EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

BEA TUXEDO

Application Development Guide

Copyright
Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, TUXEDO, and WebLogic are registered trademarks of BEA Systems, Inc. BEA
Builder, BEA Connect, BEA Manager, BEA MessageQ, Jolt and M3 are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
BEA TUXEDO Application Development Guide

Document Edition Date Software Release

Version 6.5 February 1999 BEA TUXEDO Version 6.5

Contents

1. A Simple Application

ADOUL THIS GUITE ..ottt e 1-1
Organization of the GUIAEc..ceiiiiiiieii e 11
ASSUMPLIONS ...ttt ettt ettt e et e e e s e bne e e e sanbee e e e 1-2
Documentation ROAAMADcoivuviieiiiiiiie ettt e 1-2

ADOUL ThiS ChAPLET ... 1-3
SOME PrelimiNariEso.veeiii et 1-3

The SIMPAPP TULOMALooiiiiiiii e 1-4
Step 1: Copy the sImpapp FileS.......cooiiiiiiie e 1-4
Step 2: Examine the Client Program ..o 1-5

REFEIENCES ... 1-7
Step 3: Compile the CHENEoiiiiiiii e 1-8
REFEIEBNCES ... 1-8
Step 4: Examine the Server ... 1-8
REFEIENCES ... e 1-10
Step 5: Compile the SErver.........iiii e 1-10
REFEIENCES ... 1-11
Step 6: Edit the Configuration Filecccccoiiiiiiiiiiii e 1-11
REFEIENCESeeii e 1-12
Step 7: Load the Configuration File............ccco i 1-13
REFEIENCES ... 1-13
Step 8: Boot the AppliCAtioNcceeviiiiiie e 1-13
REFEIENCESeiii e 1-14
Step 9: Enter @ REQUEST ..o 1-14
Step 10: USING tMAdMINoooiiiiiieiiiii et 1-14
REFEIENCES ... 1-15

BEA TUXEDO Application Development Guide i

iv

Step 11: Shut Down the APPlICAtIONvuveeiiiiiiie e 1-1F

RETEIENCES ..ot 1-1
SUMMIAIY ettt e et e e e e s e ettt e e s e e e s b n e aeeae e e eas 1-1
bankapp Files
Directory Structure for DanKapPcvveeeriiiiee e 2-
IS ettt e e e e e e e e e e nn e e aeeas 2

Edit bankvar to Set Environment Variablesccoocoveiiiiiiiii 2-¢€

Additional PATH Component for SUNOS.........ccccoiieeeniiieee i, 2-10

bankapp Client Programs

A Look at bankapp Client Programsccceeeriiieiee e 3-
System ClIENt PrOQIramMSccoiiiiiiiiiiiieiee ettt 3-
MASK SOUICE COUR ..ottt et 3-
USING MHO(L) c. ettt ettt ettt ettt et e e e 3-4
BUI I TYPES et -E
USING UA(L) ettt ettt ettt -
audit.c: A Request/Response ClIeNtccooiiiiiiiiiiiieii e 3-
AUAIL.C SOUICE COUR.......ueiiiiiiiiit ettt 3-
auditcon.c: A Conversational Client..........c.ocoveiriiiiiiie e 3-7
AUAILCON.C SOUICE COUR.....ciiiiiiiiie ittt 3-
bankmagr.c: A Client that Monitors Events..........cccocceiiiiiieiiiieiiee e 3-8
Building Client Programsui et 3-¢
RETEIENCES ... e 3

4. bankapp Servers

A LOOK at Bankapp SEIVEIScoiuiiiiiiiiie ettt 4.
REQUESH/TESPONSE SEIVEIS ...ttt 4

A CONVErSAtIONAl SEIVETeiiiiiiiiiiii ettt 4-
Service DefiNitioNSccueiiiiie e 4-;
Service AlGOTtNMSoiiiii e 4-£
Utilities Incorporated iNt0 SEIVErS..........oooiieiieiiiiiie e 4-1C
BUIIAING SEIVEISoiiiiiiie e e 4-1(
Using the buildserver Command in the bankappccccccviiiiiiininnen, 4-11
THE ACCT SEIVET .. .uiiii ittt e 4-11

THE BAL SEIVE ...ttt 4-12

BEA TUXEDO Application Development Guide

ThE BTADD SEIVET ...ttt e e e e e s 4-13

THE TLR SEIVET .ottt et 4-13

The XFER SEIVEIceiiiiiiiiie ettt 4-14

Servers Built in bankapp.mK.........coooiii 4-14
Alternative Way t0 COUE SEIVICESueiiiiiiiiiiiiiiee ettt 4-15
REFEIENCES ... 4-15

5. The bankapp Makefile

A Look at the bankapp Makefile ..o 5-1
Editing bankapp.mKoooiioi e 5-1
TUXDIR .ttt ettt ettt e n e e 5-1
APPDIR L. 5-2
NATIVE and Other /HOSt Parameterscccccoveveeeiiiniieiee e 5-2
RESOUICE MaNAGET........cooiiiiiiiiiii e 5-3
Running bankapp.mK ... 5-3

6. Databases for bankapp

Resource Manager Options for bankappocvveeriiieniiiiiiiee e 6-1
The System/D RM and Bankapp........ccooiueeeriiiiiiin et 6-1
Create Database in SHM Mode............cccooiiiiiiiii e 6-2
Create the Database in MP Mode...........ccccoiiiiiiiiiii e 6-2
Failure with @ SEMQEL ErTOr......ccoiiviiiiiiiiiie e 6-2
Using an XA-compliant RM with bankapp.........cccouvviiiniiee e 6-3
Changes t0 DANKVAooiiiiii e 6-3
Changes to the bankapp ServiCescccoiiiiiiiiiiiiiie e 6-3
Change to bankapp.MKoooiiiiiiiiiiii e 6-4
Changes to crbank and crbankdb ... 6-4
Changes to the Configuration File ..o, 6-5
Using a non-XA Compliant RM with bankapp.........cccccoeiiiiininine e 6-6
Changes t0 DANKVAooiiiiii e 6-6
Changes to the bankapp Clients and Services..........ccccccvveieieiiiiiiiiiienenenn. 6-7
Changes to bankapp.mKoouuiiiiiiii e 6-7
Changes to crbank and crbankdb ... 6-8
Changes to the Configuration Filecccooooiiiiiiiii e, 6-8
Changes to the Driver SCrPLS..........ooiiiiiiii e 6-8

BEA TUXEDO Application Development Guide %

Vi

7. Edit bankapp Configuration Files

Configuration Files for bankapp.........ccoooiueiiiiiiiiiiee e 7-
NOES 10 LISHNG 7-1 ..eeiiiiiiiiiiiie ittt et 7-:
RETEIENCES ...t 7

8. Create tuxconfig, tlog; Start tlisten

BEA TUXEDO Application Development Guide

Creating tuxconfig, og thStenooi i 8-
Loading the Configuration File ..., 8-1
Creating the TLOG ...ttt et 8-
STArING THSTEN ..o 8-

SEOPPING HHSTEN....eeiiieie i 8-:
Error Messages from tlisten Problems ... 8-
RETEIENCES ...t 8

9. Boot the Application; Populate the Database

tMDOOt aNd POPUIALE ... 9
Checking IPC RESOUICESccooiviiiiiiiiiiiiiii e 9-
EXecuting tmBOO0t. ..o 9-

The USerlog: ULOGcoiiiiiiiiiieiee et 9-3
Running the populate SCrPL........vvviiiiiie e 9-
RETEIENCES ...t 9

10. Run bankapp

RUN the APPLICALIONcoiiiiiiiie e 10-
The bankapp run SCrPLcoo i 10-
Running the audit Client Programccccuiiirireniiieeen e 10-
RUNNING BUAITCON. ...ttt e 10-
Using the driver Programcoooeeiie it 10-.
USING tMAAMIN Lo 10-.
Shutting DoOwWN Bankappccooiiiiiiiiiiii e 10-.
RETEIENCES ... 10

CHAPTER

1 A Simple Application

About This Guide

This is the BEA TUXEDO Application Development Guide. Its purpose is to describe
how to put together a working BEA TUXEDO application so you can more easily
develop applications of your own. The sample applicatstmgapp andbankapp

come with the softwaraimpapp is described in Chapter 1 abahkapp is used as an
example throughout the remainder of the guide.

Organization of the Guide

The BEA TUXEDO Application Development Guide consists of the following ten
chapters:

4 Chapter 1 as noted above, tells how to install andirapapp on your system.

4 Chapter 2 lists the files that are delivered visdhkapp and tells how to set the
environment

Chapter 3 describes the client programbaskapp
Chapter 4 describes the service subroutingmmapp

Chapter 5 describes how to edit the fitmkapp.mk and makebankapp

> & & o

Chapter 6 describes how to create the databasbdhiatop was written for and
how to integrate other resource managers with the system

4 Chapter 7 tells how to edit thankapp configuration file for your installation

BEA TUXEDO Application Development Guide 1-1

1 Asimple Application

4 Chapter 8 describes how to load the configuration file, create the transaction log,
and start the BEA TUXEDO network listener process

4 Chapter 9 tells how to boot the application and populate the database

4 Chapter 10 tells how to run the application

Assumptions

We assume that readers of this guide are UNIX system users with some experience
application development, administration, or programming. We also assume some
familiarity with the nature of BEA TUXEDO software, at least as much as can be
gained by reading thBEA TUXEDO Product Overview

An SDK license is required to build BEA TUXEDO applications.

Documentation Roadmap

In addition to describing how to bring up and run a sample application, in this book we
hope to familiarize you with the rest of the BEA TUXEDO documentation set. To that

end, most chapters in this book close with a section that refers to other guides wher
the topics of that chapter are dealt with in more detail. In most cases, we do not thin
you will have to refer to other documents to bring up bankapp successfully, but wher
you do run into topics on which you would like more information, you can follow those

pointers.

1-2 BEA TUXEDO Application Development Guide

About This Chapter

About This Chapter

This chapter contains a tutorial that describes a simple one-client, one-server
application calledimpapp . An interactive form of this application is distributed with
the BEA TUXEDO software.

If you follow the ten steps of the tutorial you will do the following:
4 Learn how a BEA TUXEDO application is organized

4 See how clients and servers are written and compiled

4 Understand how an application is described in the configuration file
¢ Actually create an executable versiorsiofpapp

4 Boot, run, and shut down the application

Some Preliminaries

Before you can run this tutorial the BEA TUXEDO software must be installed so that
the files and commands referred to in this chapter are available.

If you are personally responsible for installing the BEA TUXEDO software, consult
theBEA TUXEDO Installation Guid#r information about how to install the BEA
TUXEDO system.

If the installation has already been done by someone else, you need to know the
pathname of the directory of the installed softwarexpIR). You also need to have
read and execute permissions on the directories and files in the BEA TUXEDO
directory structure so you can cogippapp files and execute BEA TUXEDO
commands.

BEA TUXEDO Application Development Guide 1-3

1 Asimple Application

The simpapp Tutorial

simpapp is a very basic BEA TUXEDO application. It has one client and one server.
The server performs only one service: it accepts a string from the client and returns tt
same string in upper case.

The tutorial consists of ten steps designed to introduce you to the BEA TUXEDO
system by showing how an application is developed and by encouraging you to bring
the application up and run it. Each of the ten steps includes one or more smaller ste|

Step 1: Copy the simpapp Files

1. Make a directory fosimpapp andcd to it.

mkdir simpdir

cd simpdir

This is suggested so you will be able to see clearlgithgapp files you have

at the start and the additional files you create along the way. Use the standard
shell (bin/sh) or the Korn shell; notsh .

2. Set and export environment variables.

TUXDIR=<pathname of the BEA TUXEDO system root directory >
TUXCONFIG=pathname of your present working directory >[tuxconfig
PATH=$PATH:$TUXDIR/bin
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TUXDIR/lib

export TUXDIR TUXCONFIG PATH LD_LIBRARY_PATH

You needrUXDIR andPATHto be able to access files in the BEA TUXEDO

system directory structure and to execute BEA TUXEDO system commands. On
SunOSjusr/5bin - must be the first directory in yo@ATH With AlX on the
RS6000, useIBPATH instead of.D_LIBRARY_PATH On HPUX on the HP9000,
useSHLIB_PATH instead ofL.D_LIBRARY_PATH

You need to SETUXCONFIGO be able to load the configuration file, which is
described in “Step 7: Load the Configuration File.”

1-4 BEA TUXEDO Application Development Guide

The simpapp Tutorial

3. Copy thesimpapp files.
cp $TUXDIR/apps/simpapp/*.

Note: Later on you will edit some of the files and make them executable, so itis
best to begin with a copy of the files rather than the originals delivered with
the software.

4. List the files.
$ls
README env simpapp.nt ubbmp wsimpcl
README.as400 setenv.cmd simpcl.c ubbsimple

README.nt simpapp.mk simpserv.c ubbws
$

The three files that are central to the application are:
4 simpcl.c —the source code for the client program
4 simpserv.c —the source code for the server program

4+ ubbsimple —the ASCII form of the configuration file for the application

Except for the README files, the other files are variations of these for non-UNIX
system platforms. The README files provide explanations of the other files.

Step 2: Examine the Client Program

1. Page through the client program source code.
$ more simpcl.c

The output is shown in Listing 1-1.

Listing 1-1 Source Code of simpcl.c

1 #include <stdio.h> /* UNIX */

2 #include "atmi.h" /* TUXEDO */
3

4

5

6

7 #ifdef __STDC__

8 main(int argc, char *argv[])

BEA TUXEDO Application Development Guide 1-5

1 Asimple Application

9

10 #else

11

12 main(argc, argv)

13 intargc;

14 char *argv[l;

15 #endif

16

17 {

18

19 char *sendbuf, *rcvbuf;

20 int sendlen, rcvlen;

21 int ret;

22

23 if(argc != 2) {

24 fprintf(stderr, "Usage: simpcl string\n");

25 exit(1);

26 }

27 [* Attach to System/T as a Client Process */

28 if (tpinit((TPINIT *) NULL) ==-1) {

29 fprintf(stderr, "Tpinit failed\n");

30 exit(1);

31

32 sendlen = strlen(argv[1]);

33 if((sendbuf = (char *)tpalloc("STRING", NULL, sendlen+1))== NULL) {
34 fprintf(stderr,"Error allocating send buffer\n");
35 tpterm();

36 exit(1);

37 }

38 if((revbuf = (char *)tpalloc("STRING", NULL, sendlen+1))== NULL) {
39 fprintf(stderr,"Error allocating receive buffer\n");
40 tpfree(sendbuf);

41 tpterm();

42 exit(1);

43 }

44 strcpy(sendbuf, argv[1]);

45 ret = tpcall("TOUPPER", sendbuf, NULL, &rcvbuf, &rcvlen, 0);
46 if(ret == -1) {

47 fprintf(stderr, "Can't send request to service TOUPPER\n");
48 fprintf(stderr, "Tperrno = %d, %s\n", tperrno,
49 tmemsgs[tperrno]);

50 tpfree(sendbuf);

51 tpfree(rcvbuf);

52 tpterm();

53 exit(1);

54 }

55 printf("Returned string is: %s\n", rcvbuf);

56

57 /* Free Buffers & Detach from System/T */

1-6 BEA TUXEDO Application Development Guide

The simpapp Tutorial

58 tpfree(sendbuf);
59 tpfree(rcvbuf);
60 tpterm();

61 }

Here are eight important things to see in this file.

line 2 atmi.h

Header file needed whenever BEA TUXEDO ATMI calls are used

line 28 tpinit()

The ATMI call used by a client program to join an application

line 33 tpalloc()

The ATMI call used to allocate a typed buffST.RINGis one of the four basic
BEA TUXEDO buffer typesNULLindicates there is no sub-type argument. The
remaining argumengendlen+1 | specifies the length of the buffer plus 1 for
the null character that ends the string.

line 38 tpalloc()

Allocates another buffer for the return message

line 45 tpcall()

Sends the message buffer to the service specified in the first argument. Also
includes the address of the return buffecall ~ waits for a return message.

lines 35, tpterm()
41, 52, 60

The ATMI call used to leave an application. A caligerm() is used to leave
the application prior to taking an exit due to an error condition (lines 36, 42, and
53). The finaltpterm() (line 60) comes after the message has been printed.

lines 40, tpfree()
50, 51, 58,
59

The counterpart afpalloc() to free allocated buffers.

line 55 printf()

This is the successful conclusion of the program. It prints out the message
returned from the server.

References

The ATMI calls cited above are documented in Section 3c dBEe TUXEDO
Reference Manual

BEA TUXEDO Application Development Guide 1-7

1 Asimple Application

Step 3: Compile the Client

1. Runbuildclient to compile the client program.

buildclient -o simpcl -f simpcl.c

where the output file isimpcl , and the input source file sémpcl.c.
2. Check the results.

$ls -l

total 97

-rwxr-x--x 1 usrid grpid 313091 May 28 15:41 simpcl

-W-f----- 1 usrid grpid 1064 May 28 07:51 simpcl.c

-PW-r----- 1l usrid grpid 275 May 28 08:57 simpserv.c
-TW-F----- 1 usrid grpid 392 May 28 07:51 ubbsimple

As can be seen, we now have an executable module safigd . The size of
simpcl may vary.

References

buildclient is documented ihuildclient (2).

Step 4: Examine the Server

1. Page through the server program source code.

$ more simpserv.c

Listing 1-2 Source Code of simpserv.c

#include <stdio.h>
#include <ctype.h>
#include <atmi.h> I* TUXEDO Header File */
#include <userlog.h> /* TUXEDO Header File */
[* tpsvrinit is executed when a server is booted, before it begins
processing requests. It is not necessary to have this function.
Also available is tpsvrdone (not used in this example), which is
called at server shutdown time.
*/
#if defined(__STDC_) || defined(__cplusplus)

1-8 BEA TUXEDO Application Development Guide

The simpapp Tutorial

Note 1. tpsvrinit(int argc, char *argv(])

#else

tpsvrinit(argc, argv)

int argc;

char **argv;

#endif

{
/* Some compilers warn if argc and argv aren't used. */
argc = argc;
argv = argv;
/* userlog writes to the central TUXEDO message log */
userlog("Welcome to the simple server");
return(0);

/* This function performs the actual service requested by the client.

Its argument is a structure containing among other things a pointer
to the data buffer, and the length of the data buffer.
*/
#ifdef _ cplusplus
extern "C"
#endif
void
#if defined(__STDC_) || defined(__cplusplus)
Note 2. TOUPPER(TPSVCINFO *rgst)

#else
TOUPPER(rgst)
TPSVCINFO *rgst;
#endif
o
int i;
Note 3. for(i = 0; i < rgst->len-1; i++)

rgst->data[i] = toupper(rgst->datali]);
/* Return the transformed buffer to the requester. /

Note 4. tpreturn(TPSUCCESS, 0, rgst->data, OL, 0);
}

#include stdio.h>

}

BEA TUXEDO Application Development Guide 1-9

1 Asimple Application

Here are five important things to see in this file.

whole file Notice that a BEA TUXEDO server does not contaimaa() . Themain() is
provided by the BEA TUXEDO system when the server is built.

Note 1 tpsvrinit() This subroutine is called during server initialization, before the server begins
processing service requests. A default (provided by the BEA TUXEDO system)
writes a message teerlog indicating that the server has been booted.
userlog (3c)is alog thatis used by the BEA TUXEDO system and can be used
by applications. We will see the format in Step 10.

Note 2 TOUPPER The declaration of a service (the only one offeredibypserv). The sole
argument expected by the service is a pointemM@2VCINFOstructure, which
contains the data string to be converted to uppercase.

Note 3 for loop Converts the input to uppercase by repeated catisipper .
Note 4 tpreturn Returns the converted string to the client withTRSUCCESSlag set.
References

The ATMI calls and structure cited above are documented in Section 3cREthe
TUXEDO Reference Manual

Step 5: Compile the Server

1. Runbuildserver to compile the server program:
buildserver -o simpserv -f simpserv.c -s TOUPPER

where the executable file to be created is nasmegserv , andsimpserv.c is
the input source file. Thea TOUPPER option specifies the service to be
advertised when the server is booted.

2. Check the results.

$ls -l

total 97

-rwxr-x--x 1 usrid grpid 313091 May 28 15:41 simpcl
-TW-rF----- 1 usrid grpid 1064 May 28 07:51 simpcl.c
-rwxr-x--x 1 usrid grpid 358369 May 29 09:00 simpserv
-TW-F----- 1 usrid grpid 275 May 28 08:57 simpserv.c
-TW-r----- 1 usrid grpid 392 May 28 07:51 ubbsimple

1-10 BEA TUXEDO Application Development Guide

The simpapp Tutorial

As can be seen, we now have an executable module satigbry .

References

buildserver is documented ibuildserver (1).

Step 6: Edit the Configuration File
1. Edit the file.

Listing 1-3 The simpapp Configuration File

$ vi ubbsimple

#Skeleton UBBCONFIG file for the BEA TUXEDO Simple Application.
#Replace the <bracketed> items with the appropriate values.

*RESOURCES

IPCKEY <Replace with valid IPC Key greater than 32,768>
#Example:

#IPCKEY 62345

MASTER simple

MAXACCESSERS 5
MAXSERVERS 5
MAXSERVICES 10

MODEL SHM
LDBAL N
*MACHINES
DEFAULT:

APPDIR="<Replace with the current pathname>"
TUXCONFIG="<Replace with TUXCONFIG Pathname>"
TUXDIR="<Root directory of TUXEDO (not /)>"

#Example:

APPDIR="/usr/me/simpdir"

TUXCONFIG="/usr/me/simpdir/tuxconfig"
TUXDIR="/usr/tuxedo"

<Machine-name> LMID=simple

BEA TUXEDO Application Development Guide 1-11

1 Asimple Application

#Example:
#tuxmach LMID=simple

*GROUPS
GROUP1
LMID=simple GRPNO=1 OPENINFO=NONE

*SERVERS
DEFAULT:
CLOPT="-A"

simpserv SRVGRP=GROUP1 SRVID=1

*SERVICES
TOUPPER

2. Change values enclosed in angle brackets to your own local values:

IPCKEY Use a value that will not conflict with any other users

TUXCONFIG Provide the full pathname of the bindaxconfig file to be created

in Step 7
TUXDIR Provide the full pathname of your BEA TUXEDO root directory
APPDIR Provide the full pathname of the directory where you intend to boot the

application; in this case, the current directory

machine-name Provide the machine name as returnediigme -n

3. The pathnames falUXCONFIGandTUXDIR must be identical to those you set and
exported in Step 1.2. The strings must be the actual values; environment variable
(like $TUXCONFIG for example) are not acceptable.

Note: Do not forget to remove the angle brackets.

References

The configuration file is documentedudhbconfig (5).

1-12 BEA TUXEDO Application Development Guide

The simpapp Tutorial

Step 7: Load the Configuration File

1. Runtmloadcf to load the configuration file.

$ tmloadcf ubbsimple
Initialize TUXCONFIG file: /usr/me/simpdir/tuxconfig [y, q] ? y
$

2. Check the results.

$ls-l

total 216

-rwxr-x--x 1 usrid grpid 313091 May 28 15:41 simpcl
-rW-r----- 1 usrid grpid 1064 May 28 07:51 simpcl.c
-rwxr-x--x 1 usrid grpid 358369 May 29 09:00 simpserv
-PW-F----- 1 usrid grpid 275 May 28 08:57 simpserv.c
-PW-F----- 1 usrid grpid 106496 May 29 09:27 tuxconfig
-rW-r----- 1 usrid grpid 382 May 29 09:26 ubbsimple

We see that we now have a file caltextonfig . Thetuxconfig file is a new
file system under the control of the BEA TUXEDO system.

References

tmloadcf is documented immloadcf (1).

Step 8: Boot the Application

1. Executamboot to bring up the application.

$ tmboot

Boot all admin and server processes? (y/n):y
Booting all admin and server processes in
lusr/me/simpdir/tuxconfig

Booting all admin processes ...

exec BBL -A:
process id=24223 ... Started.

Booting server processes ...

exec simpserv -A :
process id=24257 ... Started.
2 processes started.

BBL is the administrative process that monitors the application shared memory
structuressimpserv is our server that runs continuously awaiting requests.

BEA TUXEDO Application Development Guide 1-13

1 Asimple Application

References

tmboot is documented itmboot (1).

Step 9: Enter a Request

1. Run the client program to submit a request.

$ simpcl "hello, world"
Returned string is: HELLO, WORLD

We are successful!

Step 10: Using tmadmin

tmadmin is an interactive program that an administrator can use to check an
application and make dynamic changes. It require3thecONFIGvariable to be set.
We will show you just two of the mangpadmin commands.

1. Enter the following command.
$ tmadmin
You will see the following lines.

tmadmin - Copyright (c) 1998 BEA Systems, Inc. All rights
reserved.

>

The greater-than sigr) is thetmadmin prompt.

2. Enter theprintserver(psr) command to display information about the
servers.

> psr
a.out Name Queue Name Grp Name ID RgDone Load Done Current Service
BBL 531993 simple 0 O 0 (IDLE)

simpserv 00001.00001 GROUP1 1 O 0 (IDLE)

>

1-14 BEA TUXEDO Application Development Guide

The simpapp Tutorial

3. Enter theprintservice(psc) command to display information about the
services:

> psc
Service Name Routine Name a.out Name Grp Name ID Machine # Done Status

TOUPPER TOUPPER simpserv GROUP1 1 simple - AVAIL
>

4. Leavetmadmin by entering a at the prompt. You can boot and shut down the
application from withinmadmin . We have done those functions with shell
commands in Step 8 and Step 11, respectively.

References

tmadmin is documented itmadmin (1).

Step 11: Shut Down the Application

1. Runtmshutdown to bring the application down.

$ tmshutdown

Shutdown all admin and server processes? (y/n):y
Shutting down all admin and server processes in
lusr/me/simpdir/tuxconfig

Shutting down server processes ...

Server Id = 1 Group Id = GROUP1 Machine = simple: shutdown
succeeded.

Shutting down admin processes ...

Server Id =0 Group Id = simple Machine = simple: shutdown
succeeded.
2 processes stopped.
$

BEA TUXEDO Application Development Guide 1-15

1 Asimple Application

2. Check theuLOG.

$ cat ULOG*
$
113837.tuxmach!tmloadcf.10261: CMDTUX_CAT:879:

A new file system has been created. (size = 32 4096-byte blocks)
113842.tuxmach!tmloadcf.10261: CMDTUX_CAT:871:

TUXCONFIG file /usr/me/simpdir/tuxconfig has been created
113908.tuxmach!BBL.10768: LIBTUX_CAT:262: std main starting
113913.tuxmach!simpserv.10925: LIBTUX_CAT:262: std main starting
113913.tuxmach!simpserv.10925: Welcome to the simple server
114009.tuxmach!simpserv.10925: LIBTUX_CAT:522:

Default tpsvrdone() function used.
114012.tuxmach!BBL.10768: CMDTUX_CAT:26: Exiting system

Each line of theJLOGfor this session contains something of interest. Most are
self-explanatory, but we want to add some explanation for a couple of them.
First let’s look at the format of @LOGline.

time (hhmmss).machine_uname!process_name.process_id: log message

Now let's look at some individual lines.

113913.Message from tpsvrinit() in simpserv
114009.When simpserv is shutdown the BEA TUXEDO main sends this message

References

tmshutdown is documented itmshutdown (1).

The userlog is documenteduserlog (3c).

1-16 BEA TUXEDO Application Development Guide

Summary

Summary

If you have reached this point, you have successfully brought up, run, and brought
down a BEA TUXEDO system application. You have seen what a client program and
a server look like. You have edited a configuration file to refer to your own
environment. You have invokedadmin to check on the activity of your application.

In all the applications you may work on in the future the basic elements of client
processes, server processes, and a configuration file will be present, and you will have
all of the BEA TUXEDO shell commands at your fingertips.

Good luck!

BEA TUXEDO Application Development Guide 1-17

1 Asimple Application

1-18 BEA TUXEDO Application Development Guide

CHAPTER

2 bankapp Files

Directory Structure for bankapp

This chapter describes the directory structure undeage directory, which is
subordinate to the root directory for your BEA TUXEDO system software. We will
also take a look at the files in thenkapp directory. The directory structure is shown

in Figure 2-1.

Figure 2-1 Directory Structure under apps/

apps!
[] I |
bankapp/ simpapp/ wsl hostapp/
cics
foreign/ native/

[|
copylihf proclibf srclibf

NCOTE: hostapp/ and wsf directories present only if
fHost and /WS are on the system

simpapp is described in Chapter 1, “A Simple Applicatiohdstapp is not
distributed except under special arrangements.

BEA TUXEDO Application Development Guide

2-1

2 bankapp Files

Files

Table 2-1 Banking Application Files

Table 2-1 lists the files of the banking application. The left hand column lists the
source files delivered with the BEA TUXEDO software. The center column lists files
that are generated when thenkapp.mk is run. The right hand column gives a brief
summary of the purpose of the file.

Source Generated Purpose
ACCT.ec ACCT.c, ACCT.0o, ContainsOPEN_ACCHENdCLOSE_ACCEervices to open and close
ACCT accounts.
ACCTMGR.c ACCTMGR A server that subscribes to events and logs notifications. Contains
WATCHDO&dQ_OPENACCT_LOS&rvices.
AUDITC.c AUDITC Contains a conversational server that handles service requests from
the clientauditcon
BAL.ec BAL.c ,BAL.o, ContainsABAL, TBAL, ABAL_BID andTBAL_BID services to allow
BAL the audit client to obtain bank-wide or branch-wide account or teller
balances.
BALC.ec BALC.c BALC.o ContainsABALC_BID, andTBALC_BID. These services are the same
BALC asTBAL_BID andABAL_BID above, except thdiPSUCCES$s
returned when a branch id is not found. This allawditcon to
continue.
BALANCE.m BALANCE.M Mask for balance inquiry data entry.
bankmgr.c bankmgr A client program that subscribes to events of special interest.
BTADD.ec BTADD.c, ContainsBR_ADDandTLR_ADDservices to allow addition of
BTADD.o, BTADD branches or tellers to the database.
CBALANCE.m CBALANCE.M Mask for confirmation of a balance inquiry.
CCLOSE.m CCLOSE.M Mask for confirmation of an account closing.
CDEPOSIT.m CDEPOSIT.M Mask for confirmation of a deposit.
CLOSE.m CLOSE.M Mask for account closing data entry.
COPEN.m COPEN.M Mask for confirmation of an account opening.
2-2 BEA TUXEDO Application Development Guide

Files

Table 2-1 Banking Application Files

Source Generated Purpose

cracl.sh — A shell script that creates Access Control Lists to demonstrate the
Access Control security level.

crqueue.sh — A shell script that creates application queues for use in event
notification.

crusers.sh — A shell script that creates groups and users to demonstrate the

authentication security level.

CTRANSFER.m

CTRANSFER.M

Mask for confirmation of a transfer.

CWITHDRAW.m

CWITHDRAW.M

Mask for confirmation of a withdrawal.

DEPOSIT.m DEPOSIT.M Mask for deposit data entry.

event.flds — A field table file used in the event feature.

FILES — Descriptive list of all the files ibankapp .

HELP.m HELP.M Mask that explaingnio keystrokes.

MENU.m MENU.M Mask that offers ring menu to choose deposit, withdrawal, transfer,
balance inquiry, open account, or close account data entry screens.

OPEN.m OPEN.M Mask for open account data entry.

README — Installation and boot procedures.

README.nt — Installation and boot procedures for the NT platform.

README2 — Documentation of additions tankapp that demonstrate new
features. The file is located in thpps/bankapp directory.

README2.nt — Documentation of additions to bankapp that demonstrate new features
for the NT platform. The file is located in tapps/bankapp
directory.

RUNME.sh — Interactive script to build, configure, boot, shutdown application.

showq.sh! — A shell script that displays the status and contents of a message queue.

TLR.ec TLR.c,TLR.O, ContainsWITHDRAWAIDEPOSIT andINQUIRY services.

TLR
TRANSFER.m TRANSFER.M Mask for transfer data entry.
usrevtf.sh — Creates afENVFILE for the BEA TUXEDO servefTMUSREV.T

BEA TUXEDO Application Development Guide 2-3

2 bankapp Files

Table 2-1 Banking Application Files

Source Generated Purpose

WITHDRAW.m WITHDRAW.M Mask for withdrawal data entry.

XFER.c XFER.0, XFER ContainsTRANSFERservice.

aud.v aud.V , aud.h FML view used to define structure passed between audit client and the
BAL server.

appinit.c appinit.o Containgtpsvrinit() andtpsvrdone() for all servers other
than TLR.

audit.c audit.o , audit Client that obtains bank-wide or branch-wide account and teller
balances via thABAL, TBAL, ABAL_BID andTBAL_BID services.

auditcon.c auditcon interactive version cdudit that uses conversations and services
ABAL, TBAL, ABALC_BID, TBALC_BID.

bankapp.mk — Application makefile.

bankapp.nt — Application makefile for NT.

bank.flds bank.flds.h Field table file containing bank database fields and auxiliary FML
fields used by masks and servers.

bank.h — Contains data definitions pertinent to more than just one C program
within the application.

bankvar — Contains variable settings, except for those wiENVFILE.
Because it setSNVFILE itself, settingbankvar will set the entire
environment.

crbank.sh crbank Creates databases for all banks when uSHigimode. See Chapter 1,
“A Simple Application,” for guidelines on use.

crbankdb.sh crbankdb Creates a database for one server group. See Chapter 1, “A Simple
Application,” for guidelines on use.

crtlog.sh crtlog , TLOG Creates &JDLand aTLOGon the master site. Create@aLon the
non-master sitesmboot creates FLOGoN the non-master sites.

driver.sh driver Drives the application by piping FML buffers with transaction
requests throughd (1).

envfile.sh envfile Create€ENVFILE for use bytmloadcf

ENVFILE
2-4 BEA TUXEDO Application Development Guide

Files

Table 2-1 Banking Application Files

Source Generated Purpose

gendata.c gendata Generatesd-readable requests to add ten branches, thirty tellers and
two hundred accounts.

gentran.c gentran Generatesid-readable transaction requests from amDBE§OSIT,
WITHDRAWAITRANSFERandINQUIRY.

populate.sh populate Populates the database by piping FML buffers with branch, teller and
account add requests througgh(1).

run.sh run Invokesmio with MENUmask.

ubbmp tuxconfig SampleUBBCONFIJile for use in aMPmode configuration.

ubbshm tuxconfig SampleUBBCONFIJile for use in &SHMmode configuration.

util.c util.o Contains a function commonly used among all services, namely

getstr()

Of the forty odd files in the directory:

4 14 arem files that create data entry masks managed by the system client
program,mio (1).

4 5areec files that are source files for service subroutines using embedded SQL
statements.

4 8arec files;audit.c is a client programguditcon.c is a conversational
client that connects tauUDITC.c , which is a conversational server; three others
are servers or associated with servers, two are there to generate data or
transactions for the application.

The remaining files have various roles; some are files you need in any application,
others arenake files for various add-ons, still others are present simply to facilitate the
use ofbankapp as an example. In subsequent chapters we will closely examine a
number of the files, and give a more complete explanation of their role in the sample
application. For now we just want to discussibekvar file.

BEA TUXEDO Application Development Guide 2-5

2 bankapp Files

Edit bankvar to Set Environment Variables

2-6

bankvar is a file of environment variables neededbhykapp . The filebankvar is
approximately 185 lines due largely to the extensive comments, but there are only a
few that you should be concerned about immediately.

The first key line checks to se€eTiUXDIR s set. If it is not, execution of the file fails
with the message:

TUXDIR: parameter null or not set

So, seTUXDIRto the root directory of your BEA TUXEDO system directory structure,
and export it.

Another line inbankvar setsAPPDIR to the directorys{TUXDIR}/apps/bankapp

which is the directory whergankapp source files are locatedPPDIRis a directory
where BEA TUXEDO looks for your application-specific files. You might prefer to
copy thebankapp files to a different directory to safeguard the original source files. If
you do, then the directory you use should be entered here. It does not have to be unc
TUXDIR.

Another important line sets a value f@iPCKEY. This is anPCKEY for a BEA

TUXEDO system database. There is a discussion of databases in Chapter 6; the use
this key is described there. For now, all you need to know about it is that it must be
different from the value of the BEA TUXEDIBCKEY specified in th&JBBCONFIdile
(Chapter 7).

The other variables specifiedankvar play various roles in the sample application
and you will need to be aware of them when you are developing your own application
They will all be mentioned at appropriate places later in this guide. Grouping them all
in bankvar is done to show you an example that you may want to adapt at a later tim¢
for use with a real application.

When you have made all the changebaiakvar that you need to, execuienkvar
as follows:

. ./bankvar

BEA TUXEDO Application Development Guide

Files

Listing 2-1 bankvar: Environment Variables for bankapp

#Copyright (c) 1997, 1996 BEA Systems, Inc.

#Copyright (c) 1995, 1994 Novell, Inc.

#Copyright (c) 1993, 1992, 1991, 1990 Unix System Laboratories, Inc.
#All rights reserved

#

This file sets all the environment variables needed by the BEA TUXEDO software
to run the bankapp

#

This directory contains all the BEA TUXEDO software

System administrator must set this variable

#

if [-z "${TUXDIR}"] ; then

if [! -z "${ROOTDIR}"] ; then

TUXDIR=$ROOTDIR

export TUXDIR

fi

fi

TUXDIR=${TUXDIR:?}

#

This directory contains all the user written code

#

Contains the full path name of the directory that the application

generator should place the files it creates

#

APPDIR=${TUXDIR}/apps/bankapp

#

This path contains the shared objects that are dynamically linked at
runtime in certain environments, e.g., SVR4.

#

LD_LIBRARY_PATH=${TUXDIR}lib:${LD_LIBRARY_PATH}

#

Logical block size; Database Administrator must set this variable

#

BLKSIZE=512

#

Set default name of the database to be used by database utilities

and database creation scripts

#

DBNAME=bankdb

#

Indicate whether database is to be opened in share or private mode
#

DBPRIVATE=no

#

Set Ipc Key for the database; this MUST differ from the UBBCONFIG
*RESOURCES IPCKEY parameter

BEA TUXEDO Application Development Guide

2-7

2 bankapp Files

#I;IPCKEY=80953

z Environment file to be used by tmloadcf
ENVFILE=${APPDIR}/ENVFILE

i List of field table files to be used by mc, viewc, tmloadcf, etc.
IﬁIELDTBLS=Usystds,bank.flds,credit.flds,event.flds

IﬁIELDTBLS32=Usyst32,evt_mib,tpadm

z List of directories to search to find field table files
IﬁLDTBLDIR=${TUXDIR}/udataobj:${APPDIR}
l#iLDTBLDIR32=${TUXDIR}/udataobj:${APPDIR}
zUniversaI Device List for database
IﬁSCONFIG=${APPDIR}/bankdll

z List of directories to search to find mask files for mio
#

MASKPATH=${APPDIR}
#

Network address, used in MENU script

#

NADDR=

#

Network device name

#

NDEVICE=

#

Network listener address, used in MENU script

#

NLSADDR=

#

List of services permitted to the current invoker of mio
#

OKXACTS=ALL

#

Make sure TERM is set for mio

#

TERM=${TERM:?}

#

Set device for the transaction log; this should match the TLOGDEVICE
parameter under this site's LMID in the *MACHINES section of the

2-8 BEA TUXEDO Application Development Guide

Files

UBBCONFIG file

#

TLOGDEVICE=${APPDIR}/TLOG

#

Device for binary file that gives /T all its information
#

TUXCONFIG=${APPDIR}/tuxconfig

#

Set the prefix of the file which is to contain the central user log;
this should match the ULOGPFX parameter under this site's LMID in the
*MACHINES section of the UBBCONFIG file

#

ULOGPFX=${APPDIR}JULOG

#

System name, used by RUNME.sh

#

UNAME=

#

List of view files to be used by viewc, tmloadcf, etc.
#

VIEWFILES=aud.V

#

VIEWFILES32=mib_views,tmib_views

#

List of directories to search to find view files

#

VIEWDIR=${TUXDIR}/udataobj:${APPDIR}

#

VIEWDIR32=${TUXDIR} udataocbj:${APPDIR}

#

Specify the Q device (if events included in demo)
#

QMCONFIG=${APPDIR}/qdevice

#

Export all variables just set

#

export TUXDIR APPDIR BLKSIZE DBNAME DBPRIVATE DIPCKEY ENVFILE
export LD_LIBRARY_PATH

export FIELDTBLS FLDTBLDIR FSCONFIG MASKPATH OKXACTS TERM
export FIELDTBLS32 FLDTBLDIR32

export TLOGDEVICE TUXCONFIG ULOGPFX
export VIEWDIR VIEWFILES

export VIEWDIR32 VIEWFILES32

export QMCONFIG

#

Add TUXDIR/bin to PATH if not already there

#

a=""echo $PATH | grep ${TUXDIR}/bin™"

if [X"$a" =x]

BEA TUXEDO Application Development Guide

2-9

2 bankapp Files

then

PATH=${TUXDIR}bin:${PATH}

export PATH

fi

#

Add APPDIR to PATH if not already there
#

a=""echo $PATH | grep ${APPDIR}"

if [x"$a" = x]

then

PATH=${PATH}:${APPDIR}

export PATH

fi

#

Check for other machine types bin directories
#

for DIR in /usr/5bin /usr/ccs/bin /opt/SUNWSspro/bin
do

if [-d ${DIR}] ; then
PATH="${DIR}:${PATH}"

fi

done

Additional PATH Component for Sun0S

If your operating system is SunOS, you need taymutsbin - at the front of your
PATH The following command can be used:

PATH=/usr/5bin:$PATH;export PATH

Another requirement for SunOS users: td@sh rather tharesh for your shell.

2-10 BEA TUXEDO Application Development Guide

CHAPTER

3 bankapp Client
Programs

A Look at bankapp Client Programs

This chapter is devoted to the client side ofittagkapp sample application.

In the client-server architecture of BEA TUXEDO there are two modes of
communication:

4 Request/response mode, which is characterized by the sending of a single
request for a service to be performed by the server and getting back a single
response.

4 Conversational mode; in this mode a dedicated connection is established
between a client (or a server acting like a client) and a server. The connection
remains active until terminated. While the connection is active, messages
containing service requests and responses can be sent and received between the
two participating processes.

Variations of the two modes above can be constructed by taking advantage of the BEA
TUXEDO features that allow requests to be forwarded from one server to another, that
permit requests to be chained and that permit requests to be queued in stable storage
for later processingankapp is not set up to demonstrate any of these variations, but
once you have the application running you might want to try these as extensions to the
example.

BEA TUXEDO Application Development Guide 3-1

3 bankapp Client Programs

System Client Programs

One form of client access bankapp is through the resources of the BEA TUXEDO
Data Entry System (DES), a character-oriented interface. With DES, data entry form
(also called masks or screens) are created to provide a template that can be used b
application users to formulate requests. The masks can be organized into a hierarct
by means oMENUstatements of the form definition languageORMThey are

managed by the system cliemip (1).

Figure 3-1 shows the hierarchy of masks{amkapp . The top-level mask is a menu
that leads the user to select one of the six service request masks. The oval shapesin
illustration represent application services. The six rectangles across the bottom of
Figure 3-1 represent confirmation masks that give feedback about the results of the
service request.

3-2 BEA TUXEDO Application Development Guide

A Look at bankapp Client Programs

Fig

ure 3-1

The bankapp Input/Output Mask Hierarchy

Bguest trawels Fam

BETVICS SOFEE 10 PEMRET
geoitid = FHEIL kil

1§ service suceneds, 1eply
Bafer ix pend §0 canBrmetion
scraen. otherese il is mens
back 0 o @nal seroes soreen

| Cepaal I KEHNL

i ‘Wilheterer

3 Trisre IIJI':-:i-hElhd race
lE.-.'l'.n'nI:! leapary Kl;dl'r.'sf:‘;:t
& Cpen Scooen 25 baerelon
& Clese Accouml =

Enler Chigce, thes Cul - _

e

i — e —
~ __'_'__,_'—- -.___.-- H""-\._ '\—_._____——_____ _
a——"'_'__- L e —— —
i 2 5 q 'Tl_)
3
| DEROEIT TRAHEFER [orEm
Auccont Ml D 4, ot M e Fail Higze
{Credt Aocoent Bumber La Maree
Disprmt Arrouest T Aararand r;::’:j‘ htlHII_
Telepherme
-
¥ . W L 4
| WITHDRAW BALANCE CLOZE
uonvant Hombesy Aol Fhstbe Aol Moshierio

o
Withdreaal Aot

¥ . i = &

L

.-..-"-__-"-\.\ o '-.._\l .-.__.- - - - l.-"- -.'\"'\-\.\. lr__.- -
| LeEPUSIT } (WITHLBAWAL S |_H| HAPSFEH (HCIUIRY "' | OPE! .'_x.n.‘.:-) ! t'l.n.r'.z_u:r.-T‘:.
‘\“'\-.__ _.-""- \"'\-\.__ . - —__™ ™ \"'-\.__ . \"'\-\.__ __.-"'-
I : | | !
| CDEROSIT CATTHDRAW CTRAHSFER CHALAHCE COPEH | CrLOEE
conl roeaiiem oo resyi oa oardrmetion healanios oonfrraben of o Berraiean of
afe] baknre ati] balaine il talane LR ce Lretial depardi, Hrad wthdroaal,
irdrTra Ran et trifrarrest o, Tl nermh e reroani clonere

Mask Source Code

Taking one of the shorter masks for illustration, in Listing 3-1 we show how the source
code of a mask looks in theFORMsyntax. This mask (indicated as number 6 in

Figure 3-1) is used to close an account. It callsih®SE_ACCBervice and has a

single variable field for the number of the account to be closed.

Once a mask has been created, it is converted into binary form and is used under the
control ofmio .

BEA TUXEDO Application Development Guide 3-3

3 bankapp Client Programs

#
#

Listing 3-1 Source Code for the CLOSE.m Mask

#SERVICE NAME=CLOSE_ACCT

#FORM FLAGS=Umrv TRANMODE=TRAN TRANTIME=30
#PAGE STATUSLINE=24 FLAGS=Pmrv

*ROW COL MIN LINES WIDTH FLAGS VALUE

*

2 c - 1
+1 C - 1
+2 C - 1
+6 25 - 1
- 51 5 1

L "TUXEDO (R) System"
- L "Banking Services"

L "Close Account"
- L "Account Number To Close:"
7 UmN7IHrv ACCOUNT_ID

HELP="Enter account number"

ERR="Account number must be 7 digit number"
VAL=IR:[1-9999999]

FORMEXIT FO=FC:HELP,F11=S:CLOSE_ACCT

+3 24 - 1
+1 c - 1
Using mio(1)

- L "Hit CTRL-v to complete trans."
- L "or ESC 0 for keystroke help"

mio (1) is a forms handling program supplied by the BEA TUXEDO system that
gathers the data from a binary data entry mask into a buffer and sends the buffer to
service bankapp has a set of masks (shown above in Figure 3-1ntlatises for

calling theOPEN_ACCJCLOSE_ACCT, WITHDRAWAL DEPOSIT, INQUIRY , and
TRANSFERservicesmio joins the application as a client and when the user enters the
key sequence to transmit the mask, the BEA TUXEDO software adds the service
request to the queue of a server that advertises the desired service. If the application
using an application passwordio prompts the user to enter the password before
allowing any of the service request screens to be used.

If mio is invoked with no arguments, it presents a generic initial mask that prompts the
user to name the mask to bring upbéinkapp , the shell script namedn invokesmio

with the initial menu fobankapp . If you look atrun.sh , you will see that it contains
one command line:

mio -i MENU

Of course, you can also get into the mask system by invokimglirectly rather than
throughrun .

3-4 BEA TUXEDO Application Development Guide

A Look at bankapp Client Programs

Buffer Types

Using ud(1)

It was mentioned in the preceding section thiat gathers the data from a data entry
mask into a buffer before sending it to a service. Message buffers are an essential part
of BEA TUXEDO, as is the concept of typed buffers. In BEA TUXEDO a typed buffer

is a buffer designed to hold a specific data type. Nine types are defimgd:ML32,

VIEW, VIEW32, STRING andCARRAYlus three versions for X/OPEN compatibility.
Applications have the ability to define additional types.PMwL buffer is a fielded

buffer in which each field carries its own identifying informatimio and other BEA
TUXEDO client programs usemL buffers.

Another system client program useddaynkapp isud(1).ud is supplied by the BEA
TUXEDO System to allow fielded buffers to be read from standard input and sent to a
service. In the sample applicatian, is used by both theopulate anddriver

programs. Irpopulate , a program calledendata passes service requestsidowith
customer account information to be entered inbthkapp database; idriver , the

data flow is similar, but the programgsntran and the purpose is to throw
transactions at the application to simulate an active system.

audit.c: A Request/Response Client

audit.c is an example of a client program that does not use the BEA TUXEDO DES.
It makes branch-wide or bank-wide balance inquiries that call on the sea#ses
TBAL, ABAL_BID andTBAL_BID. As an executable, it is invoked in one of two ways:

audit [-a | -t]
Prints the bank-wide total value of all accounts, or bank-wide cash supply of
all tellers. Optiona or-t must be specified to control whether account
balances or teller balances are to be tallied.

audit [-a | -t} branch_ID
Prints branch-wide total value of all accounts, or branch-wide cash supply of
all tellers, for branch denoted loyanch_ID . Option-a or-t must be
specified to control whether account balances or teller balances are to be
tallied.

The algorithm for the program is shown in Listing 3-2.

BEA TUXEDO Application Development Guide 3-5

3 bankapp Client Programs

Listing 3-2 Audit Algorithm

main()
{
Parse command line options with getopt();
Join application with tpinit();
Begin global transaction with tpbegin();
If (branch_id specified) {
Allocate buffer for service requests with tpalloc();
Place branch_id into the aud structure;
Do tpcall() to "ABAL_BID" or "TBAL_BID";
Print balance for branch_id;
Free buffer with tpfree();

else /* branch_id not specified */

call subroutine sum_bal();
Commit global transaction with tpcommit();
Leave application with tpterm();

sum_bal()

Allocate buffer for service requests with tpalloc();
For (each of several representative branch_id's,
one for each site)
Do tpacall() to "ABAL" or "TBAL";
For (each representative branch_id) {
Do tpgetrply() wtith TPGETANY flag set
to retrieve replies;
Add balance to total;
Print total balance;

Free buffer with tpfree();

audit.c Source Code

Because of space constraints we are not going to print the entire source code of
audit.c , but we want to call your attention to the following sections.

In the program’snain():
/* Join application */
[* Start global transaction */

[* Create buffer and set data pointer */
/* Do tpcall */

3-6 BEA TUXEDO Application Development Guide

A Look at bankapp Client Programs

/* Commit global transaction */
[* Leave application /*

In the subroutin@um_bal:

[* Create buffer and set data pointer */

* Do tpacall */

* Do tpgetrplys to retrieve answers to questions */

The indicated sections contain all of the placesuititc where BEA TUXEDO
ATMI calls are used. Note also thatdit.c is an example of a program that uses a
VIEWtyped buffer and a structure that is defined indineh header file. The source
code for the structure can be found in the view descriptiorafitey

auditcon.c: A Conversational Client
auditcon.c is the source code for a conversational versicaudif.c . After the
client is built, the program is started when a user eateligon

The algorithm for the program is shown in Listing 3-3.

Listing 3-3 Algorithm for Conversational Audit

main()
{
Join the application
Begin a transaction
Open a connection to conversational service AUDITC
Do until user says to quit: {
Query user for input
Send service request
Receive response
Print response on user's terminal
Prompt for further input
}
Commit transaction
Leave the application

BEA TUXEDO Application Development Guide 3-7

3 bankapp Client Programs

auditcon.c Source Code

The source code fauditcon uses the ATMI calls for conversational
communicationtpconnect() , to establish the connection between the client and
servicetpsend() ,to send a message, apckcv() to receive a message.

bankmgr.c: A Client that Monitors Events

bankmgr.c is included wittbankapp as a demonstration of a client that is designed to
run constantly. It subscribes to application-defined events of special interest such as
the opening of a new account or a withdrawal above $10,000.

Building Client Programs

DES masks must be compiled before they can be usetbbyf the mask is created
usingvuform (1), the BEA TUXEDO visual form editor, it is automatically converted
to binary format (indicated by am suffix). If it is created by editing a file of UFORM
statements, the file must be run through the BEA TUXEDO mask compidy),
which also creates aM file. Masks created withuform should be unloaded to ASCII
.m files for backup. This was formerly done witfedis (1).

View description files, of whiclud.v is an example, are processed by the view
compilerviewc (1).viewc has two output files: a binary view description fied.V ,
and a header filgud.h .

The client programsudit.c andaudconv.c are processed yuildclient Dto
compile them and/or link edit them with the necessary BEA TUXEDO libraries.

You can use any of these commands individually, if you choose, but rules for all thes
steps are included sankapp.mk .

3-8 BEA TUXEDO Application Development Guide

A Look at bankapp Client Programs

References

The use of ATMI calls in client programs is covered inBfisA TUXEDO
Programmer's Guide

The creation of masks, the operationmid and a tutorial onuform are all included
in theBEA TUXEDO Data Entry System Guide

The subject of typed buffers is covered in bothBiEgA TUXEDO Programmer's
Guideand theAdministering the BEA TUXEDO System

All commands and ATMI calls are described in Sections 1 and 3c BEAETUXEDO
Reference Manual hebankmgr.c client is more fully described in ttREADMEZile
of bankapp and in thebankmgr.c code itself. The Event Broker/Monitor feature,
which is whatbankmgr.c demonstrates, is describedddministering the BEA
TUXEDO System

BEA TUXEDO Application Development Guide 3-9

3 bankapp Client Programs

3-10 BEA TUXEDO Application Development Guide

CHAPTER

4 bankapp Servers

A Look at bankapp Servers

This chapter describes the servers delivered wdtkapp , identifies the services
coded for the banking application and describes how the services are link edited into
servers.

Servers are executable processes that offer one or more services. Inthe BEA TUXEDO
system, they continually accept requests (from processes acting as clients) and
dispatch them to the appropriate services. Services are subroutines of C language code
written specifically for an application. It is the services accessing a resource manager
that provide the functionality for which your BEA TUXEDO system transaction
processing application is being developed. Service routines are one part of the
application that must be written by the BEA TUXEDO system programmer
(user-defined clients being another part).

All the services ibankapp are coded in the C language with embedded SQL except
for the TRANSFERservice, which does not directly interact with the database. The
TRANSFERservice is offered by theFERserver and is a C program (that is, its source
file is a.c file rather than aec file).

All the services obankapp use functions provided in the Application Transaction
Management Interface (ATMI). These functions allow the services:

4 To manage typed buffers
4 To communicate synchronously or asynchronously with other services
4 To define global transactions

4 To generically access a resource manager

4 To send replies back to clients

BEA TUXEDO Application Development Guide 4-1

4 bankapp Servers

This chapter provides the following:
4 A description of each server and service that is part of the banking application

4 The pseudo-code for each service that is either accessed by the BEA TUXEDO
system predefined clientjio, or the application cliengudit

4 The relationships between thenkapp services and servers

4 Thebuildserver (1) command options used to compile and build each server
with the BEA TUXEDO system predefinedhin()

4 An alternative way to structure the same servers

Request/response Servers

4-2

Five of thebankapp servers operate in request/response mode. Four of the five use
embedded SQL statements to access the resource manager; in the source files in
TUXDIR/apps/bankapp they are the files with ac suffix. The fifth servern<FER for
transfer, makes no calls to the resource manager itself; it calldI TRORAWARN
DEPOSIT services (which are offered by tier server) to transfer funds between
accounts. The source file fRFERIs a.c file, sinceXFERmakes no resource manager
calls and contains no embedded SQL statements.

BTADD.ec
Allows branch and teller records to be added to the proper database from an
site.

ACCT.ec
Provides customer representative services, namely the opening and closing ¢
accountsQPEN_ACCHBNACLOSE_ACCY.

TLR.ec
Provides teller services, nam&lyTHDRAWALDEPOSIT, andINQUIRY. Each
TLR process identifies itself as an actual teller inTlBELER file, via the
user-definedT option on the server's command line.

XFER.c
Provides fund transfers for accounts anywhere in the database.

BAL.ec
Sums teller or account balances for all branches of the database or for a
specific branch identifier.

BEA TUXEDO Application Development Guide

A Look at bankapp Servers

A Conversational Server

The serveAUDITC.c is an example of a conversational server. It has one service,
which is also calleduDITC. The conversational clierduditcon , establishes a
connection taUDITCand sends it requests for audit informati@pDITC evaluates the
requests and calls an appropriate senABA[, TBAL, ABAL_BID, or TBAL_BID) to get

the information. When a reply is received from the service callgoiTC sends it back

to auditcon . An important point to observe here is that a service in a conversational
server can make calls to request/response services. It can also initiate connections to
other conversational servers, but that is not part of this example.

Service Definitions

There are 12 request/response servicearikapp . Eachbankapp service matches a
C function name in the source code of a server, as shown in the following list.

BR_ADD
Adds a new branch record; offered by BT&DDserver; accepts éamLbuffer
as input.

TLR_ADD
Adds a new teller record; offered BYADD accepts arMLbuffer as input.

OPEN_ACCT
Inserts a record into theCCOUNTile and callSDEPOSIT to add the initial
balance; offered byCCT, accepts arML buffer as input; chooses
ACCOUNT _IDfor a new account based BRANCH_IDof the teller involved.

CLOSE_ACCT
Deletes amCCOUNTecord; offered bACCT, accepts aRMLbuffer as input;
validateSACCOUNT _ID callsWITHDRAWALO remove the final balance.

WITHDRAWAL
Subtracts an amount from the specified branch, teller and account balance;
offered byTLR; accepts arRMLbuffer as input; validates teCOUNT_IDand
SAMOUNTields; checks that funds are available from account and teller.

BEA TUXEDO Application Development Guide 4-3

4 bankapp Servers

DEPOSIT
Adds an amount to specified branch, teller and account balances; offered by
TLR; accepts arMLbuffer as input, validates tReCOUNT_IDandSAMOUNT
fields.

INQUIRY
Retrieves an account balance; offered’bl; accepts arMLbuffer as input,
validateSACCOUNT _ID

TRANSFER
Issues apcal() requestingvITHDRAWAIollowed by one requesting
DEPOSIT, offered byXFER accepts arMLbuffer as input.

ABAL
Sums account balances for all branches on a given site; offer@al by
accepts th&lEw buffer ofaud.v as input.

TBAL
Sums the teller balances for all branches on a given site; offeredlby
accepts th&lEw buffer ofaud.v as input.

ABAL_BID
Sums the account balances for a spegiieNCH_ID offered byBAL; accepts
theVIEW buffer ofaud.v as input.

TBAL_BID
Sums the teller balances for a spedRANCH_ID offered byBAL; accepts
theVIEW buffer ofaud.v as input.

Service Algorithms

The twelve figures that follow illustrate in pseudo-code the algorithms used in the
BR_ADD TLR_ADD OPEN_ACC;TCLOSE_ACCTWITHDRAWALDEPOSIT, INQUIRY,
TRANSFERABAL, TBAL, ABAL_BID, andTBAL_BID services. You can use them as
roadmaps through the source code that can be found in servers in
TUXDIR/apps/bankapp

4-4 BEA TUXEDO Application Development Guide

A Look at bankapp Servers

Listing 4-1 The BR_ADD Algorithm

void BR_ADD (TPSVCINFO *transb)

{
set pointer to TPSVCINFO data buffer;
get all values for service request from field buffer;
insert record into BRANCH,;
tpreturn() with success;
}

Listing 4-2 The TLR_ADD Algorithm

void TLR_ADD (TPSVCINFO *transb)

{
set pointer to TPSVCINFO data buffer;
get all values for service request from fielded buffer;
get TELLER_ID by reading branch's LAST_ACCT;

insert teller record,;

update BRANCH with new LAST_TELLER;
tpreturn() with success;

Listing 4-3 The OPEN_ACCT Algorithm

void OPEN_ACCT(TPSVCINFO *transb)

Extract all values for service request from fielded buffer using Fget() and
Fvall();

Check that initial deposit is positive amount and tpreturn() with failure if
not;

Check that branch id is a legal value and tpreturn() with failure if it is not;

Set transaction consistency level to read/write;

Retrieve BRANCH record to choose new account based on branch's LAST_ACCT field;

Insert new account record into ACCOUNT file;

Update BRANCH record with new value for LAST_ACCT;

Create deposit request buffer with tpalloc(); initialize it for FML with
Finit();

Fill deposit buffer with values for DEPOSIT service request;

Increase priority of coming DEPOSIT request since call is from a service;

Do tpcall() to DEPOSIT service to add amount of initial balance;

Prepare return buffer with necessary information;

BEA TUXEDO Application Development Guide

4-5

4 bankapp Servers

Free deposit request buffer with tpfree();
tpreturn() with success;

Listing 4-4 The CLOSE_ACCT Algorithm

void CLOSE_ACCT(TPSVCINFO *transb)
{
Extract account id from fielded buffer using Fvall();
Check that accountid is alegal value and tpreturn() with failure if it is not;
Set transaction consistency level to read/write;
Retrieve ACCOUNT record to determine amount of final withdrawal,
Create withdrawal request buffer with tpalloc(); initialize it for FML with
Finit();
Fill withdrawal buffer with values for WITHDRAWAL service request;
Increase priority of coming WITHDRAWAL request since call is from a service;
Do tpcall() to WITHDRAWAL service to withdraw balance of account;
Delete ACCOUNT record;
Prepare return buffer with necessary information;
Free withdrawal request buffer with tpfree();
tpreturn with success;

Listing 4-5 The WITHDRAWAL Algorithm

void WITHDRAWAL(TPSVCINFO *transb)

Extract account id and amount from fielded buffer using Fvall() and Fget();
Check that account id is a legal value and tpreturn() with failure if not;
Check that withdraw amount (amt) is positive and tpreturn() with failure if not;
Set transaction consistency level to read/write;

Retrieve ACCOUNT record to get account balance;

Check that amount of withdrawal does not exceed ACCOUNT balance;
Retrieve TELLER record to get teller's balance and branch id;

Check that amount of withdrawal does not exceed TELLER balance;
Retrieve BRANCH record to get branch balance;

Check that amount of withdrawal does not exceed BRANCH balance;
Subtract amt to obtain new account balance;

Update ACCOUNT record with new account balance;

Subtract amt to obtain new teller balance;

Update TELLER record with new teller balance;

Subtract amt to obtain new branch balance;

4-6 BEA TUXEDO Application Development Guide

A Look at bankapp Servers

Update BRANCH record with new branch balance;
Insert new HISTORY record with transaction information;
Prepare return buffer with necessary information;
tpreturn with success;

Listing 4-6 The DEPOSIT Algorithm

void DEPOSIT(TPSVCINFO *transb)

Extract account id and amount from fielded buffer using Fvall() and Fget();
Check that account id is a legal value and tpreturn() with failure if not;
Check that deposit amount (amt) is positive and tpreturn() with failure if not;
Set transaction consistency level to read/write;

Retrieve ACCOUNT record to get account balance;

Retrieve TELLER record to get teller's balance and branch id;

Retrieve BRANCH record to get branch balance;

Add amt to obtain new account balance;

Update ACCOUNT record with new account balance;

Add amt to obtain new teller balance;

Update TELLER record with new teller balance;

Add amt to obtain new branch balance;

Update BRANCH record with new branch balance;

Insert new HISTORY record with transaction information;

Prepare return buffer with necessary information;

tpreturn() with success;

Listing 4-7 The INQUIRY Algorithm

void INQUIRY(TPSVCINFO *transb)
{
Extract account id from fielded buffer using Fvall();
Check that account id is a legal value and tpreturn() with failure if not;
Set transaction consistency level to read only;
Retrieve ACCOUNT record to get account balance;
Prepare return buffer with necessary information;
tpreturn() with success;

BEA TUXEDO Application Development Guide 4-7

4 bankapp Servers

Listing 4-8 The TRANSFER Algorithm

void TRANSFER(TPSVCINFO *transb)

Extract account id's and amount from fielded buffer using Fvall() and Fget();
Check that both accountids are legal values and tpreturn() with failure if not;
Check that transfer amount is positive and tpreturn() with failure ifitis not;

Create withdrawal request buffer with tpalloc(); initialize it for FML with

Finit();

Fill withdrawal request buffer with values for WITHDRAWAL service request;

Increase priority of coming WITHDRAWAL request since call is from a service;

Do tpcall() to WITHDRAWAL service;

Get information from returned request buffer;

Reinitialize withdrawal request buffer for use as deposit request buffer with

Finit();

Fill deposit request buffer with values for DEPOSIT service request;

Increase priority of coming DEPOSIT request;

Do tpcall() to DEPOSIT service;

Prepare return buffer with necessary information;

Free withdrawal/deposit request buffer with tpfree();

tpreturn() with success;

Listing 4-9 The ABAL Algorithm

void ABAL(TPSVCINFO *transb)

Set transaction consistency level to read only;

Retrieve sum of all ACCOUNT file BALANCE values for the
database of this server group (A single ESQL
statement is sufficient);

Place sum into return buffer data structure;

tpreturn(') with success;

}

4-8 BEA TUXEDO Application Development Guide

A Look at bankapp Servers

Listing 4-10 The TBAL Algorithm

void TBAL(TPSVCINFO *transb)

Set transaction consistency level to read only;

Retrieve sum of all TELLER file BALANCE values for the
database of this server group (A single ESQL
statement is sufficient);

Place sum into return buffer data structure;

tpreturn() with success;

Listing 4-11 The ABAL_BID Algorithm

void ABAL_BID(TPSVCINFO *transh)
{
Set transaction consistency level to read only;
Set branch_id based on transb buffer;
Retrieve sum of all ACCOUNT file BALANCE values for records
having BRANCH_ID = branch_id (A single ESQL
statement is sufficient);
Place sum into return buffer data structure;
tpreturn() with success;

}

Listing 4-12 The TBAL_BID Algorithm

void TBAL_BID(TPSVCINFO *transb)

Set transaction consistency level to read only;

Set branch_id based on transb buffer;

Retrieve sum of all TELLER file BALANCE values for records
having BRANCH_ID = branch_id (A single ESQL
statement is sufficient);

Place sum into return buffer data structure;

tpreturn() with success;

BEA TUXEDO Application Development Guide

4-9

4 bankapp Servers

Utilities Incorporated into Servers

There are two C language subroutines included among the source fitegafp :
appinit.c andutil.c

appinit.c contains application-specific versionsmdvrinit() andtpsvrdone()
subroutinestpsvrinit() andtpsvrdone() are subroutines that are included in the
standard BEA TUXEDO systemain() . The default version apsvrinit() calls
tpopen() to open the resource manager asetlog() to post a message that the
server has started. The default versiompsefrdone() callstpclose() to close the
resource manager anderlog() to post a message that the server is about to shut
down. Any application subroutines nanmtgshrinit() andtpsvrdone() are used

in place of the defaults, thus enabling the application to provide initialization and
pre-shutdown procedures of its own.

utl.c contains a subroutine callgdtstr() , which is used ibankapp to process
SQL error messages.

Building Servers

buildserver (1) is used to put together an executable server built on the BEA
TUXEDO system’snain() . Options identify the names of the output file, the input
files provided by the application, and various libraries that permit you to run a BEA
TUXEDO system application in a variety of ways.

buildserver invokes theec command. The environment variabl&sandCFLAGS

can be setto name an alternative compile command and to set flags for the compile a
link edit phases. The kehildserver ~ command line options are illustrated in the
examples that follow.

Using the buildserver Command in the bankapp

4-10

This section provides theiildserver ~ command used ibankapp.mk to compile
and build each server in the banking application. Refer t8 A TUXEDO
Programmer's Guidand thebuildserver (1) reference page in tlBEA TUXEDO
Reference Manudbr complete details.

BEA TUXEDO Application Development Guide

A Look at bankapp Servers

The ACCT Server

TheACCTserver is derived from axCCT.ec file that contains the code for the
OPEN_ACCHBNACLOSE_AcCTunctions. TheACCT.ec is first compiled to aanCCT.o

file before supplying it to thieuildserver ~ command so that any compile-time errors
can be clearly identified and dealt with before this step.AUeT .o file is created in
the following two steps (done for you iankapp.mk).

1. The c file is generated as follows.
esqgl ACCT.ec

2. The o file is generated as follows.
cc -1 $TUXDIR/include -c ACCT.c

TheACCTserver was created by running the followingidserver ~ command
line.

buildserver -r TUXEDO/SQL \
-s OPEN_ACCT -s CLOSE_ACCT\
-0 ACCT\\
-f ACCT.o -f appinit.o -f util.o

The explanation of the command line options is as follows:

¢ The-r option is used to specify which resource manager access libraries
should be link edited with the executable server. The choice is specified with
the stringSTUXEDO/Dor TUXEDO/SQL Only one string can be specified.

4 The-s option is used to specify the service names in the server that are
available to be advertised when the server is booted. If the name of the
function that performs a service is different from the service name, the
function name becomes part of the argument ofgheption. In the
bankapp , the function name is the same as the name of the service so only
the service names themselves need to be specified. It is our convention to
specify all uppercase for the service name. For exampl@RBER_ACCT
service would be processed by funct@PEN_ACCT() However, thes
option ofbuildserver does allow you to specify an arbitrary name for the
processing function for a service within a server. Refer to the
buildserver (1) reference page for details. It is also possible for the
administrator to specify that only a subset of the services that were used to
create the server with ttbeildserver ~ command is to be available when
the server is booted. Refer to thdministering the BEA TUXEDO System

4 The-o option is used to assign a name to the executable output file. If no
name is provided, the file is nams8RVER

BEA TUXEDO Application Development Guide 4-11

4 bankapp Servers

4 The-f option specifies the files that are used in the link edit phase. Also
refer to the description of the option on théuildserver (1) reference
page. TheBEA TUXEDO Programmer's Guidkescribes both of these
options in some detail as well. The order in which the files are listed is
significant. The order is dependent on function references and in what
libraries the references are resolved. Source modules should be listed ahead
of libraries that might be used to resolve their references. If these are
files, they are first compiled. (In the example abapinito andutil.o
have been compiled previously.) Object files can be either separétes
or groups of files in archiveq) files. If more than a single file name is
given as an argument tofa option, the syntax calls for a list enclosed in
double quotes. You can use as m&nyptions as you need.

As you can see in the previous example -theption was used to specify the BEA
TUXEDO system SQL resource manager. Theption names thePEN_ACCH&Nd
CLOSE_AcCBervices (which are defined by functions of the same name in the
ACCT.ec file) to be the services that make up M@CTserver. Theo option assigns
the nameACCTto the executable output file and theoption specifies that the
ACCT.o, appinito , andutil.o files are to be used in the link edit phase of the build.
Note that theappinit.c file contains the system suppliggvrinit() and
tpsvrdone() . Refer to theBEA TUXEDO Programmer's Guidand the

tpservice (3c) reference page in tiBEA TUXEDO Reference Manufal an
explanation of how these routines are used.ufhe file contains a few other
commonly used routines.

The BAL Server

TheBALserver is derived fromBAL.ec file that contains the code for tABAL, TBAL,
ABAL_BID, andTBAL_BID functions. As with the\CCT.ec, theBAL.ec is first
compiled to aAL.o file before being supplied to theildserver ~ command for the
same reasons already stated. Blikiserver ~ command that was used to build the
BAL server follows:

buildserver -r TUXEDO/SQL \
-s ABAL -s TBAL -s ABAL_BID -s TBAL_BID\
-0 BAL\
-f BAL.o -f appinit.o

The-r option specifies the BEA TUXEDO system SQL resource manages the
option names the services that make uBthieserver (as before, the functions in the
BAL.ec file that define these services have identical names) tption assigns the
nameBAL to the executable server, and theoption specifies that thgaL.o and the
appinito files are to be used in the link edit phase.

4-12 BEA TUXEDO Application Development Guide

A Look at bankapp Servers

The BTADD Server

TheBTADDserver is derived fromBTADD.ec file that contains the code for the
BR_ADDandTLR_ADDfunctions. TheBTADD.ec is also compiled to BTADD.o file
before being supplied to thaildserver ~ command. Theuildserver ~ command
that was used to build tlBTADDserver follows:

buildserver -r TUXEDO/SQL \
-s BR_ADD -s TLR_ADD\
-0 BTADD \
-f BTADD.o -f appinit.o

The-r option specifies the BEA TUXEDO system SQL resource manages the
option names the serviceBR_ADDandTLR_ADD that make up thBTADDserver (the
functions in theBTADD.ec file that define these services have identical names) the
option assigns the nanBdADDto the executable server, and theoption specifies
that theBTADD.o and theappinit.o files are to be used in the link edit phase.

The TLR Server

TheTLR server is derived fromBLR.ec file that contains the code for tbEPOSIT,
WITHDRAWALandINQUIRY functions. TherLR.ec is also compiled to @LR.o file
before being supplied to theildserver ~ command. Theuildserver ~ command
that was used to build th&R server follows:

buildserver -r TUXEDO/SQL \
-s DEPOSIT -s WITHDRAWAL -s INQUIRY \
-0 TLR\\
-f TLR.o -f util.o -f -Im

The-r option specifies the BEA TUXEDO system SQL resource manages the
option name®EPOSIT, WITHDRAWALandINQUIRY as the services that make up the
TLR server (the functions in thetR.ec file that define these services have identical
names), theo option assigns the narfeR to the executable server, and theoption
specifies that th&LR.o and theuti.o files are to be used in the link edit phase.

Note the special use of tHe option in the previous example. In this example-the
option is also used to pass an optiom () to thecc command line. As stated earlier,
buildserver invokes thec command. By supplying then string to thef option,

itis passed to the&e command and is then interpreted as the option that causes the math
libraries to be linked in during the compilation process. Refer tocttl® reference

page in thaJNIX System V User's Reference Marfoala complete list of

compile-time options.

BEA TUXEDO Application Development Guide 4-13

4 bankapp Servers

The XFER Server

The XFERserver is derived from axFER.c file that contains the code for the
TRANSFERunction. ThexFER.c is also compiled to axFER.o file before being
supplied to théuildserver ~ command. Theuildserver ~ command that was used
to build thexFERserver follows:

buildserver -r TUXEDO/SQL \
-s TRANSFER \
-0 XFER\
-f XFER.o -f appinit.o

The-r option specifies the BEA TUXEDO system SQL resource manages the
option nameJRANSFERas the only service that makes up Xif€Rserver (the

function in thexFER.c file that defines th@RANSFERservice has the identical name),
the-o option assigns the nanx€ERto the executable server, and theoption
specifies that th&FER.o and theappinit.o files are to be used in the link edit phase.

Servers Built in bankapp.mk

The preceding sections on building takapp servers were included because it is
important that you understand how thiéidserver ~ command is specified. However,

in actual practice you are apt to incorporate the build into a makefile; that is the way i
is done inbankapp . Thebankapp makefile is discussed in Chapter 5, “The bankapp
Makefile.”

4-14 BEA TUXEDO Application Development Guide

A Look at bankapp Servers

Alternative Way to Code Services

You may have noticed that in thenkapp source files all the services were
incorporated into files that we have been referring to as the source code for servers.
These files do indeed have the same names amaitkapp servers, but they are not
really servers. Why? Because they do not contaaia) section. A standard

main() is provided by the BEA TUXEDO systemtafidserver time.

An alternative organization for a BEA TUXEDO system application might be to keep
each service subroutine in its individual file. We will useThr.ec file as an
exampleTLR.ec contains three services that could have been in their own separate
.ec files called, for exampleNQUIRY.ec , WITHDRAW.e¢ andDEPOSIT.ec . The

.ec s for each service would be compiled to their correspondis@and the

buildserver ~ command line would look like the following:

buildserver -r TUXEDO/SQL \
-s DEPOSIT -s WITHDRAWAL -s INQUIRY \
-0 TLR\
-f DEPOSIT.o -f WITHDRAW.o0 -f INQUIRY.0 \
-f util.o -f -Im

As the preceding example illustrates, there is no need to code the service functions in
one source file that represents the server. That is, the server does not need to have an
existence as a source program file at all. It can be derived from various source files and
come into existence as a server executable through the files specified on the
buildserver ~ command line. This may permit greater flexibility in building servers.

References

The writing of service subroutines using ATMI functions is the main subject of the
BEA TUXEDO Programmer's Guide

Examples obuildserver (1) command lines can also be found inBigA TUXEDO
Programmer's Guidand, of course, in Section 1 of tBEA TUXEDO Reference
Manual

BEA TUXEDO Application Development Guide 4-15

4 bankapp Servers

4-16 BEA TUXEDO Application Development Guide

CHAPTER

5 The bankapp Makefile

A Look at the bankapp Makefile

bankapp includes a makefile that makes all scripts executable, converts data entry
masks to binary format, converts the view description file to binary format, and does
all the necessary precompiles, compiles and builds to create the application servers. It
can also be used to clean up when you want to make a fresh start.

Editing bankapp.mk

As bankapp.mk is delivered there are a few fields you may want to edit, and some
others that may benefit from a little explanation.

TUXDIR

If you look atbankapp.mk , about 40 lines into the file you come to the following
comment and to theUXDIR parameter:

#

Root directory of TUXEDO System. This file must either be edited to set
this value correctly, or the correct value must be passed via "make -f

bankapp.mk TUXDIR=/correct/tuxdir", or the build of bankapp will fail.

#

TUXDIR=../..

TheTUXDIR parameter should be set to the absolute pathname of the root directory of
your BEA TUXEDO system installation.

BEA TUXEDO Application Development Guide 5-1

S The bankapp Makefile

APPDIR
You may want to give some thought to the setting ofafrleDIR parameter. As
bankapp is deliveredAPPDIR is set to the directory where thenkapp files are
located, relative tdUXDIR. The section iankapp.mk is as follows:

#

Directory where the bankapp application source and executables live.
This file must either be edited to set this value correctly, or the

correct value must be passed via "make -f bankapp.mk

APPDIR=/correct/appdir”, or the build of bankapp will fail.

#

APPDIR=$(TUXDIR)/apps/bankapp

#

If you have copied the files to another directory, as is suggestedrREADVEile, you
should set this parameter to the name of the directory to which you copied the files.
When you run the makefile, the application will be built in this directory.

NATIVE and Other /Host Parameters

There are some parameterdankapp.mk that apply to /Host. If you do not have that
add-on, you should make sure the parameters are commented out or leave them nu

Directory where the native side source files for CICS host live.
This file must either be edited to set this value correctly, or the
correct value must be passed via "make -f bankapp.mk

NATIVE=/correct/native", or the build of bankapp will fail.

#

NATIVE=$(TUXDIR)/apps/hostapp/cics/native

#

HOST - set to -DHOST if host credit card processing is desired
#HOST=-DHOST

HOST=

#

5-2 BEA TUXEDO Application Development Guide

A Look at the bankapp Makefile

Resource Manager

As bankapp is delivered, it expects to uS&IXEDO/SQLas the database resource
manager. This assumes that you have the BEA TUXEDO system database on your
system. If this is not the case, you should seRtiparameter to the name of your
resource manager as listedrinxDIR/udataobj/RM . There is more on this subject in
Chapter 6, “Databases for bankapp.”

#

Resource Manager
#
RM=TUXEDO/SQL
#

Running bankapp.mk

When you have completed the changes you wish to makaitapp.mk , run it with
the following command line:

nohup make -f bankapp.mk &

Check thenohup.out file to make sure the process completed successfully.

BEA TUXEDO Application Development Guide 5-3

S The bankapp Makefile

5-4 BEA TUXEDO Application Development Guide

CHAPTER

6 Databases for bankapp

Resource Manager Options for bankapp

This chapter covers the subject of the interface betwaekapp and a resource
manager, typically a database management system. As was mentioned previously,
bankapp is written to use the BEA TUXEDO/SQL facilities of the BEA TUXEDO
system database, which is an XA-compliant resource manager. The first part of the
chapter describes how you create the databaserkapp.

If you do not have BEA TUXEDO/SQL on your system, you have two options:

4 You can integrate an XA-compliant resource manager with the BEA TUXEDO
system and bring upankapp with only a few, relatively minor changes.

4 You can integrate a non-XA compliant resource managerhaitkapp , but the
required changes are somewhat more extensive.

These two options are discussed in the two later sections of the chapter.

The System/D RM and bankapp

How you create theankapp database depends on whether you are bringing the
application up on a single processor (SHM mode) or on a network of more than one
processor (MP mode).

BEA TUXEDO Application Development Guide 6-1

6 Databases for bankapp

Create Database in SHM Mode

This is a 2-step procedure.

1.

Set the environment by typing the following.
. ./bankvar

(If you are bringing upankapp in one continuous series of steps, you should
have done this earligsankvar sets a number of parameters that are referenced
whenbankapp.mk is run.)

Executecrbank . crbank callscrbankdb three times, changing some

environment variables each time, so that you end up with three database files on
single machine. That means you can simulate the multi-machine environment of
the BEA TUXEDO system without a network of machines.

Create the Database in MP Mode

This procedure is quite similar to the one for SHM mode:

1.

Set the environment by typing the following.
. ./bankvar

As noted above, you may already have done this step.

. Runcrbankdb to create the database for this site.

On each additional machine in your BEA TUXEDO system network, edit
bankvar to provide the pathname for tA6CONFIGvariable that is used for that
site in the configuration fileyobmp. Then repeat Step 1 and Step 2.

Failure with a semget Error

If crbankdb fails with asemget error, it is saying that it cannot get enough
semaphores. EadtPROCequires two semaphores, but you should be able to reduce
the number of processes and still tiankapp . Try reducingNPROCTBL=20n the

create database statement irrbankdb.sh t0o NPROCTBL=10

6-2 BEA TUXEDO Application Development Guide

Using an XA-compliant RM with bankapp

Using an XA-compliant RM with bankapp

The procedure for integrating an XA-compliant resource manager with the BEA
TUXEDO system is provided elsewhere in the BEA TUXEDO documentation; we
will not repeat it here. What is described here are changes that need to be made to
bankapp files to enable you to run with an alternate resource manager.

Changes to bankvar

The following environment variables are used in creating the BEA TUXEDO system
database.

BLKSIZE=512
DBNAME=bankdb
DBPRIVATE=no
DIPCKEY=80953
FSCONFIG=${APPDIR}/bankdI1

Itis unlikely that these correspond to variables needed in creating the database for the
alternate resource manager.

Changes to the bankapp Services

Since all database accessiémkapp is done with embedded SQL statements, if your
new resource manager supports SQL, you should have no trouble. Bear in mind that
the utility appinit.c includes calls tepopen() andtpclose() .tpopen() checks

the configuration file to learn how to open the application database.

BEA TUXEDO Application Development Guide 6-3

6 Databases for bankapp

Change to bankapp.mk

You must edit th&Mparameter iankapp.mk to name the new resource manager.

Also, the name of the SQL compiler and its options may be different (for example, not
esglc). The file suffix may not beec and the include directory needed to compile the
resulting.c file may be different.

Changes to crbank and crbankdb

crbank might well be ignored and not used with your alternate resource manager. Its
only function is to re-set variables and rtthankdb three timescrbankdb , on the

other hand, requires close attention. In Listing 6-1 we reproduce the beginning of the
crbankdb script to point out things that won't work with a different resource manager.

Listing 6-1 An Excerpt from the crbankdb Script

#Copyright (c) BEA Systems, Inc.
#All rights reserved

#

Create device list

#

dbadmin<<!

echo

crdl

Replace the following line with your device zero entry
${FSCONFIG} 0 2560

|

#

Create database files, fields, and secondary indices

#

sql<<!

echo

create database ${DBNAME} with (DEVNAME="${FSCONFIG},
IPCKEY=${DIPCKEY}, LOGBLOCKING=0, MAXDEV=1,

NBLKTBL=200, NBLOCKS=2048, NBUF=70, NFIELDS=80,
NFILES=20, NFLDNAMES=60, @ NFREEPART=40, NLCKTBL=200,
NLINKS=80, NPREDS=10, NPROCTBL=20, NSKEYS=20,
NSWAP=50, NTABLES=20, NTRANTBL=20, PERM='0666",

6-4 BEA TUXEDO Application Development Guide

Using an XA-compliant RM with bankapp

STATISTICS="n'

)

create table BRANCH (

BRANCH_ID integer not null,
BALANCE real,
LAST_ACCT integer,

LAST _TELLER integer,
PHONE char(14),
ADDRESS char(60),

primary key(BRANCH_ID)

) with (

FILETYPE="hash', ICF='PI', FIELDED='FML',
BLOCKLEN=${BLKSIZE}, DBLKS=8, @ OVBLKS=2

These first forty or so lines will give you an idea of what needs to be changed and what
may be salvageable. As you can sesnkdb is made up of twbere documents that
provide input to thelbadmin andsgl shell commands. The firstre file is passed to

the BEA TUXEDO system commanidadmin to create a device list for the database.
Obviously, this will not work with another resource manager. Other commands may
be needed to create table spaces and/or grant the correct privileges.

The secondiere file is passed to System/D’s interactive SQL. BEA TUXEDO/SQL
conforms closely to the standard SQL, butwhie clauses of thereate database
andcreate table statements are specific to System/D.

Note: In the scripts furnished witbankapp thecreate table statement shown in
Listing 6-1 is followed by three othereate table statements and two
createindex statements. The remarks here apply to all of these statements.

Changes to the Configuration File

This gets a little ahead of our sequence of chapters (configuration files are discussed
in Chapter 7, “Edit bankapp Configuration Files.”), but you will have to change the
*GROUPSsection to specify a differemvMSNAMParameter and to provide an
OPENINFOparameter that is recognizable by the new resource manager.

BEA TUXEDO Application Development Guide 6-5

6 Databases for bankapp

Using a non-XA Compliant RM with
bankapp

The most significant difference between a resource manager that is not XA-complian
and one that is, is that the non-XA resource manager does not take full advantage o
the BEA TUXEDO system Distributed Transaction Processing (DTP) features. Your
resource manager will operate as a local resource on the machine on which it reside
and clients within a DTP transaction will not be able to request services from your
resource manager.

For the discussion at hand, we're going to assume you want to connect an RDBMS th
doesn't use the XA 2-phase commitotmkapp . The non-XA resource manager will

be the only resource manager used by the application; the problem of integrating X4
and non-XA resource managersimkapp is not covered in this discussion. You
expect to be able to access the database using embedded SQL statements such as t
delivered withbankapp . The most important change in the functionalitypafkapp

that results from this is that tTRANSFERservice will no longer be a single, atomic
transaction. If a system error should occur between the withdrawal and the deposit i
TRANSFERYou run the risk of having a corrupted database.

Changes to bankvar

6-6

The following variables can be left null irmnkvar because they are parameters for
the BEA TUXEDO system database.

BLKSIZE
DBNAME
DBPRIVATE
DIPCKEY
FSCONFIG

The following variable can be left null bankvar because &aLOGis needed only for
DTP transactions.

TLOGDEVICE

BEA TUXEDO Application Development Guide

Using a non-XA Compliant RM with bankapp

Changes to the bankapp Clients and Services

In the.m files; that is, the source code temkapp masks, change the following.
TRANMODE=TRAN

to

TRANMODE=NOTRAN

Inaudit.c andauditcon.c remove thepbegin() , tpcommit() , andtpabort()
statements.

All calls totpopen() andtpclose() must be removed. In each service, a local
transaction must be started at the beginning of the service and a commit or rollback
must be done before eaipheturn() . The servic@PEN_ACCWill need to be
re-written since it calls thBEPOSIT service, so that the work DEPOSITis done

within the same transaction in the same server. Similat@sE_AcCTalls
WITHDRAW andXFER callsDEPOSIT andWITHDRAW.These function¢DEPOSIT,
WITHDRAWSshould be re-written as non-service functions with normal returns that can
be called from different service functions.

Changes to bankapp.mk

In bankapp.mk , set RM to null. Change dllildserver lines to remove the flag
and to include the libraries needed by your resource manager. A typgidsdrver
line should look like this.

buildserver -f servicefile .0-0 servername -l" rmiibs,...

The libraries for your resource manager will not be brought in automatically as
happens with XA-compliant resource managers that are listed in
TUXDIR/udataobj/RM , so you have to specify what libraries you need on the
buildserver ~ command line.

BEA TUXEDO Application Development Guide 6-7

6 Databases for bankapp

Changes to crbank and crbankdb

Do not userbank .

You may be able to salvage some of dfeate table statements irbankdb . At
any rate, you should plan to use the same table and field names in your database as
used inbankapp in order to be able to use the existing services.

Changes to the Configuration File

In the*GROUPSsection, change the existing entries as follows.
If you are usingibbshm.

*GROUPS

DEFAULT: LMID=SITE1
BANKB1 GRPNO=1
BANKB2 GRPNO=2
BANKB3 GRPNO=3

If you are usingibbmp.

*GROUPS

DEFAULT:

BANKB1 LMID=SITE1 GRPNO=1
BANKB2 LMID=SITE2 GRPNO=2

The above changes do two things: you removea th&@NAMBpecification so you
default to the nulkA interface, and you remove t®ENINFOstatements, which are
not used with the null XA interface.

In addition to these changes, changedBeAULTentry for the'SERVICE entries to set
AUTOTRAN=N

Changes to the Driver Scripts

Editdriversh andpopulate.sh ~ to change thed -t30 argument taid -d 30

6-8 BEA TUXEDO Application Development Guide

CHAPTER

{ Edit bankapp
Configuration Files

Configuration Files for bankapp

A configuration file brings together all the detail about how an application maps to the
machines on which it runs. Aankapp is delivered, there are two configuration files

in the ASCII format described wbbconfig (5). The file calledibbshm contains the
configuration for an application on a single computer. The file cabbechp contains

the configuration for a networked application.

The configuration files are delivered with the value of some parameters enclosed in
angle brackets (<>). You need to replace these generic values with values that pertain
to your installation. All of these fields occur within tRESOURCES/ACHINES and
GROUPSections in both files. lubbmp, theNETWOREection also has entries you must
localize. In Listing 7-1 we showbbmp through theNETWOREection; this illustration

also covers all the changes you need to maREBOURCEMACHINES andGROUPS

if you are bringing up a single-processor application. An explanation of the values that
need to be replaced follows Listing 7-1.

If you want to enable the application password feature, add this lineRE #HGIRCES
section ofubbshm or ubbmp:

SECURITY APP_PW

BEA TUXEDO Application Development Guide 7-1

{ Edit bankapp Configuration Files

Listing 7-1 Configuration File Fields to Be Replaced

#Copyright (c) 1997 BEA Systems, Inc.
#All rights reserved

*RESOURCES
IPCKEY 80952
001 UID <user id from id(1)>
002 GID <group id from id(1)>
PERM 0660

MAXACCESSERS 40
MAXSERVERS 35
MAXSERVICES 75
MAXCONV 10
MAXGTT 20

MASTER SITEL,SITE2
SCANUNIT 10
SANITYSCAN 12
BBLQUERY 180
BLOCKTIME 30
DBBLWAIT 6
OPTIONS LAN,MIGRATE

MODEL MP

LDBAL Y

#

*MACHINES
003 <SITE1's uname> LMID=SITE1
004 TUXDIR="<TUXDIR>"
005 APPDIR="<APPDIR>"

ENVFILE="<APPDIR>/ENVFILE"
TLOGDEVICE="<APPDIR>/TLOG"
TLOGNAME=TLOG
TUXCONFIG="<APPDIR>/tuxconfig"

006 TYPE="<machine type>"
ULOGPFX="<APPDIR>/ULOG"

007 <SITE2's uname> LMID=SITE2
TUXDIR="<TUXDIR>"
APPDIR="<APPDIR>"
ENVFILE="<APPDIR>/ENVFILE"
TLOGDEVICE="<APPDIR>/TLOG"
TLOGNAME=TLOG
TUXCONFIG="<APPDIR>/tuxconfig"
TYPE="<machine type>"
ULOGPFX="<APPDIR>/ULOG"

#

*GROUPS

DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2
BANKB1 LMID=SITE1l GRPNO=1

7-2 BEA TUXEDO Application Development Guide

Configuration Files for bankapp

008 OPENINFO="TUXEDO/SQL:<APPDIR>/bankdl1:bankdb:readwrite"
BANKB2 LMID=SITE2 GRPNO=2
009 OPENINFO="TUXEDO/SQL:<APPDIR>/bankdl2:bankdb:readwrite"

*NETWORK

010 SITE1l NADDR="<network address of SITE1>"

011 BRIDGE="<device of provider>"

012 NLSADDR="<network listener address of SITE1>"
013 SITE2 NADDR="<network address of SITE2>"

014 BRIDGE="<device of provider>"

015 NLSADDR="<network listener address of SITE2>"

Notes to Listing 7-1

The following table describes the values you must provide for the angle-bracketed
strings.

Line Value Description

001 UID The effective user ID (UID) for the owner of the bulletin board IPC structures. In
a multiprocessor configuration, the value must be the same on all machines. You
avoid problems by using the same UID as that of the owner of the BEA TUXEDO
system software.

002 GID The effective group ID (GID) for the owner of the bulletin board IPC structures.
In a multiprocessor configuration, the value must be the same on all machines.
Users of the application should share this group ID.

003 SITE1 name The name of the machine. Use the value produced by the UNIX command:
uname -n

004 TUXDIR The absolute pathname of the root directorytfr BEA TUXEDO system
software. Make this a global change to put the value in all occurrences of
<TUXDIR>in the file.

005 APPDIR The absolute pathname of the directory where the application runs. Make this a
global change to put the value in all occurrencesA#PDIR> in the file.

BEA TUXEDO Application Development Guide 7-3

7

Edit bankapp Configuration Files

Line Value Description

006

machine type An identifying string. This parameter is important in a networked application
where machines of different types are present. BRA TUXEDO system
checks for the value on all communication between machines. Only if the values
are different are the messagrecode/decode routines called to convert the

data.

007 SITE2 name The name of the second machine. Use the value produced by the UNIX command
uname -n
on that machine.

008 OPENINFO The statement here and in the following entry are in a format understood by BEA
TUXEDO system resource managers. They need to be changed (or removed) to
meet the requirements of other resource managers.

009 Network Address of The full network listening address of the bridge process on this machine. For

SITE1 example addresses, s&kdministering the BEA TUXEDO System

010 Device of provider The full pathname of the device for your network provider. This value should be
the same for all entries in tNETWORKection.

011 Network listener The value of the network listener address fortlisten process on this

address oSITE1 machine.
012 Network Address of The full network listening address of the bridge process on this machine. This will
SITE2 be a different value on each machine.

013 Device of provider The full pathname of the device for your network provider. This value should be
the same for all entries in tNETWORKection.

014 Network listener The value of the network listener address fortlisten process on this

address oSITE2 machine.
References
All of the configuration parameters and their values are descrihétidonfig (5) in
the BEA TUXEDO Reference Manual
As noted above, there are examples of the proper format for network address
parameters il\dministering the BEA TUXEDO System
7-4 BEA TUXEDO Application Development Guide

CHAPTER

8 Create tuxconfig, tlog;
Start tlisten

Creating tuxconfig, tlog tlisten

This chapter describes how to prepare to baokapp .

You will find that most of the material applies to a networked application, that is, a
configuration with more than one machine. If you are bringagapp up in SHM
mode, you do not have to be concerned abouti¢ted process or about creating a
TLOGoOnN another machine.

As with all the steps since Chapter 2, “bankapp Files,” of this guide, you should be in
the directory in which youwankapp files are located and you must set the
environment by entering.

. ./bankvar

Loading the Configuration File

Once the configuration file has been edited to your satisfaction, it must be loaded to a
binary file on youtMASTERI0de. The binary configuration file has a file name of
tuxconfig ; its pathname relative ®PPDIR s in the environment variable,

TUXCONFIG The file should be created by a person with the effective user ID and
group ID of the BEA TUXEDO system administrator, which should be the same as the

BEA TUXEDO Application Development Guide 8-1

8 Create tuxconfig, tlog, Start tlisten

UID andGID values in your configuration file. If these conditions are not observed, you
may run into permission problems in runnbgkapp . The command line for creating
tuxconfig is:

tmloadcf ubbmp

There is ay option to suppress prompts that ask if you really want to install
TUXCONFIGor to overwrite it if it already exists. There iscaoption that calculates
the numbers for IPC resources the configuration requires.

tuxconfig needs to be installed only on tli@STER0de; it is propagated to other
nodes bytmboot when the application is booted.

If you have specifie§ECURITYas an option for the configuratiamloadcf prompts

you to enter an application password. The password you select can be up to 30
characters long. Client processes joining the application will be required to supply the
password.

tmloadcf parses the ASCII configuration file for syntax errors before it loads it, so if
there are errors in the file, the job fails.

Creating the TLOG

8-2

TheTLOGiIs the transaction log needed by the BEA TUXEDO system in the
management of global transactions. Before an application can be booted an entry fc
theTLOGmust be created on all nodes of the application, and a file for the log itself
must be created on tihvASTER0de.

Note: In a production environment, the device list may be the same as that used fo
the database. (Séaministering the BEA TUXEDO Systgm

There is a script inankapp calledcrtiog that creates the device list and theGfor
you. The device list is created using the@GDEVICEvariable frombankvar . On the
MASTER10de, enter the command as follows.

crtlog -m

On all other machines, do not specify, when the system is booted, the BBL on each
nonMASTER1ode creates the log.

If you are using a non-XA resource manager, there is no requirement for a transactic
log so you may skip this step.

BEA TUXEDO Application Development Guide

Creating tuxconfig, tlog tlisten

Starting tlisten

tisten is the ProductName listener process that provides a remote service
connection between nodes of an application for ProductName processes such as
tmboot . It must be installed on all nodes of your network as defined iINET&/ORK
page of the configuration file.

Startingtlisten is described in more detail in tB&EA TUXEDO Installation Guide,

as a step in the installation of the ProductName software. For the purposes of running
bankapp you may prefer to start a separate instance. It can be done with a command
like this.

tlisten -d /dev/ devname -| nlsaddr

wheredevname is the device name of your network provider. This is apt to be
/devitcp . (If your provider isSockets , the-d option is not needed.)

Thelogfile used bylisten is separate from all other BEA TUXEDO system log
files, but one log can be used by more thantiisien process. The default filename
is $TUXDIR/udataobj/tlog

Thenlsaddr value must be the same as that specified foNtisADDRparameter for
this machine in your configuration file. As noted in the previous chapter, this value
changes from one machine to another; it is important thattygen arguments
agree with your configuration file specification.

Note: Detection of an error in this specification is not easyadcf does not check
for agreement between your configuration file and yisten ~ command.
The symptom is most likely to be that the application fails to boot on the
machine where the mismatchrisaddr values occurs or where ttieten
process has not been started.

Stopping tlisten

tlisten is designed to run asdmemorprocess. The reference page has some
suggestions about incorporating it in startup scripts or running it@s ajob. For
bankapp , you may prefer simply to start it and bring it down as you need it. To bring
it down, send it &IGTERMsignal like this.

kill-15 pid

BEA TUXEDO Application Development Guide 8-3

8 Create tuxconfig, tlog, Start tlisten

Error Messages from tlisten Problems

If no remotetlisten is running, the boot sequence is displayed on your screen as
follows.

Booting admin processes...

exec DBBL -A:
on MASTER -> process id=17160... Started.
exec BBL -A:
on MASTER -> process id=17161...Started.
exec BBL -A:
on NONMAST2 -> CMDTUX_CAT:814: cannot propagate TUXCONFIG file

tmboot: WARNING: No BBL available on site NONMAST2.
Will not attempt to boot server processes on that site.

exec BBL -A:
on NONMAST1 -> CMDTUX_CAT:814: cannot propagate TUXCONFIG file

tmboot: WARNING: No BBL available on site NONMASTL1.
Will not attempt to boot server processes on that site.

2 processes started.
and messages such as these will be iuth@s

133757.mach1!DBBL.17160: LIBTUX_CAT:262: std main starting
133800.mach1!BBL.17161: LIBTUX_CAT:262: std main starting
133804.mach1!BRIDGE.17162: LIBTUX_CAT:262: std main starting
133805.mach1!tmboot.17159: LIBTUX_CAT:278: Could not contact NLS on NONMAST2
133805.mach1!tmboot.17159: LIBTUX_CAT:276: No NLS available for remote
machine NONMAST2
133806.mach1!tmboot.17159: LIBTUX_CAT:276: No NLS available for remote
machine NONMAST2
133806.machl!tmboot.17159: CMDTUX_CAT:850: Error sending TUXCONFIG
propagation request to TAGENT on NONMAST2
133806.mach1!tmboot.17159: WARNING: No BBL available on site NONMAST?2.
Will not attempt to boot server processes on that site.
133806.mach1!tmboot.17159: LIBTUX_CAT:278: Could not contact NLS on NONMAST1
133806.mach1!tmboot.17159: LIBTUX_CAT:276: No NLS available for
remote machine NONMAST1
133806.mach1!tmboot.17159: LIBTUX_CAT:276: No NLS available for
remote machine NONMAST1
133806.machl!tmboot.17159: CMDTUX_CAT:850: Error sending TUXCONFIG
propagation request to TAGENT on NONMAST1
133806.mach1!tmboot.17159: WARNING: No BBL available on site NONMAST1.
Will not attempt to boot server processes on that site.

8-4 BEA TUXEDO Application Development Guide

Creating tuxconfig, tlog tlisten

If tisten is started with the wrong machine address, the following messages appear
in thetlisten log.

Mon Aug 26 10:51:56 1991; 14240; BEA TUXEDO System Listener Process Started

Mon Aug 26 10:51:56 1991; 14240; Could not establish listening endpoint
Mon Aug 26 10:51:56 1991; 14240; Terminating listener process, SIGTERM

References

For more information abottsten and theTLOG see Chapter 15, “Monitoring Log
Files,” in Administering the BEA TUXEDO System

For examples of network addresses, see Chapter 6, “Building Networked
Applications,” inAdministering the BEA TUXEDO System

Installation oftlisten is covered, as noted above, in BIeEA TUXEDO Installation
Guide

The following pages in thBEA TUXEDO Reference Manuale important.
4 tlisten (1)
4 tmadmin (1) for thecrdl andcrlog commands

4 tmloadcf (1)

BEA TUXEDO Application Development Guide 8-5

8 Create tuxconfig, tlog, Start tlisten

8-6 BEA TUXEDO Application Development Guide

CHAPTER

O Boot the Application;
Populate the Database

tmboot and populate

This chapter covers booting the application and putting enough records into the
database to simulate a real application.

Checking IPC Resources

When your application is defined to the point where you are ready to boot it, you
should first run a check to make sure your machine has enough IPC resources to

support your application. Theboot command has-a option that produces a report
like that shown in Listing 9-1.

BEA TUXEDO Application Development Guide 9-1

9 Boot the Application; Populate the Database

9-2

Listing 9-1 tmboot -c IPC Report

Ipc sizing (minimum /T values only)...
Fixed Minimums Per Processor

SHMMIN: 1
SHMALL: 1
SEMMAP: SEMMNI

Variable Minimums Per Processor

SEMUME, A SHMMAX
SEMMNU, * *
Node SEMMNS SEMMSL SEMMSL SEMMNI MSGMNI MSGMAP SHMSEG
sfpup 60 1 60 A+1 10 20 76K
sfsup 63 5 63 A+1 11 22 76K

where 1 <= A<= 8.

The number of expected application clients per processor should be added to each
MSGMNValue.MSGMABhould be twiceMSGMNI

The minimum IPC requirements can be compared to the parameters set for your
machine. The most likely place to find the settings on a UNIX system machine is in
the file /etc/conf/cf.d/mtune , but this can vary from one platform to another and
between versions of the UNIX operating system. See the system administrator’s guid
for your machine for information about how to find and change these parameters. If
you are using the BEA TUXEDO system on a Windows NT platform, there is a control
panel that displays and sets IPC parameters.

BEA TUXEDO Application Development Guide

tmboot and populate

Executing tmboot

As with most procedures in this guide, we start by setting the environment:

../bankvar

The variables particularly needed tiboot areTUXCONFIGAPPDIR, andTUXDIR.
The command to boot the complete application is the following.

tmboot

Running this command causes the following prompt to be displayed.

Boot all admin and server processes? (y/n): y

When you respong to the prompt, you get a running report that starts like this.
Booting all admin and server processes in /usr/me/appdir/tuxconfig

Booting all admin processes...

exec BBL -A:
process id=24223... Started.

The display continues until all servers in the configuration have been started. It ends
with a count of the number of servers started.

There are options that can be used to boot only a portion of the configuration. For
example, if theA flag is used, only administrative servers are booted, but with no
options specified, everything is booted.

In addition to the report on servers bootethoot also sends messages to theG.

The Userlog: ULOG

We have referred previously to tbeoG but this is the first time it has actually played
an important role in the process under discussion. It is dalled(short for user log)
because that is the default prefix; the actual file name of the lagoisfollowed by
the date in the form:mmddyy. Log messages can be directedt@Grom user-written
modules through a call iserlog (3c), but theULOGIs also used heavily by BEA
TUXEDO system processes suchrasoot .

BEA TUXEDO Application Development Guide 9-3

9 Boot the Application; Populate the Database

Running the populate Script

Thepopulate.sh script is provided wittbankapp to put enough records into the
database to work witlpopulate is a one-line script that pipes records from a program
calledgendata to the system servard. Thegendata program creates records for 10
branches, 30 tellers, and 200 accounts. A file of the records created isgogpdin |,

S0 you can use values that are in the database when forming your sample service
requests. The script is run just by entering the following word.

populate

References

9-4

For more information abouthboot , see Chapter 4, “Starting and Shutting Down
Applications,” inAdministering the BEA TUXEDO System

Chapter 7, “Error Management,” of tB&A TUXEDO Programmer's Guidentains
background information on the user of tiserlog . Throughout that guide there are
examples of messages being sent to the log.

The following pages in thBEA TUXEDO Reference Manuale important:
4 tmboot (1)
4 ud(1)

4 userlog (3c)

BEA TUXEDO Application Development Guide

CHAPTER

1 ORun bankapp

Run the Application

This chapter covers some of the scripts and commands you can usergkpgp has
been booted.

We recognize the probability, since you have a system that is active, that you already
have set theankapp environment. However, if that is not the case, if you are logging
in cold to a running system, you will need to enter the following.

. ./bankvar

to set your environment faankapp .

The bankapp run Script

A script calledrun is provided withbankapp . This script brings up the initial menu
with its choice of six services you can requestkapp to performrun contains a
single command line:

mio -i MENU

where thei option tellsmio to use thevENUmask rather than the default, which
prompts for the name of the mask to use.

You might want to enter theio command directly, just to see what happens. There is
aHELPscreen that gives you a summary of a number of keystrokes that enable you to
move around imio masks.

The output file that was created by fupulate script,pop.out , can be used to
provide account numbers, branch IDs, and other fields you can specify on the data
entry masks, so your service requests produce some output.

BEA TUXEDO Application Development Guide 10-1

10 Run bankapp

Running the audit Client Program

Theaudit.c client program was described in Chapter 3, “bankapp Client Programs.”
To execute the program, enter the command line as follows.

audit{-a | -t} [branch_id]

specifying eithera for account balances ar for teller balances. If you specify a
branch_id , the reportis limited to that branch; if you do not speciiyaach_id , the
report is for all branches.

Running auditcon

To start the conversational version of thelit program, enter the command.
auditcon

The program displays the following message on your terminal.

to request a TELLER or ACCOUNT balance for a branch,

type the letter t or a, followed by the branch id,

followed by <return>

for ALL TELLER or ACCOUNT balances, type t or a <return>
g <return> quits the program

When you have typed your request and pressed return, the requested information is
displayed on your terminal followed by this.

another balance request ??

The program continues to offer you this service until you enter a

10-2 BEA TUXEDO Application Development Guide

Run the Application

Using the driver Program

Thedriver program is a script that generates a series of transactions to simulate
activity on the system. It is included as part of the sample application so you can get
realistic-looking statistics with commands of theadmin interface. By default, the

driver program generates 300 transactions. You can change that number with the
option, as in the following example.

driver -n1000

specifies that the program should run for 1,000 loops.

Using tmadmin

This book is not the place to go into an extensive description of the BEA TUXEDO
system administrative interfaaenadmin . We encourage you to use it whikenkapp

is running to see the kind of information you can produce witlimin

subcommands.

Shutting Down bankapp

When you want to bringankapp down, enter themshutdown (1) command with no
arguments, as follows.

tmshutdown

Running this command (or tkeutdown command ofmadmin) will cause the
shutting down of all application servers, gateway servers, TMSs, and administrative
servers, and the removal of associated IPC resources.

Theshutdown command must be issued from tMaSTERnachine.

BEA TUXEDO Application Development Guide 10-3

10 Run bankapp

References

For more information about usimgadmin , the command-line interface for
administration, see Chapter 14, “Monitoring a Running SystenAtiministering the
BEA TUXEDO System

The following pages of thBEA TUXEDO Reference Manuade important:
4 mio(1)
4 tmadmin (1)

4 tmshutdown (1)

10-4 BEA TUXEDO Application Development Guide

	Copyright
	Contents
	1 A Simple Application
	About This Guide
	Organization of the Guide
	Assumptions
	Documentation Roadmap

	About This Chapter
	Some Preliminaries

	The simpapp Tutorial
	Step 1: Copy the simpapp Files
	Step 2: Examine the Client Program
	References

	Step 3: Compile the Client
	References

	Step 4: Examine the Server
	References

	Step 5: Compile the Server
	References

	Step 6: Edit the Configuration File
	References

	Step 7: Load the Configuration File
	References

	Step 8: Boot the Application
	References

	Step 9: Enter a Request
	Step 10: Using tmadmin
	References

	Step 11: Shut Down the Application
	References

	Summary

	2 bankapp Files
	Directory Structure for bankapp
	Files
	Edit bankvar to Set Environment Variables
	Additional PATH Component for SunOS

	3 bankapp Client Programs
	A Look at bankapp Client Programs
	System Client Programs
	Mask Source Code
	Using mio(1)
	Buffer Types
	Using ud(1)

	audit.c: A Request/Response Client
	audit.c Source Code

	auditcon.c: A Conversational Client
	auditcon.c Source Code

	bankmgr.c: A Client that Monitors Events
	Building Client Programs
	References

	4 bankapp Servers
	A Look at bankapp Servers
	Request/response Servers
	A Conversational Server
	Service Definitions
	Service Algorithms
	Utilities Incorporated into Servers
	Building Servers
	Using the buildserver Command in the bankapp
	The ACCT Server
	The BAL Server
	The BTADD Server
	The TLR Server
	The XFER Server
	Servers Built in bankapp.mk

	Alternative Way to Code Services
	References

	5 The bankapp Makefile
	A Look at the bankapp Makefile
	Editing bankapp.mk
	TUXDIR
	APPDIR
	NATIVE and Other /Host Parameters
	Resource Manager

	Running bankapp.mk

	6 Databases for bankapp
	Resource Manager Options for bankapp
	The System/D RM and bankapp
	Create Database in SHM Mode
	Create the Database in MP Mode
	Failure with a semget Error

	Using an XA-compliant RM with bankapp
	Changes to bankvar
	Changes to the bankapp Services
	Change to bankapp.mk
	Changes to crbank and crbankdb
	Changes to the Configuration File

	Using a non-XA Compliant RM with bankapp
	Changes to bankvar
	Changes to the bankapp Clients and Services
	Changes to bankapp.mk
	Changes to crbank and crbankdb
	Changes to the Configuration File
	Changes to the Driver Scripts

	7 Edit bankapp Configuration Files
	Configuration Files for bankapp
	Notes to Listing�7-1
	References

	8 Create tuxconfig, tlog; Start tlisten
	Creating tuxconfig, tlog tlisten
	Loading the Configuration File
	Creating the TLOG
	Starting tlisten
	Stopping tlisten
	Error Messages from tlisten Problems

	References

	9 Boot the Application; Populate the Database
	tmboot and populate
	Checking IPC Resources
	Executing tmboot
	The Userlog: ULOG

	Running the populate Script
	References

	10 Run bankapp
	Run the Application
	The bankapp run Script
	Running the audit Client Program
	Running auditcon
	Using the driver Program
	Using tmadmin
	Shutting Down bankapp
	References

