LU message that defined the
LU name.

LU62_ACTI VATE_POLARI TY byte

Indicates the contention status for the
conversation. Valid values are:

0—OpenVMS application is the winner in a
contention situation

1—OpenVMS application must bid for access
in a contention situation

Note: If a session is activated with the
LU62_ACTI VATE message,
subsequertUs2_ALLCCATE
messages must specify the same value
for polarity. In other words, the values
of LU62_ACTI VATE_POLARI TY
andLU62_ALLOCATE POLARI TY
must be the same.

Arguments

6-10

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages

Argument pams_put_msg For mat pams_get_msg Format
Target ucB Client

Source Client ucB

Class MBG CLASS APPC UCB_CLASS_APPC

Type MBG TYPE_LU62_ACTI VATE MBG _TYPE_LU62_ACTI VATE

BEA MessageQ LU6.2 Services for OpenVMS User’s Guides-11

© LUG6.2 User Callback Services

LU62_ALLOCATE

When senttothe CICS (IBM) partner, the LU62_ ALL OCATE messagerequestsan APPC
conversation with the CICS transaction program. The conversation uses LUs defined
in the 8-byte LU62_ALLOCATE_LOCAL_LUfield and in the 8-byte LU62_TPNfield,
respectively.

The TPN must be in EBCDIC dataformat. To translate to this format, use
LI BSASC TO EBC.

The TPN must be accessible through the specified LU, which means that thelocal LU
name must already be successfully defined using the LUs2_DEFI NE_LU message.

When received from the CICS (IBM) partner, the LU62_ALL OCATE message indicates
that a previous request to allocate conversation completed successfully. The
LU62_CONV_I D field contains the unique conversation ID used to manage this
conversation. The LUs2_REQUESTER field returns whatever value was placed there in
the LU62_ALLOCATE message sent to the User Callback. This provides away to
manage multiple, concurrent conversations.

CMessage struct lu62_alloc {
Structure struct {
int32 lu62_requester;
int32 lu62_conv_id;
char 1u62_tpn [8];
int16 lu62 _nsg_| en;
} 1u62_header _struct;
char 1u62_allocate local lu [8];
char |u62_all ocate_usernane [10];
char |u62_all ocate_password [10];
char 1u62_allocate_profile [10];
char 1u62_all ocate_sync_| evel;
char |u62_all ocate_polarity;
P
Message Data
Fields
Header Fields
Field Data Type Description
6-12 BEA MessageQ LUG6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages

LU62_REQUESTER

longword

Identifies the originator of an
LUB2_ALLOCATE request. Thisfield is
returned to the user with the status of the
request. A copy of the request isreturned to the
user if the request is successful. The
LU62_ERROR message is returned to the user
if the request is unsuccessful. Thisvaueis
ignored by the User Callback interface. This
field isintended for use in building
applications that handle multiple concurrent
conversations. In the event of an abnormal
session termination while aconversation is not
active, thisvalueis returned on the
LU62_ERROR message that contains the
PAMSLUG62_SESSFAI LED error code. (Error
codes are described in Appendix A, “LU6.2
User Callback Interface Logical Names and
Error Codes.”)

LU62_TPN

text 8

Identifies the TPN with whom a user wants a
conversation. This value must be in EBCDIC
data format.

M essage Fields

Field

Data Type

Description

LU62_ALLOCATE_LOCAL_LU

text 8

The LU name identifying the session to be
used for the requested conversation.

LUG2_ALLOCATE_USERNAME

text 10

The ASCII value of the user ID to be presented
to the remote application for authorization.

LUG62_ALLOCATE_PASSWWORD

text 10

The ASCII value of the password to be
presented to the remote application for
authorization.

LUG2_ALLOCATE_PRCFI LE

text 10

The ASCII value of the profile to be presented
to the remote application for authorization.

LU62_ALLOCATE_SYNC LEVEL

byte

Indicates the permitted sync-level on the
conversation iDMQLU62$SELECT_SYNC is
defined. Valid values are:

0—SYNC_LEVEL=NONE
1—SYNC_LEVEL=CONFI RM

BEA MessageQ LU6.2 Services for OpenVMS User’s Guides-13

© LUG6.2 User Callback Services

LU62_ALLOCATE_POLARI TY byte

Indicates the status for the conversation. Valid
values are:

0—OpenVMS application is the
winner in a contention situation
1—OpenVMS application must bid
for access in a contention situation

Note: If asession isactivated with the
LU62_ACTI VATE message, then
subsequent LU62_ALLCCATE
messages must specify thesamevaue
for polarity. In other words, the value
of LU62_ALLOCATE_POLARI TY
and LU62_ACTI VATE_POLARI TY
must be the same.

Arguments

Argument

pams_put_msg Format

pams_get_msg Format

Target

ucB

Client

Source

Client

ucB

Class

MSG_CLAS_APPC

UCB_CLAS_APPC

Type

MSG_TYPE_LU62_ALLOCATE

MSG_TYPE_LU62_ALLOCATE

6-14 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages

LU62_CONFIRMED

C Message
Structure

Message Data
Fields

Arguments

The LU62_CONFI RVED message indicates that the remote partner on the conversation
specified in the LU62_CONV_I Dfield has issued a CONFI RMin response to a CONFI RM
request from the OpenVM S program. The LUs2_ CONFI RMVED message has the header
field only.

struct |u62_confirned_struct {
struct {
int32 | u62_requester;
int32 [u62_conv_id;
char 1u62 tpn [8];
int16 | u62_nsg |l en;
} 1u62_header_struct;

Y
Header Fields
Field Data Type Description
LU62 CONV_I D longword Identifiesthe conversation involvedinthe

request.

None

BEA MessageQ LU6.2 Services for OpenVMS User’s Guides-15

© LUG6.2 User Callback Services

LU62_CONFIRM_RECV

The LUB2_CONFI RM_RECV message sends a PREPARE_TO RECEI VE,
TYPE=SYNC_LEVEL indicator on the conversation specified in the message.

This message istypically used to reverse the direction of the conversation. On
successful issue of this message and receipt of an LU62_CONFI RVED message from the
User Callback, an OpenVMS program can receive data from the CICS transaction
program.

Note: Thebehavior of this message is affected by disabling
SYNC_LEVEL=CONFI RMwith the logical
DMQLUG2$DI SABLE_CONFI RV The logical must be set before program
activation.

If SYNC_LEVEL=CONFI RMis disabled, then the LU62_CONFI RVED message
indicates that the OpenVMS program is now in areceive state.

CMessage struct lu62_confirmrecv_struct {
Structure struct {
int32 lu62_requester;
int32 lu62_conv_id;
char 1u62 tpn [8];
intl16 lu62 _nsg_| en;
} 1u62_header _struct;

Y
Message Data
Fields Header Fields
Field Data Type Description
LU62 CONV_ID longword I dentifies the conversation involved in the

request.

Arguments None

6-16 BEA MessageQ LUG6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages

LU62_CONFIRM_REQ

C Message
Structure

Message Data
Fields

Arguments

The LU62_CONFI RM_REQ message indicates that the remote partner on the
conversation specified in the Lu62_CONV_I Dfield has issued a CONFI RM The
LU62_CONFI RM_REQ message has the header field only.

struct lu62_confirmreq_struct {
struct {
int32 | u62_requester;
int32 [u62_conv_id;
char 1u62 tpn [8];
int16 | u62_nsg Il en;
} 1u62_header_struct;

Y
Header Fields
Field Data Type Description
LU62 CONV_I D longword Identifies the conversation involved in the

request.

None

BEA MessageQ LU6.2 Services for OpenVMS User’s Guides-17

© LUG6.2 User Callback Services

LU62_CONFIRM_SEND

CMessage
Structure

Message Data
Fields

Arguments

The LUB2_CONFI RM_SEND message indicates that the remote partner on the
conversation specified in the LU62_CONV_I Dfield hasissued a
PREPARE TO RECEI VE, TYPE=SYNC_LEVEL, with the current SYNC LEVEL set to
CONFI RM

The OpenVMS program can now issue a CONFI RMby sending an LU62_ CONFI RM
message on the specified conversation. Sending the CONFI RMplaces the conversation
in the send state: the OpenVM S user program can then send data (using the
LUG2_SEND_DATA message) on this conversation.

struct |u62_send _confirmstruct {
struct {
int32 lu62_requester;
int32 lu62_conv_id;
char 1u62_tpn [8];
intl16 lu62 _nsg_| en;
} 1u62_header _struct;

Y
Header Fields
Field Data Type Description
LU62 CONV_ID longword I dentifies the conversation involved in the
request.

None

6-18 BEA MessageQ LUG6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages

LU62_CONNECTED

When received, the LU62_CONNECTED message indicates that a remote L U6.2 partner
has allocated a conversation with one of the TPNs defined with a previously issued
LU62_DEFI NE_TP message. The LU62_REQUESTER field in the header of the
LUG2_CONNECT message is provided in the LU62_DEFI NE_TP message for the TPN
that was attached. The LU62_CONNECT _LOCAL_ LUfield containsthelocal LU namefor
the LU that has received the connection.

CMessage struct |u62_connected_struct {
Structure struct {

int32 | u62_requester;
int32 [u62_conv_id;
char 1u62 tpn [8];
int16 | u62_nsg |l en;
} 1u62_header_struct;
char | u62_connected | u_nane [8];

}
Message Data
Fields Header Fields
Field DataType Description
LU62 CONV_I D longword Identifies the conversation
involved in the request.
M essage Fields
Field DataType Description
LU62_ CONNECTED LU NAME text 8 The ASCII value of the name of
the LU that received the
connection.
Arguments
Argument pams_put_msg For mat pams_get_msg For mat
Target NA Client
Source NA ucB
Class NA APPC
Type NA MBG_TYPE_LU62_CONNECTED

BEA MessageQ LU6.2 Services for OpenVMS User’s Guides-19

© LUG6.2 User Callback Services

LU62_DEALLOCATE

The LUB2_DEALLOCATE message sends a DEALL OCATE to a remote partner in the
conversation.

CMessage struct |u62_deal l ocate_struct {
Structure struct {

int32 lu62_requester;
int32 lu62_conv_id;
char 1u62_tpn [8];
int16 lu62 _nsg_| en;
} 1u62_header _struct;
int16 |u62_abend fl ag;

}
Message Data
Fields Header Fields

Field Data Type Description

LU62 CONV_ID longword ldentifiesthe conversationinvolved in the
request.

M essage Fields

Field Data Type Description

LU62_ABEND FLAG word If LUB2_ABEND FLAG=- 1, this
message sends a DEALL OCATE,
TYPE=ABEND_PROGontheconversation
specified in the LU62_CONV_I Dfield in
the message. This causesthe conversation
to terminate abnormally. All other values
for LU62_ABEND_FLAG cause this
message to send a DEALLOCATE,
TYPE=SYNC_LEVEL.

Arguments
Argument pams_put_msg For mat pams _get_msg
Format

Target Client NA

Source ucB NA

Class APPC NA

Type MSG _TYPE_LU62_DEALLOCATED NA

6-20 BEA MessageQ LUG6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages

LU62_DEALLOCATED

C Message
Structure

Message Data
Fields

Arguments

See Also

The LU62_DEALL OCATED message indicates that the remote partner on the
conversation specified in the LU62_CONV_I Dfield has deallocated normally. The
LU62_DEALL OCATED message has the header field only.

struct |u62_deal |l ocated_struct {
struct {
int32 | u62_requester;
int32 [u62_conv_id;
char 1u62 tpn [8];
int16 | u62_nsg Il en;
} 1u62_header_struct;

Y
Header Fields
Field Data Type Description
LU62 CONV_I D longword Identifies the conversation involved in the

request.

None.

LUG62_DEALLCOCATE

BEA MessageQ LU6.2 Services for OpenVMS User’s Guides-21

© LUG6.2 User Callback Services

LU62_DEFINE_LU

When sent tothe CICS (IBM) partner, the LU62_DEFI NE_LUmessage definesaremote
SNA resource. Resources must be defined usingthe LU62_DEFI NE_L Umessage before
they can be used to alocate conversations.

When received from the CICS (IBM) partner, the LU62_DEFI NE_LUmessageindicates
that a previous request to define the LU, specified in the 8-byte
LU62_DEFI NE_LOCAL_LUfield, completed successfully.

CMessage struct |u62_define_struct {
Structure struct {
int32 lu62_requester;
int32 lu62_conv_id;
char 1u62_tpn [8];
intl16 lu62 _nsg_| en;
} 1u62_header _struct;
char |u62_define_local lu [8];
char |u62_define_ | u _password [8];
char | u62_define_gateway [6];
char 1 u62_define_accnanme [8];
char lu62_define_circuit [5];
int16 |u62_define_session;
char |1 u62_define_applid [8];
char 1 u62_define_l ognode [8];
char | u62_define_user_data [128];
int16 lu62_define_init_type;
b

Message Data
Fields

Header Fields

Field Data Description
Type

6-22 BEA MessageQ LUG6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages

LU62_REQUESTER

longword

Thisfield identifies the originator of an

LU62_DEFI NE_LUrequest. The field is returned to the
user with the status of the request. A copy of the request
isreturned to the user if the request is successful. The
LU62_ERROR message is returned to the user if the
request isunsuccessful. Thisvalueisignored by the User
Callback Interface. Thisfield isintended for usein
building applications that handle multiple concurrent
conversations. In the event of an abnormal session
termination while a conversation is not active, this value
isreturned on the LU62_ ERROR message that contains
the PAMSLUG2_SESSFAI LED error code. (Error codes
are described in Appendix A, “LU6.2 User Callback
Interface Logical Names and Error Codes.”)

LU62_CONV_I D

longword

This field identifies the conversation involved in the
request.

M essage Fields

Field Data Description
Type

LU62_ DEFI NE_LOCAL LU text 8 The ASCII value of the name specified by the user for the
specified remote LU.

LU62_ DEFI NE_LU PASSWORD text 8 The ASCII value of the password for the remote LU.

LU62_DEFI NE_GATEWAY text 6 The ASCII value of the DECnet/SNA gateway through
which a specified LU is to be accessed.

LU62_DEFI NE_ACCNANVE text 8 The ASCII value of the specified gateway that defines the
remote LU to be accessed. If this field is specified, the
following fields can be optional:

LU62_DEFINE_CI RCUI T

LU62_DEFI NE_SESSI ON

LU62_DEFI NE_APPLI D

LU62_DEFI NE_LOGMODE

LU62_DEFI NE_USER _DATA
The values specified in these fields are site-specific and
must be obtained from the person responsible for
DECnet/SNA gateway administration at the user site.

LU62_DEFI NE_CI RCU T text 5 The ASCII value of the circuit on the specified gateway

that provides the physical connection over which the
remote LU is to be accessed.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guides-23

© LUG6.2 User Callback Services

LU62_DEFI NE_SESSI ON word The DECnet/SNA gateway session address number
(1-255) when accessing the specified remote LU. This
field isrequired for all LUsthat are explicitly activated
by an LU62_ACT| VATE message.

LU62_DEFI NE_APPLI D text 8 The ASCII value of the VTAM application that ownsthe
specified remote LU.

LU62_DEFI NE_LOGMODE text 8 The ASCII value of the VTAM LOGON MODE table
entry that accesses the specified remote LU.

LU62_DEFI NE_USER _DATA text 128 Up to 128 bytes of variable data to be passed when

accessing the remote LU. This datais not interpreted by
the User Callback; it must be presented in the format
expected by the remote application.

LU62_ DEFI NE_I NI T_TYPE word A short integer indicating whether the LU is used for
inbound or outbound session activation. Valid va uesare:
0—INBOUND (to CICS)
1—OUTBOUND (from CICS)

Arguments
Argument pams_put_msg For mat pams_get_msg Format
Target ucB Client
Source Client ucB
Class MSG CLAS APPC UCB_CLAS_APPC
Type MSG TYPE LU62_DEFI NE_LU MSG_TYPE_LU62_DEFI NE_LU

6-24 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages

LU62_DEFINE_TP

When sent to the CICS (IBM) partner, the LUs2_DEFI NE_TP message defines a TPN
for usein accepting outbound conversation alocation requests from CICS transaction
programs. The value entered in the LU62_REQUESTERfield isreturned in the
LU62_CONNECTED message (in the same field) when a remote CICS transaction
program is allocated using this TPN. This provides a way to distinguish between
allocated TPNs when multiple TPNs are defined.

When received from the CICS (IBM) partner, the LU62_DEFI NE_TP messageindicates
that a previous request to define the TPN has completed successfully.

CMessage struct |u62_define_tp_struct {
Structure struct {
int32 | u62_requester;
int32 [u62_conv_id;
char u62 tpn [8];
int16 | u62_nsg |l en;
} 1u62_header_struct;
char lu62_define tp_tpn [8];
}

Message Data
Fields

Header Fields

Field Data Type Description

LU62_REQUESTER longword Thisfield identifies the originator of an
LU62_DEFI NE_TP request. The field is returned to the
user with the status of the request. If the request is
successful, the user receives a copy of the request. If the
request is unsuccessful, the LU62_ERROR message is
returned to the user. Thisvalueisignored by the User
Callback interface. Thisfield isintended for usein
building applications that handle multiple concurrent
conversations. If the event is terminated abnormally
while aconversation is not active, this value is returned
in the LU62_ERROR message that contains the
PAMSLUG62_SESSFAI LED error code. (Error codes are
described in Appendix A, “LU6.2 User Callback
Interface Logical Names and Error Codes.”)

M essage Fields
Field Data Type Description
LU62 DEFINE_TP_TPN text8 The TPN

BEA MessageQ LU6.2 Services for OpenVMS User’s Guides-25

© LUG6.2 User Callback Services

Arguments
Argument pams_put_msg Format pams_get_msg Format
Target ucB Client
Source Client ucB
Class MSG _CLAS_APPC UCB_CLAS_APPC
Type MSG TYPE LU62_DEFI NE_TP MSG_TYPE_LU62_DEFI NE_TP

6-26 BEA MessageQ LUG6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages

LU62_DELETE LU

C Message
Structure

Message Data
Fields

When sent to the CICS (IBM) partner, the LU62_DELETE LU message deletesthe LU
identified in the 8-byte LU62_DELETE LOCAL_LU field. This message terminates any
SNA session active on the specified LU and unbinds the SNA session, freeing up the
associated gateway .

If the message is successful, theLUs2_DELETE_LU messageisreturned. If the message
is unsuccessful, the LU62_ERROR message is returned.

Itisnot necessary to send an LU62_DELETE_LU message unlessyou want to explicitly
unbind the SNA session. A previously established session is available to the user
program for reuse in establishing conversations with the specified LU following a
successful LU62_DEALLOCATED message.

Note: AnLU62_DELETE_LU message sent while a conversation is active on the LU
specified for deletion causes the DECnet/SNA APPC/LUG6.2 interfaceto enter
aWait state until the remote transaction program deall ocates or unbinds the
SNA session. This blocks the user process until the LU62_DELETE LU
operation is complete.

When received from the CICS (IBM) partner, the LU62_DELETE LU messageindicates
that the specified LU has been successfully deleted.

struct |u62_del ete_struct {

struct {
int32 | u62_requester;
int32 [u62_conv_id;
char 1u62 tpn [8];
int16 | u62_nsg_|len;
} 1u62_header_struct;

char lu62 _delete local lu [8];

}
Header Fields
Field Data Type Description
LU62 CONV_ID longword Identifies the conversation involved
in the request.
M essage Fields
Field Data Type Description

BEA MessageQ LU6.2 Services for OpenVMS User’s Guides-27

© LUG6.2 User Callback Services

LU62_DELETE LOCAL_LU text8

The ASCII vaue of the name
specified by the user for the specified

remote LU.
Arguments
Argument pams_put_msg For mat pams_get_msg Format
Target ucB Client
Source Client ucB
Class MSG CLAS APPC UCB_CLAS_APPC
Type MSG TYPE LU62 DELETE LU MSG_TYPE_LU62_DELETE_LU
6-28 BEA MessageQ LUG6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages

LU62_ERROR

C Message
Structure

The LU62_ERROR message indicates that the remote partner on the conversation
specified in the LU62_CONV_I Dfield has signaled an error or that the User
CallbackUser Callback encountered afatal error on the specified conversation and
deallocated. The LU62_ERROR field contains the returned status value. The exact
circumstances can be determined from the LU62_ERROR_CCDE field values.

struct lu62_error_struct {

struct {
int32 | u62_requester;
int32 [u62_conv_id;
char u62 tpn [8];
int16 | u62_nsg |l en;
} 1u62_header_struct;

int32 [u62_error_code;

int32 | u62_error_vector [16];

} o

BEA MessageQ LU6.2 Services for OpenVMS User’s Guides-29

© LUG6.2 User Callback Services

Message Data

Fields Header Fields
Field Data Type Description
LU62 CONV_ID longword Identifies the conversation involved in
the request.
M essage Fields
Field Data Type Description
LU62_ERROR_CODE longword Containsthe primary error received from

the User Callback on an LU62_ERROR

message. The error codes are:

4 SNALU62$_ PRERTR,
SNALU62%_PRERNTR, and
SNALU62$_PRERPU

Each of these values indicates
that the remote process has
signaled an error. The receipt of
these LU62_ERROR CODE values
changes the current state to
RECEI VE.

4 PAMSLU62_TRUNCATED

This message indicates that the
buffer istoo small to contain the
received message. Thisvaue
does not change the current
state.
All other errorsaretreated asfatd by the
User Callback and result in the
immediate deallocation of the
conversation on which the error was
received.

LU62_ERROR VECTOR longword Contains the secondary error
information, if any. Thisis a 16-element
longword array. The
LU62_ERROR_VECTOR array contains
the error vector returned (if applicable).
This can be processed by the user or
displayed directly with the
SYS$PUTMSG system service.

6-30 BEA MessageQ LUG6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages

Arguments

Argument pams_put_msg For mat pams_get_msg For mat
Target NA Client

Source NA ucB

Class NA UCB_CLAS_APPC

Type NA MBG TYPE LU62_ALLOCATE

BEA MessageQ LU6.2 Services for OpenVMS User’s Guides-31

© LUG6.2 User Callback Services

LU62_INIT

C Message
Structure

Message Data
Fields

Arguments

TheLUB2_I NI T message initializes the LU6.2 User Callback. Logical hames for
tracing and buffer alocation aretranslated whenthe LUs2_1 NI T messageis processed.
The LUB2_I NI T message has the header field only.

struct lu62_init {
struct {
int32 lu62_requester;
int32 lu62_conv_id;
char 1u62_tpn [8];
int16 lu62 _nsg_| en;
} 1u62_header _struct;

b
Header Fields
Field Data Type Description
LU62 CONV_ID longword I dentifies the conversation involved in

the request.

None.

6-32 BEA MessageQ LUG6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages

LU62_OK_TO_SEND

C Message
Structure

Message Data
Fields

Arguments

ThelLUs2_OK_TO_SEND message indicates that the remote partner on the conversation
specified in the LU62_CONV_I Dfield has entered the receive statein responseto a
REQUEST_TO_SEND from the OpenVM S transaction program. The OpenVMS
transaction is now in the send state and can send the data.

struct lu62_ok to_send_struct {
struct {
int32 | u62_requester;
int32 [u62_conv_id;
char 1u62 tpn [8];
int16 | u62_nsg |l en;
} 1u62_header_struct;

Y
Header Fields
Field Data Type Description
LU62 CONV_I D longword Identifiesthe conversation involvedinthe

request.

None

BEA MessageQ LU6.2 Services for OpenVMS User’s Guides-33

© LUG6.2 User Callback Services

LU62_RECV_DATA

The LU62_RECV_DATA message contains a data block received on the conversation
specified in the LUs2_CONV_I Dfield.

CMessage struct |u62_recv_data_struct {
Structure struct {

int32 lu62_requester;
int32 lu62_conv_id;

char 1u62_tpn [8];

int16 lu62 _nsg_| en;

} 1u62_header _struct;

char | u62_data_nessage [31982];

}
Message Data
Fields Header Fields
Field Data Type Description
LU62 CONV_ID longword I dentifies the conversation involved in
the request.
LU62 MSG LEN word Containsthelength of the data block that
was received.
M essage Fields
Field Data Type Description
LU62_ DATA MESSACGE text 1-31982 Contains the data block received. The
length of the block is contained in the
LU62_MSG_LENfield in the message
header. The message sizeis limited to
31,982 bytes, which is 32,000 (the
maximum size of User Callback buffers)
minus 18 (the size of the header).
Arguments
Argument pams_put_msg For mat pams_get_msg Format
Target ucB Client
Source Client ucB
Class MSG _CLAS_APPC UCB_CLAS_APPC
Type MSG TYPE_LU62_RECV_DATA MBG TYPE_LU62_RECV_DATA

6-34 BEA MessageQ LUG6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages

LU62_REQ_CONFIRM

The LU62_REQ CONFI RMmessage issues a CONFI RMon the conversation specified in
the LU62_CONV_I Dfield contained in the message, provided that
SYNC_LEVEL=CONFI RMprocessing is not disabled.

Thismessage is discarded if SYNC_LEVEL=CONFI RMprocessing has been disabled
using the DMQLU62$DI SABLE_CONFI RMIogical name.

CMessage struct |u62_req_confirmstruct {
Structure struct {
int32 | u62_requester;
int32 [u62_conv_id;
char u62 tpn [8];
int16 | u62_nsg |l en;
} 1u62_header_struct;

Y
Message Data
Fields Header Fields
Field Data Type Description
LU62 CONV_ID longword Identifiesthe conversation involvedinthe

request.

Arguments None.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guides-35

© LUG6.2 User Callback Services

LU62_REQ_TO_SEND

When sent to the CICS (IBM) partner, the LU62_REQ TO_SEND message issues a
REQUEST_TO_SEND on the conversation specified in the LU62_CONV_I Dfield in the
message.

When received from the CICS (IBM) partner, the LU62_REQUEST_TO_SEND message
indicates that the remote partner on the conversation hasissued a REQUEST_TO_SEND.

CMessage struct |u62_req_confirmstruct {
Structure struct {
int32 lu62_requester;
int32 lu62_conv_id;
char 1u62_tpn [8];
intl16 lu62 _nsg_| en;
} 1u62_header _struct;

Y
Message Data
Fields Header Fields
Field Data Type Description
LU62 CONV_ID longword ldentifiesthe conversationinvolved in the

request.

Arguments None

6-36 BEA MessageQ LUG6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages

LU62_SEND_CONFIRM

C Message
Structure

Message Data
Fields

Arguments

The LU62_SEND_CONFI RMmessage sends a CONFI RMon the conversation specified in
the LUs2_CONV_| Dfield.

struct |u62_send _confirmstruct {
struct {
int32 | u62_requester;
int32 [u62_conv_id;
char 1u62 tpn [8];
int16 | u62_nsg Il en;
} 1u62_header_struct;

Y
Header Fields
Field Data Type Description
LU62 CONV_I D longword Identifiesthe conversation involvedinthe

request.

None

BEA MessageQ LU6.2 Services for OpenVMS User’s Guides-37

© LUG6.2 User Callback Services

LU62_SEND_DATA

CMessage
Structure

Message Data
Fields

Arguments

TheLU62_SEND_DATA message sends the data block contained in the message on the
conversation specified in the LUs2_CONV_I Dfield.

struct |u62_send_data_struct {
struct {
int32 lu62_requester;
int32 lu62_conv_id;
char 1u62_tpn [8];
int16 lu62 _nsg_| en;
} 1u62_header _struct;
char | u62_data_nessage [31982];

}
Header Fields
Field Data Type Description
LU62 CONV_ID longword Identifies the conversation involved in
the request.
LU62 MSG LEN word Contains the length of the data block
that was sent.
M essage Fields
Field Data Type Description
LU62_ DATA MESSACGE text 1-31982 Contains the data block to send. The

message sizeislimited to 31,982 bytes,
which is 32,000 bytes (UCB buffer
maximum size) minus 18 bytes (the
header).

None.

6-38 BEA MessageQ LUG6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages

LU62_SEND_ERROR

C Message
Structure

Message Data
Fields

Arguments

The LU62_SEND ERROR message sends a SEND_ERROR on the conversation specified
in the message. This notifies the remote program that an error has occurred and places
the conversation in a send state.

struct |u62_send error_struct {
struct {
int32 | u62_requester;
int32 [u62_conv_id;
char 1u62 tpn [8];
int16 | u62_nsg Il en;
} 1u62_header_struct;
int32 [u62_error_code;

}
Header Fields
Field Data Type Description
LU62 CONV_I D longword Identifies the conversation involved in
the request.
M essage Fields
Field Data Type Description
LU62_ERROR_CODE longword Contains the primary error received
from the User Callback on an
LU62_ERRCOR message.
Argument pams_put_msg For mat pams_get_msg For mat
Target ucB NA
Source Client NA
Class MBG CLAS_APPC NA
Type MBG TYPE LU62_SEND ERRCR NA

BEA MessageQ LU6.2 Services for OpenVMS User’s Guides-39

© LUG6.2 User Callback Services

6-40 BEA MessageQ LUG6.2 Services for OpenVMS User’s Guide

APPENDIX

A LU6.2 User Callback

Interface Logical
Names and Error Codes

This appendix describes the logical names and error codes used in the LU6.2 User
Callback Interface.

User Callback Logical Names

Table A-1 describes the logical names that affect the behavior of the LU6.2 User
Callback, upon which the LU6.2 Port Server is based.

Table A-1 User Callback Support Logical Names
Use ThisLogical Name. .. To...

DMQLU62$BUFFER_SI ZE Set the maximum size of buffersin the private buffer pool used by BEA
MessageQ applications or set the buffer size to the actual expected size
of theload. Y ou can set the buffer size equal to the largest user data
message plus 18 bytes, the number of bytes required for the buffer
header. The minimum valueis 100. The maximum valueis 32,000 bytes.
If this logical nameis not defined, the buffer sizeis set equal to the size
of the largest buffers defined in DMSI NI T. TXT.

BEA MessageQ LU6.2 Services for OpenVMS User’s GuideA-1

A LU6.2 User Callback Interface Logical Names and Error Codes

DMQLU62$BUFFER_COUNT

Set the size of the BEA MessageQ LUB6.2 Services private buffer pool.
Set the number of buffers equal to the number of LUs defined in the

LU _TABLE configuration file plus 4. The minimum value is 20. The
maximum value is 500. If this logical nameis not defined, the buffer
count is set equal to the number of large buffers defined in

DMXI NI T. TXT. The buffer pool must be large enough to hold all
messages received from aremote |BM partner in asingle burst or chain.
For example:

If the remote IBM partner sends 100 messages in a response to a query
fromthe BEA MessageQ client, DMQLU62$BUFFER _COUNT must be at
least 100. If multiple active conversations receive traffic in large bursts,
thevalueof DMQLU62$BUFFER_COUNT must beincreased accordingly.

The BEA MessageQ LUG6.2 Services Port Server logs a
PAMSLUG2_NOBUFFER error if DMQLU62$BUFFER_COUNT is
inadequate. (For adescription of PAMSLU62_NOBUFFER, see
Table A-2.)

DMQLUG2$SELECT_SYNC

Define thislogical name as any arbitrary value that enables selectable
SYNC_LEVEL processing and allows you to set SYNC_LEVEL toOor 1
for each target in the TARGET_TABLE configuration file. Enabling
DMQLUG2$SELECT_SYNC overrides the disabling of CONFI RMby
defining DMQLU62$DI SABLE_CONFI RM Thisvalue is not interpreted
or otherwise used by the LU6.2 User Callback.

DMQLU62$DI SABLE_CONFI RM

Explicitly disable CONFI RMprocessing. Disabling CONFI RMprocessing
causes all conversationsto operate at SYNC_L EVEL=NONE.

The LU62_REQ CONFI RMmessageisignored by the User Callback if
CONFI RMprocessing is disabled. Note that

DMQLU62$DI SABLE CONFI RMisignored if
DMQLUG2$SELECT_SYNC s defined. Thisvalueis not interpreted or
otherwise used by the LU6.2 User Callback.

DMVQLU62$TRACE

When defined asavalid OpenV M Sfile specification, provides atrace of
LU6.2 User Callback activity. Trace output shows each routine entered
and the status returned by each APPC routine.

Linking a User-Written Port Server

To link a user-written port server with the LU6.2 User Callback, include the
DMQLUs2_LI B and MSG LI B libraries in the following order, with the specified linker

optionsfiles:

A-2 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Error Handling

link /exe:user_prog.exe user_prog.obj, -
dngl u62%di r : dngl u62_nessage_poi nt er. obj, -
dngl u62%di r: dngl u62_Iib/lib/inc=(dngl u62_user call back), -
drng$li b: msg/lib, -
dmg$l i b: dng$ol b/ opt, -
dngl u62%di r : snal u62/ opt

Error Handling

The LU6.2 User Callback can return an error in two ways:
4 Asareturn status value from apans_put _nsg or pams_get _nsg call
4 Through the LU62_ERROR message

Table A-2 describes the error codes specific to the User Callback and the method by
which they are delivered to the user.

Table A-2 User Callback Error Codes

Error Code Delivery M eaning

PAMSLUG2_EXCEEDL UMAX Message The number of active conversationsisalready at its
maximum limit (256); no additional conversations
can be allocated.

PAMSLUG2 NOBUFFER Status The User Callback was unable to allocate a buffer

from the private buffer pool. If this error occurs,
increase the size of the buffer pool by defining the
DMQLU62$BUFFER_COUNT logical name or, if it
is already defined, by increasing the value.
PAMSLU62_UNEXPECTED Message An unexpected value for WHAT_RECEI VED was
returned onan SNALU62$RECEI VE_| MVEDI ATE
call. This generally indicates that a problem with
the network has resulted in loss or truncation of a
data message.

PAMSLU62_SESSFAI LED Message A previoudy activated session has been
disconnected while no conversation was active.
The LU62_REQUESTER field contains the value
passed on the LU62_ACTI VATE message that
activated the failed session.

BEA MessageQ LU6.2 Services for OpenVMS User’s GuideA-3

A LU6.2 User Callback Interface Logical Names and Error Codes

PANVBLU62_BADMSGTYPE Message A message sent to the User Callback hasaninvalid
message type.

PANMSLUG2_ NOSUCHCONV Message Thevaueinthe LU62_CONV_I| Dfield was
invalid.

PAVBLU62_TRUNCATED Message The previous LU62_RECV_DATA message on the

conversation specified inthe LU62_CONV_I D
field was truncated. This error occurs because the
size of the buffersin the private buffer pool is
insufficient. Increase the size of the private buffers
by defining the DMQLU62$BUFFER_SI ZE logical
name or, if it isalready defined, by increasing the
value.

A-4 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPENDIX

B Notes on IMS

The LU6.2 User Callback has been tested with the IMS LU6.1 Adapter for LUG.2
applications. TheIMSLUG6.1 AdapterisaVTAM program that provides bidirectional
translation between the LU6.1 protocol used by the IMS Inter-System
Communications (1SC) facility and the LU6.2 procotol used by APPC. A number of
restrictions apply to the use of APPC verbs with the IMS LU6.1 Adapter. These
restrictions are described in the IMS LU6.1 Adapter software documentation.

Users who want to communicate with IM S using the LU6.2 User Callback should take
note of the following additional restrictions:

L4

Synchronization level

The IMSLUG6.1 Adapter does not provide direct support for

SYNC_LEVEL=CONFI RM When operating at SYNC_LEVEL=CONFI RM confirmation
from the IMS LUG6.1 Adapter indicates that the transaction has been accepted by
the IM S queue manager, not that the transaction has been processed by the target
queue.

Error handling

The IMSLUG6.1 Adapter does not support norma methods of signaling errors
through APPC. Programmers devel oping applications that require this capability
must design their applications accordingly.

Transaction program names

The IMS LUG6.1 Adapter uses a constant TPN (I MSASYNC) when attaching
remote LUG.2 applications. This means that the TPN cannot be used to
distinguish inbound (from the IBM system) conversations from each other.
Programmers devel oping applications that require this capability must design
their applications accordingly.

Session establishment

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide B-1

B Notes on IMS

The IMS LUG6.1 Adapter supports establishment of an SNA session on behalf of
IMS, but only if the IMS/ OPNDST command is issued to request the session.
Applications can eliminate this requirement by having the LU6.2 User Callback
request the session. To do this, set the LU62_DEFI NE_I NI T_TYPE field in the
LU62_DEFI NE_LU message for the LU that is to accept incoming conversation to
0 (zero). The session is then established by sending an LU62_ACTI VATE message
for the LU. Following activation of the session, the IMS LU6.1 Adapter can use
the session.

Note: Prior to activating the session, at least onevalid local TPN must be established
by sending an LU62_DEFI NE_TP message to the User Callback. Failure to
establish valid TPNs prior to session activation resultsin allocation failuresin
the IMS LUG6.1 Adapter.

B-2 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPENDIX

C Examples of BEA

MessageQ LUG.2
Inbound and
Outbound Applications

The following sections provide sample Inbound and Outbound applications that
exchange data with an APPC application in an SNA network. These sample
applications are created using the tables described in Chapter 2, “Developing
Applications Using BEA MessageQ LU6.2 Services.”

Sample Inbound Application

** Copyright (c) BEA Systens, Inc., 1999
** Al R ghts Reserved

** This software is furnished under a |license and may be used and copied
** only in accordance wth the terns of such I|icense and with the
** jnclusion of the above copyright notice. This software or any other
** copi es thereof may not be provided or otherw se made avail able to any
** other person. No title to and ownership of the software is hereby
** transferred.

BEA MessageQ LU6.2 Services for OpenVMS User’s GuideC-1

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications

* %
* %
* %
* %
* %
* %

* %
* %
* %
* %
* %
* %
* %
* %

* %

*/

The information in this software is subject to change without

notice

and should not be construed as a commtnent by BEA Systens, |nc.

FI LE: i nbound. c

DESCRI PTI ON

Il'lustrates the use of BEA MessageQ LU6.2 Services
to inplement an application that activates an

I nbound application and exchanges data with an

APPC application in an SNA network.

REQUI REMENTS: The queue naned "LU62_SERVER' mnust
be defined in your init file and nmust transl ate
to the group and queue of the DMQ LU6.2 Port Server

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

ibrary include files **/

**/

MessageQ i nclude files **/
**/

<p_entry. h>
<p_return. h>
<p_synbol . h>
<p_typecl . h>
<pansl|l u62_server _nsg. h>

**/

................... *xf
<stdi 0. h>
<stdlib. h>

<string. h>

max user nessage si ze

#def i ne MAX_USER MESSAGE_SI ZE 4096

/*
* %

* %

*/

Define values for states: use an enunerated type here
to make sure each val ue is unique

typedef enum {
STATE_UNDEFI NED

C-2

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample Inbound Application

STATE_CONNECTI NG
STATE_WAI T_CONNECT,
STATE_WAI T_RESPONSE,
STATE_WAI T_COMPLETE,
STATE_EXI TI NG,

STATE_LAST
} aState;
/*
** Define a UNTON for all messages, with a buffer
*/
typedef union _lu62_nsg {
/*
** PORT_SERVER nessages
*/
regi ster_target regist;
connect _request conr eq;
dat a_nmessage dat a;
connection_ternmnated term
connect _accept accept;
connect _reject reject;
change_direction change;
/*
** puffer area
*/
char p_buffer[MAX_USER MESSAGE_SI ZE-8]; [*
** the 8 byte adjustnent allows for the maxi mum
** overhead in any Port Server nessage */
} Lu62Msg;
/*

** Routine to attach a queue so the application can send and
** receive BEA MessageQ traffic

*/
int32

Att achQueue(q_address *qg_attached)

int32 status;

int32 attach_node;
i nt 32 q_type;

attach_node
gq_type

status

PSYM_ATTACH_TEMPORARY;
PSYM ATTACH PQ /* causes the tenmpory queue to be */
/* a tenporary prinary queue */

pans_attach_q(

&at t ach_node,
g_at tached,

BEA MessageQ LU6.2 Services for OpenVMS User’s GuideC-3

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications

&q_type, /* nmake a tenp primary queue */
(char *) 0, /* g_nanme not needed */
(int32 *) O, /* qg_nanme_l en not needed */
(int32 *) O, /* Use default nanme space */
(int32 *) O, /* No name space list len */
(int32 *) O, /* Tineout Value */
(char *) O, /* Reserved by BEA */
(char *) 0); [/* Reserved by BEA */

(onl i ne_chunk)
if (status == PAMB__ SUCCESS)
printf("Attached successfully to temporary queue %d.\n",
g_att ached->au. queue) ;
el se
printf("Error attaching tenporary; status returned is: %d\n",
status);

return(status);

}

/*

** Routine to locate the DMQ LU6. 2 Services Port Server
** pased on its’ nane

*/

i nt32

Locat eServer (g_address *server_Qq)

{

int32 status;
int32 queue_nane_| en;
int32 wait_node;

int32 reqg_id;

/*

** Attenpt to |ocate the queue_name in the process and group name spaces

*/

queue_name_|l en = strlen("LU62_SERVER') ;

wai t _node = PSYM WF_RESP;

reg_id = 1;

st at us = pans_| ocat e_q(
"LU62_SERVER',
&queue_name_| en,
server _dg,
&wai t _node,
&req_id,

(int32 *) 0, /* No response queue */
(int32 *) 0, /* Use default nanme space |ist of
process and group */

C-4 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample Inbound Application

(int32 *) 0, /* name space list |len not needed */
(char *) 0);
switch (status)
{
case PAMS__SUCCESS :
printf("\ nLocated queue naned: \"%\" at %l.%l\n", "LU62_ SERVER',
server_gQ->au. group, server_g->au. queue);
br eak;
case PAMS__NOOBJECT :
printf("\ nQueue: \"%\" not found.\n", "LU62_SERVER');
br eak;
def aul t
printf("\ nUnexpected error returned from pans_|l ocate_q: % d\n",

status);
br eak;
}/*end case */

return(status);

}

/*
** Wi t Msg
*/

int32
Wai t Msg (Lu62Msg *meg, short *bytes_rcvd, short *type_rcvd,
short buf size)

{
int32 status;
char priority=0;
| ong ti meout=300; /* wait 30 seconds */
short msg_cl ass;
/* Get a nmessage */
status = pans_get_nmsgw
(char *)nsg,
&priority,
from addr,
&nsg_cl ass,
type_rcvd,
&buf si ze,
bytes_rcvd,
&t i meout ,

g_address *from addr,

BEA MessageQ LU6.2 Services for OpenVMS User’s GuideC-5

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications

(long *) O,

(struct PSB *) O,

(struct show buffer *) O,
(long *) O,

(char *) 0,

(char *) 0,

(char *) 0);

switch (status)
case PAMS__ SUCCESS :
printf("\nRecei ved Message: d ass: %@\t Type: %\ n", msg_cl ass, *type_rcvd);

br eak;

case PAMS__ TI MEQUT :
printf("\nTimed out waiting for nessages\n");

br eak;
defaul t
printf("\nError getting nmessage; status returned is %d.\n",
status);
br eak;

}/* end case */

return(status);

}

/*

** Routine to send a nessage to the renote partner

*/

int32

SendDat a(Lu62Msg *msg, short nsgl en, short msgtyp, q_address server_q)
{

int32 status;

char priority;
char delivery;
char ung;

short msg_cl ass;
| ong timeout;

struct PSB put_psb;

priority = 0; /* Regular priority; use 0, NOT 'O’ */
msg_cl ass = MSG_CLAS_APPC,
delivery = PDEL_MODE W MEM /* Return bad status if undeliverable */

C-6 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample Inbound Application

ti neout
uma

100; /* WAit 10 seconds before giving up */
PDEL_UMA DI SCL; /* If can’t deliver it, DISCard and Log */

status = pans_put _nsg(
(char *)nsg,
&priority,
&server_q, /* passed in */
&nsg_cl ass,
&msgtyp,
&del i very,
&nsgl en,
&t i neout ,
&put _pshb,
&uma,
(g_address *) O,
(char *) 0,
(char *) 0,
(char *) 0);

if (status == PAMS__SUCCESS)
printf("Put nmessage type %\ n", msgtyp);
el se
printf("Error putting nmessage; status returned is: %d.\n",
status);

return(status);

}

/*

** Routine to send an abnormal term nation nmessage to the

** Port Server

*/

int32

SendAbort (short connection, q_address server_qg, int32 reason)

{

int32 status;
Lu62Msg term nsg;

menset (& er m nsg, 0, si zeof (term nsg.tern);
term msg. term connection_i ndex = connecti on;
termmnmsg.termterm nate_type DI SCONNECT _ERROR;

termnsg.termterm nate_reason = reason;

/*

** Send the nmessage - set STATE_EX TING unconditionally
*/

status = SendDat a(& erm nsg, si zeof (term nsg.term,
MBG_TYPE_CONNECTI ON_TERM NATED, server _Q);
return(status);

BEA MessageQ LU6.2 Services for OpenVMS User’s GuideC-7

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications

}

/*

** Routine to send a connect request nessage to the
** Port Server

*/

int32

SendConnect (aState *state, char *tp_nanme, q_address server_Q)
{

int32 status;

Lu62Msg nsg;

/*

** Set up a connect request and send it to the port server. |If the send
** js successful, change the state to STATE WAI T_CONNECT.

*/

menset (&msg, 0, si zeof (msg. conreq));

strncpy(nsg. conreq.target_nane,tp_nane, si zeof (nsg. conreq. target_nane));
status = SendDat a(&nsg, si zeof (msg. conr eq) , MSG_TYPE_CONNECT_REQUEST, server_q);

if (status == PAMS__ SUCCESS)
*state = STATE_WAI T_CONNECT;
el se

*state = STATE_EXI TI NG

return(status);

}

/*

** Routine to handle traffic received while we are in the WAIT_CONNECT State
*/

int32

Wi t Connect (aState *state, short *connection, Lu62Msg *msg, short nsg_type,
g_address server_q)

int32 status;
Lu62Msg data_mnsg;

switch (nsg_type)
{

case MSG TYPE_ CONNECT ACCEPT:
/*
** |f the nessage is a connect response, save the connection index, format a

C-8 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample Inbound Application

** data nessage, set the change direction indicator ti CHANGE DI RECTI ON, which
** will make us the receiver when the Port Server processes the nessage.

*/

*connecti on = nsg->accept. connecti on_i ndex;

nmenset (&dat a_nsg. dat a, 0, MAX_USER MESSAGE S| ZE) ;

data_nsg. dat a. connecti on_i ndex = *connection;

data_nsg. dat a. change_direction CHANGE_DI RECTI ON;

/*

** Put some data in the message body
*/

strcpy(data_nsg. dat a. dat a, "R 000666");
/*

** Send the nmessage - if the send works, set the state to STATE WAl T_RESPOVSE
*/
status =
SendDat a(&dat a_nsg, MAX_USER_MESSACE_SI ZE, MSG_TYPE_DATA MESSAGE, server _q);
if (status == PAMS__SUCCESS)
*state = STATE WAl T_RESPONSE;
br eak;
case MSG TYPE_CONNECT_REJECT:
printf("Port Server rejected connect request.\n");
*state = STATE_EXI TI NG
br eak;
defaul t:
printf("WitConnect: received unexpected nessage of type %\ n", msg_type);

st at us = PAMS__ SUCCESS;
*state = STATE_WAI T_CONNECT;
br eak;

return(status);

}

/*

** Routine to handle traffic received while we are in the WAl T_RESPONSE St at e
*/

int32

Wi t Response(int32 *state, short connection, short nsg_type, q_address server_q)

int32 status;
switch (nsg_type)

case MSG _TYPE_DATA MESSACE:
printf("WitResponse: received response nessage\n");

st at us = PAMS__ SUCCESS;
*state = STATE_WAI T_COWPLETE;
br eak;

case MBG TYPE_CHANGE DI RECTI ON:

BEA MessageQ LU6.2 Services for OpenVMS User’'s GuideC-9

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications

/*

** The partner program has viol ated the agreed-upon conversation rules:

** di sconnect the conversation. W send a "disconnect reason" of -1; this

** does not get passed back beyon d the Port Server but is useful in application
** debuggi ng, since we can see what routine is generating the abort nessage
** by providing a unique reason code for each place we abort a conversation.
*/

printf("WitResponse: Received unexpected Change Direction nessage\n");

status = SendAbort (connection, server_q, -1);
status = PAMS__ SUCCESS- 1;

*state = STATE_EX TI NG

br eak;

case MSG TYPE_CONNECTI ON_TERM NATED:
printf("WitResponse: Port Server has terninated connection\n");

status = PAMS__ SUCCESS- 1;
*state = STATE _EXI Tl NG,
break;

defaul t:

printf("WitResponse: received unexpected message of type %\ n", nsg_type);

status = PAMS__ SUCCESS;
*state = STATE WAl T_RESPONSE;
break;
}
return(status);
}
int32

Wi t Conpl ete(int32 *state, short connection, short nmsg_type, q_address server_Qq)

int32 status;
Lu62Msg term nsg;

switch (nsg_type)

{
case MSG _TYPE_CHANGE_DI RECTI ON:
printf("WitConpl ete: received Change Direction nessage\n");
menset (& erm nsg, 0, si zeof (term nsg.term);
term msg. term connection_i ndex = connecti on;

termmnmsg.termterm nate_type = DI SCONNECT _NORMAL;
termnsg.termterninate_reason = 0;
/*
** Send the nmessage - set STATE _EXI TI NG unconditional |y
*/

status = SendDat a(&t erm nsg, si zeof (term nsg.tern,
VMBG_TYPE_CONNECTI ON_TERM NATED, server _Q);
*state = STATE_EXI TI NG

C-10 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample Inbound Application

status = PAMS__ SUCCESS- 1, /* force the main loop to exit */
br eak;

case MSG TYPE_DATA MESSAGE:
/*
** The partner program has viol ated the agreed-upon conversation rul es:
** di sconnect the conversation. W send a "disconnect reason" of -2; this
** does not get passed back beyon d the Port Server but is useful in
appl i cation
** debuggi ng, since we can see what routine is generating the abort nessage
** py providing a uni que reason code for each place we abort a conversati on.

*/
printf("WitConpl ete: recei ved unexpected data nessage\n");

status = SendAbort (connection, server_q, -2);
status = PAMS__ SUCCESS- 1;

*state = STATE _EXI Tl NG,

br eak;

case MSG _TYPE_CONNECTI ON_TERM NATED:
printf("WitConplete: Port Server has terninated connection\n");

status = PAMS__ SUCCESS- 1;
*state = STATE_EXI TI NG,
br eak;

def aul t:

printf("WitConplete: received unexpected nessage of type %\ n", msg_type);

st at us = PAMS__ SUCCESS;
*state = STATE _WAI T_RESPONSE;
br eak;
}
return(status);
}
voi d
mai n()

int32 status;
g_address g_attached,
server_q,
from addr;

aState stat e=STATE_UNDEFI NED;

Lu62Msg nsg;

BEA MessageQ LU6.2 Services for OpenVMS User’s Guid€-11

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications

/*

** various variables. "connection" will receive the

** "connection index" returned to us by the Port Server, which

** we will use to identify which connection we want the port server
** to use when we send data. On received nessages, the port server
** will give us the connection index so we can tell what connection

** the data cane from This allows a client programto have many
** connections running at the sane tine.
*/

short connection,
bytes_rcvd,
buf si ze=si zeof (Lu62Msg) ,
type_rcvd,;

/*

** Attach a queue for ourselves; if that works, |ocate the server.
** Exit in the event either operation fails.

*/

status = AttachQueue(&q_attached);

if (status == PAMS__ SUCCESS)
status = LocateServer (&server_q);
if (status != PAMS__SUCCESS)
panms_exit();

if (status != PAMS__ SUCCESS)
return;

/*

** |Initialize the application by setting the state to CONNECTI NG
** and sendi ng the connect request

*/

state = STATE_CONNECTI NG;
status = SendConnect (&st at e, " UPDATE", server_q);

whi l e (status == PAMS__SUCCESS)

{
status = Wait Msg(&rsg, &bytes_rcvd, & ype_rcvd, & rom addr, bufsize);

if (status != PAM5__ SUCCESS)
state = STATE_EX TI NG
switch (state) {

case STATE WAl T_CONNECT:

C-12 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample Outbound Application

status = Wi tConnect (&state, &connection, &rsg, type rcvd, server_Qq);

br eak;

case STATE_WAI T_RESPONSE:
status = Wit Response(&state, connection, type_rcvd, server q);
br eak;

case STATE_WAI T_COMPLETE:
status = Wi tConpl ete(&state, connection, type_rcvd, server q);
br eak;

case STATE_EXI TI NG
status = PAMS__SUCCESS-1; /* termnate the WH LE */
br eak;

def aul t:
state = STATE EXI TI NG
br eak;
}
}

pans_exit();

Copyright (c) BEA Systens, Inc., 1999
Al R ghts Reserved.

This software is furnished under a |license and may be used and copied
only in accordance with the terns of such I|icense and with the
inclusion of the above copyright notice. This software or any other
copi es thereof may not be provided or otherw se nmade avail able to any
other person. No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice

BEA MessageQ LU6.2 Services for OpenVMS User’s Guid€-13

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications

** and should not be construed as a commtnent by BEA Systens, |nc.
* %

* %

*x FI LE: out bound. c

* %

** DESCRI PTI ON: Il'lustrates the use of BEA MessageQ LU6.2 Services
** to inplement an application that waits for data to
** arrive on an outbound (fromI|BM conversation, and
** exchanges data with the initiating APPC application
*x in an SNA network.

* %

** REQUI REMENTS: The queue naned "LU62_SERVER' mnust

** be defined in your init file and nmust transl ate

*x to the group and queue of the DMQ LU6.2 Port Server
* %

* %

*/

L% *x

/** BEA MessageQ include files **/

L% *x

#include <p_entry. h>
#include <p_return. h>
#i ncl ude <p_synbol . h>
#i ncl ude <p_typecl. h>
#i ncl ude <pansl u62_server _msg. h>

[*x
/** Clibrary include files **/
[*x
#i ncl ude <stdi o. h>

#include <stdlib.h>

#i nclude <string. h>

/*

** Set a max user nessage size

*/

#def i ne MAX_USER MESSAGE_SI ZE 4096

/*
** Define values for states: use an enunerated type here
** to make sure each value is unique
*/
typedef enum {
STATE_UNDEFI NED
STATE_REG STERI NG

C-14 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample Outbound Application

/*

* %

*/

/*
* %
* %

*/

int32

STATE WAl T_REG STER,
STATE_WAI T_DATA,
STATE_WAI T_TO SEND,
STATE_WAI T_DI SCONNECT,
STATE_EXI TI NG
STATE_LAST

} aState;

Define a UNION for all messages,

typedef union _lu62_nsg {

/*
** PORT_SERVER nessages
*/

regi ster_target regist;
connect _request conreq;
dat a_nmessage dat a;
connection_ternmnated term
connect _accept accept;
connect _reject reject;
change_direction change;
/*

** puffer area

*/

char p_buf fer [MAX_USER MESSAGE_SI ZE- 8] ;

with a buffer

** The 8 byte adjustnent allows for the maxi mum overhead in any Port

** Server nessage.
*/

} Lu62Msg;

Att achQueue(q_address *qg_attached)

int32
int32 attach_node;
i nt 32 q_type;

attach_node
gq_type

status

status;

pans_attach_q(

PSYM _ATTACH_TEMPORARY;
PSYM ATTACH PQ /* causes the tenmpory queue to be */
/* a tenporary prinary queue */

Routine to attach a queue so the application can send and
receive BEA MessageQ traffic

BEA MessageQ LU6.2 Services for OpenVMS User’s Guid€-15

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications

&att ach_node,

g_at tached,
&q_type, /* nmake a tenp primary queue */
(char *) 0, /* qg_nanme not needed */
(int32 *) O, /* qg_nanme_l en not needed */
(int32 *) O, /* Use default nanme space */
(int32 *) O, /* No name space list len */
(int32 *) O, /* Tineout Value */
(char *) O, /* Reserved by BEA */
(char *) 0); [/* Reserved by BEA */
if (status == PAMB__ SUCCESS)
printf("Attached successfully to temporary queue %d.\n",
g_att ached->au. queue) ;
el se
printf("Error attaching tenporary; status returned is: %d\n",

status);

return(status);

}
/*

** Routine to |locate the DMQ LUB. 2 Servi ces
** pased on its’ nane

*/

i nt32

Locat eServer(g_address *server_Qq)
{

int32 status;

int32 queue_nane_| en;

int32 wait_node;

int32 reqg_id;

/*

** Attenpt to |ocate the queue_nane in

*/

queue_name_|l en = strlen("LU62_SERVER') ;

wai t _node = PSYM WF_RESP;

reg_id = 1;

st at us = pans_| ocat e_q(
"LU62_SERVER',
&queue_name_| en,
server _dg,
&wai t _node,
&req_id,
(int32 *) 0, [/*
(int32 *) 0, [/*

C-16

Port Server

the process and group nane spaces

No response queue */
Use default name space list of
process and group */

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample Outbound Application

(int32 *) 0, /* name space list |len not needed */
(char *) 0);
switch (status)
{
case PAMS__SUCCESS :
printf("\ nLocated queue naned: \"%\" at %l.%l\n", "LU62_ SERVER',

server _g->au. group,
br eak;

case PAMS__NOOBJECT :
printf("\ nQueue:
br eak;

\"%\" not found.\n",

def aul t

printf("\ nUnexpected error returned from panms_| ocate_q:

status);
br eak;
}/*end case */

return(status);

}

/*
% Wi t Msg
*/

int32
Wai t Msg (Lu62Msg *nsg, short *bytes_rcvd,
short bufsize)

short *type_rcvd,

int32 status;

char
| ong
short

priority=0;
ti meout =300;
nsg_cl ass;

/* wait 30 seconds */

/* Get a nessage */

status = pans_get_nmsgw
(char *)nsg,
&priority,
from addr,
&nmsg_cl ass,
type_rcvd,
&buf si ze,
bytes_rcvd,
&t i meout ,
(long *) O,
(struct PSB *) O,

server _g- >au. queue);

"LU62_SERVER');

% d\n",

g_address *from addr,

BEA MessageQ LU6.2 Services for OpenVMS User’s Guid€-17

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications

(struct show buffer *) O,
(long *) O,

(char *) 0,

(char *) 0,

(char *) 0);

switch (status)
case PAMS__ SUCCESS :
printf("\nRecei ved Message: d ass: %@\t Type: %\ n", msg_cl ass, *type_rcvd);

br eak;

case PAMS__ TI MEQUT :
printf("\nTimed out waiting for nessages\n");

br eak;
defaul t
printf("\nError getting nmessage; status returned is %d.\n",
status);
br eak;

}/* end case */

return(status);

}

/*

** Routine to send a nessage to the renote partner

*/

int32

SendDat a(Lu62Msg *msg, short nsgl en, short msgtyp, q_address server_q)
{

int32 status;

char priority;
char delivery;
char ung;

short msg_cl ass;
|l ong timeout;

struct PSB put_psb;

priority = 0; /* Regular priority; use 0, NOT 'O’ */
msg_cl ass = MSG_CLAS_APPC,

delivery = PDEL_MODE W MEM /* Return bad status if undeliverable */
ti meout = 100; /* Wait 10 seconds before giving up */
una = PDEL_UMA DI SCL; /* |f can’t deliver it, DI SCard and Log */

C-18 BEA MessageQ LUG6.2 Services for OpenVMS User’s Guide

Sample Outbound Application

status = pans_put _nsg(
(char *)nsg,
&priority,
&server_q, /* passed in */
&nsg_cl ass,
&msgtyp,
&del i very,
&nsgl en,
&t i neout ,
&put _psb,
&uma,
(g_address *) 0,
(char *) 0,
(char *) 0,
(char *) 0);

if (status == PAMS__SUCCESS)
printf("Put nmessage type %\ n", msgtyp);
el se
printf("Error putting nmessage; status returned is: %d.\n",
status);

return(status);

}

/*

** Routine to send an abnormal term nation nmessage to the

** Port Server

*/

int32

SendAbort (short connection, q_address server_qg, int32 reason)

int32 status;
Lu62Msg term nsg;

menset (& erm nsg, 0, si zeof (term nmsg.term);
termmsg.term connection_i ndex = connecti on;
termmnmsg.termtermnate_type DI SCONNECT _ERROR;

termnsg.termtermnate_reason = reason;

/*

** Send the nmessage - set STATE EXI TI NG unconditional |y
*/

status = SendDat a(&t er m nsg, si zeof (term nsg.termn,
MSG_TYPE_CONNECTI ON_TERM NATED, ser ver _q);
return(status);

}
/*

BEA MessageQ LU6.2 Services for OpenVMS User’s Guid€-19

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications

** Routine to send a register request nessage to the
** Port Server
*/

int32
SendRegi ster(aState *state, char *target, q_address server_q, g_address
my_addr ess)
{
int32 status;
Lu62Msg nsg;

/*

** Set up a connect request and send it to the port server. |If the send
** js successful, change the state to STATE WAI T_CONNECT.

*/

nmenset (&nsg, 0, si zeof (nBQg. regi st));

strncpy(nsg. conreq.target_nane,tarqget, sizeof (nsg. regi st.target_nane));
msg. regi st.target_group = ny_addr ess. au. group;
nmsg.regi st.target_process = ny_address. au. queue;

status = SendDat a(&rsg, si zeof (nsg. regi st), MSG TYPE REG STER TARGET,
server_dq);

if (status == PAMS__ SUCCESS)
*state = STATE_WAI T_REQ STER;
el se
*state = STATE_EXI TI NG

return(status);

}

/*

** Routine to handle traffic received while we are in the WAIT_REGQ STER State
*/

int32

Wi t Regi ster(aState *state, short *connection, Lu62Msg *msg, short msg_type,
g_address server_q)

int32 status;

switch (nsg_type)
{Case MSG TYPE REG STER TARGET:
*
i ** Resigtration was accepted - now we wait...
s{ atus = PAMS__ SUCCESS;

C-20 BEA MessageQ LUB6.2 Services for OpenVMS User’s Guide

Sample Outbound Application

*state = STATE_WAI T_DATA;
br eak;
case MSG _TYPE_CONNECTI ON_TERM NATED:
printf("Port Server rejected registration request.\n");

status = PAMS__ SUCCESS- 1;
*state = STATE_EXI TI NG,
br eak;

def aul t:

printf("WaitRegister: received unexpected nessage of type %\ n", nsg_type);

status = PAMS__ SUCCESS;
*state = STATE_WAI T_REGQ STER
br eak;

return(status);

}

/*

** Routine to handle traffic received while we are in the WAI T_DATA State

*/

int32

Wi tData(i nt32 *state, short *connection, short msg_type, g_address server_q)

int32 status;
Lu62Msg nsg;

switch (nsg_type)
{
case MSG TYPE_DATA MESSAGE:

printf("WaitData: received data nmessage\n");
/*
** save the connection index - we will need to use this later
*/
*connecti on = nsg. dat a.connecti on_i ndex;
st at us = PAMS__ SUCCESS;
*state = STATE_WAI T_TO_SEND;
br eak;

case MSG_TYPE_CHANGE_DI RECTI ON:

/*

** The partner program has viol ated the agreed-upon conversation rules:

** di sconnect the conversation. W send a "disconnect reason"” of -1; this
** does not get passed back beyon d the Port Server but is useful in application
** debuggi ng, since we can see what routine is generating the abort nmessage
** py providing a unique reason code for each place we abort a conversati on.
*/

printf("WitData: Received unexpected Change Direction nmessage\n");

st at us SendAbort (*connection, server_g, -1);

st at us PAMS__ SUCCESS- 1;

BEA MessageQ LU6.2 Services for OpenVMS User’s Guid€-21

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications

*state = STATE EXI TI NG
br eak;

case MSG TYPE_CONNECTI ON_TERM NATED:
printf("WaitData: Port Server has term nated connection\n");

status = PAMS__ SUCCESS- 1;
*state = STATE_EXI Tl NG,
br eak;

defaul t:

printf("WiitData: received unexpected nmessage of type %\ n", msg_type);

status = PAMS__ SUCCESS;
*state = STATE WAI T_DATA,
br eak;
}
return(status);
}
int32

Wi t Send(int32 *state, short connection, short msg_type, g_address server_Qq)

int32 status;
Lu62Msg nsg;

switch (nsg_type)
{

case MSG TYPE_CHANGE_ DI RECTI ON:
printf("WitSend: received Change Direction nmessage\n");
connecti on = nsg.accept.connecti on_i ndex;
menset (&rsg. dat a, 0, MAX_USER_MESSACE_SI ZE) ;
nsg. data. connecti on_i ndex = connecti on;
msg. dat a. change_di recti on = CHANGE_DI RECTI ON;
/*
** Put sonme data in the message body
*/
strcpy(msg. data. data, "HELLO");
/*

** Send the nmessage - if the send works, set the state to STATE WAl T_DI SCONNECT
*/
status = SendDat a(&rsg, MAX_USER_MESSACGE_SI ZE, M5G_TYPE_DATA MESSAGE, server_(q);
if (status == PAM5__ SUCCESS)

*state = STATE_WAI T_DI SCONNECT;

else {

*state = STATE_EXI TI NG

status = PAMS__SUCCESS- 1; /* force the main loop to exit */
}

br eak;

C-22 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample Outbound Application

case MSG TYPE_DATA MESSAGE:

/*

** The partner program has viol ated the agreed-upon conversation rul es:

** di sconnect the conversation. W send a "disconnect reason"” of -2; this
** does not get passed back beyon d the Port Server but is useful in application
** debugging, since we can see what routine is generating the abort nessage
** py providing a uni que reason code for each place we abort a conversati on.
*/

printf("WaitSend: received unexpected data nessage\n");

status = SendAbort (connection, server_q, -2);
status = PAMS__ SUCCESS- 1;

*state = STATE_EXI TI NG,

br eak;

case MSG _TYPE_CONNECTI ON_TERM NATED:
printf("WitConplete: Port Server has term nated connection\n");

status = PAMS__ SUCCESS- 1;
*state = STATE_EXI TI NG,
br eak;

def aul t:

printf("WitSend: received unexpected nessage of type %\ n", msg_type);

st at us = PAMS__ SUCCESS;
*state = STATE_WAI T_TO_SEND;
br eak;
}
return(status);
}
int32
Wi t Di sconnect (int32 *state, short connection, short msg_type, g_address
server_q)
{

nt 32 status;

switch (nsg_type)

case M5G_TYPE_CONNECTI ON_TERM NATED:

printf("WitD sconnect: received Connection Term nated nmessage\n");

*state = STATE_EXI TI NG
status = PAMS__SUCCESS- 1; /* force the main loop to exit */
br eak;

case MSG TYPE_DATA MESSACE:

/*

** The partner program has violated the agreed-upon conversation rules:

** di sconnect the conversation. W send a "di sconnect reason" of -2; this

BEA MessageQ LU6.2 Services for OpenVMS User’'s Guid€-23

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications

** does not get passed back beyon d t he Port Server but is useful in application
** debuggi ng, since we can see what routine is generating the abort nessage
** py providing a unique reason code for each place we abort a conversati on.
*/

printf("WaitD sconnect: received unexpected data nessage\n");

status = SendAbort(connection, server_q, -2);
status = PAMS__SUCCESS- 1;

*state = STATE_EXI TI NG

br eak;

case MSG TYPE_CHANGE DI RECTI ON:

/*

** The partner program has viol ated the agreed-upon conversation rul es:

** di sconnect the conversation. W send a "disconnect reason" of -3; this
** does not get passed back beyon d the Port Server but is useful in application
** debuggi ng, since we can see what routine is generating the abort nessage
** by providing a unique reason code for each place we abort a conversation.
*/

printf("WitD sconnect: received unexpected change direction nmessage\n");

status = SendAbort(connection, server_q, -3);
status = PAMS__SUCCESS- 1;

*state = STATE _EXI TI NG

br eak;

defaul t:

printf("WitSend: received unexpected nmessage of type %\ n", msg_type);

status = PAMS__ SUCCESS;
*state = STATE WAI T_DI SCONNECT;
br eak;

return(status);

}

voi d
mai n()
{

int32 status;
g_address g_attached,
server_(q,
from addr;

aSt at e st at e=STATE_UNDEFI NED;

Lu62Msg nsg;
/*
** various variables. "connection" will receive the

** "connection index" returned to us by the Port Server, which

C-24 BEA MessageQ LUB6.2 Services for OpenVMS User’s Guide

Sample Outbound Application

** we will use to identify which connection we want the port server
** to use when we send data. On received nessages, the port server
** will give us the connection index so we can tell what connection

** the data came from This allows a client programto have many
** connections running at the sane tine.
*/

short connecti on,
bytes_rcvd,
buf si ze=si zeof (LU62Msq),
type_rcvd;

/*

** Attach a queue for ourselves; if that works, |ocate the server.
** Exit in the event either operation fails.

*/

status = AttachQueue(&g_attached);

if (status == PAMS__SUCCESS)
status = LocateServer(&server_q);
if (status != PAMS__ SUCCESS)
panms_exit();

if (status != PAMS__SUCCESS)
return;

/*

** |Initialize the application by setting the state to CONNECTI NG
** and sending the connect request

*/

stat e = STATE_REGQ STERI NG
status = SendRegi ster (&state, " NEWORDER", server_q, q_attached);

while (status == PAM5__ SUCCESS)

{

status = Wai t Msg(&rsg, &bytes_rcvd, & ype_rcvd, & romaddr, bufsize);
if (!((status == PAMS__SUCCESS) || (status == PAVMS__TI MEQUT)))

state = STATE_EXI TING

switch (state) {

case STATE_WAI T_REd STER:
/*
** Timeouts are valid in WAL T_DATA, invalid el sewhere.
*/
if (status == PAM5__SUCCESS)
status = Wai tRegi ster(&state, &connection, &nmsg, type_rcvd, server_q);

BEA MessageQ LU6.2 Services for OpenVMS User’'s Guid€-25

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications

br eak;

case STATE WAl T_DATA:

/*

** | f we tined out just go back and wait again

*/

if (status == PAMS__TI MEQUT)

status = PAMS__ SUCCESS;

el se

status = WiitData(&state, &connection, type_rcvd, server_q);
br eak;

case STATE_WAI T_TO SEND
/*
** Timeouts are valid in WAIT_DATA, invalid el sewhere.
*/
if (status == PAMS__SUCCESS)
status = WitSend(&state, connection, type_rcvd, server_q);
br eak;

case STATE_WAI T_DI SCONNECT:
/*
** Timeouts are valid in WAIT_DATA, invalid el sewhere.
*/
if (status == PAMS__ SUCCESS)
status = Wit Di sconnect (&state, connection, type_rcvd, server_q);
br eak;

case STATE _EXI TI NG
status = PAMS__ SUCCESS- 1;
/* termnate the WH LE */
br eak;

defaul t:

state = STATE_EXI TI NG
br eak;

}
}

panms_exit();

C-26 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPENDIX

Examples of CICS

Inbound and
Outbound Applications

The following sections provide samples of CICS Inbound and Outbound applications.

Sample CICS Inbound Application

TITLE * VAXIN - BACKEND TRANSACTI ON PROGRAM 00010001
LR EEEEEEEEEEEEEEEEEEEEEEESEESESES] 00020000
* * 00030000
* TH' S PROGRAM CAN BE ACTI VATED UNDER THE TRANSACTI ON ' VXI N . * 00040056
* * 00080000
LR EEEEEEEEEEEEEEEEEEEEEEEEEESEESESES] 00090000
* 00100000
R15 EQU 15 00110000
R14 EQU 14 00120000
R13 EQU 13 00130000
R12 EQU 12 00140000
R11 EQU 11 00150000
R10 EQU 10 00160000
RO EQU 9 00170000
R8 EQU 8 00180000
R7 EQU 7 00190000
R6 EQU 6 00200000
R5 EQU 5 00210000
R4 EQU 4 00220000

BEA MessageQ LU6.2 Services for OpenVMS User’s GuideD-1

D Examples of CICS Inbound and Outbound Applications

R3 EQU 3
R2 EQU 2
RL EQU 1
RO EQU O

FI XED REG STERS

IBREG EQUJ RO

EE s I

PRI NT NOGEN

*

VAXI N DFHEI ENT El BREG=EI BREG, DATAREG=(13, 4)
*

** MOVE CONSTANTS TO WORKI NG STORAGE

*

M/C TRANI D, CTRANI D
M/C SYNLVL, CSYNLVL
M/C SYSI D, CSYSI D
M/C DECOUT, CDECOUT
M/C TPN, CTPN

WwC COWVAl, CCOMVA
WC TERMEQ, CTERM D
WwC COVVA2, CCOMVA
M/C DATAEQ, CDATA

*

*rkkkkkx EXEC Cl CS HANDLE CONDI TI ON ERROR(EXFREE)

*

M/C TERM D, El BTRM D SAVE THE PRI NCI PLE FACI LI TY
* NAME. (TERM NAL | D)

M/C CONVI D, El BTRM D BACKEND XACTION THI'S |'S ALSO
* THE CONVERSATI ON | D

** EXTRACT THE CONVERSATI ON- RELATED | NFORVATI ON FROM THE ATTACH FMVH

EXEC Cl CS EXTRACT PROCESS
PROCNAME ~ (PROCNAM)
PROCLENGTH(PROCLEN)
COWID (CONVID)
SYNCLEVEL (SYNLVL)

MWC TERQUT, TERM D TERM NAL | D TO HEADER
M/C TPNOUT, PROCNAM LOCAL TPN TO HEADER

** RECEI VE THE MESSAGE FROM THE COOPERATI NG TPN
*
POSTREAD DS OH
M/C | NLEN, =H 4096’ SET MAXI MUM RECEI VE LENGTH
EXEC Cl CS RECEI VE
COWI D (CONVI D)
LENGTH (1 NLEN)
INTO (DECIN)

D-2 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

00230000
00240000
00250000
00260000
00280000
00290000
00300000
00310000
00320000
00330000
00331096
00333010
00340000
00350000
00350000
00350000

00351098
00352096
00362075
00370096
00370196
00370296
00370399
00370496
+00370579
+00370679
+00370779
+00370896
00370979
00371099
00371199
00371299
00371396
00371496
00371596
00372023
00380053
+00390000
+00391096
+00400000
00410000

Sample CICS Inbound Application

* 00440000
LH RS, INLEN GET LENGTH OF HEADER MESSAGE 00450096
LA RS, MSGLEN(RS5) AND THE RECEI VED MESSAGE 00460000
STH R5, QUTLEN SET AS SEND LENGTH 00470000
* 00480000
IR R SR EEEEEEEEEEEEEEEEEEEEEEEEEEEERERERREEREEREEEEEEEREEEEEEEEEESEESESESS] 00481004
* TEST CONDI TI ONS SET IN THE EXEC | NTERFACE BLOCK (El B) 00482096
IR R SRR R EEEEEEEEEEEEEEEEEERE SRR EEEERERERREEREREEEEEEEREEEEEEEEEESRESESESS] 00483004
* 00483196
EIBTEST DS OH 00484004
M/C XDFEI FLG, El BSYNC SAVE EI B 00485096
* 00486157
TESTCONF DS~ OH 00486357
CLI XCONF, X FF PARTNER WANT A CONFI RMP 00486457
BNE TESTSYNC NO 00486599
* YES, | SSUE CONFI RVED] 11111 00486657
* SYNC LEVEL (2) PROCESSI NG 00486799
EXEC CI CS | SSUE CONFI RVATI ON 00486864
* 00486957
TESTSYNC DS OH SYNCPOI NT |'S NOT | MPLEMENTED YET 00487096
CLI XSYNC X FFP ON THE VAX SIDE.ovoennn.. 00488096
BNE TESTFREE 00489004
EXEC ClI CS SYNCPO NT 00489305
* 00489404
TESTFREE DS OH CEB RECEI VED = ASYNC MESSAGE 00489596
CLI XFREE, X FF 00489604
BNE TESTRECV SYNC MESSAGE GO TEST NEXT SWTCH 00489796

LR R R R R EREEREEREEEEEEEEESESESSESES] 00490099

* ASYNC CONVERSATI ON MESSAGE RECEI VED (CEB SET) 00490196

LR R R R R EREEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEREESEESEESESEESESESSESES] 00490299

* 00490399
** NOW SW TCH FROM A BACKEND TRANSACTI ON TO A FRONT END TRANSACTI ON 00490496
* 00490596
* 1. FREE CURRENT CONVERSATI ON 00490699
* 2. ALLOCATE AND CONNECT THE NEW CONVERSATI ON (OUTBOUND CONVERSATI ON) 00490799
* 3. SEND THE DATA BACK W TH CEB (ASYNC CONVERSATI ON) 00490899
* 00490958
EXEC CI CS FREE 00491064

EXEC CI CS ALLOCATE +00491158

SYSI D (SYSI D) 00491297

* << SYSID IS FROM CI CS DEFI NI TI ONS >> 00491397
M/C RESOURCE, El BRSRCE SAVE THE FRONT END TRANSACTI ON 00491496

* CONVERSATI ON | D 00491596
EXEC CI CS CONNECT +00491658

PROCESS +00491796

CONVI D (RESOURCE) +00491896

PROCNAME (TRANI D) +00491996

PROCLENGTH(TRANLEN) +00492096

SYNCLEVEL (SYNLVL) 00492196

* 00492296
EXEC CI CS SEND LAST CONFI RM +00492364

BEA MessageQ LU6.2 Services for OpenVMS User’s GuideD-3

D Examples of CICS Inbound and Outbound Applications

B

*

TESTRECV DS
CL
BNE

** FI RST SEND

EXEC

CONVI D{ RESOURCE)
FROM (DECOUT)

LENGTH(OUTLEN)

| MVET EXI T THE PROGRAM

OH RECEI VE STATE AND MULTI PLE
XRECV, X' FF’ LOGI CAL RECORDS.
ENDTEST PROCESS THE ONLY RECORD

THE CURRENT LOG CAL RECORD

Cl CS SEND
CONVI D{ CONVI D)
FROM (DECOUT)
LENGTH(OUTLEN)

** NOW READ THE NEXT LOGE CAL RECORD

B

POSTREAD

** PROCESS THE LOG CAL RECORD FOR BACKEND TRANSACTI ON

*

ENDTEST DS
CLC
BE

*

OH
DECI N(7), =C $*$TERM TERM NATE THE CONVERSATI ON
SENDCEB WHEN $*$TERM | S RECEI VED.

** SEND THE REPLY

*

* SEND WTH CDI AND REQUEST CONFI RM

*

SENDCDI DS
EXEC

B

*

OH
Cl CS SEND | NVI TE CONFI RM
CONVI D{ CONVI D)

FROM (DECOUT)

LENGTH(OUTLEN)

POSTREAD GO WAIT FOR THE NEXT MESSAGE

* SEND W TH CEB AND REQUEST CONFI RM (ONLY OR LAST LOG CAL RECORD)

*

SENDCEB DS
EXEC

*

OH
Cl CS SEND LAST CONFI RM
CONVI D{ CONVI D)
FROM (DECOUT)
LENGTH(OUTLEN)

** FREE THE CONVERSATI ON

** AND

** | MMEDI ATE RETURN TO CI CS

*

I MVET DS

OH

D-4 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

+00492496
+00492596
00492696

00492764
00492896
00492958
00493099
00493199
00493224
00493399
00493499
00493599
+00493699
+00493899
+00493999
00494099
00494199
00494299
00494399
00495599
00495623
00495796
00495804
00495904
00496055
00496199
00496221
00497000
00500000
00500130
00500225
00501030
+00510039
+00511096
+00520000
00530025
00540299
00540325
00540439
00540525
00540630
+00540854
+00540996
+00541025
00541139
00541230
00541399
00541499
00541599
00541699
00542043

Sample CICS Inbound Application

EXEC CI CS FREE 00561064

EXEC CI CS RETURN 00570041
* 00580000
EEEREEREEREEEESESEEESESESES] 00581099
* 00582099
** CONSTANTS - VARI ABLES - DATA AREAS 00590099
* 00600000
CTRANID DC CL4’ | MBA' 00601099
TRANLEN DC AL2(*- CTRAN D) 00602079
CSYNLVL DC H1 00603099
CSysIbD DC CL4’ ST0O4’ 00610099
CDECOUT DC XL8' 00000003010000FF 00621699
CTPN DC C** TPN =~ 00650299
CCOMVA DC c,’ 00650493
CTERM D DC C TERMD =" 00650696
CDATA DC C DATA =" 00650993

LT * 00660000
* 00600000
DFHEI STG DSECT ,
EEESEERESEESESEESESESS] 00651421
* ElI B EXEC | NTERFACE BLOCK STORAGE AREA 00651521
EEEREESEEREESEESESEESESESS] 00651621
TRANID DS CL4 OUTBOUND TPN 00601099
SYNLVL DS H SYNC LEVEL 00603099
SYSI D DS CL4 SYSID FOR LU ON QUTBOUND ALLOCATE 00610099
TERM D DS CL4 El BTRM D SAVE AREA 00611075
CONVID DS CL4 BACKEND CONVERSATI ON | D 00612096
RESOURCE DS CL8 FRONT END CONVERSATI ON | D 00620096
I NLEN DS H RECEI VED | NPUT MESSAGE LENGTH 00620196
QUTLEN DS H OUTPUT MESSAGE LENGTH 00620296
PROCLEN DS H PROCESS NAME LENGTH 00620396
PROCNAM DS CL8 LOCAL TPN (PROCESS NAME) 00621096
PROCFI LL DS CL24 TEMP FI LLER FOR EXTRACT OVERFLOW 00621199
* CI CS RETURNS 32 BYTES FOR PROCNAM 00621299
* 00621399
** OUTPUT MESSAGE HEADER AND DATA BUFFER 00621499
* 00621596
DECOUT DS XL8 00621699
TPN DS CL9 00650299
TPNOUT DS CL4 00650391
COMVAL DS CL1 00650493
TERVEQ DS CL10 00650696
TEROUT DS CL4 00650791
COMVA2 DS CL1 00650893
DATAEQ DS CL8 00650993
MSGLEN EQU *- DECOUT 00651148
DECI N DS CL4096 RECEI VED | NPUT BUFFER 00651296
* AND OUTPUT DATA BUFFER 00651399
XDFEI FLG DS 0CL10 00651819
XSYNC DS C 00652015

BEA MessageQ LU6.2 Services for OpenVMS User’'s GuideD-5

D Examples of CICS Inbound and Outbound Applications

XFREE DS C 00653015
XRECV DS C 00654015
XSEND DS C 00655015
XATT DS C 00656015
XECC DS C 00657015
XFVH DS C 00658015
XCOWPL DS C 00658119
XSl G DS C 00658219
XCONF DS C 00658319
* 00651796

END 00670000
Sample CICS Outbound Application

TITLE 'FROM BM - I NNT A TRANSACTI ON ON THE VAX 00010001
LR R R R R R I R R 00020000
* * 00030000
* * 00031033
* TH'S PROGRAM | S DESI GNED TO COVMUNI CATE W TH ANOTHER LU6. 2 LOd CAL * 00040000
*UNNT WH CH MAY BE A VM5 SYSTEM | T PERFORMS THE FOLLOAN NG FUNCTI ONS * 00050000
* IN A LOOP WH CH | S REPEATED TEN TI MES : - * 00060000
* * 00070000
* 1) ALLOCATE A SESSI ON TO REMOTE SYSTEM ' DCLR . PL381021 * 00080000
* * 00090000
* 2) CONNECT TO PROCESS ' | MSAYNC' AT SYNCHPO NT LEVEL ZERO * 00100000
* * 00110000
* 3) I SSUE A CONVERSE REQUEST TO SEND AND RECEI VE DATA. * 00120000
* * 00130000
* 4) FREE THE SESSI ON. * 00140000
* * 00150000
* ANY NUMBER OF TRANSACTI ONS CAN USE THI S PROGRAM AT ANY ONE TI ME * 00160000
* * 00170000
LR R R R R R O R R 00210000
* 00220000
R15 EQU 15 REGQ STERS 00230000
R14 EQU 14 REGQ STERS 00240000
R13 EQU 13 REGQ STERS 00250000
R12 EQU 12 REGQ STERS 00260000
R11 EQU 11 REGQ STERS 00270000
R10 EQU 10 REGQ STERS 00280000

D-6 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample CICS Outbound Application

RO EQU 9 REG STERS
R8 EQU 8 REG STERS
R7 EQU 7 REG STERS
R6 EQU 6 REG STERS
R5 EQU 5 REG STERS
R4 EQU 4 REG STERS
R3 EQU 3 REG STERS
R2 EQU 2 REG STERS
R1 EQU 1 REG STERS
RO EQU O REG STERS
PRI NT NOGEN

*

* FI XED REG STERS

*

EIBREG EQ R9
*
VAXOUT ~ DFHEI ENT El BREG=(El BREG)
*

Fkoxk REQUEST SYSI D FROM THE TERM NAL

*

SYSLOOP DS OH
*

MVC TBUFLEN, SYSRQLEN

*

*xx% SEND A MESSAGE TO THE TERM NAL
*
EXEC CICS SEND
FROM (SYSI DREQ
LENGTH(TBUFLEN)

ERASE

*

*Frxxkxkk%k CGET SYSID FROM THE TERM NAL

*
LA R8, L' TERMBUF SET RECElI VE BUFFER LENGTH
STH R8, TBUFLEN

EXEC Cl CS RECEI VE
INTO (TERVBUF)
LENGTH(TBUFLEN)

*

x* k% k%% SAVE CONNECTI ON SYSI D
*

LH R8, TBUFLEN

CH R8, =H 4

BL SYSLOOP

M/C SYSI D, TERVBUF

00290000
00300000
00310000
00320000
00330000
00340000
00350000

00360000
00370000
00380000
00390000

00400000
00410000
00420000
00430000
00440000
00450000
00460000
00662017
00670000
00670512
00670413
00670213
00670712
00670817
00670917
+00671012
+00671113
+00671230

00671412
00671512
00671613
00671702

00671702
+00671813
+00671913

00672030

00673013

00671613

00673013

BEA MessageQ LU6.2 Services for OpenVMS User’s GuideD-7

D Examples of CICS Inbound and Outbound Applications

*

** ALLOCATE A SESSI ON
*
EXEC Cl CS ALLCCATE
SYSID (SYSI D)

M/C MESSAGE(L' MHEADER), MHEADER | NI TI ALI ZE MESSACGE HEADER
MVC RESOURCE, El BRSRCE SAVE RESOURCE (CONVI D)
WC MSGIRM D, El BTRM D SAVE THE TERM NAL | D

** CONNECT TO VAX TRANSACTI ON PROGRAM
*
EXEC C CS CONNECT PROCESS
COWID (RESOURCE)
PROCNAVE (TRANI D)
PROCLENGTH(TRNLEN)
SYNCLEVEL (SYNLVL)

*

*xxx SEND A GREETING TO THE TERM NAL

*
M/C TERMBUF(L' GREETI NG) , GREETI NG
M/C TBUFLEN, GRTNGLEN

*

MSGLOOP DS OH
*

*xx% SEND A MESSAGE TO THE TERM NAL
*
EXEC CI CS SEND
FROM (TERVBUF)
LENGTH(TBUFLEN)
ERASE

*

#xxxxxx GET A MESSAGE FROM THE TERM NAL

*
LA R8, L’ TERMBUF SET RECEI VE BUFFER LENGTH
STH R8, TBUFLEN

EXEC O CS RECEI VE
I NTO (TERVBUF)
LENGTH(TBUFLEN)
ASI S

CLC TERMBUF(7),=C $*$TERM
BE PLUTERM

*

** SEND THE MESSACE TO THE LU62 CONVERSATI ON PARTNER

*

LH R8, TBUFLEN

D-8 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

00560000
00570000
00580000
+00590000
00600020
00601013
00610013
00610013
00611013
00620000

00630000
00640000
+00650020
+00651020
+00652020
+00653020
00654020
00661017
00662017
00670000
00670113
00670213
00670413
00670512
00670712
00670817
00670917
+00671012
+00671113
+00671230
00671412
00671512
00671613
00671702

00671702
+00671813
+00671913
+00672030

00672213

00673013

00676118

00676221

00677013

00680013

00690000

Sample CICS Outbound Application

LA RS, L MHEADER(O, R8) | NCREASE MSG LENGTH FOR HEADER
STH RS, TBUFLEN
* 00690000
EXEC Cl CS CONVERSE +00700000
COWID (RESOURCE) +00710000
FROM (MESSAGE) +00720000
FROM_LENGTH (TBUFLEN) +00730030
SET (R6) +00740008
TOLENGTH (I NLEN) 00750030
* 00760000
M/C XDFEI FLG, El BSYNC SAVE El B FLAGS 00770021
TESTCONF CLI XCONF, X FF’ 00780021
BNE TESTFREE 00790021
* 00800021
EXEC CI CS | SSUE CONFI RVATI ON 00800121
TESTFREE CLI XFREE, X FF’ 00800221
BE SLUTERM 00800321
TESTRECV CLI XRECV, X' FF’ 00800421
* 00801009
*** DI SPLAY THE MESSAGE FROM THE REMOTE TPN ON THE 3270 TERM NAL 00802009
* 00803009
LA R4, TERVBUF PO NT TO 3270 TERM NAL BUFFER
LA R5, L’ TERVBUF SET TO LENGTH OF 3270 BUFFER
LH R7,INLEN SET TO LENGTH OF REMOTE TPN MSG
CR R5R7 | F 3270 BUFFER | S SMALLER THAN MSG
BL *+6 MOVE BUFFER NUMBER OF BYTES
LR R5 R7 ELSE, MOVE MSG NUMBER OF BYTES
STH RS, TBUFLEN SAVE MESSAGE LENGTH FCR SEND
M/CL R4, R6 MOVE REMOTE TPN MBG TO 3270 BUFFER 00803116
* 00810000
** SEND THE NEXT MESSAGE PLEASE 00820009
* 00830000
B MBGLOCP LOOP UNTIL $*$TERM 00840017
* 00850000
PLUTERM DS OH 00850121
M/C TERMBUF(L’' PLUTMSG) , PLUTMBG 00850221
B SEND3270 00850321
SLUTERM DS OH 00850421
M/C TERMBUF(L’ SLUTMSG) , SLUTMBG 00850521
* 00850621
SEND3270 DS OH 00850721
EXEC ClCS SEND +00850821
FROM (TERVBUF) +00850921
LENGTH(TMSGLEN) +00851027
ERASE 00851221
* 00851321
SENDCEB DS OH 00851417

BEA MessageQ LU6.2 Services for OpenVMS User’'s GuideD-9

D Examples of CICS Inbound and Outbound Applications

EXEC Cl CS SEND LAST
CONVI D (RESOURCE)
FROM (TERVBUF)
LENGTH (TBUFLEN)

*

** AND RETURN

*

RETURN DS OH
*

EXEC C CS FREE
SESSI ON (RESOURCE)
EXEC O CS RETURN

*

TRANID DC CL4' NOTR
TRNLEN DC AL2(*-TRANI D)
SYNLVL DC HO
SYSI DREQ DC C ENTER CONNECTI ON SYSID : '’
SYSRQLEN DC AL2(*- SYSI DREQ
GREETI NG DC C ENTER MESSAGE :
GRTNGLEN DC AL2(*- GREETI NG
PLUTMBG DC C *** TERM NATED BY HOST TPN ***’
SLUTMBG DC C *** TERM NATED BY REMOTE TPN ***
TMSGLEN DC AL2(*- SLUTMSG)
M_iEAI:ER m C’ * Kk * *xk
*
LTORG

*

LR R R R R R R R R I R b R R S O R R Ik S R O o

* HE B EXEC | NTERFACE BLOCK STORAGE AREA

LR R R R R R Rk kR R R b R R O R R I S R O O

*

DFHEI STG DSECT ,
XDFElI FLG DS 0CL10

XSYNC DS C
XFREE DS C
XRECV DS C
XSEND DS C
XATT DS C
XEOC DS C
XFVH DS C
XCOWPL DS C
Xsl G DS C
XCONF DS C
*

TBUFLEN DS H
INNEN DS H
SYSID DS CL4

D-10 BEA MessageQ LUG6.2 Services for OpenVMS User’s Guide

+00852019
+00853019
+00854019
00855030
00856017
00860000
00870000
00880000
00882017
+00883017
00884017
00890000

00900000
00930032
00940000

00950026
00951012
00952012
00951012
00952012
00953027
00954021
00955027
00960000
01152121
01154023
01152121
01152221
01152321
01152421
01152521

01152621
01152722
01152822
01152922
01153022
01153122
01153222
01153322
01153422
01153522
01153622
01153721
01152013
01142008
00910031

Sample CICS Outbound Application

RESCURCE DS CL8 00920005
MESSACE DS CL4 00960000
MBGTRM D DS CL4 00970000

DS C.4 00980027
TERMBUF DS (CL1920 01151013
LR R R R R kR R R R R R R R R R R A R R 01153924

END 01160023

BEA MessageQ LU6.2 Services for OpenVMS User’s Guid®-11

D Examples of CICS Inbound and Outbound Applications

D-12 BEA MessageQ LUG6.2 Services for OpenVMS User’s Guide

Index

A
ADD_LU message 4-1, 4-3
ADD_TARGET message 4-1, 4-4
Advanced Program-to-Program
Communications (APPC) 1-1, 1-3
APPC verb set 6-2
application
boundaries 2-9
connections 1-8
state/event/action tables 2-6
types 2-1

BEA MessageQ
client 1-4

client, number of active connections 3-4
LUG6.2 Port Server 1-4
message bus 1-4

C

CHANGE_DIRECTION message 4-6, 4-8
CICS 15
command procedures
DMQLU62_SERVER_LOGICALS.CO
M 3-21
DMQLU62_SERVER_STARTUP.CO
M 3-20
COMMUNICATION_TY PE dataitem 3-14,
3-15, 3-16

concurrent sessions, maximum number of 3-
3
configuration files 3-6
CONNECT_ACCEPT message 4-6, 4-9
CONNECT_REJECT message 4-6, 4-10
CONNECT_REJECT reason codes 4-10
CONNECT_REQUEST message 4-6, 4-11
CONNECTION_TERMINATED message
4-6, 4-12
connection-oriented communications,
definition of 1-1
contention 1-7
control messages 4-1-4-5
conversation allocations 1-6
conversations 1-6
maximum number of active 6-2

D

data fields
LU62_ABEND_FLAG 6-20
LU62_ ACTIVATE_LOCAL_LU 6-10
LU62_ACTIVATE_POLARITY 6-10
LU62_ALLOCATE_LOCAL LU 6-13
LU62_ ALLOCATE_PASSWORD 6-13
LU62_ALLOCATE_POLARITY 6-14
LU62_ALLOCATE_PROFILE 6-13
LU62_ALLOCATE_SYNC LEVEL 6-

13

LU62_ALLOCATE_USERNAME 6-13
LU62 _CONNECTED_LU_NAME 6-19

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide I-1

LU62_CONV_ID 6-15, 6-16, 6-17, 6-
18, 6-19, 6-20, 6-21, 6-23, 6-27,
6-30, 6-32, 6-33, 6-34, 6-35, 6-
36, 6-37, 6-38, 6-39
LU62 DATA_MESSAGE 6-34, 6-38
LU62 DEFINE_ACCNAME 6-23
LU62 DEFINE_APPLID 6-24
LU62 DEFINE_CIRCUIT 6-23
LU62 DEFINE_INIT_TYPE 6-24
LU62 DEFINE_LOCAL_LU 6-23
LU62 DEFINE_LOGMODE 6-24
LU62 DEFINE_LU_PASSWORD 6-23
LU62 DEFINE_SESSION 6-24
LU62 _DEFINE_TP_TPN 6-25
LU62 DEFINE_USER _DATA 6-24
LU62 DELETE LOCAL_LU 6-28
LU62_ERROR_CODE 6-30, 6-39
LU62_ERROR_VECTOR 6-30
LU62 MSG_LEN 6-34, 6-38
LU62 REQUESTER 6-10, 6-13, 6-23,
6-25
LU62 TPN 6-13
dataitems
COMMUNICATION_TYPE 3-14, 3-
15, 3-16
DEALLOCATE_TYPE 3-14, 3-15, 3-16
LU_ACCESS 3-8
LU_GATEWAY 3-8
LU_SYSTEM_ID 3-8
LU _TYPE 3-9
TARGET_NAME 3-11, 3-15, 3-16
TARGET_SYSTEM_ID 3-11, 3-15, 3-
16
TARGET_TPN 3-11, 3-15, 3-16
TARGET_TYPE 3-12-??, 3-15, 3-16
DATA_MESSAGE message 4-6, 4-13
DEALLOCATE_TYPE dataitem 3-14, 3-15,
3-16
disable CONFIRM processing A-2
DMQLUG62$BUFFER_COUNT logical
name 3-19, A-2

DMQLUG62$BUFFER_SIZE logical name 3-
19, A-1
DMQLU62$DISABLE_CONFIRM logical
name 3-3, 3-19, A-2
DMQLUG2$SECURITY_FILE logical name
3-4, 3-19
DMQLUG2$SELECT_SYNC logical name
3-3, 3-19, A-2
DMQLU62$SERVER_BROADCAST_STR
EAM logical name 3-18, 3-21
DMQLU62$SERVER_DOC logical name 3-
17
DMQLU62$SERVER_EXAMPLES logical
name 3-17
DMQLUG62$SERVER_EXE logical name 3-
17
DMQLU62$SERVER_IMS_ADAPTER
logical name 3-19
DMQLU62$SERVER_LIB logical name 3-
17
DMQLU62$SERVER_LOG_INFO logical
name 3-18
DMQLU62$SERVER_LU_CONFIG logical
name 3-6, 3-17
DMQLU62$SERVER_MULTI_CONNECT
logical name 3-19
DMQLU62$SERVER_PAMS_PROCESS
logical name 3-18
DMQLU62$SERVER_RECONNECT_TIM
ER logical name 3-18
DMQLU62$SERVER_SRC logical name 3-
17
DMQLU62$SERVER_TARGET_CONFIG
logical name 3-6, 3-17
DMQLU62$SERVER_UCB_ADDR logical
name 3-18
DMQLUG2$TRACE logical name A-2
DMQLU62_EVENT_WATCH utility 3-21
DMQLU62_SERVER_LOGICALS.COM
command procedure 3-21
DMQLU62_SERVER_STARTUP.COM

[-2 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

command procedure 3-20
DMQLU62_SERVER_STOP utility 3-22

E

error codes
PAMSLU62 BADMSGTY PE A-4
PAMSLU62 EXCEEDLUMAX A-3
PAMSLU62 NOSUCHCONV A-4
PAMSLUG62_SESSFAILED A-3
PAMSLUG2 TRUNCATED A-4
PAMSLU62 UNEXPECTED A-3

error vector 6-30

execution trace A-2

F

foreign commands
DMQLU62_EVENT_WATCH 3-21
DMQLU62_SERVER_STOP 3-22

H
half-duplex 1-1
hybrid applications 2-2

IBM clients, multiple connections 3-4
IMS1-5
IMSLU6.1 Adapter B-1
inbound
alocation 1-7
applications 2-2
conversation allocation 6-2
conversations 6-4
conversations, how to request 6-4
state/event/action table 2-6

L

linear conversations 2-4

link port server with LU6.2 User Callback A-
2
logical name
DMQLUGB2$SECURITY _FILE 3-4
Logical names
DMQLUG2$DISABLE_CONFIRM 3-3
DMQLUG2$SELECT_SYNC 3-3
logical names
defining 3-21
DMQLUGB2$BUFFER_COUNT 3-19,
A-2
DMQLUGB2$BUFFER_SIZE 3-19, A-1
DMQLUG2$DISABLE_CONFIRM 3-
19,A-2
DMQLUG2$SECURITY_FILE 3-4, 3-
19
DMQLUGB2$SELECT_SYNC 3-19, A-2
DMQLUGB2$SERVER_BROADCAST _
STREAM 3-18, 3-21
DMQLUGB2$SERVER_DOC 3-17
DMQLUG2$SERVER_EXAMPLES 3-
17
DMQLUGB2$SERVER_EXE 3-17
DMQLUG2$SERVER_IMS ADAPTE
R 3-19
DMQLUGB2$SERVER_LI 3-17
DMQLUGB2$SERVER_LOG_INFO 3-
18
DMQLUG2$SERVER_LU_CONFIG 3-
17
DMQLUG2$SERVER_LU_CONFIG,
3-6
DMQLUGB2$SERVER_MULTI_CONN
ECT 3-19
DMQLUGB2$SERVER_PAMS_PROCE
SS3-18
DMQLUB2$SERVER_RECONNECT _
TIMER 3-18
DMQLUB2$SERVER_SRC 3-17
DMQLUG62$SERVER_TARGET_CON
FIG 3-6, 3-17

BEA MessageQ LU6.2 Services for OpenVMS User's Guide 1-3

DMQLUG2$SERVER_UCB_ADDR 3-
18
DMQLUG2$TRACE A-2
on-disk structure 3-17
port server control 3-17
LU_ACCESSdataitem 3-8
LU_CONFIG
description of 3-5
LU_GATEWAY dataitem 3-8
LU_SESSION dataitem 3-8
LU_SYSTEM_ID dataitem 3-8
LU _TYPE dataitem 3-9
LU6.2 architecture 1-6
LU6.2 protocols 1-6
LU6.2 session 1-2
LU62 ABEND_FLAG field 6-20
LU62_ACTIVATE message 6-9
LU62 ACTIVATE LOCAL_L U field 6-10
LUB2 ACTIVATE_POLARITY field 6-10
LU62 ALLOCATE message 6-12
LU62 ALLOCATE LOCAL_LU field 6-13
LUB2 ALLOCATE_PASSWORD field 6-
13
LU62 ALLOCATE POLARITY field 6-14
LU62 ALLOCATE_PROFILE field 6-13
LU62 ALLOCATE_SYNC_LEVEL field 6-
13
LU62 ALLOCATE_USERNAME field 6-
13
LU62_CONFIRM_RECV message 6-16
LU62_CONFIRM_REQ message 6-17
LU62_CONFIRM_SEND message 6-18
LU62_CONFIRMED message 6-15
LU62_CONNECTED message 6-19
LU62 CONNECTED LU_NAME field 6-
19
LU62_CONV_ID field 6-15, 6-16, 6-17, 6-
18, 6-19, 6-20, 6-21, 6-23, 6-27, 6-
30, 6-32, 6-33, 6-34, 6-35, 6-36, 6-
37, 6-38, 6-39
LU62 DATA_MESSAGE field 6-34, 6-38

LU62 DEALLOCATE message 6-20
LU62 DEALLOCATED message 6-21
LU62 DEFINE_ACCNAME field 6-23
LU62 _DEFINE_APPLID field 6-24
LU62_DEFINE_CIRCUIT field 6-23
LU62 DEFINE_GATEWAY field 6-23
LU62 DEFINE_INIT_TYPE field 6-24
LU62 DEFINE_LOCAL_LU field 6-23
LU62_DEFINE_LOGMODE field 6-24
LU62 DEFINE_LU message 6-22
LU62 DEFINE_LU_PASSWORD field 6-
23
LU62_DEFINE_SESSION field 6-24
LU62_DEFINE_TP message 6-25
LU62 DEFINE_TP_TPN field 6-25
LU62 DEFINE_USER_DATA field 6-24
LU62 DELETE LOCAL_LU field 6-28
LU62 DELETE_LU message 6-27
LU62_ERROR message 6-29
LU62_ERROR_CODE 6-39
LU62_ERROR_CODE field 6-30
LU62_ERROR_VECTOR field 6-30
LUB2_INIT message 6-32
LU62 MSG_LEN field 6-34, 6-38
LU62_OK_TO_SEND message 6-33
LU62 RECV_DATA message 6-34
LU62 REQ_CONFIRM message 6-35
LU62 REQ _TO_SEND message 6-36
LU62 REQUESTER field 6-10, 6-13, 6-23,
6-25
LU62_SEND_CONFIRM message 6-37
LU62 _SEND_DATA message 6-38
LU62_SEND_ERROR message 6-39
LU62_TPN field 6-13

M

message
maximum size 3-3
types4-1

multiple connections

-4 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

BEA MessageQ Clients 3-4
IBM Clients 3-4
multithreading 6-4

N
NCP 1-5

0

outbound
allocation 1-7
applications 2-2
conversation allocation 6-2
conversations 6-4
conversations, how to request 6-4
state/event/action table 2-8

P

PAMSLU62 BADMSGTY PE error code A-
4
PAMSLUG62 EXCEEDLUMAX error code
A-3
PAMSLU62_NOBUFFER error code A-3
PAMSLU62 NOSUCHCONYV error code A-
4
PAMSLUG2_SESSFAILED error code A-3
PAMSLUG2_ TRUNCATED error code A-4
PAMSLU62 _UNEXPECTED error code A-
3
Port Server
control messages 4-1-4-5
using 1-8

R
REGISTER_TARGET message 4-6, 4-15

S

security

inbound connection requests 3-4

inbound conversations 3-4
security file 3-4
SHUTDOWN message 4-2, 4-5
SNA Gateway 1-5
SNA Logical Units

maximum number of 3-3
support

technical xiv

T

target
definition of 3-3
maximum number of 3-3
registration 2-3
sync level
definition 3-3
TARGET_CONFIG
description of 3-6
TARGET_NAME data item 3-11, 3-15, 3-16
TARGET_SYSTEM_ID data item 3-11, 3-
15, 3-16
TARGET_TPN data item 3-11, 3-15, 3-16
TARGET_TYPE data item 3-12-3-14, 3-15,
3-16
TSO 1-5

U

User Callback
error codes A-3
initializing 6-3
linking with Port Server A-2
message flow 6-6
message header format 6-2
requesting a conversation 6-4
sample message exchange 6-6
using with IMS LU6.1 Adapter B-1
User Callback Services (UCB) 6-1
utilities

BEA MessageQ LU6.2 Services for OpenVMS User's Guide 1-5

DMQLU62 EVENT_WATCH 3-21
DMQLU62_SERVER_STOP 3-22

v
VTAM 1-5

-6 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	Preface
	Purpose of This Document
	Who Should Read This Document
	How This Document Is Organized

	How to Use This Document
	Opening the Document in a Web Browser

	Figure 1 Online Document Displayed in a Netscape Web Browser
	Printing from a Web Browser
	Documentation Conventions
	Related Documentation
	BEA MessageQ LU6.2 Services for OpenVMS Documentation
	BEA Publications

	Contact Information
	Documentation Support
	Customer Support

	1 Introducing BEA MessageQ LU6.2 Services
	Basic Terms and Concepts
	The BEA MessageQ LU6.2 Services Product
	SNA LU6.2 Sessions
	Advanced Program-to-Program Communications (APPC)
	BEA MessageQ LU6.2 Services Application Components
	Figure 1�1 BEA MessageQ LU6.2 Components

	SNA APPC/LU6.2 Fundamentals
	Logical Unit Type 6.2 Overview
	Inbound and Outbound Conversations
	Figure 1�2 SNA Session for Dependent LUs

	Using the LU6.2 Port Server for Applications Connections
	Writing Your Own Port Server

	2 Developing Applications Using BEA MessageQ LU6.2 Services
	Applications Development Overview
	Inbound Applications
	Outbound Applications
	Hybrid Applications
	Target Registration

	Structure of BEA MessageQ LU6.2 Services Applications
	Simple Linear Conversations
	State Machines
	Figure 2�1 Application Loop

	Overview of State/Event/Action Table
	Table 2�1 Sample State/Event/Action Table

	Inbound State/Event/Action Listing
	Table 2�2 Inbound State/Event/Action Table

	Outbound State/Event/Action Listing
	Table 2�3 Outbound State/Event/Action Table
	Development Checklist
	1. Define the application boundaries.
	2. Identify the communicating partners.
	3. Design the application conversations.
	4. Develop the application.
	5. Define the communications environment.
	6. Test the application.
	Step 1: Define the Application Boundaries
	Figure 2�2 Integrated Application Domains

	Step 2: Identify the Communicating Partners
	Figure 2�3 Communication Partners in Application

	Step 3: Design the Application Conversations
	Step 4: Develop the Application
	Step 5: Define the Communications Environment
	Step 6: Test the Application
	Developing a Sample Application
	Listing 2-1 Sample Resources and Target Initialization Files

	3 Configuring the LU6.2 Port Server
	Port Server Functions
	Port Server Limits of Operation
	Table 3�1 Port Server Operational Limits
	Figure 3�1 Valid and Invalid BEA MessageQ and IBM Multiple Connections

	Configuring the Port Server
	Building the LU Configuration File
	Listing 3-1 LU Configuration File Format
	! LU CONFIGURATION FILE ! ====================== ! ! LOGICAL NAME: DMQLU62$SERVER_LU_CONFIG ! FUN...
	! END
	Table 3�2 LU Configuration File Data Items

	Building the Target Configuration File
	Listing 3-2 TARGET Configuration File Format
	! TARGET CONFIGURATION FILE ! ========================= ! ! LOGICAL NAME: DMQLU62$SERVER_TARGET_C...
	Table 3�3 Target Configuration File Data Items

	Configuring Inbound and Outbound Connections
	Configuring Inbound Connections
	Table 3�4 Data Items for Configuring Inbound Targets

	Configuring Outbound Connections
	Table 3�5 Data Items for Configuring Outbound Targets

	Defining Logical Names
	Logical Names for the On-Disk Structure
	Logical Names for Port Server Control

	Managing the LU6.2 Port Server
	Starting Port Servers
	@DMQLU62_SERVER_STARTUP Y que_id ps_id lu_config_file target_config_file

	Watching Events
	Defining Logical Names with DMQLU62_SERVER_LOGICALS.COM
	@DMQLU62_SERVER_LOGICALS device install_dir V40-VAX que_id ps_id lu_config_file target_config_file

	Stopping LU6.2 Port Servers

	4 Port Server Messages
	Port Server Control Messages
	ADD_LU
	Listing 4-1 C Message Structure for ADD_LU

	ADD_TARGET
	Listing 4-2 C Message Structure for ADD_TARGET

	SHUTDOWN
	Listing 4-3 C Message Structure for SHUTDOWN

	Port Server Connection Messages
	Table 4�1 Summary of LU6.2 Port Server Messages
	Figure 4�1 Typical Program Structure
	CHANGE_DIRECTION
	Listing 4-4 C Message Structure for CHANGE_DIRECTION
	MESSAGE DATA FIELDS

	CONNECT_ACCEPT
	Listing 4-5 C Message Structure for CONNECT_ACCEPT
	MESSAGE DATA FIELDS

	CONNECT_REJECT
	Listing 4-6 C Message Structure for CONNECT_REJECT
	MESSAGE DATA FIELDS
	CONNECT REJECT REASON CODES

	CONNECT_REQUEST
	Listing 4-7 C Message Structure for CONNECT_REQUEST
	MESSAGE DATA FIELDS

	CONNECTION_TERMINATED
	Listing 4-8 C Message Structure for CONNECTION_TERMINATED
	MESSAGE DATA FIELDS

	DATA_MESSAGE
	Listing 4-9 C Message Structure for DATA_MESSAGE
	MESSAGE DATA FIELDS

	REGISTER_TARGET
	Listing 4-10 C Message Structure for REGISTER_TARGET
	MESSAGE DATA FIELDS

	Example of Port Server Messages Used for Client Communications
	Listing 4-11 LU6.2 Port Server Program

	5 LU6.2 Port Server Application Programming Interface
	PORT_CONNECT
	Syntax
	Arguments
	Argument definitions
	target_name
	connection_index
	port_group
	port_queue

	DESCRIPTION
	RETURNS
	RETURN VALUES
	Example

	PORT_RECV
	Syntax
	Arguments
	Argument definitions
	message
	buf_size
	msg_size
	connection_index
	change_dir
	disconnect
	abort
	port_group
	port_queue

	Description
	Returns
	Return values
	Example

	PORT_REGISTER
	Syntax
	Arguments
	Argument definitions
	target_name
	port_group
	port_queue
	reg_group
	reg_queue

	Description
	Returns
	Return values
	Example

	PORT_SEND
	Syntax
	Arguments
	Argument definitions
	message
	connection_index
	change_dir
	last
	disconnect
	abort
	port_group
	port_queue

	Description
	Returns
	Return values
	Example

	6 LU6.2 User Callback Services
	LU6.2 User Callback Overview
	Using the LU6.2 User Callback Interface
	Multithreading Services
	Inbound Conversations
	Outbound Conversations

	Example of User Callback Message Flow
	Table 6�1 BEA MessageQ Client—User Callback Message Exchange
	APPC User Callback Messages
	Figure 6�1 BEA MessageQ LU6.2 Session—Typical Verb Sequence

	LU62_ACTIVATE
	C Message Structure
	Message Data Fields
	Arguments

	LU62_ALLOCATE
	C Message Structure
	Message Data Fields
	Arguments

	LU62_CONFIRMED
	C Message Structure
	Message Data Fields
	Arguments

	LU62_CONFIRM_RECV
	C Message Structure
	Message Data Fields
	Arguments

	LU62_CONFIRM_REQ
	C Message Structure
	Message Data Fields
	Arguments

	LU62_CONFIRM_SEND
	C Message Structure
	Message Data Fields
	Arguments

	LU62_CONNECTED
	C Message Structure
	Message Data Fields
	Arguments

	LU62_DEALLOCATE
	C Message Structure
	Message Data Fields
	Arguments

	LU62_DEALLOCATED
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LU62_DEFINE_LU
	C Message Structure
	Message Data Fields
	Arguments

	LU62_DEFINE_TP
	C Message Structure
	Message Data Fields
	Arguments

	LU62_DELETE_LU
	C Message Structure
	Message Data Fields
	Arguments

	LU62_ERROR
	C Message Structure
	Message Data Fields
	Arguments

	LU62_INIT
	C Message Structure
	Message Data Fields
	Arguments

	LU62_OK_TO_SEND
	C Message Structure
	Message Data Fields
	Arguments

	LU62_RECV_DATA
	C Message Structure
	Message Data Fields
	Arguments

	LU62_REQ_CONFIRM
	C Message Structure
	Message Data Fields
	Arguments

	LU62_REQ_TO_SEND
	C Message Structure
	Message Data Fields
	Arguments

	LU62_SEND_CONFIRM
	C Message Structure
	Message Data Fields
	Arguments

	LU62_SEND_DATA
	C Message Structure
	Message Data Fields
	Arguments

	LU62_SEND_ERROR
	C Message Structure
	Message Data Fields
	Arguments

	A LU6.2 User Callback Interface Logical Names and Error Codes
	User Callback Logical Names
	Table A�1 User Callback Support Logical Names

	Linking a User-Written Port Server
	Error Handling
	Table A�2 User Callback Error Codes

	B Notes on IMS
	C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications
	Sample Inbound Application
	--- - /* ** Copyright...

	Sample Outbound Application
	--- - /* ** Copyright...

	D Examples of CICS Inbound and Outbound Applications
	Sample CICS Inbound Application
	-- TITLE 'VAXIN - B...

	Sample CICS Outbound Application
	-- TITLE 'FROMIBM - I...
	Index

