'll"

Ak
BEA MessageQ

Programming Guide

BEA MessageQ for OpenVMS Version 5.0
Document Edition 5.0
March 2000



Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE

RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and TUXEDO are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, Jolt, M3, and WebLogic are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

BEA MessageQ Programmer’s Guide

Document Edition Date Software Version

5.0 March 2000 BEA MessageQ, Version 5.0




Contents

Preface

1. Sending and Receiving BEA MessageQ Messages

OVEIVIBIW ...ttt sttt et ae b eb e st ebe e e seenbes e se et anbebe s e sneenes 1-1
The Basics of Sending and Receiving MeSSages ..........cvvrueeeveereeieieneneee e 1-2
Sending and Receiving Message BUFfers........cooieieieie e 1-3
How to Send BEA MessageQ MESSAgES........ccoveueeeeiueeeeneeeeeseee e sreesee e 1-4
HOW t0 Send Large MESSAgES .......ovieeririererieeieseesieie e e e eseeses e eneseeseesne 1-7
Receiving Messages Using Message Pointers.........c.ooecvviveveeveeeveeeeese s 1-8
Self-Describing Messaging With FIML ........ooeevicie e 1-9
How Self-Describing Messaging WorkS.........coooecveiieiveecieseeseeecee e 1-9
Benefits of USING FML ....ooveiviciecce et 1-10
Performance Considerations When Using FML .........cccccoevvevieenenee. 1-11
Designing Applications to Use a Mixed Messaging Environment.... 1-12
How t0 Send an FIML MESSA0E........cuiriiieuirierienie st 1-12
Defining Fidd 1dentifiers.......cccceeceeiicicce e 1-13
Building the FIML MESSAQE.........ccveeerecrieie e e e se e e 1-13
Sending the FIML MESSAQE ......ccceeieeiiieiecie et 1-14
How to Receive an FIML MESSAQE.......cccccveieeeeeceeseeee et s sraean s 1-15
Reading the Message from the QUEUE ..........cceeeeeeiieeceeccccecceee, 1-16
Interpreting the MESSAgE........c.cvere et e 1-17
Exchanging M essages Between BEA MessageQ and BEA TUXEDO or BEA M3
1-17
Enabling the Messaging Bridge ..........cooeeeecveeieccseeeeee e 1-21
Data Transformation Between BEA MessageQ and TUXEDO............... 1-21
Da@ TYPES ..ttt sttt et st b e er e ene e 1-22
DataSizeand Length ..o 1-22

BEA MessageQ Programmer’s Guide iii



THMEOULS. ...ttt ettt ee e et e saee e s sbae s s e saeeessabeeessbbesennns 1-23

PHIOMTTIES ...ttt e et 1-23
Target, Queue Space and Queue Name..........ccccceveveereenenesereeseeneas 1-23
DEIIVENY .ottt sttt st aea e er et ene s 1-26
Undeliverable MeSSages.........ccoeeuirierneeeeiieie e e e 1-26
Correlation dentifiers ... .o e 1-27
REIUIMN VAIUES. ...ttt 1-27
Other BEA MessageQ APl Elements.........ccooeveveie e 1-29
Other TUXEDO APl El&mMents.......cccocviiiieie e 1-29

2. Using Recoverable Messaging

Choosing a Message Delivery MOE. ..o e e 2-2
How the Message Recovery System Works.........cooeeeeiininccne e 2-3
Choosing Recoverable and Nonrecoverable Delivery Modes.................... 2-4

When to Use Nonrecoverable Message Delivery .........cooovoeieieee. 2-6
When to Use Recoverable Message Delivery .........ccooeoevenencienen. 2-7
Choosing an Undeliverable Message ACtion .........cocccoverveneieveenicie e 2-7

How to Send a Recoverable MESSAgE..........couvceiueeieiieeceeecee ettt 2-9
SequUENCE NUMDEIS ... s 2-9
Specifying TIMEOUL ValUES.......ccoiiiieereireeie et 2-10
Checking Delivery OULCOME..........c.coviurereeeeeireeeee et 2-11

Checking the Delivery Status of WF Requests..........ccccoovceeerenennn. 2-13
Checking the Delivery Status of AK ReqUESES ........ccceevreciirienenne. 2-16

How to Recelve a Recoverable MESSage.........coueuieveciineenienieesee e 2-17
Confirming Message RECEIPL .......ccvrerireeiirier e e 2-18
Selecting a Confirmation TYPE ......ccooeeereereerieie e 2-19
Selecting a Confirmation Order .........cccoveevevveeveecveesesee e 2-20
Creating an Audit Trail of Confirmed Messages..........cccoeevvveeveennen. 2-20
Checking for Duplicate MESSAgES........ccoerverierieie et e 2-21
Using UMAS for EXCEPtion ProCESSING........ceeeeereeriereie e 2-22
Using Discard and Discard and Log UMAS.........cccoeveeveveesiecvennen. 2-24

Using the Return-to-Sender UMA ... cice e 2-25

Using the Dead Letter Queue UMA .........oovviieeeiiieeeceecee e 2-25

Using the Dead Letter Journal.............ccoveeeeveiecienieeseeecee e 2-26
USINGthe SAF UMA ...t e 2-26

BEA MessageQ Programmer’s Guide



Recoverable Messaging on BEA MessageQ Clients........ccoocveveneveneeeeceineene 2-27

Broadcasting Messages

How Message Broadcasting WOrKS.........ccccuririreiie e 3-3
BrOAOdCASt SCOPE ... eeeeuereireeie ettt sttt ee e e see e s e e e e enene 35
NAMEA MOTS ...ttt ettt e st en e se e eee e 3-7
Broadcast CommuniCation MOES.........ccoueuerrrieirceee e 3-8

Retransmission Protocol on BEA MessageQ for OpenVMS Systems.....
3-10

Sending BroadCast MESSAQES .......ccceevveieeieiiieeieierie et ste st sttt et 3-12

Recelving BroadCast MESSAES ........coveiieiieieeieeeteeree st st sttt st er e 3-13
Registering to Receive Broadcast MeSsages.........cveveevveiecvieieceeneenenn 3-15

Sending a Registration MESSage.......c.ccvvvieveeeveecreeie et 3-16
Registering to Receive Selected Broadcast Messages...................... 3-17
Registration Acknowledgment............cccoee e cieesiecec e 3-19

Reading Broadcast MESSAQES........cccccueiecieiieeieie e e st seeeree e srannne s 3-19
Deregistering from Receiving Broadcast Messages..........cccoevvveveesinninnns 3-19
Running Existing SBS APPliCatioNS ........cccueiririiie e 3-20

Using Naming

Understanding NaMiNg..........coeeeereeieieneeeeeiee et s snessesee e 4-1
What IS NAMING?......c e e e 4-2
What iSANEME SPACE?......cooieeeee et e 4-2
What isthe Naming AQENL? ..ot 4-3

Configuring Bus-Wide NamMinNg ........c.coceeueerieirieie e ee e seeeree e 4-3

How Applications USe NaMING........ccoeeeeeereie e s s 4-5
Specifying Names and PathNames..........ccoocooeoeeirinieee e 4-6
Attaching and Locating QUEUES...........ccceeueeeeiectie st 4-6

Static and Dynamic Binding of Queue Addresses...........ccoevveveeeveeceeeceeceeeeeene 4-7
How Dynamic Binding of Queue Addresses WOrks..........ccccoeeveeeeireennnn. 4-7
How Caching and Binding WorK ..........ccccoeevirieninie e 4-8
Examples of Static and Dynamic Binding ..........ccccoereeeinneeninnene e 4-8

Client for Style 1 (Static Binding) .......ccccceveeveviniese e 4-8
Client for Style 2 (Dynamic Binding).........cccocevvevievesiece e 4-9
Server for Style 1 (Static Binding).......cccoccevveveeveeie e, 4-10

BEA MessageQ Programmer’s Guide v



Vi

Server for Style 2 (Dynamic Binding) .......c.cccoeeeenrneeienincnieceenn. 4-10

5. Using Message-Based Services

How Message-Based ServiceS WOrK.........ccveieieieineeee e s 5-2
REQUESEING 8 SEIVICE ...ttt et e 5-3
RECEIVING @ RESPONSE......couieie ettt e s 5-3

Obtaining the Status Of 8 QUEUE..........cceriiiee e e e e 5-4

Monitoring and Controlling Link SEALUS ..........cccoeeererienencrenee e 5-6
Listing Cross-Group Connections, Entries, and Groups.........ccccceeereeneee. 5-6
Obtain Notification of Cross-Group Links Established and Lost .............. 5-7
Controlling Cross-Group LiNKS.......ccccurereee e e 5-8

Link Management Control FUNCLIONS ...........c.ccoueeveiececieceeec e 5-9
Link Management Design Considerations...........ccccceveeeveeseeeseesvennen. 5-27

Learning the Current Status of QUEUES...........ceeveveeeiecestie e 5-29
Listing Attached QUEUES IN @ GrOUP ......cceriereee et 5-29
Receiving Attachment Notifications...........cccovvie i 5-30

Managing Message RECOVErY FilES.......coo i 5-31
Opening, Closing, and Failing Over SAF and DQF Files..........cccccuenne. 5-32
Opening and Closing Auxiliary Journal Files........c.cccovininiieiencciennes 5-33
Controlling Journaling to the PCI File......c.ooveve e, 5-34
Transferring the Contents of a Destination Queue File............cccceueneeeee. 5-35

6. Building and Testing Applications

Formatting and Converting Message Data..........ccoeveieeerreeeneneenene e 6-2
Byte Order CONVEISION........coeiuireieereeieuie e eeeeeese e seess e e see e eseese e ees 6-2
Alignment of Data SLIUCLUIES...........cvicecie et e 6-3

Writing Portable BEA MessageQ ApPliCations..........coeieeerereeneie e 6-4

Compiling and Linking BEA MessageQ Applications .........cccccoeeeeveeneniesennen. 6-5
Using BEA MessageQ Include Files... ... 6-5

Programming Language SUPPOIT ..........couevereereeernereeieseeseesie e seeneanens 6-8
Connecting to the BEA MessageQ Environment..........ccccvcereeeeeencievenenn 6-8
Compiling and Linking ApplicationS.........ccoccooeieieneenee e 6-10

UNIX MEKEFTTE ..ot 6-11

WiIndows NT MaKEfil€.......ocvreireire e 6-12

OpenVM S BuUild ProCeaure ...........oeoeee e 6-14

BEA MessageQ Programmer’s Guide



Running a BEA MessageQ Application..........ccovvieeeienerneeie e 6-17
Running Existing BEA MessageQ Applications Under Version 5.0 6-19

TeStiNG REIUMN SEELUS ... ceeeeeee e e 6-21
Using the BEA MessageQ Test ULty .....oc.ooevereie i 6-23
Debugging BEA MessageQ AppliCations..........coueveeererienie e seeiee e 6-25

Tracing Messages on UNIX SyStemS........cccoieviieie e 6-25

Tracing Messages on Windows NT SyStems........ccceveveeeinneenesiniennennens 6-26

Tracing Messages on OpenVM S SYyStEMS.......c.covieveereeieinneeneeeineneneens 6-26
Controlling MESSAgE FIOW .....cveeiecieciie et st 6-26

Using the Script Facility

How to Use the Script FaCility ........cccooieeeie e 7-2
Using the BEA MessageQ Scripting Language.........cocoveeeeeveeneeeeeeeneennens 7-3
Capturing, Replaying, and Simulating Message Exchange.........c.cccce..... 7-5

Capturing Messages USING SCIHPLS. ....ovvereeierereeeeieriese e ese e eeee e 7-8
Controlling Message Delivery Using SCriptS........coceoeeeerereneseseenecieienneas 7-9
Displaying Captured Messages on the Screen .........ocoeveveeeenececeenen 7-9
Writing Captured Messagesto aLog File.........coceoiiiininiinniienes 7-10
Writing Captured Messagesto Multiple Log Files.........ccccooveviiinnnns 7-12

REPIQYING MESSAGES ...ttt ettt e e e e ee e eene e 7-13
Script Processing on UNIX SyStemMS........cccoeiiiiniie e 7-14
Script Processing on OpenVM S SyStEMS .......ccooeveerereveereeie s reeeeeeneenne 7-16

Writing SCripts to Send MESSAgES......coveuveriereeieiierire et s e 7-17
Defining MeSSages iN SCIHPLS.....o.coeuereereeieie et s 7-17
Defining the Message HEAdEY ........ccoevvveieiee e 7-18

Additional Arguments for UNIX Systems........ccccccevvevveeiienveeneeeieenee 7-19
Defining the Message Data........cccoecee e cieiececececseee sttt 7-20

Adding Repeats, Delays, and CommentSto SCriptS.......cccovvveeveeerrerieeeseereenns 7-22
Repeating an OPEratioN.........cc.ee oo reeneeieiee e e e e 7-22
Entering TIME DE@YS.......cocciveiiie et nnae 7-23
ENtering COMMENES........cooiiiie ettt er e s srennae 7-24

ENd-0f-Line FOrMAL ........ooeieiiieiie e e e 7-24
Comment Command FOMEL..........couerieeeeirere e 7-24

Verifying SCrPt FIIES ... e s 7-24

Verifying Scripts on UNIX SyStemS.......ccueiiiieiininiee e 7-25

BEA MessageQ Programmer’s Guide vii



Verifying Scripts on OpenVMS SyStemS.........covveereeirinnnieee e seeeeens 7-25
Resolving Script Verification ErrOrS.........ocoeieieieveenene e eee e 7-25

8. PAMS Application Programming Interface

BEA MessageQ APl Description FOrMat............coveeeueieneeieeinencene s 8-1
BEA MessageQ APl Dala TYPES. ....cuerverie ettt e e e sees e sreenee e 8-2
PAMS_ AHEACH (. eeeeiee e e 8-3
(022100 TSR o 1 oo [ o [P STSSTURPRSTRN 8-11
PAMS_CANCE]_ QL ...t e 8-15
PaMS_CANCEl_SEIECL ... 8-16
PAMS_CANCE]_tIMEN ...t e 8-18
PAMS _ClOSE JIN.cueiiii ettt et e e en s 8-20
PAMS_CONFITM_MSY ..ttt e seeeeas 8-21
PAMS_AELACN .. s 8-25
PAIMS_ EXIT .ttt et e et e e b sbe e sbe b e 8-28
PAMS_JEL IMIST ... cueeuieieeeieieereeeseeseessesseeeseesreessesseessesseane e s e s seesaeeseessens 8-30
PAMNS_JEL IMSTA .. .ccueeieeeieeereeeseeseesseeseesseesreesbe e e bes e ese e s e s seesaeeseessens 8-44
PAMS_JEE IMSGWW ...uinieieieeeeeeseeseestesseeesaesreesben e es e e ee e s e s ssesneeseessens 8-58
PAMS [OCAEE (.- veeeneeneerereeieeiee e ettt et et s sb b sae e seens 8-72
(0220013 oo = o N1 o USSR 8-77
PAMS_PUL IMIST. e eeeieeieeeseeseee et see s e et se e e e e e e eeesse e e sae e aneans 8-79
PAMS FEAA JIN ..ttt et e s 8-90
PAMS_SEL SEIECE.....ieieee e 8-96
PAMS_ SEL LIMEN ..t e e 8-104
PAMS_SEAEUS TEXE ...ttt s 8-107
puUtil_ShOW _PENding .......cceoieieieree e e 8-110

9. Message Reference

AVALL e se s es e es e 9-2
AVAIL_DEREG .....oooiovveeeeeeeeeeeeeeeeeseeeseeeeeeeeee e eeees e seees e eeees e 9-4
AVAIL_REG ..ot eee e seess s seess e eees e seeneoe 9-6
AVAIL_REG_REPLY ..ooooooreeeeeeieeeeeeeseeeeeeeeee e eeeeeeeeee s eesee e 9-8
YRS =TI = N0 1 [ 2 9-10
DISABLE_Q NOTIFY_REQ ...ooooeoieeeeeeeeeeeeceseeseeeeeeseeeseeeeeeeeseene 9-12
DISABLE_Q NOTIFY_RESP.....iiteeeeoeeereeeeseeseeeseeeseeeseeeeeeeeseeee 9-14

Viii BEA MessageQ Programmer’s Guide



ENABLE_NOTIFY ..ot e 9-16

ENABLE_Q NOTIFY_REQ ...ccoiieieeeeiee ettt enenes 9-17
ENABLE_Q NOTIFY_RESP.....ccooitieiteeeetie et eeenenenes 9-19
LINKMGT_REQ ...oiiiieieieieietee ettt ettt et et e 9-21
LINKMGT _RESP.......ocotiiiieiiee sttt seese s s s sssesansenes 9-24
LINK_COMPLETE .....cciiiiririne ettt sessese s s aeenen 9-29
LINK _LOST ..oiiieciiiesiirieiisieresisrese s sse s e s snes s s ssssasesen 9-31
LIST_ALL_CONNECTIONS (REQUESL).....vevvrvrerrrreireenieenieeseenens 9-33
LIST_ALL_CONNECTIONS (RESPONSE) .....covvrvereriererieinieenieenens 9-34
LIST_ALL_ENTRIES (REQUESL) ....ovvivieecieeeiieetieetiseeees e e 9-36
LIST_ALL_ENTRIES (RESPONSE) ....ccceverereerireerireereeesenensesensesansenes 9-37
LIST_ALL_GROUPS (REQUESL) ....coverereererieresieseseeseseesessesessenessanennes 9-39
LIST_ALL_GROUPS (RESPONSE)......cruerueieriereiiriieseeseenieiee e eveees 9-40
LIST_ALL_Q REQ...iiiiiiiririresirie et s ssese s ssessansenen 9-42
LIST_ALL_Q RESP.....ciiiiitire vttt s ssene s e esaeenen 9-43
LOCATE_Q REP.....coiiiieisrre e se e s ss s s ssansenen 9-45
MRS _ACK ...ttt et e e s e e e 9-47
MRS DOQF _SET ..ottt sttt sss s s asenes 9-50
MRS DQF _SET_REP.......ooiiieieee ettt svensees s aneenen 9-52
MRS _DQF _TRANSFER.......ccoiiirietirietirietietes et s 9-54
MRS _DQF TRANSFER_ACK ....cooiiceieereetireetieetie e 9-56
MRS _DQF TRANSFER_REP ......ccooviieirei e 9-58
MRS _JRN_DISABLE ..ottt 9-60
MRS _JRN_DISABLE _REP........ctieieetiieiieii ettt 9-62
MRS _JRN_ENABLE ...ttt et e e 9-64
MRS _JRN_ENABLE_REP......cccctietreteee ettt neenes 9-66
MRS _SAF _SET ...ttt ettt ettt et aes e aesenes 9-68
MRS _SAF _SET_REP ..ottt 9-71
MRS _SET DL J oottt ettt es s s asenes 9-74
MRS _SET _DLJ REP.....cooeieeeetictieeteee ettt 9-76
MRS _SET _PCJ....oiiiiieiieiererte ettt ettt ss e ssen s aesenen 9-78
MRS _SET _PCJ REP ...ttt 9-80
Q _UPDATE ...ttt ettt s et st s e 9-82
SBS DEREGISTER_REQ .....ccccviiiiiiisire et e 9-84
SBS DEREGISTER_RESP.......cccvotiiitiiiesiriries e e 9-86

BEA MessageQ Programmer’s Guide ix



SBS REGISTER_REQ......ciieeeeeeseeeeeeeeeeeseeeeesseeseeseeeeeeseseeese s 9-88

SBS_REGISTER _RESP.......ooocmieieeeeeeeseesseseesessesseeeessssssssessssssseeeens 9-91
SBS_SEQUENCE_GAP-.....ooeeeeeeeeeeeeeeeeceseeeeseeeessesees e ssesseseessson 9-93
SBS_STATUS REQ......eoveeeereseeeeeeeeessseeseseessssssseesesssssssssoessessssenees 9-95
SBS_STATUS RESP......oovveeeeeeeeeeeeeeesseeeseseessssssseeeesssssssseesesessssenens 9-97
TIMER_EXPIRED......cooveeeeeeeeee oo seeseseeeeeesesss e seess e ssses e 9-102
UNAVALL e seeee e sesseses e sessesesesssseeesssenns 9-103

A. Supported Delivery Modes and Undeliverable Message
Actions
Delivery Mode and UMA Cross-ReEfErenCe.........cooeeeeererieee s A-3

B. Obsolete Functions and Services

Obsol ete Message-Based Services for Message Broadcasting..........ccccveeeneee B-1
SBS BS SEQGARP ...ttt sttt e B-2
SBS DEREG ..ottt ettt st srene e B-4
SBS DEREG_ACK ..ottt ettt et snene s B-6
SBS DEREG _BY _ID ittt s s B-8
SBS REG ..ottt ittt ettt e s s e e et B-10
SBS REG_EZ...ooeceeceeceetttetet ettt e st B-12
SBS REG_EZ REPLY ...ocvoieiiietitetiiee ettt B-14
SBS REG_REPLY ...coootiictiictieetitet ettt s B-16
Obsolete PAMS APl FUNCLIONS........cooiiiiieie e e B-17
pams_create handle..........ccoeeeii i e e B-18
PAMS_AECOR ......ceeieeiieereetete e et e e e B-20
pams_delete handle..........coooeeii i e B-25
PAMS_ENCOAR ....c.ceeetiieereeteriee ettt b st et e e B-27
pams_extract DUFfEr ..o B-31
PAMS _iNSErt DUFFEN ..o e B-33
PaMS_ MSY_1ENGEN.....c.eiii e e B-35
pams next MSg_field. ... B-37
PaMS _remoVve_eNCOAING.......ouriruere et e e B-39
PamMSs_Set MSY_POSITION ..cueiviriie e e e B-41
Index

BEA MessageQ Programmer’s Guide



Preface

Purpose of This Document

This document provides a detailed description about using the BEA MessageQ
application programming interface (API) to build and integrate distributed
applications. This document contains both tutorial and reference information.

Who Should Read This Document

This document is intended for applications designers and devel opers who are
interested in designing, developing, building, and running BEA MessageQ
applications.

How This Document Is Organized

The BEA MessageQ Programmer’s Guide is organized as follows:

m Chapter 1, “Sending and Receiving BEA MessageQ Messages” describes the
basic process of sending and receiving messages. This chapter makes a
distinction between sending messages as predefined message buffers and as
self-describing FML buffers.

m Chapter 2, “Using Recoverable Messaging” describes how to guarantee message
delivery using recoverable messages written to honvolatile storage.

m Chapter 3, “Broadcasting Messages” describes how to send messages to multiple
gueues with a single program call using Selective Broadcast Services.

BEA MessageQ Programmer’s Guide  Xi



m Chapter 4, “Using Naming” describes how to enable BEA MessageQ
applications to identify message queues by name.

m Chapter 5, “Using Message-Based Services” describes how to use
message-based services to obtain the status of one or more queues, monitor an
control link status, and broadcast messages.

m Chapter 6, “Building and Testing Applications”describes how to format and
convert message data, write portable BEA MessageQ applications, test and
debug applications, and control message flow.

m Chapter 7, “Using the Script Facility” describes how to simulate message
exchange between programs using script files instead of test programs.

m Chapter 8, “PAMS Application Programming Interface” describes the BEA
MessageQ applications programming interface. All API functions are listed in
alphabetical order.

m Chapter 9, “Message Reference” describes all BEA MessageQ message-based
services.

m Appendix A, “Supported Delivery Modes and Undeliverable Message Actions,”
lists the supported combinations of delivery mode (such as wait for completion
or no notification) and undeliverable message action (such as discard, return to
sender, or store and forward).

m Appendix B, “Obsolete Functions and Services,” lists obsolete BEA MessageQ
API functions and message-based services. These items are listed for use with
applications built on older versions of BEA MessageQ and should not be used
for new development.

How to Use This Document

Xii

This document, BEA MessageQ Programmer’s Guide, is designed primarily as an
online, hypertext document. If you are reading this as a paper publication, note that t
get full use from this document you should access it as an online document via the
BEA MessageQ Online Documentation CD.

The following sections explain how to view this document online, and how to print a
copy of this document.

BEA MessageQ Programmer’s Guide



Opening the Document in a Web Browser

To accesstheonline version of thisdocument, openthei ndex. ht mfileinthetop-level
directory of the BEA MessageQ Online Documentation CD. On the main menu, click
the BEA MessageQ Programmer’s Guide button.

Note: The online documentation requires a Web browser that supports HTML
Version 3.0. Netscape Navigator version 3.0 or Microsoft Internet Explorer
version 3.0 or later are recommended.

Printing from a Web Browser

You can print a copy of this document, one file at a time, from the Web browser.
Before you print, make sure that the chapter or appendix you want is displayed and
selected in your browser.

To select a chapter or appendix, click anywhere inside the chapter or appendix you
want to print. If your browser offers a Print Preview feature, you can use the feature to
verify which chapter or appendix you are about to print. If your browser offers a Print
Frames feature, you can use the feature to select the frame containing the chapter or
appendix you want to print. The BEA MessageQ Online Documentation CD also
includes Adobe Acrobat PDF files of all of the online documents. You can use the
Adobe Acrobat Reader to print all or a portion of each document. On the CD’s main
menu, click the Bookshelf button. On the Bookshelf, scroll to the entry for the BEA
MessageQ document you want to print and click the PDF option.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention ltem

boldfacetext  Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

BEA MessageQ Programmer’s Guide xiii



Xiv

Convention

Item

italics Indicates emphasis or book titles.
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and file names and their extensions.
M onospace text also indicates text that you must enter from the keyboard.
Examples:
#i ncl ude <stdi o. h>
void main ()
chnod u+w *
\tux\ dat a\ ap
. doc
t ux. doc
Bl TMAP
f |l oat
nonospace I dentifies significant wordsin code.
bol df ace Example:
text dngshutdown -b bus id -g group_id [-f]
nonospace Identifies variables in code.
italic Example:
text .
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choices in a syntax line. The braces themsel ves should

never be typed.

Indicates optiona itemsin a syntax line. The brackets themselves should
never be typed.

Example:
dngshutdown -b bus id -g group _id [-f]

BEA MessageQ Programmer’s Guide



Convention Iltem

| Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m  That an argument can be repeated severa timesin acommand line

m  That the statement omits additional optional arguments

m  That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

dngshutdown -b bus id -g group_id ...

Indicates the omission of items from a code example or from asyntax line.
The vertical ellipsisitself should never be typed.

Related Documentation

The following sections list the documentation provided with the BEA MessageQ
software, related BEA publications, and other publications related to the technol ogy.

BEA MessageQ Documentation

The BEA MessageQ information set consists of the following documents:
BEA MessageQ Installation and Configuration Guide for Windows NT
BEA MessageQ Installation and Configuration Guide for UNIX

BEA MessageQ Installation Guide for OpenVMS

BEA MessageQ Configuration Guide for OpenVMS

BEA MessageQ Programmer’s Guide

BEA MessageQ Programmer’s Guide xv



BEA MessageQ FML Programmer’s Guide

BEA MessageQ Reference Manual

BEA MessageQ System Messages

BEA MessageQ Client for Windows User’s Guide
BEA MessageQ Client for UNIX User’s Guide
BEA MessageQ Client for OpenVMS Guide

Note: TheBEA MessageQ Online Documentation CD also includes Adobe A crobat
PDF files of all of the online documents. Y ou can use the Adobe Acrobat
Reader to print al or a portion of each document.

Contact Information

The following sections provide information about how to obtain support for the
documentation and software.

Documentation Support

If you have questions or comments on the documentation, you can contact the BEA
Information Engineering Group by e-mail at docsupport@beasys.com. (For
information about how to contact Customer Support, refer to the following section.)

Customer Support

If you have any questions about this version of WebL ogic Enterprise, or if you have
problemsinstalling and running WebL ogi ¢ Enterprise, contact BEA Customer Support
through BEA WebSupport at www. beasys. com Y ou can a so contact Customer
Support by using the contact information provided on the Customer Support Card,
which isincluded in the product package.

XVi BEA MessageQ Programmer’s Guide



When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number

m Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

BEA MessageQ Programmer’s Guide xvii



Xviii BEA MessageQ Programmer’s Guide



CHAPTER

1 Sending and Receiving

BEA MessageQ
Messages

This chapter covers the following topics:

The Basics of Sending and Receiving Messages
Sending and Receiving M essage Buffers
Receiving Messages Using M essage Pointers
Self-Describing Messaging with FML

Exchanging M essages Between BEA MessageQ and BEA TUXEDO or BEA
M3

Overview

BEA MessageQ enables applicationsto exchangeinformation in the form of messages
using the following PAMS API functions:

The pans_at t ach_q function—attaches the application to the message queuing
bus and defines a queue for the application to receive messages

m Thepans_put _nsg function—sends a message to a target queue

BEA MessageQ Programmer’s Guide 1-1



1 Sending and Receiving BEA MessageQ Messages

m Thepans_get _nsg function—retrieves a message from a queue

m Thepans_det ach_qg function—detaches the application from the message
queuing bus

BEA MessageQ provides applications with three distinct ways to send and receive
messages using:

m Static message buffers
m Pointers to message buffers that can be dynamically reallocated as required
m Self-describing messaging using Field Manipulation Language (FML)

This variety of methods for sending and receiving messages enables application
developers to choose the type of messaging that best suits the application’s present &
future needs.

The Basics of Sending and Receiving
Messages

To send or receive messages, an application must be attached to at least one mess
gueue on the message queuing bus. This queue serves as the application’s primary
gueue—the main mailbox in which it receives information. To attach to a queue, the
application must successfully execute plaes_at t ach_qg function. Once attached,

the application can send a message to a known target queue address using the
pams_put _nsg function.

BEA MessageQ offers the following functions for receiving messages:
m Thepans_get _nsg function—retrieves a single message from a queue

m Thepans_get _nsgwfunction—retrieves a single message from a queue but, if
the queue is empty, this function waits for a message to arrive in the queue

m Thepans_get _nsga function—asynchronously retrieve messages from a queue.
This function is available only on OpenVMS systems.

1-2 BEA MessageQ Programmer’s Guide



Sending and Receiving Message Buffers

When the application is finished sending or receiving messages, it detaches from the
message queuing bus using the pams_det ach_q function.

Refer to the programming examples distributed as part of the BEA MessageQ kit to
view sample programs for each of these PAMS API functions.

Note: If you are new to using BEA MessageQ, you should begin by reading the
Introduction to Message Queuing. This introduction explains the BEA
MessageQ concepts that you need to understand before you can begin
successfully developing applications.

Sending and Receiving Message Buffers

Sending and receiving information as static message buffers isthe easiest way to
exchange information using BEA MessageQ. A static message buffer is a predefined,
static data structure. Often, an application uses a version number to identify the
structure layout. So, for example, when a payroll system sends empl oyee payroll
information using version 1 of its payroll data structure, the receiving application can
interpret each field of data in the buffer because it knows the definition of the version
1 payroll data structure.

Passing information using a static data structure in the form of a message buffer isthe
fastest way to exchange information between BEA MessageQ applications. Because
the data structure definition is known to both the sending and receiving applications,
no interpretation is required. Therefore, processing of information between both
sender and receiver programsis faster.

See the following topics for information on how to:

m  Send a message buffer up to 32K. See the How to Send BEA MessageQ
M essages topic for more information.

m  Send a message buffer up to 4MB. See the How to Send L arge M essages topic
for more information.

BEA MessageQ Programmer’s Guide 1-3



1 Sending and Receiving BEA MessageQ Messages

How to Send BEA MessageQ Messages

1-4

When programming BEA MessageQ applications, there are four basic functions that
are used in the sending messages. The first function called ispans_at t ach_q. This

function is used to connect your BEA MessageQ applications to the BEA MessageQ
message queuing bus. Attaching to the message queuing bus provides the application

with a default queue address for receiving the reply message and ameansto share

information with al other BEA MessageQ applications.

Theexamplein Listing 1-1 illustrates how to attach to a queue by name. The queue
name must be defined appropriately in your group initialization file.

Listing 1-1 Example of Attachingto a Queue by Name

#i ncl ude <stdio. h>

#i nclude <string. h>
#include "p_entry. h"
#include "p_return.h"
#i nclude "p_synbol . h"

int32 attach_node;
int32 dny_st at us;
int32 g_name_| en;
i nt32 g_type;

char g_name[12];

g_addr ess ny_pri mary_queue;
strcpy(q_nane, "exanple_q_1");
attach_node

PSYM ATTACH_BY_NAVE;

q_type = PSYM ATTACH _PQ
g_name_len = (int32)sizeof( q_nane );
dng_status = pans_attach_q(

&att ach_node,

&my_primary_queue,

&q_type,

g_nane,

&g_name_| en,
(int32 *) 0,
(int32 *) 0,
(int32 *) 0,
(char *) 0,

(char *) 0);

BEA MessageQ Programmer’s Guide

/*

/*
/*
/*
/*

Use default name space

No name space list len

Ti neout

Reserved by MessageQ
Reserved by MessageQ

*/
*/
*/
*/
*/



Sending and Receiving Message Buffers

if ( dnmg_status == PAMS__SUCCESS )
printf( "Attached successfully to queue: \"%\".\n", g_nane );
el se
printf( "Error attaching to queue: \"%\"; status returned
is: %d\n", g_name, dng_status );

After attaching to a queue, the application usesthe pans_put _nmsg function to send a
message to the queue address of the receiver program. Before the message can be sent,
the application needs to provide application data in a message buffer. The data
structure of the message buffer is predefined so that both the sending and the receiving
application can interpret the message contents.

The examplein Listing 1-2 illustrates how to send a number of messages to a queue.

Listing 1-2 Example of Sending M essagesto a Queue

int32 attach_node;
int32 dny_st at us;
int32 g_nane_|I en;
int32 q_type;
int32 ti meout ;
short cl ass;
short type;

short neg_si ze;
char delivery;
char priority;
char unmg;

static char nsg_area[ 18] ;
static char g_name[ 12];
g_address ny_queue;
struct PSB put _psb;

/*

** Put a message into nmy own queue
*/

priority = 0;

cl ass = 0;

type = 0;

BEA MessageQ Programmer’s Guide 1-5



1 Sending and Receiving BEA MessageQ Messages

delivery
neg_size
ti meout
uma

PDEL_MODE_NN_MEM

(short) strlen( nsg_area );
50; [/* 5 seconds */
PDEL_UNMA DI SCL;

dng_status pans_put _nmsg(
nsg_ar ea,
&priority,
&y _queue,
&cl ass,
&t ype,
&del i very,
&nsg_si ze,
&t i meout ,
&put _psh,
&uma,
(g_address *) O,
(char *) 0,
(char *) 0,
(char *) 0);

if ( dmg_status == PAMS__ SUCCESS )
printf( "\n\tPut successfully to queue: \"%\".\n", g_nane );
el se
printf( "\nError sending to queue: \"%\"; status returned
is: %d\n", g_nane, dng_status );

BEA MessageQ applications use the panms_get _nsg function to read messages from
a queue. Because both sending and receiving programs use the predefined buffer
structure, the receiving application can interpret the message.

When a BEA MessageQ application is finished, the pans_det ach_gq iscalled to
disconnect the program from the message queuing bus.

Static data structures limit the flexibility of applicationsto adapt to changing business
conditions. To change the data structure, both the sender and receiver programs must
be recoded to send and interpret the new message correctly. In addition, all production
applications must be shut down and the newer versions started up for thechangeto take
affect. Such large changes to an integrated application environment often result in
synchronization problems where some applications have not yet been restarted using
the new message format. Thisleadsto processing errorsuntil all applicationsare using
the same version of the message data structure.

1-6 BEA MessageQ Programmer’s Guide



Sending and Receiving Message Buffers

Another limitation in using static message buffers is that data is passed “as is” from
one system to another in the network. So, if a message must be delivered between two
computers that use different byte orders, the application must perform the byte order
translation to ensure that the data is interpreted properly by the target application. BEA
MessageQ does not perform data marshalling between systems with unlike hardware
data formats when messages are sent using the static message buffer approach.

Prior to BEA MessageQ Version 4.0, the only way to send a message was to use the
predefined message data structure which allowed messages to be as large as 32
kilobytes. If either the sending or receiving data structure needed to change the
message structure, both sending and receiving applications were programmed to use
the new message structure. For this change to take effect, both sending and receiving
programs needed to be reloaded.

How to Send Large Messages

BEA MessageQ enables applications to send buffer-style and FML-style messages up
to 4MB in size. For FML-style messaging no differences in approach are required to
send small or large messages. However, use the following procedure when sending and
receiving buffer-style messages larger than 32K.

To send a large buffer-style message, applications still ugatise put _nsg

function. Most arguments to this call are specified in the same way for large and small
messages. However, the following list describes the arguments that are specified
differently for large messages:

m thensqg_si ze argument must contain the symipslyM MSG_LARGE indicating
that this is a large message

m thel ar ge_si ze argument supplies the size of the large message buffer

To retrieve a large buffer-style message from a queue, you still ysentheyet _msg,
pams_get _nsgw, or thepans_get _msga functions. To retrieve a large message from
an auxiliary journal, use theanms_r ead_j r n function. The following arguments are
supplied to these functions to read large messages:

m thensqg_area_| en argument must contain the symipsiyM MSG_LARGE
indicating the operation will return a large message

m thel ar ge_area_l en argument supplies the size of the message buffer to
receive the large message

BEA MessageQ Programmer’s Guide 1-7



1 Sending and Receiving BEA MessageQ Messages

These functions return the actual size of the message written to the message buffer in
thel ar ge_si ze argument.

A sample program illustrating how to send a large message called x_put bi g. c is
contained in the programming examples directory of your media kit.

Receiving Messages Using Message Pointers

1-8

Receiving applications can use message pointers to allow for automatic buffer
reallocation when the buffer received islarger than the buffer allocated. (M essage
pointers are also required for processing self-describing messages based on FML
buffers. See Self-Describing Messaging with FML for more information.)

To retrieve a buffer-style message from a queue using pans_get _nsg and pointers:
m thensg_area_l en argument must contain the symbol PSYM MSG BUFFER _PTR

m thensg_area argument must point to a pointer to dynamically allocated space
or be set to point to aNULL pointer

m thel arge_area_l en argument must contain the size of the space allocated for
the message or be setto O if it isNULL.

If the message received will not fit in the allocated space or if the pointer isNULL, the
buffer isreallocated, the pointer to the new buffer isreturned inthensg_ar ea, and its
length isreturned in thel ar ge_ar ea_| en arguments.

When the message isretrieved from the queue:

m themessageis placed in the buffer referenced by the pointer contained in
neg_area

m theactual length of the buffer isreturned in thel ar ge_si ze argument
m thel en_dat a argument is set to PSYM MSG_BUFFER_PTR

m theendi an field in the show_buf f er structureis set to the appropriate byte
ordering scheme for the type of data

m thel arge_area_l en argument is updated with the new buffer size if the buffer
was reallocated

BEA MessageQ Programmer’s Guide



Self-Describing Messaging with FML

Self-Describing Messaging with FML

Self-describing messaging using Field Manipulation Language (FML) isnew in BEA
MessageQ Version 5.0. FML -based messaging replaces the SDM capabilities
provided in BEA MessageQ V4.0. While basic information on FML isincluded in this
document, seethe BEA MessageQ FML Programmer’s Guitel the BEA MessageQ
Reference Manudbr more information on FML.

FML isaset of Clanguage functions for defining and manipulating storage structures
called fielded buffers, that contain attribute-value pairs in fields. The attribute is the
field’s identifier, and the associated value represents the field's data content.

Using FML, applications construct messages containing both the message content and
the information needed by the receiver program to understand what is in the message.
The receiver program dynamically interprets the contents of the message by
“decoding” some or all of the data contained in it. Message pointers are used when a
receiving application retrieves an FML-style message from a message queue.

Using FML buffers, applications do not interact with a message structure. Instead,
sender programs encode the contents of the message using the appropriate FML
function. Each field in the message has a value (the content) and a tag (identifier).
When an application retrieves an FML message, the content is not directly visible. The
receiver program must use FML functions to interpret the contents of the message that
are appropriate to its operation.

Because FML messages contain information about how to interpret the message
contents, self-describing messaging provides applications with more flexibility in
adding fields to a message or changing the message contents without necessarily
needing to recode all of the receiving applications. In addition, FML performs data
marshaling of data formats between computer systems with unlike hardware data
formats.

How Self-Describing Messaging Works

FML messages, which are accessed by a pointer, contain tagged values that are
manipulated by specific FML functions. When you code, you build the message buffer
using assignments inside the message data structure which you have defined. FML
uses the following fielded buffer structure:

BEA MessageQ Programmer’s Guide 1-9



1 Sending and Receiving BEA MessageQ Messages

Figure1-1 Fielded Buffer Structure

fldid data | fldid | len | data | fldid | data

In the above figure, the message structure contains pairs of attributes and values. Each
field islabeled with an integer that combines information about the data type of the
accompanying field with a unique identifying number. The label iscaled afield
identifier or f 1 di d. For variable-lengthitems, f | di d isfollowed by alength indicator.
The buffer can be represented as a sequenceof f | di d/datapairsor f | di d/length/data
triples for variable-length items.

Benefits of Using FML

1-10

There are several advantages to using FM L. These advantages are as follows:

m Scalability—FML messages can evolve as your business grows. For example,
you can add fields to your message in a completely backwards compatible
manner. You only need to modify those applications which need the new
information. You do not have to change application code that does not need the
new information.

m Flexibility—you can change the size of a field at any time without changing an
FML application because this type of information is encoded into the message.

m Portability of messages—you do not have to write data transformation routines
to handle differences between data types and platforms. FML automatically
performs the data transformation for you. The transformations included in FML
are network byte order, C data types, word sizes, word alignment, and IEEE
floating point.

m Reusability of messages—a single message can be interpreted by several
applications that need different parts of the message. For example, suppose a
user application needs a person’s address and another user application needs tt
person’s hourly wage. Instead of the server application constructing a unique
message for each application, it can construct a single message which contains
both the person’s address and hourly wage. When one of the user applications
interprets the message, only the information that is needed by that application is
decoded. The other user application can reuse the same message to get only th
information that it needs.

BEA MessageQ Programmer’s Guide



Self-Describing Messaging with FML

FML manages datatransformation so that an FM L message can beinterpreted properly
on any platform. Figure 1-1 illustrates how using fielded buffers creates a formatted
message that replaces all platform-dependent compiler assignments through an AP,
which has decoupled and hidden all the machine, operating system, and platform
dependencies. It has also properly encoded the message so that it can be safely
transported from platform to platform in a heterogeneous environment. Furthermore,
it protects applications from message structure changes.

For example, suppose you have an application running on a Hewlett-Packard machine
and a Compag machine and the message data has a little endian data format. When
messages are sent to the Compag machine from the Hewlett-Packard machine, a
conversion from little endianto big endian dataformat must take place. Thisishandled
by encoding the little endian format and converting it to a platform independent
format. Then, the platform independent format is decoded into the big endian format
for the Compag machine.

Performance Considerations When Using FML

One performance consideration in using FML is that it uses alarger message size to
deliver the same amount of user data and can take longer to pass back and forth
between machines. The message size islarger because the message contains both the
information and a description of the information, encoded in a platform-independent
manner.

For example, consider amessage that is 100 characters. With adefined message buffer,
the message is only 101 bytes using a C message structure. |n aworst case scenario,
the FML message size could be 800 bytes. Each of the origina 100 bytesrequires 1
byte of data and 4 bytes of identifier. Because each byte of data must be aligned on
word boundaries for platform independence, each byte requires three additional
padding bytes.

A more efficient way to encode character dataisto use an array. Y ou can encode the
100 bytes as an array of 100 bytes. With an array, the padding necessary to accomplish
word alignment is not needed and the tag i s present only once. Using this approach, the
actual size needed is 108 bytes (including the tag and length).

Y ou may be ableto structurethe application to usethe larger FML message only when
needed and a message buffer at other times. For more information on this technique,
see the Designing Applications to Use aMixed Messaging Environment topic.

BEA MessageQ Programmer’s Guide 1-11



1 Sending and Receiving BEA MessageQ Messages

An additional performance consideration isthe time required to encode and decode
information when exchanging messages between platforms having different data
formats.

Designing Applications to Use a Mixed Messaging Environment

A mixed messaging environment is an environment where you want to exchange static

buffer messages and FM L messages in the same application. If you are programming

an application to use both kinds of messages, consider having your application use two
gueues—one queue for buffer-style messages and another queue for FML messag:e
By designing your application this way, you guarantee that your application does no
dequeue an FML message by mistake.

Note that for performance reasons, it might be better to modify the buffer structure an
redistribute all software than to use a mixed messaging environment. This may be th
recommended approach when your applications are close geographically and there
a convenient time to update software.

How to Send an FML Message

1-12

When sending FML messages, you code in a similar manner as with a message buffe
However, the main difference is that messages are manipulated using message point
rather than using the actual message buffer. The message pointer is provided to
pams_put _nsg as the first argumentgg_ar ea). To code an FML message, you must
add the following steps to your program logic after attaching to a queue:

1. Define field identifiers and map them to field names.
2. Build messages using the appropriate FML functions.

3. Send the message. To use an FML message pointer when sending a message,
sender program specifies the symbs¥YM MSG_FM. as thersg_si ze argument
in thepams_put _nsg function.

4. Once your application is done using the FML message, delete the FML message
usingFfree32() to prevent memory leaks.

A sample program called f m . ¢ which illustrates how to send and receive FML
messages is distributed as part of your media kit.

BEA MessageQ Programmer’s Guide



Self-Describing Messaging with FML

Defining Field Identifiers

FML message fields are tagged with field identifiers. Each tag implicitly defines the
data type of the information it is associated with. This guarantees that the sender and
the receiver of an FML message have an explicit agreement about the kind of
information they exchange. The collection of tags builds akind of message dictionary.

The following table describes the tag datatype symbols as defined in f ml 32. h:

Data Type Symbol

short int FM._ SHORT
long int FM__LONG
character FML_CHAR
single-precision float FM__FLOAT
double-precison float FM__DOUBLE
string, null terminated FML_STRI NG
character array FML_ARRAY

Fields are usually referred to by their field identifier (f 1 di d), an integer. This allows
you to reference fields in a program without using the field name.

Identifiers are assigned (mapped) to field names in the following ways:
m dynamically at run time using field table files
m statically at compile time using C language header (#i ncl ude) files

A typical application may use one or both of these methods.

Building the FML Message

The FML API provides functions to place tagged values in afielded buffer accessed
withitspointer. A variety of functionsare provided to support alarge number of buffer
operations.

BEA MessageQ Programmer’s Guide 1-13



1 Sending and Receiving BEA MessageQ Messages

Any field in afielded buffer can occur more than once. Many FML functions take an
argument that specifies which occurrence of afield isto be retrieved or modified. If a
field occurs more than once, the first occurrence is numbered 0, and additional
occurrences are numbered sequentially.

The example in Listing 1-3 shows a program which builds a message with the queue
id and time stamp. The message is then put into a message queue.

Listing 1-3 Example of Building a Fielded Buffer

/* applications fields */
#include myFields.h”

FBFR32 *fbfr;

fbfr = Falloc32(10,100);

Fadd32(fbfr, QID, 0, &qid, 0);
Fadd32(fbfr, TSTAMP, 0, &timestamp, 0);

Notethat FML provides datatransparency. That isto say that your application doesnot
know nor need to know how any data values are stored in the message. The FML and
PAMS API functions handle this for your application.

Sending the FML Message

1-14

After creating a pointer and building the message, you can send the message to the
target queue. To send an FML buffer, the sender program specifies the symbol
PSYM_MSG_FMasthemsg_size argument tothepams_put_msg function. Thesystem
verifies that the buffer is an FML32 buffer. If the buffer is not an FML 32 buffer, the
pams_put_msg call will fail and return PAMS__NOTFLD

The code fragment example in Listing 1-4 sends the FML message. The previously
encoded message is contained in the msg_area argument.

Listing 1-4 Example of Sending an FML message

/* Sends the message identified by the pointer. The symbol */
/* PSYM_MSG_FML__ in the msg_size argument indicates that */
/* the message is a pointer to an FML buffer.  */

/* Define any variables needed to the put function here. */

BEA MessageQ Programmer’s Guide



Self-Describing Messaging with FML

neg_si ze = PSYM MSG FM;

dny_status = pans_put _msg(
(char *) fbfr,
&riority,
&ny_queue,
&cl ass,
& ype,
&del i very,
&nsQg_si ze,
&t i neout ,
&put _psh,
&uma,
(g_address *) 0,
(char *) 0,
(char *) 0,
(char *) 0, );

If ( dng_status == PAMS__SUCCESS )

printf ( “Message pointer successfully put to the queue”);
else

printf ( “Error putting message to queue”);

How to Receive an FML Message

When receiving FML messages, you code in a similar manner as with a buffer-style
message. However, you must add the following stepsto your program logic after
attaching to a queue:

1. Include the predefined field identifier definitions to your code to guarantee that
both sending and receiving applications are using the same definitions.

2. Create apointer to a pointer to dynamically allocated space using Falloc  or
malloc and Finit

3. Setlarge_area_len  tothelength of the allocated space or to O if itisNULL.

BEA MessageQ Programmer’s Guide 1-15



Sending and Receiving BEA MessageQ Messages

4. Read the message from the queue. The receiver program determines whether the
message is a pointer to an FML buffer pointer by reading the endian field in the
show_buf f er argument of the pans_get _nsg or pans_get _nsgw function. If
this field contains the symbol PSYM FM._, the message is an FML buffer.

5. Access the message fields using the appropriate FML APl functions.

6. Delete or reuse the message pointer to prevent memory |leaks.

Note: When an FML messageis received, the endian field of the show_buf f er
argument returned by the pans_get _nmsg or pans_get _nsgwfunctionsis set
to PSYM FM..

Reading the Message from the Queue

1-16

To read a message from a queue, use the pans_get _nsg function after you have
included the tag definitions and created a message pointer. The code fragment example
in Listing 1-5 creates a message handle and gets the message:

Listing 1-5 Example of Readingan FML Message

/* Include the predefined field identifier definition */

#include “myfields.h”;
FBFR32 *fbfr;
FBFR32 **pfbfr;

/* Read the message identified by the pointer. The symbol */
/* PSYM_MSG_BUFFER_PTR inthe len_dataargumentindicatesthat */
/* the message is a pointer and not a message buffer.  */

/* Define any variables needed for the get function here. */

len_data = PSYM_MSG_BUFFER_PTR;
pfbfr = &fbfr;

dmgq_status = pams_get_msg(
(char *) pfbfr,
&priority,
&msg_source,
&class,

BEA MessageQ Programmer’s Guide



Exchanging Messages Between BEA MessageQ and BEA TUXEDO or BEA M3

& ype,

&rsg_area_ |l en,

&rsg_l en,

(int32 *)&sel filter,
(struct PSB *) O,

(struct show buffer *) O,
&how buffer_|en

& arge_area_l en,

& arge_si ze,

(char *) 0, );

If ( dng_status == PAMS__SUCCESS )
printf ( “Message pointer successfully read”);
printf ( “Error reading message”);

Interpreting the Message

After your application creates a message pointer and gets the message, it can interpret
the message. Y our application can use FML API functions to manipulate the fiel ded
buffer.

Exchanging Messages Between BEA
MessageQ and BEA TUXEDO or BEA M3

BEA MessageQ V5.0 include a messaging bridge that allows the exchange of
messages between BEA MessageQ V5.0 and BEA TUXEDO V6.4 or BEA M3 2.1.
BEA MessageQ applications can send a message using pams_put_msg that a
TUXEDO application can retrieve through a call to tpdequeue . TUXEDO
applications can send a message using tpenqueue that a BEA MessageQ application
can retrieve through acall to pams_get_msg (w). In addition, aBEA MessageQ
application caninvokea TUXEDO serviceusing pams_put_msg . Itisalso possiblefor
aTUXEDO application to use tpenqueue to put a message on a queue and to use
tpdequeue to retrieve a message from a queue.

BEA MessageQ Programmer’s Guide 1-17



1 Sending and Receiving BEA MessageQ Messages

1-18

This exchange of messages is made possible by two TUXEDO servers that are
included in the BEA MessageQ kit and that run on the same machine as BEA
MessageQ: TMQUEUE_BMQ and TMQFORWARD_BMQ.

TMQUEUE_BMQ redirects TUXEDO t penqueue requests to a BEA MessageQ
gueue where they can be retrieved with pams_get _nsg(w). TMQUEUE_BMQ also
redirects pams_put _nsg or t epenqueue requeststo TUXEDO where they can be
retrieved with t pdequeue.

TMQFORWARD_BMQ listens on specified BEA MessageQ queues and forwards
pams_put _nmsg requeststoaTUXEDO service. It also puts areply or failure message
on the sender’s response queue.

The target queue and service are defined when TMQUEUE_BMQ and
TMQFORWARD_BMQ are configured. This ensures that message exchange betwee
BEA MessageQ and TUXEDO is transparent to the application.

Figure 1-2 illustrates message exchange between MessageQ and TUXEDO.

BEA MessageQ Programmer’s Guide



Exchanging Messages Between BEA MessageQ and BEA TUXEDO or BEA M3

Figure1-2 Message Exchange Between M essageQ and TUXEDO

BEA MessageQ Programmer’s Guide 1-19



1 Sending and Receiving BEA MessageQ Messages

BEA TUXEDO

Server
Service or
Client
tpenqueue/
tpdequeue
TMQFORWARD TMQUEUE_
_BMQ BMQ

‘N P4

Machine

pams_put_msg/ ][

pams_get_msg

Application

BEA MessageQ

1-20 BEA MessageQ Programmer’s Guide



Exchanging Messages Between BEA MessageQ and BEA TUXEDO or BEA M3

Enabling the Messaging Bridge

The TMQUEUE_BMQ and TMQFORWARD_BMQ servers are part of the BEA
MessageQ kit and are installed when BEA MessageQ isinstalled. During the
installation procedure, you are prompted to choose one of the following installation
options for BEA MessageQ and TUXEDO integration:

install on top of BEA TUXEDO V6.4
install on top of BEA M3 2.1
install without BEA TUXEDO

If you choose to install on top of BEA TUXEDO V6.4 or BEA M3 2.1, the applicable
filesfor the TMQUEUE_BMQ and TMQFORWARD_BMQ servers areinstalled on
your system. If you install without BEA TUXEDO, the TMQUEUE_BMQ and
TMQFORWARD_BMQ serversare not installed on your system. See the installation
and configuration documentation specific to your platform for detailed installation and
configuration instructions.

Once the TMQUEUE_BMQ and TMQFORWARD_BMQ servers are installed, the
system administrator enables message enqueuing and degueuing for the application by
specifying the servers as application serversin the * SERVERS section of the
TUXEDO ubbconfi g file. See the TMQUEUE_BMQ and TMQFORWARD_BMQ
reference pages in the BEA MessageQ Reference Manual for detailed information on
the server configuration syntax.

Data Transformation Between BEA MessageQ and
TUXEDO

One of the primary functions of the TMQUEUE_BMQ and TMQFORWARD_BMQ
serversisto perform data and semantic transformations between the BEA MessageQ
PAMS API and the TUXEDO ATMI API. This section describes how datais handled
when it is exchanged between BEA MessageQ and TUXEDO. The data
transformations are the same for the TMQUEUE_BMQ and TMQFORWARD_BMQ
Servers.

BEA MessageQ Programmer’s Guide 1-21



1 Sending and Receiving BEA MessageQ Messages

Data Types

BEA MessageQ passes data as static buffers or as FML 32 buffersusing thensg_ar ea
argument of the pans_put _nmsg function. TUXEDO handles a wide range of data
types including CARRAY, STRI NG, and FM_32 using the dat a argument of the

t penqueue function.

When amessage is enqueued using t penqueue, the TMQUEUE_BMQ server
preserves TUXEDO datatype information for use by asubsequent call by t pdequeue.
If machines of different types perform thet penqueue and t pdequeue calls, and the
datatypeisnot FML32 or CARRAY, the datais transformed to CARRAY and amessageis
written to the TUXEDO user log. (Machine types are specified in the TUXEDO
ubbconfi g filein the* MACHINE section using the TY PE attribute.)

When a message is enqueued using panms_put _nsg and dequeued with t pdequeue,
static buffer datais transformed to CARRAY, and FM_32 buffers are passed without
transformation.

When amessage is dequeued using panms_get _nsg(w), FML32 buffers are passed
without transformation and all other datatypes are transformed to binary large objects.

Data Size and Length

BEA MessageQ definesthe size and length of messages using the following arguments
topams_put _msg: nsg_si ze, | arge_si ze,nsg_area_| en, | en_dat a, and

| arge_area_l| en. TUXEDO usesthe | en argument to t penqueue to determine
length.

BEA MessageQ limitsthe size of messages to amaximum of 4 MB. In addition, BEA
MessageQ can be configured to set a smaller maximum message size. If BEA
MessageQ is configured for a4 MB maximum size, and a message larger than 4 MB
isenqueued using t penqueue, a TPEDI AGNCSTI C/QVESYSTEMerror is generated. If
BEA MessageQ is configured for a smaller maximum message size, and a message
larger than the configured sizeis enqueued using t penqueue, thereisno way to detect
the message size error.

When messages are dequeued using t pdequeue, the TMQUEUE_BMQ server
handles buffer size discrepancies and returns afull, complete buffer to the calling
application.

1-22  BEA MessageQ Programmer’s Guide



Exchanging Messages Between BEA MessageQ and BEA TUXEDO or BEA M3

Timeouts

Priorities

BEA MessageQ specifies atimeout per operation using thet i meout argument of the
pams_put _nsg function. TUXEDO specifies system-wide blocking timeouts using
thefollowing flags: ct 1. f1 ags: TPQWAI T, f | ags: TPNOBLOCK, and

fl ags: TPNOTI ME.

When the TMQUEUE_BMQ server handles amessage from a BEA MessageQ queue
based on acall to t penqueue or t pdequeue, the timeout isthe value set by the
TMQUEUE_BMQ command line option - t , or the default timeout if noneis specified.

When amessage is enqueued using pans_put _msg and isintended for a TUXEDO
application, the timeout is the value set by t i nreout argument of the pans_put _msg
function, within any limitations set by the BEA MessageQ delivery mode.

BEA M essageQ specifiespriority usingthepri ori t y argumenttothepans_put _nsg
function. TUXEDO specifies priority using thect | . f 1 ags: TPQPRI ORI TY and
ctl.priority flags. BEA MessageQ message priorities range from 0 to 99 with 99
being the highest priority. TUXEDO priorities range from 1 to 100 with 100 being the
highest priority and the default being 50. BEA MessageQ requiresthat thepri ority
argument of the pans_put _nsg function be specified when the message is enqueued.
TUXEDO usesthe default priority if the control structure flag

ctl.flags: TPQPRI ORI TY isnot set.

Message priorities are either increased or decreased by one depending on where the
message originates. Messages originating from TUXEDO are placed on the BEA

M essageQ queue with apriority of n-1 where n is the priority assigned by TUXEDO.
M essages originating from BEA MessageQ will dequeued by TUXEDO with a
priority of n+1, where nis the priority assigned by BEA MessageQ.

Target, Queue Space and Queue Name

There are two areas that must be resolved when mapping the BEA MessageQ target
and TUXEDO queue space and queue name:

m TUXEDO queue space to BEA MessageQ group name
m TUXEDO queue to BEA MessageQ queue

BEA MessageQ Programmer’s Guide 1-23



1 Sending and Receiving BEA MessageQ Messages

TUXEDO Queue Space to BEA MessageQ Group Name

BEA MessageQ usesthet ar get argument of the panms_put _nsg function to specify
the target queue address for a message. TUXEDO usesthe gspace and gnane
arguments of thet penqueue andt pdequeue functionsto specify the target queue for

amessage

The TUXEDO queue space name must be the name of a service advertised by
TMQUEUE_BMQ or TMQFORWARD_BMQ. The service name maps directly to a
BEA MessageQ group. By default, TMQUEUE_BMQ and TMQFORWARD_BMQ
automatically offer services named “TMQUEUE_BMQ" and
“TMQFORWARD_BMQ” unless the s command line option is specified. These
default services map to the BEA MessageQ group to which they are attached, as
specified by the g command line option.

The function name to which services should be mapped in TMQUEUE. Each entry ir
the TUXEDOubbconfi g file fora TMQUEUE_BMQ or TMQFORWARD_BMQ
server should be configured with a different alias for the default function name using
the TUXEDO - s command line option. For example, one configuration of
TMQUEUE may be named Payroll, while another is named Sales. This provides a wa
to precisely specify a BEA MessageQ entry point for a particydlanqueue or

t pdequeue call. If multiple instances of the same advertised service are running,
TUXEDO performs load balancing and data dependent routing to determine which
server handles the request.

The following example illustrates different TMQUEUE_BMQ configurations:

* GROUPS

TMQUEUE_BMQGRPHQVGR GRPNO=1
TMQUEUE_BMQGRPHQPLEBE GRPNO=2
TMQUEUE_BMQGRPREMOTENA GRPNO=3
TMQUEUE_BMQGRPREMOTEEURCPE GRPNO=4

* SERVERS

TMQUEUE_BMQ SRVGRP="TMQUEUE_BMQGRPHOMGR' SRVI D=1000 RESTART=Y
GRACE=0 CLOPT="-s Payroll: TMQUEUE -s
Pronote: TMQUEUE -- -b 5 -g 7"

TMQUEUE_BMQ SRVGRP="TMQUEUE_BMQGRPHQPLEBE" SRVI D=1000 RESTART=Y
GRACE=0 CLOPT="-s Payroll: TMQUEUE -s

Pronote: TMQUEUE -- -b 5 -g 10"
TMQUEUE_BMQ SRVGRP=" TMQUEUE_BMQGRPREMOTENA" SRVI D=2002 RESTART=Y
GRACE=0 CLOPT="-s Sales: TMQUEUE -- -b 5 -g 42"

TMQUEUE_BMQ SRVGRP="TMQUEUE_BMQGRPREMOTEEURCPE" SRVI D=2002

1-24  BEA MessageQ Programmer’s Guide



Exchanging Messages Between BEA MessageQ and BEA TUXEDO or BEA M3

RESTART=Y GRACE=0 CLOPT="-s Sal es: TMQUEUE -- -b 12 -g 53"

*SERVI CES
Payrol |  ROUTI NG=" SALARYROQUTE"
Payrol |  ROUTI NG=" HAl RCOLORROUTE"

*ROUTI NG
SALARYROUTE FI ELD=Sal ary BUFTYPE="FM.32"
RANGES="M N - 50000: TMQUEUE_BMQGRPPLEBE, 50001

- MAX: TMQUEUE_BMQGRPHQVGR'
HAI RCOLORROUTE  FI ELD=Hai r BUFTYPE=" FM.32"
RANGES="Gray " TMQUEUE_BMQGRPHQMGR,*TMQUEUE_BMQGRPPLEBE"

In thisexample, three queue space names (Payroll, Promote, and Sales) are defined for
two busses to four different BEA MessageQ groups (7, 10, 42, and 53). Two servers
offer the same aliases (Payroll and Promote) with data dependent routing performed
using the Sales and Hair fieldsrespectively. Thetwo other servers offer the same alias
(Sales) with routing determined by load balancing and avail ability.

TUXEDO Queue to BEA MessageQ Queue

Any BEA MessageQ queue can be accessed by TUXEDO through the
TMQUEUE_BMQ and TMQFORWARD_BMQ servers. However, BEA MessageQ
gueues are accessed in different ways depending on whether they are named or
unnamed queues. (For more information on BEA MessageQ naming capabilities, see
Chapter 4, “Using Naming”.)

BEA MessageQ named queues can be local (group-wide) or global (bus-wide). To
address a locally named queue from TUXEDO:

1. Configure the TMQUEUE_BMQ or TMQFORWARD_BMQ server to attach to
the local group in which the named queue is defined.

2. Configure routing information to handle multiple instances of the
TMQUEUE_BMQ or TMQFORWARD_BMQ server with the same alias as
shown in “TUXEDO Queue Space to BEA MessageQ Group Name” on
page 1-24.

3. Use the queue name as defined by BEA MessageQ as the second parameter for
t penqueue Ort pdequeue.

BEA MessageQ Programmer’s Guide 1-25



1 Sending and Receiving BEA MessageQ Messages

Delivery

To access an unnamed BEA MessageQ queue from TUXEDO, use an absol ute queue
identifier as the second parameter for t penqueue or t pdequeue. The absolute queue
identifier isacombination of the BEA MessageQ group identifier and queueidentifier
formatted as group_id.queue_id. For example, queue 1005 in group 3 is specified as
“3.1005". When accessing a queue in the local group, either specify the group as 0 «
drop the group identifier and delimiter. For example, queue 1005 in the local group is
specified either as “0.1005" or “1005". Queue identifiers that do not use this syntax, ol
are outside the valid range of group or queue numbers are assumed to be queue nar

When a message is enqueued uspanqueue, the TMQUEUE_BMQ server uses the
BEA MessageQ delivery mode PDEL_MODE W-_SAF (block until the message is
stored in the local recovery journal). The exception to this occurs when the target
gueue is a temporary queue; in this case, the delivery posle MODE W-_VEM

(block until message is stored in the target queue) is used.

If a confirmation delivery mode is required by the BEA MessageQ application, the
gueues attached to the TMQUEUE_BMQ server must be configured for explicit
confirmation.

Messages handled by the TMQUEUE_BMQ server are recoverable, and message
recovery services (MRS) must be enabled for the BEA MessageQ group. If MRS is nc
enabled, the attempt to enqueue the message will fail unless it is enqueued to a
temporary queue where recoverable messaging is not required.

Undeliverable Messages

BEA MessageQ specifies the disposition of undeliverable messages according to at
undeliverable message action (UMA). TUXEDO usesthe f | ags: TPQFAI LUREQ
andct | . fai | ur equeue to specify a failure queue.

If a message is enqueued usipgnqueue and thest | . f1 ags: TPQFAI LUREQflag is
set, the message is sent to BEA MessageQ with a UNeB®f UMA DIL (dead letter
journal). If the target queue is a temporary queue, a UM2DBE_UVA_DLQ (dead
letter queue) is used. The failure queue specifiect byf | ags: TPQFAI LUREQIS
preserved for use lpdequeue. When BEA MessageQ dequeues a message
enqueued by tpenqueue, the valuetdf. f ai | ur equeue is ignored.

1-26  BEA MessageQ Programmer’s Guide



Exchanging Messages Between BEA MessageQ and BEA TUXEDO or BEA M3

When a TUXEDO application dequeues a message that was enqueued using
tpenqueue, thevalue of ct | . f ai | ur equeue isreturned to the application so that
failure messages can be put on the failure queue. Fail ure queue names should be unique
to avoid directing a failure message to the wrong queue.

Correlation Identifiers

BEA MessageQ and TUXEDO both support optional correlation identifiers stored as
32 character strings. No transformation is performed on either BEA MessageQ or
TUXEDO correlation identifiers. When a response message is sent, the correlation
identifier must be manually set.

Return Values

BEA MessageQ return values can be mapped to the TUXEDO t per rno and
ctl . diagnosti c values. The following table show the relationship between return
values for callstot penqueue.

Table 1-1 Return Valuesfor tpenqueue

MessageQ Return Value TUXEDO tpperrno  TUXEDO ctl.diaghostic
(return value=-1)

PAMS__ BADPARAM TPEDI AGNOSTI C QVESYSTEM
PAMS__ BADPRI ORI TY TPEDI AGNOSTI C QVESYSTEM
PAMS__ BADPROCNUM TPEDI AGNOSTI C QVEBADQUEUE
PAMS__ BADRESPQ TPEDI AGNOSTI C QVEBADQUEUE
PAMS__ EXCEEDQUCTA TPEDI AGNOSTI C QVESYSTEM
PAMS__ MSGTOBI G TPEDI AGNOSTI C QVENGCSPACE
PAMS___ NOTACTI VE TPEDI AGNOSTI C QVESYSTEM
PAMS__ REMQFAI L TPEDI AGNOSTI C QVESYSTEM
PAMS__ STOPPED TPEDI AGNOSTI C QVESYSTEM
PAMS  SUCCESS N/A, return value=0

PAMS_ Tl MEQUT TPEDI AGNOSTI C QVESYSTEM

BEA MessageQ Programmer’s Guide 1-27



1 Sending and Receiving BEA MessageQ Messages

1-28

MessageQ Return Value TUXEDO tpperrno

(return value=-1)

TUXEDO ctl.diagnostic

PAVS__UNATTACHEDQ

N/A, return value=0

PAMS__DLJ_FAI LED TPEDI AGNCSTI C QVESYSTEM
PAMS__DLJ_SUCCESS TPEDI AGNCSTI C QVESYSTEM
PAMS__NO_UVA TPEDI AGNCSTI C QVESYSTEM

Table 1-2 Return Valuesfor tpdequeue

The following table show the relationship between return values for callsto
t pdequeue.

MessageQ Return Value TUXEDO tpperrno

(return value=-1)

TUXEDO ctl.diagnostic

PAMS__BADPRI ORI TY TPEDI AGNGCSTI C QVESYSTEM
PAMS__| NSQUEFAI L TPEDI AGNGCSTI C QVESYSTEM
PAMS__ MSGUNDEL TPEDI AGNGCSTI C QVESYSTEM
PAMS__NETERROR TPEDI AGNCSTI C QVESYSTEM
PAMS__NOACCESS TPEDI AGNCSTI C QVESYSTEM
PAMS__ NOACL TPEDI AGNGCSTI C QVESYSTEM
PAMS__NOMOREMBG TPEDI AGNGCSTI C QVENOVBG
PAMS__ NOVRQRESRC TPEDI AGNGCSTI C QVESYSTEM
PAMS__NOTDCL TPEDI AGNGCSTI C QVESYSTEM
PAVS__ PAVSDOWN TPEDI AGNGCSTI C QVENOTOPEN
PAMS__REMQFAI L TPEDI AGNGCSTI C QVESYSTEM
PAMS__STOPPED TPEDI AGNGCSTI C QVESYSTEM

PAMS__SUCCESS

N/A, return value=0

BEA MessageQ Programmer’s Guide



Exchanging Messages Between BEA MessageQ and BEA TUXEDO or BEA M3

Other BEA MessageQ API Elements

The following argumentsto BEA MessageQ PAMS API functions do not require a
direct mapping to TUXEDO.

m cl ass (pams_put _nsg)—not accessible to TUXEDO applications. However,
the TMQUEUE_BMQ server sets a clasavst_CLAS_TUXEDO for messages
generated by TUXEDO applications. Reply messages from BEA TUXEDO have
either the BEA MessageQ classMiG CLAS_TUXEDO TPSUCCESS or
MBG CLAS TUXEDO TPFAI L

m type (pans_put _nsg)—nhot accessible to TUXEDO applications. The
TMQUEUE_BMQ server does not return a type code (the value is NULL) for
messages generated by TUXEDO applications.

m psb (panms_put _nsg)—not accessible to TUXEDO applications.

m resp_q (pans_put _msg)—when BEA MessageQ specifies a response queue,
the TMQUEUE_BMQ server uses that queue for responses from TUXEDO
applications.

m source (pans_get _msg)—not accessible to TUXEDO applications.
m sel _filter (pans_get _msg)—not accessible to TUXEDO applications.

m show buf fer andshow buf f er _| en (pans_get _nmsg)—not accessible to
TUXEDO applications.

Other TUXEDO API Elements

The following arguments to TUXEDO ATMI API functions do not require a direct
mapping to BEA MessageQ.

m ctl.flags: TPNOFLAGS—no implications for TMQUEUE_BMQ.

m ctl.flags: TPQTOP and ctl . fl ags: TPQBEFOREMSG D—since BEA
MessageQ orders queues by priority then FIFO order, if either of these flags is
set in a control structure, a TPEINVAL error is generated and the error is logged
in the TUXEDO user log.

m ctl.flags: TPTI ME_ABS, ctl.flags: TPQTI ME_REL andct!| .deq_ti me—
since BEA MessageQ does not handle message generation time, if either of these
flags is set in a control structure, a TPEINVAL error is generated and the error is
logged in the TUXEDO user log.

BEA MessageQ Programmer’s Guide 1-29



1 Sending and Receiving BEA MessageQ Messages

1-30

ctl.flags: TPQREPLYQ and ctl . repl yqueue—any queue may be specified.
If set, replies are directed to the specified queue. Queue names should be uniqu
to avoid directing a reply message to the wrong queue.

ctl.flags: TPQVBG D, ctl.flags: TPQGETBEMSG D, and ct | . nmegi d—the
TUXEDO nsgi d specified in a penqueue control structure is preserved for
use by a subsequent callttpdequeue.

ctl . ur code—the TUXEDOur code specified in & penqueue control
structure is preserved for use by a subsequent calidequeue.

ctl.appkey and ctl.cltid—these parameters are set to the identity assigned
to the TMQUEUE_BMQ or TMQFORWARD_BMQ server receiving messages
from BEA MessageQ; the original values are not preserved.

f1 ags: TPNOTRAN—if TMQUEUE_BMQ is requested from a transaction, and
the TPNOTRAN flag is not set, a TPETRAN error is generated and the error is
logged in the TUXEDO user log.

f1ags: TPSI GRSTRT—no implications for TMQUEUE_BMQ.

f1 ags: TPNOCHANGE—the TMQUEUE_BMQ handles this flag as it would in
TUXEDOQO. If the next data to be dequeued does not match the specified data
type, the data is not dequeued and an error is generated.

BEA MessageQ Programmer’s Guide



CHAPTER

2

Using Recoverable
Messaging

Applications send messages using the BEA MessageQ pans_put _nsg function and
one of two types of delivery modes: recover able or nonrecover able. If amessageis
sent as nonrecoverable, the message islost if it cannot be delivered to the target queue
unless the application incorporates an error recovery procedure. If the messageis sent
as recoverable, BEA MessageQ Message Recovery Services (MRS) automatically
guarantee delivery to thetarget queuein spite of system, process, and network failures.

To ensure guaranteed delivery, the BEA MessageQ message recovery system writes
recoverable messages to nonvolatile storage on the sender or receiver system. Then, if
amessage cannot be delivered due to an error condition, the message recovery system
attempts redelivery of the message by reading it from the recovery journal until
delivery is confirmed.

Application devel opers determine which messages should be sent as recoverable
depending upon the needs of the application. Because recoverable messaging requires
the extra step of storing the messages on disk, it requires additional processing time
and power. To maximize performance, recoverable messaging should only be used
when it iscritica to application processing.

The BEA MessageQ message recovery system offers the following benefits:

m Reduces development time by eliminating the need for designing applications to
recover messages that cannot be delivered.

m Prevents applications from losing data when applications, systems, or network
linksfail.

m  Simplifiesthe implementation of an event-driven store and forward capability in
networked applications.

BEA MessageQ Programmer’s Guide 2-1



2 Using Recoverable Messaging

BEA MessageQ also offers error recovery features for nonrecoverable messages such
asthe dead letter queue and the ability to return a message to the sender if the message
cannot be delivered. Thistopic describes all of the BEA MessageQ delivery modesto
enable you to understand the right choice for your application.

The following sections describe:

m Choosing a Message Delivery Mode

m How to Send a Recoverable Message

m How to Receive a Recoverable Message
m Using UMASs for Exception Processing

Recoverable Messaging on BEA MessageQ Clients

Choosing a Message Delivery Mode

2-2

The choice between recoverable and nonrecoverable delivery is based upon the needs
of the application. Nonrecoverable messaging is used by applications that will not fail
if somedataislost. For example, an application that continuously monitorsand reports
temperature readings every second would not use recoverable messaging. If one
message is lost, the next message will arrive in one second.

However, some applications require that messages be delivered in spite of system,
process, and network failures. For example, a shop-floor monitoring system may
continuously collect information from supervisory control applications connected to
production lines. This information is sent using nonrecoverable messaging to the
monitoring application on the same system.

At theend of the shift, totals are accumul ated and sent to the M anufacturing Resource
Planning (MRP) system on the corporate mainframe to update inventory control and
other applications. The shift totals are sent as arecoverable message to ensure that the
MRP system is properly updated daily or that the appropriate error handling takes
place. The application usesthe BEA M essageQ message recovery system to guarantee
message delivery without application intervention.

To determinethe appropriate method for sending a message, the application developer
decides:

BEA MessageQ Programmer’s Guide



Choosing a Message Delivery Mode

m Does the application need to know if the message arrived at the target queue?

m If notification is required, how far must the message get before the sender
program receives notification that the message has arrived?

m Should the application wait for notification or should it continue processing and
receive notification through an asynchronous acknowledgment message?

m |f the message is designated as recoverable, does the application need to know if
the message has been stored by the recovery system?

m |f the message is designated as recoverable, what should happen if it cannot be
stored by the message recovery system?

Thedel i very nmode argument of the pans_put _nsg function determines:
m  Whether the message is sent as recoverable or nonrecoverable

m  Whether ablocking or nonblocking mode is selected

m  Whether the sender program receives notification and how it isreceived
m The point in the message flow at which the notification is sent

The following sections describe:

m How the Message Recovery System Works

m Choosing Recoverable and Nonrecoverable Delivery Modes

m Choosing an Undeliverable Message Action

How the Message Recovery System Works

When an application sends a message across a communications network, the final
receipt of the message can be interrupted by avariety of failure conditions. When a
recoverable delivery option isused to send amessage, BEA MessageQ software stores
the message on a disk until the message is successfully delivered.

BEA MessageQ uses message recovery journal sto store messages that are designated
as recoverable. The message recovery journa on thelocal system is called the store
and forward (SAF) file. The message recovery journal on theremote systemiscalled

BEA MessageQ Programmer’s Guide 2-3



2 Using Recoverable Messaging

the destination queue file (DQF). If arecoverable message cannot be delivered, itis
stored in either the SAF or DQF file and is automatically re-sent once communication
with the target group is restored.

BEA MessageQ uses auxiliary journal filesto provide additional message recovery
capabilities. The dead letter journal (DL J) file provides disk storage for messages
that could not be stored for automatic recovery by the message recovery system.
Undelivered messages stored in the DLJ file can be re-sent under user or application
control.

The postconfirmation journal (PCJ) file stores successfully confirmed recoverable
messages. It forms an audit trail of message exchange that can be read or printed. The
PCJfile can aso be used to resend successfully delivered messages if a database has
become corrupted and must be restored. The message queuing group must be
configured to store successfully delivered messagesin the PCJfile.

If the BEA MessageQ message recovery system is unable to store the message, the
undeliverable message action (UM A) is taken. Some UMASs enabl e the message to
be recovered at alater time under user or application control.

Choosing Recoverable and Nonrecoverable Delivery
Modes

2-4

Thedelivery mode is specified as a constant consi sting of two components, the sender
notification code (sn) and the delivery interest point (dip), asfollows:

PDEL_MODE _sn_dip

where:

m sn—indicates how the sender program wants to receive information about the
delivery of the message. You can wait for the operation to complete (WF),
receive notification in an asynchronous message (AK), or choose not to receive
notification (NN).

m di p—determines whether the message is designated as recoverable. When the
message reaches the delivery interest point, a notification message is sent (if
requested) and the call returns control to the sender program or BEA MessageQ
delivers the asynchronous acknowledgment message.

BEA MessageQ Programmer’s Guide



Choosing a Message Delivery Mode

Nonrecoverable delivery interest points enable the sender program to receive
notification when the message is stored in the target queue (MEM), when the
message is read from the target queue (DEQ), or when the message is read from
the target queue and explicitly confirmed by the receiver program using the
pams_confi rm nsg function (ACK).

When arecoverable delivery interest point is selected, the message is stored on
disk for automatic recovery. Recoverable delivery interest points enable the
sender program to store the message in the local recovery journal (SAF), store
the message in the remote recovery journal (DQF), or store the message in the
remote recovery journa and receive notification when the message is confirmed

by the target application (CONF).

BEA MessageQ does not support all possible combinations of sender notification code
and delivery interest points. Table 2-1 describes all of the valid BEA MessageQ
delivery modes and their meanings.

Table 2-1 Supported Delivery Modes

Delivery Mode

Description

(Recoverable Delivery M odes)

PDEL_MODE_AK_CONF

Send acknowledgment message when the message recovery
system confirms message delivery from the remoterecovery
journal.

PDEL_MODE_AK_DGQF

Send acknowledgment message when the message is stored
in the remote recovery journal.

PDEL_MODE_AK_SAF

Send acknowledgment message when the message is stored
in the local recovery journal.

PDEL_MODE_NN_DQF

Deliver message to the remote recovery journa but do not
block and do not send notification.

PDEL_MODE_NN_SAF

Deliver message to the local recovery journal but do not
block and do not send notification.

PDEL_MODE_WF_CONF

Block until the message is stored in the remote recovery
journal and confirmed by the target application.

BEA MessageQ Programmer’s Guide 2-5



2 Using Recoverable Messaging

Table 2-1 Supported Delivery Modes

Delivery Mode

Description

PDEL_MODE_WF_DQF

Block until the message is stored in the remote recovery
journal.

PDEL_MODE_WF_SAF

Block until the message is stored in the local recovery

journal.

(Nonrecoverable Delivery M odes)

PDEL_MODE_AK_ACK

Send acknowledgment message when the receiver program
explicitly confirms delivery using pans_confi r m nsg.

PDEL_MODE_AK_DEQ

Send acknowledgment message when the message is
removed from the target queue.

PDEL_MODE_AK_NMEM

Send acknowledgment message when the messageis stored
in the target queue.

PDEL_MODE_NN_NMEM

Deliver messageto the target queue but do not block and do
not send notification.

PDEL_MODE_WF_ACK

Block until the receiver program explicitly confirms
delivery using pans_conf i r m nsg.

PDEL_MODE_WF_DEQ

Block until the message isremoved from the target queue.

PDEL_MODE_WF_NMEM

Block until the message is stored in the target queue.

The following sections describe:

m  When to Use Nonrecoverable Message Delivery

m  When to Use Recoverable Message Delivery

When to Use Nonrecoverable Message Delivery

Nonrecoverable message delivery isthe fastest and most efficient way to send
messages. Use nonrecoverable delivery modes if:

m High messaging rates are required by the application (hundreds or thousands of

messages per second).

2-6 BEA MessageQ Programmer’s Guide



Choosing a Message Delivery Mode

m  The message content has afinite lifetime; therefore, the value of the information
is staleif not received and processed quickly.

m The messageis sent locally between two applications in the same message
queuing group that tightly cooperate in the processing of an event.

m The messageis a control message that causes a component of an application to
change state.

When to Use Recoverable Message Delivery

Recoverable message delivery is the safest way to send a message; however, it adds
significant processing overhead because each message must be stored on disk before
it is sent. Use recoverable delivery modesif:

m Itisuseful to know that the message has arrived; however, the sender does not
need to know the state of the receiver.

m  The message content should not be lost by the application system.

m  The application can tolerate the increased system load and slower messaging rate
caused by sending the message recoverably.

Choosing an Undeliverable Message Action

Using the pans_put _msg function in conjunction with the del i ver y argument, you
can use the uma argument to specify what should happen to the messageif it cannot be
delivered to the delivery interest point. For nonrecoverable messaging, if aUMA isnot
specified, BEA MessageQ will take the default action of discarding the message.

With recoverable messaging, the UMA indicates the action to be taken if the message
cannot be stored in either the SAF or DQF files. Y ou must specify a UMA with
recoverable delivery modes because your application must perform the exception
processing when the message cannot be guaranteed for delivery by BEA MessageQ.

With recoverable messaging, the UMA may be taken when:

m The message recovery system journal process on the local or target node is not
running.

BEA MessageQ Programmer’s Guide 2-7



2 Using Recoverable Messaging

m BEA MessageQ is unable to write to the local journal disk file (SAF) where the
message is designated to be recoverable.

m The cross-group connection to the remote target group is down and the message
designated as recoverable on the remote node (DQF) cannot be stored.

m  The system resources used by the message recovery system are exhausted.

m  On OpenVMS systems, if the system manager has disabled message recovery for
aparticular queue.

Table 2-2 lists the six valid UMASs.

Table 2-2 Valid UMAs

UMA

Description

D SC

Discard—the message is deleted.

D SCL

Discard and log—the message is deleted and an entry indicating that the message
was not stored by the message recovery system is added to the BEA MessageQ
event log. DI SCL is available on OpenVMS only. Though you can specify the

DI SCL UMA on UNIX and Windows NT systems, it discards the message without
logging the event.

RTS

Return to sender—the message is delivered to the sender’s response queue.

DLQ

Dead letter queue-the message is written to the dead letter queue. This queueis
permanently active queue number 96, called the PAMS_DEAD LETTER QUEUE.

DLJ

Dead letter journal—the message is written to the DLJ file. From the DLJfile, the
message can be re-sent at alater time under user or application control.

Store and forward—the message is written to the message recovery journal on the
sender system.

See the Using UM A for Exception Processing topic for adescription of how to use
each UMA for exception handling with recoverable messaging.

2-8 BEA MessageQ Programmer’s Guide



How to Send a Recoverable Message

How to Send a Recoverable Message

To send arecoverable message, use the pans_put _nmsg function supplying the
appropriate del i ver y and una arguments. In addition, the application should:

m Specify a timeout value—applications can adjust the timeout value when
sending recoverable messages with blocking delivery modes. The timeout value
is adjusted to suit system loads.

m Check the delivery outcome—applications should always verify the delivery
outcome of a send operation to know what happened to the message. If the
message was not stored by the message recovery system, the application must
check to make sure that the UMA was successfully executed.

The message flow for sending a recoverable message is:

1. The application sends a message usingdie_put _nmsg function and the
appropriatedel i ver y anduma arguments.

2. The message recovery system returns a sequence number to the sender program.

3. The message recovery system writes the message to the recovery journal on the
local or remote system depending upon the delivery mode specified.

4. The sender program is notified that the message is stored on disk.

5. If the sender program is blocked, it continues processing once the message is
received at the delivery interest point. If the sender program requested
notification, it receives an acknowledgment message once the message reaches
the delivery interest point.

Sequence Numbers

Sequence numbers are unique across all applications and across all groups within a
single message bus. Ordering by sequence number only has meaning in relation to the
sending application. For example, if two applications send messages to a queue, there
is no guarantee that application A has higher or lower sequence numbers than
application B. In addition, it is possible for sequence nhumbers to wrap, causing a hew
message to have a lower sequence number than an older message.

BEA MessageQ Programmer’s Guide 2-9



2 Using Recoverable Messaging

Sequence numbers are composed of the following:

m atimein seconds since January 1, 1970

one bit (an extrabit used to extend a counter)
m agroup number

a 16-bit counter within the second

If the application sends 65536 messages within asingle second, the extrabit is used to
make the counter a 17-bit number.

Any single application generates monotonically increasing serial numbers. Y ou cannot
count on monotonically increasing serial numbers across multiple applications (this
includes both local and cross group communications). Thisis especially true of cross
group communications since the sequence number contains the originating group
number.

Specifying Timeout Values

2-10

A timeout argument can be supplied to the pans_put _msg function to prevent the
sender program from blocking indefinitely while waiting for the message recovery
system to store amessage. If the timeout expires before the message is stored in the
SAF or DQF, BEA MessageQ returns control to the sender program and returns the
PAVS__ Tl MEOUT status return.

When specifying atimeout with asend operation, it isimportant to provide ampletime
for the operation to complete successfully. For example, if the application normally
delivers many messages each second, setting the timeout argument to 30 seconds
should provide adequate time for the operation to complete.

Receiving atimeout return status represents a significant system failure. When a
timeout occurs, either the message queuing load to the message recovery system is
abnormally high or too much time is required to store the message due to disk 1/0
delays or CPU loading. The timeout return status cannot reflect whether the message
was successfully stored by the message recovery system.

The sender program should include error handling routines for the PAMS__ TI MEQUT
status return. Receipt of atimeout return status indicates that messaging load and
traffic should be examined as well asthe MRS group configuration to ensure that all
processes are configured and working properly.

BEA MessageQ Programmer’s Guide



How to Send a Recoverable Message

Because the sender program cannot be sure whether the message was stored by the
recovery system, thereceiver program could receive duplicate messagesif themessage
isre-sent. Therefore, using atimeout on the send operation may not be appropriate for
applications that would experience processing problems if duplicate information is

received.

Checking Delivery Outcome

There are several status return values that should be checked to verify the success or
failure of the attempt to send a recoverable message:

m Return status of the pams_put _nsg call

m The success or failure message indicates whether the message was successfully
stored by the message recovery system.

m PAMS Status Block (PSB) returned by the pams_put _nsg call or the MRS_ACK
asynchronous acknowledgment message. The PSB is a BEA MessageQ data
structure that delivers detailed status information about a send or receive

operation.

Table 2-3 describes the fields in the PSB.

Table 2-3 PAM S Status Block

Field Name

Description

PSB Type

Type number of the PSB structure. BEA MessageQ Version 3.0
uses PSB structure type 2.

Call Dependent

Field not currently used.

Delivery Status

The completion status of the function call. It contains the status
from the message recovery system. It can a so contain avalue of
PAMB__ SUCCESS when the message is not sent recoverably.

M essage Sequence
Number

A unique number assigned to a message when it is sent and
follows the messageto thedestination PSB. Thisnumber isinput
tothepanms_confirm nsg cal to release arecoverable

message.

BEA MessageQ Programmer’s Guide 2-11



2 Using Recoverable Messaging

Table 2-3 PAM S Satus Block

Field Name Description

PSB UMA Status The completion status of the undeliverable message action
(UMA). The PSB UMA status indicates whether the UMA was
not executed or applicable.

Function Return Status After aBEA MessageQ routine completes execution, BEA
MessageQ software writes the return value to this field.

Figure 2-1 illustrates the size and location of the fields in the PSB.

Figure2-1 PAMS Status Block

Word 1 2 Byte
0 T){pe 0
1 Call Dependent 2

f
2 | 4
— PSB Delivery Status —

3 : 6
4 | 8
- X - |
5 Message 10
— Sequence —

6 Nurrber 12
7 | 14
8 | 16
— PSB UMA Status m—

9 | 18
10 ! 20
— Function Return Status —

11 I 22
f
12 I 24
13 | 26
— Not Used m—

14 | 28
15 I 30

ZK9000AGE

2-12  BEA MessageQ Programmer’s Guide



How to Send a Recoverable Message

When an application sends a recoverable message, there are two ways to regquest
notification that the recoverable messageisdelivered to the delivery interest point. The
blocking approach (WF) causes the application to suspend processing until the
pams_put _nsg function is completed. Using WF notification, the pams_put _nsg
function returns all information required to determine the outcome of recoverable
message delivery.

The other notification request method is asynchronous acknowledgment (AK), which

enables the application to continue processing while the message is delivered to the

delivery interest point. In this case, some status information is supplied by the

pams_put _nsg function and the balanceis obtained using thepans_get _nsg function

to read the MRS acknowledgment message returned to the sender program’s response
queue.

The following sections describe:
m Checking the Delivery Status of WF Requests
m Checking the Delivery Status of AK Requests

Checking the Delivery Status of WF Requests

To determine the outcome of recoverable delivery using WF notification, follow these
procedures:

If the return status of theans_put _nsg function is PAMS__ SUCCESS, check the

PSB delivery status to determine the outcome of the delivery. If this field contains a
success status, the message has been successfully stored by the message recovery
system. Extract the message sequence number from the PSB. Table 2-4 lists the valid
PSB delivery status returns.

Table 2-4 PSB Delivery Satus Values

PSB Delivery Status Returns — Status Description

PAVS__ CONFI RVREQ Information  Confirmation required for this message.

PAVS__ DQF_DEVI CE_FAI L Failure M essage not recoverable; destination
queue file (DQF) 1/0O failed.

PAVS__ DQF_FULL Failure M essage not recoverable; DQF full.

PAMS__ ENQUEUED Success Message is recoverable.

BEA MessageQ Programmer’s Guide 2-13



2 Using Recoverable Messaging

2-14

Table 2-4 PSB Delivery Satus Values

PSB Delivery Status Returns  Status

Description

PAMS__MRS_RES EXH Failure Message not recoverable; filesystemran
out of space or other resources, or
incorrect configuration of the DQF or
SAF.

PAMS__NO DQF Failure Message not recoverable; no DQF for
target queue.

PAMS__ POSSDUPL Information Messageis a possible duplicate.

PAMS__SAF DEVI CE FAI L Failure Message not recoverable; store and
forward (SAF) 1/O failed.

PAMS _SAF FORCED Success Message written to SAF file to maintain
FIFO order.

PAMS__STORED Success Message is recoverable.

PAMS__ SUCCESS Success Indicates successful completion.

If the PSB delivery statusfield contains afailure status, check the PSB UMA status to
determine the outcome of the UMA. If the field contains a success status, the UMA
was executed. If the UMA was not successfully executed, the message was lost and
must be resent. Table 2-5 liststhe PSB UMA status returns.

Table 2-5 UMA Satus Values

UMA StatusReturns Status Description

PAMS__DI SC_FAI LED Failure  Message not recoverable in destination queue file
(DQF); UMA was PDEL_UMA_DI SC; message
could not be discarded.

PAMS__DI SC_SUCCESS Success Message not recoverablein DQF; UMA was
PDEL_UNA_DI SC; message discarded.

PAMS__DI SCL_FAI LED Failure  Message not recoverablein DQF; UMA was
PDEL_UNA_DI SC; recoverability failurecould not
be logged or message could not be discarded.

BEA MessageQ Programmer’s Guide



How to Send a Recoverable Message

Table 2-5 UMA Status Values

UMA Status Returns

Status

Description

PAVS__ DI SCL_SUCCESS

Success

M essage not recoverable in DQF; UMA was
PDEL_UMA DI SCL; message discarded after
logging recoverability failure.

PAVS__ DLJ_FAI LED

Failure

M essage not recoverable in DQF; UMA was
PDEL_UMA _DLJ; dead letter journa file (DLJ)
write operation failed.

PAVS__DLJ_SUCCESS

Success

M essage not recoverable in DQF; UMA was
PDEL_UMA_DLJ; message written to dead letter
journal.

PAVS__ DLQ FAI LED

Failure

M essage not recoverable in DQF; UMA was
PDEL_UMA_DLQ message could not be queued to
the dead letter queue.

PAVS__ DLQ SUCCESS

Success

M essage not recoverable in DQF; UMA was
PDEL_UMA DL Q message queued to the dead
letter queue.

PAVE__NO_UMA

Success

M essage is recoverable; UMA not executed.

PAVS__RTS FAI L

Failure

M essage not recoverable in DQF; UMA was
PDEL_UMA_RTS; message could not be returned
to sender.

PAVB__RTS_SUCCESS

Success

M essage not recoverable in DQF; UMA was
PDEL_UMA_RTS; message returned.

PAVS__SAF_FAI LED

Failure

M essage not recoverable in DQF; UMA was
PDEL_UMA_SAF,; store and forward (SAF) write
operation failed.

PAVB__SAF_SUCCESS

Success

M essage not recoverable in DQF; UMA was
PDEL_UMA_SAF; message recoverable from SAF
file.

PAVE__ UVA NA

Success

UMA not applicable.

BEA MessageQ Programmer’s Guide 2-15



2 Using Recoverable Messaging

Checking the Delivery Status of AK Requests

When amessage sent with aPDEL_MODE_AK delivery modereachesits delivery interest
point, the message recovery system sends an MRS_ACK message back to the sender
program using the queue name or number indicated in the r esp_g argument. The
sender program uses the pams_get _nsg or pans_get _nmsgw functionsto read the
MRS_ACK message from its response queue.

The PSB returned by the MRS_ACK message contai ns the message sequence number of

the previously sent recoverable message. The message sequence number of the

MRS_ACK message is matched to the message sequence number returned by the

pams_put _nmsg function before confirming message receipt. See Chapter 9, “Message
Reference” for a detailed description of ¥RS_ACK message format.

If temporary queues are used, deleted, and reused quickly, it is possible that an
acknowledgment from an earlier instance of the queue can be retrieved on a later
instance of the queue. Care should be taken when reusing temporary queues.

If the return status iRAMS__ SUCCESS, the message has been successfully stored by the
message recovery system. The message sequence number should be extracted frorr
PSB and saved until the acknowledgment message is received.

Follow these steps to determine the outcome of message delivery by reading the PS
returned in th&/RS_ACK message:

1. Check the PSB delivery status. If this field contains a success status, the messa
is recoverable. The message sequence number should be extracted from the PS
and compared to the previously saved message sequence number. PSB Deliver
Status Values lists the valid PSB delivery status returns and their meaning.

2. If the PSB delivery status contains a failure status, check the PSB UMA status tc
determine the outcome of the UMA. If the field contains a success status, the
UMA was executed. If the UMA was not successfully executed, the message is
lost and must be re-sent. UMA Status Values lists the PSB UMA status returns.

2-16  BEA MessageQ Programmer’s Guide



How to Receive a Recoverable Message

How to Receive a Recoverable Message

To receive arecoverable message, use the pans_get _nsg, pans_get _nsgw, Or
pams_get _nsga functions. When arecoverable message is delivered to the target
queue, the application must perform the following:

Confirm message receipt—messages stored by the message recovery system
must be deleted from the recovery journal once they are successfully delivered
to the target queue. Message confirmation informs the message recovery system
to delete the message to avoid sending duplicate messages if a failure condition
causes the content of the recovery journal to be re-sent.

In the group initialization file, message queues are configured to require either
implicit or explicit confirmation. Explicit confirmation of recoverable messages
requires the application to call thems_confi g_nsg function when a

recoverable message is received. Implicit confirmation means that BEA
MessageQ automatically confirms receipt of the recoverable message after it is
dequeued and a subsequent dequeue operation has occurred on the target queue.

Check for duplicate messages—applications may check for duplicate messages
based on the type of task performed. For example, if a banking application did
not check for duplicate transactions, duplicate deposits or withdrawals could be
posted to a customer’s account. On the other hand, a stock brokerage application
that receives continuously updated stock prices would not be adversely affected
by duplicate stock price quotations.

The message flow for receipt of a recoverable message by the target system is as
follows:

1.

A message is read from the message recovery journal by the recovery system and
sent to the target queue of the receiver program.

The receiver program reads thars_get _nsg, pans_get _nsgw Or
pams_get msga functions.

If the queue is configured for explicit confirmation, the application calls the
pams_confi rm nsg function to acknowledge receipt of the recoverable message
using the message sequence number assigned by the message recovery system
when the message was sent. If the queue is configured for implicit confirmation,
BEA MessageQ performs this function after the recoverable message is delivered
to the target queue.

BEA MessageQ Programmer’s Guide 2-17



Using Recoverable Messaging

4. Thepans_confirm msg function sends notification to the message recovery
system that the message was delivered and awaits a response.

5. The message recovery system removes the message from the message recovery
journal and sends a nonblocking message back to the pans_conf i r m nmsg
function.

Figure 2-2 illustrates the message flow for receiving a recoverable message.

Figure2-2 Message Flow for Receiving a Recover able M essage

Recovery

System Application

I 3

Confirm Message
Response Inter_nal MRS _ Sequence
confirmation with Number

Sequence Number

v

pams_confirm_msg

ZK8976AGE
The following sections describe:
m  Confirming Message Receipt
m Checking for Duplicate M essages

Confirming Message Receipt

2-18

When the receiver program reads a recoverable message from its target queue, the
recovery system retains the message until delivery is confirmed. The

pams_confirm msg function is used to remove successfully delivered recoverable
messages from the message recovery journal. The message recovery system attempts
redelivery of recoverable messages from the recovery journal each time the target
gueue detaches from and reattaches to the message queuing bus.

BEA MessageQ Programmer’s Guide



How to Receive a Recoverable Message

The receiver program reads the PSB delivery status of each message to know

which messages to confirm. A PSB delivery status of PAMS__ CONFI RVREQindicates
that the message requires confirmation. A PSB delivery status of PAMS__ POSSDUPL

also requires confirmation to del ete the message from the message recovery system.

The following sections describe:
m  Selecting a Confirmation Type
m  Selecting a Confirmation Order

m Creating an Audit Trail of Confirmed M essages

Selecting a Confirmation Type

BEA MessageQ offersthe following two types of message confirmation:

m Implicit confirmation—enables the BEA MessageQ recovery system to
automatically call th@ans_confi rm nmsg function to delete a recoverable
message. Implicit confirmation is triggered when the next sequential message for
that queue is read from the journal file usingghes_get _nsg call.

m Explicit confirmation—requires the receiver program to call the
pams_confi rm nsg function to delete the message from the message recovery
journal. Thepans_confi rm msg function uses the message sequence number
supplied in the PSB when the user receives the message. The
pams_confi rm nsg function should not be called until the receiver program has
completed processing the information in the message.

Implicit confirmation frees receiver programs from the need to respond to the receipt
of a recoverable message. If you are using implicit confirmation with recoverable
messaging, you must ensure that the last message is confirmed before detaching from
the queue, exiting BEA MessageQ, or exiting your application. If the message is not
properly confirmed, it will be redelivered when the queue is reattached.

Explicit confirmation is normally used when several messages are required to contain
a single transaction or work unit. The application reads each message until all the data
is present, applies the data, and then confirms all the messages involved in the
transaction at once.

All gueues must be configured for implicit or explicit confirmation. For complete
information on how to configure message queues, sdadtadiation and
Configuration Guide for the platform you are using.

BEA MessageQ Programmer’s Guide 2-19



2 Using Recoverable Messaging

Selecting a Confirmation Order

Confirmation order is another MRS configuration characteristic that can affect how
recoverable messages are confirmed by the receiver program. Queues can be
configured to confirm messages in order or out-of-order. The default configuration
used for each message queuing group is to confirm messages in order.

If confirmation isin order, messages must be confirmed in the order in which they are
received. If confirmation is out-of-order, then messages can be confirmedin any order.
For more information on how to set confirmation order, see the installation and
configuration guide for the platform you are using.

Creating an Audit Trail of Confirmed Messages

2-20

When using recoverable messaging, you can choose to write successfully delivered
recoverable messages to the postconfirmation journa (PCJ) of the target group. The
contents of the postconfirmation journal forms an audit trail of successfully delivered
messages that you can print out or use to resend messages in the event of a database
rollback.

To use PCJjournaling, you must do the following:

m  Set the ENABLE_JRN parameter in the %°ROFI LE section of the group
initialization file to YES. The default journaling action is not to write messages to
the PCJ.

m  Specify the path name for the PCJfile in the %RS section of the initialization
file. On OpenVMS systems, the file specification for the PCJ is automatically
created when you enable MRS.

m Configure the target queue that will receive the messages to require explicit
confirmation. If a queueis configured for implicit confirmation, no journaling of
successfully delivered messages takes place regardless of whether journaling is
enabled.

m Usethepams_confirm nsg function to explicitly confirm messages and set the
force_j argument to PDEL_FORCE_JRN to store successfully delivered
recoverable messages in the PCJ. To prevent messages from being stored in the
PCJwhen journaling is enabled, set thef orce_j argument to PDEL_NO_JRN.
Note that if journaling is not enabled in the group initialization file, no messages
are written to the PCJ file regardless of the value of thef or ce_j argument.

BEA MessageQ Programmer’s Guide



How to Receive a Recoverable Message

For OpenVMSS applications, you can also set the f or ce_j argument to
PDEL_DEFAULT_JRNto use the default journaling action. The default journaling
action can be changed using the MRS_SET_PCJ message.

On UNIX and Windows NT systems, messages stored in the PCJfile can be re-sent
using the dmgj pl ay utility and dumped using the dngdunp utility. For instructions on
how to use the MRS utilities, see the installation and configuration guide for your
platform

To read or resend journaled messages on BEA MessageQ for OpenVMSS systems, use
thepans_open_j rn, pans_read_j rn,and pans_cl ose_j r n functionsto open, read,
and close the PCJfile. See the Application Programming I nterface topic for adetailed
description of these functions. For information on how to use MRS utilities to resend
or dump the contents of the PCJ, see the BEA MessageQ Configuration Guide for
OpenVMS,

On OpenV M S systems, the default journaling action can be set under program control
by sending an MRS_SET_PCJ message to the MRS Server process. The current PCJfile
can aso be closed and anew one opened by the same message. Because UNIX and
Windows NT do not currently support the VRS_SET_PCJ message, the default
journaling action can not be changed. This mean that the only way to write messages
on these systemsisto specify af orce_j value of PDEL_FORCE_JRN.

Checking for Duplicate Messages

If recoverable message delivery is not properly confirmed by the receiver program,
duplicate messages can be delivered to the target application. For example, amessage
may be sent from arecovery journal, but the cross-group connection may belost before
the message confirmation is delivered.

When the cross-group connection isreestablished, the message will be resent from the
message recovery journal and carry a PSB delivery status of PAMS__POSSDUPL. The
receiver program must check for this PSB delivery status if the posting of duplicate
information will cause processing errors.

The PSB delivery status PAMS__POSSDUPL does not always indicate a duplicate
message. | receipt of aduplicate messagewill cause processing problems, thereceiver
program must include the logic to determine whether the message marked with the
PAMS__POSSDUPL delivery statusisindeed aduplicate of a message already received.

BEA MessageQ Programmer’s Guide 2-21



2 Using Recoverable Messaging

Using UMAs for Exception Processing

2-22

An undeliverable message action (UMA) must be specified for each recoverable
message. The UMA provides the application devel oper with avariety of waysto
perform exception handling when the message cannot be stored for guaranteed
delivery by the message recovery system. Table 2-6 describesthe UM As supported by

BEA MessageQ.

Table2-6 How to Use UMASs

If you want to... Use...

Description

Handle each exception DI SC
immediately

The sender program is coded to handle each
exception immediately with an application-specific
response. The message is discarded by the
messaging system because the application holds the
message in memory and attempts recovery. The
sender program sends each message and is
responsible for handling all error recovery and
redelivery of each message.

Handle each exception DI SCL
immediately and log
errors

BEA MessageQ Programmer’s Guide

ThisUMA is available only on OpenVMS systems.
The sender program is coded to handle each
exception immediately with an application-specific
response. BEA MessageQ writesadescription of the
exception condition to the error log. The log can be
used by system managers to track and diagnose
system problems. The sender program sends each
message, and is responsible for handling all error
recovery, logging the error event, and redelivering
each message.



Using UMAs for Exception Processing

Table2-6 How to Use UMASs

If you want to... Use..

Description

Handle errors by RTS
redirecting them to the
sender program’s input
stream

The sender program directs undeliverable messages
to its queue, eliminating the need to handle each
error as it happens. Using the RTS UMA, the sender
program uses the attachment to its primary queue to
read new messages and handle error conditions for
messages that could not be delivered. The sender
program sends each message, and must check each
message to see if it was returned or if it is a new
message sent by another process. If the message was
returned, the sender program is responsible for
handling all error recovery and redelivering each
message.

Handle errors by DLQ
reading them from a
central queue

The sender program directs undeliverable messages
to a special queue separate from the main input
stream for the program that is designed to hold
undeliverable messages. Using this approach, the
application makes an additional attachment to the
dead letter queue and handles each exception as it is
read from the DLQ. Because the undeliverable
messages are stored in a queue, they will be lost if
the system goes down.

Handle all errors by DLJ
reading them from afile

The sender program directs all undeliverable
messages to a file. Undeliverable messages can be
re-sent from the DLJ under user or application
control. Selection criteria can be applied enabling
the user or application to attempt redelivery on a
subset of messages. Because messages are stored in
a file, they will not be lost if the system goes down
and they can be re-sent until they can be delivered.
The application must develop an additional process
or system management procedures must be created
to deliver messages from the DLJ.

Establish recoverability SAF
locally or remotely

Any message that cannot be delivered to the remote
recovery journal is redirected for storage by the local
recovery journal. Because the UMA may fail, you
cannot guarantee that a message will be stored by the
message recovery system.

BEA MessageQ Programmer’s Guide 2-23



2 Using Recoverable Messaging

To choose the appropriate error handling technique and corresponding UMA, the
application devel oper must analyze the consequences to application processing if a
message is not stored for guaranteed delivery. If amessageis critical, it isbest to
perform exception processing immediately to attempt resolution of the failure
condition. If the receipt of the message is not time-critical, centralized mechanisms
such as DLQ and DL Jmay be preferable. The Supported Delivery Modes and UMAS
topic contains a complete list of the supported combinations of delivery modes and
UMAs.

The following sections describe:

m Using Discard and Discard and Log UMASs
m Using the Return-to-Sender UMA

m Using the Dead L etter Queue UMA

m Using the Dead Letter Journal

m Using the SAF UMA

Using Discard and Discard and Log UMAs

2-24

When the DI SCUMA is used, the message isdiscarded if it cannot be delivered to the
delivery interest point specified in the delivery mode argument. The DI SC UMA is
used when the sender program will handle each exception asit occurs. BEA MessageQ
can discard the undeliverable message because the message content is still availablein
the context of the sender program. To log the undeliverable message event, use the
DI SCL UMA.

Because the sender program cannot be sure that the UMA will be executed
successfully, handling exceptions on a message-by-message basis is the safest way to
ensure that the application recovers properly from error conditions. In addition, on
OpenVMS systems, using the DI SCL UMA creates an event log that can be used to
track and diagnose system problems.

Note: On UNIX and Windows NT systems, the DI SCL UMA functions the same as
the Dl SCUMA.

BEA MessageQ Programmer’s Guide



Using UMAs for Exception Processing

Using the Return-to-Sender UMA

When the RTS UMA is used, the message is directed to the response queue of the
sender program if it cannot be delivered to the delivery interest point specified in the
delivery mode argument. The RTS UMA is used when the sender program does not
want to process each exception asit occurs. Instead, the sender program redirects
undeliverable messages to its main input stream for error handling.

The advantage to using the RTS UMA isthat the sender program attaches to one queue
and acts upon each message asit isread. The sender program must read the PBS status
delivery value of each message to determineif the messageis new or an undeliverable
message. M essages that could not be stored by the message recovery system and
require error handling have a return status of PAMS__ MSGUNDEL .

Using the Dead Letter Queue UMA

When the DLQUMA is used, the message is redirected to queue number 96 (the dead
letter queue) if it cannot be delivered to the delivery interest point specified in the
delivery mode argument. The DLQUMA is used when the sender program wants to
centralize error handling for undeliverable messages in a designated queue while
allowing each message to be handled separately.

A dead letter queueis part of the standard group configuration for each BEA

M essageQ message queuing group. It provides memory-based storage of all
undeliverable messages for the group that could not be stored for automatic recovery.
The dead |l etter queue is defined as queue number 96 and named dead_letter_queuein
the default group configuration information for each group. The default settings create
this queue as a permanently active queue.

To use the dead |etter queue, the sender program calls the pans_put _nsg function

specifying the appropriate del i ver y argument and using PDEL_UVA _DLQas the una
argument. Any messages that cannot be delivered to the receiver program are written

to the dead letter queue of the sender’s group. An application program can attach to the
gueue nameHAVS_DEAD LETTER_QUEUE and use theans_get _nsg function to

retrieve undelivered messages and usgdhe_put _nsg function to attempt

redelivery.

An advantage of using the dead letter queue is the ability to recover undeliverable
messages on a one-by-one basis. The sender program or another process within the
application can attach to the DLQ and handle error recovery for each undeliverable

BEA MessageQ Programmer’s Guide 2-25



2 Using Recoverable Messaging

message. A disadvantage of using the dead letter queueis the lack of disk storage for
undelivered messages. A system failure on the sending node will cause all undelivered
messages in the dead | etter queue to be lost.

Using the Dead Letter Journal

When the DLJ UMA isused, the message is written to an auxiliary journa (the dead
letter journal) if it cannot be delivered to the delivery interest point specified in the
delivery mode argument. ThisUMA can only be used for recoverable messages. The
DLJ UMA isused when the sender program needs to centralize error handling
procedures and the application can support the resending of many messages from afile
at adelayedinterval. Storing undeliverable messagesin afile ensuresthat they will not
be lost if the system goes down, and alows redelivery attempts under user or
application control.

A dead letter journa can be configured for each BEA MessageQ message queuing
group. The dead letter journal provides disk storage for messages that could not be
stored for automatic recovery. On BEA MessageQ for UNIX and Windows NT
systems, a path name must be specified during configuration in order to create DL J
files. On BEA MessageQ for OpenVMS systems, DL Jfiles are created automatically
by the MRS Server when a message queuing group is configured with MRS enabled.

To use the dead | etter journal, the sender program uses the panms_put _nsg function
specifying the appropriate del i ver y argument and PDEL_UNA_DLJ as the uma
argument. Any messages that cannot be stored by the message recovery system are
written to the dead letter journal of the sender’s group.

On UNIX and Windows NT systems, messages are recovered from the DLJ file using
the dmgjplay utility. On OpenVMS systems, an application can provide recovery

under program control or using system management tools. See your platform-specifi
installation and configuration guide for more information on how to use MRS utilities.

Using the SAF UMA

2-26

When theSAF UMA is used, the message is stored in the local journal file if the
message recovery system is unable to store it in the remote journal filaF O&A

can be used with recoverable delivery interest points of DQF and CONF; however, i
does not work with theF_SAF delivery mode.

BEA MessageQ Programmer’s Guide



Recoverable Messaging on BEA MessageQ Clients

Use of the SAF UMA hel psto manage the flow control between the sender and receiver
systems. If the message cannot be written to the remote journal file due to insufficient
resources or a cross-group link failure, the message will be written to the local journal
file.

Note: The application must check the PSB UMA status value in order to know
whether the message isrecoverable.

Recoverable Messaging on BEA MessageQ
Clients

Message Recovery Services (MRS) are also available for applications running on a
BEA MessageQ client. The BEA MessageQ Client ensures delivery of recoverable
messages to the Client Library Server on the BEA MessageQ Server by providing a
store-and-forward (SAF) journal (dngsaf . j r n) to store recoverable messages when
the connection to a CLS is not available. Local SAF journal processing is available
when Message Recovery Services (MRS) are enabled in the BEA MessageQ Client
configuration. The location of the journal fileis set when configuring MRS.

The Store And Forward journal (dngsaf . j rn) iscreated on aBEA MessageQ client
when MRS is enabled. Thejournal file islocked by the first application that attaches
to the BEA M essageQ message bus. If you have several BEA MessageQ applications
running on the client, only one can use the journal file. Other applications will get an
error reading the journal when attaching and when sending to a queue. Each
application program on the client requires a separate working directory. If there are
many client applications running on a machine, consider configuring a message
gueuing group, which alows the applications to share resources.

If MRS is enabled, the message recovery journal isturned on when the client
application first initiates an attach operation. If the CLSis not available at the time of
an attach, the journd file is opened and the attach operation completes with return a
status of PAMS__ JOURNAL_ON.

When thejournal is on, messages sent using the following reliable delivery modes are
saved to the journal:

m PDEL_MODE W-_MEMwith PDEL_UMA_SAF

BEA MessageQ Programmer’s Guide 2-27



2 Using Recoverable Messaging

m PDEL_MODE WF_DQF

m PDEL_MODE_AK_DQF

m PDEL_MODE WF_SAF

m PDEL_MODE AK_SAF

When the connection to the CL Sis re-established, all messagesin the SAF journal are
sent before new messages are processed. The SAF messages are transmitted in

first-in/first-out (FIFO) order. When the connection to CL S is reestablished, areturn
statusof PAMS__ LI NK_UPisused toindicatethat journal processing isno longer active.

M essages are sent from the SAF when one of the following events occurs:

m The connection to the CL S is established successfully and pending messages
exist in the SAF.

m The connection to the CLSis lost and the application continues to send
recoverable messages. Additional message operations trigger an automatic
reconnect to the CL Sthat is successful, and messages are pending transmission
in the SAF.

2-28  BEA MessageQ Programmer’s Guide



CHAPTER

3

Broadcasting Messages

BEA MessageQ Selective Broadcast Services (SBS) enable applicationsto send a
message to many receiver programs using asingle program call. Any BEA MessageQ
application can send abroadcast message using the standard panms_put _nsg function.
The sending application can generate broadcast messages without knowing the
location or number of receiver programs.

Any BEA MessageQ application can selectively receive a broadcast message by first
subscribing to a broadcast stream. To subscribe to a broadcast stream, the receiving
application first sends a registration message to the SBS Server. Broadcast messages

are then enabled for the application and flow into the receiver’s queue for processing
using the standangans_get _nsg function.

l l
OO0O0O0O

ZK9008AGE

BEA MessageQ Programmer’s Guide 3-1



3 Broadcasting Messages

3-2

A broadcast stream is a data message pipeline that can have multiple entry points and
multiple exit points. A message enters the stream and flows immediately to the end.
There is ho queuing on a broadcast stream, nor is the stream subject to flow control.
Also, the flow of messages on a broadcast stream will not be interrupted by any event.
Messages are only present on the stream for afinite segment of time, while they are
being delivered to the queues of the receiving targets.

The SBS server isresponsible for maintaining lists of user processesthat areinterested
in broadcast streams. In addition, the SBS server is responsible for maintaining the
various user definable rules that can be used to selectively extract messages from the
broadcast stream that are set by the application using the SBS_REG STER _REQ

message.

Any BEA MessageQ application can send a broadcast message using the standard
pams_put _nsg function. The identical programming interface which is used to send
point-to-point messages can a so send a broadcast message by simply changing the
target address to a Multipoint Outbound Target (MOT). A MOT isabroadcast stream
associated with a queue number in the range of 4000 to 6000.

BEA MessageQ SBS worksin afashion similar to radio broadcasting. A BEA
MessageQ sender program directs a message to a selected broadcast stream or
“channel.” Then, the receiver program “tunes in” by sending a registration message t
the SBS Server thus registering to receive messages broadcast over that channel. T
feature is also called “publish and subscribe” in the messaging industry.

When a broadcast message is distributed, any receiver program registered for the
broadcast channel will receive the message. Receiver programs that are not register
will not receive the message. Similar to radio broadcasting, where many radio station
are broadcasting at the same time, BEA MessageQ can distribute different types of
messages over different broadcast channels.

SBS message broadcasting simplifies application development by eliminating the nee
for sender programs to know the number, state, or location of the target queues for ea
receiver program. SBS also simplifies application maintenance because receiver
programs can be added and removed from the broadcast distribution without changir
the sender program.

A common use for broadcast messaging is the display of real-time continuous data. F
example, an application that provides up-to-date stock prices can obtain the latest
values and display them simultaneously for any number of system users.

The following sections describe:

BEA MessageQ Programmer’s Guide



How Message Broadcasting Works

m  How Message Broadcasting Works
m  Sending Broadcast M essages
m Receiving Broadcast Messages

m  Running Existing SBS Applications

How Message Broadcasting Works

To send a message to multiple recipients simultaneously, the sender program uses the
pams_put _nsg function and specifies a Multipoint Outbound Target (MOT) asthe
target address for the message. A MOT, numbered between 4000 and 6000, is the
identifier for a broadcast stream. A broadcast stream is the set of target queues
registered to receive messages directed to a particular MOT.

Continuing our analogy with radio broadcasting, aM OT isequivalent to aradio station
that people tune in to. When amessage is sent to aMOT, any receiver program
registered for the MOT will receive the message.

Each BEA MessageQ message queuing group can be configured to support message
broadcasting by setting the ENABLE_SBS parameter in the Profile section of the group
initiaization file. The default value for this parameter is YES. Therefore, by default, an
SBS Server is started for each message queuing group to support both message
broadcasting and BEA MessageQ queue availability notification (AVAIL services).
Receiver programs may register a queue address with any SBS Server. Any message
directed to a MOT address is automatically redirected to the group’s SBS Server.

The SBS Server uses its registration database to distribute the message to all
applications that have registered to receive the selected message. Figure 3-1 illustrates
the flow of messages in the broadcast stream.

BEA MessageQ Programmer’s Guide 3-3



3 Broadcasting Messages

Figure3-1 BEA M essageQ Broadcast Stream

SBS Server

Queue SBS Server Broadcast Stream

MOT SBS —>

@))]
=

——» dr
L » dr
ZK8975AGE

Once registered, applications can receive all messages directed to a broadcast stream,
or only those messages that meet the selection criteria entered at the time of
registration. Applications can register to receive messages from many broadcast
streams. A pplications can stop receiving broadcast messages at any time by sending an
SBS_DEREG STER REQmessage to the SBS Server.

For example, astock brokerage application might need to display updated stock prices

on many user terminals simultaneously. The system designer could designate MOT

5110 as the broadcast stream for updated stock prices. The sender program receiving

the updated information from the stock exchange would create outbound messages
containing the updated pricing information and send it to the broadcast stream

represented by MOT 5110. During their initialization, al receiver programs designed

to update user displays would send a registration message to their group’s SBS Sen
requesting to receive all messages sent to MOT 5110. The updated stock price
messages would then flow to the queue of the receiver programs.

3-4 BEA MessageQ Programmer’s Guide



How Message Broadcasting Works

When designing your broadcast communication environment, you can choose the
following configuration characteristics:

m  Private or universal broadcast streams
m  Named or unnamed MOTs

m  Message broadcasting using the standard BEA MessageQ transport (TCP/IP) or,
on OpenVMS systems, the direct Ethernet multicast communication mode

m  When using Ethernet broadcasting (OpenVMS only), you can choose between
standard multicasting or the enhanced Recovery Protocol

The following sections describe:
m Broadcast Scope
m Named MOTs

m Broadcast Communication Modes

Broadcast Scope

The range of distribution for a broadcast stream is determined by the MOT address
value. Table 3-1 lists the valid MOT address ranges:

Table 3-1 BEA MessageQ MOT Ranges

Type AddressRange Description

Private MOT 4000-4999 Message distribution is restricted to the local group
only.

Reserved 4900-5100 Reserved for use by BEA MessageQ. Of these

addresses, the first 100 are local or private, and the
second 100 are globd or universal.

Universal MOT  5000-6000 Message distribution isto all SBS Servers

BEA MessageQ Programmer’s Guide 3-5



3 Broadcasting Messages

3-6

Any message sent to a queue address in the range of 4000-6000 is automatically
redirected to the SBS Server. The broadcast queue address range (4000-6000) is
divided into half, with the lower values designated as private MOT addresses and the
higher as universal MOTSs.

MOTs numbered below 5000 are associated with aprivate broadcast stream. MOTs
numbered between 4900 and 5000 are reserved to for use by BEA MessageQ. BEA
MessageQ redirects a message sent to a private broadcast stream to the local SBS
Server, which restricts distribution to registered queues on that group. The SBS Server
distributes the message by executing the rules for its local subscribers only. An
application uses a private broadcast stream when the scope of interest for the
information islocal to one system.

An application program does not need to be local to an SBS Server group to register
for a private broadcast stream. The registration message specifies a message group
identifier allowing queues to register with remote SBS Servers.

MOTs numbered above 5000 are associated with univer sal broadcast streams.
MOTs numbered between 5000 and 5100 are reserved for use by BEA MessageQ. In
the universal MOT range, the broadcast stream is available to all SBS Servers. The
sender SBS Server isresponsible for the following:

m Ensuring that the submitted message conformsto the rule set when distributing
the messages locally

m Distributing the messagesto al partner SBS Servers

Each SBS Server in the BEA MessageQ network is responsible for ensuring that the
submitted message conformsto the rule set of registered users and for distributing the

messages locally.

For example, the stock brokerage application we mentioned may need to supply
updated stock prices to receiver programs on many systems in a distributed network.
This application would be most likely to use auniversal broadcast stream to expedite
the flow of information throughout the network.

BEA MessageQ Programmer’s Guide



How Message Broadcasting Works

Named MOTs

Y ou can configurea BEA MessageQ MOT with aname so that the sender program can
direct messages to the MOT name instead of the MOT number. To enable an
application to refer to aMOT by name, define the MOT in the Group Name Table
(GNT) section of the group initialization file. A full MOT address contains the
following:

m Thegroup ID in the high-order 16-bit word
m The MOT number in the low-order 16-bit word

The BEA MessageQ Naming Service supports the run-time lookup of MOT addresses
by applications using the pans_| ocat e_q function to translate a symbolic nameto a
MOT address. Thisname can have either agroup-wide or bus-wide scope. The %GNT
section of thegroup initialization fileis used to load the name into the BEA MessageQ
name space.

Listing 3-1 shows how to definethe bus-wide"Alarm_events' nameto use MOT 5110
and the group-wide "Operator_events' name to use MOT 4810.

Listing 3-1 Configuringa Named MOT

YENT

|

i Nanme G oup. Queue Scope
Aarmevents 0.5110 G
Qperator _events 0. 4810 L

|

%ECS

Note that the group number is defined as 0 so that the application translating the name

uses the local SBS Server rather than a specific SBS Server. See Chapter 4, “Using
Naming” for a more detailed discussion on the use and features of BEA MessageQ
Naming Services.

BEA MessageQ Programmer’s Guide 3-7



3 Broadcasting Messages

Broadcast Communication Modes

3-8

All BEA MessageQ Servers support message broadcasting using datagrams
transmitted using the BEA M essageQ transport. Datagrams are then transferred over a
BEA MessageQ cross-group link (TCP/IP) to another BEA MessageQ Server process
and are queued to thereceiving SBS Server. Since the broadcasting to each SBS Server
istransmitted over point-to-point links, one copy of a message must be sent to each
SBS Server. Datagram delivery mode can be used for both private and universal
broadcast streams. Figure 3-2 illustrates SBS message broadcasting using the BEA

M essageQ transport.

Figure3-2 SBSBroadcasting Via BEA M essageQ Transport

MOT SBS Server
SBS Server SBS Server
RCVR RCVR RCVR RCVR

ZK8974AGE

On UNIX and Windows NT systems the default broadcast transport uses the standard
BEA MessageQ cross-group messaging via TCP/IP as defined in the %<XGROUP section
of thegroup initialization file. On OpenV M S systems, the BEA MessageQ transport is
specified in the SBS section of the DM5I NI T. TXT file using the COVM_SERVI CE
keyword with DG DVQ as the protocol and transport as shown in Listing 3-2:

Listing 3-2 Settingthe COMM _SERVICE for SBSon OpenVMS

* ---- Service ----

* I D Prot/ Xport
COW SERVICE 10 DG DMQ default emul ated broadcast path

BEA MessageQ Programmer’s Guide



How Message Broadcasting Works

GROUPS * I all known server groups
REG STER * I all universal MOTIs
END_COWM SERVI CE
*

In addition to using the BEA MessageQ transport, BEA MessageQ for OpenVM S
applications have the option to use Ethernet multicasting which provides faster
throughput for message delivery. There are two protocols available for direct Ethernet
multicasting, the normal datagram protocol or the enhanced recovery protocol. The
default setting for broadcast communication between SBS Servers is provided by the
BEA MessageQ transport using standard cross-group messaging. The choice of
enhanced broadcast communication using Ethernet multicasting is set by the protocol
parameter in the SBS Server Initialization section of the group initialization file.

Ethernet multicasting can only be used for universal MOT traffic. When Ethernet
multicasting is enabled, a message to auniversal MOT causes a datagram transfer to
the SBS Server that transmitsthe message viaan Ethernet multicast. All receiving SBS
Serversobtain the multicast message directly. Since broadcasting utilizesthe hardware
multicast feature of the Ethernet device, a single multicast message can be received by
any number of SBS Servers that are configured to listen using the multicast address as
provided in the CNTRL_CHAN and DATA_CHAN keywords in the example below. The
Ethernet DG protocol also supports simultaneous multicast on two Ethernet devices
per system (also called dual-rail support). When dual-rail support is employed,
message segments are broadcast on both Ethernet devices and duplicates are discarded
by the receiving SBS Server.

If the optimized Ethernet multicasting feature is enabled, then MOT assignments to
Ethernet physical addresses and protocol numbers must be specified. Figure 3-3
illustrates how SBS transports messages using Ethernet multicasting.

BEA MessageQ Programmer’s Guide 3-9



3 Broadcasting Messages

Figure 3-3 SBSBroadcasting Via Ethernet Transport

MOT SBS Server
1} Y 1} |
SBS Server SBS Server
RCVR RCVR RCVR RCVR

ZK8973AGE

Retransmission Protocol on BEA MessageQ for OpenVMS Systems

3-10

BEA MessageQ for OpenVMS Version 4.0A provides an important enhancement to
SBS Ethernet multicasting called the retransmission protocol. Each universal MOT
that supports Ethernet multicasting can be configured with an option to retry
transmission of cross-group messagesin the event of delivery problems. M essages sent
toaMOT that isconfigured for retransmission are stored in the SBS retransmission list
after they are broadcast. The size of the retransmission list is configured in the %SBS
section of the group initialization file. This size parameter sets the maximum number
of messages stored by the SBS Server to fulfill retransmission requestsin the event of
message delivery failures.

The BEA MessageQ retransmission protocol divides Ethernet broadcast messagesinto
the largest transportabl e segments possible and then transmits them to other SBS
Servers. If amissing segment is detected, the receiving SBS Server requests
retransmission of the message from the point at which the first missing segment was
detected. Thisrequest is sent using ahigh-priority message to the sending SBS Server.
Thereply isreturned using a high-priority message. If the message has already been
deleted from the retransmission list, the sending SBS Server responds with a NAK
message, generating a sequence gap notification for that MOT.

BEA MessageQ Programmer’s Guide



How Message Broadcasting Works

Ethernet multicasting and the retry option are enabled using the SBS Server
Initialization section of the group initialization file. It contains a template for making
these assignments when the group configuration isfirst customized. Listing 3-3
illustrates the configuration information that must be entered to SBS Server
Initialization section of the group initialization file to configure Ethernet multicasting.

Listing 3-3 Configuring Ethernet

%GBS *xxxxx% GBS Server Initialization Section ********xxxix
*

* NOTE: Heartbeat interval is in units of 1 mllisecond
*

HEARTBEAT 1000

*

* ---- Service ----

* ID Prot/ Xport

COWM_SERVI CE 10 DG DMQ default emul ated broadcast path
GROUPS *! all known server groups
REGA STER *! all universal MOTIs

END_COWM SERVI CE

*

* ---- Service ----

* ID Prot/ Xport

COVWM_SERVI CE 0 DG ETH ! dat agram nessagi ng over optim zed Ethernet
DEVICE 1 ESAO0: ! VMS device nane of the Ethernet board (rail A)
DEVICE 2 EZAO: ! VMS device nane of the Ethernet board (rail B)
DRI VER_BUFFERS 16 ! # of VMS Ethernet driver buffers to preallocate[ 10-255]

< <LK VAT Ni NG >>55555555555>555>>
The protocol and Ethernet addresses show bel ow are not registered
and are not guaranteed to be conflict free. Use themw th discretion.
[------ MCA ----]| | Prot #|
CNTRL_CHAN AB- AA- 34-56-78-90 81F0! used for VMS V2.x conpatibility
DATA CHAN AB- 12- 34-56-78-90 81F1! path for all data transm ssions

* % % X %

*

* NOTE: MAB = Message Assenbly Buffer. Each MAB requires area for

* a | arge nessage buffer, plus overhead of 150 bytes.

*

* Def aul t Def aul t Hear t beat
* Transmit SILO Receive SILO Maxi mum Pol | Dead Pol |
* MoT (i n MABs) (in MABs) Heart beat Interval I nterval
REGQ STER 5101 30 15 4 10 10

REGQ STER 5102 35 12 4 10 10

REGQ STER 5156 10 6 6 10 10

*

END_COVM SERVI CE

BEA MessageQ Programmer’s Guide 3-11



3 Broadcasting Messages

%ECS

When messages sent to a broadcast stream are distributed directly through Ethernet
multicasting, it isimportant to monitor whether the application receives any sequence
gap notifications. Because the queue storage area maintained by the hardwareissmall,
messages can arrive faster than the |/O subsystem can deliver them. See the BEA
MessageQ Configuration Guide for OpenVMS for a detailed description of how to
configure Ethernet multicasting.

Sending Broadcast Messages

To broadcast a message, a sender program directs the message to the MOT that
identifies the broadcast stream to use for message distribution. When the application
issuesthepams_put _nmsg function, BEA MessageQ recogni zesthe broadcast message
because of the MOT address range and transparently redirects the message to the SBS
Server of the target group for wider distribution.

Each message queuing group that is configured to distribute broadcast messages has
an SBS Server associated with it. The SBS Server maintains a database of registered
gueues and message selection rules for each registered queue. The SBS Server
compares each broadcast message against the rules stored for each registered queue
and generates messagesto al registered parties that meet the selection criteria.

When a broadcast message is distributed by an SBS Server, the source field of the

message is the MOT address identifying the broadcast stream. Thetarget field isthe
registered target queue. The source address of the message’s originator is obtainec
the receiver program’s show buffer argumentdos_get _nsg. The SBS Server
delivers only one copy of each message on the broadcast stream to each target que
regardless of how many selection matches are made by separate subscription rule
entries.

3-12  BEA MessageQ Programmer’s Guide



Receiving Broadcast Messages

Broadcast messages cannot be stored for automatic recovery. However, you can
configure the primary queue of the receiver program as permanently active to receive
broadcast messages when the receiver program is not available. In addition, broadcast
messages distributed using Ethernet multicasting now have limited recoverability
through the retransmission protocol.

Receiving Broadcast Messages

To receive broadcast messages, applications use a standard set of BEA MessageQ
messages to register for receipt with the SBS Server in their local group or in aremote

message queuing group. Figure 3-4 illustrates the flow of messages sent to the SBS
Server.

BEA MessageQ Programmer’s Guide 3-13



Broadcasting Messages

Figure3-4 SBS Server Message Flow

SBS_REGISTER_REQ

v

User

'y

Application

SBS_REGISTER_RESP

'Y

<+— SBS_SEQUENCE_GAP 4—(

Sequence Gap
Occurrence

)

SBS_REGISTER_REQ

User
Application

v

SBS_REGISTER_RESP |¢—

SBS_DEREGISTER_REQ

v

User
Application

SBS_DEREGISTER_REQ

Legend:
Required

Optional --------

The following sections describe:

m Registering to Receive Broadcast M essages

m Reading Broadcast Messages

m Deregistering from Receiving Broadcast M essages

3-14  BEA MessageQ Programmer’s Guide

v

SBS_SERVER

ZK-8972A-GE




Receiving Broadcast Messages

Registering to Receive Broadcast Messages

To receive broadcast messages, an application registers a queue address with the SBS
Server managing a broadcast stream. The queue address for the SBS Server in a
message queuing group is queue number 99. Any BEA MessageQ primary, secondary,
or multireader queue can be registered to receive broadcast messages.

Receiver programs register for broadcast messages using the pans_put _msg function
sending a standard BEA MessageQ registration message. Typically, registration
messages are sent to the primary queue of thelocal SBS Server queue (SBS_SERVER),
which is queue 99 in the local group. The registration message contains the MOT of
the broadcast stream plus any selection criteriarelated to messages that the application
wishesto receive. An application can also register with aremote server by sending the
registration message to the primary queue of the SBS Server in the remote group. (For
example, 10.SBS_SERVER).

BEA MessageQ provides the SBS_REGI STER_REQand SBS_REG STER_RESP
messages. Use SBS_REG STER REQt0 request to register to receive broadcast
messages. Y our application receivesthe SBS_REG STER _RESP in response to the
SBS_REG STER REQrequest message.

The registration information for each broadcast stream is stored in memory by each
SBS Server and is volatile. Users registered with aremote SBS Server will no longer
receive broadcast messages after the link to the remote server goes down. To recover
from cross-group link failures, the application must monitor the status of the link to the
remote SBS Server and be prepared to reregister for broadcast messages after a
downed link isrestored.

The receiver application can request sequence gap notification using the

SBS_REG STER REQmessage. The SBS Server maintai ns sequence checking on each
broadcast stream. Seguence gaps occur when resource exhaustion and overflow
conditions interrupt the reception of a broadcast stream by an SBS Server. For
example, sequence gaps occur when a sender program broadcasts at a higher rate than
the SBS Server can receive and distribute messages. When this characteristic is
enabled, the SBS Server sends a message of type SBS_SEQUENCE_GAP to the target
gueue whenever a sequence gap is detected.

BEA MessageQ Programmer’s Guide 3-15



3 Broadcasting Messages

Sequence checking operates onthe BEA MessageQ network and on the Ethernet LAN.
On Ethernet, the channel and MOT number are returned in the sequence gap
notification message. Broadcast messages are not recoverable; therefore, the
occurrence of repeated sequence gap messages signals the need to synchronize
application processing in the distributed network.

Broadcast streams hold messages for a short period of time only; therefore, receiver

gueues must be configured with a sufficient message receive quota to store messages
asthey arrive. Aswith any BEA MessageQ system, you must test the send and receive
rates of programsto ensure that messages are not sent faster than they can be received.

The following sections describe:
m  Sending a Registration Message
m Registering to Receive Selected Broadcast M essages

m Registration Acknowledgment

Sending a Registration Message

3-16

An application sends the registration message using the panms_put _nmsg function
supplied with the following:

m Thetarget argument asthe queue address of the SBS Server from which the
application wants to receive broadcast messages. The group number isthe
number of the remote group, or use zero to indicate the SBS Server in the local
group. The SBS Server is defined as queue number 99 in the Queue
Configuration Table of the default group initialization files.

m Thesour ce argument containing the queue number of the requesting
application.

m Thecl ass argument as M5G_CLAS_PANS.

m Thetype argument as MSG_TYPE_SBS REG STER REQto receive all messages
from a broadcast stream.

The message data structure of the registration message contains the address of the
broadcast stream from which the application wants to receive messages and the
address of the target queue address to receive broadcast messages.

BEA MessageQ Programmer’s Guide



Receiving Broadcast Messages

Registering to Receive Selected Broadcast Messages

Data Offset

Usethe SBS_REGQ STER REQmessage to register for selective reception of broadcast
messages. This message registers atarget queue to receive a copy of all messageson a
broadcast stream that meet a single selection rule.

The selection rule requests the SBS Server to compare an operand in the message
header or message data structure with the operand supplied in the selection rule. The
term operand refers to the data in the message header or message data structure that
will be compared. For example, a selection rule may configured to receive only
messages with a particular type code. In this case, the message type code is the
operand. The SBS_REG STER REQ message can define up to 255 selection rules.

M essage distribution can be made if any or all of the selection rules are found to be
true.

A selection ruleis composed of the following components:
m Data Offset

m  Operator

m Operand Length

m Operand Field

The data offset field indicates whether the selection criteriais part of the message
header or the message area. If the data offset is a positive value or zero, then this
message is used to begin the comparison. BEA MessageQ specifies constants for
selection based on the type, class, or sending queue. M atching based on message
priority is not supported. Table 3-2 lists the data offset symbols.

Table 3-2 Valid Data Offset Symbols

Offset Description
PSEL_CLASS Usethe class field of the message
PSEL_TYPE Usethe type field of the message

BEA MessageQ Programmer’s Guide 3-17



3 Broadcasting Messages

Table 3-2 Valid Data Offset Symbols
Offset Description

PSEL_ SOURCE Use the source field of the mesage.

Note:  The comparison is made to the original source
field, not the MOT address.

MATCH PRI ORI TY Not supported

zero based data offset Use the message offset to begin data comparison

Operator
The operator field indicates the type of comparison to be performed on the operands.
Table 3-3 lists the symbals for the operator field.
Table 3-3 Operator Field Symbols
Operator Description
PSEL_OPER_ANY Always match
PSEL_OPER EQ Equal
PSEL_OPER_NEQ Not equal
PSEL_OPER GTR Greater than
PSEL_OPER LT Lessthan
PSEL_COPER_GTRE Greater than or equal to
PSEL_OPER _LTE Lessthan or equal to
PSEL_COPER_AND Operand field AND data not equal to zero
Operand Length

The operand length field specifies the number of bytesin the operand field to be used
for comparison. The operand length can be 1, 2, or 4 bytes only.

3-18  BEA MessageQ Programmer’s Guide



Receiving Broadcast Messages

Operand Field

The operand field is the value to be compared with the selected field in the message
header or message data structure.

Registration Acknowledgment

The SBS_REG STER_RESP message repliesto the SBS_REG STER_REQrequest. This
response message returns a status indicator, the registration ID, and the number of
application queues registered to receive messages from the broadcast stream.

Reading Broadcast Messages

When amessage is sent to abroadcast stream, the SBS Server usesits registration
database to determine which applications have registered to receive that kind of
message. The SBS Server automatically sends the messages to the distribution of all
matching applications. The receiving application reads the broadcast message from its
target queue using the pams_get_msg, pams_get_msgw, or pams_get_msga functions.
The source of the message, as seen by the receiving application, is the broadcast
stream. The address of the sender is also provided to the receiving application in the
‘original source’ field of the PAMS show buffer.

Deregistering from Receiving Broadcast Messages

An application can withdraw from the broadcast stream by either sending the
SBS_DEREG STER REQ deregistration message to the SBS Server, or by exiting the
BEA MessageQ message queuing bus when the automatic deregistration was
previously set in the subscription entry. Either of these actions removes the
subscription entry from the internal SBS tables. Temporary queues are automatically
deregistered when the application exits.

Applications that use the deregistration message can request subscription cancellation
in one of the following ways:

m Cancel by exact match of the MOT address and target queue

m Cancel by subscription ID

BEA MessageQ Programmer’s Guide 3-19



3 Broadcasting Messages

Sending amessage of type SBS_DEREG STER_REQcausesthe SBS Server to deregister
all entries for the broadcast stream and target queue. If requested, an
SBS_DEREG STER_RESP message will acknowledge the SBS Server deregistration.

To cancel registration for a specific type of message while continuing to receive other
broadcast messages, the application must send a message of type

SBS_DEREG STER_REQusing the subscription identification code assigned to the
original SBS Server registration. Deregister by 1D if thereismore than one registration
for the broadcast stream and target queue and you only want one entry to be removed.

Running Existing SBS Applications

3-20

Applicationsusing SBS messagesthat were designed to run under BEA MessageQ for
OpenVMS, Version 3.2 or earlier will continue to run under BEA MessageQ for
OpenVMS, Version 4.0A. For BEA MessageQ V4.0, the SBS message interface was
redesigned to support enhanced features and to make the message structures RISC
aligned.

However, to run these applications in other BEA MessageQ environments such as
UNIX or Windows NT, the applications must be changed to use the new Version 4.0
SBS messages. Table 3-4 isalist of the new SBS messages and their obsolete
equivalent message. See the detailed description of each messagein Table 3-4tolearn
the changes needed to recode your application to use the new SBS messages.

Table 3-4 Obsoleteand New SBS M essages

Obsolete SBS M essages: New SBS M essages:

SBS_BS_SEQGAP SBS_SEQUENCE_GAP
SBS_DEREG SBS_DEREG STER_REQ
SBS_DEREG ACK SBS_DEREG STER RESP
SBS_DEREG BY | D SBS_DEREGI STER_REQ
SBS_REG SBS_REG STER REQ
SBS_REG EZ SBS_REG STER REQ

BEA MessageQ Programmer’s Guide



Running Existing SBS Applications

Table 3-4 Obsolete and New SBS M essages

Obsolete SBS M essages: New SBS M essages:

SBS_REG REPLY SBS_REG STER_RESP

SBS_REG EZ REPLY SBS_REG STER_RESP

BEA MessageQ Programmer’s Guide 3-21



3 Broadcasting Messages

3-22  BEA MessageQ Programmer’s Guide



CHAPTER

4  Using Naming

Naming is a powerful feature that enables BEA MessageQ applications to identify
message queues by name whether they reside on the local system or on another system
on the BEA M essageQ message queuing bus. Naming also allows applicationsto bind
permanent and temporary queues to names at runtime.

Application devel opers use the BEA MessageQ naming feature to separate their
applications from the underlying BEA MessageQ environment configuration. By
referring to message queues by name in their applications, developers do not have to
modify their applications when the BEA MessageQ environment configuration
changes. A name can also be associated with a Multipoint Outbound Target (MOT)
address when broadcasting messages.

The following sections describe:

m  Understanding Naming

m How to Configure Bus-wide Naming
m How Applications Use Naming

m  Static and Dynamic Binding of Queue Addresses

Understanding Naming

Before you can use naming, you need to understand the following key conceptsin
using BEA MessageQ naming:

m What is Naming?

m What is aName space?

BEA MessageQ Programmer’s Guide 4-1



4 Using Naming

m What isthe Naming Agent?

What is Naming?

The BEA MessageQ naming feature enables applications to refer to message queues
by name. These names are also called queue references. The queue reference and its
associated queue address must be defined to BEA MessageQ, either statically in the
group configuration file, or dynamically using the pans_bi nd_q function. The
pams_| ocat e_q function performs the name-to-queue address translation at runtime.

When aname or queue reference is defined it is assigned a scope. Names can be

assigned a “group-wide” scope to enable the name to be used by any application
running in that message queuing group (local queue reference). Names can be assigt
“bus-wide” scope to enable any application on the message queuing bus to refer to tt
gueue by name (global queue reference).

What is a Name Space?

4-2

A name spaceis the repository where names and their associated queue addresses &
stored. When an application refers to a queue by name, BEA MessageQ must look L
the name in the name space to find its associated queue address in order to send a
message to the named queue.

BEA MessageQ uses three levels of name spaces: process, group, and bus. Names
stored in the group- or bus-wide name space whether their configuration scope define
alocal or global queue reference. The process name space is an application cache u
to improve performance. Names can exist in one or all three of the name spaces.
However, they are defined only in one of these spaces and can be cached at differe
levels. Users can bypass caching when theyase | ocat e_q if they favor

accuracy over performance.

When a group starts up, it creates the group-wide name space and populates it with
entries defined in th&QCT and%GNT sections of the group initialization file. In

addition, entries configured in tl&CT and%aNT sections with a global scope are
updated in the bus-wide name space. In order to use bus-wide naming, you must
configure your environment to use this BEA MessageQ feature.

BEA MessageQ offers two types of hame spaces:

BEA MessageQ Programmer’s Guide



Configuring Bus-Wide Naming

m Light weight — this type of name space is included with BEA MessageQ. The
BEA MessageQ lightweight name space uses a directory structure shared among
naming agents. When two nodes view the name space, it must be exactly the
same. In this way, BEA MessageQ can deal with any coordination automatically.
Some examples of shared file systems are clusters and NFS-mounted disks.

m Heavy weight — this type of hame space is offered by an add-on product to BEA
M essageQ which has its own server and spans the entire network. Currently, the
only heavy weight name space supported by BEA MessageQ is DECDNS.
Although naming agents servicing DECDNS can only run on the OpenVM S
platform, DECDNS names can be bound or located by applications running on
any BEA MessageQ supported platform, including client implementations.

What is the Naming Agent?

The Naming Agent isthe BEA MessageQ process that accesses and manages the BEA
M essageQ bus-wide name space. Users configure groups to decide whether a group
hosts or remotely accesses a Naming Agent. When a group starts, it launches the
Naming Agent, if it is hosted by this group.

When a group starts up, the BEA MessageQ startup procedure requests the
Naming Agent to update al entriesin the initialization file that have a global scope.

Applications do not accessthe bus-wide name space directly; when an application uses
aglobal queuereference, itisthe Naming Agent that looks up the namein the bus-wide
name space and returns the queue address to the application.

Configuring Bus-Wide Naming

The use of group-wide naming requires no special configuration steps because the
process-level name spaceis created by attaching to the BEA MessageQ message
gueuing bus and the group-wide name space is created by the group control process.
Touselocal (group-wide) naming, configure queue namesin the Queue Configuration
Table (%CT) or the Group Name Table (%3NT) section of the group initialization file.

BEA MessageQ Programmer’s Guide 4-3



4 Using Naming

4-4

When the group starts up, BEA MessageQ automatically createsthe group hame space.
It createsthe process name space when an application attaches to the message queuing
bus.

To enable your applications to use global (bus-wide) naming, you must perform
additional configuration steps. First, you must decide the group or groupsin which the
naming agent will run. BEA M essageQ allows you to specify amain group and an
alternate group to run the Naming Agent. The BEA MessageQ Naming Agent is the
BEA MessageQ Server that maintains the namespace for name-to-queue address
tranglations and performs the runtime queue lookup when an application refersto a
gueue by name.

Thevanamsection of the group initialization file enablesyou definethe group or groups
inwhich the Naming Agent processwill run. BEA MessageQ allows the definition of
two naming agents for each message queuing bus. When BEA MessageQ starts each
group, it looksin this section of the initiaization file to decide whether to start a
naming agent for the group. For groups that do not run a Naming Agent, BEA

M essageQ uses the information in the 98NAM section to direct requests to the Naming
Agent. Groups must have a cross-group connection to the groupsin which the Naming
Agent runs.

Touseglobal naming, you must create anamespace on the nodes on which the Naming
Agentswill run. BEA MessageQ enables users to configure two Naming Agents to
support global messaging for the environment. In order to allow the second Naming
Agent to form a backup for the first, both Naming Agents must be configured to use
the same name space. Therefore, when you configure your name space for use by two
Naming Agentsthat run on different systems, it must use a shared file system that is
accessible to both Naming Agents.

To use aglobal name, at least some portion of the path name must be specified. Path
information can be supplied by the application, or you can use the
DEFAULT_NAMESPACE_PATH parameter in the %°ROFI LE section of the group
initialization filein order to create and maintain path information for global names. For
global naming to function properly, this parameter must be set to the samevaluefor all
groups in which applications are designed to access the same name space. When the
naming agent is enabled in the group initialization file, afile uid.dnf is created in the
DEFAULT_NAMESPACE_PATH directory which contains the global names. The
following syntax showshow to set the default namespace to be created and maintained
in the name space.

BEA MessageQ Programmer’s Guide



How Applications Use Naming

Use the Queue Configuration Table (%CT) or the Group Name Table (%GNT) of the
group initialization file to create static or dynamic definitions for global names as
follows:

m Defineglobal static namesin the %QCT or %GNT by providing the name, the
gueue address and setting the name scope identifier to Gfor global names.

m Definegloba dynamic names by supplying the name, 0. 0 as the address and the
Gidentifier for global names. Names defined with a0. 0 address can be
dynamically bound to a queue address at runtime using the pans_bi nd_q
function.

For a detailed description of how to configure your environment and develop
applicationsto use globa naming, refer to the installation and configuration guide for
your platform.

How Applications Use Naming

Queues and local queue references exist in groups, which exist in buses. Global queue
references can exist anywhere in the bus-wide name space. Applicationsin all groups
can bind and look up globa queue references.

The set of directory namesfrom the root of the hierarchy to where the queue isdefined
is called its path. The path plus the queue's nameis called its pathname. A name must
be unique within its directory. Thus, any queue can be uniquely identified by its
pathname.

Queues and local queue references are always identified by their names. A global
gueue reference must be identified by its pathname. However, it can be identified by
its name only if its path is the group’s DEFAULT_NAMESPACE PATH. (The
DEFAULT_NAMESPACE_PATH is set in the %°ROFI LE section of the group initialization
file)

The following sections describe:
m  Specifying Names and Pathnames

m Attaching and Locating Queues

BEA MessageQ Programmer’s Guide 4-5



4 Using Naming

Specifying Names and Pathnames

BEA MessageQ applications can be devel oped to be independent of the bus-wide
name space implementation for a particular environment. This means that no coding
changes are required if the application environment initially uses the BEA MessageQ
lightweight name space and migrates to a heavy weight name space at alater time.

Names are specified in BEA MessageQ applications in one of three ways:
m fully quaified

m patialy qualified

m unquaified

For detailed information on how to specify path names and file names, refer to the
installation and configuration guide for the platform that you are using.

Attaching and Locating Queues

4-6

An application may only read messages from queuesin its own group. To read from a
gueue, an application must attach to the queue using thepans_at t ach_q function. For
apermanent queue, it must identify the queue by its name, its address, or a queue
reference. For atemporary queue, the attach operation creates the queue and assignsiit
an address.

An application can send messages to a queue in its own group and to queues in other
groups. When sending a message, the target queue is awaysidentified by its address.
An application can directly code in the address, or it can use the pans_I ocate_q
function to derive the queue’s address from its name or queue aias. When

pams_| ocat e_q is used with pams_put _nsg, applications can remain separate from
the details of system configuration because they are able to obtain the physical address
of the target queue at runtime.

BEA MessageQ Programmer’s Guide



Static and Dynamic Binding of Queue Addresses

Static and Dynamic Binding of Queue
Addresses

BEA MessageQ offers two approaches to associating a queue reference (also called a
gueue name) with aqueue address: static and dynamic. Static binding refers to
associ ating a queue name with a queue reference using the queue configuration table
(%€XT section) and the group name table (%GNT section) in the group initialization file.
Static binding creates the association when the group starts up.

Dynamic binding refers to the use of the pans_bi nd_q to associate a queue name
with a queue address after the application starts up. With dynamic binding, you can
write applicationsthat dynamically "sign up" to serviceaqueue at runtime. Thismeans
that your application can access a service without having to be aware that its normal
host computer is down and that the service is being provided from another host
computer. An application does this by dynamically associating a queue addressto a
gueue reference at run-time.

The following sections describe:
m How Dynamic Binding of Queue Addresses Works
m How Caching and Binding Works

m Examples of Static and Dynamic Binding

How Dynamic Binding of Queue Addresses Works

Dynamic binding of queue addresses allows you to share queue names with any
application attached to the message queuing bus. An application can attach to aqueue
in agroup and bind this queue to a name into the bus-wide name space so that an
applicationin another group can locate this queuein the bus-wide name space and send

messages to it.

BEA MessageQ provides the pams_bi nd_q function, which associates a queue
address to a queue name at runtime. The nane_space_| i st argument in the
pams_at t ach_g and pans_bi nd_q functions identify the scope of the queue name
and controls cache access.

BEA MessageQ Programmer’s Guide 4-7



4 Using Naming

How Caching and Binding Work

When an application processlocatesanamefor thefirst time, it is cached in the process
name space. If the nameis for aglobal queue reference, it is aso cached in the group
name space. Conversely, later lookups can fetch the name from the "nearest" location
that holds the name. For example, suppose APP1 in agroup locates ggr ef 1. This
causes gqr ef 1 to be cached in APP1’s process name space and in the group. Also,
suppose APP2 in thisgroup locatesgqgr ef 1. Since APP1’s process cacheisinvisible to
APP2, APP2 will fetch gqr ef 1 from the group.

When an application process del etes a queue that is bound to a reference or when it
binds areference to a new address, BEA MessageQ automatically updates the
applications process cache, the name's entry in the group, and (if thisisa global queue
reference), the global name space also. However, other places where this queue is
cached are not updated.

When your application detaches or exits from a queue that was bound to aname, BEA
M essageQ unbinds the queue before exiting or detaching.

Examples of Static and Dynamic Binding

Y ou can code your application to use either static or dynamic binding of queue
addresses. Use static binding if the queue that your application attachesto is not going
to change its address (for example, a permanent queue). Otherwise, if the queue that
your application needs may change (for example, if the queue istemporary, or if the
application runsin different groups), code your application to use dynamic binding of
the queue address.

When coding, keep in mind that there are two name-based queue identification styles
that you can use. They are as follows:

Client for Style 1 (Static Binding)

4-8

Listing 4-1 is a pseudocode fragment showing static binding of a queue address for a
client.

BEA MessageQ Programmer’s Guide



Static and Dynamic Binding of Queue Addresses

Listing4-1 Client Style Static Binding

pans_| ocate_q("gqrefl", q_address,
[PSEL_TBL_PROC, PSEL TBL_GRP, PSEL_TBL BUS] )
| oop:
buil d request nessage
put | oop:
status = pans_put _nsg(g_address)
if status is error,
print descriptive error
pause and got o putl oop,
or exit program as desired

goto |l oop

Client for Style 2 (Dynamic Binding)

Listing 4-2 is apseudocode fragment showing dynamic binding of a queue addressfor
aclient. Inthisexample, when an error occurs, the client attemptsto seeif anew server
has signed up to providethis service. Notethat it does not use the cache when it refinds
gqr ef 1 because it wants to see the binding established by the new server, not the
out-of-date cached binding.

Listing 4-2 Client Style Dynamic Binding

pans_| ocate_q("gqrefl", qg_address,

[ PSEL_TBL_PROC, PSEL_TBL_GRP, PSEL_TBL_BUS]

| oop:
buil d request nessage

put | oop:

BEA MessageQ Programmer’s Guide 4-9



4 Using Naming

status = pans_put _nsg(q_address)
if status is error then

pans_| ocate_q("gqrefl", q_addressl, [PSEL_TBL_BUS])
if g_address not gq_addressl then

q_address = g_addressl

got o putl oop

el se pause and goto putloop, or exit program as desired

Server for Style 1 (Static Binding)

Listing 4-3 is a pseudocode fragment showing static binding of a queue address for a
server.

Listing 4-3 Server Style Static Binding

pans_attach_q("gqrefl", q_address, PSYM ATTACH BY_NAME
[PSEL_TBL_PROC, PSEL_TBL_GRP, PSEL_TBL_BUS])
| oop:
pans_get nsg(g_address)
process request and reply

goto | oop

Server for Style 2 (Dynamic Binding)

Listing 4-4 isapseudocode fragment showing dynamic binding of a queue addressfor
aserver. In this example, the server attaches to a queue and then tries to make this
queue the provider of the gqr ef 1 service. However, if another server is already
providing the service, the program exits.

4-10 BEA MessageQ Programmer’s Guide



Static and Dynamic Binding of Queue Addresses

Listing 4-4 Server Style Dynamic Binding

pans_attach_qg(any attach options, g_address)
status = pans_bind _q("gqrefl", g_address, [PSEL_TBL_BUS])
if status = "queue reference already bound to a queue"
then exit program

| oop:
pans_get nsg(g_address)
process request and reply

goto | oop

BEA MessageQ Programmer’s Guide 4-11



4 Using Naming

4-12  BEA MessageQ Programmer’s Guide



CHAPTER

5 Using Message-Based
Services

BEA MessageQ applications regularly perform standard tasks such as checking the
state of aqueue or the status of a cross-group connection before sending amessage. To
make these tasks easier, BEA MessageQ offers message-based services, which are sets
of predefined request, notification, and response messages exchanged between the
application and BEA MessageQ server processes.

Table 5-1 describesthe functions performed by using message-based servicesand lists
the serversthey are available through.

Table5-1 Overview of M essage-Based Services

Youcan... Through the. ..
Obtain the status of a particular queue Avail Server
Monitor and control link status Connect Server
Obtain the current status of all queues Queue Server
Register for broadcast messages SBS Server

M anage message recovery files (OpenVM S MRS Server
systems only)

Transfer messages from one DQF file to another Qtransfer Server
(OpenVMSS systems only)

BEA MessageQ Programmer’s Guide 5-1



5 Using Message-Based Services

How Message-Based Services Work

BEA MessageQ uses message-based services to perform routine tasks such as
obtaining queue status. There are two request-response paradigms used by
message-based services. For some kinds of services, the sender program sends a
regquest to a BEA MessageQ server using a particular message. The BEA MessageQ
server returnsthe response in a message using a particular message type and format. If
information was requested, it is returned in the message area of the response message.

In other cases, a sender program may register to receive ongoing updates of
information. In this case, the sender program sends a registration request and receives
aresponse if the registration request is successful. In addition, the sender program
receives event-driven messages providing up-to-date information asrequested. To stop
receiving the event-driven messages, the sender program must send a deregistration
request to the BEA MessageQ server.

Service requests are directed to the primary queue of the BEA MessageQ server
designated to provide the selected service. BEA MessageQ message-based service
regquestsare delivered to BEA MessageQ serversusing the BEA MessageQ application
programminginterface (API) or BEA MessageQ scripts. Similarly, applications obtain
response and notification messages by reading these messages from their primary or
response queue.

BEA MessageQ message-based services are sent between a user application program
that functions as a requestor and a BEA MessageQ server process that fulfills the
reguest. For messages to be properly understood between systems, message data must
be sent and returned in the endian format understood by both the requestor and the
server.

Most BEA MessageQ message-based services automatically perform this conversion
if the endian format of the two systems is different. However, some message-based
services do not perform this conversion. Therefore, the user application must convert
the message to the endian format of the server system to ensure that the message data
iscorrectly interpreted.

See the description of each message for information on whether BEA MessageQ
performsthe conversion or the application must check for differencesin hardware data
formats. See the Building and Testing Applications topic to learn how you can ensure
that your application formats data properly and performs required conversions when
sending standard messages between computer systems from different vendors.

5-2 BEA MessageQ Programmer’s Guide



How Message-Based Services Work

Requesting a Service

Y ou can send a service request message using the pams_put_msg function. Request
messages use the type argument to identify the purpose of the message. Each request
message has a predefined data structure.

To send a standard request message, supply the following:

Target The symbolic name for the BEA MessageQ server fulfilling the request.
For example, use PAMS_AVAI L_SERVER for requests handled by the
BEA MessageQ Avail Server process.

Class The class code PAMS indicating that the message is a BEA MessageQ
message-based service request.
Type Thetype code of the message you are sending. For example,
AVAI L_REG.

M essage data The predefined data structure containing the information to be sent with
the service request. The definition of al BEA MessageQ message-based
services messages is now provided in the p_nsg. h includefile.

A detailed description of each message in the M essage Reference topic explains each
field in the data structure and provides a sample C message structure.

Receiving a Response

Each BEA MessageQ server returns response or notification messages to answer a
service request. Most request messages have a response message. In addition, some
service reguests are answered by the BEA MessageQ server with anotification
message that supplies information to the sender program as it becomes available.

When an application reguests information using the pams_put _nsg function, it
providesthe BEA MessageQ server with the group ID and queue number to which the
response should be directed. The sender program then reads this queue using the
pams_get _nsg, pams_get _nsgw, Of pans_get _msga function to obtain the response
information.

A BEA MessageQ server response and notification message provides the following:

BEA MessageQ Programmer’s Guide 5-3



5 Using Message-Based Services

Source The symbolic name of the BEA MessageQ server fulfilling the request.

Class The class code of the response is always PAMS, indicating that thisisa
BEA MessageQ message-based service.

Type The type code of the message received. For example,
AVAI L_REG REPLY.

Message data The predefined data structure used to provide requested information in
the response or notification message. The definition of all BEA
M essageQ message-based services messages is now provided in the
p_nsg. h includefile.

A detailed description of each message in the M essage Reference topic explains each
field in the data structure and provides a sample C message structure.

Obtaining the Status of a Queue

BEA MessageQ message-based services enable applications to check whether a
particular queue is available to receive messages. This set of messages returns
information on the status of any active queue in aloca or remote group.

To obtain information on the status of a particular queue, applications exchange the
following messages with the Avail Server:

m AVAI L_REG—Request message to register to receive queue information.

m AVAI L_REG REPLY—Response message to confirm registration or deregistration.
m AVAI L—Notification message to indicate that the queue is available.

m UNAVAI L—Notification message to indicate that the queue is unavailable.

m AVAI L_DEREG—Notification message to deregister from obtaining queue
information.

5-4 BEA MessageQ Programmer’s Guide



Obtaining the Status of a Queue

Figure5-1 Avail Server Message Flow

v

AVAIL_REG

i AVAIL REG REPLY |<—

AVAIL/UNAVAIL |« AVAIL_SERVER
AVAIL_DEREG

User
Appliestion

ZK-8981A-GE

An application program registers to receive avail ability messages by sending a
message of type AVAI L_REGto the local Avail Server process. The Avail Server
responds with a message of type AVAI L_REG REPLY, acknowledging the notification
request.

After registration, the requestor immediately receives an AVAI L or UNAVAI L message
indicating the current availability of the target queue. Queue availability messages
provide ongoing notification when a specific queue becomes attached or detached and
when alink is connected or lost. If the queue becomes active because a process
becomes attached, the Avail Server sends a message of type AVAI L. If it becomes
inactive, the server sends a message of type UNAVAI L.

Applications must cancel availability notification by sending a message of type

AVAI L_DEREG. The application receivesa AVAI L_REG REPLY message indicating the
status of the operation. It isimportant to note that if the distribution queue for an
AVAIL registration becomes unavailable, the registration will be automatically
deleted by BEA MessageQ. A subsequent attempt to deregister AVAIL services for
this distribution queue will result in an error message indicating that the registration
does not exist.

BEA MessageQ Programmer’s Guide 5-5



5 Using Message-Based Services

Monitoring and Controlling Link Status

This section describes how applications can use BEA MessageQ message-based
services with the Connect Server process to obtai n information on connections, queue
entries, groups, cross-group connections, and link status.

Listing Cross-Group Connections, Entries, and Groups

5-6

An application can request alist of current cross-group connections or all configured
cross-group entries from the Connect Server. This request allows the application to
obtain the current BEA MessageQ cross-group configuration and active cross-group
connections. In addition, the Connect Server can provide alist of known queuesin a
group and alist of all groups defined on a message queuing bus.

To obtain alist of all cross-group connections, configured groups, and queue entries,
applications exchange the foll owing messages with the Connect Server:

LI ST_ALL_CONNECTI ONS (Request)—Request message to provide a list of all
cross-group connections.

LI ST_ALL_CONNECTI ONS (Response)—Response message to provide a list of all
cross-group connections. Groups with no link connection are not listed.

LI ST_ALL_ENTRI ES (Request)—Request message to provide a list of all queue
entries for a group.

LI ST_ALL_ENTRI ES (Response)—Response message to provide a list of all
gueue entries for a group.

LI ST_ALL_GROUPS (Request)—Request message to provide a list of groups on
the message queuing bus.

LI ST_ALL_GROUPS (Response)—Response message to provide a list of all
groups, connected and unconnected, on the message queuing bus.

BEA MessageQ Programmer’s Guide



Monitoring and Controlling Link Status

Figure5-2 Requesting Cross-Group I nformation

LIST_ALL_CONNECTIONS|—>

LIST_ALL_CONNECTIONSIG—

LIST_ALL_ENTRIES'—»

CONNECT_SERVER

Application

]
User —'|
]

LIST_ALL_ENTRIE

LIST_ALL_GROUPS'—»
<—| L|ST_ALL_GR0UP5|<7

ZK8963AGE

To obtain alist of all groups defined on the message queuing bus, send a

LI ST_ALL_GROUPS message to the Connect Server. To obtain alist of all cross-group
connections for the message bus or alist of al cross-group entries, send a

LI ST_ALL_CONNECTI ONS messageto the Connect Server. To obtain alist of queuesin
agroup, send alLl ST_ALL_ENTRI ES message.

The reply to these requests is a variable-length message with the same type and class
astherequest. To read theinformation returned, the application uses the message size
parameter returned by the pams_get_msg function and dividesit by the byte size of the
data object requested to determine the number of data entries returned. The byte size
of these entriesis described in the reference description of each message.

Obtain Notification of Cross-Group Links Established and
Lost

An application can also use Connect Server messages to receive notification of
cross-group links connected and disconnected in its own group. To obtain information
on the status of cross-group links, use the following message-based services:

m ENABLE NOTI FY—Request message to request notification of link changes.

m LI NK_COVPLETE—Notification message to indicate that the cross-group link was
created.

BEA MessageQ Programmer’s Guide 5-7



5 Using Message-Based Services

m LI NK_LOST—Notification message to indicate that the cross-group link was lost.

m DI SABLE_NOTI FY—Request message to request disabling of link change
notification.

Figure5-3 Requesting Cross-Group Link Status

ENABLE_NOTIFY |—>

<—| LINK_COMPLETE/LI NK_LOS‘I1— CONNECT_SERVER

DISABLE_NOTIFY'—D

User
Application

ZK8964AGE

Applications send aBNABLE_NOTI FY message to the Connect Server to receive
ongoing notification when new connections are made or lost. Registered application
receive a| NK_COVPLETE notification message when a new cross-group connection is
created. Applications receivet BNK_LOST message when a cross-group connection is
lost. To deregister from receiving further notification messages, the application send:
aDl SABLE_NOTI FY message to the Connect Server.

Note: To receive ongoing notification of queue attachments, we recommend the us
of the Queue Server messages, SUGENABLE _Q NOTI FY_REQ The
ENABLE_NOTI FY message should no longer be used to obtain queue
attachment information.

Controlling Cross-Group Links

In addition to obtaining information on cross-group links, the Connect Server
messages can be used to control cross-group connections through a feature called |
management. Applications use link management messages to explicitly control the
creation and deletion of cross-group links. Explicit control over remote links may be
required by an application to restrict network communication with a particular node or
to reduce network traffic.

TheLl NKMGT_REQrequest message enables the following control functions:

m Inquire—Allows querying of a group’s link state.

5-8 BEA MessageQ Programmer’s Guide



Monitoring and Controlling Link Status

m Enable—Re-enables a link’s address entries.

m Disable—Disables a link’s address entries.

m Connect—Re-enables a link’s address entries and connects to selected groups.
m Disconnect—Implicitly disables links and disconnects links to requested groups.

TheLl NKMGT_RESP response message notifies the requesting application if the request
was successful and supplies information about the cross-group connection. Link
management functions are also available through the System Manager utility on BEA
MessageQ for OpenVMS systems. Figure 5-4 is a graphical representation of the
functional relationship facilitated by NKMGT_REQandLl NKMGT_RESP:

Figure5-4 UsingLink Management

LINKMGT_REQ

LINKMGT_RESP¢———

User

Application CONNECT_SERVER

ZK8965AGE

Link management can also be event driven. For example, an application event can
trigger a link to another group, which enables message exchange.

Note: When using link management, automatic creation of cross-group connections
must be disabled with the generate connect ofti@@isable) in thexGROUP
section of the BEA MessageQ group initialization file to completely control
all cross-group links. For more information, refer to the Enabling Network
Connections in the Cross-Group Section topic in the BEA MessageQ
Installation and Configuration Guide for each platform.

Link Management Control Functions

The link management request message allows for the following control functions:
m Inquire—Allows querying of a group’s link state.

m Enable—Re-enables a link’s address entries.

BEA MessageQ Programmer’s Guide 5-9



5 Using Message-Based Services

m Disable—Disables a link’'s address entries.
m Connect—Re-enables a link’s address entries and connects to selected groups.

m Disconnect—Implicitly disables links and disconnects links to requested groups.

Inquire Function

5-10

The Inquire function of the link management request message allows querying of a
single group’s link state. To use the Inquire function, specify the group number of the
local or remote group for which you want to learn the link state. This function does nof
allow you to specify any selection parameters other than the group number. Becaus
you can only inquire about the link state of one group at a time, you cannot specify th
PSYM LI NKMGT_ALL_GROUPS symbol in the group_number field.

The Inquire function performs endian translation when the request is sent to a Conne
Server running on a system that uses a different byte order. Both the request and
response messages are encoded in the endian of the request originator.

Request M essage Format for the Inquire Function

Table 5-2 displays the Inquire function request message format:

Table 5-2 Inquire Function Request M essage Format

Field Required/ Setting
Optional
ver si on Required 10
user_tag Required User-specified code identifying the request.
function_code Required PSYM LI NKMGT_CMD_| NQUI RY
gr oup_nunber Required Group number to receive the action.

Valid values are 1 to 32000.

connect _type Optional PSYM LI NKMGT_ALL_TRANSPORTS
reconnect _ti ner Optional PSYM LI NKMGT_USE_PREVI QUS
wi ndow _si ze Optional PSYM LI NKMGT_USE_PREVI QUS
wi ndow_del ay Optional PSYM LI NKMGT_USE_PREVI QUS

BEA MessageQ Programmer’s Guide



Monitoring and Controlling Link Status

Table5-2 Inquire Function Request M essage For mat

Field Required/ Setting
Optional

transport _addr_| en Optiona 0

node_nane_| en Optional 0

Determining the Status of the Inquire Request

The statusfield of the LI NKMGT_RESP message contains a return code indicating the
outcome of the inquiry request. Refer to Table 5-3 for a description of each status
return and the corresponding user action.

Table 5-3 Inquire function statusreturns and user actions

PSYM_LINKMGT Description Outcome Description/User Action
Return Code
MSGCONTENT Invalid valuein Error One of thefield valuesin the inquiry request
reguest message message isinvalid. Check the syntax of the
request message against the list of valid values
and re-issue the corrected request message.
MSGFMT Unknown request Error Correct the syntax of the request message. The
version or function version field of the must contain the number
code 10. The function code field must contain the
symbol PSYM LI NKMGT_CMD_| NQUI RY.
NOGRCUP The selected group  Error Y ou requested thelink state for agroup that is

does not have a
Cross group entry

not defined inthe cross-group table. Thisgroup
has no cross-group links.

OPERATI ONFAI L The command was  Error Theinquire function failed due to a system
unable to be resource problem.
successfully m  Check the network connection to the target
completed group to determine if the network link is

up.
m  Check the Connect Server to determineif it
isrunning out of virtual memory.

m  Check thelog fileto seeif the cause of the
error has been logged.

BEA MessageQ Programmer’s Guide 5-11



5 Using Message-Based Services

Table 5-3 Inquire function statusreturnsand user actions

PSYM_LINKMGT Description Outcome Description/User Action

Return Code

SUCCESS The operation Success Refer to the description of the link
successfully management response message below for a
completed description of the data returned.

Response M essage Format for Successful I nquire Requests

If the Inquire function is successful, the response message returnsthe status of both the
incoming and outgoing cross-group linksinthein_link_stateand out_link_statefields.
These fields specify the status of the link using the following symbols:

m PSYM LI NKMGT_CONNECTED—the incoming/outgoing cross-group link for the
selected group is connected.

m PSYM LI NKMGT_NOCN—the incoming/outgoing cross-group link for the selected
group is not connected.

m PSYM LI NKMGT_DI SABLE—the incoming/outgoing cross-group link for the
selected group is disabled.

If the link status for the group BSYM LI NKMGT_CONNECTED, the response message
contains the following information:

Field Description

ver si on 10

user_tag User-specified code from the request message.
St atus PSYM LI NKMGT_SUCCESS

gr oup_nunber Group number that receives the action.
in_link state PSYM LI NKMGT_CONNECTED

out _link _state PSYM LI NKMGT_CONNECTED

connect _type Transport that message is connected over:

PSYM LI NKMGT_TCPI P.

5-12  BEA MessageQ Programmer’s Guide



Monitoring and Controlling Link Status

Field Description

platform.id Connected platform ID (PSYM_PLATFORM xxXxX).
reconnect _time Reconnect timer value for this group.

wi ndow_si ze Window size value negotiated for this group.

wi ndow_del ay Window delay value negotiated for this group.

transport_addr_I en Length of the transport_addr string.

transport _addr ASCII representation of the TCP/IP port number.
node_nane_| en Length of the node_name string.
node_nane Name of the node thislink is connected to.

Enable Function

The Enable function of the link management request message re-enables a link’s
address entries if they have been disabled. All addresses in the cross-group connection
table that match the selection criteria specified in the request message (for example,
group number, connect type, node hame, and transport address) will be enabled. All
other address entries for the group or groups selected will be disabled. The Enable
function will still complete if the link is already connected. The effects will not be
visible until the existing link is lost.

The Enable function allows a link to occur only with the selected addresses for a group.
If the group has a reconnection timer, the timer will be set to cause the connection to
be attempted after the specified time and connections are not attempted immediately.
Incoming connections are then allowed to occur.

m The Enable function offers the following selection options:

m If the group_number field is set RSYM LI NKMGT_ALL_GROUPS, then the node
name and transport address cannot be specified.

m If a specific group number is specified aP@ivM LI NKMGT_ALL_TRANSPORTS is
specified, then the node name and transport address cannot be specified.

m On OpenVMS systems, if an entry that matches the selection criteria is not
found, one will be created providing the group exists. On UNIX and Windows

BEA MessageQ Programmer’s Guide 5-13



5 Using Message-Based Services

NT systems, the Enable function only enables existing address entries. It does
not modify connection parameters or add new address entries.

m  On OpenVMS systems, if the window or reconnect timer information is
supplied, the specified values overwrite the existing information of the select
entries. On UNIX and Windows NT systems, the Enable function does not
modify connection parameters.

Note: Thesymbol PSYM LI NKMGT_ALL_TRANSPORTS is new to the LI NK_MGT
message API for BEA MessageQ Version 4.0. On OpenVMS systems, the
Enable function requires that the requesting process have either OPER or the
DM OPERATOR rights identifier.

Request M essage Format for the Enable Function

Table 5-4 displays the Enable function message format:

Table 5-4 Enable function message format

Field Required/  Setting
Optional
ver si on Required 10
user_tag Required User-specified code identifying the request.
function_code Required PSYM LI NKMGT_CMD_ENABLE
gr oup_nunber Required Group number to receive the action. Valid values

are 1 to 32000. Or, use the

PSYM LI NKMGT_ALL_GROUPS symbol to enable
al known links for groups with the connect_type
requested.

connect _type Required Select the following transport type:
PSYM LI NKMGT_TCPI P

reconnect_ti mer  Optiona Timeit takesfor the COM Server or Group Control
Process (GCP) to reconnect to a communications
link. Enter the number of seconds or the following
values:
PSYM LI NKMGT_NO_TI MER
PSYM LI NKMGT_USE_PREVI OUS

5-14  BEA MessageQ Programmer’s Guide



Monitoring and Controlling Link Status

Table 5-4 Enable function message for mat

Field Required/  Setting
Optional
wi ndow_si ze Optional Size of transmission window (cross-group protocol
Version 3.0 or higher).
wi ndow_del ay Optional Transmission window delay in seconds
(cross-group protocol Version 3.0 or higher).
transport _addr Optional Transport address string 16 bytesin length;
the TCP/IP port ID
transport _addr_  Optional Length of transport address. Valid valuesare0to 16
I en bytes. Zero specifies the use of the previous setting.
node_namne Optional ASCI|I text of node name. The length is determined
by node_nane_| en up to 255 characters.
node_nane_| en Optional Length of the node name string. Zero specifies the

use of the previous known vaue.

Determining the Status of the Enable Request

The statusfield of the LI NKMGT_RESP message contains a return code indicating the
outcome of the Enablerequest. See Table 5-5 for adescription of each statusreturn and
the corresponding user action.

Table 5-5 Enable function status returnsand user actions

PSYM_LINKMGT Description Outcome Description/User Action

Return Code

ALREADYUP Thelink isalready active  Warning The Enable function completed
athough the link entries were
aready available.

MSGCONTENT Invalid vaue in request Error One of thefield valuesin the

message

enable request messageisinvalid.
Check the syntax of the request
message against the list of valid
values and re-issue the corrected

request message.

BEA MessageQ Programmer’s Guide 5-15



5 Using Message-Based Services

Table 5-5 Enable function statusreturns and user actions

PSYM_LINKMGT Description Outcome Description/User Action
Return Code
VBGFMT Unknown request version  Error Correct the syntax of the request
or function code message. The version field of the
must contain the number 10. The
function code field must contain
the symbol
PSYM LI NKMGT_CMD_ENABLE.
NOGROUP The selected group does Error No cross-group entries can be
not have a cross group enabled becauseyou requested the
entry enable function for agroup that is
not defined in the cross-group
table.
NOTRANSPORT The selected group does Error No cross-group entries can be
not have any cross-group enabled becauseyou requested the
entries with specified enable function for a group or
transport groups that does not have a
Cross-group connection entry that
uses the specified transport.
OPERATI ONFAI L Thecommandwasunable Error Theenablefunction failed dueto a
to be successfully system resource problem.
completed m  Check the Connect Server to
determineif it is running out
of virtual memory.

m  Check thelog file to seeif the
cause of the error has been
logged.

SUCCESS The operation Success Refer to the description of thelink
successfully completed. management response message
below for a description of the data
returned.
Response M essage For mat for Successful Enable Requests
If the Enable function is successful, the response message returns the information
shown in the following table:
5-16 BEA MessageQ Programmer’s Guide



Monitoring and Controlling Link Status

Disable Function

Field Description

ver sion 10

user _t ag User-specified code from the request message.
st at us PAMVS__ SUCCESS

group_nunber

Group number or numbers to receive the action.

in_link _state

PSYM LI NKMGT_ENABLED

out link_state

PSYM LI NKMGT_ENABLED

connect _type

Transport that message is connected over:
PSYM LI NKMST_TCPI P.

platform.id

Connected platform ID (PSYM_PLATFORM xxXxX).

reconnect time

Reconnect timer value for this group.

wi ndow_si ze

Window size value negotiated for this group.

wi ndow_del ay

Window delay value negotiated for this group.

transport _addr _|en

Length of the transport_addr string.

transport _addr

ASCII representation of either the TCP/IP port number.

node_nane_| en

Length of the node_name string.

node_nane

Name of the node this link is connected to.

The Disable function of the link management request message disables a link’s address
entries if they have been enabled. This prevents a link from occurring with the group’s
selected addresses. Connection attempts to and from the selected addresses are
prevented.

All addresses in the group address table that match the selection criteria of the message
(for example, group ID, connect type, hode name, and transport address) will be
disabled. All other address entries for the groups selected will not be affected. If no
entry matches the group_number field, tiReM LI NKMGT_NOGROUP is returned.

BEA MessageQ Programmer’s Guide 5-17



5 Using Message-Based Services

5-18

The Disable function takes matching cross-group entries out of the search list for

connect processing.

Request M essage Format for the Disable Function

Table 5-6 displays the Disable function message format:

Table 5-6 Disable Function M essage For mat

Field Required/ Setting
Optional

ver si on Required 10

user_tag Required User-specified code identifying the request.

function_code Required PSYM LI NKMGT_CMD_DI SABLE

gr oup_nunber Required Group number to receive the action. Valid values
are 1to 32000. The
PSYM LI NKMGT_ALL_GROUPS symbol
indicates all known links for this group.

connect _type Required Select the following transport type:
PSYM LI NKMGT_TCPI P

reconnect _ti mer  Optiona PSYM LI NKMGT_USE_PREVI QUS

wi ndow_si ze Optional PSYM LI NKMGT_USE_PREVI QUS

wi ndow_del ay Optional PSYM LI NKMGT_USE_PREVI QUS

transport _addr Optional Transport address string 16 bytes in length;
the TCP/IP port ID

transport_addr_  Optiona Length of transport address. Valid values are 0 to

Il en 16 bytes. Zero indicates to use the previous
setting.

node_namne Optional ASCII text of node name. The lengthis
determined by node_name_len up to 255
characters.

node_namne_| en Optional Length of the node name string. Zero indicates to

use the previous known value.

BEA MessageQ Programmer’s Guide



Monitoring and Controlling Link Status

Determining the Status of the Disable Request

The statusfield of the LI NKMGT_RESP message contains a return code indicating the
outcome of the Disable request. See Table 5-7 for a description of each status return
and the corresponding user action.

Table 5-7 Disable Function Satus Return and User Action

PSYM_LINKMGT Description Outcome Description/User Action

Return Code

MSGCONTENT Invalid valuein Error One of the field valuesin the disabl e request
request message message isinvalid. Check the syntax of the

request message against the list of valid values
and re-issue the corrected request message.

MSGFMT Unknown request Error Correct the syntax of the request message. The
version or function version field of the must contain the number 10.
code The function codefield must contain the symbol

PSYM LI NKMGT_CMD_DI SABLE.

NOGROUP The selected group Error No cross-group entries can be disabled because
does not have across you requested the disable function for a group
group entry that is not defined in the cross-group table.

NOTRANSPORT The selected group Error No cross-group entries can be disabled because
does not have any you requested the disable function for agroup or
Cross group entries groups that does not have a cross-group
with specified connection entry that uses the specified
transport transport.

OPERATI ONFAI L The command was Error The disable function failed due to a system
unable to be resource problem.
successfully m  Check the Connect Server to determine if it
completed is running out of virtual memory.

m  Check thelog file to seeif the cause of the
error has been logged.

SUCCESS The operation Success Refer to the description of the link management
successfully response message below for adescription of the
completed. data returned.

Response Message Format for Successful Disable Requests

BEA MessageQ Programmer’s Guide 5-19



5 Using Message-Based Services

Conned Function

5-20

If the Disable function completes successfully, the response message contains the

following information:

Field Description

ver si on 10

user_tag User-specified code from the request message.
status PSYM LI NKMGT_SUCCESS

group_nunber

Group number that receives the action.

in_link _state

PSYM_LI NKMGT_DI SABLED

out _link _state

PSYM_LI NKMGT_DI SABLED

connect _type

Transport that message is connected over:
PSYM LI NKMGT_TCPI P.

platformid

Connected platform ID (PSYM_PLATFORM_xXxXxX).

reconnect _tinme

Reconnect timer value for this group.

wi ndow _si ze

Window size value negotiated for this group.

wi ndow_del ay

Window delay value negotiated for this group.

transport_addr _|en

Length of the transport_addr string.

transport_addr

ASCII representation of either the TCP/IP port number.

node_nane_| en

Length of the node_name string.

node_nane

Name of the node this link is connected to.

The Connect function of the link management request message re-enables a link’s
address entries if they have been disabled, and causes an immediate connect attemg
occur with the selected groups if not already connected. Incoming connections are the
allowed to occur. This function will still be able to complete even if the link is already
connected. The effects of the function will not be visible until the existing link is lost.

BEA MessageQ Programmer’s Guide



Monitoring and Controlling Link Status

All addressesin the group addresstabl e that match the sel ection criteria of the message
(for example, group ID, connect type, node hame, and transport address) will be
enabled, and all other address entries for the groups selected will be disabled. If a
matching entry is hot found, then one will be created, providing the group exists. If the
window or reconnect timer information is supplied, then those values will overwrite
the existing information of the selected entries.

If the group_number field is set to PSYM LI NKMGT_ALL_ GROUPS, then node name and
transport address cannot be specified. If a specific group number is specified, and
PSYM LI NKMGT_ALL_TRANSPORTS is specified, then node name and transport address
cannot be specified.

On OpenVM S systems, the Connect function requiresthat the requesting process have
either OPER or the DM@ OPERATOR rights identifier.

Request M essage Format for the Connect Function

Table 5-8 displays the Connect request function message format:

Table 5-8 Connect Request Function M essage Format

Field Required/ Setting
Optional
ver sion Required 10
user _t ag Required User-specified code identifying the request, if
supplied.
functi on_code Required PSYM LI NKMST_CVD_CONNECT
group_nunber Required Group number to receive the action. Valid

values are 1 to 32000. The
PSYM LI NKMST_ALL_GROUPS symbol
indicates al known links for this group.

connect_type Required Select the following transport type:
PSYM LI NKMST_TCPI P

reconnect _timer Optional Timeit takesfor the COM Server to reconnect
toacommunicationslink. Enter the number of
seconds or the following values:
PSYM LI NKMST_NO_TI MER
PSYM LI NKMST_USE_PREVI OUS

BEA MessageQ Programmer’s Guide 5-21



5 Using Message-Based Services

Table 5-8 Connect Request Function M essage For mat

Field Required/ Setting
Optional
w ndow_si ze Optional Size of transmission window (Cross-group

protocol Version 3.0 or higher).

wi ndow_del ay Optional Transmission window delay in seconds
(cross-group protocol Version 3.0 or higher).

transport _addr Optional Transport address string 16 bytes in length’
the TCP/IP port ID

transport_addr _ Optional Length of transport address. Valid values are 0

Il en to 16 bytes. Zero specifies the use of the

previous setting.

node_nane Optional ASCII text of node name. The length is
determined byhnode_name_| en up to 255
characters.

node_namne_| en Optional Length of the node name string. Zero specifies

the use of the previous known value.

Deter mining the Status of the Connect Request

The status field of the LI NKMGT_RESP message contains a return code indicating the
outcome of the Connect request. See Table 5-9 for a description of each status return
and the corresponding user action.

Table 5-9 Connect function statusreturns and user actions

PSYM_LINKMGT Description Outcome Description/User Action

Return Code

ALREADYUP The link is already =~ Warning The Connect function completed although the
active link entries were already available.

VBGCONTENT Invalid value in Error One of the field values in the connect request
request message message is invalid. Check the syntax of the

request message against the list of valid values
and re-issue the corrected request message.

5-22  BEA MessageQ Programmer’s Guide



Monitoring and Controlling Link Status

Table 5-9 Connect function statusreturnsand user actions

PSYM_LINKMGT Description Outcome Description/User Action

Return Code

MSGFMT Unknown request Error Correct the syntax of the request message. The
version or function version field of the must contain the number 10.
code The function codefield must contain the symbol

PSYM LI NKMST_CVD_CONNECT.

NOGROUP The selected group Error No cross-group links can be connected because
does not have across you requested the connect function for a group
group entry that is not defined in the cross-group table.

NOTRANSPORT The selected group Error No cross-group links can be connected because
does not have any you reguested the connect function for agroup or
Cross group entries groups that does not have a cross-group
with specified connection entry using the specified transport.
transport

OPERATI ONFAI L The command was Error The connect function failed due to a system
unable to be resource problem.
successfully m  Check the Connect Server to determine if it
completed is running out of virtual memory.

m  Check thelog file to seeif the cause of the
error has been logged.

SUCCESS The operation Success Refer to the description of the link management

successfully
compl eted.

response message below for adescription of the
data returned.

Response M essage Format for Successful Connect Requests

If the Connect request is successful, the response message contains the following

information:

Field Description

ver sion 10

user _tag User-specified code from the request message.
status PSYM LI NKMGT_SUCCESS

group_nunber

Group number that receives the action.

BEA MessageQ Programmer’s Guide 5-23



5 Using Message-Based Services

5-24

Field Description

in_link state PSYM LI NKMGT _CONNECTED

out link_state PSYM LI NKMGT_CONNECTED

connect _type Transport that message is connected over:
PSYM LI NKMGT_TCPI P.

platformid Connected platform ID (PSYM _PLATFORM xxxx).

reconnect _tine Reconnect timer value for this group.

wi ndow _si ze Window size value negotiated for this group.

wi ndow _del ay Window delay value negotiated for this group.

transport_addr_len  Length of the transport_addr string.

transport_addr ASCI| representation of either the TCP/IP port number.

node_nane_l en Length of the node_name string.

node_nane Name of the node thislink is connected to.

Disconnect Function

The Disconnect function of the link management request message requests implicit
disables of links and disconnects any linksto the requested group. All addressesin the
group address tablethat match the sel ection criteria of the message (for example, group
ID, connect type, node name, and transport address) will be disconnected. All other
address entries for the groups selected will not be affected. If no entry matches the
group_number field, then PSYM LI NKMGT_NOGROUP is returned. On OpenVM S
systems, the Disconnect function requiresthat the requesting process have either OPER
or the DMQBOPERATCR rightsidentifier.

Request M essage Format for the Disconnect Function

Table 5-10 displays the Disconnect function message format.

Table 5-10 Disconnect Function M essage Format

Field Required/  Setting
Optional
ver si on Required 10
user_tag Required User-specified code identifying the request.

BEA MessageQ Programmer’s Guide



Monitoring and Controlling Link Status

Table 5-10 Disconnect Function M essage For mat

Field Required/  Setting

Optional
functi on_code Required PSYM LI NKMGT_CMD_DI SCONNECT
group_nunber Required Group number to receive the action. Valid values

are 1to 32000. The
PSYM LI NKMST_ALL_GROUPS symbol means
disconnect al known links for this group.

connect_type Required Select the following transport type:
PSYM LI NKMST_TCPI P

reconnect _ti nmer Optional PSYM LI NKMST_USE_PREVI QUS

wi ndow_si ze Optional PSYM LI NKMST_USE_PREVI QUS

wi ndow_del ay Optional PSYM LI NKMSGT_USE_PREVI QUS

transport _addr Optional Transport address string 16 bytesin length;
the TCP/IP port ID

transport_addr _ Optional Length of transport address. Valid valuesare 0 to

I en 16 bytes. Zero specifies the use of the previous
setting.

node_namne Optional ASCII text of node name. Thelengthis
determined by node_nane_| en up to 255
characters.

node_namne_| en Optional Length of the node name string. Zero specifiesthe

use of the previous known vaue.

Determining the Status of the Disconnect Request

The statusfield of the LI NKMGT_RESP message contains a return code indicating the
outcome of the Disconnect request. Refer to Table 5-11 for adescription of each status
return and the corresponding user action.

BEA MessageQ Programmer’s Guide 5-25



5 Using Message-Based Services

Table5-11 Disconnect function statusreturns and user actions

PSYM_LINKMGT Description

Outcome Description/User Action

Return Code
VBGCONTENT Invalid valuein Error One of thefield vauesin the disconnect request
reguest message message isinvalid. Check the syntax of the
request message againgt the list of vaid values
and re-issue the corrected request message.
VBGFMT Unknown request Error Correct the syntax of the request message. The
version or function version field must contain the number 10. The
code function code field must contain the symbol
PSYM LI NKMGT_CMD_DI SCONNECT.
NOGROUP The selected group Error No cross-group connections can be disconnected
does not have a because you requested the disconnect function
cross-group entry for agroup that is not defined in the cross-group
table.
NOTRANSPORT The selected group Error No cross-group links can be disconnected
does not have any because you requested the disconnect function
cross-group entries for agroup or groups that does not have a
with specified Cross-group connection entry that uses the
transport specified transport.
OPERATI ONFAI L The command was Error The disconnect function failed due to a system
unable to be resource problem.
successfully m  Check the Connect Server to determine if it
completed is running out of virtual memory.
m  Check thelog file to seeif the cause of the
error has been logged.
SUCCESS The operation Success Refer to the description of the link management
successfully response message below for a description of the
completed. data returned.

5-26  BEA MessageQ Programmer’s Guide

Response M essage For mat for Successful Disconnect Functions

If the Disconnect function is successful, the response message returns the following
information:



Monitoring and Controlling Link Status

Field Description

ver sion 10

user _t ag User-specified code from the request message.

st at us PSYM LI NKMST_SUCCESS

group_nunber Group number that receives the action.

in_link state PSYM LI NKMGT_DI SABLED

out _link state PSYM LI NKMST_DI SABLED

connect _type Transport that message is connected over:
PSYM LI NKMST_TCPI P.

platform.id Connected platform ID (PSYM_PLATFORM xxXxX).

reconnect _tinme Reconnect timer value for this group.

wi ndow_si ze Window size value negotiated for this group.

wi ndow_del ay Window delay value negotiated for this group.

transport_addr_| en Length of thet r ansport _addr string.

transport _addr ASCII representation of either the TCP/IP port number.
node_nane_| en Length of the node_nane string.
node_nane Name of the node thislink is connected to.

Link Management Design Considerations

Table 5-12 listsimportant design considerations for applications using link
management.

BEA MessageQ Programmer’s Guide 5-27



5 Using Message-Based Services

5-28

Table5-12 Link Management Design Condsider ations

Feature

Description

Failover Node Table
Disabled

When an application issues a LI NKMGT_REQrequest, the
Connect Server disables the failover node table defined in
the group initiaization file. Disabling the failover node
table ensures the application complete control over the
attributes of the link request.

Additional Group
Connections Disabled

When the application issues a Ll NKMGT_REQrequest to
disconnect alink, the Connect Server disables further
connections to the group. Disabling connections ensures
that no additional links to the group will occur until the
application issues another LI NKMGT_REQrequest.

Connect Requests
Verified

When aconnect request is made for a single group, the
XGROUP_VERI FY tableusestheinformation supplied in the
message to determine whether to accept or reject the
request for a connection. Cross-group verification only
works on incoming requests. The data structure for
cross-group verification is overwritten by the information
in the link management connect or disconnect message.

Connect and Disconnect
Requests
Acknowledged

When the Connect Server receives aconnect message after
alink is already successfully connected, the Connect
Server regjects the second connect message. When the
Connect Server receives a disconnect message after alink
is aready successfully disconnected, the Connect Server
acknow! edges the second disconnect message with a
successful return message.

Restrictions on Loca
and Remote Requests

The Connect Server will only accept link control requests
fromalocal application. However, the Connect Server will
accept link status inquiries from remote as well as local
applications.

Privileges Required

Application link control requests on the OpenVMS system
requirethat the application have VM S OPER privilege or be
granted the DMQBOPERATOR rights identifier.

BEA MessageQ Programmer’s Guide



Learning the Current Status of Queues

Learning the Current Status of Queues

This section describes how applications can use Queue Server message-based services
to obtain statusinformation on al active queuesin a particular group or to obtain
notification of queue status changes. The list of active queues displays al attached
permanent and temporary queues.

Listing Attached Queues in a Group

The Queue Server process can provide applications with alist of al attached queues
for aselected group. Thisinformation is available for local and remote groups and
includes alisting of both permanent and temporary queues. To request this list, the

application program sends a message of type LI ST_ALL_Q REQto the Queue Server
process.

To learn the status of all queues in a selected group, an application exchanges the
following messages with the Queue Server:

m LIST _ALL_Q REQ—Request message to request the status of all queues.

m LI ST _ALL_Q RESP—Response message to provide a list of all queues and their
status.

Figure5-5 Listing All Queues

LIST_ALL_Q_REQ

<—|LIST_ALL_Q_RESP|<—

User

Application QUEUE_SERVER

ZK8970AGE

The application receives a response message from the Queue Server of type

LI ST_ALL_Q RESP providing a list of all attached queues. Because a

LI ST_ALL_Q RESP message may contain a long list of queue names, the
application must allocate a sufficient buffer size to store the information returned.

BEA MessageQ Programmer’s Guide 5-29



5 Using Message-Based Services

Receiving Attachment Notifications

5-30

The Queue Server process can notify an application of all attached queues and

subsequent queue attachments and detachments for its own group. An application
registersfor this service by sending a message of type ENABLE_Q NOTI FY_REQto the
group’s Queue Server process. The Queue Server responds with a message of type
ENABLE_Q NOTI FY_RESP, indicating the status of the registration request.

To learn the status of all queues and receive ongoing notification of new queue
attachments and detachments, an application exchanges the following messages w
the Queue Server:

m ENABLE Q NOTI FY_REQ—Request message to request the current status of all
gueues with notification of future queue status changes.

m ENABLE Q NOTI FY_RESP—Response message to provide the current status of
all queues and confirmation that queue status changes will be reported.

m Q UPDATE—Notification message to provide information on newly attached and
detached queues in the selected group.

m DI SABLE_Q NOTI FY_REQ—Request message to request that notification of
gueue status changes be discontinued.

m DI SABLE_Q NOTI FY_RESP—Response message to indicate that notification of
gueue status changes has been successfully disabled.

Figure5-6 Listing Available Queues

| ENABLE_Q_NOTIFY_REQ l—'

I ENABLE_Q_NOTIFY_RESP|<—

Q_UPDATE
DISABLE_Q_NOTIFY_REQ|—’

I DISABLE_Q_NOTIFY_RESP|<—

A

User
Appliestion

QUEUE_SERVER

v

ZK-8971A-GE

BEA MessageQ Programmer’s Guide



Managing Message Recovery Files

The registration request places the sender’s response queue number in the list of
applications to receive notification of new attachments and detachments. Notifications
are sent using a message of tgpePDATE. The application can cancel the notification
registration by sending a message of tpp8ABLE_Q NOTI FY_REQ. The Queue

Server responds with a reply of typeSABLE_Q NOTI FY_RESP indicating the status

of the registration cancellation request.

Managing Message Recovery Files

BEA MessageQ message-based services are used with the MRS Server to maintain
files for recoverable messaging and to turn MRS journaling capability on or off.
Message-based services for performing these functions are available on OpenVMS
systems only. The functions are also available through the BEA MessageQ Manager
Utility on OpenVMS systems. For complete information on how to use the BEA
MessageQ message recovery system, see the Sending Recoverable Messages topic.

BEA MessageQ uses the following four BEA MessageQ files for MRS message-based
services:

Store and forward file (SAF) Messages designated for recovery on the sender

system.

Destination queue file (DQF) Messages designated for recovery on the receiver
system.

Dead letter journal (DLJ) Undelivered messages not designated for recovery by

BEA MessageQ. These messages can be delivered
later from the DLJ by an application program.

Postconfirmation journal  Successfully delivered recoverable messages which
(PCJ) form an audit trail of messaging events.

BEA MessageQ Programmer’s Guide 5-31



5 Using Message-Based Services

Opening, Closing, and Failing Over SAF and DQF Files

5-32

As part of message recovery on OpenVMS systems, the MRS Server opensa SAF or
DQF file when a recoverable message is sent to the target queue. The following BEA
MessageQ MRS message-based services are used to open, close, or rename message
recovery files on Open VMS systems:

m MRS_SAF_SET—Request message to request the MRS Server to open, close, or
rename the SAF file.

m MRS_SAF_SET_REP—Response message to indicate the status of the request.

m MRS_DQF_SET—Request message to request the MRS Server to open, close, or
rename the file.

m MRS_DQF_SET_REP—Response message to indicate the status of the request.

Figure 5-7, MRS Server Message Flow, describes how to open, close, or rename
message recovery files on OpenVMS systems:

Figure5-7 MRS Server Message Flow

<—| MRS_SAF_SET_RE

MRS_DQF_SE

<—|MRS_DQF_SET_REP

H

User
Application

MRS_SERVER

|

T

ZK8966AGE

The VRS_DQF_SET message can be used to explicitly control the opening and closing
of a DQF file. For example, an OpenVMS application can useRReDQF_SET

message to open a DQF file created at runtime in order to adjust its size before it begi
storing recoverable messages. WRB_SAF_SET message performs the same function
for the SAF file.

BEA MessageQ Programmer’s Guide



Managing Message Recovery Files

The failover option of the MRS_DQF_SET message renames a DQF file, associating it
with anew target queue that does not have a DQF file. The failover operation renames
the destination queue file, and the messages in the store and forward (SAF) files
directed to the origina target are forwarded to the new target queue. Y ou can use the
MRS_SAF_SET message to fail over the SAF file.

The MRS_SAF_SET_REP and the MRS_DQF_SET_REP messages are responses to a
request to open, close, or fail over an SAF or DQF file. The response message provides
the status of the request.

Opening and Closing Auxiliary Journal Files

The dead letter journal (DLJ) file cannot be open simultaneously for read and write
operations. For thisreason, if an application hasthetask of delivering messageswritten
tothe DLJfile, it must closethe current file beforeit can begin delivering the messages
collected in it. The application must also open anew DL Jfile to continue collecting
undeliverable messages while it delivers the messages.

To open, close, or rename message recovery files on OpenVMS systems, an
application exchanges the following messages with the MRS Server:

m MRS_SET_DLJ—Request message to request that the current DLJ file be closed
and a new one opened.

m MRS_SET_DLJ_REP—Response message to indicate the status of the request.

m MS_SET_PCJ—Request message to request that the current PCJ be closed and a
new one opened.

m MRS_SET_PCJ_REP—Response message to indicate the status of the request.

Figure 5-8 illustrates the message exchange between the application and the
MRS Server.

BEA MessageQ Programmer’s Guide 5-33



5 Using Message-Based Services

Figure5-8 MRS Server Message Flow

MRS_SET_DLJ

<—| MRS_SET_DLJ_REH

MRS_SET_PCJ

<—|MRS_SET_PCJ_REP|<—

User
Application

MRS_SERVER

|

ZK8967AGE

The MRS_SET_DLJ message requeststhe MRS Server to close the current DLJfileand
open anew one. The response message MRS_SET_DLJ_REP returns the status of the
operation. Thefile specification for the newly created DL Jfileisreturned if thefileis
successfully opened.

Aswith the DL Jfile, the postconfirmation journal (PCJ) file cannot be open
simultaneously for read and write operations. For thisreason, if an application hasthe
task of reading the PCJ file to write areport of successful messaging transactions, it
must first close the current file. The application must also open anew PCJfile to
continue collecting successfully delivered recoverable messages.

An MRS_SET_PCJ message requests the MRS Server to close the current PCJfile and
open anew one. An MRS_SET_PCJ_REP message is returned to the requestor and
includesthe status of the operation and the file specification if thefilewas successfully
opened.

Note: In contrast to the MRS messages for opening and closing the SAF and DQF

files, the DLJand PCJ auxiliary recovery journas can be opened and closed
in asingle operation.

Controlling Journaling to the PCJ File

Y ou can use the messagesin Figure 5-9 to disablejournaling when replacingaPCJfile
and then reenable journaling:

® MRS_JRN DI SABLE—Request message to disable journaling to the PCJ file.

5-34  BEA MessageQ Programmer’s Guide



Managing Message Recovery Files

m MRS_JRN DI SABLE_REP—Response message to indicate the status of the
request.

m MRS_JRN _ENABLE—Request message to enable journaling to the PCJ file.

m MRS_JRN _ENABLE REP—Response message to indicate the status of the request.

Figure5-9 Disabling Journaling

MRS_JRN_ENABLE|—>
+—— MRS_JRN_ENABLE_REPle————
|M RS_JRN_DISABLE'—P
<—|MRS_JRN_DISABLE_REP|<—

User
Application

MRS_SERVER

ZK8968AGE

Use thevRS_JRN DI SABLE message to disable journaling to the PCJ when you need
to close the PCJ and open a hew one.MHg JRN_DI SABLE_REP message returns the
status of the operation. Use thRS_JRN_ENABLE message to enable journaling after
you have opened a new PCJ file. MRS_JRN ENABLE_REP message returns the
status of the operation.

Transferring the Contents of a Destination Queue File

You use MRS Server messages to transfer the entire contents of a DQF file at once.
However, you can use Qtransfer Server messages to request that the contents of a DQF
file be transferred one message at a time into another DQF file.

Transferring the contents of one DQF to another queue supports a failover scheme
allowing an application on a node that is running to process messages from a DQF file
on a node that is not running. Using Qtransfer Server messages you can blend the
contents of two DQFs. Qtransfer Server messages are available on OpenVMS systems
only.

To transfer the contents of one DQF file to another, an application exchanges the
following messages with the Qtransfer Server:

BEA MessageQ Programmer’s Guide 5-35



5 Using Message-Based Services

5-36

m MRS_DQF_TRANSFER—Request message to request the transfer of the contents of
a DQF file to another.

m MRS_DQF_TRANSFER ACK—Notification message to acknowledge receipt of the
request.

m MRS_DQF_TRANSFER REP—Response message to indicate the final status of the
transfer.

Figure5-10 Qtransfer Server Message Flow

MRS_DQF_TRANSFER|—>
<—|MRS_DQF_TRANSFER_ACK|— QTRANSFER

<—|MRS_DQF_TRANSFER_REP|<—

User
Application

ZK8969AGE

The MRS_DQF_TRANSFER message requests the Qtransfer Server to open a DQF file
and send its contents one message at a time to another recoverable queue. By provid
a method for blending two recoverable queues, the Qtransfer Server provides a
convenient failover mechanism when application processing is conducted on multiple
nodes in a distributed processing network.

Using this failover method, when a node fails, Qtransfer Server messages can be us
to transfer messages from a recoverable queue on a node that has failed to a
recoverable queue on a node that is currently processing messages.

To acknowledge the receipt of BRS_DQF_TRANSFER message, the Qtransfer Server
sends amRS_DQF_TRANSFER_ACK message. When each message is successfully
stored in the target DQF file, it is deleted from the source DQF file.

When all messages have been successfully stored in the target DQF file, or if an err
has stopped the transfer, a message of 3eDQF_TRANSFER_REP is sent. The
MRS_DQF TRANSFER REP message indicates the completion status of a message of
type MRS_DQF_TRANSFER.

BEA MessageQ Programmer’s Guide



CHAPTER

6

Building and Testing
Applications

This chapter describes the following tasks:

Formatting and Converting Message Data

Writing Portable BEA MessageQ Applications
Compiling and Linking BEA MessageQ Applications
Using the BEA MessageQ Test Utility

Debugging BEA MessageQ Applications

Controlling Message Flow

BEA MessageQ Programmer’s Guide 6-1



6 Building and Testing Applications

Formatting and Converting Message Data

Computer systems from different manufacturers may format data and data structures
differently. When sending messages between computersin a multivendor
environment, the process of data mar shaling ensuresthat dataisinterpreted properly
between the sending and receiving systems.

The FML-based self-describing messaging feature in BEA MessageQ allows
applications to construct messages that contain information about how to interpret the
message content. Therefore, FML performs data marshaling to handle byte order and
data alignment differences between computer systems. See the Self-Describing

M essaging topic for more information.

Byte Order Conversion

6-2

Computer systems use two different methods to store a single integer value asa
longword. A longword, which represents 4 bytes, can be stored from highest to lowest
address order or from lowest to highest.

Theterm endian refersto the end of the longword that the computer begins reading
first. Some computers read the longword beginning with the lowest byte address, a
format called little endian. Other computersread thelongword starting with the highest
byte address, aformat called big endian.

When information is exchanged between computer systems that use different endian
formats, the format must be agreed upon by the two systems. Otherwise, the target
system will read the data and interpret the wrong integer value. The sender program
can convert the data by reversing the order of the bytes before the datais sent over the
network. Or thereceiver program can reverse the order of the bytesbeforeit interprets
the integer.

The convention for sending data between dissimilar endian machinesisto use network
byte order (big endian format) to pack datainto a message before sending it. The show
buffer argument of the pans_get _nsg function returns the endian format of the
system that originated the message. The endian field is applicable to an integer-only
format.

BEA MessageQ Programmer’s Guide



Formatting and Converting Message Data

One way to avoid having to perform endian conversion is to convert numbers into
character strings and to only use messages composed entirely of ASCI| text data.
Whilerequiring more buffer space, text-only messages are always completely portable
for reception on any system.

If you must format message data using humeric data types, you can use severa
conversion functions to convert the network byte order of the messages between
systems that use different endian formats. Many systems or C compilers provide the
nt ohl (), nt ohs(), ht onl (), and ht ons() functions. These functions convert numeric
datatypesto or from their host internal representation into a common standard format
(called network byte order) for message transmission.

If these functions are not available, a user function could be written to produce the
same results. Network byte order arranges the bytes with the most significant bits at
the lower addresses.

Alignment of Data Structures

In addition to converting data between different endian formats, BEA MessageQ
applications may also need to align message data structures to ensure that message
content is interpreted properly by the target system. Many RISC compilers
automatically perform data alignment during program compilation. When a program
is compiled, data el ements within a structure are aligned along natural boundaries by
data type such as byte, word, or longword.

Alignment causes data elements to shift position when space is added to aign the
elementsalong these boundaries. Aligning data hel ps programsto run more efficiently.
However, because elements are moved and space is added to the structure, alignment
changes the way in which the data structure must be read.

Developers can use one of the following methods to ensure that message data
structures are not changed by data alignment:

m  Suppress data alignment during compilation. Many compilers allow devel opers
to set a switch that enables and disables data alignment at compiletime.

m Develop the application to create a packed data format for standard messages. If
the application formats the data structure as a byte array, the packed data format
is preserved during compilation, even when using compilers that automatically
align data.

BEA MessageQ Programmer’s Guide 6-3



6 Building and Testing Applications

m Design the data structure so that the elementsin it are naturally aligned. Natural
alignment ensures that all longwords are on 4 byte boundaries, all words are on
2 byte boundaries, and so on.

See your system documentation for more information about data formatting on your
system.

Writing Portable BEA MessageQ
Applications

The best approach in developing BEA MessageQ applicationsis to use portable
programming techniquesthat allow the application to runin many different computing
environments. Writing portabl e applications reduces development and maintenance
costs as applications are reguired to run on systems from many vendors.

Thefollowing suggestions for developing BEA MessageQ applications simplify
porting applications to all industry-leading platforms:

m Avoid using nonportable BEA MessageQ features.

m  Some BEA MessageQ functions (such as the pans_get _nsga function) and
other features are not available on all platforms. The PAMS API reference
information lists which functions are not available on all platforms.

m  Specify al optional arguments in BEA MessageQ functions.

Only OpenVMSS systems allow applications to omit the trailing argumentsin a
function cdll if they are not required. All other BEA MessageQ implementations
reguire that each argument in aBEA MessageQ function be specified. Arguments that
are not required by the application should be specified by passing avalue of zero.

6-4 BEA MessageQ Programmer’s Guide



Compiling and Linking BEA MessageQ Applications

Compiling and Linking BEA MessageQ
Applications

Thistopic describes how to build your BEA MessageQ applications for UNIX,
Windows NT, and OpenVMS environments. The following sections describe:

Using BEA MessageQ Include Files

m Connecting to the BEA MessageQ Environment
m Compiling and Linking Applications

m Running a BEA MessageQ Application

m Testing Return Status

Using BEA MessageQ Include Files

To use BEA MessageQ API functions and other standard featuresin your application,
reference the BEA MessageQ include files at the beginning of your application
program. Table 6-1 describes the contents of each BEA MessageQ includefile. The
include files can be used with both the C and C++ programming languages.

Table 6-1 BEA MessageQ Include Files

File Name Comments Description

p_entry. h Entry point Declares the entry point for all BEA MessageQ API calls.
definitions

p_proces. h Process definitions  Defines the queue numbers symbolically to identify other

queues in the BEA MessageQ message queuing system.

p_group. h Group definitions  Defines the group numbers symbolically to identify other
groups in the BEA MessageQ message queuing system.

BEA MessageQ Programmer’s Guide 6-5



6 Building and Testing Applications

Table6-1 BEA MessageQ Include Files

File Name Comments Description
p_typecl.h Type and class Contains the symbolic names for all standard BEA MessageQ
definitions type and class definitions. On OpenVMS systems you can add

user-defined type and class codes to this file. On UNIX and
Windows NT systems you must create a separate include file
for user-defined type and class codes.

p_return.h Return code Contains the compile time symbols for BEA MessageQ return
definitions status codes.

p_synbol . h Global symbol Defines symbols used by BEA MessageQ to control features
definitions such as message selection and recoverable messaging.

p_nsg. h Message API Declares the data structures for all BEA MessageQ
definitions message-based services.

All implementations of BEA MessageQ software access the C language include files
in the same manner. Listing 6-1 shows the recommended method of specifying
portable #i ncl ude statementsin C.

Listing6-1 Recommended #include Statementsfor BEA M essageQ Applications

#i ncl ude <errno. h>
#i ncl ude <stdio. h>

/* Include PAVS-specific definition files. */
#include <p_entry. h> /* PAMS function type declarations */
#i ncl ude <p_proces. h> /* Known Queue nunber definitions. */
#i ncl ude <p_group. h> /* Known group nunber definitions. */
#i nclude <p_typecl.h> /* Ceneric typel/class definitions. */
#i nclude <p_return. h> /* PAMS func return status definitions*/
#i ncl ude <p_synbol . h> /* Generic PSEL/PDEL definitions. */
#i nclude <p_nsg. h> /* Message type decl arations */

Portable code requires a conditional compile (such as #i f / #endi f when
programming in C) around the include statements. For an example of how to
incorporate include filesinto your application, refer to the sample programs in the
examples directory of your BEA MessageQ mediakit.

6-6 BEA MessageQ Programmer’s Guide



Compiling and Linking BEA MessageQ Applications

To use BEA MessageQ functions and other standard features in an application
program, the program references the BEA MessageQ includefiles. Table 6-2 lists the
location of the standard BEA MessageQ includefilesfor the C programming language.

Table 6-2 Location of C Language Include Files

Platform L ocation

UNIX [ usr /i ncl ude directory
Windows NT directory selected during installation
OpenVMS DM USER:

BEA MessageQ for OpenVMS systems uses the portable include file names for the C
programming language. For other programming languages, BEA MessageQ uses
another set of names for the include files. The OpenVMS include files for all other
languages are contained in asingle library called DMQ TLB. The logical name
DMQBUSER points to the directory containing DVQ. TLB.

Include files on OpenVMS systems are available for several programming languages.
The include files begin with PAMS_XXX_where XxXis a 1- to 3-letter designation
identifying the programming language as follows:

m PAMB_XXX_ENTRY_POI NT
m PAMB_XXX_PROCESS

m PAMB_XXX_GROUP

m PAMB_ XXX TYPE CLASS

m PAMVS_XXX SYMBOL DEF

BEA MessageQ for OpenVMS systems uses two different include files for return code
symbols. Compile-time symbols are contained in the
PAMS_XXX_RETURN_STATUS_DEF file. Link-time symbols are contained in the

PAMS_XXX_RETURN_STATUS file. Include one of the following in your application
program:

m PAMS_ XXX RETURN STATUS DEF
m PAMS_ XXX RETURN STATUS

BEA MessageQ Programmer’s Guide 6-7



6 Building and Testing Applications

Programming Language Support

Table 6-3 shows the languages supported by BEA MessageQ products:

Table 6-3 Languages Supported By BEA M essageQ

Product Supported Languages

BEA MessageQ for UNIX C,C++
BEA MessageQ UNIX Client

BEA MessageQ for Windows NT C, C++, Visual Basic, Powerbuilder
BEA MessageQ Windows Client

BEA MessageQ for OpenVMS Ada, Basic, Bliss-32, C, C++, Cobol, Fortran,
BEA MessageQ OpenVMS Client Macro-32, PL/I, Pascal

BEA MessageQ MV S Client C, Cobol

Connecting to the BEA MessageQ Environment

6-8

Before running a program that uses BEA MessageQ, you must set the environment to
identify the message queuing bus and the message queuing group with which the
program will be associated.

For UNIX and Windows NT, BEA MessageQ uses the following environment
variables:

DMQ BUS | D Sets the bus I D for the application.

DMVQ_GROUP_I D Sets the group ID for the application.

To set environment variables that designate bus and group ID using csh syntax on
UNIX systems, enter the following commands:

# setenv DMQ BUS ID bus_id
# setenv DMQ GROUP_ID group_id

To set environment variables that designate bus and group ID using command line
syntax on Windows NT systems, enter the following commands:

BEA MessageQ Programmer’s Guide



Compiling and Linking BEA MessageQ Applications

set DMQ BUS ID bus_id
set DMQ GROUP_ID group_id

BEA MessageQ for OpenVM S enablesyou to tailor your run-time environment using
OpenVMS logical names. Y ou can use the command DMSET_LNM TABLE to place

the required logical name table into the user’s logical name search tree. This command
procedure requires two parameters: the bus ID and the group ID.

Enter the following command to execute this procedure:
$ @W_DMQ DI SK: [ DMXV50. EXE] DMBSET_LNM TABLE bus_id group_id

If the user frequently uses a particular bus and group, the invocation of the command
procedure can be added to the use®@3 N. coMfile. The system manager can define

the symbobMQ SET to simplify this command procedure. See Bi&A MessageQ
Configuration Guide for OpenVMS for more information.

Table 6-4 describes logical names that are useful for testing, monitoring, and
debugging operations. See BIEA MessageQ Configuration Guide for OpenVMSfor
a complete list of BEA MessageQ logical names.

Table 6-4 L ogical Names Used in Testing and Debuggung

L ogical Name

Description

DMQBDCL_ NUMBER Thislogical nameis abase 10 queue number that overridesthe queue number

submitted topans_attach_qg.

DMBEXI T_PURGE Thislogical name controlsthe purging of pending messageswhen theprogram

exits. When defined as NO, it disables the BEA MessageQ exit handler from
purging all primary and secondary queues attached to the process. Thisfeature
has no effect on pending recoverabl e messages because they are always
requeued when pans_at t ach_q iscalled to attach to the queue.

BEA MessageQ Programmer’s Guide 6-9



6 Building and Testing Applications

Table 6-4 Logical Names Used in Testing and Debuggung

L ogical Name

Description

DVQ$DEBUG

Some special features are incorporated into BEA MessageQ to aid in
debugging. The logical name DMQBDEBUG can be set to one of the following
states by using the DCL DEFI NE command:

m undefined—No special action.
m  NORMAL—No special action.

m  ERROR—Prints error messages to the local termina whenever an error
occursin acall to aBEA MessageQ function.

m  TRACE—Thisisasuperset of the ERROR state. When set it will print the
occurrence of any errors within BEA MessageQ. It will also print an
informationa message whenever a BEA MessageQ routine is entered.

m  ALL—Combines the functions of ERROR and TRACE.

DMQBHEADERS

Thislogicad name controls the printing of BEA M essageQ headers on the
SYS$OUTPUT device; for example, the terminal. When this logical name is
defined, BEA MessageQ header information is displayed when messages are
sent to or received from this process.

DMBTRACE_QUTPUT Thislogical name defines the location where trace information is logged.

Compiling and Linking Applications

This topic describes how to compile and link your BEA MessageQ application on
UNIX, Windows NT and OpenVMS systems. For BEA MessageQ V5.0, the default
compilation lines are as follows:

cc -1$BEADI Rinclude file.c -L$BEADIR/ Iib -1dnyg (direct call)
cc -1$BEADI Rinclude file.c -L$BEADIR/ lib -1 dnycl (client/server)

For use with FML 32, the compilation line is as follows:

cc -1$BEADIRinclude file.c -L$BEADIR/ lib -1fm 32 -1gp -1dnyg
(direct call)

cc -1$BEADIR/include file.c -L$BEADIR/ Iib -1fm 32 -1gp -Idngcl
(client/server)

$BEADI R/ | i b must be included in the exported environment variable LI BPATH on
AlX, SHLI B_PATHon HPUX, and LD LI BRARY_PATHon all other Unix platforms.

6-10 BEA MessageQ Programmer’s Guide



Compiling and Linking BEA MessageQ Applications

The following additional compilation flags and/or libraries are needed on the various
platforms:

HPUX
Compilation using the BEA MessageQ header files requires
-D_HPUX_SOURCE - Aa

SCO Open Server 5.0:
replace -1 dng with - Bdynami ¢ -1dng -1 socket
replace -1 dngcl with - Bdynam ¢ -1 dngcl -1 socket

SCO UnixWare
-1 gp (if used) needs- | cr ypt
-1 dmgcel needs -1 socket

Sequent

-l dmgycl needs -1socket -1nsl
NCR

-1 dmycl needs -1 socket -1 nsl
Solaris

-1 dmycl needs- | socket -1 nsl
The following sections describe:
m UNIX Makefile
= WindowsNT Makefile
m OpenVMS Build Procedure

UNIX Makefile

UNIX systems use a makefile to incorporate the commands for compiling and linking
application programs. Listing 6-2 shows a sample makefile for running a BEA
MessageQ for UNIX application. The sample makefile, with the client and server
programs, is included in the root directory of your BEA MessageQ for UNIX media
kit.

Listing 6-2 UNIX Makefile

# library to link against libdng.a in /usr/lib

BEA MessageQ Programmer’s Guide 6-11



6 Building and Testing Applications

LIBS = -ldnyg

# conpil er flags include debugging synbols, don't use prototypes
CFLAGS = -g

# build both the client and the server

all: s_client s_server
# client depends on s _client.o s_getopt.o

s client: s client.o s_getopt.o
cc $(CFLAGS) s client.o s_getopt.o $(LIBS) -0 s client

# server depends on s_server.o s_getopt.o

s_server: s_server.o s_getopt.o
cc $(CFLAGS) s _server.o s_getopt.o $(LIBS) -0 s_server

When building BEA MessageQ applications on the Compaqg Tru64 UNIX platform,
you must link your applications against the library | i bot s. a in addition to the BEA
MessageQ library. For example:

# cc nyapp.c -ldng -lots - nyapp

Windows NT Makefile

6-12

The BEA MessageQ for Windows NT API isimplemented in dynamic link libraries
(DLLSs). The directory containing the DLLs must be in your path when you run your
applications. All BEA MessageQ for Windows NT API functions are exported by
DMQ DLL and defined intheimport library DMQ. LI B. Other WindowsNT products that
can call DLLs can also call BEA MessageQ API functions.

BEA MessageQ for Windows NT systems provides full support for Windows NT
multithreading. Each thread in the BEA MessageQ process has an independent BEA
M essageQ context, which means aqueue that is attached in one thread isnot available
to another thread in the same process.

All threads must attach their own queues viathe pans_at t ach_q function. When a
program thread issues apams_exi t call, it does not affect queues attached by other
threads in the same process. Multiple threads in one application can communicate via
BEA MessageQ exactly as though they were in separate processes.

BEA MessageQ Programmer’s Guide



Compiling and Linking BEA MessageQ Applications

The example Windows NT makefile, x_nake. mak, providesagood starting point for
building your own makefiles. To link with BEA MessageQ for WindowsNT systems,
you need only include DVQ. LI B when you link. The following example shows a

sample makefile for running a BEA MessageQ for Windows NT application. Listing

6-3 makefileisincluded in the examples directory of your BEA MessageQ for
Windows NT mediakit.

Listing 6-3 Windows NT M akefile

#

# x_make. mak: Exanpl e makefile for MessageQ applicati ons.
# This makefile builds the "sinple client" and
# "sinple server" applications.

#

# execute this file with NVAKE as fol |l ows:

#

# NMAKE -f exanpl e. mak DMQ=dri ve:\dir\

#

# where "drive" is the drive where MessageQ is installed and

# "directory" is the directory where MessageQ is installed.
#

#

linclude <ntw n32. mak>

Bl N=.\

DLI B=$( DMQ)

SRC= $( DM

oBJ=.\

INCDIRS= /1 $(DVMQ
| _FILES= p_return.h p_entry.h p_synbol.h
ALL : $(BINs_ client.exe $(BI Ns_server.exe

$(BIN)s_client.exe : s_client.obj s_getopt.obj
$(1ink) $(conflags) \

-out:$(BIN)s_client.exe \
s_client.obj s_getopt.obj \
$(DLIB)dng.lib \

$(conl i bs)

$(BIN)s_server.exe : s_server.obj s_getopt.obj
$(1ink) $(conflags) \

-out: $(BIN)s_server. exe \
s_server.obj s_getopt.obj \
$(DLIB)dng.lib \

$(conl i bs)

BEA MessageQ Programmer’s Guide 6-13



Building and Testing Applications

s_server.obj : $(SRC) s_server.c $(1_FILES)
$(cc) $(cflags) $(cvars) $(SRCO s _server.c $(1NCD RS)

s client.obj : $(SROs client.c $(I_FILES)
$(cc) $(cflags) $(cvars) $(SROs client.c $(1NCD RS)

s_getopt.obj : $(SRC) s _getopt.c $(I_FILES)
$(cc) $(cflags) $(cvars) $(SRCO s _getopt.c $(1NCD RS)

OpenVMS Build Procedure

This topic describes how to compile and link BEA MessageQ applications on
OpenVMS systems. The BEA MessageQ for OpenVM S mediakit includes a sample
command procedure for compiling and linking BEA MessageQ applications. Listing

6-4 shows the sample build file included in the examples directory.

Listing 6-4 Example OpenVM S Build Procedure

P! ===========

$! St andar di zed exanpl es buil d procedure (V1.0-00)
$!

$! File: X _BU LD. CoM

$!

$! Par ans: none

P! ===========

$

$ ss$_badparam = 20

$ ss$ nopriv = 36

$ ss$_abort = 44

$ cc_al pha = "/stand=vaxc/ debug/ noopt/Ilis"

$ cc_al pha_strict = "/stand=rel axed/ debug/ noopt/Ii s"
$ cc_vax = "/stand=portabl e/ debug/ noopt/lis"
$w = "wite sys$output”

$

$

$ on warning then exit 4

$ on control _y then exit ’'ss$ abort’

$

$ a = f$edit(fPgetsyi ("ARCH NAME'), "UPCASE")

$if f$locate(" 'a ", "ALPHA") .le. f$length(" "a ")
$ then

$ sys_type = "Al pha"

$ al pha = "YES"

$ def _c_sw = cc_al pha + "/incl ude=dng$user:"

BEA MessageQ Programmer’s Guide



Compiling and Linking BEA MessageQ Applications

AAEB N PPN DPRRRORD PR RDOA D

el se
sys_type
al pha
def _c_sw
endi f

" VAX"
cc_vax + "/include=dng$user:"

ASK_C_SW
if " 'pl’" .egs. ""
t hen
inquire pl "Enter C conpile switches D' def_c_sw]"

if pl .eqs. "" then pl = def _c_sw
endi f
c_sw="""pl"
W
e Build Paranmeters ------- "
w " CC switches: "'c_sw"
w " System type: '’sys_type'"
W
call CC x_attnam
call CC x_attnum
call CC x_atttnp
call CC x_basic
call CC x_exit
call CC x_get
call CC x_getall
call CC x_getem
call CC x_getpri
call CC x_getsel
call CC x_getsho
call CC x_getw
call CC x_locate
** call CC x_putdlj
call CC x_putslf
call CC x_recovr
call CC x_sel ect
call CC x_shopnd
call CC x_ti mer
DONE:
W
w  "Fi ni shed buil ding MessageQ standard exanpl es”
exit

pl = programto conpile

BEA MessageQ Programmer’s Guide 6-15



6 Building and Testing Applications

CC:. subroutine
on warning then exit 4
on control _y then exit 'ss$ abort

w “Building "' PL..."

if f$search(" 'pl .obj") .nes. "" then delete/nolog 'pl .obj.*
if f$search(" "pl .lis") .nes. "" then delete/nolog 'pl’ .lis.*
if f$search("’ 'pl .exe") .nes. "" then delete/nolog 'pl .exe.*

f$search("’ 'pl . map") .nes. "" then delete/nolog ’'pl .nmap.*
if f$search("' 'pl’'.dia") .nes. "" then delete/nolog 'pl' .dia.*

cc’'c_sw ' pl’

if f$search("' 'pl'.obj") .nes
t hen

link 'pl, dng$lib: dng/ opt
exit
endsubrouti ne

R R R e R e R R R T R
=

BEA MessageQ for OpenVMS allows two kinds of application linking: linking with
the run-timelibrary (RTL) and linking with the object library. The BEA MessageQ
run-time libraries must be installed before linking applications.

Linking with the Run-Time Library

6-16

Therun-timelibrary (RTL) is the standard form of linking application modules with
the BEA MessageQ environment. The files required for linking with BEA MessageQ
are located in two areas. DMBLI B and DMBUSER. The DMJLI B area contains the
site-independent files and the DMQBUSER area contai ns the site-specific filesthat you or
your BEA MessageQ system manager customize.

Tolink BEA MessageQ applications, use the DMLI B: DMY OPT switchinyour linker
command line. Use the following command to link your application:

$ LI NK SAMPLE_C, DMX®LI B: DMY OPT

The optionsfile contains all the commands needed to connect to the current version of
the BEA MessageQ RTL. RTLs are OpenVMS run-time libraries that allow code
sharing between numerous simultaneous users of BEA MessageQ. Using RTL s saves
memory, disk space, and link time.

BEA MessageQ Programmer’s Guide



Compiling and Linking BEA MessageQ Applications

Linking with the Object Library

Y ou can link your BEA MessageQ program using the BEA MessageQ object library
instead of the RTL. Using this method, each BEA MessageQ program isbuilt with its
own copy of the BEA MessageQ procedures. Y ou can also link with the object library
and with partial run-time libraries for protected code and BEA MessageQ Script
Facility code.

To link with the object library, use the DM®LI B: DM@BOLB/ OPT switch in your linker
command line. Enter the following command to link your application:

$ LINK SAVMPLE_C, DMXLI B: DMBOLB/ OPT

Note that you may also need to include various language-specific run-time libraries or
object libraries depending upon how your OpenVMS system manager has installed
your layered languages.

Note: Use object library linking when you need an OpenV MS traceback.

Running a BEA MessageQ Application

Before running a program that uses BEA MessageQ, you must set the environment to
identify the message queuing bus and the message queuing group environment with
which the program will be associated. See the Connecting to the BEA MessageQ
Environment topic for information on how to set environment variabl es.

TorunaUNIX program in the background, enter the following command:

# nyprog &

where:
nypr og is the name of your program.

Running an OpenVMS Program as a Detached Process

Y ou can run a detached process with or without a DCL context. If you choose to run
your process without aDCL context, you can invoke the command procedure
DMBEXE: DMBCOPY_LNM TABLE to copy all the necessary logical names into the
group or system logical name table. The detached process will then have accessto the
logical names defined for BEA MessageQ.

BEA MessageQ Programmer’s Guide 6-17



6 Building and Testing Applications

If the processisto be run with DCL context, you can invoke the command procedure
DM SET_LNM TABLE before running the image. The command procedure

DM DETACH PROCESS in DMBEXE is an example of invoking DMQSSET_LNM TABLE
and running a detached process. Listing 6-5 shows a sample command procedure
fragment that runs LOG NOUT. EXE and uses the command procedure

DM DETACH_PROCESS to run the detached process.

Listing 6-5 Command Procedureto Run as a Detached Process

$ wite sys$output "...Starting MY_|I MAGE. EXE"

$ startup file = "START_TEMP_ " + f$getjpi("","PID") + ".COM

$ create/owner="f$user ()’ ’'startup file’

$ open/append startup 'startup_file’

$wite startup "$ @MBEXE: DMBDETACH PROCESS 1 1 MY_| MAGE. EXE
DMXEXE"

$ close startup

$ run sys$system | ogi nout . exe -

/i nput = 'startup_file’

/ out put = MY_PROCESS. LOG -
/error ='"f$trnlnn(""sys$error"")’ -
/ process_nane = MY_PROCESS -
/priority =4 -

/uic = "f$user()’ -
/io_buffered = 100 -
/io_direct = 100 -
/buffer_limt = 200 -

/wor ki ng_set = 500 -

/ maxi mum wor ki ng_set = 700 -

/ ext ent = 2000 -

/ page_file = 10000 -

fast _limt = 100 -
/buffer_limt = 100 -
/enqueue_| imt = 100 -
[file_limt = 50 -
/queue_limt = 100

6-18 BEA MessageQ Programmer’s Guide



Compiling and Linking BEA MessageQ Applications

Running Existing BEA MessageQ Applications Under Version 5.0

To run existing applications under BEA MessageQ Version 5.0, you must begin by
converting your group initialization filesto the Version 5.0 format and restarting your
message queuing groups. Table 6-5 describeswhether or not existing applicationsneed
to be recompiled or relinked to run under BEA MessageQ Version 5.0:

Table 6-5 Existing Application Recompiling and Relinking Requirements

Product

Running Existing Applications

BEA MessageQ for UNIX

To take advantage of BEA MessageQ Version 5.0
features, you must recompile and relink your
applications.

BEA MessageQ for OpenVMS

Applicationsthat are linked with the BEA MessageQ
run-time library (DMQ. OPT) do not haveto relink to
use BEA MessageQ Version 5.0. However, if the
application was linked with the object libraries
(DMBOLB. OPT), then arelink isrequired. If the
application uses the LOCATE_Q REP/ RESP
message, these are now RI SC-aligned, and you should
recompile and relink your application to take
advantage of the change.

BEA MessageQ for Windows NT

BEA MessageQ Version 3.2 or earlier applications do
not need to be recompiled or relinked. However, to
take advantage of the new BEA MessageQ Version
5.0 features, you must recompile and relink your
applications.

BEA MessageQ Windows Client

When upgrading to BEA MessageQ Version 5.0 from
any previous version of BEA MessageQ, we
recommend that you recompile and relink your
application to take advantage of new features.

Running Applications Under Windows 95 or NT Systems

Applications built on Windows Version 3.1 systems (16-bit applications) may run on
Windows 95 or NT systems. However, there may be some restrictions, for example,
PATHWORK Sfor WindowsNT doesnot support 16-bit applications. We recommend
that you recompile and relink your applications under Windows 95 or Windows NT

systems.

BEA MessageQ Programmer’s Guide 6-19



6 Building and Testing Applications

To convert a 16-bit application to a 32-bit application on Windows 95 or NT systems,
you must recompile and relink your application with the 32-bit import library,
DMQCL32. LI B.

Linking an Application from a BEA MessageQ Client System to a BEA MessageQ Server System

6-20

Thefollowing information describeshow to link applications between BEA MessageQ
client and server systems on Windows, UNIX, and OpenVMS platforms.

Windows Systems

On Windows systems, you have a choice of using static or dynamic linking.
Applications that use static linking need to be linked with a specific import library to
resolve external function calls. Client applications use the import library

DMQCL32. LI B (assuming the application is 32-bit), and server applications use the
import library DMQ. LI B.

Another linking method is dynamic run-time linking. Load either the file dmg.dll or
dmaqcl32.dll at runtime. Y ou heed to structure your application to decide which DLL
to use. You can do this by setting an ini file, a Registry entry, or acommand line
argument. With dynamic run-time linking, you do not need to rebuild your application
when changing from client systems to server systems, or vice versa.

UNIX Systems

On UNIX systems, applications must use static linking with specific libraries. Client
applicationsmust usel i bdngcl . aorl i bdngcl dnet . a. Server applicationsmust use
I'i bdng. a. You need to rebuild your application and link with the file | i bdnyg. a,
instead of | i bdngcl . a or | i bdrmgcl dnet . a.

OpenVMS Systems

On OpenVMS systems, you typically build your application against the run-time
library (RTL). Both client and server applications use the logical name DMBENTRYRTL
to identify which RTL is used. Y ou only need to execute

DM EXE: DMBSET _LNM TABLE<bus><gr oup> to select the server RTL. No rebuild
isrequired.

Applications can aso statically link against the server or client OLB. Y ou will need to
relink your application when changing from client to server.

BEA MessageQ Programmer’s Guide



Compiling and Linking BEA MessageQ Applications

Testing Return Status

Operating systems have different rules concerning what return statusindicates afailure
and what indi cates a success. Under the OpenVMS system, areturned value indicates
an error if the low bit is clear (an even number), and a success if the bit is set (an odd
number). UNIX based systems typically classify values below zero asfailure.
Furthermore, systems can use different status values for the same status condition.

Portable programs must use a set of error-checking rules for al environments. For
BEA MessageQ software, the following rules exist for all supported systems:

A return status equal to PAMS__ SUCCESS indi cates unconditional success.

All success codes have the low bit set (making the values al odd numbers),
including PAMS__SUCCESS. A success status other than PAMS__ SUCCESS
indicates successful completion, but that additional information exists. The
information is represented by the specific status value returned.

All error codes have the low bit clear (making the values all even numbers).
A return status of zero isinvalid.

All PAMS__* symbol definitions exist on al BEA M essageQ systems. However,
they do not always contain the same numeric values, and al defined symbols
will not be returned on all platforms.

Note: Portable code should not use the OpenVMS specific symbol SS$_NORVAL

when referring to BEA MessageQ functions. I nstead, use the BEA MessageQ
symbol PAMS__ SUCCESS.

Listing 6-6 shows how to test for areturn status on any BEA MessageQ platform.

Listing 6-6 Portable Codefor Testing Return Status

EXAMPLE 1 - Sinple test for success or failure

status = pans_put _nsg(nsg_area, pri, target, class, type, del,

nsi ze, 0,0,0,0);

if ((status & 1) == 0) /* Successful ? */

{

printf("%Jnexpected error %l returned\n", status);

BEA MessageQ Programmer’s Guide 6-21



6 Building and Testing Applications

exit(1l);

EXAMPLE 2 - Testing for various conditions

status = pans_put_nsg(nmsg_area, pri, target, class, type, del,
nsi ze, 0,0,0,0);

if (status != PAMS__SUCCESS)

if (!(success & 1))
{

printf("%Jnexpected error % returned\n", status);
exit(1);
}

if (status == PAMS__JOURNAL _ON) printf("Journaling enabled\n");
/* Successful, and notification that journaling was enabled */

}

/* Continue processing */

EXAMPLE 3 - Using case statenents

status = pans_put_nsg(nmsg_area, pri, target, class, type, del,
nsize, 0,0,0,0);

swi tch (status)

{
case PAMS__ SUCCESS :
br eak;
case PAMS__JOURNAL_ON :
printf("Journaling enabled\n");
br eak;
case PAVS__PAMS DOWN :
printf("Mssage bus is down\n");
exit(1l);
case el se :
printf("PAMS call returned unknown error %l, aborting!'\n",
st at us);
exit(1l);
}

6-22  BEA MessageQ Programmer’s Guide



Using the BEA MessageQ Test Utility

/* Continue processing */

BEA MessageQ allows OpenVMS systems to automatically translate return status
codes in textual messages when an application program exits. To enable thisfeature,
enter the following command before running an application program:

$ SET MESSAGE DMXBMSGSHR

If your application aborts during testing, it is useful to have OpenVMS traceback
information. The use of theBEA MessageQ object library and theinclusion of symbols
in the executable (via the / DEBUG switch in the compile step) add to the information
that isreturned during traceback. If you link your application with the BEA MessageQ
RTLs, the traceback line number information islost. To get acomplete traceback, the
image must be linked using the object library described in Linking with the Object
Library.

Using the BEA MessageQ Test Utility

Using a graphical or character-cell interface, the BEA MessageQ Test utility allows
devel opers to send and receive messages between applications to:

m Build interactive tests of application modules.
m  Simulate send and receive messages to any target from any source.
m Exercise the queues in the BEA MessageQ system.

The BEA MessageQ Test utility enables application developers to interactively attach
to apermanent or temporary queue, read messages from a script file or available
interprocess messages, and pass messages to a defined target queue. M essages sent or
received using the Test utility can be previewed using its message display or the echo
feature of the Script Facility. The Test utility isavailable on UNIX, WindowsNT, and
OpenVMS systems.

Toinvoke the Test utility using the Motif user interface on UNIX systems, set the
environment variables for the bus and group 1D and enter the command:

dngt est m

BEA MessageQ Programmer’s Guide 6-23



6 Building and Testing Applications

6-24

To invoke the Test utility on Windows NT systems, enter the following commands:
set DMQ BUS ID bus_id

set DMQ GROUP_ID group_id

dnyt estw

To invoke the character-cell user interface on UNIX systems, set the environment
variables for the bus and group ID and then enter the following command:

dnyt estc

To accessthe character-cell Test utility on OpenVM S systems, choose the Test option
from the BEA MessageQ main menu. The system prompts you for the following
information:

m Queue number—Enter the number of the sender’s queue.
m Queue name—Enter the name of the sender’s queue.

m Queue type PQY] N—EnterY for primary queue oX if you want a secondary
or multireader queue.

m Name scope LOCALY NI—EnterY if the queue is a local group namenaf it
is a remote group name.

m Target group number—Enter the target group number.
m Target process number—Enter the target process number.

Enter a setting at each system prompt or press Return to accept the default settings
Table 6-6 shows the default settings for using the Test utility.

Table 6-6 Test Utility Default Settings

Setting Default Value
send_cl ass 1

send_type -100
send_priority 0

rcv_priority 0 (al priorities)
rcv_timeout 5 seconds

delivery PDEL _MODE_NN_MEM

BEA MessageQ Programmer’s Guide



Debugging BEA MessageQ Applications

Debugging BEA MessageQ Applications

BEA MessageQ offersafeature called tracingto log internal messaging eventsto afile
asthey happen. Y ou can usethisfileto diagnose application failures asyou debug your
application. It isimportant to consider that message tracing generates a high volume
of output; therefore, you should only enable tracing for diagnostic purposesin the
event of a problem.

BEA MessageQ providesan execution tracing facility for diagnostic purposes. Tracing
produces atime-stamped output file showing the sequence of BEA MessageQ function
calls and return status codes. |f the DMQ_TRACE_PREFI X environment variable is set,
tracing information goes to $DMQ TRACE_PREFI X. pi d. If it is not set and the

DMQ TRACE FI LE environment variable is set, then tracing information will go to
$DMQ_TRACE_PREFI X. Otherwise, tracing information will go to the standard output
(thisis not desirable on Windows NT). Each message will contain atime stamp if the
DMQ TRACE_TI MESTAMPS environment variable is set.

Tracing Messages on UNIX Systems

Some special features are incorporated into BEA MessageQ to aid in debugging. The
PAMS_TRACE environment variable allows you to enable tracing to BEA MessageQ
callable services. To enable PAMS_TRACE on your system, enter the following
command:

# setenv PAVMS_TRACE 1

BEA M essageQ logstraceinformation to the standard output unless DMQ TRACE FI LE
is set. Following isthe trace information for apans_put _nmsg call with a 30-second
timeout from source 1.1 to target queue 1:

PAMS: PAMS- Ti neout was ZERO, using 30 seconds
PAMS: PAMS- ****** gsendi ng nessage ******
PAMS: PAMS- Sour ce :, 65537 (10001)

PANMS: PAMS- Tar get o, 1 (D

PAMS: PAMS- Type / O ass:, 6488162 (630062)
PANMS: PAMS- Del i very o, 39 (27)

PAMS: PAMS- UVA i, 5(5)

PAMS: PAMS- Resp Q

BEA MessageQ Programmer’s Guide 6-25



6 Building and Testing Applications

PANS PANS_******************************

PANMS: PAMS- PAMS put _cl eanup
To disable PAMS_TRACE, enter the following command:

# unsetenv PAMS_TRACE

Tracing Messages on Windows NT Systems

Tracing is enabled by setting environment variables using the following command:
SET PAMS_TRACE=val ue

where val ue is an arbitrary value.

To disable atrace, set the variablesto anull value, asfollows:

SET PANMS_TRACE=

Y ou can check your environment variables at any time by entering SET at the
command line.

Tracing Messages on OpenVMS Systems

On OpenVMS systems, you can activate tracing using the DM DEBUG logical name.
Once tracing is enabled, you can direct trace output using the DMBTRACE_OUTPUT
logical name. For more detailed information about how to troubleshoot BEA
MessageQ errors on OpenV M S systems, see the BEA MessageQ Configuration Guide
for OpenVMS

Controlling Message Flow

When the message queuing environment becomes congested, BEA MessageQ letsyou
control the flow of messages by setting environment variables that restrict messaging
rates on a per-process basis.

6-26 BEA MessageQ Programmer’s Guide



Controlling Message Flow

Note: Thisfeatureisavailable only on BEA MessageQ for UNIX.

BEA MessageQ usesacongestion control agorithm to reduce the number of messages
being enqueued, which allows the system to process the backlog of messages.When
the congestion condition subsides, BEA MessageQ gradually raises the rate of
message flow back to the maximum flow rate set for the queue.

The rules for enforcing congestion control are as follows:

m  While a congestion condition exists, the enqueue and dequeue rate of all
processes is monitored.

m The maximum rate at which any process can enqueue messages during a
congestion condition is equal to a maximum value that is adjusted at regular
intervals.

m If, during a period of congestion, a process enqueues more messages than it
dequeues, its message flow rate is reduced by a percentage of its current flow
during the next interval.

m After aperiod of congestion has subsided, the flow rate of each processis
adjusted upward until the flow rate exceeds the maximum congestion flow rate
(DVR_FLOW MAXI MUM). At this point, flow control is no longer enforced.

The following table lists the congestion control environment variables for BEA
MessageQ for UNIX systems.

Environment Variable  Description

DMQ_FLOW MAXI MUM M aximum number of messages per second a process can enqueue during a
period of congestion. The default value is set to 1000 messages per second.

DMQ_FLOW M NIl MUM Minimum number of messages per second a process can enqueue during a
period of congestion. BEA MessageQ will always allow you to enqueue at
least this number of messages per second. The default valueis set to 10
messages per second.

DMQ_FLOW | NTERVAL Interval at which BEA MessageQ checks message flow and makes
adjustments to the current flow rate. The value is expressed in milliseconds.
The default value is set to 250 milliseconds.

DMQ_FLOW | NCREASE Number of messages per second to increasethe flow rate at the current interval
after acongestion period has subsided. The default valueis set to 10 messages.

BEA MessageQ Programmer’s Guide 6-27



6 Building and Testing Applications

Environment Variable  Description

DMQ_FLOW DECREASE Percent reduction of the current flow rate to apply at each interval during
periods of congestion. The value must be specified as areal number in the
range (0.0 to 1.0). If the valueis set to zero, then the maximum flow rate for
the given processisequal to the flow maximum as defined by the environment
variable DMQ_FLOW MAXI MUM and is not adjusted downward at each flow
interval. The default value is set to 0.25 intervals.

To specify congestion control for an application, use the following syntax to set the
appropriate environment variable prior to starting the application:

C shell
set env DMQ_FLOW MAXI MUM 500

Bourne shell
DMQ FLOW NAXI MUME500
export DMQ FLOW NAXI MUM

Because the environment variables are set on a per-process basis, you can set different
values for each application in the environment.

6-28  BEA MessageQ Programmer’s Guide



CHAPTER

.

Using the Script Facility

The BEA MessageQ Script Facility provides a powerful tool for application

devel opers to use in simulating message exchange between programs. Instead of
writing atest program, you create a script file containing instructions for capturing
messages sent or received by an application, replaying captured messages, or
simulating messages sent from an application that is still under development.

Application developers can use the Script Facility to:
m  Simulate messages sent to an application without writing a test program

m  Selectively trace messages sent or received by an application and display them
on the screen or log them to afile

m Capture message traffic and replay the log files to support concurrent
development and testing of applications

m  Simulate message traffic between client/server application components still
under development

m Create message trace files that assist devel opersin debugging applications based
on message traffic

m  Stresstest applications under different load levels by generating high levels of
message traffic

m Facilitate the development of large-scale integrated applications by simulating
message traffic from remote components

Instructions are entered to the script file using the BEA MessageQ scripting language.
When script processing is enabled, BEA MessageQ processes the script file and
executes the instructions.

BEA MessageQ Programmer’s Guide 7-1



7 Using the Script Facility

If you need to view or record the exchange of messages between applications under
development, you can use the Script Facility to capture messages sent or received by
an application. Captured messages can be displayed on a monitor or written to alog
file. Message capture documents messages sent and received by an application,
enabling developers to debug message exchange.

The BEA MessageQ Script Facility messagereplay featureislike using atape recorder
with messaging. First, using message capture, you record the messages sent or received
by an application. Then, using replay, you send the messages captured in the log file
asinput to another application. Message replay can be used to debug message
exchange between applications that are till under development.

Scripts can aso be used to create a message to be sent. For example, if a sender
program is under development, you can create a script file to simulate the messages
that it will send. Then, when you enable script processing, the messages contained in
the script file are delivered to the receiver program to test its response.

Note: The BEA MessageQ Script Facility isavailable on UNIX and OpenVMS
systems only.

How to Use the Script Facility

7-2

Usethe scripting language commands to create script filesthat send messages, capture
messages, or both. Y ou can add instructionsto the script file to repeat an operation, add
atime delay between functions, or add comments to document the script file.

After you create the script file, you can use the Script Facility to verify that the syntax
of thefileis correct. If errors exist in the scripting language commands, BEA
MessageQ will highlight the line numbers and describe the errors to help you debug

your BEA MessageQ script.

When your script file is correct and ready for use, you enable script processing by
setting the Script Facility environment variabl e to the name of the script file or the log
file of captured messages to be used asinput. When you run your application with the
environment variable set, BEA MessageQ reads the script file, delivers the defined
messages to the target queues, and captures messages as specified.

BEA MessageQ Programmer’s Guide



How to Use the Script Facility

Using the BEA MessageQ Scripting Language

BEA MessageQ script files are ASCI| files created using atext editor. Though the
content must adhere to the scripting language syntax, it is not case sensitive and does
not require that databe entered in specific column positionsin thefile. When including
agroup name in a script, the group name must start with aletter. Group names
beginning with a number or special character are not allowed.

On OpenVMS systems, you create a script file using a .PSS file extension. On UNIX
systems, you create a script file using a .pss file extension. Use tabs and spaceswithin
the script fileto makeit easier to read. See the Adding Repeats, Delays, and Comments
to Scripts topic for more information on how to add comments to a script fileto
annotate its purpose and use.

The BEA MessageQ scripting language uses commands to identify the functionsto be
performed. Table 7-1 describes information on BEA MessageQ Script Facility
commands:

Table 7-1 BEA MessageQ Script Facility Commands

Command

Function Begin/End M odifiers Description

Send a MSG EOM I dentifies the beginning and end of

message the message header and content.

Capture SET SEND Sets message capture to include

messages sent messages sent by the application.
ECHO Displays messages on the screen.
ECHO Selectsthe number of lines displayed.
LI NES=n
LOG Writes messages to alog file.
LOG Selects the number of lines logged.
LI NES=n
OFF Captures messages sent by the

applicationinalogfileonly; doesnot
send messages to the target queue.

BEA MessageQ Programmer’s Guide 7-3



Using the Script Facility

7-4

Table 7-1 BEA MessageQ Script Facility Commands

Command
Function Begin/End Modifiers Description

ON Sends messages to the target queue
and capturesthem in alog file. SET
SEND ONisthedefault action for this
command.

Capture SET RECEI VE Sets message capture to include
messages messages received by the application.
received

ECHO Displays messages on the screen.

ECHO Sel ects the number of lines displayed.

LI NES=n

LOG Writes messages to alog file.

LOG Sel ects the number of lines logged.

LI NES=n

COFF Prevents the application from
recelving messages from sources
other than the script file.

ON Application receives messages from
all processes. SET RECEI VE ONis
the default action for this command.

Set the log SET LOG file_nane Specifiesthelog file name. SET LOG

file name must precedethe SET SEND or SET
RECEI VE commands in the script.

Add SET LOG file_nane Adds messagesto an existing log file.

messages to APPEND

an existing

file

Add COMVENT/ ENDC Designates the beginning and end of

comments comments to explain what the script
file does.

Set atime DELAY tine Creates atime delay, which is useful

delay to simulate message arrival patterns.

BEA MessageQ Programmer’s Guide



How to Use the Script Facility

Table 7-1 BEA MessageQ Script Facility Commands

Command
Function Begin/End M odifiers Description
Repeat an REPEAT/ ENDR Creates arepeat loop construct.

operation

Capturing, Replaying, and Simulating Message Exchange

The BEA MessageQ Script Facility is most commonly used to capture messages sent
or received by an application. Captured messages document message exchange and
can be used as the input stream to another application to test its response.

For example, if you are testing message exchange between two running applications,
you can use a script file to capture the output of the sender program. Figure 7-1 shows
application A sending messagesto application B and recording those messagesin alog
file.

Figure 7-1 Sending Messages and Capturing Output

Messages SET LOG mvloa.pss
sentto B SET SEND LOG

Messages written to log file

ZK9001AGE

Thelog file of captured messages can be used to document the messages sent by A. It
can aso be used as an input stream to B during testing if application A is not always
available to send messages.

BEA MessageQ Programmer’s Guide 7-5



7 Using the Script Facility

Depending on the requirements of your test environment and applications, you can
choose to capture messages received rather than capturing messages sent. Figure 7-2
shows how to use alog file to capture messages received by an application.

Figure7-2 Sending M essages and Capturing I nput

SET LOG mylog.pss

Messages
sent to B SET RECEIVE LOG
Messages written to log file
N

ZK9002AGE

In this example, the log of messages received by application B matches the log file of
messages sent by application A. Y ou can a so use the Script Facility when one of your
applications is not running. For example, Figure 7-3 shows how application A can

capture messagesit sendsinalog filewithout BEA MessageQ delivering the messages

to application B.
Figure7-3 Capturing Output Without Sending M essages

Messages sent by A SET LOG mylog.pss
are not delivered to B SET SEND OFF LOG

Messages written to log file

ZK9003AGE

7-6 BEA MessageQ Programmer’s Guide



How to Use the Script Facility

Then when application B isready to test, you can use the script file containing
messages sent by application A totestit. Figure 7-4 shows how to replay messagesand
to restrict application B to receiving only messages from the script file.

Figure 7-4 Replaying Captured M essages

>
SET RECEIVE OFF
N—

Captured Used as sole
output of A input stream to B

ZK9004AGE

Or, you can have the receiver program obtain messages from the script and messages
from other applications as shown in Figure 7-5.

Figure 7-5 Receiving M essages from Applications and Scripts

3
SET RECEIVE ON
SN

log file

ZK9005AGE

And, if thereceiver programisready for testing, but the sender programisnot, you can
create a script file to simulate message exchange. If you capture the output of
application B during this process, you can use it as input to application A wheniit is
ready for testing as shown in Figure 7-6.

Figure7-6 Writing Scriptsto Send and Capture M essages

BEA MessageQ Programmer’s Guide 7-7



7 Using the Script Facility

SET LOG
SET SEND LOG

Create script file
simulate messaging

Output Use captured messages from B
as input to A to test during development

ZK9006AGE

For some programs, script output is buffered, depending on the operating system and
whether the program is running in the background. For example, on a Solaris system,
output from dngcl s is unbuffered, but output from dngt est is buffered.

The remaining sections of this topic provide more detailed information and examples
of how to create script files.

Capturing Messages Using Scripts

The SET command is used to select messages for capture. The SET SEND command
captures output by recording the messages sent by an application. The SET RECEI VE
command captures input by recording the messages received by an application. The
SET command uses the following syntax:

SET RECEIVE nodifier [ FROM MessageQ addr ess]
SET SEND nodi fier [ TO MessageQ address]

The modifiers to these commands are as follows:

m OV OFF—determines whether messages are sent to the target or only to the log
file, and whether the receiver program receives all input or input only from the
script file

m ECHO—displays captured messages on the screen

7-8 BEA MessageQ Programmer’s Guide



Capturing Messages Using Scripts

m LOG—writes captured messages to the specified log file

TheFROM TOaddress qualifier is the queue address of the message to which messages
will be sent or from which messages will be read when the script is run.

Controlling Message Delivery Using Scripts

Using theOV OFF modifiers with theSET SEND andSET RECEI VE commands, you

can control the delivery of messages from the script file and from other sources.
Following is a list of valid commands that you can enter to your script file to control
message delivery with scripts:

Command Description

SET SEND OFF Captures messages sent by the application but does not deliver
them to the target queue.

SET SEND ON Captures messages sent by the application and deliversthem to

thetarget queue. ONlisthe default for the SET SEND command.

SET RECEI VE OFF

Captures messages received by the application, but restrictsthe
application to receiving only those messages sent from the
script.

SET RECEI VE ON

Captures messages received by the application from the script
and any other source. ONis the default for the SET RECEI VE
command.

Displaying Captured Messages on the Screen

To display captured messages on the screen, ugexibenodifier with theSET SEND

or SET RECEI VE commands. Use trecHO LI NES=n modifier if you only want to
display a specified number of lines of the message. Following is a list of valid
commands that you can enter to your script file to display messages on the screen:

BEA MessageQ Programmer’s Guide 7-9



7 Using the Script Facility

Command Description

SET SEND ECHO Displays the messages sent by the application to the screen.
SET SEND ECHO Displays n lines of the messages sent by the application to the
LI NES=n screen.

SET RECEI VE ECHO Displays the messages received by the application to the
screen.

SET RECEI VE ECHO Displays n lines of the messages received by the application to
LI NES=n the screen.

Writing Captured Messages to a Log File

7-10

To write messagesto alog file, begin by specifying the name of thelog file. To create
anew log file to store captured messages, use the following command:

SET LOG fil e_nane

Note: File names are case sensitive on UNIX systems. Enter the file name with the
exact upper- and lowercase | ettersthat you will usetoretrievethefile. Thefile
name can be specified with a path name or directory name to storeit in a
specific area. Both absolute and relative path names can be used.

Note: If SET LOGisusedinascript, thepanms_get _nsg call used to activate scripting must
be at least 1036 bytesin size.

To add captured messages to an existing log file, use the following command:
SET LOG fil e_nane APPEND

If you do not provide afile extension, . LOGis used by default on OpenVMS systems
and .log is used by default on UNIX systems. If you want to replay the captured
messages, use . PSS (OpenVMS) or . pss (UNIX) asthefile extension to distinguish
thelog file asan input file.

BEA MessageQ Programmer’s Guide



Capturing Messages Using Scripts

The beginning of each log file has a comment line containing the date and time it was
created. A comment line is added each time the file is reopened. On UNIX systems,
only onelog file can be open at atime. On OpenVMS systems, amaximum of four log

files can be open at atime.

To write captured messages to alog file, use the LOG modifier with the SET SEND or
SET RECEI VE commands. Usethe LOG LI NES=n modifier if you want to log only a
specified number of lines of the message. Following isalist of valid commands that
you can enter to your script file to log messages to afile:

Command

Description

SET SEND LOG

Writesthe messages sent by the application to the specified log
file.

SET SEND LOG
LI NES=n

Logs n lines of the messages sent by the application to the
specified log file.

SET RECEI VE LOG

L ogs the messages received by the application to the specified
log file.

SET RECEI VE LOG
LI NES=n

Logs n lines of the messages received by the application to the
specified log file.

Listing 7-1 shows the syntax of a BEA MessageQ script file that creates alog file
named MYLOG. PSS, captures messages sent and received by the application, and
displays them on the screen.

Listing 7-1 Sample Script to Capture M essages

COMVENT

Exanpl e MessageQ script source file to capture nessages,
display themon the screen, and log themto a file.

ENDC

SET LOG MYLOG PSS
SET RECEI VE ECHO LOG
SET SEND ECHO LOG

M5G

TARGET=MHI S_EK | NTERFACE SOURCE=MHI S_REQ_PROCESSOR

CLASS=PAMS

TYPE=ASRS_PERF_DATA REQ

A 1234567890 ABCDEFGHI JKLMNOPQRSTUWWKYZ'

EOM

BEA MessageQ Programmer’s Guide 7-11



7 Using the Script Facility

Listing 7-2 shows the content of MYLOG. PSS created when script processing is enabled
using the script file in the previous example.

Listing 7-2 Sample Log Generated by a Script File

I*** Session begun at 22- MAR-1994 10: 37: 23. 95 ****kkkkskskskskkokdkokk k&

MSG I Message receive at 22- MAR-1994 10: 37: 26. 21
SOURCE = 20,1 TARGET = 30,1
CLASS = PAMB TYPE = ASRS_PERF_DATA REQ
XB 31, 32, 33, 34, 35, 36, 37, 38, 39, 30 11234567890’
XB 20, 41, 42, 43, 44, 45, 46, 47, 48, 49 1" ABCDEFGHI’
XB 4A, 4B, 4C, 4D, 4E, 4F, 50, 51, 52, 53 I JKLMNOPQRS
XB 54, 55, 56, 57, 58, 59, b5A, I TUWKKYZ'
EQM

Though the format of the message data in the log file varies somewhat from a script
file, it can be used exactly as ascript file to simulate message exchange. Use alog file
asinput by setting the BEA MessageQ environment variable DMQ_SCRI PT to equal the
log filename. Then runthetest application and it will receive and processthe messages
contained in the log file.

Writing Captured Messages to Multiple Log Files

7-12

On UNIX systems, only one log file can be open at atime. However, the BEA

M essageQ Script Facility on OpenV M S systems | ets you log messages to multiple log
files simultaneously. Listing 7-3 shows how to write messages received by an
application to one log file (RECEI VE. PSS) while writing messages sent by the
application to another log file (SEND. PSS).

Listing 7-3 Sample Script Using Multiple Log Files

COMVENT
Exanpl e MessageQ script source file WTH LOGA NG TO

BEA MessageQ Programmer’s Guide



Replaying Messages

MULTI PLE LOG FI LES
ENDC

SET LOG RECEI VE. PSS
SET RECEI VE LOG

SET LOG SEND. PSS
SET SEND LOG

REPEAT 5
MSG TARGET=MHI S_EK_| NTERFACE SOURCE=MHI S_REQ PROCESSOR
CLASS=PAVS TYPE=ASRS_PERF_DATA REQ

A ' 1234567890 ABCDEFGHI JKLMNOPORSTUVWKYZ'
A ' M5G FROM REPEAT NUMBER 1 - WH CH IS SENT 5 TI MES
S1
EQM
ENDR

Replaying Messages

To usethe BEA MessageQ Script Facility, you set an environment variable on UNIX
systems or alogical name on OpenVMS systems to the name of the script file or the

log file that you want to use as input to the application being tested. When you run the
application after the environment variableis set, the Script Facility readsthe script file
or log file and uses the pans_put _nsg function to deliver the messages contained in

the file to the target queue.

Note: The script file may be only one of many sources of messages sent to the
application. If messages are delivered to the application’s primary queue from
sources other than the script file, these messages will also be read and
processed.

If the script file requests messages to be captured, the Script Facility signals the

application to use BEA MessageQ logging routines that write the messages sent or
received by the application to the designated log file.

BEA MessageQ Programmer’s Guide 7-13



7 Using the Script Facility

Script Processing on UNIX Systems

7-14

Script processing on UNIX systems is enabled by defining the environment variable
dmg_scri pt asthe script file name or log file name that you want to use as input to
the program being tested. Before setting the DMQ_SCRI PT environment variable, you
must first set the BUS and GROUP_I D environment variables. Use the following
commands to set the environment variable to enable script file processing. The
command using csh syntax is:

set env DMQ SCRI PT nyl og. pss
The command using sh syntax is:

DMQ _SCRI PT=nyl og. pss
export DMQ SCRI PT

Definethe DMQ_SCRI PT environment variabl e after running the Group Control Process
(dnggcp) to boot the system. If DMQ_SCRI PT is defined before booting the system,
processing a script produces error messages for each line of the script.

When you run the application with BEA MessageQ script processing enabled, BEA

MessageQ trand ates this symbol when the pans_at t ach_q function is called. BEA
M essageQ processes the script, directing messages to their target queues and turning
on message logging, if applicable. Script processing on UNIX systems begins when
the target processissues apanms_get _nsg or pans_get _nmsgw call.

Client programsdo not accessthe DMQ_SCRI PT environment variable or perform script
processing directly. Instead, the client program uses the associated Client Library
Server (CLS) to perform script processing. Writing to the log file or echoing output is
performed relative to the CL S rather than the client program.

The Script Facility on UNIX systems also allows devel opersto initiate script
processing for an application that is currently running. To enable script processing for
arunning application, use the dmgscript utility to direct ascript file to the target queue
of the application.

To turn on script processing, the script file must begin with the command SET

SCRI PTS ON. Toturn off script processing, the script must contain the SET SCRI PTS
OFF command. Table 7-2 describes the script control commands which are only
available on BEA MessageQ for UNIX systems.

BEA MessageQ Programmer’s Guide



Replaying Messages

Table 7-2 Script Control Commands (UNIX only)

Command

Function Begin/End Modifier  Description

Enable script SET SCRI PTS ON This command is sent to an

processing application that is already running,
enablingittoreceive messagesfroma
script file or begin capturing
messages.

Disable script OFF This command turns of f script

processing processing for arunning application.

The application no longer receives
messages from the script file and

stops capturing messages.

Listing 7-4 provides a sample script that turns on script processing to begin message
logging for the running application.

Listing 7-4 Turning On Scriptsfor a Running Application

SET SCRI PTS ON

SET LOG / nypat h/ myl og. | og
SET SEND LOG LI NES=999
SET RECEI VE LOG LI NES=999

To process a script file, use the following command syntax:

dngscript -f script_file_name -q nn

where:
-f script_file_ Provides the name of the script file to process. The default
name extension for script filesis. pss.
-q nn Specifies the queue number of the application to which the

script control commands SET SCRI PTS ONor SET
SCRI PTS OFF should be directed.

BEA MessageQ Programmer’s Guide 7-15



7 Using the Script Facility

Script Processing on OpenVMS Systems

7-16

BEA MessageQ for OpenV M S software enabl es script file processing when thelogical
name DM SCRI PT isdefined asafile name or asthe word YES. The name of the script
file to process can be specified in one of the following ways:

m Definethe logica name DMBSCRI PT to pass the script file name directly to the
Script Facility as follows:

$ DEFI NE DMQBSCRI PT script_fil e_nanme
m  Then run the application that you want to test using the script file as input.

m  Set thelogical name DMBSCRI PT to YES, run the application that you want to
test, and enter the script file name in response to the prompt as follows:

$ DEFI NE DMBSCRI PT YES
$ RUN application_nane
Script file: script_file_name

m DefineaDCL foreign command to invoke an image file name. The script file
name then can be entered directly on the DCL command line, as follows:

$ DEFI NE DMBSCRI PT YES
$ ifn:==%drive_nane:[directory_nane] appl i cati on_nane
$ifn script_file_nane

When you use the Script Facility on BEA MessageQ for OpenVMS systems, all
messages defined in the script file are delivered to the target queue of the application
program you run regardless of the specified message TARGET argument specified in the
message header phrase.

To stop script file processing, use the DEASSI GN command as follows:
$ DEASSI GN DMXBSCRI PT

The DMBEXAMPLES directory contains a program called sender . ¢ that enables
application devel opers to set the target queue used with script processing. In addition,
this program enabl es an application to read messages from a script file and forward
them to a program that is already running.

BEA MessageQ Programmer’s Guide



Writing Scripts to Send Messages

Writing Scripts to Send Messages

If you are unable to create a script file using message capture, you can use the BEA
M essageQ scripting language to create a new file defining the message that you want
to send. When script processing is enabled, BEA MessageQ sends the messageto a
target queue where it is read by the application being tested.

To create ascript file that sends amessage to atarget queue, use the scripting language
to:

1. Designate the beginning and end of the message

2. Specify the source, target, type and class descriptors that form the message
header

3. Create the message content

Defining Messages in Scripts

To define a message, enter the following to the script file:
m The MSG command to designate the beginning of the message definition

m The message header information including the target, source, class, and type of
the message

m The message data
m The EOvicommand to designate the end of the message definition

Listing 7-5illustrates a BEA MessageQ script file for sending a message to atarget
gueue. The message in this example sends the numbers “0-9” and the letters “A-Z" to
a target queue number 1 in group 30.

BEA MessageQ Programmer’s Guide 7-17



Using the Script Facility

Listing 7-5 Sample Script to Send a M essage

COMVENT
Exanpl e MessageQ script source file to send a nessage
ENDC

VBG

TARGET=30, 1

SOURCE=20, 1

CLASS=PAMVB

TYPE=ASRS PERF_DATA REQ

A * 1234567890 ABCDEFGHI JKLMNOPQRSTUWIKYZ'
EOM

Defining the Message Header

7-18

To form a message header, the BEA MessageQ scripting language uses descriptorsto
designatethetarget, source, class, and typeargumentsfor thepans_put _nmsg function.
Notethat the equal sign (=) is optional, and the commands FROMand TOcan replacethe
commands SOURCE and TARGET. Listing 7-6 shows the format of the message header.

Listing 7-6 M essage Header Format

MSG
TARCET = {MessageQ address}
SOQURCE = {MessageQ address}
CLASS = {PAMB cl ass nunber}
TYPE = {PAMB type nunber}
EQOM

The message header descriptors require the following input to specify the
pans_put _nsg arguments:

BEA MessageQ Programmer’s Guide



Writing Scripts to Send Messages

Argument

Description

TARGET

The queue address to which the messages in the script file are
sent. The Script Facility allowsthe PAMS_ prefix to be omitted.
On OpenVMS systems, the script file messages are directed to
the primary queue of the running application regardless of the
target queue specified.

SCQURCE

Queue address of the message source. Thescript facility allows
the PANMS_ prefix to be omitted.

TYPE

Descriptor identifying the message type. The Script Facility
alowsthe MBG_TYP_ prefix to be omitted.

CLASS

Descriptor identifying the message class. The script facility
allowsthe MBG_CLS_ prefix to be omitted.

Additional Arguments for UNIX Systems

In addition to the target, source, class, and type descriptorsin the message header, the
Script Facility on BEA MessageQ for UNIX systems offers descriptors to specify the
delivery, undeliverable message action (UMA), and priority arguments for the
pams_put _nsg function. Valid values for the delivery mode and UMA can be found
inthep_synbol . h includefile.

These additional UNIX message header descriptors require the following input to
specify the pans_put _nmsg arguments:

Argument

Description

DELI VERY

Value for the delivery mode asdefined inthe p_synbol . h
includefile.

UMA

Value for the undeliverable message action as defined in the
p_synbol . h includefile.

PRI ORI TY

M essage priority, where 0 is the lowest priority and 99 isthe
highest priority.

Listing 7-7 shows the format of a complete UNIX message header.

BEA MessageQ Programmer’s Guide 7-19



7 Using the Script Facility

Listing 7-7 UNIX M essage Header Format

MSG
SOQURCE = {MessageQ address}
TARCET = {MessageQ address}
CLASS = {PAM5 cl ass nane}
TYPE = {PAMS type nane}

DELI VERY = {MessageQ deli very node val ue}
UVA = { MessageQ undel i verabl e message action val ue}
PRIORITY = {MessageQ priority}

EQM

Defining the Message Data

This topic describes the valid syntax for specifying message content. The BEA
M essageQ scripting language syntax requires you to specify the dataformat, datatype,
and content of the message.

Thevalid data formats are:
m D—Decimal

m X—Hexadecimal

m O—Octal

m Z—Zero-fill

m A—ASCII

m S—ASCII space-fill

The binary data formats allow the specification of bytes, words, and longwords. Date
types for each data format are described in the script file as follows:

m B—A list of 8-bit bytes
m WA list of 16-bit words

m L—A list of 32-bit longwords

7-20 BEA MessageQ Programmer’s Guide



Writing Scripts to Send Messages

The content of themessageislisted after the dataformat and datatype codes. A comma
(, ) must separate values in the value list. Each value cannot exceed the maximum
unsigned value that may be stored in the selected data field.

Table 7-3 lists the valid syntax and provides examples for how to specify message

content.

Table 7-3 Valid M essage Data Syntax

Data Format

Syntax/Description

Decimal Binary Data

D (B/ W L) <SI GNED_NUMBER>, ... <SI GNED_NUMBER>

Thevalues are stored in the message in binary format. Theword
decimal appliesonly to the base used in entering the data values
in the script file. The values are not stored in packed decimal
format.

Hexadecima Binary Data

X (Bl W L) <HEX_NUMBER>, ... <HEX_NUVBER>

The values are stored in the message as unsigned hexadecimal
values.

Octal Binary Data

O(B/ W L) <CCTAL_NUVBER>, ... <OCTAL_ NUVBER>

The numeric values in the octa binary data phrase are unsigned
octal numbers.

Zero-Fill Binary Data

Z (B/ W L) <NUMBER>, ... <NUMBER>
Thevalues are stored in the message as unsigned decimal val ues.

ASCII Data

A(KNUMBER>)'<ASCl | _ CHARACTERS>'
A(KNUVMBER>)"<ASCI | _ CHARACTERS>"

An unsigned decimal va ue specifying the number of blanksto
fill into successivefields of the size specified by datatype. This
format allows the text string to be left-justified into afield
<NUMVBER> length long. Thisallows easy space-filling of afield
after the text string.

Charactersin the quoted string fill into successive bytes starting
at the current position in the message text. Note that spaces and
tabs are significant when enclosed in quoted strings and that the
case of charactersin quoted stringsis preserved.

BEA MessageQ Programmer’s Guide 7-21



7 Using the Script Facility

Table 7-3 Valid Message Data Syntax

Data Format Syntax/Description

ASCII Space-Fill Data S<NUMBER>

An unsigned decimal value that specifies the number of spaces
to fill into successive bytes starting at the current position in the

message text

Adding Repeats, Delays, and Comments to
Scripts

In addition to commandsfor sending and capturing messages, you can add instructions
to scriptsthat enablethem to better simulate production conditions during testing. This
topic describes how to:

m Repeat an operation in ascript
m Enter time delaysto simulate message arrival patterns

m  Add comments to document script functions

Repeating an Operation

The REPEAT and ENDR commands begin and end repeat groups. A repeat group allows
messages to be repeated. The format for using this command is as follows:

REPEAT <n>
M5G

EQM
ENDR

7-22  BEA MessageQ Programmer’s Guide



Adding Repeats, Delays, and Comments to Scripts

The message contained between the REPEAT n and the ENDR is repeated n times. On
UNIX systems, repeat commands can be nested to any level. On OpenVMS systems,
REPEAT commands can be nested up to three levels and can contain any valid script
syntax including delays.

The following example shows nested messages. In this example, the script will send
one message of message type 1, four messages of message type 2 with a 1.5-second
delay between them, and then send the same messages one more time.

REPEAT 2
VBG

I M5G TYPE 1

EOM
REPEAT 4 I NESTED REPEAT MESSAGE
M5G

I M5G TYPE 2

EQM
DELAY 1.5
ENDR
ENDR

Entering Time Delays

Y ou can insert atime delay into a script file by using the DELAY command. The DELAY
command allows the simulation of an actual arrival pattern of messages. The DELAY
command format follows:

DELAY <mi n>: <sec>. <t ent hs>
DELAY <mi n>: <sec>

DELAY <sec>. <t ent hs>

DELAY <sec>

where:
mi n specifiesthe number of minutesfrom 0to 59; sec specifiesthe number of seconds
from 0to 59; and t ent hs specifies the number of tenths of a second from 0 to 9.

For example, specify adelay of 0.5 second as follows:

BEA MessageQ Programmer’s Guide 7-23



7 Using the Script Facility

DELAY 0.5

The duration of the delay applies only to the processing of the BEA MessageQ script
file and the time of arrival of messages from the BEA MessageQ script file to the user
program. The user program will still receive messages from other sources during a
delay interval.

Entering Comments

Commentsin the script source file can be specified in end-of-line format (<eQL>) or
comment command format (COMVENT).

End-of-Line Format

In the following format, text on the line following the exclamation point (! ) to the
end-of-line tag isignored. An end-of-line comment can be placed wherever the syntax
allows <EQL>.

I conmment text... <EOL>

Comment Command Format

In the following format, the text following the COMVENT command and all lines within
the comment group areignored until the ENDC command terminatesthe comment. Note
that the comment statement can span any number of lines.

COMVENT

..this shows comment text
whi ch can span lines..
ENDC

Verifying Script Files

Once you have created the script file, you can verify that the syntax is correct before
usingit. Seethe following topicsfor instructions on how to verify scriptson UNIX and
OpenVMS systems and how to resolve reported errors.

7-24  BEA MessageQ Programmer’s Guide



Verifying Script Files

Verifying Scripts on UNIX Systems

BEA MessageQ for UNIX software provides a utility that verifies script syntax. It is
called dmagscript. To verify ascript file, use the following command syntax:

dngscript -v -f script_file_nane

where:

-V Requests verification of script file syntax.

-f script_file_nane Providesthe name of the script fileto verify. The default
extension for script filesis. pss.

Verifying Scripts on OpenVMS Systems

BEA MessageQ for OpenV M S software providesa utility that verifies script syntax. It
is called DM@BPSSVFY. The DMQBPSSVFY utility can be accessed using both a menu
interface and a command line interface. To use the menu interface, select the PSSVFY
option on the BEA MessageQ main menu. Y ou will be prompted to provide the name
of the script file to verify.

To use the command lineinterface, enter the following commands at the DCL prompt:

$ PSSVFY : == $ DMBEXE: DMBPSSVFY
$ PSSVFY script _file_name

The default file type for script filesis. PSS. If you omit the script file name, the utility
prompts you to supply it as follows:

$ File nane:

Resolving Script Verification Errors

If the script verification utility does not find any syntax errorsin thefile, it displaysno
output on the screen. If errorsare found, this command creates a screen display listing
syntax errors and the line number on which they were found. Listing 7-8 provides an
example of a script file containing errors.

BEA MessageQ Programmer’s Guide 7-25



7 Using the Script Facility

7-26

Listing 7-8 Sample Script File with Errors

REPEAT 2 1Send this nmessage tw ce
MSG SOURCE = 34,1 TARGET = 35,1
CLASS = MATERI ALS
DX 1, 2, 3
EQOM
DELAY 10 ! Del ay 10 seconds before sending the repeat nessage

Listing 7-9 shows the output displayed on the screen when the script containing errors
is processed.

Listing 7-9 Sample Output of Script File Verification Utility

YUPANMSCRI PT- E- | VMSGTARG I nvalid nessage target name at line 3
- PAMSCRI PT- E- AMBI G, Anbi guous keyword
YUPANMSCRI PT- E- NOMBGTO, M ssing TARGET phrase in nessage definition

at line 5

YUPANMSCRI PT- E- NOMSGTYPE, M ssing TYPE phrase in nessage definition
at line 5

%PANMSCRI PT- E- | VDATATYPE, Invalid data type (expecting B, W or L)
at line 5

%PAMSCRI PT- E- M SENDR, Unbal anced REPEAT at line 1, m ssing closing
ENDR command
%PAMSCRI PT- E- ERRORS, Errors encountered in script source file

Usethe line numbers and error messages to identify the incorrect syntax in your script
file. Use atext editor to make the corrections and verify the script again to ensure that
all of the errorsidentified are corrected.

BEA MessageQ Programmer’s Guide



CHAPTER

8 PAMS Application
Programming Interface

Because the BEA MessageQ application programming interface (API) is portable, the
API isdocumented once for all supported platforms. This chapter describes all BEA
MessageQ callable servicesin alphabetical order using a standard description format.

BEA MessageQ API Description Format

The beginning of each description contains the entry-point name and a brief
description of the function performed. Table 8-1 describes the sections in the
description of each callable service.

Table 8-1 Callable Service Description Format

In the section You will find . ..
entitled . ..
Syntax The syntax for using the callable service with the entry-point

nameand argument list. Square brackets([ ] ) indicateoptional
arguments to the service.

Arguments The data type, passing mechanism, C language prototype, and
access for each argument.

Argument Definitions Detailed information on how to specify each argument.

Description More detailed information on how to use the callable service.

BEA MessageQ Programmer’s Guide 8-1



8 PAMS Application Programming Interface

Table 8-1 Callable Service Description Format

In the section You will find ...

entitled . . .

Return Values The return codes with the platforms on which they are
supported.

See Also A list of related callable services.

Example A sample program illustrating the use of the callable service.

These sample programs are availabl e in the examples directory
of the BEA MessageQ media kit.

BEA MessageQ API Data Types

BEA MessageQ API arguments use data types defined by the C programming
language and some data types defined by BEA MessageQ software. Data types such
asshort, unsi gned short, andchar aredatatypes defined by the C programming
language. BEA MessageQ data types such as q_addr ess and the PSB and
show_buf f er structures are defined inthep_entry. h includefile.

BEA MessageQ supportsdatatype definitionsfor signed and unsigned longwords. The

i nt 32 datatype defined by BEA MessageQ isa32-bit signed integer. Thei nt 32 data
type replacesthe use of theinteger datatypelong, the size of whichisoperating system
dependent. Thei nt 32 datatype definition guarantees a consi stent definition across all
platforms and was added to accommodate next generation 64-bit architectures such as
Compag's Alpha AXP systems. Thent 32 data type designates a 32-bit unsigned
integer and replaces the use of unsigned long.

Note: Thei nt 32 andui nt 32 data type definitions are not available on BEA
MessageQ Version 2.0 platforms. BEA MessageQ Version 2.0 software use:s
the standard signed longword and unsigned longword data types defined by
the C programming language.

8-2 BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

pams_attach_q

Connects an application program to the BEA MessageQ message queuing bus by
attaching it to amessage queue. An application must successfully executethisfunction
before it can send and receive messages. When an application uses this function to
attach to a queue, it becomes the owner of the queue. Only one application program
can attach to aprimary queue and read messages from it. When an application attaches
to apermanent primary queue defined with secondary queue attachments, the
secondary queues are also attached by this function.

Syntax int32 pams_attach_q ( attach_node, q_attached, [qg_type], [q_nang],
[g_nane_l en], [nane_space list], [name_space_list _len], [tineout],
[nullarg_2], [nullarg_3] )
Arguments
Table 8-2
Argument Data Type M echanism Prototype Access
attach_node int32 reference int32 * passed
g_attached g_address reference g_address * returned
[q_type] int32 reference int32 * passed
[ g_nane] char reference char * passed
[ g_nane_l en] int32 reference int32 * passed
[ nane_space_l i st] int32 reference int32 passed
array array *
[ nane_space_list_len] int32 reference int32 * passed
[timeout] int32 reference int32 * passed
[nul larg_2] char reference char * passed
[nul larg_3] char reference char * passed
Argument  attach_mode
Definitions

Supplies the mode for attaching the application to a message queue. The three
predefined constants for this argument are:

BEA MessageQ Programmer’s Guide 8-3



8 PAMS Application Programming Interface

8-4

B PSYM ATTACH BY_ NAME—Attach by name
m PSYM ATTACH BY_NUMBER—ALttach by number
B PSYM ATTACH TEMPORARY—ALttach as a temporary queue

Whenat t ach_node isPSYM ATTACH BY_NAME, the application attaches to the queue
identified by the specified queue or alias name. BEA MessageQ finds the queue by
implicitly performing apans_| ocat e_q call for the specified_nane. The procedure
that BEA MessageQ uses is determined byntree_space_| i st argument.

g_attached

Receives the queue address from BEA MessageQ when an application has
successfully attached to a message queue.

q_type

Supplies the queue type for the attachment. The two predefined constants for this
argument are:

m PSYM ATTACH PQ—Primary queue (default)
m PSYM ATTACH SQ—Secondary queue
g_name

Supplies the name or number of the permanent queue to attach to the application if tf
att ach_node argument specifies attachment by queue name or queue number. QueL
names are alphanumeric strings with no embedded spaces and allow the following
special characters: underscorg, fiyphen {), and dollar sign¥).

References to queue names are case sensitive and must match the queue name ent
in the group initialization file. Some example queue namesaRE 1,
hi gh-priority, andw$Queue.

Theqg_name argument has the following dependencies withathteach_node
argument:

m Iftheattach_node argument iSYM ATTACH _BY_NAME, theq_name argument
must contain a valid queue name as specified during BEA MessageQ group
configuration.

m Iftheattach_node argument iSYM ATTACH_BY_NUMBER, theq_nane
argument is specified as an ASCII string of 1 to 3 numeric characters
representing the queue number.

BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

m If theattach_node argument is PSYM ATTACH TEMPCORARY, theq_name
argument is not used and should be specified by passing a value of 0.

g_hame len

Supplies the number of charactersin the q_name argument. The maximum string
length on UNIX, Windows NT, and OpenVMS serversis 255 characters. For all other
BEA MessageQ environments, the maximum string length is 31.

name_space_list

Supplies alist of name tables to search when the at t ach_node argument
PSYM_ATTACH_BY_NAME is specified.

If thename_space_l i st isspecified, then the name_space_I i st _| en argument
must also be specified. If this argument is unspecified, then PSEL_TBL_GRP isthe
default.

Possible valuesin aname_space_l i st argument are as follows:

Location It Represents  Symbolic Value

Process cache PSEL_TBL_PRCC
Group/group cache PSEL_TBL_GRP
Global name space PSEL_TBL_BUS

(or PSEL_TBL_BUS_MEDI UM
or PSEL_TBL_BUS_LOW

Thenane_space_| i st argument identifies the scope of the name as follows:

m Toidentify alocal queue reference or a queue, an application must include
PSEL_TBL_GRPinnane_space_| i st. (Do not specify PSEL_TBL_BUS in the list
because it would identify a global queue reference.)

m Toidentify aglobal queue reference, include PSEL_TBL_BUS (or
PSEL_TBL_BUS_MEDI UMor PSEL_TBL_BUS LOW inthe name_space_| i st
argument and specify its pathname, either explicitly or implicitly. If the g_name
argument contains any slashes (/ ), or periods (. ), BEA MessageQ treatsit asa
pathname. Otherwise, BEA MessageQ treats g_nane as a name and adds the
DEFAULT_NAMESPACE_PATH to the name to create the pathname to lookup. (The

BEA MessageQ Programmer’s Guide 8-5



8 PAMS Application Programming Interface

8-6

DEFAULT_NAMESPACE_PATH is set in the %°ROFI LE section of the group
initialization file.)

Thename_space_l i st argument also controls the cache access as follows.

m To cause the lookup of alocal queue reference or queue nameto check the

process cache before looking in the group cache, specify the name_space_l i st
argument as PSEL_TBL_GRP and PSEL_TBL_PROC.

m To cause the lookup of aglobal queue reference to check the process cache and
then the group cache before looking into the global name space, specify
PSEL_TBL_BUS(or PSEL_TBL_BUS_LOWor PSEL_TBL_BUS MEDI UM),
PSEL_TBL_GRP and PSEL_TBL_PRCC.

To lookup all cachesin the global name space before looking in the master
database, specify PSEL_TBL_BUS LOWinstead of PSEL_TBL_BUS.

To lookup only the slower but more up-to-date caches in the global name space
before looking in the master database, specify PSEL_TBL_BUS_MEDI UMinstead
of PSEL_TBL_BUS.

For more information on dynamic binding of queue addresses, see the Using Naming
topic.

name_space list_len

Suppliesthe number of entriesin the nane_space_I i st argument. If the
name_space_l i st_| en argumentiszero, BEA MessageQ usesPSEL_TBL_GRP asthe
default in the nane_space_| i st argument.

timeout

The number of PAM S time units (1/10 second intervals) to alow for the attach to
complete. If a zero is specified, the groupTSACH_TMO property is used. If the
ATTACH_TMO property is also zero, 600 is used.

nullarg_2

Reserved for BEA MessageQ internal use as a placeholder argument. This argumet
must be supplied as a null pointer.

nullarg 3

Reserved for BEA MessageQ internal use as a placeholder argument. This argumel
must be supplied as a null pointer.

BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Description

Before an application can use the pans_at t ach_q function, the BEA MessageQ
message queuing busmust be configured. A BEA MessageQ message queuing busis
a collection of one or more BEA MessageQ message queuing groups. A message
queuing group is a collection of message queues that reside on a system, share global
memory sections and files, and are served by the same server processes. A BEA

M essageQ message queue is an area of memory or disk where messages are stored and
retrieved. Seethe installation and configuration guide for the platform you are using to
learn how to configure the BEA MessageQ environment.

To receive BEA MessageQ messages, an application must attach to at least one
message queue. The pans_at t ach_q function enables an application to attach in the
following ways:

m An application can attach to a queue by specifying anumber. To attach by
number, the message queue must be configured in the group definition.
Attaching by number enables an application to attach to a specific queue, send
messages to the queue, and retrieve messages sent to that queue.

m An application can attach to a queue by specifying the queue name. To attach by
name, the message queue must be configured in the group definition. Attaching
by name enables an application to attach to a specific queue, send messages to
the queue, and retrieve messages sent to that queue. In addition, attaching by
name eliminates the need to change code or recompile if the queue address
changes. Therefore, attaching by name protects applications from changesin the
BEA MessageQ environment configuration.

m An application can attach to atempor ary queue. To attach to a temporary
queue, the application does not have to give a specific queue hame or number.
BEA MessageQ will assign a queue and return the number of the queue which
has been assigned. Temporary queues allow an application to perform messaging
without knowing configuration details of the group.

Applications can specify an attachment as primary or secondary. All applications must
have a primary queue. In addition, applications can attach to one or more secondary
gueues. Primary queues can be configured in the group definition as the owners of
secondary queues. When an application attaches to a primary queue that is the owner
of secondary queues, the application isautomatically attached to the secondary queues
at the sametimeit is attached to the primary queue.

In addition, an application can attach to a multireader queue. A multireader queue can
be read by many applications and is configured as part of the group definition.

BEA MessageQ Programmer’s Guide 8-7



8 PAMS Application Programming Interface

Return Values

8-8

Table 8-3

Return Code Platform  Description

PAMS__BADARGLI ST OpenVMS  Wrong number of call arguments has been
passed to this function.

PAMS__ BADDECLARE All Queue has already been attached to this
application.

PAVS__ BADNAME All Invalid name string was specified.

PAMS__ BADPARAM All Invalid argument in the argument list.

PAMS__ BADPROCNUM All Queue number out of range.

PAMS__ BADQTYPE All Invalid queue type.

PAMS__ BADTMPPROC OpenVMS  Invalid temporary queue number.

PAMS__ DECLARED All The queue number is already attached to
another application or process.

PAMS__ DUPL QNAMVE OpenVMS  Duplicate queue name.

PAMS__NETERROR Clients Network error resulted in a
communications link abort.

PAMS__NOACCESS All No access to the resource. The address of
the specified nameiseither O or itisin
another group.

PAMS__NOACL All The queue access control file could not be
found.

PAMS__NOOBJECT All No such queue name. For agloba queue
reference, this error can be caused by abad
default pathname in the group
configuration file.

PAMS__NOQUOTA OpenVMS Insufficient receive message or byte quota
to attach.

PAMS__NOTBOUND All The queue name is not bound to an

BEA MessageQ Programmer’s Guide

address.



BEA MessageQ API Data Types

Table 8-3

Return Code Platform  Description

PAVS___NOTMRQ OpenVMS  Attempting to attach to Multi-reader
Queue and queue typeis hot an MRQ.

PAVMS__NOTPRI MARYQ All Queue name or humber is not a primary
queue.

PAMS__ NOTSECONDARYQ All Queue name or number is not a secondary
queue.

PAVS__ PAMSDOMN All The specified BEA MessageQ group isnot
running.

PAVS__ PREVCALLBUSY Clients The previous call to CLS has not been
completed.

PAVS__ PNUWNCEXI ST OpenVMS  Target queue name or number does not
exist.

PAVS__ RESRCFAI L All Failed to alocate resources.

PAMS__ SUCCESS All Successful completion of an action.

PAVS__ TI MEQUT All The timeout period specified has expired.

See Also m pans_detach _q
H pans_exit

m pans_locate g

Examples Attach by Name—this example illustrates how to attach to a queue by name.

The name éxanpl e_qg_1" must be defined in your group configuration

information as a primary queue or as a local queue alias or a primary queue. The
complete code example calledat t nam c is contained in the examples

directory.

m Attach by Number—this example illustrates how to attach to a queue by
number. A queue numbered 1 must be defined in your group configuration
information file as a primary queue. The complete code example called
x_attnum c is contained in the examples directory.

BEA MessageQ Programmer’s Guide 8-9



8 PAMS Application Programming Interface

m Attach as Temporary—this example illustrates how to attach as a temporary
gueue. The complete code example catledt t t np. c is contained in the
examples directory.

8-10 BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

pams_bind_q

Dynamically associates a queue address to aqueue reference at run-time. This enables
aserver application to dynamically sign up to service aqueue alias at run-time. Thus,
an end user can access a service without having to be aware that its normal host

computer is down and that the service is being provided from another host computer.

Syntax int32 pams_bind_q (g_addr, g_alias, g_alias_|len, [name_space_list],
[ name_space_list _len], [timeout], [nullarg_1]);
Arguments
Table 8-4
Argument DataType Mechanism  Prototype Access
g_addr g_address reference g_address * passed
g_alias char reference char * passed
g_alias_len int32 reference int32 * passed
[ nane_space_l i st] int32 reference int32 passed
array array *
[ nane_space_list_len] int32 reference int32 * passed
[timeout] int32 reference int32 * passed
[nul larg_1] char reference char * passed

Argument
Definitions

g_addr

The value specified to this argument controls whether the queue address is bound or

unbound:

m |f the queue addressis specified, thisfunction bindsittoaq_al i as.

m If Oisspecified, this function unbindsthe q_al i as from its queue address. The
calling application must be bound to q_al i as to set it back to zero.

BEA MessageQ Programmer’s Guide 8-11



8 PAMS Application Programming Interface

8-12

g_alias

Identifiesaglobal queuereference or alocal queue reference. The procedure that BEA
MessageQ uses to find this alias is controlled by the name_space_l i st argument,
which is described below.

g_alias len
Specifies the number of charactersing_al i as.
name_space list

If specified, identifies a one-entry list containing either PSEL_TBL_BUS or
PSEL_TBL_GRP.

Toidentify alocal queue reference, an application must have a name space list of
PSEL_TBL_GRP and passitsnameintheq_al i as argument. Toidentify aglobal queue
reference, an application must have a name space list of PSEL_TBL_BUS and specify
its pathname, either explicitly or implicitly:

m If theq_al i as argument contains any slashes(/ ), or periods (. ), BEA
MessageQ treatsthe q_al i as as a pathname.

m Otherwise, BEA MessageQ treatsq_al i as as a hame and adds the group’s
DEFAULT_NAMESPACE_PATH to the name to create the pathname to lookup. (The
DEFAULT NAMESPACE_PATH is set in the#ROFI LE section of the initialization
file.)

For more information on dynamic binding of queue addresses, see the Using Namin
topic.

name_space list_len

Specifies the number of entriesisme_space_| i st argument. The number of entries
is either 0 or 1. If the number of entries is 0 (indicating thah#ine_space_l i st is
omitted),PSEL_TBL_GRP is assumed.

timeout

Specifies the number of PAMS time units (1/10 second intervals) to allow for the bind
to complete. If 0 is specified, the grouBTACH_TMO property is used. If the
ATTACH_TMO property is also 0, 600 is used.

BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Description

Return Values

nullarg 1

Reserved for BEA MessageQ internal use as a placeholder argument. This argument
must be supplied as anull pointer.

Before an application can call pans_bi nd_q, it must be attached to the specified queue
address. Listing 8-1 showsan attach before the bind call and istypical usage of thetwo
functions together:

Listing 8-1 Example of Using pams_bind_q

int 32 node = PSYM ATTACH_BY_NUMBER,;
int32 g_type = PSYM ATTACH PQ
int32 | en=1;
int32 status;
gq_address qid;

status = pans_attach_qg(&node, &qi d, &j_type, "2", & en, 0,0,0, 0, 0);

if (status == PAMS__ SUCCESS {
i nt 32 ns=PSEL_TBL_BUS;
int32 ns_len=1;
len = strlien("Q@");

status = pans_bind _q(&qi d,"@", & en, &ns, &ns_l en, 0, 0);
}

Table 8-5

Return Code Platform  Description

PAVS__BADARGLI ST All Invalid number of call arguments.

PAVS__ BADNAME All Name contains bad characters.

PAVS__ BADPARAM All The name spacelist isinvalid.

PAVMS__ BOUND All Returned if anon-zero valuefor q_addr
is passed and the specifiedg_al i as is
aready assigned to a queue address.

BEA MessageQ Programmer’s Guide 8-13



8 PAMS Application Programming Interface

8-14

Table 8-5

Return Code Platform  Description

PAMS__ DUPL QNAVE All Duplicate queue name.

PAMS__FAI L All Operation failed.

PAMS  NOACCESS All No access to the resource. The address of
the specified nameiseither O or itisin
another group.

PAMS __NOOBJECT All For aglobal reference, this error can be
caused by a bad default pathname in the
group configuration file.

PAMS__NOTBOUND All The queue name is not bound to an
address.

PAMS__NOTDCL All Not attached to BEA MessageQ.

PAMS__ PANSDOVWN All The specified BEA MessageQ group ishot
running.

PAMS__ SUCCESS All Indicates successful completion.

PAVS__TI MEQUT All The timeout period specified has expired.
Inthissituation, BEA MessageQinternally
unbinds the specified queue alias.
Subsequent pans_bi nd_q callsto the
same name will return the
PAMS__UNBI NDI NGerror until the
internal unbind succeeds.

PAMS__UNBI NDI NG All The bind cannot be done because BEA

MessageQ is still in the process of has
unbinding the old binding.

See Also m pans_attach g

m pans_|l ocate_q

Example  The pans_bi nd_g example illustrates how to bind a queue reference to a queue
address at runtime. The complete code example called x_bi nd. ¢ iscontained in the

examples directory.

BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

pams_cancel_get

Syntax

Arguments

Argument
Definition

Return Values

See Also

Cancels all pending pans_get _nmsga requests that match the value specified in the
sel _filter argument. When apending pans_get _nsga request is canceled, the
PAMS Status Block (PSB) delivery statusis set to PAMS__ CANCEL and the specified
action routine is queued. The pans_cancel _get function waits until completion to
allow for proper synchronization between the pans_cancel _get function and the
request for pans_get _nsga functions. Any outstanding pans_get _nsga function
requests are canceled by the panms_exi t function or at image exit.

int32 pans_cancel _get ( sel _filter )

Table 8-6
Argument DataType Mechanism Prototype Access
sel _filter int32 reference int32 * passed
sel_filter

Supplies the criteria that enables the application to selectively cancel outstanding
pams_get _nsga requests. For adescription of thesel _fi | t er argument, seethe
pams_get _nsg function. For adescription of how to create acomplex selection filter,
seethepans_set _sel ect function.

Table 8-7
Return Code Platform  Description
PAVS__BADARGLI ST OpenVMS  Argument list isinvalid.
PAMS__ SUCCESS OpenVMS  Indicates successful completion.
SS$_EXQUOTA OpenVMS  Process has exceeded its asynchronous

system trap (AST) quota.

m pans_cancel _sel ect
® pans_get _nsga

m pans_set _sel ect

BEA MessageQ Programmer’s Guide 8-15



8 PAMS Application Programming Interface

pams_cancel_select

Syntax

Arguments

Argument
Definitions

Return Values

Releases the selection array and index handle associated with a previously generated
selection mask. Ani ndex_handl e and associated sel ection mask are created using the
pams_set _sel ect function. When the selection mask is used in the OpenVMS
environment with asynchronous read requests, this function also cancels any pending
pams_get _nsga requests that use the referenced i ndex_handl e.

i nt 32 pans_cancel _sel ect ( index_handl e )

Table 8-8
Argument Data Type Mechanism  Prototype Access
i ndex_handl e i nt 32 reference int32 * passed
index_handle

Suppliesthe index handle of the selection mask to cancel. Thei ndex_handl e is
returned by the pams_set _sel ect function.

Table 8-9

Return Code Platform Description

PAMS__BADARGLI ST OpenVMS Invalid number of call arguments.

PAMS BADPARAM UNIX The value of the selection index is null.

Windows NT

PAMS __BADSELI DX All Invalid or undefined selective receive
index.

PAMS  NETERROR Clients Network error resulted in a
communications link abort.

PAMS__ NOTDCL All Process has not been attached to BEA
MessageQ.

PAMS__ PANSDOVWN UNIX The specified BEA MessageQ group isnot

WindowsNT  running.

8-16 BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Table 8-9
Return Code Platform Description
PAVS__ PREVCALLBUSY Clients Previous call to CLS has not been
completed.
PAMS__ SUCCESS All Indicates successful completion.

See Also m pans_get _nsga

m pans_set _sel ect

BEA MessageQ Programmer’s Guide 8-17



8 PAMS Application Programming Interface

pams_cancel_timer

Syntax

Arguments

Argument
Definitions

Return Values

Deletesthe BEA MessageQ timer identified by thet i mer _i d argument that is passed
tothisfunction. All expired timerswith the selected identification code that are waiting
in the message queue are purged and are not delivered.

int32 pans_cancel _tinmer ( timer_id)

Table 8-10
Argument Data Type Mechanism  Prototype Access
timer id int32 reference int32 * passed
timer_id

Suppliesthetimer ID of the timer to cancel. Theti mer _i d isreturned by the
pams_set _ti mer function.

Table 8-11

Return Code Platform Description

PAMS__BADARGLI ST OpenVMS Invalid number of arguments.

PAMS__ BADPARAM All Thet i mer _i d argument wasspecified as
null.

PAVS__| NVALI DNUM All The application has supplied an invalid
valuefortheti mer _i d.

PAMS__NETERROR Clients Network error resulted in a
communications link abort.

PAMS__NOTDCL All The application has not attached to a
queue.

PAVS__ PANSDOVWN UNIX The specified BEA MessageQ group isnot

WindowsNT  running.
PAMS__ PREVCALLBUSY Clients Previous cal to CLS has not been

completed.

8-18 BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Table 8-11
Return Code Platform Description
PAMS__ RESRCFAI L All Insufficient resources to complete the
operation.
PAMS__ SUCCESS All Indicates successful completion.

See Also m pans_set _timer

BEA MessageQ Programmer’s Guide 8-19



8 PAMS Application Programming Interface

pams_close_jrn

Closesthe MRS journal file associated with thej r n_handl e argument. The two types
of journal files are dead | etter journal (DLJ) and postconfirmation journa (PCJ). See
Using Recoverable Messaging for adescription of how to use the BEA MessageQ
message recovery system.

Syntax int32 pams_close jrn ( jrn_handle )

Arguments
Table 8-12
Argument Data Type Mechanism  Prototype Access
jrn_handl e int32 reference int32 * passed

Argument  Jrn_handle

Definitions ) ] ] ]
Suppliesthe journal handle of the message recovery journal file to close. The

j rn_handl e isreturned by the panms_open_j r n function.

Return Values

Table 8-13
Return Code Platform  Description
PAMS__BADARGLI ST OpenVMS Invalid number of arguments.
PAVS__| NVJH OpenVMS  The application has supplied an invalid
journa handle.
PAMS__ SUCCESS OpenVMS  Indicates successful completion.

See Also m pans_confirmnsg
H pans_open_jrn

m pans_read_ jrn

8-20 BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

pams_confirm_msg

Confirms receipt of a message that requires explicit confirmation. This can be a
recoverable message sent to a queue that is configured for explicit confirmation or a
message sent using the ACK delivery mode which must be explicitly confirmed upon
receipt. Applications should examine the PSB status field of each message received to
determine if the message requires explicit confirmation.

When arecoverable message is received, the application must call the

pams_confi rm nsg function in order to delete it from the message recovery journal
disk storage. If receipt of arecoverable message is not confirmed, the message
continuesto be stored by therecovery system and will be redelivered if the application
detaches and then reattaches to the queue.

BEA MessageQ can confirm receipt of arecoverable message automatically when the
next consecutive message in the recovery journal is delivered. Thisfeatureis called
implicit confirmation.

All queues must be configured for implicit or explicit confirmation. For complete
information on how to configure message queues, see the installation and
configuration guide for your system.

Successfully delivered recoverable messages can be recorded in the postconfirmation
journa (PCJ). Thepans_confirm nsg function usesthef orce_j argument to write
messages to the PCJfileif the system is not currently configured to store them. Note
that successfully delivered recoverable messages cannot be written to the PCJ file
unlessthey are explicitly confirmed using the pams_confi rm msg function.

Syntax int32 pams_confirmmsg ( nmsg_seq_num confirmtion_status,
force j )
Arguments
Table 8-14
Argument DataType Mechanism  Prototype Access
nmsg_seq_num ui nt 32 reference uint32 array * passed
array
confirmation_status int32 reference int32 * passed
force_j char reference char * passed

BEA MessageQ Programmer’s Guide 8-21



8 PAMS Application Programming Interface

Argument
Definitions

Description

msg_seq_num

Supplies the message sequence number of the recoverable message being confirmed.
The message sequence number is generated by the BEA MessageQ message recovery
system for each recoverable message. This value is passed to the receiver program in
the PSB of the pans_get _nmsg function when it reads each recoverable message.

confirmation_status

Suppliesthe confirmation status val ue stored with the message in the postconfirmation
journal (PCJ) file. Thevalueis set by the calling application. See the Using
Recoverable Messaging topic for more information on using the PCJfile.

force j

Suppliesthejournaling action for this message. Following are the predefined constants
for this argument:

Symbol Description

PDEL_DEFAULT_JRN Enables writing the message to the PCJfile if the journaling is
configured in the group initialization file.

PDEL_FORCE_JRN Enableswriting to the PCJonly if journaling isconfigured. It is
not possible to write messages to the PCJ on UNIX and
Windows NT systems if a path was not defined for the PCJin
the group configuration information.

PDEL_NO_JRN Disables journaling regardless of whether journaling is
configured.

The PSB status codes associated with recoverable message delivery are

PAVS__ CONFI RVREQand PAMS__ POSSDUPL. The PAMS__ CONFI RVREQ PSB status
codeindicatesthat it isthe first time the application received the recoverable message.
The PAMS__POSSDUPL status code indicates that the message was retrieved from the
recovery journal and may have been sent previously. This status code allows the
application to take extra precautions to handle duplicate messages if necessary.

8-22  BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Return Values

See Also

The PSB also contains a sequence number that uniquely identifies the message. The
pams_confi rm nsg function requires this sequence number. If one of these status
codes is present and the pans_conf i r m nmsg function is not called, the message will
continueto be stored by the message recovery system and will be delivered again if the

application exits and then reattaches.

Table 8-15
Return Code Platform Description
PAVS___BADARGLI ST OpenVMS Invalid number of arguments.
PAVS__ BADPARAM All Bad argument value.
PAMS__ BADSEQ All Journal sequence number isnot known

to the Message Recovery Services
(MRS).

PAVS__DQF DEVICE FAIL  OpenVMS

1/0 error writing to the destination
queue file for the target queue.

PAVMS__ NETERROR Clients Network error resulted in a
communications link abort.
PAVMS___NOVRS All MRS s not available.
PAMS___NOTDCL All Process is not attached to BEA
M essageQ.
PAVS___NOTJRN All Message is not written to the PCJfile.
PAVS___ NOTSUPPORTED OpenVMS Attached to the dead letter queue.
PAVS__ PAMSDOMN UNIX Thespecified BEA MessageQ groupis
Windows NT not running.
PAVS__ PREVCALLBUSY Clients Previous call to CLS has not been
completed.
PAVS__ RESRCFAI L OpenVMS BEA MessageQ resources exhausted.
PAMS__ SUCCESS All Indicates successful completion.

B pans_get _nsg

BEA MessageQ Programmer’s Guide 8-23



8 PAMS Application Programming Interface

m pans_get _nsga
m pans_get _nmsgw
H pans_put _nsg
Example  Confirm Receipt of Recover able M essages

This example demonstrates using recoverable messaging. It attachesto queue_1, puts
somerecoverable messagesto queue_2, exits, attachesto queue_2, getsthe messages,
prints them out, then exits.

The queues namedteue_1" and “queue_2" are defined in your initialization file.
On OpenVMS systems, you must set up a DQRfieue_2. The complete code
example calleat_recovr. c is contained in the examples directory.

8-24  BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

pams_detach_q

Syntax

Arguments

Argument
Definitions

Detaches a selected message queue or all of the appli cation’s message queues from the
message queuing bus. When an application detaches from its primary queue, this
function automatically detaches all secondary queue attachments defined for the
primary queue. When the last message queue has been detached, the application is
automatically detached from the BEA MessageQ message queuing bus.

int32 pans_detach_q ( g, detach_opt _list, detach_opt_Ien,
nmsgs_flushed )

Table 8-16
Argument DataType Mechanism Prototype Access
q g_address reference g_address * passed
detach_opt _Ii st int32 reference int32 * passed
array
detach_opt _| en int32 reference int32 * passed
msg_fl ushed int32 reference int32 * returned
q

Supplies the queue address of the queue to be detached. This function can be used to
detach primary, secondary, and multireader queues.

detach_opt_list

Supplies an array of i nt 32 values used to control how the queue is detached. The
predefined constants for this argument are:

m PSYM NOFLUSH Q—Detaches the queue without flushing the pending messages
stored in memory. The default action is to flush pending messages in the queue

before it is detached. Messages are never flushed from multireader queues.

m PSYM DETACH ALL—Detaches all of the application's message queues from the
message queuing bus. Using this constant performs the same action as calling

thepans_exit function.

BEA MessageQ Programmer’s Guide 8-25



8 PAMS Application Programming Interface

Description

Return Values

m PSYM CANCEL_SEL_MASK—Cancels all selection masks that reference the queue
or queues that you are detaching. If you do not select this option and you do not
cancel selection masks, BEA MessageQ invalidates all selection masks that
reference the queue or queues that you are detaching. You must cancel the
invalidated selection masks using tiears_cancel _sel ect function.

detach_opt_len

Supplies the number oht 32 values in thelet ach_opt _I i st array. The maximum
number ofi nt 32 longwords is 32,767.

msgs flushed

Receives the number of messages that were flushed from the queue. Message cout
statistics are enabled on all systems by default; therefore, it is not necessary to enat
statistics on UNIX and Windows NT systems in order to properly return this value.

If you are using implicit confirmation with recoverable messaging, you must ensure
that the last message is confirmed before:

m Detaching from the queue which received the message by calling
pans_det ach_q

m Detaching from the message queuing bus by cadlémg_exi t
m Exiting your application

If you do not ensure that the last message was confirmed before detaching or exiting
the message will be redelivered when the queue is reattached. The easiest method
ensure confirmation is to save the PSB delivery status of the last message received
check it for the required confirmation status, and then exit after the message has be
confirmed.

Table 8-17
Return Code Platform  Description
PAMS__BADARGLI ST OpenVMS  Invalid number of arguments.
PAMS__ BADPARAM All Invalid det ach_opt _Ii st.
PAMS__ DETACHED All Process has detached from BEA

MessageQ.

8-26 BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Table 8-17

Return Code Platform  Description

PAVMS__ NETERROR Clients Network error resulted in a
communications link abort.

PAMS___NOTDCL All Not attached to BEA MessageQ.

PAVS__ PREVCALLBUSY Clients Previous call to CLS has not been
completed.

PAMS__ PNUWNCEXI ST All Invalid queue address or queue not owned
by process.

PAMS__ SUCCESS All Queue successfully detached.

SeeAlso m pans_attach g

H pans_exit

BEA MessageQ Programmer’s Guide 8-27



8 PAMS Application Programming Interface

pams_exit

Syntax
Arguments

Description

Return Values

Terminates al attachments between the application and the BEA MessageQ message
queuing bus. All pending messages in temporary queues and permanent queues which
are not permanently active multi-reader queues are discarded. Only the messages
pending in permanently active multi-reader queues areretained. To retain messagesin
permanently active queues, call pans_det ach_q with option PSYM_NOFLUSH _Q
before caling pans_exi t .

int32 pans_exit (void)
None.

If you are using implicit confirmation with recoverable messaging, you must ensure
that the last message is confirmed before:

m Detaching from the queue which received the message by calling
pans_det ach_q

m Detaching from the message queuing bus by calling pans_exi t
m Exiting your application

If you do not ensure that the last message was confirmed before detaching or exiting,
the message will be redelivered when the queue is reattached. The easiest method to
ensure confirmation isto save the PSB delivery status of the last message received,
check it for the required confirmation status, and then exit after the message has been
confirmed.

Table 8-18
Return Code Platform  Description
PAMS__NETERROR OpenVMS  Network error resulted in a
Client communications link abort.
PAMS__NOTDCL OpenVMS  Not attached to BEA MessageQ.
PAMS__PREVCALLBUSY OpenVMS  Previous call to CLS has not been
Client completed.
PAMS__ PNUVNOEXI ST OpenVMS Invalid queue address or queue not owned
by process.

8-28  BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

See Also

Example

Table 8-18
Return Code Platform  Description
PAMS__ SUCCESS All Indicates successful completion.

m pans_attach_q

m pans_detach_q
Exit the M essage Queuing Bus

This example shows how to use thepams_exi t function. The complete code example
called x_exi t . c iscontained in the examples directory.

BEA MessageQ Programmer’s Guide 8-29



8 PAMS Application Programming Interface

pams_get_msg

Retrievesthe next available message from a selected queue and movesit to thelocation
specifiedinthensg_ar ea argument. When no selection filter is specified, the function
returns the next available message in first-inffirst-out (FIFO) order based on message
priority to the buffer specified in the nsg_ar ea argument. Priority ranges from 0
(lowest priority) to 99 (highest priority). For example, priority 1 messages are aways
placed before priority 0 messages. Messages are placed in first-in/first out order by
message priority. If aselection filter is specified, then only messages that meet the
selection criteria are retrieved. If no messages are available or meet the selection
criteria, then the return status is PAMS__ NOMORENSG.

Applications should check the PSB status field of each message to determineif the
message was sent with arecoverable delivery mode. If an application receives a
recoverable message, it must call the pams_conf i rm nsg function to deleteit from
the message recovery journal disk storage. If receipt of arecoverable message is not
confirmed, the message continues to be stored by the recovery system and will be
redelivered if the application detaches and then reattaches to the queue.

Thereceiver program determines whether each message is a FML32 buffer or large
message by reading the msg_ar ea_| en argument. See the Sending and Receiving
BEA MessageQ Messages topic for moreinformation on working with FM L 32 buffers
and large messages.

Syntax int32 pams_get_nmsg ( nmsg_area, priority, source, class, type,
nsg_area_len, len_data, [sel _filter], [psb],
[ show buffer], [show buffer len], [large_area_ |en],
[large_size], [nullarg 3] )
Arguments
Table 8-19

Argument Data Type Mechanism  Prototype Access

nsg_area char reference char * returned

priority char reference char * passed

source g_address reference g_address * returned

cl ass short reference short * returned

type short reference short * returned

8-30 BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Table 8-19

Argument Data Type Mechanism  Prototype Access

nmsg_area_|l en short reference short * passed

| en_data short reference short* returned

[sel _filter] int32 reference int32 * passed

[ psb] struct psb reference struct psb * returned

[ show _buffer] struct reference struct returned

show buf f er show buffer *

[ show_buf fer_lI en] int32 reference int32 * passed

[large_area_| en] int32 reference int32 * passed/
returned

[large_si ze] int32 reference int32 * returned

[nul larg_3] char reference char * passed

Argument msg_area

Definitions
For static buffer-style messaging, receivesthe address of amemory region where BEA

M essageQ writes the contents of the retrieved message. For FML-style messaging or
when using double pointers, receives a pointer to the address of the message being
retrieved.

priority

Supplies the priority level for selective message reception. Priority ranges from 0
(lowest priority) to 99 (highest priority). If the priority issetto O, thepans_get _nsqw
function gets messages of any priority. If the priority is set to any value from 1 to 99,
the pams_get _nsqw function gets only messages of that priority.

source

Receives adata structure containing the group 1D and queue number of the sender
program’s primary queue in the following format:

BEA MessageQ Programmer’s Guide 8-31



8 PAMS Application Programming Interface

longword (32 bits)

Group ID Queue Number

ZK9007AGE

class

Receives the class code of the retrieved message. The classis specified in the
pams_put _nsg function. BEA MessageQ supportsthe use of symbolic namesfor class
argument values. Symbolic class names should begin with MSG_CLAS . For
information on defining classsymboals, seethep_t ypecl . hincludefile. On UNIX and
WindowsNT systems, thep_t ypecl . h includefile cannot be edited. Y ou must create
an include file to define type and class symbols for use by your application.

Class symbolsreserved by BEA MessageQ are as follows:

Reserved Class Symbol Value
MBG_CLAS MRS 28

MBG CLAS PAMB 29
MB5G_CLAS_ETHERNET 100

MBG CLAS UCB 102

MBG_CLAS TUXEDO 31001

MSG_CLAS_TUXEDO TPSUCCESS 31002

MBG_CLAS_TUXEDO TPFAI L 31003

MBG_CLAS_ XXX 30000 through 32767 (except 31001-31003)

8-32 BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

type

Receives the type code of the retrieved message. The type is specified in the
pams_put _nsg function. BEA MessageQ supports the use of symbolic names for
t ype argument values. Symbolic type names begin with MSG_TYPE_. For specific
information on defining type symbols, seethe p_t ypecl . h includefile.

BEA MessageQ has reserved the symbol value range -1 through -5000. A zero value
for this argument indicates that no processing by message type is expected.

msg_area len

m  Supplies the size of the buffer (in bytes) for static message buffers of up to
32767 bytes. The msg_ar ea buffer is used to store the retrieved message.

m  For messages using double buffers, including FML 32 buffers, this argument
contains the symbol PSYM MSG_BUFFER_PTRto indicate that the message is a
pointer to the address of the message being retrieved. The nsg_ar ea buffer
contai ns the message pointer. The size of the message is returned in the
| ar ge_si ze argument. The nsg_ar ea buffer is used to store the retrieved
message. The | ar ge_ar ea_| en argument is used to supply the size of the
message buffer to receive the message. If the retrieved buffer is larger than the
space alocated, spaceis dynamically reallocated and the new buffer sizeis
stored inl arge_area_| en.

m For large messages (buffer-style messages larger than 32767 bytes), this
argument contains the symbol PSYM MSG_LARGE to indicate that the message
buffer is greater than 32K. The size of the message isreturned in the
| ar ge_si ze argument. The nsg_ar ea buffer is used to store the retrieved
message. The | ar ge_ar ea_| en argument is used to supply the size of the
message buffer to receive the large message.

len_data

For static buffer-style messaging with messages of up to 32767 bytes, this argument
receives the number of bytes retrieved from the message queue and stored in the area
specified by the nsg_ar ea argument. This field also receives the

PSYM MSG BUFFER_PTR symbol for double buffer and FML -style messages and
PSYM MSG_LARGE for buffer-style messages larger than 32767 bytes.

d_filter

Supplies the criterion to enable the application to selectively retrieve messages. The
argument contains one of the following selection criteria:

BEA MessageQ Programmer’s Guide 8-33



8 PAMS Application Programming Interface

8-34

m Default selection

m  Selection by message queue

m  Message attributes

m  Message source

m Compound selection using the pams_set _sel ect function

Thesel _fil ter argument is composed of two words as follows:

/ longword (32 bits) p

Select Mode Select Variable

ZK9033AGE

Default Selection

Enables applicationsto read messages from the queue based on the order in which they
arrived. The default selection, PSEL_DEFAULT, reads the next pending message from
the message queue. M essages are stored by priority and thenin FIFO order. To specify
this explicitly, bothwordsinthesel _filter argument should be set to 0.

Selection by Message Queue

Allows the application to retrieve messages based upon a queue type or combination
of queuetypes. This selection criteriais used to retrieve the first pending message that
matches the criteria on the first queue it encounters. FIFO ordering is maintained
within each queue. The predefined constants for this argument are as follows:

Table 8-20
Select Mode Select Variable Mode Description
PSEL_PQ 0 Enables the application to read from the
primary queue (PQ) only. The select variable
must equal 0.
PSEL_AQ Alternate queue Enables an application to read from an
number aternate queue (AQ) only. The queuetype can

be a secondary queue (SQ).

BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Table 8-20
Select Mode Select Variable Mode Description
PSEL_PQ_AQ Alternate queue Attemptsto selectively retrievefrom aprimary
number queue and then from an alternate queue.
PSEL_AQ PQ Alternate queue Attempts to selectively retrieve from an
number aternate queue and then from aprimary queue.
PSEL_TQ _PQ Alternate queue Attemptsto selectively retrieve messages from

number

atimer queue (TQ), and then from a primary
queue.

PSEL_TQ PQ_AQ

Alternate queue
number

Attemptsto sel ectively retrieve messages from
atimer queue (TQ), then from a primary
queue, and finally from an alternate queue.

PSEL_UCB

Retrieves messages only from the user
callback queues (UCB).

Selectionby  Enables the application to select messages based on the message type, class, or
Message  priority. The predefined constants for this argument are as follows:

Attribute
Table 8-21
Select Mode Select Variable M ode Description
PSEL_PQ TYPE Type Selects the first pending message from

the primary queue that matchesthe type
value in the select variable word.

PSEL_PQ CLASS Class

Selects the first pending message from
the primary queue that matches the
classvaluein the select variable word.

BEA MessageQ Programmer’s Guide 8-35



8 PAMS Application Programming Interface

Table 8-21
Select Mode Select Variable M ode Description
PSEL_PQ PRI PSEL_PRI _ANY Sel ectsthefirst pending message with a
PSEL_PRI _PO priority equal to an integer between 0
PSEL_PRI _P1 and 99 inclusive (or equd to the select
integer valuebetweenOand  variable value) from within the primary
99 queue. Specifying the direct integer
valueisthe preferred method of
selected messages by priority.

Using PSEL_PRI_ANY enablesthe
reading of any pending messages of all
priorities. Setting PSEL_PRI_PO
enablesthe application to retrieve
pending messages of priority O only.
Setting PSEL_PRI_P1 enablesthestrict
retrieval of pending messages with a
priority of 1.

Selectionby  Providesfor the selection of pending messages from primary and secondary queues,
Message Source by source group 1D, queue number, or both. The format for selection by source
follows:

longword (32 bits)

Group ID Queue Number

ZK9007AGE

Some examples of possiblesel _filter arguments and their actions are as follows:

sel_filter Argument Action

Zero or not specified No filtering of any messages. All messages can be retrieved.
Source q_addr ess Only those messages that have a matching q_addr ess are
retrieved.

8-36 BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Compound
Selection

sel_filter Argument Action

Selection mask created Only messages that exactly match the specified sel ection mask
withpans_set sel ect areretrieved.

Allows the application to formulate complex rules for the order in which the message
gueues are searched. The pams_set _sel ect function alowsthe application to create
custom selection masks that can be used in the low-order word of the sel _filter
argument. The format for compound selection follows:

/ longword (32 bits) y

PSEL_BY_MASK MASK_ID

ZK9034AGE
psb

Receives a PAMSS Status Block containing the final completion status. The psb
argument is used when sending or receiving recoverable messages. The PSB structure
stores the status information from the message recovery system and may be checked
after sending or receiving a message. The structure of the PSB is asfollows:

Table 8-22
Low High Contents Description
Byte Byte
0 1 Type PSB type
2 3 Call Dependent Currently not used.
4 7 PSB Delivery The compl etion status of the function. For

Status recoverable messages, this field contains
PAVS__ CONFI RVREQor
PAMS__ POSSDUPL. For nonrecoverable
messages, it may aso contain ava ue of
PAMS__ SUCCESS.

BEA MessageQ Programmer’s Guide 8-37



8 PAMS Application Programming Interface

Table 8-22
Low High Contents Description
Byte Byte
8 15 Message Sequence A unigue number assigned to a message
Number when it is sent and follows the message to
the destination PSB. This number isinput
to pans_confirm nsgtorelease a
recoverable message.
16 19 PSB UMA Status  Thisfield is not used for the
pans_get msg function.
20 23 Function Return Thisfield is not used for the
Status pans_get msg function.
24 31 Not Used Not used.
show_buffer

Receives additional information which BEA MessageQ extracts from the message
header. The structure of the show _buf f er argument is as follows:

Table 8-23

Longword Contents Description

0 Version The version of the show_buffer structure. Valid values
are asfollows:
10 =Version 1.0
20 = Version 2.0
50 = Version 5.0

1 Transfer Status The status code associated with the transfer of

show_buf f er informationintothe application’sbuffer.
Valid symbols are as follows:

PAMS__ SUCCESS—AII available information has been
transferred.

PAMS __ BUFFEROVF—Information was lost due to
receiver buffer overflow.

0—No message returned. There is no information to
transfer.

8-38 BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Table 8-23
Longword Contents Description
2 Transfer Size Thenumber of bytestransferred to the application buffer.
3 Flags A bit array showing the status of fieldsin the
show buf f er . A set bit indicatesavalid field, whilea
cleared bit indicatesindeterminable dataor the end of the
alocated show_buf f er memory. The symbols for the
flagsfield are as follows:
PSYM_SHOW VERSI ON
PSYM_SHOW STATUS
PSYM SHOW SI ZE
PSYM SHOW FLAGS
PSYM SHOW TARGET
PSYM SHOW ORI Gl NAL_TARGET
PSYM_SHOW SOURCE
PSYM SHOW ORI G NAL_ SOURCE
PSYM_SHOW DELI VERY
PSYM_SHOW PRI ORI TY
PSYM_SHOW ENDI AN
PSYM _SHOW CORRELATI ON_I D
4 Not Used Fills out the Control Section to its maximum 24 bytes.
5 Not Used Fills out the Control Section to its maximum 24 bytes.
6 Not Used Fills out the Control Section to its maximum 24 bytes.
7 Not Used Fills out the Control Section to its maximum 24 bytes.
8 Not Used Fills out the Control Section to its maximum 24 bytes.
9 Not Used Fills out the Control Section to its maximum 24 bytes.
10 Target The g_addr ess of the latest message target.
11 Original Target  Theq_addr ess of the original message target.
12 Source Theqg_addr ess of thelatest message source.
13 Original Source  Theq_addr ess of the original message.
14 Delivery Mode The delivery mode that was used to queue the message.

Thisisnot necessarily the delivery mode used to generate
the message.

BEA MessageQ Programmer’s Guide 8-39



8 PAMS Application Programming Interface

8-40

Table 8-23

Longword Contents Description

15 Priority The priority used to queue the message.

16 Endian The byte ordering or encoding schemes of 2- and 4-byte
integers. The possible settings are as follows:
PSYM_UNKNOVW
PSYM VAX_BYTE_ORDERoOr PSYM LI TTLE_ENDI AN
PSYM NETWORK_BYTE_ORDER or
PSYM BI G_ENDI AN
PSYM FML

17 Correlation ID The 32 byte correlation ID associated with the message.

show_buffer_len

Suppliesthe length in bytes of the buffer defined in the show_buf f er argument. The
minimum length is 40 bytes. If the buffer istoo small to contain al of theinformation,
then the return code PAMS_BUFFEROVF will bein the show buf f er transfer status.

large area len

Specifies the size of the message areato receive messages larger than 32K. Also
specifies the length of the message buffer when using double buffers (asindicated by
PSYM MSG_BUFFER PO NTER). Thisargument a so storesthe length of double buffers
and FML32 buffers after reall ocation.

large size

Returnsthe actua size of the large message, double buffer message, or FML32
message written to the message buffer.

nullarg_3

Reserved for BEA MessageQ internal use as a placeholder argument. This argument
must be supplied as a null pointer.

BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Return Values
Table 8-24

Return Code Platform Description

PAVS__ AREATCSMALL All Received message is larger than the user’s
message area.

PAVS__BADARGLI ST All Wrong number of call arguments have been
passed to thisfunction.

PAVS__ BADHANDLE All Invalid message handle.

PAVS__ BADPARAM All Bad argument value.

PAVS__ BADPRI ORI TY All Invalid priority value used for receive.

PAMS__ BADSELI| DX All Invalid or undefined selective receive index.

PAVS__ BUFFEROVF UNIX The size of the show_buf f er specifiedis

Windows NT  too small.

PAVS__ EXHAUSTBLKS OpenVMS No more message blocks available.

PAVMS__ FMLERROR All Problem detected with internal format of
FML message; this can be an error in
processing or data corruption.

PAVS___| NSQUEFAI L All Failed to properly queue a message buffer.

PAVS__ MSGTOSMALL All Thensg_ar ea_| en argument must be
positive or zero.

PAVS__ MSGUNDEL All M essage returned is undeliverable.

PAVMS__NEED BUFFER PTR UNIX FML 32 buffer received but

WindowsNT nsg_ar ea_| en argument not set to
PSYM MSG_BUFFER PTR.

PAMS__ NETERROR Clients Network error resulted in acommunications
link abort.

PAMS__ NOACCESS All No access to resource.

PAMS__ NOACL All Queue access control file could not be found.

BEA MessageQ Programmer’s Guide 8-41



8 PAMS Application Programming Interface

Table 8-24
Return Code Platform Description
PAMS__ NOVEMORY OpenVMS Insuffucient memory resourcesto reallocate
buffer pointer.
PAMS__ NOMOREMSG All No messages available.
PAMS__ NOVRQRESRC All Insufficient multireader queue resources to
alow access.
PAMS __ NOTDCL All Process has not been attached to BEA
MessageQ.
PAMS__NOTSUPPORTED UNIX The supplied delivery mode is not supported.
Windows NT
PAVS__ PAMSDOVWN UNIX The specified BEA MessageQ group is not
Windows NT  running.
PAMS __ PREVCALLBUSY Clients Previous call to CLS has not been
completed.
PAMS__ QUECORRUPT OpenVMS Message buffer queue corrupt.
PAVS__ REMQUEFAI L All Failed to properly read from amessage
buffer.
PAMS__STALE All Resource is no longer valid and must be
freed by the user.
PAMS__ STOPPED All The requested queue has been stopped.
PAMS__ SUCCESS All Indicates successful completion.
PBS Delivery
Status Table 8-25
PSB Delivery Status Platform Description
PAMS__ CONFI RVMREQ All Confirmation required for this message.
PAVS__ PANSDOVWN UNIX The specified BEA MessageQ group is

Windows NT  not running.

8-42  BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

See Also

Example

Table 8-25
PSB Delivery Status Platform Description
PAMS__ POSSDUPL All Message is a possible duplicate.
PAMS__ SUCCESS All Indicates successful completion.

B pans_get _nsga
B pans_get _negw
B pans_put _nsg

m pans_set _sel ect

Read a M essage

This example uses the pams_get _nsg function to retrieve all the messages currently
in the queue and sends them to a print function. The complete code example called
x_get . ¢ is contained in the examples directory.

BEA MessageQ Programmer’s Guide 8-43



8 PAMS Application Programming Interface

pams_get_msga

The panms_get _nsga function is only available on OpenVM S systems.

Requests asynchronous notification of a message arrival. The pans_get _nsga
function triggers an asynchronous system trap (AST) routine when amessage arrives
in that queue. Notification to the application occurs by triggering an AST, by setting
an event flag, or both.

When no selection filter isspecified, the function returnsthe next available messagein
first-in/first-out (FIFO) order based on message priority to the user-supplied

msg_ar ea argument. Priority ranges from O (lowest priority) to 99 (highest priority).
For example, priority 1 messages are always placed before priority 0 messages.
Messages are placed in first-in/first out order by message priority. If aselection filter
is specified, then only messages that meet the selection criteria are retrieved, and the
AST or event flag istriggered only when a matching message arrives.

If a queue has been sent a recoverable message, the receiver program can confirm
receipt of the message using the pans_confi rm nsg function. The

pams_conf i r m nmsg function enablesthe successfully delivered messageto be deleted
from the message recovery system. See the Using Recoverable Messaging topic for a
description of the BEA MessageQ recovery system.

See the Sending and Receiving BEA MessageQ Messages topic for more information
on working with FML 32 buffers and large messages.

Syntax int32 pans_get _nsga ( nsg_area, priority, source, class, type,
nsg _area_len, len_data, [sel _filter], [psb],
[show buffer], [show buffer_I|en],
[large_area len], [large_size], [actrtn],
[actparm, [flag_id], [nullarg_3] )
Arguments
Table 8-26

Argument Data Type Mechanism  Prototype Access

nsg_area char reference char * returned

priority char reference char * passed

source g_address reference g_address * returned

cl ass short reference short * returned

8-44  BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Table 8-26
Argument Data Type Mechanism  Prototype Access
type short reference short * returned
nmsg_area_l en short reference short * passed
| en_data short reference short * returned
[sel _filter] int32 reference int32 * passed
[ psb] struct psb reference struct psb * returned
[ show _buffer] struct reference struct returned
show _buf f er show buffer *
[ show_buf fer_I en] int32 reference int32 * passed
[large_area_l en] int32 reference int32 * passed/
returned
[large_size int32 reference int32 * returned
[actrtn] int32 value int32 * passed
[ act par n int32 reference int32 * passed
[flag_id] int32 reference int32 * passed
[nul larg_3] char reference char * passed

Argument msg_area

Definitions
For static buffer-style messaging, receivesthe address of amemory region where BEA

M essageQ writes the contents of the retrieved message. For FML-style messaging or
when using double pointers, receives a pointer to the address of the message being
retrieved. When using double buffer pointers with pans_get _nsga, the new buffer
sizeisreturnedinl ar ge_si ze. (Thisdiffersfrom pams_get _nsg[w}, where the new
buffer sizeisreturnedinl arge_area_I en.)

priority

Supplies the priority level for selective message reception. Priority ranges from 0
(lowest priority) to 99 (highest priority)..

BEA MessageQ Programmer’s Guide 8-45



8 PAMS Application Programming Interface

source

Receives a data structure containing the group ID and queue number of the sender
program’s primary queue in the following format:

longword (32 bits)

Group ID Queue Number

ZK9007AGE

class

Receives the class code of the retrieved message. The classis specified in the
pams_put _nmsg function. BEA MessageQ supports the use of symbolic names for
cl ass argument values. Symbolic class hames should begin with MSG_CLAS . For
information on defining class symbols, seethe p_t ypecl . h include file.

Class symbolsreserved by BEA MessageQ are as follows:

Reserved Class Symbol Vaue
MBG_CLAS MRS 28

MBG_CLAS PANB 29
MB5G_CLAS_ETHERNET 100
MBG_CLAS UCB 102
MBG_CLAS TUXEDO 31001

MSG_CLAS_TUXEDO TPSUCCESS 31002

MBG_CLAS_TUXEDO TPFAI L 31003

MBG_CLAS XXX 30000 through 32767 (except 31001-31003)

8-46  BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

type

Receives the type code of the retrieved message. The type is specified in the
pams_put _nsg function. BEA MessageQ supports the use of symbolic names for
t ype argument values. Symbolic type names begin with MSG_TYPE_. For specific
information on defining type symbols, seethe p_t ypecl . h includefile.

BEA MessageQ has reserved the symbol value range —1 through —5000. A zero value
for this argument indicates that no processing by message type is expected.

msg_area len

m  Supplies the size of the buffer (in bytes) for buffer-style messages of up to
32767 bytes. Thesg_ar ea buffer is used to store the retrieved message.

m For messages using double buffers, including FML32 buffers, this argument
contains the symba@SymM MSG_BUFFER_PTRto indicate that the message is a
pointer to the address of the message being retrievedrsbhar ea buffer
contains the message pointer. The size of the message is returned in the
| ar ge_si ze argument. Thesg_ar ea buffer is used to store the retrieved
message. The ar ge_ar ea_| en argument is used to supply the size of the
message buffer to receive the message. If the retrieved buffer is larger than the
space allocated, space is dynamically reallocated and the new buffer size is
stored inl ar ge_si ze.

m For large messages (buffer-style messages larger than 32767 bytes), this
argument contains the symtr3YM MSG_LARGE to indicate that the message
buffer is greater than 32K. The size of the message is returned in the
| ar ge_si ze argument Thesg_ar ea buffer is used to store the retrieved
message. The ar ge_ar ea_| en argument is used to supply the size of the
message buffer to receive the large message.

len_data

For static buffer-style messaging with messages of up to 32767 bytes, this argument
receives the number of bytes retrieved from the message queue and stored in the area
specified by thersg_area argument. This field also receives the

PSYM MSG _BUFFER_PTR symbol for FML-style messages argYyM MSG_LARGE for
buffer-style messages larger than 32767 bytes.

d_filter

Supplies the criteria enabling the application to selectively retrieve messages. The
argument contains one of the following selection criteria:

BEA MessageQ Programmer’s Guide 8-47



8 PAMS Application Programming Interface

Selection by
Message Queue

8-48

Default selection
Selection by message queue
M essage attributes

Message source

Compound selection using the pans_set _sel ect function

Thesel _fil ter argument is composed of two words as follows:

/ longword (32 bits) p

Select Mode

Select Variable

ZK9033AGE

Default ~ Enables applicationsto read messages from the queue based on the order in which they
Selection  arrived. The default selection, PSEL_DEFAULT, reads the next pending message from
the message queue. M essages are stored by priority and thenin FIFO order. To specify

this explicitly, bothwordsinthesel _filter argument should be set to 0.

Allows the application to retrieve messages based upon a queue type or combination
of queuetypes. This selection criteriais used to retrieve the first pending message that

matches the criteria on the first queue it encounters. FIFO ordering is maintained
within each queue.

The predefined constants for this argument are as follows:

Table 8-27
Select Mode Select Variable Mode Description
PSEL_PQ 0 Enables the application to read from the
primary queue (PQ) only. The select variable
must equal 0.
PSEL_AQ Alternate queue Enables an application to read from an

number

BEA MessageQ Programmer’s Guide

aternate queue (AQ) only. The queuetype can
be a secondary queue (SQ).



BEA MessageQ API Data Types

Table 8-27
Select Mode Select Variable Mode Description
PSEL_PQ_AQ Alternate queue Attemptsto selectively retrievefrom aprimary
number queue and then from an alternate queue.
PSEL_AQ PQ Alternate queue Attempts to selectively retrieve from an
number aternate queue and then from aprimary queue.
PSEL_TQ _PQ Alternate queue Attemptsto selectively retrieve messages from

number

atimer queue (TQ), and then from a primary
queue.

PSEL_TQ PQ_AQ

Alternate queue
number

Attemptsto sel ectively retrieve messages from
atimer queue (TQ), then from a primary
queue, and finally from an alternate queue.

PSEL_UCB

Retrieves messages only from the user
callback queues (UCB).

Selectionby  Enables the application to select messages based on the message type, class, or
Message  priority. The predefined constants for this argument are as follows:

Attribute
Table 8-28
Select Mode Select Variable Mode Description
PSEL_PQ TYPE Type Selects the first pending message from the
primary queue that matches the type value in
the select variable word.
PSEL_PQ _CLASS Class Selects the first pending message from the

primary queue that matches the class value in
the select variable word.

BEA MessageQ Programmer’s Guide 8-49



8 PAMS Application Programming Interface

Table 8-28

Select Mode Select Variable  Mode Description

PSEL_PQ PRI PSEL_PRI _ANY Selects the first pending message with a
PSEL_PRI _PO priority equal to an integer between 0 and 99
PSEL_PRI _P1 inclusive (or equal to the select variable value)
integer value from within the primary queue. Specifying the
between0and 99 direct integer value is the preferred method of

selected messages by priority.

Using PSEL_PRI_ANY enablesthereading of
any pending messages of all priorities. Setting
PSEL_PRI_PO enables the application to
retrieve pending messages of priority 0 only.
Setting PSEL _PRI_P1 enables the strict
retrieval of pending messageswith apriority of
1.

Selectionby  Providesfor the selection of pending messages from primary and secondary queues,
Message Source by source group 1D, queue number, or both. The format for selection by source
follows:

longword (32 bits)

Group ID Queue Number

ZK9007AGE

Some examples of possiblesel _filter arguments and their actions are as follows:

sel_filter Argument Action

Zero or not specified No filtering of any messages. All messages can be retrieved.
Source q_addr ess Only those messages that have a matching q_addr ess are
retrieved.

8-50 BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Compound
Selection

sel_filter Argument Action

Selection mask created Only messages that exactly match the specified sel ection mask
withpans_set sel ect areretrieved.

Allows the application to formulate complex rules for the order in which the message
gueues are searched. The pams_set _sel ect function alowsthe application to create
custom selection masks that can be used in the low-order word of the sel _filter
argument. The format for compound selection follows.

/ longword (32 bits) y

PSEL_BY_MASK MASK_ID

ZK9034AGE
psb

Receives a PAMSS Status Block containing the final completion status. The psb
argument is used when sending or receiving recoverable messages. The PSB structure
stores the status information from the message recovery system and may be checked
after sending or receiving a message. The structure of the PSB is asfollows:

Table 8-29
Low High Contents Description
Byte Byte
0 1 Type PSB type
2 3 Call Dependent Currently not used.
4 7 PSB Delivery The compl etion status of the function. For

Status recoverable messages, this field contains
PAVS__ CONFI RVREQor
PAMS__ POSSDUPL. For nonrecoverable
messages, it may aso contain ava ue of
PAMS__ SUCCESS.

BEA MessageQ Programmer’s Guide 8-51



8 PAMS Application Programming Interface

8-52

Table 8-29
Low High Contents Description
Byte Byte
8 15 Message Sequence A unigque number assigned to a message
Number when it is sent and follows the message to
the destination PSB. This number isinput
to pans_confirm nsgtorelease a
recoverable message.
16 19 PSB UMA Status  Thisfield is not used with the
pans_get _nsga function.
20 23 Function Return Thisfield is not used with the
Status pans_get _nsga function.
24 31 Not Used Not used.

Note: Thisfunction utilizes the AST services of OpenVMS; therefore, the
application must check the status information returned in the PSB.

show_buffer

Receives additional information which BEA MessageQ extracts from the message
header. The structure of the show _buf f er argument is as follows:

Table 8-30
Longword Contents Description
0 Version The version of the show_buf f er structure. Valid
values are asfollows:
10=Version 1.0
20 =Version 2.0
50 =Version 5.0

BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Table 8-30
Longword Contents Description
1 Transfer Status The status code associated with the transfer of
show_buf f er information into the application’'sbuffer.
Valid symbols are as follows:
PAMS__ SUCCESS—AII available information has been
transferred.
PAMS_ BUFFEROVF—Information was lost due to
receiver buffer overflow.
0—No message returned. There is no information to
transfer.
2 Transfer Size The number of bytes transferred to the application buffer.
3 Flags A bit array showing the status of fields in the
show buf f er . A set bit indicates a valid field, while a
cleared bit indicates indeterminable data or the end of the
allocatedshow_buf f er memory. The symbols for the
flags field are as follows:
PSYM_SHOW VERSI ON
PSYM_SHOW STATUS
PSYM SHOW SI ZE
PSYM SHOW FLAGS
PSYM SHOW TARGET
PSYM SHOW ORI Gl NAL_TARGET
PSYM_SHOW SOURCE
PSYM SHOW ORI G NAL_ SOURCE
PSYM_SHOW DELI VERY
PSYM _SHOW PRI ORI TY
PSYM_SHOW ENDI AN
PSYM _SHOW CORRELATI ON_I D
4 Not Used Fills out the Control Section to its maximum 40 bytes.
5 Not Used Fills out the Control Section to its maximum 40 bytes.
6 Not Used Fills out the Control Section to its maximum 40 bytes.
7 Not Used Fills out the Control Section to its maximum 40 bytes.
8 Not Used Fills out the Control Section to its maximum 40 bytes.
9 Not Used Fills out the Control Section to its maximum 40 bytes.

BEA MessageQ Programmer’s Guide 8-53



8 PAMS Application Programming Interface

Table 8-30

Longword Contents Description

10 Target The g_addr ess of the latest message target.

11 Origina Target  Theq_addr ess of the original message target.

12 Source The g_addr ess of the latest message source.

13 Original Source  The q_addr ess of the original message.

14 Delivery Mode The delivery mode that was used to queue the message.
Thisisnot necessarily the delivery mode used to generate
the message.

15 Priority The priority used to queue the message.

16 Endian The byte ordering or encoding schemes of 2- and 4-byte
integers. The possible settings are as follows:
PSYM_UNKNOVW
PSYM VAX_BYTE_ORDERoOr PSYM LI TTLE_ENDI AN
PSYM NETWORK_BYTE_ORDER or
PSYM BI G_ENDI AN
PSYM FML

17 Correlation ID The 32 byte correlation ID associated with the message.

show_buff_len

Suppliesthe length in bytes of the buffer defined in the show_buf f er argument. The
minimum length is 40 bytes. If the buffer istoo small to contain al of theinformation,
then the return code PAMS__ BUFFEROVF will bein theshow buf f er transfer status.

large area len

Specifies the size of the message areato receive messages larger than 32K. Also
specifies the length of the message buffer when using double buffers (asindicated by
PSYM MSG_BUFFER POl NTER).

8-54  BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Description

large size

Returns the actual size of the large message, double buffer message, or FML 32
message written to the message buffer. When using double buffer pointers with
pams_get _nsga, the new buffer sizeisreturnedinl ar ge_si ze. (This differs from
pams_get _nsg[w}, where the new buffer sizeisreturned inl ar ge_ar ea_| en.)

actrtn

Supplies the address of an int32 value that is the entry point to an action routine. This
action routine is executed when the pams_get _nsga function completes.

actparm

Supplies an int32 value that is passed to the action routine specified intheactrtn
argument when it is invoked.

flag_id

Suppliesthei nt 32 value for the flag number to be set when the pans_get _nsga
function completes. Whenthe pans_get _nsga function executes, it clearsthisflag. If
this argument value is not supplied, no flag is used.

nullarg 3

Reserved for BEA MessageQ internal use as a placeholder argument. This argument
must be supplied as anull pointer.

Because the pans_get _nsga function executes asynchronoudly, it obtains severa
argument values only after the message arrives. These argument values are the
message buffer, source, class, type of the message, and a PAMS Status Block (PSB)
status code containing the delivery status, UMA status, and the sequence number of
the message. These values are not set until the message arrival triggersthe AST routine
or sets the event flag.

Thepans_get _nsga function specifiesan AST parameter which is passed by valueto
the AST routine when the parameter is called. This parameter is used to provide a
context for the information contained in the message and can be used to identify the
specific processing required for the message. Following are some suggestions and
rules for programming with ASTs:

m Create acontext area, separate from mainline, for each AST that is
simultaneously posted. An address or index associated with the context area
should be used as the AST parameter to ensure the appropriate context is
associated with the data that is delivered by the pans_get _nsga function.

BEA MessageQ Programmer’s Guide 8-55



8 PAMS Application Programming Interface

m Ensure that the addresses of any fieldsthat are filled in asynchronously are valid
throughout the period that the AST is posted. A common error in using ASTsis
to post an AST request that fillsin fields on the stack and becomesinvalid as

soon asthe caller returns.

m Datamay be passed between AST routines and mainline by the following

mechanisms:

e BEA MessageQ messages.

e An event queue managed by interlocked queuing instructions.

e Shared data fields between mainline and the AST routines such that accessto
the datais clear. The use of a context area for each AST request can

accomplish this.

m Access to complex data structures shared between mainline and AST routines
should be serialized by placing the access inside an AST safe critical section.
One way to do thisis with the $SETAST system service.

Return Values

8-56

Table 8-31

Return Code Platform  Description

PAMS__BADARGLI ST OpenVMS  Wrong number of call arguments have
been passed to this function.

PAVS__ BADPARAM OpenVMS  Bad argument value.

PAMS__BADPRI ORI TY OpenVMS  Invalid priority value used for receive.

PAMS__BADSELI| DX OpenVMS  Invalid or undefined selective receive
index.

PAMS__ BADHANDL E OpenVMS  Invalid message handle.

PAMS__MSGTCSVALL OpenVMS Thensg_ar ea_| en argument must be
positive or zero.

PAMS__ NOACCESS OpenVMS  No access to the queue.

PAMS__NOACL OpenVMS  No access to resource. The ACL check

BEA MessageQ Programmer’s Guide

failed.



BEA MessageQ API Data Types

Table 8-31
Return Code Platform  Description
PAVS___ NOVEMORY OpenVMS  Insuffucient memory resources to
reallocate buffer pointer.
PAVS___NOTDCL OpenVMS  The application has not been attached to
BEA MessageQ.
PAVS___NOTSUPPORTED OpenVMS  Feature not supported or available.
PAMS__RESRCFAI L OpenVMS Failed to dlocate aresource.
PAVS__STALE OpenVMS  Resourceis no longer valid and must be
freed by the user.
PAMS__ STOPPED OpenVMS  The requested queue has been stopped.
PAMS__ SUCCESS OpenVMS  Indicates successful completion.
PSB Delivery
Mol ropleg-32
PSB Delivery Status Platform Description
PAVS__ CONFI RVREQ OpenVMS Confirmation required for this message.
PAMVS__ POSSDUPL OpenVMS Message is a possible duplicate.
PAMS__ SUCCESS OpenVMS Indicates successful completion.
See Also m pans_cancel _get

B pans_get _nsg
B pans_get _nsgw
B pans_put _nsg

m pans_set _sel ect

BEA MessageQ Programmer’s Guide 8-57



8 PAMS Application Programming Interface

pams_get_msgw

Retrieves the next available message from a specified queue and movesit to the
location specified in the nsg_ar ea argument. This function waits until a message
arrives in the queue or a user-specified timeout period has elapsed.

When no selection filter is specified, the function returnsthe next available messagein
first-in/first-out (FIFO) order based on message priority to the user-supplied

meg_ar ea argument. Priority ranges from 0 (lowest priority) to 99 (highest priority).
If the priority is set to O, the pans_get _nsqw function gets messages of any priority.
If the priority is set to any value from 1 to 99, the pans_get _nmsqwfunction gets only
messages of that priority. Messages are placed in first-inffirst-out order by message
priority. If aselection filter is specified, then only messages that meet the selection
criteria are retrieved. If no message arrives, or no avail able message meets the
selection criteriabefore thet i meout period expires, then the return statusis
PAVS__ Tl MEOUT.

If a queue has been sent a recoverable message, the receiver program can confirm
receipt of the message using the pans_confi rm nsg function. The

pams_conf i r m nmsg function enablesthe successfully delivered messageto be deleted
from the message recovery system. See the Using Recoverable Messaging topic for a
description of the BEA MessageQ recovery system.

See the Sending and Receiving BEA MessageQ Messages topic for more information
on working with FML 32 buffers and large messages.

Syntax int32 pans_get _nmsgw ( nsg_area, priority, source, class, type,
nsg_area_len, len_data, tineout, [sel filter],
[psb], [show buffer], [show buffer_len],
[large_area_len], [large_size],[nullarg_3] )
Argument
Table 8-33

Argument Data Type Mechanism  Prototype Access

nmsg_area char reference char * returned

priority char reference char * passed

source g_address reference g_address * returned

cl ass short reference short * returned

8-58  BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Table 8-33
Argument Data Type Mechanism  Prototype Access
type short reference short * returned
nmsg_area_l en short reference short * passed
| en_data short reference short * returned
ti meout int32 reference int32 * passed
[sel _filter] int32 reference int32 * passed
[ psb] struct psb reference struct psb * returned
[ show _buffer] struct reference struct returned
show _buf fer show buffer *
[ show_buf fer_l en] int32 reference int32 * passed
[large_area_| en] int32 reference int32 * passed/
returned
[large_si ze] int32 reference int32 * returned
[nul larg_3] char reference char * passed
Argument msg_area
Definitions

For buffer-style messaging, receives the address of a memory region where BEA

M essageQ writes the contents of the retrieved message. For FML-style messaging or
when using double ponters, receives a pointer to the address of the message being
retrieved.

priority

Supplies the priority level for selective message reception. Priority ranges from 0
(lowest priority) to 99 (highest priority). If the priority isset to O, thepans_get _nsqw
function gets messages of any priority. If the priority is set to any value from 1 to 99,
the pams_get _nsqw function gets only messages of that priority.

source

Receives a structure identifying the group ID and queue number of the sender
program’s primary queue in the following format:

BEA MessageQ Programmer’s Guide 8-59



8 PAMS Application Programming Interface

longword (32 bits)

Group ID Queue Number

ZK9007AGE

class

Receives the class code of the retrieved message. The classis specified in the
arguments of the pans_put _msg function. BEA MessageQ supports the use of
symbolic namesfor cl ass argument values. Symboalic class names should begin with
MSG_CLAS_. For information on defining class symbols, seethep_t ypecl! . hinclude
file. On UNIX and Windows NT systems, the p_t ypecl . h include file cannot be
edited. Y ou must create an includefileto definetype and class symbol sfor use by your
application.

Class symbolsreserved by BEA MessageQ are as follows:

Reserved Class Symbol Vaue

MVBG _CLAS MRS 28

MBG CLAS PANB 29

MB5G_CLAS_ETHERNET 100

MBG CLAS UCB 102

MBG_CLAS_TUXEDO 31001

MBG_CLAS_TUXEDO TPSUCCESS 31002

MVBG_CLAS_TUXEDO TPFAI L 31003

MBG_CLAS XXX 30000 through 32767 (except
31001-31003)

8-60 BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

type

Receivesthe type code of the retrieved message. Thetypeis specified in the arguments
of the pams_put _nmsg function. BEA MessageQ supports the use of symbolic names
for t ype argument values. Symbolic type names begin with MSG_TYPE_. For specific
information on defining type symbols, seethe p_t ypecl . h includefile.

BEA MessageQ has reserved the symbol value range -1 through -5000. A zero value
for this argument indicates that no processing by message type is expected.

msg_area len

m Suppliesthe size of the buffer (in bytes) for buffer-style messages of up to
32767 bytes. The msg_ar ea buffer is used to store the retrieved message.

m  For messages using double buffers, including FML 32 buffers, this argument
contains the symbol PSYM MSG_BUFFER_PTRto indicate that the message is a
pointer to the address of the message being retrieved. The nsg_ar ea buffer
contai ns the message pointer. The size of the message is returned in the
| ar ge_si ze argument. The nsg_ar ea buffer is used to store the retrieved
message. The | ar ge_ar ea_| en argument is used to supply the size of the
message buffer to receive the message. If the retrieved buffer is larger than the
space alocated, spaceis dynamically reallocated and the new buffer sizeis
stored inl arge_area_| en.

m For large messages (buffer-style messages larger than 32767 bytes), this
argument contains the symbol PSYM MSG_LARGE to indicate that the message
buffer is greater than 32K. The size of the message isreturned in the
| ar ge_si ze argument. The nsg_ar ea buffer is used to store the retrieved
message. The | ar ge_ar ea_| en argument is used to supply the size of the
message buffer to receive the large message.

len_data

For static buffer-style messaging with messages of up to 32767 bytes, this argument
receives the number of bytes retrieved from the message queue and stored in the area
specified by the nsg_ar ea argument. This field also receives the

PSYM MSG BUFFER_PTR symbol for double buffer and FML -style messages and
PSYM MSG_LARGE for buffer-style messages larger than 32767 bytes.

BEA MessageQ Programmer’s Guide 8-61



8 PAMS Application Programming Interface

8-62

timeout

Supplies the maximum amount of time the panms_get _nsg function waits for a
message to arrive before returning control to the application. The timeout valueis
entered in tenths (0.1) of a second. A value of 100 indicates a timeout of 10 seconds.
If the timeout occurs before a message arrives, the status code of PAMS__TI MEOUT is
returned.

If an unlimited timeout period is required, set this argument to 0. On UNIX and
Windows NT systems, avalue of zero for this argument causes this function to block
indefinitely or until it receives a message. On OpenV MS systems, this function waits
for approximately 5 days or until it receives amessage.

sel_filter

Suppliesthecriteriafor the application to selectively retrieve messages. The argument
contains one of the following selection criteria:

m Default selection

m  Selection by message queue

m  Message attributes

m  Message source

m Compound selection using the pams_set _sel ect function

Thesel _fil ter argument is composed of two words as follows:

/ longword (32 bits) p

Select Mode Select Variable

ZK9033AGE

Default Selection

Enables applicationsto read messages from the queue based on the order in which they
arrived. The default selection, PSEL_DEFAULT, reads the next pending message from
the message queue. M essages are stored by priority and thenin FIFO order. To specify
this explicitly, bothwordsinthesel _filter argument should be set to 0.

BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Selection by M essage Queue

Allowsthe application to retrieve messages based upon a queue type or combination
of queue types. This selection criteriais used to retrieve the first pending message that
matches the criteria on the first queue it encounters. FIFO ordering is maintained
within each queue. The predefined constants for this argument are as follows:

Table 8-34
Select Mode Select Variable Mode Description
PSEL_PQ 0 Enables the application to read from the
primary queue (PQ) only. The select variable
must equd O.
PSEL_AQ Alternate queue Enables an application to read from an
number alternate queue (AQ) only. The queuetype can
be a secondary queue (SQ).
PSEL_PQ_AQ Alternate queue Attemptsto selectively retrievefrom aprimary
number queue and then from an alternate queue.
PSEL_AQ PQ Alternate queue Attempts to selectively retrieve from an
number aternate queue and then from aprimary queue.
PSEL_TQ _PQ Alternate queue Attemptsto selectively retrieve messages from

number

atimer queue (TQ), and then from a primary
queue.

PSEL_TQ PQ AQ

Alternate queue
number

Attemptsto sel ectively retrieve messages from
atimer queue (TQ), then from a primary
queue, and finally from an alternate queue.

PSEL_UCB

Retrieves messages only from the user
callback queues (UCB).

Selection by M essage Attribute

Enables the application to sel ect messages based on the message type, class, or
priority. The predefined constants for this argument are as follows:

BEA MessageQ Programmer’s Guide 8-63



8 PAMS Application Programming Interface

Table 8-35
Select Mode Select Variable M ode Description
PSEL_PQ TYPE Type Selects the first pending message from
the primary queuethat matchesthetype
value in the select variable word.
PSEL_PQ CLASS Class Selects the first pending message from
the primary queue that matches the
classvalue in the select variable word.
PSEL_PQ PRI PSEL_PRI _ANY Sel ectsthefirst pending message with a
PSEL_PRI _PO priority equal to an integer between 0
PSEL_PRI _P1 and 99 inclusive (or equd to the select
integer valuebetweenOand  variable value) from within the primary
99 queue. Specifying the direct integer
valueisthe preferred method of
selected messages by priority.

Using PSEL_ PRI _ANY enables the
reading of any pending messages of all
priorities. Setting PSEL_PRI _ PO
enablesthe application to retrieve
pending messages of priority O only.
Setting PSEL_PRI _P1 enables the
strict retrieval of pending messages
with a priority of 1.

Selection by M essage Source

Provides for the selection of pending messages from primary and secondary queues,
by source group 1D, queue number, or both. The format for selection by source
follows:

8-64 BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

longword (32 bits)

Group ID Queue Number

ZK9007AGE

Some examples of possiblesel _fil ter arguments and their actions are as follows:

sel_filter Argument Action

Zero or not specified No filtering of any messages. All messages can be retrieved.

Sourceq_addr ess Only those messages that have a matching q_addr ess are
retrieved.

Selection mask created Only messages that exactly match the specified sel ection mask

withpans_set sel ect areretrieved.

Compound Selection

Allows the application to formulate complex rules for the order in which the message
gueues are searched. The pams_set _sel ect function alowsthe application to create
custom selection masks that can be used in the low-order word of the sel _filter
argument. The format for compound selection follows:

/ longword (32 bits) y

PSEL_BY_MASK MASK_ID

ZK9034AGE

BEA MessageQ Programmer’s Guide 8-65



8 PAMS Application Programming Interface

psb

Receives aPAMSS Status Block containing the final completion status. The psb
argument is used when sending or receiving recoverable messages. The PSB structure
stores the status information from the message recovery system and may be checked
after sending or receiving a message. The structure of the PSB is as follows:

Table 8-36

Low High Contents Description

Byte Byte

0 1 Type PSB type

2 3 Call Dependent Currently not used.

4 7 PSB Delivery The completion status of the function. It

Status contains the status from MRS. It can also
contain avalue of PAM5__ SUCCESS
when the message is not sent recoverably.

8 15 Message Sequence A unigque number assigned to a message

Number when it is sent and follows the message to
the destination PSB. This number isinput
tothe pans_confi rm neg function to
release a recoverable message.

16 19 PSB UMA Status  Thecompletion statusof the undeliverable
message action (UMA). The PSB UMA
status indicates if the UM A was not
executed or applicable.

20 23 Function Return After aBEA MessageQ function

Status completes execution, BEA MessageQ
software writes the return val ue to this
field.

24 31 Not Used Not used.

show_buffer

Receives additional information which BEA MessageQ extracts from the message
header. The structure of the show_buf f er argument is as follows:

8-66

BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Table 8-37

Longword Contents Description

0 Version The version of theshow_buf f er structure. Vaid
values are as follows:

10=Veson 1.0
20=Veson 2.0

1 Transfer Status The status code associated with the transfer of
show_buf f er information into the application’'sbuffer.
Valid symbols are as follows:
PAMS__ SUCCESS—AII available information has been
transferred.
PAMS_ BUFFEROVF—Information was lost due to
receiver buffer overflow.

0—No message returned. There is no information to
transfer.

2 Transfer Size The number of bytes transferred to the application buffer.

3 Flags A bit array showing the status of fields in the
show buf f er . A set bit indicates a valid field, while a
cleared bit indicates indeterminable data or the end of the
allocatedshow_buf f er memory. The symbols for the
flags field are as follows:

PSYM SHOW VERSI ON
PSYM_SHOW STATUS

PSYM SHOW SI ZE

PSYM _SHOW FLAGS

PSYM SHOW TARGET

PSYM SHOW ORI Gl NAL_TARGET
PSYM_SHOW SOURCE
PSYM_SHOW ORI GI NAL_ SOURCE
PSYM SHOW DELI VERY

PSYM SHOW PRI ORI TY
PSYM_SHOW ENDI AN
PSYM_SHOW CORRELATI ON_| D

4 Not Used Fills out the Control Section to its maximum 24 bytes.

5 Not Used Fills out the Control Section to its maximum 24 bytes.

BEA MessageQ Programmer’s Guide 8-67



8 PAMS Application Programming Interface

Table 8-37
Longword Contents Description
6 Not Used Fills out the Control Section to its maximum 24 bytes.
7 Not Used Fills out the Control Section to its maximum 24 bytes.
8 Not Used Fills out the Control Section to its maximum 24 bytes.
9 Not Used Fills out the Control Section to its maximum 24 bytes.
10 Target The g_addr ess of the latest message target.
11 Origina Target  Theq_addr ess of the original message target.
12 Source The g_addr ess of the latest message source.
13 Original Source  The q_addr ess of the original message.
14 Delivery Mode The delivery mode that was used to queue the message.
15 Priority The priority used to queue the message.
16 Endian The byte ordering or encoding schemes of 2- and 4-byte
integers. The possible settings are as follows:
PSYM_UNKNOVW
PSYM VAX_BYTE_ORDERoOr PSYM LI TTLE_ENDI AN
PSYM NETWORK_BYTE_ORDER or
PSYM BI G_ENDI AN
PSYM FML
17 Correlation ID The 32 byte correlation ID associated with the message.
show_buff_len

Suppliesthe length in bytes of the buffer defined in the show_buf f er argument. The
minimum length is 40 bytes. If the buffer istoo small to contain al of theinformation,
the return code PAMS__ BUFFEROVF will bein theshow buf f er transfer status.

large area len

Specifies the size of the message areato receive messages larger than 32K. Also
specifies the length of the message buffer when using double buffers (asindicated by
PSYM MSG_BUFFER PO NTER). Thisargument al so storesthe length of double buffers
and FML32 buffers after reall ocation.

8-68  BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

large size

Returns the actual size of the large message, double buffer message, or FML message
written to the message buffer.

nullarg_3

Reserved for BEA MessageQ internal use as a placeholder argument. This argument

must be supplied as anull pointer.

Return Codes

Table 8-38

Return Code Platform Description

PAVS__ AREATCSMAL L All Received messageislarger than the application
message area.

PAVS__BADARGLI ST All Wrong number of call arguments have been
passed to thisfunction.

PAVS__ BADHANDLE All Invalid message handle.

PAVS__ BADPARAM All Bad argument value.

PAVS__ BADPRI ORI TY All Invalid priority value used for receive.

PAMS__ BADSELI| DX All Invalid or undefined selective receive index.

PAVS__ BADTI ME OpenVMS Aninvalid time was specified.

PAVS__ BUFFEROVF UNIX The size specified for the show_buf f er

WindowsNT  argument istoo small.

PAVS__ EXHAUSTBLKS OpenVMS No more message blocks available.

PAVMS__ FMLERROR All Problem detected with internal format of FML
message; this can be an error in processing or
data corruption.

PAVS___| NSQUEFAI L All Failed to properly queue a message buffer.

PAVS__ MSGTOSMALL All Thensg_ar ea_| en argument must be
positive or zero.

PAVS__ MSGUNDEL All M essage returned is undeliverable.

BEA MessageQ Programmer’s Guide 8-69



8 PAMS Application Programming Interface

Table 8-38
Return Code Platform Description
PAMS__NEED BUFFER_PTR UNIX FML32 buffer received but msg_ar ea_| en
Windows NT argument not set to PSYM MSG_BUFFER_PTR
PAMS__NETERROR Clients Network error resulted in a communications
link abort.
PAMS__NQACCESS All No access to resource. ACL check failed.
PAMS NQACL All The queue access control file could not be
found.
PAMS__ NOVEMORY OpenVMS Insuffucient memory resources to reallocate
buffer pointer.
PAMS__NOVRQRESRC All Insufficient multireader queue resources to
alow access.
PAMS __ NOTDCL All Process has not been attached to BEA
MessageQ.
PAMS__NOTSUPPORTED UNIX Specified delivery mode is not supported.
Windows NT
PAVS__ PAMSDOVWN UNIX The specified BEA MessageQ group is not
WindowsNT  running.
PAVMS__PREVCALLBUSY Clients Previous cdl to CL S has not been completed.
PAMS__ QUECORRUPT OpenVMS Message buffer queue corrupt.
PAVS__ REMQUEFAI L All Failed to properly read a message buffer.
PAMS__STALE All Resource is no longer valid and must be freed
by the user.
PAMS__ STOPPED All The requested queue has been stopped.
PAMS__ SUCCESS All Successful completion.
PAVS__TI MEQUT All Timeout period has expired.
PAMS__ CONFI RMREQ All Confirmation required for this message.

8-70 BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Table 8-38
Return Code Platform Description
PAVS__ PAMSDOMN UNIX The specified BEA MessageQ group is not
WindowsNT  running.
PAVS__ POSSDUPL All Message is a possible duplicate.
PAMS__ SUCCESS All Indicates successful completion.

See Also m pans_get _mnsga
® pans_put _nsg
m pans_set _sel ect

Example  Block Until a M essage Is Read

This example shows how to usethe panms_get _nsgwfunction. It setsan alarm to send
messages to itself every 5 seconds; it uses pans_get _msgw to sit and wait for them.
The queue namedjtieue_1" must be defined in your initialization file as a primary
gueue. The complete code example callegkt w. ¢ is contained in the examples
directory.

BEA MessageQ Programmer’s Guide 8-71



8 PAMS Application Programming Interface

pams_locate_q

L ocatesthe queue addressfor the specified queue name or queue alias. By defaullt, this
function waits for the queue address to be returned.

Syntax int32 pams_locate q ( g_name, g_name_|en, g_address, [wait_node],
[reg_id], [resp_q], [nane_space_ list],
[ name_space_list _len], [tinmeout] )
Arguments
Table 8-39
Argument Data Type Mechanism  Prototype Access
g_nane char reference char * passed
g_nane_| en int32 reference int32 * passed
g_address g_address reference g_address * returned
[ wait _npde] int32 reference int32 * passed
[req_id] int32 reference int32 * passed
[resp_q] int32 reference int32 * passed
[nane_space_li st] int32 reference int32 array * passed
array
[nane_space_list_len int32 reference int32 * passed
]
[tineout] int32 reference int32 * passed

Argument g_name

Definitions ) ) )
Supplies the queue name or queue alias whose queue address is requested. The

procedure that BEA MessageQ uses to find this name is controlled by the
name_space_| i st argument, described below.

g_hame len

Supplies the number of charactersin the g_name argument. The maximum string
length on UNIX, WindowsNT, and OpenVMS systemsis 255 characters. For all other
BEA MessageQ environments, the maximum string length is 31.

8-72  BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

g_address

Receives the queue address assigned by BEA MessageQ when an application has
successfully located the queue name.

wait_mode

Supplies the search mode of the pams_| ocat e_gq function. The mode indicates
whether the application waits for the search completion or receives the response in an
acknow!|edgment message. There are two predefined constants for this argument:

m PSYM W_RESP (default setting)—The application issues plaes_| ocat e_q
request and waits for the queue address to be returned.

m PSYM AK_RESP—The application issues tlpans_| ocat e_q address and
continues processing. When the search is completed, the queue address is
returned to the application’s primary queue INOBATE_Q REP message. The
response message can be redirected to an alternate queue address using the
resp_g argument.

reg_id

Supplies an application-specified transaction ID to associate wipatise! ocate_q
function.

resp_q

Supplies an alternate queue to use for receiving the acknowledgment message of the
g_addr ess. If no response queue is specified, the acknowledgment message is sent to
the sender program's primary queue. Thep_q argument has the following format:

longword (32 bits)

Group ID Queue Number

ZK9007AGE

Note that the group ID field is always equal to zero because the sender program cannot
specify a response queue outside its group.

BEA MessageQ Programmer’s Guide 8-73



8 PAMS Application Programming Interface

name_space list

If the name_space_| i st argument is specified, the name_space_l i st _| en
argument must also be specified. If this argument is unspecified, then PSEL_TBL_GRP
isthe default.

Possible valuesin aname_space_I i st argument are asfollows:

Location it represents  Symbolic value

Process cache PSEL_TBL_PRCC
Group/group cache PSEL_TBL_GRP
Globa name space PSEL_TBL_BUS (or PSEL_TBL_BUS_MEDI UMor

PSEL_TBL_BUS_LOW

Thename_space_l i st argument identifies the scope of the name as follows:

m Toidentify alocal queue reference or a queue, an application must include
PSEL_TBL_GRP innane_space_l i st. (Do not specify PSEL_TBL_BUS in the
list because it would identify a global queue reference.)

m Toidentify aglobal queue reference, include PSEL_TBL_BUS (or
PSEL_TBL_BUS_MEDI UMor PSEL_TBL_BUS LOW inthe nane_space_l i st
argument and specify its pathname, either explicitly or implicitly. If the g_name
argument contains any slashes (/ ), or periods (. ), BEA MessageQ treatsit asa
pathname. Otherwise, BEA MessageQ treats q_nane as aname and adds the
DEFAULT_NAMESPACE_PATH to the name to create the pathname to lookup. (The
DEFAULT_NAMESPACE_PATH is set in the %°ROFI LE section of the group
initialization file.)

Thename_space_l i st argument also controls the cache access as follows:

m Tolookup aloca queue reference or queue name, specify both PSEL_TBL_GRP

and PSEL_TBL_PROC. This causes the process cache to be checked before
looking into the group cache.

m Tolookup aglobal queue reference, specify PSEL_TBL_BUS (or
PSEL_TBL_BUS_LOWOr PSEL_TBL_BUS MEDI UM), PSEL_TBL_GRP and
PSEL_TBL_PRCC. This causes the process cache to be checked. Then, the group
cacheis checked before looking into the global name space.

8-74  BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Note that to lookup al cachesin the global name space before looking in the
master database, specify PSEL_TBL_BUS_LOwinstead of PSEL_TBL_BUS.

To lookup only the slower but more up-to-date cachesin the global name space
before looking in the master database, specify PSEL_TBL_BUS_MEDI UMinstead
of PSEL_TBL_BUS.

For more information on dynamic binding of queue addresses, see the Using Naming
topic.

name_space_list_len

Supplies the number of entriesin the name_space_I i st argument. If the
name_space_l i st _| en argumentiszero, BEA MessageQ uses PSEL_TBL_GRP asthe
default in the nane_space_| i st argument.

timeout

Specifies the number of PAMS time units (1/10 second intervals) to allow for the
locate to complete. If timeout is zero, the grouI’SACH_TMD property is used. If the
ATTACH TMDis also zero, 600 is used.

Return Values
Table 8-40

Return Code Platform Description

PAVS___BADARGLI ST OpenVMS Wrong number of call arguments.

PAVS__ BADNAME UNIX The queue name containsillegal characters.
Windows NT

PAVS__ BADPARAM All Invalid argument in the argument list.

PAVS__ BADRESPQ All Invalid response queue specified.

PAVMS__ BOUND All Queue name in use.

PAVS__ BUSNOTSET UNIX DMQ BUS | D environment variable not set.
Windows NT

PAMS__ GROUPNOTSET UNIX DMQ GROUP_I D environment variable not set.
Windows NT

PAMS__ NETERROR Clients Network error resulted in a communications

link abort.

BEA MessageQ Programmer’s Guide 8-75



8 PAMS Application Programming Interface

Table 8-40

Return Code Platform Description

PAMS__NQACCESS All The address of the specified name is either O or
isin another group.

PAMS__NOOBJECT All Could not locate queue name.

PAVS__ PAMSDOVWN All The specified BEA MessageQ group is not
running.

PAMS __ PREVCALLBUSY Clients Previous cdl to CLS has not been completed.

PAMS__RESRCFAI L All Failed to all ocate resources.

PAMS __ SUCCESS All Successful completion of an action.

PAVS__TI MEQUT All The timeout period specified has expired.

PAMS__UNBI NDI NG All Queue requested is in the process of unbinding

from apans_bi nd_q request.

See Also m pans_attach g
H pans_exit
Example L ocate a Queue Address

Thisexample showshow to usethepanms_| ocat e_q function by attachingtoqueue_1
and locating queue_3 where a message is being sent. The queues namede"’ 1”
and ‘queue_3" must be defined in your initialization filgueue_1 must be a primary
queue. The complete code example calldibcat e. ¢ is contained in the examples
directory.

8-76  BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

pams_open_jrn

Syntax

Arguments

Argument
Definitions

Return Values

Opens the selected message recovery journal. The BEA MessageQ dead letter journal
(DLJ) stores messages designated as recoverable that could not be delivered by the
recovery system. The BEA MessageQ postconfirmation journal (PCJ) stores
recoverable messages that were successfully delivered. See the Using Recoverable
Messaging topic for a description of BEA MessageQ message recovery services.

int32 pans_open_jrn ( jrn_filespec, jrn_filenane_len, jrn_handle )

Table 8-41
Argument DataType Mechanism Prototype Access
jrn_filespec char reference char * passed
jrn_filenane_l en short reference short * passed
jrn_handl e int32 reference int32 * returned
jrn_filespec

Suppliesthefile name of the message recovery journal from which the application will
read stored messages.

jrn_filename_len

Supplies the length of the file specification entered to thej rn_f i | espec argument
specified (filename array) in number of bytes.

jrn_handle

Receives the journal handle for the selected message recovery fileif thisfunction
compl etes successfully.

Table 8-42
Return Code Platform  Description
PAVS__BADARGLI ST OpenVMS  Invalid number of call arguments.
PAMS__ NOVEMORY OpenVMS  Insufficient virtual memory.

BEA MessageQ Programmer’s Guide 8-77



8 PAMS Application Programming Interface

8-78

Table 8-42
Return Code Platform  Description
PAMS__ NOSUCHPCJ OpenVMS  Error occured when attempting to open the
specified journal file.
PAMS__ SUCCESS OpenVMS  Indicates successful completion.
SeeAlso m pans_close jrn

® pans_confirmnsg
® panms_put _nsg

m pans_read jrn

BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

pams_put_msg

Syntax

Arguments

Sends a message to atarget queue using a set of standard BEA MessageQ delivery
modes. Applications specify buffer-style or FML-style messaging usingthensg_si ze
argument. For buffer-style messaging using message buffers up to 32K, thisargument
supplies the length of the message in bytesin the user'snmsg_ar ea buffer. In addition,
you can use the msg_si ze argument to specify one of the following symbols:

m PSYM MSG FM.—indicates FML-style messaging. Theg_ar ea argument must
contain a pointer to an FML32 buffer.

m PSYM MBG LARGE—indicates buffer-style message with messages up to 4MB in
length. The pointer to the buffer is contained inrthg_ar ea argument and the
size of the large message buffer is contained i &hge_si ze argument.

Thedel i very argument of th@ams_put _nsg function can be used to guarantee
message delivery if a system, process, or network fails. Recoverable messages are
stored on disk by the message recovery system until they can be delivered to the target
gueue of the receiver program. When sending a recoverable message, you must specify
theuma argument if the message recovery cannot store the message. You must also
supply thepsb argument to receive the return status of the operation.

The optional i meout argument lets you set a maximum amount of time for the send
operation to complete before the function times out. The optiasal_q argument

allows you to specify an alternate queue for receiving the response messages rather
than directing responses to the primary queue of the sender program.

To use a pointer to an FML32 buffer when sending a message, the sender program
specifies the symb@®iSYM MSG_FM_ as thevsg_si ze argument to thpanms_put _nsg
function.

int32 pans_put_nsg ( nsg_area, priority, target, class, type,
delivery, nsg_size, [timeout], [psb], [uma],
[resp_q], [large_size], [correlation_id],
[nullarg_3] )

Table 8-43
Argument DataType Mechanism Prototype Access
nmsg_ar ea char reference char * passed
priority char reference char * passed

BEA MessageQ Programmer’s Guide 8-79



8 PAMS Application Programming Interface

Table 8-43
Argument Data Type Mechanism Prototype Access
tar get g_address reference g_address * passed
cl ass short reference short * passed
type short reference short * passed
delivery char reference char * passed
nmsg_size short reference short * passed
[timeout] int32 reference int32 * passed
[ psb] struct reference struct psb * returned
psb
[ume] char reference char * passed
[resp_q] g_address reference g_address * passed
| arge_si ze int32 reference int32 * passed
[correl ation_id] char reference char * passed
[null arg_3] char reference char * passed

Argument msg_area

Definitions ) ) )
For buffer-style messaging, supplies the address of amemory region or amessage

pointer containing the message to be delivered to the target queue of the receiver
program. For FML-style messaging, supplies the message pointer that points to an
FML 32 buffer containing the message.

priority

Suppliesthe priority level for selective message reception. Priority ranges from 0
(lowest priority) to 99 (highest priority).

target

Supplies the queue number and group ID of the receiver program’s queue address in
the following format:

8-80 BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

longword (32 bits)

Group ID Queue Number

ZK9007AGE

class

Supplies the class code of message being sent. BEA MessageQ supports the use of
symbolic namesfor cl ass argument values. Symbolic class hames should begin with
MSG_CLAS_. For information on defining class symbols, see the p_t ypecl . h include
file. On UNIX and Windows NT systems, the p_t ypecl . h include file cannot be
edited. Y oumust create an includefileto definetype and class symbolsfor use by your
application.

Class symbols reserved by BEA MessageQ are as follows:

Reserved Class Symbol Value

MBG_CLAS MRS 28

MBG _CLAS PAMS 29

MBG CLAS ETHERNET 100

MBG CLAS_UCB 102

MSG_CLAS_TUXEDO 31001

MSG_CLAS_TUXEDO TPSUCCESS 31002

MSG_CLAS TUXEDO TPFAI L 31003

MSG_CLAS_ XXX 30000 through 32767 (except

31001-31003)

BEA MessageQ Programmer’s Guide 8-81



8 PAMS Application Programming Interface

8-82

type

Suppliesthe type code for the message being sent. BEA M essageQ supports the use of
symbolic names for t ype argument values. Symbolic type names begin with
MSG_TYPE_. For information on defining type symbols, seethe p_t ypecl . h include
file.

BEA MessageQ has reserved the symbol value range -1 through -5000. A zero value
for this argument indicates that no processing by message type is expected.

delivery
Supplies the delivery mode for the message using the following format:

m PDEL_MXDE_sn_di p—wheresn is one of the following sender notification
constants:

m  W—Wait for completion

m AK—Asynchronous acknowledgment

m  NN—No notification

And di p is one of the following delivery interest point constants:

m ACK—Read from target queue and explicitly acknowledged using the
pams_confirm msg function. ACK can also be an implicit acknowledgement
sent after the seconhnms_get _nsg call by the receiving application.

m CONF—Delivered from the DQF and explicitly confirmed using the
pams_confirm msg function (recoverable)

m DEQ—Read from the target queue
m DQF—Stored in the destination queue file (recoverable)
m MEM—Stored in the target queue

m SAF—Stored in the store and forward file (recoverable)

Note: If temporary queues are used, deleted, and reused quickly, it is possible in
isolated cases for an impligitk response from a previous temporary queue
to be placed on the new temporary queue.

BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

msg_size

For buffer-style messaging using message buffersup to 32K, suppliesthe length of the
message in bytesinthe user’snsg_ar ea buffer. In addition, you can specify one of the
following symbols:

m PSYM MSG FM.—-indicates FML-style messaging. Tieg_ar ea argument
must contain a pointer to an FML32 bulffer.

m PSYM MSG LARGE—indicates buffer-style messaging with messages up to 4MB
in length. The pointer to the buffer is contained inthg _ar ea argument and
the size of the large message buffer is contained ihdhge_si ze argument.

timeout

Supplies the maximum amount of time treavs_put _nsg function waits for a

message to arrive before returning control to the application. The timeout value is
entered in tenths (0.1) of a second. A value of 100 indicates a timeout of 10 seconds.
If the timeout occurs before a message arrives, the statu®aEe TI MEQUT is

returned. Specifying 0 as the timeout value sets the timeout to the default value of 30
seconds.

psb

Receives a value in the PAMS Status Block specifying the final completion status. The
psb argument is used when sending or receiving recoverable messages. The PSB
structure stores the status information from the message recovery system and may be
checked after sending or receiving a message.

The structure of the PSB is as follows:

Table 8-44
Low High Contents Description
Byte Byte
1 0 Type PSB type.
3 2 Call Dependent Currently not used.
7 4 PSB Delivery The compl etion status of the function. It

Status contains the status from MRS. It can adso
contain avaue of PAMS__ SUCCESS
when the message is not sent recoverably.

BEA MessageQ Programmer’s Guide 8-83



8 PAMS Application Programming Interface

8-84

Table 8-44

Low High Contents Description

Byte Byte

15 8 Message Sequence A unique humber assigned to the message

Number when it is sent and follows the message to
the destination PSB. This number isinput
tothe pans_confi rm neg function to
release a recoverable message.

19 16 PSB UMA Status  Thecompletion status of the undeliverable
message action (UMA). The PSB UMA
status indicates if the UM A was not
executed or applicable.

23 20 Function Return After aBEA MessageQ function

Status completes execution, BEA MessageQ
software writes the return val ue to this
field.

31 24 Not Used Not used.

uma

Suppliesthe action to be performed if the message cannot be stored at the specified
delivery interest point. The format of this argument is PDEL_UMA XXX where XXXis
one of the following symbols:

Symbol Description

DI sC Discard message

Dl SCL Discard after logging message
DLJ Dead letter journd

DLQ Dead letter queue

RTS Return to sender

SAF Store and Forward

BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Return Values

resp_q

Supplies aq_addr ess to use as the alternate queue for receiving response messages
from the receiver program. The sender program must be attached to the queue
specified in ther esp_q argument to receive the response messages. Ther esp_q
argument has the following format:

longword (32 bits)

Group ID Queue Number

ZK9007AGE

The group 1D is always specified as zero because the sender program cannot assign a
response queue outside its group.

large size

Supplies the actual size of the large message written to the message buffer.
correlation_id

Supplies the correlation id, a user-defined identifier stored as a 32-byte value
nullarg 3

Reserved for BEA MessageQ internal use as a placeholder argument. This argument
must be supplied as anull pointer.

Table 8-45
Return Code Platform Description
PAVS__BADARGLI ST All Wrong number of call arguments have
been passed to this function.
PAVS__ BADDELI VERY All Invalid delivery mode.
PAVS__ BADHANDLE All Invalid message handle.

BEA MessageQ Programmer’s Guide 8-85



8 PAMS Application Programming Interface

Table 8-45
Return Code Platform Description
PAMS__ BADPARAM UNIX Attempt to use cross-group connection
WindowsNT  when cross-group communication is
OpenVMS disabled. On OpenVMS systems, invalid
NULL call argument.
PAMS__BADPRI ORI TY All Invalid priority value on send operation.
PAMS__ BADPROCNUM UNIX Invalid target queue address specified.
Windows NT
PAVS__ BADRESPQ All Response queue not owned by process.
PAMS__BADTI ME OpenVMS Invaid time specified.
PAMS__ BADUVA All Undeliverable message action (UMA) is
invalid.
PAMS__ EXCEEDQUOTA All Target process quota exceeded; message
was not sent.
PAMS__ EXHAUSTBLKS OpenVMS No more message blocks available.
PAMS__FMLERROR All Problem detected with internal format of
FML message; this can be an error in
processing or data corruption.
PAMS__LI NK_UP OpenVMS MRS has reestablished link.
PAMS__MSGTOBI G All Message exceeded the size of the largest
link list section (LLS).
PAMS__ MSGTOSMALL OpenVMS Invalid (negative) msg_si ze specifiedin
the argument list.
PAMS__NETERROR Clients Network error resulted in a
communications link abort.
PAMS__NOVRS OpenVMS MRS s not available.
PAMS__NOTACTI VE All Target processis not currently active;

message not sent.

8-86 BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Table 8-45
Return Code Platform Description
PAMS___NOTDCL All Process has not been attached to BEA
M essageQ.
PAMS__NOTFLD All The buffer supplied is not an FML32
buffer.
PAVS___NOTSUPPORTED All The combination of delivery mode and
uma sel ected is not supported.
PAVS__ PNUWNCEXI ST OpenVMS Target queue number does not exist.
PAVS__ PREVCALLBUSY Clients Previous call to CLS has not been
completed.
PAVS__  REMQUEFAI L All Failed to properly dequeue a message
buffer.
PAMS__ STOPPED All The requested queue has been stopped.
PAMS__ SUCCESS All Successful completion.
PAVS__TI MEQUT All Timeout period has expired.
PAMS___ UNATTACHEDQ All M essage successfully sent to unattached
queue.
PAVS__WAKEFAI L OpenVMS Failed to wake up the target process.
Table 8-46
UMA Status Platform  Description
PAVS__ DI SC_FAI LED All M essage not recoverablein destination queue
file (DQF); undeliverable message action
(UMA) was PDEL_UVA DI SC; message
could not be discarded.
PAMS__ DI SC_SUCCESS All M essage not recoverable in DQF;, UMA was

PDEL_UNA DI SC, message discarded.

BEA MessageQ Programmer’s Guide 8-87



8 PAMS Application Programming Interface

8-88

Table 8-46
UMA Status Platform  Description
PAMS__DI SCL_FAI LED All Message not recoverable in DQF; UMA was

PDEL_UVA_DI SC; recoverability failure
could not be logged or message could not be
discarded.

PAVS__ DI SCL_SUCCESS All

Message not recoverable in DQF; UMA was
PDEL_UVA DI SC; message discarded after
logging recoverahility failure.

PAVS__DLJ_FAI LED All

Message not recoverable in DQF; UMA was
PDEL_UVA DLJ; dead letter journal (DLJ)
write operation failed.

PAMS__DLJ_SUCCESS All

Message not recoverable in DQF; UMA was
PDEL_UVA_DLJ; message written to the
DLJ.

PAVS__DLQ FAI LED All

Message not recoverable in DQF; UMA was
PDEL_UVA_DLQ, message could not be
queued to the DLQ.

PAMS__DLQ SUCCESS All

Message not recoverable in DQF; UMA was
PDEL_UVA_DLQ, message queued to the
DLQ.

PAVS__NO_UMA All

Message is recoverable; UMA not executed.

PAMS__RTS_FAI LED All

Message not recoverable in DQF; UMA was
PDEL_UVA_RTS; message could not be
returned to sender.

PAMS__RTS_SUCCESS All

Message not recoverable in DQF; UMA was
PDEL_UVA_RTS; message returned to
sender.

PAMS__SAF_FAI LED All

Message not recoverable in DQF; UMA was
PDEL_UVA_SAF; store and forward (SAF)
write operation failed.

PAVS__SAF_SUCCESS All

BEA MessageQ Programmer’s Guide

Message not recoverable in DQF; UMA was
PDEL_UVA_SAF; message recoverable from
SAFfile.



BEA MessageQ API Data Types

See Also

Example

Table 8-46
UMA Status Platform  Description
PAVS___UVA_NA All UMA not applicable.

B pans_get _nsg
B pans_get _nsga
B pans_get _nsgw

Send a M essage

This example sends a number of messages to a queue. The complete code example
called x_put sl f. ¢ iscontained in the examples directory.

BEA MessageQ Programmer’s Guide 8-89



8 PAMS Application Programming Interface

pams_read_jrn

Reads a message from a BEA MessageQ journal file. Use the pans_open_j rn
function to open the dead letter journal or postconfirmation journal for a message
queuing group. Use the pans_cl ose_j r n function to close the journal file after
reading selected messages. Note that on UNIX and Windows NT systems, these
functions are performed by running the Journal Replay utility.

Thereceiver program determines whether each message isa FML buffer or alarge
message by reading the | en_dat a argument. See the Sending and Receiving BEA
M essageQ M essagestopi ¢ for moreinformation on working with message handles and

large messages.

Syntax int32 pams_read_jrn ( jrn_handle, msg area, priority, source,
class, type, nsg_area len, |len_data, target,
write time, conf_val, nsg_seq _num nrs_status,
[large_area_len], [large_size], [nullarg_3] )

Arguments
Table 8-47

Argument Data Type Mechanism  Prototype Access
jrn_handl e int32 reference int32 * passed

nsg_area char reference char * returned
priority char reference char * returned
source g_address reference g_address *  returned
cl ass short reference short * returned
type short reference short * returned
nmsg_area_l en short reference short * returned
| en_dat a short reference short* returned
tar get g_address reference g_address *  returned
wite time unsi gned reference unsi gned returned

int32 int32 *
conf _val int32 reference int32 * returned

8-90 BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Argument
Definitions

Table 8-47
Argument DataType Mechanism Prototype Access
nmsg_seq_num unsi gned reference unsi gned returned
int32 int32 *
nrs_status int32 reference int32 * returned
[large_area_l en] int32 reference int32 * returned
[large_si ze] int32 reference int32 * returned
[nul larg_3] char reference char * returned
jrn_handle

Supplies the journa handle of the message recovery journal from which the
application has selected to read journal entries. The journa handle is returned to the
application by the panms_open_j r n function.

msg_area

Receives the contents of the message retrieved from the selected message recovery
journal. This argument contains either the address of a memory region or a message
handle where BEA MessageQ writes.

priority

Supplies the priority level for selective message reception. Priority ranges from 0
(lowest priority) to 99 (highest priority).

source

Receives a structure containing the queue number and group 1D of the sender
program’s primary queue in the following format:

BEA MessageQ Programmer’s Guide 8-91



8 PAMS Application Programming Interface

8-92

longword (32 bits)

Group ID Queue Number

ZK9007AGE

class

Receives the class code of the retrieved message. The classis specified in the
arguments of the pans_put _msg function. BEA MessageQ supports the use of
symbolic namesfor cl ass argument values. Symboalic class names should begin with
MSG_CLAS_. For information on defining class symbols, seethep_t ypecl! . hinclude
file. Class symbols reserved by BEA MessageQ are asfollows:

Reserved Class Symbol Value
MVBG _CLAS MRS 28
VBG_CLAS_PAVS 29
MBG_CLAS_ETHERNET 100
MBG _CLAS_UCB 102
MBG_CLAS_TUXEDO 31001
MBG_CLAS_TUXEDO TPSUCCESS 31002
MBG_CLAS_TUXEDO TPFAI L 31003
MBG_CLAS XXX 30000 through 32767 (except
31001-31003)
type

Receives the type code of the journaled message. The typeis specified in the
arguments of the pans_put _msg function. BEA MessageQ supports the use of
symbolic names for t ype argument values. Symbolic type names begin with
MSG_TYPE_. For information on defining type symbols, seethe p_t ypecl . h include

BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

file. The OpenVMS symbol values range from —1 through —5000. Use of tlee
argument facilitates selective message reception. However, if the receiving application
does not need a specific value for its processing, then use a value of 0.

msg_area len

Supplies the size of the buffer (in bytes) for buffer-style messages of up to 32K bytes.
Thensg_ar ea buffer is used to store the retrieved message.

len_data

m For buffer-style messaging with messages of up to 32K, this argument receives
the number of bytes retrieved from the message queue and stored in the area
specified by thersg_area argument.

m For an FML-style message, this argument contains the symbol
PSYM MSG BUFFER_PTR to indicate that the message is a pointer to an FML32
buffer.

m For large messages, this argument contains the sywsigbl MSG_LARGE to
indicate that the message buffer is greater than 32K. The size of the message is
returned in the ar ge_si ze argument.

tar get

Receives the queue number and group ID of the receiver's queue address in the
following format:

longword (32 bits)

Group ID Queue Number

ZK9007AGE
write time

Receives the address of the quadword (an array of two int32 values) specifying the date
and time that the recoverable message was confirmed. This parameter uses standard
OpenVMS system time.

BEA MessageQ Programmer’s Guide 8-93



8 PAMS Application Programming Interface

Return Values

conf_val
Receives the message confirmation value.

msg_seq_num

Receives the message sequence number generated by BEA MessageQ in the PSB of
the received message. This argument should be set to the values in the PSB.

mrs_status

Receives the M essage Recovery Services (MRS) status of the message.
large area_len

Specifies the size of the message buffer to receive messages larger than 32K.
large size

Returnsthe actual size of the large message written to the message buffer.
nullarg 3

Reserved for BEA MessageQ internal use as a placeholder argument. This argument
must be supplied as a null pointer.

Table 8-48

Return Code Platform  Description

PAMS__ AREASTOSMAL L OpenVMS  Received message is larger than the user
message area.

PAMS__BADARGLI ST OpenVMS  Invalid number of arguments supplied.

PAMS__ BADHANDL E OpenVMS  Invalid message handle.

PAVS__| NVJH OpenVMS Invalid journal handle.

PAMS__MSGTOBI G OpenVMS Messagein journd fileislarger than
GROUP_MAX_MESSAGE_SI ZE.

PAMS__ NOVEMORY OpenVMS Insufficient virtual memory.

PAMS__ NOMOREMBG OpenVMS  No more messages in journal.

8-94 BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Table 8-48
Return Code Platform  Description
PAMS__ SUCCESS OpenVMS  Indicates successful completion.

SeeAlso m pams_close jrn

H pans_open_jrn

BEA MessageQ Programmer’s Guide 8-95



8 PAMS Application Programming Interface

pams_set_select

Allows application devel opers to define complex selection criteria for message
reception. The selection array specifies the queues to search, the priority order of
message reception, two comparison keys for range checking, and an order key to
determine the order in which messages are selected from the queue.

Thepans_set _sel ect function creates an index handle that isused as the

sel _filter argument of BEA MessageQ functionsfor reading the message. When a
selection index handle is passed to pans_get _nsg, pans_get _nsga or

pams_get _nmsgw, each message received is compared against comparison key_1 and
then comparison key _2. If the message matches both keys (alogical AND operation),
the message is added to a set of matched messages. The order in which selected
messages are delivered is determined by the order key.

Syntax int32 panms_set_sel ect ( selection_array, nummasks, index_handle )
Arguments
Table 8-49
Argument Data Type Mechanism  Prototype Access
selection_array selection_array_ reference sel ection_array_ passed
conponent conmponent *
num masks short reference short * passed
i ndex_handl e int32 reference int32 * returned

Argument
Definitions

selection_array

Supplies an array of selection recordsthat contain the selection rules for each queue.
Thet ypedef structures define the C data structure for the selection array. The
structureis definedin p_ent ry. h asfollows:

typedef struct _sel ection_array_conponent {
i nt 32 queue;

nt32 priority;

nt32 key 1 offset;

nt32 key_1 si ze;

nt 32 key_1 val ue;

nt 32 key_1 oper;

nt32 key 2 offset;

nt32 key_ 2 si ze;

8-96 BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

int32 key_2 val ue;

int32 key_2 oper;

int32 order_offset;

i nt32 order_size;

i nt 32 order_order;

uni on {
pans_correlation_id correlation_id;
pans_sequence_nunber sequence nunber

} extended_key

} selection_array_conponent;

Thesel ection_array_conponent data structure has the following components:

Component Description
Queue and Priority Allows the application to specify the queue number and priority.
Comparison Key 1 Defines the components of the first comparison key used to enable

range checking of messages.

Comparison Key 2 Defines the components of the second comparison key used to
enable range checking of messages.

Order Key Containstheinformation required to provide selection of messages
by FIFO, Minimum Value, or Maximum Value.

The following tables define the content of each of the components of the
sel ecti on_array_conponent datastructure.

Queue and Priority

The following table specifies the valid values that can be applied to the argumentsin
this part of the Sel ect _Queue structure:

BEA MessageQ Programmer’s Guide 8-97



8 PAMS Application Programming Interface

Table 8-50

Field Values

Description

Queue Queue Number

Specifiesthe queue number to be searched. The
queue number can be any message queue for
which the application has read access. The
queue number can be obtained from the

g_at t ached argument of the

pans_at t ach_q functionor g_addr ess of
thepans_| ocat e_g function. A value of 0
for this argument specifies the application’s
primary queue.

Priority

Specifiesthe priority, using either an integer
between 0 and 99 inclusive or avariable. (Using
thedirect interger valueisthe preferred method
of specifying priority.) This argument also
accepts the following predefined constants
which are set by the application.

PSEL_PRI _ANY

Read priority 1 before reading priority O
messages.

PSEL_PRI _PO

Read priority 0 messages only.

PSEL_PRI _P1

Read priority 1 messages only.

Comparison Keys

Thefollowing table specifiesthe arguments and valid valuesthat can be applied to this
part of the Sel ecti on_Array_Conponent s structure:

Table 8-51
Field Values Description
Offset Contains a value that specifies where the information
to be compared begins inside the message. The
following predefined constants apply:
n User message byte number (O relative).
PSEL_ SOURCE Source address of message.
8-98  BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Table 8-51
Field Values Description

PSEL_CLASS Class of the message.

PSEL_TYPE Type of the message.

PSEL_CORRELATI ON_|I D Correlation ID of the message. May be used for
key 1 of fset orkey 2 of fset butnot both. If
this symbol is specified, the Size field must be set to
PSEL_CORRELATI ON_| D_SI ZE (or 32 bytes).

PSEL_ SEQUENCE_NUMBER M essage sequence number acquired from the PAMS
Status Buffer. If this symbol is specified, the Sizefield
must be set to PSEL_ SEQUENCE_NUVBER S| ZE (or
8 bytes).

Size Specifies data type of the key to be compared.

0 Disable use of key.

1 Byte (8 bits).

2 Word (16 bits).

4 int32 (32 bits).

PSEL_SEQUENCE_NUMBER Sl ZE 8 bytes

PSEL_CORRELATI ON_I D_SI ZE 32 bytes

Value n Contains the value for message field comparison field
that is formatted as an integer of 32 bits.
oper Relational operator comparison.

PSEL_OPER EQ

Message field = value.

PSEL_OPER NEQ

Message field <> value.

PSEL_OPER GTR

Message field > value.

PSEL_OPER LT

Message fidld < value.

PSEL_OPER_GTRE

Message field > or = value.

PSEL_OPER LTE

Message field < or = value.

BEA MessageQ Programmer’s Guide 8-99



8 PAMS Application Programming Interface

Order Key

The Order Key part contains variables described in the following table:

Table 8-52
Field Values Description
Offset Byte offset of the message field. The offset variable
containsavaluethat specifieswhere theinformation to
be compared begins ins de the message.
n User message byte number (O relative).
PSEL_ SOURCE Source address of the message.
PSEL_CLASS Class of the message.
PSEL_TYPE Type of the message.

PSEL_CORRELATI ON_I D

Correlation ID of the message. If this symbol is
specified, the Size field must be set to
PSEL_OORRELATI ON_I D_SI ZE (or 32 bytes).

PSEL_SEQUENCE_NUVBER

M essage sequence number acquired from the PAMS
Status Buffer. If thissymbol is specified, the Sizefield
must be set to PSEL_SEQUENCE_NUMBER_SI ZE (or
8 bytes).

Size Size of the comparison. The si ze variable specifies
the data type of the key to be compared.
0 Disable use of key.
1 Byte.
2 Word.
4 i nt 32 (32 hits).
PSEL_SEQUENCE_NUMBER_SI ZE 8 bytes
PSEL_CORRELATI ON_| D_SI ZE 32 bytes
Order Order operator. The order variable specifies the

8-100 BEA MessageQ Programmer’s Guide

sequence in which the select processisto be
performed.



BEA MessageQ API Data Types

Table 8-52
Field Values Description
PSEL_ORDER_FI FO First pending.
PSEL_ORDER M N Minimum value of al pending.
PSEL_ORDER_MAX Maximum value of al pending.

Correlation ID

The correlation ID is a 32-byte user-defined identifier associated with amessage. If
PSEL_CORRELATI ON_I Dis supplied asthe value for either thekey_1_of f set or
key 2 offset field, the correlation ID value is used to match messages with the
specified correlation ID. Sincethereis asingle correlation ID per message,
PSEL_CORRELATI ON_I D should only be specified for one of the comparison keys,
specifying the correlation ID for both keys resultsin a PAMS_BADPARAMerTOr.

If PSEL_CORRELATI ON_| Dis supplied asthe value for the or der _of f set field,
messages with the specified correlation ID are returned in the order specified by the
order _order field.

Sequence Number

The message sequence humber is a unique value for each message. The sequence
number is stored in the PAMS Status Buffer (PSB). Applications should acquire the
message sequence number from the PSB and not modify it in any way.

Note: An application may specify only one of the two keysto select by correlation
identifier or by sequnce number.

num_masks

Supplies the number of records in the selection array. This argument allows a
minimum of 1 record to a maximum of 256 recordsin the selection array.

index_handle
Receives avariable containing the index handle for the selection mask as follows:
m The high-order word contains PSEL_BY_MASK.

m Thelow-order word contains the index to the selection array.

BEA MessageQ Programmer’s Guide3-101



8 PAMS Application Programming Interface

Thei ndex_handl e ispassed asthesel _filter argumentinpams_get _nsg,
pams_get _nsga or pans_get _nsgw, and pans_cancel _sel ect functions.
OpenV M S allows a maximum number of 500 index handles. Other BEA MessageQ
implementations offer 16K to 32K index handles.

Return Values

Table 8-53
Return Code Platform  Description
PAMS__BADARGLI ST OpenVMS  Invalid number of arguments supplied.
PAVS__ BADPARAM All Bad argument passed in the function call.
PAMS__| DXTBLFULL All Selective receive index tableisfull.
PAMS__NETERROR Clients Network error resulted in a
communications link abort.
PAMS __ NOTDCL All Process has not been attached to BEA
MessageQ.
PAVS__ PANSDOVWN UNIX The specified BEA MessageQ group isnot
Windows  running.
NT
PAMS__PREVCALLBUSY Clients Previous cal to CLS has not been
completed.
PAMS__ SUCCESS All Indicates successful completion.

See Also m pans_cancel _get
m pans_cancel _sel ect
® pans_get _nsg
® pans_get _nsga

B pans_get _nmsgw

Example  Selecting M essages Using a Complex Selection Filter

8-102 BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

This example shows the selective reception of messages using pans_set _sel ect to
build a complex message selection filter. The queue namedié_1" must be
defined in your initialization file as a primary queue. The complete code example
calledx_sel ect . ¢ is contained in the examples directory.

BEA MessageQ Programmer’s GuideB-103



8 PAMS Application Programming Interface

pams_set_timer

Creates atimer that sends a message to an application’s primary queue when atime
interval expires or atime of day arrives. The message is sent as a priority 1 message
with a source of PAMS_TI MER_QUEUE, a class code of PAMS, and a type code of

TI MER_EXPI RED. A ti mer _i d isreturned by thisfunction as the first int32 valuein
the TI MER_EXPI RED message.

Note: Priorto BEA MessageQ Version 5.0, thevalid priority valueswere0and 1. In
Version 5.0, the valid range is 0 to 99 (0 being the lowest priority and 99 the
highest priority). Keep in mind that timer priorities are always 1 and take this
into account when modifying existing programs to take advantage of the
expanded priority range. M essages associated with timershave a priority of 1
and are not sent until all messages with priorities from 2 to 99 are read.

To act upon the timer message, the application uses the pans_get _nsgwfunction to
read its primary queue, block until the timer expiration message arrives, and then act
upon it. To cancel a BEA MessageQ timer, use the pans_cancel _t i mer function
with the identification code of the timer you want to cancel.

Syntax int32 pams_set _tinmer ( tinmer_id, timer_format, p_tinmeout,
s_tinmeout )

Arguments
Table 8-54
Argument Data Type Mechanism  Prototype Access
timer_id int32 reference int32 * passed
timer_format char reference char * passed
p_ti nmeout int32 reference int32 * passed
s_ti nmeout unsi gned reference unsi gned passed

quadwor d quadword *

Argument  timer_id

Definitions
Suppliesauniquetimer identification value created by the application. Must be greater

than zero.

8-104 BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Return Values

timer_format

Supplies the time format being used. Following are the two predefined constants for
this argument:

m P—selects the time interval in PAMS timer format supplied togtheé neout
argument. PAMS timer format expresses time in units of one tenth of a second.
Using the PAMS timer format provides an operating system independent way to
represent a time interval.

m S—selects the system-dependent time format supplied t© thereout
argument. Using a system-dependent time format limits the portability of
applications to a specific operating system environment.

p_timeout

Supplies the amount of time to delay (delta) from the current time before returning a
timer expiration message. If thenmer _f or mat argument is set tg, a value greater

than 0 must be entered for this argument. This argument uses the PAMS timer format
which expresses time in units of one tenth of one second.

s timeout

On OpenVMS systems, use this argument to supply a pointer to an arrayi of 820
values used to set a 64-bit OpenVMS time format.sThé neout argument can be
specified as an absolute time or a delta time matching the OpenVMS time format rules.
Note that if the caller exceeds th&TLMor TQELMprocess quota, the process can enter
the RWAST state.

On UNIX and Windows NT systems, use this argument to supply a two element array
of i nt 32 values. The values represent an absolute time (a UTC time in seconds and
microseconds) at which the timer will expire. To usesthe neout argument,
developers provide a pointer tost f uct ti meval " as follows:

struct tinmeval theTine;
nStatus = pans_set _timer (& imer_id, “S”,NULL, (int32*) &heTime);

Table 8-55
Return Code Platform  Description
PAMS__BADARGLIST OpenVMS  Invalid number of arguments supplied.
PAMS__BADPARAM All Bad argument value.

BEA MessageQ Programmer’s GuideB-105



8 PAMS Application Programming Interface

Table 8-55
Return Code Platform  Description
PAMS__| NVALI DNUM All Invalid timer number passed to
pans_set tiner.
PAVS__| NVFORVAT All Invalid timer format specified in the call.
Should bePor S.
PAMS__NETERROR Clients Network error resulted in a
communications link abort.
PAMS__NOTDCL All Process has not been attached to BEA
MessageQ.
PAMS__NOTSUPPORTED UNIX The Stimer_format is not supported by
Windows  BEA MessageQ for UNIX and Windows
NT NT systems.
PAVS__ PANSDOVWN UNIX The specified BEA MessageQ group isnot
Windows  running.
NT
PAMS__PREVCALLBUSY Clients Previous cal to CLS has not been
completed.
PAMS__RESRCFAI L All Insufficient resources to complete
operation.
PAMS__ SUCCESS All Indicates successful completion.

See Also m pans_cancel _tiner
Example  Set aTimer

This example shows how to use the BEA MessageQ timer functions by setting atimer

to go off every 5 seconds. When the timer expires, it sends messages to itself. While

not handling the timer event, it sits and waits for other incoming messages. If it is
interrupted, it cancels any outstanding timers. The queue naquede’ 1” must be
defined in your initialization file as a primary queue. The complete code example
calledx_ti ner. c is contained in the examples directory.

8-106 BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

pams_status_text

Syntax

Arguments

Argument
Definitions

Receives the severity level and text description of a user-supplied PAMS API return
code and moves that information to a user-supplied storage area. If the error code is
not known, an error is returned and the call parameters are not filled in.

int32 pans_status_text ( code, severity, buffer, buflen, retlen)

Table 8-56
Argument Data Type Mechanism  Prototype Access
code int32 reference int32 * passed
severity int32 reference int32 * returned
buf fer char reference char * returned
bufl en int32 reference int32 * passed
retlen int32 reference int32 * returned

code

Specifies the return value for which you would like the text description and severity
level returned.

severity

Receives a code indicating the severity level of the message. Severity levels apply to
both success and error messages. They are designed to provide moreinformation about
the message being returned. The valid codes returned to this argument are as follows:

0 =warning

1 = success

2 =error

3 = informational
4 = fatal error

buffer

Receives the text description for the return status supplied.

BEA MessageQ Programmer’s Guide3-107



8 PAMS Application Programming Interface

Description

Return Values

buflen

Specifiesthe length of the buffer to store the text description returned. A buffer length
of 256 bytes is adequate to store the text description for all return status codes. If the
user buffer supplied is large enough, the string is zero terminated. The buffer length
must be entered as a positive integer. Supplying a negative integer value to this
argument causesthe functionto return astatus of PAMS__ BADPARAM If you specify this
argument as zero, no text isreturned to the buffer and the function returns the status of
PAMS__ TRUNCATED.

retlen

Receives the size of the user-supplied buffer space that was filled by the text
description returned.

Application developers use the pans_st at us_t ext function to obtain atext
description and severity level for each API return value. The text description contains
both the symbolic name (asit is defined in the include files and described in the
documentation) followed by a comma, a space, and then a description of the return
value in the following format:

PAMS SUCCESS, nornal successful conpletion

In addition to the text description, this function returns a code indicating the severity
level for both success and error messages.

For example, pans_det ach_q hastwo possible success return codes;

PAMS__ SUCCESS and PAMS__ DETACHED. The PAMS__ SUCCESS return code is used to
indicate that you successfully detached the specified queue(s). PAMS__DETACHEDiSan
informational return code indicating that the call was successful and that you have
detached your last queue which effectively detaches your application from the
message queuing bus in the same manner asthe pans_exi t function.

Table 8-57
Return Code Platform  Description
PAMS__BADARGLI ST OpenVMS  Invalid number of call parameters specified.
PAVS__ BADPARAM All Invalid call parameter specified.
PAMS__FAI LED All Thereis no trand ation for the specified return

code.

8-108 BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Table 8-57
Return Code Platform  Description
PAMS__ SUCCESS All Normal successful completion.
PAVS__ TRUNCATED All The description was returned but was

truncated.

BEA MessageQ Programmer’s GuideB-109



8 PAMS Application Programming Interface

putil_show_pending

Syntax

Arguments

Argument
Definitions

Return Values

Requests the number of pending messages for alist of selected queues. To use the
putil_show_pending function, specify the number of message queues for which you
want to obtain a pending message count and the list of queue addresses for which you
want to obtain a pending message count. The value returned by this function contains
the total number of messagesin each memory queue. On OpenVMS systems, this
function also returns the number of pending messagesin the local recovery journals
targeted for delivery to the selected queue.

int32 putil_show pending ( count, in_g_ list, out_pend list )

Table 8-58

Argument Data Type Mechanism  Prototype Access
count int32 reference int32 * passed
in_qg_list short array reference short array* passed
out_pend_list int32 array reference int32array * returned
count

Supplies the number of queue entriesinthein_qg_I i st argument (the number of
indexes in the array). The maximum allowed value is 32,000.

in_qg_list

Suppliesanarray of i nt 32 values containing the queue numbersfor which the pending
message count is requested.

out_pend_list

Receives the pending message count for each selected queue.

Table 8-59
Return Code Platform Description
PAMS__BADARGLI ST UNIX Invalid argument supplied to this

Windows NT function.

8-110 BEA MessageQ Programmer’s Guide



BEA MessageQ API Data Types

Table 8-59
Return Code Platform Description
PAMS__ BADPARAM OpenVMS Invalid argument supplied to this
function.
PAMS__ NETERROR Clients Network error resulted in a
communications link abort.
PAMS__ NOTDCL All Process is not attached to BEA
MessageQ.
PAMS__ RESRCFAI L All Insufficient resources to complete
operation.
PAVS__ PAMSDOMN All The specified BEA MessageQ
group is not running.
PAVS__ PREVCAL LBUSY Clients Previous call to CLS has not been
completed.
PAMS__ SUCCESS All Successful completion.

Example  Display Number of Pending M essages

This example shows how to use put i | _show_pendi ng to display the number of
pending messages currently in the queue. A queue najpede' 1" must be defined
during group configuration. The complete code example calletopnd. c is
contained in the examples directory.

BEA MessageQ Programmer’s Guide8-111



8 PAMS Application Programming Interface

8-112 BEA MessageQ Programmer’s Guide



CHAPTER

9

Message Reference

This chapter contains detailed descriptions of all BEA MessageQ message-based
services alphabetized by message type. Each description lists the message type code
name, the name of the BEA MessageQ server performing the service, and a detailed
definition of the message area and required arguments to send messages or read
response and notification messages using the BEA MessageQ API or scripts. The
definition of all BEA MessageQ message-based services messagesisnow provided in
thep_nsg. h includefile.

BEA MessageQ message-based services are sent between a user application program
that functions as a requestor and a BEA MessageQ server process that fulfills the
request. For messages to be properly understood between systems, message data must
be sent and returned in the endian format understood by both the requestor and the
server. Most BEA MessageQ message-based services automatically perform this
conversion if the endian format of the two systems is different. However, some
message-based services do not perform this conversion, therefore, the user application
must convert the message to the endian format of the server system to ensure that the
message data is correctly interpreted. Each message-based service description notes
whether the data structure is RISC aligned and whether the server performs the endian
conversion automatically.

BEA MessageQ Programmer’s Guide 9-1



9 Message Reference

AVAIL

C Message
Structure

Message Data

9-2

Fields

Arguments

Applications can register to receive notification when queues become active or
inactive in local and remote groups by sending an AVAI L_REG message to the Avail
Server. The AVAI L notification messageis sent to registered applicationswhen aqueue
in the selected group becomes active. See the Obtaining the Status of a Queuetopicin
the Using M essage-Based Services section for an explanation of how to use this

message.

Applications must cancel availability notification by sending a message of type

AVAI L_DEREG. The application receives a AVAI L_REG REPLY message indicating the
status of the operation. It isimportant to note that if the distribution queue for an
AVAIL registration becomes unavailable, the registration will be automatically
deleted by BEA MessageQ. A subsequent attempt to deregister AVAIL services for
this distribution queue will result in an error message indicating that the registration
does not exist.

Note: TheAvail Server performs endian conversion when this message is received
between processes that run on systems that use different hardware data
formats. This messageis also RISC aligned.

typedef struct _AVAIL {
g_address target_q;

} AVAIL;
Field Data Type Script  Description
Format
target_q g_address DL Address of queue that is now available.
Argument Data Type M echanism Prototype Access
Target Supplied by Supplied by Target Supplied by
AVAI L_REG AVAI L_REG AVAI L_REG
Source AVAI L_SERVER PAMS_AVAIL_S Source AVAI L_SERVER
ERVER

BEA MessageQ Programmer’s Guide



See Also

Example

Argument DataType

M echanism Prototype Access

Class PAMS MSG_CLAS_ Class PAMS
PAMS
Type AVAI L M5G_TYPE_ Type AVAI L
AVAI L
m  AVAI L_DEREG
m AVAIL_REG

AVAI L_REG REPLY
UNAVAI L

The AVAIL servicesexampleillustrates avail services, avail register, avail deregister,
and getting avail messages. The complete code example called x_avai | . ¢ is
contained in the examples directory.

BEA MessageQ Programmer’s Guide 9-3



9

Message Reference

AVAIL_DEREG

Applications can register to receive notification when queues become active or
inactive in local and remote groups by sending an AVAI L_REG message to the Avail
Server. When notification messages are no longer needed, the application sends an
AVAI L_DEREGMmessageto the Avail Server to cancel registration. It isimportant to note
that if the distribution queue for an AVAIL registration becomes unavailable, the
registration will be automatically deleted by BEA MessageQ. A subseguent attempt to
deregister AVAIL servicesfor this distribution queue will result in an error message
indicating that the registration does not exist. See the Obtaining the Status of a Queue
topic in the Using M essage-Based Services section for an explanation of how to use

this message.

Note: TheAvail Server performs endian conversion when this message is sent
between processes that run on systems that use different hardware data
formats. This messageis also RISC aligned.

CMessage typedef struct _AVAIL_DEREG {
Structure intl6 version;
intle filler;
g_address target_q;
g_address distribution_q;
char req_ack;
} AVAI L_DEREG

Message Data

9-4

Fields
Field DataType Script  Description
For mat
ver si on word DW Format version number. Must be 20.
filler word DW Spacing for RISC alignment.
target_q g_address DL Queue being monitored for its
availability.
di stribution_q g_address DL Queue notified of availability.
reg_ack Boolean DB If response required, 1; else 0.

BEA MessageQ Programmer’s Guide



Arguments

Argument  Script Format pams_get_msg Format
Target AVAI L_SERVER PAMS_AVAI L_SERVER
Source Supplied by BEA MessageQ Supplied by BEA MessageQ
Class PAVS MBG _CLAS PAMB

Type AVAI L_DEREG M5G_TYPE_AVAI L_DEREG

See Also m AVAIL
B AVAIL_REG
m AVAIL_REG REPLY
m  UNAVAI L

Example  The AVAIL servicesexampleillustrates avail services, avail register, avail deregister,
and getting avail messages. The complete code example called x_avai | . ¢ is
contained in the examples directory.

BEA MessageQ Programmer’s Guide 9-5



9 Message Reference

AVAIL_REG

C Message
Structure

Message Data
Fields

Applications can register to receive notification when queues become active or
inactive in local and remote groups by sending an AVAI L_REG message to the Avail
Server. See the Obtaining the Status of a Queue topic in the Using M essage-Based
Services section for an explanation of how to use this message. If the application
detaches from the distribution queue, the AV AIL registration is automatically deleted.
The application must cancel notification, regardless of queue type, by sending a
message of type AVAI L_DEREG. The application receives a AvVAI L_REG REPLY
message indicating the status of the operation.

Note: TheAvail Server performs endian conversion when this message is sent
between processes that run on systems that use different hardware data
formats. This messageisalso RISC aligned.

typedef struct _AVAIL_REG {
int1l6 version;
intle filler;
g_address target_q;
g_address distribution_q;
int32 tineout;

} AVAIL_REG

Field DataType Script  Description
Format

ver si on word DW Format version number. Must be 31.
filler word DW Spacing for RISC alignment.
target_q g_address DL Queue to be monitored for availability.
distribution_g q_address DL Queue to receive availability messages.
ti meout i nt32 DL Interval (specified in seconds) after

which the function should timeout.

9-6 BEA MessageQ Programmer’s Guide



Arguments

Argument  Script Format pams_get_msg Format
Target AVAI L_SERVER PAMS_AVAI L_SERVER
Source Supplied by BEA MessageQ Supplied by BEA MessageQ
Class PAVS MBG _CLAS PAMB

Type AVAI L_REG MSG_TYPE_AVAI L_REG

SeeAlso m AVAIL_REG REPLY
m AVAIL
m  UNAVAI L
m AVAI L_DEREG

Example  The AVAIL servicesexampleillustrates avail services, avail register, avail deregister,
and getting avail messages. The complete code example called x_avai | . ¢ is
contained in the examples directory.

BEA MessageQ Programmer’s Guide 9-7



9 Message Reference

AVAIL_REG_REPLY

Applications register to receive notification when queues become active or inactive in
local and remote groups by sending an AVAI L_REG message to the Avail Server. The
AVAI L_REG REPLY message indicates whether the application has successfully
registered or deregistered from receiving notification messages. See the Obtaining the
Status of a Queue topic in the Using Message-Based Services section for an
explanation of how to use this message.

Note: TheAvail Server performs endian conversion when this message is received
between processes that run on systems that use different hardware data
formats. This messageisalso RISC aligned.

(CMessage typedef struct _AVAIL_REG REPLY {
Structure intl6 status;
uint16 reg_id;
int16 nunber _reg;
} AVAIL_REG REPLY;

Message Data

Fields
Field Data Type Script  Description
Format
st atus word DW Status code:
1 = success;
0 =failure.
reg_id unsigned DW Returned subscription ID.
word
nunber _reg word DW Number of registrants left on the Avail list.
Arguments
Argument  Script Format pams_get_msg For mat
Target Sender of AVAI L_ REGDEREG Sender of AVAI L_ REGDEREG
Source AVAI L_SERVER PAMS_AVAI L_SERVER
Class PANVS MBG_CLAS_PAMS

9-8 BEA MessageQ Programmer’s Guide



Argument  Script Format pams_get_msg Format

Type AVAI L_REG REPLY MSG_TYPE_AVAI L_REG REPLY

See Also ®m AVAIL_REG
m  AVAI L_DEREG
m AVAIL
m  UNAVAI L

Example  The AVAIL servicesexampleillustrates avail services, avail register, avail deregister,
and getting avail messages. The complete code example called x_avai | . ¢ is
contained in the examples directory.

BEA MessageQ Programmer’s Guide 9-9



9 Message Reference

DISABLE_NOTIFY

Applicationscan register to receive notification when cross-group links are established
and lost by sending an ENABLE_NOTI FY message to the Connect Server. When an
application no longer needs to receive notification messages, it deregisters by sending
aDl SABLE_NOTI FY message to the Connect Server. The DI SABLE_NOTI FY message
can stop notification of cross-group link changes. See the Obtain Notification of
Cross-Group Links Established and L ost topic in the Using M essage-Based Services
section for an explanation of how to use this message.

Note: The Connect Server performs endian conversion when this message is sent
between processes that run on systems that use different hardware data
formats. This messageisalso RISC aligned.

CMessage typedef struct _ENABLE NOTIFY {
Structure char reserved;
char connection_flag;
} ENABLE_NOTI FY;

Message Data

Fields
Field Data Type Script  Description
Format
reserved unsigned char DB Reserved for use by BEA MessageQ.
connection_flag wunsignedchar DB Boolean flag to cancel cross-group
connection notification, 1; else 0.
Arguments
Argument  Script Format pams_get_msg For mat
Target CONNECT_SERVER PAMS_CONNECT_SERVER
Source Supplied by BEA MessageQ Supplied by BEA MessageQ
Class PANVS MBG_CLAS_PAMS
Type DI SABLE_NOTI FY M5G_TYPE_DI SABLE_NOTI FY

See Also m ENABLE_NOTI FY

9-10 BEA MessageQ Programmer’s Guide



m LI NK_COVWPLETE
m LI NK LOST

BEA MessageQ Programmer’s Guide 9-11



9 Message Reference

DISABLE_Q_NOTIFY_REQ

C Message
Structure

Message Data
Fields

Arguments

See Also

Applications can register to receive notification when queue states change in local or
remote groups by sending an ENABLE_Q NOTI FY_REQmessage. The

DI SABLE_Q NOTI FY_REQis sent to the Queue Server when the application no longer
needs to receive notification messages. See the Receiving Attachment Notifications

topic in the Using M essage-Based Services section for an explanation of how to use

this message.

Note: The Queue Server performs endian conversion when this message is sent
between processes that run on systems that use different hardware data
formats. This messageis also RISC aligned.

typedef struct _Q NOTIFY_REQ {
int32 version;
int32 user_tag;
} Q_NOTI FY_REQ

Field DataType Script  Description
Format

ver si on i nt32 DL Version of request.
user_tag int32 DL User-specified code to identify thisrequest.
Argument  Script Format pams_get_msg For mat

Target QUEUE_SERVER PAMS_QUEUE_SERVER

Source Reguesting program Reguesting program

Class PAMVB MVBG_CLAS_PAVS

Type Dl SABLE_Q NOTI FY_REQ M5G_TYPE_DI SABLE_Q_

NOTI FY_REQ

m DI SABLE_Q NOTI FY_RESP
m ENABLE_Q NOTI FY_REQ

9-12 BEA MessageQ Programmer’s Guide



m ENABLE Q NOTI FY_RESP
m Q UPDATE

BEA MessageQ Programmer’s Guide 9-13



9

Message Reference

DISABLE_Q_NOTIFY_RESP

Applications can register to receive notification when queue states change in local or
remote groups by sending an ENABLE_Q NOTI FY_REQmessage. The

DI SABLE_Q NOTI FY_REQmMmessageissent to the Queue Server when the application no
longer needs to receive notification messages. The DI SABLE_Q NOTI FY_RESP
message indicates whether the application is successfully deregistered from receiving
notification messages. See the Receiving Attachment Notifications topic in the Using
M essage-Based Services section for an explanation of how to use this message.

Note: The Queue Server performs endian conversion when this message is received
between processes that run on systems that use different hardware data
formats. This messageis also RISC aligned.

CMessage  #define MAX_NUMBER _Q RECS 50
Structure  typedef struct _Q NOTIFY_RESP {
int32 version;
int32 user_tag;

int32 status_code;

int32 last_block _fl ag;

i nt 32 nunber _q_recs;

struct {
gq_address g_num
gq_address q_owner;
int32 g_type;
int32 g_active_flag;
int32 g_attached_fl ag;
int32 g_owner_pid;
} g_rec [50];

} Q_NOTI FY_RESP;

Message Data

9-14

Fields
Field DataType Script  Description
For mat

ver si on int32 DL Version of response.
user_tag int32 DL User-specified code from request.
status_code int32 DL O=Error

1=Success

-2=Refused
| ast _bl ock_flag int32 DL Last block Boolean flag.

BEA MessageQ Programmer’s Guide



Field DataType Script  Description

Format
nunber _qg_recs int32 DL Number of records in this message.
g_num g_address DL Queue number.
q_owner g_address DL Queue owner (only for secondary
queues (SQs)).
g_type int32 DL Queue type (numerically encoded P, S,
M).
g_active flag int32 DL Queue active Boolean flag.
g_attached_flag int32 DL Queue attached Boolean flag.
g_owner _pid int32 DL Queue owner process identification
(PID).
Arguments
Argument  Script Format pams_get_msg Format
Target Requesting program Requesting program
Source QUEUE_SERVER PAMS_QUEUE_SERVER
Class PAVS MSG_CLAS PANB
Type DI SABLE_Q NOTI FY_RESP MSG_TYPE DI SABLE Q_
NOTI FY_RESP

SeeAlso m DI SABLE_Q NOTI FY_REQ
m ENABLE_Q NOTI FY_REQ
m ENABLE_Q NOTI FY_RESP
m Q UPDATE

BEA MessageQ Programmer’s Guide 9-15



9 Message Reference

ENABLE_NOTIFY

Applications can register to receive not i fi cat i on when cross-group links are
established and lost by sendingan ENABLE_NOTIFY messageto the Connect Server.
See the Obtain Notification of Cross-Group Links Established and L ost topic in the
Using Message-Based Services section for an explanation of how to use this message.

Note: The Connect Server performs endian conversion when this message is sent
between processes that run on systems that use different hardware data
formats. This messageis also RISC aligned.

CMessage typedef struct _ENABLE NOTIFY {
Structure char reserved;
char connection_flag;
} ENABLE_NOTI FY;

Message Data

Fields
Field Data Type Script  Description
Format
reserved unsigned char DB Reserved for use by BEA MessageQ.
connection_flag wunsignedchar DB Boolean flag for cross-group
connection notification, 1; else 0.
Arguments
Argument  Script Format pams_get_msg For mat
Target CONNECT_SERVER PAMS_CONNECT_SERVER
Source Supplied by BEA MessageQ Supplied by BEA MessageQ
Class PANMS MBG CLAS PAMB
Type ENABLE_NOTI FY M5G_TYPE_ENABLE_NOTI FY

SeeAlso m DI SABLE_NOTI FY
m LI NK_COWPLETE
m LINK LOST

9-16 BEA MessageQ Programmer’s Guide



ENABLE_Q NOTIFY_REQ

C Message
Structure

Message Data
Fields

Arguments

See Also

Applications can register to receive notification when queue states change in local or
remote groupsby sending an ENABLE_Q NOTI FY_REQmessage. Thismessage requests
alist of al active queues and then subsequent notification when queues become
attached or detached and active or inactive. See the Receiving Attachment

Notificationstopicinthe Using M
how to use this message.

essage-Based Services section for an explanation of

Note: The Queue Server performs endian conversion when this message is sent

between processes that ru

n on systems that use different hardware data

formats. Thismessageis also RISC aligned.

typedef struct _Q NOTI FY_REQ {

int32 version;
int32 user_tag;
} Q_NOTI FY_REQ

Field DataType Script  Description
Format
ver sion int32 DL Version of request.
user _t ag int32 DL User-specified code to identify this request.
Argument  Script Format pams_get_msg Format
Target QUEUE_SERVER PAMS_QUEUE_SERVER
Source Requesting program Requesting program
Class PAVB MSG_CLAS_PANB
Type ENABLE_Q NOTI FY_REQ MSG_TYPE ENABLE_Q NOTI FY_REQ

m DI SABLE_Q NOTI FY_REQ
m DI SABLE_Q NOTI FY_RESP

BEA MessageQ Programmer’s Guide 9-17



9 Message Reference

m ENABLE_Q NOTI FY_RESP
®m Q UPDATE

9-18 BEA MessageQ Programmer’s Guide



ENABLE_Q_NOTIFY_RESP

C Message
Structure

Message Data

Applications can register to receive notification when queue states change in local or
remote groups by sending an ENABLE_Q NOTI FY_REQmessage. The

ENABLE_Q NOTI FY_RESP message deliversalist of all active queues and then
subsequently notifies the application of attachments, detachments, and changes to
activeand inactive statususing the Q_UPDATE message. See the Receiving Attachment
Notificationstopic in the Using M essage-Based Services section for an explanation of
how to use this message.

Note: The Queue Server performs endian conversion when this messageisreceived
between processes that run on systems that use different hardware data
formats. Thismessageis also RISC aligned.

#defi ne MAX_NUMBER Q RECS 50
typedef struct _Q NOTIFY_RESP {
int32 version;
int32 user_tag;
i nt 32 status_code;
int32 last_block flag;
i nt 32 nunber _q_recs;
struct {
g_address q_num
g_addr ess q_owner;
int32 g_type;
int32 g_active_flag;
int32 g_attached_fl ag;
int32 q_owner_pid,
} g_rec [50];
} Q_NOTI FY_RESP;

Fields
Field Data Type Script  Description
Format

ver sion int32 DL Version of response.
user _t ag int32 DL User-specified code from request.
stat us_code int32 DL O=Error

1=Success

-2=Refused

BEA MessageQ Programmer’s Guide 9-19



9 Message Reference

Field DataType Script  Description
Format
| ast _block_flag int32 DL Last block Boolean flag.
nunber _qg_recs int32 DL Number of records in this message.
g_num g_address DL Queue number.
g_owner g_address DL Queueowner (only for secondary queues
(SQs)).
gq_type int32 DL Queue type (numerically encoded P, S,
M).
g_active flag int32 DL Queue active Boolean flag.
g_attached_flag int32 DL Queue attached Boolean flag.
g_owner _pid int32 DL Queue owner process identification
(PID).
Arguments
Argument  Script Format pams_get_msg Format
Target Requesting program Reqguesting program
Source QUEUE_SERVER PAMS_QUEUE_SERVER
Class PAVS MBG CLAS PANB
Type ENABLE_NOTI FY_RESP MBG TYPE_ENABLE NOTI FY_RESP

SeeAlso m DI SABLE_Q NOTI FY_REQ
m DI SABLE_Q NOTI FY_RESP
m ENABLE_Q NOTI FY_REQ
m Q UPDATE

9-20 BEA MessageQ Programmer’s Guide



LINKMGT_REQ

Applications can use link management messages to explicitly control cross-group
connections. Use the LI NKMGT_REQ message to request a connection to a remote
group, to disconnect from a remote group, or to obtain information about a remote
BEA MessageQ group. See the Controlling Cross-Group Links topic in the Using
Message-Based Services section for an explanation of how to use this message.

Note: The Connect Server performs endian conversion when this message is sent
between processes that run on systems that use different hardware data
formats. Thismessageis also RISC aligned.

(CMessage typedef struct _TADDRESS {
Structure int32 len;

char str [16];

} TADDRESS;

typedef struct _NODENAME {
int32 | en;
char str [255];
} NCDENAME;

typedef struct _LINKMST_REQ {
int32 version;
int32 user_tag;

int32 function_code;

i nt 32 group_nunber;

i nt 32 connect _type;

i nt32 reconnect _ti ner;

i nt32 wi ndow si ze;

i nt 32 wi ndow_del ay;

int32 reserved_space [10];

TADDRESS transport_addr;
NCDENAME node_nane;
} LI NKMGT_REQ

Message Data

Fields
Field Data Type Script  Description
Format
ver sion int32 DL M essage version.
user _t ag int32 DL User-specified code to identify this request.

BEA MessageQ Programmer’s Guide 9-21



9 Message Reference

Field

Data Type Script

Format

Description

function_code

i nt32 DL

Function of the message using
PSYM LI NKMGT_CMD:
_ENABLE
_ DI SABLE
_I NQUI RY

CONNECT

_ DI SCONNECT

group_nunber

i nt 32 DL

Group number to receive action; valid values
are between 1 and 32,000;

PSYM LI NKMGT_ALL_GROUPS indicates
al known links.

connect _type

i nt 32 DL

Type of transport to use, as follows:
PSYM LI NKMGT_TCPI P

reconnect _tiner

i nt 32 DL

Timeit takes for the COM Server to
reconnect to a communications link. Enter
the number of seconds or the following
values:

PSYM LI NKMGT_NO_TI MER

PSYM LI NKMGT_USE_PREVI OUS

wi ndow_si ze

i nt32 DL

Size of transmission window (cross-group
protocol Version 3.0 and higher). Enter the
number of messages or the following value:

PSYM LI NKMGT_USE_PREVI QUS

wi ndow_del ay

i nt32 DL

Transmission window delay in seconds
(cross-group protocol Version 3.0 and
higher). Enter the number of seconds or the
following value:

PSYM LI NKMGT_USE_PREVI QUS

reserved_space

10-i nt 32
array

DL (10)

Reserved for BEA MessageQ use.

transport_addr _|en

i nt 32 DL

Length of transport address. Values 0 to 16
bytes; 0 = use previous setting.

9-22

BEA MessageQ Programmer’s Guide



Field DataType Script  Description
Format
transport _addr char A Transport address string that is 16 bytesin
char str length; the TCP/IP port ID.
*
node_namne_| en int32 DL L ength of node namestring; 0 = use previous
known value.
node_nane char A ASCI|I text of node name; length determined
by node_nane_| en up to 255 characters.
Arguments

Argument  Script Format

pams_get_msg Format

Target CONNECT_SERVER PAMS_CONNECT_SERVER
Source Requesting program Requesting program

Class PAVS MSG_CLAS PANB

Type LI NKMGT_REQ MBG_TYPE_ LI NKMGT_REQ

See Also LI NKMGT_RESP

BEA MessageQ Programmer’s Guide 9-23



9 Message Reference

LINKMGT_RESP

CMessage
Structure

Message Data
Fields

Applications can use link management messages to explicitly control cross-group
connections. Use the LI NKMSGT_REQ message to reguest a connection to a remote
group, to disconnect from aremote group, or to obtain information about a remote
BEA MessageQ group. The LI NKMST_RESP message notifies the requesting
application if the connection or disconnection request was successful and supplies
information about the cross-group connection. See the Controlling Cross-Group Links
topic in the Using M essage-Based Services section for an explanation of how to use

this message.

Note: The Connect Server performs endian conversion when this message is
received between processes that run on systems that use different hardware
data formats. This message is also RISC aligned.

typedef struct _TADDRESS {
int32 | en;
char str [16];
} TADDRESS;

typedef struct _NODENAME {
int32 len;
char str [255];
} NODENAME;

typedef struct _LI NKMGT_RESP {
int32 version;

nt 32 user _t ag;

nt 32 status;

nt 32 group_nunber;

nt32 in_link_state;

nt32 out _|ink_state;

nt 32 connect _type;

nt32 platform.id;

nt 32 reconnect _tiner;

nt 32 wi ndow_si ze;

nt 32 wi ndow_del ay;

nt32 reserved_space [10];
TADDRESS transport_addr;
NODENAME node_nane;

} LI NKMGT_RESP;

9-24  BEA MessageQ Programmer’s Guide



Field Data Script  Description
Type Format

ver sion int32 DL M essage version.

user _t ag int32 DL User-specified code from request.

status int32 DL Completion status

group_nunber int32 DL Group number to receive action. Valid vaues are
between 1 and 32,000;
PSYM LI NKMST_ALL_GROUPS indicates all
known links.

in_link_state int32 DL State of inbound link at time of request. Vaues are:
PSYM_LI NKMST_UNKNOWN
PSYM LI NKMST_NOCNT
PSYM LI NKMST_CONNECTED
PSYM LI NKMST_DI SABLED

out _link_state int32 DL State of outbound link at time of request; samevalues
asin_link_state.

connect_type int32 DL Type of transport to use as follows:

PSYM LI NKMGT_TCPI P

BEA MessageQ Programmer’s Guide 9-25



9 Message Reference

Field

Data
Type

Script
Format

Description

platformid

int32

DL

Platform type preceded by the prefix
PSYM PLATFORM Valid values are:
VAX_VMVB
VAX_ULTRI X

RI SC ULTRI X
HP9000_HPUX
MOTORCLA_VR32
SPARC_SUNGS

| BM_RS6000_Al X
052

VBDOS
PDP11_RSX
VAXELN

MACI NTOSH
SCO_UN X

M5 8K

VVB_AXP

UNI X

W NDOWSENT
CSF1_AXP

DYNI X_X86
UNKNOWN

reconnect _tiner

int32

DL

Time it takes for the COM Server to reconnect to a
communications link. Enter the number of seconds
or the following values:

PSYM LI NKMGT_NO_TI MER

PSYM LI NKMGT_USE_PREVI OUS

wi ndow _si ze

int32

DL

Size of transmission window (cross-group protocol
Version 3.0 and higher).

wi ndow_del ay

int32

DL

Transmission window delay in seconds (cross-group
protocol Version 3.0 and higher).

reserved_space

10-int 32
array

DL(10)

Reserved for BEA MessageQ use.

transport_addr _
len

int32

DL

Length of transport address. Values 0 to 16 bytes; 0
= use previous setting.

9-26 BEA MessageQ Programmer’s Guide



Field Data Script  Description
Type Format

transport _addr char A Transport address string 16 bytes in length, the
TCP/IP port ID.

node_namne_| en int32 DL Length of node name string. 0 = use previous known
value.

node_nane char A ASCII text of node name; length determined by
node_nane_| en up to 255 characters.

Status Codes
Status Code Description

PSYM LI NKMGT_ALREADYUP

Link already connected.

PSYM LI NKMGT_MSGCONTENT

M essageincomplete or content inconsistent with

dialog.

PSYM LI NKMGT_MSGFMT

Format error in dia og.

PSYM LI NKMGT_NOGROUP

Group is unknown.

PSYM LI NKMGT_NCPRI V

No privilege for attempted operation.

PSYM LI NKMGT_NOTRANSPCRT

Requested transport is not available.

PSYM LI NKMGT_NOTSUPPORTED

Feature not supported.

PSYM LI NKMGT_OPERATI ONFAI L

Requested operation failed.

PSYM LI NKMGT_SUCCESS

Normal successful return.

Arguments

Argument  Script Format pams_get_msg Format
Target Requesting program Requesting program
Source CONNECT_SERVER PAMS_CONNECT_SERVER

BEA MessageQ Programmer’s Guide 9-27



9 Message Reference

Argument  Script Format pams_get_msg For mat
Class PANS MBG_CLAS_PAVS
Type LI NKMGT_RESP MBG_TYPE_LI NKMGT_RESP

See Also m LI NKMST_REQ

9-28  BEA MessageQ Programmer’s Guide



LINK_COMPLETE

C Message
Structure

Message Data
Fields

Arguments

Applications can register to receive notification when cross-group links are established
and lost by sending an ENABLE_NOTI FY message to the Connect Server. Registered
applications receive a LI NK_COVPLETE message each time a cross-group connection
occurs. See the Obtain Notification of Cross-Group Links Established and Lost topic
in the Using Message-Based Services section for an explanation of how to use this

message.

Note: The Connect Server does not perform endian conversion when this message
is received between processesthat run on systems that use different hardware
data formats. The sender program must convert the message to the endian
format of the target system to ensure that the message data is correctly
interpreted. This message is RISC aligned.

typedef struct _LINK NOTI FI CATI ON {
int16 group_nunber;
intle fillerl;
char os_type;
char filler2;
} LI NK_NOTI FI CATI ON;

Field DataType Script  Description
Format
group_nunber word DW Group address associated with link.
fillerl wor d DW Reserved for BEA MessageQ.
os_type byt e A(D Code indicating operating system of remote
node.
filler2 byt e XB Reserved for BEA MessageQ.
Argument  Script Format pams_get_msg Format
Target Requesting program Requesting program
Source CONNECT_SERVER PAMS_CONNECT_SERVER

BEA MessageQ Programmer’s Guide 9-29



9 Message Reference

9-30

Argument  Script Format

pams_get_msg For mat

Class PAMS

MSG_CLAS_PAVS

Type LI NK_COMPLETE

MSG_TYPE_LI NK_COVPLETE

See Also m DI SABLE NOTI FY
m ENABLE NOTI FY
B | NK_LOST

BEA MessageQ Programmer’s Guide



LINK_LOST

C Message
Structure

Message Data
Fields

Arguments

Applications can register to receive notification when cross-group links are established
and lost by sending an ENABLE_NOTI FY message to the Connect Server. Registered
applicationsreceiveall NK_LOST message each time a cross-group connection islost.
See the Obtain Notification of Cross-Group Links Established and Lost topic in the
Using Message-Based Services section for an explanation of how to use this message.

Note: The Connect Server does not perform endian conversion when this message
is received between processesthat run on systems that use different hardware
data formats. The sender program must convert the message to the endian
format of the target system to ensure that the message data is correctly
interpreted. This message is RISC aligned.

typedef struct _LINK NOTI FI CATI ON {
int16 group_nunber;
intle fillerl;

char
char

os_type;
filler2;

} LI NK_NOTI FI CATI ON,

Field DataType Script  Description
Format
group_nunber word DW Group address associated with link.
fillerl wor d DW Reserved for BEA MessageQ.
os_type byt e A(D Code indicating operating system of remote
node.
filler2 byt e XB Reserved for BEA MessageQ.
Argument  Script Format pams_get_msg Format
Target Requesting program Requesting program
Source CONNECT_SERVER PAMS_CONNECT SERVER

BEA MessageQ Programmer’s Guide 9-31



9 Message Reference

Argument  Script Format pams_get_msg For mat
Class PANS MBG_CLAS_PAVS
Type LI NK_LOST MBG _TYPE_LI NK_LCST

See Also m DI SABLE NOTI FY
m ENABLE NOTI FY
m || NK_COVWLETE

9-32 BEA MessageQ Programmer’s Guide



LIST_ALL_CONNECTIONS (Request)

C Message
Structure

Message Data
Fields

Arguments

See Also

An application can request alisting of all active and configured cross-group
connections by sending aLl ST_ALL_CONNECTI ONS message to the Connect Server.
The reply to thisrequest is a variable-length message of the same type and class
containing the cross-group connection information. See the Listing Cross-Group
Connections, Entries, and Groups topic in the Using Message-Based Services section
for an explanation of how to use this message.

Note: Thismessageis RISC aigned.

None.

None.
Argument  Script Format pams_get_msg Format
Target CONNECT_SERVER PAMS_CONNECT_SERVER
Source Requesting program Requesting program
Class PAMS MSG_CLAS_PANB
Type LI ST_ALL_CONNECTI ONS MSG TYPE_ LI ST_ALL_

CONNECTI ONS

m || ST_ALL_CONNECTI ONS response message

m LI ST_ALL_ENTR ES (Request)

m LI ST_ALL_ENTR ES (Response)

m LI ST_ALL_GROUPS (Request)

m LI ST_ALL_GROUPS (Response)

BEA MessageQ Programmer’s Guide 9-33



9 Message Reference

LIST_ALL_CONNECTIONS (Response)

An application can request a listing of all active and configured cross-group
connections by sending a Ll ST_ALL_CONNECTI ONS message to the Connect Server.
Thereply to this request is a variable length-message of the same type and class
containing the cross-group connection information. To read the information returned,
the application must total the number of bytesin the reply and divide by the
cross-group entry length, which is 20 bytes, to determine the number of records
returned. Seethe Listing Cross-Group Connections, Entries, and Groupstopic in the
Using Message-Based Services section for an explanation of how to use this message.

Thismessage does not return any information on groups with no link connection. The
state field for LI ST_ALL_CONNECTI ONS should always be 3 (linked).

Note: The Connect Server does not perform endian conversion when this message
isreceived between processes that run on systems that use different hardware
data formats. The sender program must convert the message to the endian
format of the target system to ensure that the message data is correctly
interpreted. This messageis RISC aligned.

CMessage typedef struct _GROUP_RECORD {
Structure intl6 group_numnber;
char group_name[4];
char uic[3];
char os_type;
char node[ 6] ;
char state;
char reserved[ 3];
} GROUP_RECORD;

Message Data

Fields
Field Data Type Script  Description
Format
group_nunber word DW Group address number.
group_narme 4-char array A(%) Name truncated to 4 characters.
ui c 3-char array A@3) Octal group user identification code
(uIc).
os_type char A(D) Operating system type of group.

9-34  BEA MessageQ Programmer’s Guide



Arguments

See Also

Field Data Type Script  Description
Format

node 6-char array A(6) Network node name.
state char A(D 1=No link

2=Pending

3=Linked
reserved 3-char ZB3 Reserved for BEA MessageQ.
Argument  Script Format pams_get_msg Format
Target Supplied by BEA MessageQ Supplied by BEA MessageQ
Source CONNECT_SERVER PAMS_CONNECT_SERVER
Class PANVS MSG_CLAS_PANS
Type LI ST_ALL_CONNECTI ONS MSG TYPE LI ST_ALL_

CONNECTI ONS

LI ST_ALL_CONNECTI ONS request message

m LI ST_ALL_ENTR ES (Request)

m LI ST_ALL_ENTR ES (Response)

m LI ST_ALL_GROUPS (Request)

m LI ST_ALL_GROUPS (Response)

BEA MessageQ Programmer’s Guide 9-35



9

Message Reference

LIST_ALL_ENTRIES (Request)

An application can request a listing of all attached and configured queuesin a group
by sending aLl ST_ALL_ENTRI ES message to the Connect Server. The reply to this
reguest is a variable-length message of the same type and class containing the queue
information. See the Listing Cross-Group Connections, Entries, and Groups topic in
the Using M essage-Based Services section for an explanation of how to use this

message.
Note: ThismessageisRISC aligned.

CMessage  None.
Structure

Message Data  None.

9-36

Fields

Arguments
Argument  Script Format pams_get_msg For mat
Target CONNECT_SERVER PAMS_CONNECT_SERVER
Source Supplied by BEA MessageQ Supplied by BEA MessageQ
Class PAVS MBG CLAS PAMB
Type LI ST_ALL_ENTRI ES MBG TYPE LI ST _ALL_

ENTRI ES
See Also m LIST_ALL_ENTRI ES response message

m LI ST_ALL_CONNECTI ONS (Request)
m LI ST_ALL_CONNECTI ONS (Response)
m LIST_ALL_GROUPS (Request)

m LIST_ALL_GROUPS (Response)

BEA MessageQ Programmer’s Guide



LIST_ALL_ENTRIES (Response)

C Message
Structure

Message Data
Fields

An application can request alisting of all attached and configured queues in a group
by sending aLl ST_ALL_ENTRI ES message to the Connect Server. The reply to this
request is a variable length message of the same type and class containing the queue
information. To read the information returned, the application must total the number
of bytesin the reply and divide by the queue entry length, which is 24 bytes, to
determine the number of records returned. See the Listing Cross-Group Connections,
Entries, and Groups topic in the Using M essage-Based Services section for an
explanation of how to use this message.

Note: The Connect Server does not perform endian conversion when this message
is received between processesthat run on systems that use different hardware
data formats. The sender program must convert the message to the endian
format of the target system to ensure that the message data is correctly
interpreted. This message is RISC aligned.

typedef struct _QLI ST _RECORD {
char g_nane [20];
int16 g_nunber;
char attach flag;
char reserved;
} QLI ST_RECORD;

Field DataType Script  Description
Format
g_name 20-char A(20) Queue name, truncated to fit.
array

q_nunber wor d DW Local queue address number.
attach_fI ag Boolean DB 1=Attached

O=Unattached
reserved byt e ZB Reserved for BEA MessageQ.

BEA MessageQ Programmer’s Guide 9-37



9 Message Reference

Arguments
Argument  Script Format pams_get_msg For mat
Target Requesting program Reqguesting program
Source CONNECT_SERVER PAMS_CONNECT_SERVER
Class PAVS MBG CLAS PAMB
Type LI ST_ALL_ENTRI ES MBG TYPE LI ST_ALL_ENTRI ES

9-38

SeeAlso m LIST_ALL_ENTRI ES request message

m LI ST_ALL_GROUPS (Request)

m LIST_ALL_GROUPS (Response)

m LI ST_ALL_CONNECTI ONS (Request)

m LI ST_ALL_CONNECTI ONS (Response)

BEA MessageQ Programmer’s Guide



LIST_ALL_GROUPS (Request)

C Message
Structure

Message Data
Fields

Arguments

See Also

An application can request alisting of al groups on amessage queuing bus by sending
alLl ST_ALL_GROUPS message to the Connect Server. Thereply to this request is a
variable-length message of the same type and class containing the group information.
See the Listing Cross-Group Connections, Entries, and Groups topic in the Using
Message-Based Services section for an explanation of how to use this message.

Note: Thismessageis RISC aigned.

None.

None.
Argument  Script Format pams_get_msg Format
Target CONNECT_SERVER PAMS_CONNECT_SERVER
Source Supplied by BEA MessageQ Supplied by BEA MessageQ
Class PAMS MSG_CLAS_PANB
Type LI ST_ALL_ GROUPS MSG_TYPE_LI ST_ALL_GROUPS

LI ST_ALL_GROUPS response message

LI ST_ALL_CONNECTI ONS (Request)

LI ST_ALL_CONNECTI ONS (Response)

LI ST_ALL_ENTRI ES (Request)

LI ST_ALL_ENTRI ES (Response)

BEA MessageQ Programmer’s Guide 9-39



9

Message Reference

LIST_ALL_GROUPS (Response)

An application can request alisting of all groups, connected and unconnected, on a
message queuing busby sendingaLl ST_ALL_GROUPS message to the Connect Server.
Thereply to this request is a variable-length message of the same type and class
containing the group information. To read the information returned, the application
must total the number of bytesin the reply and divide by the group entry length, which
is 18 bytes, to determine the number of records returned. Seethe Listing Cross-Group
Connections, Entries, and Groups topic in the Using M essage-Based Services section
for an explanation of how to use this message.

Note: The Connect Server does not perform endian conversion when this message
isreceived between processes that run on systems that use different hardware
data formats. The sender program must convert the message to the endian
format of the target system to ensure that the message data is correctly
interpreted. This messageis RISC aligned.

CMessage typedef struct _LIST_ALL_RESP {
Structure intl6 group_numnber;
char group_nane [4];
char uic_nunber [3];
char operating system
char decnet _node [6];
char connection_stat e;
char reserved[ 3];
} LI ST_ALL_RESP;

Message Data

9-40

Fields
Field DataType Script  Description
For mat
group_nunber word DW Group address number.
gr oup_nane 4-char A(%) Name truncated to 4 characters.
array
ui c_nunber 3-char A3 Octal group user identification code (UIC).
array
operating_sy char A(D) Operating system type of group.
stem

BEA MessageQ Programmer’s Guide



Field DataType Script  Description

Format
decnet _node  6-char A(6) Current DECnet node name. This can alsobe
array the TCP/IP node name. TCP/IP node names
longer than 6 characters are truncated.
connection_s char A(D 1=No link
tate 2=Pending
3=Linked
reserved 3-char ZB Reserved for BEA MessageQ.
(VMS)
1-char
(UNIX)
Arguments
Argument  Script Format pams_get_msg Format
Target Requesting program Requesting program
Source CONNECT_SERVER PAMS_CONNECT_SERVER
Class PANVS MBG _CLAS PAMB
Type LI ST_ALL_GROUPS MSG_TYPE_LI ST_ALL_GROUPS
See Also m LI ST_ALL_GROUPS request message

m LI ST_ALL_CONNECTI ONS (Request)
m LI ST_ALL_CONNECTI ONS (Response)
m LI ST _ALL_ENTR ES (Request)

m LI ST_ALL_ENTR ES (Response)

BEA MessageQ Programmer’s Guide 9-41



9 Message Reference

LIST_ALL_Q_REQ

TheLl ST_ALL_Q REQmMmessage is sent to the Queue Server to request alist of all
attached permanent and temporary queues for aloca or remote group. See the Listing
Attached Queuesin a Group topic in the Using M essage-Based Services section for an
explanation of how to use this message.

Note: The Queue Server performs endian conversion when this message is sent
between processes that run on systems that use different hardware data
formats. This messageisalso RISC aligned.

CMessage typedef struct _Q NOTIFY_REQ {
Structure int32 version;
int32 user_tag;
} Q_NOTI FY_REQ

Message Data

Fields
Field DataType Script  Description
For mat
ver si on i nt32 DL Version of request.
user_tag int32 DL User-specified code to identify thisrequest.
Arguments
Argument  Script Format pams_get_msg For mat
Target QUEUE_SERVER PAMS_QUEUE_SERVER
Source Reguesting program Requesting program
Class PAVS MBG CLAS PAMB
Type LIST_ALL_Q REQ MBG TYPE LI ST_ALL_Q REQ

SeeAlso m LIST _ALL_Q RESP

9-42  BEA MessageQ Programmer’s Guide



LIST_ALL_Q_RESP

C Message
Structure

Message Data

ThelLl ST_ALL_Q RESP message provides alist of all permanent queues and all

attached temporary queues for alocal or remote group. Thisinformation is requested

by sending alLl ST_ALL_Q REQmessage to the Queue Server. Because the response
message may contain along list of queue names, the application must allocate a

sufficient buffer sizeto storetheinformation returned. See Listing Attached Queuesin

a Group in Chapter 5, “Using Message-Based Services” for an explanation of how to
use this message.

Note: The Queue Server performs endian conversion when this message is received
between processes that run on systems that use different hardware data
formats. This message is also RISC aligned.

#defi ne MAX_NUMBER Q RECS 50
typedef struct _Q NOTIFY_RESP {
int32 version;
int32 user_tag;
i nt 32 status_code;
int32 last_block flag;
i nt 32 nunber _q_recs;
struct {
g_address q_num
g_addr ess q_owner;
int32 g_type;
int32 g_active_flag;
int32 g_attached_fl ag;
int32 q_owner_pid,
} g_rec [50];
} Q_NOTI FY_RESP;

Fields
Field Data Type Script  Description
Format

ver sion int32 DL Version of response.
user _t ag int32 DL User-specified code from request.
stat us_code int32 DL O=Error

1=Success

-2=Refused

BEA MessageQ Programmer’s Guide 9-43



9 Message Reference

Field DataType Script  Description
Format
| ast _bl ock_flag int32 DL Last block Boolean flag.
nunber _qg_recs int32 DL Number of records in this message.
g_num g_address DL Queue number.
g_owner g_address DL Queue owner (only for secondary queues (SQs)).
g_type int32 DL Queue type (numerically encoded P, S, M.
g_active flag int32 DL Queue active Boolean flag.
g_attached_flag int32 DL Queue attached Boolean flag.
g_owner _pid int32 DL Queue owner process identification (PID). On
Windows NT systems, thread identifier is returned.
Arguments

Argument  Script Format

pams_get_msg For mat

Target Reqguesting program Reqguesting program
Source QUEUE_SERVER PAMS_QUEUE_SERVER
Class PANVS MBG CLAS PAMB

Type LI ST_ALL_Q RESP MSG TYPE LI ST_ALL_Q RESP

SeeAlso wm LIST ALL_Q REQ

9-44  BEA MessageQ Programmer’s Guide



LOCATE_Q_REP

C Message
Structure

Message Data
Fields

Arguments

The pams_locate_g function requests the queue address for a queue name. When this
function is performed asynchronously, the results are returned in the LOCATE_Q REP
message. Thismessage providesthelocationin thesearch list where the nameisfound,
the status of the operation, atag that can be set by the user, and the queue address

associated with the name.

Note: Thismessageis RISC aigned.

typedef struct _LOCATE Q REP {
int32 version;
int32 search_l oc;
gq_addr ess obj ect _handl e;
int32 status;
int32 trans_id;
char g_nane [ 256];
} LOCATE_Q REP;

Field DataType Script  Description
Format
ver sion int32 DL Format version number.
sear ch_| oc int32 DL Location in which nameis found.

obj ect _handle q_address DL

Queue address associated with name.

stat us int32 DL Return code from pans_| ocat e_q.
trans_id int32 DL User-specified tag.
g_name 256-character  A(256) Name to locate.

array
Argument  Script Format pams_get_msg Format
Target Supplied by BEA MessageQ Supplied by BEA MessageQ
Source Supplied by BEA MessageQ Supplied by BEA MessageQ

BEA MessageQ Programmer’s Guide 9-45



9 Message Reference

Argument  Script Format pams_get_msg For mat
Class PANS MBG_CLAS_PAVS
Type LOCATE _Q REP MSG_TYPE_LOCATE_Q REP

9-46  BEA MessageQ Programmer’s Guide



MRS_ACK

C Message
Structure

Message Data
Fields

Arguments

Status Code

The MRS_ACK message acknowledges the delivery of arecoverable message at the
delivery interest point when a nonblocking request isissued. It respondsto a
pams_put_msg request when delivery modes of PDEL_MODE_AK_DQF,
PDEL_MODE_AK_SAF, or PDEL_MODE_AK_CONF are specified. Status codes for the send
operation are extracted from the PAM S Status Block (PSB), an argument value which
isreturned to the pans_get _nsg, panms_get _nsga, and panms_get _nsgw function
when the recoverable messageis read. The status codes for the psb and uma arguments
are listed in the Status Codes section of this description.

Note: Thismessageis RISC aigned.

None.

None.
Argument  Script Format pams_get_msg Format
Target Sender program Sender program
Source MRS SERVER PAMS_MRS_SERVER
Class MRS MSG_CLAS MRS
Type MRS_ACK MSG_TYPE_MRS_ACK
M essage PSB Status

PAVS__DQF_DEVI CE_FAI L

Message is not recoverable; destination queue file
(DQF) I/O failed.

PAVB__ ENQUEUED

Message is recoverable.

PAVS__ MRS RES EXH

Message is not recoverable; MRS resource
exhaustion.

BEA MessageQ Programmer’s Guide 9-47



9 Message Reference

UMA Status

M essage PSB Status
PAMS__NO DQF Messageis not recoverable; no DQF for target queue.
PAMS__NO_SAF Message is not recoverable; no SAF file for target

queue.

PAMS__SAF_DEVI CE_FAI L

Message is not recoverable; SAF |/O failed.

PAMS__SAF_FORCED

Message is written to SAF file to maintain
first-inffirst-out (FIFO) order.

PAVS__SENDER TMOEXPI RED

Send timeout expired prior to completion of MRS

actions.
PAMS__ STORED Message is recoverable in store and forward (SAF)
file. (Delivery mode was PDEL_MODE_AK_SAF.)
M essage UMA Status

PAMS__ DI SC_SUCCESS

Message is not recoverable in DQF; UMA was
PDEL_UVA DI SC; message discarded.

PAMS__ DI SC_FAI LED

Message is not recoverable in DQF; UMA was
PDEL_UVA DI SC; message could not be discarded.

PAMS__ DI SCL_SUCCESS

Message is not recoverable in DQF; UMA was
PDEL_UVA DI SC; message discarded after logging re-
coverability failure.

PAVS__ DI SCL_FAI LED

Message is not recoverable in DQF; UMA was
PDEL_UVA DI SC; recoverability failure could not be
logged or message could not be discarded.

PAMS__DLJ_SUCCESS

Message is not recoverable in DQF; UMA was
PDEL_UVA_DLJ; message written to dead letter journal

(DLJ).

PAVS__DLJ_FAI LED

Message is not recoverable in DQF; UMA was
PDEL_UVA DLJ; dead letter journal write failed.

9-48  BEA MessageQ Programmer’s Guide



M essage

UMA Status

PAVS__ DLQ SUCCESS

Message is not recoverable in DQF; UMA was
PDEL_UNMA_DLQ message queued to dead letter queue.

PAVS__ DLQ FAI LED

Message is not recoverable in DQF; UMA was
PDEL_UNA_DLQ message could not be queued to dead
letter queue.

PAVE__NO_UMA

M essage is recoverable; undeliverable message action
(UMA) not executed.

PAVS__RTS_SUCCESS

Message is not recoverable in DQF; UMA was
PDEL_UNA_RTS; message returned to sender.

PAVS__RTS_FAI LED

Message is not recoverable in DQF; UMA was
PDEL_UNA_RTS; message could not be returned to send-
er.

PAVS__SAF_SUCCESS

Message is not recoverable in DQF; UMA was
PDEL_UNA_SAF; message recoverable from SAF file.

PAVS__SAF_FAI LED

Message is not recoverable in DQF; UMA was
PDEL_UNMA SAF; SAF write failed.

BEA MessageQ Programmer’s Guide 9-49



9 Message Reference

MRS_DQF_SET

Applications can request to open, close, or fail over a destination queue file (DQF) by
sending an MRS_DQF_SET message to the MRS Server. The failover function renames
aDQF file, associating it with another target queue that does not currently have aDQF
associated with it. See the Opening, Closing, and Failing Over SAF and DQF Files
topic in the Using M essage-Based Services section for an explanation of how to use
this message. This serviceis available on OpenVMS systems only.

Note: The MRS Server does not perform endian conversion when this message is
sent between processes that run on systemsthat use different hardware data
formats. The sender program must convert the message to the endian format
of the target system to ensure that the message datais correctly interpreted.
This message is RISC aligned.

CMeSSage /*****************************************/

Strudure /* ACTI ON VALUES FOR MRS DQF_SET nessage */
/*****************************************/
#define DQF_SET_OPEN 1
#define DQF_SET_CLOSE 2
#define DQF_SET_FAI LOVER 3

/*****************************************/

/* STATUS VALUES FOR MRS DQF_SET nessage */
/*****************************************/
#define DQF_SET_ERRCR 0

#define DQF_SET_SUCCESS 1

#define DQF_SET_REFUSED 2

typedef struct _MRS DQF_SET {
int1l6 version;
int1l6 action;
int32 status;
g_address original _target;
g_address new_t arget;
int32 original _nrs_area |len;
char original_nrs_area [256];
} MRS_DQF_SET;

9-50 BEA MessageQ Programmer’s Guide



Message Data

Fields
Field Data Type Script  Description
Format
ver sion wor d DW Format version number. Must be 0.
action wor d DW 1= Open
2=_Close
3 =Fail over
stat us int32 DL 0 = Error
1 = Success
2 = Refused
original target g_address DL Queue address of DQF.
new target g_address DL Queue address of new DQF for failover.
original _nrs_area_len i nt32 DL Number of bytesin original MRS area
specification for failover.
original _nrs_area 256-byt e array  A(256) MRS original area specification for failover.

Arguments

See Also

Argument  Script Format

pams_get_msg Format

Target VRS_SERVER PAMS_MRS_SERVER
Source Supplied by BEA MessageQ Supplied by BEA MessageQ
Class MRS MBG_CLAS MRS

Type MVRS_DQF_SET MSG_TYPE MRS DQF SET

m MRS DQF_SET_REP
m MRS _SAF_SET
m MRS _SAF_SET_REP

BEA MessageQ Programmer’s Guide 9-51



9 Message Reference

MRS_DQF _SET_REP

Applications can request to open, close, or fail over a destination queue file (DQF) by
sending an MRS_DQF_SET message to the MRS Server. The failover function renames
aDQF file, associating it with another target queue that does not currently have aDQF
associated with it. The MRS_DQF_SET_REP message returns the status of the request.
See the Opening, Closing, and Failing Over SAF and DQF Files topic in the Using

M essage-Based Services section for an explanation of how to use this message. This
service is available on OpenVMS systems only.

Note: The MRS Server does not perform endian conversion when this message is
received between processes that run on systems that use different hardware
data formats. The sender program must convert the message to the endian
format of the target system to ensure that the message data is correctly
interpreted. This messageis RISC aligned.

CMeSSage /*****************************************/

Strudure /* ACTI ON VALUES FOR MRS DQF_SET message */
/*****************************************/
#define DQF_SET_OPEN 1
#define DQF_SET_CLOSE 2
#define DQF_SET_FAI LOVER 3

/*****************************************/

/* STATUS VALUES FOR MRS DQF_SET nessage */
/*****************************************/
#define DQF_SET_ERRCR 0

#define DQF_SET_SUCCESS 1

#define DQF_SET_REFUSED 2

typedef struct _MRS DQF_SET {
int1l6 version;
int1l6 action;
int32 status;
g_address original _target;
g_address new_t arget;
int32 original _nrs_area |len;
char original_nrs_area [256];
} MRS_DQF_SET;

9-52  BEA MessageQ Programmer’s Guide



Message Data

Fields
Field Data Type Script  Description
Format
ver sion wor d DW Format version number. Must be 0.
action wor d DW 1= Open
2=_Close
3 =Fail over
stat us int32 DL 0 = Error
1 = Success
2 = Refused
original _ g_address DL Queue address of DQF.
t ar get
new_t ar get g_address DL Queue address of new DQF for failover.
original _nrs_area_len i nt32 DL Number of bytesin original MRS area
specification for failover.
original _nrs_area 256-byt e array  A(256) MRS original area specification for failover.
Arguments
Argument  Script Format pams_get_msg Format
Target Requesting program Requesting program
Source MRS_SERVER PAMS_MRS_SERVER
Class MRS MSG_CLAS MRS
Type MRS_DQF SET_REP MSG_TYPE_MRS DQF_SET_REP
See Also ®m MRS DQF SET

m MRS _SAF_SET
m MRS _SAF_SET_REP

BEA MessageQ Programmer’s Guide 9-53



9

Message Reference

MRS_DQF TRANSFER

Applications can request thetransfer of the contents of one DQF to another by sending
aMRS_DQF_TRANSFER message to the Qtransfer Server. Using this failover method,
when a node fails, the Qtransfer Server can transfer messages from a recoverable
gueue on a node that has failed to a recoverable queue on anode that is currently
processing messages. See the Transferring the Contents of a Destination Queue File
topic in the Using M essage-Based Services section for an explanation of how to use
this message. This serviceis available on OpenVMS systems only.

Note: The Qtransfer Server doesnot perform endian conversion when this message
is sent between processesthat run on systems that use different hardware data
formats. The sender program must convert the message to the endian format
of the target system to ensure that the message datais correctly interpreted.

CMessage typedef struct _MRS DQF_TRANSFER {
Structure intl6 version;
int32 user_tag;
int1l6 status;
int32 send_count;
intl6 fromdqgf _Ilen;
char fromdqgf file [256];
intlé to_q;
} MRS_DQF_TRANSFER,

Message Data

9-54

Fields
Field Data Type Script Description
For mat
ver si on wor d DW Format version number.
user_tag int32 XL User-defined tag.
st at us wor d DW Not used.
send_count int32 DL Count of successful transfers.
fromdqgf _|en word DW Number of bytesin DQF file specification.
fromdqf _fil 256-byte A(256) File specification of DQF.
e array
to_q wor d DW Local address of queue to receive transfer.

BEA MessageQ Programmer’s Guide



Arguments

Argument  Script Format pams_get_msg Format

Target QTRANSFER PAMS_QTRANSFER

Source Supplied by BEA MessageQ  Supplied by BEA MessageQ

Class MRS MBG CLAS MRS

Type MRS _DQF TRANSFER MBG TYPE_MRS DQF_TRANSFER

SeeAlso m MRS DQF_TRANSFER REP
m MRS _DQF_TRANSFER ACK

BEA MessageQ Programmer’s Guide 9-55



9 Message Reference

MRS_DQF TRANSFER_ACK

Applications can reguest the transfer of the contents of one DQF file to another by
sending an MRS_DQF_TRANSFER message to the Qtransfer Server. Using thisfailover
method, when a node fails, the Qtransfer Server can transfer messages from a
recoverable queue on a node that has failed to a recoverable queue on anode that is
currently processing messages. The MRS_DQF_TRANSFER_ACK message is returned to
the sender to acknowledge the receipt of the request. See the Transferring the Contents
of aDestination Queue File topic in the Using M essage-Based Services section for an
explanation of how to use this message. This service is available on OpenVMS
systems only.

Note: The Qtransfer Server doesnot perform endian conversion when this message
isreceived between processes that run on systems that use different hardware
data formats. The sender program must convert the message to the endian
format of the target system to ensure that the message data is correctly
interpreted.

CMessage typedef struct _NMRS DQF_TRANSFER {
Structure intl6 version;
int32 user_tag;
int1l6 status;
int32 send_count;
intl6 fromdqgf _Ilen;
char fromdqgf file [256];
intlé to_q;
} MRS_DQF_TRANSFER,

Message Data

Fields
Field DataType Script  Description
For mat

ver si on wor d DW Format version number.
user _tag int32 XL User-defined tag.
st atus wor d DW O=Error

1=Success

2=Refused
send_count int32 DW Count of successful transfers.

9-56 BEA MessageQ Programmer’s Guide



Field DataType Script  Description
Format

fromdqgf _len wor d DW Number of bytesin DQF file
specification.

fromdqgf _file 256-byte A(256) File specification of DQF file to read.

array
to q wor d DW Local address of queue to receive
transfer.
Arguments
Argument  Script Format pams_get_msg Format
Target QTRANSFER PAMS_QTRANSFER
Source Supplied by BEA MessageQ Supplied by MessageQ
Class MRS MSG_CLAS MRS
Type MRS _DQF TRANSFER ACK MSG_TYPE DQF TRANSFER ACK

SeeAlso m MRS DQF_TRANSFER
m MRS _DQF_TRANSFER REP

BEA MessageQ Programmer’s Guide 9-57



9 Message Reference

MRS_DQF TRANSFER_REP

C Message
Structure

Message Data
Fields

Applications can request the transfer of the contents of one destination queue file to
another by sending an MRS_DQF_TRANSFER message to the Qtransfer Server. Using
this failover method, when a node fails, the Qtransfer Server can transfer messages
from arecoverable queue on a node that has failed to a recoverable queue on anode
that is currently processing messages. The MRS_DQF_TRANSFER REP message is
returned to the sender to indicate the completion status of the request. See the
Transferring the Contents of a Destination Queue File topic in the Using

M essage-Based Services section for an explanation of how to use this message. This
service is available on OpenVMS systems only.

Note: The Qtransfer Server doesnot perform endian conversion when this message
isreceived between processes that run on systems that use different hardware
data formats. The sender program must convert the message to the endian
format of the target system to ensure that the message data is correctly
interpreted.

typedef struct _MRS DQF TRANSFER {
int1l6 version;
int32 user_tag;
int1l6 status;
int32 send_count;
intl6 fromdqgf _Ilen;
char fromdqgf file [256];
intlé to_q;
} MRS_DQF_TRANSFER,

Field DataType Script  Description
For mat

ver si on wor d DW Format version number.
user _tag int32 XL User-defined tag.
st at us wor d DW O=Error

1=Success

2=Refused
send_count int32 DL Count of successful transfers.
fromdqgf _I en wor d DW Number of bytes DQF file specification.

9-58 BEA MessageQ Programmer’s Guide



Field DataType Script  Description
Format

fromdqgf _file 256-byte A(256) File specification of DQF file to read.

array
to q wor d DW Local address of queue to receive trans-
fer.
Arguments
Argument  Script Format pams_get_msg Format
Target QTRANSFER PAMS_QTRANSFER
Source Supplied by BEA MessageQ Supplied by BEA MessageQ
Class VRS MSG_CLAS MRS
Type MRS DQF TRANSFER REP MG TYPE MRS DFQ_
TRANSFER_REP

SeeAlso m MRS DQF_TRANSFER
m MRS _DQF_TRANSFER ACK

BEA MessageQ Programmer’s Guide 9-59



9 Message Reference

MRS_JRN_DISABLE

Disables journaling for a running message queuing group. This serviceis used to
disable journaing before failing over auxiliary journas. See the Controlling
Journaling to the PCJ File topic in the Using M essage-Based Services section for an
explanation of how to use this message. This service is available on OpenVMS
systems only.

Note: The MRS Server does not perform endian conversion when this message is
sent between processes that run on systemsthat use different hardware data
formats. The sender program must convert the message to the endian format
of the target system to ensure that the message datais correctly interpreted.
This message is RISC aligned.

CMeSSage /******************************************/

Strudure /* STATUS VALUES FOR JRN ENABLE message  */
/ ******************************************/
#define JRN SET_ERRCR 0
#define JRN SET_SUCCESS 1
#define JRN_SET_REFUSED 2
#define JRN_SET_ALREADY DI SABLED 3
#define JRN SET_ALREADY ENABLED 4
#define JRN_SET_SERVER NOTUP 5

typedef struct _MRS JRN SET ALL {
int32 version;
int32 dgf _status;
int32 saf _status;
int32 pcj_status;
int32 dlj_status;
} MRS_JRN_SET_ALL;

Message Data

Fields
Field DataType Script  Description
Format
ver si on int32 DL Format version number. Must be 0.
dqf _status int32 DL 0= Error
1 = Success
2 = Refused

3= Already Disabled

9-60 BEA MessageQ Programmer’s Guide



Field

Data Type Script

Format

Description

saf _status

int32 DL

0 = Error

1 = Success

2 = Refused

3 = Already Disabled

pcj _status

int32 DL

0 = Error

1 = Success

2 = Refused

3 = Already Disabled

5 = Server Not Available

dlj _status

int32 DL

0 = Error

1 = Success

2 = Refused

3 = Already Disabled

5 = Server Not Available

Arguments
Argument  Script Format pams_get_msg Format
Target VRS_SERVER PAMS_MRS_SERVER
Source Supplied by BEA MessageQ Supplied by BEA MessageQ
Class VRS MBG CLAS MRS
Type MRS _JRN DI SABLE MBG TYPE_MRS_JRN DI SABLE
SeeAlso m MRS _JRN DI SABLE_REP

m MRS _JRN ENABLE
m MRS_JRN ENABLE REP

BEA MessageQ Programmer’s Guide 9-61



9 Message Reference

MRS_JRN_DISABLE_REP

Applications can request to disable journaling for arunning message queuing group by
sending an MRS_JRN_DI SABLE message to the MRS Server. The

MRS_JRN DI SABLE REP message returnsthe status of the request. This serviceisused
before failing over auxiliary journas. See the Controlling Journaling to the PCJ File
topic in the Using M essage-Based Services section for an explanation of how to use
this message. This serviceis available on OpenVMS systems only.

Note: The MRS Server does not perform endian conversion when this message is
received between processes that run on systems that use different hardware
data formats. The sender program must convert the message to the endian
format of the target system to ensure that the message data is correctly
interpreted. This messageis RISC aligned.

CMeSSage /******************************************/

Strudure /* STATUS VALUES FOR JRN ENABLE message  */
/ ******************************************/
#define JRN SET_ERRCR 0
#define JRN SET_SUCCESS 1
#define JRN_SET_REFUSED 2
#define JRN_SET_ALREADY DI SABLED 3
#define JRN SET_ALREADY ENABLED 4
#define JRN_SET_SERVER NOTUP 5

typedef struct _MRS JRN SET ALL {
int32 version;
int32 dgf _status;
int32 saf _status;
int32 pcj_status;
int32 dlj_status;
} MRS_JRN_SET_ALL;

Message Data

Fields
Field DataType Script  Description
Format
ver si on int32 DL Format version number. Must be 0.
dqf _status int32 DL 0= Error
1 = Success
2 = Refused

3= Already Disabled

9-62 BEA MessageQ Programmer’s Guide



Arguments

See Also

Field

Data Type Script

Format

Description

saf _status

int32 DL

0 = Error

1 = Success

2 = Refused

3 = Already Disabled

pcj _status

int32 DL

0 = Error

1 = Success

2 = Refused

3 = Already Disabled

5 = Server Not Available

dlj _status

int32 DL

0 = Error

1 = Success

2 = Refused

3 = Already Disabled

5 = Server Not Available

Argument

Script Format

pams_get_msg Format

Target

Requesting program

Requesting program

Source

MRS_SERVER

PAVB_MRS_SERVER

Class

MRS

MSG_CLAS_ MRS

Type

MRS_JRN DI SABLE_REP

MSG_TYPE_MRS_JRN_
DI SABLE_REP

®m MRS _JRN\ D SABLE
m MRS _JRN ENABLE
m MRS_JRN ENABLE REP

BEA MessageQ Programmer’s Guide 9-63



9 Message Reference

MRS_JRN_ENABLE

Enables journaling for a running message queuing group after it has been disabled
using the MRS_JRN_DI SABLE message. This service is used before failing over
auxiliary journals. See the Controlling Journaling to the PCJ File topic in the Using
M essage-Based Services section for an explanation of how to use this message. This
service is available on OpenVMS systems only.

Note: The MRS Server does not perform endian conversion when this message is
sent between processes that run on systemsthat use different hardware data
formats. The sender program must convert the message to the endian format
of the target system to ensure that the message datais correctly interpreted.
This message is RISC aligned.

CMeSSage /******************************************/

Strudure /* STATUS VALUES FOR JRN ENABLE message  */
/ ******************************************/
#define JRN SET_ERRCR 0
#define JRN SET_SUCCESS 1
#define JRN_SET_REFUSED 2
#define JRN_SET_ALREADY DI SABLED 3
#define JRN SET_ALREADY ENABLED 4
#define JRN_SET_SERVER NOTUP 5

typedef struct _MRS JRN SET ALL {
int32 version;
int32 dgf _stat us;
int32 saf _status;
int32 pcj_status;
int32 dlj_status;
} MRS_JRN_SET_ALL;

Message Data

Fields
Field DataType Script  Description
Format
ver si on int32 DL Format version number. Must be O.
dqf _status int32 DL 0= Error
1 = Success
2 = Refused

4 = Already Enabled

9-64 BEA MessageQ Programmer’s Guide



Field

Data Type Script

Format

Description

saf _status

int32 DL

0 = Error

1 = Success

2 = Refused

4 = Already Enabled

pcj _status

int32 DL

0 = Error

1 = Success

2 = Refused

4 = Already Enabled

5 = Server Not Available

dlj _status

int32 DL

0 = Error

1 = Success

2 = Refused

4 = Already Enabled

5 = Server Not Available

Arguments
Argument  Script Format pams_get_msg Format
Target VRS_SERVER PAMS_MRS_SERVER
Source Supplied by BEA MessageQ Supplied by BEA MessageQ
Class MRS MBG CLAS MRS
Type MRS_JRN_ENABLE MBG TYPE_MRS_JRN_ENABLE
See Also  MRS_JRN DI SABLE

MRS_JRN_DI SABLE_REP
MRS_JRN_ENABLE_REP

BEA MessageQ Programmer’s Guide 9-65



9 Message Reference

MRS_JRN_ENABLE_REP

Applications can request to reenable journaling for a running message queuing group
after it hasbeen disabled by sending an MRS_JRN_ENABL E messagetothe MRS Server.
The MRS_JRN_ENABLE_REP message returns the status of the request. This serviceis
used with MRS before failing over auxiliary journas. See the Controlling Journaling
to the PCJ File topic in the Using M essage-Based Services section for an explanation
of how to use this message. This service is available on OpenVMS systems only.

Note:

The MRS Server does not perform endian conversion when this message is
received between processes that run on systems that use different hardware
data formats. The sender program must convert the message to the endian

format of the target system to ensure that the message data is correctly
interpreted. This messageis RISC aligned.

CMeSSage /******************************************/

Structure  /* STATUS VALUES FOR JRN ENABLE nessage  */

/******************************************/

#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne

t ypedef
int32 version;
int 32 dgf _st at us;
int32 saf _status;
int32 pcj_status;
int32 dlj_status;

}

typedef struct MRS_JRN SET _ALL;

Message Data

9-66

’

JRN_SET_ERRCR 0
JRN_SET_SUCCESS 1
JRN_SET_REFUSED 2

JRN_SET_ALREADY_ DI SABLED 3
JRN_SET_ALREADY_ENABLED 4
JRN_SET_SERVER NOTUP 5

struct _MRS JRN SET ALL {

Fields
Field DataType Script  Description
Format
ver si on int32 DL Format version number. Must be 0.
dqf _status int32 DL 0= Error
1 = Success
2 = Refused

4 = Already Enabled

BEA MessageQ Programmer’s Guide



Field DataType Script  Description
Format

saf _status int32 DL 0= Error
1 = Success
2 = Refused
4 = Already Enabled

pcj _status int32 DL 0= Error
1 = Success
2 = Refused
4 = Already Enabled
5 = Server Not Available

dlj _status int32 DL 0= Error
1 = Success
2 = Refused
4 = Already Enabled
5 = Server Not Available

Arguments

Argument  Script Format pams_get_msg Format

Target Requesting program Requesting program

Source MRS_SERVER PAMS_MRS_SERVER

Class VRS MSG_CLAS_ MRS

Type MRS_JRN_ENABLE_REP MSG_TYPE_MRS JRN_ENABLE R
EP

See Also  MRS_JRN DI SABLE
MRS JRN DI SABLE_REP
MRS JRN ENABLE

BEA MessageQ Programmer’s Guide 9-67



9 Message Reference

MRS_SAF_SET

Applications can request to open, close, or failover (redirect) a store-and-forward file
(SAF) by sending an MRS_SAF_SET message to the MRS Server. Thefailover function
renames a SAF file, associating it with another target queue that does not currently
have a SAF associated with it. See the Opening, Closing, and Failing Over SAF and
DQF Filestopic in the Using M essage-Based Services section for an explanation of
how to use this message. This serviceis available on OpenVMS systems only.

Note: The MRS Server does not perform endian conversion when this message is
sent between processes that run on systemsthat use different hardware data
formats. The sender program must convert the message to the endian format
of the target system to ensure that the message datais correctly interpreted.
This message is RISC aligned.

CMeSSage /*****************************************/

Strudure /* ACTI ON VALUES FOR MRS_SAF_SET message */
/*****************************************/
#define SAF_SET_OPEN 4
#define SAF_SET CLOSE 5
#define SAF_SET_FAI LOVER 6

/*****************************************/

/* STATUS VALUES FOR MRS _SAF_SET nessage */
/*****************************************/
#define JRN SET_ERRCR 0

#define JRN SET_SUCCESS 1

#define JRN_SET_REFUSED 2

typedef struct _MRS_SAF_SET {
int1l6 version;
int1l6 action;
int32 status;
g_address original _target;
g_address new_t arget;
int32 original _nrs_area len;
char original _nrs_area [256];
intl6 ori gi nal _owner_group;
intl16 new_owner _group;
} MRS_SAF_SET;

9-68 BEA MessageQ Programmer’s Guide



Message Data

Fields
Field Data Type Script  Description
Format
ver sion wor d DW Format version number. Must be 0.
action wor d DW 4 = Open
5=Close
6 = Failover
stat us int32 DL 0 = Error
1 = Success
2 = Refused
original target g_address DL Queue address of SAF.
new_t ar get g_address DL Queue address of new SAF for failover.
original _nrs_ area_len int32 DL Number of bytesin original MRS area
specification for failover.
original _nrs_ area 256-byte A(256) MRS original area specification for failover.
array
ori gi nal _owner _group wor d DW The current group that owns the SAF.
new_owner _ group wor d DW The new group that will assume ownership
of the SAF after failover is complete.
Arguments
Argument  Script Format pams_get_msg Format
Target MRS_SERVER PAMS_MRS_SERVER
Source Supplied by BEA MessageQ Supplied by BEA MessageQ
Class MRS MBG CLAS MRS
Type MRS_SAF SET MBG TYPE_MRS SAF_SET

See Also ®m MRS _SAF SET_REP

BEA MessageQ Programmer’s Guide 9-69



9 Message Reference

®m MRS _DQF_SET
m MRS _DQF_SET_REP

9-70 BEA MessageQ Programmer’s Guide



MRS_SAF_SET_REP

C Message
Structure

Applications can request to open, close, or failover (redirect) a store-and-forward file
(SAF) by sending an MRS_SAF_SET message to the MRS Server. Thefailover function
renames a SAF file, associating it with another target queue that does not currently
have a SAF associated with it. The MRS_SAF_SET_REP message returns the status of
the request. See the Opening, Closing, and Failing Over SAF and DQF Files topicin
the Using M essage-Based Services section for an explanation of how to use this
message. This serviceis available on OpenVMS systems only.

Note: The MRS Server does not perform endian conversion when this message is
received between processes that run on systems that use different hardware
data formats. The sender program must convert the message to the endian
format of the target system to ensure that the message data is correctly
interpreted. This message is RISC aligned.

/*****************************************/

/* ACTI ON VALUES FOR MRS_SAF_SET message */
/*****************************************/
#define SAF_SET_OPEN 4

#define SAF_SET CLOSE 5

#define SAF_SET_FAI LOVER 6

/*****************************************/

/* STATUS VALUES FOR MRS_SAF_SET message */
/*****************************************/
#define JRN_SET_ERROR 0

#define JRN_SET_SUCCESS 1

#define JRN_SET_REFUSED 2

typedef struct _MRS SAF SET {
intl1l6 version;
intl1l6 action;
int32 status;
g_address original _target;
g_address new_t arget;
int32 original _nrs_area_ |l en;
char original _nrs_area [256];
int16 original _owner_group;
int16 new owner _group;
} MRS_SAF_SET;

BEA MessageQ Programmer’s Guide 9-71



9 Message Reference

Message Data

Fields
Field DataType Script  Description
For mat
ver si on wor d DW Format version number. Must be 0.
action wor d DW 4 = Open
5=Close
6 = Failover
st at us int32 DL 0 = Error
1 = Success
2 = Refused
original _target g_address DL Queue address of SAF.
new_t ar get g_address DL Queue address of new SAF for failover.
original_nrs_ area_len int32 DL Number of bytesin originad MRS area
specification for failover.
original _nrs_ area 256-byte A(256) MRS original area specification for failover.
array
ori gi nal _owner _group wor d DW The current group that ownsthe SAF.
new_owner _ group wor d DW The new group that will assume ownership

of the SAF after failover is complete.

Arguments
Argument  Script Format pams_get_msg For mat
Target Reqguesting program Reguesting program
Source MRS SERVER PAMS_MRS_SERVER
Class MRS MBG_CLAS MRS
Type MRS SAF_SET REP MBG TYPE_ MRS SAF_SET_REP
See Also ®m MRS _SAF _SET
9-72  BEA MessageQ Programmer’s Guide



m MRS DQF_SET
m MRS DQF_SET_REP

BEA MessageQ Programmer’s Guide 9-73



9 Message Reference

MRS_SET _DLJ

C Message
Structure

Message Data

9-74

Fields

Arguments

Applications can request to close a dead letter journal (DLJ) file and open a new one
by sending an MRS_SET_DLJ messageto the MRS Server. Because the DL Jfile cannot
be simultaneously open for read and write access, an application must close the current
file to read from it and open a new file to continue collecting messages. See the
Managing M essage Recovery Filestopicin the Using M essage-Based Services section
for an explanation of how to use this message. This service is available on OpenVM S
systems only.

Note: The MRS Server does not perform endian conversion when this message is
sent between processes that run on systemsthat use different hardware data
formats. The sender program must convert the message to the endian format
of the target system to ensure that the message datais correctly interpreted.

typedef struct _MRS SET DLJ {
int1l6 version;
int32 user_tag;
int32 status;
char dlj file [64];
} MRS_SET_DLJ;

Field Data Type Script  Description
Format

ver si on wor d DW Format version number.
user_tag int32 XL User-defined tag.
status int32 XL O0=Error

1=Success

2=Refused
dj_file 64-chararray  A(64) File specification of DLJfile.
Argument  Script Format pams_get_msg For mat
Target MRS_SERVER PAMS_MRS_SERVER

BEA MessageQ Programmer’s Guide



Argument  Script Format pams_get_msg Format

Source Supplied by BEA MessageQ Supplied by BEA MessageQ
Class MRS MBG _CLAS MRS
Type MRS_SET DLJ MBG TYPE_MRS_SET_DLJ

See Also m MRS_SET _DLJ_REP
m MRS SET_PCJ
m MRS _SET _PCJ_REP

BEA MessageQ Programmer’s Guide 9-75



9 Message Reference

MRS_SET_DLJ_REP

Applications can request to close a dead letter journal (DLJ) file and open a new one
by sending a MRS_SET_DLJ message to the MRS Server. Because the DL Jfile cannot
be simultaneously open for read and write access, an application must close the current
file to read from it and open a new file to continue collecting messages. The
MRS_SET_DLJ_REP message returns the status of the request. See the Managing
Message Recovery Files topic in the Using M essage-Based Services section for an
explanation of how to use this message. This service is available on OpenVMS
systems only.

Note: The MRS Server does not perform endian conversion when this message is
received between processes that run on systems that use different hardware
data formats. The sender program must convert the message to the endian
format of the target system to ensure that the message data is correctly
interpreted.

(Message typedef struct _MRS SET DLJ {
Structure int16 version;
int32 user_tag;
int32 status;
char dlj_file [64];
} MRS_SET_DLJ;

Message Data

Fields
Field DataType Script  Description
For mat

ver si on wor d DW Format version number.
user_tag int32 XL User-defined tag.
st at us int32 XL O=Error

1=Success

2=Refused
dj_file 64-chararray  A(64) File specification of DLJfile.

9-76  BEA MessageQ Programmer’s Guide



Arguments

Argument  Script Format pams_get_msg Format

Target Requesting program Requesting program

Source VRS_SERVER PAMS_MRS_SERVER

Class MRS MBG CLAS MRS

Type MRS _SET DLJ_REP MBG TYPE_ MRS _SET_DLJ_REP

SeeAlso ®m MRS _SET DLJ

m MRS _SET_PCJ

m MRS _SET_PCJ_REP

BEA MessageQ Programmer’s Guide 9-77



9 Message Reference

MRS_SET_PU

CMessage
Structure

Message Data

9-78

Fields

Applications can request to close apostconfirmation journal (PCJ) file and open anew
one by sending an MRS_SET_PCJ message to the MRS Server. Because the PCJ file
cannot be simultaneously open for read and write access, an application must close the
current file to read from it and open a new file to continue collecting messages. If
default journaling is enabled, all recoverable messages are written to the PCJfile after
confirmation unless the confirming process overrides the default. If default journaling
isdisabled, only those messagesthat are explicitly confirmed with PDEL_FORCE J are
written to the PCJfile. See the Managing Message Recovery Filestopic in the Using
M essage-Based Services section for an explanation of how to use this message. This
service is available on OpenVMS systems only.

Note: The MRS Server does not perform endian conversion when this message is
sent between processes that run on systemsthat use different hardware data
formats. The sender program must convert the message to the endian format
of the target system to ensure that the message datais correctly interpreted.

typedef struct _MRS SET PCJ {
int1l6 version;
int32 user_tag;
int32 force j;
int32 status;
char pcj _file [64];
} MRS_SET_PCJ;

Field DataType Script  Description
For mat

ver si on wor d DW Format version number.
user _tag int32 XL User-defined tag.
force j int32 DL 0 =Disable

1 = Enable default journaling
status int32 XL O=Error

1=Success

2=Refused
pcj _file 64-chararray  A(64) File specification of PCJfile.

BEA MessageQ Programmer’s Guide



Arguments

Argument  Script Format pams_get_msg Format
Target VRS_SERVER PAMS_MRS_SERVER
Source Supplied by BEA MessageQ Supplied by BEA MessageQ
Class MRS MBG CLAS MRS

Type MRS _SET_PCJ MBG TYPE_MRS_SET_PCJ

See Also m MRS_SET_PCJ_REP
m MRS SET DLJ
m MRS _SET DLJ REP

BEA MessageQ Programmer’s Guide 9-79



9

Message Reference

MRS_SET_PC_REP

Applications can request to close apostconfirmation journal (PCJ) and open anew one
by sending an MRS_SET_PCJ messageto the MRS Server. Because the PCJfile cannot
be simultaneously open for read and write access, an application must close the current
file to read from it and open anew file to continue collecting messages. The
MRS_SET_PCJ_REP message returns the status of the request. See the Managing
Message Recovery Files topic in the Using M essage-Based Services section for an
explanation of how to use this message. This service is available on OpenVMS

systems only.

Note: The MRS Server does not perform endian conversion when this message is
received between processes that run on systems that use different hardware
data formats. The sender program must convert the message to the endian
format of the target system to ensure that the message data is correctly

interpreted.

CMessage typedef struct _MRS SET_PCJ {

Structure int16 version;
int32 user_tag;
int32 force_j;
int32 status;
char pcj_file [64];
} MRS_SET_PCJ;

Message Data

9-80

Fields
Field DataType Script  Description
For mat

ver si on wor d DW Format version number.
user _tag int32 XL User-defined tag.
force j int32 DL 0 =Disable

1 = Enable default journaling
st at us int32 XL O=Error

1=Success

2=Refused
pcj _file 64-chararray  A(64) File specification of the PCJ.

BEA MessageQ Programmer’s Guide



Arguments

Argument  Script Format pams_get_msg Format

Target Requesting program Requesting program

Source VRS_SERVER PAMS_MRS_SERVER

Class MRS MBG CLAS MRS

Type MRS _SET_PCJ_REP MBG TYPE_MRS_SET_PCJ_REP

See Also ®m MRS _SET_PCJ

m MRS SET DLJ

m MRS SET_DLJ_REP

BEA MessageQ Programmer’s Guide 9-81



9 Message Reference

Q_UPDATE

Applications can register to receive notification when queue states change in local or
remote groups by sending an ENABLE_Q NOTI FY_REQmessage. The

ENABLE_Q NOTI FY_RESP message deliversalist of al active queues and then
subsequently notifies the application of attachments, detachments, and changesto
active and inactive status using the Q_UPDATE message. Seethe Receiving Attachment
Notificationstopic in the Using M essage-Based Services section for an explanation of
how to use this message.

Note: The Queue Server performs endian conversion when this message is received
between processes that run on systems that use different hardware data
formats. This messageis also RISC aligned.

CMessage  #define MAX_NUMBER Q RECS 50

Structure
typedef struct _Q NOTIFY_RESP {

int32 version;

int32 user_tag;

int32 status_code;

int32 last_block _flag;

i nt 32 nunber _q_recs;

struct {
gq_address gq_num
gq_address q_owner;
int32 q_type;
int32 gq_active_flag;
int32 g_attached_fl ag;
int32 g_owner_pid;
} g_rec [50];

} Q_NOTI FY_RESP;

Message Data

Fields
Field DataType Script  Description
For mat

ver si on int32 DL Version of response.
user_tag i nt32 DL User-specified code from request.
status_code int32 DL O=Error

1=Success

2=Refused

9-82 BEA MessageQ Programmer’s Guide



Field Data Type Script  Description

Format
| ast _block_flag int32 DL Last block Boolean flag.
nunber _qg_recs int32 DL Number of recordsin this message.
g_num g_address DL Queue number.
g_owner g_address DL Queue owner (only for secondary queues (SQs)).
g_type int32 DL Queue type (numerically encoded P, S, M).
g_active flag int32 DL Queue active Boolean flag.
g_attached_flag int32 DL Queue attached Boolean flag.
g_owner_pid int32 DL Queue owner process identification (PID).

Arguments

Argument  Script Format

pams_get_msg Format

See Also

Target Requesting program Requesting program

Source QUEUE_SERVER PAMS_QUEUE_SERVER

Class PANVS MBG _CLAS PAMB

Type Q _UPDATE M5G_TYPE_Q UPDATE
m ENABLE Q NOTI FY_REQ

m ENABLE_Q NOTI FY_RESP
m DI SABLE_Q NOTI FY_REQ
m DI SABLE_Q NOTI FY_RESP

BEA MessageQ Programmer’s Guide 9-83



9 Message Reference

SBS_DEREGISTER_REQ

Requests SBS deregistration by exact match of MOT and distribution queue or by

registration ID.

This service replaces the SBS_DEREG service.

Note: The SBS Server performs endian conversion when this message is sent
between processes that run on systems that use different hardware data
formats. This messageisalso RISC aligned.

C Message
Structure

} SBS_DEREG STER REQ

Message Data

typedef struct _SBS DEREG STER REQ {
int32 version;
int32 user_tag;
int32 not;
g_address distribution_q;
int32 reg_id;
int32 req_ack;

Fields
Field DataType Script  Description
Format
ver si on int32 DL Message format version number.
Must be 40.
user_tag int32 DL User-specified code to identify this
request.
not int32 DL The MOT broadcast stream from
which the program wants to
deregister. O if unused.
distribution_q g_address DW, The BEA MessageQ address of the
DW distribution queue of the registration.
A zero inthe group number portion of
the queue address automatically is
replaced with thegroup number of the
sender.
reg_id int32 DL The ID of the registration request to

deregister. O if unused.

9-84 BEA MessageQ Programmer’s Guide



Field

DataType Script  Description

Format
req_ack int32 DL 1if registration acknowledgment
message is required; O otherwise.
Arguments
Argument  Script Format pams_get_msg Format
Target SBS_SERVER PAMS_SBS SERVER
Source Source queue address of the Source queue address of the
requester. requester.
Class PAVS MSG_CLAS PANB
Type SBS_DEREG STER _REQ MSG TYPE_SBS

DEREG STER REQ

SeeAlso m SBS DEREG STER RESP

m SBS_REG STER REQ

m SBS REGQ STER RESP

BEA MessageQ Programmer’s Guide 9-85



9 Message Reference

SBS_DEREGISTER_RESP

This response message acknowledges the SBS server deregistration of all entries
matching the given MOT queue and distribution queue.

This service replaces the SBS_ DEREG ACK service.

Note: The SBS Server performs endian conversion when this message is received
between processes that run on systems that use different hardware data
formats. This messageis also RISC aligned.

(CMessage typedef struct _SBS DEREG STER RESP {
Structure int32 version;
int32 status;
int32 user_tag;
i nt 32 nunber _r eg;

} SBS_DEREG STER RESP;

Message Data

Fields
Field Data Type Script  Description
Format
ver si on int32 DL Message format version number. Must be
40.
status int32 DL Returned status code. Valid codes are as
follows:
PSYM_SBS_SUCCESS = Success
PSYM_SBS BADPARAM = Bad
parameter
PSYM_SBS _NOMATCH = No match
user_tag int32 DL User-specified code from the request
message.
nunber _r eg int32 DL The number of registrants left on thisMOT
or target.
Arguments
Argument  Script Format pams_get_msg For mat
Target Reqguesting program Reguesting program

9-86 BEA MessageQ Programmer’s Guide



Argument  Script Format pams_get_msg Format

Source SBS_SERVER PAVB_SBS_SERVER
Class PAVS MSG_CLAS_PANS
Type SBS_DEREG STER RESP MSG_TYPE_SBS

DEREGQ STER _RESP

SeeAlso m SBS DEREG STER REQ
m SBS_REG STER REQ
m SBS_REG STER RESP

BEA MessageQ Programmer’s Guide 9-87



9 Message Reference

SBS_REGISTER_REQ

This request message requests registration for reception of broadcast messages. It can
specify from 0 to 255 distribution rules, which must be satisfied for the message to be
distributed to the distribution queue. If a sequence gap notification is requested, an
SBS_SEQUENCE_GAP message is sent to the distribution queue every time a.message
seguence gap is detected.

This service replaces the SBS_REG and SBS_REG EZ services.

Note: The SBS Server performs endian conversion when this message is sent
between processes that run on systems that use different hardware data
formats. This messageis also RISC aligned.

CMessage typedef struct _SBS REG STER HEAD {
Structure int32 version,
int32 user_tag;
int32 not;
g_address distribution_q;
int32 req_ack;
int32 seq_gap_notify;
int32 auto_dereg;
int32 rul e_count;
int32 rul e_conjunct;
} SBS_REGQ STER HEAD;

typedef struct _SBS REG STER RULE {
int32 of fset;
int32 data_operator;
int32 I ength;
int32 operand,
} SBS_REGQ STER RULE;

#def i ne MAX_SEL_RULES 256

typedef struct _SBS REG STER REQ {
SBS_REG STER _HEAD head;
SBS REG STER RULE rul e [ 256];
} SBS_REG STER _REQ

9-88 BEA MessageQ Programmer’s Guide



Message Data

Fields
Field Data Type Script  Description
Format

ver sion int32 DL M essage format version number. Must be 40.

user _t ag int32 DL User-specified code to identify this request.

not int32 DL The MOT broadcast stream to which the program
attempts to register.

distribution_qg g_address DW, The BEA MessageQ address that receives any

DW messages that are selected from the broadcast stream.

A zero in the group number portion of the queue
address is automatically replaced with the group
number of the sender.

reqg_ack int32 DL 1if registration acknowledgment message is
required; O otherwise.

seq_gap_notify int32 DL 1if broadcast stream sequence gap notification is
required; O otherwise.

aut o_der eg int32 DL 1if registration request is to be purged on
distribution queue detach; 0 otherwise.

rul e_count int32 DL Number of distribution rulesin the request (O, ...,
255).

rul e_conj unct int32 DL Valid values are:

PSEL_ALL_RULESIf all rules must be true for
distribution to succeed;

PSEL_ANY_RULE if any rule being true can trigger
distribution.

* Following items are repeated il e_count " times *

dat a_of f set int32 DL Valid values are:
PSEL_TYPE
PSEL_CLAS
SDM tag ID
Integer in the range 0, .MAX_MSG Sl ZE,
specifying an offset in the data

BEA MessageQ Programmer’s Guide 9-89



9 Message Reference

Field DataType Script  Description
For mat
dat a_oper at or int32 DL Vdid values are:

PSEL_OPER_ANY (aways match)
PSEL_OPER_EQ (equal)

PSEL_OPER_NEQ (not equal)

PSEL_OPER _GTR (greater than)
PSEL_OPER LT (lessthan)

PSEL_OPER _GTRE (greater than or equal)
PSEL_OPER _LTE (lessthan or equal)
PSEL_OPER_AND (“operand” field AND data at
“data offset” is non-zero)

data_l ength i nt 32 DL Specifies the size of comparison to be performed:
One of 0, 1, 2, or 4 bytes.

oper and i nt 32 DL Value used for comparison with data at the “data
offset”.
Arguments
Argument  Script Format pams_get_msg Format
Target SBS_SERVER PAMS_SBS SERVER
Source Requesting program Requesting program
Class PAVS MBG CLAS PANB
Type SBS_REG STER_REQ MBG TYPE_SBS REQ STER REQ

SeeAlso m SBS_DEREG STER REQ
m SBS_DEREG STER RESP
m SBS_REG STER RESP
m SBS_SEQUENCE GAP

9-90 BEA MessageQ Programmer’s Guide



SBS_REGISTER_RESP

C Message
Structure

Message Data
Fields

This message provides aresponse to an SBS_REG STER_REQ subscriber registration.
The response contains a statusfield, which is 1 on success. The message a so contains
the user tag, specified in the request message, the registration 1D and the number of
registered entries for the MOT address.

This service replacesthe SBS_REG REPLY and SBS_REG EZ REPLY services.

Note: The SBS Server performs endian conversion when this message is received
between processes that run on systems that use different hardware data
formats. Thismessageis also RISC aligned.

typedef struct _SBS REQ STER RESP {
int32 version;
int32 user_tag;
int32 status;
int32 reg_id;
i nt 32 nunber _reg;
} SBS_REGQ STER RESP;

Field Data Type Script  Description
Format

ver sion int32 DL M essage format version number. Must be
40.

user _t ag int32 DL User-specified code from the request
message.

status int32 DL Returned status code. Valid codes are as
follows:
PSYM SBS_SUCCESS = Success
PSYM SBS_BADPARAM= Bad parameter
PSYM SBS_RESRCFAI L = Failed to
allocate resource

reg_id int32 DL Returned registration 1D.

nunber _reg int32 DL Number of entries currently registered for

thisMOT or target.

BEA MessageQ Programmer’s Guide 9-91



9 Message Reference
Arguments
Argument  Script Format pams_get_msg For mat
Target Source of registrant Source of registrant
Source SBS_SERVER PAMS_SBS SERVER
Class PANVS MBG CLAS PAMB
Type SBS_SEQUENCE_RESP MBG TYPE_SBS SEQUENCE

9-92

RESP

SeeAlso m SBS_DEREG STER REQ

m  SBS_DEREG STER _RESP

m SBS_REG STER REQ

BEA MessageQ Programmer’s Guide



SBS_SEQUENCE_GAP

This message indicates that a sequence gap occurred in a broadcast stream. Sequence
gaps can occur when the sender is broadcasting at a higher rate than the receiver can

C Message
Structure

Message Data

handle.

This service replaces the SBS_BS_SEQGAP service.

Note: The SBS Server performs endian conversion when this message is sent
between processes that run on systems that use different hardware data
formats. Thismessage is also RISC aligned.

typedef struct _SBS SEQUENCE GAP {
i nt 32 num nsgs_m ssi ng;
i nt 32 sender _group;
int32 not;
int32 channel ;
} SBS_SEQUENCE_GAP;

Fields
Field Data Type Script  Description
Format
num nsgs_ missing int32 DL Number of lost messages in sequence gap.
sender _gr oup int32 DL Group number of sending SBS server.
not int32 DL MOT address in which broadcast stream gap
occurred.
channel in32 DL Source address of MOT; either SBS server or
Ethernet channel.
Arguments
Argument  Script Format pams_get_msg Format
Target Registrant Registrant
Source SBS_SERVER PAMS_SBS_SERVER
Class PAVS MSG_CLAS PANB

BEA MessageQ Programmer’s Guide 9-93



9 Message Reference

Argument  Script Format pams_get_msg For mat

Type SBS_SEQUENCE_GAP MSG_TYPE_SBS_SEQUENCE  GAP

SeeAlso m SBS_REGQ STER REQ

9-94  BEA MessageQ Programmer’s Guide



SBS_STATUS_REQ

The SBS server supports a message-based status request. This request details the
current condition of each MOT being used by the server and its activity with other
BEA MessageQ groups, which are also running the SBS server.

C Message
Structure

Message Data
Fields

The request message is targeted to the SBS_SERVER with message class PAM S and
message type SBS_STATUS_REQ. Upon receipt of the message, the SBS server
validatestherequest. If the request isincorrect, the response message contains an error
status. The SBS server responds with the reply message of type SBS_STATUS_RESP.

Note: The SBS Server performs endian conversion when this message is sent
between processes that run on systems that use different hardware data
formats. Thismessageis also RISC aligned.

typedef struct _SBS STATUS REQ {
int32 version;
int32 user_tag;
int32 start_not;
int32 end_not;
int32 reset;
} SBS STATUS REQ

Field DataType Script  Description
Format
ver sion int32 DL M essage format version number. Must be
40.
user _t ag int32 DL User-specified code to identify this request.
start_not int32 DL Lowest MOT for which statistics are desired.
end_not int32 DL Highest MOT for which statistics are
desired.
reset int32 DL 0: Do not reset countersfor theremote server

data after constructing the reply message.

1: Reset counters for the remote server data
after constructing the reply message.

BEA MessageQ Programmer’s Guide 9-95



9 Message Reference

Script Format

pams_get_msg For mat

SBS_SERVER

PAVS_SBS_SERVER

Reguesting program’s primary or
reply queue

Requesting program’s primary or
reply queue

PAMS

MSG_CLAS_PAVS

SBS_STATUS_REQ

MSG_TYPE_SBS_STATUS_REQ

Arguments
Argument
Target
Source
Class
Type

See Also
9-96

m SBS_STATUS RESP

BEA MessageQ Programmer’s Guide



SBS_STATUS_RESP

Thismessageis returned following the successful processing of the SBS_STATUS_REQ
request message. It is a variable format message and is made up of avariable number
of fixed length parts. To parse the message, each variable length section has a count.

Note: The SBS Server performs endian conversion when this message is received
between processes that run on systems that use different hardware data
formats. Thismessageis also RISC aligned.

CMessage typedef struct _SBS STATUS_RESP {
Structure int32 version;
int32 user_tag;
i nt 32 stat us;
int32 numrec;
i nt32 | ast_bl ock;
char data [31980];
} SBS_STATUS RESP;

typedef struct _SBS STATUS RESP_MOT {

int32 not;
union {
struct {
uni on {
struct {
char s_bil;
char s_b2;
char s_b3;
char s_b4;
} S un_b;
struct {
uintlé s_wi;
uintlé s_w2;
} S un_w;
uint32 S addr;
} inet_addr;
uint16 inet_port;
} udp;
struct {

char nta_addr [12];
char protocol [4];
} eth;

struct {
char unused [20];
} dnmy;

int32 filler [5];

} transport;

BEA MessageQ Programmer’s Guide 9-97



9 Message Reference

nt 32 heartbeat tiner;
nt32 xmt_silo;
nt32 rcv_silo;
nt32 rcv_silo_nax;
nt32 numreg;
nt 32 conpl ete_rcvd,
nt 32 conpl ete_bytes;
nt 32 seq_gaps;
nt 32 whol e_nsg_gaps;
nt 32 whol e_sil o_gap;
struct {
char device_nanme [16];
struct {
uint32 tv_sec;
ui nt 32 tv_usec;
} fail _tod;
int32 negs_sent;
int32 bytes_sent;
int32 pkts_sent;
int32 pkts_rcvd;
i nt 32 dupl _pkts_di sc;
}orail [2];
} SBS_STATUS_RESP_MOT;

typedef struct _SBS STATUS REP_REG Q {
g_address reg_q;
} SBS_STATUS REP_REG Q

typedef struct _SBS STATUS REP_NUM GROUPS {
int32 num groups;
} SBS_STATUS_REP_NUM GROUPS;

typedef struct _SBS STATUS RESP_GROUP {
int32 group;

nt32 rexmt_reqs_to_renote;

nt32 rexnit_sat_by renote;

nt32 late rexmt;

nt32 rexmt_reqs_fromrenote;

nt32 rexmt_sat_by | ocal;

} SBS_STATUS_RESP_GROUP,

9-98  BEA MessageQ Programmer’s Guide



Message Data

Fields
Field DataType Script  Description
Format
ver sion int32 DL M essage format version number. Must be
40.
user _t ag int32 DL User-specified code to identify this request.
St at us int32 DL Returned status code. Valid codes are as
follows:
PSYM SBS_SUCCESS = Success
PSYM SBS_BADPARAM= Bad parameter
PSYM SBS_NOMATCH= No match
numrec int32 DL Number of MOTs reported in this message.
| ast _bl ock int32 DL 1if thisisthe last message; 0 otherwise.

* Remainder of message repeated "num r ec" times up to amaximum of 50 records per Local SBS Server data*

not int32 DL MOT for which statistics are being reported.

transport A(20) Transport specific address information
associated with the MOT. Theformat is
dependant on the type of transport referred
to.

heartbeat _tinmer int32 DL Heartbeat timer setting.

xmt_silo int32 DL Transmit silo size (MABS).

rev_silo int32 DL Receiver silo size (MABS).

rcv_sil o_max int32 DL M aximum occupancy of receive silo
(MABS).

num reg int32 DL Number of registrants for thisMOT.

conpl ete_rcvd int32 DL Number of complete messages received.

conpl ete_bytes int32 DL Number bytes contained in

“conpl et e_r cvd” messages.

BEA MessageQ Programmer’s Guide 9-99



9 Message Reference

Field DataType Script  Description
Format
seq_gaps int32 DL Total sequence gaps reported on thisMOT.
whol e_nsg_gaps int32 DL Number complete messages detected missed
initially.
whol e_sil o_gap int32 DL Number times sequence gap caused entire
silo flush.
* Transport rail information repeated two times *
devi ce_nanme char A(16) Optimized device address.
fail_tod DL(2) Shutdown timestamp in seconds.
nmsgs_sent int32 DL Number of messages sent on this rail.
byt es_sent int32 DL Number of bytes sent on thisrail.
pkts_sent int32 DL Number of packets sent on this rail.
pkts_rcvd int32 DL Number of packets received on rail.
dupl _pkts_disc int32 DL Number of duplicate packets discarded from
thisrail.
* Registrant data: repeated "num r eg" times*
reg_q g_address DW, Queue address of registrant.
DW
* End of registrant data *
num groups int32 DL Number of remote SBS servers

communicating with the local SBS server.

* Remote SBS server data: Following fields repeated "num gr oups" times *

group int32 DL Group number of remote SBS server.

rexmt_reqs_to_ renote int32 DL Number of retransmission requests from the
local SBS server to the remote SBS server.

rexmt_sat_by renote int32 DL Number of retransmission requests satisfied

by the remote SBS server.

9-100 BEA MessageQ Programmer’s Guide



Field DataType Script  Description
Format
late_rexmt int32 DL Number of retransmission requeststhat were
received too late to prevent a sequence gap.
rexmt_reqs_ fromrenote int32 DL Number of retransmission reguests from the
remote SBS server.
rexmt_sat_by _| ocal int32 DL Number of retransmission requests satisfied

by thelocal SBS server for theremote server.

* End of remote server data *

Arguments
Argument  Script Format pams_get_msg Format
Target Requesting program’s primary or  Requesting program’s primary or
reply queue reply queue
Source SBS_SERVER PAMS_SBS_SERVER
Class PAVS MSG_CLAS PANB
Type SBS_STATUS_RESP MSG_TYPE_SBS STATUS RESP

SeeAlso m SBS_STATUS REQ

BEA MessageQ Programmer’s Guided-101



9 Message Reference

TIMER_EXPIRED

TI MER_EXPI RED isaresponse message to the pams_set_timer function. This message
is sent to the timer queue associated with sender program’s primary queue. Each ce
to the pams_set_timer function generates one message af typR EXPI RED when
the timer expires.

C Message
Structure

Message Data
Fields

Arguments

Note: This message is RISC aligned.

typedef struct _TI MER EXPI RED {
int32 tinmer_id;
char reserved [20];
} TI MER_EXPI RED;

Field Data Type Script  Description
Format
timer_id int32 DL Timer ID specified in the pams_set timer
call.
reserved 20-bytearray  A(20) Reserved for BEA MessageQ.
Argument  Script Format pams_get_msg For mat
Target primary queue primary queue
Source TI MER_QUEUE PAMS Tl MER_QUEUE
Class PAVS MBG CLAS PANB
Type TI MER_EXPI RED M5G_TYPE_TI MER_EXPI RED

9-102 BEA MessageQ Programmer’s Guide



UNAVAIL

C Message
Structure

Message Data
Fields

Arguments

See Also

Applications register to receive notification when queues become active or inactivein
local and remote groups by sending an AVAI L_REG message to the Avail Server. The
UNAVAI L notification messageis sent to the registered application when aqueuein the
selected group becomes inactive. See the Obtaining the Status of a Queue topic in the
Using Message-Based Services section for an explanation of how to use this message.

Note: The Avail Server performs endian conversion when this message is received
between processes that run on systems that use different hardware data
formats. Thismessageis also RISC aligned.

typedef struct _UNAVAIL {
q_address target _q;

} UNAVAI L;
Field Data Type Script Format Description
target g g_address DL Address of unavailable queue.
Argument  Script Format pams_get_msg Format
Target Supplied by AVAI L_REG Supplied by AVAI L_REG
Source AVAI L_SERVER AVAI L_SERVER
Class PAMS MSG_CLAS_PANS
Type UNAVAI L M5G_TYPE_UNAVAI L

m AVAIL_REG

AVAI L_REG REPLY

AVAI L
m  AVAI L_DEREG

BEA MessageQ Programmer’s Guided-103



9 Message Reference

9-104 BEA MessageQ Programmer’s Guide



APPENDIX

A Supported Delivery

Modes and
Undeliverable Message
Actions

Thisappendix describes the valid combinations for the del i ver y and uma arguments
in each BEA MessageQ supported environment.

Thedel i very argument uses the PDEL_MODE_sn_di p format where:
m snisone of the following sender notification codes:

W—Wait for completion

AK—Asynchronous acknowledgment

NN—No notification

m di pis one of the following delivery interest point codes:

ACK—Read from target queue and explicitly acknowledged using the
pams_confi rm nsg service ACK can also be an implicit acknowledgement sent
after the seconpams_get _nsg call by the receiving application.

CONF—Delivered from the DQF and explicitly confirmed using the
pams_confirm msg service

DEQ—Read from the target queue

DQF—Stored in the destination queue file

BEA MessageQ Programmer’s Guide A-1



A Supported Delivery Modes and Undeliverable Message Actions

MEM—Stored in the target queue

SAF—Stored in the store and forward file

Note: If temporary queues are used, deleted, and reused quickly, it is possible in
isolated cases for an implicit ACK response from a previous temporary queue
to be placed on the new temporary queue.

Theuma argument uses tHRDEL_UMA_xxx format wherexxx is one of the following
codes:

DI sc—Discard

DI SCL—Discard after logging (Open VMS only)
DLJ—Dead letter journal

DLQ—Dead letter queue

RTS—Return to sender

SAF—Store and forward

Note: On UNIX and Windows NT systems, tbeSCL UMA performs the same as
theDi SC UMA, discarding the message without logging the event.

A-2 BEA MessageQ Programmer’s Guide



Delivery Mode and UMA Cross-Reference

Delivery Mode and UMA Cross-Reference

Table A-1 usesthe following key for delivery mode support:

X—-Supported
. —-Not supported

S—-Available if supported by message ser

Table A-1 Delivery Mode and UM A Cross-Reference

Delivery Mode Version

UMA

UNI X/ OpenVMS Clients
Windows
NT

PDEL_MODE_AK_ACK

DI SC

DI SCL

DLQ

DLJ

RTS

N
x| x| x| x| x
x| o] x| x| x

SAF

PDEL_MODE_AK_CONF

DI SC

DI SCL

DLQ

DLJ

RTS

X | X | X| X| X

SAF

PDEL_MODE_AK_DEQ

DI SC

x

DI SCL

DLQ

X | X | X| X| X| X| X| X| X
X| X| X| X| X| »n| X| X| X

BEA MessageQ Programmer’s Guide A-3



A Supported Delivery Modes and Undeliverable Message Actions

Table A-1 Delivery Mode and UMA Cross-Reference

Delivery Mode Version UMA UNIX/ OpenVMS Clients
Windows
NT

DLJ . X S
RTS X X X
SAF

PDEL_MODE_AK_DQF DI SC X X X
D SCL X X X
DLQ X X X
DLJ X X X
RTS X X X
SAF X X X

PDEL_MODE_AK_MEM DI SC X X X
D SCL X X X
DLQ X X X
DLJ X S
RTS X X X
SAF

PDEL_MODE_AK_SAF DI SC X X X
Dl SCL X X X
DLQ X X X
DLJ X X X
RTS X X X
SAF X S

A-4 BEA MessageQ Programmer’s Guide



Delivery Mode and UMA Cross-Reference

Table A-1 Delivery Mode and UM A Cross-Reference

Delivery Mode Version UMA UNI X/ OpenVMS Clients
Windows
NT

PDEL_MODE_NN_DQF DI SC X X X
DI SCL X X X
DLQ X X X
DLJ X X X
RTS X X X
SAF X X X

PDEL_MODE_NN_MEM DI SC X X X
DI SCL X X X
DLQ X X X
DLJ X S
RTS X X X
SAF

PDEL_MODE_NN_SAF DI SC X X X
DI SCL X X X
DLQ X X X
DLJ X X X
RTS X X X
SAF X S

PDEL_MODE_WF_ACK DI SC X X X
DI SCL X X X
DLQ X X X

BEA MessageQ Programmer’s Guide A-5



A Supported Delivery Modes and Undeliverable Message Actions

Table A-1 Delivery Mode and UMA Cross-Reference

Delivery Mode Version UMA UNIX/ OpenVMS Clients
Windows
NT

DLJ . X S
RTS X X X
SAF

PDEL_MODE_WF_CONF DI SC X X X
D SCL X X X
DLQ X X X
DLJ X X X
RTS X X X
SAF X X

PDEL_MODE_WF_DEQ DI SC X X X
Dl SCL X X X
DLQ X X X
DLJ X S
RTS X X X
SAF

PDEL_MODE_WF_DQF DI SC X X X
Dl SCL X X X
DLQ X X X
DLJ X X X
RTS X X X
SAF X X X

A-6 BEA MessageQ Programmer’s Guide



Delivery Mode and UMA Cross-Reference

Table A-1 Delivery Mode and UM A Cross-Reference

Delivery Mode Version UMA UNI X/ OpenVMS Clients
Windows
NT
PDEL_MODE_WF_NMEM DI SC X X X
DI SCL X X X
DLQ X X X
DLJ X S
RTS X X X
SAF X
PDEL_MODE_WF_SAF DI SC X X X
DI SCL X X X
DLQ X X X
DLJ X X X
RTS X X X
SAF X S

Key to Delivery Modes Supported

X—-Supported
. —-Not supported
S—-Available if supported by message server

BEA MessageQ Programmer’s Guide A-7



A Supported Delivery Modes and Undeliverable Message Actions

A-8 BEA MessageQ Programmer’s Guide



APPENDIX

B 0bsolete Functions and
Services

This appendix contains reference information for obsolete functions and services.
These functions and services should not be used in new development. Information is
provided referencing features which replace obsol ete functions and services.

Obsolete Message-Based Services for
Message Broadcasting

This section contains reference information for the following obsol ete services for
message broadcasting:

m SBS BS SEQGAP
m SBS DEREG

m SBS DEREG ACK

m SBS DEREG BY ID
m SBS REG

m SBS REG EZ

m SBS REG EZ REPLY
m SBS REG REPLY

BEA MessageQ Programmer’s Guide B-1



B  obsolete Functions and Services

SBS_BS_SEQGAP

Note: This serviceisobsolete. Use SBS SEQUENCE _GAP instead.

Applications can register to receive notification of sequence gaps in broadcast
messages when sending the SBS_REG message to the SBS Server. The registered
application receives an SBS_BS_SEQGAP message when thereisa gap in sequence of
broadcast messages. Seguence gaps can occur when the sender program is
broadcasting at a higher rate than the receiver program can handle.

CMessage typedef struct _SBS BS SEQGAP {
Structure int32 num nsgs_m ssing;

ui nt 16 sender _group;

ui nt 16 not;
ui nt 16 channel ;
} SBS_BS SEQGAP;

Message Data

B-2

Fields
Field Data Type Script  Description
Format
num nmsgs_ i nt 32 DL Count of lost messages in sequence gap.
m ssi ng
sender_group unsigned DW Group address of sending SBS Server.
word
not unsigned DW Multipoint Outbound Target (MOT) address
word in which broadcast stream gap occurred.
channel unsigned DW Source address of MOT; either SBS Server
word or Ethernet channel.
Arguments
Argument  Script Format pams_get_msg For mat
Target Reqguesting program Reguesting program
Source SBS_SERVER PAMS_SBS SERVER
Class PAMS MBG CLAS PAMB

BEA MessageQ Programmer’s Guide



Obsolete Message-Based Services for Message Broadcasting

Argument  Script Format pams_get_msg Format

Type SBS_BS_SEQGAP MSG_TYPE_SBS BS SEQGAP

See Also m SBS REG
m SBS DEREG

BEA MessageQ Programmer’s Guide B-3



B  obsolete Functions and Services

SBS_DEREG

Note: Thisserviceisobsolete. Use SBS DEREG STER REQinstead.

Applications can register to receive broadcast messages by sending an SBS_REG
message or an SBS_REG_EZ messageto the SBS Server. When an application nolonger
needsto receive messages from abroadcast stream, it sends an SBS_DEREGmessage to
the SBS Server. This message causes the SBS Server to deregister al entriesfor the
broadcast stream and receiving queue combination.

CMessage typedef struct _SBS DEREG {
Structure intl6 version;
ui nt 16 not;
g_address distribution_q;
char req_ack;

} SBS_DEREG
Message Data
Fields
Field Data Type Script  Description
Format
ver si on word DW Message format version. Must be 20.
not _q unsigned DW MOT queue address.
word
di stribution g_address DL Distribution queue address.
_q
reg_ack Boolean DB Vaue of 1 if acknowledgment requested.
Arguments

Argument  Script Format

pams_get_msg For mat

Target SBS_SERVER PAMS_SBS SERVER
Source Reguesting program Requesting program
Class PAMS VBG_CLAS_PAVS

Type SBS_DEREG VBG TYPE_SBS_DEREG

B-4 BEA MessageQ Programmer’s Guide



Obsolete Message-Based Services for Message Broadcasting

See Also

m SBS BS SEQGAP
m SBS DEREG ACK
m SBS DEREG BY_ID
m SBS REG

m SBS REG EZ

BEA MessageQ Programmer’s Guide B-5



B  obsolete Functions and Services

SBS_DEREG_ACK

Note: Thisserviceisobsolete. Use SBS DEREG STER RESP instead.

Applications can register to receive broadcast messages by sending an SBS_REG
message or an SBS_REG_EZ messageto the SBS Server. When an application nolonger
needsto receive messages from abroadcast stream, it sends an SBS_DEREGmessage to
the SBS Server. This message causes the SBS Server to deregister al entriesfor the
broadcast stream and receiving queue combination. The SBS_DEREG ACK message
acknowledges deregistration for the broadcast stream and receiver queue selected.

CMessage typedef struct _SBS DEREG ACK {
Structure intl6 status;
int16 nunber _reg;
} SBS_DEREG ACK;

Message Data
Fields
Field DataType Script  Description
Format
st atus word DW The return status of 1 = success =failure.
nunber _r eg word DW Number of registrants left on this Multipoint
Outbound Target (MOT) after
deregistration.
Arguments
Argument  Script Format pams_get_msg For mat
Target Requesting program Requesting program
Source SBS_SERVER PAMS_SBS SERVER
Class PAMS MBG CLAS PAMB
Type SBS_DEREG ACK MBG TYPE_SBS DEREG ACK

See Also m SBS DEREG
m SBS DEREG BY I D
m SBS REG

B-6 BEA MessageQ Programmer’s Guide



Obsolete Message-Based Services for Message Broadcasting

m SBS REG EZ

BEA MessageQ Programmer’s Guide B-7



B  obsolete Functions and Services

SBS_DEREG_BY_ID

Note: Thisserviceisobsolete. Use SBS DEREG STER REQinstead.

Applications can register to receive broadcast messages by sending an SBS_REG
message or an SBS_REG EZ message to the SBS Server. When an application has
multiple registrations for a broadcast stream and no longer needs to receive one type
of message, the application can send an SBS_DEREG BY_I Dmessagetothe SBS Server
by providing the ID returned by MessageQ during the initial broadcast registration.
The queue will continue to receive broadcast messages requested through separate
registrations.

CMessage typedef struct _SBS DEREG BY_ID {
Structure short version;
unsi gned short reg_id;
char req_ack;
} SBS_DEREG BY_I D,

Message Data

Fields
Field DataType Script  Description
Format
ver si on word DW Message format version. Must be 20.
reg_id unsigned DW Registration ID.
word
req_ack Boolean DB Vaueof 1if ACK requested.
Arguments
Argument  Script Format pams_get_msg For mat
Target SBS_SERVER PAMS_SBS SERVER
Source Requesting program Reguesting program
Class PAMS VBG_CLAS_PAVS
Type SBS_DEREG BY_I D MBG TYPE SBS DEREG BY | D

See Also ®m SBS DEREG

B-8 BEA MessageQ Programmer’s Guide



Obsolete Message-Based Services for Message Broadcasting

m SBS DEREG ACK
m SBS REG
m SBS REG EZ

BEA MessageQ Programmer’s Guide B-9



B  obsolete Functions and Services

SBS_REG
Note: Thisserviceisobsolete. Use SBS REG STER REQinstead.
Applications can register to receive selected messages from a broadcast stream by
sending an SBS_REG message to the SBS Server. This message requests atarget queue
toreceive all messagesthat meet the sel ection criteriaentered as part of theregistration
process. Selection rules define arelational operation to be applied against a message
header or message data field. Each broadcast message that matchestheruleis
distributed to the target queue.
CMessage typedef struct _SBS REG {
Structure intl6 version;
ui nt 16 not;
g_address distribution_q;
int1l6 of fset;
char data_operator;
int16 | ength;
ui nt 32 operand;
char req_ack;
char req_seqgap;
char req_aut odereg;
} SBS REG
Message Data
Fields
Field DataType Script  Description
For mat
ver si on word DW Message format version number. Must be
20.
not _addr unsigned DW The Multipoint Outbound Target (MOT)
word broadcast stream to which the program tries
to register.
di stribution g_address DL The MessageQ address that receives any
q messages that are sel ected from the
broadcast stream.
of f set word DW Specifiesafield in the message header or in
the message data component.
B-10 BEA MessageQ Programmer’s Guide



Obsolete Message-Based Services for Message Broadcasting

Field DataType Script  Description
Format

oper at or byte DB Controls the type of comparison to be
performed onthefield designated by the data
offset and the operand.

I ength word DW Specifies the size of comparison to be
performed. The choicesare 0, 1, 2, and 4.

oper and uint32 DL Thevalueto be used in the comparison of the
field specified by the data offset.

reqg_ack Boolean DB Specifiesif an acknowledgment messageis
requested. See SBS_ REG REPLY.

req_seqgap Boolean DB Specifiesif a notification of broadcast
stream message sequence humber gap is
requested.

req_autodere Boolean DB Specifiesif aregistration request isto be

g automatically purged from the SBS Server
table.

Arguments

Argument  Script Format pams_get_msg Format

Target SBS_SERVER PAMS_SBS_SERVER

Source Requesting program Requesting program

Class PAMS MSG CLAS PAMB

Type SBS_REG MSG TYPE_SBS REG

See Also m SBS REG REPLY

m SBS REG EZ

m  SBS DEREG

BEA MessageQ Programmer’s Guide B-11



B  obsolete Functions and Services

SBS_REG_EZ

CMessage
Structure

Message Data
Fields

Arguments

See Also

Note: Thisserviceisobsolete. Use SBS REG STER REQinstead.

Applications can register to receive all messages from a broadcast stream by sending
an SBS_REG EZ message to the SBS Server. This message requests a target queue to
receive all messages sent to the selected broadcast stream.

typedef struct _SBS REG EZ {
int1l6 version;

int1l6 not;
g_address distribution_q;
} SBS_REG EZ;
Field Data Type Description
ver si on word Message format version number. Must
be 20.
not _addr word The Multipoint Outbound Target

(MOT) broadcast stream to which the
processtries to subscribe.

di stribution_qg g_address

The MessageQ address that receives
any messages selected from the
broadcast stream.

Argument  Script Format pams_get_msg For mat
Target SBS_SERVER PAMS_SBS SERVER
Source Requesting program Reguesting program

Class PAMS MVBG_CLAS_PAVS

Type SBS_REG EZ VBG TYPE_SBS_REG EZ

m SBS REG EZ REPLY

B-12 BEA MessageQ Programmer’s Guide



Obsolete Message-Based Services for Message Broadcasting

m SBS REG
m SBS DEREG

BEA MessageQ Programmer’s Guide B-13



B  obsolete Functions and Services

SBS_REG_EZ REPLY

Note: Thisserviceisobsolete. Use SBS REG STER RESP instead.

Applications can register to receive all messages from a broadcast stream by sending
an SBS_REG EZ message to the SBS Server. This message requests that all messages
sent to a broadcast stream be distributed to a particular target queue. The
SBS_REG EZ REPLY message indicates the status of the request and returns a
registration ID if the application is successfully registered.

C Message
Structure intl6 status;

uint16 reg_id;

int16 nunber reg;
} SBS_REG EZ_REPLY;

Message Data

typedef struct _SBS REG EZ REPLY {

Fields
Field DataType Script  Description
For mat
st atus word DW The return status of lindicates success;
—nindicates failure.
reg_id unsigned DW Returned registration ID.
word
nunber _r eg word DW Number of registrants left on this Multipoint
Outbound Target (MOT).
Arguments
Argument  Script Format pams_get_msg Format
Target Requesting program Requesting program
Source SBS_SERVER PAMS_SBS SERVER
Class PAMS MBG CLAS PAMB
Type SBS REG EZ_REPLY MBG TYPE_SBS REG EZ REPLY
SeeAlso m SBS REG EZ

B-14 BEA MessageQ Programmer’s Guide



Obsolete Message-Based Services for Message Broadcasting

m  SBS DEREG

BEA MessageQ Programmer’s Guide B-15



B  obsolete Functions and Services

SBS_REG_REPLY

Note: Thisserviceisobsolete. Use SBS REG STER RESP instead.

Applications can register to receive selected messages from a broadcast stream by
sending an SBS_REG message to the SBS Server. This message requests atarget queue
toreceive al messages sent to aparticular broadcast stream that meet selection criteria.
The SBS_REG REPLY message indicates the status of the request and returns a
registration ID.

CMessage typedef struct _SBS_REG REPLY {
Structure intl6 status;
uint16 reg_id;
int16 nunber _reg;
} SBS_REG REPLY;

Message Data

Fields
Field Data Type Script  Description
Format
st atus word DW The return status of 1 = success=failure.
reg_id unsigned DW Returned registration ID.
word
nunber _reg word DW Number of registrants left on this Multipoint
Outbound Target (MOT).
Arguments
Argument  Script Format pams_get_msg For mat
Target Requesting program Requesting program
Source SBS_SERVER PAMS_SBS SERVER
Class PAMS MSG_CLAS_PAMS
Type SBS REG REPLY MBG _TYPE_SBS REG REPLY

SeeAlso m SBS REG

B-16 BEA MessageQ Programmer’s Guide



Obsolete PAMS API Functions

Obsolete PAMS API Functions

This section contains reference information for the following obsolete PAMS API
functions:

pans_creat e_handl e
pans_decode
pans_del et e_handl e
pans_encode
pans_extract _buffer
pans_insert_buffer
pans_nsg_| ength
pans_next _nsg field
pans_renove_encodi ng

pans_set _nsg_position

BEA MessageQ Programmer’s Guide B-17



B  obsolete Functions and Services

pams_create_handle

Note: Thisfunction isobsolete. Handles and the SDM format used in MessageQ
Version 4.0 have been replaced by the FML 32 format for self describing
messaging. Use pans_put _nmsg with the PSYM MSG_FM_ symbol and
pams_get _nmsg(w) with the PSYM MSG_BUFFER_PTR symbol to send and
receive FML messages.

Creates an empty message and returns a handle to it.

Syntax int32 pans_create_handle ( handle, [ handle_type ] );

Arguments
Table9-1
Argument Data Type Mechanism  Prototype Access
handl e pans_handl e  reference pans_handl e * returned
handl e_type int32 reference int32 * passed

Argument  handle
Definitions Supplies the handle that you want created.

handle_type
Specifies the type of handle to create.

Return Values

Table 9-2
Return Code Platform  Description
PAMS__BADARGLI ST All Invalid number of arguments.
PAMS__ BADPARAM All Invalid handl e_t ype argument value.
PAMS__RESRCFAI L All Insufficient resources to compl ete the
operation.
PAMS __ SUCCESS All Indicates successful completion.

B-18 BEA MessageQ Programmer’s Guide



Obsolete PAMS API Functions

Description

See Also

Thehandl! e_t ype argument takes the PSYM MSG_HANDLE value to request the
creation of amessage handle. In this case, thereturned pans_handl e argument can be
used everywhere a pans_handl e datatype is needed with a function.

PSYM_MSG HANDLE isadefault value, so providing anull pointer as
handl e_t ype creates a message handle.

m pans_del ete_handl e
m pans_extract _buffer
m pans_insert_buffer

m pans_nsg | ength

BEA MessageQ Programmer’s Guide B-19



B  obsolete Functions and Services

pams_decode

Note: Thisfunction isobsolete. Handles and the SDM format used in MessageQ
Version 4.0 have been replaced by the FML 32 format for self describing
messaging. Use pans_put _nmsg with the PSYM MSG_FM_ symbol and
pams_get _nmsg(w) with the PSYM MSG_BUFFER_PTR symbol to send and
receive FML messages.

The pams_decode functions are a series of functions that decode a tagged field out of
themessage. Thefirst unseen field in the message with the desired element isreturned.
The actual name of the function and its description islisted as follows:

Table 9-3
Function Description
pans_decode_i nt 8 Decodes an 8-bit signed integer (char) element of information

out of the message.

pans_decode_ui nt8  Decodes an 8-bit unsigned integer (unsigned char) element of
information out of the message.

pans_decode_i nt 16 Decodes a 16-bit signed integer element of information out of
the message.

pans_decode_ui nt 16 Decodesal6-hit unsigned integer element of information out of
the message.

pans_decode_i nt 32 Decodes a 32-bit signed integer element of information out of
the message.

pans_decode_ui nt 32 Decodesa32-hit unsigned integer element of information out of
the message.

pans_decode_i nt 64  Decodes a 64-bit signed integer element of information out of
the message.

pans_decode_ui nt 64 Decodesa64-hit unsigned integer element of information out of
the message.

pans_decode_f | oat Decodes a single floating-point element of information out of
the message.

pans_decode_doubl e Decodes a double floating-point e ement of information out of
the message.

B-20 BEA MessageQ Programmer’s Guide



Obsolete PAMS API Functions

Syntax

Table 9-3
Function Description
pans_decode_string Decodesastring element of information out of the message.
pans_decode_array  Decodesan array of elements of information of the same type
out of the message.
pans_decode_qi d Decodesthe q_address (M essageQ queue address) out of the
message.

The syntax for each of the pams_decode functionsis as follows:

Listing 9-1 Syntax for pams_encode function

nt 32

nt 32

nt 32

nt 32

nt 32

nt 32

nt 32

nt 32

nt 32

nt 32

pans_decode_i nt8 ( pans_handl e handl e, int32* tag, int8*
val ue);

pans_decode_ui nt 8 ( pans_handl e handl e, int32* tag, uint8*
val ue);

pans_decode_i nt 16 ( pans_handl e handle, int32* tag, intl6*
val ue);

pans_decode_uint16 ( panms_handl e handl e, int32* tag, uint16*
val ue);

pans_decode_i nt32 ( pans_handl e handl e, int32* tag, int32*
val ue);

pans_decode_ui nt 32 ( panms_handl e handl e, int32* tag, uint32*
val ue);

pans_decode_i nt 64 ( pans_handl e handle, int32* tag, int64*
val ue);

pans_decode_ui nt 64 ( panms_handl e handl e, int32* tag, uint64*
val ue);

pans_decode_fl oat ( pans_handl e handle, int32* tag, float*
val ue);

pans_decode_doubl e ( panms_handl e handl e, int32* tag, double*
val ue);

BEA MessageQ Programmer’s Guide B-21



B  obsolete Functions and Services

Arguments

Argument
Definitions

B-22

i nt 32 pans_decode_string ( pans_handl e handl e, char*
val ue,
i nt 32* bufferlLength,

i nt 32* val uelLengt h) ;

i nt32* tag,

i nt 32 pans_decode_array ( pans_handl e handl e, voi d*
val ue,
i nt 32* bufferlLength,

i nt 32* nunkl t sVal ue);

int32* tag,

i nt 32 pans_decode_qid ( pans_handl e handl e,
gq_addr ess* val ue);,

i nt32* tag,

The following table describes the arguments for the pams_decode functions above.
Some of these arguments apply to certain functions only.

Table 9-4
Argument Data Type Mechanism  Prototype Access
handl e pams_handle reference pans_handl e *  passed
tag int32 reference int32 * passed
val ue varying pointer reference int32 * returned
buf ferLength int32 reference int32 * passed
val ueLength  int32 reference int32 * returned
nunkl tsVal ue int32 reference int32 * returned

handle

Specifies the message handle.

tag

Specifies the tag of the field to decode.

value

Contains the pointer to a buffer to receive the value of the field to decode.

bufferL ength

Contains the number of bytesin the value buffer.

BEA MessageQ Programmer’s Guide



Obsolete PAMS API Functions

valuel ength
Specifiesthe number of bytesin the returned value, unlessaNULL pointer is
passed. If the val ueLengt h argument isa NULL pointer to the call to
pams_decode_string, the string is returned null-terminated. In this case, the
specified buf f er Lengt h argument must include space for the trailing null.

numEltsvValue
Specifies the number of elements contained in the array.

Return Values
Table 9-5

Return Code Platform  Description

PAVS__ AREATCSMALL All The buffer length is too small to fit the
value string.

PAVS__ BADHANDLE All Invalid message handle or handle to an
untyped message.

PAVS__ BADTAG All The tag data type does not match the
routine used for the value data type.

PAMS__ SUCCESS All Indicates successful completion.

PAVS__ TAGNOTFOUND All Tag not found in the message.

Description  Thisfunction scansthe message for an unseen instance of the specified tag, starting at
the beginning of the message:

m If the scan finds a match, the matched element is marked as seen, its vaue (and
length) are returned, and the return value is set to PAMS__ SUCCESS.

m |f the scan continues without success to the end of the message, the return value
is set to PAMS__ NOSUCHTAG

Thus, if there are two occurrences of aparticular tag in a message, the first decode call

always returns the earlier occurrence of the tag, and the second call returns the later

one. Conversely, if a receiving application knows a message’s tag order is Atag, Btag,
ENDtag, Atag, Btag, ENDtag, the application cannot skip the first pair by decoding
first ENDtag, and then decoding Atag.

BEA MessageQ Programmer’s Guide B-23



B  obsolete Functions and Services

Thevalue isreturned in the local host representation (endian conversions are applied
when necessary).

See Also m pans_encode

m pans_renpve_encodi ng

B-24  BEA MessageQ Programmer’s Guide



Obsolete PAMS API Functions

pams_delete_handle

Syntax

Arguments

Argument
Definition

Return Values

Description

See Also

Note: Thisfunction is obsolete. Handles and the SDM format used in MessageQ
Version 4.0 have been replaced by the FML32 format for self describing
messaging. Use pans_put _nsg with the PSYM M5G_FM. symbol and
pams_get _nsg(w) with the PSYM MSG BUFFER_PTR symbol to send and

receive FML messages.

Releases all of the resources allocated for the message handle.

int32 pans_del ete_handle ( handle );

Table 9-6
Argument Data Type Mechanism  Prototype Access
handl e panms_handl e  reference pans_handl e*  passed
handle
Specifies the message handle to delete.
Table 9-7
Return Code Platform  Description
PAVS__BADARGLI ST All Invalid number of arguments.
PAVS__ BADHANDLE All Invalid message handle.
PAMS__ SUCCESS All Indicates successful completion.

Applications must use this function after sending or receiving messages. The use of
this function avoids memory leaks. Note that your application must call thisfunction

if you decide not to send a message you have created.

m pans_create_handl e
m pans_extract _buffer

m pans_insert_buffer

BEA MessageQ Programmer’s Guide B-25



B  obsolete Functions and Services

m pans_nsg_l ength

B-26 BEA MessageQ Programmer’s Guide



Obsolete PAMS API Functions

pams_encode

Note: Thisfunction is obsolete. Handles and the SDM format used in MessageQ
Version 4.0 have been replaced by the FML32 format for self describing
messaging. Use pans_put _nsg with the PSYM M5G_FM. symbol and
pams_get _nsg(w) with the PSYM MSG BUFFER_PTR symbol to send and
receive FML messages.

The pans_encode functions are a series of functionsthat append afield in the SDM
message based on a specific data type. The actual name of the function and its

description is as follows:

Function

Description

pans_encode_i nt 8

Encodes an 8-bit signed integer (char) e ement of information
in the message.

pans_encode_uint8

Encodes an 8-bit unsigned integer (unsigned char) element of
information in the message.

pans_encode_i nt 16

Encodes a 16-bit signed integer element of information in the
message.

pans_encode_ui nt 16

Encodes a 16-bit unsigned integer element of information in
the message.

pans_encode_i nt 32

Encodes a 32-bit signed integer element of information in the
message.

pans_encode_ui nt 32

Encodes a 32-bit unsigned integer element of information in
the message.

pans_encode_i nt 64

Encodes a 64-bit signed integer element of information in the
message.

pans_encode_ui nt 64

Encodes a 64-bit unsigned integer element of information in
the message.

pans_encode_f| oat

Encodes a single floating-point element of information in the
message.

pans_encode_doubl e

Encodes a double floating-point element of information in the
message.

BEA MessageQ Programmer’s Guide B-27



B  obsolete Functions and Services

B-28

Syntax

Function

Description

panms_encode_string Encodes a string element of information in the message.

pans_encode_arr ay

Encodes an array of elements of information of the same type
in the message.

pans_encode_qi d

Encodes the g_address (M essageQ queue address) in the
message.

The syntax for each of the pans_encode functionsis asfollows:

Listing 9-2 Syntax for pams_encode_functions

nt 32 pans_encode_i nt8 ( pans_handl e handl e, int32* tag, int8*

val ue);

nt 32 pans_encode_uint8 ( pans_handl e handl e, int32* tag, uint8*

val ue);

nt 32 pans_encode_int16 ( pans_handl e handl e, int32* tag, intl1l6*

val ue);

nt 32 pans_encode_uint16 ( pans_handl e handl e, int32* tag,

ui nt 16* val ue);

nt 32 pans_encode_i nt 32 ( pans_handl e handl e, int32* tag, int32*

val ue);

nt 32 pans_encode_uint32 ( pans_handl e handl e, int32* tag, uint32*

val ue);

nt 32 pans_encode_i nt 64 ( pans_handl e handl e, int32* tag, int64*

val ue);

nt 32 pans_encode_uint64 ( pans_handl e handl e, int32* tag,

ui nt 64* val ue);

nt 32 pans_encode_float ( pans_handl e handl e, int32* tag, float*

val ue);

nt 32 pans_encode_doubl e ( pans_handl e handl e, int32* tag,

doubl e* val ue);

nt 32 pans_encode_string ( pans_handl e handl e, int32* tag, char*

val ue, int32* |ength);

BEA MessageQ Programmer’s Guide



Obsolete PAMS API Functions

Arguments

Argument
Definitions

int32 pans_encode_array ( pans_handl e handle, int32* tag, void*
val ue, int32* nunkElts);

int32 pans_encode_qi d ( pans_handl e handl e, int32* tag,
gq_addr ess* val ue);

The following table describes the arguments for the pams_encode functions. Some of
these arguments apply to certain functions only.

Table 9-8
Argument DataType Mechanism  Prototype Access
handl e pams handle reference pans_handl e*  passed
tag int32 reference int32 * passed
val ue varying reference int32 * passed
| ength int32 reference int32 * passed
nunkl ts int32 reference int32 * passed
handle

Specifies the message handle.

tag
Specifies the tag of the field to encode.

value
Specifies the value of the field to encode.

length
Specifies the length of the string to encode, or -1 if the string is null
terminated.

numeEelts
Specifies the number of elementsin the array.

BEA MessageQ Programmer’s Guide B-29



B  obsolete Functions and Services

Return Values

Description

B-30

Table 9-9

Return Code Platform  Description

PAMS__ BADHANDLE All Invalid message handle or handle to an
untyped message.

PAVS__BADTAG All Invalid tag.

PAMS__RESRCFAI L All Insufficient resources to expand the
message.

PAMS __ SUCCESS All Indicates successful completion.

Several structures exist to encode fields for each data type supported by the SDM

capability. The application developer uses the function that matches the data type of
the field to encode. Since the tag embeds information about the value data type, the

PAMS__BADTAG codeisreturned if the function used does not match the tag data type.
For example, if the pams_encode int32 function is used to encode a character string.

The PAVS__BADTAG code is also returned if the tag construction does not follow the

rules or if the tag isreserved.

You caninsert anull tag (PSDM_NULL_TAG) in a SDM message to control application
behavior. For example, you caninsert anull tag to stop an enumeration. Toinsert anull
tag, use any of thenumeric pams_encode functionsand specify aNULL value pointer.
Thefollowing code fragment shows how to insert anull tag into asigned 32-bit integer

element:

null _tag = PSDM NULL_TAG

status = pans_encode_int32(mh, &null _tag, NULL);

See Also m pans_decode

BEA MessageQ Programmer’s Guide



Obsolete PAMS API Functions

pams_extract_buffer

Returns a message in the specified buffer. The message sizeis also returned.

Syntax int32 pams_extract_buffer ( handle, nsgBuffer, bufferLength,

nsglLengt h) ;

Table 9-10
Argument Data Type Mechanism  Prototype Access
handl e pans_handl e  reference pans_handl e*  passed
msgBuf f er char reference char * returned
buf ferLength uint32 reference uint32 * passed
msgLengt h uint32 reference uint32 * returned

Argument  handle
Definitions Specifies the message handle of the message to extract.

msgBuffer
Containsthe pointer to the buffer from which to extract the message.

bufferLength
Specifies the size in bytes of nsgBuf f er .

msgL ength
Contains the pointer where to place the message’s length. You can specify a
NULL pointer in languages that allow these kinds of pointers.

Return Values
Table 9-11
Return Code Platform  Description
PAVS__ AREATCSMALL All Message is larger than the user’s buffer.
PAVS__BADARGLI ST All Invalid number of arguments.
PAVS__ BADPARAM All Invalid buf f er Lengt h argument.

BEA MessageQ Programmer’s Guide B-31



B  obsolete Functions and Services

Table 9-11
Return Code Platform  Description
PAMS__ BADHANDLE All Invalid message handle or handle to an
SDM message aready processed with the
API.
PAMS__FATAL All SDM message is corrupted.
PAMS__ SUCCESS All Indicates successful completion.

Description  Thisfunction copiesthe recei ved message associated with the specified handleinto the
user provided buffer. If requested (by passing anon-NULL nsgLengt h), the number
of bytes of the message is returned as well.

If the message handle points to an SDM message for which encoding or decoding has
already been performed, this function returns PAVMS__ BADHANDLE.

If your application does not know the maximum size message that can arrive, it can
call the pans_nsg_| engt h function prior to calling pans_extract _buf f er to
determine how big a buffer is needed.

See Also ®m pans_create_handl e
m pans_del ete_handl e
m pans_insert_buffer

m pans_nsg_l ength

B-32 BEA MessageQ Programmer’s Guide



Obsolete PAMS API Functions

pams_insert_buffer

Syntax

Arguments

Argument
Definitions

Return Values

Note: Thisfunction is obsolete. Handles and the SDM format used in MessageQ
Version 4.0 have been replaced by the FML32 format for self describing
messaging. Use pans_put _nsg with the PSYM M5G_FM. symbol and
pams_get _nsg(w) with the PSYM MSG BUFFER_PTR symbol to send and
receive FML messages.

Inserts the contents of the specified buffer into the message identified by the message

handle.

int32 pans_insert_buffer ( handle, nmsgBuffer, length );

Table 9-12
Argument Data Type Mechanism  Prototype Access
handl e panms_handl e  reference pans_handl e*  passed
nmsgBuf f er char reference char * passed
| ength uint32 reference uint32 * passed
handle
Specifies the message handle.
msgBuffer
Specifies the pointer to a user area to use as message content.
length
Specifies the size in bytes of the nsgBuf f er buffer or zero.
Table 9-13
Return Code Platform  Description
PAVS__BADARGLI ST All Invalid number of arguments.

BEA MessageQ Programmer’s Guide B-33



B  obsolete Functions and Services

Table 9-13

Return Code Platform  Description

PAMS__ BADHANDLE All Invalid message handle or handle to an
SDM messageand *1 ength > 0 or
not handle to an SDM message and
*l ength == 0.

PAMS__ BADPARAM All Invalid negBuf fer orl ength
argument.

PAMS__FATAL All SDM message is corrupted.

PAMS RESRCFAI L All Insufficient resources to compl ete the
operation.

PAMS __ SUCCESS All Indicates successful completion.

Description  This function copies the user-provided buffer into the received message that is
associated with the specified handle. If abuffer was already inserted in the message, it
is overwritten by a subsequent call to the pans_i nsert _buf f er function. If the
I engt h argument pointsto a zero-valued integer, the buffer to insert isan SDM

message.
See Also m pans_create_handl e

m pans_del ete_handl e

m pans_extract _buffer

m pans_nsg_l ength

B-34 BEA MessageQ Programmer’s Guide



Obsolete PAMS API Functions

pams_msg_length

Syntax

Arguments

Argument
Definitions

Return Values

See Also

Note: Thisfunction is obsolete. Handles and the SDM format used in MessageQ
Version 4.0 have been replaced by the FML32 format for self describing
messaging. Use pans_put _nsg with the PSYM M5G_FM. symbol and
pams_get _nsg(w) with the PSYM MSG BUFFER_PTR symbol to send and
receive FML messages.

Returns the number of bytes in the message. The message is identified by a message
handle created with the pans_cr eat e_handl e function.

int32 pans_nsg_length ( handl e, nsgLength );

Table9-14
Argument Data Type Mechanism  Prototype Access
handl e panms_handl e  reference pans_handl e*  passed
msglLengt h uint32 reference uint32 * returned
handle

Specifies the message handle of the message.

msgL ength
Contains the message handle of the message.

Table 9-15
Return Code Platform  Description
PAMS__SUCCESS All Indicates successful completion.
PAMS_BADARGLIST All Invalid number of arguments.
PAMS_BADHANDLE All Invalid message handle.

m pams_create handle

m pams_delete handle

BEA MessageQ Programmer’s Guide B-35



B  obsolete Functions and Services

m pams_extract_buffer

m pams_insert_buffer

B-36 BEA MessageQ Programmer’s Guide



Obsolete PAMS API Functions

pams_next_msg_field
Returns the tag and length of the first unseen field in the message.

Syntax int32 pams_next_nsg_field (pams_handl e handl e, tag, val ueLength)

Arguments
Table 9-16
Argument Data Type Mechanism  Prototype Access
handle pams_handle reference pams_handle * passed
tag int32 reference int32 * returned
valuel ength int32 reference int32 * returned

Argument  handle
Definitions Specifies the message handle of the message to scan.

tag
Returns the tag of first unseen field in the message.

valuel ength
Returns the length of the returned value or aNULL pointer, if the user is not
interested in this information. The length returned is the size in bytes
necessary to receive the value. For strings, it is the string length (null
terminator not included). For arrays, it is the number of fields multiplied by
the size of each field.

Return Values
Table 9-17
Return Code Platform  Description
PAMS__BADHANDLE All Invalid message handle.
PAMS__NOMORETAG All No more tagsin the message (al fields
were decoded).
PAMS__SUCCESS All Indicates successful completion.

BEA MessageQ Programmer’s Guide B-37



B  obsolete Functions and Services

Description  This function does not mark the matched field as seen. Therefore, successive calls to
this function without calling the appropriate pams_decode functions returns the same
tag.

When all fields have been decoded, the function returns PAMS _NOMORETAG.

See Also = pams_decode

m pams_set msg_position

B-38 BEA MessageQ Programmer’s Guide



Obsolete PAMS API Functions

pams_remove_encoding

Note: Thisfunction is obsolete. Handles and the SDM format used in MessageQ
Version 4.0 have been replaced by the FML32 format for self describing
messaging. Use pans_put _nsg with the PSYM_MSG_FML symbol and
pams_get _nsg(w) with the PSYM_MSG_BUFFER_PTR symbol to send
and receive FML messages.

Removes a previously encoded field from the message buffer.

Syntax int 32 pams_renove_encodi ng (pams_handl e handl e, int32* tag, int32*

flags);
Argument
Table 9-18
Argument Data Type Mechanism  Prototype Access
handle pams_handle reference pams_handle * passed
tag int32 reference int32 * passed
flags int32 reference int32 * passed

Argument  handle
Definitions Specifies the message handle.

tag
Specifiesthetag of thefield to remove. If thetagisPSDM_NULL_TAG, the
first or last - depending on flags - encoded null tag is removed.

flags
Specifies the flags to control the function behavior. The flags argument can
take the following values:

e PSDM_FIRST to remove the first encoded field matching tag.
e PSDM_LAST to remove the last encoded field matching tag.

e PSDM_ANY toignore the tag argument; PSDM_ANY must be used in
combination with PSDM_FIRST or PSDM_LAST, to force the very first or
very last field in the message to be removed, whatever itstag is.

BEA MessageQ Programmer’s Guide B-39



B  obsolete Functions and Services

Return Values

B-40

Table9-19
Return Code Platform  Description
PAMS__BADPARAM All Invaid flag.
PAMS_BADHANDLE All Invalid message handleor handleto alarge
message.
PAMS__BADTAG All Invalid tag.
PAMS__SUCCESS All Indicates successful completion.
PAMS__TAGNOTFOUND All Tag not found in the message.

See Also = pams_decode

m pams_encode

BEA MessageQ Programmer’s Guide



Obsolete PAMS API Functions

pams_set_msg_position

Syntax

Arguments

Argument
Definitions

Note:

Thisfunction is obsolete. Handles and the SDM format used in MessageQ
Version 4.0 have been replaced by the FML32 format for self describing
messaging. Use pans_put _nsg with the PSYM_MSG_FML symbol and
pams_get _nsg(w) with the PSYM_MSG_BUFFER_PTR symbol to send
and receive FML messages.

Resets the message to the position of a specific tag.

int32 pans_set_nsg_position (pans_handl e handl e, int32* tag, int32*

flags);
Table 9-20
Argument Data Type Mechanism  Prototype Access
handle pams_handle reference pams_handle * passed
tag int32 reference int32 * passed
flags int32 reference int32 * passed
handle

tag

Specifies the message handle.

Specifies the tag to reset encoding or decoding to.
Specifies the flags argument, which is a mask allowing you to specify the
behavior. It can OR the following modifiers:

PSDM_PREVIOUS searches for the previous occurrence of the specified tag
(default for encoding).

PSDM_NEXT searches for the next occurrence of the specified tag (default
for decoding).

PSDM_FIRST searchesfor the first occurrence of the specified tag in the
message.

PSDM_L AST searches for the last occurrence of the specified tag in the
message.

BEA MessageQ Programmer’s Guide B-41



B  obsolete Functions and Services

e PSDM_AT sets the position at the element specified (default).

e PSDM_BEFORE setsthe position at the element preceding the specified
element.

¢ PSDM_AFTER setsthe position at the element following the specified
element.

e PSDM_ANY telsto ignore the specified tag argument. The following
combinations are possible :

e (PSDM_ANY | PSDM_PREVIOUS) sets position at the previous tag.

e (PSDM_ANY | PSDM_NEXT) sets position at the next tag; when used in
conjunction with pams_next_msg_field, it allows skipping the undesired
elements.

e (PSDM_ANY | PSDM_FIRST) sets position at the beginning of the message.

e (PSDM_ANY | PSDM_LAST) sets position at the end of the message; this
allows appending elements to a received message.
The modifiers PSDM_PREVIOUS, PSDM_NEXT, PSDM_FIRST, and
PSDM_L AST are mutually exclusive.
ThemodifiersPSDM_AT, PSDM_BEFORE, and PSDM_AFTER are also
mutually exclusive.

Return Values

Table 9-21
Return Code Platform  Description
PAMS_BADHANDLE All Invalid message handle or handle to alarge
message.
PAMS_BADPARAM All The specified flags argument isinvalid.
PAMS__SUCCESS All Indicates successful completion.

Description  This function resets the starting point of the encoding or decoding to the field in the
message with the specified tag:

m  When used to perform further encoding, already encoded fields after the
specified element are lost.

B-42 BEA MessageQ Programmer’s Guide



Obsolete PAMS API Functions

m  When used to perform further decoding, all seen fields after the specified
element are marked unseen and the rest are marked seen.

See Also

pams_encode
m pams_decode

m pams_next_msg_field

BEA MessageQ Programmer’s Guide B-43



B  obsolete Functions and Services

B-44  BEA MessageQ Programmer’s Guide



Index

A

Alternate queue 8-34, 8-48, 8-73
Application programming interface 2-21, 5-2
Asynchronous acknowledgment (AK) 2-13
Asynchronous system trap 8-15, 8-44
Attached queues listing 5-29
Attachment notifications 5-30
AVAIL server messages
AVAIL 5-5, 9-2, 9-4,9-5,9-7, 9-9
AVAIL_DEREG 9-2, 9-4, 9-5, 9-9, 9-
103
AVAIL_REG 5-3, 5-5, 9-2, 9-5, 9-7, 9-
103
AVAIL_REG_REPLY 5-4,9-2,9-3, 9-
6, 9-7, 9-9, 9-103
UNAVAIL 5-5, 9-5,9-7,9-9
AVAIL_DEREG message 9-4
AVAIL_REG message 5-3, 9-2, 9-4, 9-6, 9-
8, 9-103
AVAIL_REG_REPLY message 9-2

Broadcast communication modes 3-8
Broadcast messages
deregistering from receiving 3-19
reading 3-19
receiving 3-4, 3-13
registering to receive 3-15
sending 3-12
Broadcast scope 3-5

Broadcast services

selective 3-1
Bus-Wide

naming and configuring 4-3
Byte order conversion 6-2

C
Caching and Binding 4-8
Class codes 6-6
Comparison keys 8-96, 8-98
Confirm receipt of arecoverable message 8-
21
Connect server messages 5-8
DISABLE_NOTIFY 9-10, 9-16, 9-30,
9-32
ENABLE_NOTIFY 5-8, 9-10, 9-16, 9-
29, 9-30, 9-31, 9-32
LINK_COMPLETE 5-8, 9-11, 9-16, 9-
30, 9-32
LINK_LOST 5-8, 9-11, 9-16, 9-30, 9-32
LINKMGT_REQ 5-8, 5-28, 9-21, 9-24,
9-28
LINKMGT_RESP5-9,5-11, 5-19, 5-22,
5-25, 9-23, 9-28
LIST_ALL_CONNECTIONS5-6,9-33,
9-35, 9-38, 9-39, 9-41
LIST_ALL_ENTRIES request 9-38
LIST_ALL_ENTRIES response 9-36
LIST_ALL_GROUPS request 9-41
LIST_ALL_GROUPS response 9-39

BEA MessageQ Programmer’s Guide 1-1



Contents of destination queue file
transferring 5-35
Cross-group connection table 5-13
Cross-group connections, entries, and groups
listing 5-6
Cross-group links notification 5-7

D

Data alignment 6-2, 6-3

Data marshaling 6-2

Datagram transfer 3-9

Dead letter queue 2-8, 2-15, 2-23, 2-25, 2-26,
8-23, 8-84, 9-49

DELAY command 7-23

Delivery modes 2-1, 2-5, 2-7, 2-9, 2-24, 2-27,
9-47

Delivery outcome 2-11

Deregistration message 3-19

DISABLE_NOTIFY message 5-8, 9-10

DISABLE_Q_NOTIFY_REQ message5-30,
9-14

DISABLE_Q NOTIFY_RESP message 5-
30, 9-14

DMQ$DEBUG logical name 6-26

DMQ$PSSVFY utility 7-25

DMQ$TRACE_OUTPUT logical name 6-26

Duplicate messages 2-21

E

ENABLE_NOTIFY message5-8, 9-10, 9-16,
9-29, 9-31

ENABLE_Q NOTIFY_REQ message 5-8,
9-12, 9-14, 9-17, 9-19, 9-82

ENABLE_Q NOTIFY_RESP message 5-
30, 9-19, 9-82

Endian conversion 6-3

Event flag 8-44, 8-55

Explicit confirmation 2-17, 2-19, 2-20, 8-21

[-2 BEA MessageQ Programmer’s Guide

H

Handle B-25
See also Message handles

|

Implicit confirmation 2-17, 2-19, 2-20, 8-21,
8-26

Include files 6-5, 8-108

Initialization file 2-20, 4-4, 8-12, 8-24, 8-71,
8-76, 8-106

J
Journal file 2-15, 2-26, 2-27, 8-90
Journal files

opening and closing 5-33
Journaling to the PCJfile 5-34

L

Large messages 1-7

Link management messages 5-8, 9-21, 9-24

Link status

monitoring and controlling 5-6

LINK_COMPLETE message 5-7, 9-29

LINK_LOST message 5-8, 9-31

LINKMGT_REQ message 5-8, 9-21

LINKMGT_RESP message5-11, 5-15, 5-19,
5-22,5-25,9-24

LIST_ALL_CONNECTIONS message
(Request) 5-6, 9-33

LIST_ALL_CONNECTIONS message
(Response) 5-6, 9-34

LIST_ALL_ENTRIES request message 5-6,
9-38

LIST_ALL_ENTRIES response message 5-
6, 9-36

LIST_ALL_GROUPS request message 5-6,
9-41

LIST_ALL_GROUPS response message 5-



6, 9-39
LIST_ALL_Q_ REQ message 9-42, 9-43
LIST_ALL_Q_ RESP message 5-29, 9-43
LOCATE_Q_REP message 8-73, 9-45

M
M essage broadcasting 3-3, 3-5
Message buffers
sending and receiving 1-3
M essage capture 7-17
Message confirmation 2-17, 2-21
M essage delivery mode 2-2
Message handles 1-9
M essage header 3-17, 7-16, 8-52, 8-66, B-10
Message queue
selection by 8-48, 8-62
M essage receipt
confirming 2-18
Message recovery 2-1-2-27, 8-51, 8-66, 8-
77,8-79
Message recovery files
managing 5-31
Message recovery system 2-3
Message sequence number 2-11-2-19, 8-22,
8-66, 8-84, 8-94, B-11
Message-based services 5-1, 5-2, 5-6, 5-7, 5-
31, 6-6
MessageQ
environment connecting 6-8
MessageQ applications
compiling and linking 6-5
MessageQ clients
recoverable messaging 2-27
MessageQ Include files
using 6-5
MOT address 3-7, 9-91
MRS acknowledgment message 2-13
MRS journal file 8-20
MRS server messages
MRS_DQF_SET_REP 5-32, 9-51, 9-53,

9-70, 9-73
MRS_JRN_DISABLE 5-34, 9-61, 9-62,
9-63, 9-65, 9-67
MRS_JRN_DISABLE_REP 5-35, 9-61,
9-63, 9-65, 9-67
MRS_JRN_ENABLE 5-35, 9-61, 9-63,
9-65, 9-66, 9-67
MRS_JRN_ENABLE_REP 5-35, 9-61,
9-63, 9-65, 9-67
MRS_SAF_SET 9-51, 9-53, 9-69, 9-72
MRS_SAF_SET_REP 5-32, 9-51, 9-53,
9-69, 9-72
MRS_SET _DLJ5-33, 9-76, 9-77, 9-79,
9-81
MRS_SET_PCJ 5-33, 9-75, 9-77, 9-80,
9-81
MRS_SET_PCJ_REP 5-33, 9-75, 9-77,
9-79, 9-81
MRS_ACK message 2-16, 9-47
MRS_DQF_SET message 5-32, 9-50, 9-52
MRS _DQF_SET_REP message 5-32, 9-52
MRS_DQF_TRANSFER message 5-36, 9-
54, 9-56, 9-58
MRS_DQF_TRANSFER_ACK message 5-
36, 9-56
MRS_DQF_TRANSFER_REP message 5-
36, 9-58
MRS_JRN_DISABLE message 5-35, 9-62,
9-64
MRS_JRN_DISABLE_REP message 5-35,
9-62
MRS_JRN_ENABLE message 5-35, 9-66
MRS_JRN_ENABLE_REP message 5-35,
9-66
MRS_SAF_SET message 5-32, 9-68, 9-71
MRS_SAF_SET_REP message 5-32, 9-71
MRS_SET_DLJ message 5-34, 9-74, 9-76
MRS_SET_DLJ_REP message 5-33, 9-76
MRS_SET_PCJ message 2-21, 5-34, 9-78, 9-
80
MRS_SET_PCJ_REP message 5-34, 9-80

BEA MessageQ Programmer’s Guide 1-3



Multipoint outbound target (MOT) 3-2, 3-3,
B-2, B-10, B-12, B-14
Multireader queue 3-15, 6-24, 8-7, 8-42, 8-70

N
Name space 4-2
Named MOTs 3-7
Names and pathnames 4-6
Naming
how applications use 4-5
understanding 4-1
Naming agent 4-3
Network byte order 6-2, 6-3

0
Object library linking 6-17
Order key 8-100

P

PAMS status block 2-11, 8-15, 8-37, 8-55, 8-
66, 8-83, 9-47
Pams_attach_q 8-3
Pams_bind g 8-11
Pams_cancel_get 8-15
Pams_cancel _select 8-16
Pams_cancel _timer 8-18
Pams_close jrn 8-20
Pams_confirm_msg 8-21
Pams _create _handle B-18
Pams_decode B-20
Pams_delete _handle B-25
Pams_detach g 8-25
Pams_encode 8-28
Pams_exit 8-28
Pams_extract_buffer 8-30
Pams_get_msg 8-30
Pams_get_msga 8-44
Pams_get_msgw 8-58

-4 BEA MessageQ Programmer’s Guide

Pams insert_buffer B-31, B-41

Pams_locate q 8-72

Pams_msg_length B-37

Pams_next_msg_field B-37

Pams_open_jrn 8-77

Pams_put_msg 8-79

Pams_read_jrn 8-90

Pams_remove _encoding 8-96

Pams_set_select 8-96

Pams_set_timer 8-104

Pams_status _text 8-107

PCJ

See Postconfirmation journal

Pending messages 2-28, 6-9, 8-25, 8-110, 8-
111

Permanent queue 4-6, 8-4

Permanently active queue 2-8, 2-25

Postconfirmation journal (PCJ) 2-4, 2-20, 2-
21,5-31, 5-33, 5-34, 8-20, 8-21, 8
22,8-77, 9-60, 9-62, 9-64, 9-78, 9-
80

Primary queue 2-23, 3-13, 5-2, 6-24, 7-13, 7-
19, 8-3, 8-7, 8-35, 8-49, 8-71, 9-102

Private broadcast stream 3-6

PSB 8-66

PSB status code 8-22

PSB structure 2-11, 8-37, 8-51, 8-66, 8-83

Putil_show_pending 8-110

Q

Q_UPDATE message 5-30, 9-19, 9-82

Qtransfer server messages 5-35, 9-54, 9-56,

9-58

Queue addresses
dynamic binding 4-7

Queue and Priority 8-97

Queue server messages
DISABLE_Q_NOTIFY_REQ5-31, 9-

12, 9-15, 9-17, 9-20, 9-83

DISABLE_Q_NOTIFY_RESP5-31, 9-



12, 9-15, 9-17, 9-20, 9-83
ENABLE_Q NOTIFY_REQ 5-8, 5-30,
9-12, 9-15, 9-17, 9-19, 9-20, 9-
82, 9-83
ENABLE_Q NOTIFY_RESP 5-30, 9-
13, 9-15, 9-18, 9-82, 9-83
LIST_ ALL_Q REQ9-43,9-44
LIST_ALL_Q RESP5-29, 9-42, 9-44
Queue status 5-4, 5-29
Queues
attaching and locating 4-6

R

Recoverable and nonrecoverable delivery
modes 2-4
Recoverable message
receiving 2-17
sending 2-9
Response
receiving 5-3
Response queue 2-8, 2-13, 2-16, 2-25, 5-2, 5-
31, 8-73, 8-85, 8-86

S

SAF and DQF files
opening, closing, and failing 5-32
SBS applications 3-20
SBS server messages
SBS BS_SEQGAP 9-93, B-2, B-3, B-5
SBS_DEREG 3-20, 9-84, B-3, B-4, B-6,
B-8, B-11, B-13, B-15
SBS_DEREG_ACK 3-20
SBS DEREG_BY_ID 3-20, B-5, B-8
SBS_REG 3-20, 9-88, B-2, B-3, B-5, B-
6, B-9, B-11, B-13, B-16
SBS_REG_EZ 3-20
SBS REG_EZ_REPLY 3-21
SBS REG_REPLY 3-21, 9-91, B-11, B-
16

SBS BS SEQGAP message B-2
SBS DEREG message B-4, B-6
SBS DEREG_ACK message B-6
SBS DEREG BY_ID message B-8
SBS DEREGISTER_REQ message 3-4, 3-
19-3-20, 9-84
SBS _DEREGISTER_RESP 9-86
SBS_REG message B-2-B-10, B-16
SBS_REG_EZ message B-4, B-6, B-8, B-14
SBS_REG_EZ REPLY message B-14
SBS_REG_REPLY message B-16
SBS_REGISTER_REQ message 3-2, 3-15,
3-17,9-88
SBS_REGISTER_RESP message 3-15, 3-
19,9-91
SBS_SEQUENCE_GAP message 3-15, 3-
20, 9-93
SBS_STATUS_REQ message 9-95
SBS_STATUS_RESP message 9-97
Script facility 6-17, 6-23, 7-2, 7-5, 7-13, 7-
16, 7-19
Script files 7-2, 7-8, 7-15, 7-25
Script verification utility 7-25
Scripting language 7-1, 7-17
Scripting language commands 7-2
SDM message
how to receive 1-15
how to send 1-12
Secondary queue 8-3, 8-34
Selection array 8-16, 8-96, 8-101
Selection criteria 2-23, 3-12, 3-15, 3-17, 5-
13, 5-17, 5-24, 8-30, 8-44, 8-47, 8-
48, 8-58, B-10, B-16
Selection mask 8-16, 8-37, 8-51, 8-65, 8-101
Selection rules 3-12, 3-17, B-10
Self-describing messaging 1-9
Sending and receiving messages 1-2
Sending MessageQ messages
How to send a message 1-4
Show_buffer argument 8-40, 8-52, 8-66
Show_buffer structure 8-38, 8-67

BEA MessageQ Programmer’s Guide |-5



Static and dynamic binding 4-8

Status codes 6-6, 6-23, 8-22, 8-108, 9-27, 9-
47

Store and forward (SAF) 2-3, 2-5, 2-7, 2-8, 2-
10, 2-14, 2-15, 2-26, 2-27, 2-28, 5-
31, 5-34, 8-82, 8-84, 9-48, 9-50, 9-
52, 9-68, 9-71, 9-72

support

technical xvi

T
Temporary queue 4-6, 6-23, 8-4, 8-7
Testing Return Status 6-21
Timeout values

selecting 2-9
Timer 5-13, 5-20, 5-21, 5-24, 5-27, 6-15, 8-

18, 8-105, 8-106, 9-102

TIMER_EXPIRED message 8-104
Tracing messages

OpenV M S systems 6-26

UNIX systems 6-25

Windows NT systems 6-26
Transaction ID 8-73

u

UMA status 2-14, 2-16, 2-27, 8-38, 8-52, 8-
55, 8-66, 8-84, 9-48

UMAs

exception processing 2-22

UNAVAIL message 5-5, 9-103

Undeliverable message action 2-4, 2-7, 2-12,
2-22, 8-66, 8-84, 8-86, 8-87, 9-49

Universal broadcast stream 3-6

-6 BEA MessageQ Programmer’s Guide



	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	Preface
	1. Sending and Receiving BEA MessageQ Messages
	2. Using Recoverable Messaging
	3. Broadcasting Messages
	4. Using Naming
	5. Using Message-Based Services
	6. Building and Testing Applications
	7. Using the Script Facility
	8. PAMS Application Programming Interface
	9. Message Reference
	A. Supported Delivery Modes and Undeliverable Message Actions
	B. Obsolete Functions and Services
	Index

	Preface
	Purpose of This Document
	Who Should Read This Document
	How This Document Is Organized

	How to Use This Document
	Opening the Document in a Web Browser
	Printing from a Web Browser
	Documentation Conventions

	Related Documentation
	BEA MessageQ Documentation

	Contact Information
	Documentation Support
	Customer Support



	1 Sending and Receiving BEA MessageQ Messages
	Overview
	The Basics of Sending and Receiving Messages
	Sending and Receiving Message Buffers
	How to Send BEA MessageQ Messages
	Listing 1-1 Example of Attaching to a Queue by Name
	Listing 1-2 Example of Sending Messages to a Queue

	How to Send Large Messages

	Receiving Messages Using Message Pointers
	Self-Describing Messaging with FML
	How Self-Describing Messaging Works
	Figure 1�1 Fielded Buffer Structure
	Benefits of Using FML
	Performance Considerations When Using FML
	Designing Applications to Use a Mixed Messaging Environment

	How to Send an FML Message
	1. Define field identifiers and map them to field names.
	2. Build messages using the appropriate FML functions.
	3. Send the message. To use an FML message pointer when sending a message, the sender program spe...
	4. Once your application is done using the FML message, delete the FML message using Ffree32() to...
	Defining Field Identifiers
	Building the FML Message
	Listing 1-3 Example of Building a Fielded Buffer

	Sending the FML Message
	Listing 1-4 Example of Sending an FML message


	How to Receive an FML Message
	1. Include the predefined field identifier definitions to your code to guarantee that both sendin...
	2. Create a pointer to a pointer to dynamically allocated space using Falloc or malloc and Finit.
	3. Set large_area_len to the length of the allocated space or to 0 if it is NULL.
	4. Read the message from the queue. The receiver program determines whether the message is a poin...
	5. Access the message fields using the appropriate FML API functions.
	6. Delete or reuse the message pointer to prevent memory leaks.
	Reading the Message from the Queue
	Listing 1-5 Example of Reading an FML Message

	Interpreting the Message


	Exchanging Messages Between BEA MessageQ and BEA TUXEDO or BEA M3
	Figure 1�2 Message Exchange Between MessageQ and TUXEDO
	Enabling the Messaging Bridge
	Data Transformation Between BEA MessageQ and TUXEDO
	Data Types
	Data Size and Length
	Timeouts
	Priorities
	Target, Queue Space and Queue Name
	TUXEDO Queue Space to BEA MessageQ Group Name
	TUXEDO Queue to BEA MessageQ Queue
	1. Configure the TMQUEUE_BMQ or TMQFORWARD_BMQ server to attach to the local group in which the n...
	2. Configure routing information to handle multiple instances of the TMQUEUE_BMQ or TMQFORWARD_BM...
	3. Use the queue name as defined by BEA MessageQ as the second parameter for tpenqueue or tpdequeue.


	Delivery
	Undeliverable Messages
	Correlation Identifiers
	Return Values
	Table 1�1 Return Values for tpenqueue
	Table 1�2 Return Values for tpdequeue

	Other BEA MessageQ API Elements
	Other TUXEDO API Elements



	2 Using Recoverable Messaging
	Choosing a Message Delivery Mode
	How the Message Recovery System Works
	Choosing Recoverable and Nonrecoverable Delivery Modes
	Table 2�1 Supported Delivery Modes
	When to Use Nonrecoverable Message Delivery
	When to Use Recoverable Message Delivery

	Choosing an Undeliverable Message Action
	Table 2�2 Valid UMAs


	How to Send a Recoverable Message
	1. The application sends a message using the pams_put_msg function and the appropriate delivery a...
	2. The message recovery system returns a sequence number to the sender program.
	3. The message recovery system writes the message to the recovery journal on the local or remote ...
	4. The sender program is notified that the message is stored on disk.
	5. If the sender program is blocked, it continues processing once the message is received at the ...
	Sequence Numbers
	Specifying Timeout Values
	Checking Delivery Outcome
	Table 2�3 PAMS Status Block
	Figure 2�1 PAMS Status Block
	Checking the Delivery Status of WF Requests
	Table 2�4 PSB Delivery Status Values
	Table 2�5 UMA Status Values

	Checking the Delivery Status of AK Requests
	1. Check the PSB delivery status. If this field contains a success status, the message is recover...
	2. If the PSB delivery status contains a failure status, check the PSB UMA status to determine th...



	How to Receive a Recoverable Message
	1. A message is read from the message recovery journal by the recovery system and sent to the tar...
	2. The receiver program reads the pams_get_msg, pams_get_msgw, or pams_get_msga functions.
	3. If the queue is configured for explicit confirmation, the application calls the pams_confirm_m...
	4. The pams_confirm_msg function sends notification to the message recovery system that the messa...
	5. The message recovery system removes the message from the message recovery journal and sends a ...
	Figure 2�2 Message Flow for Receiving a Recoverable Message
	Confirming Message Receipt
	Selecting a Confirmation Type
	Selecting a Confirmation Order
	Creating an Audit Trail of Confirmed Messages

	Checking for Duplicate Messages

	Using UMAs for Exception Processing
	Table 2�6 How to Use UMAs
	Using Discard and Discard and Log UMAs
	Using the Return-to-Sender UMA
	Using the Dead Letter Queue UMA
	Using the Dead Letter Journal
	Using the SAF UMA

	Recoverable Messaging on BEA MessageQ Clients

	3 Broadcasting Messages
	How Message Broadcasting Works
	Figure 3�1 BEA MessageQ Broadcast Stream
	Broadcast Scope
	Table 3�1 BEA MessageQ MOT Ranges

	Named MOTs
	Listing 3-1 Configuring a Named MOT

	Broadcast Communication Modes
	Figure 3�2 SBS Broadcasting Via BEA MessageQ Transport
	Listing 3-2 Setting the COMM_SERVICE for SBS on OpenVMS
	Figure 3�3 SBS Broadcasting Via Ethernet Transport
	Retransmission Protocol on BEA MessageQ for OpenVMS Systems
	Listing 3-3 Configuring Ethernet
	%SBS ******* SBS Server Initialization Section ************ * * NOTE: Heartbeat interval is in un...



	Sending Broadcast Messages
	Receiving Broadcast Messages
	Figure 3�4 SBS Server Message Flow
	.
	Registering to Receive Broadcast Messages
	Sending a Registration Message
	Registering to Receive Selected Broadcast Messages
	Data Offset
	Table 3�2 Valid Data Offset Symbols

	Operator
	Table 3�3 Operator Field Symbols

	Operand Length
	Operand Field

	Registration Acknowledgment

	Reading Broadcast Messages
	Deregistering from Receiving Broadcast Messages

	Running Existing SBS Applications
	Table 3�4 Obsolete and New SBS Messages


	4 Using Naming
	Understanding Naming
	What is Naming?
	What is a Name Space?
	What is the Naming Agent?

	Configuring Bus-Wide Naming
	How Applications Use Naming
	Specifying Names and Pathnames
	Attaching and Locating Queues

	Static and Dynamic Binding of Queue Addresses
	How Dynamic Binding of Queue Addresses Works
	How Caching and Binding Work
	Examples of Static and Dynamic Binding
	Client for Style 1 (Static Binding)
	Listing 4-1 Client Style Static Binding

	Client for Style 2 (Dynamic Binding)
	Listing 4-2 Client Style Dynamic Binding

	Server for Style 1 (Static Binding)
	Listing 4-3 Server Style Static Binding

	Server for Style 2 (Dynamic Binding)
	Listing 4-4 Server Style Dynamic Binding




	5 Using Message-Based Services
	Table 5�1 Overview of Message-Based Services
	How Message-Based Services Work
	Requesting a Service
	Receiving a Response

	Obtaining the Status of a Queue
	Figure 5�1 Avail Server Message Flow

	Monitoring and Controlling Link Status
	Listing Cross-Group Connections, Entries, and Groups
	Figure 5�2 Requesting Cross-Group Information

	Obtain Notification of Cross-Group Links Established and Lost
	Figure 5�3 Requesting Cross-Group Link Status

	Controlling Cross-Group Links
	Figure 5�4 Using Link Management
	Link Management Control Functions
	Inquire Function
	Table 5�2 Inquire Function Request Message Format
	Table 5�3 Inquire function status returns and user actions

	Enable Function
	Table 5�4 Enable function message format
	Table 5�5 Enable function status returns and user actions

	Disable Function
	Table 5�6 Disable Function Message Format
	Table 5�7 Disable Function Status Return and User Action

	Connect Function
	Table 5�8 Connect Request Function Message Format
	Table 5�9 Connect function status returns and user actions
	Table 5�10 Disconnect Function Message Format
	Table 5�11 Disconnect function status returns and user actions


	Link Management Design Considerations
	Table 5�12 Link Management Design Condsiderations



	Learning the Current Status of Queues
	Listing Attached Queues in a Group
	Figure 5�5 Listing All Queues

	Receiving Attachment Notifications
	Figure 5�6 Listing Available Queues


	Managing Message Recovery Files
	Opening, Closing, and Failing Over SAF and DQF Files
	Figure 5�7 MRS Server Message Flow

	Opening and Closing Auxiliary Journal Files
	Figure 5�8 MRS Server Message Flow

	Controlling Journaling to the PCJ File
	Figure 5�9 Disabling Journaling

	Transferring the Contents of a Destination Queue File
	Figure 5�10 Qtransfer Server Message Flow



	6 Building and Testing Applications
	Formatting and Converting Message Data
	Byte Order Conversion
	Alignment of Data Structures
	Writing Portable BEA MessageQ Applications
	Compiling and Linking BEA MessageQ Applications
	Using BEA MessageQ Include Files
	Table 6�1 BEA MessageQ Include Files
	Listing 6-1 Recommended #include Statements for BEA MessageQ Applications
	Table 6�2 Location of C Language Include Files

	Programming Language Support
	Table 6�3 Languages Supported By BEA MessageQ


	Connecting to the BEA MessageQ Environment
	Table 6�4 Logical Names Used in Testing and Debuggung

	Compiling and Linking Applications
	HPUX
	SCO Open Server 5.0:
	SCO UnixWare
	Sequent
	NCR
	Solaris
	UNIX Makefile
	Listing 6-2 UNIX Makefile

	Windows NT Makefile
	Listing 6-3 Windows NT Makefile

	OpenVMS Build Procedure
	Listing 6-4 Example OpenVMS Build Procedure
	Linking with the Run-Time Library
	Linking with the Object Library


	Running a BEA MessageQ Application
	Running an OpenVMS Program as a Detached Process
	Listing 6-5 Command Procedure to Run as a Detached Process

	Running Existing BEA MessageQ Applications Under Version 5.0
	Table 6�5 Existing Application Recompiling and Relinking Requirements
	Running Applications Under Windows 95 or NT Systems
	Linking an Application from a BEA MessageQ Client System to a BEA MessageQ Server System


	Testing Return Status
	Listing 6-6 Portable Code for Testing Return Status


	Using the BEA MessageQ Test Utility
	Table 6�6 Test Utility Default Settings

	Debugging BEA MessageQ Applications
	Tracing Messages on UNIX Systems
	Tracing Messages on Windows NT Systems
	Tracing Messages on OpenVMS Systems

	Controlling Message Flow
	C shell
	Bourne shell



	7 Using the Script Facility
	How to Use the Script Facility
	Using the BEA MessageQ Scripting Language
	Table 7�1 BEA MessageQ Script Facility Commands

	Capturing, Replaying, and Simulating Message Exchange
	Figure 7�1 Sending Messages and Capturing Output
	Figure 7�2 Sending Messages and Capturing Input
	Figure 7�3 Capturing Output Without Sending Messages
	Figure 7�4 Replaying Captured Messages
	Figure 7�5 Receiving Messages from Applications and Scripts
	Figure 7�6 Writing Scripts to Send and Capture Messages


	Capturing Messages Using Scripts
	Controlling Message Delivery Using Scripts
	Displaying Captured Messages on the Screen
	Writing Captured Messages to a Log File
	Listing 7-1 Sample Script to Capture Messages
	Listing 7-2 Sample Log Generated by a Script File

	Writing Captured Messages to Multiple Log Files
	Listing 7-3 Sample Script Using Multiple Log Files


	Replaying Messages
	Script Processing on UNIX Systems
	Table 7�2 Script Control Commands (UNIX only)
	Listing 7-4 Turning On Scripts for a Running Application

	Script Processing on OpenVMS Systems

	Writing Scripts to Send Messages
	1. Designate the beginning and end of the message
	2. Specify the source, target, type and class descriptors that form the message header
	3. Create the message content
	Defining Messages in Scripts
	Listing 7-5 Sample Script to Send a Message

	Defining the Message Header
	Listing 7-6 Message Header Format
	Additional Arguments for UNIX Systems
	Listing 7-7 UNIX Message Header Format


	Defining the Message Data
	Table 7�3 Valid Message Data Syntax


	Adding Repeats, Delays, and Comments to Scripts
	Repeating an Operation
	Entering Time Delays
	Entering Comments
	End-of-Line Format
	Comment Command Format


	Verifying Script Files
	Verifying Scripts on UNIX Systems
	Verifying Scripts on OpenVMS Systems
	Resolving Script Verification Errors
	Listing 7-8 Sample Script File with Errors
	Listing 7-9 Sample Output of Script File Verification Utility



	8 PAMS Application Programming Interface
	BEA MessageQ API Description Format
	Table 8�1 Callable Service Description Format

	BEA MessageQ API Data Types
	pams_attach_q
	Syntax
	Arguments
	Table 8�2

	Argument Definitions
	attach_mode
	q_attached
	q_type
	q_name
	q_name_len
	name_space_list
	name_space_list_len
	timeout
	nullarg_2
	nullarg_3

	Description
	Return Values
	Table 8�3

	See Also
	Examples

	pams_bind_q
	Syntax
	Arguments
	Table 8�4

	Argument Definitions
	q_addr
	q_alias
	q_alias_len
	name_space_list
	name_space_list_len
	timeout
	nullarg_1

	Description
	Listing 8-1 Example of Using pams_bind_q

	Return Values
	Table 8�5

	See Also
	Example

	pams_cancel_get
	Syntax
	Arguments
	Table 8�6

	Argument Definition
	sel_filter

	Return Values
	Table 8�7

	See Also

	pams_cancel_select
	Syntax
	Arguments
	Table 8�8

	Argument Definitions
	index_handle

	Return Values
	Table 8�9

	See Also

	pams_cancel_timer
	Syntax
	Arguments
	Table 8�10

	Argument Definitions
	timer_id

	Return Values
	Table 8�11

	See Also

	pams_close_jrn
	Syntax
	Arguments
	Table 8�12

	Argument Definitions
	Jrn_handle

	Return Values
	Table 8�13

	See Also

	pams_confirm_msg
	Syntax
	Arguments
	Table 8�14

	Argument Definitions
	msg_seq_num
	confirmation_status
	force_j

	Description
	Return Values
	Table 8�15

	See Also
	Example

	pams_detach_q
	Syntax
	Arguments
	Table 8�16

	Argument Definitions
	q
	detach_opt_list
	detach_opt_len
	msgs_flushed

	Description
	Return Values
	Table 8�17

	See Also

	pams_exit
	Syntax
	Arguments
	Description
	Return Values
	Table 8�18

	See Also
	Example

	pams_get_msg
	Syntax
	Arguments
	Table 8�19

	Argument Definitions
	msg_area
	priority
	source
	class
	type
	msg_area_len
	len_data
	sel_filter
	Default Selection
	Selection by Message Queue
	Table 8�20


	Selection by Message Attribute
	Table 8�21

	Selection by Message Source
	Compound Selection
	psb
	Table 8�22

	show_buffer
	Table 8�23

	show_buffer_len
	large_area_len
	large_size
	nullarg_3

	Return Values
	Table 8�24

	PBS Delivery Status
	Table 8�25

	See Also
	Example

	pams_get_msga
	Syntax
	Arguments
	Table 8�26

	Argument Definitions
	msg_area
	priority
	source
	class
	type
	msg_area_len
	len_data
	sel_filter

	Default Selection
	Selection by Message Queue
	Table 8�27

	Selection by Message Attribute
	Table 8�28

	Selection by Message Source
	Compound Selection
	psb
	Table 8�29

	show_buffer
	Table 8�30

	show_buff_len
	large_area_len
	large_size
	actrtn
	actparm
	flag_id
	nullarg_3

	Description
	Return Values
	Table 8�31

	PSB Delivery Status
	Table 8�32

	See Also

	pams_get_msgw
	Syntax
	Argument
	Table 8�33

	Argument Definitions
	msg_area
	priority
	source
	class
	type
	msg_area_len
	len_data
	timeout
	sel_filter
	Default Selection
	Selection by Message Queue
	Table 8�34

	Selection by Message Attribute
	Table 8�35

	Selection by Message Source
	Compound Selection
	psb
	Table 8�36

	show_buffer
	Table 8�37

	show_buff_len
	large_area_len
	large_size
	nullarg_3

	Return Codes
	Table 8�38

	See Also
	Example

	pams_locate_q
	Syntax
	Arguments
	Table 8�39

	Argument Definitions
	q_name
	q_name_len
	q_address
	wait_mode
	req_id
	resp_q
	name_space_list
	name_space_list_len
	timeout

	Return Values
	Table 8�40

	See Also
	Example

	pams_open_jrn
	Syntax
	Arguments
	Table 8�41

	Argument Definitions
	jrn_filespec
	jrn_filename_len
	jrn_handle

	Return Values
	Table 8�42

	See Also

	pams_put_msg
	Syntax
	Arguments
	Table 8�43

	Argument Definitions
	msg_area
	priority
	target
	class
	type
	delivery
	msg_size
	timeout
	psb
	Table 8�44

	uma
	resp_q
	large_size
	correlation_id
	nullarg_3

	Return Values
	Table 8�45
	Table 8�46

	See Also
	Example

	pams_read_jrn
	Syntax
	Arguments
	Table 8�47

	Argument Definitions
	jrn_handle
	msg_area
	priority
	source
	class
	type
	msg_area_len
	len_data
	target
	write_time
	conf_val
	msg_seq_num
	mrs_status
	large_area_len
	large_size
	nullarg_3

	Return Values
	Table 8�48

	See Also

	pams_set_select
	Syntax
	Arguments
	Table 8�49

	Argument Definitions
	selection_array
	Queue and Priority
	Table 8�50

	Comparison Keys
	Table 8�51

	Order Key
	Table 8�52

	Correlation ID
	Sequence Number
	num_masks
	index_handle

	Return Values
	Table 8�53

	See Also
	Example

	pams_set_timer
	Syntax
	Arguments
	Table 8�54

	Argument Definitions
	timer_id
	timer_format
	p_timeout
	s_timeout

	Return Values
	Table 8�55

	See Also
	Example

	pams_status_text
	Syntax
	Arguments
	Table 8�56

	Argument Definitions
	code
	severity
	buffer
	buflen
	retlen

	Description
	Return Values
	Table 8�57


	putil_show_pending
	Syntax
	Arguments
	Table 8�58

	Argument Definitions
	count
	in_q_list
	out_pend_list

	Return Values
	Table 8�59

	Example


	9 Message Reference
	AVAIL
	C Message Structure
	Message Data Fields
	Arguments
	See Also
	Example

	AVAIL_DEREG
	C Message Structure
	Message Data Fields
	Arguments
	See Also
	Example

	AVAIL_REG
	C Message Structure
	Message Data Fields
	Arguments
	See Also
	Example

	AVAIL_REG_REPLY
	C Message Structure
	Message Data Fields
	Arguments
	See Also
	Example

	DISABLE_NOTIFY
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	DISABLE_Q_NOTIFY_REQ
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	DISABLE_Q_NOTIFY_RESP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	ENABLE_NOTIFY
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	ENABLE_Q_NOTIFY_REQ
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	ENABLE_Q_NOTIFY_RESP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LINKMGT_REQ
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LINKMGT_RESP
	C Message Structure
	Message Data Fields
	Status Codes
	Arguments
	See Also

	LINK_COMPLETE
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LINK_LOST
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LIST_ALL_CONNECTIONS (Request)
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LIST_ALL_CONNECTIONS (Response)
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LIST_ALL_ENTRIES (Request)
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LIST_ALL_ENTRIES (Response)
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LIST_ALL_GROUPS (Request)
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LIST_ALL_GROUPS (Response)
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LIST_ALL_Q_REQ
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LIST_ALL_Q_RESP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	LOCATE_Q_REP
	C Message Structure
	Message Data Fields
	Arguments

	MRS_ACK
	C Message Structure
	Message Data Fields
	Arguments
	Status Code
	UMA Status

	MRS_DQF_SET
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_DQF_SET_REP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_DQF_TRANSFER
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_DQF_TRANSFER_ACK
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_DQF_TRANSFER_REP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_JRN_DISABLE
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_JRN_DISABLE_REP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_JRN_ENABLE
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_JRN_ENABLE_REP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_SAF_SET
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_SAF_SET_REP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_SET_DLJ
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_SET_DLJ_REP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_SET_PCJ
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	MRS_SET_PCJ_REP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	Q_UPDATE
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_DEREGISTER_REQ
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_DEREGISTER_RESP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_REGISTER_REQ
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_REGISTER_RESP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_SEQUENCE_GAP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_STATUS_REQ
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_STATUS_RESP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	TIMER_EXPIRED
	C Message Structure
	Message Data Fields
	Arguments

	UNAVAIL
	C Message Structure
	Message Data Fields
	Arguments
	See Also


	A Supported Delivery Modes and Undeliverable Message Actions
	Delivery Mode and UMA Cross-Reference
	Table A�1 Delivery Mode and UMA Cross-Reference


	B Obsolete Functions and Services
	Obsolete Message-Based Services for Message Broadcasting
	SBS_BS_SEQGAP
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_DEREG
	C Message Structure
	Message Data Fields
	Arguments

	SBS_DEREG_ACK
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_DEREG_BY_ID
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_REG
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_REG_EZ
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_REG_EZ_REPLY
	C Message Structure
	Message Data Fields
	Arguments
	See Also

	SBS_REG_REPLY
	C Message Structure
	Message Data Fields
	Arguments
	See Also
	Obsolete PAMS API Functions

	pams_create_handle
	Syntax
	Arguments
	Table 9�1

	Argument Definitions
	handle
	handle_type

	Return Values
	Table 9�2

	Description
	See Also

	pams_decode
	Table 9�3
	Syntax
	Listing 9-1 Syntax for pams_encode function

	Arguments
	Table 9�4

	Argument Definitions
	handle
	tag
	value
	bufferLength
	valueLength
	numEltsValue

	Return Values
	Table 9�5

	Description
	See Also

	pams_delete_handle
	Syntax
	Arguments
	Table 9�6

	Argument Definition
	handle

	Return Values
	Table 9�7

	Description
	See Also

	pams_encode
	Syntax
	Listing 9-2 Syntax for pams_encode_functions

	Arguments
	Table 9�8

	Argument Definitions
	handle
	tag
	value
	length
	numElts

	Return Values
	Table 9�9

	Description
	See Also

	pams_extract_buffer
	Syntax
	Table 9�10

	Argument Definitions
	handle
	msgBuffer
	bufferLength
	msgLength

	Return Values
	Table 9�11

	Description
	See Also

	pams_insert_buffer
	Syntax
	Arguments
	Table 9�12

	Argument Definitions
	handle
	msgBuffer
	length

	Return Values
	Table 9�13

	Description
	See Also

	pams_msg_length
	Syntax
	Arguments
	Table 9�14

	Argument Definitions
	handle
	msgLength

	Return Values
	Table 9�15

	See Also

	pams_next_msg_field
	Syntax
	Arguments
	Table 9�16

	Argument Definitions
	handle
	tag
	valueLength

	Return Values
	Table 9�17

	Description
	See Also

	pams_remove_encoding
	Syntax
	Argument
	Table 9�18

	Argument Definitions
	handle
	tag
	flags

	Return Values
	Table 9�19

	See Also

	pams_set_msg_position
	Syntax
	Arguments
	Table 9�20

	Argument Definitions
	handle
	tag

	Return Values
	Table 9�21

	Description
	See Also
	Index
	A
	B
	C
	D
	E
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U




