'll"

Ak
BEA MessageQ

Introduction to
Message Queuing

BEA MessageQ for OpenVMS Version 5.0
Document Edition 5.0
March 2000

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and TUXEDO are registered trademarks of BEA Systems, Inc. BEA Builder,
BEA Connect, BEA Manager, BEA MessageQ, Jolt, M3, and WebLogic are trademarks of BEA Systems, Inc.
All other company names may be trademarks of the respective companies with which they are associated.

BEA MessageQ Introduction to M essage Queuing

Document Edition Date Software Version

5.0 March 2000 BEA MessageQ, Version 5.0

Contents

Preface

Purpose of ThiSDOCUMENEcuiiiie et e e Vii
Who Should Read ThiS DOCUMENL.........ccoeriiiiie e Vii
How This Document ISOrganized..............cccoeeeeiieciecieniecceeeeeeee e Vii

HOW t0 USe ThiS DOCUMENLooviiieieieiieiieiee et s e viii
Opening the Document in aWeh BroWSErccccoveieeieeenicnie e Viii
Printing from aWeh BroOWSEScceovvieiiece e iX
Documentation CONVENLIONS...........couereereeieeereeieeeereese e s seeienee e e enesaeeeas iX

Related DOCUMENEEEIONoveueeeireireie ettt e e se e eseeae e eeas Xi
MessageQ DOCUMENEALIONccoviveieciieeie et e Xi

ContaCt INfOrMELTON..........ieeee et e e Xii
DOCUMENEELi ON SUPPOT. ...c.eeeveeeireiienieseereeieiee e e e e e ene s s Xii
CUSLOMET SUPPOMeeeeere ettt et e st sbese e see e e e anbenee e ens Xii

1. What Is BEA MessageQ?

The Distributed Computing ReVOIULIONcoiiiiiiiieeiee e 1-1
Traditiona Versus Distributed Applications.........ccccooverereveeneeieieienene 1-2
Major Trends in Distributed COMPULINGcccooeeererienie e 1-3
Distributed Computing MOGEIS.......c.coceiiriieie e 1-5

Peer-to-Peer Communication Model ..o e 1-5
Client/Server Communication Modeccccoiiiieiiineniene e 1-6
Technologies for Building Distributed Applications.............ccccevieninnne. 1-6
DCE/Remote Procedure Callccoviiiieiineee e 1-7
Object Transaction MONItOrNG........cccccveveevieeieecieie s e e 1-8
M ESSAPE QUEUIMNGvveeveerieceectreeiectteteee e e e e e e e e e ereeseesreesaesreesaesresnnens 1-8

Message QUEUING BaASICS.......ccueviieece et s st st sree 1-9

WHhat [S @MESSAQE?.......cccueciiiece ettt sttt st sttt ere st ere e n e sre e 1-9

BEA MessageQ Introduction to Message Queuing iii

CONTENTS

What |SMeSSage QUEUING?..........curireee e eeeseereeee e e eeeseeses e esesseseens 1-10
How Does BEA MessageQ WOIK?couveeecieie e 1-11
Choosing the BEA MessageQ Server or Clientccooevveniiencnenennn. 1-12
How the BEA MessageQ Client Works..........ccoooeeevenciininnciecinens 1-13
When to Choose the BEA MessageQ Client.........cccoeeveeeveiveeiceeeenen. 1-14
Key Features of BEA MeSSAgQ.......orureeuerrireeeeeereee e seeessesies e sneseeseens 1-15
BEA MessageQ BENEfitS......coovvieieieieiece e e 1-16
Standardized Integration APProach..........cccoeeererieneseereesee e 1-17
GUAraNtEEd DEIIVENYccue e et 1-17
Application POrtabilitycccooiiiiiiree e 1-18
Message Bus Simplifies CommuUNiCatioN..........ccceverereneeneeieirreeeeieneens 1-18
Broad Multiplatform SUPPOItcccooeiiireee et 1-19
Flexibility to Meet Changing Application Needs..........cccccvvrerinenennnnnn. 1-20

2. Sending and Receiving BEA MessageQ Messages

Overview of BEA MessageQ APl FUNCLIONS.........cocoiioieiireeee e 2-2
Configuring the BEA MessageQ Environmentccocooeoeeereneeneeiencnieee s 2-5
Defining Queues and Their AttribULEScccvce i 2-5
Configuring Buses, Groups and QUEUEScccerereerieeererneeeeeesene e e 2-8
Designing Your BEA MessageQ Environmentcccccecveevecveeeenne. 2-8
Configuring Each Message Queuing Groupcccccceeeeeeeseeneeennens 2-10

Starting Each Message QUEUING GIoUPccoveerreereeerernereeiereenneneas 2-11
Attaching to the Message QUEUING BUScccccvevieiiieie e 2-11
Attaching DY NaME.......cuiiieeee e e 2-13
Attaching by NUMDETooiieie e 2-13
Attaching to a TemMpPOorary QUELIEcoveiueueierreee et e sens 2-13
SENAING AMESSAGEcvvecreetie et er et ste st steeraen e ere e seereenneenes 2-14
Selecting aMessaging StYI€......covcuiieieeieceeeee e 2-16
Using Buffer-Style Messagingc.cceevevecieiecieneeeesesieesesneesnenn 2-17

Using FML-Styl@ MESSaginNgccceueevuereereeieeieeeieeseeseeeseesreesaesraennns 2-18
Choosing a Delivery MOdE..........cccoeieieieciieieeseeeee e 2-18
Sender NOtIfiCatioNccoouiviiiie e 2-19
Delivery Interest POINtccoccovevievieie e e 2-20
Undeliverable Message ACtionccecoeeecieiecceseereccee e 2-23

iv BEA MessageQ Introduction to Message Queuing

RECEIVING AMESSAGE ... ettt ettt et e e enes 2-24

Confirming Receipt Of aMESSAgE.......couevereeeeeieer e e 2-24
Using the PAMS Status BUFfErccouiciiiiiieicieeceeeeeee e e 2-25
Using the show_buffer Argument ... evieiecieieceeeeeee e 2-26
Using Message Classes with BEA MessageQ and BEA TUXEDO......... 2-27
Detaching from the Message QUEUING BUS........c.ccccoveiieiieivee e 2-27
Exchanging M essages Between BEA MessageQ and BEA TUXEDO........... 2-28

3. Designing and Developing BEA MessageQ Applications

Designing a BEA MessageQ APPliCatioNcocoeeereriene e 31
Solving the BuSINESS Problem.........coceoiieii i 3-2
Developing the Communications Model............cccoeiiineiiiinine e 3-3
Defining Major Application NEedS.........ccocereieienieie e 35

Choosing the Style of MeSSaging.........cccevereeeririine e 3-6
Choosing Recoverable or Nonrecoverable Message Delivery 3-6
Choosing Asynchronous or Synchronous Messaging...........cccceeeeveeee. 37
Using Message BroadCastingcoeeeeeeeieeieeiecseeeseesree e sreesne e 3-8
Using Message SEIECHIONcueuecieieeecee et 3-8
Load Baancing With MRQScoeriiiereeeieee e e 3-8
Choosing Single Reader Queues for Sequential Processing............... 39
Choosing Permanently Active Queues for Data Persistence.............. 3-9
Using BEA MessageQ NamMingcccceeeeviesreesieerieiieseeie e eseeseeeenns 3-10
Using FML for Self-Describing Messaging.........cccccvveeeeeeeeneeeieene. 311
Designing Message Flow and System Configurationcccceeeeevvene. 3-11

Advanced Message QUEUING FEALUIES.c.ccveveeeieeneeeieeceeetee et 3-12
FML Self-Describing MeSSagingcceeeveevveeeesieeie e eriereeiesieeseesnee e 3-13
Recoverable MESSAgiNg........ccoverieieiiececiee et eesre e e ereesaesrannee s 3-14
M ESSAQE SEIECLIONeeieceiece ettt st s 3-16
Broadcasting MESSAQESccccueeuieie ettt er e s sraenne 3-17
NN = 10 11 Vo PSR SRSRSS 3-18
Using Message Based SErVICES........ccueiecveie ettt 3-20
Exchanging M essages Between BEA MessageQ and BEA TUXEDO V6.4 or

BEA M3 V2.1t e s s e 3-21
Enabling the Messaging Bridgeccoeeveeceeieceeseeeveeeeeee e 3-24
Additional APl FUNCLIONS........coiiiiie e e e 3-24

BEA MessageQ Introduction to Message Queuing %

CONTENTS

Defining a Name-to-Queue Trandation at Runtime............cccceeene. 3-25

L ocating the Queue Address for aQUEUE...........ccceeveeeeeireriecceenieens 3-25

USING THMEFS ...ttt sttt st e se e s e e eneeneas 3-26
Obtaining Detailed Status Informationccoceeenennnencnenenn. 3-27
Obtaining the Number of Pending Messagesin a Queue.................. 3-27

Testing and Debugging BEA MessageQ Applicationsc.cccoeveveieieieenene 3-27
BEA MessageQ SCript FaCilityooeeeeoeeieieiece e 3-28
BEA MessageQ Test ULty ...cveeeeeeeiee et 3-29
MESSAGE TTACING. ...uecuviieeeeeie e ee et et e ete st e saesreeaaesreesbesrees e e e e e aeesesneenns 3-29

4. Managing the BEA MessageQ Environment

Understanding the BEA MessageQ Environmentccocccevereneciennneeeenens 4-1

Anatomy of aMessage QUEUING GrOUPcverereeerrernereneseeseenee e seeneenens 4-3

Starting and Stopping Groups, Queues, Linksandthe CLS...................... 4-4

Monitoring System PerformancCe........c.ccooe e ieeneee e s 4-5

Error Logging and RECOVENYccueiiiiieiiiieee ettt e s 4-5
Glossary

Vi BEA MessageQ Introduction to Message Queuing

Preface

Purpose of This Document

This document provides an introduction to message queuing, a technique for
exchanging information between distributed applications using message queues. This
document also describes specific features and benefits of BEA MessageQ.

Who Should Read This Document

This document is intended for the following audiences:
4 system installers who will install BEA MessageQ on supported platforms

4 system administrators who will configure, manage, and troubleshoot BEA
M essageQ on supported platforms

4 applications designers and developers who are interested in designing,
developing, building, and running BEA MessageQ applications

How This Document Is Organized

BEA MessageQ Introduction to Message Queuing is organized as follows:

4 Chapter 1, “What Is BEA MessageQ?"discusses distributed computing,
describes basic message queuing concepts, and lists the benefits of message
queuing in a distributed computing environment.

BEA MessageQ Introduction to Message Queuing Vii

Chapter 2, “Sending and Receiving BEA MessageQ Messages” provides an
overview of the MessageQ API functions and describes the processes of
configuring MessageQ, attaching to a queue, sending and receiving messages,
and detaching from the message queuing bus.

Chapter 3, “Designing and Developing BEA MessageQ Applications” describes
the steps involved in designing, testing, and debugging a MessageQ application.
This chapter also describes advanced MessageQ features including
self-describing messaging, recoverable messaging, message selection, message
broadcasting, and naming services.

Chapter 4, “Managing the BEA MessageQ Environment” describes how to
monitor system performance and troubleshoot errors.

The Glossary defines terms used in describing messaging in general and
MessageQ in particular.

How to Use This Document

This document is designed primarily as an online, hypertext document. If you are
reading this as a paper publication, note that to get full use from this document you
should access it as an online document via the BEA MessageQ Online Documentatic
CD. The following sections explain how to view this document online, and how to
print a copy of this document.

Opening the Document in a Web Browser

viii

To access the online version of this document, openmtiex. ht mfile in the top-level
directory of the BEA MessageQ Online Documentation CD. Click on the link for the
Introduction to Message Queuing.

Note: The online documentation requires a Web browser that supports HTML

version 3.0. Netscape Navigator version 3.0 or later, or Microsoft Internet
Explorer version 3.0 or later are recommended.

BEA MessageQ Introduction to Message Queuing

Printing from a Web Browser

Y ou can print a copy of this document, one file at atime, from the Web browser.
Before you print, make sure that the chapter or appendix you want is displayed and
selected in your browser.

To select a chapter or appendix, click anywhere inside the chapter or appendix you
want to print. If your browser offers aPrint Preview feature, you can use thefeature to
verify which chapter or appendix you are about to print. If your browser offersa Print
Frames feature, you can use the feature to select the frame containing the chapter or
appendix you want to print.

The BEA MessageQ Online Documentation CD also includes Adobe Acrobat PDF

files of all of the online documents. Y ou can use the Adobe A crobat Reader to print all

or a portion of each document. On the CD’s main menu, click the Bookshelf button.
On the Bookshelf, scroll to the entry for the BEA MessageQ document you want to
print and click the PDF option.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention ltem

boldfacetext Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

BEA MessageQ Introduction to Message Queuing iX

Convention

Item

nonospace
t ext

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
M onospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostreamh> void main () the pointer psz
chnod u+w *

\tux\ dat a\ ap

. doc

t ux. doc

Bl TMAP

f |l oat

nonospace
bol df ace
t ext

I dentifies significant wordsin code.
Example:
void commit ()

nonospace
italic
t ext

Identifies variables in code.
Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:

LPT1

SIGNON

OR

{1}

Indicates a set of choices in asyntax line. The braces themsel ves should
never be typed.

Indicates optiona itemsin a syntax line. The brackets themselves should
never be typed.

Example:

bui l dobjclient [-v] [-0 nane | [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

X BEA MessageQ Introduction to Message Queuing

Convention Iltem

Indicates one of the following in acommand line:

4 That an argument can be repeated several timesin acommand line

4 That the statement omits additional optional arguments

4 That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

buil dobjclient [-v] [-0 name | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from asyntax line.
The vertical ellipsisitself should never be typed.

Related Documentation

The following sections list the documentation provided with the MessageQ software,
related BEA publications, and other publications related to the technology.

MessageQ Documentation

The MessageQ information set consists of the following documents:
BEA MessageQ Installation and Configuration Guide for Windows NT
BEA MessageQ Installation and Configuration Guide for UNIX

BEA MessageQ Installation Guide for OpenVMS

BEA MessageQ Configuration Guide for OpenVMS

BEA MessageQ Programmer’s Guide

BEA MessageQ FML Programmer’s Guide

BEA MessageQ Introduction to Message Queuing Xi

BEA MessageQ Reference Manual

BEA MessageQ System Messages

BEA MessageQ Client for Windows User’s Guide
BEA MessageQ Client for UNIX User’s Guide
BEA MessageQ Client for OpenVMS Guide

Note: TheBEA MessageQ Online Documentation CD also includes Adobe A crobat
PDF files of all of the online documents. Y ou can use the Adobe Acrobat
Reader to print al or a portion of each document.

Contact Information

The following sections provide information about how to obtain support for the
documentation and software.

Documentation Support

If you have questions or comments on the documentation, you can contact the BEA
Information Engineering Group by e-mail at docsupport@beasys.com. (For
information about how to contact Customer Support, refer to the following section.)

Customer Support

If you have any questions about this version of BEA MessageQ, or if you have
problems installing and running BEA MessageQ, contact BEA Customer Support
through BEA WebSupport at www. beasys. com Y ou can a so contact Customer
Support by using the contact information provided on the Customer Support Card,
which isincluded in the product package.

When contacting Customer Support, be prepared to provide the following information:

Xii BEA MessageQ Introduction to Message Queuing

* & & & o

Your name, e-mail address, phone humber, and fax number
Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

BEA MessageQ Introduction to Message Queuing

xiii

Xiv BEA MessageQ | ntroduction to Message Queuing

CHAPTER

1 WhatIs BEA
MessageQ?

Message queuing is a technique for information exchange among distributed

applications. Message queues can reside in computer memory or on disk. Message

gueues store messages until they are read by the receiver program. Through message
gueuing, application programs can execute independently—they do not need to know
each other’s location or wait for the receiver program to retrieve the message before
continuing.

BEA MessageQ is the industry-leading message queuing product providing
connectivity to a broad range of multivendor platforms. This chapter provides an
overview of:

4 The Distributed Computing Revolution
4 Message Queuing Basics

4 BEA MessageQ Benefits

The Distributed Computing Revolution

During the last two decades, businesses have increasingly moved computing power out
of the data center and into the hands of departments and end users. This trend, called
distributed computing, has accelerated in the last several years due to the
proliferation of powerful and easy-to-use PCs and the advent of high-powered
workstations and servers that offer high reliability and failover capability. This section
describes:

BEA MessageQ Introduction to Message Queuing 1-1

1 WhnartIs BEA MEssaGEQ?

Traditional Versus Distributed Applications
Major Trends in Distributed Computing
Distributed Computing Models

> & & o

Technologies for Building Distributed Applications

Traditional Versus Distributed Applications

An application is defined as a program or set of programs designed to perform a
particular business task, for example, a payroll application. Applications can be
designed and implemented in onelarge, monolithic structure or they can be brokeninto
separate components. Application components can be assigned to different processes
which work cooperatively to perform the desired tasks. Traditional application design
places all application components on a single computer system. Therefore, the
component programs can share information easily through global memory and
synchronize processing through the features of a single operating system.

Distributed computing, on the other hand, spreads out the processing of component
tasks onto several computers tied together by a computer network. Designing a
distributed application all ows application components to run on different computer
systems which can maximize efficient use of computing resources while distributing
end user access to a corporate information databases.

For example, atraditional payroll application requires all component tasks to be
performed on the same computer system. Therefore, all of a company’s business
locations would have to send employee payroll information to a central site for data
entry, processing, and check printing. A distributed payroll application would allow
entry of payroll data, check printing, and check distribution to be handled at different
locations throughout the company.

Distributing the payroll application can reduce cost and improve efficiency by:

1-2 BEA MessageQ Introduction to Message Queuing

THE DISTRIBUTED COMPUTING REVOLUTION

Putting the data entry of payroll information closer to its source ensuring greater
accuracy and faster problem solving

Eliminating the processing bottlenecks and inefficiencies of centralized data
entry and check distribution

Major Trends in Distributed Computing

Today, distributed computing is revolutionizing the way businesses and individuals
process information through:

L4

Mainframe downsizing—replacing expensive corporate mainframes, with
smaller, yet highly reliable departmental servers

PC LAN upsizing—tying end user PC networks together with corporate
databases and application systems

Integrating existing applications—enabling information exchange between
legacy applications to improve data integrity and reduce the cost of data entry

By implementing a distributed approach to application development and integration,
companies are:

L4

* & & S & S > o o

Eliminating manual and redundant data entry by sharing data automatically
between departmental systems

Exchanging information between applications at remote sites

Employing diverse computer hardware for different applications

Consolidating business operations to reduce redundancies and control cost
Coordinating application processing to promote efficiency

Consolidating reporting from different information sources within the company
Reducing software development overhead

Providing distributed access to data stored on corporate mainframes
Connecting hundreds of PCs across the company to share data

Ensuring reliable exchange of information in a diverse environment

BEA MessageQ Introduction to Message Queuing 1-3

1 WhnartIs BEA MEssaGEQ?

Though distributed processing isvery powerful, it isalso very complex. Because many
different computer systems may be involved in information processing, hew issues
have arisen in sharing information, synchronizing processing, and sharing results.

The challenge to devel opers when integrating distributed applicationsis to provide an
efficient means of communication for distributed applicationsin a heterogeneous
networked environment. To manage their information sharing needs, it is most
efficient to provide applications with a common mechanism for exchanging
information

Middlewareisatype of software designed to form alayer between the application and
the underlying operating system and network software. It provides applicationswith a
common means of communication and independence from the network and operating
system. Middleware provides devel opers with an application programming interface

that is common to all environments. When a function call is embedded in a program,

it performsthe communication function for the application using the capabilities of the
particular operating system and network environment in which it runs.

Figure 1-1 contrasts the middleware approach with the previously used method of
linking each individual application in the environment.

Figure1-1 Contrasting Application I ntegration Approaches

P
% s

Traditional
Point-to-Point Message Queuing Bus

Without middleware to accomplish information exchange, application devel opers
have to write the software for sending and receiving information by learning how to
use the features of both network and operating system software to transport the data.
And, without a standard approach to information exchange, each application must be
programmed to communicate with each and every application in the multiplatform
environment.

1-4 BEA MessageQ Introduction to Message Queuing

THE DISTRIBUTED COMPUTING REVOLUTION

For example, to exchangeinformation locally on OpenV M S systems, applications can
use OpenVM S mailboxes. The same kind of information exchange on aUNIX system
would require a knowledge of queues or pipes. Communicating between networked
systems requires knowledge of how to exchange information over the network such as
TCP/IP socket programming.

Distributed Computing Models

Decomposing an application into its component parts and distributing the parts across
disparate computer systems is much more complex than implementing an application
on asingle system. Software devel opers use one of two communication models when
designing applications to share information in a distributed environment as shown in
Figure 1-2.

Figure1-2 Client/Server versus Peer-to-Peer Information Exchange

4 The peer-to-peer model is a conversational style of communication between two
applications or application components that exchange information and control as
equals.

4 Theclient/server model is arequest/response style of communications in which
applications are divided into two types of components: those that make reguests
(clients) and those that fulfill requests (servers).

BEA MessageQ supports both the peer-to-peer or the client/server models of
distributed computing.

Peer-to-Peer Communication Model

A message queuing system provides peer-to-peer communication through a standard
message-passing mechanism. Communicating programs can operate independently
while using the message queuing system to exchange information.

BEA MessageQ Introduction to Message Queuing 1-5

1 WhnartIs BEA MEssaGEQ?

One program initiates communi cation with aremote program and exchanges messages
with it, enabling two-way communication. Data and control information can flow in
either direction. And, the communication can be synchronous or asynchronous. That
is, the sender program can wait for areply from the receiver program or continue
immediately.

The peer-to-peer model is used by applications that work cooperatively to process
information in adistributed environment. Each program in the distributed application
may act as both arequester and fulfiller of service and information requests.

Client/Server Communication Model

The client/server model has emerged during the 1980s as an approach to distributed
application design. Using thismodel, adistributed application ismade up of two types
of programs: ones that make requests and ones that fulfill requests for services or
information.

Client programs require an easy-to-use interface to facilitate user requests for services
or information. Because they do not processinformation, client programs do not need
to run on powerful computers. Therefore, they can be designed to run on inexpensive
personal computerswhich offer graphical user interface capabilities. Server programs,
on the other hand, must run on faster, more powerful systems such as workstations
which can aso access large databases of corporate information.

The client/server design models fits well into today’s corporate heterogeneous
computing environment. With the large amount of PCs distributed throughout the
corporation, this model can provide shared and efficient access to corporate
information resources with appropriate safeguards.

Technologies for Building Distributed Applications

1-6

As with any trend in the computer industry, there is more than one product for building
distributed applications. This section describes the three major approaches to
distributed application design:

4 Remote Procedure Call—one of the standards-based components of the
Distributed Computing Environment

BEA MessageQ Introduction to Message Queuing

THE DISTRIBUTED COMPUTING REVOLUTION

4 Object Transaction Monitoring—an object-oriented industry standard based on
the Common Object Request Broker Architecture (CORBA) combined with
transaction processing (TP) monitor technology

4 Message Queuing—a loosely-coupled approach to building distributed
applications popularized by products from several industry-leading vendors

DCE/Remote Procedure Call

Remote Procedure Call (RPC) is a component of the Distributed Computing
Environment (DCE), a software standard for application integration released by the
Open Software Foundation. RPCs are modeled after the traditional programming
approach where one program invokes another program through a function invocation.
The invocation is in the form of a procedure call. Once called, the control of program
is given over to the called procedure.

In an RPC implementation, the called procedure resides on and is executed on another
system, which can be local or remote. When the called procedure is finished processing
the input data, the results are returned to the calling program in the returned arguments
of the procedure call. Program control is then returned to the calling program
immediately after the RPC is completed.

Since RPCs imitate the call/return structure of a subroutine, they offer only
synchronous data exchange between the client (calling program) and the server (called
procedure). To overcome this limitation, developers must employ operating system
features such as threads or subtasks to force the RPC to process in an asynchronous
manner. Using asynchronous RPCs to integrate applications limits portability because
the application code has become operating system dependent.

RPCs are best used when an application requires:
4 A two-tiered client/server architecture

4+ Highly interdependent processing of client-to-client or server-to-server
interactions

4 Uncomplicated, synchronous interaction without the need for high throughput

4 Asynchronous processing in a predominantly homogeneous computing
environment

BEA MessageQ Introduction to Message Queuing 1-7

1 WhnartIs BEA MEssaGEQ?

Object Transaction Monitoring

The CORBA (Common Object Request Broker Architecture) specification providesa
broad and consistent model for building distributed client/server applications by
defining:

4 An architecture that employs object-oriented technologies and methodologies
4 A common client/server application programming interface

4 Guidelinesfor transmitting and trand ating data among multivendor platforms
¢

A language for developing distributed application interfaces (Interface Definition
Language (IDL))

The CORBA architecture and specification were developed by the Object
Management Group (OMG), a consortium of information systems vendors. The goal
of CORBA isto promote an object-oriented approach to building and integrating
distributed software applications.

The BEA M3 system combines the best of distributed objects and transaction
processing (TP) monitor technology into anew platform that is specifically aimed at
providing high performance for enterprise distributed object applications using
transactions.

The M3 system uses CORBA distributed object technology to provide acommon
programming model, leveraging from BEA TP monitor technology to provide an
enhanced run time by extending the Object Request Broker (ORB) model with online
transaction processing (OLTP) functions. The M3 system also leverages from the
existing BEA core technology infrastructure for transaction management, security,
message transport, administration and manageability, and XA-compliant database
support.

Message Queuing

M essage queuing offers aloosely-coupled approach to building distributed
applications which can be implemented in a synchronous or asynchronous manner.
Because messages are application defined, there is no restrictive structure specifying
the way in which applications must be written. Instead, messaging API calls are
embedded into new or existing application to provide the exchange of information
through messages sent to and read from memory or disk-based queues.

1-8 BEA MessageQ Introduction to Message Queuing

MESSAGE QUEUING BASICS

M essage queuing can be used in applications to perform a variety of functions such as
requesting services, exchanging information, or synchronizing processing.

Message queuing is best used when an application requires:
4+ Asynchronous processing of application components

4 Peer-to-peer and/or client/server communication models
4 Built-in recoverability for message exchange

4+ High datainterchange rates

¢

Tight control of the data exchange between a sender and areceiver program

Message Queuing Basics

M essage queuing is atechnique for sending messages from one program to another by
providing an intermediate storage point in computer memory or in adisk file.

M essages are stored in message queues until they can be read by the receiver program.

By sending and receiving information using message queues, programs can execute
independently—they do not need to know each other’s location or wait for the receiver
program to process the message before continuing. This section describes:

4 What Is a Message?
4 What Is Message Queuing?

4 How Does BEA MessageQ Work?

4 Choosing the BEA MessageQ Server or Client
4 Key Features of BEA MessageQ

What Is a Message?

A message is an application-defined data structure. The application developer defines
the content of the message. A message has the following components:

BEA MessageQ Introduction to Message Queuing 1-9

1 WhnartIs BEA MEssaGEQ?

4+ Datathat isdefined by the application
4 Message attributes that can be used by the application

4 Message context defined by the message queuing software that is transparent to
the user

Communi cation through messaging requires both programs to agree upon the type of
datain the message and the interpretation of the data. The software that delivers the
message ignores its content message; the job of the message queuing system issimply
to transport the message data.

What Is Message Queuing?

M essage queuing is atechnique for sending messages from one program to another by
directing messagesto amemory- or disk-based queue as an intermediate storage point.

The queue stores the messages until they can be processed by thereceiver program. By
gueuing messages, programs can execute independently—they do not need to wait 1
an application to process a message before continuing.

Message queuing works in the following way:

4 Program A makes a call to the message queuing system. The call tells the
message queuing system that a message is ready to be sent to Program B.

4 The message queuing system sends the message to the system where Program
resides and places it in Program B’s queue.

4+ At the appropriate time, Program B reads the message from its queue and
processes the information.

If the system cannot deliver the message because of a communications failure, receiv
abort, or system crash, message recovery capabilities enable the message to be re-:
without further application intervention when communication is re-established.

Using message queuing, any program can send messages addressed to any other
program that is attached to the message queuing bus. The sender program sends out
messages and can continue processing if an immediate response is not required. F
this reason, message queuing adapts well to asynchronous interprocess communicat
needs.

1-10 BEA MessageQ Introduction to Message Queuing

MESSAGE QUEUING BASICS

M essage queuing does not require applicationsto know the structure or state of another
application in order to enable communication. As aresult, queued communication
offers a practical way to integrate applications running in distributed, multivendor
environments.

How Does BEA MessageQ Work?

BEA MessageQ is an implementation of a message queuing system. To exchange
information using BEA MessageQ, each program must attach to the BEA MessageQ
message queuing bus at a particular queue address. The queue address identifies the
message queue in which the program receives messages. To send a BEA MessageQ
message, a program must know the queue address of the receiver program. In contrast
to other message queuing systems, BEA MessageQ applicationsonly attach to aqueue
in which they will receive messages. They do not attach to the queue to which they
send messages.

The BEA MessageQ message queuing bus forms the data highway used to transfer
messages between applications by creating alogical interconnection of message
gueues in a networked environment. Once an application is attached to the message
gueuing bus at a queue address, it can send messages to any other attached application
and is a so ready to read messages sent to its own queue or queues.

BEA MessageQ is said to provide aloosely-coupled approach to application
integration because applications that share information do not have to:

4 Know each other’s physical location (network address)

4 Know how to establish communications between each other

4 Be executing at the same time

4 Be running on systems with same operating system or network software

A BEA MessageQ message queuing bus is composed of one or more message queuing
groups. Message queuing groups offer applications an efficient way to share BEA
MessageQ services such as recoverable messaging and message broadcasting on a
network of computers. System managers configure cross-group connections to enable
applications to exchange information when they are running in different message
gueuing groups on the same message queuing bus. Each message queuing group is
identified by a uniqgue number, the BEA MessageQ group ID. This group ID together
with the unique queue number comprise the queue address of each message queue.

BEA MessageQ Introduction to Message Queuing -1

1 WhnartIs BEA MEssaGEQ?

BEA MessageQ also allows the configuration of more than one message queuing bus
inanetworked environment. Applications attached to different message queuing buses
cannot communicate with each other. Application developers can use thisfeature to set

up a bus for communication of test programs and another bus for production

applications. Mission-critical application processing isthen separated from the testing
environment. Test programs are easily moved into production by simply changing

their bus ID—a configuration step in using BEA MessageQ that is external to the
application. This feature may also be used to sparate multiple distributed business
applications running on the same network.

Choosing the BEA MessageQ Server or Client

1-12

BEA MessageQ provides messaging services to applications running on desktop
systems, workstations, mid-range systems, and high-end mainframes. BEA Message
offers these messaging services with two types of products:

4 BEA MessageQ Servers—for systems with sufficient resources to provide the
full range of BEA MessageQ messaging services. A BEA MessageQ Server
provides base messaging services, the allocation and management of queues, a
the necessary administration tools and utilities to manage a BEA MessageQ
message queuing group. BEA MessageQ Servers are offered on workstation,
mid-range, and high-end systems including most popular UNIX systems (AlX,
HP-UX, Solaris, Tru64 UNIX and others), OpenVMS, and Windows NT.

4 BEA MessageQ Clients—a “light-weight”, low cost offering ideal for
applications running on systems that do not have the resources to provide full
messaging services (such as PCs). The BEA MessageQ Client limits system
maintenance overhead and is ideal for deployment of applications that require
only base messaging services or are running the desktop client portion of a
client/server application. BEA MessageQ Clients are offered across a broad
spectrum of systems including Windows 95, Windows NT, UNIX (AIX, HP-UX,
Solaris, Tru64 UNIX, and others), OpenVMS, and IBM MVS systems.

All BEA MessageQ environments require the use of at least one message server
implementation to offer full message routing to all other BEA MessageQ systems in
the network. It is important to note that the terms client and server only refer to the
messaging services provided by BEA MessageQ, they do not restrict the types of
applications (clients or servers) that can be implemented in a particular environment

BEA MessageQ Introduction to Message Queuing

MESSAGE QUEUING BASICS

How the BEA MessageQ Client Works

The BEA MessageQ Client is a client implementation of the BEA MessageQ
Application Programming Interface (API). It provides message queuing support for
distributed network applications along with a BEA MessageQ Server to provide
reliable message queuing for distributed multiplatform network applications.

The BEA MessageQ Client is connected to the message queuing busthrough anetwork
connection with a Client Library Server (CLS) on aremote BEA MessageQ Server.
The CLS acts as aremote agent to perform message queuing operations on behalf of
the BEA MessageQ Client. The CLS runs as a background server to handle multiple
BEA MessageQ Client connections.

The BEA MessageQ Client establishes a hetwork connection to the CLS when an
application attachesto the message queuing bus. The CL Sperformsall communication
with the client application until the application detaches from the message queuing
bus. The network connection to the CL Sis closed when the application detaches from
the message queuing bus. Figure 1-3 shows the BEA MessageQ Server and Client
components.

Figure1-3 How Client Applications Communicate usingthe CLS

MessageQ MessageQ
Application D Application E

¥ ¥
+ MessageQ *

Server

Client Library Server

A

App A App B App C

£ S L S £

Applications running on MessageQ Clients

BEA MessageQ Introduction to Message Queuing 1-13

1 WhnartIs BEA MEssaGEQ?

When to Choose the BEA MessageQ Client

1-14

The BEA MessageQ Client provides the following benefits:
4 Reduces system resource |oad

4 Reduces system management overhead

4 Reduces disk space requirements

4 Provides network protocol independence

The BEA MessageQ Client provides message queuing capabilitiesfor BEA MessageQ
applications using fewer system resources (shared memory and semaphores) and

running fewer processesthan aBEA MessageQ Server. Therefore, the BEA MessageQ
Client enables distributed BEA MessageQ applications to run on smaller, less
powerful systemsthan the systems required to run a BEA MessageQ Server. It also
allowsfor asmaller client footprint for the client part of a client/server application.

Run-time configuration of the BEA MessageQ Client is extremely simple. A minimal
configuration requires only the name of the server system, the network endpoint to be
used by the CL S, and the desired network transport. Running the BEA MessageQ
Client makesit unnecessary to install and configure aBEA MessageQ Server on each
system in the network. Instead, a distributed BEA MessageQ environment can consist
of asingle system running a BEA MessageQ UNIX, Windows NT, or OpenVMS
Server and one or more systems running BEA MessageQ Clients.

For example, suppose asmall business has 10 networked workstations that need to run
aBEA MessageQ application. Without the BEA MessageQ Client, it would be
necessary to install, configure, and manage a message queuing group on each
workstation. Using the BEA MessageQ Client, however, a BEA MessageQ Server
need only beinstalled and configured on a single workstation. Installing the BEA
MessageQ Client on the remaining nine workstations provides message queuing
support for all other BEA MessageQ applications in the distributed network.

In this example, only one workstation needs to be sized and configured to optimize
performance, reducing the burden of system management to a single machine. System
management and configuration for the remaining systemsis drastically simplified
because managing the BEA MessageQ Client consists mainly of identifying the BEA
MessageQ Server that provides full message queuing support. The BEA MessageQ
Client can be reconfigured quickly and easily and multiple clients can share the same
configuration settings to further reduce system management overhead. This aso
makes it easy to add additional clients to an application.

BEA MessageQ Introduction to Message Queuing

MESSAGE QUEUING BASICS

The BEA MessageQ Client performs all network operations for client applications
making it unnecessary for a client program to be concerned about the underlying
network protocol. The BEA MessageQ Client enhances the portability of applications
enabling them to be ported to a different operating system and network environment
supported by BEA MessageQ with no change to the application code.

Key Features of BEA MessageQ

BEA MessageQ has been recognized by independent industry consultants as the most
feature-rich and fastest performing message queuing software available. Its key
features are:

L4

Recover able messaging—guaranteed delivery of a message despite system,
process, or network failures

Publish and subscribe—ability to send a message to multiple recipients
registered to receive information from a broadcast channel (also called message
broadcasting)

Naming—ability to separate application processing from configuration details

by allowing applications to refer to queues by nhame. Name-to-queue address
translations are performed by BEA MessageQ at runtime eliminating the need to
recode applications when configuration changes are made. This is also called
"location independence." BEA MessageQ also allows applications to bind a
name to a queue address dynamically at runtime

Support for Field M anipulation Language (FM L)—enables applications to

encode messages with tags and values that describe the content of the message.
The receiver program, therefore, is not programmed to know the exact data
structure of the message. Instead, it decodes the message contents using the tag
associated with each value. In addition, FML performs data marshaling for
applications exchanging information between systems that use different.
hardware data formats. FML is also used by BEA TUXEDO.

Integration with BEA TUXEDO— enables BEA MessageQ applicationsto
exchange messages with BEA TUXEDO services and queues. This provides a
transparent mechanism for applications to interoperate between BEA MessageQ
and BEA TUXEDO.

Correlation identifier— allows a devel oper to associate a user defined identifier
with each message. A pplications receiving the message can tag any response to

BEA MessageQ Introduction to Message Queuing 1-15

1 WhnartIs BEA MEssaGEQ?

the message with the same identifier. This feature is useful for asynchronous
client/server applications so responses can be matched with associated requests.

M essage selection—capability to read messages selectively from queues based
on correlation identifier, sequence number, message type, message class, priori
source or a complex set of message attributes

Wide array of multiplatform support—BEA MessageQ runs on every major
operating system and hardware platform combination including Windows 95 and
Windows NT implementations, all major UNIX versions (AlX, HP-UX, Solaris,
and others) and Alpha systems running both Tru64 UNIX and OpenVMS.

BEA MessageQ Benefits

1-16

BEA MessageQ facilitates the development of distributed applications by enhancing

L4

Productivity—through a standard approach to integration that speeds
development, reduces maintenance, and insulates applications from changes in
network and operating system software

Portability—using a single application programming interface for all supported
environments so that applications are written once and ported to other systems

Simplicity—providing a message queuing bus that acts as a single point of
communication for all attached applications

Reliability—with a message recovery system that guarantees delivery in the
event of system, process, and network failures

Interoperability—connecting distributed applications running in all
industry-leading environments

Flexibility—to easily enhance and change applications to meet changing
business needs

BEA MessageQ Introduction to Message Queuing

BEA MESSAGEQ BENEFITS

Standardized Integration Approach

BEA MessageQ is communications middleware that provides software developers
with a standard approach to information exchange between distributed applicationsin
amultivendor environment. The BEA MessageQ interface is a set of application
programming functionsthat are common to all BEA MessageQ products. To exchange
information with other BEA MessageQ applications, a program simply includes the
logic to attach to the BEA MessageQ message queuing bus and send a message and
BEA MessageQ figures out how to deliver the message to the system on which the
target application’s queue resides.

BEA MessageQ API functions can be embedded in new or existing applications. Using
BEA MessageQ, application developers no longer need to worry about the underlying
transport to send and receive information between applications. In addition,
applications no longer require constant maintenance to accommodate changes in
operating system and network software. BEA MessageQ also provides productivity
tools for developers to test message exchange before all components of the distributed
application are complete.

Guaranteed Delivery

BEA MessageQ has built-in message recovery features that enable message delivery
in the event of a system, process, or link loss with the network. To guarantee message
delivery by BEA MessageQ, an application marks a message as recoverable when it is
sent. BEA MessageQ stores each recoverable message in a disk file before sending it
to the target queue.

If the message is successfully delivered to the target queue, it is deleted from the disk
file. However, if the recoverable message cannot be delivered to the target system due
to a system, process, or network failure, BEA MessageQ will automatically resend the
messages stored in the disk file at a later time when the failure condition has been
resolved.

Guaranteed delivery ensures that messages are delivered without further intervention
by the sender program. The sender program need only ensure that the message was
accepted by the message recovery system in order to be assured that it will be delivered
to the target queue.

BEA MessageQ Introduction to Message Queuing 1-17

1 WhnartIs BEA MEssaGEQ?

Application Portability

Because BEA M essageQ uses acommon API for all environments, applications move
easily using systems from different vendors. For example, if you develop BEA
MessageQ applications for Intel PCs running Microsoft Windows NT, the same
application programswill run on all major UNIX systems by recompiling and
relinking the applications in their target environment.

Figure 1-4 illustrates how the BEA MessageQ API formsalayer between the

application and the operating system and network environment—ensuring application
portability and shielding applications from changes in underlying software. Note that
DECnet is supported only on OpenVMS systems.

Figure1-4 How the BEA MessageQ API Insulates Applications

Third-Farty Legacy Custom

Applications Applications Applications

Messagec

Shared hl ail b

TR/ Memary | or Pipe

(1] SNA DECHet

Message Bus Simplifies Communication

1-18

Message queuing provides a simplified approach to application integration in a
distributed multivendor environment. Because BEA MessageQ handles all of the
operating system and network-dependent tasks to move a message from one systen
another, applications are easier to develop and maintain.

In addition, BEA MessageQ uses a simple application programming interface that
consists of four basic callable functions:

4 pans_attach_g—to attach to the message queuing bus

BEA MessageQ Introduction to Message Queuing

BEA MESSAGEQ BENEFITS

4 panms_put _nsg—to send a message
4 pans_get _nsg—T1o retrieve a message
4 pans_det ach_g—to detach from the message queuing bus

Using these four functions, an application program has the ability to exchange
information with any other attached application in a distributed, multivendor
environment.

Broad Multiplatform Support

BEA MessageQ runs in all industry-leading environments. Refer to Table 1-1 for a
listing of BEA MessageQ products illustrating the operating systems supported.
TCP/IP networking is supported on all platforms.

Table 1-1 Supported Platform Environments

Product Type Operating System
M essage Server IBM AIX
NCR MP-RAS

Compag Tru64 UNIX

Hewlett-Packard HP-UX

Digital OpenVMS

Sun Microsystems Solaris

SCO UnixWare

SCO OpenServer

Sequent Dynix/ptx

Microsoft Windows NT (Intel and Alpha)

Messaging Client IBM AIX

NCR MP-RAS

Compag Tru64 UNIX

BEA MessageQ Introduction to Message Queuing 1-19

1 WhnartIs BEA MEssaGEQ?

Table 1-1 Supported Platform Environments

Product Type Operating System

Hewlett-Packard HP-UX

SCO UnixWare

SCO OpenServer

Sequent Dynix/ptx

Digital OpenVMS

Sun Microsystems Solaris

Microsoft Windows 95

Microsoft Windows NT (Intel and Alpha)

IBM MVS

MQSeriesConnection Hewlett-Packard HP-UX

IBM AIX

Sun Microsystems Solaris

Microsoft Windows NT

Flexibility to Meet Changing Application Needs

BEA MessageQ providesthekind of flexibility applicationsneed to evolvein arapidly
changing application environment through its support of Field Manipulation Language
(FML) for self-describing messaging. Using FML, you have a built-in capability to
make the following design changes:

4 you can add fields to a message that can be read by new applications without
disrupting the way existing applications run

4 you can change the size of datafields in a message as your needs change
without recoding applications because the size of the datafield is encoded as
part of the message itself

1-20 BEA MessageQ Introduction to Message Queuing

BEA MESSAGEQ BENEFITS

4 asingle message can be designed to communicate with avariety of applications
because the message can be interpreted differently by several applications that
use different data fields within the message

4 you can design messages to contain information that is not acted upon today, but
is part of the future plans of the information system

BEA MessageQ allows you to use double pointers with buffer-style messages
(messages using a pre-defined structure agreed upon by the sending and receiving
applications). When the receiving application retrieves the message from the queue,
thepans_get _msg call pointsto apointer to dynamically alocated space. Thisalows
for buffer reallocation if the message buffer received islarger than expected. Thisalso
means you can change the message structure without having to recode the application.

BEA MessageQ Introduction to Message Queuing 1-21

1 WhnartIs BEA MEssaGEQ?

1-22 BEA MessageQ Introduction to M essage Queuing

CHAPTER

2

Sending and Receiving

BEA MessageQ
Messages

Thefirst step in learning how to use BEA MessageQ to exchange information between
applicationsin adistributed environment is to understand how to send and receive
BEA MessageQ messages. The following sections describe the basics in sending and
receiving BEA MessageQ messages:

Overview of BEA MessageQ API Functions
Configuring the BEA MessageQ Environment
Attaching to the Message Queuing Bus
Sending a Message

Receiving a Message

Using the show_buffer Argument

* & & & O o o

Exchanging M essages Between BEA MessageQ and BEA TUXEDO

BEA MessageQ Introduction to Message Queuing 2-1

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES

Overview of BEA MessageQ API Functions

To send and receive messages, application devel opersembed BEA MessageQ function
calsinto their applications. After each program is compiled and linked with the BEA
MessageQ object libraries, it will be able to send and receive messages.

BEA MessageQ function calls form a portable application programming interface
(API). Application programs devel oped using the C or C++ programming languages
need only be recompiled and relinked to enable the messaging functions to work in a
different operating system environment.

When applications communicate through message queuing, it is similar to how people
communicate using the telephone. Use Table 2-1 to learn how BEA MessageQ API
functions are similar to using the telephone to communicate.

Table 2-1 Description of Key PAMS API Functions

Using the API Islike... Because...
Function...

pans_attach_qgq Pickingupthe Exchangeof informationrequiresaccesstoacommon
telephone means of communication between yourself and the
person you want to talk to. When you pick up the
telephonereceiver and hear adial tone, you cantalk to
anyone who is connected to the telephone system.

Similarly, your application uses the

pans_att ach_g function to connect to the BEA
MessageQ message queuing bus. Attaching to the
message queuing bus provides the application with a
queue address for receiving messages and a meansto
share information with all other BEA MessageQ
applications.

2-2 BEA MessageQ Introduction to Message Queuing

OVERVIEW OF BEA MESSAGEQ API FUNCTIONS

Table 2-1 Description of Key PAM S API Functions

Using the API
Function...

Islike...

Because...

pans_put _nsg

Diding a
number and
talking

After you decide who to call and what to say, you dial

the person'’s telephone number and start talking. To
send a message using BEA MessageQ, an application
uses theans_put _nsg function to send a message

to the queue address of the receiver program.

BEA MessageQ queue addresses contain two parts,
the group number and the queue number. Message
queuing groups are like area codes providing a
localized grouping of telephone numbers. The queue
number is like the telephone number providing the
“address” for directing the call to the party you want
to speak with.

pans_get _nsg

Answering a
phone call and
listening

When your telephone rings, you pick up the receiver
and listen to the caller. Similarly, BEA MessageQ
applications use theans_get _nsg function to
retrieve messages from their queue.

pans_det ach_qgq Hanging up When you are finished talking on the telephone, you
hang up. Similarly, if two BEA MessageQ
applications are finished exchanging information,
they use theans_det ach_q function to disconnect
from the message queuing bus.
pans_| ocate_qg Using When you remember someone’s name but not their
directory telephone number, you call directory assistance. BEA
assistance MessageQ applications use thers_| ocat e_q

function to obtain a queue address for a queue name at
runtime.

BEA MessageQ Introduction to Message Queuing 2-3

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES

Table 2-1 Description of Key PAMS API Functions

Using the API
Function...

Islike...

Because...

pans_get _nsg
with selection
criteria

Screening
cals

Sometimes you may not want to receive dl of your
calls, so you answer only those that meet particular
criterig, such as urgent calls or calls about a particular
subject.

BEA MessageQ applications can assign
characteritics to amessage when it is sent so that the
receiver program can choose which messages to read.
Receiver programs can read messages based on their
source, priority, messagetype, or message class using
the pans_get _nsg function. However, if messages
must be selected using acomplex set of selection
criteria, a selection mask can also be specified using
thepans_set _sel ect function.

pans_put _nsg
with arecoverable
delivery mode

Calling
someone with
an answering
machine

People are not always available when you call them;
however, you can be sure they will get your message
if they use an answering machine. If they have been
away from their telephone, they can replay the
messages stored on the tape of the answering machine
to obtain their phone messages.

Similarly, BEA MessageQ applications can send
messages with arecoverable delivery mode using the
pans_put _nsg function. Recoverable messages
that cannot be delivered are stored on disk and resent
when the receiver program becomes available.

pans_put _nsg
with a broadcast
target

Conference
calling

Sometimes you need to give several people the same
information but you do not want to have to call each
person individually. In this case, you hold a
conference call to tell everyone the same thing at the
sametime.

BEA M essageQ applications can broadcast amessage
to many receiver programs at once using asingle call
to the pans_put _nsg function using a broadcast
target

2-4 BEA MessageQ Introduction to Message Queuing

CONFIGURING THE BEA MESSAGEQ ENVIRONMENT

Configuring the BEA MessageQ
Environment

Beforeyou can use the BEA MessageQ message queuing system, you must configure
the BEA MessageQ environment. The following topics describe the basicsin
configuring and starting a message queuing group:

4+ Define message queues and their attributes

4 Setting up the message queuing buses, groups, and queues

Defining Queues and Their Attributes

To use BEA MessageQ, a sender or receiver program must be associated with at least
one message queue in which it can receive messages. To become associated with a
gueue, the sender or receiver program invokes the pans_at t ach_q function to attach
to aqueue on the message queuing bus.

When designing your application, you need to select attributes of each message queue.
Message queues are created and used differently depending upon the combination of
attributes sel ected for each queue. For exampl e, answer the following questionsto help
you design your message queuing environment:

4 Isthe need for the queue only temporary, such that it can be created during
processing and deleted when it is no longer needed?

4 Should the queue be permanently defined so that applications can reference it by
name?

4+ Will messages in the queue be read by a single program or by multiple
programs?

4+ Will the queue receive primary application messages or will it be used to
exchange information that is secondary to application processing?

4 Doesthe sender program need to be able to send messages to the queue even if
no processis currently attached to it?

BEA MessageQ Introduction to Message Queuing 2-5

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES

2-6

4+ Will the queue be used to store recoverable messages?

BEA MessageQ offers two types of queues: temporary and permanent. Temporary
queues are created by BEA MessageQ at runtime when they are requested using the
pams_at t ach_g function. Applications use temporary queues when the need for the
queue is short lived.

Permanent queues must be defined in the group initialization file. Permanent queues
can become active when the group starts or when an application attaches. Applications
use permanent queues when there is an ongoing need for the queue to service the
application and when applications need to refer to the queue by name or number.

After you have selected the type of queue to use, you must set the following attributes
of the queue:

4 primary or secondary
4 single reader or multireader
4 active on attach or permanently active

Each process that attaches to the BEA M essageQ message queuing bus must have a
primary queue assigned to it. This queue functions as the “main mailbox” for receiving
messages from other processes using BEA MessageQ. In addition, BEA MessageC
applications can use secondary queues as a means of exchanging information amo
application components without interrupting the flow of messages taking place in the
primary queue. In this way, secondary queues are used by application processes as
alternate “mail box” for selected application messages.

Applications can be designed to read messages from one or more queues. Queues
defined to be read by a single program are called single reader queues. When a proc:
attaches to a single reader queue, it owns the queue and is the only process that ca
read from the queue. Queues that are designed to be read by multiple applications ¢
called Multireader queues (MRQs). MRQs are used to store messages that can be re
by many simultaneous readers, creating a central “mail box” for several applications
or application components to receive messages. Only permanent queues can be defir
as MRQs. In addition, MRQs must have the attribute permanently active.

When defining permanent queues in the group initialization file, you have the choice
of determining whether the queue becomes active when a process attaches to the qut
or if the queue is active when the groups starts up regardless of whether any process
attached. Permanently active queues provide the maximum data persistence for
messaging data.

BEA MessageQ Introduction to Message Queuing

CONFIGURING THE BEA MESSAGEQ ENVIRONMENT

Queue configuration procedures vary based on whether the queue is defined as
temporary or permanent as follows:

4 Temporary queues do not require any configuration procedure. They are created

by BEA MessageQ at runtime when a process requests attachment to a
temporary queue using the pams_at t ach_g function. Temporary queues are
single-reader queues only. The process that attaches to the queue is the owner of
the temporary queue and no other processes can read from the queue. An
additional argument of the pams_at t ach_q function allows you to specify
whether the temporary queue isa primary or secondary queue. By default, if this
argument is not specified, BEA MessageQ uses the first queue to which an
application attaches as its primary queue.

Permanent queues are defined in the initialization file of a BEA MessageQ
message queuing group. Each permanent queue is designated with a number and,
sometimes a name, which is part of the definition of the group when it starts up.

A permanent queue is created by BEA MessageQ in one of two ways. First, it
can be active on attach which meansthat is created when a process attaches to
the message queuing bus at that queue address. Once a process is attached,
permanent queues are available to store messages from sender programs.

Or, secondly, you a so have the option to define permanent queues with the
attribute permanently active (always writable). In this case, the queue is not only
part of the group definition, but it is actually created when the group starts up.
Therefore, permanently active queues can store messages when no process is
attached.

The Queue Configuration Table in the group initialization file enables you to specify
the following queue characteristics:

L4

¢
¢
¢
¢

primary or secondary

single-reader or multireader queue

active on attach or permanently active (MRQs must be permanently active)
queue quotas

MRS attributes such as explicit/implicit confirmation and confirmation order

For a detailed description of how to configure message queues, refer to the
administrator’s guide for the BEA MessageQ product that you are using.

BEA MessageQ Introduction to Message Queuing 2-7

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES

Configuring Buses, Groups and Queues

Now that you understand the types of message queues you can define, you are ready
to begin configuring your BEA MessageQ environment in three simple steps:

4 Step 1: Design the message queuing environment
4 Step 2: Configure each message queuing group

4+ Step 3: Start each message queuing group and change configuration data at
runtime

Designing Your BEA MessageQ Environment

The design of your application determines your BEA MessageQ configuration,
therefore, you must begin by mapping out:

4 the application components that will send and receive information
4+ which message queues must be created and what attributes they require
4 the networked systems on which the applicationswill run

For example, let’s take a look at Figure 2-1 which illustrates the design of a shop-floo
monitoring application.

2-8 BEA MessageQ Introduction to Message Queuing

CONFIGURING THE BEA MESSAGEQ ENVIRONMENT

Figure2-1 Sample BEA M essageQ Application

Departmental Server

Shop Floor
Control System
Program B Program C
|g | > g
Program A // \ 4
— Warning!
HIE A4 —
= E N
= E ProgramD | [¢—» N
= B e
ﬁ

Operator's Workstation

Program A reads temperatures from a smelting furnace, formats the temperature data
asaBEA MessageQ message and sendsit to the primary queue of Program B. Program
B storesthe temperaturesin adatabase from which it can generate graphical chartsand
reports on demand. Program B al so forwards each temperature to Program C for
analysis.

Program C reads each message to analyze the temperature reading in the smelting
furnace checking to see that it is not outside of the accepted range for the
manufacturing process. |f the temperature of the furnace becomes too hot or too cold,
Program C forwards the temperature message to the primary queue of Program D.
Program D displays a temperature warning to alert the shop-floor operator of a
potential problem.

Aspart of the design, you must determine how the application components can be most
efficiently deployed into the distributed environment. In this example, the following
configuration of networked computer systems are required to support the application:

4 Program A runson areal-time computer system connected to the temperature
sensing equipment for the smelting furnace.

4 Programs B and C run on a departmental minicomputer which records and
analyzes information related to the manufacturing process.

4 Program D runs on a shop-floor supervisor’s workstation.

BEA MessageQ Introduction to Message Queuing 2-9

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES

To configure the BEA MessageQ environment to support this example shop-floor
monitoring application, you need to define:

4+ 1 message queuing bus
4 3 message queuing groups (1 for each different system)

4+ 4 permanent message queues (1 for each application)

Configuring Each Message Queuing Group

2-10

To configure a message queuing group, BEA MessageQ usesan ASCI| text filecalled
the group initialization file. A sampleinitialization file is distributed with the BEA
MessageQ mediakit to illustrate a simple group configuration. To define queues, set
their characteristics, and add resources, you make a copy of the template file and then
edit the new file using a text editor to create the desired group configuration. Each
message queuing group reguiresits own initialization file.

The major steps in configuring a message queuing group are defining:
4 Permanent queues and their attributes

4 Cross-group connections between networked computer systems running
applications that need to exchange information using BEA MessageQ. You may
also need to define message routing for systems with no direct network
connection

4 Whether recoverable messaging will be used within the group and whether
successfully delivered recoverable messages will be stored in ajournal

4 Whether the group supports message broadcasting

4 How parameters are set to regulate message flow and how quickly messages are
processed

4 Whether aClient Library Server is configured for the group to support
communication with one or more BEA MessageQ Clients

For step-by-step instructions on how to configure a BEA M essageQ message queuing
group, refer to the administrator’'s guide for the platforms used in your environment.

BEA MessageQ Introduction to Message Queuing

ATTACHING TO THE MESSAGE QUEUING BUS

Starting Each Message Queuing Group

Once you have created and configured the characteristics of amessage queuing group,
you invoke the BEA MessageQ startup procedure to start the group. The startup
procedure readstheinformation in the group initialization filein order to configure the
group. The startup procedure performs all of the tasks in starting the group including
defining the needed queues, names, cross-group connections, and starting the
appropriate BEA MessageQ serversto support such features as recoverable messaging
and message broadcasting. The procedure for starting a group varies by platform,
therefore, you should refer to the installation and configuration guide for your
platforms to obtain specific instructions for starting a group.

Once a message queuing group is running, you can change some of the group’s
characteristics without having to shut down the group and restart it using the Loader
utility. After you edit the group initialization file, you can invoke the Loader utility to
update the characteristics of the group at runtime.

Attaching to the Message Queuing Bus

To enable message exchange, BEA MessageQ application programs must call the
pams_at t ach_q function to attach to a queue on the message queuing bus in which to
receive messages. Once attached, the application is free to send messages to any queue
on the message queuing bus. The application receives messages in one of the queues
to which it is attached. BEA MessageQ does not require an application to attach to a
gueue to which it will send messages.

Thepans_at t ach_q function enables applications to specify an attachment point in
the form of a queue name, a queue number, or by requesting the use of a temporary
gueue. The type of attachment is specified by supplying one of three constants as the
attach_mode argument:

4 PSYM ATTACH_BY_NAME—attaching by name
4 PSYM ATTACH_BY_NUMBER—attaching by number

4 PSYM ATTACH TEMPORARY—attaching as a temporary queue

BEA MessageQ Introduction to Message Queuing 2-11

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES

In addition to specifying the attachment type, the q_t ype argument can be used to
specify whether the queue should serve as the primary queue or the secondary queue
for the application. Additional arguments may be required based on the type of
attachment sel ected.

When the pans_at t ach_q function successfully completes, the queue_addr ess
argument returns the BEA MessageQ queue address for communicating through the
message queuing bus to the application. In addition, this function now includes a

ti meout argument to set atime limit for the attach operation after which control
returns to the sender program.

Following are the rules of attachment for BEA MessageQ applications:

¢
¢

Each program must attach to one queue as its primary queue.

The primary queue can be atemporary queue that is assigned at runtime or it can
be a permanent queue that is defined in the group initialization file as active on
attach or permanently active.

The primary queue can be asingle reader queue or a multireader (MRQ) queue
on Windows NT and UNIX systems. On OpenVMS systems, the primary queue
cannot be an MRQ.

Single reader queues (primary and secondary) are owned by the process that is
attached to the queue. Only that process can read from the queue.

When an application is attached to a primary queue that has secondary queues
defined in the initialization file, the application becomes implicitly attached to
the secondary queues &fter it attaches to the primary queue.

An application can explicitly attach to a queue as a secondary queue when the
gueue is not associated with a primary queue.

An application can have an MRQ asits primary or secondary queue on Windows
NT and UNIX systems. On OpenVMS systems, an application cannot attach
directly to an MRQ, but reads from the MRQ using a selection filter.

MRQs are defined in the queue configuration table of the group initialization file
by setting the queue type to M. Temporary queues cannot be used as MRQs.
MRQs must be defined as permanently active because they must be defined in
the group initialization file.

2-12 BEA MessageQ Introduction to Message Queuing

ATTACHING TO THE MESSAGE QUEUING BUS

Attaching by Name

When you select the PSYM ATTACH_BY_NAME option, you must specify:

4+ the name of the queue to which the application should attach using the q_nane
argument.

4 the number of charactersin the queue name using the g_nane_| en argument.

By default, when attaching by name, the queue name must be configured in the group
initialization file of the group in which the application is running. To specify wider
search criteria, the application can use the name_space_l i st argument to specify a
list of nametablesfor BEA MessageQ to use in looking up the queue name. If you use
the name_space_I i st argument, you must use the nane_space_l i st _| ento
specify the number of entries entered using the name_space_| i st argument.

Attaching by Number

When you select the PSYM ATTACH_BY_NUVMBER option, you must specify:

4 the number of the queue to which the application should attach using the q_nane
argument. The queue number is specified as an ASCI|I text string of 4 numeric
characters.

4 the number of charactersin the queue number using the q_nane_| en argument.

To attach to a queue by number, the queue must be configured in the group
initialization file of the group in which the application is running.

Attaching to a Temporary Queue

If you select the PSYM ATTACH TEMPCORARY option, you can aso usetheg_t ype
argument to specify whether the temporary queue should serve as the primary or
secondary queue for the application. When the queue address is returned, the
application uses the temporary queue until its task is complete. Once the application
detaches the temporary queue, the messages in the queue are deleted and the queue
address is made available for other applications to attach as temporary.

BEA MessageQ Introduction to Message Queuing ~ 2-13

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES

Sending a Message

Applications use the pams_put _nsg function to send amessage to the target queue of
areceiver program. To send a message, the application devel oper must know:

4 Queue address of the target queue

Thet ar get argument is used to specify the queue address of the message queue
to which the message is being sent. Each sender program can be devel oped to
send messages directly to a queue using its queue address (group ID and queue
number). However, if the configuration of the environment changes, the
application will have to be recoded with the new queue address.

Many applications are devel oped to reference queues by name or number. In this
case the application must call the pams_| ocat e_q function to obtain the queue
address for the queue number or name at runtime. Then, the application passes
the queue address to the pans_put _nmsg function.

4 Style of messaging to be used

Application devel opers can choose buffer-style or FML-style messaging.
Buffer-style messaging exchanges information between sender and receiver
programs using a predefined message structure. The message is created in an
application buffer specified in the msg_ar ea argument of the pans_put _nsg
function. FML -style messaging uses Field Manipulation Language for
self-describing messaging and passes a pointer to an FML32 buffer. (BEA

M essageQ supports FML 32, the 32-bit version of FML.) FML automatically
marshals data among heterogeneous machines. See the BEA MessageQ FML
Programmer’s Guiddor more information on FML.

Thensg_si ze argument is used to specify the style of messaging. This
argument contains either the size of the static buffer-style message contained in
the nsg_ar ea argument, the symbol PSYM MSG_FM_, indicating that the data
contained in the nsg_ar ea argument is an FML 32 buffer, or the symbol

PSYM MSG_LARGE, indicating that the message is a buffer larger than 32K. For
large messages, the pointer to the message is contained in the nsg_ar ea
argument and the size of the large buffer iscontained inthe | ar ge_si ze
argument.

2-14 BEA MessageQ Introduction to Message Queuing

SENDING A MESSAGE

4 Priority of the message (0-99)

Thepri ority argument designates the priority of the message. Priorities range
from 0 to 99. The larger the value, the higher the priority of the message. Higher
priority messages are stored nearer to the top of the queue than lower priority
messages. Messages areread in FIFO (first-in, first-out) order within a priority
value.

4 Message type and class to identify the content of the message

The messaget ype and cl ass arguments are used to specify unique descriptors
identifying the content of the message. Receiver programs can selectively read
messages from their queue based on the type and class argument specified for

the message.
4 Ddivery mode and appropriate error handling for the message

Thedel i very argument of the pans_put _nmsg function determines how the
message is delivered and whether the message is designated for guaranteed
delivery if asystem, process, or network fails. Recoverable messages are stored
on disk by the message recovery system until they can be delivered to the target
gueue of the receiver program. When sending a recoverable message, you must
specify the Undeliverable Message Action uma argument to determine the action
to be taken if the message cannot be delivered to the delivery interest point. You
must also supply the PAM S Status Block psb argument to receive the success or
failure status of the operation. For non-recoverabl e messages, the default UMA
is DI SC (discard). However, you can use the RTS (return-to-sender) and DLQ
(dead letter queue) UMASsto use BEA MessageQ recovery mechanismsin the
event that the message cannot be delivered.

4 Timeout requirements

When using blocking (WF) delivery modes, application developers should use
theti meout argument to specify the maximum amount of time the

pams_put _nsg function waits for a message to be delivered before returning
control to the application. The timeout value is entered in tenths (0.1) of a
second. A value of 100 indicates atimeout of 10 seconds. If the timeout occurs
before amessage is delivered, then PAMS__ TI MEQUT is returned. Setting this
argument to zero indicates the default setting of 30 seconds.

BEA MessageQ Introduction to Message Queuing ~ 2-15

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES

4 Designated response queue

By default, the receiver program will return its response to the primary queue of
the sender program. This queue addressis supplied by BEA MessageQ as the
source argument. Optionally, the sender program can specify the r esp_q
argument identifying an alternate queue for receiving response messages. When
theresp_qg argument is supplied, the receiver program returns its response to the
gueue address specified by this argument.

Correlation ID

Thecorrel ati on_i d parameter allows you to associate a user-defined
identifier called a correlation ID with each message. Receiving applications can
retrieve the correlation ID and tag any response to the original message with the
same ID. Thisallows applications to send multiple requests and then track
responses to those requests by matching their correlation ID.

Selecting a Messaging Style

2-16

BEA MessageQ enables applications to send messages using two messaging styles:

4 Message buffers—applications exchange information by passing data contained

in a static message buffer. Buffer-style messaging requires the structure and
format of the message buffer contents to be agreed upon in advance by sender
and receiver program. If any changes are made to the message data structure, &
application programs must be changed accordingly. Buffer-style messaging uses
two different approaches based on whether the message is up to 32K in size, or
is a large message of up to 4MB in size.

You can increase the flexibility of message buffers by using double pointers.
When the message is read from the queue, the receiving application points to a
pointer which in turn points to a message buffer. This allows for automatic

buffer reallocation and for the use of different message data structures without
recoding the application. Static message buffers are not manuipulated in any wa
by BEA MessageQ.

FML32 buffers—applications exchange information by passing a pointer to an
FML32 buffer. This messaging style provide a way to separate the BEA
MessageQ message from its contents.

FML uses fielded buffers to provide self-describing messaging, an approach that
allows application developers to encode the contents of the message so that it

BEA MessageQ Introduction to Message Queuing

SENDING A MESSAGE

can be interpreted by the receiver program without prior knowledge of the
detailed message structure.

Self-describing messaging adds a dimension of flexibility in message exchange
because it allows the components of the message data structure to be changed
without affecting existing applications unless the new information is needed.
When using FML 32 buffers, data is automatically marshalled among
heterogeneous machines.

Using Buffer-Style Messaging

Sending and receiving information as message buffersisthe easiest way to exchange
information using BEA MessageQ. A message buffer is a predefined, static data
structure that is identified using a version number. So, for example, when a payroll
system sends employee payroll information using version 1 of its payroll data
structure, the receiving application caninterpret each field of datain the buffer because
it knows the definition of the version 1 payroll data structure.

Passing information using a static data structure in the form of a message buffer isthe
fastest way to exchange information between applications. Because the data structure
definition is known to both the sending and receiving applications, no interpretationis
required. Therefore, processing of information between both sender and receiver
programsis faster.

However, message buffers limit the flexibility of applications to adapt to changing
business conditions. To change the data structure, both the sender and receiver
programs must be recoded to send and interpret the new message correctly. In addition,
all production applications must be shutdown and the newer versions started up for the
change to take affect. Such large changes to an integrated application environment
often result in synchronization problems where some applications have not yet been
restarted using the new message format. Thisleadsto processing errors until all
applications are using the same version of the message data structure.

Message buffer flexibility can be enhanced by using the PSYM MSG BUFFER_PTR
symbol. When this symbol is supplied inthe msg_ar ea_| en parameter of the
pams_get _nsg(w) function, thereceiving application pointstoapointer whichinturn
points to dynamically allocated space. The message buffer received is placed in the
allocated space. This double pointer feature allows the use of different message data
structures without recoding the application.

BEA MessageQ Introduction to Message Queuing ~ 2-17

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES

Another limitation in using message buffers is that data is passed “as is” from one
system to another in the network. So, if a message must be delivered between two
computers that use different byte orders, the application must perform the byte orde
translation to ensure that the data is interpreted properly by the target application. BE.
MessageQ does not perform data marshaling between systems with unlike data
formats when messages are sent using the message buffer approach.

Using FML-Style Messaging

A pointer identifies the FML32 message buffer to process. Instead of passing a
message buffer containing the message data, the application passes a message poi
to thepans_put _msg andpans_get _nsg functions identifying the message buffer to
process.

To use FML-style messages, the sender program begins by speefymgvsG FM
in thensg_si ze parameter of thpans_put _msg function. This indicates that the
message is formatted as an FML32 buffer.

Thepans_get _nsg function will return an FML32 buffer in thesg_ar ea field.
When the application receives an FML-style messageysithesi ze parameter
containsPSYM MSG BUFFER _PTR, and tharsg_ar ea field contains a pointer to a
pointer, which in turn points to an FML32 buffer.

The use of FML-style messages can provide flexibility in application development and
design because the FML32 buffer hides the message structure from the sender and
receiver programs. FML enables developers to include encoded message contents w
information that identifies the content and format of the information for use by the
receiver program.

Choosing a Delivery Mode

2-18

Sender programs must specifg@ivery mode for each message sent. The delivery
mode determines:

4 Whether the sender program uses synchronous or asynchronous message
delivery

4 Whether the sender program receives notification of message delivery

BEA MessageQ Introduction to Message Queuing

SENDING A MESSAGE

4 Theddlivery interest point (the point in the message flow to which BEA
MessageQ tracks the outcome of delivery)

The delivery mode is specified as an argument to the panms_put _nsg function using
the following BEA MessageQ symboalic constant:

PDEL_MODE sn_dip

where:
sn isthe sender notification, and
di p isthe delivery interest point.

In addition to the delivery mode, BEA MessageQ also allows sender programs to
specify an Undeliverable Message Action (UMA) to determine how the message
should be handled if it cannot be properly delivered.

The delivery mode argument specifies whether the message is sent using recoverable
or nonrecoverable message delivery. M essages sent using recoverable delivery modes
are stored on disk by BEA MessageQ for automatic redelivery in the event of process,
system, or network failures. Messages sent using nonrecoverable delivery modes are
used by applications that do not require automatic recovery in the event of message
delivery failure, or which must perform recovery themselves. Nonrecoverable
messages are not stored on disk by BEA MessageQ and cannot be resent in the event
of delivery failure without application intervention.

Sender Notification

The sender notification portion of the delivery mode argument specifies whether the
sender program uses a blocking (synchronous) or nonblocking (asynchronous) style of
message delivery and whether it receives notification of message delivery. BEA
MessageQ uses the following sender notification codes:

4 AK (Asynchronous delivery with a notification message)—indicates that the
sender program uses a non-blocking style of message delivery and receives
notification of message delivery to the delivery interest point in an asynchronous
acknowledgment message. The asynchronous acknowledgment message is
delivered to the primary or response queue of the sender program as a message
of type MRS_ACK. Receipt of anRS_ACK message by the sender program reports
delivery of the message to the delivery interest point.

AK sender notification supports higher messaging rates than synchronous
delivery while still providing notification of delivery. This delivery style

BEA MessageQ Introduction to Message Queuing ~ 2-19

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES

supports aloosely coupled approach to application integration while supporting
the sender program’s need to receive acknowledgment of successful or
unsuccessful message delivery.

4 NN (Asynchronous delivery with NO notification message)—indicates that the
sender programs uses a hon-blocking style of message delivery and does not
receive notification of message delivery to the delivery interest pairgender
notification supports datagram-style delivery which supports high messaging
rates because processing is asynchronous and there is no additional processing
required for each message.

4 W (Synchronous delivery)—indicates that the sender program uses a blocking
style of message delivery and does not continue processing until the message is
received at the delivery interest point.

WF sender notification is used by applications which require knowledge that
message delivery has succeeded to a selected delivery interest point before it ce
continue processing. This delivery style supports more highly interdependent
message processing between sender and receiver programs.

Delivery Interest Point

The message flow is the path between the sender and receiver program that a mess
will traverse. There are certain points in the message flow that can provide significan
indication of the success or failure of the message delivery.

The delivery interest point portion of the delivery mode argument is used to determine
the point in the message flow at which the sender program can unblock (ifAgsing
mode) or the point at which the asynchronous acknowledgment message is sent (if
usingAK notification).

The BEA MessageQ delivery interest point determines the point at which the sendel
program unblocks or receives asynchronous notification as follows:

4 ACK—when the receiver program explicitly acknowledges receipt of a
nonrecoverable message usingghes_confi rm nsg call

4 COoNF—when the receiver program explicitly acknowledges receipt of a
recoverable message using tters_confirm msg call

4 DEQ—when a nonrecoverable message is read from the target queue

2-20 BEA MessageQ Introduction to Message Queuing

SENDING A MESSAGE

4 DQ—when a recoverable message is stored in the recovery journal on the
remote systemDF)

4 MEM—when a nonrecoverable message is stored in memory in the target queue

4 SAF—when a recoverable message is stored in the message recovery journal on
the local systemsAF)

Table 2-2 and Table 2-3 describe the nonrecoverable and recoverable delivery modes.

Table 2-2 Nonrecover able Delivery Modes

Delivery Mode Explanation

PDEL_MODE_AK_ACK The sender program sends the message, continues processing,
and receives an MRS_ ACK message when the receiver program
explicitly acknowledges receipt of the message using
pans_confirm nsg.

PDEL_MODE_AK_DEQ The sender program sends the message, continues processing,
and receives an MRS_ ACK message when the receiver program
reads the message from the target queue.

PDEL_MODE_AK_MEM The sender program sends the message, continues processing,
and receives an MRS_ ACK message when the message is stored
in the target queue.

PDEL_MODE_NN_MEM The sender program sends the message, continues processing,
and does not receive notification of message delivery.

PDEL_MODE_WF_ACK The sender program sendsthe message and then bl ocks until the
receipt of the message is explicitly acknowledged by the
receiver program using the pans_conf i r m nsg function..

PDEL_MODE_WF_DEQ The sender program sendsthe message and then bl ocks until the
message is read from the target queue.

PDEL_MODE_WF_MEM The sender program sendsthe message and then bl ocks until the
message is stored in the target queue.

BEA MessageQ Introduction to Message Queuing 2-21

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES

Table 2-3 Recoverable Delivery M odes

Delivery Mode

Explanation

PDEL_MODE_AK_CONF

The sender program sends the message, continues processing,
and receives an asynchronous acknowledgment message
when the receiver program reads and explicitly confirms
receipt of the message using the pans_confi rm nsg
function.

PDEL_MODE_AK_DQF

The sender program sends the message, continues processing,
and receives an asynchronous acknowledgment message
when BEA MessageQ successfully stores the message in the

remote message recovery (DQF).

PDEL_MODE_AK_SAF

The sender program sends the message, continues processing,
and receives an asynchronous acknowledgment message
when BEA MessageQ successfully stores the message in the
local recovery journal (SAF).

PDEL_MODE_NN_DQF

The sender program sends the message and continues
processing. This delivery mode indicates that the message
should be stored in the recovery journal of the remote system
if it cannot be delivered though the sender program does not
require notification that the message was stored in the DQF.

PDEL_MODE_NN_SAF

The sender program sends the message and continues
processing. This delivery mode indicates that the message
should be stored in the recovery journal of the local system if
it cannot be delivered though the sender program does not
require notification that the message was stored in the SAF.

PDEL_MODE_WF_CONF

The sender program sends the message and blocks until the
message has been received and confirmed by the receiver
program.

PDEL_MODE_WF_DQF

The sender program sends the message and blocks until the
message is stored in the remote message recovery journal

(OQF).

PDEL_MODE_WF_SAF

The sender program blocks until the message is stored in the
local message recovery journal (SAF).

2-22 BEA MessageQ Introduction to Message Queuing

SENDING A MESSAGE

Undeliverable Message Action

The pans_put _msg function enables application devel opersto specify an
Undeliverable Message Action (UMA) for both nonrecoverable and recoverable
messages. If the UMA for a nonrecoverable messageis not specified, BEA MessageQ
uses the default UMA DI SC. For recoverable messages, the UMA must always be
specified.

The UMA, in conjunction with the delivery mode, gives developers the ability to
precisely determine how a message should be sent and what to do if the message
cannot be delivered. The UMA istaken if the message does not reach the delivery
interest point for both recoverable and nonrecoverable messages.

The UMA is specified as an argument to the pams_put _nsg function using the
following BEA MessageQ symbolic constant:

PDEL_UMA xxx

where xxx isone of the following valid UMAs:

¢
¢

D SC (Discard)—the message is discarded.

D ScL (Discard and Log)—the message is discarded and the event is recorded in
the BEA MessageQ log file. This UMA is available only on OpenVMS
systems.

RTS (Return-to-Sender)—the message is returned to the primary queue or
response queue of the sender program.

DLQ (Dead Letter Queue)—the message is sent to the Dead Letter Queue (
which is preconfigured in each message queuing group. Message stored in the
DLQcan be resent at a later time under program control.

DLJ (Dead Letter Journal)—the message is stored in the Dead Letter Journal
(DLJ) TheDLJ file is configured for each message queuing group for which
message recovery services is enabled. Messages storedin tten be resent
at a later time under user or program control.

SAF (Store-and-Forward File)—the message is stored in the local message
recovery journal. The message will be sent automatically by BEA MessageQ
when the failure condition is resolved.

For a complete description of how to select the UMA appropriate for your application,
refer to theBEA MessageQ Programmer’s Guide

BEA MessageQ Introduction to Message Queuing ~ 2-23

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES

Receiving a Message

The panms_get _nsg function retrieves the next available message from a selected
gueue and moves it to the location specified in the nsg_ar ea argument. When an
application reads a message from a queue, the message is moved from the queue into
adata buffer defined by the program. Once read, the message no longer existsin the
queue.

Messages are read from queuesin first-in/first-out (FIFO) order within a priority.
Higher priority messages are read before lower priority messages.

BEA MessageQ provides following functions for retrieving messages:

4 pans_get _nmsg—retrieves the next available message from a specified queue
and moves it to the location specified in tisg_ar ea argument.

4 pans_get _nmsgw—retrieves the next available message from a specified queue,
however, if the queue is empty, this function waits until a message arrives in the
gueue or a user-specifi¢sneout period has elapsed.

4 pans_get _nmsga—provides a mechanism for writing interrupt-driven code on
OpenVMS systems only. Theams_get _nsga function is a special form of the
get message operation that allows multiple asynchronous read operations with
full selective reception. BEA MessageQ interrupts the application when a
message enters the queue, and executes the_smtitime specified in the call.
Thepans_cancel _get function cancels all pendingans_get _nsga requests
that match the selection filter.

Confirming Receipt of a Message

2-24

When a receiver program reads a message from its queue, it checks the PSB Delive
Status field to see if the message requires explicit confirmation using the

pams_conf i r m msg function. Nonrecoverable messages sent using the ACK delivery
interest point and recoverable messages using the CONF delivery interest point requi
explicit confirmation. In addition, recoverable messages sent to a queue that is
configured for explicit confirmation must be confirmed usingdties_confi rm nsg
function.

BEA MessageQ Introduction to Message Queuing

RECEIVING A MESSAGE

For recoverable messages, the BEA MessageQ message recovery system retains the
message until delivery is confirmed. The receiver program must use the

pams_confi rm nmsg function to remove successfully delivered recoverable messages
from the message recovery journal. The message recovery system attempts redelivery
of recoverable messagesfrom the recovery journa each timethetarget queue detaches
and reattaches to the message queuing bus.

The receiver program reads the PSB delivery status of each message to know which
messages to confirm. A PSB delivery status of PAMS__ CONFI RVREQindicates that the
message requires confirmation. A PSB delivery status of PAMS__POSSDUPL & so
requires confirmation to del ete the message from the message recovery system.

Using the PAMS Status Buffer

Applications should check the PSB Delivery Statusfield of each message to determine
if an explicit confirmationisrequired. A recoverable messagethat isread from aqueue
that has the explicit confirmation attribute set requires explicit confirmation. In such
situations the receiver program must call the pans_conf i r m nsg function. This
function del etes the message from the message recovery journal disk storage. If receipt
of arecoverable message is not confirmed, the message continues to be stored by the
recovery system and will be redelivered if the application detaches and then reattaches
to the queue.

The PSB also contains the Delivery Status Field and UMA Status field which can
provide additional information about the successful or unsuccessful completion of an
operation. Figure 2-2 illustrates the contents of the PSB.

BEA MessageQ Introduction to Message Queuing ~ 2-25

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES

Figure2-2 PAMS Status Buffer

Word 1 0 Byte
0 Type 0
1 Call De_pendent 2
2 : 4

PSB Delivery Status

3 | 6

4 ; 8

5 Message 10
Sequence EE—

6 Number 12

7 : 14

8 ! 16
PSB UMA Status _—

9 1 18

10 ! 20
Function Return Status ———

11 : 22

12 ! 24
I —

13 ' 26

Not Used

14 ' 28
1 —_—

15 I 30

Using the show_buffer Argument

Theshow buf f er argument of the pans_get _msg(w) function allowsyou to retrieve
additional information, including the message’s correlation ID and BEA TUXEDO
ur code (user return code) when receiving a message. When the optional
show_buf f er argument is specified, the following information is returned:

4 the version of thehow buf f er structure
4 the transfer status (success, buffer overflow, or no information to transfer)

4 the number of bytes transferred to the application buffer

2-26 BEA MessageQ Introduction to Message Queuing

DETACHING FROM THE MESSAGE QUEUING BUs

4 abit field representing which data has been set in the show_buffer (the BEA
TUXEDO ur code and correlation 1D are not associated with a message)

4 the BEA TUXEDO ur code when exchanging messages between BEA
MessageQ and BEA TUXEDO

4 the g _address of the latest message target, the original message target, the
original message source, and the original message source

the delivery mode used to queue the message
the priority used to queue the message
the byte ordering or encoding schemes for 2- and 4-byte integers or FML buffers

> & & o

the correlation ID

Using Message Classes with BEA MessageQ and BEA
TUXEDO

New symbolic names for message classvalues aredefinedinthep_t ypecl . h include
file for use in distinguishing messages received from BEA TUXEDO. Messages
originating from BEA TUXEDO have the BEA MessageQ class of

MSG_CLAS TUXEDO. Reply messages from BEA TUXEDO have either the BEA
MessageQ classof MSG_CLAS TUXEDO_TPSUCCESS or

MSG_CLAS TUXEDO_TPFAIL.

Detaching from the Message Queuing Bus

To detach from the message queuing bus, applications can use:

¢ thepans_det ach_qg function—to detach a selected message queue or all of the
application’s message queues from the message queuing bus. When an
application detaches from its primary queue, this function automatically detaches
all secondary queue attachments defined for the primary queue. When the last

BEA MessageQ Introduction to Message Queuing 2-27

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES

message queue has been detached, the application is automatically detached
from the BEA MessageQ message queuing bus.

4+ thepans_exit function—terminates all attachments between the application
and the BEA MessageQ message queuing bus. All pending messages in
temporary queues and those permanent queues which are not defined as
permanently active are discarded. Only the messages pending in permanently
active queues, including multireader queues, are retained.

Refer to theBEA MessageQ Programmer’s Guifite more detailed information on
how to use these BEA MessageQ functions.

Exchanging Messages Between BEA
MessageQ and BEA TUXEDO

BEA MessageQ V5.0 include a messaging bridge that allows the exchange of
messages between BEA MessageQ V5.0 and BEA TUXEDO V6.4 or BEA M3V2.1.
BEA MessageQ applications can send a message using pans_put _nmsg that a
TUXEDO application can retrieve through acall to t pdequeue. TUXEDO
applications can send amessage using t penqueue that a BEA MessageQ application
can retrieve through acall to pans_get _nsg(w). Inaddition, a BEA MessageQ
application caninvokea TUXEDO serviceusing panms_put _nsg. Itisalso possiblefor
aTUXEDO application to uset penqueue to put a message on a queue and

t pdequeue to retrive a message from a queue.

2-28 BEA MessageQ Introduction to Message Queuing

CHAPTER

3 Designing and
Developing BEA
MessageQ Applications

M essage queuing provides a flexible approach to distributed application devel opment
because applications share information through messages stored in queues. Because
BEA MessageQ provides a set of portable API functions that support all
industry-leading platforms, it frees applications from having to embed operating
system or network-specific code in order to accomplish message exchange.

Read the following sections to learn more building BEA MessageQ applications:
4 Designing a BEA MessageQ Application

4 Advanced Message Queuing Features

4 Testing and Debugging BEA MessageQ Applications

Designing a BEA MessageQ Application

Todesign adistributed application using BEA MessageQ, application devel opers need
to:

4 Understand the business problem to be solved

4+ Develop the communications model for applications to exchange information

BEA MessageQ Introduction to Message Queuing 31

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS

4 Decide which BEA MessageQ features best suit the application’s needs

4+ Design the message flow and system configuration to support application

deployment

Solving the Business Problem

The first step in developing any application is to identify the business problem. As yoL
research the current user environment and learn about their problems, you will soon
determine whether the business need calls for a new application, or if the need is fo
existing applications to be integrated. Whether the solution requires the integration o
new or existing applications, you can employ message queuing as the operating
system- and network-independent “glue” that allows the application components to

share information.

For example, let's break down the problem solved by our shop-floor monitoring

example as shown in Figure 3-1.

Figure3-1 Sample BEA MessageQ Application

Departmental Server

Shop Floor
Control System
Program B Program C
|g _ > g
Program A ///v \ 4
— Warning!
HIE A4 —
= E N~
= E ProgramD | [€&—» N
= B e
ﬁ

3-2 BEA MessageQ Introduction to Message Queuing

Operator's Workstation

DESIGNING A BEA MESSAGEQ APPLICATION

In this case, the user group needed to:

4 Monitor temperatures from areal-time shop floor process

4 Store temperatures for later analysis and reporting

4 Anayze temperature readings to detect out-of-range conditions
¢

Alert shop-floor supervisors automatically when there was a problem on the
floor

The design of the application to solve this problem calls for a number of separate
application components as follows:

4 A program to read in temperatures from a shop-floor machine controller
(Program A)

4 A program to store the temperatures in a database for later anaysis and forward
them to a monitoring application (Program B)

4 A program to monitor the temperatures and report on out-of-range conditions
(Program C)

4 A program to display an alert to a shop-floor supervisor (Program D)

M essage queuing was chosen as the integration approach because it provides a
loosely-coupled asynchronous means to pass information between application
components with high throughput and platform independence. Program A uses
datagram-style messaging to quickly pass temperature readings to Program B at 30
second intervals. Program B reads the messages from its memory-based queue and
writes them to a database from which they can be analyzed.

Program B al so forwardsthe temperature readingsto Program C which checkswhether
they are above or below an acceptable range. If an unacceptable temperature reading
isreceived, Program C sends a message to Program D running on a shop-floor
workstation to trigger a display that alerts a supervisor to the out-of-range condition.

Developing the Communications Model

After you have broken down the application probleminto its program components, you
are ready to decide the communication model that must be used for each set of
interacting programs.

BEA MessageQ Introduction to Message Queuing 3-3

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS

The simplest style of messaging is called datagram messaging. Thisisaone-way flow
of information between two applications that does not follow arequest/response
paradigm. In our shop-floor monitoring application, for exampl e, temperature readings
are sent as datagram messages to the monitoring application. The application reading
the temperatures does not require a response to each reading.

In addition to datagram style messaging, request/response messaging can be used to
implement the client/server model of application integration. Using thismodel aclient
program sends a request to a server program. The server program reads the request,
processes it, and returns the results to the client as shown in Figure 3-2.

Figure3-2 Request/Response M essaging Paradigm

| attach to Q |

| send message x }—l
L—{ receive message y |

| detach from Q |

A more complex communication model that can be used for client/server or
peer-to-peer messaging uses queues as service points. Using this model, sender
programs direct requests or simply send information in the form of messagesto a
central queue. Several receiver programs may read the queue, obtain the request or
information, process it, and then read the queue for another message as shown in
Figure 3-3.

3-4 BEA MessageQ Introduction to Message Queuing

DESIGNING A BEA MESSAGEQ APPLICATION

Figure 3-3 Service Point M essaging Paradigm

attach to Q

——@| get message x

—| do what message x says |

The communication model determines much of the system design, including the
structure of the sender and receiver programs and the message queue configuration.
The system designer uses the message queuing communication model that is most
efficient for message exchange between each set of application components to be
integrated.

Defining Major Application Needs

In addition to designing the most efficient communications model, the application
devel oper must determine how to use BEA MessageQ features to implement the
application design. The questions and answers in thistopic can help the application
devel oper to identify some of the major aspects of system design and development
using BEA MessageQ such as:

4 What rate of messaging throughput is required?
4+ Doesthe application require reliable delivery?

4 Isthe processing of message data between applications independent or
interdependent?

4 Doesthe application call for simultaneous distribution of information?

4+ Will the application receive different kinds of messages?

BEA MessageQ Introduction to Message Queuing 3-5

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS

Could the application benefit by load balancing between servers?
I's sequentia processing of information required?
What is the requirement for data persistence?

Should the applications be insulated from configuration changes?

* & & & o

Does the application environment change frequently?

Choosing the Style of Messaging

M essage throughput depends on the style of messaging selected and the delivery mode
of the message. For example, buffer-style messaging is faster than FML-based
self-describing messaging, because of the extra steps of message encoding and
decoding. In addition, limiting message size for buffer-style messagesto 32K enables
messages to be delivered faster over the distributed network. Though the selection of
messaging styleis based on the needs of the application, it isimportant for application
developers to consider the performance implications of each messaging style when
electing which styleto use.

In addition to the selection of messaging style, the delivery mode is the other critical
factor in determining messaging throughput. If an application reguires high messaging
rates, the application devel oper sel ectsadelivery mode which sends the message to the
target queuein memory and requires no notification of whether the messageisreceived
(PDEL_MODE_NN_MEM). This kind of message is called a datagram because it requires
the least processing overhead and provides the fastest messaging throughput. BEA
MessageQ is capable of sending datagrams at rates of thousands of messages per
second.

Datagram messaging, however, is only useful for applications that do not require a
guarantee that every message is received. In our shop-floor monitoring example, the
program that sends temperature readings uses datagram messages because, if one
message is hot received, the next will be sent in 30 seconds. It is not necessary for the
receiver program to get every message in order to promptly report on out-of-range
conditions.

Choosing Recoverable or Nonrecoverable Message Delivery

In contrast to datagram style messaging, some applicationsrequire aguarantee that the
message be delivered, though the speed of delivery is not of great concern. For
example, a developer could use message queuing to integrate the components of a

BEA MessageQ Introduction to Message Queuing

DESIGNING A BEA MESSAGEQ APPLICATION

manufacturing resource planning (MRP) system. In the just-in-time manufacturing
environment, it is critically important that the order processing application notify the
inventory application when goods are sold because manufacturing scheduling is based
on inventory levels.

In this case, the developer could use recoverable messaging to exchange this kind of
important information between applications to ensure that the inventory level is
accurately maintai ned. Recoverable messaging reduces messaging throughput because
of the additional system resources required to save messages on disk in case they
cannot be delivered. However, the value of automatic recovery in the event of system,
process, or network failures might outweigh the disadvantage of additional processing
time.

Choosing Asynchronous or Synchronous Messaging

Interdependent applications use a blocking request/response paradigm. For example,
when Program A sends a message to Program B, it halts processing until it receivesa
reply from Program B. BEA MessageQ offers delivery modes to support synchronous
communication (PDEL_MODE_WF_xxx).

For example, let’s look at a banking application. A bank teller may enter a request for
a withdrawal of money from a customer’s account. The banking application requires
that the customer’s account balance be checked and sufficient funds available before
the withdrawal can be made. Therefore, the request message is sent using a blocking
delivery mode. The request transaction cannot continue processing until the server
application checks the account balance, verifies that the amount of money requested is
available for withdrawal, and returns a response to the requesting application to
proceed with the transaction.

Other applications share data but operate independently. These applications use
asynchronous messaging; the sender program sends the message and continues
processing. The receiver program receives and reads the message at a later time—
independent of the operation of the sender program.

For example, in a manufacturing resource planning (MRP) system, it is not necessary
for the order entry application to halt processing while it waits for the inventory
application to receive the message because the data does not affect its own processing.
So, for example, the order fulfillment application can send a message to the inventory
system identifying how many items were sold using an asynchronous delivery mode
(PDEL_MDODE_AK_xxx). The order fulfillment application does not need to halt

processing while the inventory application reads the messages and decrease the
inventory count.

BEA MessageQ Introduction to Message Queuing 3-7

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS

Using Message Broadcasting

Some applications require simultaneous distribution of information to many recipients

at the sametime. A stock brokerage program is a good example of thiskind of

application. As stock prices change, the updated values must be simultaneously

displayed on all stock traders’ monitors. BEA MessageQ offers a feature called
message broadcasting which allows an application to send one message that is
simultaneously delivered to all subscribers. This capability is also called publish and
subscribe.

Using Message Selection

Applications can receive a variety of message types. For example, an application ca
receive responses to its requests, notification of successful delivery of asynchronou
messages, broadcast messages, timer expiration messages, and so on. The BEA
MessageQ API offers a feature called message selection that allows receiver prograr
to sort out the messages they receive by correlation identifier, sequence number,
message source, class, type, priority, or a combination of message attributes. If you
application will receive different kinds of messages, you need to include logic for
sorting the messages as they are read using the appreariateet _nsg function.

Load Balancing with MRQs

3-8

Many applications would benefit greatly if multiple servers were allowed to process
the data instead of a single server. The efficient and dynamic distribution of processin
power is commonly referred to as load balancing. BEA MessageQ offers load
balancing through its multireader queues (MRQs).

For example, let's look at an order processing system. Company A’s sales people ent
customer orders using laptop computers by dialing into a main order entry system.
After the order information is entered, the transaction is transmitted as a message tc
the order processing server program. Normally, there are several server programs
running to process customer orders.

Each server reads a message from the MRQ that contains the customer order
transaction information, processes the order information, and then reads the next
available messages. As the number of messages in the MRQ grows, additional serve
can be started to handle the load.

BEA MessageQ Introduction to Message Queuing

DESIGNING A BEA MESSAGEQ APPLICATION

MRQs are generally used for load balancing when each message is a self-contained
transaction. If an application requires multiple messages to be read and procesessed
sequentially, the application uses a single-reader queue as the target queue to ensure
proper processing. Optionally, an MRQ can be used to set up a session with a server
application which then uses asingle-reader queue for the remainder of the transaction.
In this case:

4 theclient application sends an inital request message to an MRQ

4 aserver application reads theinital request message from the MRQ and then
sends the client application a message containing the address of the server’s
single-reader queue

4 the client application reads the message from the server and uses the server’s
single-reader queue to complete the transaction with additional messages

When implementing this approach, it is important to note that the client application is
temporarily stalled while waiting to receive the address of the server’s single-reader
queue.

Choosing Single Reader Queues for Sequential Processing

If sequential information processing is required, the application must send the
messages to a target queue that is defined as a single reader queue. Single-reader
gueues are owned by a single process which reads messages from the queue in FIFO
(first-in/first-out) order.

It is important to note that, by default, BEA MessageQ places the highest priority
messages at the top of the queue. Priority ranges from 0 (lowest priority) to 99 (highest
priority). For example, priority 1 messages are always placed before priority O
messages. Messages are placed in first-in/first-out order by message priority.

Choosing Permanently Active Queues for Data Persistence

Some applications require information be available for only a short period of time. Or,
applications may require that information be available only when a process is attached
to a queue and, therefore, actively retrieving information. In the former case, the
application developer would attach to a temporary queue. In the latter case, the
application developer would send messages to a permanent queue that is configured to
be active only when a process is attached.

BEA MessageQ Introduction to Message Queuing 39

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS

For example, a client application that takes account inquiries from customers at an
ATM machine only requires the use of a queue long enough to provide a particular
customer with one time information about their account. The client application would
attach to the message queuing bus using a temporary queue, request the account
balance from the message server, and wait for the message server to return the account
balance. After the balanceinquiry isfulfilled, the client application detaches from the
temporary queue and waits for the next account inquiry.

However, if an application requires message data to be captured regardless of whether
an application is available to process it, the developer must define the queue as
permanently active to enable it to store messages when no application is attached, or
use a recoverable delivery mode for sending to this queue.

Using BEA MessageQ Naming

Another important aspect of application devel opment isto decide whether applications
should be insulated from changes in the underlying BEA MessageQ environment
configuration. For very stable environments which infrequently change equipment
configuration, thisis not a great concern. However, for dynamic, multiplatform
environments, it may be very important to ensure that applications continue to run
without recoding despite underlying configuration changes. However, thereisa
performance loss when naming is used for each queue reference.

Application devel opers can insulate programs from configuration changes using the
BEA MessageQ naming feature. To use naming, applications are designed to refer to
gueues by name and not by using their queue address. Applications use the

pams_| ocat e_q function to look up the queue address for a queue name at runtime
and pass the value to the pams_put _nsg function in order to send the message.
Naming enhances the flexibility of applications and frees them from requiring
maintenance each time the configuration of the BEA MessageQ environment changes.

In addition, BEA MessageQ offersthe ability to assign aservice point at runtime using

the pans_bi nd_gq function. So, for example, if applications are designed to read a

gueue called “parts_orders,” the location of this queue can be determined at runtime
by binding the queue name “parts_orders” to the queue address of the server that w
be processing the parts orders at that time. The queue name can be unbound and tt
pams_bi nd_g function issued again to change the location from which parts orders
will be obtained providing failover capability. Queue names are available on a
group-wide and bus-wide basis providing a wide degree of flexibility to change the
runtime environment.

3-10 BEA MessageQ Introduction to Message Queuing

DESIGNING A BEA MESSAGEQ APPLICATION

Using FML for Self-Describing Messaging

For application environments subject to frequent change or that run on heterogeneous
machine environments, FM L-style self-describing messaging provides numerous
capabilities to enhance the flexibility of applications. For example, using FML, you
can add fiel dsto amessage that can be read by new applicationswithout disrupting the
way existing applications process the message. | n addition, you can change the size of
datafields in a message as your needs change without recoding applications because
the size of the datafield is encoded as part of the message itself.

In addition, messages can be planned with future considerations in mind because a
single message can be designed for use by avariety of applicationsthat use different
data fields within the message and by future applicationswill use datafields not in use
today. Also, FML marshalsthe data so that programmers need not be concerned with
the different data formats from machine to machine.

Designing Message Flow and System Configuration

After you have broken down the application into its component programs, designed the
communications model, and determined the BEA MessageQ features required by each
component, you need to map out the messaging flow and determine how the
component applicationswill be deployed in the distributed environment by answering
the following questions:

4 Which applications must communicate with each other?

4 Which computer systems do/will these applications run on?

4 Where arethe computer systems located?

4 What networks and operating systems are these computers running?
4 Where arethe users located?

4 What isthe application data flow?

A system designer answers these and many other detailed questions about the
application in order to map the flow of information between sender and receiver
programsin the distributed heterogeneous network.

BEA MessageQ Introduction to Message Queuing 31

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS

Though a system manager may perform the configuration tasks, the following BEA
M essageQ entities must be set up in accordance with the general system design in
order for applications to exchange messages:

4 Themessage queuing bus which acts as the common mechanism for attached
applications to exchange information

4 Message queuing groups for al participating nodes in the network
4 Message queues for storing information to be read by receiver programs

The BEA MessageQ environment must be configured before applications are able to
exchange information. For example, a system designer may designate queue 40 in
group humber 1 to receive temperature readings from a semiconductor furnace.

Oncethe bus, group, and queue address are defined, the sender program knows where
to direct messages containing temperature readings. The receiver program also knows
which queue to attach to in order to read and respond to temperature changesin the
furnace.

Advanced Message Queuing Features

In addition to its ability to send and receive messages between applicationsin a
distributed multivendor environment, BEA MessageQ has advanced features to
provide developers with the following powerful capabilities:

FML Self-Describing Messaging
Recoverable Messaging
Message Selection

Broadcasting M essages

Naming

Using M essage Based Services

* & & & O o o

Exchanging Messages Between BEA MessageQ and BEA TUXEDO V6.4 or
BEA M3V2.1

3-12 BEA MessageQ Introduction to Message Queuing

ADVANCED MESSAGE QUEUING FEATURES

4 Additiona API Functions

FML Self-Describing Messaging

Self-describing messaging using Field Manipulation Lauguage (FML) provides a
flexible form of BEA MessageQ messaging. With buffer-style messaging, BEA

M essageQ applications pass information using a message buffer whose format and
structure were agreed upon by the sender and receiver programs. FML provides a
mechanism for passing information as an opaque message buffer.

The pans_put _msg function now accepts a pointer to an FML32 buffer as the
msg_ar ea parameter. The resulting message contains the tags and val ues needed by
the receiver program to decode the message. FML adds significant flexibility in
message exchange because, in many cases, the contents of a message can be changed
without requiring all related applications to be changed.

One example of the flexibility inherent in the FML messaging styleis illustrated
through the handling of a change in a message field size of an existing message.
Applications that do not use FML must modify the application header files of each
applicable sender and receiver program and then they must be recompiled, relinked
and restarted. Using FML, however, the application developer need only change the
tag associated with the value to indicate the new field size. When the messageis
received and decoded by the receiver program, the message contains the information
on the new field size, therefore, the receiver program can properly interpret the data.

In addition to changing the size of datafieldsin a message, developers can add fields
to FML messages. The new fields are available to be read by applications that have
been programmed to read the additional field, however, all existing applications
continue to run without a problem.

Another very powerful feature of FML isits ability to provide data transformation for
applications exchanging information in heterogeneous multivendor environments. For
a complete description of how to use the BEA MessageQ self-describing messaging
feature, refer to the BEA MessageQ Programmer’s Guide

BEA MessageQ Introduction to Message Queuing 3-13

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS

Recoverable Messaging

3-14

When an application sends a message, the final receipt of the message can be
interrupted by various failure conditions including system, process, and network
failures as shown in Figure 3-4.

Figure 3-4 Recoverable M essaging

/= —_——

= 5 i

----- T r----t-%»
Link 1 Process 1 System
Loss 1 Loss 1 Loss

| —1

Y

—_— —_— —
However, BEA MessageQ applications can choose to send a message using
recoverable delivery modes to enable BEA MessageQ to store messagesin adisk file
and deliver them as soon as it is possible. Using recoverable messaging BEA
M essageQ applications can recover from message delivery failures caused by any of
the following:

4 Communications failure
4+ Application task abort
4 System crash—sender, receiver, or both

When you send a BEA MessageQ message that is designated as recoverable, it is
stored in one of two message recovery journals. The message recovery journal on tl
local system is called the store and forward (SAF) file. The message recovery journe
on the remote system is called the destination queue file (DQF).

The selection of the recovery journal is determined by the delivery mode argument
specified in thepams_put _nsg function. If the delivery of a recoverable message is
interrupted by a failure, it is automatically resent from the SAF or the DQF once
communication with the target group is restored.

BEA MessageQ Introduction to Message Queuing

ADVANCED MESSAGE QUEUING FEATURES

When an application receives and reads a recoverable message from a queue that is
configured for explicit confirmation, it must use the pams_confi r m nsg function to
confirm message delivery. Confirming delivery of the recoverable message removesit
from the message recovery journd. If the message is not confirmed, it will remain in
therecovery journal and be redelivered if the application detaches and reattachesto the
queue.

BEA MessageQ offerstwo types of message confirmation; implicit and explicit. The
type of confirmation is set for each message queue as part of group configuration.
Applications that receive recoverable messages in queues configured for implicit
confirmation do not need to issue the pams_conf i r m nsg call. The message queuing
system automatically issues the pans_conf i r m nsg call when the next sequential
message is read from the message recovery journal. However, applications receiving
recoverable messagesin queues configured for explicit confirmation must issue the
pams_confi rm nsg call to delete the message from the message recovery journal.

Another queue characteristic that can be set during group configuration isthe message
confirmation order. Recoverable messages can be confirmed in order or out-of-order.
The default confirmation order is to confirm messages sequentially asthey are
delivered from the message recovery journal and received by the target application.

In addition to the message recovery journals, BEA MessageQ offers two auxiliary
journalsto provide additional message recovery capabilities as follows:

4 Thedead letter journal (DLJ) file provides disk storage for messages that could
not be stored for automatic recovery by the message recovery system.
Undelivered messages stored in the DL Jfile can be re-sent under user or
application control.

4 The postconfirmation journal (PCJ) file, stores successfully confirmed
recoverable messages. It forms an audit trail of message exchange that can be
read or printed. The PCJfile can aso be used to resend successfully delivered
messages if a database has become corrupted and must be restored. Message
gueuing groups must be configured to store successfully delivered messagesin
the PCJ.

For a complete description of how to use the BEA MessageQ recoverable messaging
feature, refer to the BEA MessageQ Programmer’s Guide

BEA MessageQ Introduction to Message Queuing ~ 3-15

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS

Message Selection

3-16

When each BEA MessageQ message is sent, the sender program can assigh a
correlation identifier, message type, message class, and priority to distinguish it from
other messagesin the target queue. In addition, the message header contains the queue
address of the sender program to allow the receiver program to identify the message
source.

To selectively read messages, applicationsuse sel _fi | t er argument of the
pams_get _nmsg, pans_get _nsgw, Or pams_get _nsga functions. This argument
allows devel opers to select messages by:

L4

Default selection—reads messages in FIFO order by priority. To use the default
setting, set both words of the longword to zero.

Selection by message queue—allows the application to retrieve messages based
on a queue type or combination of queue types. For example, the application cal
read messages in the primary queue first, and then read messages in an alterna
gueue. A series of predefined constants are available to specify message
selection by queue type.

Selection by correlation identifier—allows the application to retrieve messages
based on correlation identifier. To select by correlation id, use the symbol
PSEL_CORRELATI ON_I D defined inp_synbol . h file. The application can tag
any response to the message with the same identifier.

Selection by sequence number—allows the application to retrieve messages

based on the segence number contained in the PAMS status buffer. This allows
precise control over the message selected; a message sequence number applie:
one and only one message. To select by sequence number, use the symbol
PSEL_SEQUENCE_NUMBER defined inp_symbol . h file.

Message attributes—allows application developers to retrieve messages based

on assigned characteristics that let the receiver program know how to process th
message. BEA MessageQ message-based services use reserved messages typ
and class symbols defined in thet ypcl s. h file. To create additional type and
class codes for your application, create a separate include file containing the typ
and class code symbols. The receiver program can also use message selection
attribute to read high priority messages before less critical ones.

BEA MessageQ Introduction to Message Queuing

ADVANCED MESSAGE QUEUING FEATURES

4 Message source—applications can be programmed to read only those messages
from a particular source. To use this option, enter the group ID and the queue
number of the source queue from which the application should read messages.

4 Compound selection—enables developers to create compound selection criteria
using thepans_set _sel ect function. Compound message selection allows the
use of complex rules such as AND/OR operations for reading messages. To use
compound selection use the consksEL_BY_MASK as the first word and the
mask_i d of the selection mask created usfragrs_set _sel ect as the second
word. The application can cancel the use of a selection mask using the
pams_cancel _sel ect function.

For a complete description of how to use the BEA MessageQ message selection
feature, refer to thBEA MessageQ Programmer’s Guide

Broadcasting Messages

M essage br oadcasting isastyle of messaging that enables one sender program to send
amessage simultaneously to many receiver programs. BEA MessageQ Selective
Broadcast Services (SBS) manage the broadcasting of data between processes and
groups of processes as shown in Figure 3-5.

Figure 3-5 Selective Broadcast Services

MessageQ MessageQ MessageQ
Application B Application C Application D

MessageQ
SBS Server Application A

BEA MessageQ broadcast services provide applications with:

4 One-to-many message queuing
4 Listsof application processes that are interested in messages that are broadcast

BEA MessageQ Introduction to Message Queuing 3-17

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS

Naming

4 User-definable rules, known as selection rules, which can be used to selectively
extract messages from a broadcast stream

BEA MessageQ message broadcasting is similar to radio broadcasting. A sender

program directs a message to a selected broadcast stream to be received by any

interested application. Then, the receiver program “tunes in” just as a listener choose
a particular radio station by registering to receive messages sent to that broadcast
stream. The sender program does not know which applications are receiving the
messages it sends. Receiver programs register and deregister for message receipt fi
a particular broadcast stream without affecting the sender program.

Message broadcasting simplifies application development because sender programs
not need to be aware of the number, state, and location of the target queues. Messe
broadcasting increases efficiency by directing messages to many targets with a sing
call.

To send a message to multiple recipients simultaneously, the sender program uses t
pams_put _nmsg function and specifies a Multipoint Outbound Target (MOT) as the
gueue address. A broadcast target, numbered between 4000 and 6000, is an identif
for a broadcast stream. A broadcast stream is the set of target queues registered to
receive messages directed to a particular broadcast target. The SBS Server in each
message queuing group distributes messages to registered receiver programs.

For a complete description of how to use the BEA MessageQ message broadcastin
feature, refer to thBEA MessageQ Programmer’s Guide

Naming is a powerful BEA MessageQ capability that enables applicationsto refer to
gueuesby nameinstead of by their queue address. Using naming separates applications
from the details of the current BEA MessageQ environment configuration and enables
system managers to make configuration changes without requiring developers to
change their applications.

For example, an order processing application uses amultireader queue called
ORDER_| NBOX to store product order messages from client programs. Order fulfillment
server programs read messages from ORDER_| NBOX to process each order. Initially,
ORDER_| NBOX might be defined as queue 7 in group 1, an HP-UX system. However,
after the company purchases a high performance, Compag system running Tru64
UNIX, this queue may be redefined as queue 8 on group 2 to provide better

3-18 BEA MessageQ Introduction to Message Queuing

ADVANCED MESSAGE QUEUING FEATURES

performance for the application. In this example, no change is required to either the
sender or receiver programs because they refer to the queue by name and not by its
gueue address.

To obtain the queue address for a queue name at runtime, application developers use
thepans_| ocat e_q function. Queue names can bedefined in BEA MessageQ to have
alocal or global scope. A local name can be used as the target queue by applications
running in the same message queuing group in which the name was defined. A global
name can be used as the target queue by any application on the message queuing bus.

Names can be defined using a static or dynamic approach. The static approach means
that the name-to-queue addresstransl ation isdefined in the Queue Configuration Table
(%QCT) or in the Global Name Table (%GNT) of the BEA MessageQ group
initialization file. When the group starts up, the name-to-queue addresstranslations are
written to the BEA MessageQ name space. To change a hame-to-queue address
translation, you must stop the message queuing group, change the queue name
definition in the group initialization file and restart the group and its applications.
When an application performs apans_| ocat e_q function, it will obtain the new
gueue address for the queue name.

Dynamic naming means that the name-to-queue address translation is defined at
runtime by an application using the pans_bi nd_q function. When the pans_bi nd_q
function successfully completes, the name-to queue translation is written to the BEA
M essageQ name space. To change the name-to-queue translation, the application must
unbind the name from the queue address and use the pans_bi nd_q function to bind a
new gueue address to the queue name.

The BEA MessageQ process that supports the naming capability is called the Naming
Agent. The Naming Agent isresponsiblefor creating entries in the name space and for
providing the look up capability for name-to-queue trandations at runtime.

To use the BEA MessageQ naming feature, you must configure the message queuing
environment as follows:

4 the message queuing group that runs the Naming Agent must be identified in the
9dNAMsection of the group initialization file

4 the name-to-queue translation for each statically defined queue name must be
entered to the Queue Configuration Table (%XCT) and the Group Name Table
(¥&NT) of the group initialization file. In addition, the GNT section must contain
the queue names to be associated with queue addresses at runtime using the
pams_bi nd_q function. These names are associated with queue address 0.0 so
that the dynamic queue address can be set at runtime.

BEA MessageQ Introduction to Message Queuing 3-19

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS

Refer to the installation and configuration guide for your platform for detailed
information on how to configure the BEA MessageQ naming feature. For more
detailed information on how to design your application to use naming, refer to the BEA
MessageQ Programmer’s Guide

Using Message Based Services

BEA MessageQ applications may wish to perform certain standard tasks such as
checking the status of a queue or the status of a cross-group connection before sending
amessage. To makethesetaskseasier, BEA MessageQ offers message-based services.
These are predefined request, notification, and response messages exchanged between
application processes and the BEA MessageQ servers that support each message
gueuing group.

BEA MessageQ offers message-based services for:

Notifying applications of the availability or unavailability of message queues
Registering to receive broadcast messages

Monitoring and controlling link status

Obtaining the status of all message queues

Opening, closing, and renaming message recovery journals (OpenVMS only)

* & & & o o

Redirecting the contents of a destination queue file to another queue (OpenVMS
only)

For example, an application may want to check whether aqueue is available before it
sends amessage. BEA MessageQ offers built-in availability checking through its
message-based services.

To register for availability notification, the application sends an AVAI L_REG message
to the primary queue of the AVAIL Server running in its message queuing group. The
AVAIL server responds by sending an AVAI L_REG REPLY message to the sender
program acknowledging that it is registered to receive availability notification.

3-20 BEA MessageQ Introduction to Message Queuing

ADVANCED MESSAGE QUEUING FEATURES

Thereafter, as queues attach and detach from the message queuing bus, the sender
program receives AVAIL and UNAVAIL notification messages identifying which
gueues have become available and which have become unavailable. When the sender
program no longer requires availability notification, it sends a AVAI L_DEREG message
to the AVAIL Server and notification is terminated.

For a complete description of how to use the BEA MessageQ message-based services
feature, refer to the BEA MessageQ Programmer’s Guide

Exchanging Messages Between BEA MessageQ and BEA
TUXEDO V6.4 or BEA M3 V2.1

BEA MessageQ V5.0 include a messaging bridge that allows the exchange of
messages between BEA MessageQ V5.0 and BEA TUXEDO V6.4 or BEA M3V2.1.
BEA MessageQ applications can send a message using panms_put _nsg that a
TUXEDO application can retrieve through a call tot pdequeue. TUXEDO
applications can send a message using t penqueue that a BEA MessageQ application
can retrieve through acall to pans_get _nsg(w). In addition, a BEA MessageQ
application caninvokea TUXEDO serviceusing panms_put _nsg. Itisalso possiblefor
aTUXEDO application to uset penqueue to put a message on a queue and

t pdequeue to retrive a message from a queue.

This exchange of messages is made possible by two TUXEDO serversthat are
included inthe BEA MessageQ installation and that run on the same machine as BEA

MessageQ: TMQUEUE_BMQ and TMQFORWARD_ BMQ.

TMQUEUE_BMQredirects TUXEDO t penqueue requests to a BEA MessageQ queue
where they can be retrieved with pans_get _nmsg(w). TMQUEUE_BMQ also redirects
pams_put _nsg requeststo TUXEDO where they can be retrieved with t pdequeue.

TMQFORWARD_BM listens on specified BEA MessageQ queues and forwards
pams_put _nsg or t penqueue requeststo a TUXEDO service. It also puts the reply
or failure message on the sender’s response queue.

The target queue and service are defined WIlMWEUE _BMQ and TMQFORWARD_BMQ
are configured. This ensures that message exchange between BEA MessageQ and
TUXEDQO is transparent to the application.

Figure 3-6 illustrates message exchange between BEA MessageQ and TUXEDO.

BEA MessageQ Introduction to Message Queuing 3-21

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS

Figure3-6 M essage Exchange Between BEA M essageQ and TUXEDO

3-22 BEA MessageQ Introduction to Message Queuing

ADVANCED MESSAGE QUEUING FEATURES

BEA TUXEDO

) Server
Service or

Client

tpenqueue/
tpdequeue

TMQFORWARD TMQUEUE_
_BMQ BMQ

S

‘N 4

Machine

pams_put_msg/][

pams_get_msg

Application

BEA MessageQ

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS

Enabling the Messaging Bridge

The TMQUEUE_BMRand TMQFORWARD BMQ servers are part of the BEA MessageQ
installation and areinstalled when BEA MessageQ isinstaled. During theinstallation
procedure, you are prompted to choose one of the following installation options for
BEA MessageQ and TUXEDO integration:

install on top of BEA TUXEDO V6.4
install on top of BEA M3V2.1
install without BEA TUXEDO

Note that if you are installing BEA MessageQ on OpenVMS, you do not have the
option of installing over BEA M3V 2.1. Also, you must install BEA MessageQ for
OpenVMS on an OpenVMS AXP 7.1 system to use the messaging bridge.

If you chooseto install ontop of BEA TUXEDO V6.4 or BEA M3V 2.1, theapplicable
filesfor the TMQUEUE_BMQand TMQFORWARD BMQserversareinstalled on your system.
If you install without BEA TUXEDO, the TMQUEUE_BMQ and TMQFORWARD_BMQ
servers are not installed on your system. Seethe installation and configuration
documentation for your system for detailed installation and configuration instructions.

Once the TMQUEUE_BMQ and TMQFORWARD_BMQ servers are installed, the system
administrator enables message enqueuing and dequeuing for the application by
specifying the servers as application serversin the * SERVERS section of the TUXEDO
ubbconfi g file. Seethe TMQUEUE BMQand TMQFORWARD BMQreference pagesin the
BEA MessageQ Reference Manual for detailed information on the server configuration
syntax.

Additional API Functions

In addition to its API functions for sending and receiving messages, BEA M essageQ
offers the following additional API functionsto facilitate the development of
distributed applications:

4 panms_bi nd_g—used to set local and global names for queues at runtime

4 pans_| ocat e_g—obtains the queue address for a queue name at run-time

3-24 BEA MessageQ Introduction to Message Queuing

ADVANCED MESSAGE QUEUING FEATURES

4 pans_set _tinmer and pams_cancel _ti mer —sends a notification message to
an application at a particular time of day or when a specified time period has
elapsed

4 pans_st atus_t ext —returns detailed status information for the API call

4 putil _show pendi ng—provides the total number of pending messages for a
queue

Defining a Name-to-Queue Translation at Runtime

Thepans_bi nd_q function is designed to dynamically associate a queue name with a
gueue address at runtime. This function enables a server application to dynamically
sign up to service a queue alias at runtime.

For example, an application may have client programs that submit orders for widgets
by sending BEA MessageQ messages containing the appropriate information to a
queue calledwi dget _or ders.” In addition, the application has a server program that
processes widget orders. To maximize flexibility, the server program starts up and then
binds the address of its primary queue to the queue naindgét _or der s” which is
defined in the group initialization file. The client programs are designed to perform the
name-to-queue address translation at runtime usingathe | ocat e_q function and
orders are sent to the primary queue of the server program.

If the server should fail, or if the server program is moved to a faster system, the
pams_bi nd_q function can be used to unbind the queue name from the primary queue
of one server program and bind it to the primary queue of another. The redefinition of
the queue address ofi“dget _or der s” is handled by BEA MessageQ and is invisible

to the client programs which require no reprogramming to direct messages to a
different queue. When the queue address for the name is redefined, the message from
the client applications are automatically redirected to the new queue address.

Locating the Queue Address for a Queue

To send a message to a target queue, the application developer must supply a queue
address as thear get argument to theans_put _nsg function. Depending on the

needs of the application, the queue address may be set when the program is compiled
or may be supplied when the application is running.

BEA MessageQ Introduction to Message Queuing 3-25

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS

To specify the queue address at compile time, the application devel oper suppliesthe
gueue number and group ID of the target queue to the pans_put _nmsg function. This
information must match the group configuration information for the BEA MessageQ
environment. If the group and queue number of the target queue do not exist in the
group configuration information, the message cannot be delivered.

BEA MessageQ also allows the queue address of the target queue to be resolved at
runtime. Using this approach, the application refersto queues only by name. To obtain
their queue addresses, the application invokes the panms_| ocat e_q function to obtain
the queue address for a queue name. When the queue address is returned by the
pams_| ocat e_q function, the devel oper uses it to supply the queue address to the
pams_put _nmsg function. Designing applications to refer to queues by name, adds
some processing overhead at runtime, however, it increases flexibility over compile
time resolution by insulating applications from changes in environment configuration.

Using Timers

3-26

BEA MessageQ offers atimer API function that eliminates the need to write
application-specific timer code. The PAMS timer function sends a timer expiration
message to an application when:

4+ a specified amount of time has elapsed—just as a cooking timer, for example, it
signals the application that 30 minutes has passed and an event should be
triggered

4 atime of day has arrived—just as an alarm clock, for example, it signals the
application that it is now 10 o’clock and an event should be triggered

The application sets a timer using tiears_set _t i mer function by supplying a
timer_id, the type of timer and the value to be set. An application can set multiple
timers by supplying each with a uniquienrer _i d.

When the specified time has elapsed or the time of day has arrived, BEA MessageC
sends a priority 1 message with a message typB®ITYPE_TI MER_EXPI RED to the
application’s source queue. The data structure of tiMER_EXPI RED message

contains thei mer _i d to enable the application to discern which timer-related event
to trigger.

The application cancels timers using fla@s_cancel _t i mer function by supplying
theti ner _i d of the timer to cancel. All pending timer expiration messages with the
timer_i d of the timer being canceled are purged from the queue.

BEA MessageQ Introduction to Message Queuing

TESTING AND DEBUGGING BEA MESSAGEQ APPLICATIONS

Obtaining Detailed Status Information

Application developers can use the pams_st at us_t ext function to obtain a
descriptive text string and a severity level for each API return value. This API function
receives the status value and returns a text description in the following format:

PAMS SUCCESS, normal successful conpletion

The text description contains the text name of the return code (as it appearsin the
documentation and devel opment includefiles) followed by acomma, aspace, and then
a status description. If the user buffer islarge enough, the string is zero terminated.

In addition to the text description, this function returns a code indicating the severity
level for both success and error messages. Severity |evels are designed to provide more
information about the message being returned.

Obtaining the Number of Pending Messages in a Queue

Theputil _show_pendi ng function provides the number of pending messages for a
single queue or alist of queues. The value returned by this function contains the total
number of messages in each memory queue as well as the number of messagesin the
local and remote recovery journals targeted for delivery to the selected queue. This
function can be used to monitor for bottlenecksin application processing and message
flow design.

Testing and Debugging BEA MessageQ
Applications

BEA MessageQ provides the following powerful tools that assist application
devel opers testing and debugging distributed applications:

4 The BEA MessageQ Script Facility—provides a means of simulating message

exchange between applications under development.

4 The BEA MessageQ Test Utility—provides a simple way to test message
exchange with an existing application.

BEA MessageQ Introduction to Message Queuing 3-27

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS

4 Message Tracing—provides a means to diagnose problems with message
exchange between applications by creating a log file of all BEA MessageQ
events between the two processes.

BEA MessageQ Script Facility

3-28

The BEA MessageQ Script facility provides a productivity tool for application
developers to use in simulating message exchange between programs. Instead of
writing a test program, you create a script file containing instructions for capturing
messages sent or received by an application, replay captured messages, or simulat
messages sent from an application that is still under development.

M essage simulation offers a shortcut for sending messages to an application. Instead
of writing a program to send a message, you can use a text editor to create a script fil
The script file contains the message information and other instructions such as wheth
to log the message exchange.

The message information and other instructions are entered to the script file using th
BEA MessageQ scripting language. When script processing is enabled, BEA
MessageQ processes the contents of the script file and delivers the message to the
target queue where it can be read by the receiver program.

M essage capture provides a mechanism for viewing the messages sent or received by
an application. To capture messages, you use the scripting language to create a sct
file that identifies the messages to be captured. Captured messages can be displayec
the screen, written to a log file, or both. When script processing is enabled, BEA
MessageQ captures the messages and displays or logs them as specified in the scr
file.

M essage replay uses the messages captured in a log file as input to an application ir
exactly the same way as messages entered to a script file. The script replay feature s
developers capture messages sent or received by an application and supply them a
input to another program. By tracking the program’s response to the captured
messages, the developer can debug message exchange between programs that sh
information using BEA MessageQ.

Note: The BEA MessageQ script facility is available on UNIX and OpenVMS
systems only.

BEA MessageQ Introduction to Message Queuing

TESTING AND DEBUGGING BEA MESSAGEQ APPLICATIONS

For acompl ete description of how to usethe BEA MessageQ script utility, refer to the
BEA MessageQ Programmer’s Guide

BEA MessageQ Test Utility

The BEA MessageQ Test utility isaproductivity tool that allows software devel opers
to test message exchange with an existing application. A developer interacts with the
graphical user interface or character-cell interface of the Test utility to:

4 Attach to apermanent or temporary queue
4 Read messages sent by an application or script file
4 Send messages to a defined target queue

To run the Test utility, the devel oper must begin by setting environment variables to
specify the bus and group in which thetest application isrunning. Then the developers
uses the pulldown options to build the attach, send, or receive function entering the
same information required as arguments to these API function calls.

The Test utility provides a quick and easy means for application developers to:
4 Build interactive tests of gpplication modules.

4 Send and receive messages to any target from any source.

4 Test the message flow and messaging rates for a set of queues

To view a sample run of the Test Utility, refer to the installation and configuration
guide for your environment.

Message Tracing

The BEA MessageQ message tracing feature logs internal messaging eventsto afile
asthey happen. Y ou can usethisfileto diagnose application failures asyou debug your
application.

BEA MessageQ Introduction to Message Queuing ~ 3-29

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS

It isimportant to note that message tracing generates a high volume of output;
therefore, you should only enable tracing for diagnostic purposesin the event of a
problem. For more information on how to set up message tracing, refer to the BEA
MessageQ Programmer’s Guide

3-30 BEA MessageQ Introduction to Message Queuing

CHAPTER

4 Managing the BEA

MessageQ
Environment

After you develop your BEA MessageQ programs and deploy your distributed
application into the production environment, you need to monitor and tune your
system’s performance and occasionally troubleshoot BEA MessageQ problems.

To successfully manage your distributed BEA MessageQ applications, you need to:
4 Understand the BEA MessageQ Environment
4 Monitor System Performance

4 Troubleshoot Errors

Understanding the BEA MessageQ
Environment

To efficiently manage and troubleshoot a distributed BEA MessageQ application, itis
important to be able to visualize the components of the BEA MessageQ environment.
Figure 4-1 shows how Application A running in Group 1 can be configured to
exchange messages with Application B running in Group 2 on the same message

BEA MessageQ Introduction to Message Queuing 4-1

4 MANAGING THE BEA MEESSAGEQ ENVIRONMENT

gueuing busthough the systems do not run the same operating system. Communication
between the two groups is enabled using the network communications link between
both systems and a BEA MessageQ cross-group link.

Figure4-1 The BEA MessageQ Environment

bus 1
group 0101 group 0102
application A application B
sbs . sbs
mrs/jrn xgroup mrs/jrn
cls v cls
queue 1.15 queue 2.347
UNIX Windows NT

Thistypical configuration of the BEA MessageQ environment consists of:

4 asingle message queuing bus to provide the communication backbone for
applications to exchange information using message queuing

4 One or more message queuing groups per system. A message queuing group
enables multiple queues to efficiently share BEA MessageQ services such as
message recovery and broadcast services

4 one or more message queues to receive BEA MessageQ messages. Message
gueues can be temporarily assigned for use by BEA M essageQ or can be
permanently defined in the group initialization file

4 Oneor more cross-group connections to enable message exchange between
message queuing groups on the message queuing bus. (If the message queuing
groups reside on different computer systems, a network connection must be
present to enable the cross-group connection.)

4-2 BEA MessageQ Introduction to Message Queuing

UNDERSTANDING THE BEA MESSAGEQ ENVIRONMENT

Anatomy of a Message Queuing Group

M essage queuing groups are designed to provide centralized resources for a group of
gueues running on ahost system. Asshownin Figure 4-2, each message queuing group
may run anumber of BEA M essageQ serversto servicethe needs of the temporary and
permanent queues to which applications are attached.

Figure4-2 BEA MessageQ Servers

Group 0104

MRS/JRN CLs Naming Link
Server Server Agent Drivers

Temporary Permanent
Queue Queue

App App

Depending upon the services enabled in the group initialization file, amessage queuing
group may run the following processes:

4 SBS Server—distributes broadcast messages based on the selection criteria set
by registered applications

4 Client Library Server—provides full message queuing services for applications
running on BEA MessageQ Clients

BEA MessageQ Introduction to Message Queuing 4-3

4 MANAGING THE BEA MEESSAGEQ ENVIRONMENT

L4

JRN Server—uwrites successfully delivered recoverable messages to the post
confirmation journal; also writes recoverable messages to disk-based message
recovery journals and resends the messages in the event of delivery failure

Link Drivers—enables cross-group communication for applications running on
different computer systems in different BEA MessageQ message queuing group:

NA—the naming agent accesses and manages the BEA MessageQ bus-wide
name space

Starting and Stopping Groups, Queues, Links and the CLS

As options of both its character-cell and GUI-based Monitor utility, BEA MessageQ
enables users to interactively:

L4

¢
¢
¢

>

* & & o

Stop a message queuing group slowly (allowing processes to exit and clean up)
Stop a message queuing group fast (immediate shutdown without clean up)
Start a message queue

Stop a message queue slowly (allowing messages to be read until the queue is
empty)

Stop a message queue fast (queue stops immediately and existing messages ar
lost)

Start a cross-group connection
Stop a cross-group connection
Start the Client Library Server

Stop the Client Library Server

4-4 BEA MessageQ Introduction to Message Queuing

MONITORING SYSTEM PERFORMANCE

Monitoring System Performance

The BEA MessageQ Monitor utility helps developers observe the BEA MessageQ
environment on local and remote nodes. Devel opers and system managers can use the
summary and detailed display of information by the Monitor utility to tune the BEA
MessageQ system configuration.

To monitor or control your BEA MessageQ groups or buses, you can invoke either the
Motif-based Monitor Utility or the character-cell Monitor utility. Either interface can
be used to perform the following sets of functions:

4 Collecting and displaying statistics for each queue

4 Collecting and displaying statistics for each cross-group link

Error Logging and Recovery

BEA MessageQ has an error logging mechanism to display and captureinformational,
warning, and error messages that can occur during processing. The messages display
adescription of the condition to hel p devel opers gather moreinformation about failure
conditions within amessage queuing group.

On UNIX and Windows NT systems the BEA MessageQ an error log fileis created
when the group is started using the appropriate switch on the dmgstartup command
line. Error logs can be created for each message queuing group. On OpenVMS
systems, an error |og can be created at group startup or the System Manager utility can
be used to redirect output to several error log files.

Listing 4-1 shows the kind of information logged for each BEA MessageQ event on a
UNIX or aWindows NT system:

4 the name of the process that logged the error
4 the date and time on which the message was |ogged

4 adescription of the successful event or error condition

BEA MessageQ Introduction to Message Queuing 4-5

4 MANAGING THE BEA MEESSAGEQ ENVIRONMENT

Listing4-1 Sample BEA MessageQ Event Log File

khkkkkhkkhkkkkkkx drrqgcp (4150) 10_ DEC_1999 15 25 23 kkkkkkkkhkk k%
gcp, group control process for group 19 is running
khkkkkhkkhkkkkkkx drrqqe (4536) 10_DEC_ 1999 15 25 24 EIE R
ge, queuing engine is running

Frxxxxxxxxxx dnml oader (3366) 10- DEC- 1999 15: 25: 24 **** %k ki
I dr, MessageQ System Loader starting

I dr, Parsing PROFILE Section

I dr, Parsing MRS Section

I dr, Parsing GROUP Section

r, Parsing ROQUTE Section

, Parsing QCT Section

, Parsing GNT Section

, Bad paraneter sent to the GCP at |ine 318

, Bad paraneter sent to the GCP at |ine 330

, Bad paraneter sent to the GCP at |ine 331

r, Parsing CLS Section

I dr, Parsing NAM Section

I dr, Loader exiting nornally

Fraxxkxxxxxx dnmjourn (2590) 10- DEC- 1999 15: 25: 27 ******kxxixs
jrn, journal process for group 19 is running

khkkkkhkkhkkkkkkx dn-ql d (2579 O) 10_ mc_ 1999 15 25 27 kkkkkkhkkkkkhk*x
Id, link l'istener for group 19 is running

khkkkkhkkhkkkkkkx dn-ql d (2591 O) 10_ mc_ 1999 15 25 27 kkkkkkhkkkkkk*x
Id, link sender for group 19 to group 18 is running
*khkkkkhkkhkkkkkkx dn-ql d (2579 O) 10_ mc_ 1999 15 25 32 kkkkkkkkkkk*x
I'd, link receiver for group 19 fromgroup 18 is running
khkkkkhkkhkkkkkkx dn-qgcp (4150) 10_ DEC_1999 15 2621 kkkkkkkkhkk k%
i pi, dequeue nmessage failed

khkkkkhkkhkkkkkkx dn-qgcp (4150) 10_ DEC_1999 15 2621 kkkkkkkkkk k%
gcp, group control process for group 19 has exited
*khkkkkhkkhkhkkkkkx dn-qqe (4536) 10_DEC_ 1999 15 2621 EIE R
ge, queuing engi ne has exited

= =

= =

Q.Q.Q.&Q.Q.Q.

4-6 BEA MessageQ Introduction to Message Queuing

Glossary

access control list (ACL)

A list that defines the kinds of accessto be granted or denied to users of an object.
Access control lists can be created or objects such as files and devices.

acknowledgment (ACK)
A status message that indicates the completion of an operation.

address
See queue address.

application

A program or collection of programs designed to perform a function or business
task.

application programming interface (API)

Aninterface used by application programsto call servicesexterna to the program.
The API supports the exchange of information in a multivendor environment.

application protocols

An agreed set of rulesthat govern the management of connections between partner
programs. See also duplex connection and simplex connection.

asynchronous

Pertaining to a style of message queuing whereby messages can be sent or re-
ceived at any time without waiting for the receiver program to receive, process, or
respond to a specific event. Contrast with synchronous.

asynchronous system trap (AST)

An software-simulated interrupt to a user-defined service routine. ASTs enable a
user_process to be notified asynchronously of the occurrence of a specific event.

If auser hasdefined an AST routine for an event, the system interruptsthe process
and executes the AST routine when that event occurs. When the AST routine ex-

BEA MessageQ Introduction to Message Queuing G-1

G-2

its, the system resumes execution of the process at the point where it was inter-
rupted.

attach

To make a process known to the BEA MessageQ message queuing bus and allow
it to receive messages at a particular queue address.

attachment point

A particular queue location on the BEA MessageQ message queuing bus that al-
lows communication between processes without requiring aformal connection se-
quence.

blocking

Pertaining to asynchronous style of message delivery wherethe programisforced
to wait for an action to complete. Contrast with nonblocking.

broadcast distribution

Theaction of delivering amessageto all processesinterested in aparticular broad-
cast stream.

broadcasting

A style of communicating that uses one message sender program and multiple
message receiver programs. This capability is also called “publish and subscribe

broadcast stream

A data message pipeline that has a single entry point and multiple exit points.
Messages sent to the broadcast stream are simultaneously distributed to all reg
tered queues. See algavate broadcast stream anduniversal broadcast stream.

buffer
An internal memory area used for temporary storage of data records during inpu
or output operations.

buffer pool

A common memory area that stores message buffers for a message queuing grot
A buffer pool consists of fixed-size memory structures that can hold one messag
each.

busID
A reference value that distinguishes one BEA MessageQ message queuing bus

BEA MessageQ Introduction to Message Queuing

from another.

class

A 16-bit piece of datathat describesagrouping or category of messagetypes. Also
called message class. See also type.

client

A computing system entity that uses the services of other system entities called
servers. See also server.

client/server model

A hardware or software system design used in devel oping distributed applications.
In the client/server model, a server system provides common database access, per-
forms computations, and assumes system management tasks for its clients.

COM Server

A BEA MessageQ for OpenV M S server processthat passes cross-group messages
to other BEA MessageQ message queuing groups. A COM Server creates the
BEA MessageQ message queuing bus environment and must be activated before
message queuing can occur.

configuration editor

A Windowseditor used for defining and managing BEA M essageQ buses, groups,
and related information.

configuration file

A text file comprised of information line items used to configure BEA MessageQ
software. Thisfileis aso called the group initialization file. The configuration
data for message queuing groupsis standard for all platforms.

confirmation
See message confirmation.

connectionless

Pertaining to not having alogical link. A connection does not have to be estab-
lished with a partner process in order to pass information between them.

connection-oriented

Pertaining to a communication method where two partners must establish a con-
nection before they can exchange messages.

BEA MessageQ Introduction to Message Queuing G-3

G-4

correlation ID

A user-defined value associated with and identifying a specific message. Receiv-
ing applications can retrieve the correlation ID and tag any responses with the
same value. This aidsin matching responses with requests.

Cross-group

Pertaining to messages that pass between BEA MessageQ message queuing
groups. A cross-group message istargeted to amessage queuing group outside of
thelocal group. Cross-group connections enable applicationsto share information
across different systems connected to the same message queuing bus.

datagram

A “best effort” style of message delivery in which a nonrecoverable attempt is
made to deliver a message. If the message cannot be delivered to a target, then
error is logged.

dead letter journal (DLJ)

A file that provides nonvolatile disk storage for messages that cannot be stored fc
automatic recovery. Applications use the DLJ file to resend undelivered messag
es. Also calledLJfile.

dead letter queue (DL Q)

The permanent message queue that provides memory-based storage of all recc
erable messages that could not be stored for automatic delivery. Also2a(led
file.

delivery interest point

A component of the delivery mode that indicates the step in the message recovel
data flow at which the sender program is notified.

delivery mode

A selection of options that specify how the sender program receives notification
of recoverable message delivery and the point in the message flow at which the
notification is sent. See alsaessage delivery.

destination queue file (DQF)
A message recovery journal that provides nonvolatile storage on a remote syste!
for automatic recovery and delivery of messages. Also cBI(@H file.

BEA MessageQ Introduction to Message Queuing

distributed application

An application that divides the user interface, processing, or data among one or
more units that execute on a single central processing unit (CPU) or multiple
nodesin a network.

distributed computing

An application design methodol ogy that places dataentry and application process-
ing close to departmental and functional end users. These users are most familiar
with the input requirements and need the processed output to support their busi-
ness objectives.

Distributed Name Services (DNS)
A heavyweight namespacethat BEA MessageQ can useto store global names. Us-
ing DNS on OpenVMSS systems enables BEA MessageQ to locate the queue ad-
dress for a queue defined by any group on the message queuing bus. See aso
naming.

distribution

A stagein broadcast services wherethe SBS Server delivers amessage to receiver
programs.

distribution queue
A gueue addressthat isspecified in abroadcast or availability servicesregistration
message. The distribution queueisthefinal destination of abroadcast or availabil-
ity notification message.

DLJfile
See dead |etter journal.

DLQ file
See dead | etter queue.

DQF file
See destination queue file.

duplex connection

An application protocol where theinitiating partner isthe sender program and the
accepting partner isthe receiver program, until the sender program requests a di-
rection change and becomesthe new receiver program. The accepting partner then
becomes the sender program and remains the sender program until requesting a

BEA MessageQ Introduction to Message Queuing G-5

G-6

direction change. Contrast with simplex connection.

event

A network- or system-specific occurrence, such astimer expiration, for which the
logging component maintains a record.

explicit confirmation
A type of message confirmation that requires the receiver program to delete the
message from the recovery journal using a message sequence number. The mes-
sageisnot deleted until the receiver program hasfinished processing the informa-
tioninit.

facility
A collection of one or more computer programs that implement a set of related

functions or services. The implementation of afacility can consist of either apro-
cess or a procedure.

failover
1) The process of areconfiguration after a hard fault or for planned maintenance.
2) The ability of asystem or component to reconfigure itself.

Field Manipulation L anguage (FML)

Field Manipulation Language (FML) isaset of C language functionsfor defining
and manipulating storage structures called fielded buffers, that contain at-
tribute-value pairsin fields. The attribute is the field's identifier, and the associat-
ed value represents the field's data content.

FML
See Field Manipulation Language.

full duplex

Pertaining to a communications method in which data can be transmitted and re-
celved at the sametime.

global data structure
A data structure that can be shared by multiple processes.

global sections

An OpenV M S shared memory segment potentially availableto all processesinthe
system. Accessis protected by standard access control mechanisms.

BEA MessageQ Introduction to Message Queuing

group
See message queuing group.

group ID

Theinternal number of the BEA MessageQ message queuing group. The group
ID ispart of the queue address. Each group | D must be unique within the message
queuing bus.

group name
The symbolic name associated with the BEA MessageQ group ID.

half-duplex

Pertai ning to acommunication method where one partner is sending datawhen the
other partner isreceiving data. See also duplex connection.

heter ogeneous computing environment

An environment in which applications run on computer systems from different
vendors employing various operating system and networking software.

heter ogeneous messaging
The use of different communications methods to transfer messages.

heter ogeneous oper ating systems

A configuration of avariety of computersand operating systems connected by net-
working hardware and software.

implicit confirmation

A type of message confirmation on BEA MessageQ for UNIX and Windows NT
systems that automatically deletes arecoverable message from ajournal file. The
receiver program does not need to respond to the receipt of the message.

inbound conver sation allocation

The allocation of conversationsthat areinitiated by an OpenV M S transaction pro-
gram.

initiator-only deallocation

A method of duplex connection termination wheretheinitiating partner isthe only
one who can terminate the connection normally. Contrast with open deallocation.

BEA MessageQ Introduction to Message Queuing G-7

G-8

inter process communication
Two-way communication between active independent processes.

journaled guaranteed delivery

A method used by applicationsto guarantee BEA MessageQ message delivery in
which the sending process sends a message that is delivered to the target disk
queue.

journal file
A disk file that records all received and confirmed messages.

journaling
Writing to a auxiliary message recovery journal file.

journal replay
A method for resending messages stored in the DL J or PCJfiles.

link driver

A process that establishes a communications link between message queuing
groups. Using the queuing engine, each link driver sends outbound messages and
delivers inbound messages.

Linked List Sections

A set of global sectionsthat is used to store the BEA MessageQ message buffers
for a message queuing group. See also buffer pool.

message
A dataitem that is transmitted over a communications medium. A message con-
tains a message header and data portion. The message header is comprised of at-

tributes, which are defined by the application program, and context, which is
added by the messaging tool.

message-based services

Predefined request, notification, and response messages exchanged between the
application and BEA MessageQ server process.

message capture

A part of the Script Facility that provides amechanism for viewing messages that
are sent or received by an application.

BEA MessageQ Introduction to Message Queuing

message confirmation

An action taken by the receiver program, which indicates to the message queuing
system that the processing of a recoverable message has completed. A message
confirmation terminates the message system’s responsihility for the recoverable

message.

M essage Control Section (MCS)

A global section that stores information about message queues and other global
information, such as send and receive counters.

message delivery

The processing steps performed by the message queuing system when moving the
message from a sender program to the receiver program’s message queue.

message queue

An attachment point on the BEA M essageQ message queuing bus where pending
messages are stored. A message queue isidentified by a queue number and can be
primary, secondary, or multireader.

message queuing

Interprocess communication and information exchange between two or more co-
operating processes accomplished by directing messages to a memory- or
disk-based queue as an intermediate storage point.

message queuing bus

A transparent communication mechanism that usesasimple logical bustopology.
A message queuing bus provides a standard set of program-callable subroutines
that allow message transfer between programs and message queues. See also Mes-
sageQ message queuing bus.

message queuing group
A set of logical addresses onthe BEA MessageQ message queuing bus, all sharing
aset of common BEA MessageQ resources. Each message queuing group resides
on asingle system. However, multiple groups can reside on the same system. The
interconnections between groups define the extent of a message queuing bus.

M essage Recovery Services (MRS)

A set of BEA MessageQ servicesthat manage the automatic redelivery of critical
messages.

BEA MessageQ Introduction to Message Queuing G-9

M ultipoint Outbound Target (MOT)

An entry point to a broadcast stream. A range of queue addresses is reserved to
define a set of unique broadcast streams.

multireader queue (M RQ)

An optional queue type on the BEA MessageQ message queuing bus that stores
messages that can be read by several simultaneous readers. Each reader, in turn,
receivesthe next messagein first-in/first-out (FIFO) order from the queue. A mul-
tireader queue can be permanent or permanently active. See also queue type.

naming

Pertaining to the use of a symbolic entity in place of an actual value. BEA Mes-
sageQ uses character strings for names, which, when translated, reveal queue ad-
dresses.

network
A collection of interconnected individual computer systems.

node

An individual computer system in a network that can communicate with other
computer systemsin the network.

nonblocking

Pertaining to an asynchronous style of message delivery where the program does
not have to wait for an action to complete. The nonblocking style generally in-
volves receiving an acknowledgment message when the action is complete. Con-
trast with blocking.

notification

A type of message-based service that supplies up-to-date information on events as
they occur.

open deallocation

A method of duplex connection termination where the current sender can termi-
nate the connection normally, regardless of which partner initiated the connection.
Contrast with initiator-only deallocation.

operand
Datain the message header or message data structure that will be compared.

G-10 BEA MessageQ Introduction to Message Queuing

outbound conver sation allocation
The dlocation of conversationsthat are initiated by a CICS transaction program.

PAMS

Process Activation and Message Support. PAMSistheorigina namefor the BEA
M essageQ message queuing system. The BEA MessageQ API preserves the orig-
inal product acronym in the name of each callable service to protect customer in-
vestment in application devel opment.

PCJfile
See postconfirmation journal file.

pending
Pertaining to a message that is currently in a queue.

per manent outbound target

A type of outbound target that supports amethod of message delivery where BEA
MessageQ clients can request that outbound traffic be delivered to a predeter-
mined BEA MessageQ queue. The queue must be a permanent queue in the des-
ignated group.

permanent queue

A message queue that is always at the same address on the BEA MessageQ mes-
sage queuing bus. It exists regardless of whether aprocessis attached to it. A per-
manent queue retains its name and address after the process detaches, but oses
any pending messages. See a so permanently active queue. Contrast with tempo-
rary queue.

per manently active queue

A message queue that can receive messages without an application attachment. It
retains its name and messages after the process detaches from BEA MessageQ.
See also_permanent queue.

platform

The combination of hardware, operating systems, and windowing systems that
supports an application.

port server

A class of BEA MessageQ application that provides a connection to the BEA
M essageQ message queuing bus for client applications executing on platforms

BEA MessageQ Introduction to Message Queuing G-11

G-12

that do not have a BEA M essageQ implementation.

postconfirmation journal file (PCJ)

A disk filethat holds confirmed recoverable messages that can beretrieved for au-
dit trailing. Also called PCJ file.

primary queue

The one required queue used when a process attachesto the BEA MessageQ mes-
sage queuing bus. There can be only one primary queue for each process. It isused
asthedefault return address on all messages sent by that process. A primary queue
can be permanent, permanently active, or temporary. See also queue type.

private broadcast stream

A MOT address range indicating that messages are restricted to distribution by
one SBS Server, which restricts distribution to queues that have registered with
that SBS Server. See aso broadcast stream.

process

The basic entity scheduled by the system software, a process provides the context
in which an image executes.

queue
See message queue.

queue address

A longword value that uniquely identifies the attachment point on the BEA Mes-
sageQ message queuing bus. An addressincludes agroup | D and a queue number.

gueue attribute

A specific characteristic of a queue that determines the features of the queue.
Some examples of queue attributes are: permanent or temporary, recoverable or
volatile, FIFO or non-FIFO capability, and so on.

queue number

A number that represents a unique location of a permanent or temporary queue ad-
dresswithin aBEA MessageQ message queuing group. There must be at least one
gueue number for every process using the BEA MessageQ message queuing bus.

queuetype
A description of a message queue as being primary, secondary, or multireader.

BEA MessageQ Introduction to Message Queuing

gueuing engine
A process that handles all message traffic between message queuing groups. One

queuing engine s created for each group. The queuing engine creates the global
sections of memory for message queues within the group.

quota

The total amount of a system resource, such as disk space, that ajob isallowed to
use in an accounting period.

r eceive message quota
The application-defined limitation (in bytes) on pending messages in a queue.

receiver program
The application program in a connection that is accepting messages from the send-
er_program.

recover able message

A messagethat istemporarily stored on adisk fileand is guaranteed delivery if an
application, system, or network fails.

registration

A stagein broadcast services where an application program subscribes to abroad-
cast stream by sending a registration message to the SBS Server.

Registry
A database in the Windows NT operating system that stores system and optional
software configuration information.

reliable transmission

Pertai ning to messages that are guaranteed to be delivered to atarget queue. Con-
trast with recoverable message.

request
A type of message-based service that obtains information or registersto receive
ongoing notifications.

response

A _type of message-based servicethat providesinformationto fulfill requestsor ac-
knowledge registration and deregistration requests.

BEA MessageQ Introduction to Message Queuing G-13

G-14

retur n-to-sender

A method of BEA MessageQ message delivery in which anonrecoverable attempt
ismade to deliver amessage. If the message cannot be delivered, it is returned to
the sending process marked with a special return status.

SAF file
See store and forward.

Script facility
A productivity tool that speeds application testing by providing message simula-
tion, capture, and replay abilities.

script file
A file with specia syntax defining message information.

secondary queue

An optional private queue type used in conjunction with a primary queue. It pro-
vides a secondary address for messages. A secondary queue can be permanent,
permanently active, or temporary. See a so queue type.

Selective Broadcast Services (SBS)

BEA MessageQ services that enable an application to send a message to many re-
celving applications with a single send operation.

semaphore

In BEA MessageQ software, a common data structure used to serialize access to
shared data structures.

sender notification

A component of the delivery mode that indicates how the sender program wants
to receive information about the delivery of the message.

sender program

The application program in a connection that is sending messages to the receiver
program.

sequence number

The message sequence number is generated by the BEA MessageQ message re-
covery system for each recoverable message. Thisvalueis passed to the receiver
program in the PAMS status buffer (PSB) of the pans_get _nsg function when it

BEA MessageQ Introduction to Message Queuing

reads each recoverable message.

server

A software module designed to perform a specific function for many users. See
also client and client/server model.

sessionless

Pertai ning to the absence of protocols required to manage communications be-
tween processes.

shared memory segment
A portion of memory that can be accessed by two or more processes.

simplex connection

An application protocol where the initiating partner is always the sender program
and the accepting partner is always the receiver program. The receiver program
can signal an error, but cannot send. Contrast with duplex connection.

sour ce queue
A queue address of the program that sent the message.

stateless

Pertai ning to the absence of protocolsto identify the stages within a message
transmission.

store and forward (SAF)

A message recovery journal that provides nonvolatile storage on the sender’s sys-
tem for automatic recovery and delivery of messages. Also called SAF file.

submission
A stage in broadcast services where an application program inserts a message on
abroadcast stream.

synchronous

Pertaining to a message queuing system where the sender program must wait for
a specific event or reply. Contrast with asynchronous.

tar get
A generic term for the client application with which another client application
wants to establish a connection.

BEA MessageQ Introduction to Message Queuing G-15

G-16

target queue
The queue address of the receiver program of the message.

TCP/IP

Transport Control Protocol/Internet Protocol. TCP/IPisaset of protocols that
governs the transport of information between computers and networks of dissim-
ilar types. Both Internet and UNIX based systems use TCP/IP protocols.

temporary queue

A gqueue that exists only for the duration of the process attachment to the BEA

M essageQ message queuing bus. The assignment of the queue is not permanently
defined. A temporary queue loses all messages in the queue when the process de-
taches from the queue. Contrast with permanent queue.

transparent

Relating to IBM systems, which use EBCDIC data encoding format. BEA Mes-
sageQ clients expect datain ASCII format. For atarget defined astransparent, the
LU6.2 Port Server does not provide data encoding format translation. Contrast
with nontransparent.

type
A 16-bit piece of dataBEA MessageQ usesto identify akind of message from all
other messages in the application. See aso class.

undeliverable message action (UM A)

The action that occurs when the BEA MessageQ message queuing bus is unable
to store amessage. The UMA specifies the action to be taken with the recoverable
message if it cannot be stored for guaranteed delivery by the message recovery
system.

universal broadcast stream

A MOT address range indicating that messages can be distributed by all SBS
Servers. Distribution is across the entire message queuing bus wherever SBS soft-
ware is running. See also broadcast stream.

user process
A user's program image.
utility
A program that provides a set of related general-purpose functions, such as apro-

BEA MessageQ Introduction to Message Queuing

gram development utility (an editor, alinker).

wait for dequeue

A method of BEA MessageQ message delivery in which the sending processis
blocked until the message is read from the target queue by the receiver program.

wait for enqueue

A method of BEA MessageQ message delivery in which the sender program pro-
cess is blocked until the message iswritten to the target queue. A return status in-
dicates if the messageis successfully written to the queue. This delivery method

guarantees message delivery when message recovery servicesare not availableon
the target platform.

BEA MessageQ Introduction to Message Queuing G-17

G-18 BEA MessageQ Introduction to Message Queuing

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks
	Contents
	Preface
	1. What Is BEA MessageQ?
	The Distributed Computing Revolution 1-1
	Message Queuing Basics 1-9
	BEA MessageQ Benefits 1-16

	2. Sending and Receiving BEA MessageQ Messages
	Overview of BEA MessageQ API Functions 2-2
	Configuring the BEA MessageQ Environment 2-5
	Attaching to the Message Queuing Bus 2-11
	Sending a Message 2-14
	Receiving a Message 2-24
	Detaching from the Message Queuing Bus 2-27
	Exchanging Messages Between BEA MessageQ and BEA TUXEDO 2-28

	3. Designing and Developing BEA MessageQ Applications
	Designing a BEA MessageQ Application 3-1
	Advanced Message Queuing Features 3-12
	Testing and Debugging BEA MessageQ Applications 3-27

	4. Managing the BEA MessageQ Environment
	Understanding the BEA MessageQ Environment 4-1
	Monitoring System Performance 4-5
	Error Logging and Recovery 4-5
	Glossary

	Preface
	Purpose of This Document
	Who Should Read This Document
	How This Document Is Organized

	How to Use This Document
	Opening the Document in a Web Browser
	Printing from a Web Browser
	Documentation Conventions

	Related Documentation
	MessageQ Documentation

	Contact Information
	Documentation Support
	Customer Support

	1 What Is BEA MessageQ?
	The Distributed Computing Revolution
	Traditional Versus Distributed Applications
	Major Trends in Distributed Computing
	Figure 1�1 Contrasting Application Integration Approaches

	Distributed Computing Models
	Figure 1�2 Client/Server versus Peer-to-Peer Information Exchange
	Peer-to-Peer Communication Model
	Client/Server Communication Model

	Technologies for Building Distributed Applications
	DCE/Remote Procedure Call
	Object Transaction Monitoring
	Message Queuing

	Message Queuing Basics
	What Is a Message?
	What Is Message Queuing?
	How Does BEA MessageQ Work?
	Choosing the BEA MessageQ Server or Client
	How the BEA MessageQ Client Works
	Figure 1�3 How Client Applications Communicate using the CLS

	When to Choose the BEA MessageQ Client

	Key Features of BEA MessageQ

	BEA MessageQ Benefits
	Standardized Integration Approach
	Guaranteed Delivery
	Application Portability
	Figure 1�4 How the BEA MessageQ API Insulates Applications

	Message Bus Simplifies Communication
	Broad Multiplatform Support
	Table 1�1 Supported Platform Environments

	Flexibility to Meet Changing Application Needs

	2 Sending and Receiving BEA MessageQ Messages
	Overview of BEA MessageQ API Functions
	Table 2�1 Description of Key PAMS API Functions

	Configuring the BEA MessageQ Environment
	Defining Queues and Their Attributes
	Configuring Buses, Groups and Queues
	Designing Your BEA MessageQ Environment
	Figure 2�1 Sample BEA MessageQ Application

	Configuring Each Message Queuing Group
	Starting Each Message Queuing Group

	Attaching to the Message Queuing Bus
	Attaching by Name
	Attaching by Number
	Attaching to a Temporary Queue

	Sending a Message
	Selecting a Messaging Style
	Using Buffer-Style Messaging
	Using FML-Style Messaging

	Choosing a Delivery Mode
	Sender Notification
	Delivery Interest Point
	Table 2�2 Nonrecoverable Delivery Modes
	Table 2�3 Recoverable Delivery Modes

	Undeliverable Message Action

	Receiving a Message
	Confirming Receipt of a Message
	Using the PAMS Status Buffer
	Figure 2�2 PAMS Status Buffer

	Using the show_buffer Argument
	Using Message Classes with BEA MessageQ and BEA TUXEDO

	Detaching from the Message Queuing Bus
	Exchanging Messages Between BEA MessageQ and BEA TUXEDO

	3 Designing and Developing BEA MessageQ Applications
	Designing a BEA MessageQ Application
	Solving the Business Problem
	Figure 3�1 Sample BEA MessageQ Application

	Developing the Communications Model
	Figure 3�2 Request/Response Messaging Paradigm
	Figure 3�3 Service Point Messaging Paradigm

	Defining Major Application Needs
	Choosing the Style of Messaging
	Choosing Recoverable or Nonrecoverable Message Delivery
	Choosing Asynchronous or Synchronous Messaging
	Using Message Broadcasting
	Using Message Selection
	Load Balancing with MRQs
	Choosing Single Reader Queues for Sequential Processing
	Choosing Permanently Active Queues for Data Persistence
	Using BEA MessageQ Naming
	Using FML for Self-Describing Messaging

	Designing Message Flow and System Configuration

	Advanced Message Queuing Features
	FML Self-Describing Messaging
	Recoverable Messaging
	Figure 3�4 Recoverable Messaging

	Message Selection
	Broadcasting Messages
	Figure 3�5 Selective Broadcast Services

	Naming
	Using Message Based Services
	Exchanging Messages Between BEA MessageQ and BEA TUXEDO V6.4 or BEA M3 V2.1
	Figure 3�6 Message Exchange Between BEA MessageQ and TUXEDO

	Enabling the Messaging Bridge
	Additional API Functions
	Defining a Name-to-Queue Translation at Runtime
	Locating the Queue Address for a Queue
	Using Timers
	Obtaining Detailed Status Information
	Obtaining the Number of Pending Messages in a Queue

	Testing and Debugging BEA MessageQ Applications
	BEA MessageQ Script Facility
	BEA MessageQ Test Utility
	Message Tracing

	4 Managing the BEA MessageQ Environment
	Understanding the BEA MessageQ Environment
	Figure 4�1 The BEA MessageQ Environment
	Anatomy of a Message Queuing Group
	Figure 4�2 BEA MessageQ Servers

	Starting and Stopping Groups, Queues, Links and the CLS

	Monitoring System Performance
	Error Logging and Recovery
	Listing 4-1 Sample BEA MessageQ Event Log File
	Glossary
	1) The process of a reconfiguration after a hard fault or for planned maintenance.
	2) The ability of a system or component to reconfigure itself.

