
Introduction to

B E A M e s s a g e Q f o r O p e n V M S V e r s i o n 5 . 0
D o c u m e n t E d i t i o n 5 . 0

M a r c h 2 0 0 0

BEA MessageQ

Message Queuing

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and TUXEDO are registered trademarks of BEA Systems, Inc. BEA Builder,
BEA Connect, BEA Manager, BEA MessageQ, Jolt, M3, and WebLogic are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

BEA MessageQ Introduction to Message Queuing

Document Edition Date Software Version

5.0 March 2000 BEA MessageQ, Version 5.0

Contents

Preface
Purpose of This Document ... vii

Who Should Read This Document.. vii

How This Document Is Organized.. vii

How to Use This Document .. viii

Opening the Document in a Web Browser... viii

Printing from a Web Browser .. ix

Documentation Conventions .. ix

Related Documentation ... xi

MessageQ Documentation ... xi

Contact Information.. xii

Documentation Support... xii

Customer Support.. xii

1. What Is BEA MessageQ?
The Distributed Computing Revolution .. 1-1

Traditional Versus Distributed Applications.. 1-2

Major Trends in Distributed Computing .. 1-3

Distributed Computing Models .. 1-5

Peer-to-Peer Communication Model .. 1-5

Client/Server Communication Model ... 1-6

Technologies for Building Distributed Applications 1-6

DCE/Remote Procedure Call .. 1-7

Object Transaction Monitoring ... 1-8

Message Queuing .. 1-8

Message Queuing Basics ... 1-9

What Is a Message?.. 1-9
BEA MessageQ Introduction to Message Queuing iii

CONTENTS
What Is Message Queuing? .. 1-10

How Does BEA MessageQ Work? .. 1-11

Choosing the BEA MessageQ Server or Client 1-12

How the BEA MessageQ Client Works.. 1-13

When to Choose the BEA MessageQ Client..................................... 1-14

Key Features of BEA MessageQ.. 1-15

BEA MessageQ Benefits ... 1-16

Standardized Integration Approach.. 1-17

Guaranteed Delivery... 1-17

Application Portability ... 1-18

Message Bus Simplifies Communication... 1-18

Broad Multiplatform Support ... 1-19

Flexibility to Meet Changing Application Needs..................................... 1-20

2. Sending and Receiving BEA MessageQ Messages
Overview of BEA MessageQ API Functions .. 2-2

Configuring the BEA MessageQ Environment ... 2-5

Defining Queues and Their Attributes ... 2-5

Configuring Buses, Groups and Queues .. 2-8

Designing Your BEA MessageQ Environment 2-8

Configuring Each Message Queuing Group 2-10

Starting Each Message Queuing Group .. 2-11

Attaching to the Message Queuing Bus .. 2-11

Attaching by Name... 2-13

Attaching by Number ... 2-13

Attaching to a Temporary Queue ... 2-13

Sending a Message .. 2-14

Selecting a Messaging Style... 2-16

Using Buffer-Style Messaging .. 2-17

Using FML-Style Messaging .. 2-18

Choosing a Delivery Mode... 2-18

Sender Notification ... 2-19

Delivery Interest Point .. 2-20

Undeliverable Message Action ... 2-23
iv BEA MessageQ Introduction to Message Queuing

Receiving a Message ... 2-24

Confirming Receipt of a Message .. 2-24

Using the PAMS Status Buffer .. 2-25

Using the show_buffer Argument .. 2-26

Using Message Classes with BEA MessageQ and BEA TUXEDO 2-27

Detaching from the Message Queuing Bus ... 2-27

Exchanging Messages Between BEA MessageQ and BEA TUXEDO 2-28

3. Designing and Developing BEA MessageQ Applications
Designing a BEA MessageQ Application ... 3-1

Solving the Business Problem.. 3-2

Developing the Communications Model.. 3-3

Defining Major Application Needs .. 3-5

Choosing the Style of Messaging.. 3-6

Choosing Recoverable or Nonrecoverable Message Delivery 3-6

Choosing Asynchronous or Synchronous Messaging......................... 3-7

Using Message Broadcasting .. 3-8

Using Message Selection .. 3-8

Load Balancing with MRQs ... 3-8

Choosing Single Reader Queues for Sequential Processing 3-9

Choosing Permanently Active Queues for Data Persistence 3-9

Using BEA MessageQ Naming .. 3-10

Using FML for Self-Describing Messaging...................................... 3-11

Designing Message Flow and System Configuration 3-11

Advanced Message Queuing Features... 3-12

FML Self-Describing Messaging ... 3-13

Recoverable Messaging.. 3-14

Message Selection .. 3-16

Broadcasting Messages .. 3-17

Naming ... 3-18

Using Message Based Services .. 3-20

Exchanging Messages Between BEA MessageQ and BEA TUXEDO V6.4 or
BEA M3 V2.1 ... 3-21

Enabling the Messaging Bridge ... 3-24

Additional API Functions... 3-24
BEA MessageQ Introduction to Message Queuing v

CONTENTS
Defining a Name-to-Queue Translation at Runtime 3-25

Locating the Queue Address for a Queue ... 3-25

Using Timers ... 3-26

Obtaining Detailed Status Information ... 3-27

Obtaining the Number of Pending Messages in a Queue.................. 3-27

Testing and Debugging BEA MessageQ Applications 3-27

BEA MessageQ Script Facility .. 3-28

BEA MessageQ Test Utility ... 3-29

Message Tracing... 3-29

4. Managing the BEA MessageQ Environment
Understanding the BEA MessageQ Environment ... 4-1

Anatomy of a Message Queuing Group ... 4-3

Starting and Stopping Groups, Queues, Links and the CLS 4-4

Monitoring System Performance... 4-5

Error Logging and Recovery ... 4-5

Glossary
vi BEA MessageQ Introduction to Message Queuing

e
Preface

Purpose of This Document

This document provides an introduction to message queuing, a technique for
exchanging information between distributed applications using message queues. This
document also describes specific features and benefits of BEA MessageQ.

Who Should Read This Document

This document is intended for the following audiences:

t system installers who will install BEA MessageQ on supported platforms

t system administrators who will configure, manage, and troubleshoot BEA
MessageQ on supported platforms

t applications designers and developers who are interested in designing,
developing, building, and running BEA MessageQ applications

How This Document Is Organized

BEA MessageQ Introduction to Message Queuing is organized as follows:

t Chapter 1, “What Is BEA MessageQ?”discusses distributed computing,
describes basic message queuing concepts, and lists the benefits of messag
queuing in a distributed computing environment.
BEA MessageQ Introduction to Message Queuing vii

s,

es
ion.

age

ou
tation
to

the

t
t Chapter 2, “Sending and Receiving BEA MessageQ Messages” provides an
overview of the MessageQ API functions and describes the processes of
configuring MessageQ, attaching to a queue, sending and receiving message
and detaching from the message queuing bus.

t Chapter 3, “Designing and Developing BEA MessageQ Applications” describ
the steps involved in designing, testing, and debugging a MessageQ applicat
This chapter also describes advanced MessageQ features including
self-describing messaging, recoverable messaging, message selection, mess
broadcasting, and naming services.

t Chapter 4, “Managing the BEA MessageQ Environment” describes how to
monitor system performance and troubleshoot errors.

t The Glossary defines terms used in describing messaging in general and
MessageQ in particular.

How to Use This Document

This document is designed primarily as an online, hypertext document. If you are
reading this as a paper publication, note that to get full use from this document y
should access it as an online document via the BEA MessageQ Online Documen
CD. The following sections explain how to view this document online, and how
print a copy of this document.

Opening the Document in a Web Browser

To access the online version of this document, open the index.htm file in the top-level
directory of the BEA MessageQ Online Documentation CD. Click on the link for
Introduction to Message Queuing.

Note: The online documentation requires a Web browser that supports HTML
version 3.0. Netscape Navigator version 3.0 or later, or Microsoft Interne
Explorer version 3.0 or later are recommended.
viii BEA MessageQ Introduction to Message Queuing

on.
 to
Printing from a Web Browser

You can print a copy of this document, one file at a time, from the Web browser.
Before you print, make sure that the chapter or appendix you want is displayed and
selected in your browser.

To select a chapter or appendix, click anywhere inside the chapter or appendix you
want to print. If your browser offers a Print Preview feature, you can use the feature to
verify which chapter or appendix you are about to print. If your browser offers a Print
Frames feature, you can use the feature to select the frame containing the chapter or
appendix you want to print.

The BEA MessageQ Online Documentation CD also includes Adobe Acrobat PDF
files of all of the online documents. You can use the Adobe Acrobat Reader to print all
or a portion of each document. On the CD’s main menu, click the Bookshelf butt
On the Bookshelf, scroll to the entry for the BEA MessageQ document you want
print and click the PDF option.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.
BEA MessageQ Introduction to Message Queuing ix

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Convention Item
x BEA MessageQ Introduction to Message Queuing

Related Documentation

The following sections list the documentation provided with the MessageQ software,
related BEA publications, and other publications related to the technology.

MessageQ Documentation

The MessageQ information set consists of the following documents:

BEA MessageQ Installation and Configuration Guide for Windows NT

BEA MessageQ Installation and Configuration Guide for UNIX

BEA MessageQ Installation Guide for OpenVMS

BEA MessageQ Configuration Guide for OpenVMS

BEA MessageQ Programmer’s Guide

BEA MessageQ FML Programmer’s Guide

... Indicates one of the following in a command line:

t That an argument can be repeated several times in a command line

t That the statement omits additional optional arguments

t That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
BEA MessageQ Introduction to Message Queuing xi

BEA MessageQ Reference Manual

BEA MessageQ System Messages

BEA MessageQ Client for Windows User’s Guide

BEA MessageQ Client for UNIX User’s Guide

BEA MessageQ Client for OpenVMS Guide

Note: The BEA MessageQ Online Documentation CD also includes Adobe Acrobat
PDF files of all of the online documents. You can use the Adobe Acrobat
Reader to print all or a portion of each document.

Contact Information

The following sections provide information about how to obtain support for the
documentation and software.

Documentation Support

If you have questions or comments on the documentation, you can contact the BEA
Information Engineering Group by e-mail at docsupport@beasys.com. (For
information about how to contact Customer Support, refer to the following section.)

Customer Support

If you have any questions about this version of BEA MessageQ, or if you have
problems installing and running BEA MessageQ, contact BEA Customer Support
through BEA WebSupport at www.beasys.com. You can also contact Customer
Support by using the contact information provided on the Customer Support Card,
which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:
xii BEA MessageQ Introduction to Message Queuing

t Your name, e-mail address, phone number, and fax number

t Your company name and company address

t Your machine type and authorization codes

t The name and version of the product you are using

t A description of the problem and the content of pertinent error messages
BEA MessageQ Introduction to Message Queuing xiii

xiv BEA MessageQ Introduction to Message Queuing

CHAPTER

know
fore

er out
called

tion
1 What Is BEA
MessageQ?

Message queuing is a technique for information exchange among distributed
applications. Message queues can reside in computer memory or on disk. Message
queues store messages until they are read by the receiver program. Through message
queuing, application programs can execute independently—they do not need to
each other’s location or wait for the receiver program to retrieve the message be
continuing.

BEA MessageQ is the industry-leading message queuing product providing
connectivity to a broad range of multivendor platforms. This chapter provides an
overview of:

t The Distributed Computing Revolution

t Message Queuing Basics

t BEA MessageQ Benefits

The Distributed Computing Revolution

During the last two decades, businesses have increasingly moved computing pow
of the data center and into the hands of departments and end users. This trend,
distributed computing, has accelerated in the last several years due to the
proliferation of powerful and easy-to-use PCs and the advent of high-powered
workstations and servers that offer high reliability and failover capability. This sec
describes:
BEA MessageQ Introduction to Message Queuing 1-1

1 WHAT IS BEA MESSAGEQ?

s
ata
w
rent
t Traditional Versus Distributed Applications

t Major Trends in Distributed Computing

t Distributed Computing Models

t Technologies for Building Distributed Applications

Traditional Versus Distributed Applications

An application is defined as a program or set of programs designed to perform a
particular business task, for example, a payroll application. Applications can be
designed and implemented in one large, monolithic structure or they can be broken into
separate components. Application components can be assigned to different processes
which work cooperatively to perform the desired tasks. Traditional application design
places all application components on a single computer system. Therefore, the
component programs can share information easily through global memory and
synchronize processing through the features of a single operating system.

Distributed computing, on the other hand, spreads out the processing of component
tasks onto several computers tied together by a computer network. Designing a
distributed application allows application components to run on different computer
systems which can maximize efficient use of computing resources while distributing
end user access to a corporate information databases.

For example, a traditional payroll application requires all component tasks to be
performed on the same computer system. Therefore, all of a company’s busines
locations would have to send employee payroll information to a central site for d
entry, processing, and check printing. A distributed payroll application would allo
entry of payroll data, check printing, and check distribution to be handled at diffe
locations throughout the company.

Distributing the payroll application can reduce cost and improve efficiency by:
1-2 BEA MessageQ Introduction to Message Queuing

THE DISTRIBUTED COMPUTING REVOLUTION

y

ion,

y

t Putting the data entry of payroll information closer to its source ensuring greater
accuracy and faster problem solving

t Eliminating the processing bottlenecks and inefficiencies of centralized data
entry and check distribution

Major Trends in Distributed Computing

Today, distributed computing is revolutionizing the way businesses and individuals
process information through:

t Mainframe downsizing—replacing expensive corporate mainframes, with
smaller, yet highly reliable departmental servers

t PC LAN upsizing—tying end user PC networks together with corporate
databases and application systems

t Integrating existing applications—enabling information exchange between
legacy applications to improve data integrity and reduce the cost of data entr

By implementing a distributed approach to application development and integrat
companies are:

t Eliminating manual and redundant data entry by sharing data automatically
between departmental systems

t Exchanging information between applications at remote sites

t Employing diverse computer hardware for different applications

t Consolidating business operations to reduce redundancies and control cost

t Coordinating application processing to promote efficiency

t Consolidating reporting from different information sources within the compan

t Reducing software development overhead

t Providing distributed access to data stored on corporate mainframes

t Connecting hundreds of PCs across the company to share data

t Ensuring reliable exchange of information in a diverse environment
BEA MessageQ Introduction to Message Queuing 1-3

1 WHAT IS BEA MESSAGEQ?
Though distributed processing is very powerful, it is also very complex. Because many
different computer systems may be involved in information processing, new issues
have arisen in sharing information, synchronizing processing, and sharing results.

The challenge to developers when integrating distributed applications is to provide an
efficient means of communication for distributed applications in a heterogeneous
networked environment. To manage their information sharing needs, it is most
efficient to provide applications with a common mechanism for exchanging
information

Middleware is a type of software designed to form a layer between the application and
the underlying operating system and network software. It provides applications with a
common means of communication and independence from the network and operating
system. Middleware provides developers with an application programming interface
that is common to all environments. When a function call is embedded in a program,
it performs the communication function for the application using the capabilities of the
particular operating system and network environment in which it runs.

Figure 1-1 contrasts the middleware approach with the previously used method of
linking each individual application in the environment.

Figure 1-1 Contrasting Application Integration Approaches

Without middleware to accomplish information exchange, application developers
have to write the software for sending and receiving information by learning how to
use the features of both network and operating system software to transport the data.
And, without a standard approach to information exchange, each application must be
programmed to communicate with each and every application in the multiplatform
environment.

Traditional
Point-to-Point Message Queuing Bus

... ...
1-4 BEA MessageQ Introduction to Message Queuing

THE DISTRIBUTED COMPUTING REVOLUTION
For example, to exchange information locally on OpenVMS systems, applications can
use OpenVMS mailboxes. The same kind of information exchange on a UNIX system
would require a knowledge of queues or pipes. Communicating between networked
systems requires knowledge of how to exchange information over the network such as
TCP/IP socket programming.

Distributed Computing Models

Decomposing an application into its component parts and distributing the parts across
disparate computer systems is much more complex than implementing an application
on a single system. Software developers use one of two communication models when
designing applications to share information in a distributed environment as shown in
Figure 1-2.

Figure 1-2 Client/Server versus Peer-to-Peer Information Exchange

t The peer-to-peer model is a conversational style of communication between two
applications or application components that exchange information and control as
equals.

t The client/server model is a request/response style of communications in which
applications are divided into two types of components: those that make requests
(clients) and those that fulfill requests (servers).

BEA MessageQ supports both the peer-to-peer or the client/server models of
distributed computing.

Peer-to-Peer Communication Model

A message queuing system provides peer-to-peer communication through a standard
message-passing mechanism. Communicating programs can operate independently
while using the message queuing system to exchange information.

PeerServerClient Peer
BEA MessageQ Introduction to Message Queuing 1-5

1 WHAT IS BEA MESSAGEQ?

ding
One program initiates communication with a remote program and exchanges messages
with it, enabling two-way communication. Data and control information can flow in
either direction. And, the communication can be synchronous or asynchronous. That
is, the sender program can wait for a reply from the receiver program or continue
immediately.

The peer-to-peer model is used by applications that work cooperatively to process
information in a distributed environment. Each program in the distributed application
may act as both a requester and fulfiller of service and information requests.

Client/Server Communication Model

The client/server model has emerged during the 1980s as an approach to distributed
application design. Using this model, a distributed application is made up of two types
of programs: ones that make requests and ones that fulfill requests for services or
information.

Client programs require an easy-to-use interface to facilitate user requests for services
or information. Because they do not process information, client programs do not need
to run on powerful computers. Therefore, they can be designed to run on inexpensive
personal computers which offer graphical user interface capabilities. Server programs,
on the other hand, must run on faster, more powerful systems such as workstations
which can also access large databases of corporate information.

The client/server design models fits well into today’s corporate heterogeneous
computing environment. With the large amount of PCs distributed throughout the
corporation, this model can provide shared and efficient access to corporate
information resources with appropriate safeguards.

Technologies for Building Distributed Applications

As with any trend in the computer industry, there is more than one product for buil
distributed applications. This section describes the three major approaches to
distributed application design:

t Remote Procedure Call—one of the standards-based components of the
Distributed Computing Environment
1-6 BEA MessageQ Introduction to Message Queuing

THE DISTRIBUTED COMPUTING REVOLUTION

the

tion.

ram

nother
ssing

ments

called
em
nous

ause

t

t Object Transaction Monitoring—an object-oriented industry standard based on
the Common Object Request Broker Architecture (CORBA) combined with
transaction processing (TP) monitor technology

t Message Queuing—a loosely-coupled approach to building distributed
applications popularized by products from several industry-leading vendors

DCE/Remote Procedure Call

Remote Procedure Call (RPC) is a component of the Distributed Computing
Environment (DCE), a software standard for application integration released by
Open Software Foundation. RPCs are modeled after the traditional programming
approach where one program invokes another program through a function invoca
The invocation is in the form of a procedure call. Once called, the control of prog
is given over to the called procedure.

In an RPC implementation, the called procedure resides on and is executed on a
system, which can be local or remote. When the called procedure is finished proce
the input data, the results are returned to the calling program in the returned argu
of the procedure call. Program control is then returned to the calling program
immediately after the RPC is completed.

Since RPCs imitate the call/return structure of a subroutine, they offer only
synchronous data exchange between the client (calling program) and the server (
procedure). To overcome this limitation, developers must employ operating syst
features such as threads or subtasks to force the RPC to process in an asynchro
manner. Using asynchronous RPCs to integrate applications limits portability bec
the application code has become operating system dependent.

RPCs are best used when an application requires:

t A two-tiered client/server architecture

t Highly interdependent processing of client-to-client or server-to-server
interactions

t Uncomplicated, synchronous interaction without the need for high throughpu

t Asynchronous processing in a predominantly homogeneous computing
environment
BEA MessageQ Introduction to Message Queuing 1-7

1 WHAT IS BEA MESSAGEQ?
Object Transaction Monitoring

The CORBA (Common Object Request Broker Architecture) specification provides a
broad and consistent model for building distributed client/server applications by
defining:

t An architecture that employs object-oriented technologies and methodologies

t A common client/server application programming interface

t Guidelines for transmitting and translating data among multivendor platforms

t A language for developing distributed application interfaces (Interface Definition
Language (IDL))

The CORBA architecture and specification were developed by the Object
Management Group (OMG), a consortium of information systems vendors. The goal
of CORBA is to promote an object-oriented approach to building and integrating
distributed software applications.

The BEA M3 system combines the best of distributed objects and transaction
processing (TP) monitor technology into a new platform that is specifically aimed at
providing high performance for enterprise distributed object applications using
transactions.

The M3 system uses CORBA distributed object technology to provide a common
programming model, leveraging from BEA TP monitor technology to provide an
enhanced run time by extending the Object Request Broker (ORB) model with online
transaction processing (OLTP) functions. The M3 system also leverages from the
existing BEA core technology infrastructure for transaction management, security,
message transport, administration and manageability, and XA-compliant database
support.

Message Queuing

Message queuing offers a loosely-coupled approach to building distributed
applications which can be implemented in a synchronous or asynchronous manner.
Because messages are application defined, there is no restrictive structure specifying
the way in which applications must be written. Instead, messaging API calls are
embedded into new or existing application to provide the exchange of information
through messages sent to and read from memory or disk-based queues.
1-8 BEA MessageQ Introduction to Message Queuing

MESSAGE QUEUING BASICS

iver

ines
Message queuing can be used in applications to perform a variety of functions such as
requesting services, exchanging information, or synchronizing processing.

Message queuing is best used when an application requires:

t Asynchronous processing of application components

t Peer-to-peer and/or client/server communication models

t Built-in recoverability for message exchange

t High data interchange rates

t Tight control of the data exchange between a sender and a receiver program

Message Queuing Basics

Message queuing is a technique for sending messages from one program to another by
providing an intermediate storage point in computer memory or in a disk file.
Messages are stored in message queues until they can be read by the receiver program.
By sending and receiving information using message queues, programs can execute
independently—they do not need to know each other’s location or wait for the rece
program to process the message before continuing. This section describes:

t What Is a Message?

t What Is Message Queuing?

t How Does BEA MessageQ Work?

t Choosing the BEA MessageQ Server or Client

t Key Features of BEA MessageQ

What Is a Message?

A message is an application-defined data structure. The application developer def
the content of the message. A message has the following components:
BEA MessageQ Introduction to Message Queuing 1-9

1 WHAT IS BEA MESSAGEQ?

ait for

ram B

ceiver
 re-sent

er
 out the
. For

ication
t Data that is defined by the application

t Message attributes that can be used by the application

t Message context defined by the message queuing software that is transparent to
the user

Communication through messaging requires both programs to agree upon the type of
data in the message and the interpretation of the data. The software that delivers the
message ignores its content message; the job of the message queuing system is simply
to transport the message data.

What Is Message Queuing?

Message queuing is a technique for sending messages from one program to another by
directing messages to a memory- or disk-based queue as an intermediate storage point.
The queue stores the messages until they can be processed by the receiver program. By
queuing messages, programs can execute independently—they do not need to w
an application to process a message before continuing.

Message queuing works in the following way:

t Program A makes a call to the message queuing system. The call tells the
message queuing system that a message is ready to be sent to Program B.

t The message queuing system sends the message to the system where Prog
resides and places it in Program B’s queue.

t At the appropriate time, Program B reads the message from its queue and
processes the information.

If the system cannot deliver the message because of a communications failure, re
abort, or system crash, message recovery capabilities enable the message to be
without further application intervention when communication is re-established.

Using message queuing, any program can send messages addressed to any oth
program that is attached to the message queuing bus. The sender program sends
messages and can continue processing if an immediate response is not required
this reason, message queuing adapts well to asynchronous interprocess commun
needs.
1-10 BEA MessageQ Introduction to Message Queuing

MESSAGE QUEUING BASICS

ueuing
A
 on a
nable

up is
ther
eue.
Message queuing does not require applications to know the structure or state of another
application in order to enable communication. As a result, queued communication
offers a practical way to integrate applications running in distributed, multivendor
environments.

How Does BEA MessageQ Work?

BEA MessageQ is an implementation of a message queuing system. To exchange
information using BEA MessageQ, each program must attach to the BEA MessageQ
message queuing bus at a particular queue address. The queue address identifies the
message queue in which the program receives messages. To send a BEA MessageQ
message, a program must know the queue address of the receiver program. In contrast
to other message queuing systems, BEA MessageQ applications only attach to a queue
in which they will receive messages. They do not attach to the queue to which they
send messages.

The BEA MessageQ message queuing bus forms the data highway used to transfer
messages between applications by creating a logical interconnection of message
queues in a networked environment. Once an application is attached to the message
queuing bus at a queue address, it can send messages to any other attached application
and is also ready to read messages sent to its own queue or queues.

BEA MessageQ is said to provide a loosely-coupled approach to application
integration because applications that share information do not have to:

t Know each other’s physical location (network address)

t Know how to establish communications between each other

t Be executing at the same time

t Be running on systems with same operating system or network software

A BEA MessageQ message queuing bus is composed of one or more message q
groups. Message queuing groups offer applications an efficient way to share BE
MessageQ services such as recoverable messaging and message broadcasting
network of computers. System managers configure cross-group connections to e
applications to exchange information when they are running in different message
queuing groups on the same message queuing bus. Each message queuing gro
identified by a unique number, the BEA MessageQ group ID. This group ID toge
with the unique queue number comprise the queue address of each message qu
BEA MessageQ Introduction to Message Queuing 1-11

1 WHAT IS BEA MESSAGEQ?

ss

ageQ

s, and

,
,

ll

e

,

r
s in
he
f
ent.
BEA MessageQ also allows the configuration of more than one message queuing bus
in a networked environment. Applications attached to different message queuing buses
cannot communicate with each other. Application developers can use this feature to set
up a bus for communication of test programs and another bus for production
applications. Mission-critical application processing is then separated from the testing
environment. Test programs are easily moved into production by simply changing
their bus ID—a configuration step in using BEA MessageQ that is external to the
application. This feature may also be used to sparate multiple distributed busine
applications running on the same network.

Choosing the BEA MessageQ Server or Client

BEA MessageQ provides messaging services to applications running on desktop
systems, workstations, mid-range systems, and high-end mainframes. BEA Mess
offers these messaging services with two types of products:

t BEA MessageQ Servers—for systems with sufficient resources to provide the
full range of BEA MessageQ messaging services. A BEA MessageQ Server
provides base messaging services, the allocation and management of queue
the necessary administration tools and utilities to manage a BEA MessageQ
message queuing group. BEA MessageQ Servers are offered on workstation
mid-range, and high-end systems including most popular UNIX systems (AIX
HP-UX, Solaris, Tru64 UNIX and others), OpenVMS, and Windows NT.

t BEA MessageQ Clients—a “light-weight”, low cost offering ideal for
applications running on systems that do not have the resources to provide fu
messaging services (such as PCs). The BEA MessageQ Client limits system
maintenance overhead and is ideal for deployment of applications that requir
only base messaging services or are running the desktop client portion of a
client/server application. BEA MessageQ Clients are offered across a broad
spectrum of systems including Windows 95, Windows NT, UNIX (AIX, HP-UX
Solaris, Tru64 UNIX, and others), OpenVMS, and IBM MVS systems.

All BEA MessageQ environments require the use of at least one message serve
implementation to offer full message routing to all other BEA MessageQ system
the network. It is important to note that the terms client and server only refer to t
messaging services provided by BEA MessageQ, they do not restrict the types o
applications (clients or servers) that can be implemented in a particular environm
1-12 BEA MessageQ Introduction to Message Queuing

MESSAGE QUEUING BASICS
How the BEA MessageQ Client Works

The BEA MessageQ Client is a client implementation of the BEA MessageQ
Application Programming Interface (API). It provides message queuing support for
distributed network applications along with a BEA MessageQ Server to provide
reliable message queuing for distributed multiplatform network applications.

The BEA MessageQ Client is connected to the message queuing bus through a network
connection with a Client Library Server (CLS) on a remote BEA MessageQ Server.
The CLS acts as a remote agent to perform message queuing operations on behalf of
the BEA MessageQ Client. The CLS runs as a background server to handle multiple
BEA MessageQ Client connections.

The BEA MessageQ Client establishes a network connection to the CLS when an
application attaches to the message queuing bus. The CLS performs all communication
with the client application until the application detaches from the message queuing
bus. The network connection to the CLS is closed when the application detaches from
the message queuing bus. Figure 1-3 shows the BEA MessageQ Server and Client
components.

Figure 1-3 How Client Applications Communicate using the CLS

MessageQ
Application E

MessageQ
Application D

 MessageQ
Server

Client Library Server

Applications running on MessageQ Clients

App A App B App C
BEA MessageQ Introduction to Message Queuing 1-13

1 WHAT IS BEA MESSAGEQ?
When to Choose the BEA MessageQ Client

The BEA MessageQ Client provides the following benefits:

t Reduces system resource load

t Reduces system management overhead

t Reduces disk space requirements

t Provides network protocol independence

The BEA MessageQ Client provides message queuing capabilities for BEA MessageQ
applications using fewer system resources (shared memory and semaphores) and
running fewer processes than a BEA MessageQ Server. Therefore, the BEA MessageQ
Client enables distributed BEA MessageQ applications to run on smaller, less
powerful systems than the systems required to run a BEA MessageQ Server. It also
allows for a smaller client footprint for the client part of a client/server application.

Run-time configuration of the BEA MessageQ Client is extremely simple. A minimal
configuration requires only the name of the server system, the network endpoint to be
used by the CLS, and the desired network transport. Running the BEA MessageQ
Client makes it unnecessary to install and configure a BEA MessageQ Server on each
system in the network. Instead, a distributed BEA MessageQ environment can consist
of a single system running a BEA MessageQ UNIX, Windows NT, or OpenVMS
Server and one or more systems running BEA MessageQ Clients.

For example, suppose a small business has 10 networked workstations that need to run
a BEA MessageQ application. Without the BEA MessageQ Client, it would be
necessary to install, configure, and manage a message queuing group on each
workstation. Using the BEA MessageQ Client, however, a BEA MessageQ Server
need only be installed and configured on a single workstation. Installing the BEA
MessageQ Client on the remaining nine workstations provides message queuing
support for all other BEA MessageQ applications in the distributed network.

In this example, only one workstation needs to be sized and configured to optimize
performance, reducing the burden of system management to a single machine. System
management and configuration for the remaining systems is drastically simplified
because managing the BEA MessageQ Client consists mainly of identifying the BEA
MessageQ Server that provides full message queuing support. The BEA MessageQ
Client can be reconfigured quickly and easily and multiple clients can share the same
configuration settings to further reduce system management overhead. This also
makes it easy to add additional clients to an application.
1-14 BEA MessageQ Introduction to Message Queuing

MESSAGE QUEUING BASICS

age

d to
d

age.

e tag
The BEA MessageQ Client performs all network operations for client applications
making it unnecessary for a client program to be concerned about the underlying
network protocol. The BEA MessageQ Client enhances the portability of applications
enabling them to be ported to a different operating system and network environment
supported by BEA MessageQ with no change to the application code.

Key Features of BEA MessageQ

BEA MessageQ has been recognized by independent industry consultants as the most
feature-rich and fastest performing message queuing software available. Its key
features are:

t Recoverable messaging—guaranteed delivery of a message despite system,
process, or network failures

t Publish and subscribe—ability to send a message to multiple recipients
registered to receive information from a broadcast channel (also called mess
broadcasting)

t Naming—ability to separate application processing from configuration details
by allowing applications to refer to queues by name. Name-to-queue address
translations are performed by BEA MessageQ at runtime eliminating the nee
recode applications when configuration changes are made. This is also calle
"location independence." BEA MessageQ also allows applications to bind a
name to a queue address dynamically at runtime

t Support for Field Manipulation Language (FML)—enables applications to
encode messages with tags and values that describe the content of the mess
The receiver program, therefore, is not programmed to know the exact data
structure of the message. Instead, it decodes the message contents using th
associated with each value. In addition, FML performs data marshaling for
applications exchanging information between systems that use different.
hardware data formats. FML is also used by BEA TUXEDO.

t Integration with BEA TUXEDO— enables BEA MessageQ applications to
exchange messages with BEA TUXEDO services and queues. This provides a
transparent mechanism for applications to interoperate between BEA MessageQ
and BEA TUXEDO.

t Correlation identifier— allows a developer to associate a user defined identifier
with each message. Applications receiving the message can tag any response to
BEA MessageQ Introduction to Message Queuing 1-15

1 WHAT IS BEA MESSAGEQ?

d
iority,

and
,

cing:

 in

d
s

the message with the same identifier.This feature is useful for asynchronous
client/server applications so responses can be matched with associated requests.

t Message selection—capability to read messages selectively from queues base
on correlation identifier, sequence number, message type, message class, pr
source or a complex set of message attributes

t Wide array of multiplatform support—BEA MessageQ runs on every major
operating system and hardware platform combination including Windows 95
Windows NT implementations, all major UNIX versions (AIX, HP-UX, Solaris
and others) and Alpha systems running both Tru64 UNIX and OpenVMS.

BEA MessageQ Benefits

BEA MessageQ facilitates the development of distributed applications by enhan

t Productivity—through a standard approach to integration that speeds
development, reduces maintenance, and insulates applications from changes
network and operating system software

t Portability—using a single application programming interface for all supporte
environments so that applications are written once and ported to other system

t Simplicity—providing a message queuing bus that acts as a single point of
communication for all attached applications

t Reliability—with a message recovery system that guarantees delivery in the
event of system, process, and network failures

t Interoperability—connecting distributed applications running in all
industry-leading environments

t Flexibility—to easily enhance and change applications to meet changing
business needs
1-16 BEA MessageQ Introduction to Message Queuing

BEA MESSAGEQ BENEFITS

sing
lying

in
ity

ibuted

livery
ssage
n it is
ding it

 disk
 due

d the
en

ntion
 was

ivered
Standardized Integration Approach

BEA MessageQ is communications middleware that provides software developers
with a standard approach to information exchange between distributed applications in
a multivendor environment. The BEA MessageQ interface is a set of application
programming functions that are common to all BEA MessageQ products. To exchange
information with other BEA MessageQ applications, a program simply includes the
logic to attach to the BEA MessageQ message queuing bus and send a message and
BEA MessageQ figures out how to deliver the message to the system on which the
target application’s queue resides.

BEA MessageQ API functions can be embedded in new or existing applications. U
BEA MessageQ, application developers no longer need to worry about the under
transport to send and receive information between applications. In addition,
applications no longer require constant maintenance to accommodate changes
operating system and network software. BEA MessageQ also provides productiv
tools for developers to test message exchange before all components of the distr
application are complete.

Guaranteed Delivery

BEA MessageQ has built-in message recovery features that enable message de
in the event of a system, process, or link loss with the network. To guarantee me
delivery by BEA MessageQ, an application marks a message as recoverable whe
sent. BEA MessageQ stores each recoverable message in a disk file before sen
to the target queue.

If the message is successfully delivered to the target queue, it is deleted from the
file. However, if the recoverable message cannot be delivered to the target system
to a system, process, or network failure, BEA MessageQ will automatically resen
messages stored in the disk file at a later time when the failure condition has be
resolved.

Guaranteed delivery ensures that messages are delivered without further interve
by the sender program. The sender program need only ensure that the message
accepted by the message recovery system in order to be assured that it will be del
to the target queue.
BEA MessageQ Introduction to Message Queuing 1-17

1 WHAT IS BEA MESSAGEQ?

that

tem to

t
Application Portability

Because BEA MessageQ uses a common API for all environments, applications move
easily using systems from different vendors. For example, if you develop BEA
MessageQ applications for Intel PCs running Microsoft Windows NT, the same
application programs will run on all major UNIX systems by recompiling and
relinking the applications in their target environment.

Figure 1-4 illustrates how the BEA MessageQ API forms a layer between the
application and the operating system and network environment—ensuring application
portability and shielding applications from changes in underlying software. Note
DECnet is supported only on OpenVMS systems.

Figure 1-4 How the BEA MessageQ API Insulates Applications

Message Bus Simplifies Communication

Message queuing provides a simplified approach to application integration in a
distributed multivendor environment. Because BEA MessageQ handles all of the
operating system and network-dependent tasks to move a message from one sys
another, applications are easier to develop and maintain.

In addition, BEA MessageQ uses a simple application programming interface tha
consists of four basic callable functions:

t pams_attach_q—to attach to the message queuing bus
1-18 BEA MessageQ Introduction to Message Queuing

BEA MESSAGEQ BENEFITS

 a
t pams_put_msg—to send a message

t pams_get_msg—to retrieve a message

t pams_detach_q—to detach from the message queuing bus

Using these four functions, an application program has the ability to exchange
information with any other attached application in a distributed, multivendor
environment.

Broad Multiplatform Support

BEA MessageQ runs in all industry-leading environments. Refer to Table 1-1 for
listing of BEA MessageQ products illustrating the operating systems supported.
TCP/IP networking is supported on all platforms.

Table 1-1 Supported Platform Environments

Product Type Operating System

Message Server IBM AIX

NCR MP-RAS

Compaq Tru64 UNIX

Hewlett-Packard HP-UX

Digital OpenVMS

Sun Microsystems Solaris

SCO UnixWare

SCO OpenServer

Sequent Dynix/ptx

Microsoft Windows NT (Intel and Alpha)

Messaging Client IBM AIX

NCR MP-RAS

Compaq Tru64 UNIX
BEA MessageQ Introduction to Message Queuing 1-19

1 WHAT IS BEA MESSAGEQ?
Flexibility to Meet Changing Application Needs

BEA MessageQ provides the kind of flexibility applications need to evolve in a rapidly
changing application environment through its support of Field Manipulation Language
(FML) for self-describing messaging. Using FML, you have a built-in capability to
make the following design changes:

t you can add fields to a message that can be read by new applications without
disrupting the way existing applications run

t you can change the size of data fields in a message as your needs change
without recoding applications because the size of the data field is encoded as
part of the message itself

Hewlett-Packard HP-UX

SCO UnixWare

SCO OpenServer

Sequent Dynix/ptx

Digital OpenVMS

Sun Microsystems Solaris

Microsoft Windows 95

Microsoft Windows NT (Intel and Alpha)

IBM MVS

MQSeriesConnection Hewlett-Packard HP-UX

IBM AIX

Sun Microsystems Solaris

Microsoft Windows NT

Table 1-1 Supported Platform Environments

Product Type Operating System
1-20 BEA MessageQ Introduction to Message Queuing

BEA MESSAGEQ BENEFITS
t a single message can be designed to communicate with a variety of applications
because the message can be interpreted differently by several applications that
use different data fields within the message

t you can design messages to contain information that is not acted upon today, but
is part of the future plans of the information system

BEA MessageQ allows you to use double pointers with buffer-style messages
(messages using a pre-defined structure agreed upon by the sending and receiving
applications). When the receiving application retrieves the message from the queue,
the pams_get_msg call points to a pointer to dynamically allocated space. This allows
for buffer reallocation if the message buffer received is larger than expected. This also
means you can change the message structure without having to recode the application.
BEA MessageQ Introduction to Message Queuing 1-21

1 WHAT IS BEA MESSAGEQ?
1-22 BEA MessageQ Introduction to Message Queuing

CHAPTER
2 Sending and Receiving
BEA MessageQ
Messages

The first step in learning how to use BEA MessageQ to exchange information between
applications in a distributed environment is to understand how to send and receive
BEA MessageQ messages. The following sections describe the basics in sending and
receiving BEA MessageQ messages:

t Overview of BEA MessageQ API Functions

t Configuring the BEA MessageQ Environment

t Attaching to the Message Queuing Bus

t Sending a Message

t Receiving a Message

t Using the show_buffer Argument

t Exchanging Messages Between BEA MessageQ and BEA TUXEDO
BEA MessageQ Introduction to Message Queuing 2-1

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES
Overview of BEA MessageQ API Functions

To send and receive messages, application developers embed BEA MessageQ function
calls into their applications. After each program is compiled and linked with the BEA
MessageQ object libraries, it will be able to send and receive messages.

BEA MessageQ function calls form a portable application programming interface
(API). Application programs developed using the C or C++ programming languages
need only be recompiled and relinked to enable the messaging functions to work in a
different operating system environment.

When applications communicate through message queuing, it is similar to how people
communicate using the telephone. Use Table 2-1 to learn how BEA MessageQ API
functions are similar to using the telephone to communicate.

Table 2-1 Description of Key PAMS API Functions

Using the API
Function...

Is like... Because...

pams_attach_q Picking up the
telephone

Exchange of information requires access to a common
means of communication between yourself and the
person you want to talk to. When you pick up the
telephone receiver and hear a dial tone, you can talk to
anyone who is connected to the telephone system.

Similarly, your application uses the
pams_attach_q function to connect to the BEA
MessageQ message queuing bus. Attaching to the
message queuing bus provides the application with a
queue address for receiving messages and a means to
share information with all other BEA MessageQ
applications.
2-2 BEA MessageQ Introduction to Message Queuing

OVERVIEW OF BEA MESSAGEQ API FUNCTIONS

n

 at
pams_put_msg Dialing a
number and
talking

After you decide who to call and what to say, you dial
the person’s telephone number and start talking. To
send a message using BEA MessageQ, an applicatio
uses the pams_put_msg function to send a message
to the queue address of the receiver program.

BEA MessageQ queue addresses contain two parts,
the group number and the queue number. Message
queuing groups are like area codes providing a
localized grouping of telephone numbers. The queue
number is like the telephone number providing the
“address” for directing the call to the party you want
to speak with.

pams_get_msg Answering a
phone call and
listening

When your telephone rings, you pick up the receiver
and listen to the caller. Similarly, BEA MessageQ
applications use the pams_get_msg function to
retrieve messages from their queue.

pams_detach_q Hanging up When you are finished talking on the telephone, you
hang up. Similarly, if two BEA MessageQ
applications are finished exchanging information,
they use the pams_detach_q function to disconnect
from the message queuing bus.

pams_locate_q Using
directory
assistance

When you remember someone’s name but not their
telephone number, you call directory assistance. BEA
MessageQ applications use the pams_locate_q
function to obtain a queue address for a queue name
runtime.

Table 2-1 Description of Key PAMS API Functions

Using the API
Function...

Is like... Because...
BEA MessageQ Introduction to Message Queuing 2-3

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES
pams_get_msg
with selection
criteria

Screening
calls

Sometimes you may not want to receive all of your
calls, so you answer only those that meet particular
criteria, such as urgent calls or calls about a particular
subject.

BEA MessageQ applications can assign
characteristics to a message when it is sent so that the
receiver program can choose which messages to read.
Receiver programs can read messages based on their
source, priority, message type, or message class using
the pams_get_msg function. However, if messages
must be selected using a complex set of selection
criteria, a selection mask can also be specified using
the pams_set_select function.

pams_put_msg
with a recoverable
delivery mode

Calling
someone with
an answering
machine

People are not always available when you call them;
however, you can be sure they will get your message
if they use an answering machine. If they have been
away from their telephone, they can replay the
messages stored on the tape of the answering machine
to obtain their phone messages.

Similarly, BEA MessageQ applications can send
messages with a recoverable delivery mode using the
pams_put_msg function. Recoverable messages
that cannot be delivered are stored on disk and resent
when the receiver program becomes available.

pams_put_msg
with a broadcast
target

Conference
calling

Sometimes you need to give several people the same
information but you do not want to have to call each
person individually. In this case, you hold a
conference call to tell everyone the same thing at the
same time.

BEA MessageQ applications can broadcast a message
to many receiver programs at once using a single call
to the pams_put_msg function using a broadcast
target

Table 2-1 Description of Key PAMS API Functions

Using the API
Function...

Is like... Because...
2-4 BEA MessageQ Introduction to Message Queuing

CONFIGURING THE BEA MESSAGEQ ENVIRONMENT
Configuring the BEA MessageQ
Environment

Before you can use the BEA MessageQ message queuing system, you must configure
the BEA MessageQ environment. The following topics describe the basics in
configuring and starting a message queuing group:

t Define message queues and their attributes

t Setting up the message queuing buses, groups, and queues

Defining Queues and Their Attributes

To use BEA MessageQ, a sender or receiver program must be associated with at least
one message queue in which it can receive messages. To become associated with a
queue, the sender or receiver program invokes the pams_attach_q function to attach
to a queue on the message queuing bus.

When designing your application, you need to select attributes of each message queue.
Message queues are created and used differently depending upon the combination of
attributes selected for each queue. For example, answer the following questions to help
you design your message queuing environment:

t Is the need for the queue only temporary, such that it can be created during
processing and deleted when it is no longer needed?

t Should the queue be permanently defined so that applications can reference it by
name?

t Will messages in the queue be read by a single program or by multiple
programs?

t Will the queue receive primary application messages or will it be used to
exchange information that is secondary to application processing?

t Does the sender program need to be able to send messages to the queue even if
no process is currently attached to it?
BEA MessageQ Introduction to Message Queuing 2-5

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES

ving
geQ
mong
 the
 as an

es
rocess
t can
ns are
e read
ions
efined

oice
 queue
ess is

t Will the queue be used to store recoverable messages?

BEA MessageQ offers two types of queues: temporary and permanent. Temporary
queues are created by BEA MessageQ at runtime when they are requested using the
pams_attach_q function. Applications use temporary queues when the need for the
queue is short lived.

Permanent queues must be defined in the group initialization file. Permanent queues
can become active when the group starts or when an application attaches. Applications
use permanent queues when there is an ongoing need for the queue to service the
application and when applications need to refer to the queue by name or number.

After you have selected the type of queue to use, you must set the following attributes
of the queue:

t primary or secondary

t single reader or multireader

t active on attach or permanently active

Each process that attaches to the BEA MessageQ message queuing bus must have a
primary queue assigned to it. This queue functions as the “main mailbox” for recei
messages from other processes using BEA MessageQ. In addition, BEA Messa
applications can use secondary queues as a means of exchanging information a
application components without interrupting the flow of messages taking place in
primary queue. In this way, secondary queues are used by application processes
alternate “mail box” for selected application messages.

Applications can be designed to read messages from one or more queues. Queu
defined to be read by a single program are called single reader queues. When a p
attaches to a single reader queue, it owns the queue and is the only process tha
read from the queue. Queues that are designed to be read by multiple applicatio
called Multireader queues (MRQs). MRQs are used to store messages that can b
by many simultaneous readers, creating a central “mail box” for several applicat
or application components to receive messages. Only permanent queues can be d
as MRQs. In addition, MRQs must have the attribute permanently active.

When defining permanent queues in the group initialization file, you have the ch
of determining whether the queue becomes active when a process attaches to the
or if the queue is active when the groups starts up regardless of whether any proc
attached. Permanently active queues provide the maximum data persistence for
messaging data.
2-6 BEA MessageQ Introduction to Message Queuing

CONFIGURING THE BEA MESSAGEQ ENVIRONMENT
Queue configuration procedures vary based on whether the queue is defined as
temporary or permanent as follows:

t Temporary queues do not require any configuration procedure. They are created
by BEA MessageQ at runtime when a process requests attachment to a
temporary queue using the pams_attach_q function. Temporary queues are
single-reader queues only. The process that attaches to the queue is the owner of
the temporary queue and no other processes can read from the queue. An
additional argument of the pams_attach_q function allows you to specify
whether the temporary queue is a primary or secondary queue. By default, if this
argument is not specified, BEA MessageQ uses the first queue to which an
application attaches as its primary queue.

t Permanent queues are defined in the initialization file of a BEA MessageQ
message queuing group. Each permanent queue is designated with a number and,
sometimes a name, which is part of the definition of the group when it starts up.

A permanent queue is created by BEA MessageQ in one of two ways. First, it
can be active on attach which means that is created when a process attaches to
the message queuing bus at that queue address. Once a process is attached,
permanent queues are available to store messages from sender programs.

Or, secondly, you also have the option to define permanent queues with the
attribute permanently active (always writable). In this case, the queue is not only
part of the group definition, but it is actually created when the group starts up.
Therefore, permanently active queues can store messages when no process is
attached.

The Queue Configuration Table in the group initialization file enables you to specify
the following queue characteristics:

t primary or secondary

t single-reader or multireader queue

t active on attach or permanently active (MRQs must be permanently active)

t queue quotas

t MRS attributes such as explicit/implicit confirmation and confirmation order

For a detailed description of how to configure message queues, refer to the
administrator’s guide for the BEA MessageQ product that you are using.
BEA MessageQ Introduction to Message Queuing 2-7

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES

floor
Configuring Buses, Groups and Queues

Now that you understand the types of message queues you can define, you are ready
to begin configuring your BEA MessageQ environment in three simple steps:

t Step 1: Design the message queuing environment

t Step 2: Configure each message queuing group

t Step 3: Start each message queuing group and change configuration data at
runtime

Designing Your BEA MessageQ Environment

The design of your application determines your BEA MessageQ configuration,
therefore, you must begin by mapping out:

t the application components that will send and receive information

t which message queues must be created and what attributes they require

t the networked systems on which the applications will run

For example, let’s take a look at Figure 2-1 which illustrates the design of a shop-
monitoring application.
2-8 BEA MessageQ Introduction to Message Queuing

CONFIGURING THE BEA MESSAGEQ ENVIRONMENT
Figure 2-1 Sample BEA MessageQ Application

Program A reads temperatures from a smelting furnace, formats the temperature data
as a BEA MessageQ message and sends it to the primary queue of Program B. Program
B stores the temperatures in a database from which it can generate graphical charts and
reports on demand. Program B also forwards each temperature to Program C for
analysis.

Program C reads each message to analyze the temperature reading in the smelting
furnace checking to see that it is not outside of the accepted range for the
manufacturing process. If the temperature of the furnace becomes too hot or too cold,
Program C forwards the temperature message to the primary queue of Program D.
Program D displays a temperature warning to alert the shop-floor operator of a
potential problem.

As part of the design, you must determine how the application components can be most
efficiently deployed into the distributed environment. In this example, the following
configuration of networked computer systems are required to support the application:

t Program A runs on a real-time computer system connected to the temperature
sensing equipment for the smelting furnace.

t Programs B and C run on a departmental minicomputer which records and
analyzes information related to the manufacturing process.

t Program D runs on a shop-floor supervisor’s workstation.

Program D

Program A

Departmental Server

Program B Program C

Operator's Workstation

Shop Floor
Control System

Warning!
BEA MessageQ Introduction to Message Queuing 2-9

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES

nt.
To configure the BEA MessageQ environment to support this example shop-floor
monitoring application, you need to define:

t 1 message queuing bus

t 3 message queuing groups (1 for each different system)

t 4 permanent message queues (1 for each application)

Configuring Each Message Queuing Group

To configure a message queuing group, BEA MessageQ uses an ASCII text file called
the group initialization file. A sample initialization file is distributed with the BEA
MessageQ media kit to illustrate a simple group configuration. To define queues, set
their characteristics, and add resources, you make a copy of the template file and then
edit the new file using a text editor to create the desired group configuration. Each
message queuing group requires its own initialization file.

The major steps in configuring a message queuing group are defining:

t Permanent queues and their attributes

t Cross-group connections between networked computer systems running
applications that need to exchange information using BEA MessageQ. You may
also need to define message routing for systems with no direct network
connection

t Whether recoverable messaging will be used within the group and whether
successfully delivered recoverable messages will be stored in a journal

t Whether the group supports message broadcasting

t How parameters are set to regulate message flow and how quickly messages are
processed

t Whether a Client Library Server is configured for the group to support
communication with one or more BEA MessageQ Clients

For step-by-step instructions on how to configure a BEA MessageQ message queuing
group, refer to the administrator’s guide for the platforms used in your environme
2-10 BEA MessageQ Introduction to Message Queuing

ATTACHING TO THE MESSAGE QUEUING BUS

der

o

he
h to

y queue
ueues

 to a

 in
rary
s the
Starting Each Message Queuing Group

Once you have created and configured the characteristics of a message queuing group,
you invoke the BEA MessageQ startup procedure to start the group. The startup
procedure reads the information in the group initialization file in order to configure the
group. The startup procedure performs all of the tasks in starting the group including
defining the needed queues, names, cross-group connections, and starting the
appropriate BEA MessageQ servers to support such features as recoverable messaging
and message broadcasting. The procedure for starting a group varies by platform,
therefore, you should refer to the installation and configuration guide for your
platforms to obtain specific instructions for starting a group.

Once a message queuing group is running, you can change some of the group’s
characteristics without having to shut down the group and restart it using the Loa
utility. After you edit the group initialization file, you can invoke the Loader utility t
update the characteristics of the group at runtime.

Attaching to the Message Queuing Bus

To enable message exchange, BEA MessageQ application programs must call t
pams_attach_q function to attach to a queue on the message queuing bus in whic
receive messages. Once attached, the application is free to send messages to an
on the message queuing bus. The application receives messages in one of the q
to which it is attached. BEA MessageQ does not require an application to attach
queue to which it will send messages.

The pams_attach_q function enables applications to specify an attachment point
the form of a queue name, a queue number, or by requesting the use of a tempo
queue. The type of attachment is specified by supplying one of three constants a
attach_mode argument:

t PSYM_ATTACH_BY_NAME—attaching by name

t PSYM_ATTACH_BY_NUMBER—attaching by number

t PSYM_ATTACH_TEMPORARY—attaching as a temporary queue
BEA MessageQ Introduction to Message Queuing 2-11

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES
In addition to specifying the attachment type, the q_type argument can be used to
specify whether the queue should serve as the primary queue or the secondary queue
for the application. Additional arguments may be required based on the type of
attachment selected.

When the pams_attach_q function successfully completes, the queue_address
argument returns the BEA MessageQ queue address for communicating through the
message queuing bus to the application. In addition, this function now includes a
timeout argument to set a time limit for the attach operation after which control
returns to the sender program.

Following are the rules of attachment for BEA MessageQ applications:

t Each program must attach to one queue as its primary queue.

t The primary queue can be a temporary queue that is assigned at runtime or it can
be a permanent queue that is defined in the group initialization file as active on
attach or permanently active.

t The primary queue can be a single reader queue or a multireader (MRQ) queue
on Windows NT and UNIX systems. On OpenVMS systems, the primary queue
cannot be an MRQ.

t Single reader queues (primary and secondary) are owned by the process that is
attached to the queue. Only that process can read from the queue.

t When an application is attached to a primary queue that has secondary queues
defined in the initialization file, the application becomes implicitly attached to
the secondary queues after it attaches to the primary queue.

t An application can explicitly attach to a queue as a secondary queue when the
queue is not associated with a primary queue.

t An application can have an MRQ as its primary or secondary queue on Windows
NT and UNIX systems. On OpenVMS systems, an application cannot attach
directly to an MRQ, but reads from the MRQ using a selection filter.

t MRQs are defined in the queue configuration table of the group initialization file
by setting the queue type to M. Temporary queues cannot be used as MRQs.
MRQs must be defined as permanently active because they must be defined in
the group initialization file.
2-12 BEA MessageQ Introduction to Message Queuing

ATTACHING TO THE MESSAGE QUEUING BUS
Attaching by Name

When you select the PSYM_ATTACH_BY_NAME option, you must specify:

t the name of the queue to which the application should attach using the q_name
argument.

t the number of characters in the queue name using the q_name_len argument.

By default, when attaching by name, the queue name must be configured in the group
initialization file of the group in which the application is running. To specify wider
search criteria, the application can use the name_space_list argument to specify a
list of name tables for BEA MessageQ to use in looking up the queue name. If you use
the name_space_list argument, you must use the name_space_list_len to
specify the number of entries entered using the name_space_list argument.

Attaching by Number

When you select the PSYM_ATTACH_BY_NUMBER option, you must specify:

t the number of the queue to which the application should attach using the q_name
argument. The queue number is specified as an ASCII text string of 4 numeric
characters.

t the number of characters in the queue number using the q_name_len argument.

To attach to a queue by number, the queue must be configured in the group
initialization file of the group in which the application is running.

Attaching to a Temporary Queue

If you select the PSYM_ATTACH_TEMPORARY option, you can also use the q_type
argument to specify whether the temporary queue should serve as the primary or
secondary queue for the application. When the queue address is returned, the
application uses the temporary queue until its task is complete. Once the application
detaches the temporary queue, the messages in the queue are deleted and the queue
address is made available for other applications to attach as temporary.
BEA MessageQ Introduction to Message Queuing 2-13

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES
Sending a Message

Applications use the pams_put_msg function to send a message to the target queue of
a receiver program. To send a message, the application developer must know:

t Queue address of the target queue

The target argument is used to specify the queue address of the message queue
to which the message is being sent. Each sender program can be developed to
send messages directly to a queue using its queue address (group ID and queue
number). However, if the configuration of the environment changes, the
application will have to be recoded with the new queue address.

Many applications are developed to reference queues by name or number. In this
case the application must call the pams_locate_q function to obtain the queue
address for the queue number or name at runtime. Then, the application passes
the queue address to the pams_put_msg function.

t Style of messaging to be used

Application developers can choose buffer-style or FML-style messaging.
Buffer-style messaging exchanges information between sender and receiver
programs using a predefined message structure. The message is created in an
application buffer specified in the msg_area argument of the pams_put_msg
function. FML-style messaging uses Field Manipulation Language for
self-describing messaging and passes a pointer to an FML32 buffer. (BEA
MessageQ supports FML32, the 32-bit version of FML.) FML automatically
marshals data among heterogeneous machines. See the BEA MessageQ FML
Programmer’s Guide for more information on FML.

The msg_size argument is used to specify the style of messaging. This
argument contains either the size of the static buffer-style message contained in
the msg_area argument, the symbol PSYM_MSG_FML, indicating that the data
contained in the msg_area argument is an FML32 buffer, or the symbol
PSYM_MSG_LARGE, indicating that the message is a buffer larger than 32K. For
large messages, the pointer to the message is contained in the msg_area
argument and the size of the large buffer is contained in the large_size
argument.
2-14 BEA MessageQ Introduction to Message Queuing

SENDING A MESSAGE
t Priority of the message (0-99)

The priority argument designates the priority of the message. Priorities range
from 0 to 99. The larger the value, the higher the priority of the message. Higher
priority messages are stored nearer to the top of the queue than lower priority
messages. Messages are read in FIFO (first-in, first-out) order within a priority
value.

t Message type and class to identify the content of the message

The message type and class arguments are used to specify unique descriptors
identifying the content of the message. Receiver programs can selectively read
messages from their queue based on the type and class argument specified for
the message.

t Delivery mode and appropriate error handling for the message

The delivery argument of the pams_put_msg function determines how the
message is delivered and whether the message is designated for guaranteed
delivery if a system, process, or network fails. Recoverable messages are stored
on disk by the message recovery system until they can be delivered to the target
queue of the receiver program. When sending a recoverable message, you must
specify the Undeliverable Message Action uma argument to determine the action
to be taken if the message cannot be delivered to the delivery interest point. You
must also supply the PAMS Status Block psb argument to receive the success or
failure status of the operation. For non-recoverable messages, the default UMA
is DISC (discard). However, you can use the RTS (return-to-sender) and DLQ
(dead letter queue) UMAs to use BEA MessageQ recovery mechanisms in the
event that the message cannot be delivered.

t Timeout requirements

When using blocking (WF) delivery modes, application developers should use
the timeout argument to specify the maximum amount of time the
pams_put_msg function waits for a message to be delivered before returning
control to the application. The timeout value is entered in tenths (0.1) of a
second. A value of 100 indicates a timeout of 10 seconds. If the timeout occurs
before a message is delivered, then PAMS__TIMEOUT is returned. Setting this
argument to zero indicates the default setting of 30 seconds.
BEA MessageQ Introduction to Message Queuing 2-15

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES

ned

er
e, all
ses
, or

 a

ut
 way

n

that
 it
t Designated response queue

By default, the receiver program will return its response to the primary queue of
the sender program. This queue address is supplied by BEA MessageQ as the
source argument. Optionally, the sender program can specify the resp_q
argument identifying an alternate queue for receiving response messages. When
the resp_q argument is supplied, the receiver program returns its response to the
queue address specified by this argument.

t Correlation ID

The correlation_id parameter allows you to associate a user-defined
identifier called a correlation ID with each message. Receiving applications can
retrieve the correlation ID and tag any response to the original message with the
same ID. This allows applications to send multiple requests and then track
responses to those requests by matching their correlation ID.

Selecting a Messaging Style

BEA MessageQ enables applications to send messages using two messaging styles:

t Message buffers—applications exchange information by passing data contai
in a static message buffer. Buffer-style messaging requires the structure and
format of the message buffer contents to be agreed upon in advance by send
and receiver program. If any changes are made to the message data structur
application programs must be changed accordingly. Buffer-style messaging u
two different approaches based on whether the message is up to 32K in size
is a large message of up to 4MB in size.

You can increase the flexibility of message buffers by using double pointers.
When the message is read from the queue, the receiving application points to
pointer which in turn points to a message buffer. This allows for automatic
buffer reallocation and for the use of different message data structures witho
recoding the application. Static message buffers are not manuipulated in any
by BEA MessageQ.

t FML32 buffers—applications exchange information by passing a pointer to a
FML32 buffer. This messaging style provide a way to separate the BEA
MessageQ message from its contents.

FML uses fielded buffers to provide self-describing messaging, an approach
allows application developers to encode the contents of the message so that
2-16 BEA MessageQ Introduction to Message Queuing

SENDING A MESSAGE
can be interpreted by the receiver program without prior knowledge of the
detailed message structure.

Self-describing messaging adds a dimension of flexibility in message exchange
because it allows the components of the message data structure to be changed
without affecting existing applications unless the new information is needed.
When using FML32 buffers, data is automatically marshalled among
heterogeneous machines.

Using Buffer-Style Messaging

Sending and receiving information as message buffers is the easiest way to exchange
information using BEA MessageQ. A message buffer is a predefined, static data
structure that is identified using a version number. So, for example, when a payroll
system sends employee payroll information using version 1 of its payroll data
structure, the receiving application can interpret each field of data in the buffer because
it knows the definition of the version 1 payroll data structure.

Passing information using a static data structure in the form of a message buffer is the
fastest way to exchange information between applications. Because the data structure
definition is known to both the sending and receiving applications, no interpretation is
required. Therefore, processing of information between both sender and receiver
programs is faster.

However, message buffers limit the flexibility of applications to adapt to changing
business conditions. To change the data structure, both the sender and receiver
programs must be recoded to send and interpret the new message correctly. In addition,
all production applications must be shutdown and the newer versions started up for the
change to take affect. Such large changes to an integrated application environment
often result in synchronization problems where some applications have not yet been
restarted using the new message format. This leads to processing errors until all
applications are using the same version of the message data structure.

Message buffer flexibility can be enhanced by using the PSYM_MSG_BUFFER_PTR
symbol. When this symbol is supplied in the msg_area_len parameter of the
pams_get_msg(w) function, the receiving application points to a pointer which in turn
points to dynamically allocated space. The message buffer received is placed in the
allocated space. This double pointer feature allows the use of different message data
structures without recoding the application.
BEA MessageQ Introduction to Message Queuing 2-17

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES

e
wo
rder

 BEA

 pointer

and
and
ts with

Another limitation in using message buffers is that data is passed “as is” from on
system to another in the network. So, if a message must be delivered between t
computers that use different byte orders, the application must perform the byte o
translation to ensure that the data is interpreted properly by the target application.
MessageQ does not perform data marshaling between systems with unlike data
formats when messages are sent using the message buffer approach.

Using FML-Style Messaging

A pointer identifies the FML32 message buffer to process. Instead of passing a
message buffer containing the message data, the application passes a message
to the pams_put_msg and pams_get_msg functions identifying the message buffer to
process.

To use FML-style messages, the sender program begins by specifying PSYM_MSG_FML
in the msg_size parameter of the pams_put_msg function. This indicates that the
message is formatted as an FML32 buffer.

The pams_get_msg function will return an FML32 buffer in the msg_area field.
When the application receives an FML-style message, the msg_size parameter
contains PSYM_MSG_BUFFER_PTR, and the msg_area field contains a pointer to a
pointer, which in turn points to an FML32 buffer.

The use of FML-style messages can provide flexibility in application development
design because the FML32 buffer hides the message structure from the sender
receiver programs. FML enables developers to include encoded message conten
information that identifies the content and format of the information for use by the
receiver program.

Choosing a Delivery Mode

Sender programs must specify a delivery mode for each message sent. The delivery
mode determines:

t Whether the sender program uses synchronous or asynchronous message
delivery

t Whether the sender program receives notification of message delivery
2-18 BEA MessageQ Introduction to Message Queuing

SENDING A MESSAGE

ous

age
ts
t The delivery interest point (the point in the message flow to which BEA
MessageQ tracks the outcome of delivery)

The delivery mode is specified as an argument to the pams_put_msg function using
the following BEA MessageQ symbolic constant:

PDEL_MODE_sn_dip

where:

sn is the sender notification, and

dip is the delivery interest point.

In addition to the delivery mode, BEA MessageQ also allows sender programs to
specify an Undeliverable Message Action (UMA) to determine how the message
should be handled if it cannot be properly delivered.

The delivery mode argument specifies whether the message is sent using recoverable
or nonrecoverable message delivery. Messages sent using recoverable delivery modes
are stored on disk by BEA MessageQ for automatic redelivery in the event of process,
system, or network failures. Messages sent using nonrecoverable delivery modes are
used by applications that do not require automatic recovery in the event of message
delivery failure, or which must perform recovery themselves. Nonrecoverable
messages are not stored on disk by BEA MessageQ and cannot be resent in the event
of delivery failure without application intervention.

Sender Notification

The sender notification portion of the delivery mode argument specifies whether the
sender program uses a blocking (synchronous) or nonblocking (asynchronous) style of
message delivery and whether it receives notification of message delivery. BEA
MessageQ uses the following sender notification codes:

t AK (Asynchronous delivery with a notification message)—indicates that the
sender program uses a non-blocking style of message delivery and receives
notification of message delivery to the delivery interest point in an asynchron
acknowledgment message. The asynchronous acknowledgment message is
delivered to the primary or response queue of the sender program as a mess
of type MRS_ACK. Receipt of an MRS_ACK message by the sender program repor
delivery of the message to the delivery interest point.

AK sender notification supports higher messaging rates than synchronous
delivery while still providing notification of delivery. This delivery style
BEA MessageQ Introduction to Message Queuing 2-19

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES

t

ing

g
e is

it can

essage
icant

ine

t (if

der
supports a loosely coupled approach to application integration while supporting
the sender program’s need to receive acknowledgment of successful or
unsuccessful message delivery.

t NN (Asynchronous delivery with NO notification message)—indicates that the
sender programs uses a non-blocking style of message delivery and does no
receive notification of message delivery to the delivery interest point. NN sender
notification supports datagram-style delivery which supports high messaging
rates because processing is asynchronous and there is no additional process
required for each message.

t WF (Synchronous delivery)—indicates that the sender program uses a blockin
style of message delivery and does not continue processing until the messag
received at the delivery interest point.

WF sender notification is used by applications which require knowledge that
message delivery has succeeded to a selected delivery interest point before
continue processing. This delivery style supports more highly interdependent
message processing between sender and receiver programs.

Delivery Interest Point

The message flow is the path between the sender and receiver program that a m
will traverse. There are certain points in the message flow that can provide signif
indication of the success or failure of the message delivery.

The delivery interest point portion of the delivery mode argument is used to determ
the point in the message flow at which the sender program can unblock (if usingWF
mode) or the point at which the asynchronous acknowledgment message is sen
using AK notification).

The BEA MessageQ delivery interest point determines the point at which the sen
program unblocks or receives asynchronous notification as follows:

t ACK—when the receiver program explicitly acknowledges receipt of a
nonrecoverable message using the pams_confirm_msg call

t CONF—when the receiver program explicitly acknowledges receipt of a
recoverable message using the pams_confirm_msg call

t DEQ—when a nonrecoverable message is read from the target queue
2-20 BEA MessageQ Introduction to Message Queuing

SENDING A MESSAGE

ue

l on

odes.
t DQF—when a recoverable message is stored in the recovery journal on the
remote system (DQF)

t MEM—when a nonrecoverable message is stored in memory in the target que

t SAF—when a recoverable message is stored in the message recovery journa
the local system (SAF)

Table 2-2 and Table 2-3 describe the nonrecoverable and recoverable delivery m

Table 2-2 Nonrecoverable Delivery Modes

Delivery Mode Explanation

PDEL_MODE_AK_ACK The sender program sends the message, continues processing,
and receives an MRS_ACK message when the receiver program
explicitly acknowledges receipt of the message using
pams_confirm_msg.

PDEL_MODE_AK_DEQ The sender program sends the message, continues processing,
and receives an MRS_ACK message when the receiver program
reads the message from the target queue.

PDEL_MODE_AK_MEM The sender program sends the message, continues processing,
and receives an MRS_ACK message when the message is stored
in the target queue.

PDEL_MODE_NN_MEM The sender program sends the message, continues processing,
and does not receive notification of message delivery.

PDEL_MODE_WF_ACK The sender program sends the message and then blocks until the
receipt of the message is explicitly acknowledged by the
receiver program using the pams_confirm_msg function..

PDEL_MODE_WF_DEQ The sender program sends the message and then blocks until the
message is read from the target queue.

PDEL_MODE_WF_MEM The sender program sends the message and then blocks until the
message is stored in the target queue.
BEA MessageQ Introduction to Message Queuing 2-21

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES
Table 2-3 Recoverable Delivery Modes

Delivery Mode Explanation

PDEL_MODE_AK_CONF The sender program sends the message, continues processing,
and receives an asynchronous acknowledgment message
when the receiver program reads and explicitly confirms
receipt of the message using the pams_confirm_msg
function.

PDEL_MODE_AK_DQF The sender program sends the message, continues processing,
and receives an asynchronous acknowledgment message
when BEA MessageQ successfully stores the message in the
remote message recovery (DQF).

PDEL_MODE_AK_SAF The sender program sends the message, continues processing,
and receives an asynchronous acknowledgment message
when BEA MessageQ successfully stores the message in the
local recovery journal (SAF).

PDEL_MODE_NN_DQF The sender program sends the message and continues
processing. This delivery mode indicates that the message
should be stored in the recovery journal of the remote system
if it cannot be delivered though the sender program does not
require notification that the message was stored in the DQF.

PDEL_MODE_NN_SAF The sender program sends the message and continues
processing. This delivery mode indicates that the message
should be stored in the recovery journal of the local system if
it cannot be delivered though the sender program does not
require notification that the message was stored in the SAF.

PDEL_MODE_WF_CONF The sender program sends the message and blocks until the
message has been received and confirmed by the receiver
program.

PDEL_MODE_WF_DQF The sender program sends the message and blocks until the
message is stored in the remote message recovery journal
(DQF).

PDEL_MODE_WF_SAF The sender program blocks until the message is stored in the
local message recovery journal (SAF).
2-22 BEA MessageQ Introduction to Message Queuing

SENDING A MESSAGE

d in

he

ion,
Undeliverable Message Action

The pams_put_msg function enables application developers to specify an
Undeliverable Message Action (UMA) for both nonrecoverable and recoverable
messages. If the UMA for a nonrecoverable message is not specified, BEA MessageQ
uses the default UMA DISC. For recoverable messages, the UMA must always be
specified.

The UMA, in conjunction with the delivery mode, gives developers the ability to
precisely determine how a message should be sent and what to do if the message
cannot be delivered. The UMA is taken if the message does not reach the delivery
interest point for both recoverable and nonrecoverable messages.

The UMA is specified as an argument to the pams_put_msg function using the
following BEA MessageQ symbolic constant:

PDEL_UMA_xxx

where xxx is one of the following valid UMAs:

t DISC (Discard)—the message is discarded.

t DISCL (Discard and Log)—the message is discarded and the event is recorde
the BEA MessageQ log file. This UMA is available only on OpenVMS
systems.

t RTS (Return-to-Sender)—the message is returned to the primary queue or
response queue of the sender program.

t DLQ (Dead Letter Queue)—the message is sent to the Dead Letter Queue (DLQ)
which is preconfigured in each message queuing group. Message stored in t
DLQ can be resent at a later time under program control.

t DLJ (Dead Letter Journal)—the message is stored in the Dead Letter Journal
(DLJ) The DLJ file is configured for each message queuing group for which
message recovery services is enabled. Messages stored in the DLJ can be resent
at a later time under user or program control.

t SAF (Store-and-Forward File)—the message is stored in the local message
recovery journal. The message will be sent automatically by BEA MessageQ
when the failure condition is resolved.

For a complete description of how to select the UMA appropriate for your applicat
refer to the BEA MessageQ Programmer’s Guide.
BEA MessageQ Introduction to Message Queuing 2-23

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES

e,
the

th

livery

ery
quire
Receiving a Message

The pams_get_msg function retrieves the next available message from a selected
queue and moves it to the location specified in the msg_area argument. When an
application reads a message from a queue, the message is moved from the queue into
a data buffer defined by the program. Once read, the message no longer exists in the
queue.

Messages are read from queues in first-in/first-out (FIFO) order within a priority.
Higher priority messages are read before lower priority messages.

BEA MessageQ provides following functions for retrieving messages:

t pams_get_msg—retrieves the next available message from a specified queue
and moves it to the location specified in the msg_area argument.

t pams_get_msgw—retrieves the next available message from a specified queu
however, if the queue is empty, this function waits until a message arrives in
queue or a user-specified timeout period has elapsed.

t pams_get_msga—provides a mechanism for writing interrupt-driven code on
OpenVMS systems only. The pams_get_msga function is a special form of the
get message operation that allows multiple asynchronous read operations wi
full selective reception. BEA MessageQ interrupts the application when a
message enters the queue, and executes the action routine specified in the call.
The pams_cancel_get function cancels all pending pams_get_msga requests
that match the selection filter.

Confirming Receipt of a Message

When a receiver program reads a message from its queue, it checks the PSB De
Status field to see if the message requires explicit confirmation using the
pams_confirm_msg function. Nonrecoverable messages sent using the ACK deliv
interest point and recoverable messages using the CONF delivery interest point re
explicit confirmation. In addition, recoverable messages sent to a queue that is
configured for explicit confirmation must be confirmed using the pams_confirm_msg
function.
2-24 BEA MessageQ Introduction to Message Queuing

RECEIVING A MESSAGE
For recoverable messages, the BEA MessageQ message recovery system retains the
message until delivery is confirmed. The receiver program must use the
pams_confirm_msg function to remove successfully delivered recoverable messages
from the message recovery journal. The message recovery system attempts redelivery
of recoverable messages from the recovery journal each time the target queue detaches
and reattaches to the message queuing bus.

The receiver program reads the PSB delivery status of each message to know which
messages to confirm. A PSB delivery status of PAMS__CONFIRMREQ indicates that the
message requires confirmation. A PSB delivery status of PAMS__POSSDUPL also
requires confirmation to delete the message from the message recovery system.

Using the PAMS Status Buffer

Applications should check the PSB Delivery Status field of each message to determine
if an explicit confirmation is required. A recoverable message that is read from a queue
that has the explicit confirmation attribute set requires explicit confirmation. In such
situations the receiver program must call the pams_confirm_msg function. This
function deletes the message from the message recovery journal disk storage. If receipt
of a recoverable message is not confirmed, the message continues to be stored by the
recovery system and will be redelivered if the application detaches and then reattaches
to the queue.

The PSB also contains the Delivery Status Field and UMA Status field which can
provide additional information about the successful or unsuccessful completion of an
operation. Figure 2-2 illustrates the contents of the PSB.
BEA MessageQ Introduction to Message Queuing 2-25

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES

Figure 2-2 PAMS Status Buffer

Using the show_buffer Argument

The show_buffer argument of the pams_get_msg(w) function allows you to retrieve
additional information, including the message’s correlation ID and BEA TUXEDO
urcode (user return code) when receiving a message. When the optional
show_buffer argument is specified, the following information is returned:

t the version of the show_buffer structure

t the transfer status (success, buffer overflow, or no information to transfer)

t the number of bytes transferred to the application buffer

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

Not Used

Function Return Status

PSB UMA Status

Message
Sequence
Number

PSB Delivery Status

Call Dependent

Type

Word 1 0 Byte
2-26 BEA MessageQ Introduction to Message Queuing

DETACHING FROM THE MESSAGE QUEUING BUS

e

hes
st
t a bit field representing which data has been set in the show_buffer (the BEA
TUXEDO urcode and correlation ID are not associated with a message)

t the BEA TUXEDO urcode when exchanging messages between BEA
MessageQ and BEA TUXEDO

t the q_address of the latest message target, the original message target, the
original message source, and the original message source

t the delivery mode used to queue the message

t the priority used to queue the message

t the byte ordering or encoding schemes for 2- and 4-byte integers or FML buffers

t the correlation ID

Using Message Classes with BEA MessageQ and BEA
TUXEDO

New symbolic names for message class values are defined in the p_typecl.h include
file for use in distinguishing messages received from BEA TUXEDO. Messages
originating from BEA TUXEDO have the BEA MessageQ class of
MSG_CLAS_TUXEDO. Reply messages from BEA TUXEDO have either the BEA
MessageQ class of MSG_CLAS_TUXEDO_TPSUCCESS or
MSG_CLAS_TUXEDO_TPFAIL.

Detaching from the Message Queuing Bus

To detach from the message queuing bus, applications can use:

t the pams_detach_q function—to detach a selected message queue or all of th
application’s message queues from the message queuing bus. When an
application detaches from its primary queue, this function automatically detac
all secondary queue attachments defined for the primary queue. When the la
BEA MessageQ Introduction to Message Queuing 2-27

2 SENDING AND RECEIVING BEA MESSAGEQ MESSAGES

y
message queue has been detached, the application is automatically detached
from the BEA MessageQ message queuing bus.

t the pams_exit function—terminates all attachments between the application
and the BEA MessageQ message queuing bus. All pending messages in
temporary queues and those permanent queues which are not defined as
permanently active are discarded. Only the messages pending in permanentl
active queues, including multireader queues, are retained.

Refer to the BEA MessageQ Programmer’s Guide for more detailed information on
how to use these BEA MessageQ functions.

Exchanging Messages Between BEA
MessageQ and BEA TUXEDO

BEA MessageQ V5.0 include a messaging bridge that allows the exchange of
messages between BEA MessageQ V5.0 and BEA TUXEDO V6.4 or BEA M3 V2.1.
BEA MessageQ applications can send a message using pams_put_msg that a
TUXEDO application can retrieve through a call to tpdequeue. TUXEDO
applications can send a message using tpenqueue that a BEA MessageQ application
can retrieve through a call to pams_get_msg(w). In addition, a BEA MessageQ
application can invoke a TUXEDO service using pams_put_msg. It is also possible for
a TUXEDO application to use tpenqueue to put a message on a queue and
tpdequeue to retrive a message from a queue.
2-28 BEA MessageQ Introduction to Message Queuing

CHAPTER
3 Designing and
Developing BEA
MessageQ Applications

Message queuing provides a flexible approach to distributed application development
because applications share information through messages stored in queues. Because
BEA MessageQ provides a set of portable API functions that support all
industry-leading platforms, it frees applications from having to embed operating
system or network-specific code in order to accomplish message exchange.

Read the following sections to learn more building BEA MessageQ applications:

t Designing a BEA MessageQ Application

t Advanced Message Queuing Features

t Testing and Debugging BEA MessageQ Applications

Designing a BEA MessageQ Application

To design a distributed application using BEA MessageQ, application developers need
to:

t Understand the business problem to be solved

t Develop the communications model for applications to exchange information
BEA MessageQ Introduction to Message Queuing 3-1

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS

 you
oon
s for
n of

 to
t Decide which BEA MessageQ features best suit the application’s needs

t Design the message flow and system configuration to support application
deployment

Solving the Business Problem

The first step in developing any application is to identify the business problem. As
research the current user environment and learn about their problems, you will s
determine whether the business need calls for a new application, or if the need i
existing applications to be integrated. Whether the solution requires the integratio
new or existing applications, you can employ message queuing as the operating
system- and network-independent “glue” that allows the application components
share information.

For example, let’s break down the problem solved by our shop-floor monitoring
example as shown in Figure 3-1.

Figure 3-1 Sample BEA MessageQ Application

Program D

Program A

Departmental Server

Program B Program C

Operator's Workstation

Shop Floor
Control System

Warning!
3-2 BEA MessageQ Introduction to Message Queuing

DESIGNING A BEA MESSAGEQ APPLICATION
In this case, the user group needed to:

t Monitor temperatures from a real-time shop floor process

t Store temperatures for later analysis and reporting

t Analyze temperature readings to detect out-of-range conditions

t Alert shop-floor supervisors automatically when there was a problem on the
floor

The design of the application to solve this problem calls for a number of separate
application components as follows:

t A program to read in temperatures from a shop-floor machine controller
(Program A)

t A program to store the temperatures in a database for later analysis and forward
them to a monitoring application (Program B)

t A program to monitor the temperatures and report on out-of-range conditions
(Program C)

t A program to display an alert to a shop-floor supervisor (Program D)

Message queuing was chosen as the integration approach because it provides a
loosely-coupled asynchronous means to pass information between application
components with high throughput and platform independence. Program A uses
datagram-style messaging to quickly pass temperature readings to Program B at 30
second intervals. Program B reads the messages from its memory-based queue and
writes them to a database from which they can be analyzed.

Program B also forwards the temperature readings to Program C which checks whether
they are above or below an acceptable range. If an unacceptable temperature reading
is received, Program C sends a message to Program D running on a shop-floor
workstation to trigger a display that alerts a supervisor to the out-of-range condition.

Developing the Communications Model

After you have broken down the application problem into its program components, you
are ready to decide the communication model that must be used for each set of
interacting programs.
BEA MessageQ Introduction to Message Queuing 3-3

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS
The simplest style of messaging is called datagram messaging. This is a one-way flow
of information between two applications that does not follow a request/response
paradigm. In our shop-floor monitoring application, for example, temperature readings
are sent as datagram messages to the monitoring application. The application reading
the temperatures does not require a response to each reading.

In addition to datagram style messaging, request/response messaging can be used to
implement the client/server model of application integration. Using this model a client
program sends a request to a server program. The server program reads the request,
processes it, and returns the results to the client as shown in Figure 3-2.

Figure 3-2 Request/Response Messaging Paradigm

A more complex communication model that can be used for client/server or
peer-to-peer messaging uses queues as service points. Using this model, sender
programs direct requests or simply send information in the form of messages to a
central queue. Several receiver programs may read the queue, obtain the request or
information, process it, and then read the queue for another message as shown in
Figure 3-3.

attach to Q

send message x

receive message y

detach from Q
3-4 BEA MessageQ Introduction to Message Queuing

DESIGNING A BEA MESSAGEQ APPLICATION
Figure 3-3 Service Point Messaging Paradigm

The communication model determines much of the system design, including the
structure of the sender and receiver programs and the message queue configuration.
The system designer uses the message queuing communication model that is most
efficient for message exchange between each set of application components to be
integrated.

Defining Major Application Needs

In addition to designing the most efficient communications model, the application
developer must determine how to use BEA MessageQ features to implement the
application design. The questions and answers in this topic can help the application
developer to identify some of the major aspects of system design and development
using BEA MessageQ such as:

t What rate of messaging throughput is required?

t Does the application require reliable delivery?

t Is the processing of message data between applications independent or
interdependent?

t Does the application call for simultaneous distribution of information?

t Will the application receive different kinds of messages?

attach to Q

get message x

do what message x says
BEA MessageQ Introduction to Message Queuing 3-5

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS
t Could the application benefit by load balancing between servers?

t Is sequential processing of information required?

t What is the requirement for data persistence?

t Should the applications be insulated from configuration changes?

t Does the application environment change frequently?

Choosing the Style of Messaging

Message throughput depends on the style of messaging selected and the delivery mode
of the message. For example, buffer-style messaging is faster than FML-based
self-describing messaging, because of the extra steps of message encoding and
decoding. In addition, limiting message size for buffer-style messages to 32K enables
messages to be delivered faster over the distributed network. Though the selection of
messaging style is based on the needs of the application, it is important for application
developers to consider the performance implications of each messaging style when
electing which style to use.

In addition to the selection of messaging style, the delivery mode is the other critical
factor in determining messaging throughput. If an application requires high messaging
rates, the application developer selects a delivery mode which sends the message to the
target queue in memory and requires no notification of whether the message is received
(PDEL_MODE_NN_MEM). This kind of message is called a datagram because it requires
the least processing overhead and provides the fastest messaging throughput. BEA
MessageQ is capable of sending datagrams at rates of thousands of messages per
second.

Datagram messaging, however, is only useful for applications that do not require a
guarantee that every message is received. In our shop-floor monitoring example, the
program that sends temperature readings uses datagram messages because, if one
message is not received, the next will be sent in 30 seconds. It is not necessary for the
receiver program to get every message in order to promptly report on out-of-range
conditions.

Choosing Recoverable or Nonrecoverable Message Delivery

In contrast to datagram style messaging, some applications require a guarantee that the
message be delivered, though the speed of delivery is not of great concern. For
example, a developer could use message queuing to integrate the components of a
3-6 BEA MessageQ Introduction to Message Queuing

DESIGNING A BEA MESSAGEQ APPLICATION

t for
ires
efore
cking
er
ted is

s
e—

sary

ssing.
tory

ode

manufacturing resource planning (MRP) system. In the just-in-time manufacturing
environment, it is critically important that the order processing application notify the
inventory application when goods are sold because manufacturing scheduling is based
on inventory levels.

In this case, the developer could use recoverable messaging to exchange this kind of
important information between applications to ensure that the inventory level is
accurately maintained. Recoverable messaging reduces messaging throughput because
of the additional system resources required to save messages on disk in case they
cannot be delivered. However, the value of automatic recovery in the event of system,
process, or network failures might outweigh the disadvantage of additional processing
time.

Choosing Asynchronous or Synchronous Messaging

Interdependent applications use a blocking request/response paradigm. For example,
when Program A sends a message to Program B, it halts processing until it receives a
reply from Program B. BEA MessageQ offers delivery modes to support synchronous
communication (PDEL_MODE_WF_xxx).

For example, let’s look at a banking application. A bank teller may enter a reques
a withdrawal of money from a customer’s account. The banking application requ
that the customer’s account balance be checked and sufficient funds available b
the withdrawal can be made. Therefore, the request message is sent using a blo
delivery mode. The request transaction cannot continue processing until the serv
application checks the account balance, verifies that the amount of money reques
available for withdrawal, and returns a response to the requesting application to
proceed with the transaction.

Other applications share data but operate independently. These applications use
asynchronous messaging; the sender program sends the message and continue
processing. The receiver program receives and reads the message at a later tim
independent of the operation of the sender program.

For example, in a manufacturing resource planning (MRP) system, it is not neces
for the order entry application to halt processing while it waits for the inventory
application to receive the message because the data does not affect its own proce
So, for example, the order fulfillment application can send a message to the inven
system identifying how many items were sold using an asynchronous delivery m
(PDEL_MODE_AK_xxx). The order fulfillment application does not need to halt
processing while the inventory application reads the messages and decrease the
inventory count.
BEA MessageQ Introduction to Message Queuing 3-7

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS

and

n can
nous
A
grams
r,
your

ss
ssing

 enter
m.
e to
s

t
ervers
Using Message Broadcasting

Some applications require simultaneous distribution of information to many recipients
at the same time. A stock brokerage program is a good example of this kind of
application. As stock prices change, the updated values must be simultaneously
displayed on all stock traders’ monitors. BEA MessageQ offers a feature called
message broadcasting which allows an application to send one message that is
simultaneously delivered to all subscribers. This capability is also called publish
subscribe.

Using Message Selection

Applications can receive a variety of message types. For example, an applicatio
receive responses to its requests, notification of successful delivery of asynchro
messages, broadcast messages, timer expiration messages, and so on. The BE
MessageQ API offers a feature called message selection that allows receiver pro
to sort out the messages they receive by correlation identifier, sequence numbe
message source, class, type, priority, or a combination of message attributes. If
application will receive different kinds of messages, you need to include logic for
sorting the messages as they are read using the appropriate pams_get_msg function.

Load Balancing with MRQs

Many applications would benefit greatly if multiple servers were allowed to proce
the data instead of a single server. The efficient and dynamic distribution of proce
power is commonly referred to as load balancing. BEA MessageQ offers load
balancing through its multireader queues (MRQs).

For example, let’s look at an order processing system. Company A’s sales people
customer orders using laptop computers by dialing into a main order entry syste
After the order information is entered, the transaction is transmitted as a messag
the order processing server program. Normally, there are several server program
running to process customer orders.

Each server reads a message from the MRQ that contains the customer order
transaction information, processes the order information, and then reads the nex
available messages. As the number of messages in the MRQ grows, additional s
can be started to handle the load.
3-8 BEA MessageQ Introduction to Message Queuing

DESIGNING A BEA MESSAGEQ APPLICATION

’s

n is
der

der
 FIFO

ghest

 Or,
ched

red to
MRQs are generally used for load balancing when each message is a self-contained
transaction. If an application requires multiple messages to be read and procesessed
sequentially, the application uses a single-reader queue as the target queue to ensure
proper processing. Optionally, an MRQ can be used to set up a session with a server
application which then uses a single-reader queue for the remainder of the transaction.
In this case:

t the client application sends an inital request message to an MRQ

t a server application reads the inital request message from the MRQ and then
sends the client application a message containing the address of the server’s
single-reader queue

t the client application reads the message from the server and uses the server
single-reader queue to complete the transaction with additional messages

When implementing this approach, it is important to note that the client applicatio
temporarily stalled while waiting to receive the address of the server’s single-rea
queue.

Choosing Single Reader Queues for Sequential Processing

If sequential information processing is required, the application must send the
messages to a target queue that is defined as a single reader queue. Single-rea
queues are owned by a single process which reads messages from the queue in
(first-in/first-out) order.

It is important to note that, by default, BEA MessageQ places the highest priority
messages at the top of the queue. Priority ranges from 0 (lowest priority) to 99 (hi
priority). For example, priority 1 messages are always placed before priority 0
messages. Messages are placed in first-in/first-out order by message priority.

Choosing Permanently Active Queues for Data Persistence

Some applications require information be available for only a short period of time.
applications may require that information be available only when a process is atta
to a queue and, therefore, actively retrieving information. In the former case, the
application developer would attach to a temporary queue. In the latter case, the
application developer would send messages to a permanent queue that is configu
be active only when a process is attached.
BEA MessageQ Introduction to Message Queuing 3-9

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS

time
t will
d the
rs

e
For example, a client application that takes account inquiries from customers at an
ATM machine only requires the use of a queue long enough to provide a particular
customer with one time information about their account. The client application would
attach to the message queuing bus using a temporary queue, request the account
balance from the message server, and wait for the message server to return the account
balance. After the balance inquiry is fulfilled, the client application detaches from the
temporary queue and waits for the next account inquiry.

However, if an application requires message data to be captured regardless of whether
an application is available to process it, the developer must define the queue as
permanently active to enable it to store messages when no application is attached, or
use a recoverable delivery mode for sending to this queue.

Using BEA MessageQ Naming

Another important aspect of application development is to decide whether applications
should be insulated from changes in the underlying BEA MessageQ environment
configuration. For very stable environments which infrequently change equipment
configuration, this is not a great concern. However, for dynamic, multiplatform
environments, it may be very important to ensure that applications continue to run
without recoding despite underlying configuration changes. However, there is a
performance loss when naming is used for each queue reference.

Application developers can insulate programs from configuration changes using the
BEA MessageQ naming feature. To use naming, applications are designed to refer to
queues by name and not by using their queue address. Applications use the
pams_locate_q function to look up the queue address for a queue name at runtime
and pass the value to the pams_put_msg function in order to send the message.
Naming enhances the flexibility of applications and frees them from requiring
maintenance each time the configuration of the BEA MessageQ environment changes.

In addition, BEA MessageQ offers the ability to assign a service point at runtime using
the pams_bind_q function. So, for example, if applications are designed to read a
queue called “parts_orders,” the location of this queue can be determined at run
by binding the queue name “parts_orders” to the queue address of the server tha
be processing the parts orders at that time. The queue name can be unbound an
pams_bind_q function issued again to change the location from which parts orde
will be obtained providing failover capability. Queue names are available on a
group-wide and bus-wide basis providing a wide degree of flexibility to change th
runtime environment.
3-10 BEA MessageQ Introduction to Message Queuing

DESIGNING A BEA MESSAGEQ APPLICATION
Using FML for Self-Describing Messaging

For application environments subject to frequent change or that run on heterogeneous
machine environments, FML-style self-describing messaging provides numerous
capabilities to enhance the flexibility of applications. For example, using FML, you
can add fields to a message that can be read by new applications without disrupting the
way existing applications process the message. In addition, you can change the size of
data fields in a message as your needs change without recoding applications because
the size of the data field is encoded as part of the message itself.

In addition, messages can be planned with future considerations in mind because a
single message can be designed for use by a variety of applications that use different
data fields within the message and by future applications will use data fields not in use
today. Also, FML marshals the data so that programmers need not be concerned with
the different data formats from machine to machine.

Designing Message Flow and System Configuration

After you have broken down the application into its component programs, designed the
communications model, and determined the BEA MessageQ features required by each
component, you need to map out the messaging flow and determine how the
component applications will be deployed in the distributed environment by answering
the following questions:

t Which applications must communicate with each other?

t Which computer systems do/will these applications run on?

t Where are the computer systems located?

t What networks and operating systems are these computers running?

t Where are the users located?

t What is the application data flow?

A system designer answers these and many other detailed questions about the
application in order to map the flow of information between sender and receiver
programs in the distributed heterogeneous network.
BEA MessageQ Introduction to Message Queuing 3-11

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS
Though a system manager may perform the configuration tasks, the following BEA
MessageQ entities must be set up in accordance with the general system design in
order for applications to exchange messages:

t The message queuing bus which acts as the common mechanism for attached
applications to exchange information

t Message queuing groups for all participating nodes in the network

t Message queues for storing information to be read by receiver programs

The BEA MessageQ environment must be configured before applications are able to
exchange information. For example, a system designer may designate queue 40 in
group number 1 to receive temperature readings from a semiconductor furnace.

Once the bus, group, and queue address are defined, the sender program knows where
to direct messages containing temperature readings. The receiver program also knows
which queue to attach to in order to read and respond to temperature changes in the
furnace.

Advanced Message Queuing Features

In addition to its ability to send and receive messages between applications in a
distributed multivendor environment, BEA MessageQ has advanced features to
provide developers with the following powerful capabilities:

t FML Self-Describing Messaging

t Recoverable Messaging

t Message Selection

t Broadcasting Messages

t Naming

t Using Message Based Services

t Exchanging Messages Between BEA MessageQ and BEA TUXEDO V6.4 or
BEA M3 V2.1
3-12 BEA MessageQ Introduction to Message Queuing

ADVANCED MESSAGE QUEUING FEATURES
t Additional API Functions

FML Self-Describing Messaging

Self-describing messaging using Field Manipulation Lauguage (FML) provides a
flexible form of BEA MessageQ messaging. With buffer-style messaging, BEA
MessageQ applications pass information using a message buffer whose format and
structure were agreed upon by the sender and receiver programs. FML provides a
mechanism for passing information as an opaque message buffer.

The pams_put_msg function now accepts a pointer to an FML32 buffer as the
msg_area parameter. The resulting message contains the tags and values needed by
the receiver program to decode the message. FML adds significant flexibility in
message exchange because, in many cases, the contents of a message can be changed
without requiring all related applications to be changed.

One example of the flexibility inherent in the FML messaging style is illustrated
through the handling of a change in a message field size of an existing message.
Applications that do not use FML must modify the application header files of each
applicable sender and receiver program and then they must be recompiled, relinked
and restarted. Using FML, however, the application developer need only change the
tag associated with the value to indicate the new field size. When the message is
received and decoded by the receiver program, the message contains the information
on the new field size, therefore, the receiver program can properly interpret the data.

In addition to changing the size of data fields in a message, developers can add fields
to FML messages. The new fields are available to be read by applications that have
been programmed to read the additional field, however, all existing applications
continue to run without a problem.

Another very powerful feature of FML is its ability to provide data transformation for
applications exchanging information in heterogeneous multivendor environments. For
a complete description of how to use the BEA MessageQ self-describing messaging
feature, refer to the BEA MessageQ Programmer’s Guide.
BEA MessageQ Introduction to Message Queuing 3-13

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS

t is
n the

urnal

nt

Recoverable Messaging

When an application sends a message, the final receipt of the message can be
interrupted by various failure conditions including system, process, and network
failures as shown in Figure 3-4.

Figure 3-4 Recoverable Messaging

However, BEA MessageQ applications can choose to send a message using
recoverable delivery modes to enable BEA MessageQ to store messages in a disk file
and deliver them as soon as it is possible. Using recoverable messaging BEA
MessageQ applications can recover from message delivery failures caused by any of
the following:

t Communications failure

t Application task abort

t System crash—sender, receiver, or both

When you send a BEA MessageQ message that is designated as recoverable, i
stored in one of two message recovery journals. The message recovery journal o
local system is called the store and forward (SAF) file. The message recovery jo
on the remote system is called the destination queue file (DQF).

The selection of the recovery journal is determined by the delivery mode argume
specified in the pams_put_msg function. If the delivery of a recoverable message is
interrupted by a failure, it is automatically resent from the SAF or the DQF once
communication with the target group is restored.

Link
Loss

Process
Loss

System
Loss
3-14 BEA MessageQ Introduction to Message Queuing

ADVANCED MESSAGE QUEUING FEATURES
When an application receives and reads a recoverable message from a queue that is
configured for explicit confirmation, it must use the pams_confirm_msg function to
confirm message delivery. Confirming delivery of the recoverable message removes it
from the message recovery journal. If the message is not confirmed, it will remain in
the recovery journal and be redelivered if the application detaches and reattaches to the
queue.

BEA MessageQ offers two types of message confirmation; implicit and explicit. The
type of confirmation is set for each message queue as part of group configuration.
Applications that receive recoverable messages in queues configured for implicit
confirmation do not need to issue the pams_confirm_msg call. The message queuing
system automatically issues the pams_confirm_msg call when the next sequential
message is read from the message recovery journal. However, applications receiving
recoverable messages in queues configured for explicit confirmation must issue the
pams_confirm_msg call to delete the message from the message recovery journal.

Another queue characteristic that can be set during group configuration is the message
confirmation order. Recoverable messages can be confirmed in order or out-of-order.
The default confirmation order is to confirm messages sequentially as they are
delivered from the message recovery journal and received by the target application.

In addition to the message recovery journals, BEA MessageQ offers two auxiliary
journals to provide additional message recovery capabilities as follows:

t The dead letter journal (DLJ) file provides disk storage for messages that could
not be stored for automatic recovery by the message recovery system.
Undelivered messages stored in the DLJ file can be re-sent under user or
application control.

t The postconfirmation journal (PCJ) file, stores successfully confirmed
recoverable messages. It forms an audit trail of message exchange that can be
read or printed. The PCJ file can also be used to resend successfully delivered
messages if a database has become corrupted and must be restored. Message
queuing groups must be configured to store successfully delivered messages in
the PCJ.

For a complete description of how to use the BEA MessageQ recoverable messaging
feature, refer to the BEA MessageQ Programmer’s Guide.
BEA MessageQ Introduction to Message Queuing 3-15

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS

lt

 can
rnate

ws
plies to

s the
 type

 type
ion by
Message Selection

When each BEA MessageQ message is sent, the sender program can assign a
correlation identifier, message type, message class, and priority to distinguish it from
other messages in the target queue. In addition, the message header contains the queue
address of the sender program to allow the receiver program to identify the message
source.

To selectively read messages, applications use sel_filter argument of the
pams_get_msg, pams_get_msgw, or pams_get_msga functions. This argument
allows developers to select messages by:

t Default selection—reads messages in FIFO order by priority. To use the defau
setting, set both words of the longword to zero.

t Selection by message queue—allows the application to retrieve messages based
on a queue type or combination of queue types. For example, the application
read messages in the primary queue first, and then read messages in an alte
queue. A series of predefined constants are available to specify message
selection by queue type.

t Selection by correlation identifier—allows the application to retrieve messages
based on correlation identifier. To select by correlation id, use the symbol
PSEL_CORRELATION_ID defined in p_symbol.h file. The application can tag
any response to the message with the same identifier.

t Selection by sequence number—allows the application to retrieve messages
based on the seqence number contained in the PAMS status buffer. This allo
precise control over the message selected; a message sequence number ap
one and only one message. To select by sequence number, use the symbol
PSEL_SEQUENCE_NUMBER defined in p_symbol.h file.

t Message attributes—allows application developers to retrieve messages based
on assigned characteristics that let the receiver program know how to proces
message. BEA MessageQ message-based services use reserved messages
and class symbols defined in the p_typcls.h file. To create additional type and
class codes for your application, create a separate include file containing the
and class code symbols. The receiver program can also use message select
attribute to read high priority messages before less critical ones.
3-16 BEA MessageQ Introduction to Message Queuing

ADVANCED MESSAGE QUEUING FEATURES

es

s.

ia

use

t Message source—applications can be programmed to read only those messag
from a particular source. To use this option, enter the group ID and the queue
number of the source queue from which the application should read message

t Compound selection—enables developers to create compound selection criter
using the pams_set_select function. Compound message selection allows the
use of complex rules such as AND/OR operations for reading messages. To
compound selection use the constant PSEL_BY_MASK as the first word and the
mask_id of the selection mask created using pams_set_select as the second
word. The application can cancel the use of a selection mask using the
pams_cancel_select function.

For a complete description of how to use the BEA MessageQ message selection
feature, refer to the BEA MessageQ Programmer’s Guide.

Broadcasting Messages

Message broadcasting is a style of messaging that enables one sender program to send
a message simultaneously to many receiver programs. BEA MessageQ Selective
Broadcast Services (SBS) manage the broadcasting of data between processes and
groups of processes as shown in Figure 3-5.

Figure 3-5 Selective Broadcast Services

BEA MessageQ broadcast services provide applications with:

t One-to-many message queuing

t Lists of application processes that are interested in messages that are broadcast

Msg A

MessageQ
Application D

SBS Server

Msg A

MessageQ
Application B

Msg A MessageQ
Application A

Msg A

MessageQ
Application C
BEA MessageQ Introduction to Message Queuing 3-17

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS

oses
st

ipt from

ms do
ssage
ingle

es the

ntifier

d to
ach

sting
t User-definable rules, known as selection rules, which can be used to selectively
extract messages from a broadcast stream

BEA MessageQ message broadcasting is similar to radio broadcasting. A sender
program directs a message to a selected broadcast stream to be received by any
interested application. Then, the receiver program “tunes in” just as a listener cho
a particular radio station by registering to receive messages sent to that broadca
stream. The sender program does not know which applications are receiving the
messages it sends. Receiver programs register and deregister for message rece
a particular broadcast stream without affecting the sender program.

Message broadcasting simplifies application development because sender progra
not need to be aware of the number, state, and location of the target queues. Me
broadcasting increases efficiency by directing messages to many targets with a s
call.

To send a message to multiple recipients simultaneously, the sender program us
pams_put_msg function and specifies a Multipoint Outbound Target (MOT) as the
queue address. A broadcast target, numbered between 4000 and 6000, is an ide
for a broadcast stream. A broadcast stream is the set of target queues registere
receive messages directed to a particular broadcast target. The SBS Server in e
message queuing group distributes messages to registered receiver programs.

For a complete description of how to use the BEA MessageQ message broadca
feature, refer to the BEA MessageQ Programmer’s Guide.

Naming

Naming is a powerful BEA MessageQ capability that enables applications to refer to
queues by name instead of by their queue address. Using naming separates applications
from the details of the current BEA MessageQ environment configuration and enables
system managers to make configuration changes without requiring developers to
change their applications.

For example, an order processing application uses a multireader queue called
ORDER_INBOX to store product order messages from client programs. Order fulfillment
server programs read messages from ORDER_INBOX to process each order. Initially,
ORDER_INBOX might be defined as queue 7 in group 1, an HP-UX system. However,
after the company purchases a high performance, Compaq system running Tru64
UNIX, this queue may be redefined as queue 8 on group 2 to provide better
3-18 BEA MessageQ Introduction to Message Queuing

ADVANCED MESSAGE QUEUING FEATURES
performance for the application. In this example, no change is required to either the
sender or receiver programs because they refer to the queue by name and not by its
queue address.

To obtain the queue address for a queue name at runtime, application developers use
the pams_locate_q function. Queue names can be defined in BEA MessageQ to have
a local or global scope. A local name can be used as the target queue by applications
running in the same message queuing group in which the name was defined. A global
name can be used as the target queue by any application on the message queuing bus.

Names can be defined using a static or dynamic approach. The static approach means
that the name-to-queue address translation is defined in the Queue Configuration Table
(%QCT) or in the Global Name Table (%GNT) of the BEA MessageQ group
initialization file. When the group starts up, the name-to-queue address translations are
written to the BEA MessageQ name space. To change a name-to-queue address
translation, you must stop the message queuing group, change the queue name
definition in the group initialization file and restart the group and its applications.
When an application performs a pams_locate_q function, it will obtain the new
queue address for the queue name.

Dynamic naming means that the name-to-queue address translation is defined at
runtime by an application using the pams_bind_q function. When the pams_bind_q
function successfully completes, the name-to queue translation is written to the BEA
MessageQ name space. To change the name-to-queue translation, the application must
unbind the name from the queue address and use the pams_bind_q function to bind a
new queue address to the queue name.

The BEA MessageQ process that supports the naming capability is called the Naming
Agent. The Naming Agent is responsible for creating entries in the name space and for
providing the look up capability for name-to-queue translations at runtime.

To use the BEA MessageQ naming feature, you must configure the message queuing
environment as follows:

t the message queuing group that runs the Naming Agent must be identified in the
%NAM section of the group initialization file

t the name-to-queue translation for each statically defined queue name must be
entered to the Queue Configuration Table (%QCT) and the Group Name Table
(%GNT) of the group initialization file. In addition, the GNT section must contain
the queue names to be associated with queue addresses at runtime using the
pams_bind_q function. These names are associated with queue address 0.0 so
that the dynamic queue address can be set at runtime.
BEA MessageQ Introduction to Message Queuing 3-19

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS
Refer to the installation and configuration guide for your platform for detailed
information on how to configure the BEA MessageQ naming feature. For more
detailed information on how to design your application to use naming, refer to the BEA
MessageQ Programmer’s Guide.

Using Message Based Services

BEA MessageQ applications may wish to perform certain standard tasks such as
checking the status of a queue or the status of a cross-group connection before sending
a message. To make these tasks easier, BEA MessageQ offers message-based services.
These are predefined request, notification, and response messages exchanged between
application processes and the BEA MessageQ servers that support each message
queuing group.

BEA MessageQ offers message-based services for:

t Notifying applications of the availability or unavailability of message queues

t Registering to receive broadcast messages

t Monitoring and controlling link status

t Obtaining the status of all message queues

t Opening, closing, and renaming message recovery journals (OpenVMS only)

t Redirecting the contents of a destination queue file to another queue (OpenVMS
only)

For example, an application may want to check whether a queue is available before it
sends a message. BEA MessageQ offers built-in availability checking through its
message-based services.

To register for availability notification, the application sends an AVAIL_REG message
to the primary queue of the AVAIL Server running in its message queuing group. The
AVAIL server responds by sending an AVAIL_REG_REPLY message to the sender
program acknowledging that it is registered to receive availability notification.
3-20 BEA MessageQ Introduction to Message Queuing

ADVANCED MESSAGE QUEUING FEATURES

 and

.

Thereafter, as queues attach and detach from the message queuing bus, the sender
program receives AVAIL and UNAVAIL notification messages identifying which
queues have become available and which have become unavailable. When the sender
program no longer requires availability notification, it sends a AVAIL_DEREG message
to the AVAIL Server and notification is terminated.

For a complete description of how to use the BEA MessageQ message-based services
feature, refer to the BEA MessageQ Programmer’s Guide.

Exchanging Messages Between BEA MessageQ and BEA
TUXEDO V6.4 or BEA M3 V2.1

BEA MessageQ V5.0 include a messaging bridge that allows the exchange of
messages between BEA MessageQ V5.0 and BEA TUXEDO V6.4 or BEA M3 V2.1.
BEA MessageQ applications can send a message using pams_put_msg that a
TUXEDO application can retrieve through a call to tpdequeue. TUXEDO
applications can send a message using tpenqueue that a BEA MessageQ application
can retrieve through a call to pams_get_msg(w). In addition, a BEA MessageQ
application can invoke a TUXEDO service using pams_put_msg. It is also possible for
a TUXEDO application to use tpenqueue to put a message on a queue and
tpdequeue to retrive a message from a queue.

This exchange of messages is made possible by two TUXEDO servers that are
included in the BEA MessageQ installation and that run on the same machine as BEA
MessageQ: TMQUEUE_BMQ and TMQFORWARD_BMQ.

TMQUEUE_BMQ redirects TUXEDO tpenqueue requests to a BEA MessageQ queue
where they can be retrieved with pams_get_msg(w). TMQUEUE_BMQ also redirects
pams_put_msg requests to TUXEDO where they can be retrieved with tpdequeue.

TMQFORWARD_BMQ listens on specified BEA MessageQ queues and forwards
pams_put_msg or tpenqueue requests to a TUXEDO service. It also puts the reply
or failure message on the sender’s response queue.

The target queue and service are defined when TMQUEUE_BMQ and TMQFORWARD_BMQ
are configured. This ensures that message exchange between BEA MessageQ
TUXEDO is transparent to the application.

Figure 3-6 illustrates message exchange between BEA MessageQ and TUXEDO
BEA MessageQ Introduction to Message Queuing 3-21

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS
Figure 3-6 Message Exchange Between BEA MessageQ and TUXEDO
3-22 BEA MessageQ Introduction to Message Queuing

ADVANCED MESSAGE QUEUING FEATURES
BEA MessageQ Introduction to Message Queuing 3-23

Server
or

Client

TMQUEUE_
BMQ

Service

TMQFORWARD
_BMQ

BEA TUXEDO

Application

BEA MessageQ

Machine

tpenqueue/
tpdequeue

pams_put_msg/
pams_get_msg

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS
Enabling the Messaging Bridge

The TMQUEUE_BMQ and TMQFORWARD_BMQ servers are part of the BEA MessageQ
installation and are installed when BEA MessageQ is installed. During the installation
procedure, you are prompted to choose one of the following installation options for
BEA MessageQ and TUXEDO integration:

install on top of BEA TUXEDO V6.4
install on top of BEA M3 V2.1
install without BEA TUXEDO

Note that if you are installing BEA MessageQ on OpenVMS, you do not have the
option of installing over BEA M3 V2.1. Also, you must install BEA MessageQ for
OpenVMS on an OpenVMS AXP 7.1 system to use the messaging bridge.

If you choose to install on top of BEA TUXEDO V6.4 or BEA M3 V2.1, the applicable
files for the TMQUEUE_BMQ and TMQFORWARD_BMQ servers are installed on your system.
If you install without BEA TUXEDO, the TMQUEUE_BMQ and TMQFORWARD_BMQ
servers are not installed on your system. See the installation and configuration
documentation for your system for detailed installation and configuration instructions.

Once the TMQUEUE_BMQ and TMQFORWARD_BMQ servers are installed, the system
administrator enables message enqueuing and dequeuing for the application by
specifying the servers as application servers in the *SERVERS section of the TUXEDO
ubbconfig file. See the TMQUEUE_BMQ and TMQFORWARD_BMQ reference pages in the
BEA MessageQ Reference Manual for detailed information on the server configuration
syntax.

Additional API Functions

In addition to its API functions for sending and receiving messages, BEA MessageQ
offers the following additional API functions to facilitate the development of
distributed applications:

t pams_bind_q—used to set local and global names for queues at runtime

t pams_locate_q—obtains the queue address for a queue name at run-time
3-24 BEA MessageQ Introduction to Message Queuing

ADVANCED MESSAGE QUEUING FEATURES

th a
ally

gets
a
at
 then

 the

eue
n of

e from

ueue

piled
t pams_set_timer and pams_cancel_timer—sends a notification message to
an application at a particular time of day or when a specified time period has
elapsed

t pams_status_text—returns detailed status information for the API call

t putil_show_pending—provides the total number of pending messages for a
queue

Defining a Name-to-Queue Translation at Runtime

The pams_bind_q function is designed to dynamically associate a queue name wi
queue address at runtime. This function enables a server application to dynamic
sign up to service a queue alias at runtime.

For example, an application may have client programs that submit orders for wid
by sending BEA MessageQ messages containing the appropriate information to
queue called “widget_orders.” In addition, the application has a server program th
processes widget orders. To maximize flexibility, the server program starts up and
binds the address of its primary queue to the queue name “widget_orders” which is
defined in the group initialization file. The client programs are designed to perform
name-to-queue address translation at runtime using the pams_locate_q function and
orders are sent to the primary queue of the server program.

If the server should fail, or if the server program is moved to a faster system, the
pams_bind_q function can be used to unbind the queue name from the primary qu
of one server program and bind it to the primary queue of another. The redefinitio
the queue address of “widget_orders” is handled by BEA MessageQ and is invisible
to the client programs which require no reprogramming to direct messages to a
different queue. When the queue address for the name is redefined, the messag
the client applications are automatically redirected to the new queue address.

Locating the Queue Address for a Queue

To send a message to a target queue, the application developer must supply a q
address as the target argument to the pams_put_msg function. Depending on the
needs of the application, the queue address may be set when the program is com
or may be supplied when the application is running.
BEA MessageQ Introduction to Message Queuing 3-25

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS

, it

le

geQ

nt

he
To specify the queue address at compile time, the application developer supplies the
queue number and group ID of the target queue to the pams_put_msg function. This
information must match the group configuration information for the BEA MessageQ
environment. If the group and queue number of the target queue do not exist in the
group configuration information, the message cannot be delivered.

BEA MessageQ also allows the queue address of the target queue to be resolved at
runtime. Using this approach, the application refers to queues only by name. To obtain
their queue addresses, the application invokes the pams_locate_q function to obtain
the queue address for a queue name. When the queue address is returned by the
pams_locate_q function, the developer uses it to supply the queue address to the
pams_put_msg function. Designing applications to refer to queues by name, adds
some processing overhead at runtime, however, it increases flexibility over compile
time resolution by insulating applications from changes in environment configuration.

Using Timers

BEA MessageQ offers a timer API function that eliminates the need to write
application-specific timer code. The PAMS timer function sends a timer expiration
message to an application when:

t a specified amount of time has elapsed—just as a cooking timer, for example
signals the application that 30 minutes has passed and an event should be
triggered

t a time of day has arrived—just as an alarm clock, for example, it signals the
application that it is now 10 o’clock and an event should be triggered

The application sets a timer using the pams_set_timer function by supplying a
timer_id, the type of timer and the value to be set. An application can set multip
timers by supplying each with a unique timer_id.

When the specified time has elapsed or the time of day has arrived, BEA Messa
sends a priority 1 message with a message type of MSG_TYPE_TIMER_EXPIRED to the
application’s source queue. The data structure of the TIMER_EXPIRED message
contains the timer_id to enable the application to discern which timer-related eve
to trigger.

The application cancels timers using the pams_cancel_timer function by supplying
the timer_id of the timer to cancel. All pending timer expiration messages with t
timer_id of the timer being canceled are purged from the queue.
3-26 BEA MessageQ Introduction to Message Queuing

TESTING AND DEBUGGING BEA MESSAGEQ APPLICATIONS

e
Obtaining Detailed Status Information

Application developers can use the pams_status_text function to obtain a
descriptive text string and a severity level for each API return value. This API function
receives the status value and returns a text description in the following format:

PAMS__SUCCESS, normal successful completion

The text description contains the text name of the return code (as it appears in the
documentation and development include files) followed by a comma, a space, and then
a status description. If the user buffer is large enough, the string is zero terminated.

In addition to the text description, this function returns a code indicating the severity
level for both success and error messages. Severity levels are designed to provide more
information about the message being returned.

Obtaining the Number of Pending Messages in a Queue

The putil_show_pending function provides the number of pending messages for a
single queue or a list of queues. The value returned by this function contains the total
number of messages in each memory queue as well as the number of messages in the
local and remote recovery journals targeted for delivery to the selected queue. This
function can be used to monitor for bottlenecks in application processing and message
flow design.

Testing and Debugging BEA MessageQ
Applications

BEA MessageQ provides the following powerful tools that assist application
developers testing and debugging distributed applications:

t The BEA MessageQ Script Facility—provides a means of simulating messag
exchange between applications under development.

t The BEA MessageQ Test Utility—provides a simple way to test message
exchange with an existing application.
BEA MessageQ Introduction to Message Queuing 3-27

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS

of
g
ulate

ead
t file.
ether

g the

 the

d by
 script
yed on

 script

n in
re lets
m as

t share
t Message Tracing—provides a means to diagnose problems with message
exchange between applications by creating a log file of all BEA MessageQ
events between the two processes.

BEA MessageQ Script Facility

The BEA MessageQ Script facility provides a productivity tool for application
developers to use in simulating message exchange between programs. Instead
writing a test program, you create a script file containing instructions for capturin
messages sent or received by an application, replay captured messages, or sim
messages sent from an application that is still under development.

Message simulation offers a shortcut for sending messages to an application. Inst
of writing a program to send a message, you can use a text editor to create a scrip
The script file contains the message information and other instructions such as wh
to log the message exchange.

The message information and other instructions are entered to the script file usin
BEA MessageQ scripting language. When script processing is enabled, BEA
MessageQ processes the contents of the script file and delivers the message to
target queue where it can be read by the receiver program.

Message capture provides a mechanism for viewing the messages sent or receive
an application. To capture messages, you use the scripting language to create a
file that identifies the messages to be captured. Captured messages can be displa
the screen, written to a log file, or both. When script processing is enabled, BEA
MessageQ captures the messages and displays or logs them as specified in the
file.

Message replay uses the messages captured in a log file as input to an applicatio
exactly the same way as messages entered to a script file. The script replay featu
developers capture messages sent or received by an application and supply the
input to another program. By tracking the program’s response to the captured
messages, the developer can debug message exchange between programs tha
information using BEA MessageQ.

Note: The BEA MessageQ script facility is available on UNIX and OpenVMS
systems only.
3-28 BEA MessageQ Introduction to Message Queuing

TESTING AND DEBUGGING BEA MESSAGEQ APPLICATIONS
For a complete description of how to use the BEA MessageQ script utility, refer to the
BEA MessageQ Programmer’s Guide.

BEA MessageQ Test Utility

The BEA MessageQ Test utility is a productivity tool that allows software developers
to test message exchange with an existing application. A developer interacts with the
graphical user interface or character-cell interface of the Test utility to:

t Attach to a permanent or temporary queue

t Read messages sent by an application or script file

t Send messages to a defined target queue

To run the Test utility, the developer must begin by setting environment variables to
specify the bus and group in which the test application is running. Then the developers
uses the pulldown options to build the attach, send, or receive function entering the
same information required as arguments to these API function calls.

The Test utility provides a quick and easy means for application developers to:

t Build interactive tests of application modules.

t Send and receive messages to any target from any source.

t Test the message flow and messaging rates for a set of queues

To view a sample run of the Test Utility, refer to the installation and configuration
guide for your environment.

Message Tracing

The BEA MessageQ message tracing feature logs internal messaging events to a file
as they happen. You can use this file to diagnose application failures as you debug your
application.
BEA MessageQ Introduction to Message Queuing 3-29

3 DESIGNING AND DEVELOPING BEA MESSAGEQ APPLICATIONS
It is important to note that message tracing generates a high volume of output;
therefore, you should only enable tracing for diagnostic purposes in the event of a
problem. For more information on how to set up message tracing, refer to the BEA
MessageQ Programmer’s Guide.
3-30 BEA MessageQ Introduction to Message Queuing

CHAPTER

 to:

 it is
ent.

e
4 Managing the BEA
MessageQ
Environment

After you develop your BEA MessageQ programs and deploy your distributed
application into the production environment, you need to monitor and tune your
system’s performance and occasionally troubleshoot BEA MessageQ problems.

To successfully manage your distributed BEA MessageQ applications, you need

t Understand the BEA MessageQ Environment

t Monitor System Performance

t Troubleshoot Errors

Understanding the BEA MessageQ
Environment

To efficiently manage and troubleshoot a distributed BEA MessageQ application,
important to be able to visualize the components of the BEA MessageQ environm
Figure 4-1 shows how Application A running in Group 1 can be configured to
exchange messages with Application B running in Group 2 on the same messag
BEA MessageQ Introduction to Message Queuing 4-1

4 MANAGING THE BEA MESSAGEQ ENVIRONMENT
queuing bus though the systems do not run the same operating system. Communication
between the two groups is enabled using the network communications link between
both systems and a BEA MessageQ cross-group link.

Figure 4-1 The BEA MessageQ Environment

This typical configuration of the BEA MessageQ environment consists of:

t a single message queuing bus to provide the communication backbone for
applications to exchange information using message queuing

t one or more message queuing groups per system. A message queuing group
enables multiple queues to efficiently share BEA MessageQ services such as
message recovery and broadcast services

t one or more message queues to receive BEA MessageQ messages. Message
queues can be temporarily assigned for use by BEA MessageQ or can be
permanently defined in the group initialization file

t one or more cross-group connections to enable message exchange between
message queuing groups on the message queuing bus. (If the message queuing
groups reside on different computer systems, a network connection must be
present to enable the cross-group connection.)

bus 1

group 0101
application A

sbs
mrs/jrn

cls

queue 1.15

group 0102
application B

sbs
mrs/jrn

cls

queue 2.347

UNIX Windows NT

xgroup
4-2 BEA MessageQ Introduction to Message Queuing

UNDERSTANDING THE BEA MESSAGEQ ENVIRONMENT

 set

s
Anatomy of a Message Queuing Group

Message queuing groups are designed to provide centralized resources for a group of
queues running on a host system. As shown in Figure 4-2, each message queuing group
may run a number of BEA MessageQ servers to service the needs of the temporary and
permanent queues to which applications are attached.

Figure 4-2 BEA MessageQ Servers

Depending upon the services enabled in the group initialization file, a message queuing
group may run the following processes:

t SBS Server—distributes broadcast messages based on the selection criteria
by registered applications

t Client Library Server—provides full message queuing services for application
running on BEA MessageQ Clients

SBS/
AVAIL
Server

MRS/JRN
Server

CLS
Server

Naming
Agent

Link
Drivers

App
A

App
B

Temporary
Queue

Permanent
Queue

Group 0104
BEA MessageQ Introduction to Message Queuing 4-3

4 MANAGING THE BEA MESSAGEQ ENVIRONMENT

t
ge

n
ups

Q

up)

 is

s are
t JRN Server—writes successfully delivered recoverable messages to the pos
confirmation journal; also writes recoverable messages to disk-based messa
recovery journals and resends the messages in the event of delivery failure

t Link Drivers—enables cross-group communication for applications running o
different computer systems in different BEA MessageQ message queuing gro

t NA—the naming agent accesses and manages the BEA MessageQ bus-wide
name space

Starting and Stopping Groups, Queues, Links and the CLS

As options of both its character-cell and GUI-based Monitor utility, BEA Message
enables users to interactively:

t Stop a message queuing group slowly (allowing processes to exit and clean

t Stop a message queuing group fast (immediate shutdown without clean up)

t Start a message queue

t Stop a message queue slowly (allowing messages to be read until the queue
empty)

t Stop a message queue fast (queue stops immediately and existing message
lost)

t Start a cross-group connection

t Stop a cross-group connection

t Start the Client Library Server

t Stop the Client Library Server
4-4 BEA MessageQ Introduction to Message Queuing

MONITORING SYSTEM PERFORMANCE
Monitoring System Performance

The BEA MessageQ Monitor utility helps developers observe the BEA MessageQ
environment on local and remote nodes. Developers and system managers can use the
summary and detailed display of information by the Monitor utility to tune the BEA
MessageQ system configuration.

To monitor or control your BEA MessageQ groups or buses, you can invoke either the
Motif-based Monitor Utility or the character-cell Monitor utility. Either interface can
be used to perform the following sets of functions:

t Collecting and displaying statistics for each queue

t Collecting and displaying statistics for each cross-group link

Error Logging and Recovery

BEA MessageQ has an error logging mechanism to display and capture informational,
warning, and error messages that can occur during processing. The messages display
a description of the condition to help developers gather more information about failure
conditions within a message queuing group.

On UNIX and Windows NT systems the BEA MessageQ an error log file is created
when the group is started using the appropriate switch on the dmqstartup command
line. Error logs can be created for each message queuing group. On OpenVMS
systems, an error log can be created at group startup or the System Manager utility can
be used to redirect output to several error log files.

Listing 4-1 shows the kind of information logged for each BEA MessageQ event on a
UNIX or a Windows NT system:

t the name of the process that logged the error

t the date and time on which the message was logged

t a description of the successful event or error condition
BEA MessageQ Introduction to Message Queuing 4-5

4 MANAGING THE BEA MESSAGEQ ENVIRONMENT
Listing 4-1 Sample BEA MessageQ Event Log File

************ dmqgcp (4150) 10-DEC-1999 15:25:23 ************
gcp, group control process for group 19 is running
************ dmqqe (4536) 10-DEC-1999 15:25:24 ************
qe, queuing engine is running
************ dmqloader (3366) 10-DEC-1999 15:25:24 ************
ldr, MessageQ System Loader starting
ldr, Parsing PROFILE Section
ldr, Parsing MRS Section
ldr, Parsing GROUP Section
ldr, Parsing ROUTE Section
ldr, Parsing QCT Section
ldr, Parsing GNT Section
ldr, Bad parameter sent to the GCP at line 318
ldr, Bad parameter sent to the GCP at line 330
ldr, Bad parameter sent to the GCP at line 331
ldr, Parsing CLS Section
ldr, Parsing NAM Section
ldr, Loader exiting normally
************ dmqjourn (2590) 10-DEC-1999 15:25:27 ************
jrn, journal process for group 19 is running
************ dmqld (2579.0) 10-DEC-1999 15:25:27 ************
ld, link listener for group 19 is running
************ dmqld (2591.0) 10-DEC-1999 15:25:27 ************
ld, link sender for group 19 to group 18 is running
************ dmqld (2579.0) 10-DEC-1999 15:25:32 ************
ld, link receiver for group 19 from group 18 is running
************ dmqgcp (4150) 10-DEC-1999 15:26:21 ************
ipi, dequeue message failed
************ dmqgcp (4150) 10-DEC-1999 15:26:21 ************
gcp, group control process for group 19 has exited
************ dmqqe (4536) 10-DEC-1999 15:26:21 ************
qe, queuing engine has exited
4-6 BEA MessageQ Introduction to Message Queuing

Glossary

access control list (ACL)

A list that defines the kinds of access to be granted or denied to users of an object.
Access control lists can be created or objects such as files and devices.

acknowledgment (ACK)

A status message that indicates the completion of an operation.

address

See queue address.

application

A program or collection of programs designed to perform a function or business
task.

application programming interface (API)

An interface used by application programs to call services external to the program.
The API supports the exchange of information in a multivendor environment.

application protocols

An agreed set of rules that govern the management of connections between partner
programs. See also duplex connection and simplex connection.

asynchronous

Pertaining to a style of message queuing whereby messages can be sent or re-
ceived at any time without waiting for the receiver program to receive, process, or
respond to a specific event. Contrast with synchronous.

asynchronous system trap (AST)

An software-simulated interrupt to a user-defined service routine. ASTs enable a
user process to be notified asynchronously of the occurrence of a specific event.
If a user has defined an AST routine for an event, the system interrupts the process
and executes the AST routine when that event occurs. When the AST routine ex-
BEA MessageQ Introduction to Message Queuing G-1

ribe.”

s.
 regis-

nput

group.
sage

 bus
its, the system resumes execution of the process at the point where it was inter-
rupted.

attach

To make a process known to the BEA MessageQ message queuing bus and allow
it to receive messages at a particular queue address.

attachment point

A particular queue location on the BEA MessageQ message queuing bus that al-
lows communication between processes without requiring a formal connection se-
quence.

blocking

Pertaining to a synchronous style of message delivery where the program is forced
to wait for an action to complete. Contrast with nonblocking.

broadcast distribution

The action of delivering a message to all processes interested in a particular broad-
cast stream.

broadcasting

A style of communicating that uses one message sender program and multiple
message receiver programs. This capability is also called “publish and subsc

broadcast stream

A data message pipeline that has a single entry point and multiple exit point
Messages sent to the broadcast stream are simultaneously distributed to all
tered queues. See also private broadcast stream and universal broadcast stream.

buffer

An internal memory area used for temporary storage of data records during i
or output operations.

buffer pool

A common memory area that stores message buffers for a message queuing
A buffer pool consists of fixed-size memory structures that can hold one mes
each.

bus ID

A reference value that distinguishes one BEA MessageQ message queuing
G-2 BEA MessageQ Introduction to Message Queuing

from another.

class

A 16-bit piece of data that describes a grouping or category of message types. Also
called message class. See also type.

client

A computing system entity that uses the services of other system entities called
servers. See also server.

client/server model

A hardware or software system design used in developing distributed applications.
In the client/server model, a server system provides common database access, per-
forms computations, and assumes system management tasks for its clients.

COM Server

A BEA MessageQ for OpenVMS server process that passes cross-group messages
to other BEA MessageQ message queuing groups. A COM Server creates the
BEA MessageQ message queuing bus environment and must be activated before
message queuing can occur.

configuration editor

A Windows editor used for defining and managing BEA MessageQ buses, groups,
and related information.

configuration file

A text file comprised of information line items used to configure BEA MessageQ
software. This file is also called the group initialization file. The configuration
data for message queuing groups is standard for all platforms.

confirmation

See message confirmation.

connectionless

Pertaining to not having a logical link. A connection does not have to be estab-
lished with a partner process in order to pass information between them.

connection-oriented

Pertaining to a communication method where two partners must establish a con-
nection before they can exchange messages.
BEA MessageQ Introduction to Message Queuing G-3

is
hen an

d for
sag-

recov-

overy

tion
 the

stem
correlation ID

A user-defined value associated with and identifying a specific message. Receiv-
ing applications can retrieve the correlation ID and tag any responses with the
same value. This aids in matching responses with requests.

cross-group

Pertaining to messages that pass between BEA MessageQ message queuing
groups. A cross-group message is targeted to a message queuing group outside of
the local group. Cross-group connections enable applications to share information
across different systems connected to the same message queuing bus.

datagram

A “best effort” style of message delivery in which a nonrecoverable attempt
made to deliver a message. If the message cannot be delivered to a target, t
error is logged.

dead letter journal (DLJ)

A file that provides nonvolatile disk storage for messages that cannot be store
automatic recovery. Applications use the DLJ file to resend undelivered mes
es. Also called DLJ file.

dead letter queue (DLQ)

The permanent message queue that provides memory-based storage of all
erable messages that could not be stored for automatic delivery. Also called DLQ
file.

delivery interest point

A component of the delivery mode that indicates the step in the message rec
data flow at which the sender program is notified.

delivery mode

A selection of options that specify how the sender program receives notifica
of recoverable message delivery and the point in the message flow at which
notification is sent. See also message delivery.

destination queue file (DQF)

A message recovery journal that provides nonvolatile storage on a remote sy
for automatic recovery and delivery of messages. Also called DQF file.
G-4 BEA MessageQ Introduction to Message Queuing

distributed application

An application that divides the user interface, processing, or data among one or
more units that execute on a single central processing unit (CPU) or multiple
nodes in a network.

distributed computing

An application design methodology that places data entry and application process-
ing close to departmental and functional end users. These users are most familiar
with the input requirements and need the processed output to support their busi-
ness objectives.

Distributed Name Services (DNS)

A heavyweight namespace that BEA MessageQ can use to store global names. Us-
ing DNS on OpenVMS systems enables BEA MessageQ to locate the queue ad-
dress for a queue defined by any group on the message queuing bus. See also
naming.

distribution

A stage in broadcast services where the SBS Server delivers a message to receiver
programs.

distribution queue

A queue address that is specified in a broadcast or availability services registration
message. The distribution queue is the final destination of a broadcast or availabil-
ity notification message.

DLJ file

See dead letter journal.

DLQ file

See dead letter queue.

DQF file

See destination queue file.

duplex connection

An application protocol where the initiating partner is the sender program and the
accepting partner is the receiver program, until the sender program requests a di-
rection change and becomes the new receiver program. The accepting partner then
becomes the sender program and remains the sender program until requesting a
BEA MessageQ Introduction to Message Queuing G-5

direction change. Contrast with simplex connection.

event

A network- or system-specific occurrence, such as timer expiration, for which the
logging component maintains a record.

explicit confirmation

A type of message confirmation that requires the receiver program to delete the
message from the recovery journal using a message sequence number. The mes-
sage is not deleted until the receiver program has finished processing the informa-
tion in it.

facility

A collection of one or more computer programs that implement a set of related
functions or services. The implementation of a facility can consist of either a pro-
cess or a procedure.

failover

1) The process of a reconfiguration after a hard fault or for planned maintenance.

2) The ability of a system or component to reconfigure itself.

Field Manipulation Language (FML)

Field Manipulation Language (FML) is a set of C language functions for defining
and manipulating storage structures called fielded buffers, that contain at-
tribute-value pairs in fields. The attribute is the field’s identifier, and the associat-
ed value represents the field’s data content.

FML

See Field Manipulation Language.

full duplex

Pertaining to a communications method in which data can be transmitted and re-
ceived at the same time.

global data structure

A data structure that can be shared by multiple processes.

global sections

An OpenVMS shared memory segment potentially available to all processes in the
system. Access is protected by standard access control mechanisms.
G-6 BEA MessageQ Introduction to Message Queuing

group

See message queuing group.

group ID

The internal number of the BEA MessageQ message queuing group. The group
ID is part of the queue address. Each group ID must be unique within the message
queuing bus.

group name

The symbolic name associated with the BEA MessageQ group ID.

half-duplex

Pertaining to a communication method where one partner is sending data when the
other partner is receiving data. See also duplex connection.

heterogeneous computing environment

An environment in which applications run on computer systems from different
vendors employing various operating system and networking software.

heterogeneous messaging

The use of different communications methods to transfer messages.

heterogeneous operating systems

A configuration of a variety of computers and operating systems connected by net-
working hardware and software.

implicit confirmation

A type of message confirmation on BEA MessageQ for UNIX and Windows NT
systems that automatically deletes a recoverable message from a journal file. The
receiver program does not need to respond to the receipt of the message.

inbound conversation allocation

The allocation of conversations that are initiated by an OpenVMS transaction pro-
gram.

initiator-only deallocation

A method of duplex connection termination where the initiating partner is the only
one who can terminate the connection normally. Contrast with open deallocation.
BEA MessageQ Introduction to Message Queuing G-7

interprocess communication

Two-way communication between active independent processes.

journaled guaranteed delivery

A method used by applications to guarantee BEA MessageQ message delivery in
which the sending process sends a message that is delivered to the target disk
queue.

journal file

A disk file that records all received and confirmed messages.

journaling

Writing to a auxiliary message recovery journal file.

journal replay

A method for resending messages stored in the DLJ or PCJ files.

link driver

A process that establishes a communications link between message queuing
groups. Using the queuing engine, each link driver sends outbound messages and
delivers inbound messages.

Linked List Sections

A set of global sections that is used to store the BEA MessageQ message buffers
for a message queuing group. See also buffer pool.

message

A data item that is transmitted over a communications medium. A message con-
tains a message header and data portion. The message header is comprised of at-
tributes, which are defined by the application program, and context, which is
added by the messaging tool.

message-based services

Predefined request, notification, and response messages exchanged between the
application and BEA MessageQ server process.

message capture

A part of the Script Facility that provides a mechanism for viewing messages that
are sent or received by an application.
G-8 BEA MessageQ Introduction to Message Queuing

message confirmation

An action taken by the receiver program, which indicates to the message queuing
system that the processing of a recoverable message has completed. A message
confirmation terminates the message system’s responsibility for the recoverable
message.

Message Control Section (MCS)

A global section that stores information about message queues and other global
information, such as send and receive counters.

message delivery

The processing steps performed by the message queuing system when moving the
message from a sender program to the receiver program’s message queue.

message queue

An attachment point on the BEA MessageQ message queuing bus where pending
messages are stored. A message queue is identified by a queue number and can be
primary, secondary, or multireader.

message queuing

Interprocess communication and information exchange between two or more co-
operating processes accomplished by directing messages to a memory- or
disk-based queue as an intermediate storage point.

message queuing bus

A transparent communication mechanism that uses a simple logical bus topology.
A message queuing bus provides a standard set of program-callable subroutines
that allow message transfer between programs and message queues. See also Mes-
sageQ message queuing bus.

message queuing group

A set of logical addresses on the BEA MessageQ message queuing bus, all sharing
a set of common BEA MessageQ resources. Each message queuing group resides
on a single system. However, multiple groups can reside on the same system. The
interconnections between groups define the extent of a message queuing bus.

Message Recovery Services (MRS)

A set of BEA MessageQ services that manage the automatic redelivery of critical
messages.
BEA MessageQ Introduction to Message Queuing G-9

Multipoint Outbound Target (MOT)

An entry point to a broadcast stream. A range of queue addresses is reserved to
define a set of unique broadcast streams.

multireader queue (MRQ)

An optional queue type on the BEA MessageQ message queuing bus that stores
messages that can be read by several simultaneous readers. Each reader, in turn,
receives the next message in first-in/first-out (FIFO) order from the queue. A mul-
tireader queue can be permanent or permanently active. See also queue type.

naming

Pertaining to the use of a symbolic entity in place of an actual value. BEA Mes-
sageQ uses character strings for names, which, when translated, reveal queue ad-
dresses.

network

A collection of interconnected individual computer systems.

node

An individual computer system in a network that can communicate with other
computer systems in the network.

nonblocking

Pertaining to an asynchronous style of message delivery where the program does
not have to wait for an action to complete. The nonblocking style generally in-
volves receiving an acknowledgment message when the action is complete. Con-
trast with blocking.

notification

A type of message-based service that supplies up-to-date information on events as
they occur.

open deallocation

A method of duplex connection termination where the current sender can termi-
nate the connection normally, regardless of which partner initiated the connection.
Contrast with initiator-only deallocation.

operand

Data in the message header or message data structure that will be compared.
G-10 BEA MessageQ Introduction to Message Queuing

outbound conversation allocation

The allocation of conversations that are initiated by a CICS transaction program.

PAMS

Process Activation and Message Support. PAMS is the original name for the BEA
MessageQ message queuing system. The BEA MessageQ API preserves the orig-
inal product acronym in the name of each callable service to protect customer in-
vestment in application development.

PCJ file

See postconfirmation journal file.

pending

Pertaining to a message that is currently in a queue.

permanent outbound target

A type of outbound target that supports a method of message delivery where BEA
MessageQ clients can request that outbound traffic be delivered to a predeter-
mined BEA MessageQ queue. The queue must be a permanent queue in the des-
ignated group.

permanent queue

A message queue that is always at the same address on the BEA MessageQ mes-
sage queuing bus. It exists regardless of whether a process is attached to it. A per-
manent queue retains its name and address after the process detaches, but loses
any pending messages. See also permanently active queue. Contrast with tempo-
rary queue.

permanently active queue

A message queue that can receive messages without an application attachment. It
retains its name and messages after the process detaches from BEA MessageQ.
See also permanent queue.

platform

The combination of hardware, operating systems, and windowing systems that
supports an application.

port server

A class of BEA MessageQ application that provides a connection to the BEA
MessageQ message queuing bus for client applications executing on platforms
BEA MessageQ Introduction to Message Queuing G-11

that do not have a BEA MessageQ implementation.

postconfirmation journal file (PCJ)

A disk file that holds confirmed recoverable messages that can be retrieved for au-
dit trailing. Also called PCJ file.

primary queue

The one required queue used when a process attaches to the BEA MessageQ mes-
sage queuing bus. There can be only one primary queue for each process. It is used
as the default return address on all messages sent by that process. A primary queue
can be permanent, permanently active, or temporary. See also queue type.

private broadcast stream

A MOT address range indicating that messages are restricted to distribution by
one SBS Server, which restricts distribution to queues that have registered with
that SBS Server. See also broadcast stream.

process

The basic entity scheduled by the system software, a process provides the context
in which an image executes.

queue

See message queue.

queue address

A longword value that uniquely identifies the attachment point on the BEA Mes-
sageQ message queuing bus. An address includes a group ID and a queue number.

queue attribute

A specific characteristic of a queue that determines the features of the queue.
Some examples of queue attributes are: permanent or temporary, recoverable or
volatile, FIFO or non-FIFO capability, and so on.

queue number

A number that represents a unique location of a permanent or temporary queue ad-
dress within a BEA MessageQ message queuing group. There must be at least one
queue number for every process using the BEA MessageQ message queuing bus.

queue type

A description of a message queue as being primary, secondary, or multireader.
G-12 BEA MessageQ Introduction to Message Queuing

queuing engine

A process that handles all message traffic between message queuing groups. One
queuing engine is created for each group. The queuing engine creates the global
sections of memory for message queues within the group.

quota

The total amount of a system resource, such as disk space, that a job is allowed to
use in an accounting period.

receive message quota

The application-defined limitation (in bytes) on pending messages in a queue.

receiver program

The application program in a connection that is accepting messages from the send-
er program.

recoverable message

A message that is temporarily stored on a disk file and is guaranteed delivery if an
application, system, or network fails.

registration

A stage in broadcast services where an application program subscribes to a broad-
cast stream by sending a registration message to the SBS Server.

Registry

A database in the Windows NT operating system that stores system and optional
software configuration information.

reliable transmission

Pertaining to messages that are guaranteed to be delivered to a target queue. Con-
trast with recoverable message.

request

A type of message-based service that obtains information or registers to receive
ongoing notifications.

response

A type of message-based service that provides information to fulfill requests or ac-
knowledge registration and deregistration requests.
BEA MessageQ Introduction to Message Queuing G-13

return-to-sender

A method of BEA MessageQ message delivery in which a nonrecoverable attempt
is made to deliver a message. If the message cannot be delivered, it is returned to
the sending process marked with a special return status.

SAF file

See store and forward.

Script facility

A productivity tool that speeds application testing by providing message simula-
tion, capture, and replay abilities.

script file

A file with special syntax defining message information.

secondary queue

An optional private queue type used in conjunction with a primary queue. It pro-
vides a secondary address for messages. A secondary queue can be permanent,
permanently active, or temporary. See also queue type.

Selective Broadcast Services (SBS)

BEA MessageQ services that enable an application to send a message to many re-
ceiving applications with a single send operation.

semaphore

In BEA MessageQ software, a common data structure used to serialize access to
shared data structures.

sender notification

A component of the delivery mode that indicates how the sender program wants
to receive information about the delivery of the message.

sender program

The application program in a connection that is sending messages to the receiver
program.

sequence number

The message sequence number is generated by the BEA MessageQ message re-
covery system for each recoverable message. This value is passed to the receiver
program in the PAMS status buffer (PSB) of the pams_get_msg function when it
G-14 BEA MessageQ Introduction to Message Queuing

reads each recoverable message.

server

A software module designed to perform a specific function for many users. See
also client and client/server model.

sessionless

Pertaining to the absence of protocols required to manage communications be-
tween processes.

shared memory segment

A portion of memory that can be accessed by two or more processes.

simplex connection

An application protocol where the initiating partner is always the sender program
and the accepting partner is always the receiver program. The receiver program
can signal an error, but cannot send. Contrast with duplex connection.

source queue

A queue address of the program that sent the message.

stateless

Pertaining to the absence of protocols to identify the stages within a message
transmission.

store and forward (SAF)

A message recovery journal that provides nonvolatile storage on the sender’s sys-
tem for automatic recovery and delivery of messages. Also called SAF file.

submission

A stage in broadcast services where an application program inserts a message on
a broadcast stream.

synchronous

Pertaining to a message queuing system where the sender program must wait for
a specific event or reply. Contrast with asynchronous.

target

A generic term for the client application with which another client application
wants to establish a connection.
BEA MessageQ Introduction to Message Queuing G-15

target queue

The queue address of the receiver program of the message.

TCP/IP

Transport Control Protocol/Internet Protocol. TCP/IP is a set of protocols that
governs the transport of information between computers and networks of dissim-
ilar types. Both Internet and UNIX based systems use TCP/IP protocols.

temporary queue

A queue that exists only for the duration of the process attachment to the BEA
MessageQ message queuing bus. The assignment of the queue is not permanently
defined. A temporary queue loses all messages in the queue when the process de-
taches from the queue. Contrast with permanent queue.

transparent

Relating to IBM systems, which use EBCDIC data encoding format. BEA Mes-
sageQ clients expect data in ASCII format. For a target defined as transparent, the
LU6.2 Port Server does not provide data encoding format translation. Contrast
with nontransparent.

type

A 16-bit piece of data BEA MessageQ uses to identify a kind of message from all
other messages in the application. See also class.

undeliverable message action (UMA)

The action that occurs when the BEA MessageQ message queuing bus is unable
to store a message. The UMA specifies the action to be taken with the recoverable
message if it cannot be stored for guaranteed delivery by the message recovery
system.

universal broadcast stream

A MOT address range indicating that messages can be distributed by all SBS
Servers. Distribution is across the entire message queuing bus wherever SBS soft-
ware is running. See also broadcast stream.

user process

A user’s program image.

utility

A program that provides a set of related general-purpose functions, such as a pro-
G-16 BEA MessageQ Introduction to Message Queuing

gram development utility (an editor, a linker).

wait for dequeue

A method of BEA MessageQ message delivery in which the sending process is
blocked until the message is read from the target queue by the receiver program.

wait for enqueue

A method of BEA MessageQ message delivery in which the sender program pro-
cess is blocked until the message is written to the target queue. A return status in-
dicates if the message is successfully written to the queue. This delivery method
guarantees message delivery when message recovery services are not available on
the target platform.
BEA MessageQ Introduction to Message Queuing G-17

G-18 BEA MessageQ Introduction to Message Queuing

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks
	Contents
	Preface
	1. What Is BEA MessageQ?
	The Distributed Computing Revolution 1-1
	Message Queuing Basics 1-9
	BEA MessageQ Benefits 1-16

	2. Sending and Receiving BEA MessageQ Messages
	Overview of BEA MessageQ API Functions 2-2
	Configuring the BEA MessageQ Environment 2-5
	Attaching to the Message Queuing Bus 2-11
	Sending a Message 2-14
	Receiving a Message 2-24
	Detaching from the Message Queuing Bus 2-27
	Exchanging Messages Between BEA MessageQ and BEA TUXEDO 2-28

	3. Designing and Developing BEA MessageQ Applications
	Designing a BEA MessageQ Application 3-1
	Advanced Message Queuing Features 3-12
	Testing and Debugging BEA MessageQ Applications 3-27

	4. Managing the BEA MessageQ Environment
	Understanding the BEA MessageQ Environment 4-1
	Monitoring System Performance 4-5
	Error Logging and Recovery 4-5
	Glossary

	Preface
	Purpose of This Document
	Who Should Read This Document
	How This Document Is Organized

	How to Use This Document
	Opening the Document in a Web Browser
	Printing from a Web Browser
	Documentation Conventions

	Related Documentation
	MessageQ Documentation

	Contact Information
	Documentation Support
	Customer Support

	1 What Is BEA MessageQ?
	The Distributed Computing Revolution
	Traditional Versus Distributed Applications
	Major Trends in Distributed Computing
	Figure 1�1 Contrasting Application Integration Approaches

	Distributed Computing Models
	Figure 1�2 Client/Server versus Peer-to-Peer Information Exchange
	Peer-to-Peer Communication Model
	Client/Server Communication Model

	Technologies for Building Distributed Applications
	DCE/Remote Procedure Call
	Object Transaction Monitoring
	Message Queuing

	Message Queuing Basics
	What Is a Message?
	What Is Message Queuing?
	How Does BEA MessageQ Work?
	Choosing the BEA MessageQ Server or Client
	How the BEA MessageQ Client Works
	Figure 1�3 How Client Applications Communicate using the CLS

	When to Choose the BEA MessageQ Client

	Key Features of BEA MessageQ

	BEA MessageQ Benefits
	Standardized Integration Approach
	Guaranteed Delivery
	Application Portability
	Figure 1�4 How the BEA MessageQ API Insulates Applications

	Message Bus Simplifies Communication
	Broad Multiplatform Support
	Table 1�1 Supported Platform Environments

	Flexibility to Meet Changing Application Needs

	2 Sending and Receiving BEA MessageQ Messages
	Overview of BEA MessageQ API Functions
	Table 2�1 Description of Key PAMS API Functions

	Configuring the BEA MessageQ Environment
	Defining Queues and Their Attributes
	Configuring Buses, Groups and Queues
	Designing Your BEA MessageQ Environment
	Figure 2�1 Sample BEA MessageQ Application

	Configuring Each Message Queuing Group
	Starting Each Message Queuing Group

	Attaching to the Message Queuing Bus
	Attaching by Name
	Attaching by Number
	Attaching to a Temporary Queue

	Sending a Message
	Selecting a Messaging Style
	Using Buffer-Style Messaging
	Using FML-Style Messaging

	Choosing a Delivery Mode
	Sender Notification
	Delivery Interest Point
	Table 2�2 Nonrecoverable Delivery Modes
	Table 2�3 Recoverable Delivery Modes

	Undeliverable Message Action

	Receiving a Message
	Confirming Receipt of a Message
	Using the PAMS Status Buffer
	Figure 2�2 PAMS Status Buffer

	Using the show_buffer Argument
	Using Message Classes with BEA MessageQ and BEA TUXEDO

	Detaching from the Message Queuing Bus
	Exchanging Messages Between BEA MessageQ and BEA TUXEDO

	3 Designing and Developing BEA MessageQ Applications
	Designing a BEA MessageQ Application
	Solving the Business Problem
	Figure 3�1 Sample BEA MessageQ Application

	Developing the Communications Model
	Figure 3�2 Request/Response Messaging Paradigm
	Figure 3�3 Service Point Messaging Paradigm

	Defining Major Application Needs
	Choosing the Style of Messaging
	Choosing Recoverable or Nonrecoverable Message Delivery
	Choosing Asynchronous or Synchronous Messaging
	Using Message Broadcasting
	Using Message Selection
	Load Balancing with MRQs
	Choosing Single Reader Queues for Sequential Processing
	Choosing Permanently Active Queues for Data Persistence
	Using BEA MessageQ Naming
	Using FML for Self-Describing Messaging

	Designing Message Flow and System Configuration

	Advanced Message Queuing Features
	FML Self-Describing Messaging
	Recoverable Messaging
	Figure 3�4 Recoverable Messaging

	Message Selection
	Broadcasting Messages
	Figure 3�5 Selective Broadcast Services

	Naming
	Using Message Based Services
	Exchanging Messages Between BEA MessageQ and BEA TUXEDO V6.4 or BEA M3 V2.1
	Figure 3�6 Message Exchange Between BEA MessageQ and TUXEDO

	Enabling the Messaging Bridge
	Additional API Functions
	Defining a Name-to-Queue Translation at Runtime
	Locating the Queue Address for a Queue
	Using Timers
	Obtaining Detailed Status Information
	Obtaining the Number of Pending Messages in a Queue

	Testing and Debugging BEA MessageQ Applications
	BEA MessageQ Script Facility
	BEA MessageQ Test Utility
	Message Tracing

	4 Managing the BEA MessageQ Environment
	Understanding the BEA MessageQ Environment
	Figure 4�1 The BEA MessageQ Environment
	Anatomy of a Message Queuing Group
	Figure 4�2 BEA MessageQ Servers

	Starting and Stopping Groups, Queues, Links and the CLS

	Monitoring System Performance
	Error Logging and Recovery
	Listing 4-1 Sample BEA MessageQ Event Log File
	Glossary
	1) The process of a reconfiguration after a hard fault or for planned maintenance.
	2) The ability of a system or component to reconfigure itself.

