
LU6.2 Services for OpenVMS

B E A M e s s a g e Q L U 6 . 2 S e r v i c e s f o r O p e n V M S V 4 . 0 A
D o c u m e n t E d i t i o n 4 . 0 A

F e b r u a r y 1 9 9 9

BEA MessageQ

User’s Guide

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and TUXEDO are registered trademarks of BEA Systems, Inc. BEA Builder,
BEA Connect, BEA Manager, BEA MessageQ, Jolt and M3 are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Document Edition Date Software Version

4.0A February 1999 BEA MessageQ LU6.2 Services for
OpenVMS, Version 4.0A

Contents

Preface
Who Should Read This Document.. vii

How This Document Is Organized.. vii

Opening the Document in a Web Browser... ix

Printing from a Web Browser .. xi

Documentation Conventions .. xi

BEA MessageQ LU6.2 Services for OpenVMS Documentation xiii

BEA Publications ... xiii

Documentation Support.. xiv

Customer Support... xiv

1. Introducing BEA MessageQ LU6.2 Services
Basic Terms and Concepts .. 1-1

The BEA MessageQ LU6.2 Services Product ... 1-2

SNA LU6.2 Sessions.. 1-2

Advanced Program-to-Program Communications (APPC) 1-3

BEA MessageQ LU6.2 Services Application Components 1-3

SNA APPC/LU6.2 Fundamentals ... 1-5

Logical Unit Type 6.2 Overview.. 1-6

Inbound and Outbound Conversations... 1-6

Using the LU6.2 Port Server for Applications Connections...................... 1-8

Writing Your Own Port Server .. 1-8

2. Developing Applications Using BEA MessageQ LU6.2 Services
Applications Development Overview ... 2-1

Inbound Applications ... 2-2

Outbound Applications .. 2-2
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide iii

Hybrid Applications ... 2-2

Target Registration ... 2-3

Structure of BEA MessageQ LU6.2 Services Applications 2-3

Simple Linear Conversations ... 2-4

State Machines.. 2-4

Overview of State/Event/Action Table .. 2-6

Inbound State/Event/Action Listing ... 2-6

Outbound State/Event/Action Listing .. 2-8

Development Checklist.. 2-8

Step 1: Define the Application Boundaries .. 2-9

Step 2: Identify the Communicating Partners .. 2-10

Step 3: Design the Application Conversations... 2-12

Step 4: Develop the Application... 2-13

Step 5: Define the Communications Environment 2-13

Step 6: Test the Application ... 2-14

Developing a Sample Application.. 2-15

3. Configuring the LU6.2 Port Server
Port Server Functions .. 3-2

Port Server Limits of Operation .. 3-2

Configuring the Port Server... 3-5

Building the LU Configuration File ... 3-6

Building the Target Configuration File .. 3-9

Configuring Inbound and Outbound Connections... 3-15

Configuring Inbound Connections ... 3-15

Configuring Outbound Connections... 3-16

Defining Logical Names.. 3-16

Logical Names for the On-Disk Structure.. 3-17

Logical Names for Port Server Control.. 3-17

Managing the LU6.2 Port Server... 3-20

Starting Port Servers... 3-20

Watching Events... 3-21

Defining Logical Names with DMQLU62_SERVER_LOGICALS.COM.....
3-21

Stopping LU6.2 Port Servers.. 3-22
iv BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

4. Port Server Messages
Port Server Control Messages ... 4-1

ADD_LU... 4-3

ADD_TARGET .. 4-4

SHUTDOWN.. 4-5

Port Server Connection Messages ... 4-6

CHANGE_DIRECTION .. 4-8

CONNECT_ACCEPT .. 4-9

CONNECT_REJECT.. 4-10

CONNECT_REQUEST.. 4-11

CONNECTION_TERMINATED... 4-12

DATA_MESSAGE... 4-13

REGISTER_TARGET.. 4-15

Example of Port Server Messages Used for Client Communications............. 4-16

5. LU6.2 Port Server Application Programming Interface
PORT_CONNECT.. 5-3

PORT_RECV.. 5-5

PORT_REGISTER ... 5-8

PORT_SEND .. 5-10

6. LU6.2 User Callback Services
LU6.2 User Callback Overview .. 6-1

Using the LU6.2 User Callback Interface ... 6-3

Multithreading Services ... 6-4

Inbound Conversations... 6-4

Outbound Conversations .. 6-4

Example of User Callback Message Flow ... 6-6

APPC User Callback Messages... 6-7

LU62_ACTIVATE ... 6-9

LU62_ALLOCATE .. 6-12

LU62_CONFIRMED.. 6-15

LU62_CONFIRM_RECV .. 6-16

LU62_CONFIRM_REQ ... 6-17

LU62_CONFIRM_SEND... 6-18
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide v

LU62_CONNECTED ... 6-19

LU62_DEALLOCATE ... 6-20

LU62_DEALLOCATED .. 6-21

LU62_DEFINE_LU .. 6-22

LU62_DEFINE_TP... 6-25

LU62_DELETE_LU ... 6-27

LU62_ERROR .. 6-29

LU62_INIT.. 6-32

LU62_OK_TO_SEND .. 6-33

LU62_RECV_DATA.. 6-34

LU62_REQ_CONFIRM ... 6-35

LU62_REQ_TO_SEND.. 6-36

LU62_SEND_CONFIRM... 6-37

LU62_SEND_DATA .. 6-38

LU62_SEND_ERROR.. 6-39

A. LU6.2 User Callback Interface Logical Names and Error Codes
User Callback Logical Names .. A-1

Linking a User-Written Port Server.. A-2

Error Handling .. A-3

B. Notes on IMS

C. Examples of BEA MessageQ LU6.2 Inbound and Outbound
Applications

Sample Inbound Application .. C-1

Sample Outbound Application ... C-13

D. Examples of CICS Inbound and Outbound Applications
Sample CICS Inbound Application .. D-1

Sample CICS Outbound Application ... D-6

Index
vi BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

w
ts

Preface

Purpose of This Document

This document describes the BEA MessageQ LU6.2 Services for OpenVMS product.
It also provides instructions for developing applications using this software and for
configuring the LU6.2 Port Server.

Who Should Read This Document

This document is intended for system administrators, network administrators, and
developers who are interested in enabling communications between BEA MessageQ
and IBM applications.

How This Document Is Organized

The BEA MessageQ LU6.2 Services for OpenVMS User’s Guide is organized as
follows:

t Chapter 1, “Introducing BEA MessageQ LU6.2 Services,” provides an overvie
of the BEA MessageQ LU6.2 Services for OpenVMS, including basic concep
and terms.

t Chapter 2, “Developing Applications Using BEA MessageQ LU6.2 Services,”
provides an overview of how to use BEA MessageQ LU6.2 Services for
OpenVMS to develop programs that communicate between IBM mainframes
and VAX or Alpha systems running OpenVMS.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide vii

6.2
ges

a

ck

,”

t Chapter 3, “Configuring the LU6.2 Port Server,” describes how to configure,
start up, and manage the LU6.2 Port Server.

t Chapter 4, “Port Server Messages,” describes the messages used by the LU
Port Server: port server control messages and port server connection messa
(BEA MessageQ messages).

t Chapter 5, “LU6.2 Port Server Application Programming Interface,” presents
sample application programming interface (API) for LU6.2 Services for
OpenVMS.

t Chapter 6, “LU6.2 User Callback Services,” introduces the LU6.2 User Callba
Services (UCB) and contains detailed descriptions of all LU6.2 User Callback
APPC messages alphabetized by message type.

t Appendix A, “LU6.2 User Callback Interface Logical Names and Error Codes
describes the LU6.2 user callback logical names and error codes.

t Appendix B, “Notes on IMS,” provides information on the restrictions present
when using APPC verbs with the IMS LU6.1 Adapter.

t Appendix C, “Examples of BEA MessageQ LU6.2 Inbound and Outbound
Applications,” provides sample Inbound and Outbound applications that
exchange data with an APPC application in an SNA network.

t Appendix D, “Examples of CICS Inbound and Outbound Applications,”
provides sample CICS Inbound and Outbound applications.

How to Use This Document

This document, BEA MessageQ LU6.2 Services for OpenVMS User’s Guide, is
designed primarily as an online, hypertext document. If you are reading this on paper,
note that to get full use from this document you should install and access it as an online
document via a Web browser.

The following sections explain how to view this document online, and how to print a
copy of this document.
viii BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Opening the Document in a Web Browser

To access the online version of this document, open the following HTML file in a Web
browser:

/beadir/doc/bmq/lu62_40a/usergde/index.htm

Note: The online documentation requires a Web browser that supports HTML
version 3.0. We recommend Netscape Navigator version 4.0 or Microsoft
Internet Explorer version 4.0 or later.

Figure 1 shows the online document with the clickable navigation bar and table of
contents.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide ix

Figure 1 Online Document Displayed in a Netscape Web Browser

Table of Contents

Click on a topic to view it.

Navigation Bar

Click a button to view another book.

Document Display Area
x BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Printing from a Web Browser

You can print a copy of this document, one file at a time, from the Web browser.
Before you print, make sure that the chapter or appendix you want is displayed and
selected in your browser. (To select a chapter or appendix, click anywhere inside the
chapter or appendix you want to print. If your browser offers a Print Preview feature,
you can use the feature to verify which chapter or appendix you are about to print.)

The BEA MessageQ Online Documentation CD also includes Adobe Acrobat PDF
files of all of the online documents. You can use the Adobe Acrobat Reader to print all
or a portion of each document.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary in the BEA MessageQ Introduction
to Message Queuing.

Ctrl+Tab Indicates that you must press two or more keys sequentially.

italics Indicate emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include stdio

pams_attach_q

\bmq\lu62_40a\include

.htm

bmq.doc

BITMAP

float
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide xi

monospace
boldface
text

Identifies significant words in code.

Example:

put_msg(msg_ptr, class, type)

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

PATH

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

int32 pams_get_msg (msg_area, priority ...
[-sel_filter] [psb] [show_buffer]...)

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

t That an argument can be repeated several times in a command line

t That the statement omits additional optional arguments

t That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

int32 pams_get_msg (msg_area, priority ...
[-sel_filter] [psb] [show_buffer]...)

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
xii BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Related Documentation

The following sections list the documentation provided with the BEA MessageQ
software, and other publications related to messaging-oriented middleware
technology.

BEA MessageQ LU6.2 Services for OpenVMS
Documentation

The BEA MessageQ LU6.2 Services for OpenVMS information set consists of the
following documents:

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

BEA MessageQ LU6.2 Services for OpenVMS Installation Guide

BEA MessageQ LU6.2 Services for OpenVMS Release Notes

Note: The BEA MessageQ Online Documentation CD also includes Adobe Acrobat
PDF files of all of the online documents. You can use the Adobe Acrobat
Reader to print all or a portion of each document.

BEA Publications

The following BEA publications are also available:

BEA MessageQ Introduction to Message Queuing

BEA MessageQ Programmer’s Guide

BEA MessageQ Installation and Configuration for OpenVMS

BEA MessageQ Client for OpenVMS User’s Guide

BEA MessageQ for OpenVMS Release Notes for Version 4.0A
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide xiii

Contact Information

The following sections provide information about how to obtain support for the
documentation and software.

Documentation Support

If you have questions or comments on the documentation, you can contact the BEA
Information Engineering Group by e-mail at docsupport@beasys.com. (For
information about how to contact Customer Support, refer to the following section.)

Customer Support

If you have any questions about this version of BEA MessageQ LU6.2 Services for
OpenVMS, or if you have problems installing and running BEA MessageQ LU6.2
Services for OpenVMS, contact BEA Customer Support through BEA WebSupport at
www.beasys.com. You can also contact Customer Support by using the contact
information provided on the Customer Support Card, which is included in the product
package.

When contacting Customer Support, be prepared to provide the following information:

t Your name, e-mail address, phone number, and fax number

t Your company name and company address

t Your machine type and authorization codes

t The name and version of the product you are using

t A description of the problem and the content of pertinent error messages
xiv BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

CHAPTER
1 Introducing BEA
MessageQ LU6.2
Services

The BEA MessageQ LU6.2 Services for OpenVMS product allows users to
communicate with IBM application programs using Advanced Program-to-Program
Communications (APPC) over System Network Architecture (SNA) LU6.2 sessions.
APPC/LU6.2 communications are connection-oriented and half-duplex. This means
that before two partners can exchange messages, they must first establish a connection
(connection-oriented), and that one partner is sending when the other is receiving
(half-duplex).

This chapter includes the following topics:

t Basic Terms and Concepts

t SNA APPC/LU6.2 Fundamentals

Basic Terms and Concepts

This section provides general information about BEA MessageQ applications, APPC,
the Port Server, and other application components.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 1-1

1 Introducing BEA MessageQ LU6.2 Services

 can
s home
k their

es use
ort

 an

lso

eived
t

 other
The BEA MessageQ LU6.2 Services Product

The BEA MessageQ system is a connectionless, stateless communications system.
This means that a connection need not be established before programs can
communicate with each other. It also means that communicating programs do not care
what state their partner is in.

Using BEA MessageQ LU6.2 Services is like using the postal mail system—you
send a letter to anyone whose address you know, whether or not the addressee i
and regardless of the addressee's desire to speak to you. Addressees can chec
mailboxes at their convenience.

The BEA MessageQ system supports network-independent addressing and mak
of an application programming interface (API) common to all platforms that supp
the MessageQ system.

SNA LU6.2 Sessions

SNA is connection-oriented systems networking architecture. Connections are
established between network-addressable units. Applications are interested in logical
units (LUs) that are the “end users” of a network. The connection between LUs is
SNA session.

The LU that requests a session is called the primary logical unit or PLU. The LU that
accepts the session is called the secondary logical unit or SLU. The capabilities of an
LU are defined by the LU type. Only one type of LU supports APPC: LU type 6.2 (a
known as LU6.2).

An LU6.2 session is the type of SNA connection used by APPC applications for
communications with each other. The session is like the telephone connection rec
when you dial another number—if the other number does not answer, you canno
speak.

Without an SNA session, APPC conversations cannot take place. An LU is the
software equivalent of a telephone—it has a specific address in the network, and
LUs have to know that address in order to establish sessions with it.
1-2 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Basic Terms and Concepts

own).
u can
hone,
speak

ers

 the

Advanced Program-to-Program Communications (APPC)

A program that wants to communicate with other programs must first establish a
connection to each potential partner, and the communicating programs must be aware
of each other’s state (for example, ready to receive, ready to send, and shutting d
This requirement is similar to the requirements of the telephone system: before yo
talk to someone, you must call someone up; the call recipient must answer the p
and agree to listen to you; after you have finished speaking, the other party can
to you; and so on.

BEA MessageQ LU6.2 Services for OpenVMS applications use Advanced
Program-to-Program Communications (APPC) to establish connections to partn
and communicate state information before initiating conversations. APPC is a
connection-oriented, half-duplex, state-oriented communications system. It uses
following concepts:

t Conversation—a structured exchange of messages between two partners,
conducted over a previously established LU6.2 session.

t Allocation—the act of establishing a conversation.

t Deallocation—the act of terminating an existing conversation.

t Sync-level—the highest degree of synchronization permitted on a given
conversation. Sync-level parameters are 0 (None), 1 (Confirm), and 2
(Syncpoint). The BEA MessageQ LU6.2 Services for OpenVMS product uses
only sync-levels 0 and 1.

APPC provides a set of functions called APPC verbs to manage conversations.
(See Chapter 6 for more information on APPC verbs.)

BEA MessageQ LU6.2 Services Application Components

Figure 1-1 shows the components of a typical BEA MessageQ LU6.2 Services
application.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 1-3

1 Introducing BEA MessageQ LU6.2 Services
Figure 1-1 BEA MessageQ LU6.2 Components

The components are:

t The BEA MessageQ client that communicates with the BEA MessageQ LU6.2
Port Server by sending and receiving messages over the BEA MessageQ
message bus. By sending specific, predefined message types, the BEA
MessageQ client can ask the Port Server to:

t Establish a connection to an IBM LU6.2 application (a Connect request)

t Send traffic received from incoming connections to a specific BEA
MessageQ client (a Register Target request)

t Send or receive data over a previously established connection (a data
message)

t Manage a previously established connection (a Change Direction request or a
Connection Terminated notice)

t The BEA MessageQ LU6.2 Port Server that establishes and maintains SNA
sessions for use by BEA MessageQ clients and applications residing on remote
IBM systems.

BEA MessageQ
Client

BEA MessageQ Message Bus

 LU6.2 Port
Server

SNA
Gateway

NCP / VTAM

CICS IMS TSO

Applications
Programs
1-4 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

SNA APPC/LU6.2 Fundamentals

rks

es

ike

r a
s
en

d
erly

ith

als.
The LU6.2 Port Server is a connection point manager: a software process that
understands the “language” of network applications located in different netwo
on opposite sides of a “connection point,” the place where the two networks
attach to each other.

A Port Server manages communication resources on behalf of client process
(resource sharing), reduces application complexity by “hiding” the details of
resource management, and optionally provides other value-added services (l
multithreading).

The SNA sessions are created using the services of the SNA Gateway (eithe
DECnet/SNA Gateway, a Domains Gateway, or a Peer Server). SNA session
are assigned to BEA MessageQ clients on a first-come, first-served basis wh
the clients send Connect requests.

t The SNA Gateway that performs the lower-level protocol and message format
translations required to connect a DECnet network with an SNA network.

t NCP and VTAM, software components crucial to the operation of the networke
SNA systems. SNA Gateways, communications lines, and LUs must be prop
defined to NCP and VTAM before communication with the IBM applications is
possible.

t CICS, TSO, and IMS, application subsystems that run on the MVS operating
system and support the use of APPC over LU6.2 sessions.

BEA MessageQ LU6.2 Services are most frequently used to communicate w
application programs that run under these application subsystems.

SNA APPC/LU6.2 Fundamentals

The information that follows is a short summary of SNA APPC LU6.2 fundament
For more detailed information, refer to SNA Transaction Programmer’s Reference
Manual for LU Type 6.2.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 1-5

1 Introducing BEA MessageQ LU6.2 Services

ed

t data,

ring
ating

ns
h

ageQ
less of
ent.

r by
 The
A
Logical Unit Type 6.2 Overview

LU6.2 is a general-purpose architecture that enables IBM products to communicate
with each other. The LU6.2 architecture defines a set of protocols. To communicate
with each other, products must implement LU6.2 according to these protocols. There
are two general implementations of LU6.2:

t The “open-box” protocol provides a programming interface to allow customiz
solutions.

t The “closed-box” protocol provides no programming interface but does offer
turnkey solutions.

Transaction programs (TPs) are programs that can process a specific set of inpu
trigger specific job executions, or produce specific output data. Distributed
transactions within an SNA network communicate by exchanging information du
a conversation, which is a temporary logical path established between two cooper
TPs. This path is treated as a shared resource between TPs.

IBM's architectural definition for LU6.2 provides a set of procedures called verbs that
is used to design distributed transactions. CICS ISC implements the verb functio
with EXEC CICS commands and OpenVMS TPs implement the verb functions wit
OpenVMS procedures.

The APPC verb set consists of function verbs that are implemented as BEA Mess
messages. The logic of how these verbs are used (verb flow) is the same regard
whether you are programming in an OpenVMS environment or an IBM environm
Refer to Chapter 6, “LU6.2 User Callback Services,” for detailed information on User
Callback Services and APPC verbs.

Inbound and Outbound Conversations

Conversation allocations may be initiated either by the OpenVMS TP (inbound) o
the IBM TP (outbound). Figure 1-2 illustrates a typical SNA conversation session.
LU6.2 type of SNA LUs can be configured as independent or dependent. The BE
MessageQ LU6.2 Services for OpenVMS product uses dependent LUs.
1-6 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

SNA APPC/LU6.2 Fundamentals

sion.”

e

y are

ated
Figure 1-2 SNA Session for Dependent LUs

Inbound allocation causes the gateway to transmit an INIT SELF to the IBM SSCP
that builds a suggested BIND and passes it to the application subsystem (which may
modify it). The application passes the BIND back to the gateway. If the gateway accepts
the BIND, the session is established and the OpenVMS and IBM TPs are in a “ses

Outbound allocation causes the gateway to wait in the active-listening mode for th
IBM TP to send a BIND followed by an ATTACH. If the gateway accepts this ATTACH,
the session is established and the OpenVMS and IBM TPs are in a session. The
also in a state of conversation (also called “between brackets”).

Contention for session resources occurs when both partners attempt to begin
conversation simultaneously on the same session. The contention is resolved
according to the polarity agreed upon when the session was established. The
contention winner (first speaker) always receives the session resources, and the
contention loser (bidder) always has to wait. The contention winner/loser is negoti
in the BIND.

PLU /SSCP

SLU PLU

Step 1: SLU sends
SNA INIT SELF

to SSCP, asking for
BIND from PLU

Step 4: SLU accepts BIND.
Session is established.

Step 3: PLU sends
BIND to SLU

Step 2: SSCP notifies PLU
that SLU wants a BIND
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 1-7

1 Introducing BEA MessageQ LU6.2 Services

h as
ing)

the

ing

6.2
ing the
Using the LU6.2 Port Server for Applications Connections

Exchanging information between the connectionless, stateless environment of the
BEA MessageQ system and the connection-oriented, state-oriented environment of
APPC (a task similar to that of connecting systems as different as the postal mail and
the telephone) requires the services of an intermediary that understands both. The
intermediary provided by BEA MessageQ LU6.2 Services is the LU6.2 Port Server.

The LU6.2 Port Server understands how to:

t Get connections to APPC applications when asked to do so by BEA MessageQ
applications (inbound connections)

t Convert data messages from one network into the form required by the other
network

t Accept connections from APPC applications and deliver the incoming data to
BEA MessageQ applications (outbound connections)

t Detect errors from one network and deliver the proper error notifications to the
other network

In addition, the LU6.2 Port Server performs numerous “housekeeping” tasks (suc
error recovery, automatic restart of communication links, and error and trace logg
that are desirable in distributed applications.

Refer to Chapter 3, “Configuring the LU6.2 Port Server,” for more information on
LU6.2 Port Server.

The BEA MessageQ LU6.2 Services product uses the Stream Output Facility for
logging and tracing. This facility provides time stamps on both the logging and trac
output as well as dynamic tracing. See the BEA MessageQ Installation and
Configuration Guide for OpenVMS for more information on dynamic tracing and the
BEA MessageQ for OpenVMS Event Logger Utility.

Writing Your Own Port Server

When installed, the BEA MessageQ LU6.2 Services software provides a typical LU
Port Server that uses seven predefined messages to simplify setting and manag
application connections of the BEA MessageQ clients to remote partners.
1-8 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

SNA APPC/LU6.2 Fundamentals

rt
,
However, if the standard LU6.2 Port Server programming interface does not meet the
needs of an application, does not offer a function required by all client applications, or
does not meet some other unusual requirements, a specialized Port Server may be
developed using the LU6.2 User Callback Services.

The BEA MessageQ LU6.2 Services provide you with the option of writing your own
Port Server using 21 BEA MessageQ messages that map to the APPC verb set.

Note: Refer to Chapter 3, “Configuring the LU6.2 Port Server,” and Chapter 4, “Po
Server Messages,” for LU6.2 Port Server information. Refer to Chapter 6
“LU6.2 User Callback Services,” for LU6.2 user callback information.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 1-9

1 Introducing BEA MessageQ LU6.2 Services
1-10 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

CHAPTER
2 Developing
Applications Using BEA
MessageQ LU6.2
Services

This chapter provides an overview of how to use BEA MessageQ LU6.2 Services for
OpenVMS to develop programs that communicate between IBM mainframes and
VAX or Alpha systems running OpenVMS.

This chapter describes:

t Applications Development Overview

t Structure of BEA MessageQ LU6.2 Services Applications

t Development Checklist

Applications Development Overview

BEA MessageQ LU6.2 Services can be used to develop a wide range of distributed
applications that integrate BEA MessageQ applications and LU6.2 APPC clients.

BEA MessageQ LU6.2 Services support three types of applications:
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 2-1

2 Developing Applications Using BEA MessageQ LU6.2 Services
t Inbound applications

t Outbound applications

t Hybrid applications

Inbound Applications

Inbound applications initiate APPC conversations with partner programs in the SNA
network based on events that occur in the BEA MessageQ network (for example, user
input at a terminal or workstation, receipt of a message from another BEA MessageQ
client program, and so on). Inbound applications are typically used to trigger
application actions in the SNA network based on events and data generated in the BEA
MessageQ network.

Outbound Applications

Outbound applications accept APPC conversations initiated by partner programs in the
SNA network based on events that occur in the SNA network (such as user input at a
terminal or workstation, receipt of a message from other APPC client programs, and
the like). Outbound applications are typically used to trigger application actions in the
BEA MessageQ network based on events and data generated in the SNA network.

Hybrid Applications

Hybrid applications both initiate APPC conversations with partner programs in the
SNA network and accept APPC conversations initiated by partner programs in the
SNA network. Hybrid applications are typically used to route application traffic
among BEA MessageQ and APPC clients based on application-specific criteria.

The LU6.2 Services port server is a very general form of a hybrid application: it both
initiates inbound APPC conversations and accepts outbound conversations.
2-2 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Structure of BEA MessageQ LU6.2 Services Applications
Target Registration

A BEA MessageQ client that is to receive messages on outbound sessions must be
registered with the LU6.2 Port Server before a connection can be established. A BEA
MessageQ client is registered by sending a message to the LU6.2 Port Server. This
message contains the following information:

t The name of the target (as known to the LU6.2 Port Server) to be used by the
IBM client to establish communication with the BEA MessageQ client

t The BEA MessageQ group ID and queue number of the BEA MessageQ client

After registering the target, the system returns the REGISTER_TARGET message to the
BEA MessageQ client.

A BEA MessageQ client can register itself or it can be registered by another
application. Each target may be registered by only one BEA MessageQ client
application. Applications are automatically deregistered when they exit.

Note: A permanent outbound target is permanently registered with the BEA
MessageQ group ID and queue number provided on the target definition. BEA
MessageQ clients that receive output from permanent outbound targets do not
need to register.

Structure of BEA MessageQ LU6.2 Services
Applications

BEA MessageQ LU6.2 Services applications are BEA MessageQ applications that use
the services of the BEA MessageQ LU6.2 Services Port Server to conduct APPC
conversations with partner programs running in the SNA network.

In its simplest form, such an application will attach a queue, by calling
pams_attach_q, and conduct a dialog with the port server, by calling pams_put_msg
and pams_get_msg (or pams_get_msgw), to exchange the seven predefined port
server message types with the port server.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 2-3

2 Developing Applications Using BEA MessageQ LU6.2 Services
Simple Linear Conversations

It is possible to write an application that performs this dialog in a linear manner. In its
simplest form, an application may conduct an LU6.2 conversation as follows:

pams_attach_q
pams_put_msg(connect_req)
pams_get_msgw(connect_accept)
pams_put_msg(data_message+change_direction)
pams_get_msgw(data_message)
pams_get_msgw(change_direction)
pams_put_msg(connection_terminated
pams_exit()

However, this approach assumes that the message to be received by a pams_get_msg
is the message that the application expects. Because the BEA MessageQ system is a
distributed queuing system, and because many things can happen in a distributed
application, the message that arrives might not be the message expected by the
application logic at that point in the conversation.

A better approach is to design the application as a simple state machine that performs
initial application housekeeping and receives messages. Otherwise, extensive
exception processing must be added to the logic to handle unexpected message types,
which leads to more complex applications and a possible increase in logic errors.

State Machines

A simple state machine application performs initial application housekeeping, enters a
loop in which a pams_get_msgw is issued to receive a message, and processes the
message based on its type (see Figure 2-1).

In the routing that deals with the particular message type received, the application
checks the current state to see if the message is a valid one, processes the message, sets
a new state, and returns to the top of the loop.

For the application loop described in Figure 2-1, assume that the application must
receive a Type 1 message before it can receive a Type 2 message, and that all types
other than 1 and 2 are invalid. A simple state machine implements this scheme as
follows:

The application begins at STATE=0.
2-4 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Structure of BEA MessageQ LU6.2 Services Applications
If a Type 1 message arrives and STATE=0, the message is valid and the new
STATE is 1.

If a Type 2 message arrives and STATE=1, the message is valid, the new STATE
is 0, and the process starts over.

Figure 2-1 Application Loop

Attach Queue

Application
Initialization

get_msgw

Type 1
If STATE = 0,
set STATE = 1

Type 2
If STATE = 1,
set STATE = 0

Unexpected
Type

Set State = 0
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 2-5

2 Developing Applications Using BEA MessageQ LU6.2 Services
Overview of State/Event/Action Table

State machines can be simply documented using a state/event/action table. Table 2-1
describes the preceding application and shows each possible state in column 1, all
events that can occur in that state in column 2, the action to be taken when that event
occurs in column 3, and the new state in column 4.

 In some cases, the new state is the same as the original state; this allows the application
to deal with unexpected events. In STATE 0, for example, receiving anything other than
a Type 1 message leaves the application in STATE 0, so the next message received is
subject to the same rules. This keeps the application from processing any mesages until
a Type 1 message has been received.

The following sections provide basic State/Event/Action tables for inbound and
outbound LU6.2 applications. The events listed in the Event column are the messages
used to communicate with the port server (refer to Chapter 3). These tables were used
to build the example programs listed in Appendix F.

Inbound State/Event/Action Listing

Table 2-2 describes an application that asks for a connection to an APPC partner
program, sends it a message, waits for a response, and disconnects the conversation.
This State/Event/Action table handles unexpected events and unexpected message
types.

Table 2-1 Sample State/Event/Action Table

State Event Action New State

STATE=0 Type 1 msgs process message STATE=1

Other msgs report error STATE=0

STATE=1 Type 2 msgs process message STATE=0

Other msgs report error STATE=1

Table 2-2 Inbound State/Event/Action Table
2-6 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Structure of BEA MessageQ LU6.2 Services Applications
State Event Action New State
connecting N/A send connect wait_connect

wait_connect connect_accept send data message and
change direction

wait_response

connect_reject log error exiting

other log error wait_connect

wait_response data_message process response wait_complete

change_direction log error and send abort
message

exiting

other log error wait_response

wait_complete change_direction send connection
terminated (normal)

exiting

data_message log error and send abort
message

exiting

other log error wait_complete

exiting N/A call pams_exit() application done
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 2-7

2 Developing Applications Using BEA MessageQ LU6.2 Services
Outbound State/Event/Action Listing

Table 2-3 describes an application that registers to accept connections from a remote
APPC partner program and then waits for data. After receiving a data message, it waits
to become the sender, sends a response, and waits for a disconnect from the remote
partner program.

Development Checklist

When developing a distributed application, make sure that your process includes the
following development steps:

1. Define the application boundaries.

Table 2-3 Outbound State/Event/Action Table
State Event Action New State

registering N/A send register target
message

wait_register

wait_register register_target N/A wait_data

connection_terminated log error exiting

other log error wait_register

wait_data data_message process message wait_to_send

change_direction log error and send abort
message

exiting

other log error wait_data

wait_to_send change_direction send data message plus
change_direction

wait_disconnect

data_message log error and send abort
message

exiting

other log error wait_to_send

wait_disconnect connection_terminated N/A exiting

other log error wait_disconnect

exiting N/A call pams_exit() application done
2-8 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Development Checklist

tored
ored
ata
oor

2. Identify the communicating partners.

3. Design the application conversations.

4. Develop the application.

5. Define the communications environment.

6. Test the application.

Step 1: Define the Application Boundaries

The first step in developing a distributed application, especially one that will run in a
heterogeneous network, is to determine the application boundaries. This process
consists of analyzing the functions that must be performed and the data that those
functions will act upon, and then identifying the location (domain) in the network
where those data and functions “naturally” reside.

For example, if the application is intended to integrate customer order entry with
manufacturing control, you might determine that the customer order database is s
in DB2 under CICS on an MVS system, and the shop floor control database is st
in Rdb on an OpenVMS system. Functions that manipulate the customer order d
will “naturally” reside on the MVS system and functions that manipulate the shop fl
control data will “naturally” reside on the OpenVMS system. Figure 2-2 describes
application domains.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 2-9

2 Developing Applications Using BEA MessageQ LU6.2 Services
Figure 2-2 Integrated Application Domains

Step 2: Identify the Communicating Partners

After the functions and data have been associated with network locations (the BEA
MessageQ part of the network and the SNA part of the network, respectively), the
functions must be mapped onto the processes that will implement them. As shown in
Figure 2-2, you can assume that the customer order functions and manufacturing
control functions have already been implemented in the existing application systems.
In this case, you are concerned with identifying the new processes that will implement
the new communications functions. Assume you must add the following functions:

t New Order Transfer: When the Customer Order system accepts a new order,
the order is to be transferred immediately to the manufacturing control system
for execution.

Mfg. Data Order Data

Manufacturing
Control Functions

Customer Control
Functions

BEA MessageQ
Domain

SNA Domain

VAX/VMS MVS/CICS
2-10 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Development Checklist
t Order Status Update: As the order is moved through the manufacturing
process, a status update is to be delivered to the Customer Order system
indicating:

t Last manufacturing step completed

t Scheduled start and end time of the next operation

t Updated estimated time of delivery of the finished order

t Order Completion: When the order is completed and ready for shipment, an
order complete status must be delivered to the Customer Order system.

Each of these three functions requires two communicating partners---one in the BEA
MessageQ domain and one in the SNA domain (see Figure 2-3).

Figure 2-3 Communication Partners in Application

BEA MessageQ
Domain

SNA Domain

New Order
Receive

Order
Completion

Receive

Status
Update
Receive

New Order
Send

Order
Completion

Send

Status
Update
Send
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide2-11

2 Developing Applications Using BEA MessageQ LU6.2 Services
Now you can see what new processes must be added to the applications running in each
domain, who the communicating partners will be, and how the communications flow
will be initiated.

In this example, there is one outbound conversation, initiated by the New Order Send
function, and two inbound conversations, initiated by the Status Update Send and
Order Completion Send functions, respectively.

Step 3: Design the Application Conversations

For each pair of communicating partners, you must design the application
conversation. This is the actual exchange of messages between communicating
partners.

To design the application dialog, you must know:

t Who will initiate the conversation

t The format of each message

t How and when the roles of sender and receiver will be exchanged

t Who will terminate the conversation

t How errors will be handled

For this example, assume that the rules are very simple (which is usually true):

t The party initiating the conversation is responsible for terminating it.

t All errors are fatal; the conversation is terminated immediately when an error
occurs.

t All conversations consist of one or more messages sent by the initiating party.

t When the initiating party is finished sending, it becomes the receiver.

t When the accepting party sees the initiating party become a receiver, it sends an
acknowledgment, and switches itself back to a receiver.

t When the initiating party receives acknowledgment and regains control of the
conversation (in other words, becomes the sender), it terminates the
conversation.
2-12 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Development Checklist

cific

 and
The application conversation between New Order Send and New Order Receive looks
like this:

Step 4: Develop the Application

After the application conversations and message formats have been defined, the
normal processes of application development (detail design, coding, and unit testing)
can take place.

Note: Refer to Chapter 3, “Configuring the LU6.2 Port Server,” Chapter 4, “Port
Server Messages,” and Chapter 6, “LU6.2 User Callback Services,” for
information on Port Server and User Callback messages.

Note: Refer to the BEA MessageQ Programmer’s Guide for BEA MessageQ
programming information.

Step 5: Define the Communications Environment

Before integration testing can occur, the communications environment must be
defined. The full set of definitions that must be in place varies, based on the spe
hardware, operating systems, and application subsystems involved.

Assuming a typical configuration consisting of a channel-attached SNA Gateway
MVS with VTAM and CICS, the following definitions must be available:

t Physical devices (the gateway) must be defined to VTAM.

t LU6.2 logical units that the gateway will provide must be defined to VTAM.

New Order Send New Order Receive
Initiate conversation Accept new conversation

Send New Order message Receive New Order message

Become receiver Receive OK_TO_SEND

Receive acknowledgment Send acknowledgment

Receive OK_TO_SEND Become receiver

Terminate conversation Accept termination
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide2-13

2 Developing Applications Using BEA MessageQ LU6.2 Services

 to

his

s

s,
 in

d
ps

ort

ith a
 in

d
t LU6.2 “terminals” must be defined to CICS and mapped onto the LUs defined
VTAM.

Note: Most sites use the CICS Resource Definition Online task to manage t
function.

t CICS programs must be assigned Transaction Program Names (TPNs).

t Access names must be defined to identify the specific groups of gateway LU
that BEA MessageQ LU6.2 Services will use.

t BEA MessageQ programs that will accept outbound conversations must be
assigned TPNs.

t An LU configuration file must be created that defines the gateway node name
access names, and specific LUs that LU6.2 Services will use (defined earlier
this step).

t A target configuration file must be created that defines the “target” names use
by BEA MessageQ applications in connecting the LU6.2 Port Server and ma
them onto TPNs defined in steps 4 and 6.

Note: Refer to Chapter 3, “Configuring the LU6.2 Port Server,” for more
information on LU and target configuration files and the use of the LU6.2 P
Server.

Step 6: Test the Application

With the communications environment defined, you can now begin testing your
application. If your application implements a state machine that is documented w
state/event/action table, developing a test plan that will validate correct behavior
each state is relatively straightforward.

Refer to Appendix C, “Examples of BEA MessageQ LU6.2 Inbound and Outboun
Applications,” for samples of inbound and outbound applications.
2-14 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Development Checklist

 the

se
Developing a Sample Application

The following are the specifications of a sample application. For the purposes of the
example, assume that:

t The gateway node name is SNAGWY.

t The access name is ORDERS.

t This application is assigned LU numbers 1, 2, and 3.

t The two inbound CICS programs are given the following TPNs:

t ORDU—Order Update Receive

t ORDC—Order Completion Receive

t One outbound BEA MessageQ program is given the following TPN: NEWORDER
—New Order Receive

Using the development process described in this section, this example produces
two BEA MessageQ LU6.2 Port Server initialization files: ORDERS.LU (inbound or
resources file) and ORDERS.TGT (outbound or target file). Refer to Chapter 3,
“Configuring the LU6.2 Port Server,” for information about recalling and editing the
initialization files.

Listing 2-1 shows these two initialization files.

Listing 2-1 Sample Resources and Target Initialization Files

ORDERS.LU

!

! One LU for use by OUTBOUND Conversations
 !
 !Resource Gateway Access LU Type
 CICSOUT SNAGWY ORDERS 1 2
 !
 ! Two LUs for use by INBOUND Conversations
 !
 !Resource Gateway Access LU Type
 CICSIN SNAGWY ORDERS 2 1
 CICSIN SNAGWY ORDERS 3 1

BEA MessageQ LU6.2 Services for OpenVMS User’s Guide2-15

2 Developing Applications Using BEA MessageQ LU6.2 Services
ORDERS.TGT
!
 ! One Target definition for OUTBOUND Conversations
 !
 !Target TPN Resource Type Comm Deallocate
 ! Type Type
 NEWORDER NEWORDER CICSOUT 2 2 1
 !
 ! Two Target Definitions for INBOUND Coinversations
 !
 !Target TPN Resource Type Comm Deallocate
 ! Type Type
 UPDATE ORDU CICSIN 1 2 1
 COMPLETE ORDC CICSIN 1 2 1

2-16 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

CHAPTER
3 Configuring the LU6.2
Port Server

This chapter describes how to configure, start up, and manage the LU6.2 Port Server.

Note: Before you configure or use your LU6.2 Port Server, make sure that the BEA
MessageQ LU6.2 Services software is properly installed and operational on
your system. Refer to Installing BEA MessageQ LU6.2 Services for OpenVMS
for installation information.

Specific topics covered in this chapter include:

t Port Server Functions

t Port Server Limits of Operation

t Configuring the Port Server

t Configuring Inbound and Outbound Connections

t Defining Logical Names

t Managing the LU6.2 Port Server
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 3-1

3 Configuring the LU6.2 Port Server
Port Server Functions

The LU6.2 Port Server is a connection-point management software tool that provides
network applications (in this case, LU6.2 type) connection and namespace mapping
services. The LU6.2 Port Server uses predefined messages (verbs) to simplify setting
and managing applications’ connections of the BEA MessageQ clients to remote
partners.

To provide these functions, the LU6.2 Port Server must know:

t What SNA resources are available

t What names exist in both BEA MessageQ and SNA namespaces

Therefore, before you can use the LU6.2 Port Server, you need to set up the context
(targets and resources) in which it operates. This means that you must determine and
prepare the information that the LU6.2 Port Server requires to configure itself when it
is initialized.

To summarize, to configure a port server, you must configure the following:

t IBM system(s)

t SNA gateway(s)

t Targets

t Resources

t Startup options

Port Server Limits of Operation

Use of the LU6.2 Port Server is restricted by the limits described in Table 3-1. You can
configure the LU6.2 Port Server only within these limits.
3-2 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Port Server Limits of Operation
Table 3-1 Port Server Operational Limits
Limit Description

 Targets Targets are defined by a user as part of the LU6.2 Port Server
configuration process. A maximum of 512 targets can be defined for any
LU6.2 Port Server.

SNA Logical
Units

A maximum of 256 SNA LUs can be defined for any LU6.2 Port Server.

Concurrent
Sessions

A maximum of 256 concurrent LU6.2 sessions are supported for any
LU6.2 Port Server. The available pool of LUs is divided into inbound
and outbound groups; the sum of the active sessions in each group
cannot exceed 256 at any one time.

Message Size The maximum data message size is 31982 bytes. This limit is imposed
by the BEA MessageQ maximum message size of 32000 bytes. An
18-byte header is generated internally by LU6.2 Services for OpenVMS,
leaving 31982 bytes for user data.

Target Sync
Level

The LU6.2 Port Server supports both SYNC_LEVEL 0 (NONE) and
SYNC_LEVEL 1 (CONFIRM). Support for SYNC_LEVEL is controlled
globally by the DMQLU62$SELECT_SYNC and
DMQLU62$DISABLE_CONFIRM logical names, and at the individual
target level through the SYNC_LEVEL option on an extended target
definition.

If the logical name DMQLU62$SELECT_SYNC is not defined, defining
the logical name DMQLU62$DISABLE_CONFIRM disables
SYNC_LEVEL 1 support.

SYNC_LEVEL 1 is supported as follows: A Change Direction request
from a BEA MessageQ client results in a PREPARE_TO_RECEIVE verb
being issued at SYNC_LEVEL 1. A Terminate Connection request from
a BEA MessageQ client results in a DEALLOCATE verb being issued at
SYNC_LEVEL 1.

The LU6.2 Port Server automatically and unconditionally issues a
CONFIRMED message in response to any CONFIRM verb issued by an
IBM client.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 3-3

3 Configuring the LU6.2 Port Server
Figure 3-1 describes valid and invalid connections between the BEA MessageQ
(SNA) and IBM (CICS) clients and partners. The invalid connections are the multiple
connections (two or more) between two network partners.

Multiple
Connections for
BEA MessageQ
Clients

BEA MessageQ clients are allowed multiple active connections to IBM
clients. However, a BEA MessageQ Client can have only one active
connection to any one IBM client (see Figure 3-1). The LU6.2 Port
Server provides context information when each connection is
established, enabling the BEA MessageQ client to distinguish
connections from each other.

It is the responsibility of the BEA MessageQ client to present the correct
context information to the LU6.2 Port Server when using a previously
established connection.

Multiple
Connections for
IBM Clients

IBM clients can initiate connections to multiple BEA MessageQ clients.
However, any IBM Client can have only one active connection to any
one target (see Figure 3-1). Because BEA MessageQ clients can register
themselves with multiple target names, an IBM client can have multiple
connections to a single BEA MessageQ client.

Security Support for inbound conversation security is provided to those VTAM
application programs that support this APPC feature, such as CICS.
BEA MessageQ clients can present a user name, password, and profile
when obtaining a connection through the LU6.2 Port Server.

The LU6.2 Port Server presents these values to the VTAM application
program when allocating the conversation on behalf of the BEA
MessageQ client.

Security File Security support for inbound connection requests is provided through a
security file. The file specifies which permanent processes are allowed
to initiate an inbound connect request. You can create a security file with
any text editor. Each record must have a group and queue number. A
logical name in the LNM process table, DMQLU62$SECURITY_FILE,
must be defined as the full path name of the security file. The file is read
at Port Server startup, and only processes defined in this file are allowed
to initiate inbound conversations. If no logical name is defined, no
security checking will occur. A sample security file follows:

 ! Dmq LU62 Security File
 ! Group Queue
 3 4
 3 5
 305 12

3-4 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Configuring the Port Server

e,
Figure 3-1 Valid and Invalid BEA MessageQ and IBM Multiple Connections

Configuring the Port Server

When initialized, the LU6.2 Port Server builds two tables—LU_CONFIG and
TARGET_CONFIG. These tables must contain the following information:

t LU_CONFIG—SNA Resources

Each resource definition identifies an SNA Gateway node name, access nam
and session, as well as the RESOURCE NAME to which the definition belongs.

BEA MessageQ IBM Clients

Valid Connections

Invalid Connections
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 3-5

3 Configuring the LU6.2 Port Server
The table of SNA resources is used at run time to maintain context information
about each active connection that requires an SNA LU.

t Valid Destinations (TARGET_CONFIG)

Target definitions translate BEA MessageQ names into IBM names. Each target
definition identifies the RESOURCE NAME used to establish a connection to that
target.

The table of valid destinations is used at run time to establish connections and to
find entries in the table of SNA resources to track the connections as they are
established.

These tables are built by reading two text files, known as configuration files, which are
identified by the following logical names:

t DMQLU62$SERVER_LU_CONFIG, which contains entries for the table of SNA
resources, LU_CONFIG.TXT

t DMQLU62$SERVER_TARGET_CONFIG, which contains entries for the table of valid
destinations, TARGET_CONFIG.TXT

The following two sections describe how to prepare the configuration files that the
LU6.2 Port Server uses to build the LU and TARGET configuration tables.

Building the LU Configuration File

The LU configuration file defines the SNA resources required by the LU6.2 port
server:

t Resource name (LU_SYSTEM_ID)

t Gateway node (LU_GATEWAY)

t Gateway access name (LU_ACCESS)

t Gateway session (LU_SESSION)

t Resource type (LU_TYPE)

t Translation option

t Sync-level
3-6 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Configuring the Port Server
To create or edit the LU configuration file, type

$ edit DMQLU62$SERVER_LU_CONFIG

Note: In the LU configuration file, data items are delimited by spaces or tab
characters; any text following data items is treated as comments; and lines
beginning with an exclamation point (!) or an asterisk (*) are treated as
comments.

Listing 3-1 presents the LU configuration file format.

Listing 3-1 LU Configuration File Format

! LU CONFIGURATION FILE
! ======================
!
! LOGICAL NAME: DMQLU62$SERVER_LU_CONFIG
! FUNCTION: DEFINES ALL SNA RESOURCES FOR PORT SERVER
! FORMAT: FREE-FORM POSITIONAL, WHITESPACE DELIMITED
! LEADING WHITESPACE REMOVED BEFORE PROCESSING
! LINES BEGINNING WITH "!" OR "*" ARE COMMENTS
!
! FIELDS: LU_SYSTEM_ID UP TO 8 CHAR
! LU_GATEWAY UP TO 6 CHAR
! LU_ACCESS UP TO 8 CHAR
! LU_SESSION 3 NUMERIC, 0 = ANY
! LU_TYPE 2 NUMERIC (1,2 DEFINED)
!
!ALL TEXT FOLLOWING THE POSITIONAL FIELDS IS A COMMENT
!
! 4 LU DEFINITIONS INBOUND TO CICS ADDRESS SPACE 1
!
!LU_SYSTEM_ID LU_GATEWAY LU_ACCESS LU_SESSION LU_TYPE
 CICS01 SNAGW1 DECLU62 0 1 LU FOR INBOUND USE TO CICS01
 CICS01 SNAGW1 DECLU62 0 1 LU FOR INBOUND USE TO CICS01
 CICS01 SNAGW1 DECLU62 0 1 LU FOR INBOUND USE TO CICS01
 CICS01 SNAGW1 DECLU62 0 1 LU FOR INBOUND USE TO CICS01
 !
! 2 INBOUND LUS FOR CICS 2
!
 CICS02 SNAGW1 DECLU62B 0 1 LU FOR INBOUND USE TO CICS02
 CICS02 SNAGW1 DECLU62B 0 1 LU FOR INBOUND USE TO CICS02
 !
! 3 LU DEFINITIONS OUTBOUND FROM CICS ADDRESS SPACE 1
!
 CICSOUT1 SNAGW1 DECLU62 200 2 LU FOR OUTBOUND USE FROM CICS01
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 3-7

3 Configuring the LU6.2 Port Server

d

se
 CICSOUT1 SNAGW1 DECLU62 201 2 LU FOR OUTBOUND USE FROM CICS01
 CICSOUT1 SNAGW1 DECLU62 202 2 LU FOR OUTBOUND USE FROM CICS01
 !
! ONE OUTBOUND TRANSPARENT LU FOR IMS TO USE
!
 IMSTRANS SNAGW1 DECLU62 210 3 TRANSPARENT OUTBOUND LU FOR IMS

! END

The data items required to define each resource are described in Table 3-2.

Table 3-2 LU Configuration File Data Items
Data Item Description

 LU_SYSTEM_ID The system ID that uniquely identifies all LUs with common
characteristics. It is used to locate an entry in the LU configuration
file when a connection request is received for a given destination
(target). The entry in the TARGET_CONFIG configuration file for
this destination uses the LU_SYSTEM_ID to identify the
LU_CONFIG entries that can be used to create and manage
connections to this target. See “Building the Target Configuration
File” for more information. The LU_SYSTEM_ID can be used to
reserve blocks of LUs for use by particular processes. The degree
of port contention can be controlled by adjusting the number of
entries in the block. To eliminate contention, make the size of the
block equal to the number of concurrent connections required.

 LU_GATEWAY The SNA Gateway through which this LU is accessed.

 LU_ACCESS The SNA Gateway access name by which this LU is accessed.

 LU_SESSION The SNA Gateway session number. The session number is require
for LU_TYPE 2 OUTBOUND and LU_TYPE 3 OUTBOUND
TRANSPARENT connections (described next) because the specific
session number is required to activate the specified sessions for u
by VTAM. We recommend using the LU_TYPE 1 INBOUND
session number connection to facilitate problem diagnosis.
3-8 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Configuring the Port Server
Building the Target Configuration File

The Target configuration file defines all valid destinations known to the LU6.2 Port
Server. The file translates the target name that is known to the sender program into a
name that is known by the receiver program. This isolates sender programs from
changes in the receiver program system.

Target definitions include:

t Target name (for BEA MessageQ destinations) (TARGET_NAME)

t TP name (for IBM) (TARGET_TPN)

t Resource name (TARGET_SYSTEM_ID)

t Target type (TARGET_TYPE)

t Communication type (COMMUNICATION_TYPE)

t Deallocation rule (DEALLOCATE_TYPE)

t Delivery mode

 LU_TYPE The type of connection for which the LU is being reserved. Three
types of connections are available:

1 = INBOUND The LU is used for communication with
IBM transactions on demand, when requested by an
OpenVMS process.

2 = OUTBOUND The LU is used for communication with
OpenVMS transactions on demand when requested by
an IBM process.

3 = OUTBOUND TRANSPARENT The LU is used for
communication with OpenVMS transactions on
demand when requested by an IBM process. Received
data is not translated from EBCDIC data format to
ASCII data format.

No LU can be used for both inbound and outbound traffic. This
restriction prevents contention for resources between the LU6.2
port server and VTAM.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 3-9

3 Configuring the LU6.2 Port Server
To create or edit this file, type

$ edit DMQLU62$SERVER_TARGET_CONFIG

Note: In the target configuration file, data items are delimited by spaces or tab
characters; any text following data items is treated as comments; and lines
beginning with an exclamation point (!) or an asterisk (*) are treated as
comments.

Listing 3-2 presents the target configuration file format.

Listing 3-2 TARGET Configuration File Format

! TARGET CONFIGURATION FILE
! =========================
!
! LOGICAL NAME: DMQLU62$SERVER_TARGET_CONFIG
! FUNCTION: DEFINES ALL SNA RESOURCES FOR PORT SERVER
! FORMAT: FREE-FORM POSITIONAL, WHITESPACE DELIMITED
! LEADING WHITESPACE REMOVED BEFORE PROCESSING
! LINES BEGINNING WITH "!" OR "*" ARE COMMENTS
!
! FIELDS: TARGET_NAME UP TO 8 CHAR
! TARGET_TPN UP TO 8 CHAR
! TARGET_SYSTEM_ID UP TO 8 CHAR
! TARGET_TYPE 1 NUMERIC (1,2,3,4 DEFINED)
! COMMUNICATION_TYPE 1 NUMERIC (1,2 DEFINED)
! DEALLOCATE_TYPE 1 NUMERIC (1,2 DEFINED)
!
! CICS TRANSACTION PROGRAM NAMES FOR INBOUND DUPLEX TRANSACTIONS TO CICS 01
!
! TARGET_NAME TARGET_TPN TARGET_SYS_ID TARGET_TYPE COMM_TYPE DEALLOC_TYPE
!
 TRANS1 TRN1 CICS01 1 2 2 INBOUND TRANS 1
 TRANS2 TRN2 CICS01 1 2 2 INBOUND TRANS 2
! ! THE SAME TRANSACTIONS ARE ALSO ON CICS 2
!
 TRANS1A TRN1 CICS02 1 2 2 INBOUND TRANS 1

 TRANS2A TRN2 CICS02 1 2 2 INBOUND TRANS 2
!
! TP NAMES TO BE ALLOCATED BY CICS
!
 VX01 VX01 VAX01 2 OUTBOUND TRANS 1
 VX02 VX02 VAX01 2 OUTBOUND TRANS 2
3-10 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Configuring the Port Server
!
! INBOUND EXTENDED TARGET
!
!=====================+ !TRANSLATION!=!SYNC LEVEL!
 TRANSIN TRN3 CICS02 3 2 2 0 1 No Translation

!
! OUTBOUND EXTENDED TARGET
!
!===================== !TRANSLATION!SEND OPT!PERM!GRP!QUEUE!
 OUTPERM VX03 VAX01 4 1 1 0 1 1 1 10
! END

The data items required to define each destination are described in Table 3-3.

Table 3-3 Target Configuration File Data Items
Data Item Description

 TARGET_NAME The target name as it is known to BEA MessageQ application programs. For
IBM targets, this is the name that OpenVMS application programs provide in
the CONNECT_REQUEST message. For OpenVMS targets, this is the name
that OpenVMS application programs provide in the REGISTER_TARGET
message.

Note: The CONNECT_REQUEST and REGISTER_TARGET messages are
described in Port Server Connection Messages.

 TARGET_TPN The actual TPN known to the IBM system. The specific use varies as a
function of TARGET_TYPE. For inbound targets, the TARGET_TPN is the
IBM TPN as it is known to the VTAM application (CICS/VS or IMS/VS). For
outbound targets, the TARGET_TPN is the TPN used by the IBM application
program to allocate conversations with the LU6.2 Port Server.

 TARGET_SYSTEM_ID The LU_SYSTEM_ID used as a key when searching the LU configuration file
for a valid entry to use in tracking the progress of the connection. For IBM
targets, the LU_NAME in the selected LU configuration entry is used in the
LU62_ALLOCATE message. For OpenVMS targets, the LU_SYSTEM_ID
entry in the LU configuration file is used to store context information, but it
does not contribute any information used in establishing the connection.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide3-11

3 Configuring the LU6.2 Port Server

 TARGET_TYPE The method used to establish connections to the target. Valid values are:

t 1 = INBOUND

Inbound targets reside on IBM systems and are activated when
application programs request connections to them. Inbound
targets are nontransparent, which means that the LU6.2 Port
Server translates messages sent to inbound targets from ASCII
data format to EBCDIC data format.

t 2 = OUTBOUND

Outbound targets reside on any system connected to the BEA
MessageQ message queuing bus. Outbound application
programs must be registered with the LU6.2 Port Server for the
target names that they support before conversation allocation
from IBM application programs is accepted for those targets.
Outbound targets are nontransparent, which means that the
LU6.2 Port Server translates messages sent to outbound targets
from the EBCDIC data format to ASCII data format.

TARGET_TYPE (cont.) t 3 = INBOUND EXTENDED

Inbound extended targets reside on the IBM system and are
activated when OpenVMS application programs request
connections to them. If TARGET_TYPE is INBOUND EXTENDED,
you must also indicate the TRANSLATE OPTION and SYNC LEVEL
values.

Note: You must specify these values after you specify the TARGET_NAME,
TARGET_TPN, TARGET_SYSTEM_ID, TARGET_TYPE,
COMMUNICATION_TYPE, and DEALLOCATE_TYPE.

This means that you must specify the major TARGET_TABLE
configuration file data items first, then you specify any additional
TARGET_TYPE data items required. (See Listing 3-2 for
clarification.) The TRANSLATE OPTION controls whether data
translation service is provided for this target. Valid values are:

0—Do not translate (transparent)
1—Translate (nontransparent)

The SYNC_LEVEL determines the synchronization level permitted
on conversations with this target. Valid values are:

0—SYNC_LEVEL=NONE
1—SYNC_LEVEL=CONFIRM
3-12 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Configuring the Port Server
TARGET_TYPE (cont.) t 4 = OUTBOUND EXTENDED

Outbound extended targets reside on any system connected to the
BEA MessageQ message queuing bus. Outbound application
programs must be registered with the LU6.2 Port Server for the
target names that they support before conversation allocation
from IBM application programs is accepted for those targets.

If the TARGET_TYPE is OUTBOUND EXTENDED, you must also
indicate the TRANSLATE OPTION, the SEND OPTION, and
whether it is a PERMANENT TARGET. If it is a PERMANENT
TARGET, then you must indicate the PERMANENT GROUP and the
PERMANENT QUEUE.

Note: You must specify these values after you specify the TARGET_NAME,
TARGET_TPN, TARGET_SYSTEM_ID, TARGET_TYPE,
COMMUNICATION_TYPE, and DEALLOCATE_TYPE.

This means that you must specify the major TARGET_TABLE
configuration file data items first, then you specify any additional
TARGET_TYPE data items required. See Listing 3-2 for
clarification.

The TRANSLATE OPTION controls whether data translation
service is provided for this target. Valid values are:

0—Do not translate (transparent)
1—Translate (nontransparent)
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide3-13

3 Configuring the LU6.2 Port Server

 TARGET_TYPE (cont.) The SEND OPTION controls the DELIVERY MODE parameter used on
pams_put_msg calls that write messages to the message queue currently
registered for the target. Valid values are:

0 = PDEL_MODE_NN_MEM, PDEL_UMA_RISC
1 = PDEL_MODE_WF_MEM, PDEL_UMA_RISC
2 = PDEL_MODE_WF_DQF, PDEL_UMA_SAF

The PERMANENT TARGET value indicates whether this is a permanent
outbound target. Valid values are:

0—This is not a permanent target
1—This is a permanent target

Note: If the PERMANENT TARGET value is set to 1, you must specify
PERMANENT GROUP and PERMANENT QUEUE.

The PERMANENT GROUP specifies the BEA MessageQ group ID
permanently registered for this target. The PERMANENT QUEUE value
specifies the BEA MessageQ queue number permanently registered for this
target.

 COMMUNICATION_TYPE The type of communication supported by the target. Valid values are:

1 = SIMPLEX The initiator of the conversation is always the
sender program. The sender program and the receiver program
cannot exchange roles.

2 = DUPLEX The initiator of the conversation is the initial
sender program. The initial sender program can become the
receiver program by exchanging roles with the remote partner
program.

 DEALLOCATE_TYPE The partner that is allowed to deallocate the conversation. Note that only the
partner in send state can issue a normal deallocate, regardless of the
deallocate type. Valid values are:

1 = INITIATOR-ONLY Only the partner that initiated the
conversation is allowed to deallocate the conversation.

2 = OPEN Either partner can deallocate the conversation when
in the send state.
3-14 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Configuring Inbound and Outbound Connections
Configuring Inbound and Outbound
Connections

The following tables provide the data that you must enter to properly configure

inbound and outbound connections.

Configuring Inbound Connections

Use the following data to configure inbound connections (targets) supported by the
LU6.2 Port Server. Table 3-4 lists the data items that you specify to configure inbound
targets properly.

Table 3-4 Data Items for Configuring Inbound Targets
Data Item Value

 TARGET_NAME The target name presented by the OpenVMS end client in the
CONNECT_REQUEST message.

 TARGET_TPN The TPN of the IBM program as known to the VTAM application (CICS/VS
or IMS/VS).

 TARGET_SYSTEM_ID The value of an LU_SYSTEM_ID in the LU_TABLE configuration file for an
LU_TYPE 1 INBOUND LU as known to the VTAM application (CICS/VS
or IMS/VS).

 TARGET_TYPE 1 = INBOUND.

 COMMUNICATION_TYPE Specify 1 (simplex) if the BEA MessageQ client does not receive messages
from the IBM system.

Specify 2 (duplex) if the BEA MessageQ client receives messages from the
IBM system.

 DEALLOCATE_TYPE Specify 1 if the IBM client does not issue LU62_DEALLOCATE messages.

Specify 2 if COMMUNICATION_TYPE = 2 and the IBM client issues
LU62_DEALLOCATE messages.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide3-15

3 Configuring the LU6.2 Port Server

Configuring Outbound Connections

Use the following data to configure outbound connections supported by the LU6.2 Port
Server. Table 3-5 lists the data items that you specify to configure outbound
connections (targets) properly.

Defining Logical Names

Two sets of logical names are provided for LU6.2 Services for OpenVMS. One set is
provided for convenience in using and managing LU6.2 Services for OpenVMS by
allowing easy access to the LU6.2 on-disk structure; the second set is used to set
startup options in the LU6.2 Port Server.

Table 3-5 Data Items for Configuring Outbound Targets
Data Item Value

 TARGET_NAME The TARGET_NAME presented by the OpenVMS end client in the
REGISTER_TARGET message.

 TARGET_TPN The OpenVMS TPN as it is known to the IBM end client.

 TARGET_SYSTEM_ID The value of an LU_SYSTEM_ID in the LU_TABLE configuration file for an
LU_TYPE 1 INBOUND LU known to the VTAM application (CICS/VS or
IMS/VS).

 TARGET_TYPE 2—OUTBOUND.

 COMMUNICATION_TYPE Specify 1 (SIMPLEX) if the BEA MessageQ client does not send messages to
the IBM system.

Specify 2 (DUPLEX) if the BEA MessageQ client sends messages to the IBM
system.

 DEALLOCATE_TYPE Specify 1 if the BEA MessageQ client does not issue LU62_DEALLOCATE
messages.

Specify 2 if COMMUNICATION_TYPE = 2 and the BEA MessageQ client
issues LU62_DEALLOCATE messages.
3-16 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Defining Logical Names

Logical Names for the On-Disk Structure

The logical names used to access the LU6.2 Services for OpenVMS on-disk structure
are as follows:

t DMQLU62$SERVER_EXE

The device and directory specification of the directory containing the .EXE, .COM,
and .UID files for the LU6.2 Port Server.

t DMQLU62$SERVER_LIB

The device and directory specification of the directory that contains the message
structure definitions for programs written in C, Pascal, PL/1, BASIC,
FORTRAN, BLISS, and MACRO. This directory also contains the object files
necessary to relink the LU6.2 Port Server.

t DMQLU62$SERVER_SRC

The directory specifications of the C source for the application programming
interface (API) shell are given in Chapter 5, “LU6.2 Port Server Application
Programming Interface.”

t DMQLU62$SERVER_EXAMPLES

The device and directory specification of the directory containing example
programs.

t DMQLU62$SERVER_DOC

The device and directory specification of the directory that contains the LU6.2
Port Server documentation.

Logical Names for Port Server Control

The logical names used to control the LU6.2 Port Server are:

t DMQLU62$SERVER_LU_CONFIG

The file specification of the file containing the LU definitions (LU_CONFIG.TXT)

t DMQLU62$SERVER_TARGET_CONFIG
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide3-17

3 Configuring the LU6.2 Port Server
The file specification of the file containing the target definitions
(TARGET_CONFIG.TXT)

t DMQLU62$SERVER_PAMS_PROCESS

The BEA MessageQ queue number to use in the pams_attach_q call. If not
specified, the default is queue number 63.

t DMQLU62$SERVER_UCB_ADDR

The BEA MessageQ queue number to use when sending messages to the LU6.2
user callback. If not specified, the default is queue number 62.

t DMQLU62$SERVER_BROADCAST_STREAM

The BEA MessageQ broadcast stream to use when sending event messages. If
not specified, the default is 4801.

t DMQLU62$SERVER_RECONNECT_TIMER

The time to wait, in seconds, before sending a new LU62_ACTIVATE message for
any LUs on which the prior activation attempt failed. The default is 900 (15
minutes); the minimum value is 60.

t DMQLU62$SERVER_LOG_INFO

Define this logical name as any arbitrary value to enable logging for all
successful conversation connects and disconnects, as well as the following
operations:

t Connect Request

t Security Check

t Connected

t Connect Accept

t Disconnect

For this logical name to take effect, define it in the LNM table for the BEA
MessageQ Bus and Group in which the Port Server is running.

Unsuccessful conversation requests are always logged, regardless of whether or
not this logical name is defined.

Disabling log information reduces the size of the log files for Port Servers that
have many conversation requests.
3-18 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Defining Logical Names

r,
ck,
t DMQLU62$SECURITY_FILE

This logical name is used to define the full path name of the security file. If this
logical name is not defined, no security checking will occur.

t DMQLU62$SERVER_MULTI_CONNECT

Define this logical name as any arbitrary value to allow multiple connections to
the same INBOUND IBM target from a single BEA MessageQ program.

t DMQLU62$SERVER_IMS_ADAPTER

Define this logical name as any arbitrary value to inform the LU6.2 port server
that the IBM clients are being accessed using the IMS LU6.1 Adapter for LU6.2
applications.

The LU6.2 Port Server changes its error-handling procedures to comply with the
following restrictions imposed by the Adapter. Specifically, it does not issue:

t The SEND_ERROR APPC verb

t The DEALLOCATE(ABEND_PROGRAM) verb

Note: When using the IMS LU6.1 Adapter, you must provide for application-level
data integrity checks because the normal facilities for obtaining confirmation
(SYNC_LEVEL 1) and signaling errors are not available due to restrictions
imposed by the IMS LU6.1 Adapter.

Refer to Appendix B, “Notes on IMS,” for more information on the IMS
LU6.1 Adapter.

In addition to the logical names specifically checked by the LU6.2 Port Serve
there are four logical names that affect the behavior of the LU6.2 User Callba
upon which the LU6.2 Port Server is based. These logical names are:

t DMQLU62$BUFFER_SIZE

t DMQLU62$BUFFER_COUNT

t DMQLU62$SELECT_SYNC

t DMQLU62$DISABLE_CONFIRM

These logical names are described in Appendix A, “LU6.2 User Callback
Interface Logical Names and Error Codes.”
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide3-19

3 Configuring the LU6.2 Port Server

l:

r

ver
Managing the LU6.2 Port Server

This section describes the DCL command procedures and utility programs that are
provided to start up, stop, and manage the LU6.2 Port Server.

Starting Port Servers

Run the DMQLU62_SERVER_STARTUP.COM procedure to start LU6.2 Port Servers. This
command procedure is stored in DMQLU62$SERVER_EXE and performs the following
functions:

t Defines the LU6.2 Port Server logical names

t Establishes the LU6.2 Port Server utilities as OpenVMS foreign commands

t Starts the LU6.2 Port Server as a detached process

t Runs the Event Watcher utility (described in “Watching Events”) so you can
observe the result of the LU6.2 Port Server initialization

The command format is:

@DMQLU62_SERVER_STARTUP Y que_id ps_id lu_config_file target_config_file

The command procedure takes the following arguments, all of which are optiona

t Y or N—Specify Y to start the servers. Specify N to set up logicals without
starting the servers.

t que_id—The BEA MessageQ queue number to be assigned to the port serve

t ps_id—The BEA MessageQ broadcast stream to be assigned to the port ser
for Event Messages

t lu_config_file—The LU_CONFIG configuration file to be used

t target_config_file—The TARGET_CONFIG configuration file to be used
3-20 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Managing the LU6.2 Port Server
Watching Events

Use the DMQLU62_EVENT_WATCH utility to watch the result of the LU6.2 Port Server
initialization.

DMQLU62_EVENT_WATCH.EXE listens to the BEA MessageQ broadcast stream defined
by the logical name DMQLU62$SERVER_BROADCAST_STREAM (if the logical name is not
defined, it defaults to address 4801) and displays the event messages received on that
stream.

The utility is stored in DMQLU62$SERVER_EXE and is defined as the foreign command
DMQLU62_EVENT_WATCH by the DMQLU62_SERVER_STARTUP.COM procedure. The
utility accepts a Stream MOT (Multipoint Outbound Target) address as the P1
command-line parameter. This allows multiple EVENT_WATCH programs in a single
group to monitor different log stream MOTS. Therefore, when multiple Port Servers
are run in a single group, each may be monitored by a separate EVENT_WATCH utility.
The event watch display screen border shows the name of the log stream MOT on
which it is listening. Pressing any key terminates the event watch utility after a
5-second delay.

The DMQLU62_SERVER_STARTUP.COM procedure starts the Event Watch program with
a foreign command, and passes the defined MOT address as the P1 parameter.

When the Event Watch program is run interactively, it may be started by a run
command or a foreign command. If started with a run command, the program translates
the DMQLU62$SERVER_BROADCAST_STREAM if present or defaults to 4801 if absent.
When started by a foreign command, the P1 parameter is used as the log stream MOT.

Defining Logical Names with
DMQLU62_SERVER_LOGICALS.COM

Use the DMQLU62_SERVER_LOGICALS.COM procedure to define LU6.2 Port Server
logical names.

The command format is:

@DMQLU62_SERVER_LOGICALS device install_dir V40-VAX que_id ps_id lu_config_file
target_config_file
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide3-21

3 Configuring the LU6.2 Port Server

rver

d

f the
The command procedure takes the following arguments:

t device—The device on which the LU6.2 option is installed

t install_dir—The directory on which the LU6.2 option is installed

t V40-VAX—The version and architecture of the LU6.2 option that is installed

t que_idThe BEA MessageQ queue number to be assigned to the port server

t ps_id— —The BEA MessageQ broadcast stream to be assigned to the port se

t lu_config_file —The LU_CONFIG configuration file to be used

t target_config_file—The TARGET_CONFIG configuration file to be used

Stopping LU6.2 Port Servers

Run DMQLU62_SERVER_STOP to stop LU6.2 Port Servers. The
DMQLU62_SERVER_STOP utility program sends a SHUTDOWN message to a designated
BEA MessageQ address.

The utility is stored in DMQLU62$SERVER_EXE and is defined as the foreign comman
DMQLU62_SERVER_STOP by the DMQLU62_SERVER_STARTUP.COM procedure. The
utility takes two arguments: the BEA MessageQ group ID and the queue number o
LU6.2 Port Server to be stopped.

For example:

$ DMQLU62_SERVER_STOP 5 63

where 5 = group_ID and 63 = port_server_queue_number.
3-22 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

CHAPTER
4 Port Server Messages

BEA MessageQ clients establish and manage LU6.2 connections through the LU6.2
Port Server using predefined messages. There are two types of predefined messages
used by the LU6.2 Port Server: port server control messages and port server connection
messages (BEA MessageQ messages).

These messages are sent via the BEA MessageQ API function pams_put_msg.
Message class and type definitions, which are used as arguments to pams_put_msg,
are provided in the BEA MessageQ Class and Type file (DMQ$TYPCLS.TXT) at
installation. Refer to Appendix B in the BEA MessageQ Installation and Configuration
Guide for OpenVMS for a sample of DMQ$TYPCLS.TXT.

This chapter discusses the following topics:

t Port Server Control Messages

t Port Server Connection Messages

t Example of Port Server Messages Used for Client Communications

Port Server Control Messages

This section describes messages that control the LU6.2 Port Server.

Message Description
ADD_LU Dynamically adds an LU definition while the LU6.2 Port Server is

running

ADD_TARGET Dynamically adds a target definition while the LU6.2 Port Server is
running
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 4-1

4 Port Server Messages
To send these control messages, use the pams_put_msg with the target of the port
server and the message type of message.

SHUTDOWN Instructs the LU6.2 Port Server to exit
4-2 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Port Server Control Messages

ADD_LU

The ADD_LU message dynamically adds an LU definition while the LU6.2 port server
is running. The ADD_LU message is formatted as a valid configuration file entry for LUs
and TYPE 1 targets. See Chapter 3, “Configuring the LU6.2 Port Server,” for more
information about configuration files.

Listing 4-1 shows the C message structure for the ADD_LU service.

Listing 4-1 C Message Structure for ADD_LU

typedef struct _add_lu {
char sysid[9];
char gateway[7];
char lu_access[9];
char lu_sess[4];
char lu_type[3];
int16 lu_session_dir;
} add_lu;

int16 msg_size;

...

class = MSG_CLAS_APPC;
type = MSG_TYPE_LU62_ADD_LU;
msg_size = sizeof(struct add_lu);

dmq_status = pams_put_msg(
&add_lu,
&priority,
&server_queue,
&class,
&type,
&delivery,
&msg_size,
&timeout,
&put_psb,
&uma,
(q_address *) 0,
(int32 *) 0,
(char *) 0,
(char *) 0);
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 4-3

4 Port Server Messages

.2
ADD_TARGET

The ADD_TARGET message dynamically adds a TYPE 1 inbound target definition while
the LU6.2 port server is running. The ADD_TARGET message is formatted as a valid
configuration file entry for LUs and targets. See Chapter 3, “Configuring the LU6
Port Server,” for more information about configuration files.

Listing 4-2 shows the C message structure for the ADD_TARGET service.

Listing 4-2 C Message Structure for ADD_TARGET

typedef struct _add_tgt {

char targ_name[9];
char targ_tpn[9];
char targ_sysid[9]
int16 comm_type;
int16 dealloc;
} add_tgt;

...

class = MSG_CLAS_APPC;
type = MSG_TYPE_LU62_ADD_TGT;
msg_size = sizeof(struct add_tgt);

dmq_status = pams_put_msg(
&add_tgt,
&priority,
&server_queue,
&class,
&type,
&delivery,
&msg_size,
&timeout,
&put_psb,
&uma,
(q_address *) 0,
(int32 *) 0,
(char *) 0,
(char *) 0);
4-4 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Port Server Control Messages
SHUTDOWN

The SHUTDOWN message instructs the LU6.2 port server to exit. The SHUTDOWN message
has no content; the BEA MessageQ message type is sufficient to convey the
information.

Listing 4-3 shows the C message structure for the SHUTDOWN service.

Listing 4-3 C Message Structure for SHUTDOWN

char msg_buf[1024];
int16 msg_size;

...

class = MSG_CLAS_APPC;
type = MSG_TYPE_LU62_SHUTDOWN;
msg_size = 0;

dmq_status = pams_put_msg(
&msg_buf,
&priority,
&server_queue,
&class,
&type,
&delivery,
&msg_size,
&timeout,
&put_psb,
&uma,
(q_address *) 0,
(int32 *) 0,
(char *) 0,
(char *) 0);
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 4-5

4 Port Server Messages
Port Server Connection Messages

This section describes messages either received from or sent to BEA MessageQ clients
by the LU6.2 Port Server. These seven predefined messages allow BEA MessageQ
clients to use the LU6.2 Port Server to establish and manage LU6.2 connections to
remote partners using the port server as the standard API.

Table 4-1 lists the seven predefined port server messages.

Figure 4-1 shows a typical program structure that uses BEA MessageQ messages
(verbs) to establish and manage data connections.

Table 4-1 Summary of LU6.2 Port Server Messages
This message Is used to . . .

CHANGE_DIRECTION Indicate change of direction of connection. It may mean that the remote
IBM client has become the receiver program, and that the BEA
MessageQ client is now the sender program, or vice versa.

CONNECT_ACCEPT Indicate that the requested connection has been established

CONNECT_REJECT Indicate that the requested connection could not be established

CONNECT_REQUEST Request a connection for a BEA MessageQ client to a remote LU6.2
partner

CONNECTION_TERMINATED When sent to a BEA MessageQ client, indicate that the remote IBM
client has terminated the connection. When sent by a BEA MessageQ
client, request termination of the connection.

DATA_MESSAGE When sent to a BEA MessageQ client, carry a data message received
from the remote partner. When sent by a Message client, carry a data
message to be transmitted to the remote partner.

REGISTER_TARGET Map to a BEA MessageQ client a target name (including group ID and
queue number) for registration purposes
4-6 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Port Server Connection Messages
Figure 4-1 Typical Program Structure

Note: If the message field value is shorter than the required field length, it is
necessary to enter null terminators (hex 0s).

The following sections describe each port server message and its format.

Get Initial
Data to Send

Send Connect
Request

pams_get_msgw

Send Data
Handle
Errors

Process
Data

Message

Get next
Data to
Send

DECLARE to
BEA

MessageQ

Connect
Accept

Connect
Reject

Data
Message

Connection
Terminated
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 4-7

4 Port Server Messages
CHANGE_DIRECTION

The CHANGE_DIRECTION message indicates a change in the direction of the
connection.

When the CHANGE_DIRECTION message is sent to the BEA MessageQ client, it
indicates that the remote IBM client has become the receiver program, and that the
BEA MessageQ client is now the sender program.

When the CHANGE_DIRECTION message is sent by the BEA MessageQ client, it
indicates that the remote IBM client has become the sender program, and that the BEA
MessageQ client is now the receiver.

Listing 4-4 shows the C message structure for the CHANGE_DIRECTION service.

Listing 4-4 C Message Structure for CHANGE_DIRECTION

typedef struct _change_direction {
int32 connection_index;
} change_direction;

MESSAGE DATA
FIELDS

Field Data Type Description
CONNECTION_INDEX word Context value that uniquely identifies the

connection that has changed direction
4-8 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Port Server Connection Messages
CONNECT_ACCEPT

The CONNECT_ACCEPT message is sent to the BEA MessageQ client to indicate that the
requested connection has been established. This message contains a word (16-bit)
context variable used by the LU6.2 port server to identify the connection. The context
variable value must be stored by the BEA MessageQ client and provided in any
subsequent message sent over the connection.

Listing 4-5 shows the C message structure for the CONNECT_ACCEPT service.

Listing 4-5 C Message Structure for CONNECT_ACCEPT

typedef struct _connect_accept {
int16 connection_index;
char target_name [8];
} connect_accept;

MESSAGE DATA
FIELDS

Field Data Type Description
CONNECTION_INDEX word Context value that uniquely identifies the

connection

TARGET_NAME text 8 char Name of the target connected
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 4-9

4 Port Server Messages
CONNECT_REJECT

The CONNECT_REJECT message is sent to the BEA MessageQ client to indicate that the
requested connection could not be established. The reason for the rejection is indicated
in the body of the message.

Listing 4-6 shows the C message structure for the CONNECT_REJECT service.

Listing 4-6 C Message Structure for CONNECT_REJECT

typedef struct _connect_reject {
char target_name [8];
int32 reject_reason;
} connect_reject;

MESSAGE DATA
FIELDS

CONNECT
REJECT

REASON
CODES

t PAMSLU62_ALREADYCON

t PAMSLU62_BADSYSID

t PAMSLU62_BADTARGNAME

t PAMSLU62_BUSY

t PAMSLU62_WRONGTYPE

Field Data Type Description
TARGET_NAME text 8 char Name of the target rejected

REJECT_REASON int32 Reason for the connect reject
4-10 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Port Server Connection Messages
CONNECT_REQUEST

The CONNECT_REQUEST message is sent by the BEA MessageQ client to request a
connection to a remote LU6.2 partner. This message contains the target name of the
remote partner and, optionally, can contain security information to be presented to the
VTAM application program when the conversation is allocated by the LU6.2 Port
Server.

Listing 4-7 shows the C message structure for the CONNECT_REQUEST service.

Listing 4-7 C Message Structure for CONNECT_REQUEST

typedef struct _connect_request {
char target_name [8];
char username [10];
char password [10];
char profile [10];
} connect_request;

MESSAGE DATA
FIELDS Field Data Type Description

TARGET_NAME text 8 char Name of the target for connection

USER_NAME text 10 char User name for security authentication

PASSWORD text 10 char Password for security authentication

PROFILE text 10 char Security profile for security
authentication
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide4-11

4 Port Server Messages
CONNECTION_TERMINATED

When sent to a BEA MessageQ client, the CONNECTION_TERMINATED message
indicates that the remote IBM client has terminated the connection. This message
contains a field indicating the termination status (normal or abnormal).

When sent by a BEA MessageQ client, the CONNECTION_TERMINATED message
requests termination of the connection. This message can be used to terminate the
connection normally when the BEA MessageQ client is the sender program and no
data messages are being sent. This message can also be used to terminate the
connection abnormally, regardless of the current state (send or receive).

Listing 4-8 shows the C message structure for the CONNECTION_TERMINATED service.

Listing 4-8 C Message Structure for CONNECTION_TERMINATED

typedef struct _connection_terminated {
int16 connection_index;
int16 terminate_type;
int32 terminate_reason;
} connection_terminated;

MESSAGE DATA
FIELDS Field Data Type Description

CONNECTION_INDEX word Context value that uniquely identifies the
connection to which this message is to be
applied

TERMINATE_TYPE word Specifies the type of termination. Valid
values are:

1—Disconnect (normal)

2—Disconnect (error)

TERMINATE_REASON int32 Reason for termination This field is filled
in by the LU6.2 port server when a
connection is abnormally terminated by
the IBM system. The field is ignored on
messages sent to the LU6.2 port server.
4-12 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Port Server Connection Messages

DATA_MESSAGE

When sent to a BEA MessageQ client, the DATA_MESSAGE message contains the text
of a data message received from the remote partner. The LU6.2 Port Server translates
the data message from EBCDIC to ASCII before sending it, provided that translation
is requested in the target definition.

When sent by a BEA MessageQ client, the DATA_MESSAGE message contains the text
of a data message to be transmitted to the remote partner. The LU6.2 Port Server
translates the data message from ASCII to EBCDIC before transmitting it, provided
that translation is requested in the target definition. Control fields in DATA_MESSAGE
allow the BEA MessageQ client application program to:

t Indicate that this is the last message

t Request a direction change and become the receiver program

t Terminate the connection, normally or abnormally

Listing 4-9 shows the C message structure for the DATA_MESSAGE service.

Listing 4-9 C Message Structure for DATA_MESSAGE

typedef struct _data_message {
int16 last_message;
int16 change_direction;
int16 disconnect;
int16 connection_index;
char data [31982];
} data_message;

MESSAGE DATA
FIELDS

Field Data Type Description
LAST_MESSAGE word Indicates that the current message is the

last in the current set. Valid values are:

0—False

1—True

When set, the LU6.2 port server issues an
explicit FLUSH.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide4-13

4 Port Server Messages

CHANGE_DIRECTION word Indicates that the BEA MessageQ client
wants to be the receiver program. Valid
values are:

0—False

1—True

When set, the LU6.2 Port Server issues a
PREPARE_TO_RECEIVE message.

DISCONNECT word Indicates that the BEA MessageQ client
wants to terminate the connection. Valid
values are:

0—False

1—Disconnect (normal)

2—Disconnect (error)

CONNECTION_INDEX word Context value that uniquely identifies the
connection to which this message is to be
applied.

DATA text 0 to 31982 bytes of data to be sent to the
remote LU6.2 partner program.
4-14 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Port Server Connection Messages
REGISTER_TARGET

When sent by a BEA MessageQ client, the REGISTER_TARGET message maps a target
name. This message contains the target name for the registration request and the BEA
MessageQ queue address (group ID and queue number) of the application program to
be registered.

Listing 4-10 shows the C message structure for the REGISTER_TARGET service.

Listing 4-10 C Message Structure for REGISTER_TARGET

typedef struct _register_target {
char target_name [8];
int16 target_group;
int16 target_process;
} register_target;

MESSAGE DATA
FIELDS

Field Data Type Description
TARGET_NAME text 8 char Name of the target to register

TARGET_GROUP word BEA MessageQ group ID of the
application program to register

TARGET_PROCESS word BEA MessageQ queue number of the
application program to register
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide4-15

4 Port Server Messages
Example of Port Server Messages Used for
Client Communications

Listing 4-11 shows port server messages used in a program to support LU6.2 client
communications.

Listing 4-11 LU6.2 Port Server Program

typedef struct _connect_request {
char target_name [8];
char username [10];
char password [10];
char profile [10];
} connect_request;

...

strncpy(connect_request.target_name, "MY_TARGET", 8);
strncpy(connect_request.username, "MY_USERNAME", 10);
strncpy(connect_request.password, "TOPSECRET", 10);
strncpy(connect_request.profile, "THEPROFILE", 10);

class = MSG_CLAS_APPC;
type = MSG_TYPE_CONNECT_REQUEST;
msg_ptr = &connect_request;

do{
status = put_msg(msg_ptr, class,type);
if(status)

return(status);

status = get_msg(msg_ptr, class, type);

}while(status == CONTINUE);

status
put_msg(msg_ptr, class, type)
char *msg_ptr;
int16 class;
int16 type;
4-16 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Example of Port Server Messages Used for Client Communications
{

...

dmq_status = pams_put_msg(
msg_ptr,
&priority,
&server_queue,
&class,
&type,
&delivery,
&msg_size,
&timeout,
&put_psb,
&uma,
(q_address *) 0,
(int32 *) 0,
(char *) 0,
(char *) 0);

return(dmq_status);
}

status
put_msg(msg_ptr, class, type)
char *msg_ptr;
int16 class;
int16 type;

{

...

dmq_status = pams_get_msg(
msg_ptr,
&priority,
&source,
&class,
&type,
&msg_area_len,
&size,
(int32 *) sel_filter,
(struct PSB *) 0,
(struct show_buffer *) 0,
(int32 *) 0,
(int32 *) 0,
(int32 *) 0,
(char *) 0);
if(dmq_status)

return(dmq_status);
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide4-17

4 Port Server Messages
switch(type) {

case MSG_TYPE_CONNECT_ACCEPT:
send_data();
break;

case MSG_TYPE_CONNECT_REJECT:
error_routine();
break;

case MSG_TYPE_CHANGE_DIRECTION:
change_state();
break;

case MSG_TYPE_DATA_MESSAGE:
process_data_msg();
break;

case MSG_TYPE_CONNECTION_TERMINATED:
handle_termination();
break;

default
break;

}
return();
}

...
4-18 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

CHAPTER

 a

l
5 LU6.2 Port Server
Application
Programming Interface

Users can simplify the development of BEA MessageQ application programs that use
the LU6.2 Port Server by hiding the details of BEA MessageQ LU6.2 Services for
OpenVMS within a shell of procedure calls.

This chapter presents a sample application programming interface (API) for LU6.2
Services for OpenVMS. The sample API consists of the following four procedure
calls:

t PORT_CONNECT—Establishes a connection to the specified inbound target.

t PORT_RECV—Receives a message through any existing connection or through
new connection resulting from a previous registration.

t PORT_REGISTER—Specifies the register to receive output directed at the
specified outbound target.

t PORT_SEND—Sends a message through a previously established connection.

The source code for these procedures is found in the following file:

DMQLU62$SERVER_SRC:PORT_FUN.C

Note: The procedure calls are portable to non-OpenVMS platforms with minima
code changes.

This chapter provides information, organized in the format of reference manual
entries, about the following procedure calls:
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 5-1

5 LU6.2 Port Server Application Programming Interface
t PORT_CONNECT

t PORT_RECV

t PORT_REGISTER

t PORT_SEND
5-2 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

PORT_CONNECT

This procedure establishes a connection to a specified inbound target.

Syntax COND_VALUE=PORT_CONNECT(target_name, ... port_queue)

Arguments

Argument
definitions

target_name
The name of the target to which to establish the connection.

connection_index
The unique identifier of the requested connection.

port_group
The BEA MessageQ group ID of the LU6.2 Port Server that connects to the
specified target.

port_queue
The BEA MessageQ queue number of the LU6.2 Port Server that connects to
the specified target.

DESCRIPTION This procedure sends a CONNECT_REQUEST message for the specified target to the
designated generic port server and waits for a response.

RETURNS

RETURN
VALUES

Argument Data Type Mechanism Prototype Access
target_name char reference char * passed

connection_index word reference short * returned

port_group word value short passed

port_queue word value short passed

Argument Data Type Mechanism Prototype Access
cond_value longword value long returned

Return Code Description
SS$_NORMAL A connection is successfully completed.

PAMSLU62_ALREADYCON A connection has already been established to the
named target.

PAMSLU62_BADSYSID The port server target definition specifies an
undefined value for SYS_ID.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 5-3

5 LU6.2 Port Server Application Programming Interface
Example The following is an example of the PORT_CONNECT procedure call.

#include stdio
#include "port_fun.h"
#include "p_entry.h"

#define TRUE 1
#define FALSE 0

main()
{

int32 p_status;
int32 req;
long status;
q_address used;
short send_connection;

req = 0;

p_status = pams_attach_q(&req,&used);
if (!(p_status & 1)) return(p_status);

status = port_connect("MY_TARGET",
&send_connection,
3,
63);

if (!(status & 1))
{
p_status = pams_exit();
return(p_status);
}

.

.

.
}

PAMSLU62_BADTARGNAME The named target has not been defined to the port
server.

PAMSLU62_BUSY All paths to the named target are currently in use.

PAMSLU62_WRONGTYPE The named target is defined as OUTBOUND.

PAMS_xxxxxxxx This indicates any PAMS status code returned by
pams_put_msg or pams_get_msgw.
5-4 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

PORT_RECV

This procedure receives a data message from a remote IBM application program
through a previously established connection or through a new connection resulting
from a previous PORT_REGISTER procedure call.

Syntax COND_VALUE=PORT_RECV(message, buf_size, ... port_queue)

Arguments

Argument
definitions

message
The user buffer to contain the message received from the IBM application
program.

buf_size
The size of the user buffer to contain the received message. Messages too
large to fit in the buffer are truncated to the buffer size.

msg_size
The size of the returned message, or the buffer size, if the message is larger
than the buffer.

connection_index
The unique identifier of the connection on which the message was received.

change_dir
Indicates that the direction of the connection was reversed.

Argument Data Type Mechanism Prototype Access
message char reference char * returned

buf_size word value short passed

msg_size word reference short * returned

connection_index word reference short * returned

change_dir word reference short * returned

disconnect word reference short * returned

abort word reference short * returned

port_group word reference short * returned

port_queue word reference short * returned
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 5-5

5 LU6.2 Port Server Application Programming Interface
disconnect
When set to a non-zero value, indicates that the remote IBM client has
terminated the conversation normally.

abort
When set to a non-zero value, indicates that the remote IBM client has
terminated the conversation abnormally.

port_group
The BEA MessageQ group ID of the generic port server that sent the
message.

port_queue
The BEA MessageQ queue number of the generic port server that sent the
message.

Description This procedure waits to receive a message from a remote IBM application program.
The message can be received through an established connection or through a
connection initiated by the remote IBM application program using a PORT_REGISTER
procedure call. The connection on which the message arrives is identified by the
connection_index argument. By setting the change_dir, disconnect, or abort
flags, the direction of the message flow can be changed, buffers at the generic port
server can be flushed, or the connection can be terminated (normally or abnormally).

Returns

Return values

Argument Data Type Mechanism Prototype Access
cond_value longword value long returned

Return Code Description
SS$_NORMAL Indicates successful completion.

PAMSLU62_BADINDEX The connection_index provided is invalid.

PAMSLU62_
CONABORTDATA

The connection has been aborted by the port server due to a
nontranslatable ASCII character in the body of the message.

PAMSLU62_CONABORTSTATE The connection has been aborted by the port server due to a
violation of the selected application protocol.

PAMSLU62_NOCONNECT No connection has been established.

PAMS_xxxxxxxx Any PAMS status code returned by pams_put_msg.
5-6 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Example The following is an example of the PORT_RECV procedure call.

#include stdio
#include signal
#include "port_fun.h"
#include "p_entry.h"
#include "p_return.h"

#define TRUE 1
#define FALSE 0

main()
{

int32 p_status;
long status;
char reply[1024];
short get_disc = 0;
short buf_siz;
.
.
.
buf_size = sizeof(reply);

while (!get_disc)
{
status = port_recv(reply,
buf_siz,
&msg_siz,
&recv_connection,
&get_cdi,
&get_disc,
&get_abort,
&source_group,
&source_process);

 if (!((status & 1)||(status == PAMS__TIMEOUT)))
{
p_status = pams_exit();
return(p_status);
}

.

.

.
}
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 5-7

5 LU6.2 Port Server Application Programming Interface
PORT_REGISTER

This procedure specifies the queue to receive the output directed to a specified target
by a remote IBM application program.

Syntax COND_VALUE=PORT_REGISTER(target_name, ... reg_queue)

Arguments

Argument
definitions

target_name
The name of the target with which to register.

port_group
The BEA MessageQ group ID of the generic port server that connects to the
specified target.

port_queue
The BEA MessageQ queue number of the generic port server that connects to
the specified target.

reg_group
The BEA MessageQ group ID of the process to register.

reg_queue
The BEA MessageQ queue number of the process to register.

Description This procedure sends a REGISTER_TARGET message for the specified target to the
designated generic port server and waits for a response.

Returns

Return values

Argument Data Type Mechanism Prototype Access
target_name char reference char * passed

port_group word value short passed

port_queue word value short passed

reg_group word value short passed

reg_queue word value short passed

Argument Data Type Mechanism Prototype Access
cond_value longword value long returned

Return Code Description
SS$_NORMAL The procedure is successfully completed.
5-8 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Example The following is an example of the PORT_REGISTER procedure call.

#include stdio
#include "port_fun.h"
#include "p_entry.h"
#include "p_return.h"

#define TRUE 1
#define FALSE 0

main()
{

int32 p_status;
long status;
int32 req;
q_address used;

req = 0;
p_status = pams_attach_q(&req,&used);
if (!(p_status & 1)) return(p_status);

status = port_register("MY_TARGET",
 3,
 63,
 used.au.group,
 used.au.process);

if (!(status & 1))
{
p_status = pams_exit();
return(p_status);
}

.

.

.
}

PAMSLU62_ALREADYREG The process has already registered with the
named target.

PAMSLU62_BADSYSID The port server target definition specifies an
undefined value for SYS_ID.

PAMSLU62_BADTARGNAME The named target has not been defined to the
port server.

PAMS__xxxxxxxx This indicates any PAMS status code returned
by pams_put_msg(w).
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 5-9

5 LU6.2 Port Server Application Programming Interface
PORT_SEND

This procedure sends a data message to a remote IBM application program through a
previously established connection. The maximum size of a data message is 31982
bytes.

Syntax COND_VALUE=PORT_SEND(message, connection_index, ... port_queue)

Arguments

Argument
definitions

message
The message text (up to 31982 bytes) to be sent to the IBM application
program.

connection_index
The unique identifier of the connection returned by the previous
PORT_CONNECT procedure call.

change_dir
Changes direction of message flow from Send to Receive when set to a
nonzero value.

last
Indicates the last message in a series. When set to a non-zero value, this
argument causes the port server to transmit any untransmitted traffic on the
indicated connection. To deallocate the LU6.2 conversation, use the
disconnect argument.

disconnect
Indicates the last message in a series. When set to a non-zero value, this
argument causes the port server to transmit any untransmitted traffic on the
indicated connection and deallocates the LU6.2 conversation normally.

Argument Data Type Mechanism Prototype Access
message char reference char * passed

connection_index word value short passed

change_dir word value short passed

last word value short passed

disconnect word value short passed

abort word value short passed

port_group word value short passed

port_queue word value short passed
5-10 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

abort
Indicates an error. When set to a non-zero value, this argument causes the port
server to deallocate the LU6.2 conversation abnormally.

port_group
The BEA MessageQ group ID of the generic port server that connects to the
specified target.

port_queue
The BEA MessageQ queue number of the generic port server that connects to
the specified target.

Description This procedure sends a message to the remote IBM application program through a
previously established connection identified by the connection_index argument. By
setting the change_dir, last, disconnect, or abort flags, the direction of message
flow can be changed, buffers at the LU6.2 Port Server can be flushed, or the connection
can be terminated (normally or abnormally).

Returns

Return values

Argument Data Type Mechanism Prototype Access
cond_value longword value long returned

Return Code Description
SS$_NORMAL The procedure is successfully completed.

PAMSLU62_BADINDEX The connection_index provided is invalid.

PAMSLU62_CONABORTDATA The connection has been aborted by the port server
due to a nontranslatable ASCII character in the
body of the message.

PAMSLU62_
CONABORTSTATE

The connection has been aborted by the port server
due to a violation of the selected application
protocol.

PAMSLU62_NOCONNECT No connection has been established.

PAMS__xxxxxxxx Indicates any PAMS status code returned by
pams_put_msg.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide5-11

5 LU6.2 Port Server Application Programming Interface
Example The following is an example of the PORT_SEND procedure call.

 #include stdio
 #include signal
 #include "port_fun.h"
 #include "p_entry.h"

 #define TRUE 1
 #define FALSE 0

 main()
 {

int32 p_status;
 long status;

short send_connection;
.

 .
 .

 status = port_send(argv[2],

send_connection,
TRUE, /* change direction */
FALSE, /* do not FLUSH */
FALSE, /* do not disconnect */

 FALSE, /* do not abort */
 3,

 63);

if (!(status & 1))
 {
 p_status = pams_exit();
 return(p_status);
 }

 .
 .
 .

 }
5-12 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

CHAPTER
6 LU6.2 User Callback
Services

This chapter introduces the LU6.2 User Callback Services (UCB) and contains
detailed descriptions of all LU6.2 User Callback APPC messages alphabetized by
message type. Each description lists the message type code name, the operating
environment in which the message is available for use, and a detailed explanation of
how to define the message area and supply required arguments to send messages using
the BEA MessageQ API or scripts.

Specifically, this chapter addresses the following topics:

t LU6.2 User Callback Overview

t Using the LU6.2 User Callback Interface

t APPC User Callback Messages

LU6.2 User Callback Overview

The simplest way to establish and maintain a connection between SNA and CICS
applications is through the LU6.2 Port Server. The Port Server uses predefined
messages to help you set up and manage the application connections between BEA
MessageQ clients and remote partners.

If the standard LU6.2 port server programming interface does not meet all application
needs, a specialized port server can be developed using the LU6.2 User Callback
Services.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 6-1

6 LU6.2 User Callback Services
The LU6.2 User Callback allows you to engage in APPC conversations between any
OpenVMS application program and one or more CICS transaction programs using
BEA MessageQ pams_put_msg and pams_get_msg callable services. The remote
CICS transaction program appears to the OpenVMS program as a source and recipient
of BEA MessageQ messages.

Note: Unlike applications that use the LU6.2 Port Server, all applications using the
LU6.2 User Callback Services must reside on an OpenVMS platform.

The LU6.2 User Callback uses a set of predefined messages to define and delete LUs,
establish LU6.2 conversations, send and receive data, request and send confirmations,
and process errors.

The APPC verb set consists of 21 BEA MessageQ messages. The verb flow logic is
the same, regardless of whether you are programming in an OpenVMS or IBM
environment.

Some of the messages are both sent by the pams_put_msg call and received by the
pams_get_msg call.

Each message sent or received by the LU6.2 User Callback is prefixed by a header.
Some user callback messages contain no fields other than the header fields. In this
case, the type of message is sufficient to cause the desired action.

Conversations can be initiated either by an OpenVMS program, which is called
inbound conversation allocation; or by a CICS transaction program, which is called
outbound conversation allocation. Each user program can have a maximum of 256
conversations active at any time.

Note: To use the LU6.2 User Callback interface, the OpenVMS programmer should
have general knowledge of APPC and the CICS programmer should have
specific knowledge of CICS APPC. Because the OpenVMS programmer uses
the familiar BEA MessageQ interface to perform the APPC functions, no
knowledge of the DECnet/SNA OpenVMS APPC/LU6.2 Programming
Interface is required.

The tool kit provided with the BEA MessageQ LU6.2 Services contains the
object library (DMQLU62_LIB.OLB), PAMSLU62_MSG message structures, and
the DMQLU62_TEST.C example program.

The following messages are issued by the LU6.2 User Callback:

t LU62_ACTIVATE
6-2 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Using the LU6.2 User Callback Interface
t LU62_ALLOCATE

t LU62_CONFIRMED

t LU62_CONFIRM_RECV

t LU62_CONFIRM_REQ

t LU62_CONFIRM_SEND

t LU62_CONNECTED

t LU62_DEALLOCATE

t LU62_DEALLOCATED

t LU62_DEFINE_LU

t LU62_DEFINE_TP

t LU62_DELETE_LU

t LU62_ERROR

t LU62_INIT

t LU62_OK_TO_SEND

t LU62_RECV_DATA

t LU62_REQ_CONFIRM

t LU62_REQUEST_TO_SEND

t LU62_SEND_CONFIRM

t LU62_SEND_DATA

t LU62_SEND_ERROR

Using the LU6.2 User Callback Interface

The LU6.2 User Callback interface is initialized by sending an LU62_INIT message.
Remote LUs are defined by sending one or more LU62_DEFINE_LU messages. The
User Callback returns the LU62_DEFINE_LU message if the define operation is
successful. It returns an LU62_ERROR message if the define operation is not successful.
A data field in the LU62_DEFINE_LU message indicates whether the LU is to be used
for inbound or outbound conversations.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 6-3

6 LU6.2 User Callback Services
Multithreading Services

BEA MessageQ LU6.2 supports the development of multithread servers (for example,
the LU6.2 port server). Multithreading is based on the use of context information in the
special LU6.2 message header.

The LU62_REQUESTER and LU62_CONV_ID fields in the LU6.2 message header allow
a process to handle multiple concurrent LU6.2 conversations. The LU62_CONV_ID
uniquely identifies each active conversation. The LU62_REQUESTER identifies the
originator of an LU62_DEFINE_LU, LU62_DEFINE_TP, LU62_ALLOCATE, and
LU62_ACTIVATE. If a session terminates abnormally while a conversation is not active,
the LU62_REQUESTER value is returned in the LU62_ERROR message.

Inbound Conversations

An inbound (to CICS) conversation is requested using the LU62_ALLOCATE message.
The User Callback returns one of the following messages:

t An LU62_ERROR message, if the LU62_ALLOCATE message is not successful.

t An LU62_ALLOCATE message, if the LU62_ALLOCATE message is successful.

The LU62_ALLOCATE message returns a unique conversation ID for this
conversation in the LU62_CONV_ID field. This value is returned by the User
Callback for each conversation allocated. The OpenVMS programmer must keep
track of the conversation ID (LU62_CONV_ID) for each active conversation.

After a successful LU62_ALLOCATE message, the remaining message types can be used
to conduct the conversation.

Outbound Conversations

An outbound conversation is requested by CICS transaction programs. For a CICS
transaction program to allocate a conversation with an OpenVMS transaction program,
the OpenVMS transaction program must perform the following operations:

t Send an LU62_DEFINE_LU message to define each remote LU that supports an
outbound conversation
6-4 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Using the LU6.2 User Callback Interface
t Send an LU62_DEFINE_TP message to define each TPN that is requested by a
remote CICS transaction program

t Send an LU62_ACTIVATE message to explicitly activate an SNA session for each
LU that supports an outbound conversation

When a remote CICS transaction program allocates a conversation with one of the
TPNs, the OpenVMS transaction program receives an LU62_CONNECTED message. The
local LU name of the LU that received the connection is returned in the
LU62_CONNECTED_LU_NAME field.

The LU62_CONNECTED message also returns a unique conversation ID for this
conversation in the LU62_CONV_ID field. This value is returned by the User Callback
for each conversation allocated. The OpenVMS programmer must keep track of the
LU62_CONV_ID for each active conversation.

Following receipt of an LU62_CONNECTED message, the remaining message types can
be used to conduct the conversation.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 6-5

6 LU6.2 User Callback Services
Example of User Callback Message Flow

Table 6-1 shows a typical message exchange between a BEA MessageQ client and the
LU6.2 User Callback. The "Messages Sent to User Callback:" column lists the
messages that a BEA MessageQ client sends to the User Callback. The "Messages
Received from User Callback:" column lists the messages that the User Callback sends
back to the BEA MessageQ client in response to messages received from the client.

Table 6-1 BEA MessageQ Client—User Callback Message Exchange
Messages Sent to
User Callback

Messages Received
from User Callback

LU62_INIT

LU62_DEFINE_LU

LU62_DEFINE_LU

LU62_ALLOCATE

LU62_ALLOCATE

LU62_SEND_DATA

.

.

LU62_SEND_DATA

LU62_CONFIRM_RECV
LU62_CONFIRMED

LU62_RECV_DATA

.

.

LU62_RECV_DATA

LU62_CONFIRM_REQ

LU62_DEALLOCATE

LU62_DEALLOCATED

—DONE—
6-6 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages
APPC User Callback Messages

The following sections describe APPC User Callback messages (verbs) individually.
As an example, Figure 6-1 shows the session logic and corresponding OpenVMS
(SNA), IBM (CICS), and BEA MessageQ messages (verbs) used in designing a
distributed transaction.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 6-7

6 LU6.2 User Callback Services
Figure 6-1 BEA MessageQ LU6.2 Session—Typical Verb Sequence

Logic Steps
SNA (Inbound)

Verbs

CICS
(Outbound)

Verbs

BEA MessageQ
Messages

Initialize local LU
parameters

SNALU62$DEFINE_
REMOTE

LU62_DEFINE_LU
LU62_DEFINE_TP

Initialize local LU
parameters

Activate LU-to-LU
session:
-Bind is processed
-TPs are now in
session

SNALU62$ACTIVATE_
SESSION

EXEC CICS
ALLOCATE

LU62_ACTIVATE

Allocate a conversation
over the session:
-ATTACH is sent
-TPs are now in
conversation
-Send or receive data
on conversation as
desired

SNALU62$ALLOCATE EXEC CICS
CONNECT
PROCESS

EXEC CICS SEND,
RECEIVE, and

CONVERSE

LU62_ALLOCATE

LU62_SEND
LU62_CONFIRM_RECV

LU62_RECV_DATA

Deallocate (end) the
conversation

Deactivate the
session

Delete (release) the
local LU parameters

SNALU62$
DEALLOCATE

SNALU62DEACTIVATE_
SESSION

SNALU62$DELETE

EXEC CICS SEND
LAST

EXEC CICS FREE

EXEC CICS RETURN

LU62_ALLOCATE
6-8 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages
LU62_ACTIVATE

When sent to the CICS (IBM) partner, the LU62_ACTIVATE message explicitly
activates an SNA session on the LU indicated in the LU62_ACTIVATE_LOCAL_LU field.

Note: The behavior of the LU62_ACTIVATE message depends on the value of the
LU62_DEFINE_INIT_TYPE field provided when the LU specified in the
message was defined.

For LUs defined with LU62_DEFINE_INIT_TYPE = 1, the LU62_ACTIVATE message
enables the LU for outbound (from CICS) session activation. The LU is reserved at the
gateway, but an SNA session is not started until a transaction program from the remote
system requests one.

For all other values of LU62_DEFINE_INIT_TYPE, the LU62_ACTIVATE message
causes the creation of an SNA session on the specified LU. After a session is activated,
it is available for use by either partner.

When received from the CICS (IBM) partner, the LU62_ACTIVATE message indicates
that a previous request to activate a session has been completed by the interface.

C Message
Structure

struct lu62_activate_struct {
struct {

int32 lu62_requester;
int32 lu62_conv_id;
char lu62_tpn [8];
int16 lu62_msg_len;
} lu62_header_struct;

char lu62_activate_local_lu [8];
char lu62_activate_polarity;
} ;

Message Data
Fields

Header Fields

Field Data Type Description
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide 6-9

6 LU6.2 User Callback Services
Arguments

 LU62_REQUESTER longword Identifies the originator of an
LU62_ACTIVATE request. This field is
returned to the user with the status of the
request. A copy of the request is returned to the
user if the request is successful. The
LU62_ERROR message is returned to the user
if the request is unsuccessful. This value is
ignored by the User Callback Interface. This
field is intended for use in building
applications that handle multiple concurrent
conversations. In the event of an abnormal
session termination while a conversation is not
active, this value is returned on the
LU62_ERROR message that contains the
PAMSLU62_SESSFAILED error code
(described in Appendix A, “LU6.2 User
Callback Interface Logical Names and Error
Codes.”).

Message Fields

Field Data Type Description
 LU62_ACTIVATE_LOCAL_LU text 8 char The LU name identifying the session to be

activated. The LU62_DEFINE_SESSION
field must have been explicitly defined in the
LU62_DEFINE_LU message that defined the
LU name.

 LU62_ACTIVATE_POLARITY byte Indicates the contention status for the
conversation. Valid values are:

0—OpenVMS application is the winner in a
contention situation

1—OpenVMS application must bid for access
in a contention situation

Note: If a session is activated with the
LU62_ACTIVATE message,
subsequent LU62_ALLOCATE
messages must specify the same value
for polarity. In other words, the values
of LU62_ACTIVATE_POLARITY
and LU62_ALLOCATE_POLARITY
must be the same.
6-10 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages
Argument pams_put_msg Format pams_get_msg Format
Target UCB Client

Source Client UCB

Class MSG_CLASS_APPC UCB_CLASS_APPC

Type MSG_TYPE_LU62_ACTIVATE MSG_TYPE_LU62_ACTIVATE
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide6-11

6 LU6.2 User Callback Services
LU62_ALLOCATE

When sent to the CICS (IBM) partner, the LU62_ALLOCATE message requests an APPC
conversation with the CICS transaction program. The conversation uses LUs defined
in the 8-byte LU62_ALLOCATE_LOCAL_LU field and in the 8-byte LU62_TPN field,
respectively.

The TPN must be in EBCDIC data format. To translate to this format, use
LIB$ASC_TO_EBC.

The TPN must be accessible through the specified LU, which means that the local LU
name must already be successfully defined using the LU62_DEFINE_LU message.

When received from the CICS (IBM) partner, the LU62_ALLOCATE message indicates
that a previous request to allocate conversation completed successfully. The
LU62_CONV_ID field contains the unique conversation ID used to manage this
conversation. The LU62_REQUESTER field returns whatever value was placed there in
the LU62_ALLOCATE message sent to the User Callback. This provides a way to
manage multiple, concurrent conversations.

C Message
Structure

struct lu62_alloc {
struct {

int32 lu62_requester;
int32 lu62_conv_id;
char lu62_tpn [8];
int16 lu62_msg_len;
} lu62_header_struct;

char lu62_allocate_local_lu [8];
char lu62_allocate_username [10];
char lu62_allocate_password [10];
char lu62_allocate_profile [10];
char lu62_allocate_sync_level;
char lu62_allocate_polarity;
} ;

Message Data
Fields

Header Fields

Field Data Type Description
6-12 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages

d

 LU62_REQUESTER longword Identifies the originator of an
LU62_ALLOCATE request. This field is
returned to the user with the status of the
request. A copy of the request is returned to the
user if the request is successful. The
LU62_ERROR message is returned to the user
if the request is unsuccessful. This value is
ignored by the User Callback interface. This
field is intended for use in building
applications that handle multiple concurrent
conversations. In the event of an abnormal
session termination while a conversation is not
active, this value is returned on the
LU62_ERROR message that contains the
PAMSLU62_SESSFAILED error code. (Error
codes are described in Appendix A, “LU6.2
User Callback Interface Logical Names and
Error Codes.”)

 LU62_TPN text 8 Identifies the TPN with whom a user wants a
conversation. This value must be in EBCDIC
data format.

Message Fields

Field Data Type Description
 LU62_ALLOCATE_LOCAL_LU text 8 The LU name identifying the session to be

used for the requested conversation.

 LU62_ALLOCATE_USERNAME text 10 The ASCII value of the user ID to be presente
to the remote application for authorization.

 LU62_ALLOCATE_PASSWORD text 10 The ASCII value of the password to be
presented to the remote application for
authorization.

 LU62_ALLOCATE_PROFILE text 10 The ASCII value of the profile to be presented
to the remote application for authorization.

 LU62_ALLOCATE_SYNC_LEVEL byte Indicates the permitted sync-level on the
conversation if DMQLU62$SELECT_SYNC is
defined. Valid values are:

0—SYNC_LEVEL=NONE
1—SYNC_LEVEL=CONFIRM
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide6-13

6 LU6.2 User Callback Services
Arguments

 LU62_ALLOCATE_POLARITY byte Indicates the status for the conversation. Valid
values are:

0—OpenVMS application is the
winner in a contention situation
1—OpenVMS application must bid
for access in a contention situation

Note: If a session is activated with the
LU62_ACTIVATE message, then
subsequent LU62_ALLOCATE
messages must specify the same value
for polarity. In other words, the value
of LU62_ALLOCATE_POLARITY
and LU62_ACTIVATE_POLARITY
must be the same.

Argument pams_put_msg Format pams_get_msg Format
Target UCB Client

Source Client UCB

Class MSG_CLAS_APPC UCB_CLAS_APPC

Type MSG_TYPE_LU62_ALLOCATE MSG_TYPE_LU62_ALLOCATE
6-14 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages
LU62_CONFIRMED

The LU62_CONFIRMED message indicates that the remote partner on the conversation
specified in the LU62_CONV_ID field has issued a CONFIRM in response to a CONFIRM
request from the OpenVMS program. The LU62_CONFIRMED message has the header
field only.

C Message
Structure

struct lu62_confirmed_struct {
struct {

int32 lu62_requester;
int32 lu62_conv_id;
char lu62_tpn [8];
int16 lu62_msg_len;
} lu62_header_struct;

} ;

Message Data
Fields

Arguments None

Header Fields

Field Data Type Description
 LU62_CONV_ID longword Identifies the conversation involved in the

request.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide6-15

6 LU6.2 User Callback Services
LU62_CONFIRM_RECV

The LU62_CONFIRM_RECV message sends a PREPARE_TO_RECEIVE,
TYPE=SYNC_LEVEL indicator on the conversation specified in the message.

This message is typically used to reverse the direction of the conversation. On
successful issue of this message and receipt of an LU62_CONFIRMED message from the
User Callback, an OpenVMS program can receive data from the CICS transaction
program.

Note: The behavior of this message is affected by disabling
SYNC_LEVEL=CONFIRM with the logical
DMQLU62$DISABLE_CONFIRM. The logical must be set before program
activation.

If SYNC_LEVEL=CONFIRM is disabled, then the LU62_CONFIRMED message
indicates that the OpenVMS program is now in a receive state.

C Message
Structure

struct lu62_confirm_recv_struct {
struct {

int32 lu62_requester;
int32 lu62_conv_id;
char lu62_tpn [8];
int16 lu62_msg_len;
} lu62_header_struct;

} ;

Message Data
Fields

Arguments None

Header Fields

Field Data Type Description
 LU62_CONV_ID longword Identifies the conversation involved in the

request.
6-16 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages
LU62_CONFIRM_REQ

The LU62_CONFIRM_REQ message indicates that the remote partner on the
conversation specified in the LU62_CONV_ID field has issued a CONFIRM. The
LU62_CONFIRM_REQ message has the header field only.

C Message
Structure

struct lu62_confirm_req_struct {
struct {

int32 lu62_requester;
int32 lu62_conv_id;
char lu62_tpn [8];
int16 lu62_msg_len;
} lu62_header_struct;

} ;

Message Data
Fields

Arguments None

Header Fields

Field Data Type Description
 LU62_CONV_ID longword Identifies the conversation involved in the

request.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide6-17

6 LU6.2 User Callback Services
LU62_CONFIRM_SEND

The LU62_CONFIRM_SEND message indicates that the remote partner on the
conversation specified in the LU62_CONV_ID field has issued a
PREPARE_TO_RECEIVE, TYPE=SYNC_LEVEL, with the current SYNC_LEVEL set to
CONFIRM.

The OpenVMS program can now issue a CONFIRM by sending an LU62_CONFIRM
message on the specified conversation. Sending the CONFIRM places the conversation
in the send state: the OpenVMS user program can then send data (using the
LU62_SEND_DATA message) on this conversation.

C Message
Structure

struct lu62_send_confirm_struct {
struct {

int32 lu62_requester;
int32 lu62_conv_id;
char lu62_tpn [8];
int16 lu62_msg_len;
} lu62_header_struct;

} ;

Message Data
Fields

Arguments None

Header Fields

Field Data Type Description
 LU62_CONV_ID longword Identifies the conversation involved in the

request.
6-18 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages
LU62_CONNECTED

When received, the LU62_CONNECTED message indicates that a remote LU6.2 partner
has allocated a conversation with one of the TPNs defined with a previously issued
LU62_DEFINE_TP message. The LU62_REQUESTER field in the header of the
LU62_CONNECT message is provided in the LU62_DEFINE_TP message for the TPN
that was attached. The LU62_CONNECT_LOCAL_LU field contains the local LU name for
the LU that has received the connection.

C Message
Structure

struct lu62_connected_struct {
struct {

int32 lu62_requester;
int32 lu62_conv_id;
char lu62_tpn [8];
int16 lu62_msg_len;
} lu62_header_struct;
char lu62_connected_lu_name [8];

} ;

Message Data
Fields

Arguments

Header Fields

Field Data Type Description
 LU62_CONV_ID longword Identifies the conversation

involved in the request.

Message Fields

Field Data Type Description
 LU62_CONNECTED_LU_NAME text 8 The ASCII value of the name of

the LU that received the
connection.

Argument pams_put_msg Format pams_get_msg Format
Target NA Client

Source NA UCB

Class NA APPC

Type NA MSG_TYPE_LU62_CONNECTED
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide6-19

6 LU6.2 User Callback Services
LU62_DEALLOCATE

The LU62_DEALLOCATE message sends a DEALLOCATE to a remote partner in the
conversation.

C Message
Structure

struct lu62_deallocate_struct {
struct {

int32 lu62_requester;
int32 lu62_conv_id;
char lu62_tpn [8];
int16 lu62_msg_len;
} lu62_header_struct;
int16 lu62_abend_flag;

} ;

Message Data
Fields

Arguments

Header Fields

Field Data Type Description
 LU62_CONV_ID longword Identifies the conversation involved in the

request.

Message Fields

Field Data Type Description
 LU62_ABEND_FLAG word If LU62_ABEND_FLAG= -1, this

message sends a DEALLOCATE,
TYPE=ABEND_PROG on the conversation
specified in the LU62_CONV_ID field in
the message. This causes the conversation
to terminate abnormally. All other values
for LU62_ABEND_FLAG cause this
message to send a DEALLOCATE,
TYPE=SYNC_LEVEL.

Argument pams_put_msg Format pams_get_msg
Format

Target Client NA

Source UCB NA

Class APPC NA

Type MSG_TYPE_LU62_DEALLOCATED NA
6-20 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages
LU62_DEALLOCATED

The LU62_DEALLOCATED message indicates that the remote partner on the
conversation specified in the LU62_CONV_ID field has deallocated normally. The
LU62_DEALLOCATED message has the header field only.

C Message
Structure

struct lu62_deallocated_struct {
struct {

int32 lu62_requester;
int32 lu62_conv_id;
char lu62_tpn [8];
int16 lu62_msg_len;
} lu62_header_struct;

} ;

Message Data
Fields

Arguments None.

See Also LU62_DEALLOCATE

Header Fields

Field Data Type Description
 LU62_CONV_ID longword Identifies the conversation involved in the

request.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide6-21

6 LU6.2 User Callback Services
LU62_DEFINE_LU

When sent to the CICS (IBM) partner, the LU62_DEFINE_LU message defines a remote
SNA resource. Resources must be defined using the LU62_DEFINE_LU message before
they can be used to allocate conversations.

When received from the CICS (IBM) partner, the LU62_DEFINE_LU message indicates
that a previous request to define the LU, specified in the 8-byte
LU62_DEFINE_LOCAL_LU field, completed successfully.

C Message
Structure

struct lu62_define_struct {
struct {

int32 lu62_requester;
int32 lu62_conv_id;
char lu62_tpn [8];
int16 lu62_msg_len;
} lu62_header_struct;

char lu62_define_local_lu [8];
char lu62_define_lu_password [8];
char lu62_define_gateway [6];
char lu62_define_accname [8];
char lu62_define_circuit [5];
int16 lu62_define_session;
char lu62_define_applid [8];
char lu62_define_logmode [8];
char lu62_define_user_data [128];
int16 lu62_define_init_type;
} ;

Message Data
Fields

Header Fields

Field Data
Type

Description
6-22 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages

e

e

 LU62_REQUESTER longword This field identifies the originator of an
LU62_DEFINE_LU request. The field is returned to the
user with the status of the request. A copy of the request
is returned to the user if the request is successful. The
LU62_ERROR message is returned to the user if the
request is unsuccessful. This value is ignored by the User
Callback Interface. This field is intended for use in
building applications that handle multiple concurrent
conversations. In the event of an abnormal session
termination while a conversation is not active, this value
is returned on the LU62_ERROR message that contains
the PAMSLU62_SESSFAILED error code. (Error codes
are described in Appendix A, “LU6.2 User Callback
Interface Logical Names and Error Codes.”)

 LU62_CONV_ID longword This field identifies the conversation involved in the
request.

Message Fields

Field Data
Type

Description

 LU62_DEFINE_LOCAL_LU text 8 The ASCII value of the name specified by the user for th
specified remote LU.

 LU62_DEFINE_LU_PASSWORD text 8 The ASCII value of the password for the remote LU.

 LU62_DEFINE_GATEWAY text 6 The ASCII value of the DECnet/SNA gateway through
which a specified LU is to be accessed.

 LU62_DEFINE_ACCNAME text 8 The ASCII value of the specified gateway that defines th
remote LU to be accessed. If this field is specified, the
following fields can be optional:

LU62_DEFINE_CIRCUIT
LU62_DEFINE_SESSION
LU62_DEFINE_APPLID
LU62_DEFINE_LOGMODE
LU62_DEFINE_USER_DATA

The values specified in these fields are site-specific and
must be obtained from the person responsible for
DECnet/SNA gateway administration at the user site.

 LU62_DEFINE_CIRCUIT text 5 The ASCII value of the circuit on the specified gateway
that provides the physical connection over which the
remote LU is to be accessed.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide6-23

6 LU6.2 User Callback Services
Arguments

 LU62_DEFINE_SESSION word The DECnet/SNA gateway session address number
(1-255) when accessing the specified remote LU. This
field is required for all LUs that are explicitly activated
by an LU62_ACTIVATE message.

 LU62_DEFINE_APPLID text 8 The ASCII value of the VTAM application that owns the
specified remote LU.

 LU62_DEFINE_LOGMODE text 8 The ASCII value of the VTAM LOGON MODE table
entry that accesses the specified remote LU.

 LU62_DEFINE_USER_DATA text 128 Up to 128 bytes of variable data to be passed when
accessing the remote LU. This data is not interpreted by
the User Callback; it must be presented in the format
expected by the remote application.

 LU62_DEFINE_INIT_TYPE word A short integer indicating whether the LU is used for
inbound or outbound session activation. Valid values are:
0—INBOUND (to CICS)
1—OUTBOUND (from CICS)

Argument pams_put_msg Format pams_get_msg Format
Target UCB Client

Source Client UCB

Class MSG_CLAS_APPC UCB_CLAS_APPC

Type MSG_TYPE_LU62_DEFINE_LU MSG_TYPE_LU62_DEFINE_LU
6-24 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages
LU62_DEFINE_TP

When sent to the CICS (IBM) partner, the LU62_DEFINE_TP message defines a TPN
for use in accepting outbound conversation allocation requests from CICS transaction
programs. The value entered in the LU62_REQUESTER field is returned in the
LU62_CONNECTED message (in the same field) when a remote CICS transaction
program is allocated using this TPN. This provides a way to distinguish between
allocated TPNs when multiple TPNs are defined.

When received from the CICS (IBM) partner, the LU62_DEFINE_TP message indicates
that a previous request to define the TPN has completed successfully.

C Message
Structure

struct lu62_define_tp_struct {
struct {

int32 lu62_requester;
int32 lu62_conv_id;
char lu62_tpn [8];
int16 lu62_msg_len;
} lu62_header_struct;

char lu62_define_tp_tpn [8];
} ;

Message Data
Fields

Header Fields

Field Data Type Description
 LU62_REQUESTER longword This field identifies the originator of an

LU62_DEFINE_TP request. The field is returned to the
user with the status of the request. If the request is
successful, the user receives a copy of the request. If the
request is unsuccessful, the LU62_ERROR message is
returned to the user. This value is ignored by the User
Callback interface. This field is intended for use in
building applications that handle multiple concurrent
conversations. If the event is terminated abnormally
while a conversation is not active, this value is returned
in the LU62_ERROR message that contains the
PAMSLU62_SESSFAILED error code. (Error codes are
described in Appendix A, “LU6.2 User Callback
Interface Logical Names and Error Codes.”)

Message Fields

Field Data Type Description
 LU62_DEFINE_TP_TPN text 8 The TPN
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide6-25

6 LU6.2 User Callback Services
Arguments

Argument pams_put_msg Format pams_get_msg Format
Target UCB Client

Source Client UCB

Class MSG_CLAS_APPC UCB_CLAS_APPC

Type MSG_TYPE_LU62_DEFINE_TP MSG_TYPE_LU62_DEFINE_TP
6-26 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages
LU62_DELETE_LU

When sent to the CICS (IBM) partner, the LU62_DELETE_LU message deletes the LU
identified in the 8-byte LU62_DELETE_LOCAL_LU field. This message terminates any
SNA session active on the specified LU and unbinds the SNA session, freeing up the
associated gateway.

If the message is successful, the LU62_DELETE_LU message is returned. If the message
is unsuccessful, the LU62_ERROR message is returned.

It is not necessary to send an LU62_DELETE_LU message unless you want to explicitly
unbind the SNA session. A previously established session is available to the user
program for reuse in establishing conversations with the specified LU following a
successful LU62_DEALLOCATED message.

Note: An LU62_DELETE_LU message sent while a conversation is active on the LU
specified for deletion causes the DECnet/SNA APPC/LU6.2 interface to enter
a Wait state until the remote transaction program deallocates or unbinds the
SNA session. This blocks the user process until the LU62_DELETE_LU
operation is complete.

When received from the CICS (IBM) partner, the LU62_DELETE_LU message indicates
that the specified LU has been successfully deleted.

C Message
Structure

struct lu62_delete_struct {
struct {

int32 lu62_requester;
int32 lu62_conv_id;
char lu62_tpn [8];
int16 lu62_msg_len;
} lu62_header_struct;

char lu62_delete_local_lu [8];
} ;

Message Data
Fields Header Fields

Field Data Type Description
 LU62_CONV_ID longword Identifies the conversation involved

in the request.

Message Fields

Field Data Type Description
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide6-27

6 LU6.2 User Callback Services
Arguments

 LU62_DELETE_LOCAL_LU text 8 The ASCII value of the name
specified by the user for the specified
remote LU.

Argument pams_put_msg Format pams_get_msg Format
Target UCB Client

Source Client UCB

Class MSG_CLAS_APPC UCB_CLAS_APPC

Type MSG_TYPE_LU62_DELETE_LU MSG_TYPE_LU62_DELETE_LU
6-28 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages
LU62_ERROR

The LU62_ERROR message indicates that the remote partner on the conversation
specified in the LU62_CONV_ID field has signaled an error or that the User
CallbackUser Callback encountered a fatal error on the specified conversation and
deallocated. The LU62_ERROR field contains the returned status value. The exact
circumstances can be determined from the LU62_ERROR_CODE field values.

C Message
Structure

struct lu62_error_struct {
struct {

int32 lu62_requester;
int32 lu62_conv_id;
char lu62_tpn [8];
int16 lu62_msg_len;
} lu62_header_struct;

int32 lu62_error_code;
int32 lu62_error_vector [16];
} ;
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide6-29

6 LU6.2 User Callback Services
Message Data
Fields Header Fields

Field Data Type Description
 LU62_CONV_ID longword Identifies the conversation involved in

the request.

Message Fields

Field Data Type Description
 LU62_ERROR_CODE longword Contains the primary error received from

the User Callback on an LU62_ERROR
message. The error codes are:

t SNALU62$_PRERTR,
SNALU62$_PRERNTR, and
SNALU62$_PRERPU

Each of these values indicates
that the remote process has
signaled an error. The receipt of
these LU62_ERROR_CODE values
changes the current state to
RECEIVE.

t PAMSLU62_TRUNCATED

This message indicates that the
buffer is too small to contain the
received message. This value
does not change the current
state.

All other errors are treated as fatal by the
User Callback and result in the
immediate deallocation of the
conversation on which the error was
received.

 LU62_ERROR_VECTOR longword Contains the secondary error
information, if any. This is a 16-element
longword array. The
LU62_ERROR_VECTOR array contains
the error vector returned (if applicable).
This can be processed by the user or
displayed directly with the
SYS$PUTMSG system service.
6-30 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages
Arguments
Argument pams_put_msg Format pams_get_msg Format
Target NA Client

Source NA UCB

Class NA UCB_CLAS_APPC

Type NA MSG_TYPE_LU62_ALLOCATE
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide6-31

6 LU6.2 User Callback Services
LU62_INIT

The LU62_INIT message initializes the LU6.2 User Callback. Logical names for
tracing and buffer allocation are translated when the LU62_INIT message is processed.
The LU62_INIT message has the header field only.

C Message
Structure

struct lu62_init {
struct {

int32 lu62_requester;
int32 lu62_conv_id;
char lu62_tpn [8];
int16 lu62_msg_len;
} lu62_header_struct;

};

Message Data
Fields

Arguments None.

Header Fields

Field Data Type Description
 LU62_CONV_ID longword Identifies the conversation involved in

the request.
6-32 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages
LU62_OK_TO_SEND

The LU62_OK_TO_SEND message indicates that the remote partner on the conversation
specified in the LU62_CONV_ID field has entered the receive state in response to a
REQUEST_TO_SEND from the OpenVMS transaction program. The OpenVMS
transaction is now in the send state and can send the data.

C Message
Structure

struct lu62_ok_to_send_struct {
struct {

int32 lu62_requester;
int32 lu62_conv_id;
char lu62_tpn [8];
int16 lu62_msg_len;
} lu62_header_struct;

} ;

Message Data
Fields

Arguments None

Header Fields

Field Data Type Description
 LU62_CONV_ID longword Identifies the conversation involved in the

request.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide6-33

6 LU6.2 User Callback Services
LU62_RECV_DATA

The LU62_RECV_DATA message contains a data block received on the conversation
specified in the LU62_CONV_ID field.

C Message
Structure

struct lu62_recv_data_struct {
struct {

int32 lu62_requester;
int32 lu62_conv_id;
char lu62_tpn [8];
int16 lu62_msg_len;
} lu62_header_struct;

char lu62_data_message [31982];
} ;

Message Data
Fields

Arguments

Header Fields

Field Data Type Description
 LU62_CONV_ID longword Identifies the conversation involved in

the request.

 LU62_MSG_LEN word Contains the length of the data block that
was received.

Message Fields

Field Data Type Description
 LU62_DATA_MESSAGE text 1-31982 Contains the data block received. The

length of the block is contained in the
LU62_MSG_LEN field in the message
header. The message size is limited to
31,982 bytes, which is 32,000 (the
maximum size of User Callback buffers)
minus 18 (the size of the header).

Argument pams_put_msg Format pams_get_msg Format
Target UCB Client

Source Client UCB

Class MSG_CLAS_APPC UCB_CLAS_APPC

Type MSG_TYPE_LU62_RECV_DATA MSG_TYPE_LU62_RECV_DATA
6-34 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages
LU62_REQ_CONFIRM

The LU62_REQ_CONFIRM message issues a CONFIRM on the conversation specified in
the LU62_CONV_ID field contained in the message, provided that
SYNC_LEVEL=CONFIRM processing is not disabled.

This message is discarded if SYNC_LEVEL=CONFIRM processing has been disabled
using the DMQLU62$DISABLE_CONFIRM logical name.

C Message
Structure

struct lu62_req_confirm_struct {
struct {

int32 lu62_requester;
int32 lu62_conv_id;
char lu62_tpn [8];
int16 lu62_msg_len;
} lu62_header_struct;

} ;

Message Data
Fields

Arguments None.

Header Fields

Field Data Type Description
 LU62_CONV_ID longword Identifies the conversation involved in the

request.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide6-35

6 LU6.2 User Callback Services
LU62_REQ_TO_SEND

When sent to the CICS (IBM) partner, the LU62_REQ_TO_SEND message issues a
REQUEST_TO_SEND on the conversation specified in the LU62_CONV_ID field in the
message.

When received from the CICS (IBM) partner, the LU62_REQUEST_TO_SEND message
indicates that the remote partner on the conversation has issued a REQUEST_TO_SEND.

C Message
Structure

struct lu62_req_confirm_struct {
struct {

int32 lu62_requester;
int32 lu62_conv_id;
char lu62_tpn [8];
int16 lu62_msg_len;
} lu62_header_struct;

} ;

Message Data
Fields

Arguments None

Header Fields

Field Data Type Description
 LU62_CONV_ID longword Identifies the conversation involved in the

request.
6-36 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages
LU62_SEND_CONFIRM

The LU62_SEND_CONFIRM message sends a CONFIRM on the conversation specified in
the LU62_CONV_ID field.

C Message
Structure

struct lu62_send_confirm_struct {
struct {

int32 lu62_requester;
int32 lu62_conv_id;
char lu62_tpn [8];
int16 lu62_msg_len;
} lu62_header_struct;

} ;

Message Data
Fields

Arguments None

Header Fields

Field Data Type Description
 LU62_CONV_ID longword Identifies the conversation involved in the

request.
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide6-37

6 LU6.2 User Callback Services
LU62_SEND_DATA

The LU62_SEND_DATA message sends the data block contained in the message on the
conversation specified in the LU62_CONV_ID field.

C Message
Structure

struct lu62_send_data_struct {
struct {

int32 lu62_requester;
int32 lu62_conv_id;
char lu62_tpn [8];
int16 lu62_msg_len;
} lu62_header_struct;

char lu62_data_message [31982];
} ;

Message Data
Fields

Arguments None.

Header Fields

Field Data Type Description
 LU62_CONV_ID longword Identifies the conversation involved in

the request.

 LU62_MSG_LEN word Contains the length of the data block
that was sent.

Message Fields

Field Data Type Description
 LU62_DATA_MESSAGE text 1-31982 Contains the data block to send. The

message size is limited to 31,982 bytes,
which is 32,000 bytes (UCB buffer
maximum size) minus 18 bytes (the
header).
6-38 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPC User Callback Messages
LU62_SEND_ERROR

The LU62_SEND_ERROR message sends a SEND_ERROR on the conversation specified
in the message. This notifies the remote program that an error has occurred and places
the conversation in a send state.

C Message
Structure

struct lu62_send_error_struct {
struct {

int32 lu62_requester;
int32 lu62_conv_id;
char lu62_tpn [8];
int16 lu62_msg_len;
} lu62_header_struct;

int32 lu62_error_code;
} ;

Message Data
Fields

Arguments

Header Fields

Field Data Type Description
 LU62_CONV_ID longword Identifies the conversation involved in

the request.

Message Fields

Field Data Type Description
 LU62_ERROR_CODE longword Contains the primary error received

from the User Callback on an
LU62_ERROR message.

Argument pams_put_msg Format pams_get_msg Format
Target UCB NA

Source Client NA

Class MSG_CLAS_APPC NA

Type MSG_TYPE_LU62_SEND_ERROR NA
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide6-39

6 LU6.2 User Callback Services
6-40 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPENDIX
A LU6.2 User Callback
Interface Logical
Names and Error Codes

This appendix describes the logical names and error codes used in the LU6.2 User
Callback Interface.

User Callback Logical Names

Table A-1 describes the logical names that affect the behavior of the LU6.2 User
Callback, upon which the LU6.2 Port Server is based.

Table A-1 User Callback Support Logical Names
Use This Logical Name . . . To . . .
 DMQLU62$BUFFER_SIZE Set the maximum size of buffers in the private buffer pool used by BEA

MessageQ applications or set the buffer size to the actual expected size
of the load. You can set the buffer size equal to the largest user data
message plus 18 bytes, the number of bytes required for the buffer
header. The minimum value is 100. The maximum value is 32,000 bytes.
If this logical name is not defined, the buffer size is set equal to the size
of the largest buffers defined in DMQ$INIT.TXT.
BEA MessageQ LU6.2 Services for OpenVMS User’s GuideA-1

A LU6.2 User Callback Interface Logical Names and Error Codes
Linking a User-Written Port Server

To link a user-written port server with the LU6.2 User Callback, include the
DMQLU62_LIB and MSG.LIB libraries in the following order, with the specified linker
options files:

 DMQLU62$BUFFER_COUNT Set the size of the BEA MessageQ LU6.2 Services private buffer pool.
Set the number of buffers equal to the number of LUs defined in the
LU_TABLE configuration file plus 4. The minimum value is 20. The
maximum value is 500. If this logical name is not defined, the buffer
count is set equal to the number of large buffers defined in
DMQ$INIT.TXT. The buffer pool must be large enough to hold all
messages received from a remote IBM partner in a single burst or chain.
For example:

If the remote IBM partner sends 100 messages in a response to a query
from the BEA MessageQ client, DMQLU62$BUFFER_COUNT must be at
least 100. If multiple active conversations receive traffic in large bursts,
the value of DMQLU62$BUFFER_COUNT must be increased accordingly.

The BEA MessageQ LU6.2 Services Port Server logs a
PAMSLU62_NOBUFFER error if DMQLU62$BUFFER_COUNT is
inadequate. (For a description of PAMSLU62_NOBUFFER, see
Table A-2.)

 DMQLU62$SELECT_SYNC Define this logical name as any arbitrary value that enables selectable
SYNC_LEVEL processing and allows you to set SYNC_LEVEL to 0 or 1
for each target in the TARGET_TABLE configuration file. Enabling
DMQLU62$SELECT_SYNC overrides the disabling of CONFIRM by
defining DMQLU62$DISABLE_CONFIRM. This value is not interpreted
or otherwise used by the LU6.2 User Callback.

 DMQLU62$DISABLE_CONFIRM Explicitly disable CONFIRM processing. Disabling CONFIRM processing
causes all conversations to operate at SYNC_LEVEL=NONE.
The LU62_REQ_CONFIRM message is ignored by the User Callback if
CONFIRM processing is disabled. Note that
DMQLU62$DISABLE_CONFIRM is ignored if
DMQLU62$SELECT_SYNC is defined. This value is not interpreted or
otherwise used by the LU6.2 User Callback.

 DMQLU62$TRACE When defined as a valid OpenVMS file specification, provides a trace of
LU6.2 User Callback activity. Trace output shows each routine entered
and the status returned by each APPC routine.
A-2 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Error Handling
link /exe:user_prog.exe user_prog.obj,-
 dmqlu62$dir:dmqlu62_message_pointer.obj,-
 dmqlu62$dir:dmqlu62_lib/lib/inc=(dmqlu62_user_callback),-
 dmq$lib:msg/lib,-
 dmq$lib:dmq$olb/opt,-
 dmqlu62$dir:snalu62/opt

Error Handling

The LU6.2 User Callback can return an error in two ways:

t As a return status value from a pams_put_msg or pams_get_msg call

t Through the LU62_ERROR message

Table A-2 describes the error codes specific to the User Callback and the method by
which they are delivered to the user.

Table A-2 User Callback Error Codes
Error Code Delivery Meaning
 PAMSLU62_EXCEEDLUMAX Message The number of active conversations is already at its

maximum limit (256); no additional conversations
can be allocated.

 PAMSLU62_NOBUFFER Status The User Callback was unable to allocate a buffer
from the private buffer pool. If this error occurs,
increase the size of the buffer pool by defining the
DMQLU62$BUFFER_COUNT logical name or, if it
is already defined, by increasing the value.

 PAMSLU62_UNEXPECTED Message An unexpected value for WHAT_RECEIVED was
returned on an SNALU62$RECEIVE_IMMEDIATE
call. This generally indicates that a problem with
the network has resulted in loss or truncation of a
data message.

 PAMSLU62_SESSFAILED Message A previously activated session has been
disconnected while no conversation was active.
The LU62_REQUESTER field contains the value
passed on the LU62_ACTIVATE message that
activated the failed session.
BEA MessageQ LU6.2 Services for OpenVMS User’s GuideA-3

A LU6.2 User Callback Interface Logical Names and Error Codes
 PAMSLU62_BADMSGTYPE Message A message sent to the User Callback has an invalid
message type.

 PAMSLU62_NOSUCHCONV Message The value in the LU62_CONV_ID field was
invalid.

 PAMSLU62_TRUNCATED Message The previous LU62_RECV_DATA message on the
conversation specified in the LU62_CONV_ID
field was truncated. This error occurs because the
size of the buffers in the private buffer pool is
insufficient. Increase the size of the private buffers
by defining the DMQLU62$BUFFER_SIZE logical
name or, if it is already defined, by increasing the
value.
A-4 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPENDIX
B Notes on IMS

The LU6.2 User Callback has been tested with the IMS LU6.1 Adapter for LU6.2
applications. The IMS LU6.1 Adapter is a VTAM program that provides bidirectional
translation between the LU6.1 protocol used by the IMS Inter-System
Communications (ISC) facility and the LU6.2 procotol used by APPC. A number of
restrictions apply to the use of APPC verbs with the IMS LU6.1 Adapter. These
restrictions are described in the IMS LU6.1 Adapter software documentation.

Users who want to communicate with IMS using the LU6.2 User Callback should take
note of the following additional restrictions:

t Synchronization level

The IMS LU6.1 Adapter does not provide direct support for
SYNC_LEVEL=CONFIRM. When operating at SYNC_LEVEL=CONFIRM, confirmation
from the IMS LU6.1 Adapter indicates that the transaction has been accepted by
the IMS queue manager, not that the transaction has been processed by the target
queue.

t Error handling

The IMS LU6.1 Adapter does not support normal methods of signaling errors
through APPC. Programmers developing applications that require this capability
must design their applications accordingly.

t Transaction program names

The IMS LU6.1 Adapter uses a constant TPN (IMSASYNC) when attaching
remote LU6.2 applications. This means that the TPN cannot be used to
distinguish inbound (from the IBM system) conversations from each other.
Programmers developing applications that require this capability must design
their applications accordingly.

t Session establishment
BEA MessageQ LU6.2 Services for OpenVMS User’s GuideB-1

B Notes on IMS
The IMS LU6.1 Adapter supports establishment of an SNA session on behalf of
IMS, but only if the IMS /OPNDST command is issued to request the session.
Applications can eliminate this requirement by having the LU6.2 User Callback
request the session. To do this, set the LU62_DEFINE_INIT_TYPE field in the
LU62_DEFINE_LU message for the LU that is to accept incoming conversation to
0 (zero). The session is then established by sending an LU62_ACTIVATE message
for the LU. Following activation of the session, the IMS LU6.1 Adapter can use
the session.

Note: Prior to activating the session, at least one valid local TPN must be established
by sending an LU62_DEFINE_TP message to the User Callback. Failure to
establish valid TPNs prior to session activation results in allocation failures in
the IMS LU6.1 Adapter.
B-2 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPENDIX
C Examples of BEA
MessageQ LU6.2
Inbound and
Outbound Applications

The following sections provide sample Inbound and Outbound applications that
exchange data with an APPC application in an SNA network. These sample
applications are created using the tables described in Chapter 2, “Developing
Applications Using BEA MessageQ LU6.2 Services.”

Sample Inbound Application

-
/*
** Copyright (c) BEA Systems, Inc., 1999
** All Rights Reserved.
**
** This software is furnished under a license and may be used and copied
** only in accordance with the terms of such license and with the
** inclusion of the above copyright notice. This software or any other
** copies thereof may not be provided or otherwise made available to any
** other person. No title to and ownership of the software is hereby
** transferred.
BEA MessageQ LU6.2 Services for OpenVMS User’s GuideC-1

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications
**
** The information in this software is subject to change without notice
** and should not be construed as a commitment by BEA Systems, Inc.
**
**
** FILE: inbound.c
**
** DESCRIPTION: Illustrates the use of BEA MessageQ LU6.2 Services
** to implement an application that activates an
** Inbound application and exchanges data with an
** APPC application in an SNA network.
**
** REQUIREMENTS: The queue named "LU62_SERVER" must
** be defined in your init file and must translate
** to the group and queue of the DMQ LU6.2 Port Server
**
*/

/** **/
/** BEA MessageQ include files **/
/** **/

#include <p_entry.h>
#include <p_return.h>
#include <p_symbol.h>
#include <p_typecl.h>
#include <pamslu62_server_msg.h>

/** **/
/** C library include files **/
/** **/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/*
** Set a max user message size
*/

#define MAX_USER_MESSAGE_SIZE 4096

/*
** Define values for states: use an enumerated type here
** to make sure each value is unique
*/
 typedef enum {
 STATE_UNDEFINED,
C-2 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample Inbound Application
 STATE_CONNECTING,
 STATE_WAIT_CONNECT,
 STATE_WAIT_RESPONSE,
 STATE_WAIT_COMPLETE,
 STATE_EXITING,
 STATE_LAST
 } aState;

/*
** Define a UNION for all messages, with a buffer
*/
 typedef union _lu62_msg {
 /*
 ** PORT_SERVER messages
 */
 register_target regist;
 connect_request conreq;
 data_message data;
 connection_terminated term;
 connect_accept accept;
 connect_reject reject;
 change_direction change;
 /*
 ** buffer area
 */
 char p_buffer[MAX_USER_MESSAGE_SIZE-8]; /*
 ** the 8 byte adjustment allows for the maximum
 ** overhead in any Port Server message */

 } Lu62Msg;

/*
** Routine to attach a queue so the application can send and
** receive BEA MessageQ traffic
*/
int32
AttachQueue(q_address *q_attached)
{
 int32 status;
 int32 attach_mode;
 int32 q_type;

 attach_mode = PSYM_ATTACH_TEMPORARY;
 q_type = PSYM_ATTACH_PQ; /* causes the tempory queue to be */
 /* a temporary primary queue */

 status = pams_attach_q(
 &attach_mode,
 q_attached,
BEA MessageQ LU6.2 Services for OpenVMS User’s GuideC-3

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications
 &q_type, /* make a temp primary queue */
 (char *) 0, /* q_name not needed */
 (int32 *) 0, /* q_name_len not needed */
 (int32 *) 0, /* Use default name space */
 (int32 *) 0, /* No name space list len */
 (int32 *) 0, /* Timeout Value */
 (char *) 0, /* Reserved by BEA */
 (char *) 0); /* Reserved by BEA */
(online_chunk)
 if (status == PAMS__SUCCESS)
 printf("Attached successfully to temporary queue %d.\n",
 q_attached->au.queue);
 else
 printf("Error attaching temporary; status returned is: %ld\n",
 status);

 return(status);
}

/*
** Routine to locate the DMQ LU6.2 Services Port Server
** based on its’ name
*/
int32
LocateServer(q_address *server_q)
{

 int32 status;
 int32 queue_name_len;
 int32 wait_mode;
 int32 req_id;

 /*
 ** Attempt to locate the queue_name in the process and group name spaces
 */
 queue_name_len = strlen("LU62_SERVER");
 wait_mode = PSYM_WF_RESP;
 req_id = 1;

 status = pams_locate_q(
 "LU62_SERVER",
 &queue_name_len,
 server_q,
 &wait_mode,
 &req_id,
 (int32 *) 0, /* No response queue */
 (int32 *) 0, /* Use default name space list of
 process and group */
C-4 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample Inbound Application
 (int32 *) 0, /* name space list len not needed */
 (char *) 0);

 switch (status)
 {
 case PAMS__SUCCESS :
 printf("\nLocated queue named: \"%s\" at %d.%d\n", "LU62_SERVER",
 server_q->au.group, server_q->au.queue);
 break;

 case PAMS__NOOBJECT :
 printf("\nQueue: \"%s\" not found.\n", "LU62_SERVER");
 break;

 default :
 printf("\nUnexpected error returned from pams_locate_q: %ld\n",
 status);
 break;
 }/*end case */

 return(status);
}

/*
** WaitMsg
*/

int32
WaitMsg (Lu62Msg *msg, short *bytes_rcvd, short *type_rcvd, q_address *from_addr,
short bufsize)
{
 int32 status;

 char priority=0;
 long timeout=300; /* wait 30 seconds */
 short msg_class;

 /* Get a message */
 status = pams_get_msgw(
 (char *)msg,
 &priority,
 from_addr,
 &msg_class,
 type_rcvd,
 &bufsize,
 bytes_rcvd,
 &timeout,
BEA MessageQ LU6.2 Services for OpenVMS User’s GuideC-5

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications
 (long *) 0,
 (struct PSB *) 0,
 (struct show_buffer *) 0,
 (long *) 0,
 (char *) 0,
 (char *) 0,
 (char *) 0);

 switch (status)
 {
 case PAMS__SUCCESS :
 printf("\nReceived Message:Class:%d\tType:%d\n",msg_class,*type_rcvd);
 break;

 case PAMS__TIMEOUT :
 printf("\nTimed out waiting for messages\n");
 break;

 default :
 printf("\nError getting message; status returned is %ld.\n",
 status);
 break;

 }/* end case */

 return(status);
}

/*
** Routine to send a message to the remote partner
*/
int32
SendData(Lu62Msg *msg, short msglen, short msgtyp, q_address server_q)
{
 int32 status;

 char priority;
 char delivery;
 char uma;
 short msg_class;
 long timeout;
 struct PSB put_psb;

 priority = 0; /* Regular priority; use 0, NOT ’0’ */
 msg_class = MSG_CLAS_APPC;
 delivery = PDEL_MODE_WF_MEM; /* Return bad status if undeliverable */
C-6 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample Inbound Application
 timeout = 100; /* Wait 10 seconds before giving up */
 uma = PDEL_UMA_DISCL; /* If can’t deliver it, DISCard and Log */

 status = pams_put_msg(
 (char *)msg,
 &priority,
 &server_q, /* passed in */
 &msg_class,
 &msgtyp,
 &delivery,
 &msglen,
 &timeout,
 &put_psb,
 &uma,
 (q_address *) 0,
 (char *) 0,
 (char *) 0,
 (char *) 0);

 if (status == PAMS__SUCCESS)
 printf("Put message type %d\n",msgtyp);
 else
 printf("Error putting message; status returned is: %ld.\n",
 status);

 return(status);
}

/*
** Routine to send an abnormal termination message to the
** Port Server
*/
int32
SendAbort(short connection, q_address server_q, int32 reason)
{
 int32 status;
 Lu62Msg term_msg;

 memset(&term_msg,0,sizeof(term_msg.term));
 term_msg.term.connection_index = connection;
 term_msg.term.terminate_type = DISCONNECT_ERROR;
 term_msg.term.terminate_reason = reason;
 /*
 ** Send the message - set STATE_EXITING unconditionally
 */
 status = SendData(&term_msg,sizeof(term_msg.term),
 MSG_TYPE_CONNECTION_TERMINATED,server_q);
 return(status);
BEA MessageQ LU6.2 Services for OpenVMS User’s GuideC-7

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications
}

/*
** Routine to send a connect request message to the
** Port Server
*/

int32
SendConnect(aState *state, char *tp_name, q_address server_q)
{
 int32 status;
 Lu62Msg msg;

 /*
 ** Set up a connect request and send it to the port server. If the send
 ** is successful, change the state to STATE_WAIT_CONNECT.
 */
 memset(&msg,0,sizeof(msg.conreq));

 strncpy(msg.conreq.target_name,tp_name,sizeof(msg.conreq.target_name));

 status = SendData(&msg,sizeof(msg.conreq),MSG_TYPE_CONNECT_REQUEST, server_q);

 if (status == PAMS__SUCCESS)
 *state = STATE_WAIT_CONNECT;
 else
 *state = STATE_EXITING;

 return(status);
}

/*
** Routine to handle traffic received while we are in the WAIT_CONNECT State
*/
int32
WaitConnect(aState *state, short *connection, Lu62Msg *msg, short msg_type,
q_address server_q)
{
 int32 status;
 Lu62Msg data_msg;

 switch (msg_type)
 {

 case MSG_TYPE_CONNECT_ACCEPT:
 /*
 ** If the message is a connect response, save the connection index, format a
C-8 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample Inbound Application
 ** data message, set the change_direction indicator ti CHANGE_DIRECTION, which
 ** will make us the receiver when the Port Server processes the message.
 */
 *connection = msg->accept.connection_index;
 memset(&data_msg.data,0,MAX_USER_MESSAGE_SIZE);
 data_msg.data.connection_index = *connection;
 data_msg.data.change_direction = CHANGE_DIRECTION;
 /*
 ** Put some data in the message body
 */
 strcpy(data_msg.data.data,"R 000666");
 /*
 ** Send the message - if the send works, set the state to STATE_WAIT_RESPOMSE
 */
 status =
SendData(&data_msg,MAX_USER_MESSAGE_SIZE,MSG_TYPE_DATA_MESSAGE,server_q);
 if (status == PAMS__SUCCESS)
 *state = STATE_WAIT_RESPONSE;
 break;
 case MSG_TYPE_CONNECT_REJECT:
 printf("Port Server rejected connect request.\n");
 *state = STATE_EXITING;
 break;
 default:
 printf("WaitConnect: received unexpected message of type %d\n",msg_type);
 status = PAMS__SUCCESS;
 *state = STATE_WAIT_CONNECT;
 break;
 }
 return(status);
}

/*
** Routine to handle traffic received while we are in the WAIT_RESPONSE State
*/
int32
WaitResponse(int32 *state, short connection, short msg_type, q_address server_q)
{
 int32 status;
 switch (msg_type)
 {
 case MSG_TYPE_DATA_MESSAGE:
 printf("WaitResponse: received response message\n");
 status = PAMS__SUCCESS;
 *state = STATE_WAIT_COMPLETE;
 break;

 case MSG_TYPE_CHANGE_DIRECTION:
BEA MessageQ LU6.2 Services for OpenVMS User’s GuideC-9

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications
 /*
 ** The partner program has violated the agreed-upon conversation rules:
 ** disconnect the conversation. We send a "disconnect reason" of -1; this
 ** does not get passed back beyon d the Port Server but is useful in application
 ** debugging, since we can see what routine is generating the abort message
 ** by providing a unique reason code for each place we abort a conversation.
 */
 printf("WaitResponse: Received unexpected Change Direction message\n");
 status = SendAbort(connection, server_q, -1);
 status = PAMS__SUCCESS-1;
 *state = STATE_EXITING;
 break;

 case MSG_TYPE_CONNECTION_TERMINATED:
 printf("WaitResponse: Port Server has terminated connection\n");
 status = PAMS__SUCCESS-1;
 *state = STATE_EXITING;
 break;

 default:
 printf("WaitResponse: received unexpected message of type %d\n",msg_type);
 status = PAMS__SUCCESS;
 *state = STATE_WAIT_RESPONSE;
 break;
 }
 return(status);
}

int32
WaitComplete(int32 *state, short connection, short msg_type, q_address server_q)
{
 int32 status;
 Lu62Msg term_msg;

 switch (msg_type)
 {
 case MSG_TYPE_CHANGE_DIRECTION:
 printf("WaitComplete: received Change Direction message\n");
 memset(&term_msg,0,sizeof(term_msg.term));
 term_msg.term.connection_index = connection;
 term_msg.term.terminate_type = DISCONNECT_NORMAL;
 term_msg.term.terminate_reason = 0;
 /*
 ** Send the message - set STATE_EXITING unconditionally
 */
 status = SendData(&term_msg,sizeof(term_msg.term),
 MSG_TYPE_CONNECTION_TERMINATED,server_q);
 *state = STATE_EXITING;
C-10 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample Inbound Application
 status = PAMS__SUCCESS-1; /* force the main loop to exit */
 break;

 case MSG_TYPE_DATA_MESSAGE:
 /*
 ** The partner program has violated the agreed-upon conversation rules:
 ** disconnect the conversation. We send a "disconnect reason" of -2; this
 ** does not get passed back beyon d the Port Server but is useful in
application
 ** debugging, since we can see what routine is generating the abort message
 ** by providing a unique reason code for each place we abort a conversation.

 */
 printf("WaitComplete: received unexpected data message\n");
 status = SendAbort(connection, server_q, -2);
 status = PAMS__SUCCESS-1;
 *state = STATE_EXITING;
 break;

 case MSG_TYPE_CONNECTION_TERMINATED:
 printf("WaitComplete: Port Server has terminated connection\n");
 status = PAMS__SUCCESS-1;
 *state = STATE_EXITING;
 break;

 default:
 printf("WaitComplete: received unexpected message of type %d\n",msg_type);
 status = PAMS__SUCCESS;
 *state = STATE_WAIT_RESPONSE;
 break;
 }
 return(status);
}

void
main()
{
 int32 status;

 q_address q_attached,
 server_q,
 from_addr;

 aState state=STATE_UNDEFINED;

 Lu62Msg msg;
BEA MessageQ LU6.2 Services for OpenVMS User’s GuideC-11

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications

 /*
 ** various variables. "connection" will receive the
 ** "connection index" returned to us by the Port Server, which
 ** we will use to identify which connection we want the port server
 ** to use when we send data. On received messages, the port server
 ** will give us the connection index so we can tell what connection
 ** the data came from. This allows a client program to have many
 ** connections running at the same time.
 */

 short connection,
 bytes_rcvd,
 bufsize=sizeof(Lu62Msg),
 type_rcvd;

 /*
 ** Attach a queue for ourselves; if that works, locate the server.
 ** Exit in the event either operation fails.
 */

 status = AttachQueue(&q_attached);

 if (status == PAMS__SUCCESS)
 status = LocateServer(&server_q);
 if (status != PAMS__SUCCESS)
 pams_exit();

 if (status != PAMS__SUCCESS)
 return;

 /*
 ** Initialize the application by setting the state to CONNECTING
 ** and sending the connect request
 */

 state = STATE_CONNECTING;
 status = SendConnect(&state,"UPDATE",server_q);

 while (status == PAMS__SUCCESS)
 {
 status = WaitMsg(&msg, &bytes_rcvd, &type_rcvd, &from_addr, bufsize);
 if (status != PAMS__SUCCESS)
 state = STATE_EXITING;

 switch (state) {

 case STATE_WAIT_CONNECT:
C-12 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample Outbound Application
 status = WaitConnect(&state, &connection, &msg, type_rcvd, server_q);
 break;

 case STATE_WAIT_RESPONSE:
 status = WaitResponse(&state, connection, type_rcvd, server_q);
 break;

 case STATE_WAIT_COMPLETE:
 status = WaitComplete(&state, connection, type_rcvd, server_q);
 break;

 case STATE_EXITING:
 status = PAMS__SUCCESS-1; /* terminate the WHILE */
 break;

 default:
 state = STATE_EXITING;
 break;
 }
 }

 pams_exit();
}

Sample Outbound Application

-
/*
** Copyright (c) BEA Systems, Inc., 1999
** All Rights Reserved.
**
** This software is furnished under a license and may be used and copied
** only in accordance with the terms of such license and with the
** inclusion of the above copyright notice. This software or any other
** copies thereof may not be provided or otherwise made available to any
** other person. No title to and ownership of the software is hereby
** transferred.

**
** The information in this software is subject to change without notice
BEA MessageQ LU6.2 Services for OpenVMS User’s GuideC-13

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications
** and should not be construed as a commitment by BEA Systems, Inc.
**
**
** FILE: outbound.c
**
** DESCRIPTION: Illustrates the use of BEA MessageQ LU6.2 Services
** to implement an application that waits for data to
** arrive on an outbound (from IBM) conversation, and
** exchanges data with the initiating APPC application
** in an SNA network.
**
** REQUIREMENTS: The queue named "LU62_SERVER" must
** be defined in your init file and must translate
** to the group and queue of the DMQ LU6.2 Port Server
**
**
*/

/** **/
/** BEA MessageQ include files **/
/** **/

#include <p_entry.h>
#include <p_return.h>
#include <p_symbol.h>
#include <p_typecl.h>
#include <pamslu62_server_msg.h>

/** **/
/** C library include files **/
/** **/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/*
** Set a max user message size
*/

#define MAX_USER_MESSAGE_SIZE 4096

/*
** Define values for states: use an enumerated type here
** to make sure each value is unique
*/
 typedef enum {
 STATE_UNDEFINED,
 STATE_REGISTERING,
C-14 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample Outbound Application
 STATE_WAIT_REGISTER,
 STATE_WAIT_DATA,
 STATE_WAIT_TO_SEND,
 STATE_WAIT_DISCONNECT,
 STATE_EXITING,
 STATE_LAST
 } aState;
/*
** Define a UNION for all messages, with a buffer
*/

 typedef union _lu62_msg {
 /*
 ** PORT_SERVER messages
 */
 register_target regist;
 connect_request conreq;
 data_message data;
 connection_terminated term;
 connect_accept accept;
 connect_reject reject;
 change_direction change;
 /*
 ** buffer area
 */
 char p_buffer[MAX_USER_MESSAGE_SIZE-8]; /*
 ** The 8 byte adjustment allows for the maximum overhead in any Port
 ** Server message.
 */

 } Lu62Msg;

/*
** Routine to attach a queue so the application can send and
** receive BEA MessageQ traffic
*/
int32
AttachQueue(q_address *q_attached)
{
 int32 status;
 int32 attach_mode;
 int32 q_type;

 attach_mode = PSYM_ATTACH_TEMPORARY;
 q_type = PSYM_ATTACH_PQ; /* causes the tempory queue to be */
 /* a temporary primary queue */

 status = pams_attach_q(
BEA MessageQ LU6.2 Services for OpenVMS User’s GuideC-15

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications
 &attach_mode,
 q_attached,
 &q_type, /* make a temp primary queue */
 (char *) 0, /* q_name not needed */
 (int32 *) 0, /* q_name_len not needed */
 (int32 *) 0, /* Use default name space */
 (int32 *) 0, /* No name space list len */
 (int32 *) 0, /* Timeout Value */
 (char *) 0, /* Reserved by BEA */
 (char *) 0); /* Reserved by BEA */

 if (status == PAMS__SUCCESS)
 printf("Attached successfully to temporary queue %d.\n",
 q_attached->au.queue);
 else
 printf("Error attaching temporary; status returned is: %ld\n",
 status);

 return(status);
}

/*
** Routine to locate the DMQ LU6.2 Services Port Server
** based on its’ name
*/
int32
LocateServer(q_address *server_q)
{
 int32 status;
 int32 queue_name_len;
 int32 wait_mode;
 int32 req_id;

 /*
 ** Attempt to locate the queue_name in the process and group name spaces
 */
 queue_name_len = strlen("LU62_SERVER");
 wait_mode = PSYM_WF_RESP;
 req_id = 1;

 status = pams_locate_q(
 "LU62_SERVER",
 &queue_name_len,
 server_q,
 &wait_mode,
 &req_id,
 (int32 *) 0, /* No response queue */
 (int32 *) 0, /* Use default name space list of
 process and group */
C-16 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample Outbound Application
 (int32 *) 0, /* name space list len not needed */
 (char *) 0);

 switch (status)
 {
 case PAMS__SUCCESS :
 printf("\nLocated queue named: \"%s\" at %d.%d\n", "LU62_SERVER",
 server_q->au.group, server_q->au.queue);
 break;

 case PAMS__NOOBJECT :
 printf("\nQueue: \"%s\" not found.\n", "LU62_SERVER");
 break;

 default :
 printf("\nUnexpected error returned from pams_locate_q: %ld\n",
 status);
 break;
 }/*end case */

 return(status);
}

/*
** WaitMsg
*/

int32
WaitMsg (Lu62Msg *msg, short *bytes_rcvd, short *type_rcvd, q_address *from_addr,
short bufsize)
{
 int32 status;

 char priority=0;
 long timeout=300; /* wait 30 seconds */
 short msg_class;

 /* Get a message */
 status = pams_get_msgw(
 (char *)msg,
 &priority,
 from_addr,
 &msg_class,
 type_rcvd,
 &bufsize,
 bytes_rcvd,
 &timeout,
 (long *) 0,
 (struct PSB *) 0,
BEA MessageQ LU6.2 Services for OpenVMS User’s GuideC-17

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications
 (struct show_buffer *) 0,
 (long *) 0,
 (char *) 0,
 (char *) 0,
 (char *) 0);

 switch (status)
 {
 case PAMS__SUCCESS :
 printf("\nReceived Message:Class:%d\tType:%d\n",msg_class,*type_rcvd);
 break;

 case PAMS__TIMEOUT :
 printf("\nTimed out waiting for messages\n");
 break;

 default :
 printf("\nError getting message; status returned is %ld.\n",
 status);
 break;

 }/* end case */

 return(status);
}

/*
** Routine to send a message to the remote partner
*/
int32
SendData(Lu62Msg *msg, short msglen, short msgtyp, q_address server_q)
{
 int32 status;

 char priority;
 char delivery;
 char uma;
 short msg_class;
 long timeout;
 struct PSB put_psb;

 priority = 0; /* Regular priority; use 0, NOT ’0’ */
 msg_class = MSG_CLAS_APPC;
 delivery = PDEL_MODE_WF_MEM; /* Return bad status if undeliverable */
 timeout = 100; /* Wait 10 seconds before giving up */
 uma = PDEL_UMA_DISCL; /* If can’t deliver it, DISCard and Log */

C-18 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample Outbound Application
 status = pams_put_msg(
 (char *)msg,
 &priority,
 &server_q, /* passed in */
 &msg_class,
 &msgtyp,
 &delivery,
 &msglen,
 &timeout,
 &put_psb,
 &uma,
 (q_address *) 0,
 (char *) 0,
 (char *) 0,
 (char *) 0);

 if (status == PAMS__SUCCESS)
 printf("Put message type %d\n",msgtyp);
 else
 printf("Error putting message; status returned is: %ld.\n",
 status);

 return(status);
}

/*
** Routine to send an abnormal termination message to the
** Port Server
*/
int32
SendAbort(short connection, q_address server_q, int32 reason)
{
 int32 status;
 Lu62Msg term_msg;

memset(&term_msg,0,sizeof(term_msg.term));
term_msg.term.connection_index = connection;
term_msg.term.terminate_type = DISCONNECT_ERROR;
term_msg.term.terminate_reason = reason;
/*
** Send the message - set STATE_EXITING unconditionally
*/
status = SendData(&term_msg,sizeof(term_msg.term),
 MSG_TYPE_CONNECTION_TERMINATED,server_q);
return(status);
}

/*
BEA MessageQ LU6.2 Services for OpenVMS User’s GuideC-19

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications
** Routine to send a register request message to the
** Port Server
*/

int32
SendRegister(aState *state, char *target, q_address server_q, q_address
my_address)
{
 int32 status;
 Lu62Msg msg;

 /*
 ** Set up a connect request and send it to the port server. If the send
 ** is successful, change the state to STATE_WAIT_CONNECT.
 */
 memset(&msg,0,sizeof(msg.regist));

 strncpy(msg.conreq.target_name,target,sizeof(msg.regist.target_name));
 msg.regist.target_group = my_address.au.group;
 msg.regist.target_process = my_address.au.queue;

 status = SendData(&msg,sizeof(msg.regist),MSG_TYPE_REGISTER_TARGET,
 server_q);

 if (status == PAMS__SUCCESS)
 *state = STATE_WAIT_REGISTER;
 else
 *state = STATE_EXITING;

 return(status);
}

/*
** Routine to handle traffic received while we are in the WAIT_REGISTER State
*/
int32
WaitRegister(aState *state, short *connection, Lu62Msg *msg, short msg_type,
q_address server_q)
{
 int32 status;

 switch (msg_type)
 {
 case MSG_TYPE_REGISTER_TARGET:
 /*
 ** Resigtration was accepted - now we wait...
 */
 status = PAMS__SUCCESS;
C-20 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample Outbound Application
 *state = STATE_WAIT_DATA;
 break;
 case MSG_TYPE_CONNECTION_TERMINATED:
 printf("Port Server rejected registration request.\n");
 status = PAMS__SUCCESS-1;
 *state = STATE_EXITING;
 break;
 default:
 printf("WaitRegister: received unexpected message of type %d\n",msg_type);
 status = PAMS__SUCCESS;
 *state = STATE_WAIT_REGISTER;
 break;

 }
 return(status);
}

/*
** Routine to handle traffic received while we are in the WAIT_DATA State
*/
int32
WaitData(int32 *state, short *connection, short msg_type, q_address server_q)
{
 int32 status;
 Lu62Msg msg;

 switch (msg_type)
 {
 case MSG_TYPE_DATA_MESSAGE:
 printf("WaitData: received data message\n");
 /*
 ** save the connection index - we will need to use this later
 */
 *connection = msg.data.connection_index;
 status = PAMS__SUCCESS;
 *state = STATE_WAIT_TO_SEND;
 break;

 case MSG_TYPE_CHANGE_DIRECTION:
 /*
 ** The partner program has violated the agreed-upon conversation rules:
 ** disconnect the conversation. We send a "disconnect reason" of -1; this
 ** does not get passed back beyon d the Port Server but is useful in application
 ** debugging, since we can see what routine is generating the abort message
 ** by providing a unique reason code for each place we abort a conversation.
 */
 printf("WaitData: Received unexpected Change Direction message\n");
 status = SendAbort(*connection, server_q, -1);
 status = PAMS__SUCCESS-1;
BEA MessageQ LU6.2 Services for OpenVMS User’s GuideC-21

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications
 *state = STATE_EXITING;
 break;

 case MSG_TYPE_CONNECTION_TERMINATED:
 printf("WaitData: Port Server has terminated connection\n");
 status = PAMS__SUCCESS-1;
 *state = STATE_EXITING;
 break;

 default:
 printf("WaitData: received unexpected message of type %d\n",msg_type);
 status = PAMS__SUCCESS;
 *state = STATE_WAIT_DATA;
 break;
 }
 return(status);
}

int32
WaitSend(int32 *state, short connection, short msg_type, q_address server_q)
{
 int32 status;
 Lu62Msg msg;

 switch (msg_type)
 {

 case MSG_TYPE_CHANGE_DIRECTION:
 printf("WaitSend: received Change Direction message\n");
 connection = msg.accept.connection_index;
 memset(&msg.data,0,MAX_USER_MESSAGE_SIZE);
 msg.data.connection_index = connection;
 msg.data.change_direction = CHANGE_DIRECTION;
 /*
 ** Put some data in the message body
 */
 strcpy(msg.data.data,"HELLO");
 /*
 ** Send the message - if the send works, set the state to STATE_WAIT_DISCONNECT
 */
 status = SendData(&msg,MAX_USER_MESSAGE_SIZE,MSG_TYPE_DATA_MESSAGE,server_q);
 if (status == PAMS__SUCCESS)
 *state = STATE_WAIT_DISCONNECT;
 else {
 *state = STATE_EXITING;
 status = PAMS__SUCCESS-1; /* force the main loop to exit */
 }
 break;
C-22 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample Outbound Application

 case MSG_TYPE_DATA_MESSAGE:
 /*
 ** The partner program has violated the agreed-upon conversation rules:
 ** disconnect the conversation. We send a "disconnect reason" of -2; this
 ** does not get passed back beyon d the Port Server but is useful in application
 ** debugging, since we can see what routine is generating the abort message
 ** by providing a unique reason code for each place we abort a conversation.
 */
 printf("WaitSend: received unexpected data message\n");
 status = SendAbort(connection, server_q, -2);
 status = PAMS__SUCCESS-1;
 *state = STATE_EXITING;
 break;

 case MSG_TYPE_CONNECTION_TERMINATED:
 printf("WaitComplete: Port Server has terminated connection\n");
 status = PAMS__SUCCESS-1;
 *state = STATE_EXITING;
 break;

 default:
 printf("WaitSend: received unexpected message of type %d\n",msg_type);
 status = PAMS__SUCCESS;
 *state = STATE_WAIT_TO_SEND;
 break;
 }
 return(status);
}

int32
WaitDisconnect(int32 *state, short connection, short msg_type, q_address
server_q)
{
 int32 status;

 switch (msg_type)
 {
 case MSG_TYPE_CONNECTION_TERMINATED:
 printf("WaitDisconnect: received Connection Terminated message\n");
 *state = STATE_EXITING;
 status = PAMS__SUCCESS-1; /* force the main loop to exit */
 break;

 case MSG_TYPE_DATA_MESSAGE:
 /*
 ** The partner program has violated the agreed-upon conversation rules:
 ** disconnect the conversation. We send a "disconnect reason" of -2; this
BEA MessageQ LU6.2 Services for OpenVMS User’s GuideC-23

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications
 ** does not get passed back beyon d the Port Server but is useful in application
 ** debugging, since we can see what routine is generating the abort message
 ** by providing a unique reason code for each place we abort a conversation.
 */
 printf("WaitDisconnect: received unexpected data message\n");
 status = SendAbort(connection, server_q, -2);
 status = PAMS__SUCCESS-1;
 *state = STATE_EXITING;
 break;

 case MSG_TYPE_CHANGE_DIRECTION:
 /*
 ** The partner program has violated the agreed-upon conversation rules:
 ** disconnect the conversation. We send a "disconnect reason" of -3; this
 ** does not get passed back beyon d the Port Server but is useful in application
 ** debugging, since we can see what routine is generating the abort message
 ** by providing a unique reason code for each place we abort a conversation.
 */
 printf("WaitDisconnect: received unexpected change direction message\n");
 status = SendAbort(connection, server_q, -3);
 status = PAMS__SUCCESS-1;
 *state = STATE_EXITING;
 break;

 default:
 printf("WaitSend: received unexpected message of type %d\n",msg_type);
 status = PAMS__SUCCESS;
 *state = STATE_WAIT_DISCONNECT;
 break;
 }
 return(status);
}

void
main()
{
 int32 status;

 q_address q_attached,
 server_q,
 from_addr;

 aState state=STATE_UNDEFINED;

 Lu62Msg msg;

 /*
 ** various variables. "connection" will receive the
 ** "connection index" returned to us by the Port Server, which
C-24 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample Outbound Application
 ** we will use to identify which connection we want the port server
 ** to use when we send data. On received messages, the port server
 ** will give us the connection index so we can tell what connection
 ** the data came from. This allows a client program to have many
 ** connections running at the same time.
 */

 short connection,
 bytes_rcvd,
 bufsize=sizeof(Lu62Msg),
 type_rcvd;

 /*
 ** Attach a queue for ourselves; if that works, locate the server.
 ** Exit in the event either operation fails.
 */

 status = AttachQueue(&q_attached);

 if (status == PAMS__SUCCESS)
 status = LocateServer(&server_q);
 if (status != PAMS__SUCCESS)
 pams_exit();

 if (status != PAMS__SUCCESS)
 return;

 /*
 ** Initialize the application by setting the state to CONNECTING
 ** and sending the connect request
 */

 state = STATE_REGISTERING;
 status = SendRegister(&state,"NEWORDER",server_q, q_attached);

 while (status == PAMS__SUCCESS)
 {
 status = WaitMsg(&msg, &bytes_rcvd, &type_rcvd, &from_addr, bufsize);
 if (!((status == PAMS__SUCCESS) || (status == PAMS__TIMEOUT)))
 state = STATE_EXITING;

 switch (state) {

 case STATE_WAIT_REGISTER:
 /*
 ** Timeouts are valid in WAIT_DATA, invalid elsewhere.
 */
 if (status == PAMS__SUCCESS)
 status = WaitRegister(&state, &connection, &msg, type_rcvd, server_q);
BEA MessageQ LU6.2 Services for OpenVMS User’s GuideC-25

C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications
 break;

 case STATE_WAIT_DATA:
 /*
 ** If we timed out just go back and wait again
 */
 if (status == PAMS__TIMEOUT)
 status = PAMS__SUCCESS;
 else
 status = WaitData(&state, &connection, type_rcvd, server_q);
 break;

 case STATE_WAIT_TO_SEND:
 /*
 ** Timeouts are valid in WAIT_DATA, invalid elsewhere.
 */
 if (status == PAMS__SUCCESS)
 status = WaitSend(&state, connection, type_rcvd, server_q);
 break;

 case STATE_WAIT_DISCONNECT:
 /*
 ** Timeouts are valid in WAIT_DATA, invalid elsewhere.
 */
 if (status == PAMS__SUCCESS)
 status = WaitDisconnect(&state, connection, type_rcvd, server_q);
 break;

 case STATE_EXITING:
 status = PAMS__SUCCESS-1;
 /* terminate the WHILE */
 break;

 default:
 state = STATE_EXITING;
 break;
 }
 }

 pams_exit();
}

C-26 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

APPENDIX
D Examples of CICS
Inbound and
Outbound Applications

The following sections provide samples of CICS Inbound and Outbound applications.

Sample CICS Inbound Application

--

 TITLE ’VAXIN - BACKEND TRANSACTION PROGRAM’ 00010001
*** 00020000
* * 00030000
* THIS PROGRAM CAN BE ACTIVATED UNDER THE TRANSACTION ’VXIN’. * 00040056
* * 00080000
*** 00090000
* 00100000
R15 EQU 15 00110000
R14 EQU 14 00120000
R13 EQU 13 00130000
R12 EQU 12 00140000
R11 EQU 11 00150000
R10 EQU 10 00160000
R9 EQU 9 00170000
R8 EQU 8 00180000
R7 EQU 7 00190000
R6 EQU 6 00200000
R5 EQU 5 00210000
R4 EQU 4 00220000
BEA MessageQ LU6.2 Services for OpenVMS User’s GuideD-1

D Examples of CICS Inbound and Outbound Applications
R3 EQU 3 00230000
R2 EQU 2 00240000
R1 EQU 1 00250000
R0 EQU 0 00260000
* 00280000
* FIXED REGISTERS 00290000
* 00300000
EIBREG EQU R9 00310000
* 00320000
* 00330000
 PRINT NOGEN 00331096
* 00333010
VAXIN DFHEIENT EIBREG=EIBREG,DATAREG=(13,4) 00340000
* 00350000
** MOVE CONSTANTS TO WORKING STORAGE 00350000
* 00350000

 MVC TRANID,CTRANID
 MVC SYNLVL,CSYNLVL
 MVC SYSID,CSYSID
 MVC DECOUT,CDECOUT
 MVC TPN,CTPN
 MVC COMMA1,CCOMMA
 MVC TERMEQ,CTERMID
 MVC COMMA2,CCOMMA
 MVC DATAEQ,CDATA
*
******** EXEC CICS HANDLE CONDITION ERROR(EXFREE) 00351098
* 00352096
 MVC TERMID,EIBTRMID SAVE THE PRINCIPLE FACILITY 00362075
* NAME. (TERMINAL ID) 00370096
 MVC CONVID,EIBTRMID BACKEND XACTION THIS IS ALSO 00370196
* THE CONVERSATION ID 00370296
** EXTRACT THE CONVERSATION-RELATED INFORMATION FROM THE ATTACH FMH 00370399
* 00370496
 EXEC CICS EXTRACT PROCESS +00370579
 PROCNAME (PROCNAM) +00370679
 PROCLENGTH(PROCLEN) +00370779
 CONVID (CONVID) +00370896
 SYNCLEVEL (SYNLVL) 00370979
* 00371099
 MVC TEROUT,TERMID TERMINAL ID TO HEADER 00371199
 MVC TPNOUT,PROCNAM LOCAL TPN TO HEADER 00371299
* 00371396
** RECEIVE THE MESSAGE FROM THE COOPERATING TPN 00371496
* 00371596
POSTREAD DS 0H 00372023
 MVC INLEN,=H’4096’ SET MAXIMUM RECEIVE LENGTH 00380053
 EXEC CICS RECEIVE +00390000
 CONVID (CONVID) +00391096
 LENGTH (INLEN) +00400000
 INTO (DECIN) 00410000
D-2 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample CICS Inbound Application
* 00440000
 LH R5,INLEN GET LENGTH OF HEADER MESSAGE 00450096
 LA R5,MSGLEN(R5) AND THE RECEIVED MESSAGE 00460000
 STH R5,OUTLEN SET AS SEND LENGTH 00470000
* 00480000
*** 00481004
* TEST CONDITIONS SET IN THE EXEC INTERFACE BLOCK (EIB) 00482096
*** 00483004
* 00483196
EIBTEST DS 0H 00484004
 MVC XDFEIFLG,EIBSYNC SAVE EIB 00485096
* 00486157
TESTCONF DS 0H 00486357
 CLI XCONF,X’FF’ PARTNER WANT A CONFIRM? 00486457
 BNE TESTSYNC NO 00486599
* YES, ISSUE CONFIRMED]]]]]] 00486657
* SYNC LEVEL (2) PROCESSING 00486799
 EXEC CICS ISSUE CONFIRMATION 00486864
* 00486957
TESTSYNC DS 0H SYNCPOINT IS NOT IMPLEMENTED YET 00487096
 CLI XSYNC,X’FF’ ON THE VAX SIDE................. 00488096
 BNE TESTFREE 00489004
 EXEC CICS SYNCPOINT 00489305
* 00489404
TESTFREE DS 0H CEB RECEIVED = ASYNC MESSAGE 00489596
 CLI XFREE,X’FF’ 00489604
 BNE TESTRECV SYNC MESSAGE GO TEST NEXT SWITCH 00489796
** 00490099
* ASYNC CONVERSATION MESSAGE RECEIVED (CEB SET) 00490196
** 00490299
* 00490399
** NOW SWITCH FROM A BACKEND TRANSACTION TO A FRONT END TRANSACTION 00490496
* 00490596
* 1. FREE CURRENT CONVERSATION 00490699
* 2. ALLOCATE AND CONNECT THE NEW CONVERSATION (OUTBOUND CONVERSATION) 00490799
* 3. SEND THE DATA BACK WITH CEB (ASYNC CONVERSATION) 00490899
* 00490958
 EXEC CICS FREE 00491064
 EXEC CICS ALLOCATE +00491158
 SYSID (SYSID) 00491297
* << SYSID IS FROM CICS DEFINITIONS >> 00491397
 MVC RESOURCE,EIBRSRCE SAVE THE FRONT END TRANSACTION 00491496
* CONVERSATION ID 00491596
 EXEC CICS CONNECT +00491658
 PROCESS +00491796
 CONVID (RESOURCE) +00491896
 PROCNAME (TRANID) +00491996
 PROCLENGTH(TRANLEN) +00492096
 SYNCLEVEL (SYNLVL) 00492196

* 00492296
 EXEC CICS SEND LAST CONFIRM +00492364
BEA MessageQ LU6.2 Services for OpenVMS User’s GuideD-3

D Examples of CICS Inbound and Outbound Applications
 CONVID(RESOURCE) +00492496
 FROM (DECOUT) +00492596
 LENGTH(OUTLEN) 00492696

* 00492764
 B IMMET EXIT THE PROGRAM 00492896
* 00492958
TESTRECV DS 0H RECEIVE STATE AND MULTIPLE 00493099
 CLI XRECV,X’FF’ LOGICAL RECORDS.......... 00493199
 BNE ENDTEST PROCESS THE ONLY RECORD 00493224
* 00493399
** FIRST SEND THE CURRENT LOGICAL RECORD 00493499
* 00493599
 EXEC CICS SEND +00493699
 CONVID(CONVID) +00493899
 FROM (DECOUT) +00493999
 LENGTH(OUTLEN) 00494099
* 00494199
** NOW READ THE NEXT LOGICAL RECORD 00494299
* 00494399
 B POSTREAD 00495599
* 00495623
** PROCESS THE LOGICAL RECORD FOR BACKEND TRANSACTION 00495796
* 00495804
ENDTEST DS 0H 00495904
 CLC DECIN(7),=C’$*$TERM’ TERMINATE THE CONVERSATION 00496055
 BE SENDCEB WHEN $*$TERM IS RECEIVED.. 00496199
* 00496221
** SEND THE REPLY 00497000
* 00500000
* SEND WITH CDI AND REQUEST CONFIRM 00500130
* 00500225
SENDCDI DS 0H 00501030
 EXEC CICS SEND INVITE CONFIRM +00510039
 CONVID(CONVID) +00511096
 FROM (DECOUT) +00520000
 LENGTH(OUTLEN) 00530025
 B POSTREAD GO WAIT FOR THE NEXT MESSAGE 00540299
* 00540325
* SEND WITH CEB AND REQUEST CONFIRM (ONLY OR LAST LOGICAL RECORD) 00540439
* 00540525
SENDCEB DS 0H 00540630
 EXEC CICS SEND LAST CONFIRM +00540854
 CONVID(CONVID) +00540996
 FROM (DECOUT) +00541025
 LENGTH(OUTLEN) 00541139
* 00541230
** FREE THE CONVERSATION 00541399
** AND 00541499
** IMMEDIATE RETURN TO CICS 00541599
* 00541699
IMMET DS 0H 00542043
D-4 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample CICS Inbound Application
 EXEC CICS FREE 00561064
 EXEC CICS RETURN 00570041
* 00580000
*** 00581099
* 00582099
** CONSTANTS - VARIABLES - DATA AREAS 00590099
* 00600000
CTRANID DC CL4’IMSA’ 00601099
TRANLEN DC AL2(*-CTRANID) 00602079

CSYNLVL DC H’1’ 00603099
CSYSID DC CL4’ST04’ 00610099
CDECOUT DC XL8’00000003010000FF’ 00621699
CTPN DC C’** TPN = ’ 00650299
CCOMMA DC C’,’ 00650493
CTERMID DC C’ TERMID = ’ 00650696
CDATA DC C’ DATA = ’ 00650993
 LTORG * 00660000

* 00600000
DFHEISTG DSECT ,
** 00651421
* EIB EXEC INTERFACE BLOCK STORAGE AREA 00651521
** 00651621
TRANID DS CL4 OUTBOUND TPN 00601099
SYNLVL DS H SYNC LEVEL 00603099
SYSID DS CL4 SYSID FOR LU ON OUTBOUND ALLOCATE 00610099
TERMID DS CL4 EIBTRMID SAVE AREA 00611075
CONVID DS CL4 BACKEND CONVERSATION ID 00612096
RESOURCE DS CL8 FRONT END CONVERSATION ID 00620096
INLEN DS H RECEIVED INPUT MESSAGE LENGTH 00620196
OUTLEN DS H OUTPUT MESSAGE LENGTH 00620296
PROCLEN DS H PROCESS NAME LENGTH 00620396
PROCNAM DS CL8 LOCAL TPN (PROCESS NAME) 00621096
PROCFILL DS CL24 TEMP FILLER FOR EXTRACT OVERFLOW 00621199
* CICS RETURNS 32 BYTES FOR PROCNAM 00621299
* 00621399
** OUTPUT MESSAGE HEADER AND DATA BUFFER 00621499
* 00621596
DECOUT DS XL8 00621699
TPN DS CL9 00650299
TPNOUT DS CL4 00650391
COMMA1 DS CL1 00650493
TERMEQ DS CL10 00650696
TEROUT DS CL4 00650791
COMMA2 DS CL1 00650893
DATAEQ DS CL8 00650993
MSGLEN EQU *-DECOUT 00651148
DECIN DS CL4096 RECEIVED INPUT BUFFER 00651296
* AND OUTPUT DATA BUFFER 00651399
XDFEIFLG DS 0CL10 00651819
XSYNC DS C 00652015
BEA MessageQ LU6.2 Services for OpenVMS User’s GuideD-5

D Examples of CICS Inbound and Outbound Applications
XFREE DS C 00653015
XRECV DS C 00654015
XSEND DS C 00655015
XATT DS C 00656015
XEOC DS C 00657015
XFMH DS C 00658015
XCOMPL DS C 00658119
XSIG DS C 00658219
XCONF DS C 00658319
* 00651796
 END 00670000
--

Sample CICS Outbound Application

--

 TITLE ’FROMIBM - INIT A TRANSACTION ON THE VAX’ 00010001
** 00020000
* * 00030000
* * 00031033
* THIS PROGRAM IS DESIGNED TO COMMUNICATE WITH ANOTHER LU6.2 LOGICAL * 00040000
* UNIT WHICH MAY BE A VMS SYSTEM. IT PERFORMS THE FOLLOWING FUNCTIONS * 00050000
* IN A LOOP WHICH IS REPEATED TEN TIMES :- * 00060000
* * 00070000
* 1) ALLOCATE A SESSION TO REMOTE SYSTEM ’DC1R’. PL381021 * 00080000
* * 00090000
* 2) CONNECT TO PROCESS ’IMSAYNC’ AT SYNCHPOINT LEVEL ZERO * 00100000
* * 00110000
* 3) ISSUE A CONVERSE REQUEST TO SEND AND RECEIVE DATA. * 00120000
* * 00130000
* 4) FREE THE SESSION. * 00140000
* * 00150000
* ANY NUMBER OF TRANSACTIONS CAN USE THIS PROGRAM AT ANY ONE TIME * 00160000
* * 00170000
** 00210000

* 00220000
R15 EQU 15 REGISTERS 00230000
R14 EQU 14 REGISTERS 00240000
R13 EQU 13 REGISTERS 00250000
R12 EQU 12 REGISTERS 00260000
R11 EQU 11 REGISTERS 00270000
R10 EQU 10 REGISTERS 00280000
D-6 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample CICS Outbound Application
R9 EQU 9 REGISTERS 00290000
R8 EQU 8 REGISTERS 00300000
R7 EQU 7 REGISTERS 00310000
R6 EQU 6 REGISTERS 00320000
R5 EQU 5 REGISTERS 00330000
R4 EQU 4 REGISTERS 00340000
R3 EQU 3 REGISTERS 00350000

R2 EQU 2 REGISTERS 00360000
R1 EQU 1 REGISTERS 00370000
R0 EQU 0 REGISTERS 00380000
 PRINT NOGEN 00390000

* 00400000
* FIXED REGISTERS 00410000
* 00420000
EIBREG EQU R9 00430000
* 00440000
VAXOUT DFHEIENT EIBREG=(EIBREG) 00450000
* 00460000
**** REQUEST SYSID FROM THE TERMINAL 00662017
* 00670000
SYSLOOP DS 0H 00670512
* 00670413
 MVC TBUFLEN,SYSRQLEN 00670213
* 00670712
**** SEND A MESSAGE TO THE TERMINAL 00670817
* 00670917
 EXEC CICS SEND +00671012
 FROM (SYSIDREQ) +00671113
 LENGTH(TBUFLEN) +00671230

 ERASE 00671412
* 00671512
******* GET SYSID FROM THE TERMINAL 00671613
* 00671702
 LA R8,L’TERMBUF SET RECEIVE BUFFER LENGTH
 STH R8,TBUFLEN
* 00671702
 EXEC CICS RECEIVE +00671813
 INTO (TERMBUF) +00671913
 LENGTH(TBUFLEN) 00672030
* 00673013
******* SAVE CONNECTION SYSID 00671613
* 00673013
 LH R8,TBUFLEN
 CH R8,=H’4’
 BL SYSLOOP
 MVC SYSID,TERMBUF
BEA MessageQ LU6.2 Services for OpenVMS User’s GuideD-7

D Examples of CICS Inbound and Outbound Applications
* 00560000
** ALLOCATE A SESSION 00570000
* 00580000
 EXEC CICS ALLOCATE +00590000
 SYSID (SYSID) 00600020
* 00601013
 MVC MESSAGE(L’MHEADER),MHEADER INITIALIZE MESSAGE HEADER 00610013
 MVC RESOURCE,EIBRSRCE SAVE RESOURCE (CONVID) 00610013
 MVC MSGTRMID,EIBTRMID SAVE THE TERMINAL ID 00611013
* 00620000

** CONNECT TO VAX TRANSACTION PROGRAM 00630000
* 00640000
 EXEC CICS CONNECT PROCESS +00650020
 CONVID (RESOURCE) +00651020
 PROCNAME (TRANID) +00652020
 PROCLENGTH(TRNLEN) +00653020
 SYNCLEVEL (SYNLVL) 00654020
* 00661017
**** SEND A GREETING TO THE TERMINAL 00662017
* 00670000
 MVC TERMBUF(L’GREETING),GREETING 00670113
 MVC TBUFLEN,GRTNGLEN 00670213
* 00670413
MSGLOOP DS 0H 00670512
* 00670712
**** SEND A MESSAGE TO THE TERMINAL 00670817
* 00670917
 EXEC CICS SEND +00671012
 FROM (TERMBUF) +00671113
 LENGTH(TBUFLEN) +00671230
 ERASE 00671412
* 00671512
******* GET A MESSAGE FROM THE TERMINAL 00671613
* 00671702
 LA R8,L’TERMBUF SET RECEIVE BUFFER LENGTH
 STH R8,TBUFLEN
* 00671702
 EXEC CICS RECEIVE +00671813
 INTO (TERMBUF) +00671913
 LENGTH(TBUFLEN) +00672030
 ASIS 00672213
* 00673013
 CLC TERMBUF(7),=C’$*$TERM’ 00676118
 BE PLUTERM 00676221
* 00677013
** SEND THE MESSAGE TO THE LU62 CONVERSATION PARTNER 00680013
* 00690000
 LH R8,TBUFLEN
D-8 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample CICS Outbound Application
 LA R8,L’MHEADER(0,R8) INCREASE MSG LENGTH FOR HEADER
 STH R8,TBUFLEN
* 00690000
 EXEC CICS CONVERSE +00700000
 CONVID (RESOURCE) +00710000
 FROM (MESSAGE) +00720000
 FROMLENGTH (TBUFLEN) +00730030
 SET (R6) +00740008
 TOLENGTH (INLEN) 00750030
* 00760000

 MVC XDFEIFLG,EIBSYNC SAVE EIB FLAGS 00770021
TESTCONF CLI XCONF,X’FF’ 00780021
 BNE TESTFREE 00790021
* 00800021
 EXEC CICS ISSUE CONFIRMATION 00800121
TESTFREE CLI XFREE,X’FF’ 00800221
 BE SLUTERM 00800321
TESTRECV CLI XRECV,X’FF’ 00800421
* 00801009
*** DISPLAY THE MESSAGE FROM THE REMOTE TPN ON THE 3270 TERMINAL 00802009
* 00803009
 LA R4,TERMBUF POINT TO 3270 TERMINAL BUFFER
 LA R5,L’TERMBUF SET TO LENGTH OF 3270 BUFFER
 LH R7,INLEN SET TO LENGTH OF REMOTE TPN MSG
 CR R5,R7 IF 3270 BUFFER IS SMALLER THAN MSG
 BL *+6 MOVE BUFFER NUMBER OF BYTES
 LR R5,R7 ELSE, MOVE MSG NUMBER OF BYTES
 STH R5,TBUFLEN SAVE MESSAGE LENGTH FOR SEND
 MVCL R4,R6 MOVE REMOTE TPN MSG TO 3270 BUFFER 00803116
* 00810000
** SEND THE NEXT MESSAGE PLEASE 00820009
* 00830000
 B MSGLOOP LOOP UNTIL $*$TERM 00840017
* 00850000
PLUTERM DS 0H 00850121
 MVC TERMBUF(L’PLUTMSG),PLUTMSG 00850221
 B SEND3270 00850321
SLUTERM DS 0H 00850421
 MVC TERMBUF(L’SLUTMSG),SLUTMSG 00850521
* 00850621
SEND3270 DS 0H 00850721
 EXEC CICS SEND +00850821
 FROM (TERMBUF) +00850921
 LENGTH(TMSGLEN) +00851027
 ERASE 00851221
* 00851321

SENDCEB DS 0H 00851417
BEA MessageQ LU6.2 Services for OpenVMS User’s GuideD-9

D Examples of CICS Inbound and Outbound Applications
 EXEC CICS SEND LAST +00852019
 CONVID (RESOURCE) +00853019
 FROM (TERMBUF) +00854019
 LENGTH (TBUFLEN) 00855030
* 00856017
** AND RETURN 00860000
* 00870000
RETURN DS 0H 00880000
* 00882017
 EXEC CICS FREE +00883017
 SESSION (RESOURCE) 00884017
 EXEC CICS RETURN 00890000

* 00900000
TRANID DC CL4’NOTR’ 00930032
TRNLEN DC AL2(*-TRANID) 00940000

SYNLVL DC H’0’ 00950026
SYSIDREQ DC C’ENTER CONNECTION SYSID : ’ 00951012
SYSRQLEN DC AL2(*-SYSIDREQ) 00952012
GREETING DC C’ENTER MESSAGE : ’ 00951012
GRTNGLEN DC AL2(*-GREETING) 00952012
PLUTMSG DC C’*** TERMINATED BY HOST TPN ***’ 00953027
SLUTMSG DC C’*** TERMINATED BY REMOTE TPN ***’ 00954021
TMSGLEN DC AL2(*-SLUTMSG) 00955027
MHEADER DC C’*** *** ’ 00960000
* 01152121
 LTORG 01154023
* 01152121
*** ************ 01152221
* EIB EXEC INTERFACE BLOCK STORAGE AREA 01152321
*** ************ 01152421
* 01152521
DFHEISTG DSECT ,
XDFEIFLG DS 0CL10 01152621
XSYNC DS C 01152722
XFREE DS C 01152822
XRECV DS C 01152922
XSEND DS C 01153022
XATT DS C 01153122
XEOC DS C 01153222
XFMH DS C 01153322
XCOMPL DS C 01153422
XSIG DS C 01153522
XCONF DS C 01153622
* 01153721
TBUFLEN DS H 01152013
INLEN DS H 01142008
SYSID DS CL4 00910031
D-10 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Sample CICS Outbound Application
RESOURCE DS CL8 00920005
MESSAGE DS CL4 00960000
MSGTRMID DS CL4 00970000
 DS CL4 00980027
TERMBUF DS CL1920 01151013
** 01153924
 END 01160023

BEA MessageQ LU6.2 Services for OpenVMS User’s GuideD-11

D Examples of CICS Inbound and Outbound Applications
D-12 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

Index

A
ADD_LU message 4-1, 4-3
ADD_TARGET message 4-1, 4-4
Advanced Program-to-Program

Communications (APPC) 1-1, 1-3
APPC verb set 6-2
application

boundaries 2-9
connections 1-8
state/event/action tables 2-6
types 2-1

B
BEA MessageQ

client 1-4
client, number of active connections 3-4
LU6.2 Port Server 1-4
message bus 1-4

C
CHANGE_DIRECTION message 4-6, 4-8
CICS 1-5
command procedures

DMQLU62_SERVER_LOGICALS.CO
M 3-21

DMQLU62_SERVER_STARTUP.CO
M 3-20

COMMUNICATION_TYPE data item 3-14,
3-15, 3-16

concurrent sessions, maximum number of 3-
3

configuration files 3-6
CONNECT_ACCEPT message 4-6, 4-9
CONNECT_REJECT message 4-6, 4-10
CONNECT_REJECT reason codes 4-10
CONNECT_REQUEST message 4-6, 4-11
CONNECTION_TERMINATED message

4-6, 4-12
connection-oriented communications,

definition of 1-1
contention 1-7
control messages 4-1–4-5
conversation allocations 1-6
conversations 1-6

maximum number of active 6-2

D
data fields

LU62_ABEND_FLAG 6-20
LU62_ACTIVATE_LOCAL_LU 6-10
LU62_ACTIVATE_POLARITY 6-10
LU62_ALLOCATE_LOCAL_LU 6-13
LU62_ALLOCATE_PASSWORD 6-13
LU62_ALLOCATE_POLARITY 6-14
LU62_ALLOCATE_PROFILE 6-13
LU62_ALLOCATE_SYNC_LEVEL 6-

13
LU62_ALLOCATE_USERNAME 6-13
LU62_CONNECTED_LU_NAME 6-19
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide I-1

LU62_CONV_ID 6-15, 6-16, 6-17, 6-
18, 6-19, 6-20, 6-21, 6-23, 6-27,
6-30, 6-32, 6-33, 6-34, 6-35, 6-
36, 6-37, 6-38, 6-39

LU62_DATA_MESSAGE 6-34, 6-38
LU62_DEFINE_ACCNAME 6-23
LU62_DEFINE_APPLID 6-24
LU62_DEFINE_CIRCUIT 6-23
LU62_DEFINE_INIT_TYPE 6-24
LU62_DEFINE_LOCAL_LU 6-23
LU62_DEFINE_LOGMODE 6-24
LU62_DEFINE_LU_PASSWORD 6-23
LU62_DEFINE_SESSION 6-24
LU62_DEFINE_TP_TPN 6-25
LU62_DEFINE_USER_DATA 6-24
LU62_DELETE_LOCAL_LU 6-28
LU62_ERROR_CODE 6-30, 6-39
LU62_ERROR_VECTOR 6-30
LU62_MSG_LEN 6-34, 6-38
LU62_REQUESTER 6-10, 6-13, 6-23,

6-25
LU62_TPN 6-13

data items
COMMUNICATION_TYPE 3-14, 3-

15, 3-16
DEALLOCATE_TYPE 3-14, 3-15, 3-16
LU_ACCESS 3-8
LU_GATEWAY 3-8
LU_SYSTEM_ID 3-8
LU_TYPE 3-9
TARGET_NAME 3-11, 3-15, 3-16
TARGET_SYSTEM_ID 3-11, 3-15, 3-

16
TARGET_TPN 3-11, 3-15, 3-16
TARGET_TYPE 3-12–??, 3-15, 3-16

DATA_MESSAGE message 4-6, 4-13
DEALLOCATE_TYPE data item 3-14, 3-15,

3-16
disable CONFIRM processing A-2
DMQLU62$BUFFER_COUNT logical

name 3-19, A-2

DMQLU62$BUFFER_SIZE logical name 3-
19, A-1

DMQLU62$DISABLE_CONFIRM logical
name 3-3, 3-19, A-2

DMQLU62$SECURITY_FILE logical name
3-4, 3-19

DMQLU62$SELECT_SYNC logical name
3-3, 3-19, A-2

DMQLU62$SERVER_BROADCAST_STR
EAM logical name 3-18, 3-21

DMQLU62$SERVER_DOC logical name 3-
17

DMQLU62$SERVER_EXAMPLES logical
name 3-17

DMQLU62$SERVER_EXE logical name 3-
17

DMQLU62$SERVER_IMS_ADAPTER
logical name 3-19

DMQLU62$SERVER_LIB logical name 3-
17

DMQLU62$SERVER_LOG_INFO logical
name 3-18

DMQLU62$SERVER_LU_CONFIG logical
name 3-6, 3-17

DMQLU62$SERVER_MULTI_CONNECT
logical name 3-19

DMQLU62$SERVER_PAMS_PROCESS
logical name 3-18

DMQLU62$SERVER_RECONNECT_TIM
ER logical name 3-18

DMQLU62$SERVER_SRC logical name 3-
17

DMQLU62$SERVER_TARGET_CONFIG
logical name 3-6, 3-17

DMQLU62$SERVER_UCB_ADDR logical
name 3-18

DMQLU62$TRACE logical name A-2
DMQLU62_EVENT_WATCH utility 3-21
DMQLU62_SERVER_LOGICALS.COM

command procedure 3-21
DMQLU62_SERVER_STARTUP.COM
I-2 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

command procedure 3-20
DMQLU62_SERVER_STOP utility 3-22

E
error codes

PAMSLU62_BADMSGTYPE A-4
PAMSLU62_EXCEEDLUMAX A-3
PAMSLU62_NOSUCHCONV A-4
PAMSLU62_SESSFAILED A-3
PAMSLU62_TRUNCATED A-4
PAMSLU62_UNEXPECTED A-3

error vector 6-30
execution trace A-2

F
foreign commands

DMQLU62_EVENT_WATCH 3-21
DMQLU62_SERVER_STOP 3-22

H
half-duplex 1-1
hybrid applications 2-2

I
IBM clients, multiple connections 3-4
IMS 1-5
IMS LU6.1 Adapter B-1
inbound

allocation 1-7
applications 2-2
conversation allocation 6-2
conversations 6-4
conversations, how to request 6-4
state/event/action table 2-6

L
linear conversations 2-4

link port server with LU6.2 User Callback A-
2

logical name
DMQLU62$SECURITY_FILE 3-4

Logical names
DMQLU62$DISABLE_CONFIRM 3-3
DMQLU62$SELECT_SYNC 3-3

logical names
defining 3-21
DMQLU62$BUFFER_COUNT 3-19,

A-2
DMQLU62$BUFFER_SIZE 3-19, A-1
DMQLU62$DISABLE_CONFIRM 3-

19, A-2
DMQLU62$SECURITY_FILE 3-4, 3-

19
DMQLU62$SELECT_SYNC 3-19, A-2
DMQLU62$SERVER_BROADCAST_

STREAM 3-18, 3-21
DMQLU62$SERVER_DOC 3-17
DMQLU62$SERVER_EXAMPLES 3-

17
DMQLU62$SERVER_EXE 3-17
DMQLU62$SERVER_IMS_ADAPTE

R 3-19
DMQLU62$SERVER_LI 3-17
DMQLU62$SERVER_LOG_INFO 3-

18
DMQLU62$SERVER_LU_CONFIG 3-

17
DMQLU62$SERVER_LU_CONFIG,

3-6
DMQLU62$SERVER_MULTI_CONN

ECT 3-19
DMQLU62$SERVER_PAMS_PROCE

SS 3-18
DMQLU62$SERVER_RECONNECT_

TIMER 3-18
DMQLU62$SERVER_SRC 3-17
DMQLU62$SERVER_TARGET_CON

FIG 3-6, 3-17
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide I-3

DMQLU62$SERVER_UCB_ADDR 3-
18

DMQLU62$TRACE A-2
on-disk structure 3-17
port server control 3-17

LU_ACCESS data item 3-8
LU_CONFIG

description of 3-5
LU_GATEWAY data item 3-8
LU_SESSION data item 3-8
LU_SYSTEM_ID data item 3-8
LU_TYPE data item 3-9
LU6.2 architecture 1-6
LU6.2 protocols 1-6
LU6.2 session 1-2
LU62_ABEND_FLAG field 6-20
LU62_ACTIVATE message 6-9
LU62_ACTIVATE_LOCAL_LU field 6-10
LU62_ACTIVATE_POLARITY field 6-10
LU62_ALLOCATE message 6-12
LU62_ALLOCATE_LOCAL_LU field 6-13
LU62_ALLOCATE_PASSWORD field 6-

13
LU62_ALLOCATE_POLARITY field 6-14
LU62_ALLOCATE_PROFILE field 6-13
LU62_ALLOCATE_SYNC_LEVEL field 6-

13
LU62_ALLOCATE_USERNAME field 6-

13
LU62_CONFIRM_RECV message 6-16
LU62_CONFIRM_REQ message 6-17
LU62_CONFIRM_SEND message 6-18
LU62_CONFIRMED message 6-15
LU62_CONNECTED message 6-19
LU62_CONNECTED_LU_NAME field 6-

19
LU62_CONV_ID field 6-15, 6-16, 6-17, 6-

18, 6-19, 6-20, 6-21, 6-23, 6-27, 6-
30, 6-32, 6-33, 6-34, 6-35, 6-36, 6-
37, 6-38, 6-39

LU62_DATA_MESSAGE field 6-34, 6-38

LU62_DEALLOCATE message 6-20
LU62_DEALLOCATED message 6-21
LU62_DEFINE_ACCNAME field 6-23
LU62_DEFINE_APPLID field 6-24
LU62_DEFINE_CIRCUIT field 6-23
LU62_DEFINE_GATEWAY field 6-23
LU62_DEFINE_INIT_TYPE field 6-24
LU62_DEFINE_LOCAL_LU field 6-23
LU62_DEFINE_LOGMODE field 6-24
LU62_DEFINE_LU message 6-22
LU62_DEFINE_LU_PASSWORD field 6-

23
LU62_DEFINE_SESSION field 6-24
LU62_DEFINE_TP message 6-25
LU62_DEFINE_TP_TPN field 6-25
LU62_DEFINE_USER_DATA field 6-24
LU62_DELETE_LOCAL_LU field 6-28
LU62_DELETE_LU message 6-27
LU62_ERROR message 6-29
LU62_ERROR_CODE 6-39
LU62_ERROR_CODE field 6-30
LU62_ERROR_VECTOR field 6-30
LU62_INIT message 6-32
LU62_MSG_LEN field 6-34, 6-38
LU62_OK_TO_SEND message 6-33
LU62_RECV_DATA message 6-34
LU62_REQ_CONFIRM message 6-35
LU62_REQ_TO_SEND message 6-36
LU62_REQUESTER field 6-10, 6-13, 6-23,

6-25
LU62_SEND_CONFIRM message 6-37
LU62_SEND_DATA message 6-38
LU62_SEND_ERROR message 6-39
LU62_TPN field 6-13

M
message

maximum size 3-3
types 4-1

multiple connections
I-4 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

,
BEA MessageQ Clients 3-4
IBM Clients 3-4

multithreading 6-4

N
NCP 1-5

O
outbound

allocation 1-7
applications 2-2
conversation allocation 6-2
conversations 6-4
conversations, how to request 6-4
state/event/action table 2-8

P
PAMSLU62_BADMSGTYPE error code A-

4
PAMSLU62_EXCEEDLUMAX error code

A-3
PAMSLU62_NOBUFFER error code A-3
PAMSLU62_NOSUCHCONV error code A-

4
PAMSLU62_SESSFAILED error code A-3
PAMSLU62_TRUNCATED error code A-4
PAMSLU62_UNEXPECTED error code A-

3
Port Server

control messages 4-1–4-5
using 1-8

R
REGISTER_TARGET message 4-6, 4-15

S
security

inbound connection requests 3-4
inbound conversations 3-4

security file 3-4
SHUTDOWN message 4-2, 4-5
SNA Gateway 1-5
SNA Logical Units

maximum number of 3-3
support

technical xiv

T
target

definition of 3-3
maximum number of 3-3
registration 2-3
sync level

definition 3-3
TARGET_CONFIG

description of 3-6
TARGET_NAME data item 3-11, 3-15, 3-16
TARGET_SYSTEM_ID data item 3-11, 3-

15, 3-16
TARGET_TPN data item 3-11, 3-15, 3-16
TARGET_TYPE data item 3-12–3-14, 3-15

3-16
TSO 1-5

U
User Callback

error codes A-3
initializing 6-3
linking with Port Server A-2
message flow 6-6
message header format 6-2
requesting a conversation 6-4
sample message exchange 6-6
using with IMS LU6.1 Adapter B-1

User Callback Services (UCB) 6-1
utilities
BEA MessageQ LU6.2 Services for OpenVMS User’s Guide I-5

DMQLU62_EVENT_WATCH 3-21
DMQLU62_SERVER_STOP 3-22

V
VTAM 1-5
I-6 BEA MessageQ LU6.2 Services for OpenVMS User’s Guide

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	Preface
	Purpose of This Document
	Who Should Read This Document
	How This Document Is Organized

	How to Use This Document
	Opening the Document in a Web Browser

	Figure 1 Online Document Displayed in a Netscape Web Browser
	Printing from a Web Browser
	Documentation Conventions
	Related Documentation
	BEA MessageQ LU6.2 Services for OpenVMS Documentation
	BEA Publications

	Contact Information
	Documentation Support
	Customer Support

	1 Introducing BEA MessageQ LU6.2 Services
	Basic Terms and Concepts
	The BEA MessageQ LU6.2 Services Product
	SNA LU6.2 Sessions
	Advanced Program-to-Program Communications (APPC)
	BEA MessageQ LU6.2 Services Application Components
	Figure 1�1 BEA MessageQ LU6.2 Components

	SNA APPC/LU6.2 Fundamentals
	Logical Unit Type 6.2 Overview
	Inbound and Outbound Conversations
	Figure 1�2 SNA Session for Dependent LUs

	Using the LU6.2 Port Server for Applications Connections
	Writing Your Own Port Server

	2 Developing Applications Using BEA MessageQ LU6.2 Services
	Applications Development Overview
	Inbound Applications
	Outbound Applications
	Hybrid Applications
	Target Registration

	Structure of BEA MessageQ LU6.2 Services Applications
	Simple Linear Conversations
	State Machines
	Figure 2�1 Application Loop

	Overview of State/Event/Action Table
	Table 2�1 Sample State/Event/Action Table

	Inbound State/Event/Action Listing
	Table 2�2 Inbound State/Event/Action Table

	Outbound State/Event/Action Listing
	Table 2�3 Outbound State/Event/Action Table
	Development Checklist
	1. Define the application boundaries.
	2. Identify the communicating partners.
	3. Design the application conversations.
	4. Develop the application.
	5. Define the communications environment.
	6. Test the application.
	Step 1: Define the Application Boundaries
	Figure 2�2 Integrated Application Domains

	Step 2: Identify the Communicating Partners
	Figure 2�3 Communication Partners in Application

	Step 3: Design the Application Conversations
	Step 4: Develop the Application
	Step 5: Define the Communications Environment
	Step 6: Test the Application
	Developing a Sample Application
	Listing 2-1 Sample Resources and Target Initialization Files

	3 Configuring the LU6.2 Port Server
	Port Server Functions
	Port Server Limits of Operation
	Table 3�1 Port Server Operational Limits
	Figure 3�1 Valid and Invalid BEA MessageQ and IBM Multiple Connections

	Configuring the Port Server
	Building the LU Configuration File
	Listing 3-1 LU Configuration File Format
	! LU CONFIGURATION FILE ! ====================== ! ! LOGICAL NAME: DMQLU62$SERVER_LU_CONFIG ! FUN...
	! END
	Table 3�2 LU Configuration File Data Items

	Building the Target Configuration File
	Listing 3-2 TARGET Configuration File Format
	! TARGET CONFIGURATION FILE ! ========================= ! ! LOGICAL NAME: DMQLU62$SERVER_TARGET_C...
	Table 3�3 Target Configuration File Data Items

	Configuring Inbound and Outbound Connections
	Configuring Inbound Connections
	Table 3�4 Data Items for Configuring Inbound Targets

	Configuring Outbound Connections
	Table 3�5 Data Items for Configuring Outbound Targets

	Defining Logical Names
	Logical Names for the On-Disk Structure
	Logical Names for Port Server Control

	Managing the LU6.2 Port Server
	Starting Port Servers
	@DMQLU62_SERVER_STARTUP Y que_id ps_id lu_config_file target_config_file

	Watching Events
	Defining Logical Names with DMQLU62_SERVER_LOGICALS.COM
	@DMQLU62_SERVER_LOGICALS device install_dir V40-VAX que_id ps_id lu_config_file target_config_file

	Stopping LU6.2 Port Servers

	4 Port Server Messages
	Port Server Control Messages
	ADD_LU
	Listing 4-1 C Message Structure for ADD_LU

	ADD_TARGET
	Listing 4-2 C Message Structure for ADD_TARGET

	SHUTDOWN
	Listing 4-3 C Message Structure for SHUTDOWN

	Port Server Connection Messages
	Table 4�1 Summary of LU6.2 Port Server Messages
	Figure 4�1 Typical Program Structure
	CHANGE_DIRECTION
	Listing 4-4 C Message Structure for CHANGE_DIRECTION
	MESSAGE DATA FIELDS

	CONNECT_ACCEPT
	Listing 4-5 C Message Structure for CONNECT_ACCEPT
	MESSAGE DATA FIELDS

	CONNECT_REJECT
	Listing 4-6 C Message Structure for CONNECT_REJECT
	MESSAGE DATA FIELDS
	CONNECT REJECT REASON CODES

	CONNECT_REQUEST
	Listing 4-7 C Message Structure for CONNECT_REQUEST
	MESSAGE DATA FIELDS

	CONNECTION_TERMINATED
	Listing 4-8 C Message Structure for CONNECTION_TERMINATED
	MESSAGE DATA FIELDS

	DATA_MESSAGE
	Listing 4-9 C Message Structure for DATA_MESSAGE
	MESSAGE DATA FIELDS

	REGISTER_TARGET
	Listing 4-10 C Message Structure for REGISTER_TARGET
	MESSAGE DATA FIELDS

	Example of Port Server Messages Used for Client Communications
	Listing 4-11 LU6.2 Port Server Program

	5 LU6.2 Port Server Application Programming Interface
	PORT_CONNECT
	Syntax
	Arguments
	Argument definitions
	target_name
	connection_index
	port_group
	port_queue

	DESCRIPTION
	RETURNS
	RETURN VALUES
	Example

	PORT_RECV
	Syntax
	Arguments
	Argument definitions
	message
	buf_size
	msg_size
	connection_index
	change_dir
	disconnect
	abort
	port_group
	port_queue

	Description
	Returns
	Return values
	Example

	PORT_REGISTER
	Syntax
	Arguments
	Argument definitions
	target_name
	port_group
	port_queue
	reg_group
	reg_queue

	Description
	Returns
	Return values
	Example

	PORT_SEND
	Syntax
	Arguments
	Argument definitions
	message
	connection_index
	change_dir
	last
	disconnect
	abort
	port_group
	port_queue

	Description
	Returns
	Return values
	Example

	6 LU6.2 User Callback Services
	LU6.2 User Callback Overview
	Using the LU6.2 User Callback Interface
	Multithreading Services
	Inbound Conversations
	Outbound Conversations

	Example of User Callback Message Flow
	Table 6�1 BEA MessageQ Client—User Callback Message Exchange
	APPC User Callback Messages
	Figure 6�1 BEA MessageQ LU6.2 Session—Typical Verb Sequence

	LU62_ACTIVATE
	C Message Structure
	Message Data Fields
	Arguments

	LU62_ALLOCATE
	C Message Structure
	Message Data Fields
	Arguments

	LU62_CONFIRMED
	C Message Structure
	Message Data Fields
	Arguments

	LU62_CONFIRM_RECV
	C Message Structure
	Message Data Fields
	Arguments

	LU62_CONFIRM_REQ
	C Message Structure
	Message Data Fields
	Arguments

	LU62_CONFIRM_SEND
	C Message Structure
	Message Data Fields
	Arguments

	LU62_CONNECTED
	C Message Structure
	Message Data Fields
	Arguments

	LU62_DEALLOCATE
	C Message Structure
	Message Data Fields
	Arguments

	LU62_DEALLOCATED
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LU62_DEFINE_LU
	C Message Structure
	Message Data Fields
	Arguments

	LU62_DEFINE_TP
	C Message Structure
	Message Data Fields
	Arguments

	LU62_DELETE_LU
	C Message Structure
	Message Data Fields
	Arguments

	LU62_ERROR
	C Message Structure
	Message Data Fields
	Arguments

	LU62_INIT
	C Message Structure
	Message Data Fields
	Arguments

	LU62_OK_TO_SEND
	C Message Structure
	Message Data Fields
	Arguments

	LU62_RECV_DATA
	C Message Structure
	Message Data Fields
	Arguments

	LU62_REQ_CONFIRM
	C Message Structure
	Message Data Fields
	Arguments

	LU62_REQ_TO_SEND
	C Message Structure
	Message Data Fields
	Arguments

	LU62_SEND_CONFIRM
	C Message Structure
	Message Data Fields
	Arguments

	LU62_SEND_DATA
	C Message Structure
	Message Data Fields
	Arguments

	LU62_SEND_ERROR
	C Message Structure
	Message Data Fields
	Arguments

	A LU6.2 User Callback Interface Logical Names and Error Codes
	User Callback Logical Names
	Table A�1 User Callback Support Logical Names

	Linking a User-Written Port Server
	Error Handling
	Table A�2 User Callback Error Codes

	B Notes on IMS
	C Examples of BEA MessageQ LU6.2 Inbound and Outbound Applications
	Sample Inbound Application
	--- - /* ** Copyright...

	Sample Outbound Application
	--- - /* ** Copyright...

	D Examples of CICS Inbound and Outbound Applications
	Sample CICS Inbound Application
	-- TITLE 'VAXIN - B...

	Sample CICS Outbound Application
	-- TITLE 'FROMIBM - I...
	Index

