
MQSeries Connection

B E A M e s s a g e Q M Q S e r i e s C o n n e c t i o n V 4 . 0 A , V 5 . 0
D o c u m e n t E d i t i o n 5 . 0

F e b r u a r y 1 9 9 9

BEA MessageQ

User’s Guide

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and TUXEDO are registered trademarks of BEA Systems, Inc. BEA Builder,
BEA Connect, BEA Manager, BEA MessageQ, Jolt and M3 are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

BEA MessageQ MQSeries Connection User’s Guide

Document Edition Date Software Version

5.0 February 1999 BEA MessageQ MQSeries Connection
Version 4.0A and Version 5.0

Contents

 Preface
Purpose of This Document ... vii

Who Should Read This Document.. vii

How This Document Is Organized.. vii

How to Use This Document .. viii

Opening the Document in a Web Browser... viii

Printing from a Web Browser .. xi

Documentation Conventions .. xi

Related Documentation ... xiii

 MessageQ MQSeries Connection Documentation.................................... xiii

BEA Publications ... xiii

Other Publications .. xiv

Contact Information... xiv

Documentation Support.. xiv

Customer Support...xv

1. Introduction to BEA MessageQ MQSeries Connection
Message Queuing .. 1-1

Message Queuing Interfaces.. 1-2

The BEA MessageQ Product... 1-3

The IBM MQSeries Product.. 1-4

How Message Queuing Systems Work ... 1-4

The Need for Integrated Message Queuing... 1-6

How BEA MessageQ MQSeries Connection Works .. 1-7

Communication Services Between BEA MessageQ and IBM MQSeries . 1-9

Queue Message Bridge Components ... 1-11

Message Flow... 1-13
BEA MessageQ MQSeries Connection User’s Guide iii

2. Developing Message Queuing Applications
Using Application Programming Interfaces .. 2-1

Designing Applications to Use BEA MessageQ MQSeries Connection 2-2

Determining Queues that Your Application Needs.................................... 2-3

Defining Queues for BEA MessageQ Clients to IBM MQSeries Servers . 2-3

Defining Queues for IBM MQSeries Clients to BEA MessageQ Servers . 2-4

Choosing Message Characteristics .. 2-5

Selecting the Type for Message Exchange... 2-6

Processing Reply Messages.. 2-7

Processing Multiple Replies ... 2-8

How IBM MQSeries Applications Process Multiple Replies 2-8

How BEA MessageQ Applications Process Multiple Replies.......... 2-12

Using Message Types and Classes ... 2-15

BEA MessageQ Message Types and Classes 2-15

IBM MQSeries Message Types .. 2-18

Using Recoverable Messaging ... 2-19

Using Correlation Identifiers .. 2-20

Using FML Buffers .. 2-20

Setting Message Priority... 2-21

How Message Header Data Is Mapped .. 2-22

Handling Message Byte Order Differences.. 2-22

Character Code Conversion.. 2-23

Guidelines for Choosing Message Characteristics 2-23

Sending a Request to an IBM MQSeries Server ... 2-24

Sending a Reply to a BEA MessageQ Client .. 2-27

Sending a Request to a BEA MessageQ Server .. 2-29

Sending a Reply to an IBM MQSeries Client ... 2-32

Restrictions and Limitations .. 2-33

3. Configuring BEA MessageQ MQSeries Connection
Overview of Configuration Tasks ... 3-1

Configuring BEA MessageQ... 3-3

Group Name Table ... 3-4

Configuring IBM MQSeries .. 3-5

Configuring the Required IBM MQSeries Queues 3-5
iv BEA MessageQ MQSeries Connection User’s Guide

Defining IBM MQSeries Queues ... 3-7

Tips for Configuring IBM MQSeries... 3-7

Configuring the Queue Message Bridge ... 3-8

Registering Remote Service Queues .. 3-13

4. Managing the BEA MessageQ MQSeries Connection
Environment

Starting the Queue Message Bridge .. 4-2

Performance Considerations .. 4-4

Stopping the Queue Message Bridge .. 4-5

Using the BEA MessageQ Monitor Utility ... 4-5

Using the runmqsc MQSeries Utility .. 4-5

Troubleshooting BEA MessageQ MQSeries Connection Problems 4-6

Queue Message Bridge Log Files .. 4-6

Using IBM MQSeries Log Files.. 4-9

Using the BEA MessageQ MQSeries Connection Utility............................... 4-10

How the BEA MessageQ MQSeries Connection Utility Works.............. 4-10

Starting the BEA MessageQ MQSeries Connection Utility 4-12

Understanding Current and Default Target Groups and Queues 4-13

Selecting the Terminate QMB Process Message Choice 4-14

Selecting the Dynamic Service Registration Message Choice................. 4-15

Selecting the Close Old and Open New Log File Message Choice 4-15

Selecting the Reload QMB Configuration File Message 4-16

Exiting the BEA MessageQ MQSeries Connection Utility 4-16

A. Programming Examples
Using the Programming Examples ... A-1

Building the Programming Examples ... A-2

QMB_DMQECHO.. A-3

QMB_MQSECHO .. A-3

QMB_DMQCLIENT .. A-4

QMB_MQSCLIENT... A-5

Running the QMB_MQSECHO and QMB_DMQCLIENT Test Pair...... A-7

Running the QMB_MQSCLIENT and QMB_DMQECHO Test Pair...... A-8

Testing the Programming Examples .. A-10
BEA MessageQ MQSeries Connection User’s Guide v

Testing the IBM MQSeries Connection to BEA MessageQ A-11

Testing the BEA MessageQ Connection to IBM MQSeries A-11

B. Messages
DUMP_QTABLES... B-2

EVENT_LOG ... B-3

LOAD_CONFIG .. B-4

NEW_LOG ... B-5

PURGE_CI ... B-6

PURGE_CI_ALL ... B-7

QMB_TERMINATE .. B-8

RSQ_REGISTER ... B-9

TRACE_LOG ... B-10

Index
vi BEA MessageQ MQSeries Connection User’s Guide

ts,
.

. It
 Preface

Purpose of This Document

This document describes Versions 4.0A and 5.0 of the BEA MessageQ MQSeries
Connection product and gives instructions for building BEA MessageQ MQSeries
Connection applications. Version 4.0A is designed to interoperate with BEA
MessageQ Version 4.0A and IBM MQSeries 5.0 applications. Version 5.0 is designed
to interoperate with BEA MessageQ Version 5.0 and IBM MQSeries 5.0 applications.

Who Should Read This Document

This document is intended for system administrators, network administrators, and
developers who are interested in integrating BEA MessageQ applications with IBM
MQSeries applications using the BEA MessageQ MQSeries Connection product.

How This Document Is Organized

The BEA MessageQ MQSeries Connection User’s Guide is organized as follows:

t Chapter 1, “Introduction to BEA MessageQ MQSeries Connection,” defines
message queuing, describes the BEA MessageQ and IBM MQSeries produc
and describes how the BEA MessageQ MQSeries Connection product works

t Chapter 2, “Developing Message Queuing Applications,” describes how to
design applications using the BEA MessageQ MQSeries Connection product
BEA MessageQ MQSeries Connection User’s Guide vii

e
A

nt,”

g

 for
re

 the
also describes how replies and requests are exchanged between BEA MessageQ
and MQSeries applications.

t Chapter 3, “Configuring BEA MessageQ MQSeries Connection,” describes th
tasks required to define queues and configure your system to support the BE
MessageQ MQSeries Connection product.

t Chapter 4, “Managing the BEA MessageQ MQSeries Connection Environme
describes how to manage the BEA MessageQ MQSeries Connection
environment, including starting the Queue Message Bridge (QMB), using the
BEA MessageQ Connection Utility, using the runmqsc MQSeries Utility, and
troubleshooting.

t Appendix A, “Programming Examples,” describes how to use the programmin
examples provided with the BEA MessageQ MQSeries Connection product.
BEA MessageQ MQSeries Connection client/server programs and programs
testing BEA MessageQ MQSeries Connection installation and configuration a
provided.

t Appendix B, “Messages,” describes the control messages that can be sent to
QMB processes using the BEA MessageQ MQSeries Connection utility.

How to Use This Document

This document, BEA MessageQ MQSeries Connection User’s Guide, is designed
primarily as an online, hypertext document. If you are reading this as a paper
publication, note that to get full use from this document you should install and access
it as an online document via a Web browser.

The following sections explain how to view this document online, and how to print a
copy of this document.

Opening the Document in a Web Browser

To access the online version of this document, open the following HTML file in a Web
browser:
viii BEA MessageQ MQSeries Connection User’s Guide

/doc/bmq/mqsc/usergde/index.htm

Note: The online documentation requires a Web browser that supports HTML
version 3.0. Netscape Navigator version 3.0 or Microsoft Internet Explorer
version 3.0 or later are recommended.

Figure 1 shows the online document with the clickable navigation bar and table of
contents.
BEA MessageQ MQSeries Connection User’s Guide ix

Figure 1 Online Document Displayed in a Netscape Web Browser

Table of Contents

Click on a topic to view it.

Navigation Bar

Click a button to view another book.

Document Display Area
x BEA MessageQ MQSeries Connection User’s Guide

Printing from a Web Browser

You can print a copy of this document, one file at a time, from the Web browser.
Before you print, make sure that the chapter or appendix you want is displayed and
selected in your browser. (To select a chapter or appendix, click anywhere inside the
chapter or appendix you want to print. If your browser offers a Print Preview feature,
you can use the feature to verify which chapter or appendix you are about to print.)

The BEA MessageQ Online Documentation CD and the BEA MessageQ MQSeries
Connection product CD also include Adobe Acrobat PDF files of online documents.
You can use the Adobe Acrobat Reader to print all or a portion of each document.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary in the BEA MessageQ Introduction
to Message Queuing.

Ctrl+Tab Indicates that you must press two or more keys sequentially.

italics Indicate emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include stdio

pams_attach_q

\bmq\lu62_40a\include

.htm

bmq.doc

BITMAP

float
BEA MessageQ MQSeries Connection User’s Guide xi

monospace
boldface
text

Identifies significant words in code.

Example:

put_msg(msg_ptr, class, type)

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

PATH

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

int32 pams_get_msg (msg_area, priority ...
[sel_filter] [psb] [show_buffer]...)

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

t That an argument can be repeated several times in a command line

t That the statement omits additional optional arguments

t That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

int32 pams_get_msg (msg_area, priority ...
[sel_filter] [psb] [show_buffer]...)

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
xii BEA MessageQ MQSeries Connection User’s Guide

 4.0A
Related Documentation

The following sections list the documentation provided with the BEA MessageQ
MQSeries Connection software.

 MessageQ MQSeries Connection Documentation

The BEA MessageQ MQSeries Connection information set consists of the following
documents:

BEA MessageQ MQSeries Connection Installation Guide

BEA MessageQ MQSeries Connection User’s Guide

BEA MessageQ MQSeries Connection and MVS Client Release Notes, Versions
and 5.0

Note: The BEA MessageQ Online Documentation CD also includes Adobe Acrobat
PDF files of all of the online documents. You can use the Adobe Acrobat
Reader to print all or a portion of each document.

BEA Publications

You may find the following documentation helpful when using BEA MessageQ
MQSeries Connection. The following manuals describe the BEA MessageQ product:

BEA MessageQ Introduction to Message Queuing

BEA MessageQ Programmer’s Guide

BEA MessageQ Installation and Configuration for Windows NT

BEA MessageQ Installation and Configuration for UNIX

BEA MessageQ System Messages

BEA MessageQ FML Programmer’s Guide
BEA MessageQ MQSeries Connection User’s Guide xiii

BEA MessageQ Reference Manual

BEA MessageQ Client for Windows User’s Guide

BEA MessageQ Client for UNIX User’s Guide

Note: The BEA MessageQ Online Documentation CD also includes Adobe Acrobat
PDF files of all of the online documents. You can use the Adobe Acrobat
Reader to print all or a portion of each document.

Other Publications

You may also find the IBM MQSeries documentation helpful. For information on IBM
MQSeries, see the IBM MQSeries Version 5.0 documentation set.

Contact Information

The following sections provide information about how to obtain support for the
documentation and software.

Documentation Support

If you have questions or comments on the documentation, you can contact the BEA
Information Engineering Group by e-mail at docsupport@beasys.com. (For
information about how to contact Customer Support, refer to the following section.)
xiv BEA MessageQ MQSeries Connection User’s Guide

Customer Support

If you have any questions about this version of BEA MessageQ MQSeries Connection,
or if you have problems installing and running BEA MessageQ MQSeries Connection,
contact BEA Customer Support through BEA WebSupport at www.beasys.com. You
can also contact Customer Support by using the contact information provided on the
Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

t Your name, e-mail address, phone number, and fax number

t Your company name and company address

t Your machine type and authorization codes

t The name and version of the product you are using

t A description of the problem and the content of pertinent error messages
BEA MessageQ MQSeries Connection User’s Guide xv

xvi BEA MessageQ MQSeries Connection User’s Guide

CHAPTER
1 Introduction to BEA
MessageQ MQSeries
Connection

To help you understand the BEA MessageQ MQSeries Connection product and the
software technology behind it, this chapter discusses the following topics:

t Message Queuing

t Message Queuing Interfaces

t The BEA MessageQ Product

t The IBM MQSeries Product

t How Message Queuing Systems Work

t The Need for Integrated Message Queuing

t How BEA MessageQ MQSeries Connection Works

Message Queuing

Message queuing is a method of information exchange used by two or more
cooperating processes, which directs messages to a memory- or disk-based queue as
an intermediate storage point. Message queuing applications are generally designed so
that messages flow in a request/reply fashion. After the messaging system accepts a
BEA MessageQ MQSeries Connection User’s Guide 1-1

1 Introduction to BEA MessageQ MQSeries Connection
message from the application, the application is free to continue work. It is the
responsibility of the messaging system to deliver the message to the target queue, or,
if it cannot do so, to take the appropriate action.

Most message queuing applications use asynchronous processing to send and receive
messages. The sending and receiving applications are uncoupled or loosely coupled at
best. They read and operate on the messages independently. If your application
requires a tightly coupled (synchronous) relationship between the sending and
receiving applications, you must design and enforce the tight coupling in the
application logic using predefined message flow protocols.

BEA MessageQ is the BEA Systems, Inc. implementation of a message queuing
system. MQSeries is the IBM implementation of a message queuing system. BEA
MessageQ MQSeries Connection provides a set of programming services that allow
message exchange between the BEA MessageQ and IBM MQSeries message queuing
systems.

Message Queuing Interfaces

Most messaging systems provide a message queuing interface that allows applications
to access resources at remote locations. Applications access these resources through
common calls that contain no communications protocol-specific variables. The
message queuing interface is independent and isolated from any communications
protocol implemented by the messaging system.

The communications engine of the messaging system is responsible for all of the
physical communications protocols and message delivery. This insulation provides the
application with a network-independent topology, and facilitates the development of a
truly heterogeneous application environment.

Both the BEA MessageQ and IBM MQSeries messaging systems provide a common
application programming interface (API). The API is a set of basic functions, in the
appropriate language, that provide applications access to the messaging system
resources. The use and format of the API functions remains constant across all
environments supported by the messaging system. Therefore, properly designed
applications are platform-independent.

The basic API for most messaging systems consists of functions that:
1-2 BEA MessageQ MQSeries Connection User’s Guide

The BEA MessageQ Product

ng
t can
r local
t Connect, open, and attach to the messaging system

t Dequeue a message from a queue

t Send a message to a queue

t Close or detach from the messaging system

In addition to these basic functions, the messaging system may offer advanced features
such as message recovery, selective messaging, message broadcasting, and application
development tools.

On BEA MessageQ systems, the API is called the PAMS API. For more information,
see the BEA MessageQ Programmer’s Guide. On IBM MQSeries systems, the API is
called the message queuing interface (MQI). For more information, see the MQSeries
Application Programming Reference.

The BEA MessageQ Product

BEA MessageQ software is a message queuing system for heterogeneous computing
environments that eliminates the need to learn system-level communications software
for sending and receiving messages. BEA MessageQ software offers a common
mechanism for message exchange, called the BEA MessageQ message queuing bus,
that provides an interprocess communications highway for all applications to send and
receive messages.

After the application attaches to the BEA MessageQ message queuing bus, it can send
and receive messages from applications running on any supported platform. BEA
MessageQ software runs on most UNIX systems, OpenVMS, and Windows NT. All
platforms use a common BEA MessageQ API.

BEA MessageQ software uses a client/server architecture to implement distributed
communications. A client is a software module that requests services of a server. A
server is a software module that responds to the client’s request by providing the
specified services.

Each BEA MessageQ environment requires a message server, a message routi
system that distributes messages among remote nodes. A BEA MessageQ clien
exchange messages with other applications on the message queuing bus (whethe
or remote) through a message server.
BEA MessageQ MQSeries Connection User’s Guide 1-3

1 Introduction to BEA MessageQ MQSeries Connection

e
ueues.

ueue.

s

 the

on

For a complete explanation on how to install, configure, and use the BEA MessageQ
product, see the BEA MessageQ documentation for your BEA MessageQ server
product.

The IBM MQSeries Product

IBM MQSeries products enable applications to use message queuing to participate in
message-driven processing. With message-driven processing, applications can
communicate across the same or different platforms using the same kinds of messages;
communication protocols are hidden from the applications.

Message-driven processing requires applications to be designed as discrete functional
modules. Each module must be an application program with well-defined input and
output parameters. An application program’s input and output parameters can b
shared with other application programs by being included in messages sent to q

Using the appropriate IBM MQSeries programming mechanisms, an application
program can start executing as a result of one or more messages arriving on a q
If required, the program can terminate when all messages in a queue have been
processed. Message-driven processing allows you to build or modify application
more quickly than you can with other types of application.

IBM MQSeries implements a common application programming interface, called
message queuing interface (MQI), across all supported platforms.

For more information on IBM MQSeries, refer to the IBM MQSeries documentati
for the platform that you are using.

How Message Queuing Systems Work

Message queuing systems enable applications to communicate without “talking”
directly with each other. Messages are placed on message queues for a target
application to read. The target application reads the message and responds
appropriately.
1-4 BEA MessageQ MQSeries Connection User’s Guide

How Message Queuing Systems Work
Figure 1-1 shows how a typical message queuing system, based on a simple
request/reply paradigm, sends messages.

Figure 1-1 Typical Message Queuing System

The request/reply interaction shown here works as follows:

t Application A places a message (containing a request for information from
Application B) on Queue_1.

t Application B reads the message on Queue_1.

t Application B places a reply on Queue_2. How Application B responds to the
message depends on how the message and application are coded.

t Application A reads the message on Queue_2.

Queue_2

Application B

Application A

Queue_1
BEA MessageQ MQSeries Connection User’s Guide 1-5

1 Introduction to BEA MessageQ MQSeries Connection
The Need for Integrated Message Queuing

Typically, message queuing systems do not allow applications to send messages to
queues that are written using a different message queuing system. For example, BEA
MessageQ applications cannot place messages on IBM MQSeries queues and vice
versa. This lack of interoperability among message queuing systems can be a problem
for businesses that merge and want to integrate information systems based on different
message queuing systems.

BEA MessageQ MQSeries Connection solves the integration problem by allowing
messages to be passed between BEA MessageQ and IBM MQSeries message queuing
systems. For example, suppose two banks merge and need to integrate their
information systems. Management decides to consolidate all account information on
IBM systems that use IBM MQSeries for message exchange. In addition, management
wants its customers to continue using their current ATM system. The ATM system
receives requests for account information and dispatches requests to the server system
using BEA MessageQ messages. Instead of rewriting either application, management
decides to use BEA MessageQ MQSeries Connection to forward requests and
responses between the two different message queuing systems.
1-6 BEA MessageQ MQSeries Connection User’s Guide

How BEA MessageQ MQSeries Connection Works
How BEA MessageQ MQSeries Connection
Works

BEA MessageQ MQSeries Connection provides a set of programming services that
allow message exchange between the BEA MessageQ and IBM MQSeries V5.0
message queuing systems. Table 1-1 shows which versions of these messaging
systems are supported by Versions 4.0A and 5.0 of the BEA MessageQ MQSeries
Connection product.

Application developers can write their applications using either message queuing
system. BEA MessageQ MQSeries Connection makes sure that messages are properly
passed between the two message queuing systems, and that the message header
information is in the proper format for the target application.

For example, suppose Application A is the ATM application that uses BEA MessageQ
for message exchange. It is designed to receive requests for account inquiries, send
these requests to Application B, and return account information to bank customers.
Application B is an account lookup application that uses IBM MQSeries V5.0 for
message exchange. Figure 1-2 shows how account inquiries are exchanged between
the two messaging systems.

Table 1-1 BEA MessageQ MQSeries Connection Interoperability

BEA MessageQ MQSeries
Connections Version

Works with...

BEA MessageQ
Version

IBM MQSeries
Version

4.0A 4.0A 5.0

5.0 5.0 5.0
BEA MessageQ MQSeries Connection User’s Guide 1-7

1 Introduction to BEA MessageQ MQSeries Connection
Figure 1-2 BEA MessageQ MQSeries Connection Overview

1. Application A places an account inquiry message on Queue_1, a BEA MessageQ
queue.

BEA MessageQ
Environment

BEA MessageQ
MQSeries Connection

Environment

MQSeries
Environment

3

42

5
1

Queue_4
(RSQ)

Queue Message
Bridge

Maps and forwards
messages

Queue_3
(LSQ)

Application B

Queue_1
(LSQ)

Application A

Queue_2
(RSQ)
1-8 BEA MessageQ MQSeries Connection User’s Guide

How BEA MessageQ MQSeries Connection Works

s.”

pers
g to
nts.
ts by

tem

be
ues
2. The part of BEA MessageQ MQSeries Connection called the Queue Message
Bridge reads the message on Queue_1. It maps the message header data into IBM
MQSeries format and forwards the message to Queue_2, an IBM MQSeries
queue.

3. Application B reads the message on Queue_2, looks up the requested account
information, and places the account information in a reply message. The message
is placed on Queue_3, an IBM MQSeries queue.

4. The part of BEA MessageQ MQSeries Connection called the Queue Message
Bridge reads the message on Queue_3. It maps the message header data into BEA
MessageQ format and forwards the message to Queue_4, a BEA MessageQ
queue.

5. Application A reads the message on Queue_4 and displays the account
information to the customer.

The LSQ (Local Service Queue) and RSQ (Remote Service Queue) designations are
defined in “Communication Services Between BEA MessageQ and IBM MQSerie

The use of message queuing for application development allows software develo
to concentrate on the business needs of application development, without havin
worry about the underlying network and communications programming requireme
BEA MessageQ MQSeries Connection eases the integration of mixed environmen
allowing applications based on the BEA MessageQ and IBM MQSeries message
queuing systems to exchange information without any new code.

Communication Services Between BEA MessageQ and
IBM MQSeries

The part of BEA MessageQ MQSeries Connection that provides communication
services between BEA MessageQ and IBM MQSeries applications is the Queue
Message Bridge (QMB). The QMB provides the following:

t Resource services to connect, open, and attach to the remote messaging sys

t Services to close, disconnect, or detach from the remote messaging system

t Queue and message services (such as send and receive functions) that can
used to forward messages between BEA MessageQ and IBM MQSeries que
BEA MessageQ MQSeries Connection User’s Guide 1-9

1 Introduction to BEA MessageQ MQSeries Connection

al

r

nds

 or

ies

ith

ly

g
and

B
 RSQ
As shown earlier in Figure 1-2, the QMB creates a relationship between IBM
MQSeries and BEA MessageQ queues in order to be able to forward messages
between them. This relationship is based on the use of two QMB-specific entities
referred to as the Local Service Queue (LSQ) and Remote Service Queue (RSQ):

t Local Service Queue (LSQ)—This is an intermediate queue for sending a
message. An application always sends to an LSQ, which is defined in the loc
messaging system. Messages received on an LSQ are read by the QMB and
forwarded to the associated RSQ. An LSQ can be either a BEA MessageQ o
IBM MQSeries queue.

t Remote Service Queue (RSQ)—This is the final target queue for sending a
message. This queue is defined by the remote messaging system. A QMB se
messages (retrieved from the associated LSQ) to this queue for subsequent
processing by the target application. An RSQ can be either a BEA MessageQ
IBM MQSeries queue.

In the banking application described earlier in the “How BEA MessageQ MQSer
Connection Works” section, the LSQs and RSQs are used as follows:

t Queue_1 is a BEA MessageQ LSQ. This queue contains an account inquiry
request with its message header data in BEA MessageQ format.

t Queue_2 is the IBM MQSeries RSQ. It contains the account inquiry request w
its message header data in IBM MQSeries format.

t Queue_3 is an IBM MQSeries LSQ. It contains the account information reply
with its message header data in IBM MQSeries format.

t Queue_4 is the BEA MessageQ RSQ. It contains the account information rep
with its message header data in BEA MessageQ format.

The QMB uses the terms local and remote to reference its own view of the processin
environment. The LSQ is owned and maintained by a QMB. The RSQ is owned
maintained by the partner messaging system and application service program.
Message delivery between the LSQ and RSQ is asynchronous.

A requesting application, as defined in either BEA MessageQ or IBM MQSeries,
formats and sends a message to an LSQ. The LSQ is under the control of a QM
server. The QMB server then maps and forwards the message to the associated
on behalf of the requesting application.
1-10 BEA MessageQ MQSeries Connection User’s Guide

How BEA MessageQ MQSeries Connection Works

3,

.

If the local messaging system is BEA MessageQ, the LSQ is a multireader queue and
directs messages from a BEA MessageQ application to an IBM MQSeries application.
If the local messaging system is IBM MQSeries, the LSQ is a shared queue and directs
messages from an IBM MQSeries application to a BEA MessageQ application.

The RSQ may be of any supported queue type, and reside anywhere in the messaging
system that is accessible from the BEA MessageQ group or IBM MQSeries Message
Queue Manager of the designated QMB process.

The QMB relies on an LSQ to RSQ relationship to know where to forward messages.
This relationship is established in the QMB queue configuration file. For more
information on this file, see “Configuring the Queue Message Bridge” in Chapter
“Configuring BEA MessageQ MQSeries Connection.”

Queue Message Bridge Components

The QMB consists of two processes:

t QMBDM—This process is responsible for reading messages from a BEA
MessageQ LSQ and forwarding them to the associated IBM MQSeries RSQ.

t QMBMD—This process is responsible for reading messages from an IBM
MQSeries LSQ and forwarding them to the associated BEA MessageQ RSQ

Figure 1-3 shows the architecture of the QMB.
BEA MessageQ MQSeries Connection User’s Guide1-11

1 Introduction to BEA MessageQ MQSeries Connection
Figure 1-3 Queue Message Bridge Architecture

BEA MessageQ to IBM MQSeries messages flow through the QMBDM server and
IBM MQSeries to BEA MessageQ messages flow through the QMBMD server.

You may invoke multiple instances of the QMB to allow load balancing and tuning.
The actual number of QMB processes required to drive a specific application varies,
depending on the application design and overall topology.

BEA MessageQ
Environment

MQSeries
Environment

BEA
MessageQ
MQSeries

Connection
Environment

QMB
Configuration

File

RSQ

LSQ

LSQ

RSQ

QMBDM QMBMD
1-12 BEA MessageQ MQSeries Connection User’s Guide

How BEA MessageQ MQSeries Connection Works
Message Flow

A QMB process owns and maintains the LSQ. LSQs can be shared by multiple QMB
processes to make BEA MessageQ MQSeries Connection scalable and tunable. An
LSQ must exist for each application from which messages will be sent to a remote
application. An LSQ must also exist for reply message processing.

Figure 1-4 shows how a QMB forwards a message from a BEA MessageQ LSQ to its
associated IBM MQSeries RSQ.

Figure 1-4 Forwarding a Message to MQSeries

Figure 1-5 shows how a QMB forwards a message from an IBM MQSeries LSQ to its
associated BEA MessageQ RSQ.

QMBDM

LSQ

RSQ

MessageQ
Application

MQSeries
Application
BEA MessageQ MQSeries Connection User’s Guide1-13

1 Introduction to BEA MessageQ MQSeries Connection
Figure 1-5 Forwarding a Message to BEA MessageQ

QMBMD

RSQ

LSQ

MessageQ
Application

MQSeries
Application
1-14 BEA MessageQ MQSeries Connection User’s Guide

CHAPTER
2 Developing Message
Queuing Applications

This chapter describes how to develop message queuing applications that use BEA
MessageQ MQSeries Connection to exchange messages. It covers the following
topics:

t Using Application Programming Interfaces

t Designing Applications to Use BEA MessageQ MQSeries Connection

t Choosing Message Characteristics

t Sending a Request to an IBM MQSeries Server

t Sending a Reply to a BEA MessageQ Client

t Sending a Request to a BEA MessageQ Server

t Sending a Reply to an IBM MQSeries Client

t Restrictions and Limitations

Using Application Programming Interfaces

You should be familiar with the BEA MessageQ and IBM MQSeries application
development environments and follow the coding standards required by each. If you
are writing the BEA MessageQ half of an application, you must code the BEA
BEA MessageQ MQSeries Connection User’s Guide 2-1

2 Developing Message Queuing Applications
MessageQ application programming interfaces (API) for attaching to the bus, locating
target queues, sending and receiving messages, and controlling the application
message flow.

Conversely, if you are writing the IBM MQSeries half of the application, you must
code to the MQSeries message queuing interface (MQI) for connecting to a Message
Queue Manager (MQM), opening and closing queues, sending and receiving
messages, and controlling the message flow.

Your application interacts only with the local messaging system (the one to which your
application is attached or connected). Forwarding messages to another messaging
system is the responsibility of the Queue Message Bridge (QMB) and is not directly
controlled by your application.

Designing Applications to Use BEA
MessageQ MQSeries Connection

Designing an application that supports the exchange of messages between BEA
MessageQ and IBM MQSeries message queueing systems is complex because it
requires knowledge of how messages are sent and received by each system. The QMB
performs the transformation of the message header data into the format required by the
message queuing system running on the receiver platform, but the application
developer must understand how the QMB performs the transformation to ensure the
correct result. You can use the BEA MessageQ MQSeries Connection to exchange
information between both new and legacy applications. Legacy applications may
require some alteration unless they use only a simple datagram or request/reply
paradigm.

When designing message-driven applications, you must decide how messages are to
be sent and received. You may want to design your application so that it sends a request
and receives a reply. Or, you may want it to send a datagram message only. To ensure
that your application meets your needs, you must identify those needs before starting
to design. This section helps you define your requirements by providing information
about the following tasks:

t Determining Queues that Your Application Needs
2-2 BEA MessageQ MQSeries Connection User’s Guide

Designing Applications to Use BEA MessageQ MQSeries Connection

e

nts to
t Defining Queues for BEA MessageQ Clients to IBM MQSeries Servers

t Defining Queues for IBM MQSeries Clients to BEA MessageQ Servers

Determining Queues that Your Application Needs

When designing a message-based application, you must determine what services are
needed by your application and how to access these services. Keep in mind that a
message-based application accesses a target application by sending a message to a
queue that is controlled by the target. This queue must be known and accessible to the
application sending the message.

Because the QMB provides communication services to both BEA MessageQ and IBM
MQSeries applications, it must present queues to each messaging system in a way that
each system recognizes. BEA MessageQ MQSeries Connection does this through the
QMB Local Service Queue (LSQ). The receiving application is located on the target
messaging system and is listening on a queue known as the Remote Service Queue
(RSQ). The QMB manages the LSQ and maintains the LSQ to RSQ relationship.

Before a configured IBM MQSeries or BEA MessageQ queue can be used as a QMB
LSQ or RSQ, you must configure it appropriately in the QMB queue configuration file.
The entries in this file determine the LSQ to RSQ relationship.

For more information on the QMB configuration file, see the “Configuring the Queue
Message Bridge” section in Chapter 3, “Configuring BEA MessageQ MQSeries
Connection.”

Defining Queues for BEA MessageQ Clients to IBM
MQSeries Servers

The QMBDM server reads from the LSQs owned by MessageQ and forwards th
received messages to its corresponding RSQ which is a IBM MQSeries queue.

To define queues for applications that send messages from BEA MessageQ clie
IBM MQSeries servers, follow these steps.
BEA MessageQ MQSeries Connection User’s Guide 2-3

2 Developing Message Queuing Applications

o

 the

ts to
1. In the QMB configuration file, define the BEA MessageQ owned LSQ and the
IBM MQSeries owned RSQ. In the following example MQS_ECHO is the BEA
MessageQ owned LSQ and MQS_ECHO_SERVER is the IBM MQSeries owned
RSQ.

Example:

 !LSQ LSQ RSQ RSQ
 !Name Owner Name Association
 !
 MQS_ECHO D MQS_ECHO_SERVER S

2. Define the IBM MQSeries RSQ (MQS_ECHO_SERVER) to the IBM MQSeries
Message Queue Manager (MQM) connected to the QMB servers.

See “Configuring IBM MQSeries” in the next chapter for information on how t
define an IBM MQSeries queue.

3. Define the BEA MessageQ LSQ (MQS_ECHO) in the BEA MessageQ group
initialization file of the group attached to the QMB. This queue name must be
local to the current group and must be a multireader queue.

(See Listing 3-1 for an example).

For information on defining BEA MessageQ queues, see the BEA MessageQ
installation and configuration documentation for your platform.

Defining Queues for IBM MQSeries Clients to BEA
MessageQ Servers

The QMBMD server reads from the LSQs owned by IBM MQSeries and forwards
received messages to its corresponding RSQ which is a BEA MessageQ queue.

To define queues for applications that send messages from IBM MQSeries clien
BEA MessageQ servers, follow these steps.

1. In the QMB configuration file, define the IBM MQSeries owned LSQ and the
MessageQ owned RSQ. In the following example DMQ_ECHO is the IBM MQSeries
owned LSQ and DMQ_ECHO_SERVER is the MessageQ owned RSQ.
2-4 BEA MessageQ MQSeries Connection User’s Guide

Choosing Message Characteristics

e a
NT
ve a

B
his
nt

uing
Example:

 !LSQ LSQ RSQ RSQ
 !Name Owner Name Association
 !
 DMQ_ECHO M DMQ_ECHO_SERVER S

2. Define the IBM MQSeries LSQ (DMQ_ECHO) to the IBM MQSeries Message
Queue Manager (MQM) connected to the QMB servers. This queue must be
defined as a QLOCAL shared queue.

See “Configuring IBM MQSeries” in the next chapter for information on how to
define an IBM MQSeries queue.

3. Define the MessageQ RSQ (DMQ_ECHO_SERVER) in the MessageQ group
initialization file of the group attached to the QMB servers. This queue may b
local queue defined in the %QCT table or a remote queue defined in the %G
table. Global queue lookups are not supported, therefore, the queue must ha
local scope. (See Listing 3-1 for an example.)

4. Define the IBM MQSeries reply queue on which the IBM MQSeries client
expects a response. This is not the same reply queue that is used by the QM
servers. This is a reply queue used by the IBM MQSeries client application. T
queue needs to be defined to the same MQM to which the IBM MQSeries clie
application is connected.

For information on defining IBM MQSeries queues, see the MQSeries Command
Reference.

Choosing Message Characteristics

The characteristics of the message can determine the behavior of the receiving
application. Therefore, it is important that when you are designing a message que
application, you carefully choose the characteristics of the messages that your
application will send. The following topics will help you choose the best
characteristics for your application’s messages:

t Selecting the Type for Message Exchange

t Processing Reply Messages
BEA MessageQ MQSeries Connection User’s Guide 2-5

2 Developing Message Queuing Applications

 the

y to
ing

erver

ypes
t Processing Multiple Replies

t Using Message Types and Classes

t Using Recoverable Messaging

t Using Correlation Identifiers

t Using FML Buffers

t Setting Message Priority

t How Message Header Data Is Mapped

t Handling Message Byte Order Differences

t Character Code Conversion

t Guidelines for Choosing Message Characteristics

Selecting the Type for Message Exchange

You can use the QMB to exchange the following types of messages:

t Datagram—When the QMB server receives a datagram message, it forwards
message to the designated RSQ.

t Request—When the QMB server receives a request message, it forwards the
request to the designated RSQ. The request is sent with message header
information so that the reply can be linked to the originating client. The RSQ
program must save and return this message header information in the reply
message.

t Reply—When the QMB server receives a reply message, it forwards the repl
the client queue identified in the message header information. See the follow
section, “Processing Reply Messages,” for more information.

t Control—This type of message is a special case message that tells a QMB s
to perform a designated internal task such as turning trace logging on/off,
opening or closing a log file, and terminating the application.

t Undefined—Messages received on a valid LSQ are checked against known t
of messages and processed accordingly. If the type is undefined, the default
2-6 BEA MessageQ MQSeries Connection User’s Guide

Choosing Message Characteristics

ges

t

g

eply
n the
ries,

to
characteristics are applied to the message and the QMB forwards the message to
the target RSQ. The default characteristics are request (message exchange), no
priority, and nonpersistent.

The QMB determines the type of message using the BEA MessageQ message type and
class fields or by using the IBM MQSeries MsgType header.

Processing Reply Messages

An application program must give special consideration to a request type message
exchange. Certain rules must be followed to ensure the successful delivery of the reply
to the originating application’s reply queue. Applications from which reply messa
are going to be sent must adhere to the following rules:

t The reply message must be sent to the sending application’s reply queue.
Information about the application’s reply queue was received with the reques
and can be determined as follows:

t Use the pams_get source address if the receiving application is written usin
BEA MessageQ.

t Use the message descriptors ReplyToQMgr and ReplyToQ if the receiving
application is written using IBM MQSeries.

t Include the Connection Index (CI) that was received with the request in the
appropriate message header field of the reply message.

The QMB uses the CI, an internally created entity, to link a reply message to a r
target. This CI is carried in a message header field of the request and returned i
same field of the reply. The data structure used in the message header fields va
depending on the direction of the request message.

t BEA MessageQ class and type fields are used for message requests flowing
from an IBM MQSeries client to a BEA MessageQ server. The class and type
fields make up the CI.

t The ApplIdentityData field in the IBM MQSeries message descriptor
(MQMD) is used for message requests flowing from a BEA MessageQ client
an IBM MQSeries server. The ApplIdentityData field contains the ASCII
representation of the BEA MessageQ reply address.
BEA MessageQ MQSeries Connection User’s Guide 2-7

2 Developing Message Queuing Applications
For the ApplIdentityData field to pass the CI, first open the IBM MQSeries queue
by calling MQOPEN with the MQOO_SET_ALL_CONTEXT option. Then construct all put
messages with the MQPMO_SET_ALL_CONTEXT option.

Processing Multiple Replies

BEA MessageQ MQSeries Connection supports multiple replies from a single request.
Because of the difference in the way reply messages are processed by BEA MessageQ
or IBM MQSeries, different rules apply for sending multiple replies to these two
message queueing systems. This section explains:

t How IBM MQSeries Applications Process Multiple Replies

t How BEA MessageQ Applications Process Multiple Replies

How IBM MQSeries Applications Process Multiple Replies

An IBM MQSeries application sending replies formats the data of each reply, includes
the ApplIdentityData, and sends the message to the ReplyToQ and ReplyToQMgr
descriptors received in the request message. The IBM MQSeries application repeats
this for each reply until all replies have been sent.

Listing 2-1 shows a fragment of IBM MQSeries server code that gets messages,
processes them, and sends a reply.

Listing 2-1 MQSeries Server Code for Sending a Reply

 /**/
 /* MQSeries Server code fragment to Get messages from the */
 /* message queue, process the message, and send a reply */
 /**/

 /**/
 /* Open the message queue for shared input */
 /**/

 (void)memcpy((void *)odG.ObjectName, /* name of input queue */
 (void *)QName,
 MQ_Q_NAME_LENGTH);
2-8 BEA MessageQ MQSeries Connection User’s Guide

Choosing Message Characteristics
 O_options = MQOO_INPUT_SHARED /* open queue for shared input */
 + MQOO_FAIL_IF_QUIESCING,
 + MQOO_SAVE_ALL_CONTEXT;

 MQOPEN(Hcon, /* connection handle */
 &odG, /* object descriptor for queue */
 O_options, /* open options */
 &Hobj, /* object handle */
 &CompCode, /* MQOPEN completion code */
 &Reason); /* reason code */

 /**************************/
 /* stop if it failed */
 /*************************/

 if (CompCode != MQCC_OK)
 exit(Reason);

 /***/
 /* Get messages from the message queue */
 /* Loop until there is a warning or failure */
 /***/

 buflen = sizeof(buffer) - 1;
 CompCode = MQCC_OK ;

 while (CompCode == MQCC_OK) {
 gmo.Options = MQGMO_ACCEPT_TRUNCATED_MSG
 + MQGMO_CONVERT /* receive converted messages */
 + MQGMO_WAIT; /* wait for new messages */

 gmo.WaitInterval = MQWI_UNLIMITED; /* waiting forever */
 md.Encoding = MQENC_NATIVE;
 md.CodedCharSetId = MQCCSI_Q_MGR;

 /**/
 /* In order to read the messages in sequence, MsgId and */
 /* CorrelID must have the default value. MQGET sets them */
 /* to the values in for message it returns, so re-initialise */
 /* them before every call */
 /**/

 (void)memcpy((void *)md.MsgId, (void *)MQMI_NONE, sizeof(md.MsgId));
 (void)memcpy((void *)md.CorrelId, (void *)MQCI_NONE,sizeof(md.CorrelId));
 (void)memset((void *)buffer, 0, sizeof(buffer));

 MQGET(Hcon, /* connection handle */
 Hobj, /* object handle */
 &md, /* message descriptor */
BEA MessageQ MQSeries Connection User’s Guide 2-9

2 Developing Message Queuing Applications
 &gmo, /* GET options */
 buflen, /* buffer length */
 buffer, /* message buffer */
 &messlen, /* message length */
 &CompCode, /* completion code */
 &Reason); /* reason code */

 /**/
 /* report reason if any (loop ends if it failed) */
 /**/

 if (Reason != MQRC_NONE)
 (void)printf("MQGET: Report reason code %ld\n", Reason);

 if (CompCode != MQCC_FAILED) {
 buffer[messlen] = ’\0’; /* end string ready to use */

 /**/
 /* Only process REQUEST messages */
 /**/

 if (md.MsgType != MQMT_REQUEST) {
 (void)printf(" -- not a request and discarded\n");
 continue;
 }

 /**/
 /* Set the reply message type */
 /**/

 md.MsgType = MQMT_REPLY;

 /**/
 /* Copy the ReplyToQ and ReplyToQMgr names to the object descriptor */
 /**/

 (void)strncpy(odR.ObjectName, md.ReplyToQ, MQ_Q_NAME_LENGTH);
 (void)strncpy(odR.ObjectQMgrName, md.ReplyToQMgr,MQ_Q_MGR_NAME_LENGTH);

 /**/
 /* Insert this processes Qname and Qmgr into the ReplyToQ and */
 /* ReplyToQMgr so receivers can reply back if need be (RTS) */
 /**/

 (void)memset((void *)put_target, 0, MQ_Q_NAME_LENGTH);
 (void)memset((void *)md.ReplyToQMgr, 0, MQ_Q_MGR_NAME_LENGTH);
 (void)memset((void *)md.ReplyToQ, 0, MQ_Q_NAME_LENGTH);

(void)strncpy(put_target, md.ReplyToQ, strlen(put_target));
2-10 BEA MessageQ MQSeries Connection User’s Guide

Choosing Message Characteristics
 (void)strncpy(md.ReplyToQMgr, QMgrName, MQ_Q_MGR_NAME_LENGTH);
 (void)strncpy(md.ReplyToQ, QName, MQ_Q_NAME_LENGTH);

 /**/
 /* MsgId and CorrelId are currently the values of the */
 /* received message. Reset them if requested, then */
 /* stop further reports */
 /**/

 if (!(md.Report & MQRO_PASS_CORREL_ID)) {
 nLength = strlen((char *)md.MsgId);
 if (nLength > MQ_MSG_ID_LENGTH) nLength = MQ_MSG_ID_LENGTH;
 (void)memcpy((void *)md.CorrelId, (void *)md.MsgId,(size_t)nLength);
 if (nLength < MQ_MSG_ID_LENGTH) md.CorrelId[nLength] = ’\0’;
}

 if (!(md.Report & MQRO_PASS_MSG_ID)) {
 (void)memcpy((void *)md.MsgId, (void *)MQMI_NONE, MQ_MSG_ID_LENGTH);
}

 md.Report = MQRO_NONE; /* stop further reports */
 pmo.Options = MQPMO_SET_ALL_CONTEXT + /* allow pass of ApplIdent */
 MQPMO_FAIL_IF_QUIESCING;
 pmo.Context = Hobj;

/***/
/* Because this code fragment uses the same message descriptor */
/* for both receiving and sending messages, we do not have to */
/* save the ApplIdentityData field and copy to an output message */
/* descriptor before we send the reply. The ApplIdentityData */
/* field carries the MessageQ client address which is the end */
/* target for the reply data. If separate input and output */
/* message descriptors are used, then this information would need*/
/* to be copied from the input md to the output md. */
/***/

nSendReplyCount = process_message(buffer);
 while (nSendReplyCount >= 0) {

 nSendReplyCount--;

 MQPUT1(Hcon, /* connection handle */
 &odR, /* object descriptor */
 &md, /* message descriptor */
 &pmo, /* default options */
 messlen, /* message length */
 buffer, /* message buffer */
 &CompCode, /* completion code */
BEA MessageQ MQSeries Connection User’s Guide2-11

2 Developing Message Queuing Applications
 &Reason); /* reason code */

 /**/
 /* report reason if any (loop ends if it failed) */
 /**/

 if (CompCode != MQCC_OK) {
 (void)printf("MQPUT1: Report CompCode code %ld\n", CompCode);
 (void)printf("MQPUT1: Report Reason code %ld\n", Reason);
 if (CompCode == MQCC_FAILED) nSendReplyCount = 0;
 }
 } /* end while loop */
 } /* end message for reply */
 } /* end Get message loop */

How BEA MessageQ Applications Process Multiple Replies

When a message queuing application responds to a request, the reply may be one in a
series of messages, the last in a series, or the only message. A BEA MessageQ
application identifies a reply as one of these three types by setting the message header
type field in the reply. If the message type field is a positive integer, the reply is the
only or last message. If the message type field is negative, the reply is one in a series
of messages. All BEA MessageQ replies are mapped to the IBM MQSeries value
MQMT_REPLY. It then becomes the responsibility of the IBM MQSeries application to
handle the first, last, and only replies appropriately.

This classification scheme for replies allows the QMB server to keep the connection
active until all replies for a request have been processed. When the last or only message
is processed, the CI is removed from the CI table. (To make the message type field
negative, the sending process subtracts the value of the message type field from zero
(0 - MSG_TYPE_XXX) and then inserts the remainder into the message type field for the
reply message.)

Listing 2-2 shows a code fragment for a BEA MessageQ server to send a reply.

Listing 2-2 BEA MessageQ Server Code for Sending a Reply

 /***/
 /* MessageQ Server code fragment to Get messages from the */
 /* RSQ queue, process the message, and send a reply */
2-12 BEA MessageQ MQSeries Connection User’s Guide

Choosing Message Characteristics
 /***/

 timeout = 0; /* wait indefinitely */
 loop = TRUE;

 while (loop)
 {
 prio = 0;
 /***************************************/
 /* listen for requests and send replys */
 /***************************************/
 nStatus = pams_get_msgw(msg_area,
 &prio,
 &source,
 &class,
 &type,
 &dolargemsg,
 &length_16,
 &timeout,
 (int32 *) 0,
 &lpsb,
 &show_buf,
 &show_buf_len,
 &max_len,
 &length,
 (char *) 0); /* Reserved by BEA */

 if (nStatus == PAMS__TIMEOUT)
 continue; /* go listen again */

 if ((! (nStatus & 1)) && (nStatus != PAMS__TIMEOUT)) {
/* log error and exit */
exit(0);
 }

 /*********************************/
 /* Only process REQUEST messages */
 /*********************************/

 if ((type == MSG_TYPE_DATAGRAM) || (type == MSG_TYPE_RTS_ERROR)) {
 (void)printf("\n *** Message not a request and discarded\n");
 continue; /* go read again */
 }

 nSendReplyCount = process_request(msg_area);
 while (nSendReplyCount >= 0) {
 nSendReplyCount--;
BEA MessageQ MQSeries Connection User’s Guide2-13

2 Developing Message Queuing Applications

tion
 delivery = PDEL_MODE_WF_MEM; /* wait for mem, nonrecover */
 send_uma = PDEL_UMA_DISC; /* If can’t deliver it, DISCARD */
 timeout = 100; /* Wait 10 seconds */
 prio = (char) show_buf.priority;

 put_msg_size = length;
 nStatus = pams_put_msg(msg_area,
 &prio,
 &source, /* passed in */
 &class, /* foward class on */
 &type, /* foward type used as index in qmb*/
 &delivery,
 &dolargemsg,
 &timeout,
 (struct psb *) &lpsb,
 &send_uma,
 (q_address *) 0,
 &put_msg_size,
 (char *) 0,
 (char *) 0);

 if (nStatus != PAMS__SUCCESS)
 nSendReplyCount = 0; /* if put failed then quit */

 } /*end while nSendReplyCount */
 } /* end while loop*/

If your BEA MessageQ server application is required to process multiple reply
messages, make sure that the CI purge interval is long enough to allow all replies to be
sent. To define the CI purge interval, use the -i option to qmbsrv, the command used
to start the QMB. (For more information on running qmbsrv, see “Starting the Queue
Message Bridge,” in Chapter 4, “Managing the BEA MessageQ MQSeries Connec
Environment.”)
2-14 BEA MessageQ MQSeries Connection User’s Guide

Choosing Message Characteristics
Using Message Types and Classes

Messaging systems use message types to control the logic of a program in a
message-driven environment. A message type is a specific identifier associated with
a message. Types may be assigned by the messaging systems or user application and
are contained in the message header portion of the message. Message types are
included in all messages sent and received.

In addition to message types, BEA MessageQ provides a message control field called
message class. In BEA MessageQ message-driven applications, the message class and
message type are usually tightly coupled with the program logic. Therefore, when
designing and implementing a message-driven interface that has defined message
classes and types, you must make sure that all participating programs understand and
follow the rules governing message classes and types.

The BEA MessageQ message classes and types defined for use with the QMB allow
for maximum flexibility when porting existing BEA MessageQ applications to work
with MQSeries Connection. These applications may contain their own message class
and type definitions, which must now coexist with the additional QMB definitions.

Whether porting existing applications or writing new ones, you must design the
programs to obey the rules defined by the message class and message type values of
the QMB, regardless of whether the application is a sending or receiving messages.

The QMB uses individual values and ranges of values (both positive and negative) for
message class and message type identifiers.

BEA MessageQ Message Types and Classes

The message dialog between a QMB process and a BEA MessageQ Client or Server is
driven by a set of predefined BEA MessageQ class and type identifiers. The values in
these message identifiers are determined by the following factors:

t Source of the message (application client, server, or the QMB process)

t State of the dialog (send or receive)

t Type of message exchange (request, reply, datagram, control, undefined)

The class and type fields may be individual values or ranges of values, depending on
the combination of the previous factors. Generally, sending applications are required
to supply specific class and type values to facilitate the correct message disposition.
BEA MessageQ MQSeries Connection User’s Guide2-15

2 Developing Message Queuing Applications
Likewise, receiving applications (if sending back a reply) are required to return the
received class and type fields with the appropriate reply processing indicator (multi or
single element).

See the qmbuser.h include file for actual class and type values. The qmbuser.h
include file is found in /install_dir/include on UNIX systems and in
dev:\install_dir\include on Windows NT systems. (For BEA MessageQ V5.0,
these definitions are also located in another include file, p_typecl.h.)

Table 2-1 describes the message classes that are available to a BEA MessageQ client.

Table 2-2 describes the message classes that are available to a BEA MessageQ server.

Table 2-1 BEA MessageQ Client Message Classes

State Message Class Description

Send MSG_CLAS_QMB Sends a QMB class message

Other than
MSG_CLAS_QMB

If your application sends a message with a message class
other than MSG_CLAS_QMB, the QMB assumes the default
characteristics of the request. This scheme allows you to
use existing applications without having to change the
class.

Receive MSG_CLAS_QMB Receives a QMB class message

Table 2-2 BEA MessageQ Server Message Classes

State Message Class Description

Send QMB range

Calculated as an unsigned integer. The
range is from 32,768 to 65,535.

Sends a QMB class message. A BEA
MessageQ server must return the class
value received with the request (QMB
range) as the reply class.

MSG_CLAS_QMB_REPLY_CANCEL The server detects that a reply is not
forthcoming. This message directs the
QMB to release the CI table slot.
2-16 BEA MessageQ MQSeries Connection User’s Guide

Choosing Message Characteristics
Table 2-3 describes the message types that are available to a BEA MessageQ client.

Table 2-4 describes the message types that are available to a BEA MessageQ server.

Receive QMB range

Calculated as an unsigned integer. The
range is from 32,768 to 65,535.

Receives a QMB class message. A
BEA MessageQ server must save this
value to use in the class field of the
reply.

MSG_CLAS_QMB Receives a QMB class message

Table 2-3 BEA MessageQ Client Message Types

State Message Type Description

Send MSG_TYPE_DATAGRAM Forwards to IBM MQSeries RSQ. No reply.

MSG_TYPE_REQUEST Forwards to IBM MQSeries RSQ. Reply
pending.

Other than
MSG_TYPE_DATAGRAM or
MSG_TYPE_REQUEST

If your application sends a message with a
message type other than
MSG_TYPE_DATAGRAM or
MSG_TYPE_REQUEST, the QMB assumes the
default characteristics of the request. This
scheme allows you to use existing applications
without having to change the message type.

Receive MSG_TYPE_REPLY Reply from IBM MQSeries RSQ request

MSG_TYPE_RTS_ERROR QMB returns the message. No target RSQ was
found.

Table 2-4 BEA MessageQ Server Message Types

State Message Type Description

Table 2-2 BEA MessageQ Server Message Classes

State Message Class Description
BEA MessageQ MQSeries Connection User’s Guide2-17

2 Developing Message Queuing Applications
IBM MQSeries Message Types

The BEA MessageQ MQSeries Connection supports the IBM MQSeries message
types described in Table 2-5. These message types are inserted or received in the
MQSeries Message Descriptor (MQMD) by the IBM MQSeries applications. The
message types vary, depending on the source and state of the dialog.

Table 2-5 describes the message types that are available to an IBM MQSeries client.

In Table 2-5, MQMT_RTS is a user-defined IBM MQSeries message type. It is defined
as follows:

define MQMT_RTSMQMT_APPL_FIRST + 1

Send Positive range 1 to 1000 Reply to a previously received type message
(request). Is an ONLY or LAST message.

Negative range -1 to -1000 Reply to a previously received type message
(request). One in a series of reply message
elements.

Receive Positive range 1 to 1000 Received a message (request) with a reply
pending. This field must be saved and returned in
the type field with the reply.

MSG_TYPE_DATAGRAM Received message with no reply

Table 2-4 BEA MessageQ Server Message Types

Table 2-5 MQSeries Client Message Types

State Message Type Description

Send MQMT_DATAGRAM Forwards to the BEA MessageQ RSQ. No reply.

MQMT_REQUEST Forwards to the BEA MessageQ RSQ. Reply pending.

Receive MQMT_REPLY Reply from BEA MessageQ RSQ from previous request

MQMT_RTS Return to sender. This is from the QMBMD. No remote
service queue or client table slots were available.
Implicit error reply.
2-18 BEA MessageQ MQSeries Connection User’s Guide

Choosing Message Characteristics
IBM MQSeries client applications must be prepared to receive this message type as a
valid response to a MQMT_REQUEST.

Table 2-6 describes the message types that are available to an IBM MQSeries server.

Using Recoverable Messaging

To recover messages after a system mishap, your application must have message
persistence defined. Message persistence describes messages written to nonvolatile
storage; persistent messages can survive a system restart.

Messages received with IBM MQSeries Persistence or BEA MessageQ Message
Recovery Services are forwarded by the QMB with the corresponding persistence or
MRS mode.

BEA MessageQ MQSeries Connection locksteps the IBM MQSeries persistence mode
with the BEA MessageQ Message Recovery Services and delays the confirmation of
a message until the message has been forwarded and safely stored. Persistence mode
processing may affect the performance of your application. You may want to have
separate persistence and nonpersistence services.

Note: IBM MQSeries dynamic temporary queues do not support message
persistence. BEA MessageQ temporary queues do not support Message
Recovery Services.

Table 2-6 MQSeries Server Message Types

State Message Type Description

Send MQMT_REPLY Reply to a BEA MessageQ client from a previous
request

Receive MQMT_DATAGRAM Message received. No reply.

MQMT_REQUEST Request received. Reply to MQS_REPLYQ and return
ApplIdentityData (CI).
BEA MessageQ MQSeries Connection User’s Guide2-19

2 Developing Message Queuing Applications

 BEA
ore

 lead
lies.

 last
 to the

pability
gnize
ly
Using Correlation Identifiers

With BEA MessageQ Version 5.0, you can include an optional 32-byte correlation
identifier in a message header. The correlation identifier allows a developer to
associate a user defined identifier with each message. Applications receiving the
message can tag any response to the message with the same identifier. This feature is
useful for asynchronous client/server applications because it allows responses to be
matched with associated requests. This feature is available only in BEA MessageQ
Version 5.0 and BEA MessageQ MQSeries Connection Version 5.0.

IBM MQSeries provides an optional 24-byte correlation identifier in the message
header. The BEA MessageQ MQSeries Connection product handles the exchange of
correlation identifiers as follows:

t From IBM MQSeries to BEA MessageQ—All 24 bytes of the IBM MQSeries
correlation identifier are placed in the BEA MessageQ message header. The
remaining 8 bytes are padded with space characters.

t From BEA MessageQ to IBM MQSeries—Only the first 24 bytes of the BEA
MessageQ correlation identifier are placed in the message header.

If messages containing a correlation identifier are going to be exchanged between
MessageQ and IBM MQSeries, the correlation identifiers used should have no m
than 24 bytes of significant data. Using more than 24 bytes of significant data can
to unexpected application results or an inability to properly match requests and rep
The QMB Server will truncate correlation IDs that have more than 24 bytes of
significant data. If a BEA MessageQ application sends a correlation ID where the
8 bytes are not either all zeros or blank characters, then a message will be logged
QMB log file indicating that the correlation ID was truncated.

Using FML Buffers

BEA MessageQ Version 5.0 supports Field Manipulation Language (FML),
specifically the 32-bit FML32 format. FML32 enables applications to encode
messages with tags and values that describe the content of the message. This ca
makes it unnecessary to code the receiver program in such a way that it will reco
the exact data structure of the message. Instead, the receiver program can simp
2-20 BEA MessageQ MQSeries Connection User’s Guide

Choosing Message Characteristics

er 3,
decode the contents of a message using the tag associated with each value. In addition,
FML32 performs data marshaling for applications that include information exchanges
between systems that use different hardware data formats.

In some cases, an IBM MQSeries application can be used as a transport between two
BEA MessageQ applications. BEA MessageQ MQSeries Connection does not
recognize an FML32 buffer and no data marshaling is performed. However, FML32
data is preserved as a binary object and can be used and interpreted as FML32 data on
machines with similar architectures.

Setting Message Priority

Message priority is the priority the message assumes for delivery. The BEA
MessageQ Version 4.0a product has a priority range of 0-1. For the BEA MessageQ
Version 5.0 product, the priority range has been expanded to 0-99. IBM MQSeries
Version 5.0 accepts priorities in the range of 0-9.

Message priority is maintained between the BEA MessageQ Version 4.0a and IBM
MQSeries Version 5.0 messaging systems as follows:

t Messages received with a BEA MessageQ priority of 0 are sent to IBM
MQSeries with MQSeries DefPriority.

t Messages received with an IBM MQSeries priority of 0 are sent to BEA
MessageQ with priority 0.

t Messages received with a BEA MessageQ priority of 1 are sent to IBM
MQSeries with priority 1.

t Messages received with an IBM MQSeries priority not equal to 0 are sent to
BEA MessageQ with a priority of 1.

IBM MQSeries queues defined with a Message Delivery Sequence as first-in/first-out
(FIFO) order ignore priority.

BEA MessageQ MQSeries Connection Version 5.0 allows you to map BEA MessageQ
Version 5.0 and IBM MQSeries priority ranges using the QMB queue configuration
file. You can configure BEA MessageQ MQSeries Connection to use a new default
priority mapping or to use the previous 0-1 priority mapping. For more information on
mapping priority ranges, see “Configuring the Queue Message Bridge,” in Chapt
“Configuring BEA MessageQ MQSeries Connection.”
BEA MessageQ MQSeries Connection User’s Guide2-21

2 Developing Message Queuing Applications
How Message Header Data Is Mapped

Message header data is defined as the IBM MQSeries message descriptor (MQMD)
and the BEA MessageQ message attributes. Many fields used by the two systems
contain values with the same meaning but quite different formats. Because of these
differences in message header formats, a limited amount of mapping of fields is
performed by the QMB applications. To allow application-specific information
exchange (if your application requires it), include a user application level header as
part of the message body.

In addition, the QMB server maintains (in a limited manner) a loose coupling between
a subset of IBM MQSeries and BEA MessageQ message header fields.

Table 2-7 describes this coupling of message header fields.

Handling Message Byte Order Differences

The content of the message buffer is forwarded as received. It is the responsibility of
the receiving application to interpret the byte order and normalize it, if required. The
QMB forwards byte order information as follows:

t For messages flowing from BEA MessageQ to IBM MQSeries, the QMB tests
the show_buffer endian field of the received message and loads the result into

Table 2-7 Coupling of MQSeries and BEA MessageQ Message Header Fields

MQSeries Message
Header Field

BEA MessageQ Message Header
Field

Description

MQMD -> Priority PUT/GET -> Priority Message priority

MQMD -> Persistence PSB -> ConfirmRequest Reliable message delivery

MQMD -> MsgType PUT/GET -> Type Message type indicator

MQMD -> CorrelId SHOWBUFFER->correlation_id Correlation identifier

MQMD ->
ApplIdentityData

PUT->source q_address The BEA MessageQ original source
address is stored in the first 10 bytes
of the ApplIdentityData field in
ASCII format: GGGGG.QQQQ
2-22 BEA MessageQ MQSeries Connection User’s Guide

Choosing Message Characteristics
the MQSeries MQMD ApplOriginData field as BEND or LEND text. This field is
passed with the message to the IBM MQSeries RSQ.

t For messages flowing from IBM MQSeries to BEA MessageQ, the
show_buffer endian field for the message received at the BEA MessageQ RSQ
contains the endian of the QMB node.

We recommend that you use string data (if possible) or user-defined fields in the
message body to carry application-specific information about the message.

Character Code Conversion

Character code conversion between the QMB and MVS based IBM MQSeries
applications is supported as follows:

t ASCII-to-EBCDIC data conversion for message flow from the QMB to MVS is
supported at the IBM MQSeries channel convert level using the IBM MQSeries
built-in-string format MQFMT_STRING. If the CONVERT(YES) parameter for the
channel is coded, all messages flowing over that channel are converted.

t EBCDIC-to-ASCII data conversion for message flow from MVS to the QMB is
supported at the IBM MQSeries MQGET (Get Message Option
MQGMO_CONVERT). The IBM MQSeries built-in string format MQMFT_STRING
must be set by the sending application.

t Custom, user-written data conversion exits are supported at the Local Service
Queue level. See the MQSeries Application Programming Guide for information
on writing user data conversion exits.

t See the BEA MessageQ MQSeries Connection and MVS Client Release Notes,
Version 4.0A and 5.0 for more information on user exits.

Guidelines for Choosing Message Characteristics

When designing message queuing applications, you must choose the characteristics of
the messages to be sent by your applications. These characteristics, which indicate to
the QMB how the message is to be processed, include the following:

t Message flow
BEA MessageQ MQSeries Connection User’s Guide2-23

2 Developing Message Queuing Applications

e and

.
d.

g

eries
, IBM

t Message type, which corresponds to the type of message exchange

t Message class

When choosing message characteristics, keep the following guidelines in mind:

t Use the appropriate message class and types (BEA MessageQ and IBM
MQSeries) to indicate the kind of message being sent and to ensure that the
message is properly processed. Using default message-handling rules may not
produce the desired results. (For more information, see “Using Message Types
and Classes” in this chapter.)

t When processing request type messages, the receiving application must sav
return (in the reply message) the appropriate message header data.

t All messages must contain no more than 4,194,304 bytes.

t A request must be a single message.

t A reply consists of either a single message or multiple reply messages. Each
message must contain the appropriate message header information that was
received with the original request, and is routed according to that information
The rules for determining the last message in a multireply set must be obeye

t Request messages that do not return a reply message may cause processin
overhead due to internal routing table maintenance; they should be avoided.

Sending a Request to an IBM MQSeries
Server

Suppose you want your BEA MessageQ client to send a request to an IBM MQS
server and receive a reply. In order for the message to be sent, BEA MessageQ
MQSeries, and the QMB must be properly configured and running.

The following example provides details about the BEA MessageQ client and IBM
MQSeries server applications:

t The BEA MessageQ client characteristics are as follows:
2-24 BEA MessageQ MQSeries Connection User’s Guide

Sending a Request to an IBM MQSeries Server
Name = QMB_DMQCLIENT
rspq = DMQCAdd
Message = Request Data
Class = MSG_CLAS_QMB
Type = MSG_TYPE_REQUEST
Target queue = MQS_ECHO

t The IBM MQSeries server characteristics are as follows:

Name = QMB_MQSECHO
Message = Request Data
ReplyToQ = MQS_REPLYQ
Type = MQMT_REQUEST
ApplIdentityData = CI

Table 2-8 describes the queue definitions required to send a message to an IBM
MQSeries server for the previous example.

The BEA MessageQ LSQ named MQS_ECHO is associated to the IBM MQSeries RSQ
named MQS_ECHO_SERVER in a QMB configuration file. This file stores the
LSQ-to-RSQ relationship that the QMB uses when forwarding messages.

Listing 2-3 shows the QMB configuration file for the IBM MQSeries server.

Table 2-8 Required Queue Definitions for an MQSeries Server

Messaging
System

Queue Name/Queue
Type

Description

BEA
MessageQ

MQS_ECHO / Multireader MQS_ECHO is the BEA MessageQ LSQ that
receives messages to be forwarded to the
IBM MQSeries RSQ named
MQS_ECHO_SERVER. MQS_ECHO is a
multireader queue maintained by a QMBDM
process.

IBM
MQSeries

MQS_ECHO_SERVER/ Any
supported IBM MQSeries
queue type

MQS_ECHO_SERVER is the IBM MQSeries
queue that the IBM MQSeries server is
listening on for requests.

MQS_REPLYQ / Shared
Permanent

MQS_REPLYQ is a required IBM MQSeries
queue that receives all IBM MQSeries reply
messages from IBM MQSeries server
programs. A QMBMD process is listening on
this shared queue for replies.
BEA MessageQ MQSeries Connection User’s Guide2-25

2 Developing Message Queuing Applications
Listing 2-3 MQSeries Server Queue Message Bridge Configuration File

!LSQ LSQ RSQ RSQ
!Name Owner Name Association
!
MQS_ECHO D MQS_ECHO_SERVER S

For detailed information on fields in the QMB configuration file, see “Configuring the
Queue Message Bridge” in Chapter 3, “Configuring BEA MessageQ MQSeries
Connection.”

Figure 2-1 shows how a request is sent to an IBM MQSeries server.

Figure 2-1 Sending a Request to an MQSeries Server

The sending process shown in Figure 2-1 works as follows:

BEA MessageQ
Environment

MQSeries
Environment

Queue
Message
Bridge

(QMBDM)

MQS_ECHO
(LSQ)

MQS_ECHO_SERVER
(RSQ)

MessageQ
Client

MQSeries
Server

1

2

3

BEA
MessageQ
MQSeries

Connection
Environment
2-26 BEA MessageQ MQSeries Connection User’s Guide

Sending a Reply to a BEA MessageQ Client
1. The BEA MessageQ client (named QMB_DMQCLIENT) must either know the BEA
MessageQ queue address of the LSQ MQS_ECHO or use the BEA MessageQ
LocateQ message-based call to obtain it. Once an address is known, the client
sends the request message to the BEA MessageQ LSQ named MQS_ECHO.

2. The QMBDM has a read posted against the MQS_ECHO. The QMB creates a
Connection Index (CI) based on the message source. It inserts the original source
q_address into the ApplIdentityData field and sets the following
characteristics:

t ReplyToQ = MQS_REPLYQ

t MsgType = MQMT_REQUEST

The QMB maps and forwards the message to the IBM MQSeries RSQ named
MQS_ECHO_SERVER.

3. The IBM MQSeries server (named QMB_MQSECHO) reads the message and
responds appropriately.

Sending a Reply to a BEA MessageQ Client

Consider the following application that sends a reply from an IBM MQSeries server to
a BEA MessageQ client:

t The IBM MQSeries server characteristics are as follows:

Name = QMB_MQSECHO
Message = Reply Data
ReplyToQ = MQS_REPLYQ
Type = MQMT_REPLY
ApplIdentityData = CI
Target = ReplyToQ and ReplyToQMgr

t The BEA MessageQ client characteristics are as follows:

Name = QMB_DMQCLIENT
Message = Reply Data
Class = MSG_CLAS_QMB
Type = MSG_TYPE_REPLY

Figure 2-2 shows how a reply is sent to a BEA MessageQ client.
BEA MessageQ MQSeries Connection User’s Guide2-27

2 Developing Message Queuing Applications
Figure 2-2 Sending a Reply to a BEA MessageQ Client

The sending process shown in Figure 2-2 works as follows:

1. The IBM MQSeries server (QMB_MQSECHO) reads the message, processes it, and
sends back a reply (which must include the ApplIdentityData) to the queue
designated by the ReplyToQ field MQS_REPLYQ, and ReplyToQMgr.

2. The QMBMD has a read posted against MQS_REPLYQ. When the reply message
arrives in the MQS_REPLYQ, the QMBMD program performs the following tasks:

t Converts the ApplIdentityData to the actual BEA MessageQ client target
address

t Maps and forwards the message to the BEA MessageQ client queue named
QMB_DMQCLIENT

3. The BEA MessageQ client (named QMB_DMQCLIENT) reads the message.

BEA MessageQ
Environment

MQSeries
Environment

Queue
Message
Bridge

(QMBMD)

Temporary Queue

MQS_REPLYQ

MessageQ
Client

MQSeries
Server

BEA
MessageQ
MQSeries

Connection
Environment

3

2

1

2-28 BEA MessageQ MQSeries Connection User’s Guide

Sending a Request to a BEA MessageQ Server
When writing message-based applications, use BEA MessageQ and IBM MQSeries
system functions and services, where applicable. These functions can help determine
the status and state of the bridge, associated application programs, network services,
and messaging systems.

Sending a Request to a BEA MessageQ
Server

Suppose that you want to send a request to a BEA MessageQ server. In order for this
to work, you must have BEA MessageQ, IBM MQSeries, and the QMB properly
configured and running.

Consider the following application that sends an IBM MQSeries message to a BEA
MessageQ server:

t The IBM MQSeries client characteristics are as follows:

Name = QMB_MQSCLIENT
Message = Request Data
ReplyToQ = CLI_REPLYQ
Type = MQMT_REQUEST
Target queue = DMQ_ECHO

t The BEA MessageQ server characteristics are as follows:

Name = QMB_DMQECHO
Src = DMQ_REPLYQ
Message = Request Data
Class = QMB range
Type = CI

Table 2-9 provides an example of the required queue definitions.
BEA MessageQ MQSeries Connection User’s Guide2-29

2 Developing Message Queuing Applications

he
The IBM MQSeries LSQ (named DMQ_ECHO) is associated with the BEA MessageQ
RSQ (DMQ_ECHO_SERVER) in a QMB configuration file entry, as shown in Listing 2-4.

Listing 2-4 DMQ_ECHO Queue Message Bridge Configuration File

!LSQ LSQ RSQ RSQ
!Name Owner Name Association
!
DMQ_ECHO M DMQ_ECHO_SERVER S

For detailed information on fields in the QMB configuration file, see “Configuring t
Queue Message Bridge” in Chapter 3, “Configuring BEA MessageQ MQSeries
Connection.”

Table 2-9 Required Queue Definitions for a BEA MessageQ Server

Messaging
System

Queue Name / Queue
Type

Description

IBM
MQSeries

DMQ_ECHO / Shared
permanent

DMQ_ECHO is an IBM MQSeries LSQ that
receives messages to be forwarded to the
BEA MessageQ RSQ named
DMQ_ECHO_SERVER. This is an IBM
MQSeries shared queue maintained by a
QMBMD process.

CLI_REPLYQ /
Shared permanent

This is the IBM MQSeries queue on which
the IBM MQSeries Client listens for replies.

BEA
MessageQ

DMQ_ECHO_SERVER /
Any supported queue type

This is the BEA MessageQ queue on which
the BEA MessageQ server is listening for
requests.

DMQ_REPLYQ /
Multireader

DMQ_REPLY is a required BEA MessageQ
queue that receives all BEA MessageQ reply
messages from the BEA MessageQ server. A
QMBDM process listens on this queue for reply
messages.
2-30 BEA MessageQ MQSeries Connection User’s Guide

Sending a Request to a BEA MessageQ Server
Figure 2-3 shows how an IBM MQSeries client sends a request to the BEA MessageQ
server.

Figure 2-3 Sending a Request to a BEA MessageQ Server

Figure 2-3 shows how an IBM MQSeries client (QMB_MQSCLIENT) sends a request
message to the IBM MQSeries LSQ named DMQ_ECHO. The QMB performs the
following functions:

1. Creates a CI based on the ReplyToQ name and sets the respq field to DMQ_REPLYQ.

2. Maps and forwards the message to the BEA MessageQ RSQ named
DMQ_ECHO_SERVER.

BEA MessageQ
Environment

MQSeries
Environment

Queue
Message
Bridge

(QMBMD)

DMQ_ECHO_SERVER
(RSQ)

DMQ_ECHO
(LSQ)

MessageQ
Server

MQSeries
Client

BEA
MessageQ
MQSeries

Connection
Environment
BEA MessageQ MQSeries Connection User’s Guide2-31

2 Developing Message Queuing Applications
Sending a Reply to an IBM MQSeries Client

Consider the following application that sends a reply from a BEA MessageQ server to
an IBM MQSeries client:

t The BEA MessageQ server characteristics are as follows:

Name = QMB_DMQECHO
Src = DMQ_REPLYQ
Message = Reply Data
Class = QMB range
Type = CI
Target queue = DMQ_REPLYQ (same as SRC)

t The IBM MQSeries client characteristics are as follows:

Name = QMB_MQSCLIENT
Message = Reply Data
ReplyToQ = CLI_REPLYQ
Type = MQMT_REPLY

In Figure 2-4, the BEA MessageQ server (QMB_DMQECHO) reads the message, processes
it, and sends back a reply to the queue (DMQ_REPLYQ) designated in the respq field.
The reply must include the request class and type.
2-32 BEA MessageQ MQSeries Connection User’s Guide

Restrictions and Limitations
Figure 2-4 Sending a Reply to an MQSeries Client

When the reply message arrives in the BEA MessageQ to IBM MQSeries (QMBDM)
DMQ_REPLYQ, the QMBDM program performs the following functions:

1. QMBDM extracts the required information from the Connection Index (CI) for the
reply message.

2. QMBDM maps and forwards the message to the IBM MQSeries client.

Restrictions and Limitations

BEA MessageQ MQSeries Connection has the following restrictions and limitations:

t Each IBM MQSeries message received is processed as a single unit of work.

BEA MessageQ
Environment

MQSeries
Environment

Queue
Message
Bridge

(QMBDM)

DMQ_REPLYQ

CLI_REPLYQ

MessageQ
Server

MQSeries
Client

BEA
MessageQ
MQSeries

Connection
Environment
BEA MessageQ MQSeries Connection User’s Guide2-33

2 Developing Message Queuing Applications

nd

iting

een
ave
d

o
y
ilar
t The Connection Index (CI) must be returned in the designated message header
fields by the service application. For example:

t For the IBM MQSeries service, the CI is returned in the
MQMD->ApplIdentityData field.

t For the BEA MessageQ service, the CI is returned in the message class and
type fields

t The MQMD->ReplyToQ and MQMD->ReplyToQMgr fields must be used by the IBM
MQSeries server that received the request as the target when sending back a
reply.

t A BEA MessageQ server application must use the source address from the get
call as the target queue address to which to send a reply.

t Message header information is not mapped from one system to another. The
designated message header fields are exchanged between the QMB and the RSQ
application for the purpose of reply processing. For field definitions, see
“Processing Reply Messages” earlier in this chapter.

t We recommend that you use multiple instances of the QMB for customizing a
scaling your applications. Each instance of the QMB can use its own QMB
configuration file or share a common configuration file. A maximum of 49 IBM
MQSeries LSQs per QMBMD instance is supported. Although there is no specific
limit for the number of BEA MessageQ LSQs per QMBMD instance, limits
imposed by memory resources and by the number of permanent multireader
queues allowed by a BEA MessageQ group still apply.

t Performance is affected for messages sent in delivery modes that require wa
for confirmation when the message is delivered to the target.

t The maximum message size is 4,194,304 bytes.

t If messages containing correlation identifiers are going to be exchanged betw
BEA MessageQ and IBM MQSeries, the correlation identifiers used should h
no more than 24 bytes of significant data. Correlation identifiers are supporte
only by the BEA MessageQ MQSeries Connection Version 5.0 product.

t BEA MessageQ MQSeries Connection does not recognize FML32 buffers; n
data marshaling is performed. However, FML32 data is preserved as a binar
object and can be used and interpreted as FML32 data on machines with sim
architectures. The use of FML32 buffers is supported only by the BEA
MessageQ Version 5.0 product.
2-34 BEA MessageQ MQSeries Connection User’s Guide

Restrictions and Limitations
t The maximum number of IBM MQSeries clients with replies pending is 1000
per QMB set.

t Message chaining (assembly/disassembly) is not supported.

t Because of the loosely coupled aspect of BEA MessageQ to BEA MessageQ
MQSeries Connection, most message-based services terminate at the boundary
function. For example, using the BEA MessageQ avail/unavail services, a BEA
MessageQ client can register interest in the QMB that owned the desired LSQ
and be informed of any state changes of that QMB. However, your application is
unaware of the status of the RSQ application program itself.

t A properly designed BEA MessageQ server must reply to a request even if there
is no application-level response. This allows the QMB to release internal routing
resources in a normal and timely manner. Use the BEA MessageQ message class
identifier MSG_CLAS_QMB_REPLY_CANCEL to cancel a request or to indicate that a
reply is not forthcoming.

t The only way you can register an RSQ is by using dynamic queue association
from a BEA MessageQ program. You may register both the BEA MessageQ and
IBM MQSeries RSQs so that they are dynamically associated at run time.
BEA MessageQ MQSeries Connection User’s Guide2-35

2 Developing Message Queuing Applications
2-36 BEA MessageQ MQSeries Connection User’s Guide

CHAPTER
3 Configuring BEA
MessageQ MQSeries
Connection

This chapter describes the tasks required to define queues and configure your system
to support BEA MessageQ MQSeries Connection, including:

t Overview of Configuration Tasks

t Configuring BEA MessageQ

t Configuring IBM MQSeries

t Configuring the Queue Message Bridge

Overview of Configuration Tasks

Before you configure BEA MessageQ MQSeries Connection, familiarize yourself
with the BEA MessageQ and IBM MQSeries applications and queues that your
application will access. Specifically, you must know the following:

t Types of messages to be passed (datagram, request, reply, control, undefined)

t Direction of the message flow between applications

t The name of the LSQ, which serves as the intermediate queue for messages
BEA MessageQ MQSeries Connection User’s Guide 3-1

3 Configuring BEA MessageQ MQSeries Connection

tion
t The name of the RSQ, which serves as the final target queue for messages

t The message queuing system used for each application and queue

After you know these elements of your application, configure each message queuing
system according to the instructions provided with the message queuing system, as
follows:

t To configure BEA MessageQ, set up the BEA MessageQ group initialization
file.

t To configure IBM MQSeries, modify the IBM MQSeries queue definitions with
the appropriate LSQ and RSQ information.

After you complete the configuration for each message queuing system, configure
BEA MessageQ MQSeries Connection using the QMB configuration file.

The BEA MessageQ MQSeries Connection media kit contains programming examples
of an IBM MQSeries-to-BEA MessageQ application. It also contains example
configuration and initialization files which support the programming examples. These
files are as follows:

t dmc500_config.dat—the QMB configuration file in which the LSQ to RSQ
relationship is defined.

t dmc500_dmq_group.init—group initialization file that contains all the QCT
entries needed to execute the QMB and programming examples.

The programming examples and supporting files are located in:

t /install_dir/examples/mqsc on UNIX systems

t dev:\install_dir\examples\mqsc on Windows NT systems

Use programming examples and supporting files to help you understand how to
configure the BEA MessageQ MQSeries Connection software. For more informa
on the programming examples, see Appendix A, “Programming Examples.”
3-2 BEA MessageQ MQSeries Connection User’s Guide

Configuring BEA MessageQ

nt.”

 by
ues.

ry

Configuring BEA MessageQ

For each BEA MessageQ message queuing group that communicates with an IBM
MQSeries application, you must set up a BEA MessageQ group initialization file
(group.init).

The BEA MessageQ group initialization file that supports a QMB set must include the
appropriate queue definitions required for the QMB servers and all available BEA
MessageQ local services.

A QMB set requires the following queue entries in the QCT section of the group
initialization file:

t A permanent primary queue named QMBDM. This is the queue to which the BEA
MessageQ to IBM MQSeries QMB server (QMBDM) attaches.

t A permanent primary queue named QMBMD. This is the queue to which the IBM
MQSeries to BEA MessageQ QMB server (QMBMD) attaches.

t A permanent multireader queue. This is the BEA MessageQ reply queue. The
name of this queue must be DMQ_r, where r is the value passed in the -r qname
parameter of the QMB start command. For example, if you specify -r REPLYQ,
then the actual BEA MessageQ queue name is DMQ_REPLYQ. For more
information on the -r parameter, see “Starting the Queue Message Bridge” in
Chapter 4, “Managing the BEA MessageQ MQSeries Connection Environme

The group initialization file must also include a QCT entry for each LSQ “owned”
BEA MessageQ. All LSQ queues must be defined as permanent multireader que

Listing 3-1 provides an example of a BEA MessageQ initialization file queue ent
section. In this example, the QMBDM, QMBMD, and DMQ_REPLYQ are required queues for
the QMB server. The queues LSQ_TEST and MQS_ECHO are LSQs and
DMQ_ECHO_SERVER is an RSQ.

Listing 3-1 BEA MessageQ Configuration File Queue Entry Section

!QUEUE CONFIGURATION SECTION
!
% QCT

!Queue Queue Byte Msg Quota UCB Queue Owner Conf Perm Name Security
BEA MessageQ MQSeries Connection User’s Guide 3-3

3 Configuring BEA MessageQ MQSeries Connection
!Name Number Quota Quota Enable Send Type Queue Style Active Scope
!
QMBDM 8 64000 100 None . P 0 . N L N
QMBMD 9 64000 100 None . P 0 . N L N
DMQ_DMC_REPLYQ 7 64000 100 None . M 0 . Y L N
LSQ_TEST 11 32000 10 None . M 0 . Y L N
MQS_ECHO 12 64000 100 None . M 0 . Y L N
DMQ_ECHO_SERVER 15 64000 100 None . M 0 . N L N

Note that the actual values of Queue Number, Byte Quota, and Msg Quota for each
entry are determined by other existing queue configuration entries, message sizes, and
arrival rate calculations for the QMB application.

If your application requires multiple QMB servers, the additional servers attach to
BEA MessageQ Temporary Primary Queues (TPQs) and associate themselves with the
appropriate permanent QMB server. No BEA MessageQ configuration entries are
required when using TPQs with additional instances of a QMB server.

See the BEA MessageQ installation and configuration documentation for your
platform for more information on configuring the BEA MessageQ product.

Group Name Table

Any BEA MessageQ service that is not local to the group with the QMB must have an
entry in the group name table. This table allows BEA MessageQ MQSeries Connection
to locate the actual queue address when it processes the RSQ entries in the QMB
configuration file.

Note: The QMB supports only local name scope lookups. Global name scope
lookups are not supported.

For example, suppose DMQ_ECHO_SERVER, as defined in the QMB configuration file,
does not reside in the BEA MessageQ group defined previously. In this case, BEA
MessageQ MQSeries Connection requires a group name table entry to allow address
resolution. If the DMQ_ECHO_SERVER program is on a remote group such as group
5/queue 24, the entry is as follows:

%GNT

!Name Address Scope
3-4 BEA MessageQ MQSeries Connection User’s Guide

Configuring IBM MQSeries

eQ
DMQ_ECHO_SERVER 5.24 L

The appropriate BEA MessageQ cross-group configuration entries must be in place to
allow access to remote services, which are offered in other BEA MessageQ groups.

See the BEA MessageQ installation and configuration documentation for your
platform for more information on configuring the BEA MessageQ product.

Configuring IBM MQSeries

This topic describes how to configure IBM MQSeries to use BEA MessageQ
MQSeries Connection. It includes the following tasks:

t Configuring the Required IBM MQSeries Queues

t Defining IBM MQSeries Queues

Configuring the Required IBM MQSeries Queues

A QMB set requires the configuration of an IBM MQSeries permanent shared queue
for an IBM MQSeries reply queue and all offered LSQs. These queues must be
configured in the Message Queue Manager (MQM) to which the QMB connects. They
must have the same characteristics as the IBM MQSeries queue model defined in
Listing 3-2.

The reply queue name must be MQS_r, where r is the value passed in the -r parameter
of the QMB startup command line. The QMB prefixes the constant MQS_ to the -r
parameter for a complete name. For more information on the -r parameter, see
“Starting the Queue Message Bridge” in Chapter 4, “Managing the BEA Messag
MQSeries Connection Environment.”

Each LSQ that the QMB services must also be defined in the MQM.
BEA MessageQ MQSeries Connection User’s Guide 3-5

3 Configuring BEA MessageQ MQSeries Connection
Listing 3-2 shows a sample definition of the QMODEL for an IBM MQSeries LSQ. The
source for this model is located in /install_dir/templates on UNIX systems and
in dev:\install_dir\templates\mqsc on Windows NT systems. This model may
be copied to the MQM configuration file or added manually. To add it manually, use
the define and alter commands from the runmqsc IBM MQSeries utility.

Listing 3-2 MQSeries Queue Definition

DEFINE QMODEL(‘QMBLSQ’) +
DESCR(‘QMB Local Service Queue Model’) +
PUT(ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
GET(ENABLED) +
MAXDEPTH(5000) +
MAXMSGL(4194304) +
SHARE +
DEFSOPT(SHARED) +
MSGDLVSQ(PRIORITY) +
USAGE(NORMAL) +
NOTRIGGER +
RETINTVL(999999999) +
BOTHRESH(0) +
BONAME(‘ ‘) +
SCOPE(QMGR) +
QDEPTHHI(80) +
QDEPTHLO(20) +
QDPMAXEV(ENABLED) +
QDPHIEV(DISABLED) +
QDPLOEV(DISABLED) +
QSVCINT(999999999) +
QSVCIEV(NONE)

Note: The plus sign in Listing 3-2 is an IBM line continuation character.
3-6 BEA MessageQ MQSeries Connection User’s Guide

Configuring IBM MQSeries
Defining IBM MQSeries Queues

You can modify the Message Queue Manager configuration by either executing the
runmqsc utility interactively or editing and loading the command file associated with
the MQM. See MQSeries Command Reference and MQSeries System Administration
for more information.

You can add the QMODEL defined in Listing 3-2 to the command file, and then use the
QMODEL in defining the QMB required queues with the runmqsc utility.

t To define the IBM MQSeries reply queue, enter the following command:

DEFINE QLOCAL(MQS_REPLYQ) LIKE(QMBLSQ)

t To define an IBM MQSeries LSQ for the echo program, enter the following
command:

DEFINE QLOCAL(DMQ_ECHO) LIKE(QMBLSQ)

Any remote service offered on the local MQM must be defined as QLOCAL. Any remote
service that is not on the local MQM must be defined as QREMOTE to allow the
messages be forwarded to it. Also, all Distributed Queue Manager (DQM) definitions
(channels, xmitq, and others) must exist and be active to allow IBM MQSeries
distributed processing to occur.

A template file defining all the IBM MQSeries queues required to run the
programming examples is located in
/install_dir/templates/dmc500_mqmdef.cfg on UNIX systems and in
dev:\install_dir\templates\dmc500_mqmdef.cfg on Windows NT systems.

To load the MQM with the required commands, so that the example QMB queue
definitions are included, enter the following command:

runmqsc YOURMQMNAME < dmc500_mqmdef.cfg > mqmdef.out

The mqmdef.out file contains the results of the command executions.

Tips for Configuring IBM MQSeries

Note the following tips when configuring an IBM MQSeries queue:
BEA MessageQ MQSeries Connection User’s Guide 3-7

3 Configuring BEA MessageQ MQSeries Connection
t An IBM MQSeries transmit queue must have a depth greater than the maximum
message batch that can ever be received. If it does not, the queue reaches
MAXDEPTH and the channel shuts down.

t IBM MQSeries queues are created in the following directories:

/var/mqm/qmgrs/QNAME/queues on UNIX systems

dev:\mqm\qmgrs\QNAME\QUEUES on Windows NT systems

A queue can grow to the maximum size of (MAXDEPTH *
largest_message_received). IBM MQSeries requires that the file system that
it is installed on be able to support the expected message volume.

t An IBM MQSeries channel must be started manually or triggered by placing a
message in the channels transmit queue (assuming the channel is configured to
allow triggering). If a channel is triggered, the channel initialization program
must be active and properly configured.

See the MQSeries Command Reference for detailed information on how to configure
IBM MQSeries software.

Configuring the Queue Message Bridge

Use the QMB configuration file to define the services offered by one messaging
system to the other. The QMB processes read the configuration file and set up an
association between an LSQ and an RSQ. This association can be established statically
or dynamically. An LSQ is a queue that is local to the messaging system of the sending
application. An RSQ is a queue that is remote to the messaging system of the sending
application and is the final target of all messages received on the associated LSQ.
Configuration files for MQSeries Connection Version 5.0 also include priority
mapping information.

The QMB configuration file is an ASCII text file that may be located in any directory.
Parameters within the file are separated by white space. An example configuration file,
named dmc500_config.dat, is located in /install_dir/templates on UNIX
systems and in dev:\install_dir\templates on Windows NT systems.
3-8 BEA MessageQ MQSeries Connection User’s Guide

Configuring the Queue Message Bridge
A configuration file for MQSeries Connection Version 4.0A includes only the
parameters required to associate an LSQ to an RSQ. A configuration file for MQSeries
Connection 5.0 includes a section containing the parameters required to associate an
LSQ to an RSQ (%QUEUE) and a section containing the parameters for defining priority
mapping (%PRIORITY MAPPING). The version of the configuration file is shown in the
%VERSION section at the head of the file.

BEA MessageQ MQSeries Connection Versions 4.0A and 5.0 both support the same
QMB configuration file format, except that the Version 4.0A product ignores the
%PRIORITY MAPPING section. In addition, both versions support the configuration file
format used in BEA MessageQ MQSeries Connection Version 3.2B.

A QMB configuration file includes the following parameters: the LSQ Name, LSQ
Owner, RSQ Name, RSQ Association, and Format Name. These parameters must be
specified on the same line in the order in which they are listed in Table 3-1.
Configuration files for MQSeries Connection Version 5.0 contain an additional section
in which priority mapping is defined. Table 3-1 describes all the QMB configuration
file parameters.

Table 3-1 Parameters in the Queue Message Bridge Configuration File

Field Description

LSQ Name Name of the Local Service Queue defined in either BEA MessageQ or
IBM MQSeries. This queue receives messages to be forwarded to the
associated RSQ. BEA MessageQ LSQs must be multireader queues in the
group to which the QMB attaches. IBM MQSeries LSQs must be shared
queues that are defined in the MQM. The QMB connects to the queue
specified by this parameter.

LSQ Owner Indicates the messaging system that owns the LSQ as follows:

t A D indicates BEA MessageQ. It is used for messages flowing from
BEA MessageQ to IBM MQSeries.

t An M indicates IBM MQSeries. It is used for messages flowing from
IBM MQSeries to BEA MessageQ.
BEA MessageQ MQSeries Connection User’s Guide 3-9

3 Configuring BEA MessageQ MQSeries Connection

e

 a
e

ies

 no
RSQ Name Name of the Remote Service Queue associated with the LSQ. The RSQ
is the target queue when a message is sent.

If a name is specified, the target queue is static. If a period (.) is specified,
it serves as a placeholder for dynamic queue association. This is the final
target for all messages sent. The RSQ may be located anywhere in the
target messaging system that is accessible to the local BEA MessageQ
group or IBM MQSeries MQM. A BEA MessageQ RSQ requires an
entry in the Group Name Table if it is not defined in the local group. An
IBM MQSeries RSQ requires a QREMOTE definition if it is not defined in
the local MQM.

RSQ Association Method of Remote Service Queue registration as follows:

t An S indicates static association of the RSQ name to the LSQ.

t A D indicates dynamic queue association of the RSQ name or address
received in a registration request to the LSQ.

See “Registering Remote Service Queues” later in this chapter for mor
information on static and dynamic queue association.

Format Name If specified, this name becomes the message descriptor Format
parameter. If the IBM MQSeries channel definition associated with the
RSQ allows character conversion, the named conversion exit will be
invoked.

MessageQ
Priority Range

The BEA MessageQ priority range. Each segment of the MessageQ
priority range (for example 0-9, 10-19, and so on) must be mapped to
single IBM MQSeries priority and must be listed in ascending order. Th
priority range segments must be contiguous and all MessageQ priorit
(0-99) must be included in the list of ranges. Priority values must not
overlap.

Note: This field is recognized only by BEA MessageQ MQSeries
Connection Version 5.0 and is ignored by the Version 4.0A
product.

IBM MQSeries
Priority

The IBM MQSeries priority value in the range of 0-9. All ten priority
values must be listed in ascending sequential order and may be listed
more than once.

Note: This field is recognized only by BEA MessageQ MQSeries
Connection Version 5.0 and is ignored by the Version 4.0A
product.

Table 3-1 Parameters in the Queue Message Bridge Configuration File

Field Description
3-10 BEA MessageQ MQSeries Connection User’s Guide

Configuring the Queue Message Bridge
A QMB server process reads the configuration file passed with the command line,
resolves all name-to-address issues, and builds an internal table to allow LSQ to RSQ
mapping.

In the following example, BEA MessageQ clients have access to IBM MQSeries
servers through the following BEA MessageQ LSQs:

t MQS_ECHO (uses static association)

t MQSTEST (uses dynamic queue association)

Likewise, IBM MQSeries clients have access to BEA MessageQ servers through the
following IBM MQSeries LSQs:

t DMQ_ECHO (uses static queue association)

t DMQTEST (uses dynamic queue association)

Listing 3-3 shows the QMB configuration file that supports this case.

Listing 3-3 Queues Defined in a QMB Configuration File

! QMB Config File to Support ECHO Servers
!
!LSQ LSQ RSQ RSQ
!Name Owner Name Association
!
MQS_ECHO D MQS_ECHO_SERVER S
MQSTEST D . D
!
DMQ_ECHO M DMQ_ECHO_SERVER S
DMQTEST M . D

MessageQ
Priority

The BEA MessageQ priority value to which an IBM MQSeries priority
value is mapped.

Note: This field is recognized only by BEA MessageQ MQSeries
Connection Version 5.0 and is ignored by the Version 4.0A
product.

Table 3-1 Parameters in the Queue Message Bridge Configuration File

Field Description
BEA MessageQ MQSeries Connection User’s Guide3-11

3 Configuring BEA MessageQ MQSeries Connection
An LSQ with a dynamic RSQ association must have a program registered to it before
it can be used. Any messages received before registration are returned to the sender
with the appropriate Return To Sender (RTS) message type.

Reply queues are built using the -r parameter on the qmbsrv command line and are
not required to be defined in the QMB configuration file.

When a QMB server process reads an MQSeries Connection Version 5.0 configuration
file, it also sets up an internal table to allow priority mapping. Listing 3-4 shows a
sample priority mapping section:

Listing 3-4 Priority Mapping Defined in a QMB Configuration File

* MessageQ Priority Range MQSeries Priority MessageQ Priority
*--
 0-09 0 0
 10-19 1 11
 20-29 2 22
 30-39 3 33
 40-49 4 44
 50-59 5 55
 60-69 6 66
 70-79 7 77
 80-89 8 88
 90-99 9 99
*

%EOS

Given a BEA MessageQ priority range of 30-39, an IBM MQSeries priority of 3, and
a BEA MessageQ priority of 33, the following priority conversions occur:

t A priority of 3 in an IBM MQSeries message is converted to a BEA MessageQ
priority of 33.

t A priority between 30 and 39 (inclusive) in a BEA MessageQ message is
converted to an IBM MQSeries priority of 3.
3-12 BEA MessageQ MQSeries Connection User’s Guide

Configuring the Queue Message Bridge

ter
d

d

tility.

dress.
s

 that
Registering Remote Service Queues

An RSQ must be registered to an LSQ before any message may be forwarded to it. The
RSQ registration may be statically defined in the QMB configuration file or
dynamically associated at run time. There are two things that you must do to register
an RSQ dynamically:

t You must build and fill in a registration message data structure with the
information needed to allow the association of the dynamic RSQ to the LSQ.
The same structure is used to register BEA MessageQ or IBM MQSeries
dynamic RSQs. If registering a BEA MessageQ RSQ, your application must
supply the address of the RSQ. If registering an IBM MQSeries RSQ, your
application must supply the name of the RSQ.

t You must set the message type and class for RSQ registration. Code your
application to send a specially formatted message with the BEA MessageQ
message type of MSG_TYPE_RSQ_REGISTER and message class of
MSG_CLAS_QMB to the permanent QMBDM primary queue (PQ). The QMBDM
processes and forwards the registration request to all other associated QMB
servers in the set.

In the QMB configuration file, static or dynamic association of an RSQ to an LSQ is
determined by the RSQ association parameter of the LSQ entry. The RSQ association
parameters are as follows:

t [S] Static—The QMB uses the queue name defined in the RSQ name parame
as the RSQ to be associated with the LSQ. Static associations are determine
and created at QMB initialization.

t [D] Dynamic—The QMB uses the queue name or BEA MessageQ address
received in an RSQ registration control message as the RSQ to be associate
with the LSQ.

You can also register an RSQ using the BEA MessageQ MQSeries Connection u
For more information on this utility, see “Using the BEA MessageQ MQSeries
Connection Utility” in Chapter 3, “Configuring BEA MessageQ MQSeries
Connection.”

All messages received on the defined LSQ are forwarded to the RSQ name or ad
This scheme allows flexibility: the server application can be moved among variou
BEA MessageQ groups or IBM MQSeries MQMs. Messages received on an LSQ
does not have a registered RSQ are returned to the sender.
BEA MessageQ MQSeries Connection User’s Guide3-13

3 Configuring BEA MessageQ MQSeries Connection
Listing 3-5 shows a registration message data structure.

Listing 3-5 Registration Message Data Structure

typedef struct
 {
 char lsq[49]; /* (MAX_MQS_LEN = 49) */
 char lowner; /* LSQ Owner [D]MQ or [M]QS */
 char rsq[49]; /* RSQ name of MQS Appl Queue */
 char rfu; /* Reserved for Future Use */
 q_address rsq_add; /* DMQ Address of DMQ RSQ */
 }
 rsq_reg_struct;

Data structures and BEA MessageQ class and type definitions are supplied in the
qmbuser.h file, which is located in /install_dir/include on UNIX systems and
in dev:\install_dir\include on Windows NT systems. For BEA MessageQ
Version 5.0, class and type definitions are also supplied in the p_typecl.h include
file.
3-14 BEA MessageQ MQSeries Connection User’s Guide

CHAPTER
4 Managing the BEA
MessageQ MQSeries
Connection
Environment

This chapter describes how to manage the BEA MessageQ MQSeries Connection
environment. It covers the following tasks:

t Starting the Queue Message Bridge

t Stopping the Queue Message Bridge

t Using the BEA MessageQ Monitor Utility

t Using the runmqsc MQSeries Utility

t Troubleshooting BEA MessageQ MQSeries Connection Problems

t Using IBM MQSeries Log Files

t Using the BEA MessageQ MQSeries Connection Utility
BEA MessageQ MQSeries Connection User’s Guide 4-1

4 Managing the BEA MessageQ MQSeries Connection Environment
Starting the Queue Message Bridge

Note: Before you can start the QMB, you must set the BEA MessageQ environment
variables for the BEA MessageQ bus and group to which the QMB will attach.

To start the QMB processes, you must run the qmbsrv command with the required
command parameters. You supply the required parameters in a command file or on the
command line during an interactive session. Remember that for the bridge to function
correctly, you must have at least one QMBDM and one QMBMD.

The command syntax for the QMB program is as follows:

qmbsrv -d msg-direction -s server-type -n mgr-name -r reply-qname
 -c pathname -l pathname -a number -i interval
 [-e] [-t] [-p] [-v]

Table 4-1 describes the QMB command parameters.

Table 4-1 Queue Message Bridge Command Parameters

Parameter Description

-d msg-direction Specifies the direction in which messages flow. You must specify
one of the following parameters:

t QMBDM for messages flowing from BEA MessageQ to IBM
MQSeries

t QMBMD for messages flowing from IBM MQSeries to BEA
MessageQ

This parameter is passed as an ASCII string.

-s server-type Defines the QMB server type, which can be either PERMANENT or
TEMPORARY. However, there must be at least one PERMANENT
QMBDM and QMBMD in a QMB server set.

-n mgr-name Specifies the name of the IBM MQSeries queue manager to which
the QMB connects. The mgr-name specified must be the same for
all QMB instances in the set. This parameter is passed as an ASCII
string.
4-2 BEA MessageQ MQSeries Connection User’s Guide

Starting the Queue Message Bridge
For MQSeries Connection Versions 4.0A and 5.0, the -m memory-name parameter is
obsolete. In earlier versions, this parameter specified the shared memory name
assigned to the shared memory and semaphore required by the QMB. The name had
either _SEM or _SHM appended to it. For the current version, the parameter is ignored
and no error is generated if the parameter is used.

-r reply-name Specifies the name of the reply queue. The QMB prefixes the name
with either DMQ_ or MQS_ to create a full name. This queue must be
defined as a permanent queue on the messaging system. The
reply_name must be the same for all QMB instances in the set.

This parameter is passed as an ASCII string.

-c pathname Specifies the full pathname of the QMB configuration file

-l pathname Specifies the full pathname of the QMB log file

-a number Specifies the maximum number of active (reply pending from BEA
MessageQ servers) IBM MQSeries clients. The number specified
must be the same for all QMB instances in the set. The maximum
value is 1000.

-i interval Specifies the connection index (CI) purge interval (in seconds) for
pending replies being sent from a BEA MessageQ application to an
IBM MQSeries client.

The interval specified must be the same for all QMB instances
in the set.

-e Specifies event logging. This parameter is optional.

-t Specifies trace logging. This parameter is optional.

-p Enables default priority mapping if a valid %PRIORITY MAPPING
section is not found in the QMB configuration file. This
parameter is optional and is ignored on BEA MessageQ MQSeries
Connection Version 4.0A.

-v Enables Verbose trace logging. This parameter is optional and
should only be used for troubleshooting when the -t parameter
is not sufficient.

Table 4-1 Queue Message Bridge Command Parameters

Parameter Description
BEA MessageQ MQSeries Connection User’s Guide 4-3

4 Managing the BEA MessageQ MQSeries Connection Environment
Note that the -e, -t, and -v parameters generate a fair amount of information in your
log files. These parameters should not be left on for extended periods.

To start the permanent QMB process, enter the following commands:

qmbsrv -d QMBDM -s PERMANENT -n MQMNAME -r DMC_REPLYQ
 -c /usr/qmb/qmbprod1.cfg -l /usr/qmb/qmbdm.log -a 60 -i 100

qmbsrv -d QMBMD -s PERMANENT -n MQMNAME -r DMC_REPLYQ
 -c /usr/qmb/qmbprod1.cfg -l /usr/qmb/qmbmd.log -a 60 -i 100

Note: Permanent QMBDM and QMBMD processes must be running before any message
exchange can occur. These processes register interest in each other and allow
message exchange only if both are active. For QMB processes to register
interest in each other, the BEA MessageQ SBS Server must be enabled so that
AVAIL Services are active.

To add a QMBMD server (in which messages flow from an IBM MQSeries application
to a BEA MessageQ application), enter the following command:

qmbsrv -d QMBMD -s TEMPORARY -n MQMNAME -r DMC_REPLYQ
 -c /usr/qmb/qmbprod2.cfg -l /usr/qmb/qmbmd.log -a 60 -i 100

You can use a different configuration file (qmbprod2.cfg) to allow specific queues to
be serviced by this copy of the QMB. Using a different configuration file gives you an
additional level of customization and tuning.

Performance Considerations

You can maximize the performance of the IBM MQSeries to BEA MessageQ
connection. To do so, add a temporary QMBMD process with a configuration file
designed to service a specific IBM MQSeries LSQ. The required permanent QMBMD
process polls (in a round-robin fashion) all IBM MQSeries LSQs for input. You can
force a temporary QMBMD process to service a subset or single LSQ or REPLYQ by
specifying a tailored configuration file with the -c parameter at startup. The rules that
determine how a temporary QMBMD process services its LSQs are as follows:

t If the QMB configuration file does not contain any LSQ entries, only the
REPLYQ (specified with the -r parameter) is serviced.

t If the QMB configuration file contains a single LSQ entry, only that LSQ is
serviced.
4-4 BEA MessageQ MQSeries Connection User’s Guide

Stopping the Queue Message Bridge

tion

r
m.

ies
t If the QMB configuration file contains more than one LSQ entry, the
round-robin polling algorithm for all LSQs and the REPLYQ is invoked.

Stopping the Queue Message Bridge

You can stop QMB processes in the following ways:

t Send a terminate message type to the primary QMBDM process. This message type
terminates all the QMB processes in a set. See “Using the BEA MessageQ
MQSeries Connection Utility” in this chapter for more information.

t On UNIX systems, use the kill command. The kill command terminates
processes one at a time providing the user_ID has the appropriate authority.

Using the BEA MessageQ Monitor Utility

To troubleshoot BEA MessageQ performance problems, use the BEA MessageQ
Monitor utility. You can use this utility to determine traffic counts, the status of
queues, cross-group connections, and attached programs. You can also use it to
determine whether messages are flowing correctly by monitoring detailed informa
about the queues involved. For more information on the BEA MessageQ Monito
utility, see the BEA MessageQ installation and configuration guide for your syste

Using the runmqsc MQSeries Utility

Use the runmqsc MQSeries utility to determine the state and status of the MQSer
components used by the QMB. You can use the runmqsc utility as follows:

t Define and alter queues

t Define and alter channels
BEA MessageQ MQSeries Connection User’s Guide 4-5

4 Managing the BEA MessageQ MQSeries Connection Environment
t Display queue definition and status information

t Display channel definitions and status information

t Start and stop channels

See the MQSeries Command Reference for a complete list of valid commands.

Troubleshooting BEA MessageQ MQSeries
Connection Problems

To troubleshoot problems with BEA MessageQ MQSeries Connection, view the log
files produced by BEA MessageQ, the QMB, and IBM MQSeries applications.
Typically, these log files contain important information about successful and
unsuccessful system events.

Note that the most efficient way to troubleshoot message queuing applications is to
follow the queues used by the application. Start by making sure you are familiar with
the flow of messages in your application as the message goes from queue to queue. Use
the tools available on each platform to determine and follow the message flow. The
most common approach is to use message counts and queue depths to follow a
message.

Queue Message Bridge Log Files

You can view the QMB log files to troubleshoot your messaging application. The
QMB produces log files that provide the following information:

t QMB program initialization parameter settings

t Any errors detected when sending or receiving messages

t Startup parameters
4-6 BEA MessageQ MQSeries Connection User’s Guide

Troubleshooting BEA MessageQ MQSeries Connection Problems
The QMB program logs events and errors to the log defined at startup with the -l
option to the qmbsrv command. To request a more detailed log file, there are
additional command parameters that you can use:

t The -e parameter requests program event logging (all gets, puts, and so on).

t The -t parameter requests message trace logging.

t The -v parameter requests verbose trace logging. This is only recommended for
troubleshooting purposes when the -t parameter does not provide enough
information.

Logging generates a fair amount of information; do not leave it on for extended periods
of time. Event logging is generally used to follow message flow. Trace logging is used
for problem determination.

Listing 4-1 shows a QMBDM log file created with the -e parameter.

Listing 4-1 QMBDM Log File

QMB: Dec 16 16:48:34 Version: 5.0-00 for HP-UX

QMB: Dec 16 16:48:34 MQS Client Maximum Active : 100
QMB: Dec 16 16:48:34 MQS Client Inactivity Timer: 300
QMB: Dec 16 16:48:34 Event Logging Enabled
MQS: Dec 16 16:48:35 Connected to Queue Manager QMGR1, Hconn: 1073800288
SEM: Dec 16 16:48:35 Create: /var/tmp/dmq/b_5653/g_00005/ipc/qmb.s Attached:1
Locked : 0
MMF: Dec 16 16:48:35 Name: /var/tmp/dmq/b_5653/g_00005/ipc/qmb.mmf Size: 16804
SHM: Dec 16 16:48:35 Create: b_5653/g_00005/ipc/qmb.m Size:20480
Address: 3233009664
MMF: Dec 16 16:48:35 Mapped: /var/tmp/dmq/b_5653/g_00005/ipc/qmb.mmf
Size:20480 Address: 3233009664
DMQ: Dec 16 16:48:35 Attach - Queue Number : 5.8
QMB: Dec 16 16:48:35 MQS Reply Queue: MQS_DMC_REPLYQ
DMQ: Dec 16 16:48:35 Locate Queue = DMQ_DMC_REPLYQ Name length = 14

QMB: Dec 16 16:48:35 QMB Direction is QMBDM

DMQ: Dec 16 16:48:35 DMQ Reply Queue: DMQ_DMC_REPLYQ MRQ Address:’5.7’

QMB: Dec 16 16:48:35 OPEN: /home3/popp/mqsc_test/dmc500_config.dat
DMQ: Dec 16 16:48:35 Locate Queue = MQS_ECHO Name length = 8
CFG: Dec 16 16:48:35 LSQ: MQS_ECHO Format Name:
CFG: Dec 16 16:48:35 Q Table LSQ: MQS_ECHO CI: 12 LTYPE: D
BEA MessageQ MQSeries Connection User’s Guide 4-7

4 Managing the BEA MessageQ MQSeries Connection Environment
CFG: Dec 16 16:48:35 Q Table RSQ: MQS_ECHO_SERVER RTYPE: S Header: N State: 1
MQS: Dec 16 16:48:35 Assigned MQS CI: 150
CFG: Dec 16 16:48:35 LSQ: DMQ_ECHO Format Name:
CFG: Dec 16 16:48:35 Q Table LSQ: DMQ_ECHO CI: 150 LTYPE: M
CFG: Dec 16 16:48:35 Q Table RSQ: DMQ_ECHO_SERVER RTYPE: S Header: N State: 1

QMB: Dec 16 16:48:35 User Defined Priority Mapping is Enabled

QMB: Dec 16 16:48:35 DMQ LSQ Count: 1 MQS LSQ Count: 2

DMQ: Dec 16 16:48:35 SEL_MASK 1073817752 Que: 0
DMQ: Dec 16 16:48:35 SEL_MASK 1073817836 Que: 7
DMQ: Dec 16 16:48:35 SEL_MASK 1073817920 Que: 12
DMQ: Dec 16 16:48:35 PAMS_SET_SELECT Success - 3 Queues
DMQ: Dec 16 16:48:35 Locate Queue = QMBMD Name length = 5
DMQ: Dec 16 16:48:35 Register Interest in DMQ process ’5.9’
DMQ: Dec 16 16:48:35 PUT tar: 5.99 class:29 type:-1180 len:16 dm:39 prio:0
rspq:0.8
DMQ: Dec 16 16:48:35 Posting DMQ_RECV Select VAR: 1 MODE: -1
DMQ: Dec 16 16:48:35 GET: Q:8 src:5.99 class:29 type:-1182 len:6
prio:0
endian:1
DMQ: Dec 16 16:48:35 TPQ: 8 Src: 5.99 Class: 29 Type: -1182
DMQ: Dec 16 16:48:35 QMB AVAIL Registration Success
DMQ: Dec 16 16:48:35 Posting DMQ_RECV Select VAR: 1 MODE: -1
.
.
.
DMQ: Dec 16 16:48:37 QMB Process AVAILABLE ’5.9’
DMQ: Dec 16 16:48:37 Posting DMQ_RECV Select VAR: 1 MODE: -1
DMQ: Dec 16 16:50:02 GET: Q:12 src:5.201 class:32000 type:-5010 len:100 prio:0
endian:1
DMQ: Dec 16 16:50:02 LSQ: 12 RSQ: MQS_ECHO_SERVER SRC: 5.201
MQS: Dec 16 16:50:02 Open RSQ: MQS_ECHO_SERVER

MQS: Dec 16 16:50:02 Open Queue: MQS_ECHO_SERVER Hobj:1073903024
MQS: Dec 16 16:50:02 PUT - DMQ CLI ADD: 00005.201
MQS: Dec 16 16:50:02 Send Request: RSQ: MQS_ECHO_SERVER Size: 100 Persistence: 0
Msg: DMQ_CLI
MQS: Dec 16 16:50:02 MQPUT: Send Queue: MQS_ECHO_SERVER CompCode: 0
DMQ: Dec 16 16:50:02 Posting DMQ_RECV Select VAR: 1 MODE: -1
DMQ: Dec 16 16:50:02 GET: Q:12 src:5.201 class:32000 type:-5010 len:100 prio:0
endian:1
DMQ: Dec 16 16:50:02 LSQ: 12 RSQ: MQS_ECHO_SERVER SRC: 5.201
MQS: Dec 16 16:50:02 PUT - DMQ CLI ADD: 00005.201
MQS: Dec 16 16:50:02 Send Request: RSQ: MQS_ECHO_SERVER Size: 100 Persistence: 0
Msg: DMQ_CLI
MQS: Dec 16 16:50:02 MQPUT: Send Queue: MQS_ECHO_SERVER
CompCode: 0
4-8 BEA MessageQ MQSeries Connection User’s Guide

Using IBM MQSeries Log Files
DMQ: Dec 16 16:50:02 Posting DMQ_RECV Select VAR: 1 MODE: -1
DMQ: Dec 16 16:50:20 GET: Q:8 src:5.202 class:32000 type:-5099 len:0 prio:0
endian:1
DMQ: Dec 16 16:50:20 TPQ: 8 Src: 5.202 Class: 32000 Type: -5099

QMB: Dec 16 16:50:20 QMB Server SHUTDOWN Request...

QMB: Dec 16 16:50:20 QMB Server Exiting
MMF: Dec 16 16:50:20 Write : /var/tmp/dmq/b_5653/g_00005/ipc/qmb.mmf Bytes: 20480
MMF: Dec 16 16:50:20 Close : /var/tmp/dmq/b_5653/g_00005/ipc/qmb.mmf
SEM: Dec 16 16:50:20 Delete: /var/tmp/dmq/b_5653/g_00005/ipc/qmb.s
SHM: Dec 16 16:50:20 Delete: /var/tmp/dmq/b_5653/g_00005/ipc/qmb.m Size:20480
Address: 3233009664
MQS: Dec 16 16:50:20 Successfully disconnected from Queue Manager
QMGR1

QMB: Dec 16 16:50:20 QMB Server exiting

Using IBM MQSeries Log Files

You can use the IBM MQSeries log files to determine any failures or events associated
with various components. There are two ways to locate the IBM MQSeries log files:

t If the queue manager name is known and available, use the following pathnames
on UNIX and Windows NT systems respectively:

/var/mqm/qmgrs/QMGRNAME/errors/AMQERR01.LOG

c:\mqm\qmgrs\qmname\errors\AMQERR01.LOG

t If the queue manager is not available, use the following pathnames on UNIX and
Windows NT systems respectively:

/var/mqm/qmgrs/@SYSTEM/errors/AMQERR01.LOG

c:\mqm\qmgrs\@SYSTEM\errors\AMQERR01.LOG

t For first failure support technology, use the following pathnames on UNIX and
Windows NT systems respectively:

/var/mqm/errors/AMQnnnnn.mm.FDC

c:\mqm\errors\AMQnnnnn.mm.FDC
BEA MessageQ MQSeries Connection User’s Guide 4-9

4 Managing the BEA MessageQ MQSeries Connection Environment
Here, nnnnn is the process ID of the process reporting the error and mm is a
sequence number, which is normally 0.

Using the BEA MessageQ MQSeries
Connection Utility

The BEA MessageQ MQSeries Connection distribution media includes a utility called
qmb_util which facilitates the sending of control messages to QMB processes. This
utility allows you to control the behavior of a target QMB process, without having to
close the process or rewrite the client or server application to send the desired control
message to that process.

The qmb_util utility is located in /install_dir/bin on UNIX systems and in
dev:\install_dir\bin on Windows NT systems.

How the BEA MessageQ MQSeries Connection Utility
Works

The qmb_util utility sends a message containing the appropriate BEA MessageQ
class and message type to perform the desired control function. In most cases, this
message is sent to the QMBDM permanent queue.

Table 4-2 describes the valid control functions listed by message type.

Table 4-2 Valid Control Functions Listed by Message Type

Message Type Description

MSG_TYPE_PURGE_CI Purges all nonpersistent connection indexes (CI) from the
CI table. This message is processed only by the permanent
QMBDM server.

MSG_TYPE_PURGE_CI_ALL Purges all CIs from the CI table. This message is
processed only by the permanent QMBDM server.
4-10 BEA MessageQ MQSeries Connection User’s Guide

Using the BEA MessageQ MQSeries Connection Utility
MSG_TYPE_NEW_LOG Closes the existing log and opens a new log. Sending this
message to the permanent QMBDM server results in
messages being transmitted to the associated QMBMD
server and all of their Temporary Primary Queues (TPQs).

MSG_TYPE_LOAD_CONFIG Reloads the QMB configuration file. Sending this
message to the permanent QMBMD server results in
messages being transmitted to the associated QMBDM
server and all Temporary Primary Queues (TPQs).

MSG_TYPE_RSQ_REGISTER Requires the RSQ registration structure in the message
body of the message structure. Sending this message to
the permanent QMBDM server results in messages being
transmitted to the associated QMBMD server and all
Temporary Primary Queues (TPQs).

MSG_TYPE_EVENT_LOG Toggles QMB Server event logging. If event logging is
enabled (that is, if you started the QMB with the -e
parameter), use this message type to disable event
logging. Likewise, if event logging is disabled, use this
message type to enable event logging.

This message must be sent to each QMB Server that
requires a change in event logging status.

MSG_TYPE_TRACE_LOG Toggles internal trace logging. If trace logging is on (that
is, if you started the QMB with the -t parameter), use this
message type to toggle trace logging off. Likewise, if trace
logging is off, use this message type to toggle trace
logging on.

If verbose tracing is enabled, this message disables trace
logging. Verbose logging can only be enabled using the -v
parameter on the QMB Server command line.

This message must be sent to each QMB Server that
requires a change in trace logging status.

MSG_TYPE_DUMP_QTABLES Dumps MQSeries Message Descriptor (MQMD) to a log
file. This message is processed only by the permanent
QMBDM server.

Table 4-2 Valid Control Functions Listed by Message Type

Message Type Description
BEA MessageQ MQSeries Connection User’s Guide4-11

4 Managing the BEA MessageQ MQSeries Connection Environment

ut
The qmb_util utility sends most control messages to the QMBDM primary queue (which
is also the default target [QMBDM]). However, some control messages work on a
specific QMBDM or QMBMD process and must be directed to that process’s group and
queue. For example, you can terminate a specific temporary QMB process witho
terminating the permanent process.

The qmb_util allows you to change the target group and queue so that control
messages can be sent to queues other than the QMBDM primary queue (the default
target).

Starting the BEA MessageQ MQSeries Connection Utility

Before you can run the qmb_util utility, set the DMQ_BUS_ID and DMQ_GROUP_ID
environment variables. Then run qmb_util by entering the following command:

% qmb_util

The qmb_util displays the menu as shown in Listing 4-2.

Listing 4-2 The qmb_util Main Menu

 MessageQ MQSeries Connection Utility V5.0

1) Toggle the QMB event log switch (MSG_TYPE_EVENT_LOG)
2) Toggle the QMB trace log switch (MSG_TYPE_TRACE_LOG)
3) Reload QMB config file (MSG_TYPE_LOAD_CONFIG)
4) Close old and open new log file (MSG_TYPE_NEW_LOG)
5) Purge non-persistent CI only (MSG_TYPE_PURGE_CI)
6) Purge all CI (MSG_TYPE_PURGE_CI_ALL)
7) Dump MQMD to Log File (MSG_TYPE_DUMP_QTABLES)
8) Dynamic Service Registration (MSG_TYPE_RSQ_REGISTER)
9) Terminate the QMB processes (MSG_TYPE_TERMINATE)

MSG_TYPE_TERMINATE Terminates a QMB Server. If this message is sent to a
Permanent QMB Server, the termination request is
forwarded to all associated TPQs.

Table 4-2 Valid Control Functions Listed by Message Type

Message Type Description
4-12 BEA MessageQ MQSeries Connection User’s Guide

Using the BEA MessageQ MQSeries Connection Utility

” in

r not
s
10) Change target group and queue
11) Set target group and queue to default [QMBDM] primary
12) Exit this utility

Default Target [QMBDM] 5.12
Current Target Default [QMBDM] 5.12

Enter Message Choice:

Note the field, below the menu, labelled “Current Target Default [QMBDM].” The
value in this field (5.12) indicates tha target to which control messages are sent.
(Specifically, “5.12” represents group 5 and queue 12 of the target.) For more
information, see “Understanding Current and Default Target Groups and Queues
this chapter.

Understanding Current and Default Target Groups and
Queues

When you invoke qmb_util, the default target line is identified in a field below the
main menu, as shown in Listing 4-2. The value in this field depends on whether o
the location of the target was known when qmb_util was started. Table 4-3 describe
valid values in the “Default Target” and “Current Target Default” fields.

Table 4-3 Target Line Display

Display from Main Menu Description

Default Target [QMBDM] G.Q The target was located during startup.
(G.Q indicates a valid group and queue
number such as 5.12.)

Default Target [QMBDM] UNDEFINED The qmb_util utility could not locate the
QMBDM process.

Current Target Default [QMBDM]G.Q The default target was located during start
up. (G.Q indicates a valid group and queue
number such as 5.12.)
BEA MessageQ MQSeries Connection User’s Guide4-13

4 Managing the BEA MessageQ MQSeries Connection Environment
After qmb_util is started, the current target may be changed to any group.queue
using choice 10 on the menu (Change target group and queue).

After you enter a new target group and queue, the qmb_util displays a message
similar to the following:

Current Target Group : [x] Queue : [x]

It is this current target group to which qmb_util control messages are sent. Control
messages must be sent to their proper target for the desired QMB action to take place.

Most qmb_util control messages need only a target and message type in order to
complete the requested action. Some control messages, however, require additional
information. The qmb_util utility prompts for this information.

Selecting the Terminate QMB Process Message Choice

To terminate the QMB process that you specify, select choice 9 from the Connection
Utility Menu. When you select choice 9, the menu shown in Listing 4-3 is displayed.

Listing 4-3 Terminate Queue Message Bridge Process Menu

1) Terminate QMBDM & all temporary instances (MessageQ to MQSeries)
2) Terminate QMBMD & all temporary instances (MQSeries to MessageQ)
3) Terminate a single temporary QMB instance (DMQ Address required)
4) Terminate QMBDM, QMBMD and all temporary instances (Bridge Set)

Select terminate choice or <CR> to exit:

Current Target Group:[UNDEFINED]
Queue : [UNDEFINED]

The qmb_util utility could not locate the
current target.

Table 4-3 Target Line Display

Display from Main Menu Description
4-14 BEA MessageQ MQSeries Connection User’s Guide

Using the BEA MessageQ MQSeries Connection Utility

 4

 (~)
Selecting the Dynamic Service Registration Message
Choice

You can change the registration of a queue (the BEA MessageQ RSQ) by selecting
choice 8 (Dynamic Service Registration) from the menu. When you select choice
8, the prompts shown in Listing 4-4 are displayed:

Listing 4-4 Dynamic Service Registration for a BEA MessageQ RSQ

Enter LSQ name to assign the RSQ to:
Enter LSQ Owner (M or D):
Enter MessageQ RSQ group number
Enter MessageQ RSQ queue number:

When you select the Dynamic Service Registration message choice to change the IBM
MQSeries RSQ, the prompts shown in Listing 4-5 are displayed:

Listing 4-5 Dynamic Service Registration for an MQSeries RSQ

Enter LSQ name to assign the RSQ to:
Enter LSQ Owner (M or D):
Enter MQSeries queue name of RSQ:

Selecting the Close Old and Open New Log File Message
Choice

To close the QMB Server’s current log file and open a new log file, select choice
(Close old and open new log file) from the Connection Utility menu. The new
log file has the same name as the old log file except that the new one has a tilde
suffix. For example, if the name of the current log file is dmc_dm.log, selecting choice
BEA MessageQ MQSeries Connection User’s Guide4-15

4 Managing the BEA MessageQ MQSeries Connection Environment
4 causes the log file to be closed and a file named dmc_dm.log~ to be created. A
subsequent invocation of message choice causes another tilde to be appended to the file
name. In this case, a file named dmc_dm.log~~ will be created.

If this message is sent to the permanent QMBDM server, it is automatically forwarded to
the associated QMBMD server and all of their Temporary Primary Queues (TPQs).

Selecting the Reload QMB Configuration File Message

To direct the QMB Servers to reload their configuration files, select choice 3 (Reload
QMB config file) from the Connection Utility menu. This allows the configuration
file to be updated and reloaded without stopping and restarting the QMB Servers. New
queue definitions can be added through this process, but queue definitions cannot be
deleted. To delete queue definitions the QMB Servers must be restarted.

The Priority Mapping section of the configuration file can be modified and then
reloaded to dynamically update the priority mapping scheme in use.

If this message is sent to the permanent QMBDM Server then it is automatically
forwarded to the associated QMBMD Server and all of their TPQs.

Exiting the BEA MessageQ MQSeries Connection Utility

To exit qmb_util, select choice 12 (Exit this utility) from the Connection
Utility menu.
4-16 BEA MessageQ MQSeries Connection User’s Guide

APPENDIX
A Programming
Examples

The BEA MessageQ MQSeries Connection media includes a set of programming
examples that show how applications can use interprocess message queuing to
exchange information. The following programming examples are included:

t BEA MessageQ MQSeries Connection client/server programs

t Programs for testing BEA MessageQ MQSeries Connection

The programming examples are located in /install_dir/examples/mqsc on UNIX
systems and in dev:\install_dir\examples\mqsc on Windows NT systems.

Note: Do not modify these examples in the example directory. If you want to use an
example as a starting point to develop an application, copy the programming
example to your working directory and edit it there.

This appendix discusses the following topics:

t Using the Programming Examples

t Testing the Programming Examples

Using the Programming Examples

This section describes the programming examples for BEA MessageQ and IBM
MQSeries applications. The programming examples consist of a set of client and
server programs designed to test a simple message exchange between two processes
BEA MessageQ MQSeries Connection User’s GuideA-1

A Programming Examples
running in the BEA MessageQ and IBM MQSeries environments. The programming
examples report statistical results on message exchange rates and are designed to run
in pairs.

Table A-1 describes the programming examples that are provided in the kit.

The programming examples are designed to echo back messages from the following
client and servers:

t BEA MessageQ client (QMB_DMQCLIENT) to an IBM MQSeries server
(QMB_MQSECHO).

t IBM MQSeries client (QMB_MQSCLIENT) to a BEA MessageQ server
(QMB_DMQECHO).

When using these programming examples, you can have more than one instance of the
client running, but only one instance of the server running.

Building the Programming Examples

To build the programs, invoke the appropriate makefile by using the make command.
Two makefiles are available: /install_dir/examples/mqsc/makefile for UNIX
systems and dev:\install_dir\examples\mqsc\mqsc.mak for Windows NT
systems. For Windows NT, build the examples using the following command:

Table A-1 Programming Examples

Program Name Description

QMB_DMQECHO A BEA MessageQ server application that attaches to an RSQ
and receives requests from an IBM MQSeries LSQ.

QMB_MQSECHO An IBM MQSeries client application that reads from an RSQ
and receives requests from an BEA MessageQ LSQ.

QMB_DMQCLIENT A BEA MessageQ client application that sends requests to a
BEA MessageQ LSQ which are then forwarded by the
QMBDM to the corresponding IBM MQSeries RSQ.

QMB_MQSCLIENT An IBM MQSeries client application that sends requests to
an IBM MQSeries LSQ which are then forwarded by the
QMBMD to the corresponding BEA MessageQ RSQ.
A-2 BEA MessageQ MQSeries Connection User’s Guide

Using the Programming Examples
nmake -f mqsc.mak

QMB_DMQECHO

QMB_DMQECHO is a BEA MessageQ program designed to listen on a well-known
address. It returns any message it receives, immediately after receipt, to the sender.

In this example, the address is named DMQ_ECHO_SERVER. The BEA MessageQ group
initialization file must contain an entry for a queue named DMQ_ECHO_SERVER. This
entry must be included in the QUEUE CONFIGURATION SECTION (%QCT) or in the
GROUP NAME TABLE SECTION (%GNT).

The command syntax for the QMB_DMQECHO program is as follows:

% qmb_dmqecho [-q queue_name] [-d] [-?]

Table A-2 describes the QMB_DMQECHO parameters.

QMB_MQSECHO

QMB_MQSECHO is an IBM MQSeries application program designed to listen on the
queue named on the command line, which must be a valid, configured IBM MQSeries
queue.

The command syntax for the QMB_MQSECHO program is as follows:

% qmb_mqsecho -r qname [-m MQMname] [-d] [-?]

Table A-3 describes the QMB_MQSECHO parameters.

Table A-2 QMB_DMQECHO Command Parameters

Parameter Description

-q Defines the source queue name. This parameter is optional. The default name
is DMQ_ECHO_SERVER.

-d Enables debug mode to print trace information. This parameter is optional.
The default setting is debugging mode disabled.

-? Prints a simple help message. This parameter is optional.
BEA MessageQ MQSeries Connection User’s GuideA-3

A Programming Examples
QMB_DMQCLIENT

QMB_DMQCLIENT is a BEA MessageQ application designed to send requests to the
QMB_MQSECHO and then read the replies. The target group is the BEA MessageQ group
in which the QMB is running. The target queue number is the BEA MessageQ LSQ
that maps to the RSQ on which QMB_MQSECHO is listening. The dmc500_config.dat
file should include the name associated with the target queue number used by the
QMB_DMQCLIENT. This file maps the LSQ to the RSQ in the IBM MQSeries
environment.

The command syntax of the QMB_DMQCLIENT program is as follows:

% qmb_dmqclient -g n -q n [-i] [-l n] [-b n] [-s n] [-d] [-p n] [-c correlid] [-j]
[-?]

Table A-4 describes the parameters for the QMB_DMQCLIENT program.

Table A-3 QMB_MQSECHO Command Parameters

Parameter Description

-r qname Specifies the name of a valid, configured IBM MQSeries RSQ from which
QMB_MQSECHO expects to read requests. This parameter is required.

-m MQMname Specifies the name of the IBM MQSeries queue manager (MQM) to which
QMB_MQSECHO should connect. This parameter is optional. If no MQM
name is supplied, the default IBM MQSeries MQM is used.

-d Enables debugging mode to print trace information. This parameter is
optional. The default setting is debugging mode disabled.

-? Prints a simple help message. This parameter is optional.

Table A-4 QMB_DMQCLIENT Command Parameters

Parameter Description

-g n Specifies the number of the target BEA MessageQ LSQ group. This
parameter is required.
A-4 BEA MessageQ MQSeries Connection User’s Guide

Using the Programming Examples
QMB_MQSCLIENT

QMB_MQSCLIENT is an IBM MQSeries client application designed to send requests to
QMB_DMQECHO and then read any replies from the named reply queue. The target queue
is the IBM MQSeries LSQ queue name that maps to the RSQ on which
QMB_DMQECHO is listening. The target queue is specified in the config.dat file.

The command syntax for the QMB_MQSCLIENT program is as follows:

-q n Specifies the number of the target BEA MessageQ LSQ queue. This
parameter is required.

-i Specifies interactive mode. If this parameter is specified, the following
parameters are ignored: -l, -b, and -s. This parameter is optional.

-l n Specifies the loop count, which is the number of iterations. This parameter is
optional. The default is 1 iteration.

-b n Specifies the burst count, which is the number of messages per iteration. This
parameter is optional. The default is 1 message.

-s n Specifies the size of the message, in bytes. The minimum size is 60, which
allows for the sequence number and time stamp. If this parameter is not
specified, the default is 60. The maximum is 4194304 bytes.

-d Specifies debugging mode, which prints trace information. This parameter is
optional.The default is debugging mode disabled.

-p The number indicating the priority of the message. This parameter is optional.
The valid range is 0-1 for BEA MessageQ V4.0A and 0-99 for BEA
MessageQ V5.0.

-c The correlation identifier. This parameter is optional. The default is no
correlation identifier. This feature is supported only for BEA MessageQ
V5.0.

-j Enables journaling. This parameter is optional. The default is no journaling.

-? Prints a simple help message. This parameter is optional.

Table A-4 QMB_DMQCLIENT Command Parameters

Parameter Description
BEA MessageQ MQSeries Connection User’s GuideA-5

A Programming Examples
% qmb_mqsclient -t name -r name [-m MQMname][-d][-i] [-l n] [-b n] [-s n] [-p n]
[-c correlid] [-j] [-?]

Table B-5 describes the QMB_MQSCLIENT parameters.

Table A-5 QMB_MQSCLIENT Command Parameters

Parameter Description

-t name Specifies the name of the target IBM MQSeries LSQ queue. This parameter
is required.

-r name Specifies the name of the reply queue. This parameter is required.

-m name Specifies the name of the IBM MQSeries Queue Manager (MQM). This
parameter is optional. If no MQM is specified, the default MQM is used.

-d Enables debugging mode, which prints trace information. This parameter is
optional.

-i Specifies interactive mode. The program prompts for a text message. If this
parameter is specified, the following parameters are ignored: -l, -b, and -s.

-l n Specifies the loop count. This parameter is optional. The default count is 1.

-b n Specifies the burst count. This parameter is optional. The default count is 1.

-s n Specifies the size of the message, in bytes. The minimum size is 60 bytes. If
the size is not specified, the default is 60, which allows for the sequence
number and time stamp. The maximum size is 4194304 bytes.

-p n The number indicating the priority of the message. This parameter is optional.
The valid range is 0-9 for IBM MQSeries V5.0. The default is 0.

-c
correlid

The correlation identifier. This parameter is optional. The default is no
correlation identifier. This feature is supported only for BEA MessageQ
V5.0.

-j Persistent messaging is enabled. This parameter is optional. The default is
persistent messaging disabled.

-? Prints a simple help message
A-6 BEA MessageQ MQSeries Connection User’s Guide

Using the Programming Examples
Running the QMB_MQSECHO and QMB_DMQCLIENT
Test Pair

To run the QMB_MQSECHO and QMB_DMQCLIENT test pair, you must first set up the QMB
configuration file and the BEA MessageQ initialization file with the proper
parameters. Then, you can invoke the QMB_MQSECHO and QMB_DMQCLIENT programs.

For example, suppose the QMB is running on group 5 and the desired target queue of
QMB_DMQCLIENT is MQS_ECHO_SERVER. In this case, the QMB_DMQCLIENT sends a
request to the queue number defined as the LSQ in the DMC320_CONFIG.DAT file that
maps to the MQS_ECHO_SERVER. Listing A-1 shows a QMB configuration file.

Listing A-1 Queue Message Bridge Configuration File

!LSQ LSQ RSQ RSQ
!Name Owner Name Association
!
MQS_ECHO D MQS_ECHO_SERVER S

Listing A-2 shows the entry you must provide for group 5 in the QUEUE
CONFIGURATION SECTION (%QCT) of the BEA MessageQ initialization file,
group.init.

Listing A-2 QUEUE CONFIGURATION SECTION

!QUEUE CONFIGURATION SECTION
!
% QCT

!Queue Queue Byte Msg Quota UCB Queue Owner Conf Perm Name
!Name Number Quota Quota Enable Send Type Queue Style Active Scope Security
MQS_ECHO 12 64000 100 None . M 0 . Y L N
BEA MessageQ MQSeries Connection User’s GuideA-7

A Programming Examples
To run the test pair, you must invoke both the QMB_MQSECHO and QMB_DMQCLIENT
programs. Enter the following command on the IBM MQSeries system to invoke the
QMB_MQSECHO program:

% qmb_mqsecho -r MQS_ECHO_SERVER

Enter the following command on the BEA MessageQ system to invoke the
QMB_DMQCLIENT program:

% qmb_dmqclient -g 5 -q 12 -l 10 -b 2 -s 1024 -d

In this example, MQS_ECHO, which is defined in the BEA MessageQ initialization file,
is identified by the -g 5 and -q 12 parameters.

Running the QMB_MQSCLIENT and QMB_DMQECHO
Test Pair

Before you can run the QMB_MQSCLIENT and QMB_DMQECHO test pair, you must first set
up the QMB configuration file and the BEA MessageQ initialization file with the
proper parameters.

For example, suppose the target queue of the QMB_MQSCLIENT is DMQ_ECHO_SERVER.
In this case, QMB_MQSCLIENT sends a request to the LSQ (defined in the
dmc500_config.dat file) that maps to the RSQ (named DMQ_ECHO_SERVER).

Listing A-3 shows the dmc500_config.dat file.

Listing A-3 Queue Message Bridge Configuration File

!LSQ LSQ RSQ RSQ
!Name Owner Name Association
!
DMQ_ECHO M DMQ_ECHO_SERVER S

Listing A-4 shows the QUEUE CONFIGURATION SECTION in which group 5 is defined
in the BEA MessageQ Initialization File (group.init).
A-8 BEA MessageQ MQSeries Connection User’s Guide

Using the Programming Examples
Listing A-4 QUEUE CONFIGURATION SECTION

!QUEUE CONFIGURATION SECTION
!
% QCT

!Queue Queue Byte Msg Quota UCB Queue Owner Conf Perm Name
!Name Number Quota Quota Enable Send Type Queue Style Active Scope Security
!
DMQ_ECHO_SERVER 15 64000 100 None . M 0 . Y L N

If the DMQ_ECHO_SERVER runs on a remote BEA MessageQ group, the entry shown in
Listing A-5 is needed in the GROUP NAME TABLE SECTION (%GNT):

Listing A-5 GROUP NAME TABLE SECTION

!GROUP NAME TABLE SECTION
!
% GNT
DMQ_ECHO_SERVER 62.15 L

To run the test pair, you must invoke both the QMB_DMQECHO and QMB_MQSCLIENT
programming examples. On the IBM MQSeries system, enter the following command
to invoke the QMB_MQSCLIENT program:

% qmb_mqsclient -t DMQ_ECHO -r MQS_CLIENT_REPLYQ -m QMNAME -l 10
 -b 2 -s 1024 -d

Enter the following command on a BEA MessageQ system to invoke the
QMB_DMQECHO program:

% qmb_dmqecho -d
BEA MessageQ MQSeries Connection User’s GuideA-9

A Programming Examples
Testing the Programming Examples

BEA MessageQ and IBM MQSeries both provide programming examples that help
you learn how these products work. You can also use these programs to verify the BEA
MessageQ MQSeries Connection installation and configuration. To verify, use the
BEA MessageQ Test Utility (dmqtestm or dmqtestc) and the IBM MQSeries
programming examples (amqsget0 and amqsput0). With these programming
examples and the Test Utility, simple datagram messages can be exchanged by
different queue messaging environments (BEA MessageQ and IBM MQSeries) if the
BEA MessageQ MQSeries Connection servers (QMB server) are properly configured.

For more information about the BEA MessageQ Test Utility, see the BEA MessageQ
Programmer’s Guide.

For information about the IBM MQSeries amqsget0 and amqsput0 programming
examples, see the MQSeries Application Programming Guide.

You can perform simple datagram messaging with out-of-the-box BEA MessageQ and
IBM MQSeries test tools and examples, if there is a properly configured QMB server
pair. However, you cannot perform other types of message exchange (such as request
or reply) because these applications do not follow programming conventions that
allow the QMB to exchange messages. To perform request and reply message
exchange, you need to modify the applications to pass the appropriate BEA MessageQ
type and class fields and to fill in the IBM MQSeries MQS_CLIENT_REPLYQ fields.

BEA MessageQ MQSeries Connection provides an example dmc500_config.dat
file, dmc500_dmq_group.init file, an MQSC command file (dmc500_mqmdef.cfg),
and example scripts to start a QMB server pair.

The following examples are based on the configuration established and the queue
associations defined in the dmc500_config.dat file.

Note: Use the dmc500_dmq_group.init file for BEA MessageQ startup. You can
copy this file from /install_dir/templates on UNIX systems and from
dev:\install_dir\templates on Windows NT systems.
A-10 BEA MessageQ MQSeries Connection User’s Guide

Testing the Programming Examples

Testing the IBM MQSeries Connection to BEA MessageQ

To send an IBM MQSeries message to BEA MessageQ, complete the following
procedure:

1. In a test window on the BEA MessageQ side, run the dmqtestc utility. Using this
utility, Attach By Name to the DMQ_ECHO_SERVER queue.

2. Enter the command to start amqsput on the system running IBM MQSeries.
Invoke amqsput with DMQ_ECHO as the target queue and QMGR1 as the queue
manager name. (The target queue is the IBM MQSeries LSQ, which maps to the
BEA MessageQ RSQ through the dmc500_config.dat file.) For example, on an
HP-UX system:

/opt/mqm/samp/bin/amqsput DMQ_ECHO QMGR1

When amqsput starts, it displays the start message and the name of the target
queue.

3. Enter messages. amqsput expects ASCII input followed by the newline
character. Once amqsput gets a message, it displays it. For example:

Hello message 1 from MQSeries
Hello message 2 from MQSeries
Last message from MQSeries

4. From the dmqtestc utility, issue three GET commands to read the inbound
messages from amqsput.

See the following section for instructions on testing the BEA MessageQ connection to
IBM MQSeries.

Testing the BEA MessageQ Connection to IBM MQSeries

On the BEA MessageQ side, you can test the connection using dmqtestc. Complete
the following procedure:

1. Invoke the dmqtestc program.

2. Issue a PUT command with the text “Hello from BEA MessageQ” to queue
MQS_ECHO. (You can use the LOCATE_Q command to return the queue number fro
MQS_ECHO.)
BEA MessageQ MQSeries Connection User’s GuideA-11

A Programming Examples
3. Run amqsget with a source queue name of MQS_ECHO_SERVER and a queue
manager name of QMGR1. (The source queue name is the name of the IBM
MQSeries RSQ which maps to the MessageQ LSQ through the
dmc500_config.dat file.) For example, on an HP-UX system:

/opt/mqm/samp/bin/amqsget MQS_ECHO_SERVER QMGR1

The amqsget utility should have received one message similar to the following:

Sample AMQSGET start
message <Hello from BEA MessageQ>
no more messages
Sample AMQSGET end
A-12 BEA MessageQ MQSeries Connection User’s Guide

APPENDIX
B Messages

The qmb_util utility allows you to control the behavior of a target QMB process (by
sending a control message to that process) without having to close the process or
rewrite the client or server application. Control messages are requests to the QMB
Server sent via the BEA MessageQ API function pams_put_msg.

This appendix describes the control messages that can be sent to QMB processes using
qmb_util:

t DUMP_QTABLES

t EVENT_LOG

t LOAD_CONFIG

t NEW_LOG

t PURGE_CI

t PURGE_CI_ALL

t QMB_TERMINATE

t RSQ_REGISTER

t TRACE_LOG

For more information on the qmb_util utility, see “Using the BEA MessageQ
MQSeries Connection Utility” in Chapter 4, “Managing the BEA MessageQ
MQSeries Connection Environment.”
BEA MessageQ MQSeries Connection User’s GuideB-1

B Messages
DUMP_QTABLES

The DUMP_QTABLES message dumps IBM MQSeries Message Descriptor (MQMD) to
a log file.

C Message
Structure

#include qmb_user.h

Arguments

Message Data
Fields

None

Arguments pams_put_msg Format

Type MSG_TYPE_DUMP_QTABLES

Class MSG_CLAS_QMB

Size 0
B-2 BEA MessageQ MQSeries Connection User’s Guide

EVENT_LOG
EVENT_LOG

The EVENT_LOG message toggles QMB Server event logging. If event logging is
enabled (that is, if you started the QMB with the -e parameter), use this message type
to disable event logging. Likewise, if event logging is disabled, use this message type
to enable event logging.

This message must be sent to each QMB Server that requires a change in event logging
status.

C Message
Structure

#include qmb_user.h

Arguments

Message Data
Fields

None.

Arguments pams_put_msg Format

Type MSG_TYPE_EVENT_LOG

Class MSG_CLAS_QMB

Size 0
BEA MessageQ MQSeries Connection User’s GuideB-3

B Messages
LOAD_CONFIG

The LOAD_CONFIG message reloads the QMB configuration file. Sending this message to the
permanent QMBMD server results in messages being transmitted to the associated QMBDM server
and all Temporary Primary Queues (TPQs).

C Message
Structure

#include qmb_user.h

Arguments

Message Data
Fields

None

Arguments pams_put_msg Format

Type MSG_TYPE_LOAD_CONFIG

Class MSG_CLAS_QMB

Size 0
B-4 BEA MessageQ MQSeries Connection User’s Guide

NEW_LOG
NEW_LOG

The NEW_LOG message closes the existing log and opens a new log. Sending this message to
the permanent QMBDM server results in messages being transmitted to the associated QMBMD
server and all of their Temporary Primary Queues (TPQs).

C Message
Structure

#include qmb_user.h

Arguments

Message Data
Fields

None

Arguments pams_put_msg Format

Type MSG_TYPE_NEW_LOG

Class MSG_CLAS_QMB

Size 0
BEA MessageQ MQSeries Connection User’s GuideB-5

B Messages
PURGE_CI

The PURGE_CI message purges all nonpersistent connection indexes (CI) from the CI table.
This message is processed only by the permanent QMBDM server

C Message
Structure

#include qmb_user.h

Arguments

Message Data
Fields

None

Arguments pams_put_msg Format

Type MSG_TYPE_PURGE_CI

Class MSG_CLAS_QMB

Size 0
B-6 BEA MessageQ MQSeries Connection User’s Guide

PURGE_CI_ALL
PURGE_CI_ALL

The PURGE_CI_ALL message purges all CIs from the CI table. This message is processed
only by the permanent QMBDM server

C Message
Structure

#include qmb_user.h

Arguments

Message Data
Fields

None

Arguments pams_put_msg Format

Type MSG_TYPE_PURGE_CI_ALL

Class MSG_CLAS_QMB

Size 0
BEA MessageQ MQSeries Connection User’s GuideB-7

B Messages
QMB_TERMINATE

The QMB_TERMINATE message terminates a QMB Server. If this message is sent to a
Permanent QMB Server, the termination request is forwarded to all associated TPQs.

C Message
Structure

#include qmb_user.h

Arguments

Message Data
Fields

None

Arguments pams_put_msg Format

Type MSG_TYPE_QMB_TERMINATE

Class MSG_CLAS_QMB

Size 0
B-8 BEA MessageQ MQSeries Connection User’s Guide

RSQ_REGISTER
RSQ_REGISTER

The RSQ_REGISTER message requires the RSQ registration structure in the message body of
the message structure. Sending this message to the permanent QMBDM server results in messages
being transmitted to the associated QMBMD server and all Temporary Primary Queues (TPQs).

C Message
Structure

#include qmb_user.h

Arguments

RSQ
Registration

Structure

typedef struct { /* (MAX_MQS_LEN = 49) */
 char lsq[49]; /* LSQ name to assign RSQ to */
 char lowner; /* LSQ Owner [D]MQ or [M]QS */
 char rsq[49]; /* RSQ name of MQS Appl Queue */
 char rfu; /* Reserved Future Use */
 q_address rsq_add; /* DMQ address of DMQ RSQ */
} rsq_reg_struct;

Arguments pams_put_msg Format

Type MSG_TYPE_RSQ_REGISTER

Class MSG_CLAS_QMB

Size sizeof(rsq_reg_struct);
BEA MessageQ MQSeries Connection User’s GuideB-9

B Messages
TRACE_LOG

The TRACE_LOG message toggles internal trace logging. If trace logging is on (that is,
if you started the QMB with the -t parameter), use this message type to toggle trace
logging off. Likewise, if trace logging is off, use this message type to toggle trace
logging on.

If verbose tracing is enabled, this message disables trace logging. Verbose logging can
only be enabled using the -v parameter on the QMB Server command line.

This message must be sent to each QMB Server that requires a change in trace logging
status.

C Message
Structure

#include qmb_user.h

Arguments

Message Data
Fields

None

Arguments pams_put_msg Format

Type MSG_TYPE_TRACE_LOG

Class MSG_CLAS_QMB

Size 0
B-10 BEA MessageQ MQSeries Connection User’s Guide

Index

A
API See Application programming interface
application development

defining queues 2-3
MessageQ MQSeries Connection 2-1

application programming interface (API)
using to develop programs 2-1

B
bidirectional message exchange 1-12
byte order

message handling differences 2-22

C
character code conversion 2-23
client

defining queues for MessageQ 2-3
defining queues for MQSeries 2-4

client message classes
MessageQ 2-16

client message types
MessageQ 2-17
MQSeries 2-18

code fragment
MessageQ 2-12
MQSeries 2-8

command parameters
DMQ_ECHO_SERVER A-3
MQS_CLIENT A-6

MQS_ECHO_SERVER A-3
Queue Message Bridge 4-2

command syntax
DMQ_CLIENT A-4
MQS_CLIENT A-5
QMB_DMQECHO A-3
QMB_MQSECHO A-3

communication services
between MessageQ and MQSeries 1-9

configuration
MessageQ 3-3
MQSeries 3-5
overview of tasks 3-1

configuration file
MessageQ 3-3
Queue Message Bridge 3-8

control messages B-1
correlation identifier 2-20

exchanging 2-20
maximum size 2-20, 2-34

D
dmc500_config.dat 3-2, 3-8
dmc500_dmq_group.init 3-2
DMQ_CLIENT A-4
DMQ_ECHO_SERVER A-3

command parameters A-3
command syntax A-3

dmqtestc See MessageQ Test Utility
dmqtestm See MessageQ Test Utility
BEA MessageQ MQSeries Connection User’s Guide I-1

DUMP_QTABLES message B-2
Dynamic Service Registration message

choice 4-15

E
event logging 4-7
EVENT_LOG message B-3
examples

MessageQ A-1

F
Field Manipulation Language 2-20
FML

See Field Manipulation Language 2-20
FML buffers 2-20

exchanging 2-21

G
group initialization file

BEA MessageQ 3-3
MQSeries Connection 3-2

group name table 3-4

I
interfaces

application programming 2-1

L
limitations

MessageQ MQSeries Connection 2-33
LOAD_CONFIG message B-4
Local Service Queue (LSQ)

definition 1-10
log files

MQSeries 4-9
Queue Message Bridge 4-6

LSQ See Local Service Queue

M
message byte order

handling differences in 2-22
message characteristics

choosing 2-5
guidelines 2-24
guidelines for choosing 2-23

message class
definition 2-15
MessageQ 2-15
using 2-15

message exchange
bidirectional 1-12
control 2-6
datagram 2-6
reply 2-6
request 2-6
selecting the type 2-6
undefined 2-6

message flow 1-13
message forwarding

to MessageQ 1-13
to MQSeries 1-13

message header data
definition 2-22

message header fields
coupling MessageQ and MQSeries 2-22

message persistence
definition 2-19

message priority
definition 2-21

message queuing
designing applications to use 2-2
need for integrated systems 1-6
typical system 1-5

message size
maximum 2-34

message type
definition 2-15
MessageQ 2-15
I-2 BEA MessageQ MQSeries Connection User’s Guide

MQSeries 2-18
using 2-15

MessageQ
client message classes 2-16
client message types 2-17
communication services between

MQSeries and 1-9
configuring 3-3
group name table 3-4
message classes 2-15
message forwarding to 1-14
message header fields 2-22
message types 2-15
processing multiple replies 2-12
server message classes 2-16
server message types 2-17
Test Utility A-10
testing the connection A-11

MessageQ client
defining queues for 2-3
sending a reply to 2-27

MessageQ code fragment 2-12
MessageQ messages

sending to MQSeries client 2-32
sending to MQSeries server 2-24

MessageQ Monitor utility 4-5
MessageQ MQSeries Connection

configuring 3-1
designing applications 2-2
developing applications 2-1
how it works 1-7
limitations 2-33
managing the environment 4-1
overview 1-8
programming examples A-1
qmb_util 4-10
restrictions 2-33
troubleshooting problems 4-6

MessageQ MQSeries Connection utility 4-10
exiting 4-16
how it works 4-10

main menu 4-12
selecting close old and open new log file

4-15
selecting Dynamic Service Registration

4-15
selecting terminate QMB process 4-14
starting 4-12
target line display 4-13
valid control functions 4-10

MessageQ server
required queue definitions for 2-29
sending a request to 2-29

MessageQ Test Utility
dmqtestc A-10
dmqtestm A-10

messages
sending to MessageQ client 2-27
sending to MessageQ server 2-29
sending to MQSeries client 2-32
sending to MQSeries server 2-24
using persistent 2-19
using recoverable 2-19

monitor utility
MessageQ 4-5

MQS_CLIENT A-5
command parameters A-6
command syntax A-5

MQS_ECHO_SERVER A-3
command parameters A-3
command syntax A-3

MQSeries
client message types 2-18
communication services between

MessageQ and 1-9
configuration tips 3-7
configuring 3-5
defining queues using runmqsc 3-7
location of QMODEL 3-6
log files 4-9
message forwarding to 1-13
message header fields 2-22
BEA MessageQ MQSeries Connection User’s Guide I-3

message types 2-18
processing multiple replies 2-8
QMODEL example 3-6
queue definition 3-6
server message types 2-19
testing the connection A-11

MQSeries client
defining a queue for 2-4
sending a reply to 2-32

MQSeries code fragment 2-8
MQSeries messages

sending to MessageQ client 2-27
sending to MessageQ server 2-29

MQSeries server
required queue definitions for 2-25
sending a request to 2-24

MQSeries utility 4-5
determining state and status 4-5

multiple replies
how MessageQ applications process

2-12
how MQSeries applications process 2-8

N
NEW_LOG message B-5

P
performance problems

monitoring 4-5
priority

mapping for Version 5.0 2-21
programming examples A-1

building A-2
QMB_DMQCLIENT A-4
QMB_DMQECHO A-3
QMB_MQSCLIENT A-5
QMB_MQSECHO A-3
running test pair A-8
running the test pair A-7

testing A-10
PURGE_CI message B-6
PURGE_CI_ALL message B-7

Q
QMB configuration file 3-8
QMB See Queue Message Bridge
QMB_DMQCLIENT

command syntax A-4
QMB_TERMINATE message B-8
qmb_util See MessageQ MQSeries

Connection utility
QMBDM

component of Queue Message Bridge
1-11

QMBMD
component of Queue Message Bridge

1-11
queue definitions

MessageQ server 2-29
MQSeries server 2-25

Queue Message Bridge (QMB)
command parameters 4-2
command syntax 4-4
components 1-11
configuration file 3-8
configuring 3-8
log files 4-6
set requirements 3-3
starting 4-2
stopping 4-5
terminate QMB process 4-14

queues
defining 2-3
defining for MessageQ clients 2-3
defining for MQSeries servers 2-4
defining using runmqsc 3-7
I-4 BEA MessageQ MQSeries Connection User’s Guide

R
recoverable messaging 2-19
Remote Service Queue (RSQ)

definition 1-10
registration 3-13

replies
sending to MessageQ client 2-27
sending to MQSeries client 2-32

reply processing 2-7
differences 2-8
multiple replies 2-8

requests
sending to MessageQ server 2-29
sending to MQSeries server 2-24

restrictions
MessageQ MQSeries Connection 2-33

RSQ See Remote Service Queue
RSQ_REGISTER message B-9
runmqsc MQSeries utility 4-5

S
server message classes

MessageQ 2-16
server message types

MessageQ 2-17
MQSeries 2-19

support
technical xv

T
target groups

current and default 4-13
target line display 4-13

MessageQ MQSeries Connection utility
4-13

target queues
current and default 4-13

test pair
running A-7, A-8

test utility
MessageQ A-10

trace information
logging 4-7

TRACE_LOG message B-10

U
utilities

dmqtestc A-10
dmqtestm A-10
MessageQ Monitor 4-5
MessageQ MQSeries Connection 4-10
MessageQ test A-10
MQSeries runmqsc 4-5
BEA MessageQ MQSeries Connection User’s Guide I-5

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	Preface
	1. Introduction to BEA MessageQ MQSeries Connection
	2. Developing Message Queuing Applications
	3. Configuring BEA MessageQ MQSeries Connection
	4. Managing the BEA MessageQ MQSeries Connection Environment
	A. Programming Examples
	B. Messages
	Index

	Preface
	Purpose of This Document
	Who Should Read This Document
	How This Document Is Organized

	How to Use This Document
	Opening the Document in a Web Browser

	Figure 1 Online Document Displayed in a Netscape Web Browser
	Printing from a Web Browser
	Documentation Conventions
	Related Documentation
	MessageQ MQSeries Connection Documentation
	BEA Publications
	Other Publications

	Contact Information
	Documentation Support
	Customer Support

	1 Introduction to BEA MessageQ MQSeries Connection
	Message Queuing
	Message Queuing Interfaces
	The BEA MessageQ Product
	The IBM MQSeries Product
	How Message Queuing Systems Work
	Figure 1�1 Typical Message Queuing System

	The Need for Integrated Message Queuing
	How BEA MessageQ MQSeries Connection Works
	Table 1�1 BEA MessageQ MQSeries Connection Interoperability
	Figure 1�2 BEA MessageQ MQSeries Connection Overview
	1. Application A places an account inquiry message on Queue_1, a BEA MessageQ queue.
	2. The part of BEA MessageQ MQSeries Connection called the Queue Message Bridge reads the message...
	3. Application B reads the message on Queue_2, looks up the requested account information, and pl...
	4. The part of BEA MessageQ MQSeries Connection called the Queue Message Bridge reads the message...
	5. Application A reads the message on Queue_4 and displays the account information to the customer.

	Communication Services Between BEA MessageQ and IBM MQSeries
	Queue Message Bridge Components
	Figure 1�3 Queue Message Bridge Architecture

	Message Flow
	Figure 1�4 Forwarding a Message to MQSeries
	Figure 1�5 Forwarding a Message to BEA MessageQ

	2 Developing Message Queuing Applications
	Using Application Programming Interfaces
	Designing Applications to Use BEA MessageQ MQSeries Connection
	Determining Queues that Your Application Needs
	Defining Queues for BEA MessageQ Clients to IBM MQSeries Servers
	1. In the QMB configuration file, define the BEA MessageQ owned LSQ and the IBM MQSeries owned RS...
	2. Define the IBM MQSeries RSQ (MQS_ECHO_SERVER) to the IBM MQSeries Message Queue Manager (MQM) ...
	3. Define the BEA MessageQ LSQ (MQS_ECHO) in the BEA MessageQ group initialization file of the gr...

	Defining Queues for IBM MQSeries Clients to BEA MessageQ Servers
	1. In the QMB configuration file, define the IBM MQSeries owned LSQ and the MessageQ owned RSQ. I...
	2. Define the IBM MQSeries LSQ (DMQ_ECHO) to the IBM MQSeries Message Queue Manager (MQM) connect...
	3. Define the MessageQ RSQ (DMQ_ECHO_SERVER) in the MessageQ group initialization file of the gro...
	4. Define the IBM MQSeries reply queue on which the IBM MQSeries client expects a response. This ...

	Choosing Message Characteristics
	Selecting the Type for Message Exchange
	Processing Reply Messages
	Processing Multiple Replies
	How IBM MQSeries Applications Process Multiple Replies
	Listing 2-1 MQSeries Server Code for Sending a Reply
	/**/ /* MQSeries Server code fragment to ...

	How BEA MessageQ Applications Process Multiple Replies
	Listing 2-2 BEA MessageQ Server Code for Sending a Reply
	/***/ /* MessageQ Server code fragment ...

	Using Message Types and Classes
	BEA MessageQ Message Types and Classes
	Table 2�1 BEA MessageQ Client Message Classes
	Table 2�2 BEA MessageQ Server Message Classes
	Table 2�3 BEA MessageQ Client Message Types
	Table 2�4 BEA MessageQ Server Message Types

	IBM MQSeries Message Types
	Table 2�5 MQSeries Client Message Types
	Table 2�6 MQSeries Server Message Types

	Using Recoverable Messaging
	Using Correlation Identifiers
	Using FML Buffers
	Setting Message Priority
	How Message Header Data Is Mapped
	Table 2�7 Coupling of MQSeries and BEA MessageQ Message Header Fields

	Handling Message Byte Order Differences
	Character Code Conversion
	Guidelines for Choosing Message Characteristics

	Sending a Request to an IBM MQSeries Server
	Table 2�8 Required Queue Definitions for an MQSeries Server
	Listing 2-3 MQSeries Server Queue Message Bridge Configuration File
	Figure 2�1 Sending a Request to an MQSeries Server
	1. The BEA MessageQ client (named QMB_DMQCLIENT) must either know the BEA MessageQ queue address ...
	2. The QMBDM has a read posted against the MQS_ECHO. The QMB creates a Connection Index (CI) base...
	3. The IBM MQSeries server (named QMB_MQSECHO) reads the message and responds appropriately.

	Sending a Reply to a BEA MessageQ Client
	Figure 2�2 Sending a Reply to a BEA MessageQ Client
	1. The IBM MQSeries server (QMB_MQSECHO) reads the message, processes it, and sends back a reply ...
	2. The QMBMD has a read posted against MQS_REPLYQ. When the reply message arrives in the MQS_REPL...
	3. The BEA MessageQ client (named QMB_DMQCLIENT) reads the message.

	Sending a Request to a BEA MessageQ Server
	Table 2�9 Required Queue Definitions for a BEA MessageQ Server
	Listing 2-4 DMQ_ECHO Queue Message Bridge Configuration File
	Figure 2�3 Sending a Request to a BEA MessageQ Server
	1. Creates a CI based on the ReplyToQ name and sets the respq field to DMQ_REPLYQ.
	2. Maps and forwards the message to the BEA MessageQ RSQ named DMQ_ECHO_SERVER.

	Sending a Reply to an IBM MQSeries Client
	Figure 2�4 Sending a Reply to an MQSeries Client
	1. QMBDM extracts the required information from the Connection Index (CI) for the reply message.
	2. QMBDM maps and forwards the message to the IBM MQSeries client.

	Restrictions and Limitations

	3 Configuring BEA MessageQ MQSeries Connection
	Overview of Configuration Tasks
	Configuring BEA MessageQ
	Listing 3-1 BEA MessageQ Configuration File Queue Entry Section
	!QUEUE CONFIGURATION SECTION ! % QCT !Queue Queue Byte Msg Quota UCB Queue Owner Conf Perm Name S...
	Group Name Table

	Configuring IBM MQSeries
	Configuring the Required IBM MQSeries Queues
	Listing 3-2 MQSeries Queue Definition

	Defining IBM MQSeries Queues
	Tips for Configuring IBM MQSeries

	Configuring the Queue Message Bridge
	Table 3�1 Parameters in the Queue Message Bridge Configuration File
	Listing 3-3 Queues Defined in a QMB Configuration File
	Listing 3-4 Priority Mapping Defined in a QMB Configuration File
	Registering Remote Service Queues
	Listing 3-5 Registration Message Data Structure

	4 Managing the BEA MessageQ MQSeries Connection Environment
	Starting the Queue Message Bridge
	Table 4�1 Queue Message Bridge Command Parameters
	Performance Considerations

	Stopping the Queue Message Bridge
	Using the BEA MessageQ Monitor Utility
	Using the runmqsc MQSeries Utility
	Troubleshooting BEA MessageQ MQSeries Connection Problems
	Queue Message Bridge Log Files
	Listing 4-1 QMBDM Log File
	QMB: Dec 16 16:48:34 Version: 5.0-00 for HP-UX QMB: Dec 16 16:48:34 MQS Client Maximum Active : 1...

	Using IBM MQSeries Log Files
	Using the BEA MessageQ MQSeries Connection Utility
	How the BEA MessageQ MQSeries Connection Utility Works
	Table 4�2 Valid Control Functions Listed by Message Type

	Starting the BEA MessageQ MQSeries Connection Utility
	Listing 4-2 The qmb_util Main Menu

	Understanding Current and Default Target Groups and Queues
	Table 4�3 Target Line Display

	Selecting the Terminate QMB Process Message Choice
	Listing 4-3 Terminate Queue Message Bridge Process Menu
	1) Terminate QMBDM & all temporary instances (MessageQ to MQSeries) 2) Terminate QMBMD & all temp...

	Selecting the Dynamic Service Registration Message Choice
	Listing 4-4 Dynamic Service Registration for a BEA MessageQ RSQ
	Listing 4-5 Dynamic Service Registration for an MQSeries RSQ

	Selecting the Close Old and Open New Log File Message Choice
	Selecting the Reload QMB Configuration File Message
	Exiting the BEA MessageQ MQSeries Connection Utility

	A Programming Examples
	Using the Programming Examples
	Table A�1 Programming Examples
	Building the Programming Examples
	QMB_DMQECHO
	Table A�2 QMB_DMQECHO Command Parameters

	QMB_MQSECHO
	Table A�3 QMB_MQSECHO Command Parameters

	QMB_DMQCLIENT
	% qmb_dmqclient -g n -q n [-i] [-l n] [-b n] [-s n] [-d] [-p n] [-c correlid] [-j] [-?]
	Table A�4 QMB_DMQCLIENT Command Parameters

	QMB_MQSCLIENT
	% qmb_mqsclient -t name -r name [-m MQMname][-d][-i] [-l n] [-b n] [-s n] [-p n] [-c correlid] [-...
	Table A�5 QMB_MQSCLIENT Command Parameters

	Running the QMB_MQSECHO and QMB_DMQCLIENT Test Pair
	Listing A-1 Queue Message Bridge Configuration File
	Listing A-2 QUEUE CONFIGURATION SECTION
	!QUEUE CONFIGURATION SECTION ! % QCT !Queue Queue Byte Msg Quota UCB Queue Owner Conf Perm Name !...

	Running the QMB_MQSCLIENT and QMB_DMQECHO Test Pair
	Listing A-3 Queue Message Bridge Configuration File
	Listing A-4 QUEUE CONFIGURATION SECTION
	!QUEUE CONFIGURATION SECTION ! % QCT !Queue Queue Byte Msg Quota UCB Queue Owner Conf Perm Name !...
	Listing A-5 GROUP NAME TABLE SECTION

	Testing the Programming Examples
	Testing the IBM MQSeries Connection to BEA MessageQ
	1. In a test window on the BEA MessageQ side, run the dmqtestc utility. Using this utility, Attac...
	2. Enter the command to start amqsput on the system running IBM MQSeries. Invoke amqsput with DMQ...
	3. Enter messages. amqsput expects ASCII input followed by the newline character. Once amqsput ge...
	4. From the dmqtestc utility, issue three GET commands to read the inbound messages from amqsput.

	Testing the BEA MessageQ Connection to IBM MQSeries
	1. Invoke the dmqtestc program.
	2. Issue a PUT command with the text “Hello from BEA MessageQ” to queue MQS_ECHO. (You can use th...
	3. Run amqsget with a source queue name of MQS_ECHO_SERVER and a queue manager name of QMGR1. (Th...

	B Messages
	DUMP_QTABLES
	C Message Structure
	Arguments
	Message Data Fields

	EVENT_LOG
	C Message Structure
	Arguments
	Message Data Fields

	LOAD_CONFIG
	C Message Structure
	Arguments
	Message Data Fields

	NEW_LOG
	C Message Structure
	Arguments
	Message Data Fields

	PURGE_CI
	C Message Structure
	Arguments
	Message Data Fields

	PURGE_CI_ALL
	C Message Structure
	Arguments
	Message Data Fields

	QMB_TERMINATE
	C Message Structure
	Arguments
	Message Data Fields

	RSQ_REGISTER
	C Message Structure
	Arguments
	RSQ Registration Structure

	TRACE_LOG
	C Message Structure
	Arguments
	Message Data Fields
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	P
	Q
	R
	S
	T
	U

