
Reference Manual

B E A M e s s a g e Q V e r s i o n 5 . 0
D o c u m e n t E d i t i o n 1 . 0

O c t o b e r 1 9 9 8

BEA MessageQ

Copyright

Copyright © 1998 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Connect, BEA Jolt, BEA Manager, and BEA MessageQ are trademarks of
BEA Systems, Inc. BEA ObjectBroker is a registered trademark of BEA Systems, Inc. TUXEDO is a registered
trademark in the United States and other countries.

All other company names may be trademarks of the respective companies with which they are associated.

BEA MessageQ Reference Manual

Document Edition Date Software Version

Version 1.0 October 1998 BEA MessageQ, Version 5.0

Contents

Preface
Purpose of This Document ..v

How to Use This Document .. vi

Related Documentation ...x

Contact Information... xi

1. FML Functions
Fintro (3FML) ... 1-3

CFadd (3FML) .. 1-7

CFchg (3FML) .. 1-9

CFfind (3FML) ... 1-11

CFfindocc (3FML).. 1-13

CFget (3FML) ... 1-15

CFgetalloc (3FML) ... 1-17

F_error (3FML)... 1-19

Fadd (3FML)... 1-20

Fadds (3FML) ... 1-22

Falloc (3FML)... 1-24

Fappend (3FML) ... 1-25

Fboolco (3FML).. 1-27

Fboolev (3FML).. 1-29

Fboolpr (3FML) .. 1-31

Fchg (3FML)... 1-32

Fchgs (3FML) ... 1-34

Fchksum (3FML) .. 1-35

Fcmp (3FML).. 1-36

Fconcat (3FML) .. 1-37
BEA MessageQ Reference Manual i

Fcpy (3FML) ... 1-38

Fdel (3FML).. 1-39

Fdelall (3FML).. 1-40

Fdelete (3FML) ... 1-41

Fextread (3FML) ... 1-42

Ffind (3FML) .. 1-45

Ffindlast (3FML)... 1-47

Ffindocc (3FML)... 1-49

Ffinds (3FML)... 1-51

Ffloatev (3FML).. 1-53

Ffprint (3FML).. 1-54

Ffree (3FML)... 1-55

Fget (3FML).. 1-56

Fgetalloc (3FML) .. 1-58

Fgetlast (3FML) .. 1-60

Fgets (3FML) .. 1-62

Fgetsa (3FML)... 1-64

Fidnm_unload (3FML).. 1-66

Fidxused (3FML) .. 1-67

Fielded (3FML) ... 1-68

Findex (3FML).. 1-69

Finit (3FML) ... 1-70

Fjoin (3FML)... 1-71

Fldid (3FML)... 1-73

Fldno (3FML).. 1-74

Fldtype (3FML)... 1-75

Flen (3FML).. 1-76

Fmkfldid (3FML) .. 1-77

Fmove (3FML).. 1-78

Fname (3FML) .. 1-79

Fneeded (3FML) ... 1-80

Fnext (3FML).. 1-81

Fnmid_unload (3FML).. 1-83

Fnum (3FML).. 1-84

Foccur (3FML).. 1-85
ii BEA MessageQ Reference Manual

Fojoin (3FML) .. 1-86

Fpres (3FML).. 1-88

Fprint (3FML) ... 1-89

Fproj (3FML) .. 1-90

Fprojcpy (3FML) .. 1-92

Fread (3FML).. 1-93

Frealloc (3FML).. 1-95

Frstrindex (3FML) .. 1-96

Fsizeof (3FML) ... 1-98

Fstrerror (3FML)... 1-99

Ftypcvt (3FML)... 1-100

Ftype (3FML).. 1-101

Funindex (3FML).. 1-102

Funused (3FML) ... 1-103

Fupdate (3FML).. 1-104

Fused (3FML) ... 1-105

Fvall (3FML)... 1-106

Fvals (3FML) .. 1-107

Fwrite (3FML) .. 1-108

2. field_tables Description
field_tables(5) ... 2-2

3. mkfldhdr Command
mkfldhdr, mkfldhdr32 ... 3-2

4. MessageQ/TUXEDO Bridge Functions
TMQUEUE_BMQ .. 4-2

TMQFORWARD_BMQ... 4-5

tpdequeue (3)... 4-8

tpenqueue (3)... 4-14
BEA MessageQ Reference Manual iii

iv BEA MessageQ Reference Manual

Preface

Purpose of This Document

This document provides a detailed description of the following types of functions:

t Field Manipulation Language (FML) functions used in the development of BEA
MessageQ applications

t MessageQ/TUXEDO bridge functions used to enable the exchange of messages
between BEA MessageQ and BEA TUXEDO applications

For a detailed description of BEA MessageQ PAMS API functions, see the BEA
MessageQ Programmer’s Guide.

Who Should Read This Document

This document is intended for applications designers and developers who are
interested in designing, developing, building, and running BEA MessageQ
applications.

How This Document Is Organized

BEA MessageQ Reference Manual is organized as follows:

t Chapter 1, “FML Functions” describes the functions used to define and
manipulate fielded buffers.
BEA MessageQ Reference Manual v

r

sed

nline,
t full

t a

lick

r

f
t Chapter 2, “field_tables Description” describes the FML mapping files for field
names.

t Chapter 3, “mkfldhdr Command” describes the function used to create heade
files from field tables.

t Chapter 4, “MessageQ/TUXEDO Bridge Functions,”describes the functions u
to enable the exchange of messages between BEA MessageQ and BEA
TUXEDO applications.

How to Use This Document

This document, BEA MessageQ Reference Manual, is designed primarily as an o
hypertext document. If you are reading this as a paper publication, note that to ge
use from this document you should access it as an online document via the BEA
MessageQ Online Documentation CD.

The following sections explain how to view this document online, and how to prin
copy of this document.

Opening the Document in a Web Browser

To access the online version of this document, open the index.htm file in the top-level
directory of the BEA MessageQ Online Documentation CD. On the main menu, c
the Introduction to Message Queuing button.

Note: The online documentation requires a Web browser that supports HTML
version 3.0. Netscape Navigator version 3.0 or Microsoft Internet Explore
version 3.0 or later are recommended.

Figure 1 shows the online document with the clickable navigation bar and table o
contents.
vi BEA MessageQ Reference Manual

Figure 1 Online Document Displayed in a Netscape Web Browser

Printing from a Web Browser

You can print a copy of this document, one file at a time, from the Web browser.
Before you print, make sure that the chapter or appendix you want is displayed and
selected in your browser.

To select a chapter or appendix, click anywhere inside the chapter or appendix you
want to print. If your browser offers a Print Preview feature, you can use the feature to
verify which chapter or appendix you are about to print. If your browser offers a Print
Frames feature, you can use the feature to select the frame containing the chapter or
appendix you want to print. For example:
BEA MessageQ Reference Manual vii

The BEA MessageQ Online Documentation CD also includes Adobe Acrobat PDF
files of all of the online documents. You can use the Adobe Acrobat Reader to print all
or a portion of each document.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.
viii BEA MessageQ Reference Manual

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Convention Item
BEA MessageQ Reference Manual ix

Related Documentation

The following sections list the documentation provided with the MessageQ software,
related BEA publications, and other publications related to the technology.

MessageQ Documentation

The MessageQ information set consists of the following documents:

BEA MessageQ Introduction to Message Queuing

BEA MessageQ Programmer’s Guide

BEA MessageQ Installation Guide

BEA MessageQ System Messages

BEA MessageQ Client Guide

BEA MessageQ FML Programmer’s Guide

... Indicates one of the following in a command line:

t That an argument can be repeated several times in a command line

t That the statement omits additional optional arguments

t That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
x BEA MessageQ Reference Manual

Note: The BEA MessageQ Online Documentation CD also includes Adobe Acrobat
PDF files of all of the online documents. You can use the Adobe Acrobat
Reader to print all or a portion of each document.

Contact Information

The following sections provide information about how to obtain support for the
documentation and software.

Documentation Support

If you have questions or comments on the documentation, you can contact the BEA
Information Engineering Group by e-mail at docsupport@beasys.com. (For
information about how to contact Customer Support, refer to the following section.)

Customer Support

If you have any questions about this version of BEA MessageQ, or if you have
problems installing and running BEA MessageQ, contact BEA Customer Support
through BEA WebSupport at www.beasys.com. You can also contact Customer
Support by using the contact information provided on the Customer Support Card,
which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

t Your name, e-mail address, phone number, and fax number

t Your company name and company address

t Your machine type and authorization codes

t The name and version of the product you are using

t A description of the problem and the content of pertinent error messages
BEA MessageQ Reference Manual xi

xii BEA MessageQ Reference Manual

1 FML Functions
BEA MessageQ Reference Manual 1-1

1

1-2 BEA MessageQ Reference Manual

Fintro (3FML)

es

s,
he

live

ut

r

h

 The

ided
 C

Fintro (3FML)

Name Fintro—Introduction to FML functions

Synopsis “#include <fml.h>”
“#include <fml32.h>”

Description FML is a set of C language functions for defining and manipulating storage structures
called fielded buffers , that contain attribute-value pairs called fields. The attribute
is the field’s identifier, and the associated value represents the field’s data content.

Fielded buffers provide an excellent structure for communicating parameterized data
between cooperating processes, by providing named access to a set of related fields.
Programs that need to communicate with other processes can use the FML software to
provide access to fields without concerning themselves with the structures containing
them.

FML16 and
FML32

There are two “sizes” of FML. The original FML interface is based on 16-bit valu
for the length of fields and containing information identifying fields. In this
introduction, it will be referred to as FML16. FML16 is limited to 8191 unique field
individual field lengths of up to 64K bytes, and a total fielded buffer size of 64K. T
definitions, types, and function prototypes for this interface are in fml.h which must
be included in an application program using the FML16 interface; and functions
in -lfml. A second interface, FML32, uses 32-bit values for the field lengths and
identifiers. It allows for about 30 million fields, and field and buffer lengths of abo
2 billion bytes. The definitions, types, and function prototypes for FML32 are in

fml32.h; and functions live in -lfml32. All definitions, types, and function names fo
FML32 have a “32” suffix (for example, MAXFBLEN32, FLDID32, Fchg32). Also the
environment variables are suffixed with "32" (for example, FLDTBLDIR32 and
FIELDTBLS32).

FML Buffers A fielded buffer is composed of field identifier and field value pairs for fixed lengt
fields (for example, long, short), and field identifier, field length, and field value
triples for varying length fields.

A field identifier is a tag for an individual data item in a fielded buffer. The field
identifier consists of the name of field number and the type of the data in the field.
field number must be in the range 1 to 8191, inclusive, for FML16 and the type
definition for a field identifier is FLDID. The field number must be in the range 1 to
33,554,431, inclusive, for FML32 and the type definition for a field identifier is
FLDID32. Field numbers 1 to 100 are reserved for system use and should be avo
(although this is not strictly enforced). The field types can be any of the standard
language types: short, long, float, double, and char. Two other types are also
BEA MessageQ Reference Manual 1-3

1 Fintro (3FML)

 are

ime

s
t

files

 an
 If a

gical
is not
t the
nce
n by

 an
ver,
sses
supported: string (a series of characters ending with a null character) and carray
(character arrays). These types are defined in fml.h and fml32.h as FLD_SHORT,
FLD_LONG, FLD_CHAR, FLD_FLOAT, FLD_DOUBLE, FLD_STRING, and FLD_CARRAY.

For FML16, a fielded buffer pointer is of type “FBFR *”, a field length has the type
FLDLEN, and the number of occurrences of a field has the type FLDOCC. For FML32, a
fielded buffer pointer is of type “FBFR32 *”, a field length has the type FLDLEN32, and
the number of occurrences of a field has the type FLDOCC32.

Fields are referred to by their field identifier in the FML interface. However, it is
normally easier for an application programmer to remember a field name. There
two approaches to mapping field names to field identifiers.

Field name/identifier mappings can be made available to FML programs at run-t
through field table files, described in field_tables(5). The FML16 interface uses
the environment variable FLDTBLDIR to specify a list of directories where field table
can be found, and FIELDTBLS to specify a list of the files in the table directories tha
are to be used. The FML32 interface uses FLDTBLDIR32 and FIELDTBLS32. Within
applications programs, the FML functions Fldid and Fldid32 provide for a run-time
translation of a field name to its field identifier and Fname and Fname32 translate a
field identifier to its field name.

Compile-time field name/identifier mappings are provided by the use field header
containing macro definitions for the field names. mkfldhdr(1) and mkfldhdr32(1)
are provided to make header files out of field table files. These header files are
#include'd in C programs, and provide another way to map field names to field
identifiers: at compile-time.

Any field in a fielded buffer can occur more than once. Many FML functions take
argument that specifies which occurrence of a field is to be retrieved or modified.
field occurs more than once, the first occurrence is numbered 0, and additional
occurrences are numbered sequentially. The set of all occurrences make up a lo
sequence, but no overhead is associated with the occurrence number (that is, it
stored in the fielded buffer). If another occurrence of a field is added, it is added a
end of the set and is referred to as the next higher occurrence. When an occurre
other than the highest is deleted, all higher occurrences of the field are shifted dow
one (for example, occurrence 6 becomes occurrence 5, 5 becomes 4, etc.).

When a fielded buffer has many fields, access is expedited in FML by the use of
internal index. The user is normally unaware of the existence of this index. Howe
when you store a fielded buffer on disk, or transmit a fielded buffer between proce
1-4 BEA MessageQ Reference Manual

Fintro (3FML)
or between computers, you can save disk space and/or transmittal time by first
discarding the index using Funindex or Funindex32, and then reconstructing the
index later with Findex or Findex32.

FML16
Conversion to

FML32

Existing FML16 applications that are written correctly can easily be changed to use the
FML32 interface. All variables used in the calls to the FML functions must use the
proper typedefs (FLDID, FLDLEN, and FLDOCC). The application source code can be
changed to use the 32-bit functions simply by changing the include of fml.h to
inclusion of fml32.h followed by fml1632.h. The fml1632.h contains macros that
convert all of the 16-bit type definitions to 32-bit type definitions, and 16-bit functions
and macros to 32-bit functions and macros.

Error Handling Most of the FML functions have one or more error returns. An error condition is
indicated by an otherwise impossible returned value. This is usually -1 on error, or 0
for a bad field identifier (BADFLDID) or address. The error type is also made available
in the external integer Ferror for FML16 and Ferror32 for FML32. Ferror and
Ferror32 are not cleared on successful calls, so they should be tested only after an error
has been indicated.

The F_error and F_error32 functions are provided to produce a message on the
standard error output. They take one parameter, a string; print the argument string
appended with a colon and a blank; and then print an error message followed by a
newline character. The error message displayed is the one defined for the error number
currently in Ferror or Ferror32, which is set when errors occur.

Fstrerror(3) can be used to retrieve from a message catalog the text of an error
message; it returns a pointer that can be used to as an argument to userlog(3).

The error codes that can be produced by an FML function are described on each FML
reference page.

See Also CFadd(3fml), CFchg(3fml), CFfind(3fml), CFfindocc(3fml), CFget(3fml),
CFgetalloc(3fml), F_error(3fml), Fadd(3fml), Fadds(3fml), Falloc(3fml),
Fboolco(3fml), Fboolev(3fml), Fboolpr(3fml), Fchg(3fml), Fchgs(3fml),
Fchksum(3fml), Fcmp(3fml), Fconcat(3fml), Fcpy(3fml), Fdel(3fml),
Fdelall(3fml), Fdelete(3fml), Fextread(3fml), Ffind(3fml), Ffindlast(3fml),
Ffindocc(3fml), Ffinds(3fml), Ffloatev(3fml), Ffprint(3fml), Ffree(3fml),
Fget(3fml), Fgetalloc(3fml), Fgetlast(3fml), Fgets(3fml), Fgetsa(3fml),
Fidnm_unload(3fml), Fidxused(3fml), Fielded(3fml), Findex(3fml),
Finit(3fml), Fjoin(3fml), Fldid(3fml), Fldno(3fml), Fldtype(3fml), Flen(3fml),
Fmkfldid(3fml), Fmove(3fml), Fname(3fml), Fneeded(3fml), Fnext(3fml),
Fnmid_unload(3fml), Fnum(3fml), Foccur(3fml), Fojoin(3fml), Fpres(3fml),
Fprint(3fml), Fproj(3fml), Fprojcpy(3fml), Fread(3fml), Frealloc(3fml),
BEA MessageQ Reference Manual 1-5

1 Fintro (3FML)
Frstrindex(3fml), Fsizeof(3fml), Fstrerror(3fml), Ftypcvt(3fml),
Ftype(3fml), Funindex(3fml), Funused(3fml), Fupdate(3fml), Fused(3fml),
Fvall(3fml), Fvals(3fml), Fvftos(3fml), Fvnull(3fml), Fvopt(3fml),
Fvselinit(3fml), Fvsinit(3fml), Fvstof(3fml), Fwrite(3fml), field_tables(5),
BEA MessageQ FML Programmer’s Guide
1-6 BEA MessageQ Reference Manual

CFadd (3FML)

.

type

he
dded
CFadd (3FML)

Name CFadd, CFadd32—convert and add field

Synopsis #include <stdio.h>
#include "fml.h"
int CFadd(FBFR *fbfr, FLDID fieldid, char *value, FLDLEN len, int
type)
#include fml32.h>
int
CFadd32(FBFR32 *fbfr, FLDID32 fieldid, char *value, FLDLEN32 len,
int type)

Description CFadd() acts like Fadd() but firstconverts the value from the user-specified type to
the type of the fieldid for which the field is added to the fielded buffer. fbfr is a pointer
to a fielded buffer. fieldid is a field identifier. value is a pointer to the value to be added
len is the length of the value to be added; it is required only if type is FLD_CARRAY. type
is the data type of the field in value.

Before the field is added to the buffer,the type of the data item is converted from
supplied by the user to the type specified in in fieldid. If the source type is FLD_CARRAY
(arbitrary character array), the len argument should be set to the length of the array; t
length is ignored in all other cases. The value for the field to be converted and a
must first be put in a variable, value, since C does not permit constructs such as
12345L.

CFadd32 is used with 32-bit FML.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, CFadd() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc(3) failed when converting
from a carray to string.
BEA MessageQ Reference Manual 1-7

1 CFadd (3FML)
[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid, (for example, a
NULL value parameter was specified).

[FNOSPACE]
"no space in fielded buffer"
A field value is to be added or changed in a field buffer but there is not enough
space remaining in the buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

[FTYPERR]
"invalid field type"
A field identifier is specified which is not valid.

See Also Fintro(3), Fadd(3)
1-8 BEA MessageQ Reference Manual

CFchg (3FML)

;

CFchg (3FML)

Name CFchg, CFchg32—convert and change field

Synopsis #include <stdio.h>
#include "fml.h"
int CFchg(FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *value,
 FLDLEN len, int type)
#include "fml32.h"
int CFchg32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc,
 char *value,
FLDLEN32 len, int type)

Description CFchg() acts like Fchg() but first converts the value from the user-specified type to
the type of the fieldid for which the field is changed in the fielded buffer. fbfr is a
pointer to a fielded buffer. fieldid is a field identifier. oc is the occurrence number of
the field. value is a pointer to a new value. len is the length of the value to be changed
it is required only if type is FLD_CARRAY. type is the data type of value.

If a field occurrence is specified that does not exist, then NULL values are added for the
missing occurrences until the desired value can be added (e.g., changing field
occurrence 4 for a field that does not exist in a buffer will cause 3 NULL values to be
added followed by the specified field value).

CFchg32 is used with 32-bit FML.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, CFchg() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc(3) failed when converting
from a carray to string.
BEA MessageQ Reference Manual 1-9

1 CFchg (3FML)
[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid, (for example, a
NULL value parameter was specified).

[FNOSPACE]
"no space in fielded buffer"
A field value is to be added or changed in a field buffer but there is not enough
space remaining in the buffer.

[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

[FTYPERR]
"invalid field type"
A field identifier is specified which is not valid.

See Also Fintro(3), CFadd(3), Fchg(3)
1-10 BEA MessageQ Reference Manual

CFfind (3FML)

e

f
o.

ly.

lue is

r
hat
CFfind (3FML)

Name CFfind, CFfind32—find, convert and return pointer

Synopsis #include <stdio.h>
#include "fml.h"
char * CFfind(FBFR *fbfr, FLDID fieldid, FLDOCC oc, FLDLEN *len,
 int type)
#include "fml32.h"
char *
CFfind32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc, FLDLEN32
*len, int type)

Description CFfind() finds a specified field in a buffer, converts it and returns a pointer to th
converted value. fbfr is a pointer to a fielded buffer. fieldid is a field identifier. oc is the
occurrence number of the field. len is used on output and is a pointer to the length o
the converted value. type is the data type the user wants the field to be converted t

Like Ffind(3), the pointer returned by the function should be considered read on
The validity of the pointer returned by CFfind() is guaranteed only until the next
buffer operation, even if that operation is non-destructive, since the converted va
retained in a single private buffer. This differs from the value returned by Ffind(3),
which is guaranteed until the next modification of the buffer. Unlike Ffind(3),
CFfind() aligns the converted value for immediate use by the caller.

CFfind32 is used with 32-bit FML.

Return Values In the SYNOPSIS section above the return value to CFfind() is described as a characte
pointer data type (char ** in C). Actually, the pointer returned points to an object t
has the same type as the stored type of the field.

This function returns NULL on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, CFfind() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().
BEA MessageQ Reference Manual 1-11

1 CFfind (3FML)
[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc(3) failed when converting
from a carray to string.

[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

[FTYPERR]
"invalid field type"
A field identifier is specified which is not valid.

See Also Fintro(3), Ffind(3)
1-12 BEA MessageQ Reference Manual

CFfindocc (3FML)

a
CFfindocc (3FML)

Name CFfindocc, CFfindocc32—find occurrence of converted value

Synopsis #include <stdio.h>
#include "fml.h"
FLDOCC
CFfindocc(FBFR *fbfr, FLDID fieldid, char *value, FLDLEN len, int
 type)
#include "fml32.h"
FLDOCC32
CFfindocc32(FBFR32 *fbfr, FLDID32 fieldid, char *value, FLDLEN32
 len, int type)

Description CFfindocc() acts like Ffindocc() but first converts the value from the
user-specified type to the type of fieldid. CFfindocc() looks for an occurrence of the
specified field in the buffer that matches a user-supplied value, length and type.
CFfindocc() returns the occurrence number of the first field that matches. fbfr is a
pointer to a fielded buffer. fieldid is a field identifier. value is a pointer to the value
being sought. len is the length of the value to be compared to input value if type is
carray. type is the data type of the field in value.

CFfindocc32 is used with 32-bit FML.

Return Values If the field value is not found or if other errors are detected, -1 is returned and
CFfindocc() sets Ferror to indicate the error condition.

Errors Under the following conditions, CFfindocc() fails and sets Ferror to:

[FALIGNERR]
fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc(3) failed when converting
from a carray to string.

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid, (for example,
NULL value parameter was specified).
BEA MessageQ Reference Manual 1-13

1 CFfindocc (3FML)
[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

[FTYPERR]
"invalid field type"
A field identifier is specified which is not valid.

See Also Fintro(3), Ffindocc(3)
1-14 BEA MessageQ Reference Manual

CFget (3FML)

th of
.
CFget (3FML)

Name CFget, CFget32—get field and convert

Synopsis #include <stdio.h>
#include "fml.h"
int
CFget(FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *buf, FLDLEN *len,
 int type)
#include "fml32.h"
int
CFget32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc, char *buf,
 FLDLEN32 *len, int type)

Description CFget() is the conversion analog of Fget(3). The main difference is that it copies a
converted value to the user supplied buffer. fbfr is a pointer to a fielded buffer. fieldid
is a field identifier. oc is the occurrence number of the field. buf is a pointer to private
data area. On input, len is a pointer to the length of the private data area. On return,len
is a pointer to the length of the returned value. If the len parameter is NULL on input,
it is assumed that the buffer is big enough to contain the field value and the leng
the value is not returned. If the buf parameter is NULL, the field value is not returned
type is the data type the user wants the returned value converted to.

CFget32 is used with 32-bit FML.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, CFget() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc(3) failed when converting
from a carray to string.

[FNOSPACE]
"no space in fielded buffer"
The size of the data area, as specified in len, is not large enough to hold the
field value.
BEA MessageQ Reference Manual 1-15

1 CFget (3FML)
[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

[FTYPERR]
"invalid field type"
A field identifier is specified which is not valid.

See Also Fintro(3), Fget(3)
1-16 BEA MessageQ Reference Manual

CFgetalloc (3FML)

ield

e; on

was
CFgetalloc (3FML)

Name CFgetalloc, CFgetalloc32—get field, space, convert

Synopsis #include <stdio.h>
#include "fml.h"
char *
CFgetalloc(FBFR *fbfr, FLDID fieldid, FLDOCC oc, int type, FLDLEN
 *extralen)
#include "fml32.h"
char *
CFgetalloc32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc, int type,
 FLDLEN32 *extralen)

Description CFgetalloc() gets a specified field from a buffer, allocates space, converts the f
to the type specified by the user and returns a pointer to its location. fbfr is a pointer to
a fielded buffer. fieldid is a field identifier. oc is the occurrence number of the field.
type is the data type the user wants the field to be converted to. On call, extralen is a
pointer to the length of additional space that may be allocated to receive the valu
return, it is a pointer actual amount of space used. If extralen is NULL, then no
additional space is allocated and the actual length is not returned. The user is
responsible for freeing the returned (converted) value.

CFgetalloc32 is used with 32-bit FML.

Return Values On success, CFgetalloc() returns a pointer to the converted value. On error, the
function returns NULL and sets Ferror to indicate the error condition.

Errors Under the following conditions, CFgetalloc() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc(3) failed.

[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence
not found in the fielded buffer.
BEA MessageQ Reference Manual 1-17

1 CFgetalloc (3FML)
[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

[FTYPERR]
"invalid field type"
A field identifier is specified which is not valid.

See Also Fintro(3), Fgetalloc(3)
1-18 BEA MessageQ Reference Manual

F_error (3FML)

e last
ng

se,
. The

S/2

F_error (3FML)

Name F_error, F_error32—print error message for last error

Synopsis #include stdio.h>
#include "fml.h"
extern int Ferror;
void
F_error(char *msg)
#include "fml32.h"
extern int Ferror32;
void
F_error32(char *msg)

Description The function F_error() works like perror(3) for UNIX System errors; that is, it
produces a message on the standard error output (file descriptor 2), describing th
error encountered during a call to a system or library function. The argument stri
msg is printed first, then a colon and a blank, then the message and a newline. Ifmsg
is a null pointer or points to a null string, the colon is not printed. To be of most u
the argument string should include the name of the program that incurred the error
error number is taken from the external variable Ferror, which is set when errors
occur but not cleared when non-erroneous calls are made. In the MS-DOS and O
environments, Ferror is redefined to FMLerror.

To immediately print an error message, F_error() should be called on an error return
from another FML function. When the error message is FEUNIX. Uunix_err(3) is
called.

F_error32 is used with 32-bit FML.

Return Values F_error() is declared a void and as such does not have return values.

See Also Fintro(3), perror(3) in a UNIX System reference manual
Uunix_err(3)
BEA MessageQ Reference Manual 1-19

1 Fadd (3FML)

e

 new
urrent

r
d of

 field

as
nt
Fadd (3FML)

Name Fadd, Fadd32—add new field occurrence

Synopsis #include <stdio.h>
#include "fml.h"
int Fadd(FBFR *fbfr, FLDID fieldid, char *value, FLDLEN len)
#include "fml32.h"
int Fadd32(FBFR32 *fbfr, FLDID32 fieldid, char *value, FLDLEN32
len)

Description Fadd() adds the specified field value to the given buffer. fbfr is a pointer to a fielded
buffer. fieldid is a field identifier. value is a pointer to a new value; the pointer's typ
must be the same fieldid type as the value to be added. len is the length of the value to
be added; it is required only if type is FLD_CARRAY

The value to be added is contained in the location pointed to by the value parameter.
If one or more occurrences of the field already exist, then the value is added as a
occurrence of the field, and is assigned an occurrence number 1 greater than the c
highest occurrence (to add a specific occurrence, Fchg(3) must be used).

In the SYNOPSIS section above the value argument to Fadd() is described as a characte
pointer data type (char * in C). Technically, this describes only one particular kin
value passable to Fadd(). In fact, the type of the value argument should be a pointer to
an object of the same type as the type of the fielded-buffer representation of the
being added. For example, if the field is stored in the buffer as type FLD_LONG, then
value should be of type pointer-to-long (long * in C). Similarly, if the field is stored
FLD_SHORT, then value should be of type pointer-to-short (short * in C). The importa
thing is that Fadd() assumes that the object pointed to by value has the same type as
the stored type of the field being added.

For values of type FLD_CARRAY, the length of the value is given in the len argument.For
all types other than FLD_CARRAY, the length of the object pointed to by value is inferred
from its type (e.g. a value of type FLD_FLOAT is of length sizeof(float)), and the
contents of len are ignored.

Fadd32 is used with 32-bit FML.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.
1-20 BEA MessageQ Reference Manual

Fadd (3FML)
Errors Under the following conditions, Fadd() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded" The buffer is not a fielded buffer or has not been
initialized by Finit().

[FEINVAL]
"invalid argument to function" One of the arguments to the function invoked
was invalid. (For example, specifying a NULL value parameter to Fadd.)

[FNOSPACE]
"no space in fielded buffer"
A field value is to be added in a fielded buffer but there is not enough space
remaining in the buffer.

[FBADFLD]
"unknown field number or type"
A field number is specified which is not valid.

See Also Fintro(3fml)
CFadd(3fml)
Fadds(3fml)
Fchg(3fml)
BEA MessageQ Reference Manual 1-21

1 Fadds (3FML)

ace
Fadds (3FML)

Name Fadds, Fadds32—convert value from type FLD_STRING and add to buffer

Synopsis #include <stdio.h>
#include "fml.h"
int
Fadds(FBFR *fbfr, FLDID fieldid, char *value)
#include "fml32.h"
int
Fadds32(FBFR32 *fbfr, FLDID32 fieldid, char *value)

Description Fadds() has been provided to handle the case of conversion from a user type of
FLD_STRING to the field type of fieldid and add it to the fielded buffer. fbfr is a
pointer to a fielded buffer. fieldid is a field identifier. value is a pointer to the value
to be added.

This function calls CFadd providing a type of FLD_STRING, and a len of 0.

Fadds32 is used with 32-bit FML.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fadds() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOSPACE]
"no space in fielded buffer"
A field value is to be added in a fielded buffer but there is not enough sp
remaining in the buffer.

[FTYPERR]
"invalid field type"
A field type is specified which is not valid.

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid, (for example,
specifying a NULL value parameter to Fadds)
1-22 BEA MessageQ Reference Manual

Fadds (3FML)
[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc(3) failed during conversion of
carray to string.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

See Also Fintro(3), Fchgs(3), Fgets(3), Fgetsa(3), Ffinds(3), CFchg(3), CFget(3),
CFget(3), CFfind(3)
BEA MessageQ Reference Manual 1-23

1 Falloc (3FML)
Falloc (3FML)

Name Falloc, Falloc32—allocate and initialize fielded buffer

Synopsis #include <stdio.h>
#include "fml.h"
FBFR *
Falloc(FLDOCC F, FLDLEN V)
#include "fml32.h"
FBFR32 *
Falloc32(FLDOCC32 F, FLDLEN32 V)

Description Falloc() dynamically allocates space using malloc(3) for a fielded buffer and calls
Finit() to initialize it. The parameters are the number of fields, F, and the number of
bytes of value space, V, for all fields that are to be stored in the buffer.

Falloc32 is used for larger buffers with more fields.

Return Values This function returns NULL on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Falloc() fails and sets Ferror to:

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc(3) failed.

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid, (for example,
number of fields is less than 0, V is 0 or total size is greater than 65534).

See Also Fintro(3), Ffree(3), Fielded(3), Finit(3), Fneeded(3), Frealloc(3),
Fsizeof(3), Funused(3), malloc(3)
1-24 BEA MessageQ Reference Manual

Fappend (3FML)

and

dded.

new
urrent

ular

tation

in
Fappend (3FML)

Name Fappend, Fappend32—append new field occurrence

Synopsis #include <stdio.h>
#include "fml.h"
int
Fappend(FBFR *fbfr, FLDID fieldid, char *value, FLDLEN len)
#include "fml32.h"
int
Fappend32(FBFR32 *fbfr, FLDID32 fieldid, char *value, FLDLEN32 len)

Description Fappend() adds the specified field value to the end of thegiven buffer. Fappend() is
useful in building large buffers in that it does not maintain the internal structures
ordering necessary for general purpose FML access. The side effect of this
optimization is that a call to Fappend() may be followed only by additional calls to
Fappend(), calls to the FML indexing routines Findex(3) and Funindex(3), or calls
to Free(3), Fused(3), Funused(3) and Fsizeof(3). Calls to other FML routines made
before calling Findex(3) or Funindex(3) will result in an error with Ferror set to
FNOTFLD.

fbfr is a pointer to a fielded buffer. fieldid is a field identifier. value is a pointer to
a new value;the pointer's type must be the same fieldid type as the value to be a
len is the length of the value to be added; it is required only if type is FLD_CARRAY

The value to be added is contained in the location pointed toby the value parameter. If
one or more occurrences of the field already exist, then the value is added as a
occurrence of the field, and is assigned an occurrence number 1 greater than the c
highest occurrence (to add a specific occurrence, Fchg(3) must be used).

In the SYNOPSIS section abovethe value argument to Fappend() is described as a
character pointer data type (char * in C). Technically, this describes only one partic
kind of value passable to Fappend(). In fact, the type of the value argument should be
a pointer to an object of the same type as the type of the fielded-buffer represen
of the field being added. For example, if the field is stored in the buffer as type
FLD_LONG, then value should be of type pointer-to-long (long * in C). Similarly, if the
field is stored as FLD_SHORT, then value should be of type pointer-to-short (short *
C). The important thing is that Fappend() assumes that the object pointed to by value
has the same type as the stored type of the field being added.

For values of type FLD_CARRAY,the length of the value is given in the len argument.
For all types other than FLD_CARRAY, the length of the object pointed to by value is
inferred from its type (e.g. a value of type FLD_FLOAT is of length sizeof(float)), and
the contents of len are ignored.

Fappend32 is used with 32-bit FML.
BEA MessageQ Reference Manual 1-25

1 Fappend (3FML)
Return Values This function returns -1 on error and sets Ferrorto indicate the error condition.

Errors Under the following conditions, Fappend() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid. (for example,
specifying a NULL value parameter to Fappend)

[FNOSPACE]
"no space in fielded buffer"
A field value is to be added in a fielded buffer but there is not enough space
remaining in the buffer.

[FBADFLD]
"unknown field number or type"
A field number is specified which is not valid.

See Also Fintro(3), Fadd(3, Ffree(3), Findex(3), Fsizeof(3), Funindex(3), Funused(3),
Fused(3)
1-26 BEA MessageQ Reference Manual

Fboolco (3FML)

ssions

n an
Fboolco (3FML)

Name Fboolco, Fboolco32—compile expression, return evaluation tree

Synopsis #include <stdio.h>
#include "fml.h"
char *
Fboolco(char *expression)
#include "fml32.h"
char *
Fboolco32(char *expression)

Description Fboolco() compiles a Boolean expression, pointed to by expression, and returns a
pointer to the evaluation tree. The expressions recognized are close to the expre
recognized in C. A description of the grammer can be found in the FML Programmer’s
Guide.

The evaluation tree produced by Fboolco() is used by the other boolean functions
listed under SEE ALSO; this avoids having to recompile the expression.

Fboolco32 is used with 32-bit FML.

These functions are not supported on Workstation platforms.

Return Values This function returns NULL on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fboolco() fails and sets Ferror to:

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc(3) failed.

[FSYNTAX]
"bad syntax in Boolean expression"
A syntax error was found in a Boolean expression by Fboolco() other tha
unrecognized field name.

[FBADNAME]
"unknown field name"
A field name is specified which cannot be found in the field tables.

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid, (for example,
expression is NULL).
BEA MessageQ Reference Manual 1-27

1 Fboolco (3FML)
Example #include "stdio.h"
#include "fml.h"
extern char *Fboolco();
char *tree;
...
if((tree=Fboolco("FIRSTNAME %% ’J.*n’ & SEX = ’M’")) == NULL)
 F_error("pgm_name");

compiles a boolean expression that checks if the FIRSTNAME field is in the buffer,
begins with ’J’ and ends with ’n’ (for example, John, Jean, Jurgen, etc.) and the SEX field
equal to ’M’.

The first and second characters of the tree array form the least significant byte and the
most significant byte, respectively, of an unsigned 16 bit quantity that gives the length,
in bytes, of the entire array. This value is useful for copying or otherwise manipulating
the array.

See Also Fboolev(3), Fboolpr(3), Fldid(3)
1-28 BEA MessageQ Reference Manual

Fboolev (3FML)

e
ange

turns
rror
Fboolev (3FML)

Name Fboolev, Fboolev32—evaluate buffer against tree

Synopsis #include stdio.h>
#include "fml.h"
int
Fboolev(FBFR *fbfr, char *tree)
#include "fml32.h"
int
Fboolev32(FBFR32 *fbfr, char *tree)

Description Fboolev() takes a pointer to a fielded buffer, fbfr, and a pointer to the evaluation tree
returned from Fboolco(), tree, and returns true (1) if the fielded buffer matches th
specified Boolean conditions and false (0) if it does not. This function does not ch
either the fielded buffer or evaluation tree. The evaluation tree is one previously
compiled by Fboolco(3).

Fboolev32 is used with 32-bit FML.

These functions are not supported on Workstation platforms.

Return Values Fboolev() returns 1 if the expression in the buffer matches the evaluation tree. It re
0 if the expression fails to match the evaluation tree. This function returns -1 on e
and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fboolev() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The fbfr buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The fbfr buffer is not a fielded buffer or has not been initialized by Finit().

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc(3) failed.

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid, (for example,
specifying a NULL tree parameter).
BEA MessageQ Reference Manual 1-29

1 Fboolev (3FML)
[FSYNTAX]
"bad syntax in Boolean expression"
A syntax error was found in a Boolean expression other than an unrecognized
field name.

Example Using the evaluation tree compiled in the example for Fboolco(3):

#include stdio.h>
#include "fml.h"
#include "fld.tbl.h"
FBFR *fbfr;
...
Fchg(fbfr,FIRSTNAME,0,"John",0);
Fchg(fbfr,SEX,0,"M",0);
if(Fboolev(fbfr,tree) > 0)
 fprintf(stderr,"Buffer selected\\\\n");
else
 fprintf(stderr,"Buffer not selected\\\\n");

would print "Buffer selected".

See Also Fintro(3), Fboolco(3), Fboolpr(3)
1-30 BEA MessageQ Reference Manual

Fboolpr (3FML)

Fboolpr (3FML)

NAME Fboolpr, Fboolpr32—print Boolean expression as parsed

Synopsis #include <stdio.h>
#include "fml.h"
void
Fboolpr(char *tree, FILE *iop)
#include "fml32.h"
void
Fboolpr32(char *tree, FILE *iop)

Description Fboolpr() prints a compiled expression to the specified output stream. The
evaluation tree, tree, is one previously created with Fboolco(3). iop is a pointer of type
FILE to the output stream. The output is fully parenthesized, as it was parsed (as
indicated by the evaluation tree). The function is useful for debugging.

Fboolpr32 is used with 32-bit FML.

These functions are not supported on Workstation platforms.

Return Values Fboolpr() is declared as returning a void, so there are no return values.

See Also Fintro(3), Fboolco(3)
BEA MessageQ Reference Manual 1-31

1 Fchg (3FML)

elow).

ce to
d to

 added
 will

ng
acter

rror.

r
d of

 field

as
ant
Fchg (3FML)

Name Fchg, Fchg32—change field occurrence value

Synopsis #include <stdio.h>
#include "fml.h"
int
Fchg(FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *value, FLDLEN len)
#include "fml32.h"
int
Fchg32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc, char *value,
 FLDLEN32 len)

Description Fchg() changes the value of a field in the buffer. fbfr is a pointer to a fielded buffer.
fieldid is a field identifier. oc is the occurrence number of the field. value is a pointer
to a new value, its type must be the same type as the value to be changed (see b
len is the length of the value to be changed; it is required only if field type is
FLD_CARRAY.

If an occurrence of -1 is specified, then the field value is added as a new occurren
the buffer. If the specified field occurrence is found, then the field value is modifie
the value specified. If a field occurrence is specified that does not exist, then NULL
values are added for the missing occurrences until the desired occurrence can be
(for example, changing field occurrence 4 for a field that does not exist on a buffer
cause 3 NULL values to be added followed by the specified field value). NULL values
consist of the NULL string (1 byte in length) for string and character values, 0 for lo
and short fields, 0.0 for float and double values, and a zero-length string for a char
array. The new or modified value is contained in value and its length is given in len if
it is a character array (ignored in other cases). If value is NULL, then the field
occurrence is deleted. A value to be deleted that is not found, is considered an e

In the SYNOPSIS section above the value argument to Fchg() is described as a characte
pointer data type (char * in C). Technically, this describes only one particular kin
value passable to Fchg(). In fact, the type of the value argument should be a pointer to
an object of the same type as the type of the fielded-buffer representation of the
being changed. For example, if the field is stored in the buffer as type FLD_LONG, then
value should be of type pointer-to-long (long * in C). Similarly, if the field is stored
FLD_SHORT, then value should be of type pointer-to-short (short * in C). The import
thing is that Fchg() assumes that the object pointed to by value has the same type as
the stored type of the field being changed.

Fchg32 is used with 32-bit FML.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.
1-32 BEA MessageQ Reference Manual

Fchg (3FML)
Errors Under the following conditions, Fchg() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]

"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOTPRES]
"field not present"
A field occurrence is requested for deletion but the specified field and/or
occurrence was not found in the fielded buffer.

[FNOSPACE]

"no space in fielded buffer"
A field value is to be added or changed in a fielded buffer but there is not
enough space remaining in the buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

See Also CFchg(3c)
Fintro(3fml)
Fadd(3fml)
Fcmp(3fml)
Fdel(3fml)
BEA MessageQ Reference Manual 1-33

1 Fchgs (3FML)

n

t
Fchgs (3FML)

Name Fchgs, Fchgs32—change field occurrence - caller presents string

Synopsis #include <stdio.h>
#include "fml.h"
int
Fchgs(FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *value)
#include "fml32.h"
int
Fchgs32(FBFR32 *fbfr, FLDID32 fieldid, int oc, char *value)

Description Fchgs(), is provided to handle the case of conversion from a user type of
FLD_STRING. fbfr is a pointer to a fielded buffer. fieldid is a field identifier. oc is the
occurrence number of the field. value is a pointer to the string to be added. The functio
calls its non-string-function counterpart, CFchg(3), providing a type of FLD_STRING,
and a len of 0 to convert from a string to the field type of fieldid.

Fchgs32 is used with 32-bit FML.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fchgs() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOSPACE]
"no space in fielded buffer"
A field value is to be added or changed in a fielded buffer but there is no
enough space remaining in the buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

[FTYPERR]
"invalid field type"
A field identifier is specified which is not valid.

See Also Fintro(3), Fchg(3), CFchg(3)
1-34 BEA MessageQ Reference Manual

Fchksum (3FML)

er

s
Fchksum (3FML)

Name Fchksum, Fchksum32—compute checksum for fielded buffer

Synopsis #include <stdio.h>
#include "fml.h"
long
Fchksum(FBFR *fbfr)
#include "fml32.h"
long
Fchksum32(FBFR32 *fbfr)

Description For extra-reliable I/O, a checksum may be calculated using Fchksum() and stored in
a fielded buffer being written out. fbfr is a pointer to a fielded buffer. The stored
checksum may be inspected by the receiving process to verify that the entire buff
was received.

Fchksum32 is used with 32-bit FML.

Return Values On success, Fchksum returns the checksum. This function returns -1 on error and set
Ferror to indicate the error condition.

Errors Under the following conditions, Fchksum() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

See Also Fintro(3), Fread(3), Fwrite(3)
BEA MessageQ Reference Manual 1-35

1 Fcmp (3FML)

s.

he

he
Fcmp (3FML)

Name Fcmp, Fcmp32—compare two fielded buffers

Synopsis #include <stdio.h>
#include "fml.h"
int
Fcmp(FBFR *fbfr1, FBFR *fbfr2)
#include "fml32.h"
int
Fcmp32(FBFR32 *fbfr1, FBFR32 *fbfr2)

Description Fcmp() compares the field identifiers and then the field values of two FML buffer
fbfr1 and fbfr2 are pointers to the fielded buffers to be compared.

Fcmp32 is used with 32-bit FML.

Return Values The function returns a 0 if the two buffers are identical. It returns a -1 on any of t
following conditions:

t The fieldid of a fbfr1 field is less than the fieldid of the corresponding field
of fbfr2.

t The value of a field in fbfr1 is less than the value of the corresponding field of
fbfr2.

t fbfr1 has fewer fields or field occurrences than fbfr2.

Fcmp(\|) returns a 1 if any of the reverse set of conditions is true, for example, t
fieldid of a fbfr1 field is greater than the fieldid of the corresponding field of fbfr2. The
actual sizes of the buffers (that is, the sizes passed to Falloc()) are not considered;
only the data in the buffers. This function returns \-2 on error and sets Ferror to
indicate the error condition.

Errors Under the following conditions, Fcmp() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

See Also Fintro(3), Fadd(3), Fchg(3)
1-36 BEA MessageQ Reference Manual

Fconcat (3FML)

 and
ers for

oper

ot

ace
Fconcat (3FML)

Name Fconcat, Fconcat32—concatenate source to destination buffer

Synopsis #include <stdio.h>
#include "fml.h"
int
Fconcat(FBFR *dest, FBFR *src)
#include "fml32.h"
int
Fconcat32(FBFR32 *dest, FBFR32 *src)

Description Fconcat() adds fields from the source buffer to the fields that already exist in the
destination buffer. dest and src are pointers to the destination and source fielded
buffers, respectively. Occurrences in the destination buffer, if any, are maintained
new occurrences from the source buffer are added with greater occurrence numb
the field.

Fconcat32 is used with 32-bit FML.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fconcat() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
Either the source buffer or the destination buffer does not begin on the pr
boundary.

[FNOTFLD]
"buffer not fielded"
Either the source or the destination buffer is not a fielded buffer or has n
been initialized by Finit().

[FNOSPACE]
"no space in fielded buffer"
A field value is to be added in a fielded buffer but there is not enough sp
remaining in the buffer.

See Also Fintro(3), Fjoin(3), Fupdate(3)
BEA MessageQ Reference Manual 1-37

1 Fcpy (3FML)

ough

oper

ot
Fcpy (3FML)

Name Fcpy, Fcpy32—copy source to destination buffer

Synopsis #include <stdio.h>
#include "fml.h"
int
Fcpy(FBFR *dest, FBFR *src)
#include "fml32.h"
int
Fcpy32(FBFR32 *dest, FBFR32 *src)

Description Fcpy() is used to copy the contents of one fielded buffer to another fielded buffer. dest
and src are pointers to the destination and source fielded buffers respectively. Fcpy()
expects the destination to be a fielded buffer, and thus can check that it is large en
to accommodate the data from the source buffer.

Fcpy32 is used with 32-bit FML.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fcpy() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
Either the source buffer or the destination buffer does not begin on the pr
boundary.

[FNOTFLD]
"buffer not fielded"
Either the source or the destination buffer is not a fielded buffer or has n
been initialized by Finit().

[FNOSPACE]
"no space in fielded buffer"
The destination buffer is not large enough to hold the source buffer.

See Also Fintro(3), Fmove(3)
1-38 BEA MessageQ Reference Manual

Fdel (3FML)

ld
the

was
Fdel (3FML)

Name Fdel, Fdel32—delete field occurrence from buffer

Synopsis #include stdio.h>
#include "fml.h"
int
Fdel(FBFR *fbfr, FLDID fieldid, FLDOCC oc)
#include "fml32.h"
int
Fdel32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc)

Description Fdel() deletes the specified field occurrence from the buffer. fbfr is a pointer to a
fielded buffer. fieldid is a field identifier. oc is the occurrence number of the field.

Note that when multiple occurrences of a field exist in the fielded buffer and a fie
occurrence is deleted that is not the last occurrence, also higher occurrences in
buffer are shifted down by one. To maintain the same occurrence number for all
occurrences, use Fchg(3) to set the field occurrence value to a "null" value.

Fdel32 is used with 32-bit FML.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fdel() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence
not found in the fielded buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

See Also Fintro(3), Fadd(3), Fchg(3), Fdelall(3), Fdelete(3)
BEA MessageQ Reference Manual 1-39

1 Fdelall (3FML)

fer.
Fdelall (3FML)

Name Fdelall, Fdelall32—delete all field occurrences from buffer

Synopsis #include <stdio.h>
#include "fml.h"
int
Fdelall(FBFR *fbfr, FLDID fieldid)
#include "fml32.h"
int
Fdelall32(FBFR32 *fbfr, FLDID32 fieldid)

Description Fdelall() deletes all occurrences of the specified field in the buffer. fbfr is a pointer
to a fielded buffer. fieldid is a field identifier. If no occurrences of the field are
found, it is considered an error.

Fdelall32 is used with 32-bit FML.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fdelall() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOTPRES]
"field not present"
A field is requested but the specified field was not found in the fielded buf

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

See Also Fintro(3), Fdel(3), Fdelete(3)
1-40 BEA MessageQ Reference Manual

Fdelete (3FML)
Fdelete (3FML)

Name Fdelete, Fdelete32-delete list of fields from buffer

Synopsis #include <stdio.h>
#include "fml.h"
int
Fdelete(FBFR *fbfr, FLDID *fieldid)
#include "fml32.h"
int
Fdelete32(FBFR32 *fbfr, FLDID32 *fieldid)

Description Fdelete() deletes all occurrences of all fields listed in the array of field identifiers,
fieldid[]. The last entry in the array must be BADFLDID. fbfr is a pointer to a fielded
buffer. fieldid is a pointer to an array of field identifiers. This is a more efficient way
of deleting several fields from a buffer instead of using several Fdelall() calls. The
update is done in-place. The array of field identifiers may be re-arranged by Fdelete()
(they are sorted, if not already, in numeric order).

Fdelete() returns success even if no fields are deleted from the fielded buffer.

Fdelete32 is used with 32-bit FML.

Return Values This function returns \-1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fdelete() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

See Also Fintro(3), Fdel(3), Fdelall(3)
BEA MessageQ Reference Manual 1-41

1 Fextread (3FML)
Fextread (3FML)

Name Fextread, Fextread32-build fielded buffer from printed format

Synopsis #include <stdio.h>
#include "fml.h"
int
Fextread(FBFR *fbfr, FILE *iop)
#include "fml32.h"
int
Fextread32(FBFR32 *fbfr, FILE *iop)

Description Fextread() may be used to construct a fielded buffer from its printed format (that is,
from the output of Fprint(3)). The parameters are a pointer to a fielded buffer, fbfr,
and a pointer to a file stream, iop. The input file format is basically the same as the
output format of Fprint(3), that is:

[flag] fldname or fldid tab> fldval (or fldname, if flag is ‘‘=’’)

The optional flags and their meanings are as follows:

+
occurrence 0 of the field in the fielded buffer should be changed to the value
provided.

\-
occurrence 0 of the field named should be deleted from the fielded buffer.
The tab character is required; any field value is ignored.

=
In this case, the last field on the input line is the name of a field in the fielded
buffer. The value of occurrence 0 of that field should be assigned to
occurrence 0 of the first field named on the input line.

the line is treated as a comment and is ignored.

If no flag is specified, a new occurrence of the field named by fldname with value
fldval is added to the fielded buffer. A trailing newline (-) must be provided following
each completed input buffer.

Fextread32 is used with 32-bit FML.

Return Values This function returns \-1 on error and sets Ferror to indicate the error condition.
1-42 BEA MessageQ Reference Manual

Fextread (3FML)
Errors Under the following conditions, Fextread() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOSPACE]
"no space in fielded buffer"
A field value is to be added or changed in a field buffer but there is not
enough space remaining in the buffer.

[FBADFLD]
"unknown field number or type"
A field number is specified which is not valid.

[FEUNIX]
"UNIX system call error"
A UNIX system call error occurred. The external integer errno should have
been set to indicate the error by the system call, and the external integer
Uunixerr (values defined in Uunix.h) is set to the system call that returned
the error.

[FBADNAME]
"unknown field name"
A field name is specified which cannot be found in the field tables.

[FSYNTAX]
"bad syntax in format"
A syntax error was found in the external buffer format. Possible errors are:
an unexpected end-of-file indicator, input lines not in the form fieldid or
name tab> value two control characters, field values greater than 1000
characters, or an invalid hex escape sequence.

[FNOTPRES]
"field not present"
A field to be deleted is not found in the fielded buffer.

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc(3) failed.

[FEINVAL]
"invalid parameter"
The value of iop is NULL.
BEA MessageQ Reference Manual 1-43

1 Fextread (3FML)
See Also Fintro(3), Fprint(3)
1-44 BEA MessageQ Reference Manual

Ffind (3FML)
Ffind (3FML)

Name Ffind, Ffind32-find field occurrence in buffer

Synopsis #include <stdio.h>
#include "fml.h"
char *
Ffind(FBFR *fbfr, FLDID fieldid, FLDOCC oc, FLDLEN *len)
#include "fml32.h"
char *
Ffind32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc, FLDLEN32 *len)

Description Ffind() finds the value of the specified field occurrence in the buffer. fbfr is a pointer
to a fielded buffer. fieldid is a field identifier. oc is the occurrence number of the field.
If the field is found, its length is set into *len, and its location is returned as the value
of the function. If the value of len is NULL, then the field length is not returned.
Ffind() is useful for gaining read-only access to a field. In no case should the value
returned by Ffind() be used to modify the buffer.

In general, the locations of values of types FLD_LONG, FLD_FLOAT, and FLD_DOUBLE
are not suitable for direct use as their stored type, since proper alignment within the
buffer is not guaranteed. Such values must be copied first to a suitably aligned
memory location. Accessing such fields through the conversion function CFfind(3)
does guarantee the proper alignment of the found converted value. Buffer
modification should only be done by the functions Fadd(3) or Fchg(3). The values
returned by Ffind() and Ffindlast() are valid only so long as the buffer remains
unmodified.

Ffind32 is used with 32-bit FML.

Return Values In the SYNOPSIS section above the return value to Ffind() is described as a
character pointer data type (char * in C). Actually, the pointer returned points to an
object that has the same type as the stored type of the field.

This function returns a pointer to NULL on error and sets Ferror to indicate the error
condition.
BEA MessageQ Reference Manual 1-45

1 Ffind (3FML)
Errors Under the following conditions, Ffind() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD]

"unknown field number or type"
A field identifier is specified which is not valid.

See Also Fintro(3fml), Ffindlast(3fml), Ffindocc(3fml), Ffinds(3fml)
1-46 BEA MessageQ Reference Manual

Ffindlast (3FML)
Ffindlast (3FML)

Name Ffindlast, Ffindlast32-find last occurrence of field in buffer

Synopsis #include <stdio.h>
#include "fml.h"
char *
Ffindlast(FBFR *fbfr, FLDID fieldid, FLDOCC *oc, FLDLEN *len)
#include "fml32.h"
char *
Ffindlast32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 *oc, FLDLEN32
*len)

Description Ffindlast() finds the last occurrence of a field in a buffer. fbfr is a pointer to a fielded
buffer. fieldid is a field identifier. oc is a pointer to an integer that is used to receive the
occurrence number of the field. len is the length of the value. If there are no
occurrences of the field in the buffer, NULL is returned. Generally, Ffindlast()
acts like Ffind(3). The major difference is that with Ffindlast the user does not
supply a field occurrence. Instead, both the value and occurrence number of the last
occurrence of the field are returned. In order to return the occurrence number of the
last field, the occurrence argument, oc, to Ffindlast() is a pointer-to-integer, and not
an integer, as it is to Ffind(). If oc is specified to be NULL, the occurrence number
of the last occurrence is not returned. If the value of len is NULL, then the field length
is not returned.

In general, the locations of values of types FLD_LONG, FLD_FLOAT, and FLD_DOUBLE
are not suitable for direct use as their stored type, since proper alignment within the
buffer is not guaranteed. Such values must be copied first to a suitably aligned
memory location. Accessing such fields through the conversion function CFfind(3)
does guarantee the proper alignment of the found converted value. Buffer
modification should only be done by the functions Fadd(3) or Fchg(3). The values
returned by Ffind() and Ffindlast() are valid only so long as the buffer remains
unmodified.

Ffindlast32 is used with 32-bit FML.

Return Values In the SYNOPSIS section above the return value to Ffindlast() is described as a
character pointer data type (char * in C). Actually, the pointer returned points to an
object that has the same type as the stored type of the field.

This function returns NULL on error and sets Ferror to indicate the error condition.
BEA MessageQ Reference Manual 1-47

1 Ffindlast (3FML)
Errors Under the following conditions, Ffindlast() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOTPRES]
"field not present"
A field is requested but the specified field was not found in the fielded buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

See Also Fintro(3fml), CFfind(3fml), Fadd(3fml), Fchg(3fml), Ffind(3fml),
Ffindocc(3fml), Ffinds(3fml)
1-48 BEA MessageQ Reference Manual

Ffindocc (3FML)
Ffindocc (3FML)

Name Ffindocc, Ffindocc32-find occurrence of field value

Synopsis #include <stdio.h>
#include "fml.h"
FLDOCC
Ffindocc(FBFR *fbfr, FLDID fieldid, char *value, FLDLEN len)
#include "fml32.h"
FLDOCC32
Ffindocc32(FBFR32 *fbfr, FLDID32 fieldid, char *value, FLDLEN32
len)

Description Ffindocc() looks at occurrences of the specified field in the buffer and returns the
occurrence number of the first field occurrence that matches the user specified field
value. fbfr is a pointer to a fielded buffer. fieldid is a field identifier. The value to be
found is contained in the location pointed to by the value parameter. len is the length
of the value if its type is FLD_CARRAY. If fieldid is field type FLD_STRING and if len is
not 0, pattern matching is done on the string. The pattern match supported is the same
as the patterns described in regcmp(3) (in UNIX reference manuals). In addition, the
alternation of regular expressions is supported (for example, ‘‘A|B’’ matches with ‘‘A’’
or ‘‘B’’). The pattern must match the entire field value (that is, the pattern ‘‘value’’
is implicitly treated as ‘‘^value$’’). The version of Ffindocc() provided for use in
the MS-DOS and OS/2 environments does not support the regcmp(3) pattern
matching for FLD_STRING fields; it uses strcmp(3) (in UNIX reference manuals).

In the SYNOPSIS section above the value argument to Ffindocc() is described as a
character pointer data type (char * in C). Technically, this describes only one particular
kind of value passable to Ffindocc(). In fact, the type of the value argument should
be a pointer to an object of the same type as the type of the fielded-buffer
representation of the field being found. For example, if the field is stored in the buffer
as type FLD_LONG, then value should be of type pointer-to-long (long * in C).
Similarly, if the field is stored as FLD_SHORT, then value should be of type
pointer-to-short (short * in C). The important thing is that Ffindocc() assumes that the
object pointed to by value has the same type as the stored type of the field being found.

Ffindocc32 is used with 32-bit FML.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.
BEA MessageQ Reference Manual 1-49

1 Ffindocc (3FML)
Errors Under the following conditions, Ffindocc() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOTPRES]
"field not present"
A field value is requested but the specified field and/or value was not found
in the fielded buffer.

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid, (for example,
passing a NULL value parameter to Ffindocc or specifying an invalid string
pattern).

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

See Also Fintro(3fml), Ffind(3fml), Ffindlast(3fml), Ffinds(3fml), regcmp(3) in a UNIX
System reference manual
1-50 BEA MessageQ Reference Manual

Ffinds (3FML)
Ffinds (3FML)

Name Ffinds, Ffinds32-return ptr to string representation

Synopsis #include <stdio.h>
#include "fml.h"
char *
Ffinds(FBFR *fbfr, FLDID fieldid, FLDOCC oc)
#include "fml32.h"
char *
Ffinds32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc)

Description Ffinds() is provided to handle the case of conversion to a user type of FLD_STRING.
fbfr is a pointer to a fielded buffer. fieldid is a field identifier. oc is the occurrence
number of the field. The specified field occurrence is found and converted from its
type in the buffer to a null-terminated string. Basically, this macro calls its conversion
function counterpart, CFfind(3), providing a utype of FLD_STRING, and a ulen of 0.
The duration of the validity of the pointer returned by Ffinds() is the same as that
described for CFfind(3).

Ffinds32 is used with 32-bit FML.

Return Values This function returns NULL on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Ffinds() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.
BEA MessageQ Reference Manual 1-51

1 Ffinds (3FML)
[FTYPERR]
"invalid field type"
A field type is specified which is not valid.

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc(3) failed while converting
carray to string.

See Also Fintro(3), CFfind(3), Ffind(3)
1-52 BEA MessageQ Reference Manual

Ffloatev (3FML)
Ffloatev (3FML)

Name Ffloatev, Ffloatev32-return value of expression as a double

Synopsis #include <stdio.h>
#include "fml.h"
double
Ffloatev(FBFR *fbfr, char *tree)
#include "fml32.h"
double
Ffloatev32(FBFR32 *fbfr, char *tree)

Description Ffloatev() takes a pointer to a fielded buffer, fbfr, and a pointer to the evaluation tree
returned from Fboolco(3), tree, and returns the value of the (arithmetic) expression,
represented by the tree, as a double. This function does not change either the fielded
buffer or the evaluation tree.

Ffloatev32 is used with 32-bit FML.

These functions are not supported on /WS platforms.

Return Values On success Ffloatev() returns the value of an expression as a double.

This function returns \-1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Ffloatev() fails and sets Ferror to:

[FALIGNERR]

"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc(3) failed.

[FSYNTAX]
"bad syntax in Boolean expression"
A syntax error was found in a Boolean expression tree.

See Also Fintro(3), Fboolco(3), Fboolev(3)
BEA MessageQ Reference Manual 1-53

1 Ffprint (3FML)
Ffprint (3FML)

Name Ffprint, Ffprint32-print fielded buffer to specified stream

Synopsis #include <stdio.h>
#include "fml.h"
int
Ffprint(FBFR *fbfr, FILE *iop)
#include "fml32.h"
int
Ffprint32(FBFR32 *fbfr, FILE *iop)

Description Ffprint is similar to Fprint(3), except the text is printed to a specified output stream.
fbfr is a pointer to a fielded buffer. iop is a pointer of type FILE that points to the output
stream.

For each field in the buffer, the output prints the field name and field value separated
by a tab. Fname(3) is used to determine the field name; if the field name cannot be
determined, then the field identifier is printed. Non-printable characters in string and
character array field values are represented by a backslash followed by their
two-character hexadecimal value. A newline is printed following the output of the
printed buffer.

Ffprint32 is used with 32-bit FML.

Return Values This function returns \-1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Ffprint() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc(3) failed.

See Also Fintro(3), Fprint(3)
1-54 BEA MessageQ Reference Manual

Ffree (3FML)
Ffree (3FML)

Name Ffree, Ffree32-free space allocated for fielded buffer

Synopsis #include <stdio.h>
#include "fml.h"
int
Ffree(FBFR *fbfr)
#include "fml32.h"
int
Ffree32(FBFR32 *fbfr)

Description Ffree() is used to recover space allocated to its argument fielded buffer. fbfr is a
pointer to a fielded buffer. The fielded buffer is invalidated, that is, made non-fielded,
and then freed.

Ffree() is recommended as opposed to free(3) (in UNIX System reference manuals),
because Ffree() invalidates a fielded buffer whereas free(3) does not. It is
important to invalidate fielded buffers because malloc(3) (in UNIX System reference
manuals) re-uses memory that has been freed without clearing it. Thus, if free(3)
were used, it would be possible for malloc to return a piece of memory that looks
like a valid fielded buffer but is not.

Ffree32 is used with 32-bit FML.

Return Values This function returns \-1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Ffree() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned" The buffer does not begin on the proper
boundary.

[FNOTFLD]
"buffer not fielded" The buffer is not a fielded buffer or has not been
initialized by Finit().

See Also Fintro(3), malloc(3), free(3) in UNIX reference manuals, Falloc(3),
Frealloc(3)
BEA MessageQ Reference Manual 1-55

1 Fget (3FML)
Fget (3FML)

Name Fget, Fget32-get copy and length of field occurrence

Synopsis #include <stdio.h>
#include "fml.h"
int
Fget(FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *value, FLDLEN
 *maxlen)
#include "fml32.h"
int
Fget32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc, char *value,
 FLDLEN32 *maxlen)

Description Fget() should be used to retrieve a field from a fielded buffer when the value is to be
modified. fbfr is a pointer to a fielded buffer. fieldid is a field identifier. oc is the
occurrence number of the field. The caller provides Fget() with a pointer to a private
data area, loc, as well as the length of the data area, *maxlen, and the length of the
field is returned in *maxlen. If maxlen is NULL when the function is called, then it
is assumed that the data area for the field value loc is big enough to contain the field
value and the length of the value is not returned. If loc is NULL, the value is not
retrieved. Thus, the function call can be used to determine the existence of the field.

In the SYNOPSIS section above the value argument to Fget() is described as a
character pointer data type (char * in C). Technically, this describes only one particular
kind of value passable to Fget(). In fact, the type of the value argument should be a
pointer to an object of the same type as the type of the fielded-buffer representation of
the field being retrieved. For example, if the field is stored in the buffer as type
FLD_LONG, then value should be of type pointer-to-long (long * in C). Similarly, if the
field is stored as FLD_SHORT, then value should be of type pointer-to-short (short * in
C). The important thing is that Fget() assumes that the object pointed to by value has
the same type as the stored type of the field being retrieved.

Fget32 is used with 32-bit FML.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.
1-56 BEA MessageQ Reference Manual

Fget (3FML)
Errors Under the following conditions, Fget() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOSPACE]
"no space"
The size of the data area, as specified in maxlen, is not large enough to hold
the field value.

[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

See Also Fintro(3fml), CFget(3c), Fgetalloc(3fml), Fgetlast(3fml),Fgets(3fml),
Fgetsa(3fml)
BEA MessageQ Reference Manual 1-57

1 Fgetalloc (3FML)
Fgetalloc (3FML)

Name Fgetalloc, Fgetalloc32-allocate space and get copy of field occurrence

Synopsis #include <stdio.h>
#include "fml.h"
char *
Fgetalloc(FBFR *fbfr, FLDID fieldid, FLDOCC oc, FLDLEN *extralen)
#include "fml32.h"
char *
Fgetalloc32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc, FLDLEN32
 *extralen)

Description Like Fget(3), Fgetalloc() finds and makes a copy of a buffer field, but it acquires
space for the field via a call to malloc(3) (in UNIX System programmer’s reference
manuals). fbfr is a pointer to a fielded buffer. fieldid is a field identifier. oc is the
occurrence number of the field. The last argument to Fgetalloc(), extralen, provides
an extra amount of space to be acquired in addition to the field value size. It can be
used if the retrieved value is to be expanded before re-insertion into the fielded-buffer.
If extralen is NULL, then no additional space is allocated and the actual length is not
returned. It is the caller’s responsibility to free(3) space acquired by Fgetalloc().
The buffer will be aligned properly for any field type.

Fgetalloc32 is used with 32-bit FML.

Return Values In the SYNOPSIS section above the return value to Fgetalloc() is described as a
character pointer data type (char * in C). Actually, the pointer returned points to an
object that has the same type as the stored type of the field. This function returns
NULL on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fgetalloc() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.
1-58 BEA MessageQ Reference Manual

Fgetalloc (3FML)
[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

[FMALLOC]
“malloc failed"
Allocation of space dynamically using malloc(3) failed.

See Also Fintro(3fml), CFget(3c), Fget(3fml), Fgetlast(3fml), Fgets(3fml), Fgetsa(3fml)
free(3), malloc(3) in a UNIX System reference manual
BEA MessageQ Reference Manual 1-59

1 Fgetlast (3FML)
Fgetlast (3FML)

Name Fgetlast, Fgetlast32-get copy of last occurrence

Synopsis #include <stdio.h>
#include "fml.h"
int
Fgetlast(FBFR *fbfr, FLDID fieldid, FLDOCC *oc, char *value, FLDLEN
 *maxlen)
#include "fml32.h"
int
Fgetlast32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 *oc, char
 *value, FLDLEN32 *maxlen)

Description Fgetlast() is used to retrieve both the value and occurrence number of the last
occurrence of the field identified by fieldid. fbfr is a pointer to a fielded buffer. In order
to return the occurrence number of the last field, the occurrence argument, oc, is a
pointer-to-integer, not an integer.

The caller provides Fgetlast() with a pointer to a private buffer, loc, as well as the
length of the buffer, *maxlen, and the length of the field is returned in *maxlen. If
maxlen is NULL when the function is called, then it is assumed that the buffer for the
field value is big enough to contain the field value and the length of the value is not
returned. If loc is NULL, the value is not returned. If oc is NULL, the occurrence is
not returned.

In the SYNOPSIS section above the value argument to Fgetlast() is described as a
character pointer data type (char * in C). Technically, this describes only one particular
kind of value passable to Fgetlast(). In fact, the type of the value argument should
be a pointer to an object of the same type as the type of the fielded-buffer
representation of the field being retrieved. For example, if the field is stored in the
buffer as type FLD_LONG, then value should be of type pointer-to-long (long * in C).
Similarly, if the field is stored as FLD_SHORT, then value should be of type
pointer-to-short (short * in C). The important thing is that Fgetlast() assumes that the
object pointed to by value has the sametype as the stored type of the field being
retrieved.

Fgetlast32 is used with 32-bit FML.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.
1-60 BEA MessageQ Reference Manual

Fgetlast (3FML)
Errors Under the following conditions, Fgetlast() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOSPACE]
"no space"
The size of the data area, as specified in maxlen, is not large enough to hold
the field value.

[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD]
"unknown field number or type"
|A field identifier is specified which is not valid.

See Also Fintro(3fml), Fget(3fml), Fgetalloc(3fml), Fgets(3fml), Fgetsa(3fml)
BEA MessageQ Reference Manual 1-61

1 Fgets (3FML)
Fgets (3FML)

Name Fgets, Fgets32-get value converted to string

Synopsis #include <stdio.h>
#include "fml.h"
int
Fgets(FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *buf)
#include "fml32.h"
int
Fgets32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc, char *buf)

Description Fgets() retrieves a field occurrence from the fielded buffer first converting the value
to a user type of FLD_STRING. fbfr is a pointer to a fielded buffer. fieldid is a field
identifier. oc is the occurrence number of the field. The caller of Fgets() provides buf,
a pointer to a private buffer, which is used for the retrieved field value. It is assumed
that buf is large enough to hold the value. Basically, Fgets() calls CFget(3) with an
assumed utype of FLD_STRING, and a ulen of 0.

Fgets32 is used with 32-bit FML.

Return Values This function returns \-1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fgets() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.
1-62 BEA MessageQ Reference Manual

Fgets (3FML)
[FTYPERR]
"invalid field type"
A field identifier is specified which is not valid.

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc(3) failed.

See Also Fintro(3), CFget(3), Fget(3), Fgetalloc(3), Fgetlast(3), Fgetsa(3)
BEA MessageQ Reference Manual 1-63

1 Fgetsa (3FML)
Fgetsa (3FML)

Name Fgetsa, Fgetsa32-malloc space and get converted value

Synopsis #include <stdio.h>
#include "fml.h"
char *
Fgetsa(FBFR *fbfr, FLDID fieldid, FLDOCC oc, FLDLEN *extra)
#include "fml32.h"
char *
Fgetsa32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc, FLDLEN32
 *extra)

Description Fgetsa() is a macro that calls CFgetalloc(3). fbfr is a pointer to a fielded buffer.
fieldid is a field identifier. oc is the occurrence number of the field. The function uses
malloc(3) (in UNIX System programmer’s reference manuals) to allocate space for
the retireved field value that has been converted to a string. If extra is not NULL, it
specifies the extra space to allocate in addition to the field value size; the total size is
returned in extra.

It is the responsibility of the user to free(3) (in UNIX System reference manuals) the
space malloc’d.

Fgetsa32 is used with 32-bit FML.

Return Values On success, the function returns a pointer to the allocated buffer.

This function returns NULL on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fgetsa() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.
1-64 BEA MessageQ Reference Manual

Fgetsa (3FML)
[FTYPERR]
"invalid field type"
A field identifier is specified which is not valid.

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc(3) failed.

See Also Fintro(3), malloc(3), free(3) in UNIX System reference manuals, CFget(3),
Fget(3), Fgetlast(3), Fgets(3),
BEA MessageQ Reference Manual 1-65

1 Fidnm_unload (3FML)
Fidnm_unload (3FML)

Name Fidnm_unload, Fidnm_unload32-recover space from id->nm mapping tables

Synopsis #include <stdio.h>
#include "fml.h"
void
Fidnm_unload(void);
#include "fml32.h"
void
Fidnm_unload32(void);

Description Fidnm_unload() recovers space allocated by Fname(3) for field identifier to field
name mapping tables.

Fidnm_unload32 is used with 32-bit FML.

Return Values This function is declared as a void and so does not return anything.

See Also Fintro(3), Fname(3), Fnmid_unload(3)
1-66 BEA MessageQ Reference Manual

Fidxused (3FML)
Fidxused (3FML)

Name Fidxused, Fidxused32-return amount of space used

Synopsis #include <stdio.h>
#include "fml.h"
long
Fidxused(FBFR *fbfr)
#include "fml32.h"
long
Fidxused32(FBFR32 *fbfr)

Description Fidxused() indicates the current amount of space used by the buffer’s index. fbfr is a
pointer to a fielded buffer.

Fidxused32 is used with 32-bit FML.

Return Values On success, the function returns the amount of space in the buffer used by the index.
This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fidxused() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

See Also Fintro(3), Findex(3), Frstrindex(3), Funused(3), Fused(3)
BEA MessageQ Reference Manual 1-67

1 Fielded (3FML)
Fielded (3FML)

Name Fielded, Fielded32-return true if buffer is fielded

Synopsis #include stdio.h>
#include "fml.h"
int
Fielded(FBFR *fbfr)
#include "fml32.h"
int
Fielded32(FBFR32 *fbfr)

Description Fielded() is used to test whether the specified buffer is fielded. fbfr is a pointer to a
fielded buffer.

Fielded32 is used with 32-bit FML.

Return Values Fielded() returns true (1) if the buffer is fielded. It returns false (0) if the buffer is
not fielded and does not set Ferror in this case.

See Also Fintro(3), Finit(3), Fneeded(3), Fsizeof(3)
1-68 BEA MessageQ Reference Manual

Findex (3FML)
Findex (3FML)

Name Findex, Findex32-index a fielded buffer

Synopsis #include <stdio.h>
#include "fml.h"
int
Findex(FBFR *fbfr, FLDOCC intvl)
#include "fml32.h"
int
Findex32(FBFR32 *fbfr, FLDOCC32 intvl)

Description The function Findex() is called explicitly to index a fielded buffer. fbfr is a pointer
to a fielded buffer. The second parameter, intvl, gives the indexing interval, that is, the
ideal separation of indexed fields. If this argument has value 0, then the buffer’s current
indexing value is used. If the current value itself is 0, the value FSTDXINTVL (defaults
to 16) is used. Using an indexing value of 1 will ensure that every field in the buffer is
indexed. The size of the index interval and the amount of space allocated to a buffer’s
index are inversely proportional: the smaller the interval, the more fields are indexed
and thus the larger the amount of space used for indexing.

Findex32 is used with 32-bit FML.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Findex() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOSPACE]
"no space in fielded buffer"
An ENTRY is to be added to the index but there is not enough space
remaining in the buffer.

See Also Fintro(3fml), Fidxused(3fml), Frstrindex(3fml), Funindex(3fml)
BEA MessageQ Reference Manual 1-69

1 Finit (3FML)
Finit (3FML)

Name Finit, Finit32-initialize fielded buffer

Synopsis #include <stdio.h>
#include "fml.h"
int
Finit(FBFR *fbfr, FLDLEN buflen)
#include "fml32.h"
int
Finit32(FBFR32 *fbfr, FLDLEN32 buflen)

Description Finit() can be called to initialize a fielded buffer statically. fbfr is a pointer to a
fielded buffer. buflen is the length of the buffer. The function takes the buffer pointer
and buffer length, and sets up the internal structure for a buffer with no fields.
Finit() can also be used to re-initialize a previously used buffer.

Finit32 is used with 32-bit FML.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Finit() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer pointer is NULL.

[FNOSPACE]
"no space in fielded buffer"
The buffer size specified is too small for a fielded buffer.

Example The correct way to re-initialize a buffer to have no fields is: Finit(fbfr,
(FLDLEN)Fsizeof(fbfr));

See Also Fintro(3), Falloc(3), Fneeded(3), Frealloc(3)
1-70 BEA MessageQ Reference Manual

Fjoin (3FML)
Fjoin (3FML)

Name Fjoin, Fjoin32-join source into destination buffer

Synopsis #include stdio.h>
#include "fml.h"
int
Fjoin(FBFR *dest, FBFR *src)
#include "fml32.h"
int
Fjoin32(FBFR32 *dest, FBFR32 *src)

Description Fjoin() is used to join two fielded buffers based on matching fieldid/occurrence. dest
and src are pointers to the destination and source fielded buffers respectively. For
fields that match on fieldid/occurrence, the field value is updated in the destination
buffer with the value in the source buffer. Fields in the destination buffer that have
no corresponding fieldid/occurrence in the source buffer are deleted.

This function may fail due to lack of space if the new values are larger than the old;
in this case, the destination buffer will have been modified. However, if this happens,
the destination buffer may be re-allocated using Frealloc(3) and the Fjoin()
function repeated. Even if the destination buffer has been partially updated, repeating
the function will give the correct results.

Fjoin32 is used with 32-bit FML.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fjoin() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
Either the source buffer or the destination buffer does not begin on the proper
boundary.

[FNOTFLD]
"buffer not fielded"
Either the source buffer or the destination buffer is not a fielded buffer or has
not been initialized by Finit().

[FNOSPACE]
"no space in fielded buffer"
A field value is to be added or changed in a field buffer but there is not
enough space remaining in the buffer.
BEA MessageQ Reference Manual 1-71

1 Fjoin (3FML)
Example In the following example:

FBFR *src, *dest; ... if(Fjoin(dest,src) 0) F_error("pgm_name");

if dest has fields A, B, and two occurrences of C, and src has fields A, C, and D, the
resultant dest will have source field value A and source field value C.

See Also Fintro(3), Fconcat(3), Fojoin(3), Fproj(3), Fprojcpy(3), Frealloc(3)
1-72 BEA MessageQ Reference Manual

Fldid (3FML)
Fldid (3FML)

Name Fldid, Fldid32-map field name to field identifier

Synopsis #include <stdio.h>
#include "fml.h"

FLDID
Fldid(char *name)

#include "fml32.h"

FLDID32
Fldid32(char *name)

Description Fldid() provides a runtime translation of a field-name to its field identifier and returns
a FLDID corresponding to its field name parameter. The first invocation causes space
to be dynamically allocated for the field tables and the tables to be loaded. To recover
data space used by the field tables loaded by Fldid(), the user may unload the files by
a call to the Fnmid_unload(3) function.

Fldid32 is used with 32-bit FML.

Return Values This function returns BADFLDID on error and sets Ferror to indicate the error
condition.

Errors Under the following conditions, Fldid() fails and sets Ferror to:

[FBADNAME]
"unknown field name"
A field name is specified which cannot be found in the field tables.

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc(3) failed.

See Also Fintro(3), malloc(3) in UNIX System reference manuals, Fldno(3), Fname(3),
Fnmid_unload(3)
BEA MessageQ Reference Manual 1-73

1 Fldno (3FML)
Fldno (3FML)

Name Fldno, Fldno32-map field identifier to field number

#include <stdio.h>
#include "fml.h"

int
Fldno(FLDID fieldid)

#include "fml32.h"

long
Fldno32(FLDID32 fieldid)

Description Fldno() accepts a field identifier, fieldid, as a parameter and returns the field number
contained in the identifier.

Fldno32 is used with 32-bit FML.

Return Values This function returns the field number and does not return an error.

See Also Fintro(3), Fldid(3), Fldtype(3)
1-74 BEA MessageQ Reference Manual

Fldtype (3FML)
Fldtype (3FML)

Name Fldtype, Fldtype32-map field identifier to field type

Synopsis #include <stdio.h>
#include "fml.h"

int
Fldtype(FLDID fieldid)

#include "fml32.h"

int
Fldtype32(FLDID32 fieldid)

Description Fldtype() accepts a field identifier, fieldid, and returns the field type contained in the
identifier (an integer), as defined in fml.h.

Fldtype32 is used with 32-bit FML.

Return Values This function returns the field type.

See Also Fintro(3), Fldid(3), Fldno(3)
BEA MessageQ Reference Manual 1-75

1 Flen (3FML)
Flen (3FML)

Name Flen, Flen32-return len of field occurrence in buffer

Synopsis #include <stdio.h>
#include "fml.h"

int
Flen(FBFR *fbfr, FLDID fieldid, FLDOCC oc)

#include "fml32.h"

long
Flen32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc)

Description Flen() finds the value of the specified field occurrence in the buffer and returns its
length. fbfr is a pointer to a fielded buffer. fieldid is a field identifier. oc is the
occurrence number of the field.

Flen32 is used with 32-bit FML.

Return Values On success, Flen() returns the field length.

This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Flen() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

See Also Fintro(3), Fnum(3), Fpres(3)
1-76 BEA MessageQ Reference Manual

Fmkfldid (3FML)
Fmkfldid (3FML)

Name Fmkfldid, Fmkfldid32-make a field identifier

#include <stdio.h>
#include "fml.h"

FLDID
Fmkfldid(int type, FLDID num)

#include "fml.h"

FLDID32
Fmkfldid32(int type, FLDID32 num)

Description Fmkfldid() allows the creation of a valid field identifier from a valid type (as defined
in fml.h) and a field number. This is useful for writing an application generator that
chooses field numbers sequentially, or for recreating a field identifier.

type is a valid type (an integer; see Fldtype(3)). num is a field number (it should be
an unused field number, to avoid confusion with existing fields)

Fmkfldid32 is used with 32-bit FML.

Return Values This function returns BADFLDID on error and sets Ferror to indicate the error
condition.

Errors Under the following conditions, Fmkfldid() fails and sets Ferror to:

[FBADFLD]
"unknown field number or type"
A field number is specified which is not valid.

[FTYPERR]
"invalid field type"
A field type is specified which is not valid (as defined in fml.h).

See Also Fintro(3), Fldtype(3)
BEA MessageQ Reference Manual 1-77

1 Fmove (3FML)
Fmove (3FML)

Name Fmove, Fmove32-move fielded buffer to destination

Synopsis #include <stdio.h>
#include "fml.h"

int
Fmove(char *dest, FBFR *src)

#include "fml32.h"

int
Fmove32(char *dest, FBFR32 *src)

Description Fmove() should be used when copying from a fielded buffer to any type of buffer. dest
and src are pointers to the destination buffer and the source fielded buffers
respectively.

The difference between Fmove() and Fcpy(3) is that Fcpy(3) expects the destination to
be a fielded buffer and thus can make sure it is of sufficient size to accommodate the
data from the source buffer. Fmove() makes no such check, blindly moving
Fsizeof(3) bytes of data from the source fielded buffer to the target buffer. The
destination buffer must be aligned on a short boundary.

Fmove32 is used with 32-bit FML.

Return Values This function returns \-1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fmove() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The source or destination buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The source buffer is not a fielded buffer or has not been initialized by
Finit().

See Also Fintro(3), Fcpy(3), Fsizeof(3)
1-78 BEA MessageQ Reference Manual

Fname (3FML)
Fname (3FML)

Name Fname, Fname32-map field identifier to field name

Synopsis #include <stdio.h>
#include "fml.h"

char *
Fname(FLDID fieldid)

#include "fml32.h"

char *
Fname32(FLDID32 fieldid)

Description Fname() provides a runtime translation of a field identifier, fieldid, to its field name and
returns a pointer to a character string containing the name corresponding to its
argument. The first invocation causes space to be dynamically allocated for the field
tables and the tables to be loaded. The table space used by the mapping tables created
by Fname() may be recovered by a call to the function Fidnm_unload(3).

Fname32 is used with 32-bit FML.

Return Values This function returns NULL on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fname() fails and sets Ferror to:

[FBADFLD]
"unknown field number or type"
A field number is specified for which a field name cannot be found or is
invalid (0).

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc(3) failed.

See Also Fintro(3), Ffprint(3), Fidnm_unload(3), Fldid(3), Fprint(3)
BEA MessageQ Reference Manual 1-79

1 Fneeded (3FML)
Fneeded (3FML)

Name Fneeded, Fneeded32-compute size needed for buffer

Synopsis #include <stdio.h>
#include "fml.h"

long
Fneeded(FLDOCC F, FLDLEN V)

#include "fml32.h"

long
Fneeded32(FLDOCC32 F, FLDLEN32 V)

Description Fneeded() if used to determine the space that must be allocated for F fields and V bytes
of value space.

Fneeded32 is used with 32-bit FML.

Return Values This function returns \-1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fneeded() fails and sets Ferror to:

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid, (for example,
number of fields is less than 0, V is 0 or total size is greater than 65534).

See Also Fintro(3), Falloc(3), Finit(3), Fielded(3), Fsizeof(3), Funused(3), Fused(3)
1-80 BEA MessageQ Reference Manual

Fnext (3FML)
Fnext (3FML)

Name Fnext, Fnext32-get next field occurrence

Synopsis #include <stdio.h>
#include "fml.h"

int
Fnext(FBFR *fbfr, FLDID *fieldid, FLDOCC *oc, char *value, FLDLEN
*len)

#include "fml32.h"

int
Fnext32(FBFR32 *fbfr, FLDID32 *fieldid, FLDOCC32 *oc, char *value,
FLDLEN32 *len)

Description Fnext() finds the next field in the buffer after the specified field occurrence. fbfr is a
pointer to a fielded buffer. fieldid is a pointer to a field identifier. oc is a pointer to the
occurrence number of the field. value is a pointer to the value of the next field. len is
the length of the next value.

The field identifier, FIRSTFLDID, should be specified to get the first field in the buffer
(for example, on the first call to Fnext()). If value is not NULL, the next field value is
copied into value; *len is used to determine if the buffer has enough space allocated to
contain the value. The value’s length is returned in *len. If len is NULL when the
function is called, it is assumed that there is enough space and the new value length is
not returned. If value is NULL, the value is not retrieved and only fieldid and oc are
updated. The *fieldid and *oc parameters are respectively set to the next found field
and occurrence. If no more fields are found, 0 is returned (end of buffer) and *fieldid,
*oc, and *value are left unchanged. Fields are returned in field identifier order.

Although the type of value is char *, the value returned will be of the same type as the
next field being retrieved.

Fnext32 is used with 32-bit FML.

Return Values Fnext() returns 1 when the next occurrence is successfully found. It returns 0 when the
end of the buffer is reached.

This function returns \-1 on error and sets Ferror to indicate the error condition.
BEA MessageQ Reference Manual 1-81

1 Fnext (3FML)
Errors Under the following conditions, Fnext() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOSPACE]
"no space"
The size of value, as specified in len, is not large enough to hold the field
value.

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid, (for example,
specifying NULL for fieldid or oc).

See Also Fintro(3), Fget(3), Fnum(3)
1-82 BEA MessageQ Reference Manual

Fnmid_unload (3FML)
Fnmid_unload (3FML)

Name Fnmid_unload, Fnmid_unload32-recover space from nm->id mapping tables

Synopsis #include <stdio.h>
#include "fml.h"
void Fnmid_unload(void)
#include "fml32.h"
void Fnmid_unload32(void)

Description To recover data space used by the field tables loaded by Fldid(3), the user may unload
the files by a call to the Fnmid_unload() function.

Fnmid_unload32 is used with 32-bit FML.

Return Values This function is declared as a void and so does not return anything.

See Also Fintro(3), Fidnm_unload(3), Fldid(3)
BEA MessageQ Reference Manual 1-83

1 Fnum (3FML)
Fnum (3FML)

Name Fnum, Fnum32-return count of all occurrences in buffer

Synopsis #include <stdio.h>
#include "fml.h"

FLDOCC
Fnum(FBFR *fbfr)

#include "fml32.h"

FLDOCC32
Fnum32(FBFR *fbfr)

Description Fnum() returns the number of fields contained in the specified buffer. fbfr is a pointer
to a fielded buffer.

Fnum32 is used with 32-bit FML.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fnum() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

See Also Fintro(3), Foccur(3), Fpres(3)
1-84 BEA MessageQ Reference Manual

Foccur (3FML)
Foccur (3FML)

Name Foccur, Foccur32-return count of field occurrences in buffer

Synopsis #include <stdio.h>
#include "fml.h"

FLDOCC
Foccur(FBFR *fbfr, FLDID fieldid)

#include "fml32.h"

FLDOCC32 Foccur32(FBFR32 *fbfr, FLDID32 fieldid)

Description Foccur() is used to determine the number of occurrences of the field specified by
fieldid in the buffer pointed to by fbfr.

Foccur32 is used with 32-bit FML.

Return Values On success, Foccur() returns the number of occurrences; if none are found, it returns
0.

This function returns \-1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Foccur() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

See Also Fintro(3), Fnum(3), Fpres(3)
BEA MessageQ Reference Manual 1-85

1 Fojoin (3FML)
Fojoin (3FML)

Name Fojoin, Fojoin32-outer join source into destination buffer

#include <stdio.h>
#include "fml.h"

int
Fojoin(FBFR *dest, FBFR *src)

#include "fml32.h"

int
Fojoin32(FBFR32 *dest, FBFR32 *src)

Description Fojoin() is similar to Fjoin(3), but it keeps fields from the destination buffer, dest,
that have no corresponding fieldid/occurrence in the source buffer, src. Fields that
exist in the source buffer that have no corresponding fieldid/occurrence in the
destination buffer are not added to the destination buffer.

As with Fjoin(3), this function can fail for lack of space; it can be re-issued again
after allocating more space to complete the operation.

Fojoin32 is used with 32-bit FML.

Return Values This function returns \-1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fojoin() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
Either the source buffer or the destination buffer does not begin on the proper
boundary.

[FNOTFLD]
"buffer not fielded"
Either the source buffer or the destination buffer is not a fielded buffer or has
not been initialized by Finit().

[FNOSPACE]
"no space in fielded buffer"
A field value is to be added or changed in a field buffer but there is not
enough space remaining in the buffer.
1-86 BEA MessageQ Reference Manual

Fojoin (3FML)
Example In the following example,

if(Fojoin(dest,src) 0)
 F_error("pgm_name");

if dest has fields A, B, and two occurrences of C, and src has fields A, C, and D, the
resultant dest will contain the source field value A, the destination field value B,the
source field value C, and the second destination field value C.

See Also Fintro(3), Fconcat(3), Fjoin(3), Fproj(3)
BEA MessageQ Reference Manual 1-87

1 Fpres (3FML)
Fpres (3FML)

Name Fpres, Fpres32-true if field occurrence is present in buffer

#include <stdio.h>

#include "fml.h"

int
Fpres(FBFR *fbfr, FLDID fieldid, FLDOCC oc)

#include "fml32.h"

int
Fpres32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc)

Description Fpres() is used to detect if a given occurrence, oc, of a specified field, fieldid, exists
in the buffer pointed to by fbfr.

Fpres32 is used with 32-bit FML.

Return Values Fpres() returns true (1) if the specified occurrence exists and false (0) otherwise.

See Also Fintro(3), Ffind(3), Fnum(3), Foccur(3)
1-88 BEA MessageQ Reference Manual

Fprint (3FML)
Fprint (3FML)

Name Fprint, Fprint32-print buffer to standard output

Synopsis #include <stdio.h>
#include "fml.h"

int
Fprint(FBFR *fbfr)

#include "fml32.h"

int
Fprint32(FBFR32 *fbfr)

Description Fprint() prints the specified buffer to the standard output. fbfr is a pointer to a fielded
buffer. For each field in the buffer, the output prints the field name and field value
separated by a tab. Fname(3) is used to determine the field name; if the field name
cannot be determined, then the field identifier is printed. Non-printable characters in
string and character array field values are represented by a backslash followed by their
two-character hexadecimal value. A newline is printed following the output of the
printed buffer.

Fprint32 is used with 32-bit FML.

Return Values This function returns \-1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fprint() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc(3) failed.

See Also Fintro(3), Fextread(3), Fname(3), Ffprint(3)
BEA MessageQ Reference Manual 1-89

1 Fproj (3FML)
Fproj (3FML)

Name Fproj, Fproj32-projection on buffer

Synopsis #include <stdio.h>
#include "fml.h"

int
Fproj(FBFR *fbfr, FLDID *fieldid)

#include "fml32.h"

int
Fproj32(FBFR32 *fbfr, FLDID32 *fieldid)

Description Fproj() is used to update a buffer so as to keep only the desired fields. fbfr is a pointer
to a fielded buffer. The desired fields are specified in an array of field identifiers
pointed to by fieldid. The last entry in the array must be BADFLDID. The update is done
in-place; fields that are not in the result of the projection are deleted from the fielded
buffer. The array of field identifiers may be re-arranged (if they are not already in
numeric order, they are sorted).

Fproj32 is used with 32-bit FML.

Return Values This function returns \-1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fproj() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

Example #include "fld.tbl.h"
FBFR *fbfr;
FLDID fieldid[20];
...
fieldid[0] = A; /* field id for field A */
fieldid[1] = D; /* field id for field D */
fieldid[2] = BADFLDID; /* sentinel value */
...
if(Fproj(fbfr, fieldid) 0)
 F_error("pgm_name");
1-90 BEA MessageQ Reference Manual

Fproj (3FML)
If the buffer has fields A, B, C, and D, the example results in a buffer that contains only
occurrences of fields A and D. The entries in the array of field identifiers do not need
to be in any specific order, but the last value in the array of field identifiers must be
field identifier 0 (BADFLDID).

See Also Fintro(3), Fjoin(3), Fojoin(3), Fprojcpy(3)
BEA MessageQ Reference Manual 1-91

1 Fprojcpy (3FML)
Fprojcpy (3FML)

Name Fprojcpy, Fprojcpy32-projection and copy on buffer

Synopsis #include <stdio.h>
#include "fml.h"

int
Fprojcpy(FBFR *dest, FBFR *src, FLDID *fieldid)

#include "fml32.h"

int
Fprojcpy32(FBFR32 *dest, FBFR32 *src, FLDID32 *fieldid)

Description Fprojcpy() is similar to Fproj(3) but the projection is done into a destination buffer
instead of in-place. dest and src are pointers to the destination and source fielded
buffers respectively. fieldid is a pointer to an array of field identifiers. Any fields in the
destination buffer are first deleted and the results of the projection on the source buffer
are put into the destination buffer. The source buffer is not changed. The array of field
identifiers may be re-arranged (if they are not already in numeric order, they are
sorted).

This function can fail for lack of space; it can be re-issued after allocating enough
additional space to complete the operation.

Fprojcpy32 is used with 32-bit FML.

Return Values This function returns \-1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fprojcpy() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
Either the source buffer or the destination buffer does not begin on the proper
boundary.

[FNOTFLD]
"buffer not fielded"
Either the source buffer or the destination buffer is not a fielded buffer or has
not been initialized by Finit().

[FNOSPACE]
"no space in fielded buffer"
A field value is to be copied to the destination fielded buffer but there is not
enough space remaining in the buffer.

See Also Fintro(3), Fjoin(3), Fojoin(3), Fproj(3)
1-92 BEA MessageQ Reference Manual

Fread (3FML)
Fread (3FML)

Name Fread, Fread32-read fielded buffer

Synopsis #include <stdio.h>
#include "fml.h"

int
Fread(FBFR *fbfr, FILE *iop)

#include "fml32.h"

int
Fread32(FBFR32 *fbfr, FILE32 *iop)

Description Fielded buffers may be read from file streams using Fread(). fbfr is a pointer to a
fielded buffer. iop is a pointer of type FILE to the input stream. (See stdio(3S) in a
UNIX System reference manual for a discussion of streams). Fread() reads the fielded
buffer from the stream into fbfr, clearing any data previously stored in the buffer, and
recreates the buffer’s index.

Fread32 is used with 32-bit FML.

Return Values This function returns \-1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fread() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit(). This
error is also returned if the data that is read is not a fielded buffer.

[FNOSPACE]
"no space in fielded buffer"
There is not enough space in the buffer to hold the fielded buffer being read
from the stream.

[FEUNIX]
"UNIX system call error"
The read() system call failed. The external integer errno should have been
set to indicate the error by the system call.
BEA MessageQ Reference Manual 1-93

1 Fread (3FML)
See Also Fintro(3), stdio(3S) in UNIX System reference manuals, Findex(3), Fwrite(3)
1-94 BEA MessageQ Reference Manual

Frealloc (3FML)
Frealloc (3FML)

Name Frealloc, Frealloc32-re-allocate fielded buffer

Synopsis #include <stdio.h>
#include "fml.h"

FBFR *
Frealloc(FBFR *fbfr, FLDOCC nf, FLDLEN nv)

#include "fml32.h"

FBFR32 *
Frealloc32(FBFR32 *fbfr, FLDOCC32 nf, FLDLEN32 nv)

Description Frealloc() can be used to re-allocate space to enlarge a fielded buffer. fbfr is a pointer
to a fielded buffer. The second and third parameters are the new number of fields, nf,
and the new number of bytes value space, nv. These are not increments.

Frealloc32 is used with 32-bit FML.

Return Values On success, Frealloc returns a pointer to the re-allocated FBFR.

This function returns NULL on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Frealloc() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid, (for example,
number of fields is less than 0, V is 0 or total size is greater than 65534).

[FMALLOC]
"malloc failed"
The new size is smaller than what is currently in the buffer, or allocation of
space dynamically using realloc(3) failed.

See Also Fintro(3), Falloc(3), Ffree(3)
BEA MessageQ Reference Manual 1-95

1 Frstrindex (3FML)
Frstrindex (3FML)

Name Frstrindex, Frstrindex32-restore index in a buffer

Synopsis #include <stdio.h>
#include "fml.h"

int
Frstrindex(FBFR *fbfr, FLDOCC numidx)

#include "fml32.h"

int
Frstrindex32(FBFR32 *fbfr, FLDOCC32 numidx)

Description A fielded buffer that has been unindexed may be reindexed by either calling Findex(3)
or Frstrindx(). fbfr is a pointer to a fielded buffer. The former performs a total index
calculation on the buffer, and is fairly expensive (requiring a full scan of the buffer). It
should be used when an unindexed buffer has been altered, or the previous state of the
buffer is unknown (for example, when it has been sent from one process to another
without an index). Frstrindex() is much faster, but may only be used if the buffer has
not been altered since its previous unindexing operation. The second argument to
Frstrindx(), numidx, is the return from the Funindex(3) function.

Frstrindex32 is used with 32-bit FML.

Return Values This function returns \-1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Frstrindex() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

Example In order to transmit a buffer without its index, something like the following should be
performed:

save = Funindex(fbfr);
num_to_send = Fused(fbfr);
transmit(fbfr,num_to_send); /* A hypothetical function */
Frstrindx(fbfr,save);
1-96 BEA MessageQ Reference Manual

Frstrindex (3FML)
These four statements do the following:

1. - /* unindex, saving for Frstrindx */
2. - /* determine number of bytes to send */
3. - /* send fbfr, without index */
4. - /* restore index */

In this case, transmit() is passed a memory pointer and a length. The data to be
transmitted begins at the memory pointer and has num_to_send number of significant
bytes. Once the buffer has been sent, its index may be restored (assuming transmit()
does not alter it in any way) using Frstrindex(). On the receiving end of the
transmission, the process accepting the fielded buffer would index it with Findex(3),
as in:

receive(fbfr); /* get fbfr from wherever .. into fbfr */
Findex(fbfr); /* index it */

The receiving process cannot call Frstrindx() because:

1. it did not call Funindex(3) and so has no idea of what the value of the numidx
argument to Frstrindex() should be

2. the index itself is not available because it was not sent.

The solution is to call Findex(3) explicitly. Of course, the user is always free to
transmit the indexed versions of a fielded buffer (that is, send Fsizeof(*fbfr) bytes)
and avoid the cost of Findex(3) on the receiving side.

See Also Fintro(3), Findex(3), Fsizeof(3), Funindex(3)
BEA MessageQ Reference Manual 1-97

1 Fsizeof (3FML)
Fsizeof (3FML)

Name Fsizeof, Fsizeof32-return size of fielded buffer

Synopsis #include <stdio.h>
#include "fml.h"

long
Fsizeof(FBFR *fbfr)

#include "fml32.h"

long
Fsizeof32(FBFR32 *fbfr)

Description Fsizeof() returns the size of a fielded buffer in bytes. fbfr is a pointer to a fielded
buffer.

Fsizeof32 is used with 32-bit FML.

Return Values This function returns \-1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fsizeof() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

See Also Fintro(3), Fidxused(3), Fused(3), Funused(3)
1-98 BEA MessageQ Reference Manual

Fstrerror (3FML)
Fstrerror (3FML)

Name Fstrerror, Fstrerror32—get error message string for FML error

Synopsis #include <fml.h>

char *
Fstrerror(int err)

#include <fml32.h>

char *
Fstrerror32(int err)

Description Fstrerror is used to retrieve the text of an error message from LIBFML_CAT. err is
the error code set in F_error when a FML function call returns a -1 or other failure
value.

The user can use the pointer returned by Fstrerror as an argument to userlog or
F_error.

Fstrerror32 is used with 32-bit FML.

Return Values If err is an invalid error code, Fstrerror returns a NULL. On success, the function
returns a pointer to a string that contains the error message text.

Errors Fstrerror returns a NULL on error, but does not set F_error.

See Also Fintro(3fml), tpstrerror(3c), F_error(3fml), userlog(3c)
BEA MessageQ Reference Manual 1-99

1 Ftypcvt (3FML)
Ftypcvt (3FML)

Name Ftypcvt, Ftypcvt32-convert from one field type to another

Synopsis #include <stdio.h>
#include "fml.h"

char *
Ftypcvt(FLDLEN *tolen, int totype, char *fromval, int fromtype,
 FLDLEN fromlen)

#include "fml32.h"

char *
Ftypcvt32(FLDLEN32 *tolen, int totype, char *fromval, int fromtype,
 FLDLEN32 fromlen)

Description Ftypcvt() converts the value *fromval, which has type fromtype, and length fromlen
(if fromtype is FLD_CARRAY; otherwise, fromlen is inferred from fromtype), to a
value of type totype. Ftypcvt() returns a pointer to the converted value, and sets *tolen
to the converted length, upon success. Upon failure, Ftypcvt() returns NULL.

Ftypcvt32 is used with 32-bit FML.

Return Values This function returns NULL on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Ftypcvt() fails and sets Ferror to:

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc(3) failed when converting
from a carray to string.

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid, (for example, a
NULL tolen or fromval parameter was specified).

[FTYPERR]
"invalid field type"
A field identifier is specified which is not valid.

See Also Fintro(3), CFadd(3), CFchg(3), CFget(3), CFgetalloc(3), CFfind(3)
1-100 BEA MessageQ Reference Manual

Ftype (3FML)

.”

pe.
Ftype (3FML)

Name Ftype, Ftype32-return pointer to type of field

Synopsis #include <stdio.h>
#include "fml.h"

char *
Ftype(FLDID fieldid)

#include "fml32.h"

char *
Ftype32(FLDID32 fieldid)

Description Ftype() returns a pointer to a string containing the name of the type of a field, given a
field identifier, fieldid. For example, if the FLDID of a field of type short is supplied
to Ftype(), a pointer is returned to the string “short.” This data area is “read-only

Ftype32 is used with 32-bit FML.

Return Values On success, Ftype() returns a pointer to a character string that identifies the field ty

This function returns NULL on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Ftype() fails and sets Ferror to:

[FTYPERR]
"invalid field type"
A field identifier is specified which is not valid.

See Also Fintro(3), Fldid(3), Fldno(3)
BEA MessageQ Reference Manual 1-101

1 Funindex (3FML)
Funindex (3FML)

Name Funindex, Funindex32-discard fielded buffer’s index

Synopsis #include <stdio.h>
#include "fml.h"

FLDOCC
Funindex(FBFR *fbfr)

#include "fml32.h"

FLDOCC32
Funindex32(FBFR32 *fbfr)

Description Funindex() discards a fielded buffer’s index. fbfr is a pointer to a fielded buffer. When
the function returns successfully, the buffer is unindexed. As a result, none of the
buffer’s space is allocated to an index and more space is available to user fields (at the
cost of potentially slower access time). Unindexing a buffer is useful when it is to be
stored on disk or to be transmitted somewhere. In the first case disk space is conserved,
in the second, transmission costs may be reduced.

The number of significant bytes from the buffer start, after a buffer has been unindexed
is determined by the function call: Fused(fbfr)

Funindex32 is used with 32-bit FML.

Return Values Funindex() returns the number of index elements the buffer has before the index is
stripped.

This function returns \-1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Funindex() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

See Also Fintro(3), Findex(3), Frstrindex(3), Fsizeof(3), Funused(3)
1-102 BEA MessageQ Reference Manual

Funused (3FML)
Funused (3FML)

Name Funused, Funused32-return number of unused bytes in fielded buffer

Synopsis #include <stdio.h>
#include "fml.h"

long
Funused(FBFR *fbfr)

#include "fml32.h"

long
Funused32(FBFR32 *fbfr)

Description Funused() returns the amount of space currently unused in the buffer. Space is unused
if it contains neither user data nor overhead data such as the header and index.

fbfr is a pointer to a fielded buffer.

Funused32 is used with 32-bit FML.

Return Values This function returns \-1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Funused() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

See Also Fintro(3), Fidxused(3), Fused(3)
BEA MessageQ Reference Manual 1-103

1 Fupdate (3FML)
Fupdate (3FML)

Name Fupdate, Fupdate32-update destination buffer with source

Synopsis #include <stdio.h>
#include "fml.h"

int
Fupdate(FBFR *dest, FBFR *src)

#include "fml32.h"

int
Fupdate32(FBFR32 *dest, FBFR32 *src)

Description Fupdate() updates the destination buffer with the field values in the source buffer. dest
and src are pointers to fielded buffers. For fields that match on fieldid/occurrence, the
field value is updated in the destination buffer with the value in the source buffer.
Fields in the destination buffer that have no corresponding field in the source buffer
are left untouched. Fields in the source buffer that have no corresponding field in the
destination buffer are added to the destination buffer.

Fupdate32 is used with 32-bit FML.

Return Values This function returns \-1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fupdate() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
Either the source buffer or the destination buffer does not begin on the proper
boundary.

[FNOTFLD]
"buffer not fielded"
The source or destination buffer is not a fielded buffer or has not been
initialized by Finit().

[FNOSPACE]
"no space in fielded buffer"
A field value is to be added or changed in the destination buffer but there is
not enough space remaining in the buffer.

See Also Fintro(3), Fjoin(3), Fojoin(3), Fproj(3), Fprojcpy(3)
1-104 BEA MessageQ Reference Manual

Fused (3FML)
Fused (3FML)

Name Fused, Fused32-return number of used bytes in fielded buffer

Synopsis #include <stdio.h>
#include "fml.h"

long
Fused(FBFR *fbfr)

#include "fml32.h"

long
Fused32(FBFR32 *fbfr)

Description Fused() returns the amount of used space in a fielded buffer in bytes, including both
user data and the header (but not the index, which can be dropped at any time). fbfr is
a pointer to a fielded buffer.

Fused32 is used with 32-bit FML.

Return Values This function returns \-1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fused() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

See Also Fintro(3), Fidxused(3), Funused(3)
BEA MessageQ Reference Manual 1-105

1 Fvall (3FML)
Fvall (3FML)

Name Fvall, Fvall32-return long value of field occurrence

#include <stdio.h>
#include "fml.h"

long
 Fvall(FBFR *fbfr, FLDID fieldid, FLDOCC oc)

#include "fml32.h"

long
Fvall32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc)

Description Fvall() works like Ffind(3) for long and short values, but returns the actual value of
the field as a long, instead of a pointer to the value. fbfr is a pointer to a fielded buffer.
fieldid is a field identifier. oc is the occurrence number of the field.

If the specified field occurrence is not found, then 0 is returned. This function is useful
for passing the value of a field to another function without checking the return value.
This function is valid only for fields of type FLD_LONG or FLD_SHORT.

Fvall32 is used with 32-bit FML.

Return Values For fields of types other than FLD_LONG or FLD_SHORT, Fvall() returns 0 and sets
Ferror to FTYPERR.

This function returns 0 on other errors and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fvall() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

[FTYPERR]
"invalid field type"
Bad fieldid or the field type is not FLD_SHORT or FLD_LONG.

See Also Fintro(3), Ffind(3), Fvals(3)
1-106 BEA MessageQ Reference Manual

Fvals (3FML)
Fvals (3FML)

Name Fvals, Fvals32-return string value of field occurrence

Synopsis #include <stdio.h>
#include "fml.h"

char *
Fvals(FBFR *fbfr, FLDID fieldid, FLDOCC oc)

#include "fml32.h"

char *
Fvals32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc)

Description Fvals() works like Ffind(3) for string values but guarantees that a value is returned.
fbfr is a pointer to a fielded buffer. fieldid is a field identifier. oc is the occurrence
number of the field.

If the specified field occurrence is not found, then the null string is returned. This
function is useful for passing the value of a field to another function without checking
the return value. This function is valid only for fields of type FLD_STRING; the null
string is automatically returned for other field types (that is, no conversion is done).

Fvals32 is used with 32-bit FML.

Return Values This function returns the null string on error and sets Ferror to indicate the error
condition.

Errors Under the following conditions, Fvals() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

[FTYPERR]
"invalid field type"
Bad fieldid or the field type is not FLD_STRING.

See Also Fintro(3), CFfind(3), Ffind(3), Fvall(3)
BEA MessageQ Reference Manual 1-107

1 Fwrite (3FML)
Fwrite (3FML)

Name Fwrite, Fwrite32-write fielded buffer

Synopsis #include <stdio.h>
#include "fml.h"

int
Fwrite(FBFR *fbfr, FILE *iop)

#include "fml32.h"

int
Fwrite32(FBFR32 *fbfr, FILE *iop)

Description Fielded buffers may be written to streams by Fwrite(). (See stdio(3S) in a UNIX
System reference manual for a discussion of streams). Fwrite() discards a buffer’s
index.

fbfr is a pointer to a fielded buffer. iop is a pointer of type FILE to the output stream.

Fwrite32 is used with 32-bit FML.

Return Values This function returns \-1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fwrite() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FEUNIX]
"UNIX system call error"
The write system call failed. The external integer errno should have been
set to indicate the error by the system call, and the external integer Uunixerr
(values defined in Uunix.h) is set to the system call that returned the error.

See Also Fintro(3), stdio(3S) in UNIX System reference manuals, Findex(3), Fread(3)
1-108 BEA MessageQ Reference Manual

2 field_tables
Description
BEA MessageQ Reference Manual 2-1

2 FIELD_TABLES(5)
field_tables(5)

Name field_tables-FML mapping files for field names

description The Field Manipulation Language functions implement and manage fielded buffers.
Each field in a fielded buffer is tagged with an identifying integer. Fields that can
variable in length (for example, a string) have an additional length modifier. The buffer
then consists of a series of numeric-identifier/data pairs and
numeric-identifier/length/data triples.

The numeric-identifier of a field is called its "field identifier" (fldid), and is typedef’d
by FLDID. A field is named by relating an alphanumeric string (the name) to a FLDID
in a field table.

The original FML interface supports 16-bit field identifiers, field lengths, and buffer
sizes. A newer 32-bit interface, FML32, supports larger identifiers, field lengths, and
buffer sizes. All types, function names, etc. are suffixed with "32" (for example, the
field identifier type definition is FLDID32).

field identifiers FML functions allow field values to be typed. Currently supported types include char,
string, short, long, float, double, and character array. Constants for field types are
defined in fml.h (fml32.h for FML32). So that fielded buffers can be truly
self-describing, the type of a field is carried along with the field by encoding the field
type in the FLDID. Thus, a FLDID is composed of two elements: a field type, and a
field number. Field numbers must be above 100; the numbers 1-100 are reserved for
system use.

field mapping For efficiency, it is desirable that the field name to field identifier mapping be available
at compile time. For utility, it is also desirable that these mappings be available at run
time. To accommodate both these goals, FML represents field tables in text files, and
provides commands to generate corresponding C header files. Thus, compile time
mapping is done by the C preprocessor, cpp, by the usual #define macro. Runtime
mapping is done by the function Fldid(\|) (Fldid32(\|) for FML32), which maps its
argument, a field name, to a field identifier by consulting the source field table files.

field table files Files containing field tables have the following format:

t blank lines and lines beginning with # are ignored.

t lines beginning with $ are ignored by the mapping functions but are passed
through (without the $) to header files generated by mkfldhdr(1) (the command
name is mkfldhdr32 for FML32). For example, this would allow the application
to pass C comments, what strings, etc. to the generated header file.
2-2 BEA MessageQ Reference Manual

FIELD_TABLES(5)
t lines beginning with the string *base contain a base for offsetting subsequent
field numbers. This optional feature provides an easy way to group and
renumber sets of related fields.

t lines that don’t begin with either * nor # should have the form:

name rel-numb type

where:

t name is the identifier for the field. It should not exceed cpp restrictions.

t rel-numb is the relative numeric value of the field. It is added to the current
base to obtain the field number of the field.

t type is the type of the field, and is specified as one of: char, string, short,
long, float, double, carray.

Entries are white-space separated (any combination of tabs and spaces).

conversion of
field tables to

header files

The command mkfldhdr (or mkfldhdr32) converts a field table, as described above,
into a file suitable for processing by the C compiler. Each line of the generated header
file is of the form:

#define name fldid

where name is the name of the field, and fldid is its field identifier. The field identifier
includes the field type and field number, as previously discussed. The field number is
an absolute number, that is, base + rel-number. The resulting file is suitable for
inclusion in a C program.

environment
variables

Functions such as Fldid(), which access field tables, and commands such as
mkfldhdr(1) and vuform(1), which use them, both need the shell variables
FLDTBLDIR and FIELDTBLS (FLDTBLDIR32 and FIELDTBLS32 for FML32) to specify
the source directories and files, respectively, from which the in-memory version of
field tables should be created. FIELDTBLS specifies a comma-separated list of field
table file names. If FIELDTBLS has no value, fld.tbl is used as the name of the field
table file. The FLDTBLDIR environment variable is a colon-separated list of
\%directories in which to look for each field table whose name is not an absolute path
name. (The search for field tables is very similar to the search for executable
commands using the PATH variable) If FLDTBLDIR is not defined, it is taken to be the
current directory. Thus, if FIELDTBLS and FLDTBLDIR are not set, the default is to take
fld.tbl from the current directory.
BEA MessageQ Reference Manual 2-3

2 FIELD_TABLES(5)
The use of multiple field tables is a convenient way to separate groups of fields, such
as groups of fields that exist in a database from those which are used only by the
application. However, in general field names should be unique across all field tables,
since such tables are capable of being converted to C header files (by the mkfldhdr
command), and identical field names would produce a compiler name conflict
warning. In addition, the function Fldid, which maps a name to a FLDID, does so by
searching the multiple tables, and stops upon finding the first successful match.

example The following is a sample field table in which the base shifts from 500 to 700:

employee ID fields are based at 500
*base 500

#name rel-numb type comment
#---- -------- ---- -------
EMPNAM 1 string emp’s name
EMPID 2 long emp’s id
EMPJOB 3 char job type: D,M,F or T
SRVCDAY 4 carray service date

address fields are based at 700

*base 700

EMPADDR 1 string street address
EMPCITY 2 string city
EMPSTATE 3 string state
EMPZIP 4 long zip code

The associated header file would be

#define EMPADDR ((FLDID)41661) /* number: 701 type: string */
#define EMPCITY ((FLDID)41662) /* number: 702 type: string */
#define EMPID ((FLDID)8694) /* number: 502 type: long */
#define EMPJOB ((FLDID)16887) /* number: 503 type: char */
#define EMPNAM ((FLDID)41461) /* number: 501 type: string */
#define EMPSTATE ((FLDID)41663) /* number: 703 type: string */
#define EMPZIP ((FLDID)8896) /* number: 704 type: long */
#define SRVCDAY ((FLDID)49656) /* number: 504 type: carray */

see also mkfldhdr(1), BEA MessageQ FML Programmer’s Guide
2-4 BEA MessageQ Reference Manual

3 mkfldhdr Command
BEA MessageQ Reference Manual 3-1

3 MKFLDHDR, MKFLDHDR32
mkfldhdr, mkfldhdr32

name mkfldhdr, mkfldhdr32 - Create header files from field-tables

synopsis mkfldhdr [-d outdir] [field_table...] mkfldhdr32 [-d outdir] [field_table...]

description mkfldhdr translates each field table file to a corresponding header file suitable for
inclusion in C programs. The resulting header files provide #define macros for
converting from field names to field IDs. Header file names are formed by
concatenating a.h to the simple file name for each file to be converted.

The field table names may be specified on the command line; each file is converted to
a corresponding header file.

If the field table names are not given on the command line, then the program uses the
FIELDTBLS environment variable as the list of field tables to be converted, and the
FLDTBLDIR environment variable as a list of directories to be searched for the files.
FIELDTBLS specifies a comma-separated list of field table file names. If FIELDTBLS
has no value, fld.tbl is used as the name of the (only) field table file (in this case,
the resulting header file will be (fld.tbl.h). The FLDTBLDIR environment variable
is a colon-separated list of directories in which to look for each field table whose name
is not an absolute path name; the search for field tables is very similar to the search for
executable commands using the UNIX System PATH variable. If FLDTBLDIR is not
defined, only the current directory is searched. Thus, if no field table names are
specified on the command line and FIELDTBLS and FLDTBLDIR are not set, mkfldhdr
will convert the field table fld.tbl in the current directory into the header file
fld.tbl.h.

The -d option is available to specify that the output header files are to be created in a
directory other than the present working directory.

mkfldhdr32 is used for 32-bit FML. It uses the FIELDTBLS32 and FLDTBLDIR32
environment variables.

errors Error messages are printed if the field table load fails or if an output file cannot be
created.

examples FLDTBLDIR=/project/fldtbls
FIELDTBLS=maskftbl,DBftbl,miscftbl,
export FLDTBLDIR FIELDTBLS

mkfldhdr produces the #include files maskftbl.h, DBftbl.h, and miscftbl.h in
the current directory by processing the files maskftbl, DBftbl, and miscftbl in
directory /project/fldtbls.
3-2 BEA MessageQ Reference Manual

MKFLDHDR, MKFLDHDR32
With environment variables set as in the example above, the command mkfldhdr
-d$FLDTBLDIR processes the same input field-table files, and produces the same
output files, but places them in the directory given by the value of the environment
variable FLDTBLDIR.

The command mkfldhdr myfields processes the input file myfields and produces
myfields.h in the current directory.

see also Fintro(3), field_tables(5)
BEA MessageQ Reference Manual 3-3

3 MKFLDHDR, MKFLDHDR32
3-4 BEA MessageQ Reference Manual

4 MessageQ/TUXEDO
Bridge Functions
BEA MessageQ Reference Manual 4-1

4 TMQUEUE_BMQ
TMQUEUE_BMQ

Name TMQUEUE_BMQ - MessageQ / TUXEDO Messaging Bridge Server

Synopsis TMQUEUE_BMQ
SRVGRP="identifier"
SRVID="number" CLOPT=" [-A] [servopts options] --
[-b bmq_bus_id] [-g bmq_group_id] [-t timeout]
[-U user] [-G group] [-E errorqueuename]"

Description The MessageQ / TUXEDO messaging bridge manager is a System/T-supplied server
that enqueues and dequeues messages from BEA MessageQ queues on behalf of
programs calling tpenqueue(3c) and tpdequeue(3c), respectively. The server also
performs the required data and semantic transformations between MessageQ and
TUXEDO. The application administrator enables message enqueuing and dequeuing
for the application by specifying this server as an application server in the *SERVERS
section of the BEA TUXEDO ubbconfig file.

Messages originating from BEA TUXEDO have the MessageQ class of
MSG_CLAS_TUXEDO. Reply messages from BEA TUXEDO have either the
MessageQ class of MSG_CLAS_TUXEDO_TPSUCCESS or
MSG_CLAS_TUXEDO_TPFAIL.

The location, server group, server identifier and other generic server related parameters
are associated with the server using the already defined configuration file mechanisms
for servers. The following is a list of additional command line options that are available
for customization:

-b bmq_bus_id
The MessageQ bus with which the server communicates. The bmq_bus_id
option is used instead of the DMQ_BUS_ID environment variable.

-g bmq_group_id
The MessageQ group with which the server communicates. The
bmq_group_id option is used instead of the DMQ_GROUP_ID environment
variable.

-t timeout
The time in seconds at which an operation specified with flags:TPNOTIME
will timeout. If no value is specified, the default value is 60 seconds.This
option provides consistency with the transaction timeout in TUXEDO.
4-2 BEA MessageQ Reference Manual

TMQUEUE_BMQ
-U user
The user name or user identification number (UID) for all messages handled
by TMQUEUE_BMQ. The user argument is used for access control list
(ACL) checks when security is configured for a TUXEDO application.

-G group
The group name or group identification number (GID) for all messages
handled by TMQUEUE_BMQ. The group argument is used for access
control list (ACL) checks when security is configured for a TUXEDO
application.

If the TUXEDO default security mechanism is used, and the user option is
specified as a user name, the group option is not required and should not be
specified.

-E errorqueuename
The name of the MessageQ error queue. Each MessageQ group includes a
reserved queue (queue 97) which is used to store error messages. Specifying
the errorqueuename option allows BEA TUXEDO and BEA M3 applications
and processes to address the error queue by name.

The TMQUEUE_BMQ server must be located on the same physical machine as the
BEA MessageQ group from which it dequeues messages. The machine must be
configured to run servers on behalf of a BEA TUXEDO application.
TMQUEUE_BMQ may enqueue messages to any queue on any machine in the
MessageQ group as long as a path exists between the group to which
TMQUEUE_BMQ is attached and the target group.

A TMQUEUE_BMQ server is booted as part of a TUXEDO application to facilitate
application access to its associated MessageQ bus and group. Any configuration
condition that prevents the TMQUEUE_BMQ server from initiating its services will
cause TMQUEUE_BMQ to fail at boot time with an error posted to the BEA
TUXEDO user log (ULOG) file.

EXAMPLES *GROUPS
TMQUEUE_BMQGRPHQMGR GRPNO=1
TMQUEUE_BMQGRPHQPLEBE GRPNO=2
TMQUEUE_BMQGRPREMOTENA GRPNO=3
TMQUEUE_BMQGRPREMOTEEUROPE GRPNO=4

*SERVERS
TMQUEUE_BMQ SRVGRP="TMQUEUE_BMQGRPHQMGR" SRVID=1000 RESTART=Y
 GRACE=0 CLOPT="-s Payroll:TMQUEUE_BMQ -s
BEA MessageQ Reference Manual 4-3

4 TMQUEUE_BMQ
 Promote:TMQUEUE_BMQ -- -b 5 -g 7"
TMQUEUE_BMQ SRVGRP="TMQUEUE_BMQGRPHQPLEBE" SRVID=1000 RESTART=Y
 GRACE=0 CLOPT="-s Payroll:TMQUEUE_BMQ -s
 Promote:TMQUEUE_BMQ -- -b 5 -g 10"
TMQUEUE_BMQ SRVGRP="TMQUEUE_BMQGRPREMOTENA" SRVID=2002 RESTART=Y
 GRACE=0 CLOPT="-s Sales:TMQUEUE_BMQ -- -b 5 -g 42"
TMQUEUE_BMQ SRVGRP="TMQUEUE_BMQGRPREMOTEEUROPE" SRVID=2002
 RESTART=Y GRACE=0 CLOPT="-s Sales:TMQUEUE_BMQ -- -b 12 -g 53"

*SERVICES
Payroll ROUTING="SALARYROUTE"
Payroll ROUTING="HAIRCOLORROUTE"

*ROUTING
SALARYROUTE FIELD=Salary BUFTYPE="FML32"
 RANGES="MIN - 50000:TMQUEUE_BMQGRPPLEBE,50001
 -MAX:TMQUEUE_BMQGRPHQMGR"
HAIRCOLORROUTE FIELD=Hair BUFTYPE="FML32"
 RANGES="‘Gray’:TMQUEUE_BMQGRPHQMGR,*:TMQUEUE_BMQGRPPLEBE"

SEE ALSO ubbconfig (5), servopts (5), buildserver (1), tpenqueue (3c), tpdequeue (3c),
TMQFORWARD_BMQ(5), BEA TUXEDO Administrator’s Guide, BEA TUXEDO
Programmer’s Guide, BEA MessageQ Introduction to Message Queueing, BEA
MessageQ Programmer’s Guide
4-4 BEA MessageQ Reference Manual

TMQFORWARD_BMQ
TMQFORWARD_BMQ

Name TMQFORWARD_BMQ - MessageQ / TUXEDO Forwarding Agent Server

Synopsis TMQFORWARD_BMQ
SRVGRP="identifier"
SRVID="number" REPLYQ=N CLOPT=" [-A] [servopts options] --
-q queuename[,queuename] [-b bmq_bus_id] [-g bmq_group_id]
[-t timeout] [-i idletime] [-d] [-f delay][-U uid] [-G gid]
[-E errorqueuename] [-R retries]"

Description The MessageQ / TUXEDO forwarding agent is a BEA TUXEDO managed server that
forwards messages to BEA TUXEDO services from BEA MessageQ queues. The
messages are placed on a BEA MessageQ queue using either pams_put_msg or
tpenqueue. The server also performs the required data and semantic transformations
between MessageQ and TUXEDO. The application administrator enables message
processing for the application by specifying this server as an application server in the
*SERVERS section of the BEA TUXEDO ubbconfig file.

Messages originating from BEA TUXEDO have the MessageQ class of
MSG_CLAS_TUXEDO. Reply messages from BEA TUXEDO have either the
MessageQ class of MSG_CLAS_TUXEDO_TPSUCCESS or
MSG_CLAS_TUXEDO_TPFAIL.

The location, server group, server identifier and other generic server related parameters
are associated with the server using the already defined configuration file mechanisms
for servers. Note that REPLYQ=N must be specified, as shown in the synopsis. The
following is a list of additional command line options that are available for
customization:

-q queuename[,queuename]
The names of one or more queues for which TMQFORWARD_BMQ
forwards messages.

-b bmq_bus_id
The MessageQ bus with which the server communicates. The bmq_bus_id
option is used instead of the DMQ_BUS_ID environment variable.

-g bmq_group_id
The MessageQ group with which the server communicates. The
bmq_group_id option is used instead of the DMQ_GROUP_ID environment
variable.
BEA MessageQ Reference Manual 4-5

4 TMQFORWARD_BMQ
-t timeout
The time in seconds at which an operation specified with flags:TPNOTIME
will timeout. If no value is specified, the default value is 60 seconds.This
option provides consistency with the transaction timeout in TUXEDO.

-i idletime
The time that the server is idle after draining the queue(s) that it is reading. A
value of zero indicates that the server will continually read the queue(s),
which can be inefficient if the queues do not continually have messages. If not
specified, the default is 30 seconds.

-d
Causes messages that result in service failure and have a reply message
(non-zero in length) to be deleted from the queue.

-f delay
Causes the server to forward the message to the service instead of using
tpcall. The message is sent such that a reply is not expected from the
service. The TMQFORWARD_BMQ server does not block waiting for the
reply from the service and can continue processing the next message from the
queue. To throttle the system such that TMQFORWARD_BMQ does not
flood the system with requests, the delay numeric value can be used to
indicate a delay, in seconds, between processing requests. Use zero for no
delay.

-U uid
The user name or user identification number (UID) for all messages handled
by TMQFORWARD_BMQ. The user argument is used for access control list
(ACL) checks when security is configured for a TUXEDO application.

-G gid
The group name or group identification number (GID) for all messages
handled by TMQFORWARD_BMQ. The group argument is used for access
control list (ACL) checks when security is configured for a TUXEDO
application.

If the TUXEDO default security mechanism is used, and the user option is
specified as a user name, the group option is not required and should not be
specified.

-E errorqueuename
The name of the MessageQ error queue. Each MessageQ group includes a
reserved queue (queue 97) which is used to store error messages. Specifying
the errorqueuename option allows BEA TUXEDO and BEA M3 applications
and processes to address the error queue by name.
4-6 BEA MessageQ Reference Manual

TMQFORWARD_BMQ
-R retries
The number of times that the TMQFORWARD_BMQ server attempts to
retry message delivery. The number of retries is in addition to the initial
attempt to deliver the message. If the -R option is not specified or is specified
as zero, only the initial delivery is attempted.

The TMQFORWARD_BMQ server must be located on the same physical machine as
the BEA MessageQ group from which it dequeues messages. The machine must be
configured to run servers on behalf of a BEA TUXEDO application.

A TMQFORWARD_BMQ server is booted as part of a TUXEDO application to
facilitate application access to its associated MessageQ bus and group.Any
configuration condition that prevents the TMQFORWARD_BMQ server from
initiating its services will cause TMQFORWARD_BMQ to fail at boot time with an
error posted to the BEA TUXEDO user log (ULOG) file.

TMQFORWARD_BMQ forwards messages to a server providing a service whose
name matches the queue name from which the message is read. The message priority
is the priority specified when the message was enqueued. If the message is associated
with a reply queue, then any reply from the service will be enqueued to the specified
reply queue, along with the returned tpurcode. If the reply queue does not exist, the
reply will be dropped.

EXAMPLES

*GROUPS
TMQUEUE_BMQGRPHQMGR GRPNO=1

*SERVERS
TMQFORWARD_BMQ SRVGRP=”TMQUEUE_BMQGRP” SRVID=1001 RESTART=Y GRACE=0
 CLOPT=” -- -qservice1,service2” REPLYQ=N
TMQUEUE_BMQ SRVGRP="TMQUEUE_BMQGRP" SRVID=1000 RESTART=Y GRACE=0
 CLOPT="-s Payroll:TMQUEUE_BMQ -- -b 5 -g 7"

SEE ALSO ubbconfig (5), servopts (5), buildserver (1), tpenqueue (3c), tpdequeue (3c),
TMQUEUE_BMQ(5), BEA TUXEDO Administrator’s Guide, BEA TUXEDO
Programmer’s Guide, BEA MessageQ Introduction to Message Queueing, BEA
MessageQ Programmer’s Guide
BEA MessageQ Reference Manual 4-7

4 tpdequeue (3)
tpdequeue (3)

Name tpdequeue - routine to dequeue a message from a queue

Synopsis #include <atmi.h>

int tpdequeue(char *qspace, char *qname, TPQCTL *ctl, char **data,
 long *len,long flags)

Description tpdequeue() dequeues a message for processing from the queue named by qname in the
qspace queue space.

By default, the message at the top of the queue is dequeued. The default order of
messages on the queue is defined when the queue is created. The application can
request a particular message for dequeuing by specifying its message identifier using
the ctl parameter. ctl flags can also be used to indicate that the application wants to wait
for a message, in the case where a message is not currently available. See the section
below describing this parameter.

data is the address of a pointer to the buffer into which a message is read, and len points
to the length of that message. *data must point to a buffer originally allocated by
tpalloc(3c). To determine whether a message buffer changed in size, compare its (total)
size before tpdequeue() was issued with *len. Note that *data may change for reasons
other than the buffer’s size increased. If *len is 0 upon return, then the message
dequeued has no data portion and neither *data nor the buffer it points to were
modified. It is an error for *data or len to be NULL.

The TPNOTRAN flag must be set when exchanging messages between BEA MessageQ
and BEA TUXEDO, so messages are not dequeued in transaction mode. The message
is dequeued in a separate transaction. If a communication error or a timeout occurs
(either transaction or blocking timeout), the application will not know whether or not
the message was successfully dequeued and the message may be lost.

Following is a list of valid flags.

TPNOTRAN
This flag must be set when exchanging messages between BEA MessageQ
and BEA TUXEDO. If the caller is in transaction mode and this flag is set,
then the message is not dequeued within the same transaction as the caller. A
caller in transaction mode that sets this flag is still subject to the transaction
timeout (and no other) when dequeuing the message. If message dequeuing
fails, the caller’s transaction is not affected.
4-8 BEA MessageQ Reference Manual

tpdequeue (3)
TPNOBLOCK
The message is not dequeued if a blocking condition exists (for example, the
internal buffers into which the message is transferred are full). If such a
condition occurs, the call fails and tperrno is set to TPEBLOCK. When
TPNOBLOCK is not specified and a blocking condition exists, the caller blocks
until the condition subsides or a timeout occurs (either transaction or blocking
timeout). This blocking condition does not include blocking on the queue
itself if the TPQWAIT option is specified.

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPNOCHANGE
When this flag is set, the type of the buffer pointed to by *data is not allowed
to change. By default, if a buffer is received that differs in type from the
buffer pointed to by *data, then *data’s buffer type changes to the received
buffer’s type so long as the receiver recognizes the incoming buffer type. That
is, the type and sub-type of the dequeued message must match the type and
sub-type of the buffer pointed to by *data.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is re-issued. When TPSIGRSTRT is not specified and a signal interrupts a
system call, then tpdequeue() fails and tperrno is set to TPGOTSIG.

If tpdequeue() returns successfully, the application can retrieve additional information
about the message using ctl data structure. The information may include the message
identifier for the dequeued message, a correlation identifier that should accompany any
reply or failure message so that the originator can correlate the message with the
original request, the name of a reply queue if a reply is desired, and the name of the
failure queue on which the application can queue information regarding failure to
dequeue the message. This is described below.

Control
Parameter

 The TPQCTL structure is used by the application program to pass and retrieve
parameters associated with dequeuing the message. The flags element of TPQCTL is
used to indicate what other elements in the structure are valid.

On input to tpdequeue(), the following elements may be set in the TPQCTL structure:

long flags; /* indicates which of the values
 * are set */
char msgid[32]; /* id of message to dequeue */
char corrid[32]; /* correlation identifier of
 * message to dequeue */
BEA MessageQ Reference Manual 4-9

4 tpdequeue (3)
Following is a list of valid bits for the flags parameter controlling input information for
tpdequeue().

TPNOFLAGS
No flags are set. No information is taken from the control structure.

TPQGETBYMSGID
If set, it requests that the message identified by ctl->msgid be dequeued.
The message identifier would be one that was returned by a prior call to
tpenqueue(3c). Note that the message identifier is not valid if the message has
moved from one queue to another; in this case, use the correlation identifier.
This option cannot be used with the TPQWAIT option.

TPQGETBYCORRID
If set, it requests that the message with the correlation identifier specified by
ctl->corrid be dequeued. The correlation identifier would be one that the
application specified when enqueuing the message with tpenqueue(). This
option cannot be used with the TPQWAIT option.

TPQWAIT
If set, it indicates that an error should not be returned if the queue is empty.
Instead, the process should block until a message is available.

On output from tpdequeue(), the following elements may be set in the TPQCTL
structure:

long flags; /* indicates which of the values
 * should be set */
long priority; /* enqueue priority */
char msgid[32]; /* id of message dequeued */
char corrid[32]; /* correlation identifier used to
 * identify the message */
char replyqueue[16]; /* queue name for reply */
char failurequeue[16]; /* queue name for failure */
long diagnostic; /* reason for failure */
long appkey; /* application authentication client
 * key */
long urcode; /* user-return code */
CLIENTID cltid; /* client identifier for originating
 * client */

Following is a list of valid bits for the flags parameter controlling output information
from tpdequeue(). If the flag bit is turned on when tpdequeue() is called, then the
associated element in the structure is populated if available and the bit remains set. If
the value is not available, the flag bit will be turned off after tpdequeue() completes.
4-10 BEA MessageQ Reference Manual

tpdequeue (3)
TPQPRIORITY
If set and the value is available, the priority at which the message was queued
is stored in ctl->priority. The priority is in the range 1 to 100, inclusive, and
the higher the number, the higher the priority (that is, a message with a higher
number is dequeued before a message with a lower number).

TPQMSGID
If set and the call to tpdequeue() was successful, the message identifier will
be stored in ctl->msgid.

TPQCORRID
If set and the call to tpdequeue() was successful and the message was queued
with a correlation identifier, the value will be stored in ctl->corrid. Any reply
to a queue must have this correlation identifier.

TPQREPLYQ
If set and the message is associated with a reply queue, the value will be
stored in ctl->replyqueue. Any reply to the message should go to the named
reply queue within the same queue space as the request message.

TPQFAILUREQ
If set and the message is associated with a failure queue, the value will be
stored in ctl->failurequeue. Any failure message should go to the named
failure queue within the same queue space as the request message.

If the call to tpdequeue() failed and tperrno is set to TPEDIAGNOSTIC, a value
indicating the reason for failure is returned in ctl->diagnostic. The possible values are
defined below in the DIAGNOSTICS section.

Additionally on output, ctl->appkey is set to application authentication key, ctl->cltid
is set to the identifier for the client originating the request, and ctl->urcode is set to the
user-return code value that was set when the message was enqueued.

If the ctl parameter is NULL, the input flags are considered to be TPNOFLAGS and
no output information is made available to the application program.

Return Values This function returns -1 on error and sets tperrno to indicate the error condition.

Errors Under the following conditions, tpdequeue() fails and sets tperrno to one of the
following (unless otherwise noted, failure does not affect the caller’s transaction, if one
exists):

[TPEINVAL]
Invalid arguments were given (for example, qname is NULL, data does not
point to space allocated with tpalloc(3c) or flags are invalid).
BEA MessageQ Reference Manual 4-11

4 tpdequeue (3)
[TPENOENT]
Cannot access the qspace because it is not available (the associated
TMQUEUE(5) server is not available) or the name begins with "..".

[TPEOTYPE]
Either the type and sub-type of the dequeued message are not known to the
caller; or, TPNOCHANGE was set in flags and the type and sub-type of *data do
not match the type and sub-type of the dequeued message. Regardless, neither
*data, its contents nor *len are changed. When this error occurs, the
transaction is marked abort-only and the message will remain on the queue.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is to be aborted; otherwise, a blocking
timeout occurred and neither TPNOBLOCK nor TPNOTIME were specified. If a
transaction timeout occurred, any attempts to dequeue new messages will fail
with TPETIME until the transaction has been aborted.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpdequeue() was called in an improper context. There is no effect on the
queue or the transaction.

[TPESYSTEM]
A System /T error has occurred. The exact nature of the error is written to a
log file. There is no effect on the queue.

[TPEOS]
An operating system error has occurred. There is no effect on the queue.

[TPEDIAGNOSTIC]
Dequeuing a message from the specified queue failed. The reason for failure
can be determined by the diagnostic value returned via ctl structure.

Diagnostic The following diagnostic values are returned during the dequeuing of a message.

[QMEINVAL]
An invalid flag value was specified.

[QMEBADRMID]
An invalid resource manager identifier was specified.
4-12 BEA MessageQ Reference Manual

tpdequeue (3)
[QMENOTOPEN]
The resource manager is not currently open.

[QMETRAN]
The call was made with the TPNOTRAN flag and an error occurred trying to
start a transaction in which to dequeue the message.

[QMEBADMSGID]
An invalid message identifier was specified for dequeuing.

[QMEINUSE]
When dequeuing a message by correlation or message identifier, the specified
message is in-use by another transaction. Otherwise, all messages currently
on the queue are in-use by other transactions.

[QMESYSTEM]
A system error has occurred. The exact nature of the error is written to a log
file.

[QMEOS]
An operating system error has occurred.

[QMEABORTED]
The operation was aborted. When executed within a global transaction, the
global transaction has been marked rollback-only. Otherwise, the queue
manager aborted the operation.

[QMEPROTO]
A dequeue was done when the transaction state was not active.

[QMEBADQUEUE]
An invalid or deleted queue name was specified.

[QMENOMSG]
No message was available for dequeuing.

 See Also tpalloc(3c), tpenqueue(3c), TMQUEUE_BMQ(5)
BEA MessageQ Reference Manual 4-13

4 tpenqueue (3)
tpenqueue (3)

Name tpenqueue - routine to enqueue a message

Synopsis #include <atmi.h>
int tpenqueue(char *qspace, char *qname,
TPQCTL *ctl, char *data, long len, long flags)

Description tpenqueue() stores a message on the queue named by qname in the qspace queue
space. A queue space is a collection of queues, one of which must be qname.

When the message is intended for a System/T server, the qname matches the name of
a service provided by a server. The system provided server,
TMQFORWARD_BMQ(5), provides a default mechanism for dequeuing messages
from the queue and forwarding them to servers that provide a service matching the
queue name. If the originator expected a reply, then the reply to the forwarded service
request is stored on the originator’s (stable) queue. The originator will dequeue the
reply message at a subsequent time. Queues can also be used for a reliable message
transfer mechanism between any pair of System/T processes (clients and/or servers).
In this case, the queue name does not match a service name but some agreed upon title
for transferring the message.

If data is non-NULL, it must point to a buffer previously allocated by tpalloc(3c)
and len should specify the amount of data in the buffer that should be queued. Note that
if data points to a buffer of a type that does not require a length to be specified (for
example, an FML fielded buffer), then len is ignored. If data is NULL, len is ignored
and a message is queued with no data portion.

The message is queued at the priority defined for qspace unless overridden by a
previous call to tpsprio(3c).

The TPNOTRAN flag must be set when exchanging messages between BEA MessageQ
and BEA TUXEDO, so messages are not enqueued in transaction mode. The message
is not queued in transaction mode if either the caller is not in transaction mode, or the
TPNOTRAN flag is set. In this case, the queued message is stored on the queue in a
separate transaction. Once tpenqueue() returns successfully, the submitted message
is guaranteed to be available. If a communication error or a timeout occurs (either
transaction or blocking timeout), the application will not know whether or not the
message was successfully stored on the queue.

The order in which messages are placed on the queue is controlled by the application
via ctl data structure as described below; the default queue ordering is set when the
queue is created.
4-14 BEA MessageQ Reference Manual

tpenqueue (3)
Following is a list of valid flags.

TPNOTRAN
This flag must be set when exchanging messages between BEA MessageQ
and BEA TUXEDO. If the caller is in transaction mode and this flag is set,
then the message is not queued within the same transaction as the caller. A
caller in transaction mode that sets this flag is still subject to the transaction
timeout (and no other) when queuing the message. If message queuing fails,
the caller’s transaction is not affected.

TPNOBLOCK
The message is not enqueued if a blocking condition exists (for example, the
internal buffers into which the message is transferred are full). If such a
condition occurs, the call fails and tperrno is set to TPEBLOCK. When
TPNOBLOCK is not specified and a blocking condition exists, the caller blocks
until the condition subsides or a timeout occurs (either transaction or blocking
timeout).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is re-issued. When TPSIGRSTRT is not specified and a signal interrupts a
system call, then tpenqueue() fails and tperrno is set to TPGOTSIG.

Additional information about queuing the message can be specified via ctl data
structure. This information includes values to override the default queue ordering
placing the message at the top of the queue or before an enqueued message; an absolute
or relative time after which a queued message is made available; a correlation identifier
that aids in correlating a reply or failure message with the queued message; the name
of a queue to which a reply should be enqueued; and the name of a queue to which any
failure message should be enqueued.

Control
Parameter

The TPQCTL structure is used by the application program to pass and retrieve
parameters associated with enqueuing the message. The flags element of TPQCTL is
used to indicate what other elements in the structure are valid.

On input to tpenqueue(), the following elements may be set in the TPQCTL structure:

long flags; /* indicates which of the values
 * are set */
long deq_time; /* absolute/relative for dequeuing */
long priority; /* enqueue priority */
BEA MessageQ Reference Manual 4-15

4 tpenqueue (3)
long urcode; /* user-return code */
char msgid[32]; /* id of message before which to queue
 * request */
char corrid[32]; /* correlation identifier used to
 * identify the msg */
char replyqueue[16]; /* queue name for reply message */
char failurequeue[16]; /* queue name for failure message */

The following is a list of valid bits for the flags parameter controlling input information
for tpenqueue().

TPNOFLAGS
No flags or values are set. No information is taken from the control structure.

TPQTOP
This flag is not supported when exchanging messages between BEA
MEssageQ and BEA TUXEDO.

TPQBEFOREMSGID
Setting this flag bit indicates that the queue ordering be overridden and the
message placed in the queue before the message identified by ctl->msgid.
This request may not be granted depending on whether or not the queue was
configured to allow overriding the queue ordering. TPQTOP and
TPQBEFOREMSGID are mutually exclusive flags.

TPQTIME_ABS
This flag is not supported when exchanging messages between BEA
MEssageQ and BEA TUXEDO.

TPQTIME_REL
This flag is not supported when exchanging messages between BEA
MEssageQ and BEA TUXEDO.

TPQPRIORITY
If set, the priority at which the message should be enqueued is stored in
ctl->priority. The priority must be in the range 1 to 100, inclusive. The higher
the number, the higher the priority (that is, a message with a higher number
is dequeued before a message with a lower number).

TPQCORRID
If set, the correlation identifier value specified in ctl->corrid is available
when a message is dequeued with tpdequeue(3c). This identifier
accompanies any reply or failure message that is queued such that an
application can correlate a reply with a particular request. The entire value
should be initialized (e.g., padded with null characters) such that the value can
be matched at a later time.
4-16 BEA MessageQ Reference Manual

tpenqueue (3)
TPQREPLYQ
If set, a reply queue named in ctl->replyqueue is associated with the queued
message. Any reply to the message will be queued to the named queue within
the same queue space as the request message. This string must be NULL
terminated (maximum 15 characters in length).

TPQFAILUREQ
If set, a failure queue named in ctl->failurequeue is associated with the
queued message. If a failure occurs when the enqueued message is
subsequently dequeued, a failure message will go to the named queue within
the same queue space as the original request message. This string must be
NULL terminated (maximum 15 characters in length).

Additionally, the urcode element of TPQCTL can be set with a user-return code. This
value will be returned to the application that dequeues the message.

On output from tpenqueue(), the following elements may be set in the TPQCTL
structure:

long flags; /* indicates which of the values
 * are set */
char msgid[32]; /* id of enqueued message */
long diagnostic; /* indicates reason for failure */

Following is a list of valid bits for the flags parameter controlling output information
from tpenqueue(). If the flag bit is turned on when tpenqueue() is called, then the
associated element in the structure is populated if available and the bit remains set. If
the value is not available, the flag bit will be turned off after tpenqueue() completes.

TPQMSGID

If set and the call to tpenqueue() was successful, the message identifier will be stored
in ctl->msgid.

If the call to tpenqueue() failed and tperrno is set to TPEDIAGNOSTIC, a value
indicating the reason for failure is returned in ctl->diagnostic. The possible values are
defined below in the DIAGNOSTICS section.

If this parameter is NULL, the input flags are considered to be TPNOFLAGS and no
output information is made available to the application program.

Return Values This function returns -1 on error and sets tperrno to indicate the error condition.
Otherwise, the message has been successfully queued when tpenqueue() returns.
BEA MessageQ Reference Manual 4-17

4 tpenqueue (3)
Errors Under the following conditions, tpenqueue() fails and sets tperrno to the following
values (unless otherwise noted, failure does not affect the caller’s transaction, if one
exists):

[TPEINVAL]
Invalid arguments were given (for example, qspace is NULL, data does not
point to space allocated with tpalloc(3c), or flags are invalid).

[TPENOENT]
Cannot access the qspace because it is not available (the associated
TMQUEUE(5) server is not available) or the name begins with "..".

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is to be aborted; otherwise, a blocking
timeout occurred and neither TPNOBLOCK nor TPNOTIME was specified. If a
transaction timeout occurred, any attempts to enqueue new messages will fail
with TPETIME until the transaction has been aborted.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpenqueue() was called in an improper context.

[TPESYSTEM]
A System/T error has occurred. The exact nature of the error is written to a
log file.

[TPEOS]
An operating system error has occurred.

[TPEDIAGNOSTIC]
Enqueuing a message on the specified queue failed. The reason for failure can
be determined by the diagnostic returned via ctl.

Diagnostic The following diagnostic values are returned during the enqueuing of a message.

[QMEINVAL]
An invalid flag value was specified.

[QMEBADRMID]
An invalid resource manager identifier was specified.

[QMENOTOPEN]
The resource manager is not currently open.
4-18 BEA MessageQ Reference Manual

tpenqueue (3)
[QMETRAN]
The call was made with the TPNOTRAN flag and an error occurred trying to
start a transaction in which to enqueue the message.

[QMEBADMSGID]
An invalid message identifier was specified.

[QMESYSTEM]
A system error has occurred. The exact nature of the error is written to a log
file.

[QMEOS]
An operating system error has occurred.

[QMEABORTED]
The operation was aborted. When executed within a global transaction, the
global transaction has been marked rollback-only. Otherwise, the queue
manager aborted the operation.

[QMEPROTO]
An enqueue was done when the transaction state was not active.

[QMEBADQUEUE]
An invalid or deleted queue name was specified.

[QMENOSPACE]
There is no space on the queue for the message.

See Also gp_mktime(3c), tpacall(3c), tpalloc(3c), tpdequeue(3c), tpinit(3c),
tpsprio(3c)TMQFORWARD_BMQ(5), TMQUEUE_BMQ(5),
BEA MessageQ Reference Manual 4-19

4 tpenqueue (3)
4-20 BEA MessageQ Reference Manual

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	Preface
	1. FML Functions
	2. field_tables Description
	3. mkfldhdr Command
	4. MessageQ/TUXEDO Bridge Functions
	Preface
	Purpose of This Document
	Who Should Read This Document
	How This Document Is Organized

	How to Use This Document
	Opening the Document in a Web Browser

	Figure 1 Online Document Displayed in a Netscape Web Browser
	Printing from a Web Browser
	Documentation Conventions
	Related Documentation
	MessageQ Documentation

	Contact Information
	Documentation Support
	Customer Support

	1 FML Functions
	Fintro (3FML)
	Name
	Synopsis
	Description
	FML16 and FML32
	FML Buffers
	FML16 Conversion to FML32
	Error Handling
	See Also

	CFadd (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FMALLOC]
	[FEINVAL]
	[FNOSPACE]
	[FBADFLD]
	[FTYPERR]

	See Also

	CFchg (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FEINVAL]

	See Also

	CFfind (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FMALLOC]
	[FNOTPRES]
	[FBADFLD]
	[FTYPERR]

	See Also

	CFfindocc (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FMALLOC]
	[FEINVAL]
	[FNOTPRES]
	[FBADFLD]
	[FTYPERR]

	See Also

	CFget (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FMALLOC]
	[FNOSPACE]
	[FNOTPRES]
	[FBADFLD]
	[FTYPERR]

	See Also

	CFgetalloc (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FMALLOC]
	[FNOTPRES]
	[FBADFLD]
	[FTYPERR]

	See Also

	F_error (3FML)
	Name
	Synopsis
	Description
	Return Values
	See Also

	Fadd (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FEINVAL]
	[FNOSPACE]
	[FBADFLD]

	See Also

	Fadds (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	Under the following conditions, Fadds() fails and sets Ferror to:
	[FALIGNERR]
	[FNOTFLD]
	[FNOSPACE]
	[FTYPERR]
	[FEINVAL]
	[FMALLOC]
	[FBADFLD]

	See Also

	Falloc (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FMALLOC]
	[FEINVAL]

	See Also

	Fappend (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FEINVAL]
	[FNOSPACE]
	[FBADFLD]

	See Also

	Fboolco (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FMALLOC]
	[FSYNTAX]
	[FBADNAME]
	[FEINVAL]

	Example
	See Also

	Fboolev (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FMALLOC]
	[FEINVAL]
	[FSYNTAX]

	Example
	See Also

	Fboolpr (3FML)
	NAME
	Synopsis
	Description
	Return Values
	See Also

	Fchg (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FBADFLD]

	See Also

	Fchgs (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FNOSPACE]
	[FBADFLD]
	[FTYPERR]

	See Also

	Fchksum (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]

	See Also

	Fcmp (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]

	See Also

	Fconcat (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FNOSPACE]

	See Also

	Fcpy (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FNOSPACE]

	See Also

	Fdel (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FNOTPRES]
	[FBADFLD]

	See Also

	Fdelall (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FNOTPRES]
	[FBADFLD]

	See Also

	Fdelete (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FBADFLD]

	See Also

	Fextread (3FML)
	Name
	Synopsis
	Description
	+
	\-
	=
	#

	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FNOSPACE]
	[FBADFLD]
	[FEUNIX]
	[FBADNAME]
	[FSYNTAX]
	[FNOTPRES]
	[FMALLOC]
	[FEINVAL]

	See Also

	Ffind (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FNOTPRES]

	See Also

	Ffindlast (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FNOTPRES]
	[FBADFLD]

	See Also

	Ffindocc (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FNOTPRES]
	[FEINVAL]
	[FBADFLD]

	See Also

	Ffinds (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FNOTPRES]
	[FBADFLD]
	[FTYPERR]
	[FMALLOC]

	See Also

	Ffloatev (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	Under the following conditions, Ffloatev() fails and sets Ferror to:
	[FNOTFLD]
	[FMALLOC]
	[FSYNTAX]

	See Also

	Ffprint (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FMALLOC]

	See Also

	Ffree (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]

	See Also

	Fget (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FNOSPACE]
	[FNOTPRES]
	[FBADFLD]

	See Also

	Fgetalloc (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FNOTPRES]
	[FBADFLD]
	[FMALLOC]

	See Also

	Fgetlast (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FNOSPACE]
	[FNOTPRES]
	[FBADFLD]

	See Also

	Fgets (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FNOTPRES]
	[FBADFLD]
	[FTYPERR]
	[FMALLOC]

	See Also

	Fgetsa (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FNOTPRES]
	[FBADFLD]
	[FTYPERR]
	[FMALLOC]

	See Also

	Fidnm_unload (3FML)
	Name
	Synopsis
	Description
	Return Values
	See Also

	Fidxused (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]

	See Also

	Fielded (3FML)
	Name
	Synopsis
	Description
	Return Values
	See Also

	Findex (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FNOSPACE]

	See Also

	Finit (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FNOSPACE]

	Example
	See Also

	Fjoin (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FNOSPACE]

	Example
	See Also

	Fldid (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FBADNAME]
	[FMALLOC]

	See Also

	Fldno (3FML)
	Name
	Description
	Return Values
	See Also

	Fldtype (3FML)
	Name
	Synopsis
	Description
	Return Values
	See Also

	Flen (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FNOTPRES]
	[FBADFLD]

	See Also

	Fmkfldid (3FML)
	Name
	Description
	Return Values
	Errors
	[FBADFLD]
	[FTYPERR]

	See Also

	Fmove (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]

	See Also

	Fname (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FBADFLD]
	[FMALLOC]

	See Also

	Fneeded (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FEINVAL]

	See Also

	Fnext (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FNOSPACE]
	[FEINVAL]

	See Also

	Fnmid_unload (3FML)
	Name
	Synopsis
	Description
	Return Values
	See Also

	Fnum (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]

	See Also

	Foccur (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]

	See Also

	Fojoin (3FML)
	Name
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FNOSPACE]

	Example
	See Also

	Fpres (3FML)
	Name
	Description
	Return Values
	See Also

	Fprint (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]

	See Also

	Fproj (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]

	Example
	See Also

	Fprojcpy (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FNOSPACE]

	See Also

	Fread (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FNOSPACE]
	[FEUNIX]

	See Also

	Frealloc (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FEINVAL]
	[FMALLOC]

	See Also

	Frstrindex (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]

	Example
	1. it did not call Funindex(3) and so has no idea of what the value of the numidx argument to Frs...
	2. the index itself is not available because it was not sent.

	See Also

	Fsizeof (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]

	See Also

	Fstrerror (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	See Also

	Ftypcvt (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FMALLOC]
	[FEINVAL]
	[FTYPERR]

	See Also

	Ftype (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FTYPERR]

	See Also

	Funindex (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]

	See Also

	Funused (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]

	See Also

	Fupdate (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FNOSPACE]

	See Also

	Fused (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]

	See Also

	Fvall (3FML)
	Name
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FBADFLD]
	[FTYPERR]

	See Also

	Fvals (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FBADFLD]
	[FTYPERR]

	See Also

	Fwrite (3FML)
	Name
	Synopsis
	Description
	Return Values
	Errors
	[FALIGNERR]
	[FNOTFLD]
	[FEUNIX]

	See Also

	2 field_tables Description
	field_tables(5)
	Name
	DESCRIPTION
	FIELD IDENTIFIERS
	FIELD MAPPING
	FIELD TABLE FILES
	CONVERSION OF FIELD TABLES TO HEADER FILES
	ENVIRONMENT VARIABLES
	EXAMPLE
	SEE ALSO

	3 mkfldhdr Command
	mkfldhdr, mkfldhdr32
	NAME
	SYNOPSIS
	DESCRIPTION
	ERRORS
	EXAMPLES
	SEE ALSO

	4 MessageQ/TUXEDO Bridge Functions
	TMQUEUE_BMQ
	Name
	Synopsis
	Description
	-b bmq_bus_id
	-g bmq_group_id
	-t timeout
	-U user
	-G group
	-E errorqueuename

	EXAMPLES
	SEE ALSO

	TMQFORWARD_BMQ
	Name
	Synopsis
	Description
	-q queuename[,queuename]
	-b bmq_bus_id
	-g bmq_group_id
	-t timeout
	-i idletime
	-d
	-f delay
	-U uid
	-G gid
	-E errorqueuename
	-R retries

	EXAMPLES
	*GROUPS TMQUEUE_BMQGRPHQMGR GRPNO=1
	*SERVERS TMQFORWARD_BMQ SRVGRP=”TMQUEUE_BMQGRP” SRVID=1001 RESTART=Y GRACE=0 CLOPT=” -- -qservice...
	SEE ALSO

	tpdequeue (3)
	Name
	Synopsis
	Description
	TPNOTRAN
	TPNOBLOCK
	TPNOTIME
	TPNOCHANGE
	TPSIGRSTRT

	Control Parameter
	TPNOFLAGS
	TPQGETBYMSGID
	TPQGETBYCORRID
	TPQWAIT
	TPQPRIORITY
	TPQMSGID
	TPQCORRID
	TPQREPLYQ
	TPQFAILUREQ

	Return Values
	Errors
	[TPEINVAL]
	[TPENOENT]
	[TPEOTYPE]
	[TPETIME]
	[TPEBLOCK]
	[TPGOTSIG]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]
	[TPEDIAGNOSTIC]

	Diagnostic
	[QMEINVAL]
	[QMEBADRMID]
	[QMENOTOPEN]
	[QMETRAN]
	[QMEBADMSGID]
	[QMEINUSE]
	[QMESYSTEM]
	[QMEOS]
	[QMEABORTED]
	[QMEPROTO]
	[QMEBADQUEUE]
	[QMENOMSG]

	See Also

	tpenqueue (3)
	Name
	Synopsis
	Description
	TPNOTRAN
	TPNOBLOCK
	TPNOTIME
	TPSIGRSTRT

	Control Parameter
	TPNOFLAGS
	TPQTOP
	TPQBEFOREMSGID
	TPQTIME_ABS
	TPQTIME_REL
	TPQPRIORITY
	TPQCORRID
	TPQREPLYQ
	TPQFAILUREQ
	TPQMSGID

	Return Values
	Errors
	[TPEINVAL]
	[TPENOENT]
	[TPETIME]
	[TPEBLOCK]
	[TPGOTSIG]
	[TPEPROTO]
	[TPESYSTEM]
	[TPEOS]
	[TPEDIAGNOSTIC]

	Diagnostic
	[QMEINVAL]
	[QMEBADRMID]
	[QMENOTOPEN]
	[QMETRAN]
	[QMEBADMSGID]
	[QMESYSTEM]
	[QMEOS]
	[QMEABORTED]
	[QMEPROTO]
	[QMEBADQUEUE]
	[QMENOSPACE]

	See Also

