
Programming Guide

B E A M e s s a g e Q f o r O p e n V M S V e r s i o n 5 . 0
D o c u m e n t E d i t i o n 5 . 0

M a r c h 2 0 0 0

BEA MessageQ

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and TUXEDO are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, Jolt, M3, and WebLogic are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

BEA MessageQ Programmer’s Guide

Document Edition Date Software Version

5.0 March 2000 BEA MessageQ, Version 5.0

Contents

Preface

1. Sending and Receiving BEA MessageQ Messages
Overview ... 1-1

The Basics of Sending and Receiving Messages .. 1-2

Sending and Receiving Message Buffers .. 1-3

How to Send BEA MessageQ Messages.. 1-4

How to Send Large Messages .. 1-7

Receiving Messages Using Message Pointers... 1-8

Self-Describing Messaging with FML .. 1-9

How Self-Describing Messaging Works.. 1-9

Benefits of Using FML ... 1-10

Performance Considerations When Using FML............................... 1-11

Designing Applications to Use a Mixed Messaging Environment ... 1-12

How to Send an FML Message .. 1-12

Defining Field Identifiers .. 1-13

Building the FML Message... 1-13

Sending the FML Message ... 1-14

How to Receive an FML Message ... 1-15

Reading the Message from the Queue .. 1-16

Interpreting the Message ... 1-17

Exchanging Messages Between BEA MessageQ and BEA TUXEDO or BEA M3
1-17

Enabling the Messaging Bridge ... 1-21

Data Transformation Between BEA MessageQ and TUXEDO 1-21

Data Types .. 1-22

Data Size and Length .. 1-22
BEA MessageQ Programmer’s Guide iii

Timeouts.. 1-23

Priorities .. 1-23

Target, Queue Space and Queue Name... 1-23

Delivery ... 1-26

Undeliverable Messages.. 1-26

Correlation Identifiers ... 1-27

Return Values .. 1-27

Other BEA MessageQ API Elements.. 1-29

Other TUXEDO API Elements ... 1-29

2. Using Recoverable Messaging
Choosing a Message Delivery Mode... 2-2

How the Message Recovery System Works... 2-3

Choosing Recoverable and Nonrecoverable Delivery Modes.................... 2-4

When to Use Nonrecoverable Message Delivery 2-6

When to Use Recoverable Message Delivery 2-7

Choosing an Undeliverable Message Action ... 2-7

How to Send a Recoverable Message.. 2-9

Sequence Numbers ... 2-9

Specifying Timeout Values .. 2-10

Checking Delivery Outcome .. 2-11

Checking the Delivery Status of WF Requests 2-13

Checking the Delivery Status of AK Requests 2-16

 How to Receive a Recoverable Message.. 2-17

Confirming Message Receipt ... 2-18

Selecting a Confirmation Type ... 2-19

Selecting a Confirmation Order .. 2-20

Creating an Audit Trail of Confirmed Messages 2-20

Checking for Duplicate Messages .. 2-21

Using UMAs for Exception Processing... 2-22

Using Discard and Discard and Log UMAs...................................... 2-24

Using the Return-to-Sender UMA .. 2-25

Using the Dead Letter Queue UMA.. 2-25

Using the Dead Letter Journal... 2-26

Using the SAF UMA... 2-26
iv BEA MessageQ Programmer’s Guide

Recoverable Messaging on BEA MessageQ Clients....................................... 2-27

3. Broadcasting Messages
How Message Broadcasting Works... 3-3

Broadcast Scope ... 3-5

Named MOTs... 3-7

Broadcast Communication Modes ... 3-8

Retransmission Protocol on BEA MessageQ for OpenVMS Systems
3-10

Sending Broadcast Messages .. 3-12

Receiving Broadcast Messages ... 3-13

Registering to Receive Broadcast Messages .. 3-15

Sending a Registration Message ... 3-16

Registering to Receive Selected Broadcast Messages 3-17

Registration Acknowledgment.. 3-19

Reading Broadcast Messages ... 3-19

Deregistering from Receiving Broadcast Messages................................. 3-19

Running Existing SBS Applications ... 3-20

4. Using Naming
Understanding Naming.. 4-1

What is Naming?.. 4-2

What is a Name Space?.. 4-2

What is the Naming Agent? ... 4-3

Configuring Bus-Wide Naming .. 4-3

How Applications Use Naming... 4-5

Specifying Names and Pathnames ... 4-6

Attaching and Locating Queues ... 4-6

Static and Dynamic Binding of Queue Addresses .. 4-7

How Dynamic Binding of Queue Addresses Works.................................. 4-7

How Caching and Binding Work ... 4-8

Examples of Static and Dynamic Binding ... 4-8

Client for Style 1 (Static Binding) .. 4-8

Client for Style 2 (Dynamic Binding)... 4-9

Server for Style 1 (Static Binding).. 4-10
BEA MessageQ Programmer’s Guide v

Server for Style 2 (Dynamic Binding) .. 4-10

5. Using Message-Based Services
How Message-Based Services Work... 5-2

Requesting a Service .. 5-3

Receiving a Response... 5-3

Obtaining the Status of a Queue .. 5-4

Monitoring and Controlling Link Status ... 5-6

Listing Cross-Group Connections, Entries, and Groups 5-6

Obtain Notification of Cross-Group Links Established and Lost 5-7

Controlling Cross-Group Links.. 5-8

Link Management Control Functions ... 5-9

Link Management Design Considerations .. 5-27

Learning the Current Status of Queues.. 5-29

Listing Attached Queues in a Group .. 5-29

Receiving Attachment Notifications .. 5-30

Managing Message Recovery Files ... 5-31

Opening, Closing, and Failing Over SAF and DQF Files 5-32

Opening and Closing Auxiliary Journal Files .. 5-33

Controlling Journaling to the PCJ File ... 5-34

Transferring the Contents of a Destination Queue File............................ 5-35

6. Building and Testing Applications
Formatting and Converting Message Data .. 6-2

Byte Order Conversion... 6-2

Alignment of Data Structures ... 6-3

Writing Portable BEA MessageQ Applications .. 6-4

Compiling and Linking BEA MessageQ Applications 6-5

Using BEA MessageQ Include Files .. 6-5

Programming Language Support .. 6-8

Connecting to the BEA MessageQ Environment....................................... 6-8

Compiling and Linking Applications ... 6-10

UNIX Makefile ... 6-11

Windows NT Makefile.. 6-12

OpenVMS Build Procedure .. 6-14
vi BEA MessageQ Programmer’s Guide

Running a BEA MessageQ Application... 6-17

Running Existing BEA MessageQ Applications Under Version 5.0 6-19

Testing Return Status ... 6-21

Using the BEA MessageQ Test Utility ... 6-23

Debugging BEA MessageQ Applications ... 6-25

Tracing Messages on UNIX Systems... 6-25

Tracing Messages on Windows NT Systems... 6-26

Tracing Messages on OpenVMS Systems ... 6-26

Controlling Message Flow .. 6-26

7. Using the Script Facility
How to Use the Script Facility .. 7-2

Using the BEA MessageQ Scripting Language ... 7-3

Capturing, Replaying, and Simulating Message Exchange 7-5

Capturing Messages Using Scripts .. 7-8

Controlling Message Delivery Using Scripts... 7-9

Displaying Captured Messages on the Screen ... 7-9

Writing Captured Messages to a Log File.. 7-10

Writing Captured Messages to Multiple Log Files 7-12

Replaying Messages .. 7-13

Script Processing on UNIX Systems.. 7-14

Script Processing on OpenVMS Systems .. 7-16

Writing Scripts to Send Messages... 7-17

Defining Messages in Scripts ... 7-17

Defining the Message Header .. 7-18

Additional Arguments for UNIX Systems.. 7-19

Defining the Message Data .. 7-20

Adding Repeats, Delays, and Comments to Scripts .. 7-22

Repeating an Operation.. 7-22

Entering Time Delays... 7-23

Entering Comments.. 7-24

End-of-Line Format .. 7-24

Comment Command Format... 7-24

Verifying Script Files .. 7-24

Verifying Scripts on UNIX Systems .. 7-25
BEA MessageQ Programmer’s Guide vii

Verifying Scripts on OpenVMS Systems... 7-25

Resolving Script Verification Errors .. 7-25

8. PAMS Application Programming Interface
BEA MessageQ API Description Format.. 8-1

BEA MessageQ API Data Types... 8-2

pams_attach_q... 8-3

pams_bind_q ... 8-11

pams_cancel_get ... 8-15

pams_cancel_select ... 8-16

pams_cancel_timer.. 8-18

pams_close_jrn.. 8-20

pams_confirm_msg ... 8-21

pams_detach_q .. 8-25

pams_exit .. 8-28

pams_get_msg... 8-30

pams_get_msga ... 8-44

pams_get_msgw .. 8-58

pams_locate_q ... 8-72

pams_open_jrn .. 8-77

pams_put_msg... 8-79

pams_read_jrn ... 8-90

pams_set_select ... 8-96

pams_set_timer.. 8-104

pams_status_text ... 8-107

putil_show_pending .. 8-110

9. Message Reference
AVAIL .. 9-2

AVAIL_DEREG ... 9-4

AVAIL_REG .. 9-6

AVAIL_REG_REPLY.. 9-8

DISABLE_NOTIFY ... 9-10

DISABLE_Q_NOTIFY_REQ .. 9-12

DISABLE_Q_NOTIFY_RESP... 9-14
viii BEA MessageQ Programmer’s Guide

ENABLE_NOTIFY .. 9-16

ENABLE_Q_NOTIFY_REQ ... 9-17

ENABLE_Q_NOTIFY_RESP.. 9-19

LINKMGT_REQ .. 9-21

LINKMGT_RESP... 9-24

LINK_COMPLETE .. 9-29

LINK_LOST ... 9-31

LIST_ALL_CONNECTIONS (Request).. 9-33

LIST_ALL_CONNECTIONS (Response) 9-34

LIST_ALL_ENTRIES (Request) ... 9-36

LIST_ALL_ENTRIES (Response) ... 9-37

LIST_ALL_GROUPS (Request) .. 9-39

LIST_ALL_GROUPS (Response).. 9-40

LIST_ALL_Q_REQ.. 9-42

LIST_ALL_Q_RESP .. 9-43

LOCATE_Q_REP... 9-45

MRS_ACK.. 9-47

MRS_DQF_SET ... 9-50

MRS_DQF_SET_REP.. 9-52

MRS_DQF_TRANSFER.. 9-54

MRS_DQF_TRANSFER_ACK ... 9-56

MRS_DQF_TRANSFER_REP .. 9-58

MRS_JRN_DISABLE .. 9-60

MRS_JRN_DISABLE_REP ... 9-62

MRS_JRN_ENABLE ... 9-64

MRS_JRN_ENABLE_REP .. 9-66

MRS_SAF_SET.. 9-68

MRS_SAF_SET_REP .. 9-71

MRS_SET_DLJ .. 9-74

MRS_SET_DLJ_REP ... 9-76

MRS_SET_PCJ... 9-78

MRS_SET_PCJ_REP ... 9-80

Q_UPDATE .. 9-82

SBS_DEREGISTER_REQ ... 9-84

SBS_DEREGISTER_RESP.. 9-86
BEA MessageQ Programmer’s Guide ix

SBS_REGISTER_REQ... 9-88

SBS_REGISTER_RESP ... 9-91

SBS_SEQUENCE_GAP... 9-93

SBS_STATUS_REQ... 9-95

SBS_STATUS_RESP ... 9-97

TIMER_EXPIRED.. 9-102

UNAVAIL... 9-103

A. Supported Delivery Modes and Undeliverable Message
Actions

Delivery Mode and UMA Cross-Reference ... A-3

B. Obsolete Functions and Services
Obsolete Message-Based Services for Message Broadcasting......................... B-1

SBS_BS_SEQGAP .. B-2

SBS_DEREG ... B-4

SBS_DEREG_ACK ... B-6

SBS_DEREG_BY_ID.. B-8

SBS_REG... B-10

SBS_REG_EZ.. B-12

SBS_REG_EZ_REPLY ... B-14

SBS_REG_REPLY .. B-16

Obsolete PAMS API Functions .. B-17

pams_create_handle ... B-18

pams_decode .. B-20

pams_delete_handle ... B-25

pams_encode .. B-27

pams_extract_buffer... B-31

pams_insert_buffer... B-33

pams_msg_length... B-35

pams_next_msg_field... B-37

pams_remove_encoding... B-39

pams_set_msg_position ... B-41

Index
x BEA MessageQ Programmer’s Guide

e

s

sage

ltiple
Preface

Purpose of This Document

This document provides a detailed description about using the BEA MessageQ
application programming interface (API) to build and integrate distributed
applications. This document contains both tutorial and reference information.

Who Should Read This Document

This document is intended for applications designers and developers who are
interested in designing, developing, building, and running BEA MessageQ
applications.

How This Document Is Organized

The BEA MessageQ Programmer’s Guide is organized as follows:

n Chapter 1, “Sending and Receiving BEA MessageQ Messages” describes th
basic process of sending and receiving messages. This chapter makes a
distinction between sending messages as predefined message buffers and a
self-describing FML buffers.

n Chapter 2, “Using Recoverable Messaging” describes how to guarantee mes
delivery using recoverable messages written to nonvolatile storage.

n Chapter 3, “Broadcasting Messages” describes how to send messages to mu
queues with a single program call using Selective Broadcast Services.
BEA MessageQ Programmer’s Guide xi

 and

ed

,”
n
 to

Q
ith
d

n
at to
he

t a
n Chapter 4, “Using Naming” describes how to enable BEA MessageQ
applications to identify message queues by name.

n Chapter 5, “Using Message-Based Services” describes how to use
message-based services to obtain the status of one or more queues, monitor
control link status, and broadcast messages.

n Chapter 6, “Building and Testing Applications”describes how to format and
convert message data, write portable BEA MessageQ applications, test and
debug applications, and control message flow.

n Chapter 7, “Using the Script Facility” describes how to simulate message
exchange between programs using script files instead of test programs.

n Chapter 8, “PAMS Application Programming Interface” describes the BEA
MessageQ applications programming interface. All API functions are listed in
alphabetical order.

n Chapter 9, “Message Reference” describes all BEA MessageQ message-bas
services.

n Appendix A, “Supported Delivery Modes and Undeliverable Message Actions
lists the supported combinations of delivery mode (such as wait for completio
or no notification) and undeliverable message action (such as discard, return
sender, or store and forward).

n Appendix B, “Obsolete Functions and Services,” lists obsolete BEA Message
API functions and message-based services. These items are listed for use w
applications built on older versions of BEA MessageQ and should not be use
for new development.

How to Use This Document

This document, BEA MessageQ Programmer’s Guide, is designed primarily as a
online, hypertext document. If you are reading this as a paper publication, note th
get full use from this document you should access it as an online document via t
BEA MessageQ Online Documentation CD.

The following sections explain how to view this document online, and how to prin
copy of this document.
xii BEA MessageQ Programmer’s Guide

r

nd

ou
re to
rint
ter or

e
ain
A
Opening the Document in a Web Browser

To access the online version of this document, open the index.htm file in the top-level
directory of the BEA MessageQ Online Documentation CD. On the main menu, click
the BEA MessageQ Programmer’s Guide button.

Note: The online documentation requires a Web browser that supports HTML
Version 3.0. Netscape Navigator version 3.0 or Microsoft Internet Explore
version 3.0 or later are recommended.

Printing from a Web Browser

You can print a copy of this document, one file at a time, from the Web browser.
Before you print, make sure that the chapter or appendix you want is displayed a
selected in your browser.

To select a chapter or appendix, click anywhere inside the chapter or appendix y
want to print. If your browser offers a Print Preview feature, you can use the featu
verify which chapter or appendix you are about to print. If your browser offers a P
Frames feature, you can use the feature to select the frame containing the chap
appendix you want to print. The BEA MessageQ Online Documentation CD also
includes Adobe Acrobat PDF files of all of the online documents. You can use th
Adobe Acrobat Reader to print all or a portion of each document. On the CD’s m
menu, click the Bookshelf button. On the Bookshelf, scroll to the entry for the BE
MessageQ document you want to print and click the PDF option.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.
BEA MessageQ Programmer’s Guide xiii

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <stdio.h>

void main ()

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

dmqshutdown -b bus_id -g group_id [-f]

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

dmqshutdown -b bus_id -g group_id [-f]

Convention Item
xiv BEA MessageQ Programmer’s Guide

Related Documentation

The following sections list the documentation provided with the BEA MessageQ
software, related BEA publications, and other publications related to the technology.

BEA MessageQ Documentation

The BEA MessageQ information set consists of the following documents:

BEA MessageQ Installation and Configuration Guide for Windows NT

BEA MessageQ Installation and Configuration Guide for UNIX

BEA MessageQ Installation Guide for OpenVMS

BEA MessageQ Configuration Guide for OpenVMS

BEA MessageQ Programmer’s Guide

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

dmqshutdown -b bus_id -g group_id ...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
BEA MessageQ Programmer’s Guide xv

BEA MessageQ FML Programmer’s Guide

BEA MessageQ Reference Manual

BEA MessageQ System Messages

BEA MessageQ Client for Windows User’s Guide

BEA MessageQ Client for UNIX User’s Guide

BEA MessageQ Client for OpenVMS Guide

Note: The BEA MessageQ Online Documentation CD also includes Adobe Acrobat
PDF files of all of the online documents. You can use the Adobe Acrobat
Reader to print all or a portion of each document.

Contact Information

The following sections provide information about how to obtain support for the
documentation and software.

Documentation Support

If you have questions or comments on the documentation, you can contact the BEA
Information Engineering Group by e-mail at docsupport@beasys.com. (For
information about how to contact Customer Support, refer to the following section.)

Customer Support

If you have any questions about this version of WebLogic Enterprise, or if you have
problems installing and running WebLogic Enterprise, contact BEA Customer Support
through BEA WebSupport at www.beasys.com. You can also contact Customer
Support by using the contact information provided on the Customer Support Card,
which is included in the product package.
xvi BEA MessageQ Programmer’s Guide

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages
BEA MessageQ Programmer’s Guide xvii

xviii BEA MessageQ Programmer’s Guide

CHAPTER

g
1 Sending and Receiving
BEA MessageQ
Messages

This chapter covers the following topics:

n The Basics of Sending and Receiving Messages

n Sending and Receiving Message Buffers

n Receiving Messages Using Message Pointers

n Self-Describing Messaging with FML

n Exchanging Messages Between BEA MessageQ and BEA TUXEDO or BEA
M3

Overview

BEA MessageQ enables applications to exchange information in the form of messages
using the following PAMS API functions:

n The pams_attach_q function—attaches the application to the message queuin
bus and defines a queue for the application to receive messages

n The pams_put_msg function—sends a message to a target queue
BEA MessageQ Programmer’s Guide 1-1

1 Sending and Receiving BEA MessageQ Messages

ve

nt and

essage
ary

 the

f

ue.
n The pams_get_msg function—retrieves a message from a queue

n The pams_detach_q function—detaches the application from the message
queuing bus

BEA MessageQ provides applications with three distinct ways to send and recei
messages using:

n Static message buffers

n Pointers to message buffers that can be dynamically reallocated as required

n Self-describing messaging using Field Manipulation Language (FML)

This variety of methods for sending and receiving messages enables application
developers to choose the type of messaging that best suits the application’s prese
future needs.

The Basics of Sending and Receiving
Messages

To send or receive messages, an application must be attached to at least one m
queue on the message queuing bus. This queue serves as the application’s prim
queue—the main mailbox in which it receives information. To attach to a queue,
application must successfully execute the pams_attach_q function. Once attached,
the application can send a message to a known target queue address using the
pams_put_msg function.

BEA MessageQ offers the following functions for receiving messages:

n The pams_get_msg function—retrieves a single message from a queue

n The pams_get_msgw function—retrieves a single message from a queue but, i
the queue is empty, this function waits for a message to arrive in the queue

n The pams_get_msga function—asynchronously retrieve messages from a que
This function is available only on OpenVMS systems.
1-2 BEA MessageQ Programmer’s Guide

Sending and Receiving Message Buffers
When the application is finished sending or receiving messages, it detaches from the
message queuing bus using the pams_detach_q function.

Refer to the programming examples distributed as part of the BEA MessageQ kit to
view sample programs for each of these PAMS API functions.

Note: If you are new to using BEA MessageQ, you should begin by reading the
Introduction to Message Queuing. This introduction explains the BEA
MessageQ concepts that you need to understand before you can begin
successfully developing applications.

Sending and Receiving Message Buffers

Sending and receiving information as static message buffers is the easiest way to
exchange information using BEA MessageQ. A static message buffer is a predefined,
static data structure. Often, an application uses a version number to identify the
structure layout. So, for example, when a payroll system sends employee payroll
information using version 1 of its payroll data structure, the receiving application can
interpret each field of data in the buffer because it knows the definition of the version
1 payroll data structure.

Passing information using a static data structure in the form of a message buffer is the
fastest way to exchange information between BEA MessageQ applications. Because
the data structure definition is known to both the sending and receiving applications,
no interpretation is required. Therefore, processing of information between both
sender and receiver programs is faster.

See the following topics for information on how to:

n Send a message buffer up to 32K. See the How to Send BEA MessageQ
Messages topic for more information.

n Send a message buffer up to 4MB. See the How to Send Large Messages topic
for more information.
BEA MessageQ Programmer’s Guide 1-3

1 Sending and Receiving BEA MessageQ Messages
How to Send BEA MessageQ Messages

When programming BEA MessageQ applications, there are four basic functions that
are used in the sending messages. The first function called is pams_attach_q. This
function is used to connect your BEA MessageQ applications to the BEA MessageQ
message queuing bus. Attaching to the message queuing bus provides the application
with a default queue address for receiving the reply message and a means to share
information with all other BEA MessageQ applications.

The example in Listing 1-1 illustrates how to attach to a queue by name. The queue
name must be defined appropriately in your group initialization file.

Listing 1-1 Example of Attaching to a Queue by Name

#include <stdio.h>
#include <string.h>
#include "p_entry.h"
#include "p_return.h"
#include "p_symbol.h"
 .
 .
 .
 int32 attach_mode;
 int32 dmq_status;
 int32 q_name_len;
 int32 q_type;
 char q_name[12];
 q_address my_primary_queue;
 strcpy(q_name,"example_q_1");
 attach_mode = PSYM_ATTACH_BY_NAME;
 q_type = PSYM_ATTACH_PQ;
 q_name_len = (int32)sizeof(q_name);
 dmq_status = pams_attach_q(
 &attach_mode,
 &my_primary_queue,
 &q_type,
 q_name,
 &q_name_len,
 (int32 *) 0, /* Use default name space */
 (int32 *) 0, /* No name space list len */
 (int32 *) 0, /* Timeout */
 (char *) 0, /* Reserved by MessageQ */
 (char *) 0); /* Reserved by MessageQ */
1-4 BEA MessageQ Programmer’s Guide

Sending and Receiving Message Buffers
 if (dmq_status == PAMS__SUCCESS)
 printf("Attached successfully to queue: \"%s\".\n", q_name);
 else
 printf("Error attaching to queue: \"%s\"; status returned
 is: %ld\n", q_name, dmq_status);
 .
 .
 .

After attaching to a queue, the application uses the pams_put_msg function to send a
message to the queue address of the receiver program. Before the message can be sent,
the application needs to provide application data in a message buffer. The data
structure of the message buffer is predefined so that both the sending and the receiving
application can interpret the message contents.

The example in Listing 1-2 illustrates how to send a number of messages to a queue.

Listing 1-2 Example of Sending Messages to a Queue

 int32 attach_mode;
 int32 dmq_status;
 int32 q_name_len;
 int32 q_type;
 int32 timeout;
 short class;
 short type;
 short msg_size;
 char delivery;
 char priority;
 char uma;
 static char msg_area[18];
 static char q_name[12];
 q_address my_queue;
 struct PSB put_psb;
 .
 .
 .
 /*
 ** Put a message into my own queue
 */
 priority = 0;
 class = 0;
 type = 0;
BEA MessageQ Programmer’s Guide 1-5

1 Sending and Receiving BEA MessageQ Messages
 delivery = PDEL_MODE_NN_MEM;
 msg_size = (short) strlen(msg_area);
 timeout = 50; /* 5 seconds */
 uma = PDEL_UMA_DISCL;

 dmq_status = pams_put_msg(
 msg_area,
 &priority,
 &my_queue,
 &class,
 &type,
 &delivery,
 &msg_size,
 &timeout,
 &put_psb,
 &uma,
 (q_address *) 0,
 (char *) 0,
 (char *) 0,
 (char *) 0);

 if (dmq_status == PAMS__SUCCESS)
 printf("\n\tPut successfully to queue: \"%s\".\n", q_name);
 else
 printf("\nError sending to queue: \"%s\"; status returned
 is: %ld\n", q_name, dmq_status);
 .
 .
 .

BEA MessageQ applications use the pams_get_msg function to read messages from
a queue. Because both sending and receiving programs use the predefined buffer
structure, the receiving application can interpret the message.

When a BEA MessageQ application is finished, the pams_detach_q is called to
disconnect the program from the message queuing bus.

Static data structures limit the flexibility of applications to adapt to changing business
conditions. To change the data structure, both the sender and receiver programs must
be recoded to send and interpret the new message correctly. In addition, all production
applications must be shut down and the newer versions started up for the change to take
affect. Such large changes to an integrated application environment often result in
synchronization problems where some applications have not yet been restarted using
the new message format. This leads to processing errors until all applications are using
the same version of the message data structure.
1-6 BEA MessageQ Programmer’s Guide

Sending and Receiving Message Buffers

om
n two
rder

 BEA
ware
.

e the
2

o use
eiving

es up
d to
g and

mall
d

Another limitation in using static message buffers is that data is passed “as is” fr
one system to another in the network. So, if a message must be delivered betwee
computers that use different byte orders, the application must perform the byte o
translation to ensure that the data is interpreted properly by the target application.
MessageQ does not perform data marshalling between systems with unlike hard
data formats when messages are sent using the static message buffer approach

Prior to BEA MessageQ Version 4.0, the only way to send a message was to us
predefined message data structure which allowed messages to be as large as 3
kilobytes. If either the sending or receiving data structure needed to change the
message structure, both sending and receiving applications were programmed t
the new message structure. For this change to take effect, both sending and rec
programs needed to be reloaded.

How to Send Large Messages

BEA MessageQ enables applications to send buffer-style and FML-style messag
to 4MB in size. For FML-style messaging no differences in approach are require
send small or large messages. However, use the following procedure when sendin
receiving buffer-style messages larger than 32K.

To send a large buffer-style message, applications still use the pams_put_msg
function. Most arguments to this call are specified in the same way for large and s
messages. However, the following list describes the arguments that are specifie
differently for large messages:

n the msq_size argument must contain the symbol PSYM_MSG_LARGE indicating
that this is a large message

n the large_size argument supplies the size of the large message buffer

To retrieve a large buffer-style message from a queue, you still use the pams_get_msg,
pams_get_msgw, or the pams_get_msga functions. To retrieve a large message from
an auxiliary journal, use the pams_read_jrn function. The following arguments are
supplied to these functions to read large messages:

n the msq_area_len argument must contain the symbol PSYM_MSG_LARGE
indicating the operation will return a large message

n the large_area_len argument supplies the size of the message buffer to
receive the large message
BEA MessageQ Programmer’s Guide 1-7

1 Sending and Receiving BEA MessageQ Messages
These functions return the actual size of the message written to the message buffer in
the large_size argument.

A sample program illustrating how to send a large message called x_putbig.c is
contained in the programming examples directory of your media kit.

Receiving Messages Using Message Pointers

Receiving applications can use message pointers to allow for automatic buffer
reallocation when the buffer received is larger than the buffer allocated. (Message
pointers are also required for processing self-describing messages based on FML
buffers. See Self-Describing Messaging with FML for more information.)

To retrieve a buffer-style message from a queue using pams_get_msg and pointers:

n the msg_area_len argument must contain the symbol PSYM_MSG_BUFFER_PTR

n the msg_area argument must point to a pointer to dynamically allocated space
or be set to point to a NULL pointer

n the large_area_len argument must contain the size of the space allocated for
the message or be set to 0 if it is NULL.

If the message received will not fit in the allocated space or if the pointer is NULL, the
buffer is reallocated, the pointer to the new buffer is returned in the msg_area, and its
length is returned in the large_area_len arguments.

When the message is retrieved from the queue:

n the message is placed in the buffer referenced by the pointer contained in
msg_area

n the actual length of the buffer is returned in the large_size argument

n the len_data argument is set to PSYM_MSG_BUFFER_PTR

n the endian field in the show_buffer structure is set to the appropriate byte
ordering scheme for the type of data

n the large_area_len argument is updated with the new buffer size if the buffer
was reallocated
1-8 BEA MessageQ Programmer’s Guide

Self-Describing Messaging with FML

nt and
sage.

en a

d,
L
r).
 The
e that

ly
ta
a

uffer
ML
Self-Describing Messaging with FML

Self-describing messaging using Field Manipulation Language (FML) is new in BEA
MessageQ Version 5.0. FML-based messaging replaces the SDM capabilities
provided in BEA MessageQ V4.0. While basic information on FML is included in this
document, see the BEA MessageQ FML Programmer’s Guide and the BEA MessageQ
Reference Manual for more information on FML.

FML is a set of C language functions for defining and manipulating storage structures
called fielded buffers, that contain attribute-value pairs in fields. The attribute is the
field’s identifier, and the associated value represents the field’s data content.

Using FML, applications construct messages containing both the message conte
the information needed by the receiver program to understand what is in the mes
The receiver program dynamically interprets the contents of the message by
“decoding” some or all of the data contained in it. Message pointers are used wh
receiving application retrieves an FML-style message from a message queue.

Using FML buffers, applications do not interact with a message structure. Instea
sender programs encode the contents of the message using the appropriate FM
function. Each field in the message has a value (the content) and a tag (identifie
When an application retrieves an FML message, the content is not directly visible.
receiver program must use FML functions to interpret the contents of the messag
are appropriate to its operation.

Because FML messages contain information about how to interpret the message
contents, self-describing messaging provides applications with more flexibility in
adding fields to a message or changing the message contents without necessari
needing to recode all of the receiving applications. In addition, FML performs da
marshaling of data formats between computer systems with unlike hardware dat
formats.

How Self-Describing Messaging Works

FML messages, which are accessed by a pointer, contain tagged values that are
manipulated by specific FML functions. When you code, you build the message b
using assignments inside the message data structure which you have defined. F
uses the following fielded buffer structure:
BEA MessageQ Programmer’s Guide 1-9

1 Sending and Receiving BEA MessageQ Messages

,

he

n
e.

s

L

a
s the

ins
s

n is
y the
Figure 1-1 Fielded Buffer Structure

In the above figure, the message structure contains pairs of attributes and values. Each
field is labeled with an integer that combines information about the data type of the
accompanying field with a unique identifying number. The label is called a field
identifier or fldid. For variable-length items, fldid is followed by a length indicator.
The buffer can be represented as a sequence of fldid/data pairs or fldid/length/data
triples for variable-length items.

Benefits of Using FML

There are several advantages to using FML. These advantages are as follows:

n Scalability—FML messages can evolve as your business grows. For example
you can add fields to your message in a completely backwards compatible
manner. You only need to modify those applications which need the new
information. You do not have to change application code that does not need t
new information.

n Flexibility—you can change the size of a field at any time without changing a
FML application because this type of information is encoded into the messag

n Portability of messages—you do not have to write data transformation routine
to handle differences between data types and platforms. FML automatically
performs the data transformation for you. The transformations included in FM
are network byte order, C data types, word sizes, word alignment, and IEEE
floating point.

n Reusability of messages—a single message can be interpreted by several
applications that need different parts of the message. For example, suppose
user application needs a person’s address and another user application need
person’s hourly wage. Instead of the server application constructing a unique
message for each application, it can construct a single message which conta
both the person’s address and hourly wage. When one of the user application
interprets the message, only the information that is needed by that applicatio
decoded. The other user application can reuse the same message to get onl
information that it needs.

fldid data len fldidfldid data data
1-10 BEA MessageQ Programmer’s Guide

Self-Describing Messaging with FML
FML manages data transformation so that an FML message can be interpreted properly
on any platform. Figure 1-1 illustrates how using fielded buffers creates a formatted
message that replaces all platform-dependent compiler assignments through an API,
which has decoupled and hidden all the machine, operating system, and platform
dependencies. It has also properly encoded the message so that it can be safely
transported from platform to platform in a heterogeneous environment. Furthermore,
it protects applications from message structure changes.

For example, suppose you have an application running on a Hewlett-Packard machine
and a Compaq machine and the message data has a little endian data format. When
messages are sent to the Compaq machine from the Hewlett-Packard machine, a
conversion from little endian to big endian data format must take place. This is handled
by encoding the little endian format and converting it to a platform independent
format. Then, the platform independent format is decoded into the big endian format
for the Compaq machine.

Performance Considerations When Using FML

One performance consideration in using FML is that it uses a larger message size to
deliver the same amount of user data and can take longer to pass back and forth
between machines. The message size is larger because the message contains both the
information and a description of the information, encoded in a platform-independent
manner.

For example, consider a message that is 100 characters. With a defined message buffer,
the message is only 101 bytes using a C message structure. In a worst case scenario,
the FML message size could be 800 bytes. Each of the original 100 bytes requires 1
byte of data and 4 bytes of identifier. Because each byte of data must be aligned on
word boundaries for platform independence, each byte requires three additional
padding bytes.

A more efficient way to encode character data is to use an array. You can encode the
100 bytes as an array of 100 bytes. With an array, the padding necessary to accomplish
word alignment is not needed and the tag is present only once. Using this approach, the
actual size needed is 108 bytes (including the tag and length).

You may be able to structure the application to use the larger FML message only when
needed and a message buffer at other times. For more information on this technique,
see the Designing Applications to Use a Mixed Messaging Environment topic.
BEA MessageQ Programmer’s Guide 1-11

1 Sending and Receiving BEA MessageQ Messages

ages.
 not

 and
e the
ere is

uffer.
ointers

t

ge, the

age
An additional performance consideration is the time required to encode and decode
information when exchanging messages between platforms having different data
formats.

Designing Applications to Use a Mixed Messaging Environment

A mixed messaging environment is an environment where you want to exchange static
buffer messages and FML messages in the same application. If you are programming
an application to use both kinds of messages, consider having your application use two
queues—one queue for buffer-style messages and another queue for FML mess
By designing your application this way, you guarantee that your application does
dequeue an FML message by mistake.

Note that for performance reasons, it might be better to modify the buffer structure
redistribute all software than to use a mixed messaging environment. This may b
recommended approach when your applications are close geographically and th
a convenient time to update software.

How to Send an FML Message

When sending FML messages, you code in a similar manner as with a message b
However, the main difference is that messages are manipulated using message p
rather than using the actual message buffer. The message pointer is provided to
pams_put_msg as the first argument (msg_area). To code an FML message, you mus
add the following steps to your program logic after attaching to a queue:

1. Define field identifiers and map them to field names.

2. Build messages using the appropriate FML functions.

3. Send the message. To use an FML message pointer when sending a messa
sender program specifies the symbol PSYM_MSG_FML as the msg_size argument
in the pams_put_msg function.

4. Once your application is done using the FML message, delete the FML mess
using Ffree32() to prevent memory leaks.

A sample program called x_fml.c which illustrates how to send and receive FML
messages is distributed as part of your media kit.
1-12 BEA MessageQ Programmer’s Guide

Self-Describing Messaging with FML
Defining Field Identifiers

FML message fields are tagged with field identifiers. Each tag implicitly defines the
data type of the information it is associated with. This guarantees that the sender and
the receiver of an FML message have an explicit agreement about the kind of
information they exchange. The collection of tags builds a kind of message dictionary.

The following table describes the tag data type symbols as defined in fml32.h:

Fields are usually referred to by their field identifier (fldid), an integer. This allows
you to reference fields in a program without using the field name.

Identifiers are assigned (mapped) to field names in the following ways:

n dynamically at run time using field table files

n statically at compile time using C language header (#include) files

A typical application may use one or both of these methods.

Building the FML Message

The FML API provides functions to place tagged values in a fielded buffer accessed
with its pointer. A variety of functions are provided to support a large number of buffer
operations.

Data Type Symbol

short int FML_SHORT

long int FML_LONG

character FML_CHAR

single-precision float FML_FLOAT

double-precison float FML_DOUBLE

string, null terminated FML_STRING

character array FML_ARRAY
BEA MessageQ Programmer’s Guide 1-13

1 Sending and Receiving BEA MessageQ Messages
Any field in a fielded buffer can occur more than once. Many FML functions take an
argument that specifies which occurrence of a field is to be retrieved or modified. If a
field occurs more than once, the first occurrence is numbered 0, and additional
occurrences are numbered sequentially.

The example in Listing 1-3 shows a program which builds a message with the queue
id and time stamp. The message is then put into a message queue.

Listing 1-3 Example of Building a Fielded Buffer

/* applications fields */
#include myFields.h”
FBFR32 *fbfr;
fbfr = Falloc32(10,100);
Fadd32(fbfr, QID, 0, &qid, 0);
Fadd32(fbfr, TSTAMP, 0, ×tamp, 0);

Note that FML provides data transparency. That is to say that your application does not
know nor need to know how any data values are stored in the message. The FML and
PAMS API functions handle this for your application.

Sending the FML Message

After creating a pointer and building the message, you can send the message to the
target queue. To send an FML buffer, the sender program specifies the symbol
PSYM_MSG_FML as the msg_size argument to the pams_put_msg function. The system
verifies that the buffer is an FML32 buffer. If the buffer is not an FML32 buffer, the
pams_put_msg call will fail and return PAMS__NOTFLD.

The code fragment example in Listing 1-4 sends the FML message. The previously
encoded message is contained in the msg_area argument.

Listing 1-4 Example of Sending an FML message

/* Sends the message identified by the pointer. The symbol */
/* PSYM_MSG_FML_ in the msg_size argument indicates that */
/* the message is a pointer to an FML buffer. */

/* Define any variables needed to the put function here. */
1-14 BEA MessageQ Programmer’s Guide

Self-Describing Messaging with FML
 msg_size = PSYM_MSG_FML;
.
.
.
 dmq_status = pams_put_msg(
 (char *) fbfr,
 &priority,
 &my_queue,
 &class,
 &type,
 &delivery,
 &msg_size,
 &timeout,
 &put_psb,
 &uma,
 (q_address *) 0,
 (char *) 0,
 (char *) 0,
 (char *) 0,);

 If (dmq_status == PAMS__SUCCESS)
 printf (“Message pointer successfully put to the queue”);
 else
 printf (“Error putting message to queue”);
.
.
.

How to Receive an FML Message

When receiving FML messages, you code in a similar manner as with a buffer-style
message. However, you must add the following steps to your program logic after
attaching to a queue:

1. Include the predefined field identifier definitions to your code to guarantee that
both sending and receiving applications are using the same definitions.

2. Create a pointer to a pointer to dynamically allocated space using Falloc or
malloc and Finit .

3. Set large_area_len to the length of the allocated space or to 0 if it is NULL.
BEA MessageQ Programmer’s Guide 1-15

1 Sending and Receiving BEA MessageQ Messages
4. Read the message from the queue. The receiver program determines whether the
message is a pointer to an FML buffer pointer by reading the endian field in the
show_buffer argument of the pams_get_msg or pams_get_msgw function. If
this field contains the symbol PSYM_FML, the message is an FML buffer.

5. Access the message fields using the appropriate FML API functions.

6. Delete or reuse the message pointer to prevent memory leaks.

Note: When an FML message is received, the endian field of the show_buffer
argument returned by the pams_get_msg or pams_get_msgw functions is set
to PSYM_FML.

Reading the Message from the Queue

To read a message from a queue, use the pams_get_msg function after you have
included the tag definitions and created a message pointer. The code fragment example
in Listing 1-5 creates a message handle and gets the message:

Listing 1-5 Example of Reading an FML Message

/* Include the predefined field identifier definition */

 #include “myfields.h”;
 FBFR32 *fbfr;
 FBFR32 **pfbfr;

/* Read the message identified by the pointer. The symbol */
/* PSYM_MSG_BUFFER_PTR in the len_data argument indicates that */
/* the message is a pointer and not a message buffer. */

/* Define any variables needed for the get function here. */

 len_data = PSYM_MSG_BUFFER_PTR;
 pfbfr = &fbfr;
.
.
.
 dmq_status = pams_get_msg(
 (char *) pfbfr,
 &priority,
 &msg_source,
 &class,
1-16 BEA MessageQ Programmer’s Guide

Exchanging Messages Between BEA MessageQ and BEA TUXEDO or BEA M3
 &type,
 &msg_area_len,
 &msg_len,
 (int32 *)&sel_filter,
 (struct PSB *) 0,
 (struct show_buffer *) 0,
 &show_buffer_len
 &large_area_len,
 &large_size,
 (char *) 0,);

 If (dmq_status == PAMS__SUCCESS)
 printf (“Message pointer successfully read”);
printf (“Error reading message”);
.
.
.

Interpreting the Message

After your application creates a message pointer and gets the message, it can interpret
the message. Your application can use FML API functions to manipulate the fielded
buffer.

Exchanging Messages Between BEA
MessageQ and BEA TUXEDO or BEA M3

BEA MessageQ V5.0 include a messaging bridge that allows the exchange of
messages between BEA MessageQ V5.0 and BEA TUXEDO V6.4 or BEA M3 2.1.
BEA MessageQ applications can send a message using pams_put_msg that a
TUXEDO application can retrieve through a call to tpdequeue . TUXEDO
applications can send a message using tpenqueue that a BEA MessageQ application
can retrieve through a call to pams_get_msg (w). In addition, a BEA MessageQ
application can invoke a TUXEDO service using pams_put_msg . It is also possible for
a TUXEDO application to use tpenqueue to put a message on a queue and to use
tpdequeue to retrieve a message from a queue.
BEA MessageQ Programmer’s Guide 1-17

1 Sending and Receiving BEA MessageQ Messages

ween
This exchange of messages is made possible by two TUXEDO servers that are
included in the BEA MessageQ kit and that run on the same machine as BEA
MessageQ: TMQUEUE_BMQ and TMQFORWARD_BMQ.

TMQUEUE_BMQ redirects TUXEDO tpenqueue requests to a BEA MessageQ
queue where they can be retrieved with pams_get_msg(w). TMQUEUE_BMQ also
redirects pams_put_msg or tepenqueue requests to TUXEDO where they can be
retrieved with tpdequeue.

TMQFORWARD_BMQ listens on specified BEA MessageQ queues and forwards
pams_put_msg requests to a TUXEDO service. It also puts a reply or failure message
on the sender’s response queue.

The target queue and service are defined when TMQUEUE_BMQ and
TMQFORWARD_BMQ are configured. This ensures that message exchange bet
BEA MessageQ and TUXEDO is transparent to the application.

Figure 1-2 illustrates message exchange between MessageQ and TUXEDO.
1-18 BEA MessageQ Programmer’s Guide

Exchanging Messages Between BEA MessageQ and BEA TUXEDO or BEA M3
Figure 1-2 Message Exchange Between MessageQ and TUXEDO
BEA MessageQ Programmer’s Guide 1-19

1 Sending and Receiving BEA MessageQ Messages
Server
or

Client

TMQUEUE_
BMQ

Service

TMQFORWARD
_BMQ

BEA TUXEDO

Application

BEA MessageQ

Machine

tpenqueue/
tpdequeue

pams_put_msg/
pams_get_msg
1-20 BEA MessageQ Programmer’s Guide

Exchanging Messages Between BEA MessageQ and BEA TUXEDO or BEA M3
Enabling the Messaging Bridge

The TMQUEUE_BMQ and TMQFORWARD_BMQ servers are part of the BEA
MessageQ kit and are installed when BEA MessageQ is installed. During the
installation procedure, you are prompted to choose one of the following installation
options for BEA MessageQ and TUXEDO integration:

install on top of BEA TUXEDO V6.4
install on top of BEA M3 2.1
install without BEA TUXEDO

If you choose to install on top of BEA TUXEDO V6.4 or BEA M3 2.1, the applicable
files for the TMQUEUE_BMQ and TMQFORWARD_BMQ servers are installed on
your system. If you install without BEA TUXEDO, the TMQUEUE_BMQ and
TMQFORWARD_BMQ servers are not installed on your system. See the installation
and configuration documentation specific to your platform for detailed installation and
configuration instructions.

Once the TMQUEUE_BMQ and TMQFORWARD_BMQ servers are installed, the
system administrator enables message enqueuing and dequeuing for the application by
specifying the servers as application servers in the *SERVERS section of the
TUXEDO ubbconfig file. See the TMQUEUE_BMQ and TMQFORWARD_BMQ
reference pages in the BEA MessageQ Reference Manual for detailed information on
the server configuration syntax.

Data Transformation Between BEA MessageQ and
TUXEDO

One of the primary functions of the TMQUEUE_BMQ and TMQFORWARD_BMQ
servers is to perform data and semantic transformations between the BEA MessageQ
PAMS API and the TUXEDO ATMI API. This section describes how data is handled
when it is exchanged between BEA MessageQ and TUXEDO. The data
transformations are the same for the TMQUEUE_BMQ and TMQFORWARD_BMQ
servers.
BEA MessageQ Programmer’s Guide 1-21

1 Sending and Receiving BEA MessageQ Messages
Data Types

BEA MessageQ passes data as static buffers or as FML32 buffers using the msg_area
argument of the pams_put_msg function. TUXEDO handles a wide range of data
types including CARRAY, STRING, and FML32 using the data argument of the
tpenqueue function.

When a message is enqueued using tpenqueue, the TMQUEUE_BMQ server
preserves TUXEDO data type information for use by a subsequent call by tpdequeue.
If machines of different types perform the tpenqueue and tpdequeue calls, and the
data type is not FML32 or CARRAY, the data is transformed to CARRAY and a message is
written to the TUXEDO user log. (Machine types are specified in the TUXEDO
ubbconfig file in the *MACHINE section using the TYPE attribute.)

When a message is enqueued using pams_put_msg and dequeued with tpdequeue,
static buffer data is transformed to CARRAY, and FML32 buffers are passed without
transformation.

When a message is dequeued using pams_get_msg(w), FML32 buffers are passed
without transformation and all other data types are transformed to binary large objects.

Data Size and Length

BEA MessageQ defines the size and length of messages using the following arguments
to pams_put_msg: msg_size, large_size, msg_area_len, len_data, and
large_area_len. TUXEDO uses the len argument to tpenqueue to determine
length.

BEA MessageQ limits the size of messages to a maximum of 4 MB. In addition, BEA
MessageQ can be configured to set a smaller maximum message size. If BEA
MessageQ is configured for a 4 MB maximum size, and a message larger than 4 MB
is enqueued using tpenqueue, a TPEDIAGNOSTIC/QMESYSTEM error is generated. If
BEA MessageQ is configured for a smaller maximum message size, and a message
larger than the configured size is enqueued using tpenqueue, there is no way to detect
the message size error.

When messages are dequeued using tpdequeue, the TMQUEUE_BMQ server
handles buffer size discrepancies and returns a full, complete buffer to the calling
application.
1-22 BEA MessageQ Programmer’s Guide

Exchanging Messages Between BEA MessageQ and BEA TUXEDO or BEA M3
Timeouts

BEA MessageQ specifies a timeout per operation using the timeout argument of the
pams_put_msg function. TUXEDO specifies system-wide blocking timeouts using
the following flags: ctl.flags:TPQWAIT, flags:TPNOBLOCK, and
flags:TPNOTIME.

When the TMQUEUE_BMQ server handles a message from a BEA MessageQ queue
based on a call to tpenqueue or tpdequeue, the timeout is the value set by the
TMQUEUE_BMQ command line option -t, or the default timeout if none is specified.

When a message is enqueued using pams_put_msg and is intended for a TUXEDO
application, the timeout is the value set by timeout argument of the pams_put_msg
function, within any limitations set by the BEA MessageQ delivery mode.

Priorities

BEA MessageQ specifies priority using the priority argument to the pams_put_msg
function. TUXEDO specifies priority using the ctl.flags:TPQPRIORITY and
ctl.priority flags. BEA MessageQ message priorities range from 0 to 99 with 99
being the highest priority. TUXEDO priorities range from 1 to 100 with 100 being the
highest priority and the default being 50. BEA MessageQ requires that the priority
argument of the pams_put_msg function be specified when the message is enqueued.
TUXEDO uses the default priority if the control structure flag
ctl.flags:TPQPRIORITY is not set.

Message priorities are either increased or decreased by one depending on where the
message originates. Messages originating from TUXEDO are placed on the BEA
MessageQ queue with a priority of n-1 where n is the priority assigned by TUXEDO.
Messages originating from BEA MessageQ will dequeued by TUXEDO with a
priority of n+1, where n is the priority assigned by BEA MessageQ.

Target, Queue Space and Queue Name

There are two areas that must be resolved when mapping the BEA MessageQ target
and TUXEDO queue space and queue name:

n TUXEDO queue space to BEA MessageQ group name

n TUXEDO queue to BEA MessageQ queue
BEA MessageQ Programmer’s Guide 1-23

1 Sending and Receiving BEA MessageQ Messages

s

ry in

sing

 way

ch
TUXEDO Queue Space to BEA MessageQ Group Name

BEA MessageQ uses the target argument of the pams_put_msg function to specify
the target queue address for a message. TUXEDO uses the qspace and qname
arguments of the tpenqueue and tpdequeue functions to specify the target queue for
a message

The TUXEDO queue space name must be the name of a service advertised by
TMQUEUE_BMQ or TMQFORWARD_BMQ. The service name maps directly to a
BEA MessageQ group. By default, TMQUEUE_BMQ and TMQFORWARD_BMQ
automatically offer services named “TMQUEUE_BMQ” and
“TMQFORWARD_BMQ” unless the -s command line option is specified. These
default services map to the BEA MessageQ group to which they are attached, a
specified by the -g command line option.

The function name to which services should be mapped in TMQUEUE. Each ent
the TUXEDO ubbconfig file for a TMQUEUE_BMQ or TMQFORWARD_BMQ
server should be configured with a different alias for the default function name u
the TUXEDO -s command line option. For example, one configuration of
TMQUEUE may be named Payroll, while another is named Sales. This provides a
to precisely specify a BEA MessageQ entry point for a particular tpenqueue or
tpdequeue call. If multiple instances of the same advertised service are running,
TUXEDO performs load balancing and data dependent routing to determine whi
server handles the request.

The following example illustrates different TMQUEUE_BMQ configurations:

*GROUPS
TMQUEUE_BMQGRPHQMGR GRPNO=1
TMQUEUE_BMQGRPHQPLEBE GRPNO=2
TMQUEUE_BMQGRPREMOTENA GRPNO=3
TMQUEUE_BMQGRPREMOTEEUROPE GRPNO=4

*SERVERS
TMQUEUE_BMQ SRVGRP="TMQUEUE_BMQGRPHQMGR" SRVID=1000 RESTART=Y
 GRACE=0 CLOPT="-s Payroll:TMQUEUE -s
 Promote:TMQUEUE -- -b 5 -g 7"
TMQUEUE_BMQ SRVGRP="TMQUEUE_BMQGRPHQPLEBE" SRVID=1000 RESTART=Y
 GRACE=0 CLOPT="-s Payroll:TMQUEUE -s
 Promote:TMQUEUE -- -b 5 -g 10"
TMQUEUE_BMQ SRVGRP="TMQUEUE_BMQGRPREMOTENA" SRVID=2002 RESTART=Y
 GRACE=0 CLOPT="-s Sales:TMQUEUE -- -b 5 -g 42"
TMQUEUE_BMQ SRVGRP="TMQUEUE_BMQGRPREMOTEEUROPE" SRVID=2002
1-24 BEA MessageQ Programmer’s Guide

Exchanging Messages Between BEA MessageQ and BEA TUXEDO or BEA M3

o

r for
 RESTART=Y GRACE=0 CLOPT="-s Sales:TMQUEUE -- -b 12 -g 53"

*SERVICES
Payroll ROUTING="SALARYROUTE"
Payroll ROUTING="HAIRCOLORROUTE"

*ROUTING
SALARYROUTE FIELD=Salary BUFTYPE="FML32"
 RANGES="MIN - 50000:TMQUEUE_BMQGRPPLEBE,50001
 -MAX:TMQUEUE_BMQGRPHQMGR"
HAIRCOLORROUTE FIELD=Hair BUFTYPE="FML32"
 RANGES="‘Gray’:TMQUEUE_BMQGRPHQMGR,*:TMQUEUE_BMQGRPPLEBE"

In this example, three queue space names (Payroll, Promote, and Sales) are defined for
two busses to four different BEA MessageQ groups (7, 10, 42, and 53). Two servers
offer the same aliases (Payroll and Promote) with data dependent routing performed
using the Sales and Hair fields respectively. The two other servers offer the same alias
(Sales) with routing determined by load balancing and availability.

TUXEDO Queue to BEA MessageQ Queue

Any BEA MessageQ queue can be accessed by TUXEDO through the
TMQUEUE_BMQ and TMQFORWARD_BMQ servers. However, BEA MessageQ
queues are accessed in different ways depending on whether they are named or
unnamed queues. (For more information on BEA MessageQ naming capabilities, see
Chapter 4, “Using Naming”.)

BEA MessageQ named queues can be local (group-wide) or global (bus-wide). T
address a locally named queue from TUXEDO:

1. Configure the TMQUEUE_BMQ or TMQFORWARD_BMQ server to attach to
the local group in which the named queue is defined.

2. Configure routing information to handle multiple instances of the
TMQUEUE_BMQ or TMQFORWARD_BMQ server with the same alias as
shown in “TUXEDO Queue Space to BEA MessageQ Group Name” on
page 1-24.

3. Use the queue name as defined by BEA MessageQ as the second paramete
tpenqueue or tpdequeue.
BEA MessageQ Programmer’s Guide 1-25

1 Sending and Receiving BEA MessageQ Messages

 0 or
p is

x, or
 names.

t

e

ge
s not

o an
To access an unnamed BEA MessageQ queue from TUXEDO, use an absolute queue
identifier as the second parameter for tpenqueue or tpdequeue. The absolute queue
identifier is a combination of the BEA MessageQ group identifier and queue identifier
formatted as group_id.queue_id. For example, queue 1005 in group 3 is specified as
“3.1005”. When accessing a queue in the local group, either specify the group as
drop the group identifier and delimiter. For example, queue 1005 in the local grou
specified either as “0.1005” or “1005”. Queue identifiers that do not use this synta
are outside the valid range of group or queue numbers are assumed to be queue

Delivery

When a message is enqueued using tpenqueue, the TMQUEUE_BMQ server uses the
BEA MessageQ delivery mode of PDEL_MODE_WF_SAF (block until the message is
stored in the local recovery journal). The exception to this occurs when the targe
queue is a temporary queue; in this case, the delivery mode PDEL_MODE_WF_MEM
(block until message is stored in the target queue) is used.

If a confirmation delivery mode is required by the BEA MessageQ application, th
queues attached to the TMQUEUE_BMQ server must be configured for explicit
confirmation.

Messages handled by the TMQUEUE_BMQ server are recoverable, and messa
recovery services (MRS) must be enabled for the BEA MessageQ group. If MRS i
enabled, the attempt to enqueue the message will fail unless it is enqueued to a
temporary queue where recoverable messaging is not required.

Undeliverable Messages

BEA MessageQ specifies the disposition of undeliverable messages according t
undeliverable message action (UMA). TUXEDO uses the ctl.flags:TPQFAILUREQ
and ctl.failurequeue to specify a failure queue.

If a message is enqueued using tpenqueue and the ctl.flags:TPQFAILUREQ flag is
set, the message is sent to BEA MessageQ with a UMA of PDEL_UMA_DJL (dead letter
journal). If the target queue is a temporary queue, a UMA of PDEL_UMA_DLQ (dead
letter queue) is used. The failure queue specified by ctl.flags:TPQFAILUREQ is
preserved for use by tpdequeue. When BEA MessageQ dequeues a message
enqueued by tpenqueue, the value of ctl.failurequeue is ignored.
1-26 BEA MessageQ Programmer’s Guide

Exchanging Messages Between BEA MessageQ and BEA TUXEDO or BEA M3
When a TUXEDO application dequeues a message that was enqueued using
tpenqueue, the value of ctl.failurequeue is returned to the application so that
failure messages can be put on the failure queue. Failure queue names should be unique
to avoid directing a failure message to the wrong queue.

Correlation Identifiers

BEA MessageQ and TUXEDO both support optional correlation identifiers stored as
32 character strings. No transformation is performed on either BEA MessageQ or
TUXEDO correlation identifiers. When a response message is sent, the correlation
identifier must be manually set.

Return Values

BEA MessageQ return values can be mapped to the TUXEDO tperrno and
ctl.diagnostic values. The following table show the relationship between return
values for calls to tpenqueue.

Table 1-1 Return Values for tpenqueue

MessageQ Return Value TUXEDO tpperrno
(return value = -1)

TUXEDO ctl.diagnostic

PAMS__BADPARAM TPEDIAGNOSTIC QMESYSTEM

PAMS__BADPRIORITY TPEDIAGNOSTIC QMESYSTEM

PAMS__BADPROCNUM TPEDIAGNOSTIC QMEBADQUEUE

PAMS__BADRESPQ TPEDIAGNOSTIC QMEBADQUEUE

PAMS__EXCEEDQUOTA TPEDIAGNOSTIC QMESYSTEM

PAMS__MSGTOBIG TPEDIAGNOSTIC QMENOSPACE

PAMS__NOTACTIVE TPEDIAGNOSTIC QMESYSTEM

PAMS__REMQFAIL TPEDIAGNOSTIC QMESYSTEM

PAMS__STOPPED TPEDIAGNOSTIC QMESYSTEM

PAMS__SUCCESS N/A, return value = 0

PAMS__TIMEOUT TPEDIAGNOSTIC QMESYSTEM
BEA MessageQ Programmer’s Guide 1-27

1 Sending and Receiving BEA MessageQ Messages
The following table show the relationship between return values for calls to
tpdequeue.

Table 1-2 Return Values for tpdequeue

PAMS__UNATTACHEDQ N/A, return value = 0

PAMS__DLJ_FAILED TPEDIAGNOSTIC QMESYSTEM

PAMS__DLJ_SUCCESS TPEDIAGNOSTIC QMESYSTEM

PAMS__NO_UMA TPEDIAGNOSTIC QMESYSTEM

MessageQ Return Value TUXEDO tpperrno
(return value = -1)

TUXEDO ctl.diagnostic

PAMS__BADPRIORITY TPEDIAGNOSTIC QMESYSTEM

PAMS__INSQUEFAIL TPEDIAGNOSTIC QMESYSTEM

PAMS__MSGUNDEL TPEDIAGNOSTIC QMESYSTEM

PAMS__NETERROR TPEDIAGNOSTIC QMESYSTEM

PAMS__NOACCESS TPEDIAGNOSTIC QMESYSTEM

PAMS__NOACL TPEDIAGNOSTIC QMESYSTEM

PAMS__NOMOREMSG TPEDIAGNOSTIC QMENOMSG

PAMS__NOMRQRESRC TPEDIAGNOSTIC QMESYSTEM

PAMS__NOTDCL TPEDIAGNOSTIC QMESYSTEM

PAMS__PAMSDOWN TPEDIAGNOSTIC QMENOTOPEN

PAMS__REMQFAIL TPEDIAGNOSTIC QMESYSTEM

PAMS__STOPPED TPEDIAGNOSTIC QMESYSTEM

PAMS__SUCCESS N/A, return value = 0

MessageQ Return Value TUXEDO tpperrno
(return value = -1)

TUXEDO ctl.diagnostic
1-28 BEA MessageQ Programmer’s Guide

Exchanging Messages Between BEA MessageQ and BEA TUXEDO or BEA M3

ve

is
ed

these
r is
Other BEA MessageQ API Elements

The following arguments to BEA MessageQ PAMS API functions do not require a
direct mapping to TUXEDO.

n class (pams_put_msg)—not accessible to TUXEDO applications. However,
the TMQUEUE_BMQ server sets a class of MSG_CLAS_TUXEDO for messages
generated by TUXEDO applications. Reply messages from BEA TUXEDO ha
either the BEA MessageQ class of MSG_CLAS_TUXEDO_TPSUCCESS or
MSG_CLAS_TUXEDO_TPFAIL

n type (pams_put_msg)—not accessible to TUXEDO applications. The
TMQUEUE_BMQ server does not return a type code (the value is NULL) for
messages generated by TUXEDO applications.

n psb (pams_put_msg)—not accessible to TUXEDO applications.

n resp_q (pams_put_msg)—when BEA MessageQ specifies a response queue,
the TMQUEUE_BMQ server uses that queue for responses from TUXEDO
applications.

n source (pams_get_msg)—not accessible to TUXEDO applications.

n sel_filter (pams_get_msg)—not accessible to TUXEDO applications.

n show_buffer and show_buffer_len (pams_get_msg)—not accessible to
TUXEDO applications.

Other TUXEDO API Elements

The following arguments to TUXEDO ATMI API functions do not require a direct
mapping to BEA MessageQ.

n ctl.flags:TPNOFLAGS—no implications for TMQUEUE_BMQ.

n ctl.flags:TPQTOP and ctl.flags:TPQBEFOREMSGID—since BEA
MessageQ orders queues by priority then FIFO order, if either of these flags
set in a control structure, a TPEINVAL error is generated and the error is logg
in the TUXEDO user log.

n ctl.flags:TPTIME_ABS, ctl.flags:TPQTIME_REL and ctl.deq_time—
since BEA MessageQ does not handle message generation time, if either of
flags is set in a control structure, a TPEINVAL error is generated and the erro
logged in the TUXEDO user log.
BEA MessageQ Programmer’s Guide 1-29

1 Sending and Receiving BEA MessageQ Messages

ique

ed
s

is

n ctl.flags:TPQREPLYQ and ctl.replyqueue—any queue may be specified.
If set, replies are directed to the specified queue. Queue names should be un
to avoid directing a reply message to the wrong queue.

n ctl.flags:TPQMSGID, ctl.flags:TPQGETBEMSGID, and ctl.msgid—the
TUXEDO msgid specified in a tpenqueue control structure is preserved for
use by a subsequent call to tpdequeue.

n ctl.urcode—the TUXEDO urcode specified in a tpenqueue control
structure is preserved for use by a subsequent call to tpdequeue.

n ctl.appkey and ctl.cltid—these parameters are set to the identity assign
to the TMQUEUE_BMQ or TMQFORWARD_BMQ server receiving message
from BEA MessageQ; the original values are not preserved.

n flags:TPNOTRAN—if TMQUEUE_BMQ is requested from a transaction, and
the TPNOTRAN flag is not set, a TPETRAN error is generated and the error
logged in the TUXEDO user log.

n flags:TPSIGRSTRT—no implications for TMQUEUE_BMQ.

n flags:TPNOCHANGE—the TMQUEUE_BMQ handles this flag as it would in
TUXEDO. If the next data to be dequeued does not match the specified data
type, the data is not dequeued and an error is generated.
1-30 BEA MessageQ Programmer’s Guide

CHAPTER
2 Using Recoverable
Messaging

Applications send messages using the BEA MessageQ pams_put_msg function and
one of two types of delivery modes: recoverable or nonrecoverable. If a message is
sent as nonrecoverable, the message is lost if it cannot be delivered to the target queue
unless the application incorporates an error recovery procedure. If the message is sent
as recoverable, BEA MessageQ Message Recovery Services (MRS) automatically
guarantee delivery to the target queue in spite of system, process, and network failures.

To ensure guaranteed delivery, the BEA MessageQ message recovery system writes
recoverable messages to nonvolatile storage on the sender or receiver system. Then, if
a message cannot be delivered due to an error condition, the message recovery system
attempts redelivery of the message by reading it from the recovery journal until
delivery is confirmed.

Application developers determine which messages should be sent as recoverable
depending upon the needs of the application. Because recoverable messaging requires
the extra step of storing the messages on disk, it requires additional processing time
and power. To maximize performance, recoverable messaging should only be used
when it is critical to application processing.

The BEA MessageQ message recovery system offers the following benefits:

n Reduces development time by eliminating the need for designing applications to
recover messages that cannot be delivered.

n Prevents applications from losing data when applications, systems, or network
links fail.

n Simplifies the implementation of an event-driven store and forward capability in
networked applications.
BEA MessageQ Programmer’s Guide 2-1

2 Using Recoverable Messaging
BEA MessageQ also offers error recovery features for nonrecoverable messages such
as the dead letter queue and the ability to return a message to the sender if the message
cannot be delivered. This topic describes all of the BEA MessageQ delivery modes to
enable you to understand the right choice for your application.

The following sections describe:

n Choosing a Message Delivery Mode

n How to Send a Recoverable Message

n How to Receive a Recoverable Message

n Using UMAs for Exception Processing

Recoverable Messaging on BEA MessageQ Clients

Choosing a Message Delivery Mode

The choice between recoverable and nonrecoverable delivery is based upon the needs
of the application. Nonrecoverable messaging is used by applications that will not fail
if some data is lost. For example, an application that continuously monitors and reports
temperature readings every second would not use recoverable messaging. If one
message is lost, the next message will arrive in one second.

However, some applications require that messages be delivered in spite of system,
process, and network failures. For example, a shop-floor monitoring system may
continuously collect information from supervisory control applications connected to
production lines. This information is sent using nonrecoverable messaging to the
monitoring application on the same system.

At the end of the shift, totals are accumulated and sent to the Manufacturing Resource
Planning (MRP) system on the corporate mainframe to update inventory control and
other applications. The shift totals are sent as a recoverable message to ensure that the
MRP system is properly updated daily or that the appropriate error handling takes
place. The application uses the BEA MessageQ message recovery system to guarantee
message delivery without application intervention.

To determine the appropriate method for sending a message, the application developer
decides:
2-2 BEA MessageQ Programmer’s Guide

Choosing a Message Delivery Mode
n Does the application need to know if the message arrived at the target queue?

n If notification is required, how far must the message get before the sender
program receives notification that the message has arrived?

n Should the application wait for notification or should it continue processing and
receive notification through an asynchronous acknowledgment message?

n If the message is designated as recoverable, does the application need to know if
the message has been stored by the recovery system?

n If the message is designated as recoverable, what should happen if it cannot be
stored by the message recovery system?

The delivery mode argument of the pams_put_msg function determines:

n Whether the message is sent as recoverable or nonrecoverable

n Whether a blocking or nonblocking mode is selected

n Whether the sender program receives notification and how it is received

n The point in the message flow at which the notification is sent

The following sections describe:

n How the Message Recovery System Works

n Choosing Recoverable and Nonrecoverable Delivery Modes

n Choosing an Undeliverable Message Action

How the Message Recovery System Works

When an application sends a message across a communications network, the final
receipt of the message can be interrupted by a variety of failure conditions. When a
recoverable delivery option is used to send a message, BEA MessageQ software stores
the message on a disk until the message is successfully delivered.

BEA MessageQ uses message recovery journals to store messages that are designated
as recoverable. The message recovery journal on the local system is called the store
and forward (SAF) file. The message recovery journal on the remote system is called
BEA MessageQ Programmer’s Guide 2-3

2 Using Recoverable Messaging

ive

the

eQ
the destination queue file (DQF). If a recoverable message cannot be delivered, it is
stored in either the SAF or DQF file and is automatically re-sent once communication
with the target group is restored.

BEA MessageQ uses auxiliary journal files to provide additional message recovery
capabilities. The dead letter journal (DLJ) file provides disk storage for messages
that could not be stored for automatic recovery by the message recovery system.
Undelivered messages stored in the DLJ file can be re-sent under user or application
control.

The postconfirmation journal (PCJ) file stores successfully confirmed recoverable
messages. It forms an audit trail of message exchange that can be read or printed. The
PCJ file can also be used to resend successfully delivered messages if a database has
become corrupted and must be restored. The message queuing group must be
configured to store successfully delivered messages in the PCJ file.

If the BEA MessageQ message recovery system is unable to store the message, the
undeliverable message action (UMA) is taken. Some UMAs enable the message to
be recovered at a later time under user or application control.

Choosing Recoverable and Nonrecoverable Delivery
Modes

The delivery mode is specified as a constant consisting of two components, the sender
notification code (sn) and the delivery interest point (dip), as follows:

PDEL_MODE_sn_dip

where:

n sn—indicates how the sender program wants to receive information about the
delivery of the message. You can wait for the operation to complete (WF),
receive notification in an asynchronous message (AK), or choose not to rece
notification (NN).

n dip—determines whether the message is designated as recoverable. When
message reaches the delivery interest point, a notification message is sent (if
requested) and the call returns control to the sender program or BEA Messag
delivers the asynchronous acknowledgment message.
2-4 BEA MessageQ Programmer’s Guide

Choosing a Message Delivery Mode
Nonrecoverable delivery interest points enable the sender program to receive
notification when the message is stored in the target queue (MEM), when the
message is read from the target queue (DEQ), or when the message is read from
the target queue and explicitly confirmed by the receiver program using the
pams_confirm_msg function (ACK).

When a recoverable delivery interest point is selected, the message is stored on
disk for automatic recovery. Recoverable delivery interest points enable the
sender program to store the message in the local recovery journal (SAF), store
the message in the remote recovery journal (DQF), or store the message in the
remote recovery journal and receive notification when the message is confirmed
by the target application (CONF).

BEA MessageQ does not support all possible combinations of sender notification code
and delivery interest points. Table 2-1 describes all of the valid BEA MessageQ
delivery modes and their meanings.

Table 2-1 Supported Delivery Modes

Delivery Mode Description

(Recoverable Delivery Modes)

PDEL_MODE_AK_CONF Send acknowledgment message when the message recovery
system confirms message delivery from the remote recovery
journal.

PDEL_MODE_AK_DQF Send acknowledgment message when the message is stored
in the remote recovery journal.

PDEL_MODE_AK_SAF Send acknowledgment message when the message is stored
in the local recovery journal.

PDEL_MODE_NN_DQF Deliver message to the remote recovery journal but do not
block and do not send notification.

PDEL_MODE_NN_SAF Deliver message to the local recovery journal but do not
block and do not send notification.

PDEL_MODE_WF_CONF Block until the message is stored in the remote recovery
journal and confirmed by the target application.
BEA MessageQ Programmer’s Guide 2-5

2 Using Recoverable Messaging
The following sections describe:

n When to Use Nonrecoverable Message Delivery

n When to Use Recoverable Message Delivery

When to Use Nonrecoverable Message Delivery

Nonrecoverable message delivery is the fastest and most efficient way to send
messages. Use nonrecoverable delivery modes if:

n High messaging rates are required by the application (hundreds or thousands of
messages per second).

PDEL_MODE_WF_DQF Block until the message is stored in the remote recovery
journal.

PDEL_MODE_WF_SAF Block until the message is stored in the local recovery
journal.

(Nonrecoverable Delivery Modes)

PDEL_MODE_AK_ACK Send acknowledgment message when the receiver program
explicitly confirms delivery using pams_confirm_msg.

PDEL_MODE_AK_DEQ Send acknowledgment message when the message is
removed from the target queue.

PDEL_MODE_AK_MEM Send acknowledgment message when the message is stored
in the target queue.

PDEL_MODE_NN_MEM Deliver message to the target queue but do not block and do
not send notification.

PDEL_MODE_WF_ACK Block until the receiver program explicitly confirms
delivery using pams_confirm_msg.

PDEL_MODE_WF_DEQ Block until the message is removed from the target queue.

PDEL_MODE_WF_MEM Block until the message is stored in the target queue.

Table 2-1 Supported Delivery Modes

Delivery Mode Description
2-6 BEA MessageQ Programmer’s Guide

Choosing a Message Delivery Mode
n The message content has a finite lifetime; therefore, the value of the information
is stale if not received and processed quickly.

n The message is sent locally between two applications in the same message
queuing group that tightly cooperate in the processing of an event.

n The message is a control message that causes a component of an application to
change state.

When to Use Recoverable Message Delivery

Recoverable message delivery is the safest way to send a message; however, it adds
significant processing overhead because each message must be stored on disk before
it is sent. Use recoverable delivery modes if:

n It is useful to know that the message has arrived; however, the sender does not
need to know the state of the receiver.

n The message content should not be lost by the application system.

n The application can tolerate the increased system load and slower messaging rate
caused by sending the message recoverably.

Choosing an Undeliverable Message Action

Using the pams_put_msg function in conjunction with the delivery argument, you
can use the uma argument to specify what should happen to the message if it cannot be
delivered to the delivery interest point. For nonrecoverable messaging, if a UMA is not
specified, BEA MessageQ will take the default action of discarding the message.

With recoverable messaging, the UMA indicates the action to be taken if the message
cannot be stored in either the SAF or DQF files. You must specify a UMA with
recoverable delivery modes because your application must perform the exception
processing when the message cannot be guaranteed for delivery by BEA MessageQ.

With recoverable messaging, the UMA may be taken when:

n The message recovery system journal process on the local or target node is not
running.
BEA MessageQ Programmer’s Guide 2-7

2 Using Recoverable Messaging
n BEA MessageQ is unable to write to the local journal disk file (SAF) where the
message is designated to be recoverable.

n The cross-group connection to the remote target group is down and the message
designated as recoverable on the remote node (DQF) cannot be stored.

n The system resources used by the message recovery system are exhausted.

n On OpenVMS systems, if the system manager has disabled message recovery for
a particular queue.

Table 2-2 lists the six valid UMAs.

See the Using UMAs for Exception Processing topic for a description of how to use
each UMA for exception handling with recoverable messaging.

Table 2-2 Valid UMAs

UMA Description

DISC Discard—the message is deleted.

DISCL Discard and log—the message is deleted and an entry indicating that the message
was not stored by the message recovery system is added to the BEA MessageQ
event log. DISCL is available on OpenVMS only. Though you can specify the
DISCL UMA on UNIX and Windows NT systems, it discards the message without
logging the event.

RTS Return to sender—the message is delivered to the sender’s response queue.

DLQ Dead letter queue—the message is written to the dead letter queue. This queue is
permanently active queue number 96, called the PAMS_DEAD_LETTER_QUEUE.

DLJ Dead letter journal—the message is written to the DLJ file. From the DLJ file, the
message can be re-sent at a later time under user or application control.

SAF Store and forward—the message is written to the message recovery journal on the
sender system.
2-8 BEA MessageQ Programmer’s Guide

How to Send a Recoverable Message

lue

ust

gram.

 the

is

hes

in a
 to the
, there

 new
How to Send a Recoverable Message

To send a recoverable message, use the pams_put_msg function supplying the
appropriate delivery and uma arguments. In addition, the application should:

n Specify a timeout value—applications can adjust the timeout value when
sending recoverable messages with blocking delivery modes. The timeout va
is adjusted to suit system loads.

n Check the delivery outcome—applications should always verify the delivery
outcome of a send operation to know what happened to the message. If the
message was not stored by the message recovery system, the application m
check to make sure that the UMA was successfully executed.

The message flow for sending a recoverable message is:

1. The application sends a message using the pams_put_msg function and the
appropriate delivery and uma arguments.

2. The message recovery system returns a sequence number to the sender pro

3. The message recovery system writes the message to the recovery journal on
local or remote system depending upon the delivery mode specified.

4. The sender program is notified that the message is stored on disk.

5. If the sender program is blocked, it continues processing once the message
received at the delivery interest point. If the sender program requested
notification, it receives an acknowledgment message once the message reac
the delivery interest point.

Sequence Numbers

Sequence numbers are unique across all applications and across all groups with
single message bus. Ordering by sequence number only has meaning in relation
sending application. For example, if two applications send messages to a queue
is no guarantee that application A has higher or lower sequence numbers than
application B. In addition, it is possible for sequence numbers to wrap, causing a
message to have a lower sequence number than an older message.
BEA MessageQ Programmer’s Guide 2-9

2 Using Recoverable Messaging
Sequence numbers are composed of the following:

n a time in seconds since January 1, 1970

n one bit (an extra bit used to extend a counter)

n a group number

n a 16-bit counter within the second

If the application sends 65536 messages within a single second, the extra bit is used to
make the counter a 17-bit number.

Any single application generates monotonically increasing serial numbers. You cannot
count on monotonically increasing serial numbers across multiple applications (this
includes both local and cross group communications). This is especially true of cross
group communications since the sequence number contains the originating group
number.

Specifying Timeout Values

A timeout argument can be supplied to the pams_put_msg function to prevent the
sender program from blocking indefinitely while waiting for the message recovery
system to store a message. If the timeout expires before the message is stored in the
SAF or DQF, BEA MessageQ returns control to the sender program and returns the
PAMS__TIMEOUT status return.

When specifying a timeout with a send operation, it is important to provide ample time
for the operation to complete successfully. For example, if the application normally
delivers many messages each second, setting the timeout argument to 30 seconds
should provide adequate time for the operation to complete.

Receiving a timeout return status represents a significant system failure. When a
timeout occurs, either the message queuing load to the message recovery system is
abnormally high or too much time is required to store the message due to disk I/O
delays or CPU loading. The timeout return status cannot reflect whether the message
was successfully stored by the message recovery system.

The sender program should include error handling routines for the PAMS__TIMEOUT
status return. Receipt of a timeout return status indicates that messaging load and
traffic should be examined as well as the MRS group configuration to ensure that all
processes are configured and working properly.
2-10 BEA MessageQ Programmer’s Guide

How to Send a Recoverable Message
Because the sender program cannot be sure whether the message was stored by the
recovery system, the receiver program could receive duplicate messages if the message
is re-sent. Therefore, using a timeout on the send operation may not be appropriate for
applications that would experience processing problems if duplicate information is
received.

Checking Delivery Outcome

There are several status return values that should be checked to verify the success or
failure of the attempt to send a recoverable message:

n Return status of the pams_put_msg call

n The success or failure message indicates whether the message was successfully
stored by the message recovery system.

n PAMS Status Block (PSB) returned by the pams_put_msg call or the MRS_ACK
asynchronous acknowledgment message. The PSB is a BEA MessageQ data
structure that delivers detailed status information about a send or receive
operation.

Table 2-3 describes the fields in the PSB.

Table 2-3 PAMS Status Block

Field Name Description

PSB Type Type number of the PSB structure. BEA MessageQ Version 3.0
uses PSB structure type 2.

Call Dependent Field not currently used.

Delivery Status The completion status of the function call. It contains the status
from the message recovery system. It can also contain a value of
PAMS__SUCCESS when the message is not sent recoverably.

Message Sequence
Number

A unique number assigned to a message when it is sent and
follows the message to the destination PSB. This number is input
to the pams_confirm_msg call to release a recoverable
message.
BEA MessageQ Programmer’s Guide 2-11

2 Using Recoverable Messaging
Figure 2-1 illustrates the size and location of the fields in the PSB.

Figure 2-1 PAMS Status Block

PSB UMA Status The completion status of the undeliverable message action
(UMA). The PSB UMA status indicates whether the UMA was
not executed or applicable.

Function Return Status After a BEA MessageQ routine completes execution, BEA
MessageQ software writes the return value to this field.

Table 2-3 PAMS Status Block

Field Name Description

ZK9000AGE

0

1

2

3

4

5

6

7

8

9

10

11

15

12

0

2

13

4

14

6

8

10

12

14

16

18

20

22

24

26

28

30

Type

Call Dependent

PSB Delivery Status

Message
Sequence
Number

PSB UMA Status

Function Return Status

Not Used

Word 1 2 Byte
2-12 BEA MessageQ Programmer’s Guide

How to Send a Recoverable Message

ponse

ese

s a
very
 valid
When an application sends a recoverable message, there are two ways to request
notification that the recoverable message is delivered to the delivery interest point. The
blocking approach (WF) causes the application to suspend processing until the
pams_put_msg function is completed. Using WF notification, the pams_put_msg
function returns all information required to determine the outcome of recoverable
message delivery.

The other notification request method is asynchronous acknowledgment (AK), which
enables the application to continue processing while the message is delivered to the
delivery interest point. In this case, some status information is supplied by the
pams_put_msg function and the balance is obtained using the pams_get_msg function
to read the MRS acknowledgment message returned to the sender program’s res
queue.

The following sections describe:

n Checking the Delivery Status of WF Requests

n Checking the Delivery Status of AK Requests

Checking the Delivery Status of WF Requests

To determine the outcome of recoverable delivery using WF notification, follow th
procedures:

If the return status of the pams_put_msg function is PAMS__SUCCESS, check the
PSB delivery status to determine the outcome of the delivery. If this field contain
success status, the message has been successfully stored by the message reco
system. Extract the message sequence number from the PSB. Table 2-4 lists the
PSB delivery status returns.

Table 2-4 PSB Delivery Status Values

PSB Delivery Status Returns Status Description

PAMS__CONFIRMREQ Information Confirmation required for this message.

PAMS__DQF_DEVICE_FAIL Failure Message not recoverable; destination
queue file (DQF) I/O failed.

PAMS__DQF_FULL Failure Message not recoverable; DQF full.

PAMS__ENQUEUED Success Message is recoverable.
BEA MessageQ Programmer’s Guide 2-13

2 Using Recoverable Messaging
If the PSB delivery status field contains a failure status, check the PSB UMA status to
determine the outcome of the UMA. If the field contains a success status, the UMA
was executed. If the UMA was not successfully executed, the message was lost and
must be resent. Table 2-5 lists the PSB UMA status returns.

PAMS__MRS_RES_EXH Failure Message not recoverable; file system ran
out of space or other resources, or
incorrect configuration of the DQF or
SAF.

PAMS__NO_DQF Failure Message not recoverable; no DQF for
target queue.

PAMS__POSSDUPL Information Message is a possible duplicate.

PAMS__SAF_DEVICE_FAIL Failure Message not recoverable; store and
forward (SAF) I/O failed.

PAMS__SAF_FORCED Success Message written to SAF file to maintain
FIFO order.

PAMS__STORED Success Message is recoverable.

PAMS__SUCCESS Success Indicates successful completion.

Table 2-5 UMA Status Values

UMA Status Returns Status Description

PAMS__DISC_FAILED Failure Message not recoverable in destination queue file
(DQF); UMA was PDEL_UMA_DISC; message
could not be discarded.

PAMS__DISC_SUCCESS Success Message not recoverable in DQF; UMA was
PDEL_UMA_DISC; message discarded.

PAMS__DISCL_FAILED Failure Message not recoverable in DQF; UMA was
PDEL_UMA_DISC; recoverability failure could not
be logged or message could not be discarded.

Table 2-4 PSB Delivery Status Values

PSB Delivery Status Returns Status Description
2-14 BEA MessageQ Programmer’s Guide

How to Send a Recoverable Message
PAMS__DISCL_SUCCESS Success Message not recoverable in DQF; UMA was
PDEL_UMA_DISCL; message discarded after
logging recoverability failure.

PAMS__DLJ_FAILED Failure Message not recoverable in DQF; UMA was
PDEL_UMA_DLJ; dead letter journal file (DLJ)
write operation failed.

PAMS__DLJ_SUCCESS Success Message not recoverable in DQF; UMA was
PDEL_UMA_DLJ; message written to dead letter
journal.

PAMS__DLQ_FAILED Failure Message not recoverable in DQF; UMA was
PDEL_UMA_DLQ; message could not be queued to
the dead letter queue.

PAMS__DLQ_SUCCESS Success Message not recoverable in DQF; UMA was
PDEL_UMA_DLQ; message queued to the dead
letter queue.

PAMS__NO_UMA Success Message is recoverable; UMA not executed.

PAMS__RTS_FAIL Failure Message not recoverable in DQF; UMA was
PDEL_UMA_RTS; message could not be returned
to sender.

PAMS__RTS_SUCCESS Success Message not recoverable in DQF; UMA was
PDEL_UMA_RTS; message returned.

PAMS__SAF_FAILED Failure Message not recoverable in DQF; UMA was
PDEL_UMA_SAF; store and forward (SAF) write
operation failed.

PAMS__SAF_SUCCESS Success Message not recoverable in DQF; UMA was
PDEL_UMA_SAF; message recoverable from SAF
file.

PAMS__UMA_NA Success UMA not applicable.

Table 2-5 UMA Status Values

UMA Status Returns Status Description
BEA MessageQ Programmer’s Guide 2-15

2 Using Recoverable Messaging

age

r

 the
rom the

 PSB

ssage
 PSB
ivery

s to

 is
s.
Checking the Delivery Status of AK Requests

When a message sent with a PDEL_MODE_AK delivery mode reaches its delivery interest
point, the message recovery system sends an MRS_ACK message back to the sender
program using the queue name or number indicated in the resp_q argument. The
sender program uses the pams_get_msg or pams_get_msgw functions to read the
MRS_ACK message from its response queue.

The PSB returned by the MRS_ACK message contains the message sequence number of
the previously sent recoverable message. The message sequence number of the
MRS_ACK message is matched to the message sequence number returned by the
pams_put_msg function before confirming message receipt. See Chapter 9, “Mess
Reference” for a detailed description of the MRS_ACK message format.

If temporary queues are used, deleted, and reused quickly, it is possible that an
acknowledgment from an earlier instance of the queue can be retrieved on a late
instance of the queue. Care should be taken when reusing temporary queues.

If the return status is PAMS__SUCCESS, the message has been successfully stored by
message recovery system. The message sequence number should be extracted f
PSB and saved until the acknowledgment message is received.

Follow these steps to determine the outcome of message delivery by reading the
returned in the MRS_ACK message:

1. Check the PSB delivery status. If this field contains a success status, the me
is recoverable. The message sequence number should be extracted from the
and compared to the previously saved message sequence number. PSB Del
Status Values lists the valid PSB delivery status returns and their meaning.

2. If the PSB delivery status contains a failure status, check the PSB UMA statu
determine the outcome of the UMA. If the field contains a success status, the
UMA was executed. If the UMA was not successfully executed, the message
lost and must be re-sent. UMA Status Values lists the PSB UMA status return
2-16 BEA MessageQ Programmer’s Guide

How to Receive a Recoverable Message

m
d
tem

tion

r

 is
ueue.

es
d
be
ation
ted

as

m and

ge
tem

on,
ered
 How to Receive a Recoverable Message

To receive a recoverable message, use the pams_get_msg, pams_get_msgw, or
pams_get_msga functions. When a recoverable message is delivered to the target
queue, the application must perform the following:

n Confirm message receipt—messages stored by the message recovery syste
must be deleted from the recovery journal once they are successfully delivere
to the target queue. Message confirmation informs the message recovery sys
to delete the message to avoid sending duplicate messages if a failure condi
causes the content of the recovery journal to be re-sent.

In the group initialization file, message queues are configured to require eithe
implicit or explicit confirmation. Explicit confirmation of recoverable messages
requires the application to call the pams_config_msg function when a
recoverable message is received. Implicit confirmation means that BEA
MessageQ automatically confirms receipt of the recoverable message after it
dequeued and a subsequent dequeue operation has occurred on the target q

n Check for duplicate messages—applications may check for duplicate messag
based on the type of task performed. For example, if a banking application di
not check for duplicate transactions, duplicate deposits or withdrawals could
posted to a customer’s account. On the other hand, a stock brokerage applic
that receives continuously updated stock prices would not be adversely affec
by duplicate stock price quotations.

The message flow for receipt of a recoverable message by the target system is
follows:

1. A message is read from the message recovery journal by the recovery syste
sent to the target queue of the receiver program.

2. The receiver program reads the pams_get_msg, pams_get_msgw, or
pams_get_msga functions.

3. If the queue is configured for explicit confirmation, the application calls the
pams_confirm_msg function to acknowledge receipt of the recoverable messa
using the message sequence number assigned by the message recovery sys
when the message was sent. If the queue is configured for implicit confirmati
BEA MessageQ performs this function after the recoverable message is deliv
to the target queue.
BEA MessageQ Programmer’s Guide 2-17

2 Using Recoverable Messaging
4. The pams_confirm_msg function sends notification to the message recovery
system that the message was delivered and awaits a response.

5. The message recovery system removes the message from the message recovery
journal and sends a nonblocking message back to the pams_confirm_msg
function.

Figure 2-2 illustrates the message flow for receiving a recoverable message.

Figure 2-2 Message Flow for Receiving a Recoverable Message

The following sections describe:

n Confirming Message Receipt

n Checking for Duplicate Messages

Confirming Message Receipt

When the receiver program reads a recoverable message from its target queue, the
recovery system retains the message until delivery is confirmed. The
pams_confirm_msg function is used to remove successfully delivered recoverable
messages from the message recovery journal. The message recovery system attempts
redelivery of recoverable messages from the recovery journal each time the target
queue detaches from and reattaches to the message queuing bus.

ZK8976AGE

Message
Recovery
System Message Application

4

5 3

21

Message
Sequence
Number

Internal MRS
confirmation with
Sequence Number

Confirm
Response

Recovery
Journal

pams_confirm_msg
2-18 BEA MessageQ Programmer’s Guide

How to Receive a Recoverable Message

 for

ry

s

eipt

g from
 not

ntain
 data
The receiver program reads the PSB delivery status of each message to know
which messages to confirm. A PSB delivery status of PAMS__CONFIRMREQ indicates
that the message requires confirmation. A PSB delivery status of PAMS__POSSDUPL
also requires confirmation to delete the message from the message recovery system.

The following sections describe:

n Selecting a Confirmation Type

n Selecting a Confirmation Order

n Creating an Audit Trail of Confirmed Messages

Selecting a Confirmation Type

BEA MessageQ offers the following two types of message confirmation:

n Implicit confirmation—enables the BEA MessageQ recovery system to
automatically call the pams_confirm_msg function to delete a recoverable
message. Implicit confirmation is triggered when the next sequential message
that queue is read from the journal file using the pams_get_msg call.

n Explicit confirmation—requires the receiver program to call the
pams_confirm_msg function to delete the message from the message recove
journal. The pams_confirm_msg function uses the message sequence number
supplied in the PSB when the user receives the message. The
pams_confirm_msg function should not be called until the receiver program ha
completed processing the information in the message.

Implicit confirmation frees receiver programs from the need to respond to the rec
of a recoverable message. If you are using implicit confirmation with recoverable
messaging, you must ensure that the last message is confirmed before detachin
the queue, exiting BEA MessageQ, or exiting your application. If the message is
properly confirmed, it will be redelivered when the queue is reattached.

Explicit confirmation is normally used when several messages are required to co
a single transaction or work unit. The application reads each message until all the
is present, applies the data, and then confirms all the messages involved in the
transaction at once.

All queues must be configured for implicit or explicit confirmation. For complete
information on how to configure message queues, see the Installation and
Configuration Guide for the platform you are using.
BEA MessageQ Programmer’s Guide 2-19

2 Using Recoverable Messaging
Selecting a Confirmation Order

Confirmation order is another MRS configuration characteristic that can affect how
recoverable messages are confirmed by the receiver program. Queues can be
configured to confirm messages in order or out-of-order. The default configuration
used for each message queuing group is to confirm messages in order.

If confirmation is in order, messages must be confirmed in the order in which they are
received. If confirmation is out-of-order, then messages can be confirmed in any order.
For more information on how to set confirmation order, see the installation and
configuration guide for the platform you are using.

Creating an Audit Trail of Confirmed Messages

When using recoverable messaging, you can choose to write successfully delivered
recoverable messages to the postconfirmation journal (PCJ) of the target group. The
contents of the postconfirmation journal forms an audit trail of successfully delivered
messages that you can print out or use to resend messages in the event of a database
rollback.

To use PCJ journaling, you must do the following:

n Set the ENABLE_JRN parameter in the %PROFILE section of the group
initialization file to YES. The default journaling action is not to write messages to
the PCJ.

n Specify the path name for the PCJ file in the %MRS section of the initialization
file. On OpenVMS systems, the file specification for the PCJ is automatically
created when you enable MRS.

n Configure the target queue that will receive the messages to require explicit
confirmation. If a queue is configured for implicit confirmation, no journaling of
successfully delivered messages takes place regardless of whether journaling is
enabled.

n Use the pams_confirm_msg function to explicitly confirm messages and set the
force_j argument to PDEL_FORCE_JRN to store successfully delivered
recoverable messages in the PCJ. To prevent messages from being stored in the
PCJ when journaling is enabled, set the force_j argument to PDEL_NO_JRN.
Note that if journaling is not enabled in the group initialization file, no messages
are written to the PCJ file regardless of the value of the force_j argument.
2-20 BEA MessageQ Programmer’s Guide

How to Receive a Recoverable Message
For OpenVMS applications, you can also set the force_j argument to
PDEL_DEFAULT_JRN to use the default journaling action. The default journaling
action can be changed using the MRS_SET_PCJ message.

On UNIX and Windows NT systems, messages stored in the PCJ file can be re-sent
using the dmqjplay utility and dumped using the dmqdump utility. For instructions on
how to use the MRS utilities, see the installation and configuration guide for your
platform

To read or resend journaled messages on BEA MessageQ for OpenVMS systems, use
the pams_open_jrn, pams_read_jrn, and pams_close_jrn functions to open, read,
and close the PCJ file. See the Application Programming Interface topic for a detailed
description of these functions. For information on how to use MRS utilities to resend
or dump the contents of the PCJ, see the BEA MessageQ Configuration Guide for
OpenVMS.

On OpenVMS systems, the default journaling action can be set under program control
by sending an MRS_SET_PCJ message to the MRS Server process. The current PCJ file
can also be closed and a new one opened by the same message. Because UNIX and
Windows NT do not currently support the MRS_SET_PCJ message, the default
journaling action can not be changed. This mean that the only way to write messages
on these systems is to specify a force_j value of PDEL_FORCE_JRN.

Checking for Duplicate Messages

If recoverable message delivery is not properly confirmed by the receiver program,
duplicate messages can be delivered to the target application. For example, a message
may be sent from a recovery journal, but the cross-group connection may be lost before
the message confirmation is delivered.

When the cross-group connection is reestablished, the message will be resent from the
message recovery journal and carry a PSB delivery status of PAMS__POSSDUPL. The
receiver program must check for this PSB delivery status if the posting of duplicate
information will cause processing errors.

The PSB delivery status PAMS__POSSDUPL does not always indicate a duplicate
message. If receipt of a duplicate message will cause processing problems, the receiver
program must include the logic to determine whether the message marked with the
PAMS__POSSDUPL delivery status is indeed a duplicate of a message already received.
BEA MessageQ Programmer’s Guide 2-21

2 Using Recoverable Messaging
Using UMAs for Exception Processing

An undeliverable message action (UMA) must be specified for each recoverable
message. The UMA provides the application developer with a variety of ways to
perform exception handling when the message cannot be stored for guaranteed
delivery by the message recovery system. Table 2-6 describes the UMAs supported by
BEA MessageQ.

Table 2-6 How to Use UMAs

If you want to... Use... Description

Handle each exception
immediately

DISC The sender program is coded to handle each
exception immediately with an application-specific
response. The message is discarded by the
messaging system because the application holds the
message in memory and attempts recovery. The
sender program sends each message and is
responsible for handling all error recovery and
redelivery of each message.

Handle each exception
immediately and log
errors

DISCL This UMA is available only on OpenVMS systems.
The sender program is coded to handle each
exception immediately with an application-specific
response. BEA MessageQ writes a description of the
exception condition to the error log. The log can be
used by system managers to track and diagnose
system problems. The sender program sends each
message, and is responsible for handling all error
recovery, logging the error event, and redelivering
each message.
2-22 BEA MessageQ Programmer’s Guide

Using UMAs for Exception Processing

s

r
o
r

ch

as

s

 is

e

d in

.

d

e
l

e
Handle errors by
redirecting them to the
sender program’s input
stream

RTS The sender program directs undeliverable message
to its queue, eliminating the need to handle each
error as it happens. Using the RTS UMA, the sende
program uses the attachment to its primary queue t
read new messages and handle error conditions fo
messages that could not be delivered. The sender
program sends each message, and must check ea
message to see if it was returned or if it is a new
message sent by another process. If the message w
returned, the sender program is responsible for
handling all error recovery and redelivering each
message.

Handle errors by
reading them from a
central queue

DLQ The sender program directs undeliverable message
to a special queue separate from the main input
stream for the program that is designed to hold
undeliverable messages. Using this approach, the
application makes an additional attachment to the
dead letter queue and handles each exception as it
read from the DLQ. Because the undeliverable
messages are stored in a queue, they will be lost if
the system goes down.

Handle all errors by
reading them from a file

DLJ The sender program directs all undeliverable
messages to a file. Undeliverable messages can b
re-sent from the DLJ under user or application
control. Selection criteria can be applied enabling
the user or application to attempt redelivery on a
subset of messages. Because messages are store
a file, they will not be lost if the system goes down
and they can be re-sent until they can be delivered
The application must develop an additional process
or system management procedures must be create
to deliver messages from the DLJ.

Establish recoverability
locally or remotely

SAF Any message that cannot be delivered to the remot
recovery journal is redirected for storage by the loca
recovery journal. Because the UMA may fail, you
cannot guarantee that a message will be stored by th
message recovery system.

Table 2-6 How to Use UMAs

If you want to... Use... Description
BEA MessageQ Programmer’s Guide 2-23

2 Using Recoverable Messaging
To choose the appropriate error handling technique and corresponding UMA, the
application developer must analyze the consequences to application processing if a
message is not stored for guaranteed delivery. If a message is critical, it is best to
perform exception processing immediately to attempt resolution of the failure
condition. If the receipt of the message is not time-critical, centralized mechanisms
such as DLQ and DLJ may be preferable. The Supported Delivery Modes and UMAs
topic contains a complete list of the supported combinations of delivery modes and
UMAs.

The following sections describe:

n Using Discard and Discard and Log UMAs

n Using the Return-to-Sender UMA

n Using the Dead Letter Queue UMA

n Using the Dead Letter Journal

n Using the SAF UMA

Using Discard and Discard and Log UMAs

When the DISC UMA is used, the message is discarded if it cannot be delivered to the
delivery interest point specified in the delivery mode argument. The DISC UMA is
used when the sender program will handle each exception as it occurs. BEA MessageQ
can discard the undeliverable message because the message content is still available in
the context of the sender program. To log the undeliverable message event, use the
DISCL UMA.

Because the sender program cannot be sure that the UMA will be executed
successfully, handling exceptions on a message-by-message basis is the safest way to
ensure that the application recovers properly from error conditions. In addition, on
OpenVMS systems, using the DISCL UMA creates an event log that can be used to
track and diagnose system problems.

Note: On UNIX and Windows NT systems, the DISCL UMA functions the same as
the DISC UMA.
2-24 BEA MessageQ Programmer’s Guide

Using UMAs for Exception Processing

 to the

le
n the
ble
Using the Return-to-Sender UMA

When the RTS UMA is used, the message is directed to the response queue of the
sender program if it cannot be delivered to the delivery interest point specified in the
delivery mode argument. The RTS UMA is used when the sender program does not
want to process each exception as it occurs. Instead, the sender program redirects
undeliverable messages to its main input stream for error handling.

The advantage to using the RTS UMA is that the sender program attaches to one queue
and acts upon each message as it is read. The sender program must read the PBS status
delivery value of each message to determine if the message is new or an undeliverable
message. Messages that could not be stored by the message recovery system and
require error handling have a return status of PAMS__MSGUNDEL.

Using the Dead Letter Queue UMA

When the DLQ UMA is used, the message is redirected to queue number 96 (the dead
letter queue) if it cannot be delivered to the delivery interest point specified in the
delivery mode argument. The DLQ UMA is used when the sender program wants to
centralize error handling for undeliverable messages in a designated queue while
allowing each message to be handled separately.

A dead letter queue is part of the standard group configuration for each BEA
MessageQ message queuing group. It provides memory-based storage of all
undeliverable messages for the group that could not be stored for automatic recovery.
The dead letter queue is defined as queue number 96 and named dead_letter_queue in
the default group configuration information for each group. The default settings create
this queue as a permanently active queue.

To use the dead letter queue, the sender program calls the pams_put_msg function
specifying the appropriate delivery argument and using PDEL_UMA_DLQ as the uma
argument. Any messages that cannot be delivered to the receiver program are written
to the dead letter queue of the sender’s group. An application program can attach
queue named PAMS_DEAD_LETTER_QUEUE and use the pams_get_msg function to
retrieve undelivered messages and use the pams_put_msg function to attempt
redelivery.

An advantage of using the dead letter queue is the ability to recover undeliverab
messages on a one-by-one basis. The sender program or another process withi
application can attach to the DLQ and handle error recovery for each undelivera
BEA MessageQ Programmer’s Guide 2-25

2 Using Recoverable Messaging

sing

ecific
ies.

er, it
message. A disadvantage of using the dead letter queue is the lack of disk storage for
undelivered messages. A system failure on the sending node will cause all undelivered
messages in the dead letter queue to be lost.

Using the Dead Letter Journal

When the DLJ UMA is used, the message is written to an auxiliary journal (the dead
letter journal) if it cannot be delivered to the delivery interest point specified in the
delivery mode argument. This UMA can only be used for recoverable messages. The
DLJ UMA is used when the sender program needs to centralize error handling
procedures and the application can support the resending of many messages from a file
at a delayed interval. Storing undeliverable messages in a file ensures that they will not
be lost if the system goes down, and allows redelivery attempts under user or
application control.

A dead letter journal can be configured for each BEA MessageQ message queuing
group. The dead letter journal provides disk storage for messages that could not be
stored for automatic recovery. On BEA MessageQ for UNIX and Windows NT
systems, a path name must be specified during configuration in order to create DLJ
files. On BEA MessageQ for OpenVMS systems, DLJ files are created automatically
by the MRS Server when a message queuing group is configured with MRS enabled.

To use the dead letter journal, the sender program uses the pams_put_msg function
specifying the appropriate delivery argument and PDEL_UMA_DLJ as the uma
argument. Any messages that cannot be stored by the message recovery system are
written to the dead letter journal of the sender’s group.

On UNIX and Windows NT systems, messages are recovered from the DLJ file u
the dmqjplay utility. On OpenVMS systems, an application can provide recovery
under program control or using system management tools. See your platform-sp
installation and configuration guide for more information on how to use MRS utilit

Using the SAF UMA

When the SAF UMA is used, the message is stored in the local journal file if the
message recovery system is unable to store it in the remote journal file. The SAF UMA
can be used with recoverable delivery interest points of DQF and CONF; howev
does not work with the WF_SAF delivery mode.
2-26 BEA MessageQ Programmer’s Guide

Recoverable Messaging on BEA MessageQ Clients
Use of the SAF UMA helps to manage the flow control between the sender and receiver
systems. If the message cannot be written to the remote journal file due to insufficient
resources or a cross-group link failure, the message will be written to the local journal
file.

Note: The application must check the PSB UMA status value in order to know
whether the message is recoverable.

Recoverable Messaging on BEA MessageQ
Clients

Message Recovery Services (MRS) are also available for applications running on a
BEA MessageQ client. The BEA MessageQ Client ensures delivery of recoverable
messages to the Client Library Server on the BEA MessageQ Server by providing a
store-and-forward (SAF) journal (dmqsaf.jrn) to store recoverable messages when
the connection to a CLS is not available. Local SAF journal processing is available
when Message Recovery Services (MRS) are enabled in the BEA MessageQ Client
configuration. The location of the journal file is set when configuring MRS.

The Store And Forward journal (dmqsaf.jrn) is created on a BEA MessageQ client
when MRS is enabled. The journal file is locked by the first application that attaches
to the BEA MessageQ message bus. If you have several BEA MessageQ applications
running on the client, only one can use the journal file. Other applications will get an
error reading the journal when attaching and when sending to a queue. Each
application program on the client requires a separate working directory. If there are
many client applications running on a machine, consider configuring a message
queuing group, which allows the applications to share resources.

If MRS is enabled, the message recovery journal is turned on when the client
application first initiates an attach operation. If the CLS is not available at the time of
an attach, the journal file is opened and the attach operation completes with return a
status of PAMS__JOURNAL_ON.

When the journal is on, messages sent using the following reliable delivery modes are
saved to the journal:

n PDEL_MODE_WF_MEM with PDEL_UMA_SAF
BEA MessageQ Programmer’s Guide 2-27

2 Using Recoverable Messaging
n PDEL_MODE_WF_DQF

n PDEL_MODE_AK_DQF

n PDEL_MODE_WF_SAF

n PDEL_MODE_AK_SAF

When the connection to the CLS is re-established, all messages in the SAF journal are
sent before new messages are processed. The SAF messages are transmitted in
first-in/first-out (FIFO) order. When the connection to CLS is reestablished, a return
status of PAMS__LINK_UP is used to indicate that journal processing is no longer active.

Messages are sent from the SAF when one of the following events occurs:

n The connection to the CLS is established successfully and pending messages
exist in the SAF.

n The connection to the CLS is lost and the application continues to send
recoverable messages. Additional message operations trigger an automatic
reconnect to the CLS that is successful, and messages are pending transmission
in the SAF.
2-28 BEA MessageQ Programmer’s Guide

CHAPTER

sing
3 Broadcasting Messages

BEA MessageQ Selective Broadcast Services (SBS) enable applications to send a
message to many receiver programs using a single program call. Any BEA MessageQ
application can send a broadcast message using the standard pams_put_msg function.
The sending application can generate broadcast messages without knowing the
location or number of receiver programs.

Any BEA MessageQ application can selectively receive a broadcast message by first
subscribing to a broadcast stream. To subscribe to a broadcast stream, the receiving
application first sends a registration message to the SBS Server. Broadcast messages
are then enabled for the application and flow into the receiver’s queue for proces
using the standard pams_get_msg function.

.

ZK9008AGE
BEA MessageQ Programmer’s Guide 3-1

3 Broadcasting Messages

ge to
l. This

e
stered
tions
 of

 need
r each
r
nging

a. For
st
A broadcast stream is a data message pipeline that can have multiple entry points and
multiple exit points. A message enters the stream and flows immediately to the end.
There is no queuing on a broadcast stream, nor is the stream subject to flow control.
Also, the flow of messages on a broadcast stream will not be interrupted by any event.
Messages are only present on the stream for a finite segment of time, while they are
being delivered to the queues of the receiving targets.

The SBS server is responsible for maintaining lists of user processes that are interested
in broadcast streams. In addition, the SBS server is responsible for maintaining the
various user definable rules that can be used to selectively extract messages from the
broadcast stream that are set by the application using the SBS_REGISTER_REQ
message.

Any BEA MessageQ application can send a broadcast message using the standard
pams_put_msg function. The identical programming interface which is used to send
point-to-point messages can also send a broadcast message by simply changing the
target address to a Multipoint Outbound Target (MOT). A MOT is a broadcast stream
associated with a queue number in the range of 4000 to 6000.

BEA MessageQ SBS works in a fashion similar to radio broadcasting. A BEA
MessageQ sender program directs a message to a selected broadcast stream or
“channel.” Then, the receiver program “tunes in” by sending a registration messa
the SBS Server thus registering to receive messages broadcast over that channe
feature is also called “publish and subscribe” in the messaging industry.

When a broadcast message is distributed, any receiver program registered for th
broadcast channel will receive the message. Receiver programs that are not regi
will not receive the message. Similar to radio broadcasting, where many radio sta
are broadcasting at the same time, BEA MessageQ can distribute different types
messages over different broadcast channels.

SBS message broadcasting simplifies application development by eliminating the
for sender programs to know the number, state, or location of the target queues fo
receiver program. SBS also simplifies application maintenance because receive
programs can be added and removed from the broadcast distribution without cha
the sender program.

A common use for broadcast messaging is the display of real-time continuous dat
example, an application that provides up-to-date stock prices can obtain the late
values and display them simultaneously for any number of system users.

The following sections describe:
3-2 BEA MessageQ Programmer’s Guide

How Message Broadcasting Works

.

trates
n How Message Broadcasting Works

n Sending Broadcast Messages

n Receiving Broadcast Messages

n Running Existing SBS Applications

How Message Broadcasting Works

To send a message to multiple recipients simultaneously, the sender program uses the
pams_put_msg function and specifies a Multipoint Outbound Target (MOT) as the
target address for the message. A MOT, numbered between 4000 and 6000, is the
identifier for a broadcast stream. A broadcast stream is the set of target queues
registered to receive messages directed to a particular MOT.

Continuing our analogy with radio broadcasting, a MOT is equivalent to a radio station
that people tune in to. When a message is sent to a MOT, any receiver program
registered for the MOT will receive the message.

Each BEA MessageQ message queuing group can be configured to support message
broadcasting by setting the ENABLE_SBS parameter in the Profile section of the group
initialization file. The default value for this parameter is YES. Therefore, by default, an
SBS Server is started for each message queuing group to support both message
broadcasting and BEA MessageQ queue availability notification (AVAIL services).
Receiver programs may register a queue address with any SBS Server. Any message
directed to a MOT address is automatically redirected to the group’s SBS Server

The SBS Server uses its registration database to distribute the message to all
applications that have registered to receive the selected message. Figure 3-1 illus
the flow of messages in the broadcast stream.
BEA MessageQ Programmer’s Guide 3-3

3 Broadcasting Messages

erver
Figure 3-1 BEA MessageQ Broadcast Stream

Once registered, applications can receive all messages directed to a broadcast stream,
or only those messages that meet the selection criteria entered at the time of
registration. Applications can register to receive messages from many broadcast
streams. Applications can stop receiving broadcast messages at any time by sending an
SBS_DEREGISTER_REQ message to the SBS Server.

For example, a stock brokerage application might need to display updated stock prices
on many user terminals simultaneously. The system designer could designate MOT
5110 as the broadcast stream for updated stock prices. The sender program receiving
the updated information from the stock exchange would create outbound messages
containing the updated pricing information and send it to the broadcast stream
represented by MOT 5110. During their initialization, all receiver programs designed
to update user displays would send a registration message to their group’s SBS S
requesting to receive all messages sent to MOT 5110. The updated stock price
messages would then flow to the queue of the receiver programs.

Receiver

ZK8975AGE

MOT

SBS Server

SBS

Broadcast Stream

Sender

Receiver

Receiver

SBS Server
Queue
3-4 BEA MessageQ Programmer’s Guide

How Message Broadcasting Works
When designing your broadcast communication environment, you can choose the
following configuration characteristics:

n Private or universal broadcast streams

n Named or unnamed MOTs

n Message broadcasting using the standard BEA MessageQ transport (TCP/IP) or,
on OpenVMS systems, the direct Ethernet multicast communication mode

n When using Ethernet broadcasting (OpenVMS only), you can choose between
standard multicasting or the enhanced Recovery Protocol

The following sections describe:

n Broadcast Scope

n Named MOTs

n Broadcast Communication Modes

Broadcast Scope

The range of distribution for a broadcast stream is determined by the MOT address
value. Table 3-1 lists the valid MOT address ranges:

Table 3-1 BEA MessageQ MOT Ranges

Type Address Range Description

Private MOT 4000-4999 Message distribution is restricted to the local group
only.

Reserved 4900-5100 Reserved for use by BEA MessageQ. Of these
addresses, the first 100 are local or private, and the
second 100 are global or universal.

Universal MOT 5000-6000 Message distribution is to all SBS Servers
BEA MessageQ Programmer’s Guide 3-5

3 Broadcasting Messages
Any message sent to a queue address in the range of 4000-6000 is automatically
redirected to the SBS Server. The broadcast queue address range (4000-6000) is
divided into half, with the lower values designated as private MOT addresses and the
higher as universal MOTs.

MOTs numbered below 5000 are associated with a private broadcast stream. MOTs
numbered between 4900 and 5000 are reserved to for use by BEA MessageQ. BEA
MessageQ redirects a message sent to a private broadcast stream to the local SBS
Server, which restricts distribution to registered queues on that group. The SBS Server
distributes the message by executing the rules for its local subscribers only. An
application uses a private broadcast stream when the scope of interest for the
information is local to one system.

An application program does not need to be local to an SBS Server group to register
for a private broadcast stream. The registration message specifies a message group
identifier allowing queues to register with remote SBS Servers.

MOTs numbered above 5000 are associated with universal broadcast streams.
MOTs numbered between 5000 and 5100 are reserved for use by BEA MessageQ. In
the universal MOT range, the broadcast stream is available to all SBS Servers. The
sender SBS Server is responsible for the following:

n Ensuring that the submitted message conforms to the rule set when distributing
the messages locally

n Distributing the messages to all partner SBS Servers

Each SBS Server in the BEA MessageQ network is responsible for ensuring that the
submitted message conforms to the rule set of registered users and for distributing the
messages locally.

For example, the stock brokerage application we mentioned may need to supply
updated stock prices to receiver programs on many systems in a distributed network.
This application would be most likely to use a universal broadcast stream to expedite
the flow of information throughout the network.
3-6 BEA MessageQ Programmer’s Guide

How Message Broadcasting Works

sing
eQ
Named MOTs

You can configure a BEA MessageQ MOT with a name so that the sender program can
direct messages to the MOT name instead of the MOT number. To enable an
application to refer to a MOT by name, define the MOT in the Group Name Table
(GNT) section of the group initialization file. A full MOT address contains the
following:

n The group ID in the high-order 16-bit word

n The MOT number in the low-order 16-bit word

The BEA MessageQ Naming Service supports the run-time lookup of MOT addresses
by applications using the pams_locate_q function to translate a symbolic name to a
MOT address. This name can have either a group-wide or bus-wide scope. The %GNT
section of the group initialization file is used to load the name into the BEA MessageQ
name space.

Listing 3-1 shows how to define the bus-wide "Alarm_events" name to use MOT 5110
and the group-wide "Operator_events" name to use MOT 4810.

Listing 3-1 Configuring a Named MOT

%GNT
!
! Name Group.Queue Scope
------------------- ----------- -----
Alarm_events 0.5110 G
Operator_events 0.4810 L
!
%EOS

Note that the group number is defined as 0 so that the application translating the name
uses the local SBS Server rather than a specific SBS Server. See Chapter 4, “U
Naming” for a more detailed discussion on the use and features of BEA Messag
Naming Services.
BEA MessageQ Programmer’s Guide 3-7

3 Broadcasting Messages
Broadcast Communication Modes

All BEA MessageQ Servers support message broadcasting using datagrams
transmitted using the BEA MessageQ transport. Datagrams are then transferred over a
BEA MessageQ cross-group link (TCP/IP) to another BEA MessageQ Server process
and are queued to the receiving SBS Server. Since the broadcasting to each SBS Server
is transmitted over point-to-point links, one copy of a message must be sent to each
SBS Server. Datagram delivery mode can be used for both private and universal
broadcast streams. Figure 3-2 illustrates SBS message broadcasting using the BEA
MessageQ transport.

Figure 3-2 SBS Broadcasting Via BEA MessageQ Transport

On UNIX and Windows NT systems the default broadcast transport uses the standard
BEA MessageQ cross-group messaging via TCP/IP as defined in the %XGROUP section
of the group initialization file. On OpenVMS systems, the BEA MessageQ transport is
specified in the SBS section of the DMQ$INIT.TXT file using the COMM_SERVICE
keyword with DG/DMQ as the protocol and transport as shown in Listing 3-2:

Listing 3-2 Setting the COMM_SERVICE for SBS on OpenVMS

* ---- Service ----
* ID Prot/Xport
COMM_SERVICE 10 DG/DMQ! default emulated broadcast path

Sender

ZK8974AGE

MOT

RCVR RCVR RCVR RCVR

SBS Server SBS Server

SBS Server
3-8 BEA MessageQ Programmer’s Guide

How Message Broadcasting Works
 GROUPS * ! all known server groups
 REGISTER * ! all universal MOTs
END_COMM_SERVICE
*

In addition to using the BEA MessageQ transport, BEA MessageQ for OpenVMS
applications have the option to use Ethernet multicasting which provides faster
throughput for message delivery. There are two protocols available for direct Ethernet
multicasting, the normal datagram protocol or the enhanced recovery protocol. The
default setting for broadcast communication between SBS Servers is provided by the
BEA MessageQ transport using standard cross-group messaging. The choice of
enhanced broadcast communication using Ethernet multicasting is set by the protocol
parameter in the SBS Server Initialization section of the group initialization file.

Ethernet multicasting can only be used for universal MOT traffic. When Ethernet
multicasting is enabled, a message to a universal MOT causes a datagram transfer to
the SBS Server that transmits the message via an Ethernet multicast. All receiving SBS
Servers obtain the multicast message directly. Since broadcasting utilizes the hardware
multicast feature of the Ethernet device, a single multicast message can be received by
any number of SBS Servers that are configured to listen using the multicast address as
provided in the CNTRL_CHAN and DATA_CHAN keywords in the example below. The
Ethernet DG protocol also supports simultaneous multicast on two Ethernet devices
per system (also called dual-rail support). When dual-rail support is employed,
message segments are broadcast on both Ethernet devices and duplicates are discarded
by the receiving SBS Server.

If the optimized Ethernet multicasting feature is enabled, then MOT assignments to
Ethernet physical addresses and protocol numbers must be specified. Figure 3-3
illustrates how SBS transports messages using Ethernet multicasting.
BEA MessageQ Programmer’s Guide 3-9

3 Broadcasting Messages
Figure 3-3 SBS Broadcasting Via Ethernet Transport

Retransmission Protocol on BEA MessageQ for OpenVMS Systems

BEA MessageQ for OpenVMS Version 4.0A provides an important enhancement to
SBS Ethernet multicasting called the retransmission protocol. Each universal MOT
that supports Ethernet multicasting can be configured with an option to retry
transmission of cross-group messages in the event of delivery problems. Messages sent
to a MOT that is configured for retransmission are stored in the SBS retransmission list
after they are broadcast. The size of the retransmission list is configured in the %SBS
section of the group initialization file. This size parameter sets the maximum number
of messages stored by the SBS Server to fulfill retransmission requests in the event of
message delivery failures.

The BEA MessageQ retransmission protocol divides Ethernet broadcast messages into
the largest transportable segments possible and then transmits them to other SBS
Servers. If a missing segment is detected, the receiving SBS Server requests
retransmission of the message from the point at which the first missing segment was
detected. This request is sent using a high-priority message to the sending SBS Server.
The reply is returned using a high-priority message. If the message has already been
deleted from the retransmission list, the sending SBS Server responds with a NAK
message, generating a sequence gap notification for that MOT.

Sender

ZK8973AGE

MOT SBS Server

RCVR RCVR RCVR RCVR

SBS Server SBS Server
3-10 BEA MessageQ Programmer’s Guide

How Message Broadcasting Works
Ethernet multicasting and the retry option are enabled using the SBS Server
Initialization section of the group initialization file. It contains a template for making
these assignments when the group configuration is first customized. Listing 3-3
illustrates the configuration information that must be entered to SBS Server
Initialization section of the group initialization file to configure Ethernet multicasting.

Listing 3-3 Configuring Ethernet

%SBS ******* SBS Server Initialization Section ************
*
* NOTE: Heartbeat interval is in units of 1 millisecond
*
HEARTBEAT 1000
*
* ---- Service ----
* ID Prot/Xport
COMM_SERVICE 10 DG/DMQ! default emulated broadcast path
 GROUPS *! all known server groups
 REGISTER *! all universal MOTs
END_COMM_SERVICE
*
* ---- Service ----
* ID Prot/Xport
COMM_SERVICE 0 DG/ETH ! datagram messaging over optimized Ethernet
 DEVICE_1 ESA0: ! VMS device name of the Ethernet board (rail A)
 DEVICE_2 EZA0: ! VMS device name of the Ethernet board (rail B)
 DRIVER_BUFFERS 16 ! # of VMS Ethernet driver buffers to preallocate[10-255]
 *
 * < <<<<<<<<<<<<<<<<< Warning >>>>>>>>>>>>>>>>>>>
 * The protocol and Ethernet addresses show below are not registered
 * and are not guaranteed to be conflict free. Use them with discretion.
 * |------ MCA ----| |Prot #|
 CNTRL_CHAN AB-AA-34-56-78-90 81F0! used for VMS V2.x compatibility
 DATA_CHAN AB-12-34-56-78-90 81F1! path for all data transmissions
 *
 * NOTE: MAB = Message Assembly Buffer. Each MAB requires area for
 * a large message buffer, plus overhead of 150 bytes.
 *
 * Default Default Heartbeat
 * Transmit SILO Receive SILO Maximum Poll Dead Poll
 * MOT (in MABs) (in MABs) Heartbeat Interval Interval
 REGISTER 5101 30 15 4 10 10
 REGISTER 5102 35 12 4 10 10
 REGISTER 5156 10 6 6 10 10
 *
END_COMM_SERVICE
BEA MessageQ Programmer’s Guide 3-11

3 Broadcasting Messages

ined in

queue,
le
*
%EOS

When messages sent to a broadcast stream are distributed directly through Ethernet
multicasting, it is important to monitor whether the application receives any sequence
gap notifications. Because the queue storage area maintained by the hardware is small,
messages can arrive faster than the I/O subsystem can deliver them. See the BEA
MessageQ Configuration Guide for OpenVMS for a detailed description of how to
configure Ethernet multicasting.

Sending Broadcast Messages

To broadcast a message, a sender program directs the message to the MOT that
identifies the broadcast stream to use for message distribution. When the application
issues the pams_put_msg function, BEA MessageQ recognizes the broadcast message
because of the MOT address range and transparently redirects the message to the SBS
Server of the target group for wider distribution.

Each message queuing group that is configured to distribute broadcast messages has
an SBS Server associated with it. The SBS Server maintains a database of registered
queues and message selection rules for each registered queue. The SBS Server
compares each broadcast message against the rules stored for each registered queue
and generates messages to all registered parties that meet the selection criteria.

When a broadcast message is distributed by an SBS Server, the source field of the
message is the MOT address identifying the broadcast stream. The target field is the
registered target queue. The source address of the message’s originator is obta
the receiver program’s show buffer argument to pams_get_msg. The SBS Server
delivers only one copy of each message on the broadcast stream to each target
regardless of how many selection matches are made by separate subscription ru
entries.
3-12 BEA MessageQ Programmer’s Guide

Receiving Broadcast Messages
Broadcast messages cannot be stored for automatic recovery. However, you can
configure the primary queue of the receiver program as permanently active to receive
broadcast messages when the receiver program is not available. In addition, broadcast
messages distributed using Ethernet multicasting now have limited recoverability
through the retransmission protocol.

Receiving Broadcast Messages

To receive broadcast messages, applications use a standard set of BEA MessageQ
messages to register for receipt with the SBS Server in their local group or in a remote
message queuing group. Figure 3-4 illustrates the flow of messages sent to the SBS
Server.
BEA MessageQ Programmer’s Guide 3-13

3 Broadcasting Messages
Figure 3-4 SBS Server Message Flow
.

The following sections describe:

n Registering to Receive Broadcast Messages

n Reading Broadcast Messages

n Deregistering from Receiving Broadcast Messages
3-14 BEA MessageQ Programmer’s Guide

Receiving Broadcast Messages
Registering to Receive Broadcast Messages

To receive broadcast messages, an application registers a queue address with the SBS
Server managing a broadcast stream. The queue address for the SBS Server in a
message queuing group is queue number 99. Any BEA MessageQ primary, secondary,
or multireader queue can be registered to receive broadcast messages.

Receiver programs register for broadcast messages using the pams_put_msg function
sending a standard BEA MessageQ registration message. Typically, registration
messages are sent to the primary queue of the local SBS Server queue (SBS_SERVER),
which is queue 99 in the local group. The registration message contains the MOT of
the broadcast stream plus any selection criteria related to messages that the application
wishes to receive. An application can also register with a remote server by sending the
registration message to the primary queue of the SBS Server in the remote group. (For
example, 10.SBS_SERVER).

BEA MessageQ provides the SBS_REGISTER_REQ and SBS_REGISTER_RESP
messages. Use SBS_REGISTER_REQ to request to register to receive broadcast
messages. Your application receives the SBS_REGISTER_RESP in response to the
SBS_REGISTER_REQ request message.

The registration information for each broadcast stream is stored in memory by each
SBS Server and is volatile. Users registered with a remote SBS Server will no longer
receive broadcast messages after the link to the remote server goes down. To recover
from cross-group link failures, the application must monitor the status of the link to the
remote SBS Server and be prepared to reregister for broadcast messages after a
downed link is restored.

The receiver application can request sequence gap notification using the
SBS_REGISTER_REQ message. The SBS Server maintains sequence checking on each
broadcast stream. Sequence gaps occur when resource exhaustion and overflow
conditions interrupt the reception of a broadcast stream by an SBS Server. For
example, sequence gaps occur when a sender program broadcasts at a higher rate than
the SBS Server can receive and distribute messages. When this characteristic is
enabled, the SBS Server sends a message of type SBS_SEQUENCE_GAP to the target
queue whenever a sequence gap is detected.
BEA MessageQ Programmer’s Guide 3-15

3 Broadcasting Messages
Sequence checking operates on the BEA MessageQ network and on the Ethernet LAN.
On Ethernet, the channel and MOT number are returned in the sequence gap
notification message. Broadcast messages are not recoverable; therefore, the
occurrence of repeated sequence gap messages signals the need to synchronize
application processing in the distributed network.

Broadcast streams hold messages for a short period of time only; therefore, receiver
queues must be configured with a sufficient message receive quota to store messages
as they arrive. As with any BEA MessageQ system, you must test the send and receive
rates of programs to ensure that messages are not sent faster than they can be received.

The following sections describe:

n Sending a Registration Message

n Registering to Receive Selected Broadcast Messages

n Registration Acknowledgment

Sending a Registration Message

An application sends the registration message using the pams_put_msg function
supplied with the following:

n The target argument as the queue address of the SBS Server from which the
application wants to receive broadcast messages. The group number is the
number of the remote group, or use zero to indicate the SBS Server in the local
group. The SBS Server is defined as queue number 99 in the Queue
Configuration Table of the default group initialization files.

n The source argument containing the queue number of the requesting
application.

n The class argument as MSG_CLAS_PAMS.

n The type argument as MSG_TYPE_SBS_REGISTER_REQ to receive all messages
from a broadcast stream.

The message data structure of the registration message contains the address of the
broadcast stream from which the application wants to receive messages and the
address of the target queue address to receive broadcast messages.
3-16 BEA MessageQ Programmer’s Guide

Receiving Broadcast Messages
Registering to Receive Selected Broadcast Messages

Use the SBS_REGISTER_REQ message to register for selective reception of broadcast
messages. This message registers a target queue to receive a copy of all messages on a
broadcast stream that meet a single selection rule.

The selection rule requests the SBS Server to compare an operand in the message
header or message data structure with the operand supplied in the selection rule. The
term operand refers to the data in the message header or message data structure that
will be compared. For example, a selection rule may configured to receive only
messages with a particular type code. In this case, the message type code is the
operand. The SBS_REGISTER_REQ message can define up to 255 selection rules.
Message distribution can be made if any or all of the selection rules are found to be
true.

A selection rule is composed of the following components:

n Data Offset

n Operator

n Operand Length

n Operand Field

Data Offset

The data offset field indicates whether the selection criteria is part of the message
header or the message area. If the data offset is a positive value or zero, then this
message is used to begin the comparison. BEA MessageQ specifies constants for
selection based on the type, class, or sending queue. Matching based on message
priority is not supported. Table 3-2 lists the data offset symbols.

Table 3-2 Valid Data Offset Symbols

Offset Description

PSEL_CLASS Use the class field of the message

PSEL_TYPE Use the type field of the message
BEA MessageQ Programmer’s Guide 3-17

3 Broadcasting Messages
Operator

The operator field indicates the type of comparison to be performed on the operands.
Table 3-3 lists the symbols for the operator field.

Operand Length

The operand length field specifies the number of bytes in the operand field to be used
for comparison. The operand length can be 1, 2, or 4 bytes only.

PSEL_SOURCE Use the source field of the mesage.

Note: The comparison is made to the original source
field, not the MOT address.

MATCH_PRIORITY Not supported

zero based data offset Use the message offset to begin data comparison

Table 3-2 Valid Data Offset Symbols

Offset Description

Table 3-3 Operator Field Symbols

Operator Description

PSEL_OPER_ANY Always match

PSEL_OPER_EQ Equal

PSEL_OPER_NEQ Not equal

PSEL_OPER_GTR Greater than

PSEL_OPER_LT Less than

PSEL_OPER_GTRE Greater than or equal to

PSEL_OPER_LTE Less than or equal to

PSEL_OPER_AND Operand field AND data not equal to zero
3-18 BEA MessageQ Programmer’s Guide

Receiving Broadcast Messages

e

cally

llation
Operand Field

The operand field is the value to be compared with the selected field in the message
header or message data structure.

Registration Acknowledgment

The SBS_REGISTER_RESP message replies to the SBS_REGISTER_REQ request. This
response message returns a status indicator, the registration ID, and the number of
application queues registered to receive messages from the broadcast stream.

Reading Broadcast Messages

When a message is sent to a broadcast stream, the SBS Server uses its registration
database to determine which applications have registered to receive that kind of
message. The SBS Server automatically sends the messages to the distribution of all
matching applications. The receiving application reads the broadcast message from its
target queue using the pams_get_msg, pams_get_msgw, or pams_get_msga functions.
The source of the message, as seen by the receiving application, is the broadcast
stream. The address of the sender is also provided to the receiving application in the
‘original source’ field of the PAMS show buffer.

Deregistering from Receiving Broadcast Messages

An application can withdraw from the broadcast stream by either sending the
SBS_DEREGISTER_REQ deregistration message to the SBS Server, or by exiting th
BEA MessageQ message queuing bus when the automatic deregistration was
previously set in the subscription entry. Either of these actions removes the
subscription entry from the internal SBS tables. Temporary queues are automati
deregistered when the application exits.

Applications that use the deregistration message can request subscription cance
in one of the following ways:

n Cancel by exact match of the MOT address and target queue

n Cancel by subscription ID
BEA MessageQ Programmer’s Guide 3-19

3 Broadcasting Messages
Sending a message of type SBS_DEREGISTER_REQ causes the SBS Server to deregister
all entries for the broadcast stream and target queue. If requested, an
SBS_DEREGISTER_RESP message will acknowledge the SBS Server deregistration.

To cancel registration for a specific type of message while continuing to receive other
broadcast messages, the application must send a message of type
SBS_DEREGISTER_REQ using the subscription identification code assigned to the
original SBS Server registration. Deregister by ID if there is more than one registration
for the broadcast stream and target queue and you only want one entry to be removed.

Running Existing SBS Applications

Applications using SBS messages that were designed to run under BEA MessageQ for
OpenVMS, Version 3.2 or earlier will continue to run under BEA MessageQ for
OpenVMS, Version 4.0A. For BEA MessageQ V4.0, the SBS message interface was
redesigned to support enhanced features and to make the message structures RISC
aligned.

However, to run these applications in other BEA MessageQ environments such as
UNIX or Windows NT, the applications must be changed to use the new Version 4.0
SBS messages. Table 3-4 is a list of the new SBS messages and their obsolete
equivalent message. See the detailed description of each message in Table 3-4 to learn
the changes needed to recode your application to use the new SBS messages.

Table 3-4 Obsolete and New SBS Messages

Obsolete SBS Messages: New SBS Messages:

SBS_BS_SEQGAP SBS_SEQUENCE_GAP

SBS_DEREG SBS_DEREGISTER_REQ

SBS_DEREG_ACK SBS_DEREGISTER_RESP

SBS_DEREG_BY_ID SBS_DEREGISTER_REQ

SBS_REG SBS_REGISTER_REQ

SBS_REG_EZ SBS_REGISTER_REQ
3-20 BEA MessageQ Programmer’s Guide

Running Existing SBS Applications
SBS_REG_REPLY SBS_REGISTER_RESP

SBS_REG_EZ_REPLY SBS_REGISTER_RESP

Table 3-4 Obsolete and New SBS Messages

Obsolete SBS Messages: New SBS Messages:
BEA MessageQ Programmer’s Guide 3-21

3 Broadcasting Messages
3-22 BEA MessageQ Programmer’s Guide

CHAPTER
4 Using Naming

Naming is a powerful feature that enables BEA MessageQ applications to identify
message queues by name whether they reside on the local system or on another system
on the BEA MessageQ message queuing bus. Naming also allows applications to bind
permanent and temporary queues to names at runtime.

Application developers use the BEA MessageQ naming feature to separate their
applications from the underlying BEA MessageQ environment configuration. By
referring to message queues by name in their applications, developers do not have to
modify their applications when the BEA MessageQ environment configuration
changes. A name can also be associated with a Multipoint Outbound Target (MOT)
address when broadcasting messages.

The following sections describe:

n Understanding Naming

n How to Configure Bus-wide Naming

n How Applications Use Naming

n Static and Dynamic Binding of Queue Addresses

Understanding Naming

Before you can use naming, you need to understand the following key concepts in
using BEA MessageQ naming:

n What is Naming?

n What is a Name space?
BEA MessageQ Programmer’s Guide 4-1

4 Using Naming

signed
to the

es are
ok up
d a

es are
efines
e used
.
ferent

with

t
n What is the Naming Agent?

What is Naming?

The BEA MessageQ naming feature enables applications to refer to message queues
by name. These names are also called queue references. The queue reference and its
associated queue address must be defined to BEA MessageQ, either statically in the
group configuration file, or dynamically using the pams_bind_q function. The
pams_locate_q function performs the name-to-queue address translation at runtime.

When a name or queue reference is defined it is assigned a scope. Names can be
assigned a “group-wide” scope to enable the name to be used by any application
running in that message queuing group (local queue reference). Names can be as
“bus-wide” scope to enable any application on the message queuing bus to refer
queue by name (global queue reference).

What is a Name Space?

A name space is the repository where names and their associated queue address
stored. When an application refers to a queue by name, BEA MessageQ must lo
the name in the name space to find its associated queue address in order to sen
message to the named queue.

BEA MessageQ uses three levels of name spaces: process, group, and bus. Nam
stored in the group- or bus-wide name space whether their configuration scope d
a local or global queue reference. The process name space is an application cach
to improve performance. Names can exist in one or all three of the name spaces
However, they are defined only in one of these spaces and can be cached at dif
levels. Users can bypass caching when they use pams_locate_q if they favor
accuracy over performance.

When a group starts up, it creates the group-wide name space and populates it
entries defined in the %QCT and %GNT sections of the group initialization file. In
addition, entries configured in the %QCT and %GNT sections with a global scope are
updated in the bus-wide name space. In order to use bus-wide naming, you mus
configure your environment to use this BEA MessageQ feature.

BEA MessageQ offers two types of name spaces:
4-2 BEA MessageQ Programmer’s Guide

Configuring Bus-Wide Naming

ong

lly.
n Light weight — this type of name space is included with BEA MessageQ. The
BEA MessageQ lightweight name space uses a directory structure shared am
naming agents. When two nodes view the name space, it must be exactly the
same. In this way, BEA MessageQ can deal with any coordination automatica
Some examples of shared file systems are clusters and NFS-mounted disks.

n Heavy weight — this type of name space is offered by an add-on product to BEA
MessageQ which has its own server and spans the entire network. Currently, the
only heavy weight name space supported by BEA MessageQ is DECDNS.
Although naming agents servicing DECDNS can only run on the OpenVMS
platform, DECDNS names can be bound or located by applications running on
any BEA MessageQ supported platform, including client implementations.

What is the Naming Agent?

The Naming Agent is the BEA MessageQ process that accesses and manages the BEA
MessageQ bus-wide name space. Users configure groups to decide whether a group
hosts or remotely accesses a Naming Agent. When a group starts, it launches the
Naming Agent, if it is hosted by this group.

When a group starts up, the BEA MessageQ startup procedure requests the
Naming Agent to update all entries in the initialization file that have a global scope.

Applications do not access the bus-wide name space directly; when an application uses
a global queue reference, it is the Naming Agent that looks up the name in the bus-wide
name space and returns the queue address to the application.

Configuring Bus-Wide Naming

The use of group-wide naming requires no special configuration steps because the
process-level name space is created by attaching to the BEA MessageQ message
queuing bus and the group-wide name space is created by the group control process.
To use local (group-wide) naming, configure queue names in the Queue Configuration
Table (%QCT) or the Group Name Table (%GNT) section of the group initialization file.
BEA MessageQ Programmer’s Guide 4-3

4 Using Naming
When the group starts up, BEA MessageQ automatically creates the group name space.
It creates the process name space when an application attaches to the message queuing
bus.

To enable your applications to use global (bus-wide) naming, you must perform
additional configuration steps. First, you must decide the group or groups in which the
naming agent will run. BEA MessageQ allows you to specify a main group and an
alternate group to run the Naming Agent. The BEA MessageQ Naming Agent is the
BEA MessageQ Server that maintains the namespace for name-to-queue address
translations and performs the runtime queue lookup when an application refers to a
queue by name.

The %NAM section of the group initialization file enables you define the group or groups
in which the Naming Agent process will run. BEA MessageQ allows the definition of
two naming agents for each message queuing bus. When BEA MessageQ starts each
group, it looks in this section of the initialization file to decide whether to start a
naming agent for the group. For groups that do not run a Naming Agent, BEA
MessageQ uses the information in the %NAM section to direct requests to the Naming
Agent. Groups must have a cross-group connection to the groups in which the Naming
Agent runs.

To use global naming, you must create a namespace on the nodes on which the Naming
Agents will run. BEA MessageQ enables users to configure two Naming Agents to
support global messaging for the environment. In order to allow the second Naming
Agent to form a backup for the first, both Naming Agents must be configured to use
the same name space. Therefore, when you configure your name space for use by two
Naming Agents that run on different systems, it must use a shared file system that is
accessible to both Naming Agents.

To use a global name, at least some portion of the path name must be specified. Path
information can be supplied by the application, or you can use the
DEFAULT_NAMESPACE_PATH parameter in the %PROFILE section of the group
initialization file in order to create and maintain path information for global names. For
global naming to function properly, this parameter must be set to the same value for all
groups in which applications are designed to access the same name space. When the
naming agent is enabled in the group initialization file, a file uid.dnf is created in the
DEFAULT_NAMESPACE_PATH directory which contains the global names. The
following syntax shows how to set the default namespace to be created and maintained
in the name space.
4-4 BEA MessageQ Programmer’s Guide

How Applications Use Naming
Use the Queue Configuration Table (%QCT) or the Group Name Table (%GNT) of the
group initialization file to create static or dynamic definitions for global names as
follows:

n Define global static names in the %QCT or %GNT by providing the name, the
queue address and setting the name scope identifier to G for global names.

n Define global dynamic names by supplying the name, 0.0 as the address and the
G identifier for global names. Names defined with a 0.0 address can be
dynamically bound to a queue address at runtime using the pams_bind_q
function.

For a detailed description of how to configure your environment and develop
applications to use global naming, refer to the installation and configuration guide for
your platform.

How Applications Use Naming

Queues and local queue references exist in groups, which exist in buses. Global queue
references can exist anywhere in the bus-wide name space. Applications in all groups
can bind and look up global queue references.

The set of directory names from the root of the hierarchy to where the queue is defined
is called its path. The path plus the queue’s name is called its pathname. A name must
be unique within its directory. Thus, any queue can be uniquely identified by its
pathname.

Queues and local queue references are always identified by their names. A global
queue reference must be identified by its pathname. However, it can be identified by
its name only if its path is the group’s DEFAULT_NAMESPACE_PATH. (The
DEFAULT_NAMESPACE_PATH is set in the %PROFILE section of the group initialization
file.)

The following sections describe:

n Specifying Names and Pathnames

n Attaching and Locating Queues
BEA MessageQ Programmer’s Guide 4-5

4 Using Naming
Specifying Names and Pathnames

BEA MessageQ applications can be developed to be independent of the bus-wide
name space implementation for a particular environment. This means that no coding
changes are required if the application environment initially uses the BEA MessageQ
lightweight name space and migrates to a heavy weight name space at a later time.

Names are specified in BEA MessageQ applications in one of three ways:

n fully qualified

n partially qualified

n unqualified

For detailed information on how to specify path names and file names, refer to the
installation and configuration guide for the platform that you are using.

Attaching and Locating Queues

An application may only read messages from queues in its own group. To read from a
queue, an application must attach to the queue using the pams_attach_q function. For
a permanent queue, it must identify the queue by its name, its address, or a queue
reference. For a temporary queue, the attach operation creates the queue and assigns it
an address.

An application can send messages to a queue in its own group and to queues in other
groups. When sending a message, the target queue is always identified by its address.
An application can directly code in the address, or it can use the pams_locate_q
function to derive the queue’s address from its name or queue alias. When
pams_locate_q is used with pams_put_msg, applications can remain separate from
the details of system configuration because they are able to obtain the physical address
of the target queue at runtime.
4-6 BEA MessageQ Programmer’s Guide

Static and Dynamic Binding of Queue Addresses
Static and Dynamic Binding of Queue
Addresses

BEA MessageQ offers two approaches to associating a queue reference (also called a
queue name) with a queue address: static and dynamic. Static binding refers to
associating a queue name with a queue reference using the queue configuration table
(%QCT section) and the group name table (%GNT section) in the group initialization file.
Static binding creates the association when the group starts up.

Dynamic binding refers to the use of the pams_bind_q to associate a queue name
with a queue address after the application starts up. With dynamic binding, you can
write applications that dynamically "sign up" to service a queue at runtime. This means
that your application can access a service without having to be aware that its normal
host computer is down and that the service is being provided from another host
computer. An application does this by dynamically associating a queue address to a
queue reference at run-time.

The following sections describe:

n How Dynamic Binding of Queue Addresses Works

n How Caching and Binding Works

n Examples of Static and Dynamic Binding

How Dynamic Binding of Queue Addresses Works

Dynamic binding of queue addresses allows you to share queue names with any
application attached to the message queuing bus. An application can attach to a queue
in a group and bind this queue to a name into the bus-wide name space so that an
application in another group can locate this queue in the bus-wide name space and send
messages to it.

BEA MessageQ provides the pams_bind_q function, which associates a queue
address to a queue name at runtime. The name_space_list argument in the
pams_attach_q and pams_bind_q functions identify the scope of the queue name
and controls cache access.
BEA MessageQ Programmer’s Guide 4-7

4 Using Naming
How Caching and Binding Work

When an application process locates a name for the first time, it is cached in the process
name space. If the name is for a global queue reference, it is also cached in the group
name space. Conversely, later lookups can fetch the name from the "nearest" location
that holds the name. For example, suppose APP1 in a group locates gqref1. This
causes gqref1 to be cached in APP1’s process name space and in the group. Also,
suppose APP2 in this group locates gqref1. Since APP1’s process cache is invisible to
APP2, APP2 will fetch gqref1 from the group.

When an application process deletes a queue that is bound to a reference or when it
binds a reference to a new address, BEA MessageQ automatically updates the
applications process cache, the name’s entry in the group, and (if this is a global queue
reference), the global name space also. However, other places where this queue is
cached are not updated.

When your application detaches or exits from a queue that was bound to a name, BEA
MessageQ unbinds the queue before exiting or detaching.

Examples of Static and Dynamic Binding

You can code your application to use either static or dynamic binding of queue
addresses. Use static binding if the queue that your application attaches to is not going
to change its address (for example, a permanent queue). Otherwise, if the queue that
your application needs may change (for example, if the queue is temporary, or if the
application runs in different groups), code your application to use dynamic binding of
the queue address.

When coding, keep in mind that there are two name-based queue identification styles
that you can use. They are as follows:

Client for Style 1 (Static Binding)

Listing 4-1 is a pseudocode fragment showing static binding of a queue address for a
client.
4-8 BEA MessageQ Programmer’s Guide

Static and Dynamic Binding of Queue Addresses
Listing 4-1 Client Style Static Binding

 pams_locate_q("gqref1", q_address,

 [PSEL_TBL_PROC, PSEL_TBL_GRP, PSEL_TBL_BUS])

 loop:

 build request message

 putloop:

 status = pams_put_msg(q_address)

 if status is error,

 print descriptive error

 pause and goto putloop,

 or exit program as desired

 goto loop

Client for Style 2 (Dynamic Binding)

Listing 4-2 is a pseudocode fragment showing dynamic binding of a queue address for
a client. In this example, when an error occurs, the client attempts to see if a new server
has signed up to provide this service. Note that it does not use the cache when it refinds
gqref1 because it wants to see the binding established by the new server, not the
out-of-date cached binding.

Listing 4-2 Client Style Dynamic Binding

 pams_locate_q("gqref1", q_address,

 [PSEL_TBL_PROC, PSEL_TBL_GRP, PSEL_TBL_BUS]

)

 loop:

 build request message

 putloop:
BEA MessageQ Programmer’s Guide 4-9

4 Using Naming
 status = pams_put_msg(q_address)

 if status is error then

 pams_locate_q("gqref1", q_address1, [PSEL_TBL_BUS])

 if q_address not q_address1 then

 q_address = q_address1

 goto putloop

 else pause and goto putloop, or exit program as desired

Server for Style 1 (Static Binding)

Listing 4-3 is a pseudocode fragment showing static binding of a queue address for a
server.

Listing 4-3 Server Style Static Binding

 pams_attach_q("gqref1", q_address, PSYM_ATTACH_BY_NAME,

 [PSEL_TBL_PROC, PSEL_TBL_GRP, PSEL_TBL_BUS])

 loop:

 pams_get_msg(q_address)

 process request and reply

 goto loop

Server for Style 2 (Dynamic Binding)

Listing 4-4 is a pseudocode fragment showing dynamic binding of a queue address for
a server. In this example, the server attaches to a queue and then tries to make this
queue the provider of the gqref1 service. However, if another server is already
providing the service, the program exits.
4-10 BEA MessageQ Programmer’s Guide

Static and Dynamic Binding of Queue Addresses
Listing 4-4 Server Style Dynamic Binding

 pams_attach_q(any attach options, q_address)

 status = pams_bind_q("gqref1", q_address, [PSEL_TBL_BUS])

 if status = "queue reference already bound to a queue"

 then exit program

loop:

 pams_get_msg(q_address)

 process request and reply

 goto loop
BEA MessageQ Programmer’s Guide 4-11

4 Using Naming
4-12 BEA MessageQ Programmer’s Guide

CHAPTER
5 Using Message-Based
Services

BEA MessageQ applications regularly perform standard tasks such as checking the
state of a queue or the status of a cross-group connection before sending a message. To
make these tasks easier, BEA MessageQ offers message-based services, which are sets
of predefined request, notification, and response messages exchanged between the
application and BEA MessageQ server processes.

Table 5-1 describes the functions performed by using message-based services and lists
the servers they are available through.

Table 5-1 Overview of Message-Based Services

You can . . . Through the . . .

Obtain the status of a particular queue Avail Server

Monitor and control link status Connect Server

Obtain the current status of all queues Queue Server

Register for broadcast messages SBS Server

Manage message recovery files (OpenVMS
systems only)

MRS Server

Transfer messages from one DQF file to another
(OpenVMS systems only)

Qtransfer Server
BEA MessageQ Programmer’s Guide 5-1

5 Using Message-Based Services
How Message-Based Services Work

BEA MessageQ uses message-based services to perform routine tasks such as
obtaining queue status. There are two request-response paradigms used by
message-based services. For some kinds of services, the sender program sends a
request to a BEA MessageQ server using a particular message. The BEA MessageQ
server returns the response in a message using a particular message type and format. If
information was requested, it is returned in the message area of the response message.

In other cases, a sender program may register to receive ongoing updates of
information. In this case, the sender program sends a registration request and receives
a response if the registration request is successful. In addition, the sender program
receives event-driven messages providing up-to-date information as requested. To stop
receiving the event-driven messages, the sender program must send a deregistration
request to the BEA MessageQ server.

Service requests are directed to the primary queue of the BEA MessageQ server
designated to provide the selected service. BEA MessageQ message-based service
requests are delivered to BEA MessageQ servers using the BEA MessageQ application
programming interface (API) or BEA MessageQ scripts. Similarly, applications obtain
response and notification messages by reading these messages from their primary or
response queue.

BEA MessageQ message-based services are sent between a user application program
that functions as a requestor and a BEA MessageQ server process that fulfills the
request. For messages to be properly understood between systems, message data must
be sent and returned in the endian format understood by both the requestor and the
server.

Most BEA MessageQ message-based services automatically perform this conversion
if the endian format of the two systems is different. However, some message-based
services do not perform this conversion. Therefore, the user application must convert
the message to the endian format of the server system to ensure that the message data
is correctly interpreted.

See the description of each message for information on whether BEA MessageQ
performs the conversion or the application must check for differences in hardware data
formats. See the Building and Testing Applications topic to learn how you can ensure
that your application formats data properly and performs required conversions when
sending standard messages between computer systems from different vendors.
5-2 BEA MessageQ Programmer’s Guide

How Message-Based Services Work
Requesting a Service

You can send a service request message using the pams_put_msg function. Request
messages use the type argument to identify the purpose of the message. Each request
message has a predefined data structure.

To send a standard request message, supply the following:

A detailed description of each message in the Message Reference topic explains each
field in the data structure and provides a sample C message structure.

Receiving a Response

Each BEA MessageQ server returns response or notification messages to answer a
service request. Most request messages have a response message. In addition, some
service requests are answered by the BEA MessageQ server with a notification
message that supplies information to the sender program as it becomes available.

When an application requests information using the pams_put_msg function, it
provides the BEA MessageQ server with the group ID and queue number to which the
response should be directed. The sender program then reads this queue using the
pams_get_msg, pams_get_msgw, or pams_get_msga function to obtain the response
information.

A BEA MessageQ server response and notification message provides the following:

Target The symbolic name for the BEA MessageQ server fulfilling the request.
For example, use PAMS_AVAIL_SERVER for requests handled by the
BEA MessageQ Avail Server process.

Class The class code PAMS indicating that the message is a BEA MessageQ
message-based service request.

Type The type code of the message you are sending. For example,
AVAIL_REG.

Message data The predefined data structure containing the information to be sent with
the service request. The definition of all BEA MessageQ message-based
services messages is now provided in the p_msg.h include file.
BEA MessageQ Programmer’s Guide 5-3

5 Using Message-Based Services

on.
A detailed description of each message in the Message Reference topic explains each
field in the data structure and provides a sample C message structure.

Obtaining the Status of a Queue

BEA MessageQ message-based services enable applications to check whether a
particular queue is available to receive messages. This set of messages returns
information on the status of any active queue in a local or remote group.

To obtain information on the status of a particular queue, applications exchange the
following messages with the Avail Server:

n AVAIL_REG—Request message to register to receive queue information.

n AVAIL_REG_REPLY—Response message to confirm registration or deregistrati

n AVAIL—Notification message to indicate that the queue is available.

n UNAVAIL—Notification message to indicate that the queue is unavailable.

n AVAIL_DEREG—Notification message to deregister from obtaining queue
information.

Source The symbolic name of the BEA MessageQ server fulfilling the request.

Class The class code of the response is always PAMS, indicating that this is a
BEA MessageQ message-based service.

Type The type code of the message received. For example,
AVAIL_REG_REPLY.

Message data The predefined data structure used to provide requested information in
the response or notification message. The definition of all BEA
MessageQ message-based services messages is now provided in the
p_msg.h include file.
5-4 BEA MessageQ Programmer’s Guide

Obtaining the Status of a Queue
Figure 5-1 Avail Server Message Flow

An application program registers to receive availability messages by sending a
message of type AVAIL_REG to the local Avail Server process. The Avail Server
responds with a message of type AVAIL_REG_REPLY, acknowledging the notification
request.

After registration, the requestor immediately receives an AVAIL or UNAVAIL message
indicating the current availability of the target queue. Queue availability messages
provide ongoing notification when a specific queue becomes attached or detached and
when a link is connected or lost. If the queue becomes active because a process
becomes attached, the Avail Server sends a message of type AVAIL. If it becomes
inactive, the server sends a message of type UNAVAIL.

Applications must cancel availability notification by sending a message of type
AVAIL_DEREG. The application receives a AVAIL_REG_REPLY message indicating the
status of the operation. It is important to note that if the distribution queue for an
AVAIL registration becomes unavailable, the registration will be automatically
deleted by BEA MessageQ. A subsequent attempt to deregister AVAIL services for
this distribution queue will result in an error message indicating that the registration
does not exist.
BEA MessageQ Programmer’s Guide 5-5

5 Using Message-Based Services

 all

e

n
Monitoring and Controlling Link Status

This section describes how applications can use BEA MessageQ message-based
services with the Connect Server process to obtain information on connections, queue
entries, groups, cross-group connections, and link status.

Listing Cross-Group Connections, Entries, and Groups

An application can request a list of current cross-group connections or all configured
cross-group entries from the Connect Server. This request allows the application to
obtain the current BEA MessageQ cross-group configuration and active cross-group
connections. In addition, the Connect Server can provide a list of known queues in a
group and a list of all groups defined on a message queuing bus.

To obtain a list of all cross-group connections, configured groups, and queue entries,
applications exchange the following messages with the Connect Server:

n LIST_ALL_CONNECTIONS (Request)—Request message to provide a list of all
cross-group connections.

n LIST_ALL_CONNECTIONS (Response)—Response message to provide a list of
cross-group connections. Groups with no link connection are not listed.

n LIST_ALL_ENTRIES (Request)—Request message to provide a list of all queu
entries for a group.

n LIST_ALL_ENTRIES (Response)—Response message to provide a list of all
queue entries for a group.

n LIST_ALL_GROUPS (Request)—Request message to provide a list of groups o
the message queuing bus.

n LIST_ALL_GROUPS (Response)—Response message to provide a list of all
groups, connected and unconnected, on the message queuing bus.
5-6 BEA MessageQ Programmer’s Guide

Monitoring and Controlling Link Status

as
Figure 5-2 Requesting Cross-Group Information

To obtain a list of all groups defined on the message queuing bus, send a
LIST_ALL_GROUPS message to the Connect Server. To obtain a list of all cross-group
connections for the message bus or a list of all cross-group entries, send a
LIST_ALL_CONNECTIONS message to the Connect Server. To obtain a list of queues in
a group, send a LIST_ALL_ENTRIES message.

The reply to these requests is a variable-length message with the same type and class
as the request. To read the information returned, the application uses the message size
parameter returned by the pams_get_msg function and divides it by the byte size of the
data object requested to determine the number of data entries returned. The byte size
of these entries is described in the reference description of each message.

Obtain Notification of Cross-Group Links Established and
Lost

An application can also use Connect Server messages to receive notification of
cross-group links connected and disconnected in its own group. To obtain information
on the status of cross-group links, use the following message-based services:

n ENABLE_NOTIFY—Request message to request notification of link changes.

n LINK_COMPLETE—Notification message to indicate that the cross-group link w
created.

CONNECT_SERVERUser
Application

LIST_ALL_ENTRIES

LIST_ALL_ENTRIES

LIST_ALL_GROUPS

LIST_ALL_GROUPS

LIST_ALL_CONNECTIONS

LIST_ALL_CONNECTIONS

ZK8963AGE
BEA MessageQ Programmer’s Guide 5-7

5 Using Message-Based Services

st.

tions
 is

 is
nds

 use

ed link
he
 be
e or
n LINK_LOST—Notification message to indicate that the cross-group link was lo

n DISABLE_NOTIFY—Request message to request disabling of link change
notification.

Figure 5-3 Requesting Cross-Group Link Status

Applications send an ENABLE_NOTIFY message to the Connect Server to receive
ongoing notification when new connections are made or lost. Registered applica
receive a LINK_COMPLETE notification message when a new cross-group connection
created. Applications receive a LINK_LOST message when a cross-group connection
lost. To deregister from receiving further notification messages, the application se
a DISABLE_NOTIFY message to the Connect Server.

Note: To receive ongoing notification of queue attachments, we recommend the
of the Queue Server messages, such as ENABLE_Q_NOTIFY_REQ. The
ENABLE_NOTIFY message should no longer be used to obtain queue
attachment information.

Controlling Cross-Group Links

In addition to obtaining information on cross-group links, the Connect Server
messages can be used to control cross-group connections through a feature call
management. Applications use link management messages to explicitly control t
creation and deletion of cross-group links. Explicit control over remote links may
required by an application to restrict network communication with a particular nod
to reduce network traffic.

The LINKMGT_REQ request message enables the following control functions:

n Inquire—Allows querying of a group’s link state.

CONNECT_SERVER

DISABLE_NOTIFY

ZK8964AGE

LINK_COMPLETE/LINK_LOST

ENABLE_NOTIFY

User
Application
5-8 BEA MessageQ Programmer’s Guide

Monitoring and Controlling Link Status

ps.

ps.

uest

BEA
e

an

ions

l

:

n Enable—Re-enables a link’s address entries.

n Disable—Disables a link’s address entries.

n Connect—Re-enables a link’s address entries and connects to selected grou

n Disconnect—Implicitly disables links and disconnects links to requested grou

The LINKMGT_RESP response message notifies the requesting application if the req
was successful and supplies information about the cross-group connection. Link
management functions are also available through the System Manager utility on
MessageQ for OpenVMS systems. Figure 5-4 is a graphical representation of th
functional relationship facilitated by LINKMGT_REQ and LINKMGT_RESP:

Figure 5-4 Using Link Management

Link management can also be event driven. For example, an application event c
trigger a link to another group, which enables message exchange.

Note: When using link management, automatic creation of cross-group connect
must be disabled with the generate connect option D (disable) in the %XGROUP
section of the BEA MessageQ group initialization file to completely contro
all cross-group links. For more information, refer to the Enabling Network
Connections in the Cross-Group Section topic in the BEA MessageQ
Installation and Configuration Guide for each platform.

Link Management Control Functions

The link management request message allows for the following control functions

n Inquire—Allows querying of a group’s link state.

n Enable—Re-enables a link’s address entries.

CONNECT_SERVER

ZK8965AGE

LINKMGT_RESP

LINKMGT_REQ
User

Application
BEA MessageQ Programmer’s Guide 5-9

5 Using Message-Based Services

ps.

ps.

f a
f the
 not
ause
y the

nnect
d
n Disable—Disables a link’s address entries.

n Connect—Re-enables a link’s address entries and connects to selected grou

n Disconnect—Implicitly disables links and disconnects links to requested grou

Inquire Function

The Inquire function of the link management request message allows querying o
single group’s link state. To use the Inquire function, specify the group number o
local or remote group for which you want to learn the link state. This function does
allow you to specify any selection parameters other than the group number. Bec
you can only inquire about the link state of one group at a time, you cannot specif
PSYM_LINKMGT_ALL_GROUPS symbol in the group_number field.

The Inquire function performs endian translation when the request is sent to a Co
Server running on a system that uses a different byte order. Both the request an
response messages are encoded in the endian of the request originator.

Request Message Format for the Inquire Function

Table 5-2 displays the Inquire function request message format:

Table 5-2 Inquire Function Request Message Format

Field Required/
Optional

Setting

version Required 10

user_tag Required User-specified code identifying the request.

function_code Required PSYM_LINKMGT_CMD_INQUIRY

group_number Required Group number to receive the action.
Valid values are 1 to 32000.

connect_type Optional PSYM_LINKMGT_ALL_TRANSPORTS

reconnect_timer Optional PSYM_LINKMGT_USE_PREVIOUS

window_size Optional PSYM_LINKMGT_USE_PREVIOUS

window_delay Optional PSYM_LINKMGT_USE_PREVIOUS
5-10 BEA MessageQ Programmer’s Guide

Monitoring and Controlling Link Status
Determining the Status of the Inquire Request

The status field of the LINKMGT_RESP message contains a return code indicating the
outcome of the inquiry request. Refer to Table 5-3 for a description of each status
return and the corresponding user action.

transport_addr_len Optional 0

node_name_len Optional 0

Table 5-2 Inquire Function Request Message Format

Field Required/
Optional

Setting

Table 5-3 Inquire function status returns and user actions

PSYM_LINKMGT
Return Code

Description Outcome Description/User Action

MSGCONTENT Invalid value in
request message

Error One of the field values in the inquiry request
message is invalid. Check the syntax of the
request message against the list of valid values
and re-issue the corrected request message.

MSGFMT Unknown request
version or function
code

Error Correct the syntax of the request message. The
version field of the must contain the number
10. The function code field must contain the
symbol PSYM_LINKMGT_CMD_INQUIRY.

NOGROUP The selected group
does not have a
cross group entry

Error You requested the link state for a group that is
not defined in the cross-group table. This group
has no cross-group links.

OPERATIONFAIL The command was
unable to be
successfully
completed

Error The inquire function failed due to a system
resource problem.

n Check the network connection to the target
group to determine if the network link is
up.

n Check the Connect Server to determine if it
is running out of virtual memory.

n Check the log file to see if the cause of the
error has been logged.
BEA MessageQ Programmer’s Guide 5-11

5 Using Message-Based Services

Response Message Format for Successful Inquire Requests

If the Inquire function is successful, the response message returns the status of both the
incoming and outgoing cross-group links in the in_link_state and out_link_state fields.
These fields specify the status of the link using the following symbols:

n PSYM_LINKMGT_CONNECTED—the incoming/outgoing cross-group link for the
selected group is connected.

n PSYM_LINKMGT_NOCN—the incoming/outgoing cross-group link for the selected
group is not connected.

n PSYM_LINKMGT_DISABLE—the incoming/outgoing cross-group link for the
selected group is disabled.

If the link status for the group is PSYM_LINKMGT_CONNECTED, the response message
contains the following information:

SUCCESS The operation
successfully
completed

Success Refer to the description of the link
management response message below for a
description of the data returned.

Table 5-3 Inquire function status returns and user actions

PSYM_LINKMGT
Return Code

Description Outcome Description/User Action

Field Description

version 10

user_tag User-specified code from the request message.

Status PSYM_LINKMGT_SUCCESS

group_number Group number that receives the action.

in_link_state PSYM_LINKMGT_CONNECTED

out_link_state PSYM_LINKMGT_CONNECTED

connect_type Transport that message is connected over:
PSYM_LINKMGT_TCPIP.
5-12 BEA MessageQ Programmer’s Guide

Monitoring and Controlling Link Status

s
ection
ple,
. All

ble

roup.
n to

ately.

Enable Function

The Enable function of the link management request message re-enables a link’
address entries if they have been disabled. All addresses in the cross-group conn
table that match the selection criteria specified in the request message (for exam
group number, connect type, node name, and transport address) will be enabled
other address entries for the group or groups selected will be disabled. The Ena
function will still complete if the link is already connected. The effects will not be
visible until the existing link is lost.

The Enable function allows a link to occur only with the selected addresses for a g
If the group has a reconnection timer, the timer will be set to cause the connectio
be attempted after the specified time and connections are not attempted immedi
Incoming connections are then allowed to occur.

n The Enable function offers the following selection options:

n If the group_number field is set to PSYM_LINKMGT_ALL_GROUPS, then the node
name and transport address cannot be specified.

n If a specific group number is specified and PSYM_LINKMGT_ALL_TRANSPORTS is
specified, then the node name and transport address cannot be specified.

n On OpenVMS systems, if an entry that matches the selection criteria is not
found, one will be created providing the group exists. On UNIX and Windows

platform_id Connected platform ID (PSYM_PLATFORM_xxxx).

reconnect_time Reconnect timer value for this group.

window_size Window size value negotiated for this group.

window_delay Window delay value negotiated for this group.

transport_addr_len Length of the transport_addr string.

transport_addr ASCII representation of the TCP/IP port number.

node_name_len Length of the node_name string.

node_name Name of the node this link is connected to.

Field Description
BEA MessageQ Programmer’s Guide 5-13

5 Using Message-Based Services
NT systems, the Enable function only enables existing address entries. It does
not modify connection parameters or add new address entries.

n On OpenVMS systems, if the window or reconnect timer information is
supplied, the specified values overwrite the existing information of the select
entries. On UNIX and Windows NT systems, the Enable function does not
modify connection parameters.

Note: The symbol PSYM_LINKMGT_ALL_TRANSPORTS is new to the LINK_MGT
message API for BEA MessageQ Version 4.0. On OpenVMS systems, the
Enable function requires that the requesting process have either OPER or the
DMQ$OPERATOR rights identifier.

Request Message Format for the Enable Function

Table 5-4 displays the Enable function message format:

Table 5-4 Enable function message format

Field Required/
Optional

Setting

version Required 10

user_tag Required User-specified code identifying the request.

function_code Required PSYM_LINKMGT_CMD_ENABLE

group_number Required Group number to receive the action. Valid values
are 1 to 32000. Or, use the
PSYM_LINKMGT_ALL_GROUPS symbol to enable
all known links for groups with the connect_type
requested.

connect_type Required Select the following transport type:
PSYM_LINKMGT_TCPIP

reconnect_timer Optional Time it takes for the COM Server or Group Control
Process (GCP) to reconnect to a communications
link. Enter the number of seconds or the following
values:
PSYM_LINKMGT_NO_TIMER
PSYM_LINKMGT_USE_PREVIOUS
5-14 BEA MessageQ Programmer’s Guide

Monitoring and Controlling Link Status
Determining the Status of the Enable Request

The status field of the LINKMGT_RESP message contains a return code indicating the
outcome of the Enable request. See Table 5-5 for a description of each status return and
the corresponding user action.

window_size Optional Size of transmission window (cross-group protocol
Version 3.0 or higher).

window_delay Optional Transmission window delay in seconds
(cross-group protocol Version 3.0 or higher).

transport_addr Optional Transport address string 16 bytes in length;
the TCP/IP port ID

transport_addr_
len

Optional Length of transport address. Valid values are 0 to 16
bytes. Zero specifies the use of the previous setting.

node_name Optional ASCII text of node name. The length is determined
by node_name_len up to 255 characters.

node_name_len Optional Length of the node name string. Zero specifies the
use of the previous known value.

Table 5-4 Enable function message format

Field Required/
Optional

Setting

Table 5-5 Enable function status returns and user actions

PSYM_LINKMGT
Return Code

Description Outcome Description/User Action

ALREADYUP The link is already active Warning The Enable function completed
although the link entries were
already available.

MSGCONTENT Invalid value in request
message

Error One of the field values in the
enable request message is invalid.
Check the syntax of the request
message against the list of valid
values and re-issue the corrected
request message.
BEA MessageQ Programmer’s Guide 5-15

5 Using Message-Based Services
Response Message Format for Successful Enable Requests

If the Enable function is successful, the response message returns the information
shown in the following table:

MSGFMT Unknown request version
or function code

Error Correct the syntax of the request
message. The version field of the
must contain the number 10. The
function code field must contain
the symbol
PSYM_LINKMGT_CMD_ENABLE.

NOGROUP The selected group does
not have a cross group
entry

Error No cross-group entries can be
enabled because you requested the
enable function for a group that is
not defined in the cross-group
table.

NOTRANSPORT The selected group does
not have any cross-group
entries with specified
transport

Error No cross-group entries can be
enabled because you requested the
enable function for a group or
groups that does not have a
cross-group connection entry that
uses the specified transport.

OPERATIONFAIL The command was unable
to be successfully
completed

Error The enable function failed due to a
system resource problem.

n Check the Connect Server to
determine if it is running out
of virtual memory.

n Check the log file to see if the
cause of the error has been
logged.

SUCCESS The operation
successfully completed.

Success Refer to the description of the link
management response message
below for a description of the data
returned.

Table 5-5 Enable function status returns and user actions

PSYM_LINKMGT
Return Code

Description Outcome Description/User Action
5-16 BEA MessageQ Programmer’s Guide

Monitoring and Controlling Link Status

dress
up’s
e

ssage

 no
Disable Function

The Disable function of the link management request message disables a link’s ad
entries if they have been enabled. This prevents a link from occurring with the gro
selected addresses. Connection attempts to and from the selected addresses ar
prevented.

All addresses in the group address table that match the selection criteria of the me
(for example, group ID, connect type, node name, and transport address) will be
disabled. All other address entries for the groups selected will not be affected. If
entry matches the group_number field, then PSYM_LINKMGT_NOGROUP is returned.

Field Description

version 10

user_tag User-specified code from the request message.

status PAMS__SUCCESS

group_number Group number or numbers to receive the action.

in_link_state PSYM_LINKMGT_ENABLED

out_link_state PSYM_LINKMGT_ENABLED

connect_type Transport that message is connected over:
PSYM_LINKMGT_TCPIP.

platform_id Connected platform ID (PSYM_PLATFORM_xxxx).

reconnect_time Reconnect timer value for this group.

window_size Window size value negotiated for this group.

window_delay Window delay value negotiated for this group.

transport_addr_len Length of the transport_addr string.

transport_addr ASCII representation of either the TCP/IP port number.

node_name_len Length of the node_name string.

node_name Name of the node this link is connected to.
BEA MessageQ Programmer’s Guide 5-17

5 Using Message-Based Services
The Disable function takes matching cross-group entries out of the search list for
connect processing.

Request Message Format for the Disable Function

Table 5-6 displays the Disable function message format:

Table 5-6 Disable Function Message Format

Field Required/
Optional

Setting

version Required 10

user_tag Required User-specified code identifying the request.

function_code Required PSYM_LINKMGT_CMD_DISABLE

group_number Required Group number to receive the action. Valid values
are 1 to 32000. The
PSYM_LINKMGT_ALL_GROUPS symbol
indicates all known links for this group.

connect_type Required Select the following transport type:
PSYM_LINKMGT_TCPIP

reconnect_timer Optional PSYM_LINKMGT_USE_PREVIOUS

window_size Optional PSYM_LINKMGT_USE_PREVIOUS

window_delay Optional PSYM_LINKMGT_USE_PREVIOUS

transport_addr Optional Transport address string 16 bytes in length;
the TCP/IP port ID

transport_addr_
len

Optional Length of transport address. Valid values are 0 to
16 bytes. Zero indicates to use the previous
setting.

node_name Optional ASCII text of node name. The length is
determined by node_name_len up to 255
characters.

node_name_len Optional Length of the node name string. Zero indicates to
use the previous known value.
5-18 BEA MessageQ Programmer’s Guide

Monitoring and Controlling Link Status
Determining the Status of the Disable Request

The status field of the LINKMGT_RESP message contains a return code indicating the
outcome of the Disable request. See Table 5-7 for a description of each status return
and the corresponding user action.

Response Message Format for Successful Disable Requests

Table 5-7 Disable Function Status Return and User Action

PSYM_LINKMGT
Return Code

Description Outcome Description/User Action

MSGCONTENT Invalid value in
request message

Error One of the field values in the disable request
message is invalid. Check the syntax of the
request message against the list of valid values
and re-issue the corrected request message.

MSGFMT Unknown request
version or function
code

Error Correct the syntax of the request message. The
version field of the must contain the number 10.
The function code field must contain the symbol
PSYM_LINKMGT_CMD_DISABLE.

NOGROUP The selected group
does not have a cross
group entry

Error No cross-group entries can be disabled because
you requested the disable function for a group
that is not defined in the cross-group table.

NOTRANSPORT The selected group
does not have any
cross group entries
with specified
transport

Error No cross-group entries can be disabled because
you requested the disable function for a group or
groups that does not have a cross-group
connection entry that uses the specified
transport.

OPERATIONFAIL The command was
unable to be
successfully
completed

Error The disable function failed due to a system
resource problem.

n Check the Connect Server to determine if it
is running out of virtual memory.

n Check the log file to see if the cause of the
error has been logged.

SUCCESS The operation
successfully
completed.

Success Refer to the description of the link management
response message below for a description of the
data returned.
BEA MessageQ Programmer’s Guide 5-19

5 Using Message-Based Services

k’s
empt to
 then
dy

ost.
If the Disable function completes successfully, the response message contains the
following information:

Connect Function

The Connect function of the link management request message re-enables a lin
address entries if they have been disabled, and causes an immediate connect att
occur with the selected groups if not already connected. Incoming connections are
allowed to occur. This function will still be able to complete even if the link is alrea
connected. The effects of the function will not be visible until the existing link is l

Field Description

version 10

user_tag User-specified code from the request message.

status PSYM_LINKMGT_SUCCESS

group_number Group number that receives the action.

in_link_state PSYM_LINKMGT_DISABLED

out_link_state PSYM_LINKMGT_DISABLED

connect_type Transport that message is connected over:
PSYM_LINKMGT_TCPIP.

platform_id Connected platform ID (PSYM_PLATFORM_xxxx).

reconnect_time Reconnect timer value for this group.

window_size Window size value negotiated for this group.

window_delay Window delay value negotiated for this group.

transport_addr_len Length of the transport_addr string.

transport_addr ASCII representation of either the TCP/IP port number.

node_name_len Length of the node_name string.

node_name Name of the node this link is connected to.
5-20 BEA MessageQ Programmer’s Guide

Monitoring and Controlling Link Status
All addresses in the group address table that match the selection criteria of the message
(for example, group ID, connect type, node name, and transport address) will be
enabled, and all other address entries for the groups selected will be disabled. If a
matching entry is not found, then one will be created, providing the group exists. If the
window or reconnect timer information is supplied, then those values will overwrite
the existing information of the selected entries.

If the group_number field is set to PSYM_LINKMGT_ALL_GROUPS, then node name and
transport address cannot be specified. If a specific group number is specified, and
PSYM_LINKMGT_ALL_TRANSPORTS is specified, then node name and transport address
cannot be specified.

On OpenVMS systems, the Connect function requires that the requesting process have
either OPER or the DMQ$OPERATOR rights identifier.

Request Message Format for the Connect Function

Table 5-8 displays the Connect request function message format:

Table 5-8 Connect Request Function Message Format

Field Required/
Optional

Setting

version Required 10

user_tag Required User-specified code identifying the request, if
supplied.

function_code Required PSYM_LINKMGT_CMD_CONNECT

group_number Required Group number to receive the action. Valid
values are 1 to 32000. The
PSYM_LINKMGT_ALL_GROUPS symbol
indicates all known links for this group.

connect_type Required Select the following transport type:
PSYM_LINKMGT_TCPIP

reconnect_timer Optional Time it takes for the COM Server to reconnect
to a communications link. Enter the number of
seconds or the following values:
PSYM_LINKMGT_NO_TIMER
PSYM_LINKMGT_USE_PREVIOUS
BEA MessageQ Programmer’s Guide 5-21

5 Using Message-Based Services

0

s

Determining the Status of the Connect Request

The status field of the LINKMGT_RESP message contains a return code indicating the
outcome of the Connect request. See Table 5-9 for a description of each status return
and the corresponding user action.

window_size Optional Size of transmission window (cross-group
protocol Version 3.0 or higher).

window_delay Optional Transmission window delay in seconds
(cross-group protocol Version 3.0 or higher).

transport_addr Optional Transport address string 16 bytes in length’
the TCP/IP port ID

transport_addr_
len

Optional Length of transport address. Valid values are
to 16 bytes. Zero specifies the use of the
previous setting.

node_name Optional ASCII text of node name. The length is
determined by node_name_len up to 255
characters.

node_name_len Optional Length of the node name string. Zero specifie
the use of the previous known value.

Table 5-8 Connect Request Function Message Format

Field Required/
Optional

Setting

Table 5-9 Connect function status returns and user actions

PSYM_LINKMGT
Return Code

Description Outcome Description/User Action

ALREADYUP The link is already
active

Warning The Connect function completed although the
link entries were already available.

MSGCONTENT Invalid value in
request message

Error One of the field values in the connect request
message is invalid. Check the syntax of the
request message against the list of valid values
and re-issue the corrected request message.
5-22 BEA MessageQ Programmer’s Guide

Monitoring and Controlling Link Status
Response Message Format for Successful Connect Requests

If the Connect request is successful, the response message contains the following
information:

MSGFMT Unknown request
version or function
code

Error Correct the syntax of the request message. The
version field of the must contain the number 10.
The function code field must contain the symbol
PSYM_LINKMGT_CMD_CONNECT.

NOGROUP The selected group
does not have a cross
group entry

Error No cross-group links can be connected because
you requested the connect function for a group
that is not defined in the cross-group table.

NOTRANSPORT The selected group
does not have any
cross group entries
with specified
transport

Error No cross-group links can be connected because
you requested the connect function for a group or
groups that does not have a cross-group
connection entry using the specified transport.

OPERATIONFAIL The command was
unable to be
successfully
completed

Error The connect function failed due to a system
resource problem.

n Check the Connect Server to determine if it
is running out of virtual memory.

n Check the log file to see if the cause of the
error has been logged.

SUCCESS The operation
successfully
completed.

Success Refer to the description of the link management
response message below for a description of the
data returned.

Table 5-9 Connect function status returns and user actions

PSYM_LINKMGT
Return Code

Description Outcome Description/User Action

Field Description

version 10

user_tag User-specified code from the request message.

status PSYM_LINKMGT_SUCCESS

group_number Group number that receives the action.
BEA MessageQ Programmer’s Guide 5-23

5 Using Message-Based Services
Disconnect Function

The Disconnect function of the link management request message requests implicit
disables of links and disconnects any links to the requested group. All addresses in the
group address table that match the selection criteria of the message (for example, group
ID, connect type, node name, and transport address) will be disconnected. All other
address entries for the groups selected will not be affected. If no entry matches the
group_number field, then PSYM_LINKMGT_NOGROUP is returned. On OpenVMS
systems, the Disconnect function requires that the requesting process have either OPER
or the DMQ$OPERATOR rights identifier.

Request Message Format for the Disconnect Function

Table 5-10 displays the Disconnect function message format.

in_link_state PSYM_LINKMGT_CONNECTED

out_link_state PSYM_LINKMGT_CONNECTED

connect_type Transport that message is connected over:
PSYM_LINKMGT_TCPIP.

platform_id Connected platform ID (PSYM_PLATFORM_xxxx).

reconnect_time Reconnect timer value for this group.

window_size Window size value negotiated for this group.

window_delay Window delay value negotiated for this group.

transport_addr_len Length of the transport_addr string.

transport_addr ASCII representation of either the TCP/IP port number.

node_name_len Length of the node_name string.

node_name Name of the node this link is connected to.

Table 5-10 Disconnect Function Message Format

Field Required/
Optional

Setting

version Required 10

user_tag Required User-specified code identifying the request.

Field Description
5-24 BEA MessageQ Programmer’s Guide

Monitoring and Controlling Link Status
Determining the Status of the Disconnect Request

The status field of the LINKMGT_RESP message contains a return code indicating the
outcome of the Disconnect request. Refer to Table 5-11 for a description of each status
return and the corresponding user action.

function_code Required PSYM_LINKMGT_CMD_DISCONNECT

group_number Required Group number to receive the action. Valid values
are 1 to 32000. The
PSYM_LINKMGT_ALL_GROUPS symbol means
disconnect all known links for this group.

connect_type Required Select the following transport type:
PSYM_LINKMGT_TCPIP

reconnect_timer Optional PSYM_LINKMGT_USE_PREVIOUS

window_size Optional PSYM_LINKMGT_USE_PREVIOUS

window_delay Optional PSYM_LINKMGT_USE_PREVIOUS

transport_addr Optional Transport address string 16 bytes in length;
the TCP/IP port ID

transport_addr_
len

Optional Length of transport address. Valid values are 0 to
16 bytes. Zero specifies the use of the previous
setting.

node_name Optional ASCII text of node name. The length is
determined by node_name_len up to 255
characters.

node_name_len Optional Length of the node name string. Zero specifies the
use of the previous known value.

Table 5-10 Disconnect Function Message Format

Field Required/
Optional

Setting
BEA MessageQ Programmer’s Guide 5-25

5 Using Message-Based Services
Response Message Format for Successful Disconnect Functions

If the Disconnect function is successful, the response message returns the following
information:

Table 5-11 Disconnect function status returns and user actions

PSYM_LINKMGT
Return Code

Description Outcome Description/User Action

MSGCONTENT Invalid value in
request message

Error One of the field values in the disconnect request
message is invalid. Check the syntax of the
request message against the list of valid values
and re-issue the corrected request message.

MSGFMT Unknown request
version or function
code

Error Correct the syntax of the request message. The
version field must contain the number 10. The
function code field must contain the symbol
PSYM_LINKMGT_CMD_DISCONNECT.

NOGROUP The selected group
does not have a
cross-group entry

Error No cross-group connections can be disconnected
because you requested the disconnect function
for a group that is not defined in the cross-group
table.

NOTRANSPORT The selected group
does not have any
cross-group entries
with specified
transport

Error No cross-group links can be disconnected
because you requested the disconnect function
for a group or groups that does not have a
cross-group connection entry that uses the
specified transport.

OPERATIONFAIL The command was
unable to be
successfully
completed

Error The disconnect function failed due to a system
resource problem.

n Check the Connect Server to determine if it
is running out of virtual memory.

n Check the log file to see if the cause of the
error has been logged.

SUCCESS The operation
successfully
completed.

Success Refer to the description of the link management
response message below for a description of the
data returned.
5-26 BEA MessageQ Programmer’s Guide

Monitoring and Controlling Link Status
Link Management Design Considerations

Table 5-12 lists important design considerations for applications using link
management.

Field Description

version 10

user_tag User-specified code from the request message.

status PSYM_LINKMGT_SUCCESS

group_number Group number that receives the action.

in_link_state PSYM_LINKMGT_DISABLED

out_link_state PSYM_LINKMGT_DISABLED

connect_type Transport that message is connected over:
PSYM_LINKMGT_TCPIP.

platform_id Connected platform ID (PSYM_PLATFORM_xxxx).

reconnect_time Reconnect timer value for this group.

window_size Window size value negotiated for this group.

window_delay Window delay value negotiated for this group.

transport_addr_len Length of the transport_addr string.

transport_addr ASCII representation of either the TCP/IP port number.

node_name_len Length of the node_name string.

node_name Name of the node this link is connected to.
BEA MessageQ Programmer’s Guide 5-27

5 Using Message-Based Services
Table 5-12 Link Management Design Condsiderations

Feature Description

Failover Node Table
Disabled

When an application issues a LINKMGT_REQ request, the
Connect Server disables the failover node table defined in
the group initialization file. Disabling the failover node
table ensures the application complete control over the
attributes of the link request.

Additional Group
Connections Disabled

When the application issues a LINKMGT_REQ request to
disconnect a link, the Connect Server disables further
connections to the group. Disabling connections ensures
that no additional links to the group will occur until the
application issues another LINKMGT_REQ request.

Connect Requests
Verified

When a connect request is made for a single group, the
XGROUP_VERIFY table uses the information supplied in the
message to determine whether to accept or reject the
request for a connection. Cross-group verification only
works on incoming requests. The data structure for
cross-group verification is overwritten by the information
in the link management connect or disconnect message.

Connect and Disconnect
Requests
Acknowledged

When the Connect Server receives a connect message after
a link is already successfully connected, the Connect
Server rejects the second connect message. When the
Connect Server receives a disconnect message after a link
is already successfully disconnected, the Connect Server
acknowledges the second disconnect message with a
successful return message.

Restrictions on Local
and Remote Requests

The Connect Server will only accept link control requests
from a local application. However, the Connect Server will
accept link status inquiries from remote as well as local
applications.

Privileges Required Application link control requests on the OpenVMS system
require that the application have VMS OPER privilege or be
granted the DMQ$OPERATOR rights identifier.
5-28 BEA MessageQ Programmer’s Guide

Learning the Current Status of Queues

ir

.

Learning the Current Status of Queues

This section describes how applications can use Queue Server message-based services
to obtain status information on all active queues in a particular group or to obtain
notification of queue status changes. The list of active queues displays all attached
permanent and temporary queues.

Listing Attached Queues in a Group

The Queue Server process can provide applications with a list of all attached queues
for a selected group. This information is available for local and remote groups and
includes a listing of both permanent and temporary queues. To request this list, the
application program sends a message of type LIST_ALL_Q_REQ to the Queue Server
process.

To learn the status of all queues in a selected group, an application exchanges the
following messages with the Queue Server:

n LIST_ALL_Q_REQ—Request message to request the status of all queues.

n LIST_ALL_Q_RESP—Response message to provide a list of all queues and the
status.

Figure 5-5 Listing All Queues

The application receives a response message from the Queue Server of type
LIST_ALL_Q_RESP providing a list of all attached queues. Because a
LIST_ALL_Q_RESP message may contain a long list of queue names, the
application must allocate a sufficient buffer size to store the information returned

QUEUE_SERVER

ZK8970AGE

LIST_ALL_Q_RESP

LIST_ALL_Q_REQ
User

Application
BEA MessageQ Programmer’s Guide 5-29

5 Using Message-Based Services

type

s with

l

f

d
Receiving Attachment Notifications

The Queue Server process can notify an application of all attached queues and
subsequent queue attachments and detachments for its own group. An application
registers for this service by sending a message of type ENABLE_Q_NOTIFY_REQ to the
group’s Queue Server process. The Queue Server responds with a message of
ENABLE_Q_NOTIFY_RESP, indicating the status of the registration request.

To learn the status of all queues and receive ongoing notification of new queue
attachments and detachments, an application exchanges the following message
the Queue Server:

n ENABLE_Q_NOTIFY_REQ—Request message to request the current status of al
queues with notification of future queue status changes.

n ENABLE_Q_NOTIFY_RESP—Response message to provide the current status o
all queues and confirmation that queue status changes will be reported.

n Q_UPDATE—Notification message to provide information on newly attached an
detached queues in the selected group.

n DISABLE_Q_NOTIFY_REQ—Request message to request that notification of
queue status changes be discontinued.

n DISABLE_Q_NOTIFY_RESP—Response message to indicate that notification of
queue status changes has been successfully disabled.

Figure 5-6 Listing Available Queues
5-30 BEA MessageQ Programmer’s Guide

Managing Message Recovery Files

f
ions

tain

MS
ager

 topic.

ased

r

 by

The registration request places the sender’s response queue number in the list o
applications to receive notification of new attachments and detachments. Notificat
are sent using a message of type Q_UPDATE. The application can cancel the notification
registration by sending a message of type DISABLE_Q_NOTIFY_REQ. The Queue
Server responds with a reply of type DISABLE_Q_NOTIFY_RESP indicating the status
of the registration cancellation request.

Managing Message Recovery Files

BEA MessageQ message-based services are used with the MRS Server to main
files for recoverable messaging and to turn MRS journaling capability on or off.
Message-based services for performing these functions are available on OpenV
systems only. The functions are also available through the BEA MessageQ Man
Utility on OpenVMS systems. For complete information on how to use the BEA
MessageQ message recovery system, see the Sending Recoverable Messages

BEA MessageQ uses the following four BEA MessageQ files for MRS message-b
services:

Store and forward file (SAF) Messages designated for recovery on the sender
system.

Destination queue file (DQF) Messages designated for recovery on the receive
system.

Dead letter journal (DLJ) Undelivered messages not designated for recovery
BEA MessageQ. These messages can be delivered
later from the DLJ by an application program.

Postconfirmation journal
(PCJ)

Successfully delivered recoverable messages which
form an audit trail of messaging events.
BEA MessageQ Programmer’s Guide 5-31

5 Using Message-Based Services

or

or

e

ing

egins
n
Opening, Closing, and Failing Over SAF and DQF Files

As part of message recovery on OpenVMS systems, the MRS Server opens a SAF or
DQF file when a recoverable message is sent to the target queue. The following BEA
MessageQ MRS message-based services are used to open, close, or rename message
recovery files on Open VMS systems:

n MRS_SAF_SET—Request message to request the MRS Server to open, close,
rename the SAF file.

n MRS_SAF_SET_REP—Response message to indicate the status of the request.

n MRS_DQF_SET—Request message to request the MRS Server to open, close,
rename the file.

n MRS_DQF_SET_REP—Response message to indicate the status of the request.

Figure 5-7, MRS Server Message Flow, describes how to open, close, or renam
message recovery files on OpenVMS systems:

Figure 5-7 MRS Server Message Flow

The MRS_DQF_SET message can be used to explicitly control the opening and clos
of a DQF file. For example, an OpenVMS application can use the MRS_DQF_SET
message to open a DQF file created at runtime in order to adjust its size before it b
storing recoverable messages. The MRS_SAF_SET message performs the same functio
for the SAF file.

MRS_SERVERUser
Application

MRS_SAF_SET

MRS_SAF_SET_REP

ZK8966AGE

MRS_DQF_SET

MRS_DQF_SET_REP
5-32 BEA MessageQ Programmer’s Guide

Managing Message Recovery Files

d

nd a
The failover option of the MRS_DQF_SET message renames a DQF file, associating it
with a new target queue that does not have a DQF file. The failover operation renames
the destination queue file, and the messages in the store and forward (SAF) files
directed to the original target are forwarded to the new target queue. You can use the
MRS_SAF_SET message to fail over the SAF file.

The MRS_SAF_SET_REP and the MRS_DQF_SET_REP messages are responses to a
request to open, close, or fail over an SAF or DQF file. The response message provides
the status of the request.

Opening and Closing Auxiliary Journal Files

The dead letter journal (DLJ) file cannot be open simultaneously for read and write
operations. For this reason, if an application has the task of delivering messages written
to the DLJ file, it must close the current file before it can begin delivering the messages
collected in it. The application must also open a new DLJ file to continue collecting
undeliverable messages while it delivers the messages.

To open, close, or rename message recovery files on OpenVMS systems, an
application exchanges the following messages with the MRS Server:

n MRS_SET_DLJ—Request message to request that the current DLJ file be close
and a new one opened.

n MRS_SET_DLJ_REP—Response message to indicate the status of the request.

n MRS_SET_PCJ—Request message to request that the current PCJ be closed a
new one opened.

n MRS_SET_PCJ_REP—Response message to indicate the status of the request.

Figure 5-8 illustrates the message exchange between the application and the
MRS Server.
BEA MessageQ Programmer’s Guide 5-33

5 Using Message-Based Services
Figure 5-8 MRS Server Message Flow

The MRS_SET_DLJ message requests the MRS Server to close the current DLJ file and
open a new one. The response message MRS_SET_DLJ_REP returns the status of the
operation. The file specification for the newly created DLJ file is returned if the file is
successfully opened.

As with the DLJ file, the postconfirmation journal (PCJ) file cannot be open
simultaneously for read and write operations. For this reason, if an application has the
task of reading the PCJ file to write a report of successful messaging transactions, it
must first close the current file. The application must also open a new PCJ file to
continue collecting successfully delivered recoverable messages.

An MRS_SET_PCJ message requests the MRS Server to close the current PCJ file and
open a new one. An MRS_SET_PCJ_REP message is returned to the requestor and
includes the status of the operation and the file specification if the file was successfully
opened.

Note: In contrast to the MRS messages for opening and closing the SAF and DQF
files, the DLJ and PCJ auxiliary recovery journals can be opened and closed
in a single operation.

Controlling Journaling to the PCJ File

You can use the messages in Figure 5-9 to disable journaling when replacing a PCJ file
and then reenable journaling:

n MRS_JRN_DISABLE—Request message to disable journaling to the PCJ file.

MRS_SERVERUser
Application

MRS_SET_DLJ

MRS_SET_DLJ_REP

ZK8967AGE

MRS_SET_PCJ

MRS_SET_PCJ_REP
5-34 BEA MessageQ Programmer’s Guide

Managing Message Recovery Files

st.

ed

r

nce.
 a DQF

me
F file
he
stems

e
n MRS_JRN_DISABLE_REP—Response message to indicate the status of the
request.

n MRS_JRN_ENABLE—Request message to enable journaling to the PCJ file.

n MRS_JRN_ENABLE_REP—Response message to indicate the status of the reque

Figure 5-9 Disabling Journaling

Use the MRS_JRN_DISABLE message to disable journaling to the PCJ when you ne
to close the PCJ and open a new one. The MRS_JRN_DISABLE_REP message returns the
status of the operation. Use the MRS_JRN_ENABLE message to enable journaling afte
you have opened a new PCJ file. The MRS_JRN_ENABLE_REP message returns the
status of the operation.

Transferring the Contents of a Destination Queue File

You use MRS Server messages to transfer the entire contents of a DQF file at o
However, you can use Qtransfer Server messages to request that the contents of
file be transferred one message at a time into another DQF file.

Transferring the contents of one DQF to another queue supports a failover sche
allowing an application on a node that is running to process messages from a DQ
on a node that is not running. Using Qtransfer Server messages you can blend t
contents of two DQFs. Qtransfer Server messages are available on OpenVMS sy
only.

To transfer the contents of one DQF file to another, an application exchanges th
following messages with the Qtransfer Server:

MRS_SERVERUser
Application

MRS_JRN_ENABLE

MRS_JRN_ENABLE_REP

ZK8968AGE

MRS_JRN_DISABLE

MRS_JRN_DISABLE_REP
BEA MessageQ Programmer’s Guide 5-35

5 Using Message-Based Services

s of

e

ile
viding

ltiple

 used

r

 error

of
n MRS_DQF_TRANSFER—Request message to request the transfer of the content
a DQF file to another.

n MRS_DQF_TRANSFER_ACK—Notification message to acknowledge receipt of the
request.

n MRS_DQF_TRANSFER_REP—Response message to indicate the final status of th
transfer.

Figure 5-10 Qtransfer Server Message Flow

The MRS_DQF_TRANSFER message requests the Qtransfer Server to open a DQF f
and send its contents one message at a time to another recoverable queue. By pro
a method for blending two recoverable queues, the Qtransfer Server provides a
convenient failover mechanism when application processing is conducted on mu
nodes in a distributed processing network.

Using this failover method, when a node fails, Qtransfer Server messages can be
to transfer messages from a recoverable queue on a node that has failed to a
recoverable queue on a node that is currently processing messages.

To acknowledge the receipt of an MRS_DQF_TRANSFER message, the Qtransfer Serve
sends an MRS_DQF_TRANSFER_ACK message. When each message is successfully
stored in the target DQF file, it is deleted from the source DQF file.

When all messages have been successfully stored in the target DQF file, or if an
has stopped the transfer, a message of type MRS_DQF_TRANSFER_REP is sent. The
MRS_DQF_TRANSFER_REP message indicates the completion status of a message
type MRS_DQF_TRANSFER.

ZK8969AGE

MRS_DQF_TRANSFER_ACK

MRS_DQF_TRANSFER

User
Application

MRS_DQF_TRANSFER_REP

QTRANSFER
5-36 BEA MessageQ Programmer’s Guide

CHAPTER
6 Building and Testing
Applications

This chapter describes the following tasks:

n Formatting and Converting Message Data

n Writing Portable BEA MessageQ Applications

n Compiling and Linking BEA MessageQ Applications

n Using the BEA MessageQ Test Utility

n Debugging BEA MessageQ Applications

n Controlling Message Flow
BEA MessageQ Programmer’s Guide 6-1

6 Building and Testing Applications
Formatting and Converting Message Data

Computer systems from different manufacturers may format data and data structures
differently. When sending messages between computers in a multivendor
environment, the process of data marshaling ensures that data is interpreted properly
between the sending and receiving systems.

The FML-based self-describing messaging feature in BEA MessageQ allows
applications to construct messages that contain information about how to interpret the
message content. Therefore, FML performs data marshaling to handle byte order and
data alignment differences between computer systems. See the Self-Describing
Messaging topic for more information.

Byte Order Conversion

Computer systems use two different methods to store a single integer value as a
longword. A longword, which represents 4 bytes, can be stored from highest to lowest
address order or from lowest to highest.

The term endian refers to the end of the longword that the computer begins reading
first. Some computers read the longword beginning with the lowest byte address, a
format called little endian. Other computers read the longword starting with the highest
byte address, a format called big endian.

When information is exchanged between computer systems that use different endian
formats, the format must be agreed upon by the two systems. Otherwise, the target
system will read the data and interpret the wrong integer value. The sender program
can convert the data by reversing the order of the bytes before the data is sent over the
network. Or the receiver program can reverse the order of the bytes before it interprets
the integer.

The convention for sending data between dissimilar endian machines is to use network
byte order (big endian format) to pack data into a message before sending it. The show
buffer argument of the pams_get_msg function returns the endian format of the
system that originated the message. The endian field is applicable to an integer-only
format.
6-2 BEA MessageQ Programmer’s Guide

Formatting and Converting Message Data
One way to avoid having to perform endian conversion is to convert numbers into
character strings and to only use messages composed entirely of ASCII text data.
While requiring more buffer space, text-only messages are always completely portable
for reception on any system.

If you must format message data using numeric data types, you can use several
conversion functions to convert the network byte order of the messages between
systems that use different endian formats. Many systems or C compilers provide the
ntohl(), ntohs(), htonl(), and htons() functions. These functions convert numeric
data types to or from their host internal representation into a common standard format
(called network byte order) for message transmission.

If these functions are not available, a user function could be written to produce the
same results. Network byte order arranges the bytes with the most significant bits at
the lower addresses.

Alignment of Data Structures

In addition to converting data between different endian formats, BEA MessageQ
applications may also need to align message data structures to ensure that message
content is interpreted properly by the target system. Many RISC compilers
automatically perform data alignment during program compilation. When a program
is compiled, data elements within a structure are aligned along natural boundaries by
data type such as byte, word, or longword.

Alignment causes data elements to shift position when space is added to align the
elements along these boundaries. Aligning data helps programs to run more efficiently.
However, because elements are moved and space is added to the structure, alignment
changes the way in which the data structure must be read.

Developers can use one of the following methods to ensure that message data
structures are not changed by data alignment:

n Suppress data alignment during compilation. Many compilers allow developers
to set a switch that enables and disables data alignment at compile time.

n Develop the application to create a packed data format for standard messages. If
the application formats the data structure as a byte array, the packed data format
is preserved during compilation, even when using compilers that automatically
align data.
BEA MessageQ Programmer’s Guide 6-3

6 Building and Testing Applications
n Design the data structure so that the elements in it are naturally aligned. Natural
alignment ensures that all longwords are on 4 byte boundaries, all words are on
2 byte boundaries, and so on.

See your system documentation for more information about data formatting on your
system.

Writing Portable BEA MessageQ
Applications

The best approach in developing BEA MessageQ applications is to use portable
programming techniques that allow the application to run in many different computing
environments. Writing portable applications reduces development and maintenance
costs as applications are required to run on systems from many vendors.

The following suggestions for developing BEA MessageQ applications simplify
porting applications to all industry-leading platforms:

n Avoid using nonportable BEA MessageQ features.

n Some BEA MessageQ functions (such as the pams_get_msga function) and
other features are not available on all platforms. The PAMS API reference
information lists which functions are not available on all platforms.

n Specify all optional arguments in BEA MessageQ functions.

Only OpenVMS systems allow applications to omit the trailing arguments in a
function call if they are not required. All other BEA MessageQ implementations
require that each argument in a BEA MessageQ function be specified. Arguments that
are not required by the application should be specified by passing a value of zero.
6-4 BEA MessageQ Programmer’s Guide

Compiling and Linking BEA MessageQ Applications
Compiling and Linking BEA MessageQ
Applications

This topic describes how to build your BEA MessageQ applications for UNIX,
Windows NT, and OpenVMS environments. The following sections describe:

n Using BEA MessageQ Include Files

n Connecting to the BEA MessageQ Environment

n Compiling and Linking Applications

n Running a BEA MessageQ Application

n Testing Return Status

Using BEA MessageQ Include Files

To use BEA MessageQ API functions and other standard features in your application,
reference the BEA MessageQ include files at the beginning of your application
program. Table 6-1 describes the contents of each BEA MessageQ include file. The
include files can be used with both the C and C++ programming languages.

Table 6-1 BEA MessageQ Include Files

File Name Comments Description

p_entry.h Entry point
definitions

Declares the entry point for all BEA MessageQ API calls.

p_proces.h Process definitions Defines the queue numbers symbolically to identify other
queues in the BEA MessageQ message queuing system.

p_group.h Group definitions Defines the group numbers symbolically to identify other
groups in the BEA MessageQ message queuing system.
BEA MessageQ Programmer’s Guide 6-5

6 Building and Testing Applications
All implementations of BEA MessageQ software access the C language include files
in the same manner. Listing 6-1 shows the recommended method of specifying
portable #include statements in C.

Listing 6-1 Recommended #include Statements for BEA MessageQ Applications

#include <errno.h>
#include <stdio.h>
 /* Include PAMS-specific definition files. */
#include <p_entry.h> /* PAMS function type declarations */
#include <p_proces.h> /* Known Queue number definitions. */
#include <p_group.h> /* Known group number definitions. */
#include <p_typecl.h> /* Generic type/class definitions. */
#include <p_return.h> /* PAMS func return status definitions*/
#include <p_symbol.h> /* Generic PSEL/PDEL definitions. */
#include <p_msg.h> /* Message type declarations */

Portable code requires a conditional compile (such as #if/#endif when
programming in C) around the include statements. For an example of how to
incorporate include files into your application, refer to the sample programs in the
examples directory of your BEA MessageQ media kit.

p_typecl.h Type and class
definitions

Contains the symbolic names for all standard BEA MessageQ
type and class definitions. On OpenVMS systems you can add
user-defined type and class codes to this file. On UNIX and
Windows NT systems you must create a separate include file
for user-defined type and class codes.

p_return.h Return code
definitions

Contains the compile time symbols for BEA MessageQ return
status codes.

p_symbol.h Global symbol
definitions

Defines symbols used by BEA MessageQ to control features
such as message selection and recoverable messaging.

p_msg.h Message API
definitions

Declares the data structures for all BEA MessageQ
message-based services.

Table 6-1 BEA MessageQ Include Files

File Name Comments Description
6-6 BEA MessageQ Programmer’s Guide

Compiling and Linking BEA MessageQ Applications
To use BEA MessageQ functions and other standard features in an application
program, the program references the BEA MessageQ include files. Table 6-2 lists the
location of the standard BEA MessageQ include files for the C programming language.

BEA MessageQ for OpenVMS systems uses the portable include file names for the C
programming language. For other programming languages, BEA MessageQ uses
another set of names for the include files. The OpenVMS include files for all other
languages are contained in a single library called DMQ.TLB. The logical name
DMQ$USER points to the directory containing DMQ.TLB.

Include files on OpenVMS systems are available for several programming languages.
The include files begin with PAMS_XXX_ where XXX is a 1- to 3-letter designation
identifying the programming language as follows:

n PAMS_XXX_ENTRY_POINT

n PAMS_XXX_PROCESS

n PAMS_XXX_GROUP

n PAMS_XXX_TYPE_CLASS

n PAMS_XXX_SYMBOL_DEF

BEA MessageQ for OpenVMS systems uses two different include files for return code
symbols. Compile-time symbols are contained in the
PAMS_XXX_RETURN_STATUS_DEF file. Link-time symbols are contained in the
PAMS_XXX_RETURN_STATUS file. Include one of the following in your application
program:

n PAMS_XXX_RETURN_STATUS_DEF

n PAMS_XXX_RETURN_STATUS

Table 6-2 Location of C Language Include Files

Platform Location

UNIX /usr/include directory

Windows NT directory selected during installation

OpenVMS DMQ$USER:
BEA MessageQ Programmer’s Guide 6-7

6 Building and Testing Applications
Programming Language Support

Table 6-3 shows the languages supported by BEA MessageQ products:

Connecting to the BEA MessageQ Environment

Before running a program that uses BEA MessageQ, you must set the environment to
identify the message queuing bus and the message queuing group with which the
program will be associated.

For UNIX and Windows NT, BEA MessageQ uses the following environment
variables:

To set environment variables that designate bus and group ID using csh syntax on
UNIX systems, enter the following commands:

setenv DMQ_BUS_ID bus_id
setenv DMQ_GROUP_ID group_id

To set environment variables that designate bus and group ID using command line
syntax on Windows NT systems, enter the following commands:

Table 6-3 Languages Supported By BEA MessageQ

Product Supported Languages

BEA MessageQ for UNIX
BEA MessageQ UNIX Client

C, C++

BEA MessageQ for Windows NT
BEA MessageQ Windows Client

C, C++, Visual Basic, Powerbuilder

BEA MessageQ for OpenVMS
BEA MessageQ OpenVMS Client

Ada, Basic, Bliss-32, C, C++, Cobol, Fortran,
Macro-32, PL/I, Pascal

BEA MessageQ MVS Client C, Cobol

DMQ_BUS_ID Sets the bus ID for the application.

DMQ_GROUP_ID Sets the group ID for the application.
6-8 BEA MessageQ Programmer’s Guide

Compiling and Linking BEA MessageQ Applications

mand

and

set DMQ_BUS_ID bus_id
set DMQ_GROUP_ID group_id

BEA MessageQ for OpenVMS enables you to tailor your run-time environment using
OpenVMS logical names. You can use the command DMQ$SET_LNM_TABLE to place
the required logical name table into the user’s logical name search tree. This com
procedure requires two parameters: the bus ID and the group ID.

Enter the following command to execute this procedure:

$ @MY_DMQ_DISK:[DMQ$V50.EXE]DMQ$SET_LNM_TABLE bus_id group_id

If the user frequently uses a particular bus and group, the invocation of the comm
procedure can be added to the user’s LOGIN.COM file. The system manager can define
the symbol DMQ_SET to simplify this command procedure. See the BEA MessageQ
Configuration Guide for OpenVMS for more information.

Table 6-4 describes logical names that are useful for testing, monitoring, and
debugging operations. See the BEA MessageQ Configuration Guide for OpenVMS for
a complete list of BEA MessageQ logical names.

Table 6-4 Logical Names Used in Testing and Debuggung

Logical Name Description

DMQ$DCL_NUMBER This logical name is a base 10 queue number that overrides the queue number
submitted to pams_attach_q.

DMQ$EXIT_PURGE This logical name controls the purging of pending messages when the program
exits. When defined as NO, it disables the BEA MessageQ exit handler from
purging all primary and secondary queues attached to the process. This feature
has no effect on pending recoverable messages because they are always
requeued when pams_attach_q is called to attach to the queue.
BEA MessageQ Programmer’s Guide 6-9

6 Building and Testing Applications
Compiling and Linking Applications
This topic describes how to compile and link your BEA MessageQ application on
UNIX, Windows NT and OpenVMS systems. For BEA MessageQ V5.0, the default
compilation lines are as follows:

cc -I$BEADIR/include file.c -L$BEADIR/lib -ldmq (direct call)
cc -I$BEADIR/include file.c -L$BEADIR/lib -ldmqcl (client/server)

For use with FML32, the compilation line is as follows:

cc -I$BEADIR/include file.c -L$BEADIR/lib -lfml32 -lgp -ldmq
(direct call)
cc -I$BEADIR/include file.c -L$BEADIR/lib -lfml32 -lgp -ldmqcl
(client/server)

$BEADIR/lib must be included in the exported environment variable LIBPATH on
AIX, SHLIB_PATH on HPUX, and LD_LIBRARY_PATH on all other Unix platforms.

DMQ$DEBUG Some special features are incorporated into BEA MessageQ to aid in
debugging. The logical name DMQ$DEBUG can be set to one of the following
states by using the DCL DEFINE command:

n undefined—No special action.

n NORMAL—No special action.

n ERROR—Prints error messages to the local terminal whenever an error
occurs in a call to a BEA MessageQ function.

n TRACE—This is a superset of the ERROR state. When set it will print the
occurrence of any errors within BEA MessageQ. It will also print an
informational message whenever a BEA MessageQ routine is entered.

n ALL—Combines the functions of ERROR and TRACE.

DMQ$HEADERS This logical name controls the printing of BEA MessageQ headers on the
SYS$OUTPUT device; for example, the terminal. When this logical name is
defined, BEA MessageQ header information is displayed when messages are
sent to or received from this process.

DMQ$TRACE_OUTPUT This logical name defines the location where trace information is logged.

Table 6-4 Logical Names Used in Testing and Debuggung

Logical Name Description
6-10 BEA MessageQ Programmer’s Guide

Compiling and Linking BEA MessageQ Applications
The following additional compilation flags and/or libraries are needed on the various
platforms:

HPUX
Compilation using the BEA MessageQ header files requires
-D_HPUX_SOURCE - Aa

SCO Open Server 5.0:
replace -ldmq with -Bdynamic -ldmq -lsocket
replace -ldmqcl with -Bdynamic -ldmqcl -lsocket

SCO UnixWare
-lgp (if used) needs -lcrypt
-ldmqcl needs -lsocket

Sequent
-ldmqcl needs -lsocket -lnsl

NCR
-ldmqcl needs -lsocket -lnsl

Solaris
-ldmqcl needs -lsocket -lnsl

The following sections describe:

n UNIX Makefile

n Windows NT Makefile

n OpenVMS Build Procedure

UNIX Makefile

UNIX systems use a makefile to incorporate the commands for compiling and linking
application programs. Listing 6-2 shows a sample makefile for running a BEA
MessageQ for UNIX application. The sample makefile, with the client and server
programs, is included in the root directory of your BEA MessageQ for UNIX media
kit.

Listing 6-2 UNIX Makefile

library to link against libdmq.a in /usr/lib
BEA MessageQ Programmer’s Guide 6-11

6 Building and Testing Applications
LIBS = -ldmq

compiler flags include debugging symbols, don’t use prototypes

CFLAGS = -g

build both the client and the server

all: s_client s_server
client depends on s_client.o s_getopt.o

s_client: s_client.o s_getopt.o
 cc $(CFLAGS) s_client.o s_getopt.o $(LIBS) -o s_client

server depends on s_server.o s_getopt.o

s_server: s_server.o s_getopt.o
 cc $(CFLAGS) s_server.o s_getopt.o $(LIBS) -o s_server

When building BEA MessageQ applications on the Compaq Tru64 UNIX platform,
you must link your applications against the library libots.a in addition to the BEA
MessageQ library. For example:

cc myapp.c -ldmq -lots - myapp

Windows NT Makefile

The BEA MessageQ for Windows NT API is implemented in dynamic link libraries
(DLLs). The directory containing the DLLs must be in your path when you run your
applications. All BEA MessageQ for Windows NT API functions are exported by
DMQ.DLL and defined in the import library DMQ.LIB. Other Windows NT products that
can call DLLs can also call BEA MessageQ API functions.

BEA MessageQ for Windows NT systems provides full support for Windows NT
multithreading. Each thread in the BEA MessageQ process has an independent BEA
MessageQ context, which means a queue that is attached in one thread is not available
to another thread in the same process.

All threads must attach their own queues via the pams_attach_q function. When a
program thread issues a pams_exit call, it does not affect queues attached by other
threads in the same process. Multiple threads in one application can communicate via
BEA MessageQ exactly as though they were in separate processes.
6-12 BEA MessageQ Programmer’s Guide

Compiling and Linking BEA MessageQ Applications
The example Windows NT makefile, x_make.mak, provides a good starting point for
building your own makefiles. To link with BEA MessageQ for Windows NT systems,
you need only include DMQ.LIB when you link. The following example shows a
sample makefile for running a BEA MessageQ for Windows NT application. Listing
6-3 makefile is included in the examples directory of your BEA MessageQ for
Windows NT media kit.

Listing 6-3 Windows NT Makefile

#
x_make.mak: Example makefile for MessageQ applications.
This makefile builds the "simple client" and
"simple server" applications.
#
execute this file with NMAKE as follows:
#
NMAKE -f example.mak DMQ=drive:\dir\
#
where "drive" is the drive where MessageQ is installed and
"directory" is the directory where MessageQ is installed.
#
#
!include <ntwin32.mak>

BIN=.\
DLIB=$(DMQ)
SRC= $(DMQ)
OBJ=.\
INCDIRS= /I $(DMQ)

I_FILES= p_return.h p_entry.h p_symbol.h

ALL : $(BIN)s_client.exe $(BIN)s_server.exe

$(BIN)s_client.exe : s_client.obj s_getopt.obj
 $(link) $(conflags) \
 -out:$(BIN)s_client.exe \
 s_client.obj s_getopt.obj \
 $(DLIB)dmq.lib \
 $(conlibs)

$(BIN)s_server.exe : s_server.obj s_getopt.obj
 $(link) $(conflags) \
 -out:$(BIN)s_server.exe \
 s_server.obj s_getopt.obj \
 $(DLIB)dmq.lib \
 $(conlibs)
BEA MessageQ Programmer’s Guide 6-13

6 Building and Testing Applications
s_server.obj : $(SRC)s_server.c $(I_FILES)
 $(cc) $(cflags) $(cvars) $(SRC)s_server.c $(INCDIRS)

s_client.obj : $(SRC)s_client.c $(I_FILES)
 $(cc) $(cflags) $(cvars) $(SRC)s_client.c $(INCDIRS)

s_getopt.obj : $(SRC)s_getopt.c $(I_FILES)
 $(cc) $(cflags) $(cvars) $(SRC)s_getopt.c $(INCDIRS)

OpenVMS Build Procedure

This topic describes how to compile and link BEA MessageQ applications on
OpenVMS systems. The BEA MessageQ for OpenVMS media kit includes a sample
command procedure for compiling and linking BEA MessageQ applications. Listing
6-4 shows the sample build file included in the examples directory.

Listing 6-4 Example OpenVMS Build Procedure

$!===
$! Standardized examples build procedure (V1.0-00)
$!
$! File: X_BUILD.COM
$!
$! Params: none
$!===
$
$ ss$_badparam = 20
$ ss$_nopriv = 36
$ ss$_abort = 44
$ cc_alpha = "/stand=vaxc/debug/noopt/lis"
$ cc_alpha_strict = "/stand=relaxed/debug/noopt/lis"
$ cc_vax = "/stand=portable/debug/noopt/lis"
$ wl = "write sys$output"
$
$
$ on warning then exit 4
$ on control_y then exit ’ss$_abort’
$
$ a = f$edit(f$getsyi("ARCH_NAME"), "UPCASE")
$ if f$locate("’’a’", "ALPHA") .le. f$length("’’a’")
$ then
$ sys_type = "Alpha"
$ alpha = "YES"
$ def_c_sw = cc_alpha + "/include=dmq$user:"
6-14 BEA MessageQ Programmer’s Guide

Compiling and Linking BEA MessageQ Applications
$ else
$ sys_type = "VAX"
$ alpha = "NO"
$ def_c_sw = cc_vax + "/include=dmq$user:"
$ endif
$
$ ASK_C_SW:
$ if "’’p1’" .eqs. ""
$ then
$ inquire p1 "Enter C compile switches [D:’’def_c_sw’]"
$ if p1 .eqs. "" then p1 = def_c_sw
$ endif
$ c_sw = "’’p1’"
$
$ wl ""
$ wl "------- Build Parameters -------"
$ wl " CC switches: ’’c_sw’"
$ wl " System type: ’’sys_type’"
$ wl ""
$
$ call CC x_attnam
$ call CC x_attnum
$ call CC x_atttmp
$ call CC x_basic
$ call CC x_exit
$ call CC x_get
$ call CC x_getall
$ call CC x_getem
$ call CC x_getpri
$ call CC x_getsel
$ call CC x_getsho
$ call CC x_getw
$ call CC x_locate
$!** call CC x_putdlj
$ call CC x_putslf
$ call CC x_recovr
$ call CC x_select
$ call CC x_shopnd
$ call CC x_timer
$ DONE:
$ wl ""
$ wl "Finished building MessageQ standard examples"
$ exit
$
$!===
=
$
$! p1 = program to compile
$

BEA MessageQ Programmer’s Guide 6-15

6 Building and Testing Applications
$ CC: subroutine
$ on warning then exit 4
$ on control_y then exit ’ss$_abort’
$
$ wl "Building ’’P1’..."
$
$ if f$search("’’p1’.obj") .nes. "" then delete/nolog ’p1’.obj.*
$ if f$search("’’p1’.lis") .nes. "" then delete/nolog ’p1’.lis.*
$ if f$search("’’p1’.exe") .nes. "" then delete/nolog ’p1’.exe.*
$ if f$search("’’p1’.map") .nes. "" then delete/nolog ’p1’.map.*
$ if f$search("’’p1’.dia") .nes. "" then delete/nolog ’p1’.dia.*
$
$ cc’c_sw’ ’p1’
$
$ if f$search("’’p1’.obj") .nes. ""
$ then
$ link ’p1’,dmq$lib:dmq/opt
$ exit
$ endsubroutine

BEA MessageQ for OpenVMS allows two kinds of application linking: linking with
the run-time library (RTL) and linking with the object library. The BEA MessageQ
run-time libraries must be installed before linking applications.

Linking with the Run-Time Library

The run-time library (RTL) is the standard form of linking application modules with
the BEA MessageQ environment. The files required for linking with BEA MessageQ
are located in two areas: DMQ$LIB and DMQ$USER. The DMQ$LIB area contains the
site-independent files and the DMQ$USER area contains the site-specific files that you or
your BEA MessageQ system manager customize.

To link BEA MessageQ applications, use the DMQ$LIB:DMQ/OPT switch in your linker
command line. Use the following command to link your application:

$ LINK SAMPLE_C, DMQ$LIB:DMQ/OPT

The options file contains all the commands needed to connect to the current version of
the BEA MessageQ RTL. RTLs are OpenVMS run-time libraries that allow code
sharing between numerous simultaneous users of BEA MessageQ. Using RTLs saves
memory, disk space, and link time.
6-16 BEA MessageQ Programmer’s Guide

Compiling and Linking BEA MessageQ Applications
Linking with the Object Library

You can link your BEA MessageQ program using the BEA MessageQ object library
instead of the RTL. Using this method, each BEA MessageQ program is built with its
own copy of the BEA MessageQ procedures. You can also link with the object library
and with partial run-time libraries for protected code and BEA MessageQ Script
Facility code.

To link with the object library, use the DMQ$LIB:DMQ$OLB/OPT switch in your linker
command line. Enter the following command to link your application:

$ LINK SAMPLE_C, DMQ$LIB:DMQ$OLB/OPT

Note that you may also need to include various language-specific run-time libraries or
object libraries depending upon how your OpenVMS system manager has installed
your layered languages.

Note: Use object library linking when you need an OpenVMS traceback.

Running a BEA MessageQ Application

Before running a program that uses BEA MessageQ, you must set the environment to
identify the message queuing bus and the message queuing group environment with
which the program will be associated. See the Connecting to the BEA MessageQ
Environment topic for information on how to set environment variables.

To run a UNIX program in the background, enter the following command:

myprog &

where:
myprog is the name of your program.

Running an OpenVMS Program as a Detached Process

You can run a detached process with or without a DCL context. If you choose to run
your process without a DCL context, you can invoke the command procedure
DMQ$EXE:DMQ$COPY_LNM_TABLE to copy all the necessary logical names into the
group or system logical name table. The detached process will then have access to the
logical names defined for BEA MessageQ.
BEA MessageQ Programmer’s Guide 6-17

6 Building and Testing Applications
If the process is to be run with DCL context, you can invoke the command procedure
DMQ$SET_LNM_TABLE before running the image. The command procedure
DMQ$DETACH_PROCESS in DMQ$EXE is an example of invoking DMQ$SET_LNM_TABLE
and running a detached process. Listing 6-5 shows a sample command procedure
fragment that runs LOGINOUT.EXE and uses the command procedure
DMQ$DETACH_PROCESS to run the detached process.

Listing 6-5 Command Procedure to Run as a Detached Process

.

.

.
 $ write sys$output "...Starting MY_IMAGE.EXE"
 $ startup_file = "START_TEMP_" + f$getjpi("","PID") + ".COM"
 $ create/owner=’f$user()’ ’startup_file’
 $ open/append startup ’startup_file’
 $ write startup "$ @DMQ$EXE:DMQ$DETACH_PROCESS 1 1 MY_IMAGE.EXE
DMQ$EXE"
 $ close startup
 $ run sys$system:loginout.exe -
 /input = ’startup_file’ -
 /output = MY_PROCESS.LOG -
 /error = ’f$trnlnm(""sys$error"")’ -
 /process_name = MY_PROCESS -
 /priority = 4 -
 /uic = ’f$user()’ -
 /io_buffered = 100 -
 /io_direct = 100 -
 /buffer_limit = 200 -
 /working_set = 500 -
 /maximum_working_set = 700 -
 /extent = 2000 -
 /page_file = 10000 -
 /ast_limit = 100 -
 /buffer_limit = 100 -
 /enqueue_limit = 100 -
 /file_limit = 50 -
 /queue_limit = 100
.
.
.

6-18 BEA MessageQ Programmer’s Guide

Compiling and Linking BEA MessageQ Applications
Running Existing BEA MessageQ Applications Under Version 5.0

To run existing applications under BEA MessageQ Version 5.0, you must begin by
converting your group initialization files to the Version 5.0 format and restarting your
message queuing groups. Table 6-5 describes whether or not existing applications need
to be recompiled or relinked to run under BEA MessageQ Version 5.0:

Running Applications Under Windows 95 or NT Systems

Applications built on Windows Version 3.1 systems (16-bit applications) may run on
Windows 95 or NT systems. However, there may be some restrictions, for example,
PATHWORKS for Windows NT does not support 16-bit applications. We recommend
that you recompile and relink your applications under Windows 95 or Windows NT
systems.

Table 6-5 Existing Application Recompiling and Relinking Requirements

Product Running Existing Applications

BEA MessageQ for UNIX To take advantage of BEA MessageQ Version 5.0
features, you must recompile and relink your
applications.

BEA MessageQ for OpenVMS Applications that are linked with the BEA MessageQ
run-time library (DMQ.OPT) do not have to relink to
use BEA MessageQ Version 5.0. However, if the
application was linked with the object libraries
(DMQ$OLB.OPT), then a relink is required. If the
application uses the LOCATE_Q_REP/RESP
message, these are now RISC-aligned, and you should
recompile and relink your application to take
advantage of the change.

BEA MessageQ for Windows NT BEA MessageQ Version 3.2 or earlier applications do
not need to be recompiled or relinked. However, to
take advantage of the new BEA MessageQ Version
5.0 features, you must recompile and relink your
applications.

BEA MessageQ Windows Client When upgrading to BEA MessageQ Version 5.0 from
any previous version of BEA MessageQ, we
recommend that you recompile and relink your
application to take advantage of new features.
BEA MessageQ Programmer’s Guide 6-19

6 Building and Testing Applications
To convert a 16-bit application to a 32-bit application on Windows 95 or NT systems,
you must recompile and relink your application with the 32-bit import library,
DMQCL32.LIB.

Linking an Application from a BEA MessageQ Client System to a BEA MessageQ Server System

The following information describes how to link applications between BEA MessageQ
client and server systems on Windows, UNIX, and OpenVMS platforms.

Windows Systems

On Windows systems, you have a choice of using static or dynamic linking.
Applications that use static linking need to be linked with a specific import library to
resolve external function calls. Client applications use the import library
DMQCL32.LIB (assuming the application is 32-bit), and server applications use the
import library DMQ.LIB.

Another linking method is dynamic run-time linking. Load either the file dmq.dll or
dmqcl32.dll at runtime. You need to structure your application to decide which DLL
to use. You can do this by setting an ini file, a Registry entry, or a command line
argument. With dynamic run-time linking, you do not need to rebuild your application
when changing from client systems to server systems, or vice versa.

UNIX Systems

On UNIX systems, applications must use static linking with specific libraries. Client
applications must use libdmqcl.a or libdmqcldnet.a. Server applications must use
libdmq.a. You need to rebuild your application and link with the file libdmq.a,
instead of libdmqcl.a or libdmqcldnet.a.

OpenVMS Systems

On OpenVMS systems, you typically build your application against the run-time
library (RTL). Both client and server applications use the logical name DMQ$ENTRYRTL
to identify which RTL is used. You only need to execute
DMQ$EXE:DMQ$SET_LNM_TABLE<bus><group> to select the server RTL. No rebuild
is required.

Applications can also statically link against the server or client OLB. You will need to
relink your application when changing from client to server.
6-20 BEA MessageQ Programmer’s Guide

Compiling and Linking BEA MessageQ Applications
Testing Return Status

Operating systems have different rules concerning what return status indicates a failure
and what indicates a success. Under the OpenVMS system, a returned value indicates
an error if the low bit is clear (an even number), and a success if the bit is set (an odd
number). UNIX based systems typically classify values below zero as failure.
Furthermore, systems can use different status values for the same status condition.

Portable programs must use a set of error-checking rules for all environments. For
BEA MessageQ software, the following rules exist for all supported systems:

n A return status equal to PAMS__SUCCESS indicates unconditional success.

n All success codes have the low bit set (making the values all odd numbers),
including PAMS__SUCCESS. A success status other than PAMS__SUCCESS
indicates successful completion, but that additional information exists. The
information is represented by the specific status value returned.

n All error codes have the low bit clear (making the values all even numbers).

n A return status of zero is invalid.

n All PAMS__* symbol definitions exist on all BEA MessageQ systems. However,
they do not always contain the same numeric values, and all defined symbols
will not be returned on all platforms.

Note: Portable code should not use the OpenVMS specific symbol SS$_NORMAL
when referring to BEA MessageQ functions. Instead, use the BEA MessageQ
symbol PAMS__SUCCESS.

Listing 6-6 shows how to test for a return status on any BEA MessageQ platform.

Listing 6-6 Portable Code for Testing Return Status

EXAMPLE 1 - Simple test for success or failure

status = pams_put_msg(msg_area, pri, target, class, type, del,
 msize, 0,0,0,0);

if ((status & 1) == 0) /* Successful? */
{
 printf("%Unexpected error %d returned\n", status);
BEA MessageQ Programmer’s Guide 6-21

6 Building and Testing Applications
 exit(1);
}

EXAMPLE 2 - Testing for various conditions

status = pams_put_msg(msg_area, pri, target, class, type, del,
msize, 0,0,0,0);

if (status != PAMS__SUCCESS)
{
 if (!(success & 1))
 {
 printf("%Unexpected error %d returned\n", status);
 exit(1);
 }

 if (status == PAMS__JOURNAL_ON) printf("Journaling enabled\n");
 /* Successful, and notification that journaling was enabled */
}
/* Continue processing */

EXAMPLE 3 - Using case statements

status = pams_put_msg(msg_area, pri, target, class, type, del,
 msize, 0,0,0,0);

switch (status)
{

 case PAMS__SUCCESS :
 break;

 case PAMS__JOURNAL_ON :
 printf("Journaling enabled\n");
 break;

 case PAMS__PAMS_DOWN :
 printf("Message bus is down\n");
 exit(1);

 case else :
 printf("PAMS call returned unknown error %d, aborting!\n",
 status);
 exit(1);
}

6-22 BEA MessageQ Programmer’s Guide

Using the BEA MessageQ Test Utility
/* Continue processing */

BEA MessageQ allows OpenVMS systems to automatically translate return status
codes in textual messages when an application program exits. To enable this feature,
enter the following command before running an application program:

$ SET MESSAGE DMQ$MSGSHR

If your application aborts during testing, it is useful to have OpenVMS traceback
information. The use of the BEA MessageQ object library and the inclusion of symbols
in the executable (via the /DEBUG switch in the compile step) add to the information
that is returned during traceback. If you link your application with the BEA MessageQ
RTLs, the traceback line number information is lost. To get a complete traceback, the
image must be linked using the object library described in Linking with the Object
Library.

Using the BEA MessageQ Test Utility

Using a graphical or character-cell interface, the BEA MessageQ Test utility allows
developers to send and receive messages between applications to:

n Build interactive tests of application modules.

n Simulate send and receive messages to any target from any source.

n Exercise the queues in the BEA MessageQ system.

The BEA MessageQ Test utility enables application developers to interactively attach
to a permanent or temporary queue, read messages from a script file or available
interprocess messages, and pass messages to a defined target queue. Messages sent or
received using the Test utility can be previewed using its message display or the echo
feature of the Script Facility. The Test utility is available on UNIX, Windows NT, and
OpenVMS systems.

To invoke the Test utility using the Motif user interface on UNIX systems, set the
environment variables for the bus and group ID and enter the command:

dmqtestm
BEA MessageQ Programmer’s Guide 6-23

6 Building and Testing Applications

ings.
To invoke the Test utility on Windows NT systems, enter the following commands:

set DMQ_BUS_ID bus_id
set DMQ_GROUP_ID group_id
dmqtestw

To invoke the character-cell user interface on UNIX systems, set the environment
variables for the bus and group ID and then enter the following command:

dmqtestc

To access the character-cell Test utility on OpenVMS systems, choose the Test option
from the BEA MessageQ main menu. The system prompts you for the following
information:

n Queue number—Enter the number of the sender’s queue.

n Queue name—Enter the name of the sender’s queue.

n Queue type PQ [Y/N]—Enter Y for primary queue or N if you want a secondary
or multireader queue.

n Name scope LOCAL [Y/N]—Enter Y if the queue is a local group name or N if it
is a remote group name.

n Target group number—Enter the target group number.

n Target process number—Enter the target process number.

Enter a setting at each system prompt or press Return to accept the default sett
Table 6-6 shows the default settings for using the Test utility.

Table 6-6 Test Utility Default Settings

Setting Default Value

send_class 1

send_type -100

send_priority 0

rcv_priority 0 (all priorities)

rcv_timeout 5 seconds

delivery PDEL_MODE_NN_MEM
6-24 BEA MessageQ Programmer’s Guide

Debugging BEA MessageQ Applications
Debugging BEA MessageQ Applications

BEA MessageQ offers a feature called tracing to log internal messaging events to a file
as they happen. You can use this file to diagnose application failures as you debug your
application. It is important to consider that message tracing generates a high volume
of output; therefore, you should only enable tracing for diagnostic purposes in the
event of a problem.

BEA MessageQ provides an execution tracing facility for diagnostic purposes. Tracing
produces a time-stamped output file showing the sequence of BEA MessageQ function
calls and return status codes. If the DMQ_TRACE_PREFIX environment variable is set,
tracing information goes to $DMQ_TRACE_PREFIX.pid. If it is not set and the
DMQ_TRACE_FILE environment variable is set, then tracing information will go to
$DMQ_TRACE_PREFIX. Otherwise, tracing information will go to the standard output
(this is not desirable on Windows NT). Each message will contain a time stamp if the
DMQ_TRACE_TIMESTAMPS environment variable is set.

Tracing Messages on UNIX Systems

Some special features are incorporated into BEA MessageQ to aid in debugging. The
PAMS_TRACE environment variable allows you to enable tracing to BEA MessageQ
callable services. To enable PAMS_TRACE on your system, enter the following
command:

setenv PAMS_TRACE 1

BEA MessageQ logs trace information to the standard output unless DMQ_TRACE_FILE
is set. Following is the trace information for a pams_put_msg call with a 30-second
timeout from source 1.1 to target queue 1:

PAMS:PAMS-Timeout was ZERO, using 30 seconds
PAMS:PAMS-****** sending message ******
PAMS:PAMS-Source :, 65537 (10001)
PAMS:PAMS-Target :, 1 (1)
PAMS:PAMS-Type / Class:, 6488162 (630062)
PAMS:PAMS-Delivery :, 39 (27)
PAMS:PAMS-UMA :, 5 (5)
PAMS:PAMS-Resp Q :
BEA MessageQ Programmer’s Guide 6-25

6 Building and Testing Applications
PAMS:PAMS-******************************
PAMS:PAMS-PAMS_put_cleanup

To disable PAMS_TRACE, enter the following command:

unsetenv PAMS_TRACE

Tracing Messages on Windows NT Systems

Tracing is enabled by setting environment variables using the following command:

SET PAMS_TRACE=value

where value is an arbitrary value.

To disable a trace, set the variables to a null value, as follows:

SET PAMS_TRACE=

You can check your environment variables at any time by entering SET at the
command line.

Tracing Messages on OpenVMS Systems

On OpenVMS systems, you can activate tracing using the DMQ$DEBUG logical name.
Once tracing is enabled, you can direct trace output using the DMQ$TRACE_OUTPUT
logical name. For more detailed information about how to troubleshoot BEA
MessageQ errors on OpenVMS systems, see the BEA MessageQ Configuration Guide
for OpenVMS.

Controlling Message Flow

When the message queuing environment becomes congested, BEA MessageQ lets you
control the flow of messages by setting environment variables that restrict messaging
rates on a per-process basis.
6-26 BEA MessageQ Programmer’s Guide

Controlling Message Flow
Note: This feature is available only on BEA MessageQ for UNIX.

BEA MessageQ uses a congestion control algorithm to reduce the number of messages
being enqueued, which allows the system to process the backlog of messages.When
the congestion condition subsides, BEA MessageQ gradually raises the rate of
message flow back to the maximum flow rate set for the queue.

The rules for enforcing congestion control are as follows:

n While a congestion condition exists, the enqueue and dequeue rate of all
processes is monitored.

n The maximum rate at which any process can enqueue messages during a
congestion condition is equal to a maximum value that is adjusted at regular
intervals.

n If, during a period of congestion, a process enqueues more messages than it
dequeues, its message flow rate is reduced by a percentage of its current flow
during the next interval.

n After a period of congestion has subsided, the flow rate of each process is
adjusted upward until the flow rate exceeds the maximum congestion flow rate
(DMQ_FLOW_MAXIMUM). At this point, flow control is no longer enforced.

The following table lists the congestion control environment variables for BEA
MessageQ for UNIX systems.

Environment Variable Description

DMQ_FLOW_MAXIMUM Maximum number of messages per second a process can enqueue during a
period of congestion. The default value is set to 1000 messages per second.

DMQ_FLOW_MINIMUM Minimum number of messages per second a process can enqueue during a
period of congestion. BEA MessageQ will always allow you to enqueue at
least this number of messages per second. The default value is set to 10
messages per second.

DMQ_FLOW_INTERVAL Interval at which BEA MessageQ checks message flow and makes
adjustments to the current flow rate. The value is expressed in milliseconds.
The default value is set to 250 milliseconds.

DMQ_FLOW_INCREASE Number of messages per second to increase the flow rate at the current interval
after a congestion period has subsided. The default value is set to 10 messages.
BEA MessageQ Programmer’s Guide 6-27

6 Building and Testing Applications
To specify congestion control for an application, use the following syntax to set the
appropriate environment variable prior to starting the application:

C shell
setenv DMQ_FLOW_MAXIMUM 500

Bourne shell
DMQ_FLOW_MAXIMUM=500
export DMQ_FLOW_MAXIMUM

Because the environment variables are set on a per-process basis, you can set different
values for each application in the environment.

DMQ_FLOW_DECREASE Percent reduction of the current flow rate to apply at each interval during
periods of congestion. The value must be specified as a real number in the
range (0.0 to 1.0). If the value is set to zero, then the maximum flow rate for
the given process is equal to the flow maximum as defined by the environment
variable DMQ_FLOW_MAXIMUM, and is not adjusted downward at each flow
interval. The default value is set to 0.25 intervals.

Environment Variable Description
6-28 BEA MessageQ Programmer’s Guide

CHAPTER
7 Using the Script Facility

The BEA MessageQ Script Facility provides a powerful tool for application
developers to use in simulating message exchange between programs. Instead of
writing a test program, you create a script file containing instructions for capturing
messages sent or received by an application, replaying captured messages, or
simulating messages sent from an application that is still under development.

Application developers can use the Script Facility to:

n Simulate messages sent to an application without writing a test program

n Selectively trace messages sent or received by an application and display them
on the screen or log them to a file

n Capture message traffic and replay the log files to support concurrent
development and testing of applications

n Simulate message traffic between client/server application components still
under development

n Create message trace files that assist developers in debugging applications based
on message traffic

n Stress test applications under different load levels by generating high levels of
message traffic

n Facilitate the development of large-scale integrated applications by simulating
message traffic from remote components

Instructions are entered to the script file using the BEA MessageQ scripting language.
When script processing is enabled, BEA MessageQ processes the script file and
executes the instructions.
BEA MessageQ Programmer’s Guide 7-1

7 Using the Script Facility
If you need to view or record the exchange of messages between applications under
development, you can use the Script Facility to capture messages sent or received by
an application. Captured messages can be displayed on a monitor or written to a log
file. Message capture documents messages sent and received by an application,
enabling developers to debug message exchange.

The BEA MessageQ Script Facility message replay feature is like using a tape recorder
with messaging. First, using message capture, you record the messages sent or received
by an application. Then, using replay, you send the messages captured in the log file
as input to another application. Message replay can be used to debug message
exchange between applications that are still under development.

Scripts can also be used to create a message to be sent. For example, if a sender
program is under development, you can create a script file to simulate the messages
that it will send. Then, when you enable script processing, the messages contained in
the script file are delivered to the receiver program to test its response.

Note: The BEA MessageQ Script Facility is available on UNIX and OpenVMS
systems only.

How to Use the Script Facility

Use the scripting language commands to create script files that send messages, capture
messages, or both. You can add instructions to the script file to repeat an operation, add
a time delay between functions, or add comments to document the script file.

After you create the script file, you can use the Script Facility to verify that the syntax
of the file is correct. If errors exist in the scripting language commands, BEA
MessageQ will highlight the line numbers and describe the errors to help you debug
your BEA MessageQ script.

When your script file is correct and ready for use, you enable script processing by
setting the Script Facility environment variable to the name of the script file or the log
file of captured messages to be used as input. When you run your application with the
environment variable set, BEA MessageQ reads the script file, delivers the defined
messages to the target queues, and captures messages as specified.
7-2 BEA MessageQ Programmer’s Guide

How to Use the Script Facility
Using the BEA MessageQ Scripting Language

BEA MessageQ script files are ASCII files created using a text editor. Though the
content must adhere to the scripting language syntax, it is not case sensitive and does
not require that data be entered in specific column positions in the file. When including
a group name in a script, the group name must start with a letter. Group names
beginning with a number or special character are not allowed.

On OpenVMS systems, you create a script file using a .PSS file extension. On UNIX
systems, you create a script file using a .pss file extension. Use tabs and spaces within
the script file to make it easier to read. See the Adding Repeats, Delays, and Comments
to Scripts topic for more information on how to add comments to a script file to
annotate its purpose and use.

The BEA MessageQ scripting language uses commands to identify the functions to be
performed. Table 7-1 describes information on BEA MessageQ Script Facility
commands:

Table 7-1 BEA MessageQ Script Facility Commands

Function
Command
Begin/End Modifiers Description

Send a
message

MSG/EOM Identifies the beginning and end of
the message header and content.

Capture
messages sent

SET SEND Sets message capture to include
messages sent by the application.

ECHO Displays messages on the screen.

ECHO
LINES=n

Selects the number of lines displayed.

LOG Writes messages to a log file.

LOG
LINES=n

Selects the number of lines logged.

OFF Captures messages sent by the
application in a log file only; does not
send messages to the target queue.
BEA MessageQ Programmer’s Guide 7-3

7 Using the Script Facility
ON Sends messages to the target queue
and captures them in a log file. SET
SEND ON is the default action for this
command.

Capture
messages
received

SET RECEIVE Sets message capture to include
messages received by the application.

ECHO Displays messages on the screen.

ECHO
LINES=n

Selects the number of lines displayed.

LOG Writes messages to a log file.

LOG
LINES=n

Selects the number of lines logged.

OFF Prevents the application from
receiving messages from sources
other than the script file.

ON Application receives messages from
all processes. SET RECEIVE ON is
the default action for this command.

Set the log
file name

SET LOG file_name Specifies the log file name. SET LOG
must precede the SET SEND or SET
RECEIVE commands in the script.

Add
messages to
an existing
file

SET LOG file_name
APPEND

Adds messages to an existing log file.

Add
comments

COMMENT/ENDC Designates the beginning and end of
comments to explain what the script
file does.

Set a time
delay

DELAY time Creates a time delay, which is useful
to simulate message arrival patterns.

Table 7-1 BEA MessageQ Script Facility Commands

Function
Command
Begin/End Modifiers Description
7-4 BEA MessageQ Programmer’s Guide

How to Use the Script Facility
Capturing, Replaying, and Simulating Message Exchange

The BEA MessageQ Script Facility is most commonly used to capture messages sent
or received by an application. Captured messages document message exchange and
can be used as the input stream to another application to test its response.

For example, if you are testing message exchange between two running applications,
you can use a script file to capture the output of the sender program. Figure 7-1 shows
application A sending messages to application B and recording those messages in a log
file.

Figure 7-1 Sending Messages and Capturing Output

The log file of captured messages can be used to document the messages sent by A. It
can also be used as an input stream to B during testing if application A is not always
available to send messages.

Repeat an
operation

REPEAT/ENDR Creates a repeat loop construct.

Table 7-1 BEA MessageQ Script Facility Commands

Function
Command
Begin/End Modifiers Description

ZK9001AGE

A B

Messages written to log file

Messages
sent to B

SET LOG mylog.pss
SET SEND LOG
BEA MessageQ Programmer’s Guide 7-5

7 Using the Script Facility
Depending on the requirements of your test environment and applications, you can
choose to capture messages received rather than capturing messages sent. Figure 7-2
shows how to use a log file to capture messages received by an application.

Figure 7-2 Sending Messages and Capturing Input

In this example, the log of messages received by application B matches the log file of
messages sent by application A. You can also use the Script Facility when one of your
applications is not running. For example, Figure 7-3 shows how application A can
capture messages it sends in a log file without BEA MessageQ delivering the messages
to application B.

Figure 7-3 Capturing Output Without Sending Messages

ZK9002AGE

A B

Messages written to log file

Messages
sent to B

SET LOG mylog.pss
SET RECEIVE LOG

ZK9003AGE

A B

Messages written to log file

Messages sent by A
are not delivered to B

SET LOG mylog.pss
SET SEND OFF LOG
7-6 BEA MessageQ Programmer’s Guide

How to Use the Script Facility
Then when application B is ready to test, you can use the script file containing
messages sent by application A to test it. Figure 7-4 shows how to replay messages and
to restrict application B to receiving only messages from the script file.

Figure 7-4 Replaying Captured Messages

Or, you can have the receiver program obtain messages from the script and messages
from other applications as shown in Figure 7-5.

Figure 7-5 Receiving Messages from Applications and Scripts

And, if the receiver program is ready for testing, but the sender program is not, you can
create a script file to simulate message exchange. If you capture the output of
application B during this process, you can use it as input to application A when it is
ready for testing as shown in Figure 7-6.

Figure 7-6 Writing Scripts to Send and Capture Messages

ZK9004AGE

B

Captured
output of A

SET RECEIVE OFF

Used as sole
input stream to B

ZK9005AGE

B

log file

SET RECEIVE ON

C D
BEA MessageQ Programmer’s Guide 7-7

7 Using the Script Facility

g

For some programs, script output is buffered, depending on the operating system and
whether the program is running in the background. For example, on a Solaris system,
output from dmqcls is unbuffered, but output from dmqtest is buffered.

The remaining sections of this topic provide more detailed information and examples
of how to create script files.

Capturing Messages Using Scripts

The SET command is used to select messages for capture. The SET SEND command
captures output by recording the messages sent by an application. The SET RECEIVE
command captures input by recording the messages received by an application. The
SET command uses the following syntax:

SET RECEIVE modifier [FROM MessageQ address]
SET SEND modifier [TO MessageQ address]

The modifiers to these commands are as follows:

n ON/OFF—determines whether messages are sent to the target or only to the lo
file, and whether the receiver program receives all input or input only from the
script file

n ECHO—displays captured messages on the screen

ZK9006AGE

B

Create script file
simulate messaging

SET LOG

A

SET SEND LOG

Output Use captured messages from B
as input to A to test during development
7-8 BEA MessageQ Programmer’s Guide

Capturing Messages Using Scripts

sages

rol

en:
n LOG—writes captured messages to the specified log file

The FROM/TO address qualifier is the queue address of the message to which mes
will be sent or from which messages will be read when the script is run.

Controlling Message Delivery Using Scripts

Using the ON/OFF modifiers with the SET SEND and SET RECEIVE commands, you
can control the delivery of messages from the script file and from other sources.
Following is a list of valid commands that you can enter to your script file to cont
message delivery with scripts:

Displaying Captured Messages on the Screen

To display captured messages on the screen, use the ECHO modifier with the SET SEND
or SET RECEIVE commands. Use the ECHO LINES=n modifier if you only want to
display a specified number of lines of the message. Following is a list of valid
commands that you can enter to your script file to display messages on the scre

Command Description

SET SEND OFF Captures messages sent by the application but does not deliver
them to the target queue.

SET SEND ON Captures messages sent by the application and delivers them to
the target queue. ON is the default for the SET SEND command.

SET RECEIVE OFF Captures messages received by the application, but restricts the
application to receiving only those messages sent from the
script.

SET RECEIVE ON Captures messages received by the application from the script
and any other source. ON is the default for the SET RECEIVE
command.
BEA MessageQ Programmer’s Guide 7-9

7 Using the Script Facility
Writing Captured Messages to a Log File

To write messages to a log file, begin by specifying the name of the log file. To create
a new log file to store captured messages, use the following command:

SET LOG file_name

Note: File names are case sensitive on UNIX systems. Enter the file name with the
exact upper- and lowercase letters that you will use to retrieve the file. The file
name can be specified with a path name or directory name to store it in a
specific area. Both absolute and relative path names can be used.

Note: If SET LOG is used in a script, the pams_get_msg call used to activate scripting must
be at least 1036 bytes in size.

To add captured messages to an existing log file, use the following command:

SET LOG file_name APPEND

If you do not provide a file extension, .LOG is used by default on OpenVMS systems
and .log is used by default on UNIX systems. If you want to replay the captured
messages, use .PSS (OpenVMS) or .pss (UNIX) as the file extension to distinguish
the log file as an input file.

Command Description

SET SEND ECHO Displays the messages sent by the application to the screen.

SET SEND ECHO
LINES=n

Displays n lines of the messages sent by the application to the
screen.

SET RECEIVE ECHO Displays the messages received by the application to the
screen.

SET RECEIVE ECHO
LINES=n

Displays n lines of the messages received by the application to
the screen.
7-10 BEA MessageQ Programmer’s Guide

Capturing Messages Using Scripts
The beginning of each log file has a comment line containing the date and time it was
created. A comment line is added each time the file is reopened. On UNIX systems,
only one log file can be open at a time. On OpenVMS systems, a maximum of four log
files can be open at a time.

To write captured messages to a log file, use the LOG modifier with the SET SEND or
SET RECEIVE commands. Use the LOG LINES=n modifier if you want to log only a
specified number of lines of the message. Following is a list of valid commands that
you can enter to your script file to log messages to a file:

Listing 7-1 shows the syntax of a BEA MessageQ script file that creates a log file
named MYLOG.PSS, captures messages sent and received by the application, and
displays them on the screen.

Listing 7-1 Sample Script to Capture Messages

COMMENT
 Example MessageQ script source file to capture messages,
 display them on the screen, and log them to a file.
ENDC
SET LOG MYLOG.PSS
SET RECEIVE ECHO LOG
SET SEND ECHO LOG

 MSG
 TARGET=MHIS_EK_INTERFACE SOURCE=MHIS_REQ_PROCESSOR
 CLASS=PAMS TYPE=ASRS_PERF_DATA_REQ
 A ’1234567890 ABCDEFGHIJKLMNOPQRSTUVWXYZ’
 EOM

Command Description

SET SEND LOG Writes the messages sent by the application to the specified log
file.

SET SEND LOG
LINES=n

Logs n lines of the messages sent by the application to the
specified log file.

SET RECEIVE LOG Logs the messages received by the application to the specified
log file.

SET RECEIVE LOG
LINES=n

Logs n lines of the messages received by the application to the
specified log file.
BEA MessageQ Programmer’s Guide 7-11

7 Using the Script Facility
Listing 7-2 shows the content of MYLOG.PSS created when script processing is enabled
using the script file in the previous example.

Listing 7-2 Sample Log Generated by a Script File

!*** Session begun at 22-MAR-1994 10:37:23.95 *******************

MSG ! Message receive at 22-MAR-1994 10:37:26.21
 SOURCE = 20,1 TARGET = 30,1
 CLASS = PAMS TYPE = ASRS_PERF_DATA_REQ
 XB 31, 32, 33, 34, 35, 36, 37, 38, 39, 30 !’1234567890’
 XB 20, 41, 42, 43, 44, 45, 46, 47, 48, 49 !’ ABCDEFGHI’
 XB 4A, 4B, 4C, 4D, 4E, 4F, 50, 51, 52, 53 !’JKLMNOPQRS’
 XB 54, 55, 56, 57, 58, 59, 5A, !’TUVWXYZ’
EOM

Though the format of the message data in the log file varies somewhat from a script
file, it can be used exactly as a script file to simulate message exchange. Use a log file
as input by setting the BEA MessageQ environment variable DMQ_SCRIPT to equal the
log file name. Then run the test application and it will receive and process the messages
contained in the log file.

Writing Captured Messages to Multiple Log Files

On UNIX systems, only one log file can be open at a time. However, the BEA
MessageQ Script Facility on OpenVMS systems lets you log messages to multiple log
files simultaneously. Listing 7-3 shows how to write messages received by an
application to one log file (RECEIVE.PSS) while writing messages sent by the
application to another log file (SEND.PSS).

Listing 7-3 Sample Script Using Multiple Log Files

COMMENT
 Example MessageQ script source file WITH LOGGING TO
7-12 BEA MessageQ Programmer’s Guide

Replaying Messages

rom

t or
 MULTIPLE LOG FILES
ENDC

SET LOG RECEIVE.PSS
SET RECEIVE LOG

SET LOG SEND.PSS
SET SEND LOG

REPEAT 5
 MSG TARGET=MHIS_EK_INTERFACE SOURCE=MHIS_REQ_PROCESSOR
 CLASS=PAMS TYPE=ASRS_PERF_DATA_REQ
 A ’1234567890 ABCDEFGHIJKLMNOPQRSTUVWXYZ’
 A ’MSG FROM REPEAT NUMBER 1 - WHICH IS SENT 5 TIMES’
 S 1
 EOM
ENDR

Replaying Messages

To use the BEA MessageQ Script Facility, you set an environment variable on UNIX
systems or a logical name on OpenVMS systems to the name of the script file or the
log file that you want to use as input to the application being tested. When you run the
application after the environment variable is set, the Script Facility reads the script file
or log file and uses the pams_put_msg function to deliver the messages contained in
the file to the target queue.

Note: The script file may be only one of many sources of messages sent to the
application. If messages are delivered to the application’s primary queue f
sources other than the script file, these messages will also be read and
processed.

If the script file requests messages to be captured, the Script Facility signals the
application to use BEA MessageQ logging routines that write the messages sen
received by the application to the designated log file.
BEA MessageQ Programmer’s Guide 7-13

7 Using the Script Facility
Script Processing on UNIX Systems

Script processing on UNIX systems is enabled by defining the environment variable
dmq_script as the script file name or log file name that you want to use as input to
the program being tested. Before setting the DMQ_SCRIPT environment variable, you
must first set the BUS and GROUP_ID environment variables. Use the following
commands to set the environment variable to enable script file processing. The
command using csh syntax is:

setenv DMQ_SCRIPT mylog.pss

The command using sh syntax is:

DMQ_SCRIPT=mylog.pss
export DMQ_SCRIPT

Define the DMQ_SCRIPT environment variable after running the Group Control Process
(dmqgcp) to boot the system. If DMQ_SCRIPT is defined before booting the system,
processing a script produces error messages for each line of the script.

When you run the application with BEA MessageQ script processing enabled, BEA
MessageQ translates this symbol when the pams_attach_q function is called. BEA
MessageQ processes the script, directing messages to their target queues and turning
on message logging, if applicable. Script processing on UNIX systems begins when
the target process issues a pams_get_msg or pams_get_msgw call.

Client programs do not access the DMQ_SCRIPT environment variable or perform script
processing directly. Instead, the client program uses the associated Client Library
Server (CLS) to perform script processing. Writing to the log file or echoing output is
performed relative to the CLS rather than the client program.

The Script Facility on UNIX systems also allows developers to initiate script
processing for an application that is currently running. To enable script processing for
a running application, use the dmqscript utility to direct a script file to the target queue
of the application.

To turn on script processing, the script file must begin with the command SET
SCRIPTS ON. To turn off script processing, the script must contain the SET SCRIPTS
OFF command. Table 7-2 describes the script control commands which are only
available on BEA MessageQ for UNIX systems.
7-14 BEA MessageQ Programmer’s Guide

Replaying Messages
Listing 7-4 provides a sample script that turns on script processing to begin message
logging for the running application.

Listing 7-4 Turning On Scripts for a Running Application

SET SCRIPTS ON
SET LOG /mypath/mylog.log
SET SEND LOG LINES=999
SET RECEIVE LOG LINES=999

To process a script file, use the following command syntax:

dmqscript -f script_file_name -q nn

where:

Table 7-2 Script Control Commands (UNIX only)

Function
Command
Begin/End Modifier Description

Enable script
processing

SET SCRIPTS ON This command is sent to an
application that is already running,
enabling it to receive messages from a
script file or begin capturing
messages.

Disable script
processing

OFF This command turns off script
processing for a running application.
The application no longer receives
messages from the script file and
stops capturing messages.

-f script_file_
name

Provides the name of the script file to process. The default
extension for script files is .pss.

-q nn Specifies the queue number of the application to which the
script control commands SET SCRIPTS ON or SET
SCRIPTS OFF should be directed.
BEA MessageQ Programmer’s Guide 7-15

7 Using the Script Facility
Script Processing on OpenVMS Systems

BEA MessageQ for OpenVMS software enables script file processing when the logical
name DMQ$SCRIPT is defined as a file name or as the word YES. The name of the script
file to process can be specified in one of the following ways:

n Define the logical name DMQ$SCRIPT to pass the script file name directly to the
Script Facility as follows:

$ DEFINE DMQ$SCRIPT script_file_name

n Then run the application that you want to test using the script file as input.

n Set the logical name DMQ$SCRIPT to YES, run the application that you want to
test, and enter the script file name in response to the prompt as follows:

$ DEFINE DMQ$SCRIPT YES
$ RUN application_name
Script file: script_file_name

n Define a DCL foreign command to invoke an image file name. The script file
name then can be entered directly on the DCL command line, as follows:

$ DEFINE DMQ$SCRIPT YES
$ ifn:==$drive_name:[directory_name]application_name
$ ifn script_file_name

When you use the Script Facility on BEA MessageQ for OpenVMS systems, all
messages defined in the script file are delivered to the target queue of the application
program you run regardless of the specified message TARGET argument specified in the
message header phrase.

To stop script file processing, use the DEASSIGN command as follows:

$ DEASSIGN DMQ$SCRIPT

The DMQ$EXAMPLES directory contains a program called sender.c that enables
application developers to set the target queue used with script processing. In addition,
this program enables an application to read messages from a script file and forward
them to a program that is already running.
7-16 BEA MessageQ Programmer’s Guide

Writing Scripts to Send Messages

Z” to
Writing Scripts to Send Messages

If you are unable to create a script file using message capture, you can use the BEA
MessageQ scripting language to create a new file defining the message that you want
to send. When script processing is enabled, BEA MessageQ sends the message to a
target queue where it is read by the application being tested.

To create a script file that sends a message to a target queue, use the scripting language
to:

1. Designate the beginning and end of the message

2. Specify the source, target, type and class descriptors that form the message
header

3. Create the message content

Defining Messages in Scripts

To define a message, enter the following to the script file:

n The MSG command to designate the beginning of the message definition

n The message header information including the target, source, class, and type of
the message

n The message data

n The EOM command to designate the end of the message definition

Listing 7-5 illustrates a BEA MessageQ script file for sending a message to a target
queue. The message in this example sends the numbers “0–9” and the letters “A–
a target queue number 1 in group 30.
BEA MessageQ Programmer’s Guide 7-17

7 Using the Script Facility
Listing 7-5 Sample Script to Send a Message

COMMENT
 Example MessageQ script source file to send a message
ENDC

 MSG
 TARGET=30,1
 SOURCE=20,1
 CLASS=PAMS
 TYPE=ASRS_PERF_DATA_REQ
 A ’1234567890 ABCDEFGHIJKLMNOPQRSTUVWXYZ’
 EOM

Defining the Message Header

To form a message header, the BEA MessageQ scripting language uses descriptors to
designate the target, source, class, and type arguments for the pams_put_msg function.
Note that the equal sign (=) is optional, and the commands FROM and TO can replace the
commands SOURCE and TARGET. Listing 7-6 shows the format of the message header.

Listing 7-6 Message Header Format

MSG

 TARGET = {MessageQ address}
 SOURCE = {MessageQ address}
 CLASS = {PAMS class number}
 TYPE = {PAMS type number}

EOM

The message header descriptors require the following input to specify the
pams_put_msg arguments:
7-18 BEA MessageQ Programmer’s Guide

Writing Scripts to Send Messages
Additional Arguments for UNIX Systems

In addition to the target, source, class, and type descriptors in the message header, the
Script Facility on BEA MessageQ for UNIX systems offers descriptors to specify the
delivery, undeliverable message action (UMA), and priority arguments for the
pams_put_msg function. Valid values for the delivery mode and UMA can be found
in the p_symbol.h include file.

These additional UNIX message header descriptors require the following input to
specify the pams_put_msg arguments:

Listing 7-7 shows the format of a complete UNIX message header.

Argument Description

TARGET The queue address to which the messages in the script file are
sent. The Script Facility allows the PAMS_ prefix to be omitted.
On OpenVMS systems, the script file messages are directed to
the primary queue of the running application regardless of the
target queue specified.

SOURCE Queue address of the message source. The script facility allows
the PAMS_ prefix to be omitted.

TYPE Descriptor identifying the message type. The Script Facility
allows the MSG_TYP_ prefix to be omitted.

CLASS Descriptor identifying the message class. The script facility
allows the MSG_CLS_ prefix to be omitted.

Argument Description

DELIVERY Value for the delivery mode as defined in the p_symbol.h
include file.

UMA Value for the undeliverable message action as defined in the
p_symbol.h include file.

PRIORITY Message priority, where 0 is the lowest priority and 99 is the
highest priority.
BEA MessageQ Programmer’s Guide 7-19

7 Using the Script Facility

ata
Listing 7-7 UNIX Message Header Format

MSG

 SOURCE = {MessageQ address}
 TARGET = {MessageQ address}
 CLASS = {PAMS class name}
 TYPE = {PAMS type name}
 DELIVERY = {MessageQ delivery mode value}
 UMA = {MessageQ undeliverable message action value}
 PRIORITY = {MessageQ priority}

EOM

Defining the Message Data

This topic describes the valid syntax for specifying message content. The BEA
MessageQ scripting language syntax requires you to specify the data format, data type,
and content of the message.

The valid data formats are:

n D—Decimal

n X—Hexadecimal

n O—Octal

n Z—Zero-fill

n A—ASCII

n S—ASCII space-fill

The binary data formats allow the specification of bytes, words, and longwords. D
types for each data format are described in the script file as follows:

n B—A list of 8-bit bytes

n W—A list of 16-bit words

n L—A list of 32-bit longwords
7-20 BEA MessageQ Programmer’s Guide

Writing Scripts to Send Messages
The content of the message is listed after the data format and data type codes. A comma
(,) must separate values in the value list. Each value cannot exceed the maximum
unsigned value that may be stored in the selected data field.

Table 7-3 lists the valid syntax and provides examples for how to specify message
content.

Table 7-3 Valid Message Data Syntax

Data Format Syntax/Description

Decimal Binary Data D (B/W/L) <SIGNED_NUMBER>, ... <SIGNED_NUMBER>

The values are stored in the message in binary format. The word
decimal applies only to the base used in entering the data values
in the script file. The values are not stored in packed decimal
format.

Hexadecimal Binary Data X (B/W/L) <HEX_NUMBER>, ... <HEX_NUMBER>

The values are stored in the message as unsigned hexadecimal
values.

Octal Binary Data O (B/W/L) <OCTAL_NUMBER>, ... <OCTAL_NUMBER>

The numeric values in the octal binary data phrase are unsigned
octal numbers.

Zero-Fill Binary Data Z (B/W/L) <NUMBER>, ... <NUMBER>

The values are stored in the message as unsigned decimal values.

ASCII Data A(<NUMBER>)’<ASCII_CHARACTERS>’

A(<NUMBER>)"<ASCII_CHARACTERS>"

An unsigned decimal value specifying the number of blanks to
fill into successive fields of the size specified by data type. This
format allows the text string to be left-justified into a field
<NUMBER> length long. This allows easy space-filling of a field
after the text string.

Characters in the quoted string fill into successive bytes starting
at the current position in the message text. Note that spaces and
tabs are significant when enclosed in quoted strings and that the
case of characters in quoted strings is preserved.
BEA MessageQ Programmer’s Guide 7-21

7 Using the Script Facility
Adding Repeats, Delays, and Comments to
Scripts

In addition to commands for sending and capturing messages, you can add instructions
to scripts that enable them to better simulate production conditions during testing. This
topic describes how to:

n Repeat an operation in a script

n Enter time delays to simulate message arrival patterns

n Add comments to document script functions

Repeating an Operation

The REPEAT and ENDR commands begin and end repeat groups. A repeat group allows
messages to be repeated. The format for using this command is as follows:

REPEAT <n>
 MSG
 .
 .
 .
 EOM
ENDR

ASCII Space-Fill Data S<NUMBER>

An unsigned decimal value that specifies the number of spaces
to fill into successive bytes starting at the current position in the
message text

Table 7-3 Valid Message Data Syntax

Data Format Syntax/Description
7-22 BEA MessageQ Programmer’s Guide

Adding Repeats, Delays, and Comments to Scripts
The message contained between the REPEAT n and the ENDR is repeated n times. On
UNIX systems, repeat commands can be nested to any level. On OpenVMS systems,
REPEAT commands can be nested up to three levels and can contain any valid script
syntax including delays.

The following example shows nested messages. In this example, the script will send
one message of message type 1, four messages of message type 2 with a 1.5-second
delay between them, and then send the same messages one more time.

REPEAT 2
 MSG
 .
 . ! MSG TYPE 1
 .
 EOM
 REPEAT 4 ! NESTED REPEAT MESSAGE
 MSG
 .
 . ! MSG TYPE 2
 .
 EOM
 DELAY 1.5
 ENDR
ENDR

Entering Time Delays

You can insert a time delay into a script file by using the DELAY command. The DELAY
command allows the simulation of an actual arrival pattern of messages. The DELAY
command format follows:

DELAY <min>:<sec>.<tenths>

DELAY <min>:<sec>

DELAY <sec>.<tenths>

DELAY <sec>

where:
min specifies the number of minutes from 0 to 59; sec specifies the number of seconds
from 0 to 59; and tenths specifies the number of tenths of a second from 0 to 9.

For example, specify a delay of 0.5 second as follows:
BEA MessageQ Programmer’s Guide 7-23

7 Using the Script Facility
DELAY 0.5

The duration of the delay applies only to the processing of the BEA MessageQ script
file and the time of arrival of messages from the BEA MessageQ script file to the user
program. The user program will still receive messages from other sources during a
delay interval.

Entering Comments

Comments in the script source file can be specified in end-of-line format (<EOL>) or
comment command format (COMMENT).

End-of-Line Format

In the following format, text on the line following the exclamation point (!) to the
end-of-line tag is ignored. An end-of-line comment can be placed wherever the syntax
allows <EOL>.

! comment text... <EOL>

Comment Command Format

In the following format, the text following the COMMENT command and all lines within
the comment group are ignored until the ENDC command terminates the comment. Note
that the comment statement can span any number of lines.

COMMENT
..this shows comment text
which can span lines..
ENDC

Verifying Script Files

Once you have created the script file, you can verify that the syntax is correct before
using it. See the following topics for instructions on how to verify scripts on UNIX and
OpenVMS systems and how to resolve reported errors.
7-24 BEA MessageQ Programmer’s Guide

Verifying Script Files
Verifying Scripts on UNIX Systems

BEA MessageQ for UNIX software provides a utility that verifies script syntax. It is
called dmqscript. To verify a script file, use the following command syntax:

dmqscript -v -f script_file_name

where:

Verifying Scripts on OpenVMS Systems

BEA MessageQ for OpenVMS software provides a utility that verifies script syntax. It
is called DMQ$PSSVFY. The DMQ$PSSVFY utility can be accessed using both a menu
interface and a command line interface. To use the menu interface, select the PSSVFY
option on the BEA MessageQ main menu. You will be prompted to provide the name
of the script file to verify.

To use the command line interface, enter the following commands at the DCL prompt:

$ PSSVFY :== $ DMQ$EXE:DMQ$PSSVFY
$ PSSVFY script_file_name

The default file type for script files is .PSS. If you omit the script file name, the utility
prompts you to supply it as follows:

$_File name:

Resolving Script Verification Errors

If the script verification utility does not find any syntax errors in the file, it displays no
output on the screen. If errors are found, this command creates a screen display listing
syntax errors and the line number on which they were found. Listing 7-8 provides an
example of a script file containing errors.

-v Requests verification of script file syntax.

-f script_file_name Provides the name of the script file to verify. The default
extension for script files is .pss.
BEA MessageQ Programmer’s Guide 7-25

7 Using the Script Facility
Listing 7-8 Sample Script File with Errors

REPEAT 2 !Send this message twice

 MSG SOURCE = 34,1 TARGET = 35,1
 CLASS = MATERIALS
 DX 1, 2, 3
 EOM

 DELAY 10 !Delay 10 seconds before sending the repeat message

Listing 7-9 shows the output displayed on the screen when the script containing errors
is processed.

Listing 7-9 Sample Output of Script File Verification Utility

%PAMSCRIPT-E-IVMSGTARG, Invalid message target name at line 3
-PAMSCRIPT-E-AMBIG, Ambiguous keyword
%PAMSCRIPT-E-NOMSGTO, Missing TARGET phrase in message definition
 at line 5
%PAMSCRIPT-E-NOMSGTYPE, Missing TYPE phrase in message definition
 at line 5
%PAMSCRIPT-E-IVDATATYPE, Invalid data type (expecting B, W, or L)
 at line 5
%PAMSCRIPT-E-MISENDR, Unbalanced REPEAT at line 1, missing closing
 ENDR command
%PAMSCRIPT-E-ERRORS, Errors encountered in script source file

Use the line numbers and error messages to identify the incorrect syntax in your script
file. Use a text editor to make the corrections and verify the script again to ensure that
all of the errors identified are corrected.
7-26 BEA MessageQ Programmer’s Guide

CHAPTER
8 PAMS Application
Programming Interface

Because the BEA MessageQ application programming interface (API) is portable, the
API is documented once for all supported platforms. This chapter describes all BEA
MessageQ callable services in alphabetical order using a standard description format.

BEA MessageQ API Description Format

The beginning of each description contains the entry-point name and a brief
description of the function performed. Table 8-1 describes the sections in the
description of each callable service.

Table 8-1 Callable Service Description Format

In the section
entitled . . .

You will find . . .

Syntax The syntax for using the callable service with the entry-point
name and argument list. Square brackets ([]) indicate optional
arguments to the service.

Arguments The data type, passing mechanism, C language prototype, and
access for each argument.

Argument Definitions Detailed information on how to specify each argument.

Description More detailed information on how to use the callable service.
BEA MessageQ Programmer’s Guide 8-1

8 PAMS Application Programming Interface

ses
 by
BEA MessageQ API Data Types

BEA MessageQ API arguments use data types defined by the C programming
language and some data types defined by BEA MessageQ software. Data types such
as short, unsigned short, and char are data types defined by the C programming
language. BEA MessageQ data types such as q_address and the PSB and
show_buffer structures are defined in the p_entry.h include file.

BEA MessageQ supports data type definitions for signed and unsigned longwords. The
int32 data type defined by BEA MessageQ is a 32-bit signed integer. The int32 data
type replaces the use of the integer data type long, the size of which is operating system
dependent. The int32 data type definition guarantees a consistent definition across all
platforms and was added to accommodate next generation 64-bit architectures such as
Compaq’s Alpha AXP systems. The uint32 data type designates a 32-bit unsigned
integer and replaces the use of unsigned long.

Note: The int32 and uint32 data type definitions are not available on BEA
MessageQ Version 2.0 platforms. BEA MessageQ Version 2.0 software u
the standard signed longword and unsigned longword data types defined
the C programming language.

Return Values The return codes with the platforms on which they are
supported.

See Also A list of related callable services.

Example A sample program illustrating the use of the callable service.
These sample programs are available in the examples directory
of the BEA MessageQ media kit.

Table 8-1 Callable Service Description Format

In the section
entitled . . .

You will find . . .
8-2 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
pams_attach_q

Connects an application program to the BEA MessageQ message queuing bus by
attaching it to a message queue. An application must successfully execute this function
before it can send and receive messages. When an application uses this function to
attach to a queue, it becomes the owner of the queue. Only one application program
can attach to a primary queue and read messages from it. When an application attaches
to a permanent primary queue defined with secondary queue attachments, the
secondary queues are also attached by this function.

Syntax int32 pams_attach_q (attach_mode, q_attached, [q_type], [q_name],
[q_name_len], [name_space_list], [name_space_list_len], [timeout],
[nullarg_2], [nullarg_3])

Arguments

Argument
Definitions

attach_mode

Supplies the mode for attaching the application to a message queue. The three
predefined constants for this argument are:

Table 8-2

Argument Data Type Mechanism Prototype Access

attach_mode int32 reference int32 * passed

q_attached q_address reference q_address * returned

[q_type] int32 reference int32 * passed

[q_name] char reference char * passed

[q_name_len] int32 reference int32 * passed

[name_space_list] int32
array

reference int32

array *

passed

[name_space_list_len] int32 reference int32 * passed

[timeout] int32 reference int32 * passed

[nullarg_2] char reference char * passed

[nullarg_3] char reference char * passed
BEA MessageQ Programmer’s Guide 8-3

8 PAMS Application Programming Interface

e
 by

is

 if the
ueue
ng

 entered
n PSYM_ATTACH_BY_NAME—Attach by name

n PSYM_ATTACH_BY_NUMBER—Attach by number

n PSYM_ATTACH_TEMPORARY—Attach as a temporary queue

When attach_mode is PSYM_ATTACH_BY_NAME, the application attaches to the queu
identified by the specified queue or alias name. BEA MessageQ finds the queue
implicitly performing a pams_locate_q call for the specified q_name. The procedure
that BEA MessageQ uses is determined by the name_space_list argument.

q_attached

Receives the queue address from BEA MessageQ when an application has
successfully attached to a message queue.

q_type

Supplies the queue type for the attachment. The two predefined constants for th
argument are:

n PSYM_ATTACH_PQ—Primary queue (default)

n PSYM_ATTACH_SQ—Secondary queue

q_name

Supplies the name or number of the permanent queue to attach to the application
attach_mode argument specifies attachment by queue name or queue number. Q
names are alphanumeric strings with no embedded spaces and allow the followi
special characters: underscore (_), hyphen (-), and dollar sign ($).

References to queue names are case sensitive and must match the queue name
in the group initialization file. Some example queue names are: QUEUE_1,
high-priority, and My$Queue.

The q_name argument has the following dependencies with the attach_mode
argument:

n If the attach_mode argument is PSYM_ATTACH_BY_NAME, the q_name argument
must contain a valid queue name as specified during BEA MessageQ group
configuration.

n If the attach_mode argument is PSYM_ATTACH_BY_NUMBER, the q_name
argument is specified as an ASCII string of 1 to 3 numeric characters
representing the queue number.
8-4 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
n If the attach_mode argument is PSYM_ATTACH_TEMPORARY, the q_name
argument is not used and should be specified by passing a value of 0.

q_name_len

Supplies the number of characters in the q_name argument. The maximum string
length on UNIX, Windows NT, and OpenVMS servers is 255 characters. For all other
BEA MessageQ environments, the maximum string length is 31.

name_space_list

Supplies a list of name tables to search when the attach_mode argument
PSYM_ATTACH_BY_NAME is specified.

If the name_space_list is specified, then the name_space_list_len argument
must also be specified. If this argument is unspecified, then PSEL_TBL_GRP is the
default.

Possible values in a name_space_list argument are as follows:

The name_space_list argument identifies the scope of the name as follows:

n To identify a local queue reference or a queue, an application must include
PSEL_TBL_GRP in name_space_list. (Do not specify PSEL_TBL_BUS in the list
because it would identify a global queue reference.)

n To identify a global queue reference, include PSEL_TBL_BUS (or
PSEL_TBL_BUS_MEDIUM or PSEL_TBL_BUS_LOW) in the name_space_list
argument and specify its pathname, either explicitly or implicitly. If the q_name
argument contains any slashes (/), or periods (.), BEA MessageQ treats it as a
pathname. Otherwise, BEA MessageQ treats q_name as a name and adds the
DEFAULT_NAMESPACE_PATH to the name to create the pathname to lookup. (The

Location It Represents Symbolic Value

Process cache PSEL_TBL_PROC

Group/group cache PSEL_TBL_GRP

Global name space PSEL_TBL_BUS

(or PSEL_TBL_BUS_MEDIUM

or PSEL_TBL_BUS_LOW)
BEA MessageQ Programmer’s Guide 8-5

8 PAMS Application Programming Interface

ment

ment
DEFAULT_NAMESPACE_PATH is set in the %PROFILE section of the group
initialization file.)

The name_space_list argument also controls the cache access as follows.

n To cause the lookup of a local queue reference or queue name to check the
process cache before looking in the group cache, specify the name_space_list
argument as PSEL_TBL_GRP and PSEL_TBL_PROC.

n To cause the lookup of a global queue reference to check the process cache and
then the group cache before looking into the global name space, specify
PSEL_TBL_BUS(or PSEL_TBL_BUS_LOW or PSEL_TBL_BUS_MEDIUM),
PSEL_TBL_GRP and PSEL_TBL_PROC.

To lookup all caches in the global name space before looking in the master
database, specify PSEL_TBL_BUS_LOW instead of PSEL_TBL_BUS.

To lookup only the slower but more up-to-date caches in the global name space
before looking in the master database, specify PSEL_TBL_BUS_MEDIUM instead
of PSEL_TBL_BUS.

For more information on dynamic binding of queue addresses, see the Using Naming
topic.

name_space_list_len

Supplies the number of entries in the name_space_list argument. If the
name_space_list_len argument is zero, BEA MessageQ uses PSEL_TBL_GRP as the
default in the name_space_list argument.

timeout

The number of PAMS time units (1/10 second intervals) to allow for the attach to
complete. If a zero is specified, the group’s ATTACH_TMO property is used. If the
ATTACH_TMO property is also zero, 600 is used.

nullarg_2

Reserved for BEA MessageQ internal use as a placeholder argument. This argu
must be supplied as a null pointer.

nullarg_3

Reserved for BEA MessageQ internal use as a placeholder argument. This argu
must be supplied as a null pointer.
8-6 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
Description Before an application can use the pams_attach_q function, the BEA MessageQ
message queuing bus must be configured. A BEA MessageQ message queuing bus is
a collection of one or more BEA MessageQ message queuing groups. A message
queuing group is a collection of message queues that reside on a system, share global
memory sections and files, and are served by the same server processes. A BEA
MessageQ message queue is an area of memory or disk where messages are stored and
retrieved. See the installation and configuration guide for the platform you are using to
learn how to configure the BEA MessageQ environment.

To receive BEA MessageQ messages, an application must attach to at least one
message queue. The pams_attach_q function enables an application to attach in the
following ways:

n An application can attach to a queue by specifying a number. To attach by
number, the message queue must be configured in the group definition.
Attaching by number enables an application to attach to a specific queue, send
messages to the queue, and retrieve messages sent to that queue.

n An application can attach to a queue by specifying the queue name. To attach by
name, the message queue must be configured in the group definition. Attaching
by name enables an application to attach to a specific queue, send messages to
the queue, and retrieve messages sent to that queue. In addition, attaching by
name eliminates the need to change code or recompile if the queue address
changes. Therefore, attaching by name protects applications from changes in the
BEA MessageQ environment configuration.

n An application can attach to a temporary queue. To attach to a temporary
queue, the application does not have to give a specific queue name or number.
BEA MessageQ will assign a queue and return the number of the queue which
has been assigned. Temporary queues allow an application to perform messaging
without knowing configuration details of the group.

Applications can specify an attachment as primary or secondary. All applications must
have a primary queue. In addition, applications can attach to one or more secondary
queues. Primary queues can be configured in the group definition as the owners of
secondary queues. When an application attaches to a primary queue that is the owner
of secondary queues, the application is automatically attached to the secondary queues
at the same time it is attached to the primary queue.

In addition, an application can attach to a multireader queue. A multireader queue can
be read by many applications and is configured as part of the group definition.
BEA MessageQ Programmer’s Guide 8-7

8 PAMS Application Programming Interface
Return Values

Table 8-3

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Wrong number of call arguments has been
passed to this function.

PAMS__BADDECLARE All Queue has already been attached to this
application.

PAMS__BADNAME All Invalid name string was specified.

PAMS__BADPARAM All Invalid argument in the argument list.

PAMS__BADPROCNUM All Queue number out of range.

PAMS__BADQTYPE All Invalid queue type.

PAMS__BADTMPPROC OpenVMS Invalid temporary queue number.

PAMS__DECLARED All The queue number is already attached to
another application or process.

PAMS__DUPLQNAME OpenVMS Duplicate queue name.

PAMS__NETERROR Clients Network error resulted in a
communications link abort.

PAMS__NOACCESS All No access to the resource. The address of
the specified name is either 0 or it is in
another group.

PAMS__NOACL All The queue access control file could not be
found.

PAMS__NOOBJECT All No such queue name. For a global queue
reference, this error can be caused by a bad
default pathname in the group
configuration file.

PAMS__NOQUOTA OpenVMS Insufficient receive message or byte quota
to attach.

PAMS__NOTBOUND All The queue name is not bound to an
address.
8-8 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types

 The
See Also n pams_detach_q

n pams_exit

n pams_locate_q

Examples n Attach by Name—this example illustrates how to attach to a queue by name.
The name “example_q_1” must be defined in your group configuration
information as a primary queue or as a local queue alias or a primary queue.
complete code example called x_attnam.c is contained in the examples
directory.

n Attach by Number—this example illustrates how to attach to a queue by
number. A queue numbered 1 must be defined in your group configuration
information file as a primary queue. The complete code example called
x_attnum.c is contained in the examples directory.

PAMS__NOTMRQ OpenVMS Attempting to attach to Multi-reader
Queue and queue type is not an MRQ.

PAMS__NOTPRIMARYQ All Queue name or number is not a primary
queue.

PAMS__NOTSECONDARYQ All Queue name or number is not a secondary
queue.

PAMS__PAMSDOWN All The specified BEA MessageQ group is not
running.

PAMS__PREVCALLBUSY Clients The previous call to CLS has not been
completed.

PAMS__PNUMNOEXIST OpenVMS Target queue name or number does not
exist.

PAMS__RESRCFAIL All Failed to allocate resources.

PAMS__SUCCESS All Successful completion of an action.

PAMS__TIMEOUT All The timeout period specified has expired.

Table 8-3

Return Code Platform Description
BEA MessageQ Programmer’s Guide 8-9

8 PAMS Application Programming Interface
n Attach as Temporary—this example illustrates how to attach as a temporary
queue. The complete code example called x_atttmp.c is contained in the
examples directory.
8-10 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
pams_bind_q

Dynamically associates a queue address to a queue reference at run-time. This enables
a server application to dynamically sign up to service a queue alias at run-time. Thus,
an end user can access a service without having to be aware that its normal host
computer is down and that the service is being provided from another host computer.

Syntax int32 pams_bind_q (q_addr, q_alias, q_alias_len, [name_space_list],
 [name_space_list_len], [timeout], [nullarg_1]);

Arguments

Argument
Definitions

q_addr

The value specified to this argument controls whether the queue address is bound or
unbound:

n If the queue address is specified, this function binds it to a q_alias.

n If 0 is specified, this function unbinds the q_alias from its queue address. The
calling application must be bound to q_alias to set it back to zero.

Table 8-4

Argument Data Type Mechanism Prototype Access

q_addr q_address reference q_address * passed

q_alias char reference char * passed

q_alias_len int32 reference int32 * passed

[name_space_list] int32
array

reference int32

array *

passed

[name_space_list_len] int32 reference int32 * passed

[timeout] int32 reference int32 * passed

[nullarg_1] char reference char * passed
BEA MessageQ Programmer’s Guide 8-11

8 PAMS Application Programming Interface

e

ming

ind
q_alias

Identifies a global queue reference or a local queue reference. The procedure that BEA
MessageQ uses to find this alias is controlled by the name_space_list argument,
which is described below.

q_alias_len

Specifies the number of characters in q_alias.

name_space_list

If specified, identifies a one-entry list containing either PSEL_TBL_BUS or
PSEL_TBL_GRP.

To identify a local queue reference, an application must have a name space list of
PSEL_TBL_GRP and pass its name in the q_alias argument. To identify a global queue
reference, an application must have a name space list of PSEL_TBL_BUS and specify
its pathname, either explicitly or implicitly:

n If the q_alias argument contains any slashes (/), or periods (.), BEA
MessageQ treats the q_alias as a pathname.

n Otherwise, BEA MessageQ treats q_alias as a name and adds the group’s
DEFAULT_NAMESPACE_PATH to the name to create the pathname to lookup. (Th
DEFAULT_NAMESPACE_PATH is set in the %PROFILE section of the initialization
file.)

For more information on dynamic binding of queue addresses, see the Using Na
topic.

name_space_list_len

Specifies the number of entries in name_space_list argument. The number of entries
is either 0 or 1. If the number of entries is 0 (indicating that the name_space_list is
omitted), PSEL_TBL_GRP is assumed.

timeout

Specifies the number of PAMS time units (1/10 second intervals) to allow for the b
to complete. If 0 is specified, the group’s ATTACH_TMO property is used. If the
ATTACH_TMO property is also 0, 600 is used.
8-12 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
nullarg_1

Reserved for BEA MessageQ internal use as a placeholder argument. This argument
must be supplied as a null pointer.

Description Before an application can call pams_bind_q, it must be attached to the specified queue
address. Listing 8-1 shows an attach before the bind call and is typical usage of the two
functions together:

Listing 8-1 Example of Using pams_bind_q

int32 mode = PSYM_ATTACH_BY_NUMBER;
 int32 q_type = PSYM_ATTACH_PQ;
 int32 len=1;
 int32 status;
 q_address qid;

status = pams_attach_q(&mode,&qid,&q_type,"2",&len,0,0,0,0,0);

 if (status == PAMS__SUCCESS {
 int32 ns=PSEL_TBL_BUS;
 int32 ns_len=1;
 len = strlen("Q2");

status = pams_bind_q(&qid,"Q2",&len,&ns,&ns_len,0,0);
 }

Return Values

Table 8-5

Return Code Platform Description

PAMS__BADARGLIST All Invalid number of call arguments.

PAMS__BADNAME All Name contains bad characters.

PAMS__BADPARAM All The name space list is invalid.

PAMS__BOUND All Returned if a non-zero value for q_addr
is passed and the specified q_alias is
already assigned to a queue address.
BEA MessageQ Programmer’s Guide 8-13

8 PAMS Application Programming Interface
See Also n pams_attach_q

n pams_locate_q

Example The pams_bind_q example illustrates how to bind a queue reference to a queue
address at runtime. The complete code example called x_bind.c is contained in the
examples directory.

PAMS__DUPLQNAME All Duplicate queue name.

PAMS__FAIL All Operation failed.

PAMS__NOACCESS All No access to the resource. The address of
the specified name is either 0 or it is in
another group.

PAMS__NOOBJECT All For a global reference, this error can be
caused by a bad default pathname in the
group configuration file.

PAMS__NOTBOUND All The queue name is not bound to an
address.

PAMS__NOTDCL All Not attached to BEA MessageQ.

PAMS__PAMSDOWN All The specified BEA MessageQ group is not
running.

PAMS__SUCCESS All Indicates successful completion.

PAMS__TIMEOUT All The timeout period specified has expired.
In this situation, BEA MessageQ internally
unbinds the specified queue alias.
Subsequent pams_bind_q calls to the
same name will return the
PAMS__UNBINDING error until the
internal unbind succeeds.

PAMS__UNBINDING All The bind cannot be done because BEA
MessageQ is still in the process of has
unbinding the old binding.

Table 8-5

Return Code Platform Description
8-14 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
pams_cancel_get

Cancels all pending pams_get_msga requests that match the value specified in the
sel_filter argument. When a pending pams_get_msga request is canceled, the
PAMS Status Block (PSB) delivery status is set to PAMS__CANCEL and the specified
action routine is queued. The pams_cancel_get function waits until completion to
allow for proper synchronization between the pams_cancel_get function and the
request for pams_get_msga functions. Any outstanding pams_get_msga function
requests are canceled by the pams_exit function or at image exit.

Syntax int32 pams_cancel_get (sel_filter)

Arguments

Argument
Definition

sel_filter

Supplies the criteria that enables the application to selectively cancel outstanding
pams_get_msga requests. For a description of the sel_filter argument, see the
pams_get_msg function. For a description of how to create a complex selection filter,
see the pams_set_select function.

Return Values

See Also n pams_cancel_select

n pams_get_msga

n pams_set_select

Table 8-6

Argument Data Type Mechanism Prototype Access

sel_filter int32 reference int32 * passed

Table 8-7

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Argument list is invalid.

PAMS__SUCCESS OpenVMS Indicates successful completion.

SS$_EXQUOTA OpenVMS Process has exceeded its asynchronous
system trap (AST) quota.
BEA MessageQ Programmer’s Guide 8-15

8 PAMS Application Programming Interface
pams_cancel_select

Releases the selection array and index handle associated with a previously generated
selection mask. An index_handle and associated selection mask are created using the
pams_set_select function. When the selection mask is used in the OpenVMS
environment with asynchronous read requests, this function also cancels any pending
pams_get_msga requests that use the referenced index_handle.

Syntax int32 pams_cancel_select (index_handle)

Arguments

Argument
Definitions

index_handle

Supplies the index handle of the selection mask to cancel. The index_handle is
returned by the pams_set_select function.

Return Values

Table 8-8

Argument Data Type Mechanism Prototype Access

index_handle int32 reference int32 * passed

Table 8-9

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Invalid number of call arguments.

PAMS__BADPARAM UNIX
Windows NT

The value of the selection index is null.

PAMS__BADSELIDX All Invalid or undefined selective receive
index.

PAMS__NETERROR Clients Network error resulted in a
communications link abort.

PAMS__NOTDCL All Process has not been attached to BEA
MessageQ.

PAMS__PAMSDOWN UNIX
Windows NT

The specified BEA MessageQ group is not
running.
8-16 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
See Also n pams_get_msga

n pams_set_select

PAMS__PREVCALLBUSY Clients Previous call to CLS has not been
completed.

PAMS__SUCCESS All Indicates successful completion.

Table 8-9

Return Code Platform Description
BEA MessageQ Programmer’s Guide 8-17

8 PAMS Application Programming Interface
pams_cancel_timer

Deletes the BEA MessageQ timer identified by the timer_id argument that is passed
to this function. All expired timers with the selected identification code that are waiting
in the message queue are purged and are not delivered.

Syntax int32 pams_cancel_timer (timer_id)

Arguments

Argument
Definitions

timer_id

Supplies the timer ID of the timer to cancel. The timer_id is returned by the
pams_set_timer function.

Return Values

Table 8-10

Argument Data Type Mechanism Prototype Access

timer_id int32 reference int32 * passed

Table 8-11

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Invalid number of arguments.

PAMS__BADPARAM All The timer_id argument was specified as
null.

PAMS__INVALIDNUM All The application has supplied an invalid
value for the timer_id.

PAMS__NETERROR Clients Network error resulted in a
communications link abort.

PAMS__NOTDCL All The application has not attached to a
queue.

PAMS__PAMSDOWN UNIX
Windows NT

The specified BEA MessageQ group is not
running.

PAMS__PREVCALLBUSY Clients Previous call to CLS has not been
completed.
8-18 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
See Also n pams_set_timer

PAMS__RESRCFAIL All Insufficient resources to complete the
operation.

PAMS__SUCCESS All Indicates successful completion.

Table 8-11

Return Code Platform Description
BEA MessageQ Programmer’s Guide 8-19

8 PAMS Application Programming Interface
pams_close_jrn

Closes the MRS journal file associated with the jrn_handle argument. The two types
of journal files are dead letter journal (DLJ) and postconfirmation journal (PCJ). See
Using Recoverable Messaging for a description of how to use the BEA MessageQ
message recovery system.

Syntax int32 pams_close_jrn (jrn_handle)

Arguments

Argument
Definitions

Jrn_handle

Supplies the journal handle of the message recovery journal file to close. The
jrn_handle is returned by the pams_open_jrn function.

Return Values

See Also n pams_confirm_msg

n pams_open_jrn

n pams_read_jrn

Table 8-12

Argument Data Type Mechanism Prototype Access

jrn_handle int32 reference int32 * passed

Table 8-13

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Invalid number of arguments.

PAMS__INVJH OpenVMS The application has supplied an invalid
journal handle.

PAMS__SUCCESS OpenVMS Indicates successful completion.
8-20 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
pams_confirm_msg

Confirms receipt of a message that requires explicit confirmation. This can be a
recoverable message sent to a queue that is configured for explicit confirmation or a
message sent using the ACK delivery mode which must be explicitly confirmed upon
receipt. Applications should examine the PSB status field of each message received to
determine if the message requires explicit confirmation.

When a recoverable message is received, the application must call the
pams_confirm_msg function in order to delete it from the message recovery journal
disk storage. If receipt of a recoverable message is not confirmed, the message
continues to be stored by the recovery system and will be redelivered if the application
detaches and then reattaches to the queue.

BEA MessageQ can confirm receipt of a recoverable message automatically when the
next consecutive message in the recovery journal is delivered. This feature is called
implicit confirmation.

All queues must be configured for implicit or explicit confirmation. For complete
information on how to configure message queues, see the installation and
configuration guide for your system.

Successfully delivered recoverable messages can be recorded in the postconfirmation
journal (PCJ). The pams_confirm_msg function uses the force_j argument to write
messages to the PCJ file if the system is not currently configured to store them. Note
that successfully delivered recoverable messages cannot be written to the PCJ file
unless they are explicitly confirmed using the pams_confirm_msg function.

Syntax int32 pams_confirm_msg (msg_seq_num, confirmation_status,
force_j)

Arguments

Table 8-14

Argument Data Type Mechanism Prototype Access

msg_seq_num uint32
array

reference uint32 array * passed

confirmation_status int32 reference int32 * passed

force_j char reference char * passed
BEA MessageQ Programmer’s Guide 8-21

8 PAMS Application Programming Interface
Argument
Definitions

msg_seq_num

Supplies the message sequence number of the recoverable message being confirmed.
The message sequence number is generated by the BEA MessageQ message recovery
system for each recoverable message. This value is passed to the receiver program in
the PSB of the pams_get_msg function when it reads each recoverable message.

confirmation_status

Supplies the confirmation status value stored with the message in the postconfirmation
journal (PCJ) file. The value is set by the calling application. See the Using
Recoverable Messaging topic for more information on using the PCJ file.

force_j

Supplies the journaling action for this message. Following are the predefined constants
for this argument:

Description The PSB status codes associated with recoverable message delivery are

PAMS__CONFIRMREQ and PAMS__POSSDUPL. The PAMS__CONFIRMREQ PSB status
code indicates that it is the first time the application received the recoverable message.
The PAMS__POSSDUPL status code indicates that the message was retrieved from the
recovery journal and may have been sent previously. This status code allows the
application to take extra precautions to handle duplicate messages if necessary.

Symbol Description

PDEL_DEFAULT_JRN Enables writing the message to the PCJ file if the journaling is
configured in the group initialization file.

PDEL_FORCE_JRN Enables writing to the PCJ only if journaling is configured. It is
not possible to write messages to the PCJ on UNIX and
Windows NT systems if a path was not defined for the PCJ in
the group configuration information.

PDEL_NO_JRN Disables journaling regardless of whether journaling is
configured.
8-22 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
The PSB also contains a sequence number that uniquely identifies the message. The
pams_confirm_msg function requires this sequence number. If one of these status
codes is present and the pams_confirm_msg function is not called, the message will
continue to be stored by the message recovery system and will be delivered again if the
application exits and then reattaches.

Return Values

See Also n pams_get_msg

Table 8-15

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Invalid number of arguments.

PAMS__BADPARAM All Bad argument value.

PAMS__BADSEQ All Journal sequence number is not known
to the Message Recovery Services
(MRS).

PAMS__DQF_DEVICE_FAIL OpenVMS I/O error writing to the destination
queue file for the target queue.

PAMS__NETERROR Clients Network error resulted in a
communications link abort.

PAMS__NOMRS All MRS is not available.

PAMS__NOTDCL All Process is not attached to BEA
MessageQ.

PAMS__NOTJRN All Message is not written to the PCJ file.

PAMS__NOTSUPPORTED OpenVMS Attached to the dead letter queue.

PAMS__PAMSDOWN UNIX
Windows NT

The specified BEA MessageQ group is
not running.

PAMS__PREVCALLBUSY Clients Previous call to CLS has not been
completed.

PAMS__RESRCFAIL OpenVMS BEA MessageQ resources exhausted.

PAMS__SUCCESS All Indicates successful completion.
BEA MessageQ Programmer’s Guide 8-23

8 PAMS Application Programming Interface
n pams_get_msga

n pams_get_msgw

n pams_put_msg

Example Confirm Receipt of Recoverable Messages

This example demonstrates using recoverable messaging. It attaches to queue_1, puts
some recoverable messages to queue_2, exits, attaches to queue_2, gets the messages,
prints them out, then exits.

The queues named “queue_1” and “queue_2” are defined in your initialization file.
On OpenVMS systems, you must set up a DQF for queue_2. The complete code
example called x_recovr.c is contained in the examples directory.
8-24 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types

s
ue

e
g
pams_detach_q

Detaches a selected message queue or all of the application’s message queues from the
message queuing bus. When an application detaches from its primary queue, this
function automatically detaches all secondary queue attachments defined for the
primary queue. When the last message queue has been detached, the application is
automatically detached from the BEA MessageQ message queuing bus.

Syntax int32 pams_detach_q (q, detach_opt_list, detach_opt_len,
 msgs_flushed)

Arguments

Argument
Definitions

q

Supplies the queue address of the queue to be detached. This function can be used to
detach primary, secondary, and multireader queues.

detach_opt_list

Supplies an array of int32 values used to control how the queue is detached. The
predefined constants for this argument are:

n PSYM_NOFLUSH_Q—Detaches the queue without flushing the pending message
stored in memory. The default action is to flush pending messages in the que
before it is detached. Messages are never flushed from multireader queues.

n PSYM_DETACH_ALL—Detaches all of the application's message queues from th
message queuing bus. Using this constant performs the same action as callin
the pams_exit function.

Table 8-16

Argument Data Type Mechanism Prototype Access

q q_address reference q_address * passed

detach_opt_list int32
array

reference int32 * passed

detach_opt_len int32 reference int32 * passed

msg_flushed int32 reference int32 * returned
BEA MessageQ Programmer’s Guide 8-25

8 PAMS Application Programming Interface

ue
not

ount
nable

e.

re

iting,
od to

ved,
 been
n PSYM_CANCEL_SEL_MASK—Cancels all selection masks that reference the que
or queues that you are detaching. If you do not select this option and you do
cancel selection masks, BEA MessageQ invalidates all selection masks that
reference the queue or queues that you are detaching. You must cancel the
invalidated selection masks using the pams_cancel_select function.

detach_opt_len

Supplies the number of int32 values in the detach_opt_list array. The maximum
number of int32 longwords is 32,767.

msgs_flushed

Receives the number of messages that were flushed from the queue. Message c
statistics are enabled on all systems by default; therefore, it is not necessary to e
statistics on UNIX and Windows NT systems in order to properly return this valu

Description If you are using implicit confirmation with recoverable messaging, you must ensu
that the last message is confirmed before:

n Detaching from the queue which received the message by calling
pams_detach_q

n Detaching from the message queuing bus by calling pams_exit

n Exiting your application

If you do not ensure that the last message was confirmed before detaching or ex
the message will be redelivered when the queue is reattached. The easiest meth
ensure confirmation is to save the PSB delivery status of the last message recei
check it for the required confirmation status, and then exit after the message has
confirmed.

Return Values

Table 8-17

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Invalid number of arguments.

PAMS__BADPARAM All Invalid detach_opt_list.

PAMS__DETACHED All Process has detached from BEA
MessageQ.
8-26 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
See Also n pams_attach_q

n pams_exit

PAMS__NETERROR Clients Network error resulted in a
communications link abort.

PAMS__NOTDCL All Not attached to BEA MessageQ.

PAMS__PREVCALLBUSY Clients Previous call to CLS has not been
completed.

PAMS__PNUMNOEXIST All Invalid queue address or queue not owned
by process.

PAMS__SUCCESS All Queue successfully detached.

Table 8-17

Return Code Platform Description
BEA MessageQ Programmer’s Guide 8-27

8 PAMS Application Programming Interface
pams_exit

Terminates all attachments between the application and the BEA MessageQ message
queuing bus. All pending messages in temporary queues and permanent queues which
are not permanently active multi-reader queues are discarded. Only the messages
pending in permanently active multi-reader queues are retained. To retain messages in
permanently active queues, call pams_detach_q with option PSYM_NOFLUSH_Q
before calling pams_exit.

Syntax int32 pams_exit (void)

Arguments None.

Description If you are using implicit confirmation with recoverable messaging, you must ensure
that the last message is confirmed before:

n Detaching from the queue which received the message by calling
pams_detach_q

n Detaching from the message queuing bus by calling pams_exit

n Exiting your application

If you do not ensure that the last message was confirmed before detaching or exiting,
the message will be redelivered when the queue is reattached. The easiest method to
ensure confirmation is to save the PSB delivery status of the last message received,
check it for the required confirmation status, and then exit after the message has been
confirmed.

Return Values

Table 8-18

Return Code Platform Description

PAMS__NETERROR OpenVMS
Client

Network error resulted in a
communications link abort.

PAMS__NOTDCL OpenVMS Not attached to BEA MessageQ.

PAMS__PREVCALLBUSY OpenVMS
Client

Previous call to CLS has not been
completed.

PAMS__PNUMNOEXIST OpenVMS Invalid queue address or queue not owned
by process.
8-28 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
See Also n pams_attach_q

n pams_detach_q

Example Exit the Message Queuing Bus

This example shows how to use the pams_exit function. The complete code example
called x_exit.c is contained in the examples directory.

PAMS__SUCCESS All Indicates successful completion.

Table 8-18

Return Code Platform Description
BEA MessageQ Programmer’s Guide 8-29

8 PAMS Application Programming Interface
pams_get_msg

Retrieves the next available message from a selected queue and moves it to the location
specified in the msg_area argument. When no selection filter is specified, the function
returns the next available message in first-in/first-out (FIFO) order based on message
priority to the buffer specified in the msg_area argument. Priority ranges from 0
(lowest priority) to 99 (highest priority). For example, priority 1 messages are always
placed before priority 0 messages. Messages are placed in first-in/first out order by
message priority. If a selection filter is specified, then only messages that meet the
selection criteria are retrieved. If no messages are available or meet the selection
criteria, then the return status is PAMS__NOMOREMSG.

Applications should check the PSB status field of each message to determine if the
message was sent with a recoverable delivery mode. If an application receives a
recoverable message, it must call the pams_confirm_msg function to delete it from
the message recovery journal disk storage. If receipt of a recoverable message is not
confirmed, the message continues to be stored by the recovery system and will be
redelivered if the application detaches and then reattaches to the queue.

The receiver program determines whether each message is a FML32 buffer or large
message by reading the msg_area_len argument. See the Sending and Receiving
BEA MessageQ Messages topic for more information on working with FML32 buffers
and large messages.

Syntax int32 pams_get_msg (msg_area, priority, source, class, type,
msg_area_len, len_data, [sel_filter], [psb],
[show_buffer], [show_buffer_len], [large_area_len],
[large_size], [nullarg_3])

Arguments

Table 8-19

Argument Data Type Mechanism Prototype Access

msg_area char reference char * returned

priority char reference char * passed

source q_address reference q_address * returned

class short reference short * returned

type short reference short * returned
8-30 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
Argument
Definitions

msg_area

For static buffer-style messaging, receives the address of a memory region where BEA
MessageQ writes the contents of the retrieved message. For FML-style messaging or
when using double pointers, receives a pointer to the address of the message being
retrieved.

priority

Supplies the priority level for selective message reception. Priority ranges from 0
(lowest priority) to 99 (highest priority). If the priority is set to 0, the pams_get_msqw
function gets messages of any priority. If the priority is set to any value from 1 to 99,
the pams_get_msqw function gets only messages of that priority.

source

Receives a data structure containing the group ID and queue number of the sender
program’s primary queue in the following format:

msg_area_len short reference short * passed

len_data short reference short* returned

[sel_filter] int32 reference int32 * passed

[psb] struct psb reference struct psb * returned

[show_buffer] struct
show_buffer

reference struct
show_buffer *

returned

[show_buffer_len] int32 reference int32 * passed

[large_area_len] int32 reference int32 * passed/
returned

[large_size] int32 reference int32 * returned

[nullarg_3] char reference char* passed

Table 8-19

Argument Data Type Mechanism Prototype Access
BEA MessageQ Programmer’s Guide 8-31

8 PAMS Application Programming Interface
class

Receives the class code of the retrieved message. The class is specified in the
pams_put_msg function. BEA MessageQ supports the use of symbolic names for class
argument values. Symbolic class names should begin with MSG_CLAS_. For
information on defining class symbols, see the p_typecl.h include file. On UNIX and
Windows NT systems, the p_typecl.h include file cannot be edited. You must create
an include file to define type and class symbols for use by your application.

Class symbols reserved by BEA MessageQ are as follows:

Reserved Class Symbol Value

MSG_CLAS_MRS 28

MSG_CLAS_PAMS 29

MSG_CLAS_ETHERNET 100

MSG_CLAS_UCB 102

MSG_CLAS_TUXEDO 31001

MSG_CLAS_TUXEDO_TPSUCCESS 31002

MSG_CLAS_TUXEDO_TPFAIL 31003

MSG_CLAS_XXX 30000 through 32767 (except 31001-31003)

ZK9007AGE

Group ID Queue Number

longword (32 bits)
/ /...
8-32 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
type

Receives the type code of the retrieved message. The type is specified in the
pams_put_msg function. BEA MessageQ supports the use of symbolic names for
type argument values. Symbolic type names begin with MSG_TYPE_. For specific
information on defining type symbols, see the p_typecl.h include file.

BEA MessageQ has reserved the symbol value range -1 through -5000. A zero value
for this argument indicates that no processing by message type is expected.

msg_area_len

n Supplies the size of the buffer (in bytes) for static message buffers of up to
32767 bytes. The msg_area buffer is used to store the retrieved message.

n For messages using double buffers, including FML32 buffers, this argument
contains the symbol PSYM_MSG_BUFFER_PTR to indicate that the message is a
pointer to the address of the message being retrieved. The msg_area buffer
contains the message pointer. The size of the message is returned in the
large_size argument. The msg_area buffer is used to store the retrieved
message. The large_area_len argument is used to supply the size of the
message buffer to receive the message. If the retrieved buffer is larger than the
space allocated, space is dynamically reallocated and the new buffer size is
stored in large_area_len.

n For large messages (buffer-style messages larger than 32767 bytes), this
argument contains the symbol PSYM_MSG_LARGE to indicate that the message
buffer is greater than 32K. The size of the message is returned in the
large_size argument. The msg_area buffer is used to store the retrieved
message. The large_area_len argument is used to supply the size of the
message buffer to receive the large message.

len_data

For static buffer-style messaging with messages of up to 32767 bytes, this argument
receives the number of bytes retrieved from the message queue and stored in the area
specified by the msg_area argument. This field also receives the
PSYM_MSG_BUFFER_PTR symbol for double buffer and FML-style messages and
PSYM_MSG_LARGE for buffer-style messages larger than 32767 bytes.

sel_filter

Supplies the criterion to enable the application to selectively retrieve messages. The
argument contains one of the following selection criteria:
BEA MessageQ Programmer’s Guide 8-33

8 PAMS Application Programming Interface
n Default selection

n Selection by message queue

n Message attributes

n Message source

n Compound selection using the pams_set_select function

The sel_filter argument is composed of two words as follows:

Default Selection

Enables applications to read messages from the queue based on the order in which they
arrived. The default selection, PSEL_DEFAULT, reads the next pending message from
the message queue. Messages are stored by priority and then in FIFO order. To specify
this explicitly, both words in the sel_filter argument should be set to 0.

Selection by Message Queue

Allows the application to retrieve messages based upon a queue type or combination
of queue types. This selection criteria is used to retrieve the first pending message that
matches the criteria on the first queue it encounters. FIFO ordering is maintained
within each queue. The predefined constants for this argument are as follows:

Table 8-20

Select Mode Select Variable Mode Description

PSEL_PQ 0 Enables the application to read from the
primary queue (PQ) only. The select variable
must equal 0.

PSEL_AQ Alternate queue
number

Enables an application to read from an
alternate queue (AQ) only. The queue type can
be a secondary queue (SQ).

ZK9033AGE

Select Mode Select Variable

longword (32 bits)
/ /...
8-34 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
Selection by
Message
Attribute

Enables the application to select messages based on the message type, class, or
priority. The predefined constants for this argument are as follows:

PSEL_PQ_AQ Alternate queue
number

Attempts to selectively retrieve from a primary
queue and then from an alternate queue.

PSEL_AQ_PQ Alternate queue
number

Attempts to selectively retrieve from an
alternate queue and then from a primary queue.

PSEL_TQ_PQ Alternate queue
number

Attempts to selectively retrieve messages from
a timer queue (TQ), and then from a primary
queue.

PSEL_TQ_PQ_AQ Alternate queue
number

Attempts to selectively retrieve messages from
a timer queue (TQ), then from a primary
queue, and finally from an alternate queue.

PSEL_UCB 0 Retrieves messages only from the user
callback queues (UCB).

Table 8-20

Select Mode Select Variable Mode Description

Table 8-21

Select Mode Select Variable Mode Description

PSEL_PQ_TYPE Type Selects the first pending message from
the primary queue that matches the type
value in the select variable word.

PSEL_PQ_CLASS Class Selects the first pending message from
the primary queue that matches the
class value in the select variable word.
BEA MessageQ Programmer’s Guide 8-35

8 PAMS Application Programming Interface
Selection by
Message Source

Provides for the selection of pending messages from primary and secondary queues,
by source group ID, queue number, or both. The format for selection by source
follows:

Some examples of possible sel_filter arguments and their actions are as follows:

PSEL_PQ_PRI PSEL_PRI_ANY
PSEL_PRI_P0
PSEL_PRI_P1
integer value between 0 and
99

Selects the first pending message with a
priority equal to an integer between 0
and 99 inclusive (or equal to the select
variable value) from within the primary
queue. Specifying the direct integer
value is the preferred method of
selected messages by priority.

Using PSEL_PRI_ANY enables the
reading of any pending messages of all
priorities. Setting PSEL_PRI_P0
enables the application to retrieve
pending messages of priority 0 only.
Setting PSEL_PRI_P1 enables the strict
retrieval of pending messages with a
priority of 1.

Table 8-21

Select Mode Select Variable Mode Description

sel_filter Argument Action

Zero or not specified No filtering of any messages. All messages can be retrieved.

Source q_address Only those messages that have a matching q_address are
retrieved.

ZK9007AGE

Group ID Queue Number

longword (32 bits)
/ /...
8-36 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
Compound
Selection

Allows the application to formulate complex rules for the order in which the message
queues are searched. The pams_set_select function allows the application to create
custom selection masks that can be used in the low-order word of the sel_filter
argument. The format for compound selection follows:

psb

Receives a PAMS Status Block containing the final completion status. The psb
argument is used when sending or receiving recoverable messages. The PSB structure
stores the status information from the message recovery system and may be checked
after sending or receiving a message. The structure of the PSB is as follows:

Selection mask created
with pams_set_select

Only messages that exactly match the specified selection mask
are retrieved.

sel_filter Argument Action

Table 8-22

Low
Byte

High
Byte

Contents Description

0 1 Type PSB type

2 3 Call Dependent Currently not used.

4 7 PSB Delivery
Status

The completion status of the function. For
recoverable messages, this field contains
PAMS__CONFIRMREQ or
PAMS__POSSDUPL. For nonrecoverable
messages, it may also contain a value of
PAMS__SUCCESS.

ZK9034AGE

PSEL_BY_MASK MASK_ID

longword (32 bits)
/ /...
BEA MessageQ Programmer’s Guide 8-37

8 PAMS Application Programming Interface
show_buffer

Receives additional information which BEA MessageQ extracts from the message
header. The structure of the show_buffer argument is as follows:

8 15 Message Sequence
Number

A unique number assigned to a message
when it is sent and follows the message to
the destination PSB. This number is input
to pams_confirm_msg to release a
recoverable message.

16 19 PSB UMA Status This field is not used for the
pams_get_msg function.

20 23 Function Return
Status

This field is not used for the
pams_get_msg function.

24 31 Not Used Not used.

Table 8-23

Longword Contents Description

0 Version The version of the show_buffer structure. Valid values
are as follows:
10 = Version 1.0
20 = Version 2.0
50 = Version 5.0

1 Transfer Status The status code associated with the transfer of
show_buffer information into the application’s buffer.
Valid symbols are as follows:

PAMS__SUCCESS—All available information has been
transferred.

PAMS__BUFFEROVF—Information was lost due to
receiver buffer overflow.

0—No message returned. There is no information to
transfer.

Table 8-22

Low
Byte

High
Byte

Contents Description
8-38 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
2 Transfer Size The number of bytes transferred to the application buffer.

3 Flags A bit array showing the status of fields in the
show_buffer. A set bit indicates a valid field, while a
cleared bit indicates indeterminable data or the end of the
allocated show_buffer memory. The symbols for the
flags field are as follows:

PSYM_SHOW_VERSION
PSYM_SHOW_STATUS
PSYM_SHOW_SIZE
PSYM_SHOW_FLAGS
PSYM_SHOW_TARGET
PSYM_SHOW_ORIGINAL_TARGET
PSYM_SHOW_SOURCE
PSYM_SHOW_ORIGINAL_SOURCE
PSYM_SHOW_DELIVERY
PSYM_SHOW_PRIORITY
PSYM_SHOW_ENDIAN
PSYM_SHOW_CORRELATION_ID

4 Not Used Fills out the Control Section to its maximum 24 bytes.

5 Not Used Fills out the Control Section to its maximum 24 bytes.

6 Not Used Fills out the Control Section to its maximum 24 bytes.

7 Not Used Fills out the Control Section to its maximum 24 bytes.

8 Not Used Fills out the Control Section to its maximum 24 bytes.

9 Not Used Fills out the Control Section to its maximum 24 bytes.

10 Target The q_address of the latest message target.

11 Original Target The q_address of the original message target.

12 Source The q_address of the latest message source.

13 Original Source The q_address of the original message.

14 Delivery Mode The delivery mode that was used to queue the message.
This is not necessarily the delivery mode used to generate
the message.

Table 8-23

Longword Contents Description
BEA MessageQ Programmer’s Guide 8-39

8 PAMS Application Programming Interface
show_buffer_len

Supplies the length in bytes of the buffer defined in the show_buffer argument. The
minimum length is 40 bytes. If the buffer is too small to contain all of the information,
then the return code PAMS_BUFFEROVF will be in the show_buffer transfer status.

large_area_len

Specifies the size of the message area to receive messages larger than 32K. Also
specifies the length of the message buffer when using double buffers (as indicated by
PSYM_MSG_BUFFER_POINTER). This argument also stores the length of double buffers
and FML32 buffers after reallocation.

large_size

Returns the actual size of the large message, double buffer message, or FML32
message written to the message buffer.

nullarg_3

Reserved for BEA MessageQ internal use as a placeholder argument. This argument
must be supplied as a null pointer.

15 Priority The priority used to queue the message.

16 Endian The byte ordering or encoding schemes of 2- and 4-byte
integers. The possible settings are as follows:

PSYM_UNKNOWN
PSYM_VAX_BYTE_ORDER or PSYM_LITTLE_ENDIAN
PSYM_NETWORK_BYTE_ORDER or
PSYM_BIG_ENDIAN
PSYM_FML

17 Correlation ID The 32 byte correlation ID associated with the message.

Table 8-23

Longword Contents Description
8-40 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
Return Values

Table 8-24

Return Code Platform Description

PAMS__AREATOSMALL All Received message is larger than the user’s
message area.

PAMS__BADARGLIST All Wrong number of call arguments have been
passed to this function.

PAMS__BADHANDLE All Invalid message handle.

PAMS__BADPARAM All Bad argument value.

PAMS__BADPRIORITY All Invalid priority value used for receive.

PAMS__BADSELIDX All Invalid or undefined selective receive index.

PAMS__BUFFEROVF UNIX
Windows NT

The size of the show_buffer specified is
too small.

PAMS__EXHAUSTBLKS OpenVMS No more message blocks available.

PAMS__FMLERROR All Problem detected with internal format of
FML message; this can be an error in
processing or data corruption.

PAMS__INSQUEFAIL All Failed to properly queue a message buffer.

PAMS__MSGTOSMALL All The msg_area_len argument must be
positive or zero.

PAMS__MSGUNDEL All Message returned is undeliverable.

PAMS__NEED_BUFFER_PTR UNIX
Windows NT

FML32 buffer received but
msg_area_len argument not set to
PSYM_MSG_BUFFER_PTR.

PAMS__NETERROR Clients Network error resulted in a communications
link abort.

PAMS__NOACCESS All No access to resource.

PAMS__NOACL All Queue access control file could not be found.
BEA MessageQ Programmer’s Guide 8-41

8 PAMS Application Programming Interface
PBS Delivery
Status

PAMS__NOMEMORY OpenVMS Insuffucient memory resources to reallocate
buffer pointer.

PAMS__NOMOREMSG All No messages available.

PAMS__NOMRQRESRC All Insufficient multireader queue resources to
allow access.

PAMS__NOTDCL All Process has not been attached to BEA
MessageQ.

PAMS__NOTSUPPORTED UNIX
Windows NT

The supplied delivery mode is not supported.

PAMS__PAMSDOWN UNIX
Windows NT

The specified BEA MessageQ group is not
running.

PAMS__PREVCALLBUSY Clients Previous call to CLS has not been
completed.

PAMS__QUECORRUPT OpenVMS Message buffer queue corrupt.

PAMS__REMQUEFAIL All Failed to properly read from a message
buffer.

PAMS__STALE All Resource is no longer valid and must be
freed by the user.

PAMS__STOPPED All The requested queue has been stopped.

PAMS__SUCCESS All Indicates successful completion.

Table 8-24

Return Code Platform Description

Table 8-25

PSB Delivery Status Platform Description

PAMS__CONFIRMREQ All Confirmation required for this message.

PAMS__PAMSDOWN UNIX
Windows NT

The specified BEA MessageQ group is
not running.
8-42 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
See Also n pams_get_msga

n pams_get_msgw

n pams_put_msg

n pams_set_select

Example Read a Message

This example uses the pams_get_msg function to retrieve all the messages currently
in the queue and sends them to a print function. The complete code example called
x_get.c is contained in the examples directory.

PAMS__POSSDUPL All Message is a possible duplicate.

PAMS__SUCCESS All Indicates successful completion.

Table 8-25

PSB Delivery Status Platform Description
BEA MessageQ Programmer’s Guide 8-43

8 PAMS Application Programming Interface
pams_get_msga

The pams_get_msga function is only available on OpenVMS systems.

Requests asynchronous notification of a message arrival. The pams_get_msga
function triggers an asynchronous system trap (AST) routine when a message arrives
in that queue. Notification to the application occurs by triggering an AST, by setting
an event flag, or both.

When no selection filter is specified, the function returns the next available message in
first-in/first-out (FIFO) order based on message priority to the user-supplied
msg_area argument. Priority ranges from 0 (lowest priority) to 99 (highest priority).
For example, priority 1 messages are always placed before priority 0 messages.
Messages are placed in first-in/first out order by message priority. If a selection filter
is specified, then only messages that meet the selection criteria are retrieved, and the
AST or event flag is triggered only when a matching message arrives.

If a queue has been sent a recoverable message, the receiver program can confirm
receipt of the message using the pams_confirm_msg function. The
pams_confirm_msg function enables the successfully delivered message to be deleted
from the message recovery system. See the Using Recoverable Messaging topic for a
description of the BEA MessageQ recovery system.

See the Sending and Receiving BEA MessageQ Messages topic for more information
on working with FML32 buffers and large messages.

Syntax int32 pams_get_msga (msg_area, priority, source, class, type,
 msg_area_len, len_data, [sel_filter], [psb],
 [show_buffer], [show_buffer_len],
 [large_area_len], [large_size], [actrtn],
 [actparm], [flag_id], [nullarg_3])

Arguments

Table 8-26

Argument Data Type Mechanism Prototype Access

msg_area char reference char * returned

priority char reference char * passed

source q_address reference q_address * returned

class short reference short * returned
8-44 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
Argument
Definitions

msg_area

For static buffer-style messaging, receives the address of a memory region where BEA
MessageQ writes the contents of the retrieved message. For FML-style messaging or
when using double pointers, receives a pointer to the address of the message being
retrieved. When using double buffer pointers with pams_get_msga, the new buffer
size is returned in large_size. (This differs from pams_get_msg[w}, where the new
buffer size is returned in large_area_len.)

priority

Supplies the priority level for selective message reception. Priority ranges from 0
(lowest priority) to 99 (highest priority)..

type short reference short * returned

msg_area_len short reference short * passed

len_data short reference short * returned

[sel_filter] int32 reference int32 * passed

[psb] struct psb reference struct psb * returned

[show_buffer] struct
show_buffer

reference struct
show_buffer *

returned

[show_buffer_len] int32 reference int32 * passed

[large_area_len] int32 reference int32 * passed/
returned

[large_size int32 reference int32 * returned

[actrtn] int32 value int32 * passed

[actparm] int32 reference int32 * passed

[flag_id] int32 reference int32 * passed

[nullarg_3] char reference char * passed

Table 8-26

Argument Data Type Mechanism Prototype Access
BEA MessageQ Programmer’s Guide 8-45

8 PAMS Application Programming Interface
source

Receives a data structure containing the group ID and queue number of the sender
program’s primary queue in the following format:

class

Receives the class code of the retrieved message. The class is specified in the
pams_put_msg function. BEA MessageQ supports the use of symbolic names for
class argument values. Symbolic class names should begin with MSG_CLAS_. For
information on defining class symbols, see the p_typecl.h include file.

Class symbols reserved by BEA MessageQ are as follows:

Reserved Class Symbol Value

MSG_CLAS_MRS 28

MSG_CLAS_PAMS 29

MSG_CLAS_ETHERNET 100

MSG_CLAS_UCB 102

MSG_CLAS_TUXEDO 31001

MSG_CLAS_TUXEDO_TPSUCCESS 31002

MSG_CLAS_TUXEDO_TPFAIL 31003

MSG_CLAS_XXX 30000 through 32767 (except 31001-31003)

ZK9007AGE

Group ID Queue Number

longword (32 bits)
/ /...
8-46 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types

value

he

ent
e area

he
type

Receives the type code of the retrieved message. The type is specified in the
pams_put_msg function. BEA MessageQ supports the use of symbolic names for
type argument values. Symbolic type names begin with MSG_TYPE_. For specific
information on defining type symbols, see the p_typecl.h include file.

BEA MessageQ has reserved the symbol value range –1 through –5000. A zero
for this argument indicates that no processing by message type is expected.

msg_area_len

n Supplies the size of the buffer (in bytes) for buffer-style messages of up to
32767 bytes. The msg_area buffer is used to store the retrieved message.

n For messages using double buffers, including FML32 buffers, this argument
contains the symbol PSYM_MSG_BUFFER_PTR to indicate that the message is a
pointer to the address of the message being retrieved. The msg_area buffer
contains the message pointer. The size of the message is returned in the
large_size argument. The msg_area buffer is used to store the retrieved
message. The large_area_len argument is used to supply the size of the
message buffer to receive the message. If the retrieved buffer is larger than t
space allocated, space is dynamically reallocated and the new buffer size is
stored in large_size.

n For large messages (buffer-style messages larger than 32767 bytes), this
argument contains the symbol PSYM_MSG_LARGE to indicate that the message
buffer is greater than 32K. The size of the message is returned in the
large_size argument The msg_area buffer is used to store the retrieved
message. The large_area_len argument is used to supply the size of the
message buffer to receive the large message.

len_data

For static buffer-style messaging with messages of up to 32767 bytes, this argum
receives the number of bytes retrieved from the message queue and stored in th
specified by the msg_area argument. This field also receives the
PSYM_MSG_BUFFER_PTR symbol for FML-style messages and PSYM_MSG_LARGE for
buffer-style messages larger than 32767 bytes.

sel_filter

Supplies the criteria enabling the application to selectively retrieve messages. T
argument contains one of the following selection criteria:
BEA MessageQ Programmer’s Guide 8-47

8 PAMS Application Programming Interface
n Default selection

n Selection by message queue

n Message attributes

n Message source

n Compound selection using the pams_set_select function

The sel_filter argument is composed of two words as follows:

Default
Selection

Enables applications to read messages from the queue based on the order in which they
arrived. The default selection, PSEL_DEFAULT, reads the next pending message from
the message queue. Messages are stored by priority and then in FIFO order. To specify
this explicitly, both words in the sel_filter argument should be set to 0.

Selection by
Message Queue

Allows the application to retrieve messages based upon a queue type or combination
of queue types. This selection criteria is used to retrieve the first pending message that
matches the criteria on the first queue it encounters. FIFO ordering is maintained
within each queue.

The predefined constants for this argument are as follows:

ZK9033AGE

Select Mode Select Variable

longword (32 bits)
/ /...

Table 8-27

Select Mode Select Variable Mode Description

PSEL_PQ 0 Enables the application to read from the
primary queue (PQ) only. The select variable
must equal 0.

PSEL_AQ Alternate queue
number

Enables an application to read from an
alternate queue (AQ) only. The queue type can
be a secondary queue (SQ).
8-48 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
Selection by
Message
Attribute

Enables the application to select messages based on the message type, class, or
priority. The predefined constants for this argument are as follows:

PSEL_PQ_AQ Alternate queue
number

Attempts to selectively retrieve from a primary
queue and then from an alternate queue.

PSEL_AQ_PQ Alternate queue
number

Attempts to selectively retrieve from an
alternate queue and then from a primary queue.

PSEL_TQ_PQ Alternate queue
number

Attempts to selectively retrieve messages from
a timer queue (TQ), and then from a primary
queue.

PSEL_TQ_PQ_AQ Alternate queue
number

Attempts to selectively retrieve messages from
a timer queue (TQ), then from a primary
queue, and finally from an alternate queue.

PSEL_UCB 0 Retrieves messages only from the user
callback queues (UCB).

Table 8-27

Select Mode Select Variable Mode Description

Table 8-28

Select Mode Select Variable Mode Description

PSEL_PQ_TYPE Type Selects the first pending message from the
primary queue that matches the type value in
the select variable word.

PSEL_PQ_CLASS Class Selects the first pending message from the
primary queue that matches the class value in
the select variable word.
BEA MessageQ Programmer’s Guide 8-49

8 PAMS Application Programming Interface
Selection by
Message Source

Provides for the selection of pending messages from primary and secondary queues,
by source group ID, queue number, or both. The format for selection by source
follows:

Some examples of possible sel_filter arguments and their actions are as follows:

PSEL_PQ_PRI PSEL_PRI_ANY
PSEL_PRI_P0
PSEL_PRI_P1
integer value
between 0 and 99

Selects the first pending message with a
priority equal to an integer between 0 and 99
inclusive (or equal to the select variable value)
from within the primary queue. Specifying the
direct integer value is the preferred method of
selected messages by priority.

Using PSEL_PRI_ANY enables the reading of
any pending messages of all priorities. Setting
PSEL_PRI_P0 enables the application to
retrieve pending messages of priority 0 only.
Setting PSEL_PRI_P1 enables the strict
retrieval of pending messages with a priority of
1.

Table 8-28

Select Mode Select Variable Mode Description

sel_filter Argument Action

Zero or not specified No filtering of any messages. All messages can be retrieved.

Source q_address Only those messages that have a matching q_address are
retrieved.

ZK9007AGE

Group ID Queue Number

longword (32 bits)
/ /...
8-50 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
Compound
Selection

Allows the application to formulate complex rules for the order in which the message
queues are searched. The pams_set_select function allows the application to create
custom selection masks that can be used in the low-order word of the sel_filter
argument. The format for compound selection follows.

psb

Receives a PAMS Status Block containing the final completion status. The psb
argument is used when sending or receiving recoverable messages. The PSB structure
stores the status information from the message recovery system and may be checked
after sending or receiving a message. The structure of the PSB is as follows:

Selection mask created
with pams_set_select

Only messages that exactly match the specified selection mask
are retrieved.

sel_filter Argument Action

Table 8-29

Low
Byte

High
Byte

Contents Description

0 1 Type PSB type

2 3 Call Dependent Currently not used.

4 7 PSB Delivery
Status

The completion status of the function. For
recoverable messages, this field contains
PAMS__CONFIRMREQ or
PAMS__POSSDUPL. For nonrecoverable
messages, it may also contain a value of
PAMS__SUCCESS.

ZK9034AGE

PSEL_BY_MASK MASK_ID

longword (32 bits)
/ /...
BEA MessageQ Programmer’s Guide 8-51

8 PAMS Application Programming Interface
Note: This function utilizes the AST services of OpenVMS; therefore, the
application must check the status information returned in the PSB.

show_buffer

Receives additional information which BEA MessageQ extracts from the message
header. The structure of the show_buffer argument is as follows:

8 15 Message Sequence
Number

A unique number assigned to a message
when it is sent and follows the message to
the destination PSB. This number is input
to pams_confirm_msg to release a
recoverable message.

16 19 PSB UMA Status This field is not used with the
pams_get_msga function.

20 23 Function Return
Status

This field is not used with the
pams_get_msga function.

24 31 Not Used Not used.

Table 8-30

Longword Contents Description

0 Version The version of the show_buffer structure. Valid
values are as follows:

10 = Version 1.0
20 = Version 2.0
50 = Version 5.0

Table 8-29

Low
Byte

High
Byte

Contents Description
8-52 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types

er.

e
1 Transfer Status The status code associated with the transfer of
show_buffer information into the application’s buffer.
Valid symbols are as follows:

PAMS__SUCCESS—All available information has been
transferred.

PAMS__BUFFEROVF—Information was lost due to
receiver buffer overflow.

0—No message returned. There is no information to
transfer.

2 Transfer Size The number of bytes transferred to the application buff

3 Flags A bit array showing the status of fields in the
show_buffer. A set bit indicates a valid field, while a
cleared bit indicates indeterminable data or the end of th
allocated show_buffer memory. The symbols for the
flags field are as follows:

PSYM_SHOW_VERSION
PSYM_SHOW_STATUS
PSYM_SHOW_SIZE
PSYM_SHOW_FLAGS
PSYM_SHOW_TARGET
PSYM_SHOW_ORIGINAL_TARGET
PSYM_SHOW_SOURCE
PSYM_SHOW_ORIGINAL_SOURCE
PSYM_SHOW_DELIVERY
PSYM_SHOW_PRIORITY
PSYM_SHOW_ENDIAN
PSYM_SHOW_CORRELATION_ID

4 Not Used Fills out the Control Section to its maximum 40 bytes.

5 Not Used Fills out the Control Section to its maximum 40 bytes.

6 Not Used Fills out the Control Section to its maximum 40 bytes.

7 Not Used Fills out the Control Section to its maximum 40 bytes.

8 Not Used Fills out the Control Section to its maximum 40 bytes.

9 Not Used Fills out the Control Section to its maximum 40 bytes.

Table 8-30

Longword Contents Description
BEA MessageQ Programmer’s Guide 8-53

8 PAMS Application Programming Interface
show_buff_len

Supplies the length in bytes of the buffer defined in the show_buffer argument. The
minimum length is 40 bytes. If the buffer is too small to contain all of the information,
then the return code PAMS__BUFFEROVF will be in the show_buffer transfer status.

large_area_len

Specifies the size of the message area to receive messages larger than 32K. Also
specifies the length of the message buffer when using double buffers (as indicated by
PSYM_MSG_BUFFER_POINTER).

10 Target The q_address of the latest message target.

11 Original Target The q_address of the original message target.

12 Source The q_address of the latest message source.

13 Original Source The q_address of the original message.

14 Delivery Mode The delivery mode that was used to queue the message.
This is not necessarily the delivery mode used to generate
the message.

15 Priority The priority used to queue the message.

16 Endian The byte ordering or encoding schemes of 2- and 4-byte
integers. The possible settings are as follows:

PSYM_UNKNOWN
PSYM_VAX_BYTE_ORDER or PSYM_LITTLE_ENDIAN
PSYM_NETWORK_BYTE_ORDER or
PSYM_BIG_ENDIAN
PSYM_FML

17 Correlation ID The 32 byte correlation ID associated with the message.

Table 8-30

Longword Contents Description
8-54 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
large_size

Returns the actual size of the large message, double buffer message, or FML32
message written to the message buffer. When using double buffer pointers with
pams_get_msga, the new buffer size is returned in large_size. (This differs from
pams_get_msg[w}, where the new buffer size is returned in large_area_len.)

actrtn

Supplies the address of an int32 value that is the entry point to an action routine. This
action routine is executed when the pams_get_msga function completes.

actparm

Supplies an int32 value that is passed to the action routine specified in the actrtn
argument when it is invoked.

flag_id

Supplies the int32 value for the flag number to be set when the pams_get_msga
function completes. When the pams_get_msga function executes, it clears this flag. If
this argument value is not supplied, no flag is used.

nullarg_3

Reserved for BEA MessageQ internal use as a placeholder argument. This argument
must be supplied as a null pointer.

Description Because the pams_get_msga function executes asynchronously, it obtains several
argument values only after the message arrives. These argument values are the
message buffer, source, class, type of the message, and a PAMS Status Block (PSB)
status code containing the delivery status, UMA status, and the sequence number of
the message. These values are not set until the message arrival triggers the AST routine
or sets the event flag.

The pams_get_msga function specifies an AST parameter which is passed by value to
the AST routine when the parameter is called. This parameter is used to provide a
context for the information contained in the message and can be used to identify the
specific processing required for the message. Following are some suggestions and
rules for programming with ASTs:

n Create a context area, separate from mainline, for each AST that is
simultaneously posted. An address or index associated with the context area
should be used as the AST parameter to ensure the appropriate context is
associated with the data that is delivered by the pams_get_msga function.
BEA MessageQ Programmer’s Guide 8-55

8 PAMS Application Programming Interface
n Ensure that the addresses of any fields that are filled in asynchronously are valid
throughout the period that the AST is posted. A common error in using ASTs is
to post an AST request that fills in fields on the stack and becomes invalid as
soon as the caller returns.

n Data may be passed between AST routines and mainline by the following
mechanisms:

l BEA MessageQ messages.

l An event queue managed by interlocked queuing instructions.

l Shared data fields between mainline and the AST routines such that access to
the data is clear. The use of a context area for each AST request can
accomplish this.

n Access to complex data structures shared between mainline and AST routines
should be serialized by placing the access inside an AST safe critical section.
One way to do this is with the $SETAST system service.

Return Values

Table 8-31

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Wrong number of call arguments have
been passed to this function.

PAMS__BADPARAM OpenVMS Bad argument value.

PAMS__BADPRIORITY OpenVMS Invalid priority value used for receive.

PAMS__BADSELIDX OpenVMS Invalid or undefined selective receive
index.

PAMS__BADHANDLE OpenVMS Invalid message handle.

PAMS__MSGTOSMALL OpenVMS The msg_area_len argument must be
positive or zero.

PAMS__NOACCESS OpenVMS No access to the queue.

PAMS__NOACL OpenVMS No access to resource. The ACL check
failed.
8-56 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
PSB Delivery
Status

See Also n pams_cancel_get

n pams_get_msg

n pams_get_msgw

n pams_put_msg

n pams_set_select

PAMS__NOMEMORY OpenVMS Insuffucient memory resources to
reallocate buffer pointer.

PAMS__NOTDCL OpenVMS The application has not been attached to
BEA MessageQ.

PAMS__NOTSUPPORTED OpenVMS Feature not supported or available.

PAMS__RESRCFAIL OpenVMS Failed to allocate a resource.

PAMS__STALE OpenVMS Resource is no longer valid and must be
freed by the user.

PAMS__STOPPED OpenVMS The requested queue has been stopped.

PAMS__SUCCESS OpenVMS Indicates successful completion.

Table 8-31

Return Code Platform Description

Table 8-32

PSB Delivery Status Platform Description

PAMS__CONFIRMREQ OpenVMS Confirmation required for this message.

PAMS__POSSDUPL OpenVMS Message is a possible duplicate.

PAMS__SUCCESS OpenVMS Indicates successful completion.
BEA MessageQ Programmer’s Guide 8-57

8 PAMS Application Programming Interface
pams_get_msgw

Retrieves the next available message from a specified queue and moves it to the
location specified in the msg_area argument. This function waits until a message
arrives in the queue or a user-specified timeout period has elapsed.

When no selection filter is specified, the function returns the next available message in
first-in/first-out (FIFO) order based on message priority to the user-supplied
msg_area argument. Priority ranges from 0 (lowest priority) to 99 (highest priority).
If the priority is set to 0, the pams_get_msqw function gets messages of any priority.
If the priority is set to any value from 1 to 99, the pams_get_msqw function gets only
messages of that priority. Messages are placed in first-in/first-out order by message
priority. If a selection filter is specified, then only messages that meet the selection
criteria are retrieved. If no message arrives, or no available message meets the
selection criteria before the timeout period expires, then the return status is
PAMS__TIMEOUT.

If a queue has been sent a recoverable message, the receiver program can confirm
receipt of the message using the pams_confirm_msg function. The
pams_confirm_msg function enables the successfully delivered message to be deleted
from the message recovery system. See the Using Recoverable Messaging topic for a
description of the BEA MessageQ recovery system.

See the Sending and Receiving BEA MessageQ Messages topic for more information
on working with FML32 buffers and large messages.

Syntax int32 pams_get_msgw (msg_area, priority, source, class, type,
msg_area_len, len_data, timeout, [sel_filter],
[psb], [show_buffer], [show_buffer_len],
[large_area_len], [large_size],[nullarg_3])

Argument

Table 8-33

Argument Data Type Mechanism Prototype Access

msg_area char reference char * returned

priority char reference char * passed

source q_address reference q_address * returned

class short reference short * returned
8-58 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
Argument
Definitions

msg_area

For buffer-style messaging, receives the address of a memory region where BEA
MessageQ writes the contents of the retrieved message. For FML-style messaging or
when using double ponters, receives a pointer to the address of the message being
retrieved.

priority

Supplies the priority level for selective message reception. Priority ranges from 0
(lowest priority) to 99 (highest priority). If the priority is set to 0, the pams_get_msqw
function gets messages of any priority. If the priority is set to any value from 1 to 99,
the pams_get_msqw function gets only messages of that priority.

source

Receives a structure identifying the group ID and queue number of the sender
program’s primary queue in the following format:

type short reference short * returned

msg_area_len short reference short * passed

len_data short reference short * returned

timeout int32 reference int32 * passed

[sel_filter] int32 reference int32 * passed

[psb] struct psb reference struct psb * returned

[show_buffer] struct
show_buffer

reference struct
show_buffer *

returned

[show_buffer_len] int32 reference int32 * passed

[large_area_len] int32 reference int32 * passed/
returned

[large_size] int32 reference int32 * returned

[nullarg_3] char reference char * passed

Table 8-33

Argument Data Type Mechanism Prototype Access
BEA MessageQ Programmer’s Guide 8-59

8 PAMS Application Programming Interface
class

Receives the class code of the retrieved message. The class is specified in the
arguments of the pams_put_msg function. BEA MessageQ supports the use of
symbolic names for class argument values. Symbolic class names should begin with
MSG_CLAS_. For information on defining class symbols, see the p_typecl.h include
file. On UNIX and Windows NT systems, the p_typecl.h include file cannot be
edited. You must create an include file to define type and class symbols for use by your
application.

Class symbols reserved by BEA MessageQ are as follows:

Reserved Class Symbol Value

MSG_CLAS_MRS 28

MSG_CLAS_PAMS 29

MSG_CLAS_ETHERNET 100

MSG_CLAS_UCB 102

MSG_CLAS_TUXEDO 31001

MSG_CLAS_TUXEDO_TPSUCCESS 31002

MSG_CLAS_TUXEDO_TPFAIL 31003

MSG_CLAS_XXX 30000 through 32767 (except
31001-31003)

ZK9007AGE

Group ID Queue Number

longword (32 bits)
/ /...
8-60 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
type

Receives the type code of the retrieved message. The type is specified in the arguments
of the pams_put_msg function. BEA MessageQ supports the use of symbolic names
for type argument values. Symbolic type names begin with MSG_TYPE_. For specific
information on defining type symbols, see the p_typecl.h include file.

BEA MessageQ has reserved the symbol value range -1 through -5000. A zero value
for this argument indicates that no processing by message type is expected.

msg_area_len

n Supplies the size of the buffer (in bytes) for buffer-style messages of up to
32767 bytes. The msg_area buffer is used to store the retrieved message.

n For messages using double buffers, including FML32 buffers, this argument
contains the symbol PSYM_MSG_BUFFER_PTR to indicate that the message is a
pointer to the address of the message being retrieved. The msg_area buffer
contains the message pointer. The size of the message is returned in the
large_size argument. The msg_area buffer is used to store the retrieved
message. The large_area_len argument is used to supply the size of the
message buffer to receive the message. If the retrieved buffer is larger than the
space allocated, space is dynamically reallocated and the new buffer size is
stored in large_area_len.

n For large messages (buffer-style messages larger than 32767 bytes), this
argument contains the symbol PSYM_MSG_LARGE to indicate that the message
buffer is greater than 32K. The size of the message is returned in the
large_size argument. The msg_area buffer is used to store the retrieved
message. The large_area_len argument is used to supply the size of the
message buffer to receive the large message.

len_data

For static buffer-style messaging with messages of up to 32767 bytes, this argument
receives the number of bytes retrieved from the message queue and stored in the area
specified by the msg_area argument. This field also receives the
PSYM_MSG_BUFFER_PTR symbol for double buffer and FML-style messages and
PSYM_MSG_LARGE for buffer-style messages larger than 32767 bytes.
BEA MessageQ Programmer’s Guide 8-61

8 PAMS Application Programming Interface
timeout

Supplies the maximum amount of time the pams_get_msg function waits for a
message to arrive before returning control to the application. The timeout value is
entered in tenths (0.1) of a second. A value of 100 indicates a timeout of 10 seconds.
If the timeout occurs before a message arrives, the status code of PAMS__TIMEOUT is
returned.

If an unlimited timeout period is required, set this argument to 0. On UNIX and
Windows NT systems, a value of zero for this argument causes this function to block
indefinitely or until it receives a message. On OpenVMS systems, this function waits
for approximately 5 days or until it receives a message.

sel_filter

Supplies the criteria for the application to selectively retrieve messages. The argument
contains one of the following selection criteria:

n Default selection

n Selection by message queue

n Message attributes

n Message source

n Compound selection using the pams_set_select function

The sel_filter argument is composed of two words as follows:

Default Selection

Enables applications to read messages from the queue based on the order in which they
arrived. The default selection, PSEL_DEFAULT, reads the next pending message from
the message queue. Messages are stored by priority and then in FIFO order. To specify
this explicitly, both words in the sel_filter argument should be set to 0.

ZK9033AGE

Select Mode Select Variable

longword (32 bits)
/ /...
8-62 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
Selection by Message Queue

Allows the application to retrieve messages based upon a queue type or combination
of queue types. This selection criteria is used to retrieve the first pending message that
matches the criteria on the first queue it encounters. FIFO ordering is maintained
within each queue. The predefined constants for this argument are as follows:

Selection by Message Attribute

Enables the application to select messages based on the message type, class, or
priority. The predefined constants for this argument are as follows:

Table 8-34

Select Mode Select Variable Mode Description

PSEL_PQ 0 Enables the application to read from the
primary queue (PQ) only. The select variable
must equal 0.

PSEL_AQ Alternate queue
number

Enables an application to read from an
alternate queue (AQ) only. The queue type can
be a secondary queue (SQ).

PSEL_PQ_AQ Alternate queue
number

Attempts to selectively retrieve from a primary
queue and then from an alternate queue.

PSEL_AQ_PQ Alternate queue
number

Attempts to selectively retrieve from an
alternate queue and then from a primary queue.

PSEL_TQ_PQ Alternate queue
number

Attempts to selectively retrieve messages from
a timer queue (TQ), and then from a primary
queue.

PSEL_TQ_PQ_AQ Alternate queue
number

Attempts to selectively retrieve messages from
a timer queue (TQ), then from a primary
queue, and finally from an alternate queue.

PSEL_UCB 0 Retrieves messages only from the user
callback queues (UCB).
BEA MessageQ Programmer’s Guide 8-63

8 PAMS Application Programming Interface
Selection by Message Source

Provides for the selection of pending messages from primary and secondary queues,
by source group ID, queue number, or both. The format for selection by source
follows:

Table 8-35

Select Mode Select Variable Mode Description

PSEL_PQ_TYPE Type Selects the first pending message from
the primary queue that matches the type
value in the select variable word.

PSEL_PQ_CLASS Class Selects the first pending message from
the primary queue that matches the
class value in the select variable word.

PSEL_PQ_PRI PSEL_PRI_ANY
PSEL_PRI_P0
PSEL_PRI_P1
integer value between 0 and
99

Selects the first pending message with a
priority equal to an integer between 0
and 99 inclusive (or equal to the select
variable value) from within the primary
queue. Specifying the direct integer
value is the preferred method of
selected messages by priority.

Using PSEL_PRI_ANY enables the
reading of any pending messages of all
priorities. Setting PSEL_PRI_P0
enables the application to retrieve
pending messages of priority 0 only.
Setting PSEL_PRI_P1 enables the
strict retrieval of pending messages
with a priority of 1.
8-64 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
Some examples of possible sel_filter arguments and their actions are as follows:

Compound Selection

Allows the application to formulate complex rules for the order in which the message
queues are searched. The pams_set_select function allows the application to create
custom selection masks that can be used in the low-order word of the sel_filter
argument. The format for compound selection follows:

.

sel_filter Argument Action

Zero or not specified No filtering of any messages. All messages can be retrieved.

Source q_address Only those messages that have a matching q_address are
retrieved.

Selection mask created
with pams_set_select

Only messages that exactly match the specified selection mask
are retrieved.

ZK9007AGE

Group ID Queue Number

longword (32 bits)
/ /...

ZK9034AGE

PSEL_BY_MASK MASK_ID

longword (32 bits)
/ /...
BEA MessageQ Programmer’s Guide 8-65

8 PAMS Application Programming Interface
psb

Receives a PAMS Status Block containing the final completion status. The psb
argument is used when sending or receiving recoverable messages. The PSB structure
stores the status information from the message recovery system and may be checked
after sending or receiving a message. The structure of the PSB is as follows:

show_buffer

Receives additional information which BEA MessageQ extracts from the message
header. The structure of the show_buffer argument is as follows:

Table 8-36

Low
Byte

High
Byte

Contents Description

0 1 Type PSB type

2 3 Call Dependent Currently not used.

4 7 PSB Delivery
Status

The completion status of the function. It
contains the status from MRS. It can also
contain a value of PAMS__SUCCESS
when the message is not sent recoverably.

8 15 Message Sequence
Number

A unique number assigned to a message
when it is sent and follows the message to
the destination PSB. This number is input
to the pams_confirm_msg function to
release a recoverable message.

16 19 PSB UMA Status The completion status of the undeliverable
message action (UMA). The PSB UMA
status indicates if the UMA was not
executed or applicable.

20 23 Function Return
Status

After a BEA MessageQ function
completes execution, BEA MessageQ
software writes the return value to this
field.

24 31 Not Used Not used.
8-66 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types

er.

e
Table 8-37

Longword Contents Description

0 Version The version of the show_buffer structure. Valid
values are as follows:

10 = Version 1.0
20 = Version 2.0

1 Transfer Status The status code associated with the transfer of
show_buffer information into the application’s buffer.
Valid symbols are as follows:

PAMS__SUCCESS—All available information has been
transferred.

PAMS__BUFFEROVF—Information was lost due to
receiver buffer overflow.

0—No message returned. There is no information to
transfer.

2 Transfer Size The number of bytes transferred to the application buff

3 Flags A bit array showing the status of fields in the
show_buffer. A set bit indicates a valid field, while a
cleared bit indicates indeterminable data or the end of th
allocated show_buffer memory. The symbols for the
flags field are as follows:

PSYM_SHOW_VERSION
PSYM_SHOW_STATUS
PSYM_SHOW_SIZE
PSYM_SHOW_FLAGS
PSYM_SHOW_TARGET
PSYM_SHOW_ORIGINAL_TARGET
PSYM_SHOW_SOURCE
PSYM_SHOW_ORIGINAL_SOURCE
PSYM_SHOW_DELIVERY
PSYM_SHOW_PRIORITY
PSYM_SHOW_ENDIAN
PSYM_SHOW_CORRELATION_ID

4 Not Used Fills out the Control Section to its maximum 24 bytes.

5 Not Used Fills out the Control Section to its maximum 24 bytes.
BEA MessageQ Programmer’s Guide 8-67

8 PAMS Application Programming Interface
show_buff_len

Supplies the length in bytes of the buffer defined in the show_buffer argument. The
minimum length is 40 bytes. If the buffer is too small to contain all of the information,
the return code PAMS__BUFFEROVF will be in the show_buffer transfer status.

large_area_len

Specifies the size of the message area to receive messages larger than 32K. Also
specifies the length of the message buffer when using double buffers (as indicated by
PSYM_MSG_BUFFER_POINTER). This argument also stores the length of double buffers
and FML32 buffers after reallocation.

6 Not Used Fills out the Control Section to its maximum 24 bytes.

7 Not Used Fills out the Control Section to its maximum 24 bytes.

8 Not Used Fills out the Control Section to its maximum 24 bytes.

9 Not Used Fills out the Control Section to its maximum 24 bytes.

10 Target The q_address of the latest message target.

11 Original Target The q_address of the original message target.

12 Source The q_address of the latest message source.

13 Original Source The q_address of the original message.

14 Delivery Mode The delivery mode that was used to queue the message.

15 Priority The priority used to queue the message.

16 Endian The byte ordering or encoding schemes of 2- and 4-byte
integers. The possible settings are as follows:

PSYM_UNKNOWN
PSYM_VAX_BYTE_ORDER or PSYM_LITTLE_ENDIAN
PSYM_NETWORK_BYTE_ORDER or
PSYM_BIG_ENDIAN
PSYM_FML

17 Correlation ID The 32 byte correlation ID associated with the message.

Table 8-37

Longword Contents Description
8-68 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
large_size

Returns the actual size of the large message, double buffer message, or FML message
written to the message buffer.

nullarg_3

Reserved for BEA MessageQ internal use as a placeholder argument. This argument
must be supplied as a null pointer.

Return Codes

Table 8-38

Return Code Platform Description

PAMS__AREATOSMALL All Received message is larger than the application
message area.

PAMS__BADARGLIST All Wrong number of call arguments have been
passed to this function.

PAMS__BADHANDLE All Invalid message handle.

PAMS__BADPARAM All Bad argument value.

PAMS__BADPRIORITY All Invalid priority value used for receive.

PAMS__BADSELIDX All Invalid or undefined selective receive index.

PAMS__BADTIME OpenVMS An invalid time was specified.

PAMS__BUFFEROVF UNIX
Windows NT

The size specified for the show_buffer
argument is too small.

PAMS__EXHAUSTBLKS OpenVMS No more message blocks available.

PAMS__FMLERROR All Problem detected with internal format of FML
message; this can be an error in processing or
data corruption.

PAMS__INSQUEFAIL All Failed to properly queue a message buffer.

PAMS__MSGTOSMALL All The msg_area_len argument must be
positive or zero.

PAMS__MSGUNDEL All Message returned is undeliverable.
BEA MessageQ Programmer’s Guide 8-69

8 PAMS Application Programming Interface
PAMS__NEED_BUFFER_PTR UNIX
Windows NT

FML32 buffer received but msg_area_len
argument not set to PSYM_MSG_BUFFER_PTR.

PAMS__NETERROR Clients Network error resulted in a communications
link abort.

PAMS__NOACCESS All No access to resource. ACL check failed.

PAMS__NOACL All The queue access control file could not be
found.

PAMS__NOMEMORY OpenVMS Insuffucient memory resources to reallocate
buffer pointer.

PAMS__NOMRQRESRC All Insufficient multireader queue resources to
allow access.

PAMS__NOTDCL All Process has not been attached to BEA
MessageQ.

PAMS__NOTSUPPORTED UNIX
Windows NT

Specified delivery mode is not supported.

PAMS__PAMSDOWN UNIX
Windows NT

The specified BEA MessageQ group is not
running.

PAMS__PREVCALLBUSY Clients Previous call to CLS has not been completed.

PAMS__QUECORRUPT OpenVMS Message buffer queue corrupt.

PAMS__REMQUEFAIL All Failed to properly read a message buffer.

PAMS__STALE All Resource is no longer valid and must be freed
by the user.

PAMS__STOPPED All The requested queue has been stopped.

PAMS__SUCCESS All Successful completion.

PAMS__TIMEOUT All Timeout period has expired.

PAMS__CONFIRMREQ All Confirmation required for this message.

Table 8-38

Return Code Platform Description
8-70 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types

See Also n pams_get_msga

n pams_put_msg

n pams_set_select

Example Block Until a Message Is Read

This example shows how to use the pams_get_msgw function. It sets an alarm to send
messages to itself every 5 seconds; it uses pams_get_msgw to sit and wait for them.
The queue named “queue_1” must be defined in your initialization file as a primary
queue. The complete code example called x_getw.c is contained in the examples
directory.

PAMS__PAMSDOWN UNIX
Windows NT

The specified BEA MessageQ group is not
running.

PAMS__POSSDUPL All Message is a possible duplicate.

PAMS__SUCCESS All Indicates successful completion.

Table 8-38

Return Code Platform Description
BEA MessageQ Programmer’s Guide 8-71

8 PAMS Application Programming Interface
pams_locate_q

Locates the queue address for the specified queue name or queue alias. By default, this
function waits for the queue address to be returned.

Syntax int32 pams_locate_q (q_name, q_name_len, q_address, [wait_mode],
[req_id], [resp_q], [name_space_list],
[name_space_list_len], [timeout])

Arguments

Argument
Definitions

q_name

Supplies the queue name or queue alias whose queue address is requested. The
procedure that BEA MessageQ uses to find this name is controlled by the
name_space_list argument, described below.

q_name_len

Supplies the number of characters in the q_name argument. The maximum string
length on UNIX, Windows NT, and OpenVMS systems is 255 characters. For all other
BEA MessageQ environments, the maximum string length is 31.

Table 8-39

Argument Data Type Mechanism Prototype Access

q_name char reference char * passed

q_name_len int32 reference int32 * passed

q_address q_address reference q_address * returned

[wait_mode] int32 reference int32 * passed

[req_id] int32 reference int32 * passed

[resp_q] int32 reference int32 * passed

[name_space_list] int32
array

reference int32 array * passed

[name_space_list_len
]

int32 reference int32 * passed

[timeout] int32 reference int32 * passed
8-72 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types

e

of the
ent to

annot
q_address

Receives the queue address assigned by BEA MessageQ when an application has
successfully located the queue name.

wait_mode

Supplies the search mode of the pams_locate_q function. The mode indicates
whether the application waits for the search completion or receives the response in an
acknowledgment message. There are two predefined constants for this argument:

n PSYM_WF_RESP (default setting)—The application issues the pams_locate_q
request and waits for the queue address to be returned.

n PSYM_AK_RESP—The application issues the pams_locate_q address and
continues processing. When the search is completed, the queue address is
returned to the application’s primary queue in a LOCATE_Q_REP message. The
response message can be redirected to an alternate queue address using th
resp_q argument.

req_id

Supplies an application-specified transaction ID to associate with the pams_locate_q
function.

resp_q

Supplies an alternate queue to use for receiving the acknowledgment message
q_address. If no response queue is specified, the acknowledgment message is s
the sender program's primary queue. The resp_q argument has the following format:

Note that the group ID field is always equal to zero because the sender program c
specify a response queue outside its group.

ZK9007AGE

Group ID Queue Number

longword (32 bits)
/ /...
BEA MessageQ Programmer’s Guide 8-73

8 PAMS Application Programming Interface
name_space_list

If the name_space_list argument is specified, the name_space_list_len
argument must also be specified. If this argument is unspecified, then PSEL_TBL_GRP
is the default.

Possible values in a name_space_list argument are as follows:

The name_space_list argument identifies the scope of the name as follows:

n To identify a local queue reference or a queue, an application must include
PSEL_TBL_GRP in name_space_list. (Do not specify PSEL_TBL_BUS in the
list because it would identify a global queue reference.)

n To identify a global queue reference, include PSEL_TBL_BUS (or
PSEL_TBL_BUS_MEDIUM or PSEL_TBL_BUS_LOW) in the name_space_list
argument and specify its pathname, either explicitly or implicitly. If the q_name
argument contains any slashes (/), or periods (.), BEA MessageQ treats it as a
pathname. Otherwise, BEA MessageQ treats q_name as a name and adds the
DEFAULT_NAMESPACE_PATH to the name to create the pathname to lookup. (The
DEFAULT_NAMESPACE_PATH is set in the %PROFILE section of the group
initialization file.)

The name_space_list argument also controls the cache access as follows:

n To lookup a local queue reference or queue name, specify both PSEL_TBL_GRP
and PSEL_TBL_PROC. This causes the process cache to be checked before
looking into the group cache.

n To lookup a global queue reference, specify PSEL_TBL_BUS (or
PSEL_TBL_BUS_LOW or PSEL_TBL_BUS_MEDIUM), PSEL_TBL_GRP and
PSEL_TBL_PROC. This causes the process cache to be checked. Then, the group
cache is checked before looking into the global name space.

Location it represents Symbolic value

Process cache PSEL_TBL_PROC

Group/group cache PSEL_TBL_GRP

Global name space PSEL_TBL_BUS (or PSEL_TBL_BUS_MEDIUM or
PSEL_TBL_BUS_LOW)
8-74 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
Note that to lookup all caches in the global name space before looking in the
master database, specify PSEL_TBL_BUS_LOW instead of PSEL_TBL_BUS.

To lookup only the slower but more up-to-date caches in the global name space
before looking in the master database, specify PSEL_TBL_BUS_MEDIUM instead
of PSEL_TBL_BUS.

For more information on dynamic binding of queue addresses, see the Using Naming
topic.

name_space_list_len

Supplies the number of entries in the name_space_list argument. If the
name_space_list_len argument is zero, BEA MessageQ uses PSEL_TBL_GRP as the
default in the name_space_list argument.

timeout

Specifies the number of PAMS time units (1/10 second intervals) to allow for the
locate to complete. If timeout is zero, the group’s ATTACH_TMO property is used. If the
ATTACH_TMO is also zero, 600 is used.

Return Values

Table 8-40

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Wrong number of call arguments.

PAMS__BADNAME UNIX
Windows NT

The queue name contains illegal characters.

PAMS__BADPARAM All Invalid argument in the argument list.

PAMS__BADRESPQ All Invalid response queue specified.

PAMS__BOUND All Queue name in use.

PAMS__BUSNOTSET UNIX
Windows NT

DMQ_BUS_ID environment variable not set.

PAMS__GROUPNOTSET UNIX
Windows NT

DMQ_GROUP_ID environment variable not set.

PAMS__NETERROR Clients Network error resulted in a communications
link abort.
BEA MessageQ Programmer’s Guide 8-75

8 PAMS Application Programming Interface
See Also n pams_attach_q

n pams_exit

Example Locate a Queue Address

This example shows how to use the pams_locate_q function by attaching to queue_1
and locating queue_3 where a message is being sent. The queues named “queue_1”
and “queue_3” must be defined in your initialization file; queue_1 must be a primary
queue. The complete code example called x_locate.c is contained in the examples
directory.

PAMS__NOACCESS All The address of the specified name is either 0 or
is in another group.

PAMS__NOOBJECT All Could not locate queue name.

PAMS__PAMSDOWN All The specified BEA MessageQ group is not
running.

PAMS__PREVCALLBUSY Clients Previous call to CLS has not been completed.

PAMS__RESRCFAIL All Failed to allocate resources.

PAMS__SUCCESS All Successful completion of an action.

PAMS__TIMEOUT All The timeout period specified has expired.

PAMS__UNBINDING All Queue requested is in the process of unbinding
from a pams_bind_q request.

Table 8-40

Return Code Platform Description
8-76 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
pams_open_jrn

Opens the selected message recovery journal. The BEA MessageQ dead letter journal
(DLJ) stores messages designated as recoverable that could not be delivered by the
recovery system. The BEA MessageQ postconfirmation journal (PCJ) stores
recoverable messages that were successfully delivered. See the Using Recoverable
Messaging topic for a description of BEA MessageQ message recovery services.

Syntax int32 pams_open_jrn (jrn_filespec, jrn_filename_len, jrn_handle)

Arguments

Argument
Definitions

jrn_filespec

Supplies the file name of the message recovery journal from which the application will
read stored messages.

jrn_filename_len

Supplies the length of the file specification entered to the jrn_filespec argument
specified (filename array) in number of bytes.

jrn_handle

Receives the journal handle for the selected message recovery file if this function
completes successfully.

Return Values

Table 8-41

Argument Data Type Mechanism Prototype Access

jrn_filespec char reference char * passed

jrn_filename_len short reference short * passed

jrn_handle int32 reference int32 * returned

Table 8-42

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Invalid number of call arguments.

PAMS__NOMEMORY OpenVMS Insufficient virtual memory.
BEA MessageQ Programmer’s Guide 8-77

8 PAMS Application Programming Interface
See Also n pams_close_jrn

n pams_confirm_msg

n pams_put_msg

n pams_read_jrn

PAMS__NOSUCHPCJ OpenVMS Error occured when attempting to open the
specified journal file.

PAMS__SUCCESS OpenVMS Indicates successful completion.

Table 8-42

Return Code Platform Description
8-78 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types

n

 are
target
pecify

also

nd

ther

am
pams_put_msg

Sends a message to a target queue using a set of standard BEA MessageQ delivery
modes. Applications specify buffer-style or FML-style messaging using the msg_size
argument. For buffer-style messaging using message buffers up to 32K, this argument
supplies the length of the message in bytes in the user’s msg_area buffer. In addition,
you can use the msg_size argument to specify one of the following symbols:

n PSYM_MSG_FML—indicates FML-style messaging. The msg_area argument must
contain a pointer to an FML32 buffer.

n PSYM_MSG_LARGE—indicates buffer-style message with messages up to 4MB i
length. The pointer to the buffer is contained in the msg_area argument and the
size of the large message buffer is contained in the large_size argument.

The delivery argument of the pams_put_msg function can be used to guarantee
message delivery if a system, process, or network fails. Recoverable messages
stored on disk by the message recovery system until they can be delivered to the
queue of the receiver program. When sending a recoverable message, you must s
the uma argument if the message recovery cannot store the message. You must
supply the psb argument to receive the return status of the operation.

The optional timeout argument lets you set a maximum amount of time for the se
operation to complete before the function times out. The optional resp_q argument
allows you to specify an alternate queue for receiving the response messages ra
than directing responses to the primary queue of the sender program.

To use a pointer to an FML32 buffer when sending a message, the sender progr
specifies the symbol PSYM_MSG_FML as the msg_size argument to the pams_put_msg
function.

Syntax int32 pams_put_msg (msg_area, priority, target, class, type,
delivery, msg_size, [timeout], [psb], [uma],
[resp_q], [large_size], [correlation_id],
[nullarg_3])

Arguments

Table 8-43

Argument Data Type Mechanism Prototype Access

msg_area char reference char * passed

priority char reference char * passed
BEA MessageQ Programmer’s Guide 8-79

8 PAMS Application Programming Interface
Argument
Definitions

msg_area

For buffer-style messaging, supplies the address of a memory region or a message
pointer containing the message to be delivered to the target queue of the receiver
program. For FML-style messaging, supplies the message pointer that points to an
FML32 buffer containing the message.

priority

Supplies the priority level for selective message reception. Priority ranges from 0
(lowest priority) to 99 (highest priority).

target

Supplies the queue number and group ID of the receiver program’s queue address in
the following format:

target q_address reference q_address * passed

class short reference short * passed

type short reference short * passed

delivery char reference char * passed

msg_size short reference short * passed

[timeout] int32 reference int32 * passed

[psb] struct
psb

reference struct psb * returned

[uma] char reference char * passed

[resp_q] q_address reference q_address * passed

large_size int32 reference int32 * passed

[correlation_id] char reference char * passed

[nullarg_3] char reference char * passed

Table 8-43

Argument Data Type Mechanism Prototype Access
8-80 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
.

class

Supplies the class code of message being sent. BEA MessageQ supports the use of
symbolic names for class argument values. Symbolic class names should begin with
MSG_CLAS_. For information on defining class symbols, see the p_typecl.h include
file. On UNIX and Windows NT systems, the p_typecl.h include file cannot be
edited. You must create an include file to define type and class symbols for use by your
application.

Class symbols reserved by BEA MessageQ are as follows:

Reserved Class Symbol Value

MSG_CLAS_MRS 28

MSG_CLAS_PAMS 29

MSG_CLAS_ETHERNET 100

MSG_CLAS_UCB 102

MSG_CLAS_TUXEDO 31001

MSG_CLAS_TUXEDO_TPSUCCESS 31002

MSG_CLAS_TUXEDO_TPFAIL 31003

MSG_CLAS_XXX 30000 through 32767 (except
31001-31003)

ZK9007AGE

Group ID Queue Number

longword (32 bits)
/ /...
BEA MessageQ Programmer’s Guide 8-81

8 PAMS Application Programming Interface

in
e
type

Supplies the type code for the message being sent. BEA MessageQ supports the use of
symbolic names for type argument values. Symbolic type names begin with
MSG_TYPE_. For information on defining type symbols, see the p_typecl.h include
file.

BEA MessageQ has reserved the symbol value range -1 through -5000. A zero value
for this argument indicates that no processing by message type is expected.

delivery

Supplies the delivery mode for the message using the following format:

n PDEL_MODE_sn_dip—where sn is one of the following sender notification
constants:

n WF—Wait for completion

n AK—Asynchronous acknowledgment

n NN—No notification

And dip is one of the following delivery interest point constants:

n ACK—Read from target queue and explicitly acknowledged using the
pams_confirm_msg function. ACK can also be an implicit acknowledgement
sent after the second pams_get_msg call by the receiving application.

n CONF—Delivered from the DQF and explicitly confirmed using the
pams_confirm_msg function (recoverable)

n DEQ—Read from the target queue

n DQF—Stored in the destination queue file (recoverable)

n MEM—Stored in the target queue

n SAF—Stored in the store and forward file (recoverable)

Note: If temporary queues are used, deleted, and reused quickly, it is possible
isolated cases for an implicit ACK response from a previous temporary queu
to be placed on the new temporary queue.
8-82 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types

s
nds.

of 30

 The
B
ay be
msg_size

For buffer-style messaging using message buffers up to 32K, supplies the length of the
message in bytes in the user’s msg_area buffer. In addition, you can specify one of the
following symbols:

n PSYM_MSG_FML—-indicates FML-style messaging. The msg_area argument
must contain a pointer to an FML32 buffer.

n PSYM_MSG_LARGE—indicates buffer-style messaging with messages up to 4MB
in length. The pointer to the buffer is contained in the msg_area argument and
the size of the large message buffer is contained in the large_size argument.

timeout

Supplies the maximum amount of time the pams_put_msg function waits for a
message to arrive before returning control to the application. The timeout value i
entered in tenths (0.1) of a second. A value of 100 indicates a timeout of 10 seco
If the timeout occurs before a message arrives, the status code PAMS__TIMEOUT is
returned. Specifying 0 as the timeout value sets the timeout to the default value
seconds.

psb

Receives a value in the PAMS Status Block specifying the final completion status.
psb argument is used when sending or receiving recoverable messages. The PS
structure stores the status information from the message recovery system and m
checked after sending or receiving a message.

The structure of the PSB is as follows:

Table 8-44

Low
Byte

High
Byte

Contents Description

1 0 Type PSB type.

3 2 Call Dependent Currently not used.

7 4 PSB Delivery
Status

The completion status of the function. It
contains the status from MRS. It can also
contain a value of PAMS__SUCCESS
when the message is not sent recoverably.
BEA MessageQ Programmer’s Guide 8-83

8 PAMS Application Programming Interface
uma

Supplies the action to be performed if the message cannot be stored at the specified
delivery interest point. The format of this argument is PDEL_UMA_XXX where XXX is
one of the following symbols:

15 8 Message Sequence
Number

A unique number assigned to the message
when it is sent and follows the message to
the destination PSB. This number is input
to the pams_confirm_msg function to
release a recoverable message.

19 16 PSB UMA Status The completion status of the undeliverable
message action (UMA). The PSB UMA
status indicates if the UMA was not
executed or applicable.

23 20 Function Return
Status

After a BEA MessageQ function
completes execution, BEA MessageQ
software writes the return value to this
field.

31 24 Not Used Not used.

Symbol Description

DISC Discard message

DISCL Discard after logging message

DLJ Dead letter journal

DLQ Dead letter queue

RTS Return to sender

SAF Store and Forward

Table 8-44

Low
Byte

High
Byte

Contents Description
8-84 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
resp_q

Supplies a q_address to use as the alternate queue for receiving response messages
from the receiver program. The sender program must be attached to the queue
specified in the resp_q argument to receive the response messages. The resp_q
argument has the following format:

The group ID is always specified as zero because the sender program cannot assign a
response queue outside its group.

large_size

Supplies the actual size of the large message written to the message buffer.

correlation_id

Supplies the correlation id, a user-defined identifier stored as a 32-byte value

nullarg_3

Reserved for BEA MessageQ internal use as a placeholder argument. This argument
must be supplied as a null pointer.

Return Values

ZK9007AGE

Group ID Queue Number

longword (32 bits)
/ /...

Table 8-45

Return Code Platform Description

PAMS__BADARGLIST All Wrong number of call arguments have
been passed to this function.

PAMS__BADDELIVERY All Invalid delivery mode.

PAMS__BADHANDLE All Invalid message handle.
BEA MessageQ Programmer’s Guide 8-85

8 PAMS Application Programming Interface
PAMS__BADPARAM UNIX
Windows NT
OpenVMS

Attempt to use cross-group connection
when cross-group communication is
disabled. On OpenVMS systems, invalid
NULL call argument.

PAMS__BADPRIORITY All Invalid priority value on send operation.

PAMS__BADPROCNUM UNIX
Windows NT

Invalid target queue address specified.

PAMS__BADRESPQ All Response queue not owned by process.

PAMS__BADTIME OpenVMS Invalid time specified.

PAMS__BADUMA All Undeliverable message action (UMA) is
invalid.

PAMS__EXCEEDQUOTA All Target process quota exceeded; message
was not sent.

PAMS__EXHAUSTBLKS OpenVMS No more message blocks available.

PAMS__FMLERROR All Problem detected with internal format of
FML message; this can be an error in
processing or data corruption.

PAMS__LINK_UP OpenVMS MRS has reestablished link.

PAMS__MSGTOBIG All Message exceeded the size of the largest
link list section (LLS).

PAMS__MSGTOSMALL OpenVMS Invalid (negative) msg_size specified in
the argument list.

PAMS__NETERROR Clients Network error resulted in a
communications link abort.

PAMS__NOMRS OpenVMS MRS is not available.

PAMS__NOTACTIVE All Target process is not currently active;
message not sent.

Table 8-45

Return Code Platform Description
8-86 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
PAMS__NOTDCL All Process has not been attached to BEA
MessageQ.

PAMS__NOTFLD All The buffer supplied is not an FML32
buffer.

PAMS__NOTSUPPORTED All The combination of delivery mode and
uma selected is not supported.

PAMS__PNUMNOEXIST OpenVMS Target queue number does not exist.

PAMS__PREVCALLBUSY Clients Previous call to CLS has not been
completed.

PAMS__REMQUEFAIL All Failed to properly dequeue a message
buffer.

PAMS__STOPPED All The requested queue has been stopped.

PAMS__SUCCESS All Successful completion.

PAMS__TIMEOUT All Timeout period has expired.

PAMS__UNATTACHEDQ All Message successfully sent to unattached
queue.

PAMS__WAKEFAIL OpenVMS Failed to wake up the target process.

Table 8-46

UMA Status Platform Description

PAMS__DISC_FAILED All Message not recoverable in destination queue
file (DQF); undeliverable message action
(UMA) was PDEL_UMA_DISC; message
could not be discarded.

PAMS__DISC_SUCCESS All Message not recoverable in DQF; UMA was
PDEL_UMA_DISC; message discarded.

Table 8-45

Return Code Platform Description
BEA MessageQ Programmer’s Guide 8-87

8 PAMS Application Programming Interface
PAMS__DISCL_FAILED All Message not recoverable in DQF; UMA was
PDEL_UMA_DISC; recoverability failure
could not be logged or message could not be
discarded.

PAMS__DISCL_SUCCESS All Message not recoverable in DQF; UMA was
PDEL_UMA_DISC; message discarded after
logging recoverability failure.

PAMS__DLJ_FAILED All Message not recoverable in DQF; UMA was
PDEL_UMA_DLJ; dead letter journal (DLJ)
write operation failed.

PAMS__DLJ_SUCCESS All Message not recoverable in DQF; UMA was
PDEL_UMA_DLJ; message written to the
DLJ.

PAMS__DLQ_FAILED All Message not recoverable in DQF; UMA was
PDEL_UMA_DLQ; message could not be
queued to the DLQ.

PAMS__DLQ_SUCCESS All Message not recoverable in DQF; UMA was
PDEL_UMA_DLQ; message queued to the
DLQ.

PAMS__NO_UMA All Message is recoverable; UMA not executed.

PAMS__RTS_FAILED All Message not recoverable in DQF; UMA was
PDEL_UMA_RTS; message could not be
returned to sender.

PAMS__RTS_SUCCESS All Message not recoverable in DQF; UMA was
PDEL_UMA_RTS; message returned to
sender.

PAMS__SAF_FAILED All Message not recoverable in DQF; UMA was
PDEL_UMA_SAF; store and forward (SAF)
write operation failed.

PAMS__SAF_SUCCESS All Message not recoverable in DQF; UMA was
PDEL_UMA_SAF; message recoverable from
SAF file.

Table 8-46

UMA Status Platform Description
8-88 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
See Also n pams_get_msg

n pams_get_msga

n pams_get_msgw

Example Send a Message

This example sends a number of messages to a queue. The complete code example
called x_putslf.c is contained in the examples directory.

PAMS__UMA_NA All UMA not applicable.

Table 8-46

UMA Status Platform Description
BEA MessageQ Programmer’s Guide 8-89

8 PAMS Application Programming Interface
pams_read_jrn

Reads a message from a BEA MessageQ journal file. Use the pams_open_jrn
function to open the dead letter journal or postconfirmation journal for a message
queuing group. Use the pams_close_jrn function to close the journal file after
reading selected messages. Note that on UNIX and Windows NT systems, these
functions are performed by running the Journal Replay utility.

The receiver program determines whether each message is a FML buffer or a large
message by reading the len_data argument. See the Sending and Receiving BEA
MessageQ Messages topic for more information on working with message handles and
large messages.

Syntax int32 pams_read_jrn (jrn_handle, msg_area, priority, source,
class, type, msg_area_len, len_data, target,
write_time, conf_val, msg_seq_num, mrs_status,
[large_area_len], [large_size], [nullarg_3])

Arguments

Table 8-47

Argument Data Type Mechanism Prototype Access

jrn_handle int32 reference int32 * passed

msg_area char reference char * returned

priority char reference char * returned

source q_address reference q_address * returned

class short reference short * returned

type short reference short * returned

msg_area_len short reference short * returned

len_data short reference short* returned

target q_address reference q_address * returned

write_time unsigned
int32

reference unsigned
int32 *

returned

conf_val int32 reference int32 * returned
8-90 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
Argument
Definitions

jrn_handle

Supplies the journal handle of the message recovery journal from which the
application has selected to read journal entries. The journal handle is returned to the
application by the pams_open_jrn function.

msg_area

Receives the contents of the message retrieved from the selected message recovery
journal. This argument contains either the address of a memory region or a message
handle where BEA MessageQ writes.

priority

Supplies the priority level for selective message reception. Priority ranges from 0
(lowest priority) to 99 (highest priority).

source

Receives a structure containing the queue number and group ID of the sender
program’s primary queue in the following format:

msg_seq_num unsigned
int32

reference unsigned
int32 *

returned

mrs_status int32 reference int32 * returned

[large_area_len] int32 reference int32 * returned

[large_size] int32 reference int32 * returned

[nullarg_3] char reference char * returned

Table 8-47

Argument Data Type Mechanism Prototype Access
BEA MessageQ Programmer’s Guide 8-91

8 PAMS Application Programming Interface
class

Receives the class code of the retrieved message. The class is specified in the
arguments of the pams_put_msg function. BEA MessageQ supports the use of
symbolic names for class argument values. Symbolic class names should begin with
MSG_CLAS_. For information on defining class symbols, see the p_typecl.h include
file. Class symbols reserved by BEA MessageQ are as follows:

type

Receives the type code of the journaled message. The type is specified in the
arguments of the pams_put_msg function. BEA MessageQ supports the use of
symbolic names for type argument values. Symbolic type names begin with
MSG_TYPE_. For information on defining type symbols, see the p_typecl.h include

Reserved Class Symbol Value

MSG_CLAS_MRS 28

MSG_CLAS_PAMS 29

MSG_CLAS_ETHERNET 100

MSG_CLAS_UCB 102

MSG_CLAS_TUXEDO 31001

MSG_CLAS_TUXEDO_TPSUCCESS 31002

MSG_CLAS_TUXEDO_TPFAIL 31003

MSG_CLAS_XXX 30000 through 32767 (except
31001-31003)

ZK9007AGE

Group ID Queue Number

longword (32 bits)
/ /...
8-92 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types

ation

ytes.

es
a

e is

 date
ndard
file. The OpenVMS symbol values range from –1 through –5000. Use of the type
argument facilitates selective message reception. However, if the receiving applic
does not need a specific value for its processing, then use a value of 0.

msg_area_len

Supplies the size of the buffer (in bytes) for buffer-style messages of up to 32K b
The msg_area buffer is used to store the retrieved message.

len_data

n For buffer-style messaging with messages of up to 32K, this argument receiv
the number of bytes retrieved from the message queue and stored in the are
specified by the msg_area argument.

n For an FML-style message, this argument contains the symbol
PSYM_MSG_BUFFER_PTR to indicate that the message is a pointer to an FML32
buffer.

n For large messages, this argument contains the symbol PSYM_MSG_LARGE to
indicate that the message buffer is greater than 32K. The size of the messag
returned in the large_size argument.

target

Receives the queue number and group ID of the receiver's queue address in the
following format:

write_time

Receives the address of the quadword (an array of two int32 values) specifying the
and time that the recoverable message was confirmed. This parameter uses sta
OpenVMS system time.

ZK9007AGE

Group ID Queue Number

longword (32 bits)
/ /...
BEA MessageQ Programmer’s Guide 8-93

8 PAMS Application Programming Interface
conf_val

Receives the message confirmation value.

msg_seq_num

Receives the message sequence number generated by BEA MessageQ in the PSB of
the received message. This argument should be set to the values in the PSB.

mrs_status

Receives the Message Recovery Services (MRS) status of the message.

large_area_len

Specifies the size of the message buffer to receive messages larger than 32K.

large_size

Returns the actual size of the large message written to the message buffer.

nullarg_3

Reserved for BEA MessageQ internal use as a placeholder argument. This argument
must be supplied as a null pointer.

Return Values

Table 8-48

Return Code Platform Description

PAMS__AREASTOSMALL OpenVMS Received message is larger than the user
message area.

PAMS__BADARGLIST OpenVMS Invalid number of arguments supplied.

PAMS__BADHANDLE OpenVMS Invalid message handle.

PAMS__INVJH OpenVMS Invalid journal handle.

PAMS__MSGTOBIG OpenVMS Message in journal file is larger than
GROUP_MAX_MESSAGE_SIZE.

PAMS__NOMEMORY OpenVMS Insufficient virtual memory.

PAMS__NOMOREMSG OpenVMS No more messages in journal.
8-94 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
See Also n pams_close_jrn

n pams_open_jrn

PAMS__SUCCESS OpenVMS Indicates successful completion.

Table 8-48

Return Code Platform Description
BEA MessageQ Programmer’s Guide 8-95

8 PAMS Application Programming Interface
pams_set_select

Allows application developers to define complex selection criteria for message
reception. The selection array specifies the queues to search, the priority order of
message reception, two comparison keys for range checking, and an order key to
determine the order in which messages are selected from the queue.

The pams_set_select function creates an index handle that is used as the
sel_filter argument of BEA MessageQ functions for reading the message. When a
selection index handle is passed to pams_get_msg, pams_get_msga or
pams_get_msgw, each message received is compared against comparison key_1 and
then comparison key_2. If the message matches both keys (a logical AND operation),
the message is added to a set of matched messages. The order in which selected
messages are delivered is determined by the order key.

Syntax int32 pams_set_select (selection_array, num_masks, index_handle)

Arguments

Argument
Definitions

selection_array

Supplies an array of selection records that contain the selection rules for each queue.
The typedef structures define the C data structure for the selection array. The
structure is defined in p_entry.h as follows:

typedef struct _selection_array_component {
 int32 queue;
 int32 priority;
 int32 key_1_offset;
 int32 key_1_size;
 int32 key_1_value;
 int32 key_1_oper;
 int32 key_2_offset;
 int32 key_2_size;

Table 8-49

Argument Data Type Mechanism Prototype Access

selection_array selection_array_
component

reference selection_array_
component *

passed

num_masks short reference short * passed

index_handle int32 reference int32 * returned
8-96 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
 int32 key_2_value;
 int32 key_2_oper;
 int32 order_offset;
 int32 order_size;
 int32 order_order;
 union {
 pams_correlation_id correlation_id;
 pams_sequence_number sequence number
 } extended_key
} selection_array_component;

The selection_array_component data structure has the following components:

The following tables define the content of each of the components of the
selection_array_component data structure.

Queue and Priority

The following table specifies the valid values that can be applied to the arguments in
this part of the Select_Queue structure:

Component Description

Queue and Priority Allows the application to specify the queue number and priority.

Comparison Key 1 Defines the components of the first comparison key used to enable
range checking of messages.

Comparison Key 2 Defines the components of the second comparison key used to
enable range checking of messages.

Order Key Contains the information required to provide selection of messages
by FIFO, Minimum Value, or Maximum Value.
BEA MessageQ Programmer’s Guide 8-97

8 PAMS Application Programming Interface
Comparison Keys

The following table specifies the arguments and valid values that can be applied to this
part of the Selection_Array_Components structure:

Table 8-50

Field Values Description

Queue Queue Number Specifies the queue number to be searched. The
queue number can be any message queue for
which the application has read access. The
queue number can be obtained from the
q_attached argument of the
pams_attach_q function or q_address of
the pams_locate_q function. A value of 0
for this argument specifies the application’s
primary queue.

Priority Specifies the priority, using either an integer
between 0 and 99 inclusive or a variable. (Using
the direct interger value is the preferred method
of specifying priority.) This argument also
accepts the following predefined constants
which are set by the application.

 PSEL_PRI_ANY Read priority 1 before reading priority 0
messages.

 PSEL_PRI_P0 Read priority 0 messages only.

 PSEL_PRI_P1 Read priority 1 messages only.

Table 8-51

Field Values Description

Offset Contains a value that specifies where the information
to be compared begins inside the message. The
following predefined constants apply:

 n User message byte number (0 relative).

 PSEL_SOURCE Source address of message.
8-98 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
 PSEL_CLASS Class of the message.

 PSEL_TYPE Type of the message.

PSEL_CORRELATION_ID Correlation ID of the message. May be used for
key_1_offset or key_2_offset but not both. If
this symbol is specified, the Size field must be set to
PSEL_CORRELATION_ID_SIZE (or 32 bytes).

PSEL_SEQUENCE_NUMBER Message sequence number acquired from the PAMS
Status Buffer. If this symbol is specified, the Size field
must be set to PSEL_SEQUENCE_NUMBER_SIZE (or
8 bytes).

Size Specifies data type of the key to be compared.

 0 Disable use of key.

 1 Byte (8 bits).

 2 Word (16 bits).

 4 int32 (32 bits).

PSEL_SEQUENCE_NUMBER_SIZE 8 bytes

PSEL_CORRELATION_ID_SIZE 32 bytes

Value n Contains the value for message field comparison field
that is formatted as an integer of 32 bits.

oper Relational operator comparison.

 PSEL_OPER_EQ Message field = value.

 PSEL_OPER_NEQ Message field <> value.

 PSEL_OPER_GTR Message field > value.

 PSEL_OPER_LT Message field < value.

 PSEL_OPER_GTRE Message field > or = value.

 PSEL_OPER_LTE Message field < or = value.

Table 8-51

Field Values Description
BEA MessageQ Programmer’s Guide 8-99

8 PAMS Application Programming Interface
Order Key

The Order Key part contains variables described in the following table:

Table 8-52

Field Values Description

Offset Byte offset of the message field. The offset variable
contains a value that specifies where the information to
be compared begins inside the message.

 n User message byte number (0 relative).

 PSEL_SOURCE Source address of the message.

 PSEL_CLASS Class of the message.

 PSEL_TYPE Type of the message.

PSEL_CORRELATION_ID Correlation ID of the message. If this symbol is
specified, the Size field must be set to
PSEL_CORRELATION_ID_SIZE (or 32 bytes).

PSEL_SEQUENCE_NUMBER Message sequence number acquired from the PAMS
Status Buffer. If this symbol is specified, the Size field
must be set to PSEL_SEQUENCE_NUMBER_SIZE (or
8 bytes).

Size Size of the comparison. The size variable specifies
the data type of the key to be compared.

 0 Disable use of key.

 1 Byte.

 2 Word.

 4 int32 (32 bits).

PSEL_SEQUENCE_NUMBER_SIZE 8 bytes

PSEL_CORRELATION_ID_SIZE 32 bytes

Order Order operator. The order variable specifies the
sequence in which the select process is to be
performed.
8-100 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
Correlation ID

The correlation ID is a 32-byte user-defined identifier associated with a message. If
PSEL_CORRELATION_ID is supplied as the value for either the key_1_offset or
key_2_offset field, the correlation ID value is used to match messages with the
specified correlation ID. Since there is a single correlation ID per message,
PSEL_CORRELATION_ID should only be specified for one of the comparison keys;
specifying the correlation ID for both keys results in a PAMS_BADPARAM error.

If PSEL_CORRELATION_ID is supplied as the value for the order_offset field,
messages with the specified correlation ID are returned in the order specified by the
order_order field.

Sequence Number

The message sequence number is a unique value for each message. The sequence
number is stored in the PAMS Status Buffer (PSB). Applications should acquire the
message sequence number from the PSB and not modify it in any way.

Note: An application may specify only one of the two keys to select by correlation
identifier or by sequnce number.

num_masks

Supplies the number of records in the selection array. This argument allows a
minimum of 1 record to a maximum of 256 records in the selection array.

index_handle

Receives a variable containing the index handle for the selection mask as follows:

n The high-order word contains PSEL_BY_MASK.

n The low-order word contains the index to the selection array.

 PSEL_ORDER_FIFO First pending.

 PSEL_ORDER_MIN Minimum value of all pending.

 PSEL_ORDER_MAX Maximum value of all pending.

Table 8-52

Field Values Description
BEA MessageQ Programmer’s Guide8-101

8 PAMS Application Programming Interface
The index_handle is passed as the sel_filter argument in pams_get_msg,
pams_get_msga or pams_get_msgw, and pams_cancel_select functions.
OpenVMS allows a maximum number of 500 index handles. Other BEA MessageQ
implementations offer 16K to 32K index handles.

Return Values

See Also n pams_cancel_get

n pams_cancel_select

n pams_get_msg

n pams_get_msga

n pams_get_msgw

Example Selecting Messages Using a Complex Selection Filter

Table 8-53

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Invalid number of arguments supplied.

PAMS__BADPARAM All Bad argument passed in the function call.

PAMS__IDXTBLFULL All Selective receive index table is full.

PAMS__NETERROR Clients Network error resulted in a
communications link abort.

PAMS__NOTDCL All Process has not been attached to BEA
MessageQ.

PAMS__PAMSDOWN UNIX
Windows
NT

The specified BEA MessageQ group is not
running.

PAMS__PREVCALLBUSY Clients Previous call to CLS has not been
completed.

PAMS__SUCCESS All Indicates successful completion.
8-102 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types

This example shows the selective reception of messages using pams_set_select to
build a complex message selection filter. The queue named “queue_1” must be
defined in your initialization file as a primary queue. The complete code example
called x_select.c is contained in the examples directory.
BEA MessageQ Programmer’s Guide8-103

8 PAMS Application Programming Interface
pams_set_timer

Creates a timer that sends a message to an application’s primary queue when a time
interval expires or a time of day arrives. The message is sent as a priority 1 message
with a source of PAMS_TIMER_QUEUE, a class code of PAMS, and a type code of
TIMER_EXPIRED. A timer_id is returned by this function as the first int32 value in
the TIMER_EXPIRED message.

Note: Prior to BEA MessageQ Version 5.0, the valid priority values were 0 and 1. In
Version 5.0, the valid range is 0 to 99 (0 being the lowest priority and 99 the
highest priority). Keep in mind that timer priorities are always 1 and take this
into account when modifying existing programs to take advantage of the
expanded priority range. Messages associated with timers have a priority of 1
and are not sent until all messages with priorities from 2 to 99 are read.

To act upon the timer message, the application uses the pams_get_msgw function to
read its primary queue, block until the timer expiration message arrives, and then act
upon it. To cancel a BEA MessageQ timer, use the pams_cancel_timer function
with the identification code of the timer you want to cancel.

Syntax int32 pams_set_timer (timer_id, timer_format, p_timeout,
s_timeout)

Arguments

Argument
Definitions

timer_id

Supplies a unique timer identification value created by the application. Must be greater
than zero.

Table 8-54

Argument Data Type Mechanism Prototype Access

timer_id int32 reference int32 * passed

timer_format char reference char * passed

p_timeout int32 reference int32 * passed

s_timeout unsigned
quadword

reference unsigned
quadword *

passed
8-104 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types

d.
 to

g a

rmat

ules.
er

rray
and
timer_format

Supplies the time format being used. Following are the two predefined constants for
this argument:

n P—selects the time interval in PAMS timer format supplied to the p_timeout
argument. PAMS timer format expresses time in units of one tenth of a secon
Using the PAMS timer format provides an operating system independent way
represent a time interval.

n S—selects the system-dependent time format supplied to the s_timeout
argument. Using a system-dependent time format limits the portability of
applications to a specific operating system environment.

p_timeout

Supplies the amount of time to delay (delta) from the current time before returnin
timer expiration message. If the timer_format argument is set to P, a value greater
than 0 must be entered for this argument. This argument uses the PAMS timer fo
which expresses time in units of one tenth of one second.

s_timeout

On OpenVMS systems, use this argument to supply a pointer to an array of two int32
values used to set a 64-bit OpenVMS time format. The s_timeout argument can be
specified as an absolute time or a delta time matching the OpenVMS time format r
Note that if the caller exceeds the ASTLM or TQELM process quota, the process can ent
the RWAST state.

On UNIX and Windows NT systems, use this argument to supply a two element a
of int32 values. The values represent an absolute time (a UTC time in seconds
microseconds) at which the timer will expire. To use the s_timeout argument,
developers provide a pointer to a “struct timeval” as follows:

struct timeval theTime;
nStatus = pams_set_timer(&timer_id, “S”, NULL, (int32 *) &theTime);

Return Values

Table 8-55

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Invalid number of arguments supplied.

PAMS__BADPARAM All Bad argument value.
BEA MessageQ Programmer’s Guide8-105

8 PAMS Application Programming Interface

See Also n pams_cancel_timer

Example Set a Timer

This example shows how to use the BEA MessageQ timer functions by setting a timer
to go off every 5 seconds. When the timer expires, it sends messages to itself. While
not handling the timer event, it sits and waits for other incoming messages. If it is
interrupted, it cancels any outstanding timers. The queue named “queue_1” must be
defined in your initialization file as a primary queue. The complete code example
called x_timer.c is contained in the examples directory.

PAMS__INVALIDNUM All Invalid timer number passed to
pams_set_timer.

PAMS__INVFORMAT All Invalid timer format specified in the call.
Should be P or S.

PAMS__NETERROR Clients Network error resulted in a
communications link abort.

PAMS__NOTDCL All Process has not been attached to BEA
MessageQ.

PAMS__NOTSUPPORTED UNIX
Windows
NT

The S timer_format is not supported by
BEA MessageQ for UNIX and Windows
NT systems.

PAMS__PAMSDOWN UNIX
Windows
NT

The specified BEA MessageQ group is not
running.

PAMS__PREVCALLBUSY Clients Previous call to CLS has not been
completed.

PAMS__RESRCFAIL All Insufficient resources to complete
operation.

PAMS__SUCCESS All Indicates successful completion.

Table 8-55

Return Code Platform Description
8-106 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
pams_status_text

Receives the severity level and text description of a user-supplied PAMS API return
code and moves that information to a user-supplied storage area. If the error code is
not known, an error is returned and the call parameters are not filled in.

Syntax int32 pams_status_text (code, severity, buffer, buflen, retlen)

Arguments

Argument
Definitions

code

Specifies the return value for which you would like the text description and severity
level returned.

severity

Receives a code indicating the severity level of the message. Severity levels apply to
both success and error messages. They are designed to provide more information about
the message being returned. The valid codes returned to this argument are as follows:

0 = warning
1 = success
2 = error
3 = informational
4 = fatal error

buffer

Receives the text description for the return status supplied.

Table 8-56

Argument Data Type Mechanism Prototype Access

code int32 reference int32 * passed

severity int32 reference int32 * returned

buffer char reference char * returned

buflen int32 reference int32 * passed

retlen int32 reference int32 * returned
BEA MessageQ Programmer’s Guide8-107

8 PAMS Application Programming Interface
buflen

Specifies the length of the buffer to store the text description returned. A buffer length
of 256 bytes is adequate to store the text description for all return status codes. If the
user buffer supplied is large enough, the string is zero terminated. The buffer length
must be entered as a positive integer. Supplying a negative integer value to this
argument causes the function to return a status of PAMS__BADPARAM. If you specify this
argument as zero, no text is returned to the buffer and the function returns the status of
PAMS__TRUNCATED.

retlen

Receives the size of the user-supplied buffer space that was filled by the text
description returned.

Description Application developers use the pams_status_text function to obtain a text
description and severity level for each API return value. The text description contains
both the symbolic name (as it is defined in the include files and described in the
documentation) followed by a comma, a space, and then a description of the return
value in the following format:

PAMS__SUCCESS, normal successful completion

In addition to the text description, this function returns a code indicating the severity
level for both success and error messages.

For example, pams_detach_q has two possible success return codes;
PAMS__SUCCESS and PAMS__DETACHED. The PAMS__SUCCESS return code is used to
indicate that you successfully detached the specified queue(s). PAMS__DETACHED is an
informational return code indicating that the call was successful and that you have
detached your last queue which effectively detaches your application from the
message queuing bus in the same manner as the pams_exit function.

Return Values

Table 8-57

Return Code Platform Description

PAMS__BADARGLIST OpenVMS Invalid number of call parameters specified.

PAMS__BADPARAM All Invalid call parameter specified.

PAMS__FAILED All There is no translation for the specified return
code.
8-108 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
PAMS__SUCCESS All Normal successful completion.

PAMS__TRUNCATED All The description was returned but was
truncated.

Table 8-57

Return Code Platform Description
BEA MessageQ Programmer’s Guide8-109

8 PAMS Application Programming Interface
putil_show_pending

Requests the number of pending messages for a list of selected queues. To use the
putil_show_pending function, specify the number of message queues for which you
want to obtain a pending message count and the list of queue addresses for which you
want to obtain a pending message count. The value returned by this function contains
the total number of messages in each memory queue. On OpenVMS systems, this
function also returns the number of pending messages in the local recovery journals
targeted for delivery to the selected queue.

Syntax int32 putil_show_pending (count, in_q_list, out_pend_list)

Arguments

Argument
Definitions

count

Supplies the number of queue entries in the in_q_list argument (the number of
indexes in the array). The maximum allowed value is 32,000.

in_q_list

Supplies an array of int32 values containing the queue numbers for which the pending
message count is requested.

out_pend_list

Receives the pending message count for each selected queue.

Return Values

Table 8-58

Argument Data Type Mechanism Prototype Access

count int32 reference int32 * passed

in_q_list short array reference short array* passed

out_pend_list int32 array reference int32 array * returned

Table 8-59

Return Code Platform Description

PAMS__BADARGLIST UNIX
Windows NT

Invalid argument supplied to this
function.
8-110 BEA MessageQ Programmer’s Guide

BEA MessageQ API Data Types
Example Display Number of Pending Messages

This example shows how to use putil_show_pending to display the number of
pending messages currently in the queue. A queue named “queue_1” must be defined
during group configuration. The complete code example called x_shopnd.c is
contained in the examples directory.

PAMS__BADPARAM OpenVMS Invalid argument supplied to this
function.

PAMS__NETERROR Clients Network error resulted in a
communications link abort.

PAMS__NOTDCL All Process is not attached to BEA
MessageQ.

PAMS__RESRCFAIL All Insufficient resources to complete
operation.

PAMS__PAMSDOWN All The specified BEA MessageQ
group is not running.

PAMS__PREVCALLBUSY Clients Previous call to CLS has not been
completed.

PAMS__SUCCESS All Successful completion.

Table 8-59

Return Code Platform Description
BEA MessageQ Programmer’s Guide8-111

8 PAMS Application Programming Interface
8-112 BEA MessageQ Programmer’s Guide

CHAPTER
9 Message Reference

This chapter contains detailed descriptions of all BEA MessageQ message-based
services alphabetized by message type. Each description lists the message type code
name, the name of the BEA MessageQ server performing the service, and a detailed
definition of the message area and required arguments to send messages or read
response and notification messages using the BEA MessageQ API or scripts. The
definition of all BEA MessageQ message-based services messages is now provided in
the p_msg.h include file.

BEA MessageQ message-based services are sent between a user application program
that functions as a requestor and a BEA MessageQ server process that fulfills the
request. For messages to be properly understood between systems, message data must
be sent and returned in the endian format understood by both the requestor and the
server. Most BEA MessageQ message-based services automatically perform this
conversion if the endian format of the two systems is different. However, some
message-based services do not perform this conversion, therefore, the user application
must convert the message to the endian format of the server system to ensure that the
message data is correctly interpreted. Each message-based service description notes
whether the data structure is RISC aligned and whether the server performs the endian
conversion automatically.
BEA MessageQ Programmer’s Guide 9-1

9 Message Reference
AVAIL

Applications can register to receive notification when queues become active or
inactive in local and remote groups by sending an AVAIL_REG message to the Avail
Server. The AVAIL notification message is sent to registered applications when a queue
in the selected group becomes active. See the Obtaining the Status of a Queue topic in
the Using Message-Based Services section for an explanation of how to use this
message.

Applications must cancel availability notification by sending a message of type
AVAIL_DEREG. The application receives a AVAIL_REG_REPLY message indicating the
status of the operation. It is important to note that if the distribution queue for an
AVAIL registration becomes unavailable, the registration will be automatically
deleted by BEA MessageQ. A subsequent attempt to deregister AVAIL services for
this distribution queue will result in an error message indicating that the registration
does not exist.

Note: The Avail Server performs endian conversion when this message is received
between processes that run on systems that use different hardware data
formats. This message is also RISC aligned.

C Message
Structure

typedef struct _AVAIL {
 q_address target_q;
 } AVAIL;

Message Data
Fields

Arguments

Field Data Type Script
Format

Description

target_q q_address DL Address of queue that is now available.

Argument Data Type Mechanism Prototype Access

Target Supplied by
AVAIL_REG

Supplied by
AVAIL_REG

Target Supplied by
AVAIL_REG

Source AVAIL_SERVER PAMS_AVAIL_S
ERVER

Source AVAIL_SERVER
9-2 BEA MessageQ Programmer’s Guide

See Also n AVAIL_DEREG

n AVAIL_REG

n AVAIL_REG_REPLY

n UNAVAIL

Example The AVAIL services example illustrates avail services, avail register, avail deregister,
and getting avail messages. The complete code example called x_avail.c is
contained in the examples directory.

Class PAMS MSG_CLAS_
PAMS

Class PAMS

Type AVAIL MSG_TYPE_
AVAIL

Type AVAIL

Argument Data Type Mechanism Prototype Access
BEA MessageQ Programmer’s Guide 9-3

9 Message Reference
AVAIL_DEREG

Applications can register to receive notification when queues become active or
inactive in local and remote groups by sending an AVAIL_REG message to the Avail
Server. When notification messages are no longer needed, the application sends an
AVAIL_DEREG message to the Avail Server to cancel registration. It is important to note
that if the distribution queue for an AVAIL registration becomes unavailable, the
registration will be automatically deleted by BEA MessageQ. A subsequent attempt to
deregister AVAIL services for this distribution queue will result in an error message
indicating that the registration does not exist. See the Obtaining the Status of a Queue
topic in the Using Message-Based Services section for an explanation of how to use
this message.

Note: The Avail Server performs endian conversion when this message is sent
between processes that run on systems that use different hardware data
formats. This message is also RISC aligned.

C Message
Structure

typedef struct _AVAIL_DEREG {
 int16 version;
 int16 filler;
 q_address target_q;
 q_address distribution_q;
 char req_ack;
 } AVAIL_DEREG;

Message Data
Fields

Field Data Type Script
Format

Description

version word DW Format version number. Must be 20.

filler word DW Spacing for RISC alignment.

target_q q_address DL Queue being monitored for its
availability.

distribution_q q_address DL Queue notified of availability.

req_ack Boolean DB If response required, 1; else 0.
9-4 BEA MessageQ Programmer’s Guide

Arguments

See Also n AVAIL

n AVAIL_REG

n AVAIL_REG_REPLY

n UNAVAIL

Example The AVAIL services example illustrates avail services, avail register, avail deregister,
and getting avail messages. The complete code example called x_avail.c is
contained in the examples directory.

Argument Script Format pams_get_msg Format

Target AVAIL_SERVER PAMS_AVAIL_SERVER

Source Supplied by BEA MessageQ Supplied by BEA MessageQ

Class PAMS MSG_CLAS_PAMS

Type AVAIL_DEREG MSG_TYPE_AVAIL_DEREG
BEA MessageQ Programmer’s Guide 9-5

9 Message Reference
AVAIL_REG

Applications can register to receive notification when queues become active or
inactive in local and remote groups by sending an AVAIL_REG message to the Avail
Server. See the Obtaining the Status of a Queue topic in the Using Message-Based
Services section for an explanation of how to use this message. If the application
detaches from the distribution queue, the AVAIL registration is automatically deleted.
The application must cancel notification, regardless of queue type, by sending a
message of type AVAIL_DEREG. The application receives a AVAIL_REG_REPLY
message indicating the status of the operation.

Note: The Avail Server performs endian conversion when this message is sent
between processes that run on systems that use different hardware data
formats. This message is also RISC aligned.

C Message
Structure

typedef struct _AVAIL_REG {
 int16 version;
 int16 filler;
 q_address target_q;
 q_address distribution_q;
 int32 timeout;
 } AVAIL_REG;

Message Data
Fields

Field Data Type Script
Format

Description

version word DW Format version number. Must be 31.

filler word DW Spacing for RISC alignment.

target_q q_address DL Queue to be monitored for availability.

distribution_q q_address DL Queue to receive availability messages.

timeout int32 DL Interval (specified in seconds) after
which the function should timeout.
9-6 BEA MessageQ Programmer’s Guide

Arguments

See Also n AVAIL_REG_REPLY

n AVAIL

n UNAVAIL

n AVAIL_DEREG

Example The AVAIL services example illustrates avail services, avail register, avail deregister,
and getting avail messages. The complete code example called x_avail.c is
contained in the examples directory.

Argument Script Format pams_get_msg Format

Target AVAIL_SERVER PAMS_AVAIL_SERVER

Source Supplied by BEA MessageQ Supplied by BEA MessageQ

Class PAMS MSG_CLAS_PAMS

Type AVAIL_REG MSG_TYPE_AVAIL_REG
BEA MessageQ Programmer’s Guide 9-7

9 Message Reference
AVAIL_REG_REPLY

Applications register to receive notification when queues become active or inactive in
local and remote groups by sending an AVAIL_REG message to the Avail Server. The
AVAIL_REG_REPLY message indicates whether the application has successfully
registered or deregistered from receiving notification messages. See the Obtaining the
Status of a Queue topic in the Using Message-Based Services section for an
explanation of how to use this message.

Note: The Avail Server performs endian conversion when this message is received
between processes that run on systems that use different hardware data
formats. This message is also RISC aligned.

C Message
Structure

typedef struct _AVAIL_REG_REPLY {
 int16 status;
 uint16 reg_id;
 int16 number_reg;
 } AVAIL_REG_REPLY;

Message Data
Fields

Arguments

Field Data Type Script
Format

Description

status word DW Status code:
1 = success;
0 = failure.

reg_id unsigned
word

DW Returned subscription ID.

number_reg word DW Number of registrants left on the Avail list.

Argument Script Format pams_get_msg Format

Target Sender of AVAIL_REG/DEREG Sender of AVAIL_REG/DEREG

Source AVAIL_SERVER PAMS_AVAIL_SERVER

Class PAMS MSG_CLAS_PAMS
9-8 BEA MessageQ Programmer’s Guide

See Also n AVAIL_REG

n AVAIL_DEREG

n AVAIL

n UNAVAIL

Example The AVAIL services example illustrates avail services, avail register, avail deregister,
and getting avail messages. The complete code example called x_avail.c is
contained in the examples directory.

Type AVAIL_REG_REPLY MSG_TYPE_AVAIL_REG_REPLY

Argument Script Format pams_get_msg Format
BEA MessageQ Programmer’s Guide 9-9

9 Message Reference
DISABLE_NOTIFY

Applications can register to receive notification when cross-group links are established
and lost by sending an ENABLE_NOTIFY message to the Connect Server. When an
application no longer needs to receive notification messages, it deregisters by sending
a DISABLE_NOTIFY message to the Connect Server. The DISABLE_NOTIFY message
can stop notification of cross-group link changes. See the Obtain Notification of
Cross-Group Links Established and Lost topic in the Using Message-Based Services
section for an explanation of how to use this message.

Note: The Connect Server performs endian conversion when this message is sent
between processes that run on systems that use different hardware data
formats. This message is also RISC aligned.

C Message
Structure

typedef struct _ENABLE_NOTIFY {
 char reserved;
 char connection_flag;
 } ENABLE_NOTIFY;

Message Data
Fields

Arguments

See Also n ENABLE_NOTIFY

Field Data Type Script
Format

Description

reserved unsigned char DB Reserved for use by BEA MessageQ.

connection_flag unsigned char DB Boolean flag to cancel cross-group
connection notification, 1; else 0.

Argument Script Format pams_get_msg Format

Target CONNECT_SERVER PAMS_CONNECT_SERVER

Source Supplied by BEA MessageQ Supplied by BEA MessageQ

Class PAMS MSG_CLAS_PAMS

Type DISABLE_NOTIFY MSG_TYPE_DISABLE_NOTIFY
9-10 BEA MessageQ Programmer’s Guide

n LINK_COMPLETE

n LINK_LOST
BEA MessageQ Programmer’s Guide 9-11

9 Message Reference
DISABLE_Q_NOTIFY_REQ

Applications can register to receive notification when queue states change in local or
remote groups by sending an ENABLE_Q_NOTIFY_REQ message. The
DISABLE_Q_NOTIFY_REQ is sent to the Queue Server when the application no longer
needs to receive notification messages. See the Receiving Attachment Notifications
topic in the Using Message-Based Services section for an explanation of how to use
this message.

Note: The Queue Server performs endian conversion when this message is sent
between processes that run on systems that use different hardware data
formats. This message is also RISC aligned.

C Message
Structure

typedef struct _Q_NOTIFY_REQ {
 int32 version;
 int32 user_tag;
 } Q_NOTIFY_REQ;

Message Data
Fields

Arguments

See Also n DISABLE_Q_NOTIFY_RESP

n ENABLE_Q_NOTIFY_REQ

Field Data Type Script
Format

Description

version int32 DL Version of request.

user_tag int32 DL User-specified code to identify this request.

Argument Script Format pams_get_msg Format

Target QUEUE_SERVER PAMS_QUEUE_SERVER

Source Requesting program Requesting program

Class PAMS MSG_CLAS_PAMS

Type DISABLE_Q_NOTIFY_REQ MSG_TYPE_DISABLE_Q_

NOTIFY_REQ
9-12 BEA MessageQ Programmer’s Guide

n ENABLE_Q_NOTIFY_RESP

n Q_UPDATE
BEA MessageQ Programmer’s Guide 9-13

9 Message Reference
DISABLE_Q_NOTIFY_RESP

Applications can register to receive notification when queue states change in local or
remote groups by sending an ENABLE_Q_NOTIFY_REQ message. The
DISABLE_Q_NOTIFY_REQ message is sent to the Queue Server when the application no
longer needs to receive notification messages. The DISABLE_Q_NOTIFY_RESP
message indicates whether the application is successfully deregistered from receiving
notification messages. See the Receiving Attachment Notifications topic in the Using
Message-Based Services section for an explanation of how to use this message.

Note: The Queue Server performs endian conversion when this message is received
between processes that run on systems that use different hardware data
formats. This message is also RISC aligned.

C Message
Structure

#define MAX_NUMBER_Q_RECS 50
typedef struct _Q_NOTIFY_RESP {
 int32 version;
 int32 user_tag;
 int32 status_code;
 int32 last_block_flag;
 int32 number_q_recs;
 struct {
 q_address q_num;
 q_address q_owner;
 int32 q_type;
 int32 q_active_flag;
 int32 q_attached_flag;
 int32 q_owner_pid;
 } q_rec [50];
 } Q_NOTIFY_RESP;

Message Data
Fields

Field Data Type Script
Format

Description

version int32 DL Version of response.

user_tag int32 DL User-specified code from request.

status_code int32 DL 0=Error
1=Success
-2=Refused

last_block_flag int32 DL Last block Boolean flag.
9-14 BEA MessageQ Programmer’s Guide

Arguments

See Also n DISABLE_Q_NOTIFY_REQ

n ENABLE_Q_NOTIFY_REQ

n ENABLE_Q_NOTIFY_RESP

n Q_UPDATE

number_q_recs int32 DL Number of records in this message.

q_num q_address DL Queue number.

q_owner q_address DL Queue owner (only for secondary
queues (SQs)).

q_type int32 DL Queue type (numerically encoded P, S,
M).

q_active_flag int32 DL Queue active Boolean flag.

q_attached_flag int32 DL Queue attached Boolean flag.

q_owner_pid int32 DL Queue owner process identification
(PID).

Field Data Type Script
Format

Description

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source QUEUE_SERVER PAMS_QUEUE_SERVER

Class PAMS MSG_CLAS_PAMS

Type DISABLE_Q_NOTIFY_RESP MSG_TYPE_DISABLE_Q_
NOTIFY_RESP
BEA MessageQ Programmer’s Guide 9-15

9 Message Reference
ENABLE_NOTIFY

Applications can register to receive notification when cross-group links are
established and lost by sending an ENABLE_NOTIFY message to the Connect Server.
See the Obtain Notification of Cross-Group Links Established and Lost topic in the
Using Message-Based Services section for an explanation of how to use this message.

Note: The Connect Server performs endian conversion when this message is sent
between processes that run on systems that use different hardware data
formats. This message is also RISC aligned.

C Message
Structure

typedef struct _ENABLE_NOTIFY {
 char reserved;
 char connection_flag;
 } ENABLE_NOTIFY;

Message Data
Fields

Arguments

See Also n DISABLE_NOTIFY

n LINK_COMPLETE

n LINK_LOST

Field Data Type Script
Format

Description

reserved unsigned char DB Reserved for use by BEA MessageQ.

connection_flag unsigned char DB Boolean flag for cross-group
connection notification, 1; else 0.

Argument Script Format pams_get_msg Format

Target CONNECT_SERVER PAMS_CONNECT_SERVER

Source Supplied by BEA MessageQ Supplied by BEA MessageQ

Class PAMS MSG_CLAS_PAMS

Type ENABLE_NOTIFY MSG_TYPE_ENABLE_NOTIFY
9-16 BEA MessageQ Programmer’s Guide

ENABLE_Q_NOTIFY_REQ

Applications can register to receive notification when queue states change in local or
remote groups by sending an ENABLE_Q_NOTIFY_REQ message. This message requests
a list of all active queues and then subsequent notification when queues become
attached or detached and active or inactive. See the Receiving Attachment
Notifications topic in the Using Message-Based Services section for an explanation of
how to use this message.

Note: The Queue Server performs endian conversion when this message is sent
between processes that run on systems that use different hardware data
formats. This message is also RISC aligned.

C Message
Structure

typedef struct _Q_NOTIFY_REQ {
 int32 version;
 int32 user_tag;
 } Q_NOTIFY_REQ;

Message Data
Fields

Arguments

See Also n DISABLE_Q_NOTIFY_REQ

n DISABLE_Q_NOTIFY_RESP

Field Data Type Script
Format

Description

version int32 DL Version of request.

user_tag int32 DL User-specified code to identify this request.

Argument Script Format pams_get_msg Format

Target QUEUE_SERVER PAMS_QUEUE_SERVER

Source Requesting program Requesting program

Class PAMS MSG_CLAS_PAMS

Type ENABLE_Q_NOTIFY_REQ MSG_TYPE_ENABLE_Q_NOTIFY_REQ
BEA MessageQ Programmer’s Guide 9-17

9 Message Reference
n ENABLE_Q_NOTIFY_RESP

n Q_UPDATE
9-18 BEA MessageQ Programmer’s Guide

ENABLE_Q_NOTIFY_RESP

Applications can register to receive notification when queue states change in local or
remote groups by sending an ENABLE_Q_NOTIFY_REQ message. The
ENABLE_Q_NOTIFY_RESP message delivers a list of all active queues and then
subsequently notifies the application of attachments, detachments, and changes to
active and inactive status using the Q_UPDATE message. See the Receiving Attachment
Notifications topic in the Using Message-Based Services section for an explanation of
how to use this message.

Note: The Queue Server performs endian conversion when this message is received
between processes that run on systems that use different hardware data
formats. This message is also RISC aligned.

C Message
Structure

#define MAX_NUMBER_Q_RECS 50
typedef struct _Q_NOTIFY_RESP {
 int32 version;
 int32 user_tag;
 int32 status_code;
 int32 last_block_flag;
 int32 number_q_recs;
 struct {
 q_address q_num;
 q_address q_owner;
 int32 q_type;
 int32 q_active_flag;
 int32 q_attached_flag;
 int32 q_owner_pid;
 } q_rec [50];
 } Q_NOTIFY_RESP;

Message Data
Fields

Field Data Type Script
Format

Description

version int32 DL Version of response.

user_tag int32 DL User-specified code from request.

status_code int32 DL 0=Error
1=Success
-2=Refused
BEA MessageQ Programmer’s Guide 9-19

9 Message Reference
Arguments

See Also n DISABLE_Q_NOTIFY_REQ

n DISABLE_Q_NOTIFY_RESP

n ENABLE_Q_NOTIFY_REQ

n Q_UPDATE

last_block_flag int32 DL Last block Boolean flag.

number_q_recs int32 DL Number of records in this message.

q_num q_address DL Queue number.

q_owner q_address DL Queue owner (only for secondary queues
(SQs)).

q_type int32 DL Queue type (numerically encoded P, S,
M).

q_active_flag int32 DL Queue active Boolean flag.

q_attached_flag int32 DL Queue attached Boolean flag.

q_owner_pid int32 DL Queue owner process identification
(PID).

Field Data Type Script
Format

Description

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source QUEUE_SERVER PAMS_QUEUE_SERVER

Class PAMS MSG_CLAS_PAMS

Type ENABLE_NOTIFY_RESP MSG_TYPE_ENABLE_NOTIFY_RESP
9-20 BEA MessageQ Programmer’s Guide

LINKMGT_REQ

Applications can use link management messages to explicitly control cross-group
connections. Use the LINKMGT_REQ message to request a connection to a remote
group, to disconnect from a remote group, or to obtain information about a remote
BEA MessageQ group. See the Controlling Cross-Group Links topic in the Using
Message-Based Services section for an explanation of how to use this message.

Note: The Connect Server performs endian conversion when this message is sent
between processes that run on systems that use different hardware data
formats. This message is also RISC aligned.

C Message
Structure

typedef struct _TADDRESS {
 int32 len;
 char str [16];
 } TADDRESS;

typedef struct _NODENAME {
 int32 len;
 char str [255];
 } NODENAME;

typedef struct _LINKMGT_REQ {
 int32 version;
 int32 user_tag;
 int32 function_code;
 int32 group_number;
 int32 connect_type;
 int32 reconnect_timer;
 int32 window_size;
 int32 window_delay;
 int32 reserved_space [10];

 TADDRESS transport_addr;
 NODENAME node_name;
 } LINKMGT_REQ;

Message Data
Fields

Field Data Type Script
Format

Description

version int32 DL Message version.

user_tag int32 DL User-specified code to identify this request.
BEA MessageQ Programmer’s Guide 9-21

9 Message Reference
function_code int32 DL Function of the message using
PSYM_LINKMGT_CMD:

_ENABLE
_DISABLE

_INQUIRY
_CONNECT
_DISCONNECT

group_number int32 DL Group number to receive action; valid values
are between 1 and 32,000;
PSYM_LINKMGT_ALL_GROUPS indicates
all known links.

connect_type int32 DL Type of transport to use, as follows:

PSYM_LINKMGT_TCPIP

reconnect_timer int32 DL Time it takes for the COM Server to
reconnect to a communications link. Enter
the number of seconds or the following
values:

PSYM_LINKMGT_NO_TIMER
PSYM_LINKMGT_USE_PREVIOUS

window_size int32 DL Size of transmission window (cross-group
protocol Version 3.0 and higher). Enter the
number of messages or the following value:

PSYM_LINKMGT_USE_PREVIOUS

window_delay int32 DL Transmission window delay in seconds
(cross-group protocol Version 3.0 and
higher). Enter the number of seconds or the
following value:

PSYM_LINKMGT_USE_PREVIOUS

reserved_space 10-int32
array

DL(10) Reserved for BEA MessageQ use.

transport_addr_len int32 DL Length of transport address. Values 0 to 16
bytes; 0 = use previous setting.

Field Data Type Script
Format

Description
9-22 BEA MessageQ Programmer’s Guide

Arguments

See Also LINKMGT_RESP

transport_addr char
char str
*

A Transport address string that is 16 bytes in
length; the TCP/IP port ID.

node_name_len int32 DL Length of node name string; 0 = use previous
known value.

node_name char A ASCII text of node name; length determined
by node_name_len up to 255 characters.

Field Data Type Script
Format

Description

Argument Script Format pams_get_msg Format

Target CONNECT_SERVER PAMS_CONNECT_SERVER

Source Requesting program Requesting program

Class PAMS MSG_CLAS_PAMS

Type LINKMGT_REQ MSG_TYPE_LINKMGT_REQ
BEA MessageQ Programmer’s Guide 9-23

9 Message Reference
LINKMGT_RESP

Applications can use link management messages to explicitly control cross-group
connections. Use the LINKMGT_REQ message to request a connection to a remote
group, to disconnect from a remote group, or to obtain information about a remote
BEA MessageQ group. The LINKMGT_RESP message notifies the requesting
application if the connection or disconnection request was successful and supplies
information about the cross-group connection. See the Controlling Cross-Group Links
topic in the Using Message-Based Services section for an explanation of how to use
this message.

Note: The Connect Server performs endian conversion when this message is
received between processes that run on systems that use different hardware
data formats. This message is also RISC aligned.

C Message
Structure

typedef struct _TADDRESS {
 int32 len;
 char str [16];
 } TADDRESS;

typedef struct _NODENAME {
 int32 len;
 char str [255];
 } NODENAME;

typedef struct _LINKMGT_RESP {
 int32 version;
 int32 user_tag;
 int32 status;
 int32 group_number;
 int32 in_link_state;
 int32 out_link_state;
 int32 connect_type;
 int32 platform_id;
 int32 reconnect_timer;
 int32 window_size;
 int32 window_delay;
 int32 reserved_space [10];
 TADDRESS transport_addr;
 NODENAME node_name;
 } LINKMGT_RESP;

Message Data
Fields
9-24 BEA MessageQ Programmer’s Guide

Field Data
Type

Script
Format

Description

version int32 DL Message version.

user_tag int32 DL User-specified code from request.

status int32 DL Completion status

group_number int32 DL Group number to receive action. Valid values are
between 1 and 32,000;
PSYM_LINKMGT_ALL_GROUPS indicates all
known links.

in_link_state int32 DL State of inbound link at time of request. Values are:

PSYM_LINKMGT_UNKNOWN
PSYM_LINKMGT_NOCNT
PSYM_LINKMGT_CONNECTED
PSYM_LINKMGT_DISABLED

out_link_state int32 DL State of outbound link at time of request; same values
as in_link_state.

connect_type int32 DL Type of transport to use as follows:

PSYM_LINKMGT_TCPIP
BEA MessageQ Programmer’s Guide 9-25

9 Message Reference
platform_id int32 DL Platform type preceded by the prefix
PSYM_PLATFORM. Valid values are:

VAX_VMS
VAX_ULTRIX
RISC_ULTRIX
HP9000_HPUX
MOTOROLA_VR32
SPARC_SUNOS
IBM_RS6000_AIX
OS2
MSDOS
PDP11_RSX
VAXELN
MACINTOSH
SCO_UNIX
M68K
VMS_AXP
UNIX
WINDOWSNT
OSF1_AXP
DYNIX_X86
UNKNOWN

reconnect_timer int32 DL Time it takes for the COM Server to reconnect to a
communications link. Enter the number of seconds
or the following values:

PSYM_LINKMGT_NO_TIMER
PSYM_LINKMGT_USE_PREVIOUS

window_size int32 DL Size of transmission window (cross-group protocol
Version 3.0 and higher).

window_delay int32 DL Transmission window delay in seconds (cross-group
protocol Version 3.0 and higher).

reserved_space 10-int32
array

DL(10) Reserved for BEA MessageQ use.

transport_addr_
len

int32 DL Length of transport address. Values 0 to 16 bytes; 0
= use previous setting.

Field Data
Type

Script
Format

Description
9-26 BEA MessageQ Programmer’s Guide

Status Codes

Arguments

transport_addr char A Transport address string 16 bytes in length, the
TCP/IP port ID.

node_name_len int32 DL Length of node name string. 0 = use previous known
value.

node_name char A ASCII text of node name; length determined by
node_name_len up to 255 characters.

Field Data
Type

Script
Format

Description

Status Code Description

PSYM_LINKMGT_ALREADYUP Link already connected.

PSYM_LINKMGT_MSGCONTENT Message incomplete or content inconsistent with
dialog.

PSYM_LINKMGT_MSGFMT Format error in dialog.

PSYM_LINKMGT_NOGROUP Group is unknown.

PSYM_LINKMGT_NOPRIV No privilege for attempted operation.

PSYM_LINKMGT_NOTRANSPORT Requested transport is not available.

PSYM_LINKMGT_NOTSUPPORTED Feature not supported.

PSYM_LINKMGT_OPERATIONFAIL Requested operation failed.

PSYM_LINKMGT_SUCCESS Normal successful return.

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source CONNECT_SERVER PAMS_CONNECT_SERVER
BEA MessageQ Programmer’s Guide 9-27

9 Message Reference
See Also n LINKMGT_REQ

Class PAMS MSG_CLAS_PAMS

Type LINKMGT_RESP MSG_TYPE_LINKMGT_RESP

Argument Script Format pams_get_msg Format
9-28 BEA MessageQ Programmer’s Guide

LINK_COMPLETE

Applications can register to receive notification when cross-group links are established
and lost by sending an ENABLE_NOTIFY message to the Connect Server. Registered
applications receive a LINK_COMPLETE message each time a cross-group connection
occurs. See the Obtain Notification of Cross-Group Links Established and Lost topic
in the Using Message-Based Services section for an explanation of how to use this
message.

Note: The Connect Server does not perform endian conversion when this message
is received between processes that run on systems that use different hardware
data formats. The sender program must convert the message to the endian
format of the target system to ensure that the message data is correctly
interpreted. This message is RISC aligned.

C Message
Structure

typedef struct _LINK_NOTIFICATION {
 int16 group_number;
 int16 filler1;
 char os_type;
 char filler2;
 } LINK_NOTIFICATION;

Message Data
Fields

Arguments

Field Data Type Script
Format

Description

group_number word DW Group address associated with link.

filler1 word DW Reserved for BEA MessageQ.

os_type byte A(1) Code indicating operating system of remote
node.

filler2 byte XB Reserved for BEA MessageQ.

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source CONNECT_SERVER PAMS_CONNECT_SERVER
BEA MessageQ Programmer’s Guide 9-29

9 Message Reference
See Also n DISABLE_NOTIFY

n ENABLE_NOTIFY

n LINK_LOST

Class PAMS MSG_CLAS_PAMS

Type LINK_COMPLETE MSG_TYPE_LINK_COMPLETE

Argument Script Format pams_get_msg Format
9-30 BEA MessageQ Programmer’s Guide

LINK_LOST

Applications can register to receive notification when cross-group links are established
and lost by sending an ENABLE_NOTIFY message to the Connect Server. Registered
applications receive a LINK_LOST message each time a cross-group connection is lost.
See the Obtain Notification of Cross-Group Links Established and Lost topic in the
Using Message-Based Services section for an explanation of how to use this message.

Note: The Connect Server does not perform endian conversion when this message
is received between processes that run on systems that use different hardware
data formats. The sender program must convert the message to the endian
format of the target system to ensure that the message data is correctly
interpreted. This message is RISC aligned.

C Message
Structure

typedef struct _LINK_NOTIFICATION {
 int16 group_number;
 int16 filler1;
 char os_type;
 char filler2;
 } LINK_NOTIFICATION;

Message Data
Fields

Arguments

Field Data Type Script
Format

Description

group_number word DW Group address associated with link.

filler1 word DW Reserved for BEA MessageQ.

os_type byte A(1) Code indicating operating system of remote
node.

filler2 byte XB Reserved for BEA MessageQ.

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source CONNECT_SERVER PAMS_CONNECT_SERVER
BEA MessageQ Programmer’s Guide 9-31

9 Message Reference
See Also n DISABLE_NOTIFY

n ENABLE_NOTIFY

n LINK_COMPLETE

Class PAMS MSG_CLAS_PAMS

Type LINK_LOST MSG_TYPE_LINK_LOST

Argument Script Format pams_get_msg Format
9-32 BEA MessageQ Programmer’s Guide

LIST_ALL_CONNECTIONS (Request)

An application can request a listing of all active and configured cross-group
connections by sending a LIST_ALL_CONNECTIONS message to the Connect Server.
The reply to this request is a variable-length message of the same type and class
containing the cross-group connection information. See the Listing Cross-Group
Connections, Entries, and Groups topic in the Using Message-Based Services section
for an explanation of how to use this message.

Note: This message is RISC aligned.

C Message
Structure

None.

Message Data
Fields

None.

Arguments

See Also n LIST_ALL_CONNECTIONS response message

n LIST_ALL_ENTRIES (Request)

n LIST_ALL_ENTRIES (Response)

n LIST_ALL_GROUPS (Request)

n LIST_ALL_GROUPS (Response)

Argument Script Format pams_get_msg Format

Target CONNECT_SERVER PAMS_CONNECT_SERVER

Source Requesting program Requesting program

Class PAMS MSG_CLAS_PAMS

Type LIST_ALL_CONNECTIONS MSG_TYPE_LIST_ALL_
CONNECTIONS
BEA MessageQ Programmer’s Guide 9-33

9 Message Reference
LIST_ALL_CONNECTIONS (Response)

An application can request a listing of all active and configured cross-group
connections by sending a LIST_ALL_CONNECTIONS message to the Connect Server.
The reply to this request is a variable length-message of the same type and class
containing the cross-group connection information. To read the information returned,
the application must total the number of bytes in the reply and divide by the
cross-group entry length, which is 20 bytes, to determine the number of records
returned. See the Listing Cross-Group Connections, Entries, and Groups topic in the
Using Message-Based Services section for an explanation of how to use this message.

This message does not return any information on groups with no link connection. The
state field for LIST_ALL_CONNECTIONS should always be 3 (linked).

Note: The Connect Server does not perform endian conversion when this message
is received between processes that run on systems that use different hardware
data formats. The sender program must convert the message to the endian
format of the target system to ensure that the message data is correctly
interpreted. This message is RISC aligned.

C Message
Structure

typedef struct _GROUP_RECORD {
 int16 group_number;
 char group_name[4];
 char uic[3];
 char os_type;
 char node[6];
 char state;
 char reserved[3];
 } GROUP_RECORD;

Message Data
Fields

Field Data Type Script
Format

Description

group_number word DW Group address number.

group_name 4-char array A(4) Name truncated to 4 characters.

uic 3-char array A(3) Octal group user identification code
(UIC).

os_type char A(1) Operating system type of group.
9-34 BEA MessageQ Programmer’s Guide

Arguments

See Also n LIST_ALL_CONNECTIONS request message

n LIST_ALL_ENTRIES (Request)

n LIST_ALL_ENTRIES (Response)

n LIST_ALL_GROUPS (Request)

n LIST_ALL_GROUPS (Response)

node 6-char array A(6) Network node name.

state char A(1) 1=No link
2=Pending
3=Linked

reserved 3-char ZB 3 Reserved for BEA MessageQ.

Field Data Type Script
Format

Description

Argument Script Format pams_get_msg Format

Target Supplied by BEA MessageQ Supplied by BEA MessageQ

Source CONNECT_SERVER PAMS_CONNECT_SERVER

Class PAMS MSG_CLAS_PAMS

Type LIST_ALL_CONNECTIONS MSG_TYPE_LIST_ALL_
CONNECTIONS
BEA MessageQ Programmer’s Guide 9-35

9 Message Reference
LIST_ALL_ENTRIES (Request)

An application can request a listing of all attached and configured queues in a group
by sending a LIST_ALL_ENTRIES message to the Connect Server. The reply to this
request is a variable-length message of the same type and class containing the queue
information. See the Listing Cross-Group Connections, Entries, and Groups topic in
the Using Message-Based Services section for an explanation of how to use this
message.

Note: This message is RISC aligned.

C Message
Structure

None.

Message Data
Fields

None.

Arguments

See Also n LIST_ALL_ENTRIES response message

n LIST_ALL_CONNECTIONS (Request)

n LIST_ALL_CONNECTIONS (Response)

n LIST_ALL_GROUPS (Request)

n LIST_ALL_GROUPS (Response)

Argument Script Format pams_get_msg Format

Target CONNECT_SERVER PAMS_CONNECT_SERVER

Source Supplied by BEA MessageQ Supplied by BEA MessageQ

Class PAMS MSG_CLAS_PAMS

Type LIST_ALL_ENTRIES MSG_TYPE_LIST_ALL_

ENTRIES
9-36 BEA MessageQ Programmer’s Guide

LIST_ALL_ENTRIES (Response)

An application can request a listing of all attached and configured queues in a group
by sending a LIST_ALL_ENTRIES message to the Connect Server. The reply to this
request is a variable length message of the same type and class containing the queue
information. To read the information returned, the application must total the number
of bytes in the reply and divide by the queue entry length, which is 24 bytes, to
determine the number of records returned. See the Listing Cross-Group Connections,
Entries, and Groups topic in the Using Message-Based Services section for an
explanation of how to use this message.

Note: The Connect Server does not perform endian conversion when this message
is received between processes that run on systems that use different hardware
data formats. The sender program must convert the message to the endian
format of the target system to ensure that the message data is correctly
interpreted. This message is RISC aligned.

C Message
Structure

typedef struct _QLIST_RECORD {
 char q_name [20];
 int16 q_number;
 char attach_flag;
 char reserved;
 } QLIST_RECORD;

Message Data
Fields

Field Data Type Script
Format

Description

q_name 20-char
array

A(20) Queue name, truncated to fit.

q_number word DW Local queue address number.

attach_flag Boolean DB 1=Attached
0=Unattached

reserved byte ZB Reserved for BEA MessageQ.
BEA MessageQ Programmer’s Guide 9-37

9 Message Reference
Arguments

See Also n LIST_ALL_ENTRIES request message

n LIST_ALL_GROUPS (Request)

n LIST_ALL_GROUPS (Response)

n LIST_ALL_CONNECTIONS (Request)

n LIST_ALL_CONNECTIONS (Response)

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source CONNECT_SERVER PAMS_CONNECT_SERVER

Class PAMS MSG_CLAS_PAMS

Type LIST_ALL_ENTRIES MSG_TYPE_LIST_ALL_ENTRIES
9-38 BEA MessageQ Programmer’s Guide

LIST_ALL_GROUPS (Request)

An application can request a listing of all groups on a message queuing bus by sending
a LIST_ALL_GROUPS message to the Connect Server. The reply to this request is a
variable-length message of the same type and class containing the group information.
See the Listing Cross-Group Connections, Entries, and Groups topic in the Using
Message-Based Services section for an explanation of how to use this message.

Note: This message is RISC aligned.

C Message
Structure

None.

Message Data
Fields

None.

Arguments

See Also n LIST_ALL_GROUPS response message

n LIST_ALL_CONNECTIONS (Request)

n LIST_ALL_CONNECTIONS (Response)

n LIST_ALL_ENTRIES (Request)

n LIST_ALL_ENTRIES (Response)

Argument Script Format pams_get_msg Format

Target CONNECT_SERVER PAMS_CONNECT_SERVER

Source Supplied by BEA MessageQ Supplied by BEA MessageQ

Class PAMS MSG_CLAS_PAMS

Type LIST_ALL_GROUPS MSG_TYPE_LIST_ALL_GROUPS
BEA MessageQ Programmer’s Guide 9-39

9 Message Reference
LIST_ALL_GROUPS (Response)

An application can request a listing of all groups, connected and unconnected, on a
message queuing bus by sending a LIST_ALL_GROUPS message to the Connect Server.
The reply to this request is a variable-length message of the same type and class
containing the group information. To read the information returned, the application
must total the number of bytes in the reply and divide by the group entry length, which
is 18 bytes, to determine the number of records returned. See the Listing Cross-Group
Connections, Entries, and Groups topic in the Using Message-Based Services section
for an explanation of how to use this message.

Note: The Connect Server does not perform endian conversion when this message
is received between processes that run on systems that use different hardware
data formats. The sender program must convert the message to the endian
format of the target system to ensure that the message data is correctly
interpreted. This message is RISC aligned.

C Message
Structure

typedef struct _LIST_ALL_RESP {
 int16 group_number;
 char group_name [4];
 char uic_number [3];
 char operating_system;
 char decnet_node [6];
 char connection_state;
 char reserved[3];
 } LIST_ALL_RESP;

Message Data
Fields

Field Data Type Script
Format

Description

group_number word DW Group address number.

group_name 4-char
array

A(4) Name truncated to 4 characters.

uic_number 3-char
array

A(3) Octal group user identification code (UIC).

operating_sy
stem

char A(1) Operating system type of group.
9-40 BEA MessageQ Programmer’s Guide

Arguments

See Also n LIST_ALL_GROUPS request message

n LIST_ALL_CONNECTIONS (Request)

n LIST_ALL_CONNECTIONS (Response)

n LIST_ALL_ENTRIES (Request)

n LIST_ALL_ENTRIES (Response)

decnet_node 6-char
array

A(6) Current DECnet node name. This can also be
the TCP/IP node name. TCP/IP node names
longer than 6 characters are truncated.

connection_s
tate

char A(1) 1=No link
2=Pending
3=Linked

reserved 3-char
(VMS)
1-char
(UNIX)

ZB Reserved for BEA MessageQ.

Field Data Type Script
Format

Description

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source CONNECT_SERVER PAMS_CONNECT_SERVER

Class PAMS MSG_CLAS_PAMS

Type LIST_ALL_GROUPS MSG_TYPE_LIST_ALL_GROUPS
BEA MessageQ Programmer’s Guide 9-41

9 Message Reference
LIST_ALL_Q_REQ

The LIST_ALL_Q_REQ message is sent to the Queue Server to request a list of all
attached permanent and temporary queues for a local or remote group. See the Listing
Attached Queues in a Group topic in the Using Message-Based Services section for an
explanation of how to use this message.

Note: The Queue Server performs endian conversion when this message is sent
between processes that run on systems that use different hardware data
formats. This message is also RISC aligned.

C Message
Structure

typedef struct _Q_NOTIFY_REQ {
 int32 version;
 int32 user_tag;
 } Q_NOTIFY_REQ;

Message Data
Fields

Arguments

See Also n LIST_ALL_Q_RESP

Field Data Type Script
Format

Description

version int32 DL Version of request.

user_tag int32 DL User-specified code to identify this request.

Argument Script Format pams_get_msg Format

Target QUEUE_SERVER PAMS_QUEUE_SERVER

Source Requesting program Requesting program

Class PAMS MSG_CLAS_PAMS

Type LIST_ALL_Q_REQ MSG_TYPE_LIST_ALL_Q_REQ
9-42 BEA MessageQ Programmer’s Guide

w to

eived

LIST_ALL_Q_RESP

The LIST_ALL_Q_RESP message provides a list of all permanent queues and all
attached temporary queues for a local or remote group. This information is requested
by sending a LIST_ALL_Q_REQ message to the Queue Server. Because the response
message may contain a long list of queue names, the application must allocate a
sufficient buffer size to store the information returned. See Listing Attached Queues in
a Group in Chapter 5, “Using Message-Based Services” for an explanation of ho
use this message.

Note: The Queue Server performs endian conversion when this message is rec
between processes that run on systems that use different hardware data
formats. This message is also RISC aligned.

C Message
Structure

#define MAX_NUMBER_Q_RECS 50
typedef struct _Q_NOTIFY_RESP {
 int32 version;
 int32 user_tag;
 int32 status_code;
 int32 last_block_flag;
 int32 number_q_recs;
 struct {
 q_address q_num;
 q_address q_owner;
 int32 q_type;
 int32 q_active_flag;
 int32 q_attached_flag;
 int32 q_owner_pid;
 } q_rec [50];
 } Q_NOTIFY_RESP;

Message Data
Fields

Field Data Type Script
Format

Description

version int32 DL Version of response.

user_tag int32 DL User-specified code from request.

status_code int32 DL 0=Error
1=Success
-2=Refused
BEA MessageQ Programmer’s Guide 9-43

9 Message Reference
Arguments

See Also n LIST_ALL_Q_REQ

last_block_flag int32 DL Last block Boolean flag.

number_q_recs int32 DL Number of records in this message.

q_num q_address DL Queue number.

q_owner q_address DL Queue owner (only for secondary queues (SQs)).

q_type int32 DL Queue type (numerically encoded P, S, M).

q_active_flag int32 DL Queue active Boolean flag.

q_attached_flag int32 DL Queue attached Boolean flag.

q_owner_pid int32 DL Queue owner process identification (PID). On
Windows NT systems, thread identifier is returned.

Field Data Type Script
Format

Description

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source QUEUE_SERVER PAMS_QUEUE_SERVER

Class PAMS MSG_CLAS_PAMS

Type LIST_ALL_Q_RESP MSG_TYPE_LIST_ALL_Q_RESP
9-44 BEA MessageQ Programmer’s Guide

LOCATE_Q_REP

The pams_locate_q function requests the queue address for a queue name. When this
function is performed asynchronously, the results are returned in the LOCATE_Q_REP
message. This message provides the location in the search list where the name is found,
the status of the operation, a tag that can be set by the user, and the queue address
associated with the name.

Note: This message is RISC aligned.

C Message
Structure

typedef struct _LOCATE_Q_REP {
 int32 version;
 int32 search_loc;
 q_address object_handle;
 int32 status;
 int32 trans_id;
 char q_name [256];
 } LOCATE_Q_REP;

Message Data
Fields

Arguments

Field Data Type Script
Format

Description

version int32 DL Format version number.

search_loc int32 DL Location in which name is found.

object_handle q_address DL Queue address associated with name.

status int32 DL Return code from pams_locate_q.

trans_id int32 DL User-specified tag.

q_name 256-character
array

A(256) Name to locate.

Argument Script Format pams_get_msg Format

Target Supplied by BEA MessageQ Supplied by BEA MessageQ

Source Supplied by BEA MessageQ Supplied by BEA MessageQ
BEA MessageQ Programmer’s Guide 9-45

9 Message Reference
Class PAMS MSG_CLAS_PAMS

Type LOCATE_Q_REP MSG_TYPE_LOCATE_Q_REP

Argument Script Format pams_get_msg Format
9-46 BEA MessageQ Programmer’s Guide

MRS_ACK

The MRS_ACK message acknowledges the delivery of a recoverable message at the
delivery interest point when a nonblocking request is issued. It responds to a
pams_put_msg request when delivery modes of PDEL_MODE_AK_DQF,
PDEL_MODE_AK_SAF, or PDEL_MODE_AK_CONF are specified. Status codes for the send
operation are extracted from the PAMS Status Block (PSB), an argument value which
is returned to the pams_get_msg, pams_get_msga, and pams_get_msgw function
when the recoverable message is read. The status codes for the psb and uma arguments
are listed in the Status Codes section of this description.

Note: This message is RISC aligned.

C Message
Structure

None.

Message Data
Fields

None.

Arguments

Status Code

Argument Script Format pams_get_msg Format

Target Sender program Sender program

Source MRS_SERVER PAMS_MRS_SERVER

Class MRS MSG_CLAS_MRS

Type MRS_ACK MSG_TYPE_MRS_ACK

Message PSB Status

PAMS__DQF_DEVICE_FAIL Message is not recoverable; destination queue file
(DQF) I/O failed.

PAMS__ENQUEUED Message is recoverable.

PAMS__MRS_RES_EXH Message is not recoverable; MRS resource
exhaustion.
BEA MessageQ Programmer’s Guide 9-47

9 Message Reference
UMA Status

PAMS__NO_DQF Message is not recoverable; no DQF for target queue.

PAMS__NO_SAF Message is not recoverable; no SAF file for target
queue.

PAMS__SAF_DEVICE_FAIL Message is not recoverable; SAF I/O failed.

PAMS__SAF_FORCED Message is written to SAF file to maintain
first-in/first-out (FIFO) order.

PAMS__SENDER_TMOEXPIRED Send timeout expired prior to completion of MRS
actions.

PAMS__STORED Message is recoverable in store and forward (SAF)
file. (Delivery mode was PDEL_MODE_AK_SAF.)

Message PSB Status

Message UMA Status

PAMS__DISC_SUCCESS Message is not recoverable in DQF; UMA was
PDEL_UMA_DISC; message discarded.

PAMS__DISC_FAILED Message is not recoverable in DQF; UMA was
PDEL_UMA_DISC; message could not be discarded.

PAMS__DISCL_SUCCESS Message is not recoverable in DQF; UMA was
PDEL_UMA_DISC; message discarded after logging re-
coverability failure.

PAMS__DISCL_FAILED Message is not recoverable in DQF; UMA was
PDEL_UMA_DISC; recoverability failure could not be
logged or message could not be discarded.

PAMS__DLJ_SUCCESS Message is not recoverable in DQF; UMA was
PDEL_UMA_DLJ; message written to dead letter journal
(DLJ).

PAMS__DLJ_FAILED Message is not recoverable in DQF; UMA was
PDEL_UMA_DLJ; dead letter journal write failed.
9-48 BEA MessageQ Programmer’s Guide

PAMS__DLQ_SUCCESS Message is not recoverable in DQF; UMA was
PDEL_UMA_DLQ; message queued to dead letter queue.

PAMS__DLQ_FAILED Message is not recoverable in DQF; UMA was
PDEL_UMA_DLQ; message could not be queued to dead
letter queue.

PAMS__NO_UMA Message is recoverable; undeliverable message action
(UMA) not executed.

PAMS__RTS_SUCCESS Message is not recoverable in DQF; UMA was
PDEL_UMA_RTS; message returned to sender.

PAMS__RTS_FAILED Message is not recoverable in DQF; UMA was
PDEL_UMA_RTS; message could not be returned to send-
er.

PAMS__SAF_SUCCESS Message is not recoverable in DQF; UMA was
PDEL_UMA_SAF; message recoverable from SAF file.

PAMS__SAF_FAILED Message is not recoverable in DQF; UMA was
PDEL_UMA_SAF; SAF write failed.

Message UMA Status
BEA MessageQ Programmer’s Guide 9-49

9 Message Reference
MRS_DQF_SET

Applications can request to open, close, or fail over a destination queue file (DQF) by
sending an MRS_DQF_SET message to the MRS Server. The failover function renames
a DQF file, associating it with another target queue that does not currently have a DQF
associated with it. See the Opening, Closing, and Failing Over SAF and DQF Files
topic in the Using Message-Based Services section for an explanation of how to use
this message. This service is available on OpenVMS systems only.

Note: The MRS Server does not perform endian conversion when this message is
sent between processes that run on systems that use different hardware data
formats. The sender program must convert the message to the endian format
of the target system to ensure that the message data is correctly interpreted.
This message is RISC aligned.

C Message
Structure

/***/
/* ACTION VALUES FOR MRS_DQF_SET message */
/***/
#define DQF_SET_OPEN 1
#define DQF_SET_CLOSE 2
#define DQF_SET_FAILOVER 3

/***/
/* STATUS VALUES FOR MRS_DQF_SET message */
/***/
#define DQF_SET_ERROR 0
#define DQF_SET_SUCCESS 1
#define DQF_SET_REFUSED 2

typedef struct _MRS_DQF_SET {
 int16 version;
 int16 action;
 int32 status;
 q_address original_target;
 q_address new_target;
 int32 original_mrs_area_len;
 char original_mrs_area [256];
 } MRS_DQF_SET;
9-50 BEA MessageQ Programmer’s Guide

Message Data
Fields

Arguments

See Also n MRS_DQF_SET_REP

n MRS_SAF_SET

n MRS_SAF_SET_REP

Field Data Type Script
Format

Description

version word DW Format version number. Must be 0.

action word DW 1 = Open
2 = Close
3 = Fail over

status int32 DL 0 = Error
1 = Success
2 = Refused

original_target q_address DL Queue address of DQF.

new target q_address DL Queue address of new DQF for failover.

original_mrs_area_len int32 DL Number of bytes in original MRS area
specification for failover.

original_mrs_area 256-byte array A(256) MRS original area specification for failover.

Argument Script Format pams_get_msg Format

Target MRS_SERVER PAMS_MRS_SERVER

Source Supplied by BEA MessageQ Supplied by BEA MessageQ

Class MRS MSG_CLAS_MRS

Type MRS_DQF_SET MSG_TYPE_MRS_DQF_SET
BEA MessageQ Programmer’s Guide 9-51

9 Message Reference
MRS_DQF_SET_REP

Applications can request to open, close, or fail over a destination queue file (DQF) by
sending an MRS_DQF_SET message to the MRS Server. The failover function renames
a DQF file, associating it with another target queue that does not currently have a DQF
associated with it. The MRS_DQF_SET_REP message returns the status of the request.
See the Opening, Closing, and Failing Over SAF and DQF Files topic in the Using
Message-Based Services section for an explanation of how to use this message. This
service is available on OpenVMS systems only.

Note: The MRS Server does not perform endian conversion when this message is
received between processes that run on systems that use different hardware
data formats. The sender program must convert the message to the endian
format of the target system to ensure that the message data is correctly
interpreted. This message is RISC aligned.

C Message
Structure

/***/
/* ACTION VALUES FOR MRS_DQF_SET message */
/***/
#define DQF_SET_OPEN 1
#define DQF_SET_CLOSE 2
#define DQF_SET_FAILOVER 3

/***/
/* STATUS VALUES FOR MRS_DQF_SET message */
/***/
#define DQF_SET_ERROR 0
#define DQF_SET_SUCCESS 1
#define DQF_SET_REFUSED 2

typedef struct _MRS_DQF_SET {
 int16 version;
 int16 action;
 int32 status;
 q_address original_target;
 q_address new_target;
 int32 original_mrs_area_len;
 char original_mrs_area [256];
 } MRS_DQF_SET;
9-52 BEA MessageQ Programmer’s Guide

Message Data
Fields

Arguments

See Also n MRS_DQF_SET

n MRS_SAF_SET

n MRS_SAF_SET_REP

Field Data Type Script
Format

Description

version word DW Format version number. Must be 0.

action word DW 1 = Open
2 = Close
3 = Fail over

status int32 DL 0 = Error
1 = Success
2 = Refused

original_

target

q_address DL Queue address of DQF.

new_target q_address DL Queue address of new DQF for failover.

original_mrs_area_len int32 DL Number of bytes in original MRS area
specification for failover.

original_mrs_area 256-byte array A(256) MRS original area specification for failover.

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source MRS_SERVER PAMS_MRS_SERVER

Class MRS MSG_CLAS_MRS

Type MRS_DQF_SET_REP MSG_TYPE_MRS_DQF_SET_REP
BEA MessageQ Programmer’s Guide 9-53

9 Message Reference
MRS_DQF_TRANSFER

Applications can request the transfer of the contents of one DQF to another by sending
a MRS_DQF_TRANSFER message to the Qtransfer Server. Using this failover method,
when a node fails, the Qtransfer Server can transfer messages from a recoverable
queue on a node that has failed to a recoverable queue on a node that is currently
processing messages. See the Transferring the Contents of a Destination Queue File
topic in the Using Message-Based Services section for an explanation of how to use
this message. This service is available on OpenVMS systems only.

Note: The Qtransfer Server does not perform endian conversion when this message
is sent between processes that run on systems that use different hardware data
formats. The sender program must convert the message to the endian format
of the target system to ensure that the message data is correctly interpreted.

C Message
Structure

typedef struct _MRS_DQF_TRANSFER {
 int16 version;
 int32 user_tag;
 int16 status;
 int32 send_count;
 int16 from_dqf_len;
 char from_dqf_file [256];
 int16 to_q;
 } MRS_DQF_TRANSFER;

Message Data
Fields

Field Data Type Script
Format

Description

version word DW Format version number.

user_tag int32 XL User-defined tag.

status word DW Not used.

send_count int32 DL Count of successful transfers.

from_dqf_len word DW Number of bytes in DQF file specification.

from_dqf_fil
e

256-byte
array

A(256) File specification of DQF.

to_q word DW Local address of queue to receive transfer.
9-54 BEA MessageQ Programmer’s Guide

Arguments

See Also n MRS_DQF_TRANSFER_REP

n MRS_DQF_TRANSFER_ACK

Argument Script Format pams_get_msg Format

Target QTRANSFER PAMS_QTRANSFER

Source Supplied by BEA MessageQ Supplied by BEA MessageQ

Class MRS MSG_CLAS_MRS

Type MRS_DQF_TRANSFER MSG_TYPE_MRS_DQF_TRANSFER
BEA MessageQ Programmer’s Guide 9-55

9 Message Reference
MRS_DQF_TRANSFER_ACK

Applications can request the transfer of the contents of one DQF file to another by
sending an MRS_DQF_TRANSFER message to the Qtransfer Server. Using this failover
method, when a node fails, the Qtransfer Server can transfer messages from a
recoverable queue on a node that has failed to a recoverable queue on a node that is
currently processing messages. The MRS_DQF_TRANSFER_ACK message is returned to
the sender to acknowledge the receipt of the request. See the Transferring the Contents
of a Destination Queue File topic in the Using Message-Based Services section for an
explanation of how to use this message. This service is available on OpenVMS
systems only.

Note: The Qtransfer Server does not perform endian conversion when this message
is received between processes that run on systems that use different hardware
data formats. The sender program must convert the message to the endian
format of the target system to ensure that the message data is correctly
interpreted.

C Message
Structure

typedef struct _MRS_DQF_TRANSFER {
 int16 version;
 int32 user_tag;
 int16 status;
 int32 send_count;
 int16 from_dqf_len;
 char from_dqf_file [256];
 int16 to_q;
 } MRS_DQF_TRANSFER;

Message Data
Fields

Field Data Type Script
Format

Description

version word DW Format version number.

user_tag int32 XL User-defined tag.

status word DW 0=Error
1=Success
2=Refused

send_count int32 DW Count of successful transfers.
9-56 BEA MessageQ Programmer’s Guide

Arguments

See Also n MRS_DQF_TRANSFER

n MRS_DQF_TRANSFER_REP

from_dqf_len word DW Number of bytes in DQF file
specification.

from_dqf_file 256-byte
array

A(256) File specification of DQF file to read.

to_q word DW Local address of queue to receive
transfer.

Field Data Type Script
Format

Description

Argument Script Format pams_get_msg Format

Target QTRANSFER PAMS_QTRANSFER

Source Supplied by BEA MessageQ Supplied by MessaqeQ

Class MRS MSG_CLAS_MRS

Type MRS_DQF_TRANSFER_ACK MSG_TYPE_DQF_TRANSFER_ ACK
BEA MessageQ Programmer’s Guide 9-57

9 Message Reference
MRS_DQF_TRANSFER_REP

Applications can request the transfer of the contents of one destination queue file to
another by sending an MRS_DQF_TRANSFER message to the Qtransfer Server. Using
this failover method, when a node fails, the Qtransfer Server can transfer messages
from a recoverable queue on a node that has failed to a recoverable queue on a node
that is currently processing messages. The MRS_DQF_TRANSFER_REP message is
returned to the sender to indicate the completion status of the request. See the
Transferring the Contents of a Destination Queue File topic in the Using
Message-Based Services section for an explanation of how to use this message. This
service is available on OpenVMS systems only.

Note: The Qtransfer Server does not perform endian conversion when this message
is received between processes that run on systems that use different hardware
data formats. The sender program must convert the message to the endian
format of the target system to ensure that the message data is correctly
interpreted.

C Message
Structure

typedef struct _MRS_DQF_TRANSFER {
 int16 version;
 int32 user_tag;
 int16 status;
 int32 send_count;
 int16 from_dqf_len;
 char from_dqf_file [256];
 int16 to_q;
 } MRS_DQF_TRANSFER;

Message Data
Fields

Field Data Type Script
Format

Description

version word DW Format version number.

user_tag int32 XL User-defined tag.

status word DW 0=Error
1=Success
2=Refused

send_count int32 DL Count of successful transfers.

from_dqf_len word DW Number of bytes DQF file specification.
9-58 BEA MessageQ Programmer’s Guide

Arguments

See Also n MRS_DQF_TRANSFER

n MRS_DQF_TRANSFER_ACK

from_dqf_file 256-byte
array

A(256) File specification of DQF file to read.

to_q word DW Local address of queue to receive trans-
fer.

Field Data Type Script
Format

Description

Argument Script Format pams_get_msg Format

Target QTRANSFER PAMS_QTRANSFER

Source Supplied by BEA MessageQ Supplied by BEA MessageQ

Class MRS MSG_CLAS_MRS

Type MRS_DQF_TRANSFER_REP MSG_TYPE_MRS_DFQ_

TRANSFER_REP
BEA MessageQ Programmer’s Guide 9-59

9 Message Reference
MRS_JRN_DISABLE

Disables journaling for a running message queuing group. This service is used to
disable journaling before failing over auxiliary journals. See the Controlling
Journaling to the PCJ File topic in the Using Message-Based Services section for an
explanation of how to use this message. This service is available on OpenVMS
systems only.

Note: The MRS Server does not perform endian conversion when this message is
sent between processes that run on systems that use different hardware data
formats. The sender program must convert the message to the endian format
of the target system to ensure that the message data is correctly interpreted.
This message is RISC aligned.

C Message
Structure

/**/
/* STATUS VALUES FOR JRN_ENABLE message */
/**/
#define JRN_SET_ERROR 0
#define JRN_SET_SUCCESS 1
#define JRN_SET_REFUSED 2
#define JRN_SET_ALREADY_DISABLED 3
#define JRN_SET_ALREADY_ENABLED 4
#define JRN_SET_SERVER_NOTUP 5

typedef struct _MRS_JRN_SET_ALL {
 int32 version;
 int32 dqf_status;
 int32 saf_status;
 int32 pcj_status;
 int32 dlj_status;
 } MRS_JRN_SET_ALL;

Message Data
Fields

Field Data Type Script
Format

Description

version int32 DL Format version number. Must be 0.

dqf_status int32 DL 0 = Error
1 = Success
2 = Refused
3 = Already Disabled
9-60 BEA MessageQ Programmer’s Guide

Arguments

See Also n MRS_JRN_DISABLE_REP

n MRS_JRN_ENABLE

n MRS_JRN_ENABLE_REP

saf_status int32 DL 0 = Error
1 = Success
2 = Refused
3 = Already Disabled

pcj_status int32 DL 0 = Error
1 = Success
2 = Refused
3 = Already Disabled
5 = Server Not Available

dlj_status int32 DL 0 = Error
1 = Success
2 = Refused
3 = Already Disabled
5 = Server Not Available

Field Data Type Script
Format

Description

Argument Script Format pams_get_msg Format

Target MRS_SERVER PAMS_MRS_SERVER

Source Supplied by BEA MessageQ Supplied by BEA MessageQ

Class MRS MSG_CLAS_MRS

Type MRS_JRN_DISABLE MSG_TYPE_MRS_JRN_DISABLE
BEA MessageQ Programmer’s Guide 9-61

9 Message Reference
MRS_JRN_DISABLE_REP

Applications can request to disable journaling for a running message queuing group by
sending an MRS_JRN_DISABLE message to the MRS Server. The
MRS_JRN_DISABLE_REP message returns the status of the request. This service is used
before failing over auxiliary journals. See the Controlling Journaling to the PCJ File
topic in the Using Message-Based Services section for an explanation of how to use
this message. This service is available on OpenVMS systems only.

Note: The MRS Server does not perform endian conversion when this message is
received between processes that run on systems that use different hardware
data formats. The sender program must convert the message to the endian
format of the target system to ensure that the message data is correctly
interpreted. This message is RISC aligned.

C Message
Structure

/**/
/* STATUS VALUES FOR JRN_ENABLE message */
/**/
#define JRN_SET_ERROR 0
#define JRN_SET_SUCCESS 1
#define JRN_SET_REFUSED 2
#define JRN_SET_ALREADY_DISABLED 3
#define JRN_SET_ALREADY_ENABLED 4
#define JRN_SET_SERVER_NOTUP 5

typedef struct _MRS_JRN_SET_ALL {
 int32 version;
 int32 dqf_status;
 int32 saf_status;
 int32 pcj_status;
 int32 dlj_status;
 } MRS_JRN_SET_ALL;

Message Data
Fields

Field Data Type Script
Format

Description

version int32 DL Format version number. Must be 0.

dqf_status int32 DL 0 = Error
1 = Success
2 = Refused
3 = Already Disabled
9-62 BEA MessageQ Programmer’s Guide

Arguments

See Also n MRS_JRN_DISABLE

n MRS_JRN_ENABLE

n MRS_JRN_ENABLE_REP

saf_status int32 DL 0 = Error
1 = Success
2 = Refused
3 = Already Disabled

pcj_status int32 DL 0 = Error
1 = Success
2 = Refused
3 = Already Disabled
5 = Server Not Available

dlj_status int32 DL 0 = Error
1 = Success
2 = Refused
3 = Already Disabled
5 = Server Not Available

Field Data Type Script
Format

Description

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source MRS_SERVER PAMS_MRS_SERVER

Class MRS MSG_CLAS_MRS

Type MRS_JRN_DISABLE_REP MSG_TYPE_MRS_JRN_

DISABLE_REP
BEA MessageQ Programmer’s Guide 9-63

9 Message Reference
MRS_JRN_ENABLE

Enables journaling for a running message queuing group after it has been disabled
using the MRS_JRN_DISABLE message. This service is used before failing over
auxiliary journals. See the Controlling Journaling to the PCJ File topic in the Using
Message-Based Services section for an explanation of how to use this message. This
service is available on OpenVMS systems only.

Note: The MRS Server does not perform endian conversion when this message is
sent between processes that run on systems that use different hardware data
formats. The sender program must convert the message to the endian format
of the target system to ensure that the message data is correctly interpreted.
This message is RISC aligned.

C Message
Structure

/**/
/* STATUS VALUES FOR JRN_ENABLE message */
/**/
#define JRN_SET_ERROR 0
#define JRN_SET_SUCCESS 1
#define JRN_SET_REFUSED 2
#define JRN_SET_ALREADY_DISABLED 3
#define JRN_SET_ALREADY_ENABLED 4
#define JRN_SET_SERVER_NOTUP 5

typedef struct _MRS_JRN_SET_ALL {
 int32 version;
 int32 dqf_status;
 int32 saf_status;
 int32 pcj_status;
 int32 dlj_status;
 } MRS_JRN_SET_ALL;

Message Data
Fields

Field Data Type Script
Format

Description

version int32 DL Format version number. Must be 0.

dqf_status int32 DL 0 = Error
1 = Success
2 = Refused
4 = Already Enabled
9-64 BEA MessageQ Programmer’s Guide

Arguments

See Also MRS_JRN_DISABLE

MRS_JRN_DISABLE_REP

MRS_JRN_ENABLE_REP

saf_status int32 DL 0 = Error
1 = Success
2 = Refused
4 = Already Enabled

pcj_status int32 DL 0 = Error
1 = Success
2 = Refused
4 = Already Enabled
5 = Server Not Available

dlj_status int32 DL 0 = Error
1 = Success
2 = Refused
4 = Already Enabled
5 = Server Not Available

Field Data Type Script
Format

Description

Argument Script Format pams_get_msg Format

Target MRS_SERVER PAMS_MRS_SERVER

Source Supplied by BEA MessageQ Supplied by BEA MessageQ

Class MRS MSG_CLAS_MRS

Type MRS_JRN_ENABLE MSG_TYPE_MRS_JRN_ENABLE
BEA MessageQ Programmer’s Guide 9-65

9 Message Reference
MRS_JRN_ENABLE_REP

Applications can request to reenable journaling for a running message queuing group
after it has been disabled by sending an MRS_JRN_ENABLE message to the MRS Server.
The MRS_JRN_ENABLE_REP message returns the status of the request. This service is
used with MRS before failing over auxiliary journals. See the Controlling Journaling
to the PCJ File topic in the Using Message-Based Services section for an explanation
of how to use this message. This service is available on OpenVMS systems only.

Note: The MRS Server does not perform endian conversion when this message is
received between processes that run on systems that use different hardware
data formats. The sender program must convert the message to the endian
format of the target system to ensure that the message data is correctly
interpreted. This message is RISC aligned.

C Message
Structure

/**/
/* STATUS VALUES FOR JRN_ENABLE message */
/**/
#define JRN_SET_ERROR 0
#define JRN_SET_SUCCESS 1
#define JRN_SET_REFUSED 2
#define JRN_SET_ALREADY_DISABLED 3
#define JRN_SET_ALREADY_ENABLED 4
#define JRN_SET_SERVER_NOTUP 5

typedef struct _MRS_JRN_SET_ALL {
 int32 version;
 int32 dqf_status;
 int32 saf_status;
 int32 pcj_status;
 int32 dlj_status;
 };
typedef struct MRS_JRN_SET_ALL;

Message Data
Fields

Field Data Type Script
Format

Description

version int32 DL Format version number. Must be 0.

dqf_status int32 DL 0 = Error
1 = Success
2 = Refused
4 = Already Enabled
9-66 BEA MessageQ Programmer’s Guide

Arguments

See Also MRS_JRN_DISABLE

MRS_JRN_DISABLE_REP

MRS_JRN_ENABLE

saf_status int32 DL 0 = Error
1 = Success
2 = Refused
4 = Already Enabled

pcj_status int32 DL 0 = Error
1 = Success
2 = Refused
4 = Already Enabled
5 = Server Not Available

dlj_status int32 DL 0 = Error
1 = Success
2 = Refused
4 = Already Enabled
5 = Server Not Available

Field Data Type Script
Format

Description

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source MRS_SERVER PAMS_MRS_SERVER

Class MRS MSG_CLAS_MRS

Type MRS_JRN_ENABLE_REP MSG_TYPE_MRS_JRN_ENABLE_R
EP
BEA MessageQ Programmer’s Guide 9-67

9 Message Reference
MRS_SAF_SET

Applications can request to open, close, or failover (redirect) a store-and-forward file
(SAF) by sending an MRS_SAF_SET message to the MRS Server. The failover function
renames a SAF file, associating it with another target queue that does not currently
have a SAF associated with it. See the Opening, Closing, and Failing Over SAF and
DQF Files topic in the Using Message-Based Services section for an explanation of
how to use this message. This service is available on OpenVMS systems only.

Note: The MRS Server does not perform endian conversion when this message is
sent between processes that run on systems that use different hardware data
formats. The sender program must convert the message to the endian format
of the target system to ensure that the message data is correctly interpreted.
This message is RISC aligned.

C Message
Structure

/***/
/* ACTION VALUES FOR MRS_SAF_SET message */
/***/
#define SAF_SET_OPEN 4
#define SAF_SET_CLOSE 5
#define SAF_SET_FAILOVER 6

/***/
/* STATUS VALUES FOR MRS_SAF_SET message */
/***/
#define JRN_SET_ERROR 0
#define JRN_SET_SUCCESS 1
#define JRN_SET_REFUSED 2

typedef struct _MRS_SAF_SET {
 int16 version;
 int16 action;
 int32 status;
 q_address original_target;
 q_address new_target;
 int32 original_mrs_area_len;
 char original_mrs_area [256];
 int16 original_owner_group;
 int16 new_owner_group;
 } MRS_SAF_SET;
9-68 BEA MessageQ Programmer’s Guide

Message Data
Fields

Arguments

See Also n MRS_SAF_SET_REP

Field Data Type Script
Format

Description

version word DW Format version number. Must be 0.

action word DW 4 = Open
5 = Close
6 = Failover

status int32 DL 0 = Error
1 = Success
2 = Refused

original_target q_address DL Queue address of SAF.

new_target q_address DL Queue address of new SAF for failover.

original_mrs_ area_len int32 DL Number of bytes in original MRS area
specification for failover.

original_mrs_ area 256-byte
array

A(256) MRS original area specification for failover.

original_owner_group word DW The current group that owns the SAF.

new_owner_ group word DW The new group that will assume ownership
of the SAF after failover is complete.

Argument Script Format pams_get_msg Format

Target MRS_SERVER PAMS_MRS_SERVER

Source Supplied by BEA MessageQ Supplied by BEA MessageQ

Class MRS MSG_CLAS_MRS

Type MRS_SAF_SET MSG_TYPE_MRS_SAF_SET
BEA MessageQ Programmer’s Guide 9-69

9 Message Reference
n MRS_DQF_SET

n MRS_DQF_SET_REP
9-70 BEA MessageQ Programmer’s Guide

MRS_SAF_SET_REP

Applications can request to open, close, or failover (redirect) a store-and-forward file
(SAF) by sending an MRS_SAF_SET message to the MRS Server. The failover function
renames a SAF file, associating it with another target queue that does not currently
have a SAF associated with it. The MRS_SAF_SET_REP message returns the status of
the request. See the Opening, Closing, and Failing Over SAF and DQF Files topic in
the Using Message-Based Services section for an explanation of how to use this
message. This service is available on OpenVMS systems only.

Note: The MRS Server does not perform endian conversion when this message is
received between processes that run on systems that use different hardware
data formats. The sender program must convert the message to the endian
format of the target system to ensure that the message data is correctly
interpreted. This message is RISC aligned.

C Message
Structure

/***/
/* ACTION VALUES FOR MRS_SAF_SET message */
/***/
#define SAF_SET_OPEN 4
#define SAF_SET_CLOSE 5
#define SAF_SET_FAILOVER 6

/***/
/* STATUS VALUES FOR MRS_SAF_SET message */
/***/
#define JRN_SET_ERROR 0
#define JRN_SET_SUCCESS 1
#define JRN_SET_REFUSED 2

typedef struct _MRS_SAF_SET {
 int16 version;
 int16 action;
 int32 status;
 q_address original_target;
 q_address new_target;
 int32 original_mrs_area_len;
 char original_mrs_area [256];
 int16 original_owner_group;
 int16 new_owner_group;
 } MRS_SAF_SET;
BEA MessageQ Programmer’s Guide 9-71

9 Message Reference
Message Data
Fields

Arguments

See Also n MRS_SAF_SET

Field Data Type Script
Format

Description

version word DW Format version number. Must be 0.

action word DW 4 = Open
5 = Close
6 = Failover

status int32 DL 0 = Error
1 = Success
2 = Refused

original_target q_address DL Queue address of SAF.

new_target q_address DL Queue address of new SAF for failover.

original_mrs_ area_len int32 DL Number of bytes in original MRS area
specification for failover.

original_mrs_ area 256-byte
array

A(256) MRS original area specification for failover.

original_owner_group word DW The current group that owns the SAF.

new_owner_ group word DW The new group that will assume ownership
of the SAF after failover is complete.

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source MRS_SERVER PAMS_MRS_SERVER

Class MRS MSG_CLAS_MRS

Type MRS_SAF_SET_REP MSG_TYPE_MRS_SAF_SET_REP
9-72 BEA MessageQ Programmer’s Guide

n MRS_DQF_SET

n MRS_DQF_SET_REP
BEA MessageQ Programmer’s Guide 9-73

9 Message Reference
MRS_SET_DLJ

Applications can request to close a dead letter journal (DLJ) file and open a new one
by sending an MRS_SET_DLJ message to the MRS Server. Because the DLJ file cannot
be simultaneously open for read and write access, an application must close the current
file to read from it and open a new file to continue collecting messages. See the
Managing Message Recovery Files topic in the Using Message-Based Services section
for an explanation of how to use this message. This service is available on OpenVMS
systems only.

Note: The MRS Server does not perform endian conversion when this message is
sent between processes that run on systems that use different hardware data
formats. The sender program must convert the message to the endian format
of the target system to ensure that the message data is correctly interpreted.

C Message
Structure

typedef struct _MRS_SET_DLJ {
 int16 version;
 int32 user_tag;
 int32 status;
 char dlj_file [64];
 } MRS_SET_DLJ;

Message Data
Fields

Arguments

Field Data Type Script
Format

Description

version word DW Format version number.

user_tag int32 XL User-defined tag.

status int32 XL 0=Error
1=Success
2=Refused

dlj_file 64-char array A(64) File specification of DLJ file.

Argument Script Format pams_get_msg Format

Target MRS_SERVER PAMS_MRS_SERVER
9-74 BEA MessageQ Programmer’s Guide

See Also n MRS_SET_DLJ_REP

n MRS_SET_PCJ

n MRS_SET_PCJ_REP

Source Supplied by BEA MessageQ Supplied by BEA MessageQ

Class MRS MSG_CLAS_MRS

Type MRS_SET_DLJ MSG_TYPE_MRS_SET_DLJ

Argument Script Format pams_get_msg Format
BEA MessageQ Programmer’s Guide 9-75

9 Message Reference
MRS_SET_DLJ_REP

Applications can request to close a dead letter journal (DLJ) file and open a new one
by sending a MRS_SET_DLJ message to the MRS Server. Because the DLJ file cannot
be simultaneously open for read and write access, an application must close the current
file to read from it and open a new file to continue collecting messages. The
MRS_SET_DLJ_REP message returns the status of the request. See the Managing
Message Recovery Files topic in the Using Message-Based Services section for an
explanation of how to use this message. This service is available on OpenVMS
systems only.

Note: The MRS Server does not perform endian conversion when this message is
received between processes that run on systems that use different hardware
data formats. The sender program must convert the message to the endian
format of the target system to ensure that the message data is correctly
interpreted.

C Message
Structure

typedef struct _MRS_SET_DLJ {
 int16 version;
 int32 user_tag;
 int32 status;
 char dlj_file [64];
 } MRS_SET_DLJ;

Message Data
Fields

Field Data Type Script
Format

Description

version word DW Format version number.

user_tag int32 XL User-defined tag.

status int32 XL 0=Error
1=Success
2=Refused

dlj_file 64-char array A(64) File specification of DLJ file.
9-76 BEA MessageQ Programmer’s Guide

Arguments

See Also n MRS_SET_DLJ

n MRS_SET_PCJ

n MRS_SET_PCJ_REP

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source MRS_SERVER PAMS_MRS_SERVER

Class MRS MSG_CLAS_MRS

Type MRS_SET_DLJ_REP MSG_TYPE_MRS_SET_DLJ_REP
BEA MessageQ Programmer’s Guide 9-77

9 Message Reference
MRS_SET_PCJ

Applications can request to close a postconfirmation journal (PCJ) file and open a new
one by sending an MRS_SET_PCJ message to the MRS Server. Because the PCJ file
cannot be simultaneously open for read and write access, an application must close the
current file to read from it and open a new file to continue collecting messages. If
default journaling is enabled, all recoverable messages are written to the PCJ file after
confirmation unless the confirming process overrides the default. If default journaling
is disabled, only those messages that are explicitly confirmed with PDEL_FORCE_J are
written to the PCJ file. See the Managing Message Recovery Files topic in the Using
Message-Based Services section for an explanation of how to use this message. This
service is available on OpenVMS systems only.

Note: The MRS Server does not perform endian conversion when this message is
sent between processes that run on systems that use different hardware data
formats. The sender program must convert the message to the endian format
of the target system to ensure that the message data is correctly interpreted.

C Message
Structure

typedef struct _MRS_SET_PCJ {
 int16 version;
 int32 user_tag;
 int32 force_j;
 int32 status;
 char pcj_file [64];
 } MRS_SET_PCJ;

Message Data
Fields

Field Data Type Script
Format

Description

version word DW Format version number.

user_tag int32 XL User-defined tag.

force_j int32 DL 0 = Disable
1 = Enable default journaling

status int32 XL 0=Error
1=Success
2=Refused

pcj_file 64-char array A(64) File specification of PCJ file.
9-78 BEA MessageQ Programmer’s Guide

Arguments

See Also n MRS_SET_PCJ_REP

n MRS_SET_DLJ

n MRS_SET_DLJ_REP

Argument Script Format pams_get_msg Format

Target MRS_SERVER PAMS_MRS_SERVER

Source Supplied by BEA MessageQ Supplied by BEA MessageQ

Class MRS MSG_CLAS_MRS

Type MRS_SET_PCJ MSG_TYPE_MRS_SET_PCJ
BEA MessageQ Programmer’s Guide 9-79

9 Message Reference
MRS_SET_PCJ_REP

Applications can request to close a postconfirmation journal (PCJ) and open a new one
by sending an MRS_SET_PCJ message to the MRS Server. Because the PCJ file cannot
be simultaneously open for read and write access, an application must close the current
file to read from it and open a new file to continue collecting messages. The
MRS_SET_PCJ_REP message returns the status of the request. See the Managing
Message Recovery Files topic in the Using Message-Based Services section for an
explanation of how to use this message. This service is available on OpenVMS
systems only.

Note: The MRS Server does not perform endian conversion when this message is
received between processes that run on systems that use different hardware
data formats. The sender program must convert the message to the endian
format of the target system to ensure that the message data is correctly
interpreted.

C Message
Structure

typedef struct _MRS_SET_PCJ {
 int16 version;
 int32 user_tag;
 int32 force_j;
 int32 status;
 char pcj_file [64];
 } MRS_SET_PCJ;

Message Data
Fields

Field Data Type Script
Format

Description

version word DW Format version number.

user_tag int32 XL User-defined tag.

force_j int32 DL 0 = Disable
1 = Enable default journaling

status int32 XL 0=Error
1=Success
2=Refused

pcj_file 64-char array A(64) File specification of the PCJ.
9-80 BEA MessageQ Programmer’s Guide

Arguments

See Also n MRS_SET_PCJ

n MRS_SET_DLJ

n MRS_SET_DLJ_REP

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source MRS_SERVER PAMS_MRS_SERVER

Class MRS MSG_CLAS_MRS

Type MRS_SET_PCJ_REP MSG_TYPE_MRS_SET_PCJ_REP
BEA MessageQ Programmer’s Guide 9-81

9 Message Reference
Q_UPDATE

Applications can register to receive notification when queue states change in local or
remote groups by sending an ENABLE_Q_NOTIFY_REQ message. The
ENABLE_Q_NOTIFY_RESP message delivers a list of all active queues and then
subsequently notifies the application of attachments, detachments, and changes to
active and inactive status using the Q_UPDATE message. See the Receiving Attachment
Notifications topic in the Using Message-Based Services section for an explanation of
how to use this message.

Note: The Queue Server performs endian conversion when this message is received
between processes that run on systems that use different hardware data
formats. This message is also RISC aligned.

C Message
Structure

#define MAX_NUMBER_Q_RECS 50

typedef struct _Q_NOTIFY_RESP {
 int32 version;
 int32 user_tag;
 int32 status_code;
 int32 last_block_flag;
 int32 number_q_recs;
 struct {
 q_address q_num;
 q_address q_owner;
 int32 q_type;
 int32 q_active_flag;
 int32 q_attached_flag;
 int32 q_owner_pid;
 } q_rec [50];
} Q_NOTIFY_RESP;

Message Data
Fields

Field Data Type Script
Format

Description

version int32 DL Version of response.

user_tag int32 DL User-specified code from request.

status_code int32 DL 0=Error
1=Success
2=Refused
9-82 BEA MessageQ Programmer’s Guide

Arguments

See Also n ENABLE_Q_NOTIFY_REQ

n ENABLE_Q_NOTIFY_RESP

n DISABLE_Q_NOTIFY_REQ

n DISABLE_Q_NOTIFY_RESP

last_block_flag int32 DL Last block Boolean flag.

number_q_recs int32 DL Number of records in this message.

q_num q_address DL Queue number.

q_owner q_address DL Queue owner (only for secondary queues (SQs)).

q_type int32 DL Queue type (numerically encoded P, S, M).

q_active_flag int32 DL Queue active Boolean flag.

q_attached_flag int32 DL Queue attached Boolean flag.

q_owner_pid int32 DL Queue owner process identification (PID).

Field Data Type Script
Format

Description

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source QUEUE_SERVER PAMS_QUEUE_SERVER

Class PAMS MSG_CLAS_PAMS

Type Q_UPDATE MSG_TYPE_Q_UPDATE
BEA MessageQ Programmer’s Guide 9-83

9 Message Reference
SBS_DEREGISTER_REQ

Requests SBS deregistration by exact match of MOT and distribution queue or by
registration ID.

This service replaces the SBS_DEREG service.

Note: The SBS Server performs endian conversion when this message is sent
between processes that run on systems that use different hardware data
formats. This message is also RISC aligned.

C Message
Structure

typedef struct _SBS_DEREGISTER_REQ {
 int32 version;
 int32 user_tag;
 int32 mot;
 q_address distribution_q;
 int32 reg_id;
 int32 req_ack;
 } SBS_DEREGISTER_REQ;

Message Data
Fields

Field Data Type Script
Format

Description

version int32 DL Message format version number.
Must be 40.

user_tag int32 DL User-specified code to identify this
request.

mot int32 DL The MOT broadcast stream from
which the program wants to
deregister. 0 if unused.

distribution_q q_address DW,
DW

The BEA MessageQ address of the
distribution queue of the registration.
A zero in the group number portion of
the queue address automatically is
replaced with the group number of the
sender.

reg_id int32 DL The ID of the registration request to
deregister. 0 if unused.
9-84 BEA MessageQ Programmer’s Guide

Arguments

See Also n SBS_DEREGISTER_RESP

n SBS_REGISTER_REQ

n SBS_REGISTER_RESP

req_ack int32 DL 1 if registration acknowledgment
message is required; 0 otherwise.

Field Data Type Script
Format

Description

Argument Script Format pams_get_msg Format

Target SBS_SERVER PAMS_SBS_SERVER

Source Source queue address of the
requester.

Source queue address of the
requester.

Class PAMS MSG_CLAS_PAMS

Type SBS_DEREGISTER_REQ MSG_TYPE_SBS_

DEREGISTER_REQ
BEA MessageQ Programmer’s Guide 9-85

9 Message Reference
SBS_DEREGISTER_RESP

This response message acknowledges the SBS server deregistration of all entries
matching the given MOT queue and distribution queue.

This service replaces the SBS_DEREG_ACK service.

Note: The SBS Server performs endian conversion when this message is received
between processes that run on systems that use different hardware data
formats. This message is also RISC aligned.

C Message
Structure

typedef struct _SBS_DEREGISTER_RESP {
 int32 version;
 int32 status;
 int32 user_tag;
 int32 number_reg;
 } SBS_DEREGISTER_RESP;

Message Data
Fields

Arguments

Field Data Type Script
Format

Description

version int32 DL Message format version number. Must be
40.

status int32 DL Returned status code. Valid codes are as
follows:
PSYM_SBS_SUCCESS = Success
PSYM_SBS_BADPARAM = Bad
parameter
PSYM_SBS_NOMATCH = No match

user_tag int32 DL User-specified code from the request
message.

number_reg int32 DL The number of registrants left on this MOT
or target.

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program
9-86 BEA MessageQ Programmer’s Guide

See Also n SBS_DEREGISTER_REQ

n SBS_REGISTER_REQ

n SBS_REGISTER_RESP

Source SBS_SERVER PAMS_SBS_SERVER

Class PAMS MSG_CLAS_PAMS

Type SBS_DEREGISTER_RESP MSG_TYPE_SBS_

DEREGISTER_RESP

Argument Script Format pams_get_msg Format
BEA MessageQ Programmer’s Guide 9-87

9 Message Reference
SBS_REGISTER_REQ

This request message requests registration for reception of broadcast messages. It can
specify from 0 to 255 distribution rules, which must be satisfied for the message to be
distributed to the distribution queue. If a sequence gap notification is requested, an
SBS_SEQUENCE_GAP message is sent to the distribution queue every time a .message
sequence gap is detected.

This service replaces the SBS_REG and SBS_REG_EZ services.

Note: The SBS Server performs endian conversion when this message is sent
between processes that run on systems that use different hardware data
formats. This message is also RISC aligned.

C Message
Structure

typedef struct _SBS_REGISTER_HEAD {
 int32 version;
 int32 user_tag;
 int32 mot;
 q_address distribution_q;
 int32 req_ack;
 int32 seq_gap_notify;
 int32 auto_dereg;
 int32 rule_count;
 int32 rule_conjunct;
 } SBS_REGISTER_HEAD;

typedef struct _SBS_REGISTER_RULE {
 int32 offset;
 int32 data_operator;
 int32 length;
 int32 operand;
 } SBS_REGISTER_RULE;

#define MAX_SEL_RULES 256
typedef struct _SBS_REGISTER_REQ {
 SBS_REGISTER_HEAD head;
 SBS_REGISTER_RULE rule [256];
 } SBS_REGISTER_REQ;
9-88 BEA MessageQ Programmer’s Guide

Message Data
Fields

Field Data Type Script
Format

Description

version int32 DL Message format version number. Must be 40.

user_tag int32 DL User-specified code to identify this request.

mot int32 DL The MOT broadcast stream to which the program
attempts to register.

distribution_q q_address DW,
DW

The BEA MessageQ address that receives any
messages that are selected from the broadcast stream.

A zero in the group number portion of the queue
address is automatically replaced with the group
number of the sender.

req_ack int32 DL 1 if registration acknowledgment message is
required; 0 otherwise.

seq_gap_notify int32 DL 1 if broadcast stream sequence gap notification is
required; 0 otherwise.

auto_dereg int32 DL 1 if registration request is to be purged on
distribution queue detach; 0 otherwise.

rule_count int32 DL Number of distribution rules in the request (0, ...,
255).

rule_conjunct int32 DL Valid values are:
PSEL_ALL_RULES if all rules must be true for
distribution to succeed;
PSEL_ANY_RULE if any rule being true can trigger
distribution.

* Following items are repeated “rule_count” times *

data_offset int32 DL Valid values are:
PSEL_TYPE
PSEL_CLAS
SDM tag ID
Integer in the range 0, ..., MAX_MSG_SIZE,
specifying an offset in the data
BEA MessageQ Programmer’s Guide 9-89

9 Message Reference
Arguments

See Also n SBS_DEREGISTER_REQ

n SBS_DEREGISTER_RESP

n SBS_REGISTER_RESP

n SBS_SEQUENCE_GAP

data_operator int32 DL Valid values are:
PSEL_OPER_ANY (always match)
PSEL_OPER_EQ (equal)
PSEL_OPER_NEQ (not equal)
PSEL_OPER_GTR (greater than)
PSEL_OPER_LT (less than)
PSEL_OPER_GTRE (greater than or equal)
PSEL_OPER_LTE (less than or equal)
PSEL_OPER_AND (“operand” field AND data at
“data offset” is non-zero)

data_length int32 DL Specifies the size of comparison to be performed:
One of 0, 1, 2, or 4 bytes.

operand int32 DL Value used for comparison with data at the “data
offset”.

Field Data Type Script
Format

Description

Argument Script Format pams_get_msg Format

Target SBS_SERVER PAMS_SBS_SERVER

Source Requesting program Requesting program

Class PAMS MSG_CLAS_PAMS

Type SBS_REGISTER_REQ MSG_TYPE_SBS_REGISTER_REQ
9-90 BEA MessageQ Programmer’s Guide

SBS_REGISTER_RESP

This message provides a response to an SBS_REGISTER_REQ subscriber registration.
The response contains a status field, which is 1 on success. The message also contains
the user tag, specified in the request message, the registration ID and the number of
registered entries for the MOT address.

This service replaces the SBS_REG_REPLY and SBS_REG_EZ_REPLY services.

Note: The SBS Server performs endian conversion when this message is received
between processes that run on systems that use different hardware data
formats. This message is also RISC aligned.

C Message
Structure

typedef struct _SBS_REGISTER_RESP {
 int32 version;
 int32 user_tag;
 int32 status;
 int32 reg_id;
 int32 number_reg;
 } SBS_REGISTER_RESP;

Message Data
Fields

Field Data Type Script
Format

Description

version int32 DL Message format version number. Must be
40.

user_tag int32 DL User-specified code from the request
message.

status int32 DL Returned status code. Valid codes are as
follows:
PSYM_SBS_SUCCESS = Success
PSYM_SBS_BADPARAM = Bad parameter
PSYM_SBS_RESRCFAIL = Failed to
allocate resource

reg_id int32 DL Returned registration ID.

number_reg int32 DL Number of entries currently registered for
this MOT or target.
BEA MessageQ Programmer’s Guide 9-91

9 Message Reference
Arguments

See Also n SBS_DEREGISTER_REQ

n SBS_DEREGISTER_RESP

n SBS_REGISTER_REQ

Argument Script Format pams_get_msg Format

Target Source of registrant Source of registrant

Source SBS_SERVER PAMS_SBS_SERVER

Class PAMS MSG_CLAS_PAMS

Type SBS_SEQUENCE_RESP MSG_TYPE_SBS_SEQUENCE_
RESP
9-92 BEA MessageQ Programmer’s Guide

SBS_SEQUENCE_GAP

This message indicates that a sequence gap occurred in a broadcast stream. Sequence
gaps can occur when the sender is broadcasting at a higher rate than the receiver can
handle.

This service replaces the SBS_BS_SEQGAP service.

Note: The SBS Server performs endian conversion when this message is sent
between processes that run on systems that use different hardware data
formats. This message is also RISC aligned.

C Message
Structure

typedef struct _SBS_SEQUENCE_GAP {
 int32 num_msgs_missing;
 int32 sender_group;
 int32 mot;
 int32 channel;
 } SBS_SEQUENCE_GAP;

Message Data
Fields

Arguments

Field Data Type Script
Format

Description

num_msgs_ missing int32 DL Number of lost messages in sequence gap.

sender_group int32 DL Group number of sending SBS server.

mot int32 DL MOT address in which broadcast stream gap
occurred.

channel in32 DL Source address of MOT; either SBS server or
Ethernet channel.

Argument Script Format pams_get_msg Format

Target Registrant Registrant

Source SBS_SERVER PAMS_SBS_SERVER

Class PAMS MSG_CLAS_PAMS
BEA MessageQ Programmer’s Guide 9-93

9 Message Reference
See Also n SBS_REGISTER_REQ

Type SBS_SEQUENCE_GAP MSG_TYPE_SBS_SEQUENCE_ GAP

Argument Script Format pams_get_msg Format
9-94 BEA MessageQ Programmer’s Guide

SBS_STATUS_REQ

The SBS server supports a message-based status request. This request details the
current condition of each MOT being used by the server and its activity with other
BEA MessageQ groups, which are also running the SBS server.

The request message is targeted to the SBS_SERVER with message class PAMS and
message type SBS_STATUS_REQ. Upon receipt of the message, the SBS server
validates the request. If the request is incorrect, the response message contains an error
status. The SBS server responds with the reply message of type SBS_STATUS_RESP.

Note: The SBS Server performs endian conversion when this message is sent
between processes that run on systems that use different hardware data
formats. This message is also RISC aligned.

C Message
Structure

typedef struct _SBS_STATUS_REQ {
 int32 version;
 int32 user_tag;
 int32 start_mot;
 int32 end_mot;
 int32 reset;
 } SBS_STATUS_REQ;

Message Data
Fields

Field Data Type Script
Format

Description

version int32 DL Message format version number. Must be
40.

user_tag int32 DL User-specified code to identify this request.

start_mot int32 DL Lowest MOT for which statistics are desired.

end_mot int32 DL Highest MOT for which statistics are
desired.

reset int32 DL 0: Do not reset counters for the remote server
data after constructing the reply message.

1: Reset counters for the remote server data
after constructing the reply message.
BEA MessageQ Programmer’s Guide 9-95

9 Message Reference
Arguments

See Also n SBS_STATUS_RESP

Argument Script Format pams_get_msg Format

Target SBS_SERVER PAMS_SBS_SERVER

Source Requesting program’s primary or
reply queue

Requesting program’s primary or
reply queue

Class PAMS MSG_CLAS_PAMS

Type SBS_STATUS_REQ MSG_TYPE_SBS_STATUS_REQ
9-96 BEA MessageQ Programmer’s Guide

SBS_STATUS_RESP

This message is returned following the successful processing of the SBS_STATUS_REQ
request message. It is a variable format message and is made up of a variable number
of fixed length parts. To parse the message, each variable length section has a count.

Note: The SBS Server performs endian conversion when this message is received
between processes that run on systems that use different hardware data
formats. This message is also RISC aligned.

C Message
Structure

typedef struct _SBS_STATUS_RESP {
 int32 version;
 int32 user_tag;
 int32 status;
 int32 num_rec;
 int32 last_block;
 char data [31980];
 } SBS_STATUS_RESP;

typedef struct _SBS_STATUS_RESP_MOT {
 int32 mot;
 union {
 struct {
 union {
 struct {
 char s_b1;
 char s_b2;
 char s_b3;
 char s_b4;
 } S_un_b;
 struct {
 uint16 s_w1;
 uint16 s_w2;
 } S_un_w;
 uint32 S_addr;
 } inet_addr;
 uint16 inet_port;
 } udp;
 struct {
 char mca_addr [12];
 char protocol [4];
 } eth;
 struct {
 char unused [20];
 } dmq;
 int32 filler [5];
 } transport;
BEA MessageQ Programmer’s Guide 9-97

9 Message Reference
 int32 heartbeat_timer;
 int32 xmit_silo;
 int32 rcv_silo;
 int32 rcv_silo_max;
 int32 num_reg;
 int32 complete_rcvd;
 int32 complete_bytes;
 int32 seq_gaps;
 int32 whole_msg_gaps;
 int32 whole_silo_gap;
 struct {
 char device_name [16];
 struct {
 uint32 tv_sec;
 uint32 tv_usec;
 } fail_tod;
 int32 msgs_sent;
 int32 bytes_sent;
 int32 pkts_sent;
 int32 pkts_rcvd;
 int32 dupl_pkts_disc;
 } rail [2];
 } SBS_STATUS_RESP_MOT;

typedef struct _SBS_STATUS_REP_REG_Q {
 q_address reg_q;
 } SBS_STATUS_REP_REG_Q;

typedef struct _SBS_STATUS_REP_NUM_GROUPS {
 int32 num_groups;
 } SBS_STATUS_REP_NUM_GROUPS;

typedef struct _SBS_STATUS_RESP_GROUP {
 int32 group;
 int32 rexmit_reqs_to_remote;
 int32 rexmit_sat_by_remote;
 int32 late_rexmit;
 int32 rexmit_reqs_from_remote;
 int32 rexmit_sat_by_local;
 } SBS_STATUS_RESP_GROUP;
9-98 BEA MessageQ Programmer’s Guide

Message Data
Fields

Field Data Type Script
Format

Description

version int32 DL Message format version number. Must be
40.

user_tag int32 DL User-specified code to identify this request.

Status int32 DL Returned status code. Valid codes are as
follows:

PSYM_SBS_SUCCESS = Success
PSYM_SBS_BADPARAM = Bad parameter
PSYM_SBS_NOMATCH = No match

num_rec int32 DL Number of MOTs reported in this message.

last_block int32 DL 1 if this is the last message; 0 otherwise.

 * Remainder of message repeated "num_rec" times up to a maximum of 50 records per Local SBS Server data *

mot int32 DL MOT for which statistics are being reported.

transport A(20) Transport specific address information
associated with the MOT. The format is
dependant on the type of transport referred
to.

heartbeat_timer int32 DL Heartbeat timer setting.

xmit_silo int32 DL Transmit silo size (MABs).

rcv_silo int32 DL Receiver silo size (MABs).

rcv_silo_max int32 DL Maximum occupancy of receive silo
(MABs).

num_reg int32 DL Number of registrants for this MOT.

complete_rcvd int32 DL Number of complete messages received.

complete_bytes int32 DL Number bytes contained in
“complete_rcvd” messages.
BEA MessageQ Programmer’s Guide 9-99

9 Message Reference
seq_gaps int32 DL Total sequence gaps reported on this MOT.

whole_msg_gaps int32 DL Number complete messages detected missed
initially.

whole_silo_gap int32 DL Number times sequence gap caused entire
silo flush.

* Transport rail information repeated two times *

device_name char A(16) Optimized device address.

fail_tod DL(2) Shutdown timestamp in seconds.

msgs_sent int32 DL Number of messages sent on this rail.

bytes_sent int32 DL Number of bytes sent on this rail.

pkts_sent int32 DL Number of packets sent on this rail.

pkts_rcvd int32 DL Number of packets received on rail.

dupl_pkts_disc int32 DL Number of duplicate packets discarded from
this rail.

* Registrant data: repeated "num_reg" times *

reg_q q_address DW,
DW

Queue address of registrant.

* End of registrant data *

num_groups int32 DL Number of remote SBS servers
communicating with the local SBS server.

* Remote SBS server data: Following fields repeated "num_groups" times *

group int32 DL Group number of remote SBS server.

rexmit_reqs_to_ remote int32 DL Number of retransmission requests from the
local SBS server to the remote SBS server.

rexmit_sat_by_ remote int32 DL Number of retransmission requests satisfied
by the remote SBS server.

Field Data Type Script
Format

Description
9-100 BEA MessageQ Programmer’s Guide

Arguments

See Also n SBS_STATUS_REQ

late_rexmit int32 DL Number of retransmission requests that were
received too late to prevent a sequence gap.

rexmit_reqs_ from_remote int32 DL Number of retransmission requests from the
remote SBS server.

rexmit_sat_by _local int32 DL Number of retransmission requests satisfied
by the local SBS server for the remote server.

* End of remote server data *

Field Data Type Script
Format

Description

Argument Script Format pams_get_msg Format

Target Requesting program’s primary or
reply queue

Requesting program’s primary or
reply queue

Source SBS_SERVER PAMS_SBS_SERVER

Class PAMS MSG_CLAS_PAMS

Type SBS_STATUS_RESP MSG_TYPE_SBS_STATUS_RESP
BEA MessageQ Programmer’s Guide9-101

9 Message Reference

h call
TIMER_EXPIRED

TIMER_EXPIRED is a response message to the pams_set_timer function. This message
is sent to the timer queue associated with sender program’s primary queue. Eac
to the pams_set_timer function generates one message of type TIMER_EXPIRED when
the timer expires.

Note: This message is RISC aligned.

C Message
Structure

typedef struct _TIMER_EXPIRED {
 int32 timer_id;
 char reserved [20];
 } TIMER_EXPIRED;

Message Data
Fields

Arguments

Field Data Type Script
Format

Description

timer_id int32 DL Timer ID specified in the pams_set_timer
call.

reserved 20-byte array A(20) Reserved for BEA MessageQ.

Argument Script Format pams_get_msg Format

Target primary queue primary queue

Source TIMER_QUEUE PAMS_TIMER_QUEUE

Class PAMS MSG_CLAS_PAMS

Type TIMER_EXPIRED MSG_TYPE_TIMER_EXPIRED
9-102 BEA MessageQ Programmer’s Guide

UNAVAIL

Applications register to receive notification when queues become active or inactive in
local and remote groups by sending an AVAIL_REG message to the Avail Server. The
UNAVAIL notification message is sent to the registered application when a queue in the
selected group becomes inactive. See the Obtaining the Status of a Queue topic in the
Using Message-Based Services section for an explanation of how to use this message.

Note: The Avail Server performs endian conversion when this message is received
between processes that run on systems that use different hardware data
formats. This message is also RISC aligned.

C Message
Structure

typedef struct _UNAVAIL {
 q_address target_q;
 } UNAVAIL;

Message Data
Fields

Arguments

See Also n AVAIL_REG

n AVAIL_REG_REPLY

n AVAIL

n AVAIL_DEREG

Field Data Type Script Format Description

target_q q_address DL Address of unavailable queue.

Argument Script Format pams_get_msg Format

Target Supplied by AVAIL_REG Supplied by AVAIL_REG

Source AVAIL_SERVER AVAIL_SERVER

Class PAMS MSG_CLAS_PAMS

Type UNAVAIL MSG_TYPE_UNAVAIL
BEA MessageQ Programmer’s Guide9-103

9 Message Reference
9-104 BEA MessageQ Programmer’s Guide

APPENDIX

t
A Supported Delivery
Modes and
Undeliverable Message
Actions

This appendix describes the valid combinations for the delivery and uma arguments
in each BEA MessageQ supported environment.

The delivery argument uses the PDEL_MODE_sn_dip format where:

n sn is one of the following sender notification codes:

WF—Wait for completion

AK—Asynchronous acknowledgment

NN—No notification

n dip is one of the following delivery interest point codes:

ACK—Read from target queue and explicitly acknowledged using the
pams_confirm_msg service. ACK can also be an implicit acknowledgement sen
after the second pams_get_msg call by the receiving application.

CONF—Delivered from the DQF and explicitly confirmed using the
pams_confirm_msg service

DEQ—Read from the target queue

DQF—Stored in the destination queue file
BEA MessageQ Programmer’s Guide A-1

A Supported Delivery Modes and Undeliverable Message Actions

in
eue
MEM—Stored in the target queue

SAF—Stored in the store and forward file

Note: If temporary queues are used, deleted, and reused quickly, it is possible
isolated cases for an implicit ACK response from a previous temporary qu
to be placed on the new temporary queue.

The uma argument uses the PDEL_UMA_xxx format where xxx is one of the following
codes:

DISC—Discard

DISCL—Discard after logging (Open VMS only)

DLJ—Dead letter journal

DLQ—Dead letter queue

RTS—Return to sender

SAF—Store and forward

Note: On UNIX and Windows NT systems, the DISCL UMA performs the same as
the DISC UMA, discarding the message without logging the event.
A-2 BEA MessageQ Programmer’s Guide

Delivery Mode and UMA Cross-Reference
Delivery Mode and UMA Cross-Reference

Table A-1 uses the following key for delivery mode support:

X—-Supported
.—-Not supported
S—-Available if supported by message ser

Table A-1 Delivery Mode and UMA Cross-Reference

Delivery Mode Version UMA UNIX/
Windows
NT

OpenVMS Clients

PDEL_MODE_AK_ACK DISC X X X

 DISCL X X X

 DLQ X X X

 DLJ . X S

 RTS X X X

 SAF . . .

PDEL_MODE_AK_CONF DISC X X X

DISCL X X X

DLQ X X X

DLJ X X S

RTS X X X

SAF X . X

PDEL_MODE_AK_DEQ DISC X X X

DISCL X X X

DLQ X X X
BEA MessageQ Programmer’s Guide A-3

A Supported Delivery Modes and Undeliverable Message Actions
DLJ . X S

RTS X X X

SAF . . .

PDEL_MODE_AK_DQF DISC X X X

DISCL X X X

DLQ X X X

DLJ X X X

RTS X X X

SAF X X X

PDEL_MODE_AK_MEM DISC X X X

 DISCL X X X

 DLQ X X X

 DLJ . X S

 RTS X X X

 SAF . . .

PDEL_MODE_AK_SAF DISC X X X

DISCL X X X

DLQ X X X

DLJ X X X

RTS X X X

SAF . X S

Table A-1 Delivery Mode and UMA Cross-Reference

Delivery Mode Version UMA UNIX/
Windows
NT

OpenVMS Clients
A-4 BEA MessageQ Programmer’s Guide

Delivery Mode and UMA Cross-Reference
PDEL_MODE_NN_DQF DISC X X X

DISCL X X X

DLQ X X X

DLJ X X X

RTS X X X

SAF X X X

PDEL_MODE_NN_MEM DISC X X X

 DISCL X X X

 DLQ X X X

 DLJ . X S

 RTS X X X

 SAF . . .

PDEL_MODE_NN_SAF DISC X X X

DISCL X X X

DLQ X X X

DLJ X X X

RTS X X X

SAF . X S

PDEL_MODE_WF_ACK DISC X X X

DISCL X X X

DLQ X X X

Table A-1 Delivery Mode and UMA Cross-Reference

Delivery Mode Version UMA UNIX/
Windows
NT

OpenVMS Clients
BEA MessageQ Programmer’s Guide A-5

A Supported Delivery Modes and Undeliverable Message Actions
DLJ . X S

RTS X X X

SAF . . .

PDEL_MODE_WF_CONF DISC X X X

 DISCL X X X

 DLQ X X X

 DLJ X X X

 RTS X X X

 SAF X . X

PDEL_MODE_WF_DEQ DISC X X X

DISCL X X X

DLQ X X X

DLJ . X S

RTS X X X

SAF . . .

PDEL_MODE_WF_DQF DISC X X X

DISCL X X X

DLQ X X X

DLJ X X X

RTS X X X

SAF X X X

Table A-1 Delivery Mode and UMA Cross-Reference

Delivery Mode Version UMA UNIX/
Windows
NT

OpenVMS Clients
A-6 BEA MessageQ Programmer’s Guide

Delivery Mode and UMA Cross-Reference
PDEL_MODE_WF_MEM DISC X X X

 DISCL X X X

 DLQ X X X

 DLJ . X S

 RTS X X X

 SAF . . X

PDEL_MODE_WF_SAF DISC X X X

DISCL X X X

DLQ X X X

DLJ X X X

RTS X X X

SAF . X S

Key to Delivery Modes Supported

X—-Supported
.—-Not supported
S—-Available if supported by message server

Table A-1 Delivery Mode and UMA Cross-Reference

Delivery Mode Version UMA UNIX/
Windows
NT

OpenVMS Clients
BEA MessageQ Programmer’s Guide A-7

A Supported Delivery Modes and Undeliverable Message Actions
A-8 BEA MessageQ Programmer’s Guide

APPENDIX
B Obsolete Functions and
Services

This appendix contains reference information for obsolete functions and services.
These functions and services should not be used in new development. Information is
provided referencing features which replace obsolete functions and services.

Obsolete Message-Based Services for
Message Broadcasting

This section contains reference information for the following obsolete services for
message broadcasting:

n SBS_BS_SEQGAP

n SBS_DEREG

n SBS_DEREG_ACK

n SBS_DEREG_BY_ID

n SBS_REG

n SBS_REG_EZ

n SBS_REG_EZ_REPLY

n SBS_REG_REPLY
BEA MessageQ Programmer’s Guide B-1

B Obsolete Functions and Services
SBS_BS_SEQGAP

Note: This service is obsolete. Use SBS_SEQUENCE_GAP instead.

Applications can register to receive notification of sequence gaps in broadcast
messages when sending the SBS_REG message to the SBS Server. The registered
application receives an SBS_BS_SEQGAP message when there is a gap in sequence of
broadcast messages. Sequence gaps can occur when the sender program is
broadcasting at a higher rate than the receiver program can handle.

C Message
Structure

typedef struct _SBS_BS_SEQGAP {
 int32 num_msgs_missing;
 uint16 sender_group;
 uint16 mot;
 uint16 channel;
 } SBS_BS_SEQGAP;

Message Data
Fields

Arguments

Field Data Type Script
Format

Description

num_msgs_
missing

int32 DL Count of lost messages in sequence gap.

sender_group unsigned
word

DW Group address of sending SBS Server.

mot unsigned
word

DW Multipoint Outbound Target (MOT) address
in which broadcast stream gap occurred.

channel unsigned
word

DW Source address of MOT; either SBS Server
or Ethernet channel.

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source SBS_SERVER PAMS_SBS_SERVER

Class PAMS MSG_CLAS_PAMS
B-2 BEA MessageQ Programmer’s Guide

Obsolete Message-Based Services for Message Broadcasting
See Also n SBS_REG

n SBS_DEREG

Type SBS_BS_SEQGAP MSG_TYPE_SBS_BS_SEQGAP

Argument Script Format pams_get_msg Format
BEA MessageQ Programmer’s Guide B-3

B Obsolete Functions and Services
SBS_DEREG

Note: This service is obsolete. Use SBS_DEREGISTER_REQ instead.

Applications can register to receive broadcast messages by sending an SBS_REG
message or an SBS_REG_EZ message to the SBS Server. When an application no longer
needs to receive messages from a broadcast stream, it sends an SBS_DEREG message to
the SBS Server. This message causes the SBS Server to deregister all entries for the
broadcast stream and receiving queue combination.

C Message
Structure

typedef struct _SBS_DEREG {
 int16 version;
 uint16 mot;
 q_address distribution_q;
 char req_ack;
 } SBS_DEREG;

Message Data
Fields

Arguments

Field Data Type Script
Format

Description

version word DW Message format version. Must be 20.

mot_q unsigned
word

DW MOT queue address.

distribution
_q

q_address DL Distribution queue address.

req_ack Boolean DB Value of 1 if acknowledgment requested.

Argument Script Format pams_get_msg Format

Target SBS_SERVER PAMS_SBS_SERVER

Source Requesting program Requesting program

Class PAMS MSG_CLAS_PAMS

Type SBS_DEREG MSG_TYPE_SBS_DEREG
B-4 BEA MessageQ Programmer’s Guide

Obsolete Message-Based Services for Message Broadcasting
See Also

n SBS_BS_SEQGAP

n SBS_DEREG_ACK

n SBS_DEREG_BY_ID

n SBS_REG

n SBS_REG_EZ
BEA MessageQ Programmer’s Guide B-5

B Obsolete Functions and Services
SBS_DEREG_ACK

Note: This service is obsolete. Use SBS_DEREGISTER_RESP instead.

Applications can register to receive broadcast messages by sending an SBS_REG
message or an SBS_REG_EZ message to the SBS Server. When an application no longer
needs to receive messages from a broadcast stream, it sends an SBS_DEREG message to
the SBS Server. This message causes the SBS Server to deregister all entries for the
broadcast stream and receiving queue combination. The SBS_DEREG_ACK message
acknowledges deregistration for the broadcast stream and receiver queue selected.

C Message
Structure

typedef struct _SBS_DEREG_ACK {
 int16 status;
 int16 number_reg;
 } SBS_DEREG_ACK;

Message Data
Fields

Arguments

See Also n SBS_DEREG

n SBS_DEREG_BY_ID

n SBS_REG

Field Data Type Script
Format

Description

status word DW The return status of 1 = success, –n = failure.

number_reg word DW Number of registrants left on this Multipoint
Outbound Target (MOT) after
deregistration.

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source SBS_SERVER PAMS_SBS_SERVER

Class PAMS MSG_CLAS_PAMS

Type SBS_DEREG_ACK MSG_TYPE_SBS_DEREG_ACK
B-6 BEA MessageQ Programmer’s Guide

Obsolete Message-Based Services for Message Broadcasting
n SBS_REG_EZ
BEA MessageQ Programmer’s Guide B-7

B Obsolete Functions and Services
SBS_DEREG_BY_ID

Note: This service is obsolete. Use SBS_DEREGISTER_REQ instead.

Applications can register to receive broadcast messages by sending an SBS_REG
message or an SBS_REG_EZ message to the SBS Server. When an application has
multiple registrations for a broadcast stream and no longer needs to receive one type
of message, the application can send an SBS_DEREG_BY_ID message to the SBS Server
by providing the ID returned by MessageQ during the initial broadcast registration.
The queue will continue to receive broadcast messages requested through separate
registrations.

C Message
Structure

typedef struct _SBS_DEREG_BY_ID {
 short version;
 unsigned short reg_id;
 char req_ack;
 } SBS_DEREG_BY_ID;

Message Data
Fields

Arguments

See Also n SBS_DEREG

Field Data Type Script
Format

Description

version word DW Message format version. Must be 20.

reg_id unsigned
word

DW Registration ID.

req_ack Boolean DB Value of 1 if ACK requested.

Argument Script Format pams_get_msg Format

Target SBS_SERVER PAMS_SBS_SERVER

Source Requesting program Requesting program

Class PAMS MSG_CLAS_PAMS

Type SBS_DEREG_BY_ID MSG_TYPE_SBS_DEREG_BY_ID
B-8 BEA MessageQ Programmer’s Guide

Obsolete Message-Based Services for Message Broadcasting
n SBS_DEREG_ACK

n SBS_REG

n SBS_REG_EZ
BEA MessageQ Programmer’s Guide B-9

B Obsolete Functions and Services
SBS_REG

Note: This service is obsolete. Use SBS_REGISTER_REQ instead.

Applications can register to receive selected messages from a broadcast stream by
sending an SBS_REG message to the SBS Server. This message requests a target queue
to receive all messages that meet the selection criteria entered as part of the registration
process. Selection rules define a relational operation to be applied against a message
header or message data field. Each broadcast message that matches the rule is
distributed to the target queue.

C Message
Structure

typedef struct _SBS_REG {
 int16 version;
 uint16 mot;
 q_address distribution_q;
 int16 offset;
 char data_operator;
 int16 length;
 uint32 operand;
 char req_ack;
 char req_seqgap;
 char req_autodereg;
 } SBS_REG;

Message Data
Fields

Field Data Type Script
Format

Description

version word DW Message format version number. Must be
20.

mot_addr unsigned
word

DW The Multipoint Outbound Target (MOT)
broadcast stream to which the program tries
to register.

distribution
_q

q_address DL The MessageQ address that receives any
messages that are selected from the
broadcast stream.

offset word DW Specifies a field in the message header or in
the message data component.
B-10 BEA MessageQ Programmer’s Guide

Obsolete Message-Based Services for Message Broadcasting
Arguments

See Also n SBS_REG_REPLY

n SBS_REG_EZ

n SBS_DEREG

operator byte DB Controls the type of comparison to be
performed on the field designated by the data
offset and the operand.

length word DW Specifies the size of comparison to be
performed. The choices are 0, 1, 2, and 4.

operand uint32 DL The value to be used in the comparison of the
field specified by the data offset.

req_ack Boolean DB Specifies if an acknowledgment message is
requested. See SBS_REG_REPLY.

req_seqgap Boolean DB Specifies if a notification of broadcast
stream message sequence number gap is
requested.

req_autodere
g

Boolean DB Specifies if a registration request is to be
automatically purged from the SBS Server
table.

Field Data Type Script
Format

Description

Argument Script Format pams_get_msg Format

Target SBS_SERVER PAMS_SBS_SERVER

Source Requesting program Requesting program

Class PAMS MSG_CLAS_PAMS

Type SBS_REG MSG_TYPE_SBS_REG
BEA MessageQ Programmer’s Guide B-11

B Obsolete Functions and Services
SBS_REG_EZ

Note: This service is obsolete. Use SBS_REGISTER_REQ instead.

Applications can register to receive all messages from a broadcast stream by sending
an SBS_REG_EZ message to the SBS Server. This message requests a target queue to
receive all messages sent to the selected broadcast stream.

C Message
Structure

typedef struct _SBS_REG_EZ {
 int16 version;
 int16 mot;
 q_address distribution_q;
 } SBS_REG_EZ;

Message Data
Fields

Arguments

See Also n SBS_REG_EZ_REPLY

Field Data Type Script
Format

Description

version word DW Message format version number. Must
be 20.

mot_addr word DW The Multipoint Outbound Target
(MOT) broadcast stream to which the
process tries to subscribe.

distribution_q q_address DL The MessageQ address that receives
any messages selected from the
broadcast stream.

Argument Script Format pams_get_msg Format

Target SBS_SERVER PAMS_SBS_SERVER

Source Requesting program Requesting program

Class PAMS MSG_CLAS_PAMS

Type SBS_REG_EZ MSG_TYPE_SBS_REG_EZ
B-12 BEA MessageQ Programmer’s Guide

Obsolete Message-Based Services for Message Broadcasting
n SBS_REG

n SBS_DEREG
BEA MessageQ Programmer’s Guide B-13

B Obsolete Functions and Services
SBS_REG_EZ_REPLY

Note: This service is obsolete. Use SBS_REGISTER_RESP instead.

Applications can register to receive all messages from a broadcast stream by sending
an SBS_REG_EZ message to the SBS Server. This message requests that all messages
sent to a broadcast stream be distributed to a particular target queue. The
SBS_REG_EZ_REPLY message indicates the status of the request and returns a
registration ID if the application is successfully registered.

C Message
Structure

typedef struct _SBS_REG_EZ_REPLY {
 int16 status;
 uint16 reg_id;
 int16 number_reg;
 } SBS_REG_EZ_REPLY;

Message Data
Fields

Arguments

See Also n SBS_REG_EZ

Field Data Type Script
Format

Description

status word DW The return status of 1indicates success;
 –n indicates failure.

reg_id unsigned
word

DW Returned registration ID.

number_reg word DW Number of registrants left on this Multipoint
Outbound Target (MOT).

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source SBS_SERVER PAMS_SBS_SERVER

Class PAMS MSG_CLAS_PAMS

Type SBS_REG_EZ_REPLY MSG_TYPE_SBS_REG_EZ_REPLY
B-14 BEA MessageQ Programmer’s Guide

Obsolete Message-Based Services for Message Broadcasting
n SBS_DEREG
BEA MessageQ Programmer’s Guide B-15

B Obsolete Functions and Services
SBS_REG_REPLY

Note: This service is obsolete. Use SBS_REGISTER_RESP instead.

Applications can register to receive selected messages from a broadcast stream by
sending an SBS_REG message to the SBS Server. This message requests a target queue
to receive all messages sent to a particular broadcast stream that meet selection criteria.
The SBS_REG_REPLY message indicates the status of the request and returns a
registration ID.

C Message
Structure

typedef struct _SBS_REG_REPLY {
 int16 status;
 uint16 reg_id;
 int16 number_reg;
 } SBS_REG_REPLY;

Message Data
Fields

Arguments

See Also n SBS_REG

Field Data Type Script
Format

Description

status word DW The return status of 1 = success, –n = failure.

reg_id unsigned
word

DW Returned registration ID.

number_reg word DW Number of registrants left on this Multipoint
Outbound Target (MOT).

Argument Script Format pams_get_msg Format

Target Requesting program Requesting program

Source SBS_SERVER PAMS_SBS_SERVER

Class PAMS MSG_CLAS_PAMS

Type SBS_REG_REPLY MSG_TYPE_SBS_REG_REPLY
B-16 BEA MessageQ Programmer’s Guide

Obsolete PAMS API Functions
Obsolete PAMS API Functions

This section contains reference information for the following obsolete PAMS API
functions:

n pams_create_handle

n pams_decode

n pams_delete_handle

n pams_encode

n pams_extract_buffer

n pams_insert_buffer

n pams_msg_length

n pams_next_msg_field

n pams_remove_encoding

n pams_set_msg_position
BEA MessageQ Programmer’s Guide B-17

B Obsolete Functions and Services
pams_create_handle

Note: This function is obsolete. Handles and the SDM format used in MessageQ
Version 4.0 have been replaced by the FML32 format for self describing
messaging. Use pams_put_msg with the PSYM_MSG_FML symbol and
pams_get_msg(w) with the PSYM_MSG_BUFFER_PTR symbol to send and
receive FML messages.

Creates an empty message and returns a handle to it.

Syntax int32 pams_create_handle (handle, [handle_type]);

Arguments

Argument
Definitions

handle
Supplies the handle that you want created.

handle_type
Specifies the type of handle to create.

Return Values

Table 9-1

Argument Data Type Mechanism Prototype Access

handle pams_handle reference pams_handle * returned

handle_type int32 reference int32 * passed

Table 9-2

Return Code Platform Description

PAMS__BADARGLIST All Invalid number of arguments.

PAMS__BADPARAM All Invalid handle_type argument value.

PAMS__RESRCFAIL All Insufficient resources to complete the
operation.

PAMS__SUCCESS All Indicates successful completion.
B-18 BEA MessageQ Programmer’s Guide

Obsolete PAMS API Functions
Description The handle_type argument takes the PSYM_MSG_HANDLE value to request the
creation of a message handle. In this case, the returned pams_handle argument can be
used everywhere a pams_handle data type is needed with a function.

PSYM_MSG_HANDLE is a default value, so providing a null pointer as
handle_type creates a message handle.

See Also n pams_delete_handle

n pams_extract_buffer

n pams_insert_buffer

n pams_msg_length
BEA MessageQ Programmer’s Guide B-19

B Obsolete Functions and Services
pams_decode

Note: This function is obsolete. Handles and the SDM format used in MessageQ
Version 4.0 have been replaced by the FML32 format for self describing
messaging. Use pams_put_msg with the PSYM_MSG_FML symbol and
pams_get_msg(w) with the PSYM_MSG_BUFFER_PTR symbol to send and
receive FML messages.

The pams_decode functions are a series of functions that decode a tagged field out of
the message. The first unseen field in the message with the desired element is returned.
The actual name of the function and its description is listed as follows:

Table 9-3

Function Description

pams_decode_int8 Decodes an 8-bit signed integer (char) element of information
out of the message.

pams_decode_uint8 Decodes an 8-bit unsigned integer (unsigned char) element of
information out of the message.

pams_decode_int16 Decodes a 16-bit signed integer element of information out of
the message.

pams_decode_uint16 Decodes a 16-bit unsigned integer element of information out of
the message.

pams_decode_int32 Decodes a 32-bit signed integer element of information out of
the message.

pams_decode_uint32 Decodes a 32-bit unsigned integer element of information out of
the message.

pams_decode_int64 Decodes a 64-bit signed integer element of information out of
the message.

pams_decode_uint64 Decodes a 64-bit unsigned integer element of information out of
the message.

pams_decode_float Decodes a single floating-point element of information out of
the message.

pams_decode_double Decodes a double floating-point element of information out of
the message.
B-20 BEA MessageQ Programmer’s Guide

Obsolete PAMS API Functions
Syntax The syntax for each of the pams_decode functions is as follows:

Listing 9-1 Syntax for pams_encode function

int32 pams_decode_int8 (pams_handle handle, int32* tag, int8*
value);

int32 pams_decode_uint8 (pams_handle handle, int32* tag, uint8*
value);

int32 pams_decode_int16 (pams_handle handle, int32* tag, int16*
value);

int32 pams_decode_uint16 (pams_handle handle, int32* tag, uint16*
value);

int32 pams_decode_int32 (pams_handle handle, int32* tag, int32*
value);

int32 pams_decode_uint32 (pams_handle handle, int32* tag, uint32*
value);

int32 pams_decode_int64 (pams_handle handle, int32* tag, int64*
value);

int32 pams_decode_uint64 (pams_handle handle, int32* tag, uint64*
value);

int32 pams_decode_float (pams_handle handle, int32* tag, float*
value);

int32 pams_decode_double (pams_handle handle, int32* tag, double*
value);

pams_decode_string Decodes a string element of information out of the message.

pams_decode_array Decodes an array of elements of information of the same type
out of the message.

pams_decode_qid Decodes the q_address (MessageQ queue address) out of the
message.

Table 9-3

Function Description
BEA MessageQ Programmer’s Guide B-21

B Obsolete Functions and Services
int32 pams_decode_string (pams_handle handle, int32* tag, char*
value,

 int32* bufferLength,
 int32* valueLength);

int32 pams_decode_array (pams_handle handle, int32* tag, void*
value,

 int32* bufferLength,
 int32* numEltsValue);

int32 pams_decode_qid (pams_handle handle, int32* tag,
q_address* value);,

Arguments The following table describes the arguments for the pams_decode functions above.
Some of these arguments apply to certain functions only.

Argument
Definitions

handle
Specifies the message handle.

tag
Specifies the tag of the field to decode.

value
Contains the pointer to a buffer to receive the value of the field to decode.

bufferLength
Contains the number of bytes in the value buffer.

Table 9-4

Argument Data Type Mechanism Prototype Access

handle pams_handle reference pams_handle * passed

tag int32 reference int32 * passed

value varying pointer reference int32 * returned

bufferLength int32 reference int32 * passed

valueLength int32 reference int32 * returned

numEltsValue int32 reference int32 * returned
B-22 BEA MessageQ Programmer’s Guide

Obsolete PAMS API Functions

Btag,
ng
valueLength
Specifies the number of bytes in the returned value, unless a NULL pointer is
passed. If the valueLength argument is a NULL pointer to the call to
pams_decode_string, the string is returned null-terminated. In this case, the
specified bufferLength argument must include space for the trailing null.

numEltsValue
Specifies the number of elements contained in the array.

Return Values

Description This function scans the message for an unseen instance of the specified tag, starting at
the beginning of the message:

n If the scan finds a match, the matched element is marked as seen, its value (and
length) are returned, and the return value is set to PAMS__SUCCESS.

n If the scan continues without success to the end of the message, the return value
is set to PAMS__NOSUCHTAG.

Thus, if there are two occurrences of a particular tag in a message, the first decode call
always returns the earlier occurrence of the tag, and the second call returns the later
one. Conversely, if a receiving application knows a message’s tag order is Atag,
ENDtag, Atag, Btag, ENDtag, the application cannot skip the first pair by decodi
first ENDtag, and then decoding Atag.

Table 9-5

Return Code Platform Description

PAMS__AREATOSMALL All The buffer length is too small to fit the
value string.

PAMS__BADHANDLE All Invalid message handle or handle to an
untyped message.

PAMS__BADTAG All The tag data type does not match the
routine used for the value data type.

PAMS__SUCCESS All Indicates successful completion.

PAMS__TAGNOTFOUND All Tag not found in the message.
BEA MessageQ Programmer’s Guide B-23

B Obsolete Functions and Services
The value is returned in the local host representation (endian conversions are applied
when necessary).

See Also n pams_encode

n pams_remove_encoding
B-24 BEA MessageQ Programmer’s Guide

Obsolete PAMS API Functions
pams_delete_handle

Note: This function is obsolete. Handles and the SDM format used in MessageQ
Version 4.0 have been replaced by the FML32 format for self describing
messaging. Use pams_put_msg with the PSYM_MSG_FML symbol and
pams_get_msg(w) with the PSYM_MSG_BUFFER_PTR symbol to send and
receive FML messages.

Releases all of the resources allocated for the message handle.

Syntax int32 pams_delete_handle (handle);

Arguments

Argument
Definition

handle
Specifies the message handle to delete.

Return Values

Description Applications must use this function after sending or receiving messages. The use of
this function avoids memory leaks. Note that your application must call this function
if you decide not to send a message you have created.

See Also n pams_create_handle

n pams_extract_buffer

n pams_insert_buffer

Table 9-6

Argument Data Type Mechanism Prototype Access

handle pams_handle reference pams_handle * passed

Table 9-7

Return Code Platform Description

PAMS__BADARGLIST All Invalid number of arguments.

PAMS__BADHANDLE All Invalid message handle.

PAMS__SUCCESS All Indicates successful completion.
BEA MessageQ Programmer’s Guide B-25

B Obsolete Functions and Services
n pams_msg_length
B-26 BEA MessageQ Programmer’s Guide

Obsolete PAMS API Functions
pams_encode

Note: This function is obsolete. Handles and the SDM format used in MessageQ
Version 4.0 have been replaced by the FML32 format for self describing
messaging. Use pams_put_msg with the PSYM_MSG_FML symbol and
pams_get_msg(w) with the PSYM_MSG_BUFFER_PTR symbol to send and
receive FML messages.

The pams_encode functions are a series of functions that append a field in the SDM
message based on a specific data type. The actual name of the function and its
description is as follows:

Function Description

pams_encode_int8 Encodes an 8-bit signed integer (char) element of information
in the message.

pams_encode_uint8 Encodes an 8-bit unsigned integer (unsigned char) element of
information in the message.

pams_encode_int16 Encodes a 16-bit signed integer element of information in the
message.

pams_encode_uint16 Encodes a 16-bit unsigned integer element of information in
the message.

pams_encode_int32 Encodes a 32-bit signed integer element of information in the
message.

pams_encode_uint32 Encodes a 32-bit unsigned integer element of information in
the message.

pams_encode_int64 Encodes a 64-bit signed integer element of information in the
message.

pams_encode_uint64 Encodes a 64-bit unsigned integer element of information in
the message.

pams_encode_float Encodes a single floating-point element of information in the
message.

pams_encode_double Encodes a double floating-point element of information in the
message.
BEA MessageQ Programmer’s Guide B-27

B Obsolete Functions and Services
Syntax The syntax for each of the pams_encode functions is as follows:

Listing 9-2 Syntax for pams_encode_functions

int32 pams_encode_int8 (pams_handle handle, int32* tag, int8*
 value);

int32 pams_encode_uint8 (pams_handle handle, int32* tag, uint8*
 value);

int32 pams_encode_int16 (pams_handle handle, int32* tag, int16*
 value);

int32 pams_encode_uint16 (pams_handle handle, int32* tag,
 uint16* value);

int32 pams_encode_int32 (pams_handle handle, int32* tag, int32*
 value);

int32 pams_encode_uint32 (pams_handle handle, int32* tag, uint32*
 value);

int32 pams_encode_int64 (pams_handle handle, int32* tag, int64*
 value);

int32 pams_encode_uint64 (pams_handle handle, int32* tag,
 uint64* value);

int32 pams_encode_float (pams_handle handle, int32* tag, float*
 value);

int32 pams_encode_double (pams_handle handle, int32* tag,
 double* value);

int32 pams_encode_string (pams_handle handle, int32* tag, char*
 value, int32* length);

pams_encode_string Encodes a string element of information in the message.

pams_encode_array Encodes an array of elements of information of the same type
in the message.

pams_encode_qid Encodes the q_address (MessageQ queue address) in the
message.

Function Description
B-28 BEA MessageQ Programmer’s Guide

Obsolete PAMS API Functions
int32 pams_encode_array (pams_handle handle, int32* tag, void*
 value, int32* numElts);

int32 pams_encode_qid (pams_handle handle, int32* tag,
 q_address* value);

Arguments The following table describes the arguments for the pams_encode functions. Some of
these arguments apply to certain functions only.

Argument
Definitions

handle
Specifies the message handle.

tag
Specifies the tag of the field to encode.

value
Specifies the value of the field to encode.

length
Specifies the length of the string to encode, or -1 if the string is null
terminated.

numElts
Specifies the number of elements in the array.

Table 9-8

Argument Data Type Mechanism Prototype Access

handle pams_handle reference pams_handle * passed

tag int32 reference int32 * passed

value varying reference int32 * passed

length int32 reference int32 * passed

numElts int32 reference int32 * passed
BEA MessageQ Programmer’s Guide B-29

B Obsolete Functions and Services
Return Values

Description Several structures exist to encode fields for each data type supported by the SDM
capability. The application developer uses the function that matches the data type of
the field to encode. Since the tag embeds information about the value data type, the
PAMS__BADTAG code is returned if the function used does not match the tag data type.
For example, if the pams_encode_int32 function is used to encode a character string.
The PAMS__BADTAG code is also returned if the tag construction does not follow the
rules or if the tag is reserved.

You can insert a null tag (PSDM_NULL_TAG) in a SDM message to control application
behavior. For example, you can insert a null tag to stop an enumeration. To insert a null
tag, use any of the numeric pams_encode functions and specify a NULL value pointer.
The following code fragment shows how to insert a null tag into a signed 32-bit integer
element:

null_tag = PSDM_NULL_TAG;
status = pams_encode_int32(mh, &null_tag, NULL);

See Also n pams_decode

Table 9-9

Return Code Platform Description

PAMS__BADHANDLE All Invalid message handle or handle to an
untyped message.

PAMS__BADTAG All Invalid tag.

PAMS__RESRCFAIL All Insufficient resources to expand the
message.

PAMS__SUCCESS All Indicates successful completion.
B-30 BEA MessageQ Programmer’s Guide

Obsolete PAMS API Functions

ify a
pams_extract_buffer

Returns a message in the specified buffer. The message size is also returned.

Syntax int32 pams_extract_buffer (handle, msgBuffer, bufferLength,
msgLength);

Argument
Definitions

handle
Specifies the message handle of the message to extract.

msgBuffer
Contains the pointer to the buffer from which to extract the message.

bufferLength
Specifies the size in bytes of msgBuffer.

msgLength
Contains the pointer where to place the message’s length. You can spec
NULL pointer in languages that allow these kinds of pointers.

Return Values

Table 9-10

Argument Data Type Mechanism Prototype Access

handle pams_handle reference pams_handle * passed

msgBuffer char reference char * returned

bufferLength uint32 reference uint32 * passed

msgLength uint32 reference uint32 * returned

Table 9-11

Return Code Platform Description

PAMS__AREATOSMALL All Message is larger than the user’s buffer.

PAMS__BADARGLIST All Invalid number of arguments.

PAMS__BADPARAM All Invalid bufferLength argument.
BEA MessageQ Programmer’s Guide B-31

B Obsolete Functions and Services
Description This function copies the received message associated with the specified handle into the
user provided buffer. If requested (by passing a non-NULL msgLength), the number
of bytes of the message is returned as well.

If the message handle points to an SDM message for which encoding or decoding has
already been performed, this function returns PAMS__BADHANDLE.

If your application does not know the maximum size message that can arrive, it can
call the pams_msg_length function prior to calling pams_extract_buffer to
determine how big a buffer is needed.

See Also n pams_create_handle

n pams_delete_handle

n pams_insert_buffer

n pams_msg_length

PAMS__BADHANDLE All Invalid message handle or handle to an
SDM message already processed with the
API.

PAMS__FATAL All SDM message is corrupted.

PAMS__SUCCESS All Indicates successful completion.

Table 9-11

Return Code Platform Description
B-32 BEA MessageQ Programmer’s Guide

Obsolete PAMS API Functions
pams_insert_buffer

Note: This function is obsolete. Handles and the SDM format used in MessageQ
Version 4.0 have been replaced by the FML32 format for self describing
messaging. Use pams_put_msg with the PSYM_MSG_FML symbol and
pams_get_msg(w) with the PSYM_MSG_BUFFER_PTR symbol to send and
receive FML messages.

Inserts the contents of the specified buffer into the message identified by the message
handle.

Syntax int32 pams_insert_buffer (handle, msgBuffer, length);

Arguments

Argument
Definitions

handle
Specifies the message handle.

msgBuffer
Specifies the pointer to a user area to use as message content.

length
Specifies the size in bytes of the msgBuffer buffer or zero.

Return Values

Table 9-12

Argument Data Type Mechanism Prototype Access

handle pams_handle reference pams_handle * passed

msgBuffer char reference char * passed

length uint32 reference uint32 * passed

Table 9-13

Return Code Platform Description

PAMS__BADARGLIST All Invalid number of arguments.
BEA MessageQ Programmer’s Guide B-33

B Obsolete Functions and Services
Description This function copies the user-provided buffer into the received message that is
associated with the specified handle. If a buffer was already inserted in the message, it
is overwritten by a subsequent call to the pams_insert_buffer function. If the
length argument points to a zero-valued integer, the buffer to insert is an SDM
message.

See Also n pams_create_handle

n pams_delete_handle

n pams_extract_buffer

n pams_msg_length

PAMS__BADHANDLE All Invalid message handle or handle to an
SDM message and *length > 0 or
not handle to an SDM message and
*length == 0.

PAMS__BADPARAM All Invalid msgBuffer or length
argument.

PAMS__FATAL All SDM message is corrupted.

PAMS__RESRCFAIL All Insufficient resources to complete the
operation.

PAMS__SUCCESS All Indicates successful completion.

Table 9-13

Return Code Platform Description
B-34 BEA MessageQ Programmer’s Guide

Obsolete PAMS API Functions
pams_msg_length

Note: This function is obsolete. Handles and the SDM format used in MessageQ
Version 4.0 have been replaced by the FML32 format for self describing
messaging. Use pams_put_msg with the PSYM_MSG_FML symbol and
pams_get_msg(w) with the PSYM_MSG_BUFFER_PTR symbol to send and
receive FML messages.

Returns the number of bytes in the message. The message is identified by a message
handle created with the pams_create_handle function.

Syntax int32 pams_msg_length (handle, msgLength);

Arguments

Argument
Definitions

handle
Specifies the message handle of the message.

msgLength
Contains the message handle of the message.

Return Values

See Also n pams_create_handle

n pams_delete_handle

Table 9-14

Argument Data Type Mechanism Prototype Access

handle pams_handle reference pams_handle * passed

msgLength uint32 reference uint32 * returned

Table 9-15

Return Code Platform Description

PAMS__SUCCESS All Indicates successful completion.

PAMS__BADARGLIST All Invalid number of arguments.

PAMS__BADHANDLE All Invalid message handle.
BEA MessageQ Programmer’s Guide B-35

B Obsolete Functions and Services
n pams_extract_buffer

n pams_insert_buffer
B-36 BEA MessageQ Programmer’s Guide

Obsolete PAMS API Functions
pams_next_msg_field

Returns the tag and length of the first unseen field in the message.

Syntax int32 pams_next_msg_field (pams_handle handle, tag, valueLength)

Arguments

Argument
Definitions

handle
Specifies the message handle of the message to scan.

tag
Returns the tag of first unseen field in the message.

valueLength
Returns the length of the returned value or a NULL pointer, if the user is not
interested in this information. The length returned is the size in bytes
necessary to receive the value. For strings, it is the string length (null
terminator not included). For arrays, it is the number of fields multiplied by
the size of each field.

Return Values

Table 9-16

Argument Data Type Mechanism Prototype Access

handle pams_handle reference pams_handle * passed

tag int32 reference int32 * returned

valueLength int32 reference int32 * returned

Table 9-17

Return Code Platform Description

PAMS__BADHANDLE All Invalid message handle.

PAMS__NOMORETAG All No more tags in the message (all fields
were decoded).

PAMS__SUCCESS All Indicates successful completion.
BEA MessageQ Programmer’s Guide B-37

B Obsolete Functions and Services
Description This function does not mark the matched field as seen. Therefore, successive calls to
this function without calling the appropriate pams_decode functions returns the same
tag.

When all fields have been decoded, the function returns PAMS__NOMORETAG.

See Also n pams_decode

n pams_set_msg_position
B-38 BEA MessageQ Programmer’s Guide

Obsolete PAMS API Functions
pams_remove_encoding

Note: This function is obsolete. Handles and the SDM format used in MessageQ
Version 4.0 have been replaced by the FML32 format for self describing
messaging. Use pams_put_msg with the PSYM_MSG_FML symbol and
pams_get_msg(w) with the PSYM_MSG_BUFFER_PTR symbol to send
and receive FML messages.

Removes a previously encoded field from the message buffer.

Syntax int32 pams_remove_encoding (pams_handle handle, int32* tag, int32*
flags);

Argument

Argument
Definitions

handle
Specifies the message handle.

tag
Specifies the tag of the field to remove. If the tag is PSDM_NULL_TAG, the
first or last - depending on flags - encoded null tag is removed.

flags
Specifies the flags to control the function behavior. The flags argument can
take the following values:

l PSDM_FIRST to remove the first encoded field matching tag.

l PSDM_LAST to remove the last encoded field matching tag.

l PSDM_ANY to ignore the tag argument; PSDM_ANY must be used in
combination with PSDM_FIRST or PSDM_LAST, to force the very first or
very last field in the message to be removed, whatever its tag is.

Table 9-18

Argument Data Type Mechanism Prototype Access

handle pams_handle reference pams_handle * passed

tag int32 reference int32 * passed

flags int32 reference int32 * passed
BEA MessageQ Programmer’s Guide B-39

B Obsolete Functions and Services
Return Values

See Also n pams_decode

n pams_encode

Table 9-19

Return Code Platform Description

PAMS__BADPARAM All Invalid flag.

PAMS__BADHANDLE All Invalid message handle or handle to a large
message.

PAMS__BADTAG All Invalid tag.

PAMS__SUCCESS All Indicates successful completion.

PAMS__TAGNOTFOUND All Tag not found in the message.
B-40 BEA MessageQ Programmer’s Guide

Obsolete PAMS API Functions
pams_set_msg_position

Note: This function is obsolete. Handles and the SDM format used in MessageQ
Version 4.0 have been replaced by the FML32 format for self describing
messaging. Use pams_put_msg with the PSYM_MSG_FML symbol and
pams_get_msg(w) with the PSYM_MSG_BUFFER_PTR symbol to send
and receive FML messages.

Resets the message to the position of a specific tag.

Syntax int32 pams_set_msg_position (pams_handle handle, int32* tag, int32*
 flags);

Arguments

Argument
Definitions

handle
Specifies the message handle.

tag
Specifies the tag to reset encoding or decoding to.
Specifies the flags argument, which is a mask allowing you to specify the
behavior. It can OR the following modifiers:

l PSDM_PREVIOUS searches for the previous occurrence of the specified tag
(default for encoding).

l PSDM_NEXT searches for the next occurrence of the specified tag (default
for decoding).

l PSDM_FIRST searches for the first occurrence of the specified tag in the
message.

l PSDM_LAST searches for the last occurrence of the specified tag in the
message.

Table 9-20

Argument Data Type Mechanism Prototype Access

handle pams_handle reference pams_handle * passed

tag int32 reference int32 * passed

flags int32 reference int32 * passed
BEA MessageQ Programmer’s Guide B-41

B Obsolete Functions and Services
l PSDM_AT sets the position at the element specified (default).

l PSDM_BEFORE sets the position at the element preceding the specified
element.

l PSDM_AFTER sets the position at the element following the specified
element.

l PSDM_ANY tells to ignore the specified tag argument. The following
combinations are possible :

l (PSDM_ANY | PSDM_PREVIOUS) sets position at the previous tag.

l (PSDM_ANY | PSDM_NEXT) sets position at the next tag; when used in
conjunction with pams_next_msg_field, it allows skipping the undesired
elements.

l (PSDM_ANY | PSDM_FIRST) sets position at the beginning of the message.

l (PSDM_ANY | PSDM_LAST) sets position at the end of the message; this
allows appending elements to a received message.

The modifiers PSDM_PREVIOUS, PSDM_NEXT, PSDM_FIRST, and
PSDM_LAST are mutually exclusive.
The modifiers PSDM_AT, PSDM_BEFORE, and PSDM_AFTER are also
mutually exclusive.

Return Values

Description This function resets the starting point of the encoding or decoding to the field in the
message with the specified tag:

n When used to perform further encoding, already encoded fields after the
specified element are lost.

Table 9-21

Return Code Platform Description

PAMS__BADHANDLE All Invalid message handle or handle to a large
message.

PAMS__BADPARAM All The specified flags argument is invalid.

PAMS__SUCCESS All Indicates successful completion.
B-42 BEA MessageQ Programmer’s Guide

Obsolete PAMS API Functions
n When used to perform further decoding, all seen fields after the specified
element are marked unseen and the rest are marked seen.

See Also n pams_encode

n pams_decode

n pams_next_msg_field
BEA MessageQ Programmer’s Guide B-43

B Obsolete Functions and Services
B-44 BEA MessageQ Programmer’s Guide

Index

A
Alternate queue 8-34, 8-48, 8-73
Application programming interface 2-21, 5-2
Asynchronous acknowledgment (AK) 2-13
Asynchronous system trap 8-15, 8-44
Attached queues listing 5-29
Attachment notifications 5-30
AVAIL server messages

AVAIL 5-5, 9-2, 9-4, 9-5, 9-7, 9-9
AVAIL_DEREG 9-2, 9-4, 9-5, 9-9, 9-

103
AVAIL_REG 5-3, 5-5, 9-2, 9-5, 9-7, 9-

103
AVAIL_REG_REPLY 5-4, 9-2, 9-3, 9-

6, 9-7, 9-9, 9-103
UNAVAIL 5-5, 9-5, 9-7, 9-9

AVAIL_DEREG message 9-4
AVAIL_REG message 5-3, 9-2, 9-4, 9-6, 9-

8, 9-103
AVAIL_REG_REPLY message 9-2

B
Broadcast communication modes 3-8
Broadcast messages

deregistering from receiving 3-19
reading 3-19
receiving 3-4, 3-13
registering to receive 3-15
sending 3-12

Broadcast scope 3-5

Broadcast services
selective 3-1

Bus-Wide
naming and configuring 4-3

Byte order conversion 6-2

C
Caching and Binding 4-8
Class codes 6-6
Comparison keys 8-96, 8-98
Confirm receipt of a recoverable message 8-

21
Connect server messages 5-8

DISABLE_NOTIFY 9-10, 9-16, 9-30,
9-32

ENABLE_NOTIFY 5-8, 9-10, 9-16, 9-
29, 9-30, 9-31, 9-32

LINK_COMPLETE 5-8, 9-11, 9-16, 9-
30, 9-32

LINK_LOST 5-8, 9-11, 9-16, 9-30, 9-32
LINKMGT_REQ 5-8, 5-28, 9-21, 9-24,

9-28
LINKMGT_RESP 5-9, 5-11, 5-19, 5-22,

5-25, 9-23, 9-28
LIST_ALL_CONNECTIONS 5-6, 9-33,

9-35, 9-38, 9-39, 9-41
LIST_ALL_ENTRIES request 9-38
LIST_ALL_ENTRIES response 9-36
LIST_ALL_GROUPS request 9-41
LIST_ALL_GROUPS response 9-39
BEA MessageQ Programmer’s Guide I-1

Contents of destination queue file
transferring 5-35

Cross-group connection table 5-13
Cross-group connections, entries, and groups

listing 5-6
Cross-group links notification 5-7

D
Data alignment 6-2, 6-3
Data marshaling 6-2
Datagram transfer 3-9
Dead letter queue 2-8, 2-15, 2-23, 2-25, 2-26,

8-23, 8-84, 9-49
DELAY command 7-23
Delivery modes 2-1, 2-5, 2-7, 2-9, 2-24, 2-27,

9-47
Delivery outcome 2-11
Deregistration message 3-19
DISABLE_NOTIFY message 5-8, 9-10
DISABLE_Q_NOTIFY_REQ message 5-30,

9-14
DISABLE_Q_NOTIFY_RESP message 5-

30, 9-14
DMQ$DEBUG logical name 6-26
DMQ$PSSVFY utility 7-25
DMQ$TRACE_OUTPUT logical name 6-26
Duplicate messages 2-21

E
ENABLE_NOTIFY message 5-8, 9-10, 9-16,

9-29, 9-31
ENABLE_Q_NOTIFY_REQ message 5-8,

9-12, 9-14, 9-17, 9-19, 9-82
ENABLE_Q_NOTIFY_RESP message 5-

30, 9-19, 9-82
Endian conversion 6-3
Event flag 8-44, 8-55
Explicit confirmation 2-17, 2-19, 2-20, 8-21

H
Handle B-25

See also Message handles

I
Implicit confirmation 2-17, 2-19, 2-20, 8-21,

8-26
Include files 6-5, 8-108
Initialization file 2-20, 4-4, 8-12, 8-24, 8-71,

8-76, 8-106

J
Journal file 2-15, 2-26, 2-27, 8-90
Journal files

opening and closing 5-33
Journaling to the PCJ file 5-34

L
Large messages 1-7
Link management messages 5-8, 9-21, 9-24
Link status

monitoring and controlling 5-6
LINK_COMPLETE message 5-7, 9-29
LINK_LOST message 5-8, 9-31
LINKMGT_REQ message 5-8, 9-21
LINKMGT_RESP message 5-11, 5-15, 5-19,

5-22, 5-25, 9-24
LIST_ALL_CONNECTIONS message

(Request) 5-6, 9-33
LIST_ALL_CONNECTIONS message

(Response) 5-6, 9-34
LIST_ALL_ENTRIES request message 5-6,

9-38
LIST_ALL_ENTRIES response message 5-

6, 9-36
LIST_ALL_GROUPS request message 5-6,

9-41
LIST_ALL_GROUPS response message 5-
I-2 BEA MessageQ Programmer’s Guide

,

,

 9-
6, 9-39
LIST_ALL_Q_REQ message 9-42, 9-43
LIST_ALL_Q_RESP message 5-29, 9-43
LOCATE_Q_REP message 8-73, 9-45

M
Message broadcasting 3-3, 3-5
Message buffers

sending and receiving 1-3
Message capture 7-17
Message confirmation 2-17, 2-21
Message delivery mode 2-2
Message handles 1-9
Message header 3-17, 7-16, 8-52, 8-66, B-10
Message queue

selection by 8-48, 8-62
Message receipt

confirming 2-18
Message recovery 2-1–2-27, 8-51, 8-66, 8-

77, 8-79
Message recovery files

managing 5-31
Message recovery system 2-3
Message sequence number 2-11–2-19, 8-22,

8-66, 8-84, 8-94, B-11
Message-based services 5-1, 5-2, 5-6, 5-7, 5-

31, 6-6
MessageQ

environment connecting 6-8
MessageQ applications

compiling and linking 6-5
MessageQ clients

recoverable messaging 2-27
MessageQ Include files

using 6-5
MOT address 3-7, 9-91
MRS acknowledgment message 2-13
MRS journal file 8-20
MRS server messages

MRS_DQF_SET_REP 5-32, 9-51, 9-53,

9-70, 9-73
MRS_JRN_DISABLE 5-34, 9-61, 9-62,

9-63, 9-65, 9-67
MRS_JRN_DISABLE_REP 5-35, 9-61,

9-63, 9-65, 9-67
MRS_JRN_ENABLE 5-35, 9-61, 9-63,

9-65, 9-66, 9-67
MRS_JRN_ENABLE_REP 5-35, 9-61,

9-63, 9-65, 9-67
MRS_SAF_SET 9-51, 9-53, 9-69, 9-72
MRS_SAF_SET_REP 5-32, 9-51, 9-53

9-69, 9-72
MRS_SET_DLJ 5-33, 9-76, 9-77, 9-79,

9-81
MRS_SET_PCJ 5-33, 9-75, 9-77, 9-80,

9-81
MRS_SET_PCJ_REP 5-33, 9-75, 9-77

9-79, 9-81
MRS_ACK message 2-16, 9-47
MRS_DQF_SET message 5-32, 9-50, 9-52
MRS_DQF_SET_REP message 5-32, 9-52
MRS_DQF_TRANSFER message 5-36, 9-

54, 9-56, 9-58
MRS_DQF_TRANSFER_ACK message 5-

36, 9-56
MRS_DQF_TRANSFER_REP message 5-

36, 9-58
MRS_JRN_DISABLE message 5-35, 9-62,

9-64
MRS_JRN_DISABLE_REP message 5-35,

9-62
MRS_JRN_ENABLE message 5-35, 9-66
MRS_JRN_ENABLE_REP message 5-35,

9-66
MRS_SAF_SET message 5-32, 9-68, 9-71
MRS_SAF_SET_REP message 5-32, 9-71
MRS_SET_DLJ message 5-34, 9-74, 9-76
MRS_SET_DLJ_REP message 5-33, 9-76
MRS_SET_PCJ message 2-21, 5-34, 9-78,

80
MRS_SET_PCJ_REP message 5-34, 9-80
BEA MessageQ Programmer’s Guide I-3

Multipoint outbound target (MOT) 3-2, 3-3,
B-2, B-10, B-12, B-14

Multireader queue 3-15, 6-24, 8-7, 8-42, 8-70

N
Name space 4-2
Named MOTs 3-7
Names and pathnames 4-6
Naming

how applications use 4-5
understanding 4-1

Naming agent 4-3
Network byte order 6-2, 6-3

O
Object library linking 6-17
Order key 8-100

P
PAMS status block 2-11, 8-15, 8-37, 8-55, 8-

66, 8-83, 9-47
Pams_attach_q 8-3
Pams_bind_q 8-11
Pams_cancel_get 8-15
Pams_cancel_select 8-16
Pams_cancel_timer 8-18
Pams_close_jrn 8-20
Pams_confirm_msg 8-21
Pams_create_handle B-18
Pams_decode B-20
Pams_delete_handle B-25
Pams_detach_q 8-25
Pams_encode 8-28
Pams_exit 8-28
Pams_extract_buffer 8-30
Pams_get_msg 8-30
Pams_get_msga 8-44
Pams_get_msgw 8-58

Pams_insert_buffer B-31, B-41
Pams_locate_q 8-72
Pams_msg_length B-37
Pams_next_msg_field B-37
Pams_open_jrn 8-77
Pams_put_msg 8-79
Pams_read_jrn 8-90
Pams_remove_encoding 8-96
Pams_set_select 8-96
Pams_set_timer 8-104
Pams_status_text 8-107
PCJ

See Postconfirmation journal
Pending messages 2-28, 6-9, 8-25, 8-110, 8-

111
Permanent queue 4-6, 8-4
Permanently active queue 2-8, 2-25
Postconfirmation journal (PCJ) 2-4, 2-20, 2-

21, 5-31, 5-33, 5-34, 8-20, 8-21, 8-
22, 8-77, 9-60, 9-62, 9-64, 9-78, 9-
80

Primary queue 2-23, 3-13, 5-2, 6-24, 7-13, 7-
19, 8-3, 8-7, 8-35, 8-49, 8-71, 9-102

Private broadcast stream 3-6
PSB 8-66
PSB status code 8-22
PSB structure 2-11, 8-37, 8-51, 8-66, 8-83
Putil_show_pending 8-110

Q
Q_UPDATE message 5-30, 9-19, 9-82
Qtransfer server messages 5-35, 9-54, 9-56,

9-58
Queue addresses

dynamic binding 4-7
Queue and Priority 8-97
Queue server messages

DISABLE_Q_NOTIFY_REQ 5-31, 9-
12, 9-15, 9-17, 9-20, 9-83

DISABLE_Q_NOTIFY_RESP 5-31, 9-
I-4 BEA MessageQ Programmer’s Guide

4

,

1

12, 9-15, 9-17, 9-20, 9-83
ENABLE_Q_NOTIFY_REQ 5-8, 5-30,

9-12, 9-15, 9-17, 9-19, 9-20, 9-
82, 9-83

ENABLE_Q_NOTIFY_RESP 5-30, 9-
13, 9-15, 9-18, 9-82, 9-83

LIST_ALL_Q_REQ 9-43, 9-44
LIST_ALL_Q_RESP 5-29, 9-42, 9-44

Queue status 5-4, 5-29
Queues

attaching and locating 4-6

R
Recoverable and nonrecoverable delivery

modes 2-4
Recoverable message

receiving 2-17
sending 2-9

Response
receiving 5-3

Response queue 2-8, 2-13, 2-16, 2-25, 5-2, 5-
31, 8-73, 8-85, 8-86

S
SAF and DQF files

opening, closing, and failing 5-32
SBS applications 3-20
SBS server messages

SBS_BS_SEQGAP 9-93, B-2, B-3, B-5
SBS_DEREG 3-20, 9-84, B-3, B-4, B-6,

B-8, B-11, B-13, B-15
SBS_DEREG_ACK 3-20
SBS_DEREG_BY_ID 3-20, B-5, B-8
SBS_REG 3-20, 9-88, B-2, B-3, B-5, B-

6, B-9, B-11, B-13, B-16
SBS_REG_EZ 3-20
SBS_REG_EZ_REPLY 3-21
SBS_REG_REPLY 3-21, 9-91, B-11, B-

16

SBS_BS_SEQGAP message B-2
SBS_DEREG message B-4, B-6
SBS_DEREG_ACK message B-6
SBS_DEREG_BY_ID message B-8
SBS_DEREGISTER_REQ message 3-4, 3-

19–3-20, 9-84
SBS_DEREGISTER_RESP 9-86
SBS_REG message B-2–B-10, B-16
SBS_REG_EZ message B-4, B-6, B-8, B-1
SBS_REG_EZ_REPLY message B-14
SBS_REG_REPLY message B-16
SBS_REGISTER_REQ message 3-2, 3-15

3-17, 9-88
SBS_REGISTER_RESP message 3-15, 3-

19, 9-91
SBS_SEQUENCE_GAP message 3-15, 3-

20, 9-93
SBS_STATUS_REQ message 9-95
SBS_STATUS_RESP message 9-97
Script facility 6-17, 6-23, 7-2, 7-5, 7-13, 7-

16, 7-19
Script files 7-2, 7-8, 7-15, 7-25
Script verification utility 7-25
Scripting language 7-1, 7-17
Scripting language commands 7-2
SDM message

how to receive 1-15
how to send 1-12

Secondary queue 8-3, 8-34
Selection array 8-16, 8-96, 8-101
Selection criteria 2-23, 3-12, 3-15, 3-17, 5-

13, 5-17, 5-24, 8-30, 8-44, 8-47, 8-
48, 8-58, B-10, B-16

Selection mask 8-16, 8-37, 8-51, 8-65, 8-10
Selection rules 3-12, 3-17, B-10
Self-describing messaging 1-9
Sending and receiving messages 1-2
Sending MessageQ messages

How to send a message 1-4
Show_buffer argument 8-40, 8-52, 8-66
Show_buffer structure 8-38, 8-67
BEA MessageQ Programmer’s Guide I-5

Static and dynamic binding 4-8
Status codes 6-6, 6-23, 8-22, 8-108, 9-27, 9-

47
Store and forward (SAF) 2-3, 2-5, 2-7, 2-8, 2-

10, 2-14, 2-15, 2-26, 2-27, 2-28, 5-
31, 5-34, 8-82, 8-84, 9-48, 9-50, 9-
52, 9-68, 9-71, 9-72

support
technical xvi

T
Temporary queue 4-6, 6-23, 8-4, 8-7
Testing Return Status 6-21
Timeout values

selecting 2-9
Timer 5-13, 5-20, 5-21, 5-24, 5-27, 6-15, 8-

18, 8-105, 8-106, 9-102
TIMER_EXPIRED message 8-104
Tracing messages

OpenVMS systems 6-26
UNIX systems 6-25
Windows NT systems 6-26

Transaction ID 8-73

U
UMA status 2-14, 2-16, 2-27, 8-38, 8-52, 8-

55, 8-66, 8-84, 9-48
UMAs

exception processing 2-22
UNAVAIL message 5-5, 9-103
Undeliverable message action 2-4, 2-7, 2-12,

2-22, 8-66, 8-84, 8-86, 8-87, 9-49
Universal broadcast stream 3-6
I-6 BEA MessageQ Programmer’s Guide

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	Preface
	1. Sending and Receiving BEA MessageQ Messages
	2. Using Recoverable Messaging
	3. Broadcasting Messages
	4. Using Naming
	5. Using Message-Based Services
	6. Building and Testing Applications
	7. Using the Script Facility
	8. PAMS Application Programming Interface
	9. Message Reference
	A. Supported Delivery Modes and Undeliverable Message Actions
	B. Obsolete Functions and Services
	Index

	Preface
	Purpose of This Document
	Who Should Read This Document
	How This Document Is Organized

	How to Use This Document
	Opening the Document in a Web Browser
	Printing from a Web Browser
	Documentation Conventions

	Related Documentation
	BEA MessageQ Documentation

	Contact Information
	Documentation Support
	Customer Support

	1 Sending and Receiving BEA MessageQ Messages
	Overview
	The Basics of Sending and Receiving Messages
	Sending and Receiving Message Buffers
	How to Send BEA MessageQ Messages
	Listing 1-1 Example of Attaching to a Queue by Name
	Listing 1-2 Example of Sending Messages to a Queue

	How to Send Large Messages

	Receiving Messages Using Message Pointers
	Self-Describing Messaging with FML
	How Self-Describing Messaging Works
	Figure 1�1 Fielded Buffer Structure
	Benefits of Using FML
	Performance Considerations When Using FML
	Designing Applications to Use a Mixed Messaging Environment

	How to Send an FML Message
	1. Define field identifiers and map them to field names.
	2. Build messages using the appropriate FML functions.
	3. Send the message. To use an FML message pointer when sending a message, the sender program spe...
	4. Once your application is done using the FML message, delete the FML message using Ffree32() to...
	Defining Field Identifiers
	Building the FML Message
	Listing 1-3 Example of Building a Fielded Buffer

	Sending the FML Message
	Listing 1-4 Example of Sending an FML message

	How to Receive an FML Message
	1. Include the predefined field identifier definitions to your code to guarantee that both sendin...
	2. Create a pointer to a pointer to dynamically allocated space using Falloc or malloc and Finit.
	3. Set large_area_len to the length of the allocated space or to 0 if it is NULL.
	4. Read the message from the queue. The receiver program determines whether the message is a poin...
	5. Access the message fields using the appropriate FML API functions.
	6. Delete or reuse the message pointer to prevent memory leaks.
	Reading the Message from the Queue
	Listing 1-5 Example of Reading an FML Message

	Interpreting the Message

	Exchanging Messages Between BEA MessageQ and BEA TUXEDO or BEA M3
	Figure 1�2 Message Exchange Between MessageQ and TUXEDO
	Enabling the Messaging Bridge
	Data Transformation Between BEA MessageQ and TUXEDO
	Data Types
	Data Size and Length
	Timeouts
	Priorities
	Target, Queue Space and Queue Name
	TUXEDO Queue Space to BEA MessageQ Group Name
	TUXEDO Queue to BEA MessageQ Queue
	1. Configure the TMQUEUE_BMQ or TMQFORWARD_BMQ server to attach to the local group in which the n...
	2. Configure routing information to handle multiple instances of the TMQUEUE_BMQ or TMQFORWARD_BM...
	3. Use the queue name as defined by BEA MessageQ as the second parameter for tpenqueue or tpdequeue.

	Delivery
	Undeliverable Messages
	Correlation Identifiers
	Return Values
	Table 1�1 Return Values for tpenqueue
	Table 1�2 Return Values for tpdequeue

	Other BEA MessageQ API Elements
	Other TUXEDO API Elements

	2 Using Recoverable Messaging
	Choosing a Message Delivery Mode
	How the Message Recovery System Works
	Choosing Recoverable and Nonrecoverable Delivery Modes
	Table 2�1 Supported Delivery Modes
	When to Use Nonrecoverable Message Delivery
	When to Use Recoverable Message Delivery

	Choosing an Undeliverable Message Action
	Table 2�2 Valid UMAs

	How to Send a Recoverable Message
	1. The application sends a message using the pams_put_msg function and the appropriate delivery a...
	2. The message recovery system returns a sequence number to the sender program.
	3. The message recovery system writes the message to the recovery journal on the local or remote ...
	4. The sender program is notified that the message is stored on disk.
	5. If the sender program is blocked, it continues processing once the message is received at the ...
	Sequence Numbers
	Specifying Timeout Values
	Checking Delivery Outcome
	Table 2�3 PAMS Status Block
	Figure 2�1 PAMS Status Block
	Checking the Delivery Status of WF Requests
	Table 2�4 PSB Delivery Status Values
	Table 2�5 UMA Status Values

	Checking the Delivery Status of AK Requests
	1. Check the PSB delivery status. If this field contains a success status, the message is recover...
	2. If the PSB delivery status contains a failure status, check the PSB UMA status to determine th...

	How to Receive a Recoverable Message
	1. A message is read from the message recovery journal by the recovery system and sent to the tar...
	2. The receiver program reads the pams_get_msg, pams_get_msgw, or pams_get_msga functions.
	3. If the queue is configured for explicit confirmation, the application calls the pams_confirm_m...
	4. The pams_confirm_msg function sends notification to the message recovery system that the messa...
	5. The message recovery system removes the message from the message recovery journal and sends a ...
	Figure 2�2 Message Flow for Receiving a Recoverable Message
	Confirming Message Receipt
	Selecting a Confirmation Type
	Selecting a Confirmation Order
	Creating an Audit Trail of Confirmed Messages

	Checking for Duplicate Messages

	Using UMAs for Exception Processing
	Table 2�6 How to Use UMAs
	Using Discard and Discard and Log UMAs
	Using the Return-to-Sender UMA
	Using the Dead Letter Queue UMA
	Using the Dead Letter Journal
	Using the SAF UMA

	Recoverable Messaging on BEA MessageQ Clients

	3 Broadcasting Messages
	How Message Broadcasting Works
	Figure 3�1 BEA MessageQ Broadcast Stream
	Broadcast Scope
	Table 3�1 BEA MessageQ MOT Ranges

	Named MOTs
	Listing 3-1 Configuring a Named MOT

	Broadcast Communication Modes
	Figure 3�2 SBS Broadcasting Via BEA MessageQ Transport
	Listing 3-2 Setting the COMM_SERVICE for SBS on OpenVMS
	Figure 3�3 SBS Broadcasting Via Ethernet Transport
	Retransmission Protocol on BEA MessageQ for OpenVMS Systems
	Listing 3-3 Configuring Ethernet
	%SBS ******* SBS Server Initialization Section ************ * * NOTE: Heartbeat interval is in un...

	Sending Broadcast Messages
	Receiving Broadcast Messages
	Figure 3�4 SBS Server Message Flow
	.
	Registering to Receive Broadcast Messages
	Sending a Registration Message
	Registering to Receive Selected Broadcast Messages
	Data Offset
	Table 3�2 Valid Data Offset Symbols

	Operator
	Table 3�3 Operator Field Symbols

	Operand Length
	Operand Field

	Registration Acknowledgment

	Reading Broadcast Messages
	Deregistering from Receiving Broadcast Messages

	Running Existing SBS Applications
	Table 3�4 Obsolete and New SBS Messages

	4 Using Naming
	Understanding Naming
	What is Naming?
	What is a Name Space?
	What is the Naming Agent?

	Configuring Bus-Wide Naming
	How Applications Use Naming
	Specifying Names and Pathnames
	Attaching and Locating Queues

	Static and Dynamic Binding of Queue Addresses
	How Dynamic Binding of Queue Addresses Works
	How Caching and Binding Work
	Examples of Static and Dynamic Binding
	Client for Style 1 (Static Binding)
	Listing 4-1 Client Style Static Binding

	Client for Style 2 (Dynamic Binding)
	Listing 4-2 Client Style Dynamic Binding

	Server for Style 1 (Static Binding)
	Listing 4-3 Server Style Static Binding

	Server for Style 2 (Dynamic Binding)
	Listing 4-4 Server Style Dynamic Binding

	5 Using Message-Based Services
	Table 5�1 Overview of Message-Based Services
	How Message-Based Services Work
	Requesting a Service
	Receiving a Response

	Obtaining the Status of a Queue
	Figure 5�1 Avail Server Message Flow

	Monitoring and Controlling Link Status
	Listing Cross-Group Connections, Entries, and Groups
	Figure 5�2 Requesting Cross-Group Information

	Obtain Notification of Cross-Group Links Established and Lost
	Figure 5�3 Requesting Cross-Group Link Status

	Controlling Cross-Group Links
	Figure 5�4 Using Link Management
	Link Management Control Functions
	Inquire Function
	Table 5�2 Inquire Function Request Message Format
	Table 5�3 Inquire function status returns and user actions

	Enable Function
	Table 5�4 Enable function message format
	Table 5�5 Enable function status returns and user actions

	Disable Function
	Table 5�6 Disable Function Message Format
	Table 5�7 Disable Function Status Return and User Action

	Connect Function
	Table 5�8 Connect Request Function Message Format
	Table 5�9 Connect function status returns and user actions
	Table 5�10 Disconnect Function Message Format
	Table 5�11 Disconnect function status returns and user actions

	Link Management Design Considerations
	Table 5�12 Link Management Design Condsiderations

	Learning the Current Status of Queues
	Listing Attached Queues in a Group
	Figure 5�5 Listing All Queues

	Receiving Attachment Notifications
	Figure 5�6 Listing Available Queues

	Managing Message Recovery Files
	Opening, Closing, and Failing Over SAF and DQF Files
	Figure 5�7 MRS Server Message Flow

	Opening and Closing Auxiliary Journal Files
	Figure 5�8 MRS Server Message Flow

	Controlling Journaling to the PCJ File
	Figure 5�9 Disabling Journaling

	Transferring the Contents of a Destination Queue File
	Figure 5�10 Qtransfer Server Message Flow

	6 Building and Testing Applications
	Formatting and Converting Message Data
	Byte Order Conversion
	Alignment of Data Structures
	Writing Portable BEA MessageQ Applications
	Compiling and Linking BEA MessageQ Applications
	Using BEA MessageQ Include Files
	Table 6�1 BEA MessageQ Include Files
	Listing 6-1 Recommended #include Statements for BEA MessageQ Applications
	Table 6�2 Location of C Language Include Files

	Programming Language Support
	Table 6�3 Languages Supported By BEA MessageQ

	Connecting to the BEA MessageQ Environment
	Table 6�4 Logical Names Used in Testing and Debuggung

	Compiling and Linking Applications
	HPUX
	SCO Open Server 5.0:
	SCO UnixWare
	Sequent
	NCR
	Solaris
	UNIX Makefile
	Listing 6-2 UNIX Makefile

	Windows NT Makefile
	Listing 6-3 Windows NT Makefile

	OpenVMS Build Procedure
	Listing 6-4 Example OpenVMS Build Procedure
	Linking with the Run-Time Library
	Linking with the Object Library

	Running a BEA MessageQ Application
	Running an OpenVMS Program as a Detached Process
	Listing 6-5 Command Procedure to Run as a Detached Process

	Running Existing BEA MessageQ Applications Under Version 5.0
	Table 6�5 Existing Application Recompiling and Relinking Requirements
	Running Applications Under Windows 95 or NT Systems
	Linking an Application from a BEA MessageQ Client System to a BEA MessageQ Server System

	Testing Return Status
	Listing 6-6 Portable Code for Testing Return Status

	Using the BEA MessageQ Test Utility
	Table 6�6 Test Utility Default Settings

	Debugging BEA MessageQ Applications
	Tracing Messages on UNIX Systems
	Tracing Messages on Windows NT Systems
	Tracing Messages on OpenVMS Systems

	Controlling Message Flow
	C shell
	Bourne shell

	7 Using the Script Facility
	How to Use the Script Facility
	Using the BEA MessageQ Scripting Language
	Table 7�1 BEA MessageQ Script Facility Commands

	Capturing, Replaying, and Simulating Message Exchange
	Figure 7�1 Sending Messages and Capturing Output
	Figure 7�2 Sending Messages and Capturing Input
	Figure 7�3 Capturing Output Without Sending Messages
	Figure 7�4 Replaying Captured Messages
	Figure 7�5 Receiving Messages from Applications and Scripts
	Figure 7�6 Writing Scripts to Send and Capture Messages

	Capturing Messages Using Scripts
	Controlling Message Delivery Using Scripts
	Displaying Captured Messages on the Screen
	Writing Captured Messages to a Log File
	Listing 7-1 Sample Script to Capture Messages
	Listing 7-2 Sample Log Generated by a Script File

	Writing Captured Messages to Multiple Log Files
	Listing 7-3 Sample Script Using Multiple Log Files

	Replaying Messages
	Script Processing on UNIX Systems
	Table 7�2 Script Control Commands (UNIX only)
	Listing 7-4 Turning On Scripts for a Running Application

	Script Processing on OpenVMS Systems

	Writing Scripts to Send Messages
	1. Designate the beginning and end of the message
	2. Specify the source, target, type and class descriptors that form the message header
	3. Create the message content
	Defining Messages in Scripts
	Listing 7-5 Sample Script to Send a Message

	Defining the Message Header
	Listing 7-6 Message Header Format
	Additional Arguments for UNIX Systems
	Listing 7-7 UNIX Message Header Format

	Defining the Message Data
	Table 7�3 Valid Message Data Syntax

	Adding Repeats, Delays, and Comments to Scripts
	Repeating an Operation
	Entering Time Delays
	Entering Comments
	End-of-Line Format
	Comment Command Format

	Verifying Script Files
	Verifying Scripts on UNIX Systems
	Verifying Scripts on OpenVMS Systems
	Resolving Script Verification Errors
	Listing 7-8 Sample Script File with Errors
	Listing 7-9 Sample Output of Script File Verification Utility

	8 PAMS Application Programming Interface
	BEA MessageQ API Description Format
	Table 8�1 Callable Service Description Format

	BEA MessageQ API Data Types
	pams_attach_q
	Syntax
	Arguments
	Table 8�2

	Argument Definitions
	attach_mode
	q_attached
	q_type
	q_name
	q_name_len
	name_space_list
	name_space_list_len
	timeout
	nullarg_2
	nullarg_3

	Description
	Return Values
	Table 8�3

	See Also
	Examples

	pams_bind_q
	Syntax
	Arguments
	Table 8�4

	Argument Definitions
	q_addr
	q_alias
	q_alias_len
	name_space_list
	name_space_list_len
	timeout
	nullarg_1

	Description
	Listing 8-1 Example of Using pams_bind_q

	Return Values
	Table 8�5

	See Also
	Example

	pams_cancel_get
	Syntax
	Arguments
	Table 8�6

	Argument Definition
	sel_filter

	Return Values
	Table 8�7

	See Also

	pams_cancel_select
	Syntax
	Arguments
	Table 8�8

	Argument Definitions
	index_handle

	Return Values
	Table 8�9

	See Also

	pams_cancel_timer
	Syntax
	Arguments
	Table 8�10

	Argument Definitions
	timer_id

	Return Values
	Table 8�11

	See Also

	pams_close_jrn
	Syntax
	Arguments
	Table 8�12

	Argument Definitions
	Jrn_handle

	Return Values
	Table 8�13

	See Also

	pams_confirm_msg
	Syntax
	Arguments
	Table 8�14

	Argument Definitions
	msg_seq_num
	confirmation_status
	force_j

	Description
	Return Values
	Table 8�15

	See Also
	Example

	pams_detach_q
	Syntax
	Arguments
	Table 8�16

	Argument Definitions
	q
	detach_opt_list
	detach_opt_len
	msgs_flushed

	Description
	Return Values
	Table 8�17

	See Also

	pams_exit
	Syntax
	Arguments
	Description
	Return Values
	Table 8�18

	See Also
	Example

	pams_get_msg
	Syntax
	Arguments
	Table 8�19

	Argument Definitions
	msg_area
	priority
	source
	class
	type
	msg_area_len
	len_data
	sel_filter
	Default Selection
	Selection by Message Queue
	Table 8�20

	Selection by Message Attribute
	Table 8�21

	Selection by Message Source
	Compound Selection
	psb
	Table 8�22

	show_buffer
	Table 8�23

	show_buffer_len
	large_area_len
	large_size
	nullarg_3

	Return Values
	Table 8�24

	PBS Delivery Status
	Table 8�25

	See Also
	Example

	pams_get_msga
	Syntax
	Arguments
	Table 8�26

	Argument Definitions
	msg_area
	priority
	source
	class
	type
	msg_area_len
	len_data
	sel_filter

	Default Selection
	Selection by Message Queue
	Table 8�27

	Selection by Message Attribute
	Table 8�28

	Selection by Message Source
	Compound Selection
	psb
	Table 8�29

	show_buffer
	Table 8�30

	show_buff_len
	large_area_len
	large_size
	actrtn
	actparm
	flag_id
	nullarg_3

	Description
	Return Values
	Table 8�31

	PSB Delivery Status
	Table 8�32

	See Also

	pams_get_msgw
	Syntax
	Argument
	Table 8�33

	Argument Definitions
	msg_area
	priority
	source
	class
	type
	msg_area_len
	len_data
	timeout
	sel_filter
	Default Selection
	Selection by Message Queue
	Table 8�34

	Selection by Message Attribute
	Table 8�35

	Selection by Message Source
	Compound Selection
	psb
	Table 8�36

	show_buffer
	Table 8�37

	show_buff_len
	large_area_len
	large_size
	nullarg_3

	Return Codes
	Table 8�38

	See Also
	Example

	pams_locate_q
	Syntax
	Arguments
	Table 8�39

	Argument Definitions
	q_name
	q_name_len
	q_address
	wait_mode
	req_id
	resp_q
	name_space_list
	name_space_list_len
	timeout

	Return Values
	Table 8�40

	See Also
	Example

	pams_open_jrn
	Syntax
	Arguments
	Table 8�41

	Argument Definitions
	jrn_filespec
	jrn_filename_len
	jrn_handle

	Return Values
	Table 8�42

	See Also

	pams_put_msg
	Syntax
	Arguments
	Table 8�43

	Argument Definitions
	msg_area
	priority
	target
	class
	type
	delivery
	msg_size
	timeout
	psb
	Table 8�44

	uma
	resp_q
	large_size
	correlation_id
	nullarg_3

	Return Values
	Table 8�45
	Table 8�46

	See Also
	Example

	pams_read_jrn
	Syntax
	Arguments
	Table 8�47

	Argument Definitions
	jrn_handle
	msg_area
	priority
	source
	class
	type
	msg_area_len
	len_data
	target
	write_time
	conf_val
	msg_seq_num
	mrs_status
	large_area_len
	large_size
	nullarg_3

	Return Values
	Table 8�48

	See Also

	pams_set_select
	Syntax
	Arguments
	Table 8�49

	Argument Definitions
	selection_array
	Queue and Priority
	Table 8�50

	Comparison Keys
	Table 8�51

	Order Key
	Table 8�52

	Correlation ID
	Sequence Number
	num_masks
	index_handle

	Return Values
	Table 8�53

	See Also
	Example

	pams_set_timer
	Syntax
	Arguments
	Table 8�54

	Argument Definitions
	timer_id
	timer_format
	p_timeout
	s_timeout

	Return Values
	Table 8�55

	See Also
	Example

	pams_status_text
	Syntax
	Arguments
	Table 8�56

	Argument Definitions
	code
	severity
	buffer
	buflen
	retlen

	Description
	Return Values
	Table 8�57

	putil_show_pending
	Syntax
	Arguments
	Table 8�58

	Argument Definitions
	count
	in_q_list
	out_pend_list

	Return Values
	Table 8�59

	Example

	9 Message Reference
	AVAIL
	C Message Structure
	Message Data Fields
	Arguments
	See Also
	Example

	AVAIL_DEREG
	C Message Structure
	Message Data Fields
	Arguments
	See Also
	Example

	AVAIL_REG
	C Message Structure
	Message Data Fields
	Arguments
	See Also
	Example

	AVAIL_REG_REPLY
	C Message Structure
	Message Data Fields
	Arguments
	See Also
	Example

	DISABLE_NOTIFY
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	DISABLE_Q_NOTIFY_REQ
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	DISABLE_Q_NOTIFY_RESP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	ENABLE_NOTIFY
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	ENABLE_Q_NOTIFY_REQ
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	ENABLE_Q_NOTIFY_RESP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LINKMGT_REQ
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LINKMGT_RESP
	C Message Structure
	Message Data Fields
	Status Codes
	Arguments
	See Also

	LINK_COMPLETE
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LINK_LOST
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LIST_ALL_CONNECTIONS (Request)
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LIST_ALL_CONNECTIONS (Response)
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LIST_ALL_ENTRIES (Request)
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LIST_ALL_ENTRIES (Response)
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LIST_ALL_GROUPS (Request)
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LIST_ALL_GROUPS (Response)
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LIST_ALL_Q_REQ
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LIST_ALL_Q_RESP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LOCATE_Q_REP
	C Message Structure
	Message Data Fields
	Arguments

	MRS_ACK
	C Message Structure
	Message Data Fields
	Arguments
	Status Code
	UMA Status

	MRS_DQF_SET
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_DQF_SET_REP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_DQF_TRANSFER
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_DQF_TRANSFER_ACK
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_DQF_TRANSFER_REP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_JRN_DISABLE
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_JRN_DISABLE_REP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_JRN_ENABLE
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_JRN_ENABLE_REP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_SAF_SET
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_SAF_SET_REP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_SET_DLJ
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_SET_DLJ_REP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_SET_PCJ
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_SET_PCJ_REP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	Q_UPDATE
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_DEREGISTER_REQ
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_DEREGISTER_RESP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_REGISTER_REQ
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_REGISTER_RESP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_SEQUENCE_GAP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_STATUS_REQ
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_STATUS_RESP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	TIMER_EXPIRED
	C Message Structure
	Message Data Fields
	Arguments

	UNAVAIL
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	A Supported Delivery Modes and Undeliverable Message Actions
	Delivery Mode and UMA Cross-Reference
	Table A�1 Delivery Mode and UMA Cross-Reference

	B Obsolete Functions and Services
	Obsolete Message-Based Services for Message Broadcasting
	SBS_BS_SEQGAP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_DEREG
	C Message Structure
	Message Data Fields
	Arguments

	SBS_DEREG_ACK
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_DEREG_BY_ID
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_REG
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_REG_EZ
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_REG_EZ_REPLY
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_REG_REPLY
	C Message Structure
	Message Data Fields
	Arguments
	See Also
	Obsolete PAMS API Functions

	pams_create_handle
	Syntax
	Arguments
	Table 9�1

	Argument Definitions
	handle
	handle_type

	Return Values
	Table 9�2

	Description
	See Also

	pams_decode
	Table 9�3
	Syntax
	Listing 9-1 Syntax for pams_encode function

	Arguments
	Table 9�4

	Argument Definitions
	handle
	tag
	value
	bufferLength
	valueLength
	numEltsValue

	Return Values
	Table 9�5

	Description
	See Also

	pams_delete_handle
	Syntax
	Arguments
	Table 9�6

	Argument Definition
	handle

	Return Values
	Table 9�7

	Description
	See Also

	pams_encode
	Syntax
	Listing 9-2 Syntax for pams_encode_functions

	Arguments
	Table 9�8

	Argument Definitions
	handle
	tag
	value
	length
	numElts

	Return Values
	Table 9�9

	Description
	See Also

	pams_extract_buffer
	Syntax
	Table 9�10

	Argument Definitions
	handle
	msgBuffer
	bufferLength
	msgLength

	Return Values
	Table 9�11

	Description
	See Also

	pams_insert_buffer
	Syntax
	Arguments
	Table 9�12

	Argument Definitions
	handle
	msgBuffer
	length

	Return Values
	Table 9�13

	Description
	See Also

	pams_msg_length
	Syntax
	Arguments
	Table 9�14

	Argument Definitions
	handle
	msgLength

	Return Values
	Table 9�15

	See Also

	pams_next_msg_field
	Syntax
	Arguments
	Table 9�16

	Argument Definitions
	handle
	tag
	valueLength

	Return Values
	Table 9�17

	Description
	See Also

	pams_remove_encoding
	Syntax
	Argument
	Table 9�18

	Argument Definitions
	handle
	tag
	flags

	Return Values
	Table 9�19

	See Also

	pams_set_msg_position
	Syntax
	Arguments
	Table 9�20

	Argument Definitions
	handle
	tag

	Return Values
	Table 9�21

	Description
	See Also
	Index
	A
	B
	C
	D
	E
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U

