
BEA TUXEDO
Administering the

B E A T UX E DO R e l e a s e 6 . 5
D o c um e n t E d i t i o n 6 . 5

F e b r u a r y 1 9 9 9

BEA TUXEDO System

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Connect, BEA
Manager, BEA MessageQ, Jolt and M3 are trademarks of BEA Systems, Inc. TUXEDO is a registered trademark
in the United States and other countries.

All other company names may be trademarks of the respective companies with which they are associated.

Administering the BEA TUXEDO System

Document Edition Date Software Version

6.5 February 1999 BEA TUXEDO Release 6.5

.....xv

....xv

...xv

.. xvi

xvii

. xix

....xx

... xxi

xxi

xxii

xxiii

xxiii

xxiii

xxiii

.. 1-1

.. 1-2

... 1-3

.. 1-4

. 1-4

.. 1-4

. 1-5

2-1
Contents

Preface

Purpose of This Document ...

Who Should Read This Document...

How This Document Is Organized..

How to Use This Document ..

Opening the Document in a Web Browser..

Printing from a Web Browser ...

Documentation Conventions ..

Related Documentation ..

BEA TUXEDO Documentation...

BEA Publications ..

Other Publications ..

Contact Information...

Documentation Support..

Customer Support...

1. Introduction to Administration

The Administrator’s Job ..

The Groundwork Phase..

The Operational Phase ..

Roadmap for Your Responsibilities ..

Planning Your Configuration ...

Questions About the Design...

Questions About Server Applications ...

2. Administration Tools

Configuration and Run-time Administration...
Administering the BEA TUXEDO System iii

. 2-2

2-3

. 2-4

.. 2-5

.. 2-6

.. 3-2

3-2

. 3-3

... 3-3

3-3

.. 3-6

. 3-6

. 3-7

. 3-8

3-9

3-11

-12

-13

3-14

3-15

-16

3-17

3-18

18

3-20

21

-22

3-23

3-24

3-24

-24
Tools for Configuration...

Tools for Run-time Administration..

BEA TUXEDO Web-based GUI..

Command-line Interface ..

AdminAPI..

3. Creating a Configuration File

What Is the Configuration File? ..

Two Forms of the Configuration File...

Contents of the Configuration File ..

Setting Domain-wide Parameters ...

Identifying Information in the RESOURCES Section

Setting the Address of Shared Memory..

Identifying the Master Machine ..

Setting the Application Type...

Defining Access Control ...

Defining IPC Limits ...

Enabling Load Balancing ...

Setting Buffer Type and Subtype Limits..3

Setting the Number of Sanity Checks and Blocking Timeouts................3

Setting Conversation Limits ...

Setting the Security Level ..

Setting Parameters of Unsolicited Notification.. 3

Protecting Shared Memory...

Configuring Machines ...

Identifying Machines in the MACHINES Section................................... 3-

Reserving the Physical Address and Machine ID

Identifying the Location of the Configuration File 3-

Identifying the Locations of the System Software and Application Server Machines
3-21

Identifying the Location of the Log File ..3

Specifying Environment Variable Settings for Processes

Overriding System-wide Parameters..

Configuring Groups ...

Specifying a Group Name, Number, and LMID3
iv Administering the BEA TUXEDO System

3-25

-25

3-27

3-28

3-29

-31

-31

-33

3-34

3-34

3-35

35

3-36

-37

-37

38

3-38

3-41

41

-42

-43

-43

-44

47

.. 4-1

.. 4-1

4-7

4-10

4-11

4-11

4-11

4-16
Configuring Servers...

Identifying Server Information in the SERVERS Section 3

Defining Server Name, Group, and ID ..

Using Server Command-Line Options...

Setting the Order in Which Servers Are Booted

Identifying the Location of the Server Environment File 3

Identifying Server Queue Information ... 3

Defining Server Restart Information.. 3

Specifying a Server as Conversational...

Defining Server Access to Shared Memory...

Configuring Services ...

Identifying BEA TUXEDO Services in the SERVICES Section 3-

Enabling Load Balancing ...

Controlling the Flow of Data by Service Priority 3

Specifying Different Service Parameters for Different Server Groups.... 3

Specifying a List of Allowable Buffer Types for a Service 3-

Service Timeout Errors ..

Configuring Routing..

Defining Routing Criteria in the ROUTING Section............................... 3-

Specifying Range Criteria in the ROUTING Section 3

Configuring Network Information .. 3

Specifying Information in the NETGROUPS Section............................. 3

Sample Network Groups Configuration... 3

Configuring the UBBCONFIG File with Netgroups 3-

4. Starting and Shutting Down Applications

Starting Applications ...

Prerequisite Checklist...

Booting the Application ...

Shutting Down Applications ...

Using tmshutdown...

Clearing Common Problems ...

Common Startup Problems ..

Common Shutdown Problems..
Administering the BEA TUXEDO System v

. 5-1

5-2

5-2

... 5-3

.. 5-3

5-3

on

. 5-5

5-6

. 5-7

5-8

-9

. 5-9

ile

.. 6-1

6-2

-5

6-7

6-8

6-10

-10

-12

6-12

-15

... 7-1

7-2

7-3

. 7-3
5. Distributing Applications

Why Distribute an Application? ...

Benefits of a Distributed Application...

Characteristics of Distributing an Application...

Using Data-dependent Routing ..

Characteristics of Data-dependent Routing..

Example: A Distributed Application ..

Modifying and Creating the UBBCONFIG Sections for a Distributed Applicati
5-4

Modifying the GROUPS Section ..

Modifying the SERVICES Section ..

Creating the ROUTING Section ...

Example of UBBCONFIG Sections in a Distributed Application

Modifying the Domain Gateway Configuration File to Support Routing......... 5

What Is the Domains Gateway Configuration File?..................................

Description of Parameters in the ROUTING Section of the DMCONFIG F
5-9

6. Building Networked Applications

Terms and Definitions ...

Configuring Networked Applications ...

Example: A Network Configuration with Multiple Netgroups 6

The UBBCONFIG File for the Network Example.....................................

Assigning Priorities for Each Network Group ...

Running a Networked Application ..

Scheduling Network Data over Parallel Data Circuits 6

Network Data in Failover and Failback.. 6

Using Data Compression for Network Data...

Using Link-Level Encryption...6

7. Configuring Transactions

Understanding Transactions ...

Modifying the UBBCONFIG File to Accommodate Transactions

Specifying Application-Wide Transactions in the RESOURCES Section

Creating a Transaction Log (TLOG)...
vi Administering the BEA TUXEDO System

rver
. 7-5

. 7-8

7-9

0

11

-12

7-12

-13

7-14

-15

8-1

. 8-2

8-4

.. 8-5

. 8-5

8-6

s
8-7

. 8-7

8-8

8-10

8-13

8-14

8-14

-15

. 8-15

.. 9-1

.. 9-2
Defining Each Resource Manager (RM) and the Transaction Manager Se
in the GROUPS Section...

Enabling a Service to Begin a Transaction in the SERVICES Section

Modifying the Domain Configuration File to Support Transactions

Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE,
MAXRDTRAN, and MAXTRAN Parameters 7-1

Characteristics of the AUTOTRAN and TRANTIME Parameters.......... 7-

Example: A Distributed Application Using Transactions 7

The RESOURCES Section...

The MACHINES Section... 7

The GROUPS and NETWORK Sections...

The SERVERS, SERVICES, and ROUTING Sections 7

8. Working with Multiple Domains

Benefits of Using BEA TUXEDO System Domains ..

What Is the Domains Gateway Configuration File?...

Components of the DMCONFIG File..

Configuring Local and Remote Domains..

Setting Environment Variables ...

Building a Local Application Configuration File and a Local Domains
Gateway Configuration File..

Building a Remote Application Configuration File and a Remote Domain
Gateway Configuration File..

Example of a Domains-based Configuration ..

Defining the Local Domains Environment ..

Defining the Local and Remote Domains, Addressing, and Imported and
Exported Services ...

Defining the Exported Services..

Using Data Compression Between Domains ..

Ensuring Security in Domains...

Creating a Domain Access Control List (ACL) 8

Routing Service Requests to Remote Domains..

9. Managing Workstation Clients

Workstation Terms ..

What Is a Workstation Client? ..
Administering the BEA TUXEDO System vii

-3

9-4

.. 9-5

9-6

9-7

.. 9-7

. 9-8

-9

10-1

0-2

10-3

0-7

0-7

.. 10-8

-10

0-10

0-11

.11-1

11-4

11-5

1-6

11-6

11-7

1-8

1-9

1-9

-10

-10

12-2

2-2
Illustration of an Application with Two Workstation Clients 9

How the Workstation Client Connects to an Application

Setting Environment Variables..

Setting the Maximum Number of Workstation Clients.....................................

Configuring a Workstation Listener (WSL) ..

Format of the CLOPT Parameter ...

Command-line Options of the CLOPT Parameter

Modifying the MACHINES Section to Support Workstation Clients 9

10. Managing Queued Messages

Terms and Definitions ...

Overview of the BEA TUXEDO Queued Message Facility1

Administrative Tasks...

Setting the QMCONFIG Environment Variable ... 1

Using qmadmin, the /Q Administrative Interface ...1

Creating an Application Queue Space and Queues

Modifying the Configuration File.. 10

Associating a Queue with a Group... 1

Listing the /Q Servers in the SERVERS Section 1

11. Securing Applications

Security Strategy...

Configuring the RESOURCES SECURITY Parameter

Implementing Operating System Security...

Implementing Application Password-level Security 1

Implementing Security via an Authentication Server......................................

The Authentication Server..

Adding, Modifying, and Deleting User Accounts.................................... 1

Adding, Modifying, and Deleting Groups.. 1

Implementing Security via Access Control Lists .. 1

Limitations of ACLs... 11

Administering ACLs .. 11

12. Monitoring a Running System

Overview of System and Application Data ...

Components and Activities for Which Data Is Available 1
viii Administering the BEA TUXEDO System

. 12-2

12-3

12-3

12-5

12-6

12-6

12-7

2-13

-14

2-16

2-17

2-18

2-19

2-20

2-21

-21

2-24

2-25

13-2

. 13-2

13-2

13-2

. 13-3

13-4

13-4

. 13-5

13-5

. 13-5

13-5

13-6

13-6

13-6

13-6
Where the Data Resides ..

How You Can Use the Data ...

Types of Data ...

Monitoring Methods ..

Using the tmadmin Command Interpreter ...

What Is tmadmin? ..

How a tmadmin Session Works ...

Running tmadmin Commands... 1

Monitoring a Running System with tmadmin ... 12

Example: Output from tmadmin Commands .. 1

printqueue Output... 1

printconn Data .. 1

printnet Command Output.. 1

printtrans Command Output... 1

Case Study: Monitoring Run-time bankapp .. 1

Configuration File for bankapp .. 12

Output from Checking the Local IPC Resources 1

Output from Checking System-wide Parameter Settings....................... 1

13. Monitoring Log Files

What Is the ULOG?...

Purpose ..

How Is the ULOG Created?...

How Is the ULOG Used? ...

Message Format ..

Location..

What Is tlisten?..

Purpose ..

How Is the tlisten Log Created?...

Message Format ..

Location..

What Is the Transaction Log (TLOG)? ...

How Is the TLOG Created? ...

How Is the TLOG Used?..

Location..
Administering the BEA TUXEDO System ix

13-7

3-7

3-8

3-14

-14

-15

-16

4-1

. 14-2

14-3

14-3

14-4

. 14-4

.14-5

14-5

4-6

4-6

. 14-7

14-8

4-10

4-10

-11

-12

15-1

15-2

15-2

15-3
Creating and Maintaining Logs ...

How to Assign a Location for the ULOG .. 1

Creating a Transaction Log (TLOG).. 1

Using Logs to Detect Failures ... 1

Analyzing the User Log (ULOG)... 13

Analyzing the tlisten Log ... 13

Analyzing a Transaction Log (TLOG)... 13

14. Tuning Applications

Maximizing Your Application Resources ...1

When to Use MSSQ Sets..

Enabling Load Balancing ..

Two Ways to Measure Service Performance Time..................................

Assigning Priorities to Interfaces or Services..

Characteristics of the PRIO Parameter..

Bundling Services into Servers...

When to Bundle Services ...

Enhancing Efficiency with Application Parameters.. 1

Setting the MAXACCESSERS, MAXSERVERS, MAXINTERFACES, and
MAXSERVICES Parameters ..1

Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE Parameters
14-6

Setting the SANITYSCAN, BLOCKTIME, BBLQUERY, and DBBLWAIT Parameters
14-7

Setting Application Parameters ..

Determining IPC Requirements...

Measuring System Traffic ... 1

Example: Detecting a System Bottleneck .. 1

Detecting Bottlenecks on UNIX Platforms .. 14

Detecting Bottlenecks on Windows NT Platforms 14

15. Migrating Applications

About Migration ..

Migration Options..

Switching Master and Backup Machines ..

How to Switch the Master and Backup Machines....................................
x Administering the BEA TUXEDO System

15-3

15-4

m
15-4

5-5

15-5

15-6

5-7

the
5-7

5-8

15-9

5-9

5-10

6-1

6-2

. 16-2

16-3

6-4

6-5

7-1

17-2

17-3

7-4

7-7

17-9

17-9

10

7-12

17-13
Examples: Switching Master and Backup Machines

Migrating a Server Group..

Migrating a Server Group When the Alternate Machine Is Accessible fro
the Primary Machine...

Migrating a Server Group When the Alternate Machine Is Not Accessible
from the Primary Machine .. 1

Examples: Migrating a Server Group...

Migrating Machines...

Migrating Machines When the Alternate Machine Is Accessible from the
Primary Machine... 1

Migrating Machines When the Alternate Machine Is Not Accessible from
Primary Machine... 1

Examples: Migrating a Machine .. 1

Canceling a Migration ...

Example: A Migration Cancellation .. 1

Migrating Transaction Logs to a Backup Machine 1

16. Dynamically Modifying Systems

Dynamic Modification Methods.. 1

Procedures for Dynamically Modifying Your System.................................... 1

Suspending and Resuming Services..

Advertising and Unadvertising Services ..

Changing Service Parameters (BEA TUXEDO System)......................... 1

Changing the AUTOTRAN Timeout Value .. 1

17. Dynamically Reconfiguring Applications

Introduction to Dynamic Reconfiguration... 1

Overview of the tmconfig Command Interpreter ..

What tmconfig Does...

How tmconfig Works ... 1

Output from tmconfig Operations .. 1

General Instructions for Running tmconfig...

Preparing to Run tmconfig ...

Running tmconfig: A High-level Walk-through 17-

Input Buffer Considerations ... 1

Procedures ...
Administering the BEA TUXEDO System xi

7-13

7-16

-17

7-18

-20

7-21

7-23

-25

. 18-2

18-2

18-2

18-3

. 18-3

8-4

8-6

8-7

19-2

9-2

9-3

. 19-4

19-4

19-5

19-5

9-6

9-6

9-6

19-7

19-7

19-9

9-10

9-10
Adding a New Machine.. 1

Adding a Server .. 1

Activating a Newly Configured Server .. 17

Adding a New Group.. 1

Changing the Data-dependent Routing (DDR) for the Application.......17

Changing Application-wide Parameters... 1

Changing an Application Password.. 1

Final Advice About Dynamic Reconfiguration... 17

18. Event Broker/Monitor

Events ...

Event Classifications ..

List of Events..

Setting Up Event Detection ...

Subscribing to Events ...

Application-specific Event Broker/Monitors ..1

How an Event Broker/Monitor Might Be Deployed 1

How the Event Broker/Monitor Works ... 1

19. Troubleshooting Applications

Distinguishing Between Types of Failures..

Determining the Cause of an Application Failure.................................... 1

Determining the Cause of a BEA TUXEDO System Failure................... 1

Broadcasting Unsolicited Messages ...

Performing System File Maintenance ...

Creating a Device List ..

Destroying a Device List ..

Reinitializing a Device ...1

Printing the Universal Device List (UDL) ... 1

Printing VTOC Information ... 1

Repairing Partitioned Networks ..

Detecting Partitioned Networks ...

Restoring a Network Connection ...

Restoring Failed Machines .. 1

Restoring a Failed Master Machine.. 1
xii Administering the BEA TUXEDO System

9-10

19-11

9-12

9-12

19-13

9-13

9-14

9-14

9-14

9-15
Restoring a Failed Nonmaster Machine ... 1

Replacing System Components ...

Replacing Application Components.. 1

Cleaning Up and Restarting Servers Manually ... 1

Cleaning Up Resources Associated with Dead Processes

Cleaning Up Resources .. 1

Aborting or Committing Transactions... 1

Aborting a Transaction... 1

Committing a Transaction.. 1

Recovering from Failures When Transactions Are Used.............................. 1

Index
Administering the BEA TUXEDO System xiii

xiv Administering the BEA TUXEDO System

ers

,
Preface

Purpose of This Document

This document describes how to administer the BEA TUXEDO system.

Who Should Read This Document

This document is intended for administrators who configure operational paramet
that support mission-critical BEA TUXEDO systems.

How This Document Is Organized

Administering the BEA TUXEDO System is organized as follows:

� Chapter 1 introduces the administration tasks.

� Chapter 2 identifies the administration tools that are part of the BEA TUXEDO
system.

� Chapter 3 details the application, machine, group, server, services, interfaces
routing, and network parameters in an application’s UBBCONFIG configuration
file.

� Chapter 4 explains how to start and shut down applications.

� Chapter 5 explains how to distribute applications.

� Chapter 6 explains how to build networked applications.
Administering the BEA TUXEDO System xv

at to
he

t a
� Chapter 7 explains how to configure transactions.

� Chapter 8 explains how to manage multiple domains.

� Chapter 9 explains how to manage workstation clients.

� Chapter 10 explains how to manage queued messages.

� Chapter 11 explains how to implement application security.

� Chapter 12 explains how to monitor a running system.

� Chapter 13 explains how to monitor log files.

� Chapter 14 explains how to tune applications.

� Chapter 15 explains how to migrate applications.

� Chapter 16 explains how to modify systems dynamically.

� Chapter 17 explains how to reconfigure applications dynamically.

� Chapter 18 explains how to use the Event Broker.

� Chapter 19 explains how to troubleshoot problems.

How to Use This Document

This document, Administering the BEA TUXEDO System, is designed primarily as an
online, hypertext document. If you are reading this as a paper publication, note th
get full use from this document you should access it as an online document via t
BEA TUXEDO Online Documentation CD.

The following sections explain how to view this document online, and how to prin
copy of this document.
xvi Administering the BEA TUXEDO System

ck

n

r

f
Opening the Document in a Web Browser

To access the online version of this document, open the index.htm file in the top-level
directory of the BEA TUXEDO Online Documentation CD. On the main menu, cli
the Bookshelf button. On the Bookshelf, scroll to the entry for Administering the BEA
TUXEDO System and click the HTML option. The CD provides other options to ope
this document. The preceding example describes one option.

Note: The online documentation requires a Web browser that supports HTML
version 3.0. Netscape Navigator version 3.0 or Microsoft Internet Explore
version 3.0 or later is recommended.

Figure 1 shows the online document with the clickable navigation bar and table o
contents.
Administering the BEA TUXEDO System xvii

Figure 1 Online Document Displayed in a Netscape Web Browser

Table of Contents:
Click on a topic to
view it.

Document Diplay Area
xviii Administering the BEA TUXEDO System

nd

ou
re to
rint
ter or

t all

on.

Printing from a Web Browser

You can print a copy of this document, one file at a time, from the Web browser.
Before you print, make sure that the chapter or appendix you want is displayed a
selected in your browser.

To select a chapter or appendix, click anywhere inside the chapter or appendix y
want to print. If your browser offers a Print Preview feature, you can use the featu
verify which chapter or appendix you are about to print. If your browser offers a P
Frames feature, you can use the feature to select the frame containing the chap
appendix you want to print. For example:

The BEA TUXEDO Online Documentation CD also includes Adobe Acrobat PDF
files of all of the online documents. You can use the Adobe Acrobat Reader to prin
or a portion of each document. On the CD’s main menu, click the Bookshelf butt
On the Bookshelf, scroll to the entry for the BEA TUXEDO document you want to
print and click the PDF option.
Administering the BEA TUXEDO System xix

nd
ns.

rd.

ld
Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures a
their members, data types, directories, and file names and their extensio
Monospace text also indicates text that you must enter from the keyboa

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves shou
never be typed.
xx Administering the BEA TUXEDO System

ogy.

ld

n

e.
Related Documentation

The following sections list the documentation provided with the BEA TUXEDO
software, related BEA publications, and other publications related to the technol

BEA TUXEDO Documentation

The BEA TUXEDO information set consists of the following documents:

BEA TUXEDO Release Notes

[] Indicates optional items in a syntax line. The brackets themselves shou
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

� That an argument can be repeated several times in a command line

� That the statement omits additional optional arguments

� That you can enter additional parameters, values, or other informatio

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax lin
The vertical ellipsis itself should never be typed.

Convention Item
Administering the BEA TUXEDO System xxi

at

Administering the BEA TUXEDO System (this document)

Application Developer’ s Guide

COBOL Guide

Domains User Guide

FML Programmer’s Guide

Glossary

Installation Guide

Product Overview

Programmer’s Guide

/Q Guide

TxRPC Guide

Windows NT User’s Guide

/Workstation Guide

Note: The BEA TUXEDO Online Documentation CD also includes Adobe Acrob
PDF files of all of the online documents. You can use the Adobe Acrobat
Reader to print all or a portion of each document.

BEA Publications

Selected BEA TUXEDO Release 6.4 documents are available on the Online
Documentation CD.

To access these documents:

1. Click the Reference button on the main menu.

2. Click the BEA TUXEDO Manuals option.
xxii Administering the BEA TUXEDO System

efer

EA

ou

mer

tion:
Other Publications

For more information about the BEA TUXEDO system and related technologies, r
to the following books:

Edwards, J. with DeVoe, D. 1997. 3-Tier Client/Server At Work. Wiley Computer
Publishing.

Edwards, J., Harkey, D., and Orfali, R. 1996. The Essential Client/Server Survival
Guide. Wiley Computer Publishing.

Contact Information

The following sections provide information about how to obtain support for the
documentation and software.

Documentation Support

If you have questions or comments on the documentation, you can contact the B
Information Engineering Group by e-mail at docsupport@beasys.com.

Customer Support

If you have any questions about this version of the BEA TUXEDO system, or if y
have problems installing and running the BEA TUXEDO system, contact BEA
Customer Support through BEA WebSupport at www.beasys.com . You can also
contact Customer Support by using the contact information provided on the Custo
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following informa

� Your name, e-mail address, phone number, and fax number

� Your company name and company address
Administering the BEA TUXEDO System xxiii

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages
xxiv Administering the BEA TUXEDO System

CHAPTER

ew

en

ion

.

tion

nd
1 Introduction to

Administration

As the administrator of your organization’s computing applications, you are
responsible for setting up and running a system that is critical to your corporate
mission. You must plan how to maximize the performance and reliability of your n
BEA TUXEDO system, and then make it happen.

This chapter discusses the following topics:

� The Administrator’s Job

� Roadmap for Your Responsibilities

� Planning Your Configuration

The Administrator�s Job

You are the person responsible for configuring and booting an application and th
keeping it running smoothly. Your job can be viewed in two phases:

� During the “groundwork phase,” you establish the foundation of your applicat
by planning, designing, installing, and configuring your application with the
BEA TUXEDO system. You also select a security scheme for your application

Most of the work you do during this phase is necessary only once. The excep
to this rule is the configuration work: the BEA TUXEDO system allows you to
reconfigure your application whenever necessary to maximize performance a
reliability.
Administering the BEA TUXEDO System 1-1

1 Introduction to Administration

hase.

� During the “operational phase,” you run the application, monitoring it and
reconfiguring it when necessary. You also diagnose and correct runtime
problems.

The remainder of this chapter lists the specific tasks you need to do during each p

The Groundwork Phase

During this phase, you must do the following tasks.
:

Depending on your application, you may also need to set up the following:
:

Plan Collect information from the application designers, the
programmers, and the business that will use the
application. Use this information to configure your
system.

Install Set up your environment (including hardware and
software), and install the BEA TUXEDO system and
the application.

Configure Your system Set the parameters provided by the BEA TUXEDO
system that govern how the components of your
application will be used.

Transactions Add transactions functionality to your definitions of
domains, machines, groups, interfaces, services, and
any other required components of your application.

Implement Security Select and implement one or more methods provided by
the BEA TUXEDO system for protecting your
application and data.

Distributed applications Create distributed applications with the routing tools:
data-dependent routing in BEA TUXEDO applications.

Networked applications Set up any networked applications.

Domains Configure local and remote domains that will interact, and a
routing table for each.
1-2 Administering the BEA TUXEDO System

The Administrator�s Job

pt

tion

s a
Note: This guide provides instructions for all the tasks shown in this table, exce
installation. For installation instructions, see BEA TUXEDO Installation
Guide.

The Operational Phase

During this phase, you must do the following tasks.

Depending on your application, you may also have to do the following:

Workstation clients To support BEA TUXEDO workstation clients, set required
environment variables, configure a workstation listener, and
modify the machine configuration.

Queued messages Create an application queue space and modify the configura
file to support queued messages.

Start up Boot your application.

Monitor Log the activities, problems, and performance of your application and
analyze the results regularly.

Troubleshoot Identify and resolve problems as they occur.

Tune Use techniques such as load balancing and prioritizing to maximize the
performance of your application.

Migrate Reassign primary responsibility for your application from your original
MASTER machine to an alternate (BACKUP) machine when problems occur
on the MASTER.

Dynamically
modify

Change system parameters and the menu of services offered, when
necessary, to meet the evolving needs of your customers.

Dynamically
reconfigure

Redefine your application to reflect the addition of a component, such a
new machine or server.
Administering the BEA TUXEDO System 1-3

1 Introduction to Administration

ork,

this

n
 can
your

ut the
t
Roadmap for Your Responsibilities

At the beginning of this chapter, we summarized your job responsibilities in two
phases. For software descriptions and procedures that help you perform your w
refer to the appropriate documentation, as follows:

� During the groundwork phase, see the BEA TUXEDO Installation Guide and
Chapters 3 through 11 of this document.

� During the operational phase, see Chapter 4 and Chapters 12 through 19 of
document.

If you are administering a BEA TUXEDO system, the following chapters are very
important:

� Chapter 9, “Working with Multiple Domains”

� Chapter 10, “Managing Workstation Clients”

� Chapter 12, “Managing Queued Messages”

Planning Your Configuration

As an administrator, you need to work with your system designers and applicatio
designers to understand how the administrative configuration of your application
support the requirements for it. In addition, you need to know the requirements of
customer: the business unit using the new software.

Before you can start configuring your system, you need answers to questions abo
design of your application and about the server applications developed from tha
design, as defined in the following section.

Questions About the Design

The following questions may help you start the planning process:
1-4 Administering the BEA TUXEDO System

Planning Your Configuration

ted?

s be

s to
� How many machines will be used?

� Will client applications reside on machines that are remote from the server
applications?

� Which services will your BEA TUXEDO application offer?

� What resource managers will the application use and where will they be loca

� What “open” strings will the resource managers need?

� What setup information will be needed for an RDBMS?

� Will transactions be distributed?

� What buffer types will be used?

� Will data be distributed across machines?

� To which external domains will the application export services? From which
external domains will the application import services?

� Will data-dependent routing be used?

� In what order of priority should services be available?

� What are the reliability requirements? Will redundant listener and handler port
needed? Will replicated server applications be needed?

Questions About Server Applications

The following questions may help you focus on the issues related to your server
application that need to be resolved in your plan:

� What are the names of the BEA TUXEDO services?

� Are there any conversational services?

� What resource managers do they access?

� What buffer types do they use?

As you start putting together a configuration plan, you will discover more question
which you need answers.
Administering the BEA TUXEDO System 1-5

1 Introduction to Administration
1-6 Administering the BEA TUXEDO System

CHAPTER

 the
hical

ined

n

d how
2 Administration Tools

Your BEA TUXEDO system gives you a choice of several methods for performing
same set of administrative tasks. Whether you are more comfortable using a grap
user interface or entering commands at a shell prompt, you will be able to find a
comfortable method of doing your job as the administrator of a BEA TUXEDO
domain.

This chapter discusses the following topics:

� Configuration and Run-time Administration

� BEA TUXEDO Web-based GUI

� Command-line Interface

� AdminAPI

Configuration and Run-time Administration

At the highest level, the job of an administrator can be viewed as two broadly def
tasks:

� Configuration—the most important (and complicated) part of setting up your
system before booting your online transaction processing (OLTP) application

� Run-time administration—the set of tasks that are performed on an applicatio
that has been booted

This chapter describes how these tools can be used to configure an application an
to administer a running system.
Administering the BEA TUXEDO System 2-1

2 Administration Tools

tion,

 and

t

n.

may

 an

ry
Tools for Configuration

Because the BEA TUXEDO system offer great flexibility and many options to
application designers and programmers, no two applications are alike. An applica
for example, may be small and simple (a single client and server running on one
machine) or complex enough to handle transactions among thousands of clients
servers. For this reason, for every BEA TUXEDO application being managed, an
administrator must provide a file that defines and governs the components of tha
application.

The components:

domain
The collection of servers, services, interfaces, machines, and associated
resource managers defined by a single UBBCONFIG (ASCII) or TUXCONFIG
(binary) configuration file; a collection of programs that perform a functio
A domain represents an administrative set of functionality.

server
A software program (or the hardware on which it runs) in which BEA
TUXEDO services offered to your users are stored.

client
A software program that requests services from servers (and sometimes
resides on nonserver hardware).

queue
A set of requests that are submitted to servers in a particular order (which
be determined by the administrator).

service
A program that takes client requests as input and performs a particular
function in response.

server group
A set of interfaces or a logical grouping of servers.

These components (and others, when appropriate) are defined, or configured, in
ASCII file that is referred to, in the BEA TUXEDO documentation, as UBBCONFIG.
The UBBCONFIG file may, in fact, be given any file name. When compiled into a bina
2-2 Administering the BEA TUXEDO System

Configuration and Run-time Administration

 start

ded,
ble

you
our

e

file, the file is referred to as TUXCONFIG. During the groundwork (or setup) phase of
administration, the administrator’s goal is to create a TUXCONFIG file. You have a
choice of the following three tools.

:

Tools for Run-time Administration

With your BEA TUXEDO system installed and your TUXCONFIG file loaded, you are
ready to boot your application. As soon as your application is launched, you must
monitoring its activities and watching for problems—both actual and potential.

When problems occur, you must identify and solve them. If performance is degra
you may want to do load balancing or prioritize your interfaces or services. If trou
develops on a MASTER machine, you may want to replace it with a designated BACKUP
machine.

As the processing and resource usage requirements of your application evolve,
may need to add machines, servers, clients, interfaces, services, and so on, to y
existing system.

If You Use the . . . You Must . . .

BEA TUXEDO Web-based
GUI

Use a graphical user interface (GUI) to create and edit th
TUXCONFIG file. Full descriptions of the GUI are
available by accessing the Help directly from the GUI.

Command-line interface 1. Edit the UBBCONFIG file (an ASCII version of
TUXCONFIG) with a text editor.

2. Run tmloadcf to convert the UBBCONFIG file into a
TUXCONFIG (binary) file.

For details about using the command-line interface to
perform administrative tasks, see the applicable chapters
in this document. For information about the tmloadcf
command, see the section “Create TUXCONFIG” in
Chapter 4, “Starting and Shutting Down Applications.”

For specific details about the tmloadcf command
options, see tmloadcf (1) in the BEA TUXEDO
Reference Manual.

AdminAPI Write a program that modifies the TUXCONFIG file for
you. For details, see Chapter 18, “Event Broker/Monitor.”
Administering the BEA TUXEDO System 2-3

2 Administration Tools

 for
e

u to
ws
first

h as

eled
 as
 that

 for
The job of run-time administration encompasses many tasks, from starting and
stopping the application, to monitoring activity, troubleshooting problems, and
dynamically reconfiguring the application. Again, you have a choice of three tools
performing these tasks: the Web-based GUI, the command-line interface, and th
AdminAPI.

BEA TUXEDO Web-based GUI

The BEA TUXEDO Web-based GUI is a graphical user interface that enables yo
perform most administrative tasks for a BEA TUXEDO application. Figure 2-1 sho
the Main Window that is displayed when you bring up the Web-based GUI for the
time. The four major sections of the main window are:

� MENU BAR—A row of frequently used menus

� POWER BAR— A row of buttons that allow you to use tools, such as Help

� TREE—A hierarchical representation of the administrative class objects (suc
servers and clients) in a BEA TUXEDO domain

� CONFIGURATION TOOL—A set of tabbed folders on which you can display,
define, and modify the attributes of objects, such as the name of a machine

After you have set up and activated a domain, the Tree will be populated with lab
icons, representing the administrative class objects in your domains. In addition,
soon as you start using the Configuration Tool, the right-hand column dedicated to
tool will be populated with tabbed folders in which you enter information needed
configuration.

Figure 2-1 The Main Window of the Web-Based GUI

2-4 Administering the BEA TUXEDO System

Command-line Interface

his
Command-line Interface

You can use the following commands to administer the BEA TUXEDO system. T
document provides procedures for administrative tasks that are based on the
command-line interface. For details about individual commands, see the BEA
TUXEDO Reference Manual.
Administering the BEA TUXEDO System 2-5

2 Administration Tools

ng

e
an
n be

� tmboot —Activates the BEA TUXEDO application that is referenced in the
specified configuration file. Depending on the options used, the entire
application or parts of the application are started.

� tmloadcf —Parses the UBBCONFIG file and loads the binary TUXCONFIG
configuration file.

� tmunloadcf —Unloads the TUXCONFIG configuration file.

� tmconfig —Dynamically updates and retrieves information about the BEA
TUXEDO configuration for a running system.

� dmadmin—Updates the compiled BDMCONFIG (binary domain configuration file)
while the system is running.

� tmadmin —The BEA TUXEDO Bulletin Board interpreter. This command is
used primarily to produce information about configuration parameters. Once
invoked, you can enter many administrative commands that duplicate the
functions of other commands. For example, the tmadmin shutdown command
is identical to the tmshutdown command.

� tmshutdown —Shuts down a set of specified BEA TUXEDO servers, or
removes a set of BEA TUXEDO services listed in a configuration file.

AdminAPI

The AdminAPI is an application programming interface (API) for directly accessi
and manipulating system settings in the BEA TUXEDO Management Information
Bases (MIBs). The advantage of the AdminAPI is that it can be used to automat
administrative tasks, such as monitoring log files and dynamically reconfiguring
application, thus eliminating the need for human intervention. This advantage ca
crucially important in mission-critical, real-time applications.

For an example of a program written with the AdminAPI, see Chapter 18, “Event
Broker/Monitor.”

For details about the MIBs, see ACL_MIB(5), APPQ_MIB(5), EVENT_MIB(5), MIB(5),
TM_MIB(5), and WS_MIB(5) in the BEA TUXEDO Reference Manual.
2-6 Administering the BEA TUXEDO System

AdminAPI
Note: An online version of the BEA TUXEDO Reference Manual is available on the
BEA TUXEDO Online Documentation CD. From the BEA TUXEDO home
page, click Reference Manual Pages-->Reference Manual: Section 5.
Administering the BEA TUXEDO System 2-7

2 Administration Tools
2-8 Administering the BEA TUXEDO System

CHAPTER

 By
hat
3 Creating a

Configuration File

Configuring each BEA TUXEDO application is a central task of the administrator.
configuring a file, you are describing your application using a set of parameters t
the software interprets to create a runnable application.

This chapter discusses the following topics:

� What Is the Configuration File?

� Setting Domain-wide Parameters

� Configuring Machines

� Configuring Groups

� Configuring Servers

� Configuring Services

� Configuring Routing

� Configuring Network Information

Note: For related information about the DMCONFIG domain configuration file, see
Chapter 8, “Working with Multiple Domains.”
Administering the BEA TUXEDO System 3-1

3 Creating a Configuration File

e

n

What Is the Configuration File?

An application consists of four basic parts:

� A configuration file that describes the application

� The server that performs the service request

� The client that issues the request

� The commands that build and run the application

This section discusses the configuration file.

Two Forms of the Configuration File

� The UBBCONFIG file is an ASCII version of the configuration file, created and
edited with any editor. Except for sample configuration files distributed with th
BEA TUXEDO sample applications, no UBBCONFIG file is provided. You must
create a UBBCONFIG file for each new application. The syntax used for entries i
the file is described in the ubbconfig (5) reference page in Section 5 of the BEA
TUXEDO Reference Manual.

Note: The BEA TUXEDO software provides the ubbshm, ubbmp, and
ubbsimple sample UBBCONFIG files, as part of the bankapp and simpapp
applications. Portions of these UBBCONFIG sample files are also shown in
this document.

� The TUXCONFIG file is a binary version of the configuration file, created from
the ASCII version by the tmloadcf (1) command. When tmloadcf is executed,
the environment variable TUXCONFIG must be set to the full path name of the
device or system file where TUXCONFIG is to be loaded. Many parameters in
TUXCONFIG can be changed while the application is running by using
tmconfig (1).
3-2 Administering the BEA TUXEDO System

Setting Domain-wide Parameters

, it

ith its

y to

s

 the
Contents of the Configuration File

At its maximum, a configuration file can consist of eight sections. At its minimum
must contain three required sections:

� RESOURCES, in which all system parameters are defined

� MACHINES, in which all the machines in your application are specified

� GROUPS, in which all groups, names, and IDs are defined for your application.

The file must also contain a minimum of nine parameters. There are 80 different
parameters, and in all sections but the first, there can be multiple entries, each w
own selection of parameters. In all sections other than RESOURCES, the first section,
you can use a DEFAULT parameter to specify parameters that repeat from one entr
the next.

Setting Domain-wide Parameters

This section explains how to set RESOURCES parameters that control the application a
a whole. Some of these parameters serve as system-wide defaults and can be
overridden on a per-machine basis in the MACHINES section.

Identifying Information in the RESOURCES Section

The RESOURCES section is a required section and must appear as the first section in
configuration file. Information in this section includes the following:

� The address of shared memory (IPCKEY)

� Administration site (MASTER) for boot and shutdown

� Control of user access to the application (UID, GID, and PERM)

� Level of security for this application (SECURITY, AUTHSVC)
Administering the BEA TUXEDO System 3-3

3 Creating a Configuration File

� IPC limits for the number of processes associated with the application, the
number of server processes, and the number of services offered (MAXACCESSERS,
MAXSERVERS, and MAXSERVICES)

� Application architecture (MODEL), which indicates a single machine or multiple
machines application

� Server load balancing enabled (LDBAL)

� Maximum number of buffer types and subtypes (MAXBUFTYPE and
MAXBUFSTYPE)

� Time intervals for sanity scans of the Bulletin Board (SCANUNIT, SANITYSCAN)

� Timeout value for service requests (BLOCKTIME)

� Maximum number of simultaneous conversations (MAXCONV)

� Unsolicited notification method (NOTIFY, USIGNAL)

Some of these parameters serve as system-wide defaults (UID, GID, PERM,
MAXACCESSERS, and MAXCONV) and can be overridden on a per-machine basis. For
more information about the ubbconfig (5) reference page, see Section 5 of the BEA
TUXEDO Reference Manual.

Description of Parameters in a Sample RESOURCES Section

The following table provides sample parameters and values in the RESOURCES section
of a configuration file for a BEA TUXEDO application.

Parameter Value Meaning

IPCKEY 39211 A number greater than 32769 unique to this application on this
system.

UID 0 The user ID of the BEA TUXEDO administrator.

Note: On Windows NT, this must be set to 0.

GID 1 The group ID of other.

Note: On Windows NT, this must be set to 0.
3-4 Administering the BEA TUXEDO System

Setting Domain-wide Parameters

n.

Sample RESOURCES Section

RESOURCES
IPCKEY 39211
UID 0
GID 1
PERM 0660
MAXACCESSERS 75
MAXSERVERS 40
MAXSERVICES 55
MASTER SITE1, SITE2
MODEL MP
OPTIONS LAN, MIGRATE
SECURITY APP_PW
AUTHSVC "AUTHSVC"

PERM 0660 Allows read/write access to those in the group of the
administrator.

MAXACCESSERS 15 Allows up to 15 processes to be run at this site.

MAXSERVICES 25 Allows up to 25 services to be advertised at all sites.

MASTER SITE1,
SITE2

Specifying LMID SITE1 means the machine is the master. If
LMID SITE2 is specified, the machine is the backup.

MODEL MP This application has more than one machine in the configuratio

OPTIONS LAN,
MIGRATE

This is a networked application; servers can be migrated to
alternate processors.

SECURITY APP_PW This is a secure application; clients are required to supply a
password to join.

AUTHSVC "AUTHSVC" In addition to the password, clients must pass authentication
from a service called "AUTHSVC".

NOTIFY DIPIN Clients receive unsolicited messages by dip-in .

SYSTEM_ACCESS PROTECTED,
NO
_OVERRIDE

The application code does not attach to shared memory. (This
cannot be changed.)

LDBAL Y Indicates that load balancing is on.

Parameter Value Meaning
Administering the BEA TUXEDO System 3-5

3 Creating a Configuration File

 they

d

cessor
s the
NOTIFY DIPIN
SYSTEM_ACCESS PROTECTED, NO_OVERRIDE
LDBAL Y

Setting the Address of Shared Memory

You set the address of shared memory using the IPCKEY parameter. This parameter is
used by the BEA TUXEDO system to allocate application IPC resources such that
may be located easily by new processes joining the application. This key and its
variations are used internally to allocate the Bulletin Board, message queues, an
semaphores that must be available to new application processes. In a single pro
mode, this key names the Bulletin Board; in a multiprocessor mode, this key name
message queue of the DBBL.

Characteristics of the IPCKEY Parameter

The IPCKEY parameter has the following characteristics:

� It is required and must appear in the configuration file.

� It is used to access the Bulletin Board and other IPC resources.

� Its value must be an integer in the range 32,769 to 262,143.

� No other application on the system may use this specific value for its IPCKEY.

� In the sample RESOURCES section, the IPCKEY is 39211 for the sample BEA
TUXEDO application.

Identifying the Master Machine

You must specify a master machine for all configurations (MASTER). The master
machine controls the booting and administration of the entire application. This
machine is specified as a Logical Machine Identifier (LMID). This is an alphanumeric
name chosen by the administrator. (LMIDs are discussed further in the section
“Configuring Machines” in this chapter.)
3-6 Administering the BEA TUXEDO System

Setting Domain-wide Parameters

 is

e

?

. It is
ory.
Two LMIDs are specified if migration of the master site is to be allowed. If it is
necessary to bring down the master site without shutting down the application, it
necessary to specify the backup master site.

Characteristics of the MASTER Parameter

The MASTER parameter has the following characteristics:

� It is required and it controls booting and administration.

� Two LMID s are required for migration to back up the master machine.

� In the sample RESOURCES section, the master site is SITE1 ; the backup site is
SITE2 .

Setting the Application Type

Among the architectural decisions needed for a BEA TUXEDO application are th
following:

� Should this application run on a single processor with global shared memory

� Will the application be networked?

� Will server migration be supported?

The MODEL parameter specifies whether an application runs on a single processor
set to SHM for uniprocessors and also for multiprocessors with global shared mem
A MODEL value of MP is used for multiprocessors that do not have global shared
memory, as well as for networked applications. This is a required parameter.

The OPTIONS parameter is a comma-separated list of application configuration
options. Two available options are LAN (indicating a networked configuration) and
MIGRATE (indicating that application server migration is allowed).

Characteristics of the MODEL and OPTIONS Parameters

The MODEL and OPTIONS parameters have the following characteristics.
Administering the BEA TUXEDO System 3-7

3 Creating a Configuration File

ters:

s

l of

ll.

ho
Note: No OPTIONS are specified for the SHM model.

Defining Access Control

You can provide basic access to a BEA TUXEDO application using three parame
UID, GID, and PERM:

� UID— the user ID of the administrator. The value is a numeric value
corresponding to the UNIX system user ID of the person who boots and shut
down the system.

� GID— the numeric Group ID of the administrator.

� PERM — an octal number that specifies the permissions to assign to the IPC
resources created when the application is booted. This provides the first leve
security to protect the BEA TUXEDO system IPC structures against
unauthorized access. The default is 0666, which gives read/write access to a
These values should be specified for production applications.

Note: If the UID and GID are not specified, they default to the IDs of the person w
runs the tmloadcf (1) command on the configuration, unless they are
overridden in the MACHINES section.

Parameter Characteristics

MODEL It is a required parameter.

A value of SHM indicates a single machine with global shared memory.

A value of MP indicates multiple machines or a nonglobal shared
memory multiprocessor.

OPTIONS It is a comma-separated list of application configuration options.

A value of LAN indicates a local area network.

A value of MIGRATE enables server migration.

In the sample RESOURCES section, model is MP; options is set to LAN
and MIGRATE.
3-8 Administering the BEA TUXEDO System

Setting Domain-wide Parameters

ated

 too

the

. The
Characteristics of the UID, GID, and PERM Parameters

The UID, GID, and PERM parameters have the following characteristics.

Note: You can overwrite values on remote machines.

Defining IPC Limits

Because most IPC and Shared Memory Bulletin Board tables are statically alloc
for speedy processing, it is important to tune them correctly. If they are sized too
generously, memory and IPC resources are consumed to excess; if they are set
small, the process fails when the limits are eclipsed.

The following tunable parameters related to IPC sizing are currently available in
RESOURCES section:

� MAXACCESSERS—the maximum number of overall processes allowed to be
attached to the BEA TUXEDO system at one site. It is not the sum of all
processes, but is equal to the number at the site that has the most processes
default is 50. (You can overwrite MAXACCESSERS on a per-machine basis in the
MACHINES section.)

Parameter Characteristics

UID The user ID of the administrator.

The default is the ID of the person who runs tmloadcf (1).

Example: UID=3002

On Windows NT, this value is always 0.

GID The group ID of the administrator.

The default is the ID of the person who runs tmloadcf (1).

Example: GID=100

PERM The permissions for access to IPC structures.

The default is 0666.

Example: PERM=0660

On Windows NT, this value is always 0.
Administering the BEA TUXEDO System 3-9

3 Creating a Configuration File

in

r

� MAXSERVERS—the maximum number of server processes in the application,
including all the administrative servers (for example, BBL and TMS). It is the
sum of the server processes at all sites. The default is 50.

� MAXSERVICES—the maximum number of different services that can be
advertised in the application. It is the sum of all services in the system. The
default is 100. (When setting this value, consider the defaults to be a quantity
reserved for system resources.)

The cost incurred by increasing MAXACCESSERS is one additional semaphore per site
per accesser. There is a small fixed semaphore overhead for system processes
addition to that added by the MAXACCESSERS value. The cost of increasing
MAXSERVERS and MAXSERVICES is a small amount of shared memory that is kept fo
each server, service, and client entry, respectively. The general idea for these
parameters is to allow for future growth of the application. It is more important to
scrutinize MAXACCESSERS.

Note: Two additional parameters, MAXGTT and MAXCONV, affect shared memory.

Characteristics of MAXACCESSERS, MAXSERVERS, and MAXSERVICES

Parameters

The MAXACCESSERS, MAXSERVERS, and MAXSERVICES parameters have the following
characteristics.

Parameter Characteristics

MAXACCESSERS Number of processes on the site that is running the most
processes.

You can overwrite the value on a per-machine basis in the
MACHINES section.

The cost is one additional semaphore per accesser.

MAXSERVERS Maximum number of server processes in an application (sum
of all sites).

The cost is a small amount of shared memory.
3-10 Administering the BEA TUXEDO System

Setting Domain-wide Parameters

O
ithin

est is

ded.
eue.

eue
Enabling Load Balancing

You can control whether a load balancing algorithm is used on the BEA TUXED
system as a whole. Using load balancing, a load factor is applied to each service w
the system, and you can track the total load on every server. Every service requ
sent to the qualified server that is least loaded.

This algorithm, although effective, is expensive and should be used only if it is nee
It is needed only when a service is offered by servers that use more than one qu
Services offered by only one server, or by servers in an MSSQ (multiple server single
queue) set do not need load balancing. Their LDBAL parameter should be set to N. In
other cases, you may want to set LDBAL to Y.

If LDBAL is set to N and multiple queues offer the same service, the first available qu
is selected.

If LDBAL is set to Y and the application is networked, the TMNETLOAD environment
variable can be used to give preference to local sites.

Characteristics of the LDBAL Parameter

The LDBAL parameter has the following characteristics:

� If LDBAL is set to Y, the server assigned will be load balanced.

� If LDBAL is set to Y, you can use TMNETLOAD for local preference.

� If LDBAL is set to N, the server assigned will be the first available server.

� The default is N.

� Because LDBAL incurs overhead, use it only when necessary.

MAXSERVICES Maximum number of BEA TUXEDO services advertised in
the application (sum of all sites).

The cost is a small amount of shared memory.

Default is 100.

Parameter Characteristics
Administering the BEA TUXEDO System 3-11

3 Creating a Configuration File

ion
lt
u

.

� Do not use load balancing if every BEA TUXEDO service is offered by only
one server.

� Do not use load balancing if every BEA TUXEDO service is offered by one
MSSQ server set.

Setting Buffer Type and Subtype Limits

You can control the number of buffer types and subtypes allowed in the applicat
with the MAXBUFTYPE and MAXBUFSTYPE parameters, respectively. The current defau
for MAXBUFTYPE is 16. Unless you are creating many user-defined buffer types, yo
can omit MAXBUFTYPE. However, if you intend to use many different VIEW subtypes,
you may want to set MAXBUFSTYPE to exceed its current default of 32.

Characteristics of the MAXBUFTYPE and MAXBUFSTYPES Parameters

The MAXBUFTYPE and MAXBUFSTYPES parameters have the following characteristics

Parameter Characteristics

MAXBUFTYPE Maximum number of buffer types allowed in the system.

Use only if you create 8 or more user-defined buffer types.

Default is 16.

Example: MAXBUFTYPE 20

MAXBUFSTYPE Maximum number of buffer subtypes allowed in the system.

Default is 32.

Example: MAXBUFSTYPE 40
3-12 Administering the BEA TUXEDO System

Setting Domain-wide Parameters

er of
.

Setting the Number of Sanity Checks and Blocking

Timeouts

You can set the number of times the administrative server (BBL) will periodically
check the sanity of servers local to its machine. In addition, you can set the numb
timeout periods for blocking messages, transactions, and other system activities

You use the SCANUNIT parameter to control the granularity of such checks and
timeouts. Its value (in seconds) can be a positive multiple of 5. Its default is 10.

You use the SANITYSCAN parameter to specify how many SCANUNITs elapse between
sanity checks of the servers. It must not be set so that SANITYSCAN * SCANUNIT
exceeds 300; its current default is set so that SANITYSCAN * SCANUNIT is
approximately 120 seconds.

Example: Setting Sanity Checks and Timeouts

A SCANUNIT of 10 and a BLOCKTIME of 3 allows 30 seconds before the client
application times out. The BLOCKTIME default is set so that BLOCKTIME * SCANUNIT is
approximately 60 seconds. The value of BLOCKTIME is the total of the following times:

� Time waiting to get on the queue

� Time waiting on the queue

� Time for service processing

� Time on the network

Characteristics of the SCANUNIT, SANITYSCAN, and BLOCKTIME Parameters

The SCANUNIT, SANITYSCAN, and BLOCKTIME parameters have the following
characteristics.
Administering the BEA TUXEDO System 3-13

3 Creating a Configuration File
Setting Conversation Limits

You can specify the maximum number of conversations on a machine with the
MAXCONV parameter.

Characteristics of the MAXCONV Parameter

The MAXCONV parameter has the following characteristics:

� It is the maximum number of simultaneous conversations per machine.

� Its value must be greater than or equal to 0 and less than 32,766.

� The default for an application that has conversational servers listed in the
SERVERS section is 10; otherwise, the default is 1.

� You can overwrite this value in the MACHINES section.

Parameter Characteristics

SCANUNIT Establishes granularity of check intervals and timeouts.

Value must be multiples of 5 seconds.

Example: SCANUNIT 10

If not set, the default is 10.

SANITYSCAN Frequency that the BBL checks the server (in SCANUNIT
intervals).

SCANUNIT * SANITYSCAN must not exceed 300.

If not set, the default is such that SCANUNIT * SANITYSCAN
is approximately 120 seconds.

BLOCKTIME Timeout for blocking messages.

SCANUNIT * BLOCKTIME must not exceed 32767.

If not set, the default is such that SCANUNIT * BLOCKTIME is
approximately 60 seconds.
3-14 Administering the BEA TUXEDO System

Setting Domain-wide Parameters

e

h
Setting the Security Level

You can set the following three levels of security:

� PERM parameter—sets the first or lowest-level permission to write to the
application queues.

� SECURITY parameter—sets the second-level permission. This requires that th
client supplies a password when joining the application. This password is
checked against the password supplied by the administrator when the
TUXCONFIG file is generated from the UBBCONFIG file.

� AUTHSVC parameter—sets the third-level permission. This sends the client’s
request to join the application to an authentication service. This level requires
the second level of SECURITY to be present. The authentication service may be
the default supplied by the BEA TUXEDO system or it may be a service, suc
as a Kerberos service, supplied by another vendor.

Characteristics of the SECURITY and AUTHSVC Parameters

The SECURITY and AUTHSVC parameters have the following characteristics.

Parameter Characteristics

Security Accepted values are: NONE (default), APP_PW, USER_AUTH,
ACL, and MANDATORY_ACL.

Default is NONE.

Example: SECURITY APP_PW

AUTHSVC The name of the authentication service.

SECURITY APP_PW must be specified.

Default is no authentication service.

Client authentication with Kerberos is possible.

Example: AUTHSVC ‘‘ AUTHSVC’’
Administering the BEA TUXEDO System 3-15

3 Creating a Configuration File

 the

Setting Parameters of Unsolicited Notification

You can set the default method for clients to receive unsolicited messages using
NOTIFY parameter. The client, however, can override this choice in the TPINIT
structure when tpinit() is called.

Following are three possible methods:

� IGNORE—clients should ignore unsolicited messages.

� DIPIN —clients should receive unsolicited messages only when they call
tpchkunsol() or when they make an ATMI call.

� SIGNAL—clients should receive unsolicited messages by having the system
generate a signal that has the signal handler call the function, that is, set with
tpsetunsol() .

Two types of signals can be generated: SIGUSR1 and SIGUSR2. The USIGNAL
parameter allows the administrator to choose the type of signal. The default is
SIGUSR2. In applications that choose notification by signals, any MS-DOS client
workstations are switched automatically to DIPIN .

Characteristics of the NOTIFY and USIGNAL Parameters

The NOTIFY and USIGNAL parameters have the following characteristics.

Parameter Characteristics

NOTIFY Value of IGNORE means clients should ignore unsolicited
messages.

Value of DIPIN means clients should receive unsolicited
messages by dip-In.

Value of SIGNAL means clients should receive unsolicited
messages by signals.

Default is DIPIN.

Example: NOTIFY SIGNAL
3-16 Administering the BEA TUXEDO System

Setting Domain-wide Parameters

d/or
s

hared
his
tions

he

y
Protecting Shared Memory

You can shield system tables kept in shared memory from application clients an
servers using the SYSTEM_ACCESS parameter. This option is useful when application
are being developed because faulty application code can inadvertently corrupt s
memory with a bad pointer. When the application is fully debugged and tested, t
option could then be changed to allow for faster responses. Following are the op
for this parameter:

� PROTECTED—BEA TUXEDO libraries compiled with application code will not
attach to shared memory while executing system code.

� FASTPATH—BEA TUXEDO libraries will attach to shared memory at all times.

� NO_OVERRIDE—the selected option cannot be changed either by the client in t
TPINIT structure of the tpinit() call or in the SERVERS section for servers.

Characteristics of the PROTECTED, FASTPATH, and NO_OVERRIDE Parameters

The PROTECTED, FASTPATH, and NO_OVERRIDE parameters have the following
characteristics.

USIGNAL Value of SIGUSR1 means notify clients with this type of
signal.

Value of SIGUSR2 means notify clients with this type of
signal.

Default is SIGUSR2.

Example: USIGNAL SIGUSR1

Parameter Characteristics

Parameter Characteristics

PROTECTED Internal structures in shared memory will not be corrupted inadvertentl
by application processes.

FASTPATH

(default)
Application processes will join with access to shared memory at all
times.
Administering the BEA TUXEDO System 3-17

3 Creating a Configuration File
Note: An example: SYSTEM_ACCESS PROTECTED, NO_OVERRIDE

Configuring Machines

This section explains how to define parameters for each processor, or machine, on
which your application runs.

Identifying Machines in the MACHINES Section

Every machine in an application must have a MACHINES section entry in the
configuration file and it must be the second section in the file. The MACHINES section
contains the following information specific to each machine in the application:

� The mapping of the machine address to a logical identifier (LMID)

� The location of the configuration file (TUXCONFIG)

� The location of the installed BEA TUXEDO software (TUXDIR)

� The location of the application servers (APPDIR)

� The location of the application log file (ULOGPFX)

� The location of the environment file (ENVFILE)

The only required parameters for the MACHINES section are LMID, TUXCONFIG,
TUXDIR, and APPDIR.

Note: For a particular machine, you can override the UID, GID, PERM,
MAXACCESSERS, and MAXCONV values that were specified in the RESOURCES
section.

NO_OVERRIDE The specified option cannot be changed.

Parameter Characteristics
3-18 Administering the BEA TUXEDO System

Configuring Machines

the

.

Description of Parameters in a Sample MACHINES Section

The following table provides a sample of parameters and their values in the MACHINES
section of the configuration file.

Example: MACHINES Section

The following example provides a sample MACHINES section of a configuration file:

MACHINES
gumby LMID=SITE1
 TUXDIR=”/tuxdir”
 APPDIR=”/home/apps/mortgage”
 TUXCONFIG=”/home/apps/mortgage/tuxconfig”
 ENVFILE=”/home/apps/mortgage/ENVFILE”
 ULOGPFX=”/home/apps/mortgage/logs/ULOG”
 MAXACCESSERS=100
 MAXCONV=15

Parameter Meaning

gumby The machine name obtained with the command uname -n on UNIX
systems. On Windows NT systems, see the Computer Name value in
Network Control Panel.

LMID=SITE1 The logical machine identifier of the machine gumby.

TUXDIR The double quoted string of the full path to the installed BEA TUXEDO
software.

APPDIR The double quoted string of the full path to the application directory.

TUXCONFIG The double quoted string of the full path name of the configuration file

ENVFILE The double quoted string of the full path name of a file containing
environment information.

ULOGPFX The double quoted string of the full path name prefix of the log file.

MAXACCESSERS Override the system-wide value with 100 for this machine.

MAXCONV Override the system-wide value with 15 for this machine.
Administering the BEA TUXEDO System 3-19

3 Creating a Configuration File

n the

 the
lue,
How to Customize the MACHINES Section

You can customize the MACHINES section by performing the following steps:

� Substitute your machine name for gumby.

� Substitute your BEA TUXEDO software directory for TUXDIR.

� Substitute your application directory for APPDIR.

� Substitute the full path names for ENVFILE, TUXCONFIG, and ULOGPFX.

Reserving the Physical Address and Machine ID

You initially define the address in the address portion, which is the basis for a
MACHINES section entry. All other parameters in the entry describe the machine
specified by the address. You must set the address to the value printed by calling uname

-n on UNIX systems. On Windows NT systems, see the Computer Name value i
Network Control Panel.

The LMID parameter is mandatory and specifies a logical name used to designate
computer whose address has just been provided. It may be any alphanumeric va
and must be unique among other machines in the application.

Characteristics of the Address and Machine ID, and the LMID Parameter

The address and machine ID and the LMID parameter have the following
characteristics:

� The address and machine ID are specified in the following way:

<address> LMID=<logical_machine_name>

� The address identifies the physical processor name.

� The format of the LMID parameter is LMID=<logical_machine_name> .

� The LMID is the logical machine name for a physical processor.

� LMID is alphanumeric and must be unique within the MACHINES section.
3-20 Administering the BEA TUXEDO System

Configuring Machines

 must

ith

e
Identifying the Location of the Configuration File

You identify the configuration file location and file name of a machine with
TUXCONFIG, a required parameter. The TUXCONFIG parameter is enclosed in double
quotes and represents the full path name up to 64 characters. The path specified
be the same as the environment variable, TUXCONFIG; otherwise, the tmloadcf (1) will
not compile the binary file.

Characteristics of the TUXCONFIG Parameter

The TUXCONFIG parameter has the following characteristics:

� The syntax of the TUXCONFIG parameter is TUXCONFIG=”<tuxconfig>” .

� This parameter identifies the location of the configuration file and file name
(though it should remain TUXCONFIG for convention purposes) for the machine.

� The full path name for TUXCONFIG can be up to 64 characters.

� The value of TUXCONFIG must match the TUXCONFIG environment variable.

Identifying the Locations of the System Software and

Application Server Machines

Each machine in an application must have a copy of the BEA TUXEDO system
software and application software. You identify the location of system software w
the TUXDIR parameter. You identify the location of the application servers with the
APPDIR parameter. Both parameters are mandatory. The APPDIR parameter becomes
the current working directory of all server processes. The BEA TUXEDO softwar
looks in the TUXDIR/bin and APPDIR for executables.

Characteristics of the TUXDIR and APPDIR Parameters

The TUXDIR and APPDIR parameters have the following characteristics.
Administering the BEA TUXEDO System 3-21

3 Creating a Configuration File

error

ple,
a
Identifying the Location of the Log File

The application log file contains warning and informational messages, as well as
messages that describe the nature of any ATMI error with a return code of TPESYSTEM
or TPEOS (that is, underlying system errors). The user can use this log to track
application-related errors. By default, the file is named ULOG.mmddyy where mmddyy
is the month, date, and 2-digit year. By default, the file is written into the APPDIR.

You can override the default directory and prefix by specifying the ULOGPFX parameter
that is the absolute path name of the application log file, without the date. For exam
it may be set to APPDIR/logs/ULOG so that logs collect in a particular directory. In
networked application, a central log can be maintained by specifying a remote
directory that is mounted on all machines.

Characteristics of the ULOGPFX Parameter

The ULOGPFX parameter has the following characteristics:

� The syntax of the ULOGPFX parameter is a string enclosed in double quotes:
ULOGPFX=”<ULOGPFX>”.

� The application log contains all explanations of TPESYSTEM and TPEOS errors.

� You can use the application to log application errors.

Parameter Characteristics

TUXDIR The syntax requires the full path name enclosed in double quotes:
TUXDIR=”< TUXDIR>” .

TUXDIR identifies the location of the BEA TUXEDO software.

TUXDIR is a required parameter.

APPDIR The syntax requires the full path name enclosed in double quotes:
APPDIR=”< APPDIR>” .

APPDIR identifies the location of application servers.

APPDIR is a required parameter.

APPDIR becomes the current working directory of server processes.
3-22 Administering the BEA TUXEDO System

Configuring Machines

ble
 sets
ou
ion:
� The ULOGPFX defaults to <APPDIR>/ULOG.

� Examples: ULOGPFX=‘‘ /usr/appdir/logs/ULOG ’’

ULOGPFX=‘‘ /mnt/usr/appdir/logs/BANKLOG ’’

Specifying Environment Variable Settings for Processes

With the ENVFILE parameter, you can specify a file that contains environment varia
settings for all processes to be booted by the BEA TUXEDO system. The system
TUXDIR and APPDIR for each process, so they should not be specified in this file. Y
can specify settings for the following because they affect an application’s operat

� FIELDTBLS, FLDTBLDIR

� VIEWFILES, VIEWDIR

� TMCMPLIMIT

� TMNETLOAD

Characteristics of the ENVFILE Parameter

The ENVFILE parameter has the following characteristics:

� The syntax of the ENVFILE parameter is a string enclosed in double quotes:
ENVFILE=”<envfile>” .

� ENVFILE is the file containing environment variable settings for all processes
booted by the BEA TUXEDO system. (The UBBCONFIG file issues warnings in a
similar way, that is, using fully qualified path names.)

� Set FIELDTBLS, FLDTBLDIR, and so on, but do not set TUXDIR and APPDIR.

� The ENVFILE parameter is optional and all settings must be hard coded. No
evaluations such as FLDTBLDIR=$APPDIR are allowed.

� The format is VARIABLE=string .
Administering the BEA TUXEDO System 3-23

3 Creating a Configuration File

r be

t
g on

on

only
chine
al

e
Overriding System-wide Parameters

You can override the following system-wide parameters for a specific machine:

� UID

� GID

� PERM

� MAXACCESSERS

� MAXCONV

� MAXGTT

Note: Each parameter, except MAXGTT, is described in the RESOURCES section.

Configuring Groups

You can use GROUPS to designate logically grouped sets of servers, which can late
used to access resource managers, and facilitate server group migration. The GROUPS
section of the configuration file contains the definition of server groups. You mus
define at least one server group for a machine to have application servers runnin
it. If no group is defined for a machine, the group can still be part of the applicati
and you can run the administrative command tmadmin (1) from that site.

For nontransactional, nondistributed systems, groups are relatively simple. You
need to define the basic mapping of group name to group number and logical ma
of each group. Additional flexibility is available to support distributed transaction
systems.

Specifying a Group Name, Number, and LMID

The group name is the basis for a GROUPS section entry and is an alphanumeric nam
by which the group is identified. It is given a mandatory, unique group number
(GRPNO). Each group must reside wholly on one logical machine (LMID). The LMID is
also mandatory.
3-24 Administering the BEA TUXEDO System

Configuring Servers

er
s no
erver

 the
Configuring Servers

This section explains the SERVERS section parameters that you need to define to
configure server processes.

Identifying Server Information in the SERVERS Section

The SERVERS section of the configuration file contains information specific to a serv
process. While this section is not required, an application without this section ha
application servers and little functionality. Each entry in this section represents a s
process to be booted in the application. Server-specific information includes the
following:

� A server name, group, and numeric identifier (SRVGRP, SRVID)

� Command-line options (CLOPT)

� Parameters to determine the booting order and number of servers to boot
(SEQUENCE, MIN, MAX)

� A server-specific environment file (ENVFILE)

� Server queue-related information (RQADDR, RQPERM, REPLYQ, RPPERM)

� Restart information (RESTART, RCMD, MAXGEN, GRACE)

� Server designation as a conversational server (CONV)

� Overriding of system-wide shared memory access (SYSTEM_ACCESS)

Command-line options supported by the BEA TUXEDO system are described on
servopts (5) reference page in the BEA TUXEDO Reference Manual.

Description of Parameters in a Sample SERVERS Section

The following table provides a sample of parameters and their values in the SERVERS
section of the configuration file.
Administering the BEA TUXEDO System 3-25

3 Creating a Configuration File

ss
ted

an
n

f

Parameter Meaning

RESTART=Y (default) Restart the servers.

MAXGEN=5 (default) The MAXGEN parameter specifies a number greater than 0 and le
than 256 that controls the number of times the server can be star
within the period specified in the GRACE parameter. The default is
1. If the server is to be restartable, MAXGEN must be >= 2. The
number of restarts is at most number - 1 times. RESTART must
be Y or MAXGEN is ignored.

GRACE=3600 (default) If RESTART is Y, the GRACE parameter specifies the time period
(in seconds) during which this server can be restarted as MAXGEN
- 1 times. The number assigned must be equal to or greater th
0. The maximum is 2,147,483,648 seconds (or a little more tha
68 years). If GRACE is not specified, the default is 86,400 seconds
(24 hours). As soon as one GRACE period is over, the next grace
period begins. Setting the grace period to 0 removes all
limitations; the server can be restarted an unlimited number of
times.

REPLYQ=N (default) There is no reply queue.

CLOPT=”-A” (default) Specify -A on the command line of each server.

ENVFILE=”/usr/home/envfile
” (default)

Read environment settings from the file ENVFILE.

SYSTEM_ACCESS=PROTECTED
(default)

Deny access to internal tables outside of system code.

RINGUP1 Sample name of the first server to be booted.

SRVGRP=GROUP1 SRVID=1 MIN=3

RQADDR=”ring1"
Three instances of the sample server will be booted in group
GROUP1 with server IDs of 1, 2, and 3, respectively. All three
servers will form an MSSQ set and will read requests from queue
ring1 .

Note: RQADDR assigns a symbolic name to the request queue o
this server. MSSQ sets are established by using the same
symbolic queue name for more than one server (and by
specifying MIN greater than 1).

RINGUP2 Name of the second sample server to be booted.
3-26 Administering the BEA TUXEDO System

Configuring Servers

.
r a

of
oup

tions,
ntries.

s.
Example: SERVERS Section

The following example provides a sample SERVERS section of a configuration file.

SERVERS
DEFAULT: RESTART=Y MAXGEN=5 GRACE=3600
 REPLYQ=N CLOPT=”-A”
 ENVFILE=”/usr/home/envfile”
 SYSTEM_ACCESS=PROTECTED

RINGUP1 SRVGRP=GROUP1 SRVID=1 MIN=3
 RQADDR=”ring1"
RINGUP2 SRVGRP=GROUP1 SRVID=4 MIN =3
 RQADDR=”ring2"

Note: Omitted from this sample are SEQUENCE (the order of booting is 1 to 6),
REPLYQ and RPPERM (the server does not receive replies), RCMD (no special
commands are desired on restart), and CONV (servers are not conversational)
Defaults are applied to all servers unless a different setting is specified fo
specific server.

Defining Server Name, Group, and ID

You initially define the server name entry in the SERVERS section entry, which is the
name of an executable file built with buildserver (1). You must provide each server
with a group identifier (SRVGRP). This is set to the name specified in the beginning
a GROUPS section entry. You must also provide each server process in a given gr
with a unique numeric identifier (SRVID). Every server must specify a SRVGRP and
SRVID. Because the entries describe machines to be booted and not just applica
it is possible that in some cases the same server name will be displayed in many e

Characteristics of the Server Name, SRVGRP, and SRVID Parameters

The Server Name, SRVGRP, and SRVID parameters have the following characteristic
Administering the BEA TUXEDO System 3-27

3 Creating a Configuration File

faults

t --,
Using Server Command-Line Options

The server may need to obtain information from the command line. The CLOPT
parameter allows you to specify command-line options that can change some de
in the server, or pass user-defined options to the tpsvrinit() function.

The standard main() of a server parses one set of options ending with the argumen
and passes the remaining options to tpsvrinit() . The default for CLOPT is -A , which
tells the server to advertise all the services built into it with buildserver (1). The
following table provides a partial list of the available options.

Parameter Characteristics

Server name It identifies the executable to be booted.

It is built with buildserver (1).

It is required, but may not be unique.

SRVGRP (Server
Group)

It identifies the group affiliation.

The group name begins with a GROUPS section entry.

It is required.

SRVID (Server
ID)

It is numeric.

It is required and unique within a server group.

Option Purpose

-o filename Redirects standard output to file filename.

-e filename Redirects standard error to file filename.

-s services Advertises services.

-s x,y,z An example that advertises services x , y , and z .

-s x ,y,z: funcname An example that advertises services x , y , and z , but processes
requests for those services with function funcname . This is
called aliasing a function name.
3-28 Administering the BEA TUXEDO System

Configuring Servers

ces

nd

ify

nced
were

s
Note: You can find other standard main() options in the servopts (5) reference
page in the BEA TUXEDO Reference Manual.

Server Command-Line Options

� The syntax is CLOPT=”servopts -- application_opts ” .

� This is an optional parameter with a default of -A .

� Both main() and tpsvrinit() use server command-line options.

� The servopts (5) options are passed to main() .

� The application options are passed to tpsvrinit() .

� A BANKAPP example is CLOPT=”-A -- -T 10" .

Note: In the BANKAPP example, the server is given the option to advertise all servi
(-A) and tellerID of 10 so it can update a specific teller record with each
operation. The use of this option, especially the options passed to
tpsvrinit() , require communication between the system administrator a
the application programmer.

Setting the Order in Which Servers Are Booted

You can specify the sequence of servers to be booted with the SEQUENCE parameter,
which specifies a number in the range of 1 to 10,000. A server given a smaller
SEQUENCE value is booted before a server with a larger value. If no servers spec
SEQUENCE, servers are booted in the order of their appearance within the SERVERS
section. If there is a mixture of sequenced and unsequenced servers, the seque
servers are booted first. Servers are shut down in reverse order of the way they
booted.

-r An example that specifies that the server should log the service
performed.

Option Purpose
Administering the BEA TUXEDO System 3-29

3 Creating a Configuration File

ch

d

he
The SEQUENCE parameter is optional. It may be helpful in a large application in whi
control over the order is important.

You can boot multiple servers using the MIN parameter, which is a shorthand metho
of booting. The servers all share the same server options. If you specify RQADDR, the
servers will form an MSSQ set. The default for MIN is 1.

You specify the maximum number of servers that can be booted with the MAX
parameter. The tmboot (1) command boots up to MIN servers at run time. Additional
servers can be booted up to MAX. The default is MIN.

The MIN and MAX parameters are helpful in large applications to keep the size of t
configuration file manageable. Allowances for MAX values must be made in the IPC
resources.

Characteristics of the SEQUENCE, MIN, and MAX Parameters

The SEQUENCE, MIN, and MAX parameters have the following characteristics.

Parameter Characteristics

SEQUENCE It is an optional parameter with a numeric range of 1 - 10,000.

Smaller values are booted before larger values.

Omitted values are booted in the order that they appear in the SERVERS
section.

All sequenced servers are booted before any unsequenced servers.

MIN It represents the minimum number of servers to boot during run time.

If RQADDR is specified and MIN>1, an MSSQ set is created.

All instances have the same server options.

The range of values is 0 to 1000.

The default is 1.

MAX It represents the maximum number of servers to boot.

The range of values for MAX is 0 to 1000. If MAX is not specified,
the default is the value of MIN.
3-30 Administering the BEA TUXEDO System

Configuring Servers

 the

ueues.

an
lidate
u can

ay
ably,
 day.
es
Identifying the Location of the Server Environment File

You use the ENVFILE parameter in the MACHINES section to specify environment
settings. You can also specify the same parameter for a specific server process;
semantics are the same. If both the MACHINES section ENVFILE and the SERVERS
section ENVFILE are specified, both go into effect. For any overlapping variable
defined in both the MACHINES and SERVERS sections, the setting in the SERVERS
section prevails.

Characteristics of the Server Environment File

The parameter that defines the server environment file has the following
characteristics:

� It is an optional parameter that contains the same semantics as the ENVFILE
parameter in the MACHINES section, but for one server only.

� For overlapping variables, the setting in the SERVERS section ENVFILE overrides
the setting in the MACHINES section ENVFILE.

Identifying Server Queue Information

Server Queue information controls the creation and access of server message q
On a BEA TUXEDO system, you can create multiple server single queue (MSSQ) sets
using the RQADDR parameter. For any given server, you can set this parameter to
alphanumeric value. Those servers that offer the same set of services can conso
their services under one message queue, providing automatic load balancing. Yo
do this by specifying the same value for all members of the MSSQ set.

MSSQ Example

The MSSQ set is similar to a situation at a bank. If you have four tellers, one line m
be formed and everyone is assured of the most equitable wait in line. Understand
the loan teller is not included because some people do not want loans on a given
Similarly, MSSQ sets are not allowed if the participant servers offer different servic
from one another.
Administering the BEA TUXEDO System 3-31

3 Creating a Configuration File

ues,

y

to
,

s,

all

,
The RQPERM parameter allows you to specify the permissions of server request que
along the lines of the UNIX system convention (for example, 0666). This allows
services to control access to the request queue.

If the service routines within an MSSQ server perform service requests, they must
receive replies to their requests on a reply queue. This is done by specifying REPLYQ=Y.
By default, REPLYQ is set to N. If REPLYQ is set to Y, you can also assign permissions
to it with the RPPERM parameter.

Characteristics of the RQADDR, RQPERM, REPLYQ, and RPPERM Parameters

The RQADDR, RQPERM, REPLYQ, and RPPERM parameters have the following
characteristics.

Parameter Characteristics

RQADDR It is an alphanumeric value that allows MSSQ sets to be created.

The value is the same for all members of an MSSQ set.

All members of an MSSQ set must offer the same set of services.

RQPERM Represents the permissions on a request queue. If no parameter is
specified, the permissions of the Bulletin Board, as specified by PERM in
the RESOURCES section, is used. If no value is specified there, the
default of 0666 is used. This opens your application to possible use b
any login on the system.

REPLYQ Specifies whether a reply queue, separate from the request queue, is
be set up for this server. If only one server is using the request queue
replies can be picked up from the request queue without causing
problems. On a BEA TUXEDO system, if the server is a member of an
MSSQ set and contains services programmed to receive reply message
REPLYQ should be set to Y so that an individual reply queue is created
for this server. If not, the reply is sent to the request queue shared by
servers of the MSSQ set, and there is no way of assuring that it will be
picked up by the server that is waiting for it.

RPPERM Assigns permissions to the reply queue. This parameter is useful only
when REPLYQ=Y. If requests and replies are read from the same queue
only RQPERM is needed; RPPERM is ignored.
3-32 Administering the BEA TUXEDO System

Configuring Servers

 that

ng a
some

hase
Defining Server Restart Information

A properly debugged server should not terminate on its own. By default, servers
do terminate while the application is booted will not be restarted by the BEA
TUXEDO system. You can set the RESTART parameter to Y if you want the server to
restart. The RCMD, MAXGEN, and GRACE parameters are relevant to a server if

RESTART=Y.

The RCMD parameter specifies a command to be performed in parallel with restarti
server. This command must be an executable file. The option allows you to take
action when a server is being restarted. For example, mail could be sent to the
developer of the server or to someone who is auditing such activity.

The MAXGEN parameter represents the total number of lives to which a server is entitled
within the period specified by GRACE. The server can then be restarted MAXGEN-1 times
during GRACE seconds. If GRACE is set to zero, there is no limit on server restarts.
MAXGEN defaults to 1 and may not exceed 256. GRACE must be greater than or equal to

zero and must not exceed 2,147,483,647 (231 - 1).

Note: A fully debugged server should not need to be restarted. The RESTART and
associated parameters should have different settings during the testing p
than they do during production.

Characteristics of the RESTART, RCMD, MAXGEN, and GRACE Parameters

The RESTART, RCMD, MAXGEN, and GRACE parameters have the following
characteristics.

Parameter Characteristics

RESTART A setting of Y enables a server to restart.

The default is N.

RCMD Determines if the executable file is executed at restart time.

Allows you to take an action when a server is restarted.

MAXGEN Represents the maximum number of server lives in a specific interval.

It defaults to 1; the maximum is 256.
Administering the BEA TUXEDO System 3-33

3 Creating a Configuration File

ient),

ared

Specifying a Server as Conversational

If a server is a conversational server (that is, it establishes a connection with a cl
the CONV parameter is required and must be set to Y. The default is N, indicating that
the server will not be part of a conversation.

Characteristics of the CONV Parameter

The CONV parameter has the following characteristics:

� A Y value indicates a server is conversational; an N value indicates a server is
not conversational.

� A Y value is required if the server is to receive conversational requests.

� The default is N.

Defining Server Access to Shared Memory

The SYSTEM_ACCESS parameter determines if the server process may attach to sh
memory and thus have access to internal tables outside of system code. During
application development, we recommend that such access be denied (PROTECTED).
When the application is fully tested, you can change it to FASTPATH to yield better
performance.

This parameter overrides the value specified in the RESOURCES section unless the
NO_OVERRIDE value was specified. In this case, the parameter is ignored. The
NO_OVERRIDE value may not be used in this section.

GRACE Represents the interval used by MAXGEN.

Zero represents unlimited restart.

It must be between 0 and 2147,483,647 (231 - 1).

The default is 24 hours.

Parameter Characteristics
3-34 Administering the BEA TUXEDO System

Configuring Services

n
Characteristics of the SYSTEM_ACCESS Parameter

The SYSTEM_ACCESS parameter has the following characteristics:

� A value of PROTECTED indicates that the server may not attach to shared
memory outside of the system code.

� A value of FASTPATH indicates that the server will attach to shared memory at
all times.

� If NO_OVERRIDE is specified in the RESOURCES section, this parameter is
ignored.

� The default is the RESOURCES value.

Configuring Services

Identifying BEA TUXEDO Services in the SERVICES

Section

You indicate specific information about BEA TUXEDO services in your applicatio
in the SERVICES section of the configuration file. Such information, for
nontransactional, nondistributed applications, is relatively simple. The SERVICES
section includes the following types of information:

� Load balancing information (SRVGRP)

� Assignment of priorities to services

� Different service parameters for different server groups

� Buffer type checking information (BUFTYPE)

Sample SERVICES Section

The following example provides a sample SERVICES section of a configuration file.
Administering the BEA TUXEDO System 3-35

3 Creating a Configuration File

l load
 server
to be

d be

ng
orms
 for a
oss

, the
SERVICES
#
DEFAULT: LOAD=50 PRIO=50
RINGUP BUFTYPE=”VIEW:ringup”

In this example, the default load and priority of a service are 50; the one service
declared is a RINGUP service that accepts a ringup VIEW as its required buffer type.

Enabling Load Balancing

If you set the RESOURCES section parameter LDBAL to Y, server load balancing occurs.
A LOAD factor is assigned to each service performed, which keeps track of the tota
of services that each server has performed. Each service request is routed to the
with the smallest total load. The routing of that request causes the server’s total
increased by the LOAD factor of the service requested.

Load information is stored only on the site originating the service request. It woul
inefficient for the BEA TUXEDO system to attempt to constantly propagate load
information to all sites in a distributed application. When performing load balanci
in such an environment, each site knows only about the load it originated and perf
load balancing accordingly. This means that each site has different load statistics
given server (or queue). The server perceived as being the least busy differs acr
sites.

When load balancing is not activated, and multiple servers offer the same service
first available queue receives the request.

Characteristics of the LDBAL Parameter

The LDBAL parameter has the following characteristics:

� Load balancing is used if the RESOURCES LDBAL parameter is set to Y.

� The load factor is added to a server’s total load.

� The load is relative to other services.
3-36 Administering the BEA TUXEDO System

Configuring Services

ing
A,

uests
eues

roup
Controlling the Flow of Data by Service Priority

You can exert significant control over the flow of data in an application by assign
service priorities using the PRIO parameter. For instance, Server 1 offers Services
B, and C. Services A and B have a priority of 50 and Service C has a priority of 70 . A
service requested for C will always be dequeued before a request for A or B. Req
for A and B are dequeued equally with respect to one another. The system dequ
every tenth request in FIFO order to prevent a message from waiting indefinitely on
the queue.

Note: A priority can also be changed dynamically with the tpsprio() call.

Characteristics of the PRIO Parameter

The PRIO parameter has the following characteristics:

� It determines the priority of a service on the server’s queue.

� The highest assigned priority gets first preference.

� Every tenth request is dequeued FIFO .

Specifying Different Service Parameters for Different

Server Groups

You can specify different load, priority, or other service-specific parameters for
different server groups. To do this, you should repeat the service’s entry for each g
with different values for the SRVGRP parameter.

Sample SERVICES Section

The following example provides a sample SERVICES section of a configuration file.

SERVICES
A SRVGRP=GRP1 PRIO=50 LOAD=60
A SRVGRP=GRP2 PRIO=70 LOAD=30
Administering the BEA TUXEDO System 3-37

3 Creating a Configuration File

r

ist of
es in

er

t to run

m
equest.
This example assigns different service-specific parameters to two different serve
groups. Service A assigns a priority of 50, and a load of 60 in server group GRP1; and
a priority of 70, and a load of 30 in server group GRP2.

Specifying a List of Allowable Buffer Types for a Service

With the BUFTYPE parameter, you can tune a service to check buffer types
independently of the actual service code. If you set this parameter, it specifies a l
allowable buffer types for a service. Its syntax is a semicolon-separated list of typ
the format type[:subtype[,subtype]] . The subtype may be set to * to allow all
subtypes.

A service can have BUFTYPE set to ALL, which means that this service accepts all buff
types. If this parameter is not specified, the default is ALL.

Examples of the BUFTYPE Parameter

The BUFTYPE parameter has the following characteristics.

Service Timeout Errors

Sometimes an unexpected system error occurs that freezes a service or causes i
out of control while it is processing a request. Though desirable to remove these
processes, it is difficult to detect them or their origin. A BEA TUXEDO mechanis
terminates these processes based on the time it takes for a service to process a r

BUFTYPE Example Meaning

BUFTYPE=”FML;VIEW:aud,aud2" FML and VIEW with subtypes aud and aud2
buffer types are allowed.

BUFTYPE=”FML;VIEW:*” All FML and VIEW buffer types are allowed.

BUFTYPE=ALL All buffer types are allowed (the default).
3-38 Administering the BEA TUXEDO System

Configuring Services

 you
nd

uest.

enger

ith an
how

n

s

. In
You can configure the time limit by defining the SVCTIMEOUT parameter in the
UBBCONFIG file or by dynamically changing the TA_SVCTIMEOUT attribute in TM_MIB.
By default, the BEA TUXEDO system does not terminate any service process, so
must set the SVCTIMEOUT value (in seconds) to activate this feature. We recomme
that you set the value of SVCTIMEOUT or TA_SVCTIMEOUT to at least two to three times
the number of seconds it takes for your longest running service to process a req
Setting the service timeout this way guarantees that the BEA TUXEDO system
removes only frozen processes. In essence, the service timeout acts like a scav
for frozen or out of control application servers.

This section describes the causes and results of Service Timeout errors, along w
explanation of how the BEA TUXEDO system reports such errors. Advice about
to handle errors is also provided.

Situations that Cause a Service Timeout

Service timeouts occur in the following situations:

� A service timeout occurs due to SVCTIMEOUT generally when an unknown or
unexpected system error freezes the server process, or when an application
coding error causes an infinite loop or recursion.

� The server process exits abnormally and dumps core, generally because of a
application coding error.

� Bad parameters are passed to tpreturn , tpforward , TPRETURN, or TPFORWARD
(application coding error).

� There are outstanding replies when tpreturn , tpforward , TPRETURN, or
TPFORWARD is called (application coding error).

� There are open subordinate connections when tpreturn , tpforward ,
TPRETURN, or TPFORWARD is called (application coding error).

� The caller's transaction has been marked “abort-only.”

What Happens When a Timeout Occurs

When a timeout occurs, the BEA TUXEDO system terminates the server proces
running the frozen service (but not its child processes, if any). It then returns a
TPESVCERR error, indicating that an unknown problem occurred during processing
a conversational service, the conversation event TPEV_SVCERR is returned.
Administering the BEA TUXEDO System 3-39

3 Creating a Configuration File

atures

to

ce
How a Service Timeout Is Reported

Before Release 6.4 of the BEA TUXEDO system, only the error code TPESVCERR was
returned when a service timeout occurred. In Release 6.4, however, three new fe
of Service Timeout reporting were introduced:

� TPED_SVCTIMEOUT—timeout error detail that provides more information than
tpstrerror (3c)

� .SysServiceTimeout —a system event

� ULOG information about .SysServiceTimeout

Because the SVCTIMEOUT value is configurable, it is important for clients to be able
easily distinguish a TPESVCERR that may be caused by exceeding the value set for
SVCTIMEOUT, from those caused by other situations. Although the ULOG contains this
information, it is difficult for client programs to extract it. To differentiate the servi
timeout TPESVCERR from others, a call to tperrordetail (3c) routine (after a
TPESVCERR has been detected) yields TPED_SVCTIMEOUT when a service timeout
occurs.

In addition, a system event, .SysServiceTimeout , is generated when a service
timeout occurs. When the .SysServiceTimeout event occurrs, it is reflected in the
ULOG in the following way:

ERROR: .SysServiceTimeout: %TA_SERVERNAME, group %TA_SRVGRP, id
%TA_SRVID server killed due to a service timeout

How to Control a Service Timeout

� Application administrators may control the service timeout by changing the
SVCTIMEOUT parameter in the SERVICES section of the UBBCONFIG file, or by
modifying the TA_SVCTIMEOUT attribute of the T_SERVER or T_SERVICE class of
TM_MIB. They may also monitor the ULOG file for service timeout activity.

� In addition to monitoring the ULOG file for service timeout activity, application
operators can subscribe to the .SysServiceTimeout event, which alerts them
when a service timeout occurs.

� Application programmers can use the tperrordetail (3c) and
tpstrerrordetail (3c) APIs, and the TPED_SVCTIMEOUT error detail code.
They may want to add one or more subscriptions to the .SysServiceTimeout
system event, which is generated when a service timeout occurs.
3-40 Administering the BEA TUXEDO System

Configuring Routing
Configuring Routing

The ROUTING section of UBBCONFIG allows the full definition of the routing criteria
named in the SERVICES section (for BEA TUXEDO data-dependent routing).

For more information about using these parameters to implement factory-based
routing or data-dependent routing, see Chapter 5, “Distributing Applications.”

Defining Routing Criteria in the ROUTING Section

The following table identifies the information required for an entry in the ROUTING
section.

Parameter Characteristics

criterion_name This is a string value with a maximum length of 15 characters.

For BEA TUXEDO data-dependent routing, it is the routing criteria name that you
specified as the ROUTING parameter in the SERVICES section.

FIELD The name of the buffer field on which the routing is to be done.

In BEA TUXEDO data-dependent routing, this value is the name of an FML field (for FML
buffers) or VIEW structure element name (for VIEW buffers). This is the actual field that is
used to route the message. It may be of any data type.

FIELDTYPE Specifies the type of the routing field. Field types supported are:

SHORT -215 . . . 215 - 1 (16 bit)

LONG -231 . . . 231 - 1 (32 bit)
FLOAT IEEE single-precision floating point numbers
DOUBLE IEEE double-precision numbers
CHAR A single character; an 8-bit quantity
STRING A null-terminated character array
Administering the BEA TUXEDO System 3-41

3 Creating a Configuration File

p

 *

ed.
otes

, but

ap to

,

Specifying Range Criteria in the ROUTING Section

The RANGES parameter provides the actual mapping between field value and grou
name. Its syntax is as follows.

RANGES=”[val1 [- val2]: group1] [, val3 [- val4]: group2]...[,*: groupn]”

where val1 , val2 , and so on, are values of that field and groupn may be either a group
name or the wildcard character (*) denoting that any group may be selected. The
character occupying the place of val at the end is a Catch-All choice, that is, it
specifies what to do if the data does not fall into any range that has been specifi
val1 is a number when it appears in numeric fields, and is enclosed in single qu
(‘) when it appears in STRING or CARRAY fields. The field values MIN and MAX (not
enclosed in quotes) are provided to allow machine minimum and maximum data values
to be expressed. There is no limit to the number of ranges that may be specified
all routing information is stored in shared memory and incurs a cost there.

Note: Overlapping ranges are allowed, but values that belong to both ranges m
the first group. For example, if RANGES is specified as
RANGES=”0-5:Group1,3-5:Group2" , then a range value of 4 routes to
Group1 .

RANGES The limits assigned to each criteria. The syntax is RANGES=”[val1 [- val2]: group1]
[, val3 [- val4]: group2]...[,*: groupn]”

val1 is a value; val1 - val2 is a range; groupn is either a group name or the wildcard
character (*) denoting all group names. val can be a number, a quote-enclosed (‘) string
or MIN or MAX. A wildcard in place of a range means Catch-All, that is, No Limit to the
number of ranges.

BUFTYPE For BEA TUXEDO data-dependent routing, the buffer type allowed. This parameter is
similar to its SERVICES section counterpart in that it restricts the routing criteria to a
specific set of buffer types and subtypes. Only FML and VIEW types can be used for
routing. The syntax is the same as the syntax in the SERVICES section, a
semicolon-separated list of type : subtype [, subtype] . You can specify only one
type for routing criteria. This restriction limits the number of buffer types allowed in
routing services.

Parameter Characteristics
3-42 Administering the BEA TUXEDO System

Configuring Network Information

g

rk
tion

y the

 in

Configuring Network Information

You can configure network groups in the NETGROUPS and NETWORK sections of an
application’s UBBCONFIG file.

Note: For specific information about the tasks involved, see Chapter 6, “Buildin
Networked Applications.”

Specifying Information in the NETGROUPS Section

The NETGROUPS section of the UBBCONFIG file describes the network groups available
to an application in a LAN environment. There is no limit to the number of netwo
groups to which a pair of machines may be assigned. The method of communica
to be used by members of different networks in a network group is determined b
priority mechanism (NETPRIO).

Every LMID must be a member of the default network group (DEFAULTNET). The
network group number for this group (that is, the value of NETGRPNO) must be zero.
However, you can modify the default priority of DEFAULTNET. Networks defined in
releases of the BEA TUXEDO system prior to Release 6.4 are assigned to the
DEFAULTNET network group.

Specifying the NETGRPNO, NETPRIO, NETGROUP, MAXNETGROUPS, and

MAXPENDINGBYTES Parameters

The NETGRPNO, NETPRIO, NETGROUP, MAXNETGROUPS, and MAXPENDINGBYTES
parameters have the following characteristics.

Parameter Required/Optional Description

NETGRPNO =
numeric_value

Required A unique network group number that you must assign to use
failover and failback situations. If this entry describes
DEFAULTNET, the numeric value must be zero.
Communication with pre-v6.4 releases of the BEA TUXEDO
system use only DEFAULTNET.
Administering the BEA TUXEDO System 3-43

3 Creating a Configuration File

ple

n

e

Sample Network Groups Configuration

You can associate network addresses with a network group. The following exam
illustrates how this capability may be useful.

NETPRIO =
numeric_value

Optional The priority of this network group. A pair of machines in
multiple network groups of the same priority communicates
simultaneously over the circuits with the highest priority. If all
network circuits of a certain priority are torn down by the
administrator or by network conditions, the next lowest priority
circuit is used. Retries of the higher priority circuits are
attempted. This value must be greater than zero and less tha
8,192. If not specified, the default is 100.

Note: In v6.4 of the BEA TUXEDO system, parallel data
circuits are prioritized by the network group number
(NETGRPNO) parameter within the priority group
number. In future releases, a different
algorithm/mechanism may be used to prioritize
parallel data circuits.

NETGROUP =
string_value

Required The network group associated with this network entry. All
network entries with a NETGROUP parameter of DEFAULTNET
are represented in the T_MACHINE class, while NETWORK
entries associated with any other NETGROUP are represented in
the T_NETMAP class to interoperate with previous releases.

MAXNETGROUPS Optional Allows more netgroups to be defined than the default (8).

MAXPENDINGBYTES Optional MAXPENDINGBYTES enables you to configure the maximum
size of data waiting for the network to become available. Ther
are two situations when MAXPENDINGBYTES is significant:

� When the BRIDGE requests an asynchronous connection

� When all circuits are busy

You can configure larger computers that have more memory
and disk space, with larger MAXPENDINGBYTES, and smaller
computers with smaller MAXPENDINGBYTES. Because
connections were always synchronous in v6.3 of the BEA
TUXEDO system, situation (1) above did not apply.

Parameter Required/Optional Description
3-44 Administering the BEA TUXEDO System

Configuring Network Information

 two

ork

.

First State Bank has a network of five machines (A-E). Each machine belongs to
or three of four netgroups that you have defined in the following way:

� DEFAULTNET (the default network, which is the corporate WAN)

� MAGENTA_GROUP (a LAN)

� BLUE_GROUP (a LAN)

� GREEN_GROUP (a private LAN that provides high-speed, fiber, point-to-point
links between member machines)

Every machine belongs to DEFAULTNET (the corporate WAN). In addition, each
machine is associated with either the MAGENTA_GROUP or the BLUE_GROUP. Finally,
some machines in the MAGENTA_GROUP LAN also belong to the private GREEN_GROUP.
Figure 3-1 shows machines A through E in the networks for which they have netw
addresses.

Figure 3-1 Example of a Network Grouping

The following table shows you which machines have addresses for which groups

Machine Has Addresses for These Groups

A and B DEFAULTNET (the corporate WAN)

MAGENTA_GROUP (LAN)

GREEN_GROUP (LAN)

C DEFAULTNET (the corporate WAN)

MAGENTA_GROUP (LAN)
Administering the BEA TUXEDO System 3-45

3 Creating a Configuration File

chine

te
Note: Because the local area networks are not routed among the locations, ma
D (in the BLUE_GROUP LAN) may contact machine A (in the GREEN_GROUP
LAN) only by using the single address they have in common: the corpora
WAN network address.

D and E DEFAULTNET (the corporate WAN)

BLUE_GROUP (LAN)

Machine Has Addresses for These Groups
3-46 Administering the BEA TUXEDO System

Configuring Network Information

ator
Configuring the UBBCONFIG File with Netgroups

To set up the configuration just described, the First State Bank system administr
defines each group in the NETGROUPS section of the UBBCONFIG file, as shown in
Listing 3-1.

Listing 3-1 Sample NETGROUPS and NETWORK Sections

NETGROUPS

DEFAULTNET NETGRPNO = 0 NETPRIO = 100 #default

BLUE_GROUP NETGRPNO = 9 NETPRIO = 100

MAGENTA_GROUP NETGRPNO = 125 NETPRIO = 200

GREEN_GROUP NETGRPNO = 13 NETPRIO = 200

NETWORK

A NETGROUP=DEFAULTNET NADDR="//A_CORPORATE:5723”

A NETGROUP=MAGENTA_GROUP NADDR="//A_MAGENTA:5724"

A NETGROUP=GREEN_GROUP NADDR="//A_GREEN:5725"

B NETGROUP=DEFAULTNET NADDR="//B_CORPORATE:5723"

B NETGROUP=MAGENTA_GROUP NADDR="//B_MAGENTA:5724"

B NETGROUP=GREEN_GROUP NADDR="//B_GREEN:5725"

C NETGROUP=DEFAULTNET NADDR="//C_CORPORATE:5723"

C NETGROUP=MAGENTA_GROUP NADDR="//C_MAGENTA:5724"

D NETGROUP=DEFAULTNET NADDR="//D_CORPORATE:5723"

D NETGROUP=BLUE_GROUP NADDR="//D_BLUE:5726"

E NETGROUP=DEFAULTNET NADDR="//E_CORPORATE:5723"
E NETGROUP=BLUE_GROUP NADDR="//E_BLUE:5726"
Administering the BEA TUXEDO System 3-47

3 Creating a Configuration File
3-48 Administering the BEA TUXEDO System

CHAPTER

, how
lve
BEA

leted
4 Starting and Shutting

Down Applications

This chapter describes how to ensure that your application is ready to be booted
to boot it, and how to shut it down. There are also procedures that help you reso
some problems you may run into when you first begin to start and shut down your
TUXEDO system application.

Topics covered in this chapter are:

� Starting Applications

� Shutting Down Applications

� Using tmshutdown

� Clearing Common Problems

Starting Applications

Before you issue the command to start an application, make sure you have comp
all of the tasks in the prerequisite checklist, described in the following section.

Prerequisite Checklist

Complete the following tasks before booting your application.
Administering the BEA TUXEDO System 4-1

4 Starting and Shutting Down Applications

n
Set Environment Variables

Set and export variables TUXDIR, TUXCONFIG, PATH, and LD_LIBRARY_PATH so that
they are in your environment as the system is booted. For example:

$TUXDIR=<path_name_of_TUX_home_directory >
$TUXCONFIG=<path_name_of_TUXCONFIG >
$PATH=$PATH:$TUXDIR/bin
$LD_LIBRARY_PATH=<path_name_of_shared_libraries >
export TUXDIR TUXCONFIG PATH LD_LIBRARY_PATH

Replace the substitutable strings (shown in italic) with the path names appropriate
for your installation. Other environment variables can be specified in an ENVFILE. (See
ubbconfig (5).)

On AIX, LIBPATH must be set instead of LD_LIBRARY_PATH. On HPUX, SHLIB_PATH
must be set instead of LD_LIBRARY_PATH. On NT, no variable for shared libraries is
required.

Create TUXCONFIG

TUXCONFIG is a binary version of the text configuration file. The tmloadcf (1)
command converts the configuration file to binary form and writes it to the locatio
given in the TUXCONFIG variable.

Enter the command as follows:

Table 4-1 Preliminary Tasks

Task Procedure

 1 Set Environment Variables

 2 Create TUXCONFIG

 3 Propagate the BEA TUXEDO
Software

4 Create a TLOG Device

5 Start tlisten at All Sites (MP
environments)
4-2 Administering the BEA TUXEDO System

Starting Applications

e

he

ded
$ tmloadcf [-n] [-y] [-c] [-b blocks] { ubbconfig_file | - }

Note: You must be logged in on the MASTER machine and have the effective user ID
of the owner of the configuration file.

You may want to consider the following options before you create TUXCONFIG:

-c Calculate minimum IPC resources of the configuration.
-n Do a syntax check only; report errors.

The -c and -n options do not load the TUXCONFIG file.

UNIX IPC resources are platform specific. If you use the -c option, check the platform
data sheet for your platform in Appendix A of the BEA TUXEDO Installation Guide
to judge whether you need to make some changes. If you do want to change IPC
resources, check the administration guide for your platform.

If the -n option indicates syntax errors in the configuration file, correct the errors
before you proceed.

For ubbconfig_file , substitute the fully qualified name of your configuration file.

When you are ready to create the TUXCONFIG file, you may want to consider the
following options:

-b Limit the size of the TUXCONFIG file.
-y Overwrite the existing TUXCONFIG file without asking.

The -b option takes an argument that limits the number of blocks used to store th
TUXCONFIG file. Use it if you are installing TUXCONFIG on a raw disk device that has
not been initialized. The option is not recommended if TUXCONFIG will be stored in a
regular UNIX system file.

Propagate the BEA TUXEDO Software

TUXCONFIG is automatically propagated to all machines in your configuration by t
BEA TUXEDO system software when you run tmboot (1), but there are other files that
need to be present on all machines. Table 4-2 is a list of files and directories nee
for a networked application.
Administering the BEA TUXEDO System 4-3

4 Starting and Shutting Down Applications

 log

Create a TLOG Device

To create distributed transaction processing, you must have a global transaction
(TLOG) on each participating machine. To define a TLOG, you must set several
parameters in the MACHINES section of the configuration file. You must create the
device list entry for the TLOGDEVICE on each machine where a TLOG is needed. It can
be done before or after TUXCONFIG has been loaded, but must be done before the
system is booted.

Table 4-2 Propagating Directories or Files

Directory or File Comments

APPDIR The directory named in the APPDIR variable must be created
on each node. It is helpful if this directory has the same path
name on all nodes.

Executables Application servers must be built once for each platform type,
and must be manually propagated to other machines of that
platform (that is, BEA TUXEDO does not do this
automatically). Store the executables in APPDIR, or in a
directory pointed to in a PATH variable in ENVFILES in the
MACHINES section.

Field tables
VIEW files

Depending on the requirements of application services (that is,
if FML or VIEWS buffer types are used), field tables and VIEW
description files must be manually propagated to machines
where they are used, then recompiled. Use mkfldhdr (1) to
make a header file out of a field table file; use viewc (1) to
compile a VIEW file. The FML field tables and VIEW
description files should be available through the environment
variables FLDTBLDIR, FIELDTBLS, VIEWDIR, and
VIEWFILES, or their 32-bit equivalents.

tlisten The tlisten process must be started on each machine of a
networked BEA TUXEDO application. See tlisten (1). The
tlisten process must be started before the application is
booted.

Note: You must define TUXDIR, TUXCONFIG, APPDIR,
and other relevant environment variables before
starting tlisten .
4-4 Administering the BEA TUXEDO System

Starting Applications

e
n
a

chine.

e, as

d for
e
To create an entry in the UDL for the TLOG device:

1. On the master node with the application inactive, invoke tmadmin -c .
The -c option brings tmadmin up in configuration mode.

2. Enter the command:

crdl -z config -b blocks

where -z config specifies the full path name for the device where the UDL
should be created (that is, where the TLOG will reside), and -b blocks specifies
the number of blocks to be allocated on the device. The value of config should
match the value of the TLOGDEVICE parameter in the MACHINES section. If
config is not specified, it defaults to the value of the variable FSCONFIG (which
points to the application’s databases).

3. Repeat Steps 1 and 2 on each node of your application that is expected to be
involved with global transactions.

If the TLOGDEVICE is mirrored between two machines, Step 3 is not required on th
paired machine. To be recoverable, the TLOG should preferably be on a device that ca
be mirrored. Because the TLOG is too small (typically,100 pages) to warrant having
whole disk partition to itself, the expectation is that the TLOG will be stored on the same
raw disk slice as the application's databases. FSCONFIG is the environment variable
used by the system. Therefore, the tmadmin crdl command defaults to FSCONFIG.

Start tlisten at All Sites

To have a networked application, a listener process must be running on each ma

This step is required if you are running the application on more than one machin
established by the MODEL MP parameter in the RESOURCES section of the application’s
UBBCONFIG file.

Note: You must define TUXDIR, TUXCONFIG, APPDIR, and other relevant
environment variables before starting tlisten .

The port on which the process is listening must be the same as the port specifie
NLSADDR in the NETWORK section of the configuration file. On each machine, use th
tlisten (1) command, as follows:

tlisten [-d device] -l nlsaddr [-u { uid-# | uid-name }] [-z bits\
] [-Z bits]
Administering the BEA TUXEDO System 4-5

4 Starting and Shutting Down Applications

he
P,

f

nly
aster

ve
o
 the

ve

The options to this command are as follows.

-d device
The full path name of the network device. For the BEA TUXEDO system
version 6.4 or above, this option is not required. For earlier versions of t
BEA TUXEDO system (v6.3 and lower), some network providers (TCP/I
for example) require this information.

-l nlsaddr
The network address as specified for this machine (LMID) in the NETWORK
section of the configuration file. nlsaddr can be specified in any of the
formats that can be specified for the NADDR parameter in the same section. I
the address has the form 0xhex-digits or \\xhex-digits , it must contain
an even number of valid hexadecimal digits.

TCP/IP addresses may be in the //#.#.#.#:port format or the
// machine-name : port format.

tmloadcf (1) prints an error if nlsaddr is missing from any entry but the
entry for the MASTER LMID, for which it prints a warning. However, if
nlsaddr is missing from the MASTER LMID entry, tmadmin (1) is not able to
run in administrator mode on remote machines; it will be limited to read-o
operations. This also means that the backup site is unable to reboot the m
site after failure.

-u uid-# or uid-name
Can be used to have the tlisten process run as the indicated user. This
option is required if the tlisten (1) command is run by root on a remote
machine.

-z [bits]
When establishing a network link between a BEA TUXEDO administrati
process and tlisten , require at least this minimum level of encryption. Zer
(0) means no encryption, while 40 and 128 specify the length (in bits) of
encryption key. If this minimum level of encryption cannot be met, link
establishment fails. The default is zero.

-Z [bits]
When establishing a network link between a BEA TUXEDO administrati
process and tlisten , allow encryption up to this level. Zero (0) means no
encryption, while 40 and 128 specify the length (in bits) of the encryption
key. The default is 128. The -z and -Z options are available only if either the
4-6 Administering the BEA TUXEDO System

Starting Applications

g up

 the
International or Domestic BEA TUXEDO Security Add-on Package is
installed.

Booting the Application

Once the preliminaries have been successfully completed, you are ready to brin
the application, as described in the following section.

Using tmboot

The user who created the TUXCONFIG file is considered the administrator of the
application. Only this user can execute tmboot (1).

The application is normally booted from the machine designated as the MASTER in the
RESOURCES section of the configuration file or the BACKUP MASTER acting as the
MASTER. The -b option allows some deviation from this rule.

For tmboot (1) to find executables, the BEA TUXEDO system processes, such as
BBL, must be located in $TUXDIR/bin . Application servers should be in APPDIR as
specified in the configuration file.

When booting application servers, tmboot (1) uses the CLOPT, SEQUENCE, SRVGRP,
SRVID, and MIN parameters from the configuration file.

Application servers are booted in the order specified by their SEQUENCE parameter, if
SEQUENCE is used. If SEQUENCE is not specified, servers are booted in the order in
which they appear in the configuration file.

The command line should look something like the following (this is a greatly
simplified example):

$ tmboot [-g grpname] [-o sequence] [-S] [-A] [-y]

The options shown have the meanings listed in Table 4-3.

Table 4-3 tmboot Options

Option Meaning

-g grpname Boot all TMS and application servers in groups using this
grpname parameter.
Administering the BEA TUXEDO System 4-7

4 Starting and Shutting Down Applications

ng of

ine
are

y

There are many more options than are shown in the example. For a complete listi
the tmboot options, see the tmboot (1) reference page in the BEA TUXEDO Reference
Manual.

Default Boot Sequence for a Small Application

The following scenario shows the order of processing when booting a two-mach
configuration. This is not a procedure that you have to initiate; it is what the softw
does if you enter the following command.

prompt> tmboot -y

1. tmboot comes up on the MASTER site and processes the TUXCONFIG file, creating a
“to do” list for itself.

2. tmboot boots the DBBL on the MASTER machine.

3. tmboot boots the BBL on the MASTER machine, which creates the shared memor
Bulletin Board.

4. tmboot boots the BRIDGE on the MASTER machine, which establishes its listening
address.

-o sequence Boot all servers in the order shown in their SEQUENCE
parameter.

-s server-name Boot individual servers.

-S Boot all servers listed in the SERVERS section.

-A Boot all administrative servers for machines listed in the
MACHINES section. This ensures that the DBBL, BBL, and
BRIDGE processes are started in the proper order.

-y Provides an automatic “yes” response to the prompt that
asks if all administrative and application servers should be
booted. This prompt appears only if no options that limit
the scope of the command (-g grpname , for example) are
specified.

Table 4-3 tmboot Options

Option Meaning
4-8 Administering the BEA TUXEDO System

Starting Applications

est

tion

uence
ot two

 large
by

the
5. tmboot establishes a connection with the remote site tlisten process and
propagates the TUXCONFIG file to the remote site if it is not already there.

6. tmboot boots a BSBRIDGE. The BSBRIDGE establishes a connection back to the
BRIDGE process on the MASTER machine.

7. tmboot boots a BBL. The BBL creates the local Bulletin Board and sends a requ
to the DBBL via the BSBRIDGE, to register it as a server. The reply from the DBBL
contains a complete copy of the MASTER Bulletin Board and the BBL updates its
Bulletin Board with the information.

8. tmboot boots a BRIDGE. The BRIDGE establishes a connection back to the
BRIDGE on the MASTER site, at which point it tells the BSBRIDGE to go away since
it is no longer needed.

9. tmboot can then boot the application servers.

10. tmboot boots the local application servers first, then boots the remote applica
servers.

11. tmboot is now finished processing and leaves gracefully.

Optimized Boot Sequence for Large Applications

The boot sequence recommended for larger applications is shown here. This seq
boots entire machines in a single step rather than taking all the steps used to bo
machines in the default sequence. The optimized sequence can be explained as
follows.

1. Boot the entire MASTER machine first. This is done by using the -M -l combination.

2. Boot the entire remote machine. This is done by using the -B -l combination.

This method is faster because the number of system messages is far smaller. In
applications (more than 50 machines), this method generally reduces boot time
50%.

In a configuration with a slow network, boot time can be improved by first booting
machines that have higher speed connections to the MASTER machine.
Administering the BEA TUXEDO System 4-9

4 Starting and Shutting Down Applications

o

n

at
 is
r has

. The
r

e.

e
Shutting Down Applications

The tmshutdown (1) command is provided for shutting down an application.

The rules for use of this command are very similar to those of tmboot (1).

Administrators face several problems when shutting down an application. The tw
most common situations are discussed in the last section of this chapter.

The tmshutdown (1) command is the inverse of the tmboot (1) command. It shuts
down part or all of the BEA TUXEDO system application.

When the entire application is shut down, tmshutdown (1) removes the IPC resources
associated with the BEA TUXEDO system.

The options used by tmboot (1) for partial booting (-A , -g , -I , -S , -s , -l , -M , -B)
are supported in tmshutdown (1). Note that the -b option, which allows tmboot to be
used from a non-MASTER machine, is not supported for tmshutdown ; the tmshutdown
command must be entered from the MASTER (or BACKUP MASTER) machine.

If servers are to be migrated, the -R option must be used. This shuts the servers dow
without removing the Bulletin Board entries.

If a node is partitioned, tmshutdown (1) with the -P lmid option can be run on the
partitioned machine to shut down the servers on that machine.

tmshutdown (1) will not shut down the administrative server BBL on a machine th
has clients attached. The -c option can be used to override this feature. This option
needed when a machine must be brought down immediately and the administrato
been unable to contact the clients.

The -w delay option can be used to force a hard shutdown after delay seconds. This
option suspends all servers immediately so that additional work cannot be queued
value of delay should allow time for requests already queued to be serviced. Afte
delay seconds, a SIGKILL signal is sent to the servers. This option enables the
administrator to shut down servers that are looping or blocked in application cod

Always check the details of a command such as tmshutdown (1) in the BEA TUXEDO
Reference Manual to make sure you have the most recent information on availabl
options.
4-10 Administering the BEA TUXEDO System

Using tmshutdown

he

me
he

s

EA
and

 BEA
of a
Using tmshutdown

The user creating the TUXCONFIG file is considered to be the administrator of the
application. Only this user can execute tmshutdown (1).

The application can be shut down only from the machine designated as MASTER in the
configuration file. When the BACKUP MASTER is acting as the MASTER, it is considered
to be the MASTER for shutdown purposes.

The only exception to this rule is a partitioned machine. By using the -p option, the
administrator can run the command from the partitioned machine to shut down t
application at that site.

Application servers are shut down in the reverse order specified by their SEQUENCE
parameter, or by reverse order of their appearance in the configuration file. If so
servers have SEQUENCE numbers and others do not, the unnumbered servers are t
first to be shut down, followed by the application servers with SEQUENCE numbers (in
reverse order). Finally, administrative servers are shut down.

When an application is shut down, all the IPC resources allocated by the BEA
TUXEDO system are removed. Note that tmshutdown does not remove IPC resource
allocated by the DBMS.

Clearing Common Problems

There are several problems that you may encounter when first working with the B
TUXEDO system. This section lists and discusses some of the common startup
shutdown problems.

Common Startup Problems

This section describes a few problems you may encounter when starting your first
TUXEDO system application. Evidence that a problem exists comes in the form
message to ULOG, a message to your screen, or both, as follows:
Administering the BEA TUXEDO System 4-11

4 Starting and Shutting Down Applications

r within

O
g
ls to
� TLOG Not Created

� Server Not Built Correctly

� Incorrect OPENINFO String

� Unable to Propagate the BEA TUXEDO System

TLOG Not Created

If the transaction log (TLOG) fails to get created, a message is sent to the user log
(ULOG).

The message includes the message catalog name, the unique message numbe
the catalog, and the reason for the failure. For example, one such message is:

CMDTUX 142 ERROR: Identifier for TLOGNAME must be <= len characters in length

TLOGNAME cannot be more than 30 characters long.

Problems of this kind can be avoided if you check the syntax of the TLOG parameters
in the MACHINES section of the UBBCONFIG file (see ubbconfig (5)).

Following are other reasons why the TLOG might not get created:

� The person entering the command may lack the authority to do so.

� File permissions may not allow you to write to the device.

� There is not enough space to create the file.

Server Not Built Correctly

Following are two reasons a server may not start correctly:

� buildserver (1) fails

� buildserver (1) succeeds but the server comes up with the wrong services

buildserver(1) failure

An error in this area should be noticed before you attempt to boot a BEA TUXED
system application. buildserver (1) is used to compile application code, combinin
the services to be offered by a server into the executable module. If the code fai
4-12 Administering the BEA TUXEDO System

Clearing Common Problems

em in
e

on the

rect

e case.

ation
dors
e
compile, the causes can be that an incorrect compiler was specified, the needed
libraries were not found, needed service modules were not found, there is a probl
the code, and so forth. Pay close attention to the error messages and consult thBEA
TUXEDO Reference Manual.

server comes up with wrong services

Problems in this area can often be attributed to an incorrect CLOPT parameter for the
server (CLOPT is an abbreviation for “command-line options”). The CLOPT parameter
is assigned in the SERVERS section of the UBBCONFIG file. It carries command-line
options that apply to a server when the server is booted. The options are defined
servopts (5) reference page. Refer to this page and the ubbconfig (5) reference page
for help on debugging the problem.

Another cause for a server coming up with the wrong services could be an incor
specification of services when the server is built. While services are usually in a
module of code that has a mnemonic name, there is no requirement that this be th
Service a, for example, may actually be performed by function x , which could lead to
an error.

Incorrect OPENINFO String

The OPENINFO string is specified in the GROUPS section of the UBBCONFIG file. It
carries information needed by servers in the group when they try to open an applic
database. There is a very specific form for the information that is agreed to by ven
of XA-compliant DBMS; the information is stored in the BEA TUXEDO system fil
$TUXDIR/udataobj/RM.

Note: After changing the OPENINFO string, BEA recommends that you reboot the
servers that use this resource manager (RM).

To clear a problem:

1. Check the BEA TUXEDO System Message Manual for an explanation of the error
message.

If this does not resolve the problem, go to Step 2.

2. Check the syntax of the OPENINFO parameter as specified in the GROUPS section
of ubbconfig (5).

If the problem persists, go to Step 3.
Administering the BEA TUXEDO System 4-13

4 Starting and Shutting Down Applications

e able
3. Look in $TUXDIR/udataobj/RM to see how the information for your DBMS
needs to be specified.

Unable to Propagate the BEA TUXEDO System

In a networked application, there are several reasons why the system may not b
to propagate the TUXCONFIG file. The generic message is as follows:

cannot propagate TUXCONFIG file

Following are possible reasons for the failure:

� No listener on the remote machine

� Mismatched address specifications for the listener on the remote machine

� Group ID and/or the user ID are not the same on both machines

� Access (permissions) problems

Table 4-4 shows a possible solution for each propagation problem.

Table 4-4 Possible Solutions to Propagation Failure

Problem Solution

Application fails to boot If tlisten password security is enabled, check that
the tlisten passwords match on both machines. The
match is required.

Listener process not started on
remote machine

Check that the TUXDIR, TUXCONFIG, APPDIR, and
other relevant environment variables are set on the
remote machine, before starting the listener. Then use
the tlisten (1) command to start the listener.

Listener started at address
different from the NLSADDR
in the configuration file

Correct the listener address and rerun the tlisten (1)
command.

Group ID and/or the User ID
are not the same on both
machines

Change the IDs to be the same or specify the correct IDs
in the MACHINES section for that machine.
4-14 Administering the BEA TUXEDO System

Clearing Common Problems
Wrong permissions on
files/directories on remote
machine

Change the permissions to the appropriate values.

Table 4-4 Possible Solutions to Propagation Failure

Problem Solution
Administering the BEA TUXEDO System 4-15

4 Starting and Shutting Down Applications

are

er
t

Common Shutdown Problems

The two most common problems encountered when shutting down applications
shown with solutions in Table 4-5.

Table 4-5 Two Common Shutdown Problems and Their Solutions

Problem Solution

Shutting down administrative
servers before application
servers

The BEA TUXEDO system does not allow this action
because the administrative servers are needed even aft
all application servers are shut down. If you want to shu
down a machine, the application servers must be shut
down ahead of the administrative servers. Use the
tmshutdown -l , -S , -s , -g , and -I options before -A ,
-M, and -B .

Unable to shut down a machine
with clients attached

As a rule, the BEA TUXEDO system does not allow this.
However, if the client cannot be contacted, the -c option
can be used to shut down the BBL while it still has clients
attached. There are consequences to client applications
that must be considered before taking this action.

Try running tmshutdown with the -w delay option to
shut down servers forcibly after delay seconds, or run
tmshutdown with the -c option to shut down the BBL,
even though it has clients attached.
4-16 Administering the BEA TUXEDO System

CHAPTER

ould
 an

oups
iness
5 Distributing

Applications

This chapter discusses the following topics:

� Why Distribute an Application?

� Using Data-dependent Routing

� Modifying and Creating the UBBCONFIG Sections for a Distributed
Application

� Example of UBBCONFIG Sections in a Distributed Application

� Modifying the Domain Gateway Configuration File to Support Routing

Why Distribute an Application?

Distributing an application enables you to select which parts of an application sh
be grouped together logically and where these groups should run. You distribute
application by creating more than one entry in the GROUPS section of the UBBCONFIG
file, and by dividing application resources or tasks among the groups. Creating gr
of servers enables you to partition a very large application into its component bus
applications and, in turn, to partition each of these applications into logical
components of manageable size and optimal location.
Administering the BEA TUXEDO System 5-1

5 Distributing Applications

base
arate

tion

ilarly

 can
up

her

 can

Benefits of a Distributed Application

� Scalability—The load an application can sustain can be increased by placing
extra server processes in a group; adding machines to the application and
redistributing the groups across the machines; replicating a group onto other
machines within the application and using load balancing; segmenting a data
and using data-dependent routing to reach the groups dealing with these sep
database segments.

� Ease of development/maintainability—The separation of the business applica
logic into services or components that communicate through well-defined
messages or interfaces allows both development and maintenance to be sim
separated and so simplified.

� Resilience—When multiple machines are in use and one fails, the remainder
continue operation. Similarly, when multiple server processes are within a gro
and one fails, the others are present to perform work. Finally, if a machine
should break, but there are multiple machines within the application, these ot
machines can be used to perform the work of the application.

� Coordination of autonomous actions—If you have separate applications, you
coordinate autonomous actions among the applications. You can coordinate
autonomous actions as a single logical unit of work. Autonomous actions are
actions that involve multiple server groups and/or multiple resource manager
interfaces.

Characteristics of Distributing an Application

A distributed application has the following characteristics:

� Enlarges the client and/or server model

� Establishes multiple server groups

� Enables transparent access to BEA TUXEDO services

� Allows data-dependent partitioning of data

� Enables management of multiple resources

� Supports a networked model
5-2 Administering the BEA TUXEDO System

Using Data-dependent Routing

 client
 value
 the
 the

g

e.
Using Data-dependent Routing

Data-dependent routing is a mechanism whereby a service request is routed by a
(or a server acting as a client) to a server within a specific group based on a data
contained within the buffer that is sent. Within the internal code of a service call,
BEA TUXEDO system chooses a destination server by comparing a data field with
routing criteria it finds in the Bulletin Board shared memory.

For any given service, a routing criteria identifier can be specified in the SERVICES
section of the UBBCONFIG file. The routing criteria identifier, in particular, the mappin
of data ranges to server groups, is specified in the ROUTING section.

Characteristics of Data-dependent Routing

Data-dependent routing has the following characteristics:

� The service request assigned to a server in the group is based on a data valu

� Routing uses the Bulletin Board criteria and occurs in a server call.

� The routing criteria identifier for a service is specified in the SERVICES section
of the UBBCONFIG file.

� The routing criteria identifier is defined in the ROUTING section of the
UBBCONFIG file.

Example: A Distributed Application

The following table illustrates how client requests are routed to servers. In this
example, a banking application called bankapp uses data-dependent routing. For
bankapp , there are three groups (BANKB1, BANKB2, and BANKB3), and two routing
criteria (Account ID and Branch ID). The services WITHDRAW, DEPOSIT, and
INQUIRY are routed using the Account_ID field; the services OPEN and CLOSE are
routed using the Branch_ID field.
Administering the BEA TUXEDO System 5-3

5 Distributing Applications

for
in a

t
eld,

t to a
Modifying and Creating the UBBCONFIG

Sections for a Distributed Application

Data-dependent routing is described in the UBBCONFIG file, as follows:

� The GROUPS section is populated with as many server groups as are required
distributing the system. This allows the system to route a request to a server
specific group. These groups can all reside on the same site (SHM mode) or, if
there is networking, the groups can reside on different sites (MP mode).

� For data-dependent routing in the BEA TUXEDO system, the SERVICES section
must list the routing criteria for each service that uses the ROUTING parameter.

Note: If a service has multiple entries, each with a different SRVGRP parameter,
all such entries must set ROUTING the same way. Otherwise, routing canno
be done consistently for that service. A service can route only on one fi
which must be the same for all the same services.

� You must add a ROUTING section to the configuration file to show mappings
between data ranges and groups. This allows the system to send the reques

Server Group Routing Criteria Used For These Services

BANKB1 Account_ID: 10000 - 49999 WITHDRAW, DEPOSIT, and
INQUIRY

Branch_ID: 1 - 4 OPEN and CLOSE

BANKB2 Account_ID: 50000 - 79999 WITHDRAW, DEPOSIT, and
INQUIRY

Branch_ID: 5 - 7 OPEN and CLOSE

BANKB3 Account_ID: 80000 - 109999 WITHDRAW, DEPOSIT, and
INQUIRY

Branch_ID: 8 - 10 OPEN and CLOSE
5-4 Administering the BEA TUXEDO System

Modifying and Creating the UBBCONFIG Sections for a Distributed Application

group
e

n

et
server in a specific group. Each ROUTING section item contains an identifier that
is used in the SERVICES section.

Modifying the GROUPS Section

Parameters in the GROUPS section implement two important aspects of distributed
transaction processing. They associate a group of servers with a particular LMID and a
particular instance of a resource manager. In addition, by allowing a second LMID to
be associated with the server group, they name an alternate machine to which a
of servers can be migrated if the MIGRATE option is specified. Table 5-1 describes th
parameters in the GROUPS section.

Table 5-1 Description of the GROUPS Section Parameters

Parameter Meaning

LMID LMID must be assigned in the MACHINES section. It indicates that
this server group runs on this particular machine. A second LMID
value can be specified (separated from the first by a comma) to
name an alternate machine to which this server group can be
migrated if the MIGRATE option has been specified. Servers in the
group must specify RESTART=Y to migrate.

GRPNO GRPNO is a required parameter that associates a numeric group
number with this server group. The number must be greater tha
0 and less than 30000. It must be unique among entries in the
GROUPS section in this configuration file.

TMSNAME Specifies which transaction management server (TMS) should be
associated with this server group.

TMSCOUNT An optional parameter that can be used to specify how many
copies of TMSNAME should be started for this server group. The
minimum value is 2. If not specified, the default is 3. All
TMSNAME servers started for a server group are automatically s
up in an MSSQ set.
Administering the BEA TUXEDO System 5-5

5 Distributing Applications

es
ifier
the
o a

n
 is

tire
e

r

t
n.

 a
be
Modifying the SERVICES Section

The SERVICES section contains parameters that control the way application servic
are handled. An entry line in this section is associated with a service by its ident
name. Because the same service can be link edited with more than one server,
SRVGRP parameter is provided to tie the parameters for an instance of a service t
particular group of servers. Three parameters in the SERVICES section are particularly
related to DTP: ROUTING, AUTOTRAN, and TRANTIME. Table 5-2 describes the
parameters in the SERVICES section.

Table 5-2 Description of the SERVICES Section Parameters

OPENINFO Specifies information needed to open a particular instance of a
particular resource manager, or it indicates that such informatio
is not required for this server group. When a resource manager
named in the OPENINFO parameter, information such as the
name of the database and the access mode is included. The en
value string must be enclosed in double quotes and must not b
more than 256 characters. The format of the OPENINFO string is
dependent on the requirements of the vendor providing the
underlying resource manager. The string required by the vendo
must be prefixed with rm_name:, which is the published name of
the vendor's transaction (XA) interface followed immediately by
a colon (:).

The OPENINFO parameter is ignored if TMSNAME is not set or is
set to TMS. If TMSNAME is set but the OPENINFO string is set to
the null string (“”) or if this parameter does not appear on the
entry, it means that a resource manager exists for the group bu
does not require any information for executing an open operatio

CLOSEINFO Specifies information the resource manager needs when closing
database. The parameter can be omitted or the null string can
specified. The default is the null string.

Parameter Meaning
5-6 Administering the BEA TUXEDO System

Modifying and Creating the UBBCONFIG Sections for a Distributed Application

e

0

Sample SERVICES Section

The following listing shows a sample SERVICES section.

SERVICES

WITHDRAW ROUTING=ACCOUNT_ID
DEPOSIT ROUTING=ACCOUNT_ID
OPEN_ACCT ROUTING=BRANCH_ID

Creating the ROUTING Section

For information about ROUTING parameters that support the BEA TUXEDO system
data-dependent routing, see Chapter 3, “Creating a Configuration File.”

Parameter Meaning

ROUTING The ROUTING parameter in the SERVICES section points to an
entry in the ROUTING section where data-dependent routing is
specified for transactions that request this service.

AUTOTRAN Setting the AUTOTRAN parameter to Y or N determines whether
a transaction should be started automatically if a message
received by this service is not already in transaction mode.The
default is N. Use of the parameter should be coordinated with th
programmers coding the services for your application.

TRANTIME The TRANTIME parameter sets a timeout value in seconds for
transactions automatically started in this service. The default is 3
seconds. The TRANTIME parameter is needed only if AUTOTRAN
=Y, and not even then if the default is acceptable.
Administering the BEA TUXEDO System 5-7

5 Distributing Applications

Example of UBBCONFIG Sections in a

Distributed Application

The following UBBCONFIG file contains the GROUPS, SERVICES, and ROUTING sections
of a configuration file to accomplish data-dependent routing in the BEA TUXEDO
system.

GROUPS
BANKB1 GRPNO=1
BANKB2 GRPNO=2
BANKB3 GRPNO=3
#
SERVICES
WITHDRAW ROUTING=ACCOUNT_ID
DEPOSIT ROUTING=ACCOUNT_ID
INQUIRY ROUTING=ACCOUNT_ID
OPEN_ACCT ROUTING=BRANCH_ID
CLOSE_ACCT ROUTING=BRANCH_ID
#
ROUTING
ACCOUNT_ID FIELD=ACCOUNT_ID BUFTYPE=”FML”
 RANGES=”MIN - 9999:*,
 10000-49999:BANKB1,
 50000-79999:BANKB2,
 80000-109999:BANKB3,
 :”
BRANCH_ID FIELD=BRANCH_ID BUFTYPE=”FML”
 RANGES=”MIN - 0:*,
 1-4:BANKB1,
 5-7:BANKB2,
 8-10:BANKB3,
 :”
5-8 Administering the BEA TUXEDO System

Modifying the Domain Gateway Configuration File to Support Routing

r.
he

ce
Modifying the Domain Gateway

Configuration File to Support Routing

This section explains how and why you need to modify the domain gateway
configuration to support routing. For more information about the domain gateway
configuration file, see Chapter 8, ‘‘Working with Multiple Domains.’’

What Is the Domains Gateway Configuration File?

All Domains gateway configuration information is stored in a binary file, the
BDMCONFIG file. The DMCONFIG file (ASCII) is created and edited with any text edito
The compiled BDMCONFIG file can be updated while the system is running by using t
dmadmin(1) command.

You must have one BDMCONFIG file for each BEA TUXEDO application to which you
want to add Domains functionality. System access to the BDMCONFIG file is provided
through the Domains administrative server, DMADM(5). When a gateway group is
booted, the gateway administrative server, GWADM(5), requests from the DMADM server
a copy of the configuration required by that group. The GWADM server and the DMADM
server also ensure that run-time changes to the configuration are reflected in the
corresponding Domains gateway groups.

Note: For more information about the DMCONFIG file, refer to the dmconfig (5)
reference page in the BEA TUXEDO Reference Manual.

Description of Parameters in the ROUTING Section of the

DMCONFIG File

The DM_ROUTING section provides information for data-dependent routing of servi
requests using FML, VIEW, X_C_TYPE, and X_COMMON typed buffers. Lines within the
DM_ROUTING section have the form CRITERION_NAME, where CRITERION_NAME is the
Administering the BEA TUXEDO System 5-9

5 Distributing Applications

ble

s,

a

s
e

(identifier) name of the routing entry specified in the SERVICES section. The
CRITERION_NAME entry may contain no more than 15 characters. The following ta
describes the parameters in the DM_ROUTING section.

Parameter Meaning

FIELD = identifier Specifies the name of the routing field. It must contain 30
characters or fewer. This field is assumed to be a field name
identified in an FML field table (for FML buffers) or an FML VIEW
table (for VIEW, X_C_TYPE, or X_COMMON buffers). The
FLDTBLDIR and FIELDTBLS environment variables are used to
locate FML field tables; the VIEWDIR and VIEWFILES
environment variables are used to locate FML VIEW tables. If a field
in an FML32 buffer is used for routing, it must have a field number
less than or equal to 8191.

RANGES
="range1:rdom1[,range2:rdom2
...]"

Specifies the ranges and associated remote domain names (RDOM)
for the routing field. The string must be enclosed in double quote
with the format of a comma-separated ordered list of range/RDOM
pairs. A range is either a single value (signed numeric value or
character string in single quotes), or a range of the form lower -
upper (where lower and upper are both signed numeric values
or character strings in single quotes). The value of lower must be
less than or equal to upper . A single quote embedded in a
character string value (as in “O'Brien,” for example), must be
preceded by two backslashes (“O\\'Brien”).
Use MIN to indicate the minimum value for the data type of the
associated FIELD . For strings and carrays, it is the null string; for
character fields, it is 0; for numeric values, it is the minimum
numeric value that can be stored in the field.
Use MAX to indicate the maximum value for the data type of the
associated FIELD . For strings and carrays, it is effectively an
unlimited string of octal-255 characters; for a character field, it is
single octal-255 character; for numeric values, it is the maximum
numeric value that can be stored in the field. Thus, MIN - -5 is
all numbers less than or equal to -5 , and 6 - MAX is all numbers
greater than or equal to 6.
The metacharacter * (wildcard) in the position of a range indicate
any values not covered by the other ranges previously seen in th
entry. Only one wildcard range is allowed per entry and it should
be last (ranges following it are ignored).
5-10 Administering the BEA TUXEDO System

Modifying the Domain Gateway Configuration File to Support Routing

ange

side a
alues

hree
h

.
r

ge
Routing Field Description

The routing field can be of any data type supported in FML or VIEW. A numeric routing
field must have numeric range values, and a string routing field must have string r
values.

String range values for string, carray, and character field types must be placed in
pair of single quotes and cannot be preceded by a sign. Short and long integer v
are a string of digits, optionally preceded by a plus or minus sign. Floating point
numbers are of the form accepted by the C compiler or atof() : an optional sign, then
a string of digits (optionally containing a decimal point), then an optional e or E
followed by an optional sign or space, followed by an integer.
When a field value matches a range, the associated RDOM value specifies the remote
domain to which the request should be routed. An RDOM value of * indicates that the
request can go to any remote domain known by the gateway group. Within a
range/RDOM pair, the range is separated from the RDOM by a : (colon).

Example of a Five-Site Domain Configuration Using Routing

The following configuration file defines a 5-site domain configuration. Listing 5-1
shows four bank branch domains communicating with a Central Bank Branch. T
of the bank branches run within other BEA TUXEDO system domains. The fourt
branch runs under the control of another TP domain, and OSI-TP is used in the

BUFTYPE =
" type1 [: subtype1 [, subtype2 .
. .]][; type2 [: subtype3 [, . .
.]]] . . ."

A list of types and subtypes of data buffers for which this routing
entry is valid. The types are restricted to FML, VIEW, X_C_TYPE,
and X_COMMON. No subtype can be specified for type FML, and
subtypes are required for the other types (* is not allowed).
Duplicate type/subtype pairs cannot be specified for the same
routing criteria name; more than one routing entry can have the
same criteria name as long as the type/subtype pairs are unique
This parameter is required. If multiple buffer types are specified fo
a single routing entry, the data types of the routing field for each
buffer type must be the same. (If the field value is not set (for FML
buffers), or does not match any specific range, and a wildcard ran
has not been specified, an error is returned to the application
process that requested the execution of the remote service.)

Parameter Meaning
Administering the BEA TUXEDO System 5-11

5 Distributing Applications

communication with that domain. The example shows the BEA TUXEDO system
Domains gateway configuration file from the Central Bank point of view. In the
DM_TDOMAIN section, this example shows a mirrored gateway for b01 .

Listing 5-1 A 5-Site Domains Configuration

TUXEDO DOMAIN CONFIGURATION FILE FOR THE CENTRAL BANK
#
#
DM_LOCAL_DOMAINS
<local domain name> <Gateway Group name> <domain type> <domain id> <log device>
[<audit log>] [<blocktime>]
[<log name>] [<log offset>] [<log size>]
[<maxrdom>] [<maxrdtran>] [<maxtran>]
[<maxdatalen>] [<security>]
[<tuxconfig>] [<tuxoffset>]

#
#
DEFAULT: SECURITY = NONE
c01 GWGRP = bankg1
 TYPE = TDOMAIN
 DOMAINID = "BA.CENTRAL01"
 DMTLOGDEV = "/usr/apps/bank/DMTLOG"
 DMTLOGNAME = "DMTLG_C01"
c02 GWGRP = bankg2
 TYPE = OSITP
 DOMAINID = "BA.CENTRAL01"
 DMTLOGDEV = "/usr/apps/bank/DMTLOG"
 DMTLOGNAME = "DMTLG_C02"
 NWDEVICE = "OSITP"
 URCH = "ABCD"
#
DM_REMOTE_DOMAINS
#<remote domain name> <domain type> <domain id>
#
b01 TYPE = TDOMAIN
 DOMAINID = "BA.BANK01"
b02 TYPE = TDOMAIN
 DOMAINID = "BA.BANK02"
b03 TYPE = TDOMAIN
 DOMAINID = "BA.BANK03"
b04 TYPE = OSITP
 DOMAINID = "BA.BANK04"
 URCH = "ABCD"
#

5-12 Administering the BEA TUXEDO System

Modifying the Domain Gateway Configuration File to Support Routing
DM_TDOMAIN
#
<local or remote domainname> <network address> [nwdevice]
#
Local network addresses
c01 NWADDR = "//newyork.acme.com:65432" NWDEVICE ="/dev/tcp"
c02 NWADDR = "//192.76.7.47:65433" NWDEVICE ="/dev/tcp"
Remote network addresses: second b01 specifies a mirrored gateway
b01 NWADDR = "//192.11.109.5:1025" NWDEVICE = "/dev/tcp"
b01 NWADDR = "//194.12.110.5:1025" NWDEVICE = "/dev/tcp"
b02 NWADDR = "//dallas.acme.com:65432" NWDEVICE = "/dev/tcp"
b03 NWADDR = "//192.11.109.156:4244" NWDEVICE = "/dev/tcp"
#
DM_OSITP
#
#<local or remote domain name> <apt> <aeq>
[<aet>] [<acn>] [<apid>] [<aeid>]
[<profile>]
#
c02 APT = "BA.CENTRAL01"
 AEQ = "TUXEDO.R.4.2.1"
 AET = "{1.3.15.0.3},{1}"
 ACN = "XATMI"
b04 APT = "BA.BANK04"
 AEQ = "TUXEDO.R.4.2.1"
 AET = "{1.3.15.0.4},{1}"
 ACN = "XATMI"
DM_LOCAL_SERVICES
#<service_name> [<Local Domain name>] [<access control>] [<exported svcname>]
[<inbuftype>] [<outbuftype>]
#
open_act ACL = branch
close_act ACL = branch
credit
debit
balance
loan LDOM = c02 ACL = loans
DM_REMOTE_SERVICES
#<service_name> [<Remote domain name>] [<local domain name>]
[<remote svcname>] [<routing>] [<conv>]
[<trantime>] [<inbuftype>] [<outbuftype>]
#
tlr_add LDOM = c01 ROUTING = ACCOUNT
tlr_bal LDOM = c01 ROUTING = ACCOUNT
tlr_add RDOM = b04 LDOM = c02 RNAME ="TPSU002"
tlr_bal RDOM = b04 LDOM = c02 RNAME ="TPSU003"
DM_ROUTING
<routing criteria> <field> <typed buffer> <ranges>
#

Administering the BEA TUXEDO System 5-13

5 Distributing Applications
ACCOUNT FIELD = branchid BUFTYPE ="VIEW:account"
 RANGES ="MIN - 1000:b01, 1001-3000:b02, *:b03"
DM_ACCESS_CONTROL
#<acl name> <Remote domain list>
#
branch ACLIST = b01, b02, b03
loans ACLIST = b04
5-14 Administering the BEA TUXEDO System

CHAPTER

sing
its.

e

spare
6 Building Networked

Applications

This chapter covers the following topics:

� Terms and Definitions

� Configuring Networked Applications

� Example: A Network Configuration

� Example: A Network Configuration with Multiple Netgroups

� Running a Networked Application

Terms and Definitions

asynchronous connections
Virtual circuits set up to execute independently of each other or
asynchronously. An asynchronous connection does not block the proces
of working circuits while attempts are being made to reconnect failed circu
The BEA TUXEDO system v6.4 BRIDGE allows the use of nonfailing
network paths by listening and transferring data using multiple network
address endpoints.

failover and failback
Network failover occurs when a redundant unit seamlessly takes over th
network load for the primary unit. Some operating system and hardware
bundles transparently detect a problem on one network card and have a
Administering the BEA TUXEDO System 6-1

6 Building Networked Applications

P

ity

nt

 to

d
and
tween

e
y a

be
er

e

lly
its

ile.
automatically replace it. When done quickly enough, application-level TC
virtual circuits have no indication a fault happened.

In the BEA TUXEDO system, data flows over the highest available prior
circuit. If network groups have the same priority, data travels over all
networks simultaneously. If all circuits at the current priority fail, data is se
over the next lower priority circuit. This is called failover.

When a higher priority circuit becomes available, the data flow is shifted
flow over the higher priority circuit. This is called failback.

When a failover condition is detected, all higher priority circuits are retrie
periodically. After connections to all network addresses have been tried
failed, connections are tried again the next time data needs to be sent be
machines.

multiple listening addresses
Having addresses available on separate networks means that even if on
virtual circuit is disrupted, the other circuit can continue undisturbed. Onl
failure on all configured networks makes reconnection of the BRIDGES
impossible. For example, when a high priority network fails, its load can
switched to an alternate network that has a lower priority. When the high
priority network returns to service, the network load returns to it.

parallel data circuits
Parallel data circuits enable data to flow simultaneously on more than on
circuit. When you configure parallel data circuits, network traffic is
scheduled over the circuit with the largest network group number
(NETGRPNO). When this circuit is busy, the traffic is scheduled automatica
over the circuit with the next lower network group number. When all circu
are busy, data is queued until a circuit is available.

Note: Alternate scheduling algorithms may be introduced in future releases.

Configuring Networked Applications

To configure a networked application, make these changes in the configuration f
6-2 Administering the BEA TUXEDO System

Configuring Networked Applications

s.

e

e

.

d for
er
lds

ine.
1. Check the following settings in the RESOURCES section:

� Make sure MODEL is set to MP.

MP stands for multiprocessor and enables the other networking parameter

� Make sure OPTIONS is set to LAN.

LAN specifies that communication between machines is via a Local Area
Network (as opposed to being between two or more processors in a singl
machine).

� Use the MAXNETGROUPS parameter to set a limit on the number of NETGROUPS
that can be defined.

The default is 8; the upper limit 8192.

2. Check the following settings in the MACHINES section:

� TYPE=string . Specifying string for the machines in your network allows
the system to bypass encode/decode processing when messages are
transmitted between machines of the same TYPE.

When you identify machines as being of the same TYPE, encode/decode
processing is not needed. If you have, say, nine SPARC machines and on
HP machine, specify TYPE= string only for the HP; for the SPARC
machines, the default null string identifies them as being of the same type

� CMPLIMIT=remote,local . The CMPLIMIT setting specifies thresholds for
the point at which message compression should begin. A threshold is a
number from 0 to MAXLONG. It sets the minimum byte size for a message to
be compressed before being sent over the network. For example:

 CMPLIMIT=1024

This parameter specifies that any message greater than 1024 bytes boun
a remote location should be compressed. The absence of a second numb
means that local messages are never compressed. Compression thresho
can also be specified with the variable TMCMPLIMIT. See also the discussion
in tuxenv (5) of the variable TMCMPPRFM. It sets the degree of compression in
a range of 1 to 9.

� NETLOAD=number . Assigns an application-specific number to be added to a
remote service’s LOAD number. The result is used by the system to evaluate
whether the request should be processed locally or sent to a remote mach

3. Check the following settings in the NETGROUPS section:
Administering the BEA TUXEDO System 6-3

6 Building Networked Applications

.

n 0

� NETGROUP. The name assigned by the application to the particular group.
The name can be up to 30 characters long. One group (that includes all
machines on the network) must be named DEFAULTNET.

� NETGRPNO=number . If this is DEFAULTNET, NETGRPNO must be zero; for any
other group the number can be from 1 to 8192. This parameter is required

� NETPRIO=number . Assigning a priority to a NETGROUP helps the software
determine which network connection to use. The number must be betwee
and 8192. Assign higher priority to your faster circuits; give your lowest
priority to DEFAULTNET.

4. Check the following settings in the NETWORK section:

� LMID. This Logical Machine Identifier must match one of the entries in the
MACHINES section. It associates this particular NETWORK section entry with
one of the application’s machines.

� NADDR=string. This network address is the listening address for the
BRIDGE process on this LMID. There are four valid formats for specifying this
address. See the NETWORK section of ubbconfig (5).

� NLSADDR=string. This parameter is the network address for the tlisten
process on this LMID. Valid formats are the same as the valid formats for
NADDR.

� NETGROUP=string. This must be a NETWORK group name previously
specified in the NETGROUPS section. If not specified, it defaults to
DEFAULTNET.
6-4 Administering the BEA TUXEDO System

Example: A Network Configuration

 the
ong to

e

e
at
Example: A Network Configuration

The following example illustrates the configuration of a simple network.

The following configuration file excerpt shows a NETWORK
section for a 2-site configuration.

NETWORK
 SITE1 NADDR="//mach1:80952”
 NLSADDR="//mach1:serve"
#
 SITE2 NADDR="//mach386:80952"
 NLSADDR="//mach386:serve"

Example: A Network Configuration with

Multiple Netgroups

The hypothetical First State Bank has a network of five machines (A-E). It serves
bank’s business best to have four network groups and to have each machine bel
two or three of the four groups.

Note: Configuration of multiple NETGROUPS has both hardware and system softwar
prerequisites that are beyond the scope of this document. For example,
NETGROUPS commonly requires machines with more than one directly
attached network. Each TCP/IP symbolic address must be identified in th
/etc/hosts file or in the DNS (Domain Name Services). In the example th
follows, addresses in the form “//A_CORPORATE:5345 ” assume that the string
“A_CORPORATE” is in the /etc/hosts file or in DNS.

The four groups in the First State Bank example are as follows:

� DEFAULTNET (the default network, which is the corporate WAN)

� MAGENTA_GROUP (a LAN)
Administering the BEA TUXEDO System 6-5

6 Building Networked Applications

e
� BLUE_GROUP (a LAN)

� GREEN_GROUP (a private LAN that provides high-speed, fiber, point-to-point
links between member machines)

All machines belong to DEFAULTNET (the corporate WAN). In addition, each machin
is associated with either the MAGENTA_GROUP or the BLUE_GROUP. Finally, some
machines in the MAGENTA_GROUP also belong to the GREEN_GROUP. Figure 6-1
illustrates group assignments for the network.

Figure 6-1 Example of a Network Grouping

In this example, machines A and B have addresses for the following:

� DEFAULTNET (the corporate WAN)

� MAGENTA_GROUP (LAN)

� GREEN_GROUP (LAN)

Machine C has addresses for the following:

� DEFAULTNET (the corporate WAN)

� MAGENTA_GROUP (LAN)

Machines D and E have addresses for the following:

� DEFAULTNET (the corporate WAN)

� BLUE_GROUP (LAN)
6-6 Administering the BEA TUXEDO System

Example: A Network Configuration with Multiple Netgroups

(in the

nk
Because the local area networks are not routed among the locations, machine D
BLUE_GROUP LAN) may contact machine A (in the GREEN_GROUP LAN) only by using
the single address they have in common: the corporate WAN network address.

The UBBCONFIG File for the Network Example

To set up the configuration described in the preceding section, the First State Ba
administrator defined each group in the NETGROUPS and NETWORK sections of the
UBBCONFIG file as follows:

NETGROUPS

DEFAULTNET NETGRPNO = 0 NETPRIO = 100 #default

BLUE_GROUP NETGRPNO = 9 NETPRIO = 100

MAGENTA_GROUP NETGRPNO = 125 NETPRIO = 200

GREEN_GROUP NETGRPNO = 13 NETPRIO = 200

NETWORK

A NETGROUP=DEFAULTNET NADDR="//A_CORPORATE:5723”

A NETGROUP=MAGENTA_GROUP NADDR="//A_MAGENTA:5724"

A NETGROUP=GREEN_GROUP NADDR="//A_GREEN:5725"

B NETGROUP=DEFAULTNET NADDR="//B_CORPORATE:5723"

B NETGROUP=MAGENTA_GROUP NADDR="//B_MAGENTA:5724"

B NETGROUP=GREEN_GROUP NADDR="//B_GREEN:5725"

C NETGROUP=DEFAULTNET NADDR="//C_CORPORATE:5723"

C NETGROUP=MAGENTA_GROUP NADDR="//C_MAGENTA:5724"

D NETGROUP=DEFAULTNET NADDR="//D_CORPORATE:5723"

D NETGROUP=BLUE_GROUP NADDR="//D_BLUE:5726"

E NETGROUP=DEFAULTNET NADDR="//E_CORPORATE:5723"

E NETGROUP=BLUE_GROUP NADDR="//E_BLUE:5726"
Administering the BEA TUXEDO System 6-7

6 Building Networked Applications

o the
Assigning Priorities for Each Network Group

Appropriately assigning priorities for each NETGROUP enables you to maximize the
capability of network BRIDGE processes. When determining your NETGROUP
priorities, keep in mind the following considerations:

� Data flows over the highest available priority circuit.

� If network groups have the same priority, data travels over all circuits
simultaneously.

� If all circuits at the current priority fail, data is sent over the next lower priority
circuit.

� When a higher priority circuit becomes available, data flows over this higher
priority circuit.

� All unavailable higher priority circuits are retried periodically.

� After connections to all network addresses have been tried and have failed,
connections are tried again the next time data needs to be sent between
machines.

Figure 6-2 illustrates how the First State Bank administrator can assign priorities t
network groups.

Figure 6-2 Assigning Priorities to Network Groups
6-8 Administering the BEA TUXEDO System

Example: A Network Configuration with Multiple Netgroups

ith
The UBBCONFIG Example Considerations

You can specify the value of NETPRIO for DEFAULTNET just as you do for any other
netgroup. If you do not specify a NETPRIO for DEFAULTNET, a default of 100 is used,
as in the following example.

NETGROUP

DEFAULTNET NETGRPNO = 0 NETPRIO = 100

For DEFAULTNET, the value of the network group number must be zero; any other
number is invalid. If the BLUE_GROUP’s network priority is commented out, the priority
defaults to 100. Network group number entries are unique. Some of the network
priority values are equal, as in the case of MAGENTA_GROUP and GREEN_GROUP (200).

Each network address is associated by default with the network group, DEFAULTNET.
It may be specified explicitly for uniformity or to associate the network address w
another netgroup.

NETWORK

D NETGROUP=BLUE_GROUP NADDR="//D_BLUE:5726"

In this case, MAGENTA_GROUP and GREEN_GROUP have the same network priority of
200. Note that a lower priority network, such as DEFAULTNET, could be a
charge-per-minute satellite link.
Administering the BEA TUXEDO System 6-9

6 Building Networked Applications

kes
ation
g the

e you
re

usly

he

ct
it.

ation

e
r
Running a Networked Application

For the most part, the work of running a BEA TUXEDO networked application ta
place in the configuration phase. Once you have defined the network for an applic
and you have booted the system, the software automatically takes care of runnin
network for you.

In this section we discuss some aspects of running a networked application to giv
a better understanding of how the software works. Knowledge of how the softwa
works can often make configuration decisions easier.

Scheduling Network Data over Parallel Data Circuits

If you have configured a networked application that uses parallel data circuits,
scheduling network data proceeds as follows:

� The BRIDGE listens on more than one address and may send data simultaneo
on parallel data circuits, thus making the BRIDGE more frequently available and
making error recovery faster.

� When you configure parallel data circuits, the software attempts to schedule
traffic over the circuit with the highest network group number (NETGRPNO). If
this circuit is busy, the traffic is automatically scheduled over the circuit with t
next lower network group number. When all circuits are busy, data is queued
until a circuit is available.

� The software guarantees that conversational messages are kept in the corre
sequence by binding the conversation connection to one particular data circu

� If your application requires that all messages be kept in sequence, the applic
must be programmed to keep track of the sequence for nonconversational
messages. If this is your design, you might elect not to configure parallel data
circuits.

� The BRIDGE sends a message to destination machine X by writing the messag
to a virtual circuit and delegating to the operating system the responsibility fo
sending it. The operating system retains a copy of pending messages. If a
network error occurs, however, pending messages are lost.
6-10 Administering the BEA TUXEDO System

Running a Networked Application
Figure 6-3 is a flow diagram that illustates how the BRIDGE processes data by priority.

Figure 6-3 Flow of Data over the BRIDGE
Administering the BEA TUXEDO System 6-11

6 Building Networked Applications

e B.
 A

e

rent

er

all
e next

 that

arge
Figure 6-3 illustrates the flow of data when machine A attempts to contact machin
First, the BRIDGE determines which network groups are common to both machine
and machine B. They are the MAGENTA_GROUP, the GREEN_GROUP, and the
DEFAULTNET.

The highest priority network addresses originate from the network groups with th
highest network priority. Network groups with the same NETPRIO value flow network
data in parallel. All network groups with a higher priority than that of the network
groups that are flowing data are retried periodically.

Once network connections have been established with different NETPRIO values, no
further data is scheduled for the lower priority connection. The lower priority
connection is disconnected in an orderly fashion.

Network Data in Failover and Failback

Data flows over the highest available priority circuit. If network groups have the
same priority, data travels over all networks simultaneously. If all circuits at the cur
priority fail, data is sent over the next lower priority circuit. This is called failover.

When a higher priority circuit becomes available, data flow is restored to the high
priority circuit. This is called failback.

All unavailable higher priority circuits are retried periodically. After connections to
network addresses have been tried and have failed, connections are tried again th
time data needs to be sent between machines.

Using Data Compression for Network Data

When data is sent between processes of an application, you can elect to have it
compressed. Several aspects of data compression are described in the sections
follow.

Taking Advantage of Data Compression

Data compression is useful in most applications and is in fact vital to supporting l
configurations. Following is a list of recommendations for when to use data
compression and for how the limits should be set.
6-12 Administering the BEA TUXEDO System

Running a Networked Application

nning
 your
,

ress
on the
 have

is,

tting
w).
 have
still

l
n on

ond

s
When should I set remote data compression and what setting should be used?

You should always use remote data compression as long as all of your sites are ru
BEA TUXEDO Release 4.2.1 or later. The setting used depends on the speed of
network. In general, you can separate the decision into high-speed (for example
Ethernet) and low-speed (for example, X.25) networks.

High-speed network. Set remote data compression to the lowest limit for BEA
TUXEDO generated file transfers (see note below on file transfers). That is, comp
only the messages that are large enough to be candidates for file transfer either
sending site or on the receiving site. Note that each machine in an application may
a different limit and the lowest limit should be chosen.

Low-speed network. Set remote data compression to zero on all machines; that
compress all application and system messages.

When should I set local data compression and what setting should be used?

You should always set local data compression for sites running BEA TUXEDO
Release 4.2.1 or later, even if they are interoperating with pre-4.2.1 sites. The se
should be the local limit for BEA TUXEDO-generated file transfers (see note belo
This setting enables you to avoid file transfers in many cases that might otherwise
required a transfer, and greatly reduces the size of files used if file transfers are
necessary.

Note: For high traffic applications that involve a large volume of timeouts and
discarding of messages due to queue blocking, you may want to set loca
compression to always occur, thus lowering the demand of the applicatio
the queuing subsystem.

Setting the Compression Level

An environment variable, TMCMPPRFM, can be used to set the level of compression.
This variable adds further control to data compression by allowing you to go bey
the simple choice of “compress or do not compress” that is provided by CMPLIMIT.

You can specify any of nine levels of compression. The TMCMPPRFM environment
variable takes as its value a single digit in the range of 1 through 9. A value of 1
specifies the lowest level of compression; 9 is the highest. When a low number i
specified, the compression routine does its work more quickly. (See tuxenv (5) in the
BEA Tuxedo Reference Manual for details.)
Administering the BEA TUXEDO System 6-13

6 Building Networked Applications

.
 of

e
o have
ll be

rvice

ng

er A
g on

 are
rs the
tions,

mory

Balancing Network Request Loads

If load balancing is on (LDBAL set to Y in the RESOURCES section of the configuration
file), the BEA TUXEDO system attempts to balance requests across the network
Because load information is not updated globally, each site will have its own view
the load at remote sites. This means the local site views will not all be the same.

The TMNETLOAD environment variable (or the NETLOAD parameter in the MACHINES
section) can be used to force more requests to be sent to local queues. The valu
expressed by this variable is added to the remote values to make them appear t
more work. This means that load balancing can be on, but that local requests wi
sent to local queues more often.

NETLOAD

The NETLOAD parameter affects the load balancing behavior of a system when a se
is available on both local and remote machines. NETLOAD is a numeric value (of
arbitrary units) that is added to the load factor of services remote from the invoki
client. This provides a bias for choosing a local server over a remote server.

As an example, assume servers A and B offer a service with load factor 50. Serv
is running on the same machine as the calling client (local), and server B is runnin
a different machine (remote). If NETLOAD is set to 100, approximately three requests
will be sent to A for every one sent to B.

Another enhancement to load balancing is local idle server preference. Requests
preferentially sent to a server on the same machine as the client, assuming it offe
desired service and is idle. This decision overrides any load balancing considera
since the local server is known to be immediately available.

SPINCOUNT

SPINCOUNT determines the number of times a process tries to get the shared me
latch before the process stops trying. Setting SPINCOUNT to a value greater than 1 gives
the process that is holding the latch enough time to finish.
6-14 Administering the BEA TUXEDO System

Running a Networked Application

ks.
ich
 the
at
ional

d

 are

 two

ill
.
Using Link-Level Encryption

Link-level encryption (LLE) is the encryption of messages going across network lin
This functionality is provided in the BEA TUXEDO system Security Package, wh
is offered in two versions: US/Canada and International. The difference between
two versions consists solely in the number of bits of the 128-bit encryption key th
remain private. The US/Canada version has a key length of 128 bits; the Internat
version now has an effective key length of 56 bits.

The Security Package allows encryption of data that flows over BEA TUXEDO
system network links. The objective is to ensure data privacy, so a network-base
eavesdropper cannot learn the content of BEA TUXEDO system messages or
application-generated messages.

Link-level encryption applies to the following types of BEA TUXEDO links:

� Workstation client to WSH

� BRIDGE to BRIDGE

� Administrative utilities (tmboot , tmshutdown , tmadmin , and so forth) to
tlisten

� Domains gateway to Domains gateway

How LLE Works

Link-level encryption control parameters and underlying communication protocols
different for various link types, but there are some common themes, as follows:

� A Connecting process begins the communication session.

� An Accepting process receives the initial connection.

� Both processes are aware of the link-level encryption feature, and both have
configuration parameters. (This statement is not true if the processes are
interoperating between releases, in which case the older release's lack of
encryption capability is implicitly assumed.)

� The first configuration parameter is the minimum encryption level a process w
accept. The value is a number representing the key length: 0, 40, or 128 bits
Administering the BEA TUXEDO System 6-15

6 Building Networked Applications

ss
8

efer

d

rgest
dden.

ured
tion

igure
kage
elf as
 not

 bits.
n are

ver

met,
� The second configuration parameter is the maximum encryption level a proce
is willing to support. The value of this parameter is expressed as 0, 40, or 12
bits.

� For convenience, we denote the two parameters as (MIN, MAX). So (40,128)
means that a process will accept at least a 40-bit encryption key but would pr
a 128-bit key, if possible.

� LLE is point-to-point, which means that your data may be encrypted/decrypte
many times as it flows over network links.

Encryption Key Size Negotiation

The first step in negotiating the key size is for the two processes to agree on the la
common key size supported by both. This negotiation need not be encrypted or hi

Once encryption is negotiated, it remains in effect for the lifetime of the network
connection.

A preprocessing step temporarily reduces the maximum key size parameter config
to agree with the installed software's capabilities. This must be done at link negotia
time, because at configuration time it may not be possible to verify a particular
machine's installed encryption package. For example, the administrator may conf
(0, 128) encryption for an unbooted machine that has only a 40-bit encryption pac
installed. When the machine actually negotiates a key size, it should represent its
(0, 40). In some cases this may cause a run-time error; for example (128, 128) is
possible with a 40-bit encryption package.

In some cases, international link level is upgraded automatically from 40 bits to 56
The encryption strength upgrade requires that both sides of a network connectio
running BEA TUXEDO Release 6.5 software, with the optional US/Canada or
International Encryption Security Add-on Package installed. You can verify a ser
machine’s encryption package by running the tmadmin -v command. Both machines
must also be configured to accept 40-bit encryption. When these conditions are
the encryption strength is upgraded automatically to 56 bits.

Table 6-1 shows the outcome for all possible combinations of min/max parameters.
6-16 Administering the BEA TUXEDO System

Running a Networked Application

it

nt

 zero
 bits

 bits;

ng.
Table 6-1 Encryption Key Matrix

Note: Shaded cells show the result of an automatic upgrade from 40-bit to 56-b
encryption when both machines are running BEA TUXEDO Release 6.5.
When communicating with an older release, encryption remains at 40-bit
strength in the shaded cells.

MINENCRYPTBITS/MAXENCRYPTBITS

When a network link is established to the machine identified by the LMID for the
current entry, the MIN and MAX parameters are used to specify the number of significa
bits of the encryption key. MINENCRYPTBITS says, in effect, “at least this number of
bits are meaningful.” MAXENCRYPTBITS, on the other hand, says, “encryption should
be negotiated up to this level.” The possible values are 0, 40, and 128. A value of
means no encryption is used, while 40 and 128 specify the number of significant
in the encryption key.

The BEA TUXEDO system US/Canada security package permits use of up to 128
the International package allow specification of no more than 56 bits.

How to Change Network Configuration Parameters

Use tmconfig (1) to change configuration parameters while the application is runni
In effect, tmconfig is a shell-level interface to the BEA TUXEDO system
Management Information Base (MIB). See the tmconfig (1), MIB(5), and TM_MIB(5)
reference pages in the BEA TUXEDO Reference Manual.

Inter-Process Negotiation
Results

 (0,0) (0,40) (0, 128) (40, 40) (40,128) (128,128)

(0,0) 0 0 0 ERROR ERROR ERROR

(0,40) 0 56 56 56 56 ERROR

(0,128) 0 56 128 56 128 128

(40,40) ERROR 56 56 56 56 ERROR

(40,128) ERROR 56 128 56 128 128

(128,128) ERROR ERROR 128 ERROR 128 128
Administering the BEA TUXEDO System 6-17

6 Building Networked Applications
6-18 Administering the BEA TUXEDO System

CHAPTER

ur
uted
t
 into
he

not
lso
7 Configuring

Transactions

This chapter discusses the following topics:

� Understanding Transactions

� Modifying the UBBCONFIG File to Accommodate Transactions

� Modifying the Domain Configuration File to Support Transactions

� Example: A Distributed Application Using Transactions

Understanding Transactions

Transactions greatly simplify the writing of distributed applications. They allow yo
application to cope more easily with a large set of problems that occur in a distrib
environment, such as machine, program, or network failures. One of the greates
strengths of the BEA TUXEDO system is that the transaction semantic was built
the software and into the TUXEDO ATMI. Global transactions were woven into t
fabric of the system and into its communication APIs and protocols.

The ability to define a global transaction around communication calls makes it an
indispensable tool for writing distributed applications. A global transaction allows
only the effects of your communications to be committed as a single unit, but it a
gives you a simple, programmatic way to undo work if errors occur.
Administering the BEA TUXEDO System 7-1

7 Configuring Transactions

lace
es the
ccur

iates
n

work
 the
ation to

one

of the
his

:

To illustrate the power of global transactions, consider the following example. A P
Order service performs two operations: it updates the Order database and enqueu
order to the shipping department. The business intends that both these actions o
together as a unit or that neither action should occur if one action fails.

To accomplish this, the client application invoking the Place Order service assoc
the call with a global transaction. You do this by using the ATMI begin-transactio
function before issuing the service request, and issuing the commit-transaction
function after it. Because the service is invoked as part of a global transaction, its
is done on its behalf. The server is propagated with the client’s transaction when
Place Order service is invoked. Both the database access and the enqueue oper
the shipping application queue become part of the client’s transaction.

Should either operation fail because of an application or system error, the work d
in the transaction is rolled back to its state at the outset of the transaction. If both
succeed, however, the client’s call to commit the transaction causes the effects
database update and the enqueued message to become permanent records of t
transaction.

Modifying the UBBCONFIG File to

Accommodate Transactions

You must modify the RESOURCES, MACHINES, GROUPS, and the SERVICES sections of
the application’s UBBCONFIG file in the following way to accommodate transactions

� In the RESOURCES section, specify the application-wide number of allowed
transactions, and the value of the commit control flag.

� In the MACHINES section, create the TLOG information for each machine.

� In the GROUPS section, indicate information about each resource manager, and
about the transaction manager server.

� In the SERVICES section, enable the automatic transaction option.
7-2 Administering the BEA TUXEDO System

Modifying the UBBCONFIG File to Accommodate Transactions

e

is
Specifying Application-Wide Transactions in the
RESOURCES Section

The following table provides a description of transaction-related parameters in th
RESOURCES section of the configuration file.

Creating a Transaction Log (TLOG)

This section discusses creating a TLOG.

Parameter Meaning

MAXGTT Limits the total number of global transaction identifiers (GTRIDs) allowed on
one machine at one time. The maximum value allowed is 2048 , minimum 0,
and default 100 . You can override this value on a per-machine basis in the
MACHINES section.

Entries remain in the table only while the global transaction is active, so th
parameter has the effect of setting a limit on the number of simultaneous
transactions.

CMTRET Specifies the initial setting of the TP_COMMIT_CONTROL characteristic. The
default is COMPLETE. Following are its two settings:

� LOGGED—The TP_COMMIT_CONTROL characteristic is set to
TP_CMT_LOGGED, which means that tpcommit() returns when all the
participants have successfully precommitted.

� COMPLETE—The TP_COMMIT_CONTROL characteristic is set to
TP_CMT_COMPLETE, which means that tpcommit() will not return
until all the participants have successfully committed.

Note: You should consult with the RM vendors to determine the
appropriate setting. If any RM in the application uses the late
commit implementation of the XA standard, the setting should be
COMPLETE. If all the resource managers use the early commit
implementation, the setting should be LOGGED for performance
reasons. (You can override this setting with tpscmt() .)
Administering the BEA TUXEDO System 7-3

7 Configuring Transactions

e

e
Creating the UDL

The Universal Device List (UDL) is like a map of the BEA TUXEDO file system. Th
UDL gets loaded into shared memory when an application is booted. The TLOG refers
to a log in which information on transactions is kept until the transaction is
completed.To create an entry in the UDL for the TLOG device, create the UDL on each
machine using global transactions. If the TLOGDEVICE is mirrored between two
machines, it is unnecessary to do this on the paired machine. The Bulletin Board
Liaison (BBL) then initializes and opens the TLOG during the boot process.

To create the UDL, enter a command using the following format, before the
application has been booted:

tmadmin -c crdl -z config -b blocks

In the preceding format statement, specify in the -z config argument the full path
name for the device where you should create the UDL. Specify in the -b blocks

argument the number of blocks to be allocated on the device. config should match the
value of the TLOGDEVICE parameter in the MACHINES section of the UBBCONFIG file.

Note: In general, the value that you supply for blocks should not be less than the
value for TLOGSIZE. For example, if TLOGSIZE is specified as 200 blocks,
specifying -b 500 would not cause a degradation.

For more information about storing the TLOG, see the BEA TUXEDO Installation
Guide.

Defining Transaction-related Parameters in the MACHINES Section

You can define a global transaction log (TLOG) using several parameters in the
MACHINES section of the UBBCONFIG file. You must manually create the device list
entry for the TLOGDEVICE on each machine where a TLOG is needed. You can do this
either before or after TUXCONFIG has been loaded, but it must be done before the
system is booted.

The following table provides a description of transaction-related parameters in th
MACHINES section of the configuration file.

Parameter Meaning

TLOGNAME The name of the DTP transaction log for this machine.
7-4 Administering the BEA TUXEDO System

Modifying the UBBCONFIG File to Accommodate Transactions

y

 (that

e
been
 group

old
e.
r

of
Creating the Domains Transaction Log

You can create the Domains transaction log before starting the Domains gatewa
group by using dmadmin(1) crdmlog (crdlog) -d local_domain_name . Create
the Domains transaction log for the named local domain on the current machine
is, the machine where dmadmin is running). The command uses the parameters
specified in the DMCONFIG file. This command fails if the named local domain is activ
on the current machine or if the log already exists. If the transaction log has not
created, the Domains gateway group creates the log when the Domains gateway
starts.

Defining Each Resource Manager (RM) and the
Transaction Manager Server in the GROUPS Section

Additions to the GROUPS section fall into two categories:

TLOGDEVICE Specifies the BEA TUXEDO file system that contains the DTP
transaction log (TLOG) for this machine. If this parameter is not
specified, the machine is assumed not to have a TLOG. The maximum
string value length is 64 characters.

TLOGSIZE The size of the TLOG file in physical pages. Its value must be between 1
and 2048, and its default is 100. The value should be large enough to h
the number of outstanding transactions on the machine at a given tim
One transaction is logged per page. The default should be enough fo
most applications.

TLOGOFFSET Specifies the offset in pages from the beginning of TLOGDEVICE to the
start of the VTOC that contains the transaction log for this machine.The
number must be greater than or equal to 0 and less than the number
pages on the device. The default is 0.

TLOGOFFSET is rarely necessary. However, if two VTOCs share the same
device or if a VTOC is stored on a device (such as a file system) that is
shared with another application, you can use TLOGOFFSET to indicate a
starting address relative to the address of the device.

Parameter Meaning
Administering the BEA TUXEDO System 7-5

7 Configuring Transactions

tives

g
� Defining the transaction manager servers that perform most of the work that
controls global transactions. The TMSNAME parameter is the name of the server
executable; TMSCOUNT is the number of such servers to boot (minimum 2,
maximum 10, default 3).
A null transactional manager server does not communicate with any resource
manager. It is used to exercise an application’s use of the transactional primi
before actually testing the application in a recoverable, real environment. This
server is named TMS and it simply begins, commits, or terminates without talkin
to any RM.

� Defining opening and closing information for each resource manager. OPENINFO
is a string with information used to open a resource manager, and CLOSEINFO is
used to close a resource manager.

Sample of the GROUPS Section

The following is an example from the GROUPS section in the banking application,
called bankapp .

BANKB1 GRPNO=1 TMSNAME=TMS_SQL TMSCOUNT=2
OPENINFO=”TUXEDO/SQL:<APPDIR>/bankdl1:bankdb:readwrite”

Description of Transaction Values in the Sample GROUPS Section

The following table describes the transaction values shown in the sample GROUPS
section.

Transaction Value Meaning

BANKB1 GRPNO=1 TMSNAME=TMS_SQL\
TMSCOUNT=2

Contains the name of the transaction manager server
(TMS_SQL), and the number (2) of these servers to be booted
in the group BANKB1

TUXEDO/SQL Published name of the resource manager

<APPDIR>/bankdl1 Includes a device name

bankdb Database name

readwrite Access mode
7-6 Administering the BEA TUXEDO System

Modifying the UBBCONFIG File to Accommodate Transactions
Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO

Parameters

The following table lists the characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and
CLOSEINFO parameters.

Characteristics of the AUTOTRAN, TRANTIME, and FACTORYROUTING

Parameters

The following table lists the characteristics of the AUTOTRAN, TRANTIME, and
FACTORYROUTING parameters.

Parameter Characteristics

TMSNAME Name of the transaction manager server executable.

Required parameter for transactional configurations.

TMS is a null transactional manager server.

TMSCOUNT Number of transaction manager servers (must be between 2 and 10).

Default is 3.

OPENINFO,
CLOSEINFO

Represents information to open or close a resource manager.

Content depends on the specific resource manager.

Starts with the name of the resource manager.

Omission means the RM needs no information to open.

Parameter Characteristics

AUTOTRAN Makes an interface the initiator of a transaction.

To work properly, may be dependent on personal communication
between the system designer and the system administrator. If the
administrator sets this value to Y without prior knowledge of the ICF
parameters set by the developer, the actual run-time effort of the
parameter might be unknown.

If a transaction already exists, a new one is not started.

Default is N.
Administering the BEA TUXEDO System 7-7

7 Configuring Transactions

 the

g

vice

ust

n.
Enabling a Service to Begin a Transaction in the

SERVICES Section

The following are three transaction-related additions in the SERVICES section:

� If you want a service, instead of a client, to begin a transaction, you must set
AUTOTRAN flag to Y. This is useful if the service is not needed as part of any
larger transaction, and if the application wants to relieve the client of making
transaction decisions. If the service is called when there is already an existin
transaction, this call becomes part of it. (The default is N.)

Note: Generally, clients are the best initiators of transactions because a ser
has the potential of participating in a larger transaction.

� If AUTOTRAN is set to Y, you must set the TRANTIME parameter, which is the
transaction timeout in seconds for the transactions to be created. The value m
be greater than or equal to 0 and must not exceed 2,147,483,647 (231 - 1, or
about 70 years). A value of zero implies there is no timeout for the transactio
(The default is 30 seconds.)

� You must specify a ROUTING parameter for transactions that request
data-dependent routing.

Characteristics of the AUTOTRAN, TRANTIME, and ROUTING Parameters

The following table lists the characteristics of the AUTOTRAN, TRANTIME, and ROUTING
parameters.

TRANTIME Represents the timeout for the AUTOTRAN transactions.

Valid values are between 0 and 231 - 1, inclusive.

0 represents no timeout.

Default is 30 seconds.

FACTORYROUTINGPoints to an entry in the ROUTING section where data-dependent routing
is specified for transactions that request this service.

Parameter Characteristics
7-8 Administering the BEA TUXEDO System

Modifying the Domain Configuration File to Support Transactions

.

Modifying the Domain Configuration File to

Support Transactions

To enable transactions across domains, you need to set parameters in both the
DM_LOCAL_DOMAINS and the DM_REMOTE_SERVICES sections of the Domains
configuration file (DMCONFIG). Entries in the DM_LOCAL_DOMAINS section define local
domain characteristics. Entries in the DM_REMOTE_SERVICES section define
information on services that are imported and that are available on remote domains

Parameter Characteristics

AUTOTRAN Makes a service the initiator of a transaction.

Relieves the client of the transactional burden.

If a transaction already exists, a new one is not started.

Default is N.

TRANTIME Represents the timeout for the AUTOTRAN transactions.

Valid values are between 0 and 231 - 1, inclusive.

0 represents no timeout.

Default is 30 seconds.

ROUTING Points to an entry in the ROUTING section where data-dependent routing
is specified for transactions that request this service.
Administering the BEA TUXEDO System 7-9

7 Configuring Transactions

r each
r the

rs in

ts

is

g

unt

r

ue
Characteristics of the DMTLOGDEV, DMTLOGNAME,

DMTLOGSIZE, MAXRDTRAN, and MAXTRAN Parameters

The DM_LOCAL_DOMAINS section of the Domains configuration file identifies local
domains and their associated gateway groups. This section must have an entry fo
gateway group (Local Domain). Each entry specifies the parameters required fo
Domains gateway processes running in that group.

The following table provides a description of the five transaction-related paramete
this section: DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE, MAXRDTRAN, and MAXTRAN.

Parameter Characteristics

DMTLOGDEV Specifies the BEA TUXEDO file system that contains the Domains
transaction log (DMTLOG) for this machine. The DMTLOG is stored as a
BEA TUXEDO VTOC table on the device. If this parameter is not
specified, the Domains gateway group is not allowed to process reques
in transaction mode. Local domains running on the same machine can
share the same DMTLOGDEV file system, but each local domain must
have its own log (a table in the DMTLOGDEV) named as specified by the
DMTLOGNAME keyword.

DMTLOGNAME Specifies the name of the Domains transaction log for this domain. Th
name must be unique when the same DMTLOGDEV is used for several
local domains. If a value is not specified, the value defaults to the strin
DMTLOG. The name must contain 30 characters or less.

DMTLOGSIZE Specifies the numeric size of the Domains transaction log for this
machine (in pages). It must be greater than zero and less than the amo
of available space on the BEA TUXEDO file system. If a value is not
specified, the value defaults to 100 pages.

Note: The number of domains in a transaction determine the numbe
of pages you must specify in the DMTLOGSIZE parameter. One
transaction does not necessarily equal one log page.

MAXRDTRAN Specifies the maximum number of domains that can be involved in a
transaction. It must be greater than zero and less than 32,768. If a val
is not specified, the value defaults to 16.
7-10 Administering the BEA TUXEDO System

Modifying the Domain Configuration File to Support Transactions

es

ion:

d

is
e
Characteristics of the AUTOTRAN and TRANTIME

Parameters

The DM_REMOTE_SERVICES section of the Domains configuration file identifies
information on services imported and available on remote domains. Remote servic
are associated with a particular remote domain.

The following table describes the two transaction-related parameters in this sect
AUTOTRAN and TRANTIME.

MAXTRAN Specifies the maximum number of simultaneous global transactions
allowed on this local domain. It must be greater than or equal to zero, an
less than or equal to the MAXGTT parameter specified in the TUXCONFIG
file. If not specified, the default is the value of MAXGTT.

Parameter Characteristics

Parameter Characteristics

AUTOTRAN Used by gateways to automatically start/terminate transactions for
remote services. This capability is required if you want to enforce
reliable network communication with remote services. You specify this
capability by setting the AUTOTRAN parameter to Y in the corresponding
remote service definition.

TRANTIME Specifies the default timeout value in seconds for a transaction
automatically started for the associated service. The value must be
greater than or equal to zero, and less than 2147483648. The default
30 seconds. A value of zero implies the maximum timeout value for th
machine.
Administering the BEA TUXEDO System 7-11

7 Configuring Transactions

g:

Example: A Distributed Application Using

Transactions

The following configuration file shows bankapp as an application that is distributed
over three sites and that uses transactions. The application includes the followin

� Data-dependent routing on ACCOUNT_ID

� Data distributed over three databases

� BRIDGE processes communicating with the system via the ATMI interface

� System administration from one site

The file includes seven sections: RESOURCES, MACHINES, GROUPS, NETWORK, SERVERS,
SERVICES, and ROUTING.

The RESOURCES Section

The RESOURCES section shown in Listing 7-1 specifies the following parameters:

� MAXSERVERS, MAXSERVICES, and MAXGTT are less than the defaults. This makes
the Bulletin Board smaller.

� MASTER is SITE3 and the backup master is SITE1 .

� MODEL is set to MP and OPTIONS is set to LAN, MIGRATE. This allows a networked
configuration with migration.

� BBLQUERY is set to 180 and SCANUNIT is set to 10 . This means that DBBL checks
of the remote BBLs are done every 1800 seconds (one half hour).

Listing 7-1 Sample RESOURCES Section

RESOURCES
#
IPCKEY 99999
7-12 Administering the BEA TUXEDO System

Example: A Distributed Application Using Transactions

ll
UID 1
GID 0
PERM 0660
MAXACCESSERS 25
MAXSERVERS 25
MAXSERVICES 40
MAXGTT 20
MASTER SITE3, SITE1
SCANUNIT 10
SANITYSCAN 12
BBLQUERY 180
BLOCKTIME 30
DBBLWAIT 6
OPTIONS LAN, MIGRATE
MODEL MP
LDBAL Y

The MACHINES Section

The MACHINES section shown in Listing 7-2 specifies the following parameters:

� TLOGDEVICE and TLOGNAME are specified, which indicate that transactions will
be done.

� The TYPE parameters are all different, which indicates that encode/decode wi
be done on all messages sent between machines.

Listing 7-2 Sample MACHINES Section

MACHINES
Gisela LMID=SITE1
 TUXDIR=”/usr/tuxedo”
 APPDIR=”/usr/home”
 ENVFILE=”/usr/home/ENVFILE”
 TLOGDEVICE=”/usr/home/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=”/usr/home/tuxconfig”
 TYPE=”3B600”

romeo LMID=SITE2
 TUXDIR=”/usr/tuxedo”
 APPDIR=”/usr/home”
Administering the BEA TUXEDO System 7-13

7 Configuring Transactions

ss.
 ENVFILE=”/usr/home/ENVFILE”
 TLOGDEVICE=”/usr/home/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=”/usr/home/tuxconfig”
 TYPE=”SEQUENT”

juliet LMID=SITE3
 TUXDIR=”/usr/tuxedo”
 APPDIR=’/usr/home”
 ENVFILE=”/usr/home/ENVFILE”
 TLOGDEVICE=”/usr/home/TLOG”
 TLOGNAME=TLOG
 TUXCONFIG=”/usr/home/tuxconfig”
 TYPE=”AMDAHL”

The GROUPS and NETWORK Sections

The GROUPS and NETWORK sections shown in Listing 7-3 specify the following
parameters:

� The TMSCOUNT is set to 2, which means that only two TMS_SQL transaction
manager servers will be booted per group.

� The OPENINFO string indicates that the application will perform database acce

Listing 7-3 Sample GROUPS and NETWORK Sections

GROUPS
DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2
BANKB1 LMID=SITE1 GRPNO=1
 OPENINFO=”TUXEDO/SQL:/usr/home/bankdl1:bankdb:readwrite”
BANKB2 LMID=SITE2 GRPNO=2
 OPENINFO=”TUXEDO/SQL:/usr/home/bankdl2:bankdb:readwrite”
BANKB3 LMID=SITE3 GRPNO=3
 OPENINFO=”TUXEDO/SQL:/usr/home/bankdl3:bankdb:readwrite”

NETWORK
SITE1 NADDR=”0X0002ab117B2D4359”
 BRIDGE=”/dev/tcp”
 NLSADDR=”0X0002ab127B2D4359”
7-14 Administering the BEA TUXEDO System

Example: A Distributed Application Using Transactions
SITE2 NADDR=”0X0002ab117B2D4360”
 BRIDGE=”/dev/tcp”
 NLSADDR=”0X0002ab127B2D4360”

SITE3 NADDR=”0X0002ab117B2D4361”
 BRIDGE=”/dev/tcp”
 NLSADDR=”0X0002ab127B2D4361”

The SERVERS, SERVICES, and ROUTING Sections

The SERVERS, SERVICES, and ROUTING sections shown in Listing 7-4 specify the
following parameters:

� The TLR servers have a -T number passed to their tpsrvrinit() functions.

� All requests for the services are routed on the ACCOUNT_ID field.

� None of the services will be performed in AUTOTRAN mode.

Listing 7-4 Sample SERVERS, SERVICES, and ROUTING Sections

SERVERS
DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=N CLOPT=”-A”
TLR SRVGRP=BANKB1 SRVID=1 CLOPT=”-A -- -T 100"
TLR SRVGRP=BANKB2 SRVID=3 CLOPT=”-A -- -T 400"
TLR SRVGRP=BANKB3 SRVID=4 CLOPT=”-A -- -T 700"
XFER SRVGRP=BANKB1 SRVID=5 REPLYQ=Y
XFER SRVGRP=BANKB2 SRVID=6 REPLYQ=Y
XFER SRVGRP=BANKB3 SRVID=7 REPLYQ=Y

SERVICES
DEFAULT: AUTOTRAN=N
WITHDRAW ROUTING=ACCOUNT_ID
DEPOSIT ROUTING=ACCOUNT_ID
TRANSFER ROUTING=ACCOUNT_ID
INQUIRY ROUTING=ACCOUNT_ID

ROUTING
ACCOUNT_ID FIELD=ACCOUNT_ID BUFTYPE=”FML”
 RANGES=”MON - 9999:*,
 10000 - 39999:BANKB1
Administering the BEA TUXEDO System 7-15

7 Configuring Transactions
 40000 - 69999:BANKB2
 70000 - 100000:BANKB3
 “”
7-16 Administering the BEA TUXEDO System

CHAPTER

ns by

ith
8 Working with Multiple

Domains

This chapter describes the task of administering services across multiple Domai
using the BEA TUXEDO Domains feature. This chapter discusses the following
topics:

� Benefits of Using BEA TUXEDO System Domains

� What Is the Domains Gateway Configuration File?

� Configuring Local and Remote Domains

� Example of a Domains-based Configuration

� Ensuring Security in Domains

� Routing Service Requests to Remote Domains

Benefits of Using BEA TUXEDO System

Domains

Using Domains provides the following benefits:

� Scalability and modular growth—Programmers can structure their application
for modularity, isolation of failures, and independent growth. Interoperation w
other transaction processing applications is achieved easily by adding to the
Administering the BEA TUXEDO System 8-1

8 WORKING WITH MULTIPLE DOMAINS

d by

l

s.

s

O
teway
Domains configuration the description of the interfaces (that is, services) use
a remote application.

� Transparency and independence—Applications are totally unaware of service
distribution. A service may be available on the same machine, on another
machine in the local domain, or on a remote domain. Client application
programmers do not need to know the implementation changes made to a
service, the location of a service, network addresses, and so on.

� Aliasing capability—This allows you to define a mapping between the service
names used by a remote application and the service names used by the loca
application, allowing for easy integration of applications that use different
naming schemes.

� Transaction management and reliability—The Domains feature us integrated
with the BEA TUXEDO system transaction management capabilities.

� Availability—You can specify alternate destinations to handle failure condition

� Security—An access control list (ACL) facility is provided to restrict access to
local services from a particular set of remote domains. Domains also provide
encryption and password verification.

What Is the Domains Gateway Configuration

File?

All domain configuration information is stored in a binary file, called the BDMCONFIG
file. You can create and edit the domain gateway configuration file (DMCONFIG file),
with any UNIX text editor. You can update the compiled BDMCONFIG file while the
system is running by using the dmadmin(1) command when using Domains. There
must be one BDMCONFIG file per BEA TUXEDO application.

A BEA TUXEDO system domain gateway is a server supplied by the BEA TUXED
system that enables access to and from remote domains. Domains provides a ga
administrative server (GWADM) that enables run-time administration of the Domains
gateway group, and a Domains administrative server (DMADM) that enables run-time
administration of the Domains configuration information (BDMCONFIG). You enable
8-2 Administering the BEA TUXEDO System

WHAT IS THE DOMAINS GATEWAY CONFIGURATION FILE?

ion

;
remote domain access by specifying a gateway group and a domain administrat
group in the GROUPS section of the TUXCONFIG file, and by adding entries for the
gateway and the two administrative servers in the SERVERS section.

In Figure 8-1, DGW is the domain gateway; GWADM is the gateway administrative server
DMADM is the Domains administrative server; and BDMCONFIG is the Domains gateway
configuration file.
Administering the BEA TUXEDO System 8-3

8 WORKING WITH MULTIPLE DOMAINS

u
ps

n
Figure 8-1 BEA TUXEDO Domains Gateway

Components of the DMCONFIG File

The following table describes the sections of the DMCONFIG file.

Section of the
DMCONFIG File

Purpose

DM_LOCAL_DOMAINS Describes the environment for a particular domain gateway group. Yo
can use multiple entries in this section to define multiple gateway grou
within a single BEA TUXEDO application.

DM_REMOTE_DOMAINS Identifies the remote domains that clients and servers of this Domains
application can access.

DM_LOCAL_SERVICES Describes the set of services in this domain which remote domains ca
access.

DM_REMOTE_SERVICES Describes the set of services provided by remote domains that are
accessible from this domain.
8-4 Administering the BEA TUXEDO System

CONFIGURING LOCAL AND REMOTE DOMAINS

te
Configuring Local and Remote Domains

To configure a local domain and a remote domain, perform the following tasks:

� Set environment variables

� Build a local application configuration file and a local domain gateway
configuration file

� Build a remote application configuration file and a remote domain gateway
configuration file

Setting Environment Variables

You need to set the following environment variables for the application to be
configured successfully:

� TUXDIR—The BEA TUXEDO system root directory (for example,

/opt/tuxedo)

� TUXCONFIG—The application configuration file (for example, lapp.tux or
rapp.tux)

DM_ROUTING Specifies criteria for data-dependent routing used by gateways to rou
service requests to specific remote domains.

DM_ACCESS_CONTROL Specifies a named list (the Access Control List) of remote domains
permitted to access a particular service.

DM_<dmtype > Defines the specific parameters required for a particular Domains
instance. Currently, the value of dmtype can be OSITP, SNA, or
TDOMAIN. (This chapter focuses only on TDOMAIN.) You must specify
each domain type in a section of its own.

Section of the
DMCONFIG File

Purpose
Administering the BEA TUXEDO System 8-5

8 WORKING WITH MULTIPLE DOMAINS

file
� BDMCONFIG—The Domains gateway configuration file (for example, lapp.bdm
or rapp.bdm)

� PATH—Must include $TUXDIR/bin

� LD_LIBRARY_PATH—Must include $TUXDIR/lib

Example

$ TUXDIR=/opt/tuxedo

$ PATH=$TUXDIR/bin:$PATH

$ LD_LIBRARY_PATH=$TUXDIR/lib:$LD_LIBRARY_PATH

$ export TUXDIR PATH LD_LIBRARY_PATH

Building a Local Application Configuration File and a

Local Domains Gateway Configuration File

Build a local application configuration file using tmloadcf (1), and a local domain
gateway configuration file using dmloadcf (1). The local application configuration file
(lapp.ubb) contains the information necessary to boot the local application. This
is compiled into a binary data file (lapp.tux), using tmloadcf (1).

The local domain gateway configuration file (lapp.dom) contains the information
used by domain gateways for communications with other domains. This file is
compiled into a binary data file (lapp.bdm), using dmloadcf (1).

$ cd /home/lapp

$ TUXCONFIG=/home/lapp/lapp.tux; export TUXCONFIG

$ tmloadcf -y lapp.ubb

$ BDMCONFIG=/home/lapp/lapp.dom; export BDMCONFIG

$ dmloadcf -y lapp.dom

$ tmboot -y
8-6 Administering the BEA TUXEDO System

CONFIGURING LOCAL AND REMOTE DOMAINS

is

ith

This

ation
.

ts of

ss
Building a Remote Application Configuration File and a

Remote Domains Gateway Configuration File

Build a remote application configuration file and a remote domain gateway
configuration file. The remote application configuration file (rapp.ubb) contains the
information used by domain gateways for communication with other domains. Th
file is compiled into a binary data file (rapp.tux).

The remote domain gateway configuration file (rapp.dom) contains the information
used by domain gateways to initialize the context required for communications w
other domains. This configuration file is similar to the local domain gateway
configuration file. The difference is in which services are exported and imported.
file is compiled into a binary data file (rapp.bdm).

$ cd /home/rapp

$ TUXCONFIG=/home/rapp/rapp.tux; export TUXCONFIG

$ tmloadcf -y rapp.ubb

$ BDMCONFIG=/home/rapp/rapp.dom; export BDMCONFIG

$ dmloadcf -y rapp.dom

$ tmboot -y

Once you create both the local and remote domains, you can then boot the applic
using tmboot (1). The order in which the two domains are booted does not matter
Monitor the applications with dmadmin(1).

Once both applications are booted, a client in the local application can call the
TOUPPER service residing in the remote application.

Example of a Domains-based Configuration

The Domains example illustrated in Figure 8-2 and throughout this chapter consis
two applications, both of which are based on the simpapp example provided with the
BEA TUXEDO system. The first application is called lapp for “local application”; the
second, rapp for “remote application.” lapp is configured to allow its clients to acce
a service called TOUPPER, which is advertised in rapp .
Administering the BEA TUXEDO System 8-7

8 WORKING WITH MULTIPLE DOMAINS

r

e of
Figure 8-2 A Local and a Remote Application (simpapp)

Defining the Local Domains Environment

For the sample local application configuration file (lapp.ubb) shown in Listing 8-1,
only the required parameters are defined. Default settings are used for the other
parameters.

The following two server groups are defined:

� The first contains the domain administrative server (DMADM).

� The second contains the gateway administrative server (GWADM) and the domain
gateway (GWTDOMAIN).

The following three servers are defined:

� DMADM—The domain administrative server enables run-time administration of
the configuration information required by domain gateway groups. This serve
provides run-time administration of the binary domain configuration file and
supports a list of registered gateway groups. (There must be only one instanc
DMADM per Domains application.)
8-8 Administering the BEA TUXEDO System

CONFIGURING LOCAL AND REMOTE DOMAINS

f a

.
t is
� GWADM—The gateway administrative server enables run-time administration o
particular Domains gateway group. This server gets domain configuration
information from the DMADM server. It also provides administrative functionality
and transaction logging for the gateway group.

� GWTDOMAIN—The domain gateway server enables access to and from remote
Domains. It allows for interoperability of two or more BEA TUXEDO domains
Information about the local and remote services it needs to export and impor
included in the domain configuration file. The domain gateway server should
always be configured with REPLYQ=N.

Listing 8-1 Example of a Local Application Configuration File

lapp.ubb
#
*RESOURCES
IPCKEY 111111

MASTER LAPP
MODEL SHM

*MACHINES
giselle

 LMID=LAPP
 TUXDIR=”/opt/tuxedo”
 APPDIR=”/home/lapp”
 TUXCONFIG=”/home/lapp/lapp.tux”

*GROUPS

LDMGRP GRPNO=1 LMID=LAPP
LGWGRP GRPNO=2 LMID=LAPP

*SERVERS

DMADM SRVGRP=LDMGRP SRVID=1
GWADM SRVGRP=LGWGRP SRVID=1
GWTDOMAIN SRVGRP=LGWGRP SRVID=2 REPLYQ=N

*SERVICES
Administering the BEA TUXEDO System 8-9

8 WORKING WITH MULTIPLE DOMAINS

r the

d

r

e
 the
Defining the Local and Remote Domains, Addressing,

and Imported and Exported Services

For the sample local domain gateway configuration file (lapp.dom), shown in
Listing 8-2, only the required parameters are defined. Default settings are used fo
other parameters.

The DM_LOCAL_DOMAIN section identifies the local domains and their associated
gateway groups. This section has one entry (LAPP) and specifies the parameters
required for the domain gateway processes in that group, as follows:

� GWGRP specifies the name of the gateway server group as specified in the
application.

� TYPE of TDOMAIN indicates that the local domain will be communicating with
another BEA TUXEDO domain. Other options are SNA and OSI.

� DOMAINID identifies the name of the Domains gateway and must be unique
across all Domains.

The DM_REMOTE_DOMAINS section identifies the known set of remote Domains and
their characteristics. This section has one entry (RAPP). TYPE is used to classify the type
of Domains. DomainsID is a unique domain identifier.

The DM_TDOMAIN section defines the addressing information required by the BEA
TUXEDO Domains feature. Following are entries in the section for each local an
remote domain specified in this configuration file:

� NWADDR specifies either the network address to accept connections from othe
BEA TUXEDO Domains (local Domains entry), or the network address to
connect to other BEA TUXEDO Domains (remote Domains entry).

The DM_LOCAL_SERVICES section provides information about the services that are
exported. This section has no entries because no services are being exported.

The DM_REMOTE_SERVICES section provides information about the services that ar
imported. The TOUPPER service is imported so that it can be accessed by clients in
local domains.
8-10 Administering the BEA TUXEDO System

CONFIGURING LOCAL AND REMOTE DOMAINS

r the
Listing 8-2 Example of a Local Domains Gateway Configuration File

#
lapp.dom
#
*DM_LOCAL_DOMAINS

LAPP GWGRP=LGWGRP
 TYPE=TDOMAIN
 DOMAINID=”111111"

*DM_REMOTE_DOMAINS

RAPP TYPE=TDOMAIN
 DOMAINID=”222222"

*DM_TDOMAIN

LAPP NWADDR=”//mach1:5000"

RAPP NWADDR=”//mach2:5000"

*DM_LOCAL_SERVICES

*DM_REMOTE_SERVICES

TOUPPER

Defining the Remote Domains Environment

For the sample remote application configuration file (rapp.ubb), shown in
Listing 8-3, only the required parameters are defined. Default settings are used fo
other parameters.

The following three server groups are defined:

� The first server group (SRVGP=RDMGRP) contains the Domains administrative
server (DMADM).

� The second server group (SRVGP=RGWGRP) contains the gateway administrative
server, GWADM, and the Domains gateway, GWTDOMAIN.

� The third server group (SRVGP=APPGRP) contains the application server
simpserv .
Administering the BEA TUXEDO System 8-11

8 WORKING WITH MULTIPLE DOMAINS
The following four servers are defined:

� DMADM—The Domains administrative server

� GWADM—The gateway administrative server

� GWTDOMAIN—The Domains gateway server

� simpserv —The simple application server that advertises the TOUPPER service,
which converts strings from lowercase to uppercase characters

Listing 8-3 Example of a Remote Application Configuration File

rapp.ubb
#
*RESOURCES
IPCKEY 222222

MASTER RAPP

MODEL SHM

*MACHINES

juliet

 LMID=RAPP
 TUXDIR=”/opt/tuxedo”
 APPDIR=”/home/rapp”
 TUXCONFIG=”/home/rapp/rapp.tux”

*GROUPS

RDMGRP GRPNO=1 LMID=RAPP
RGWGRP GRPNO=2 LMID=RAPP
APPGRP GRPNO=3 LMID=RAPP

*SERVERS

DMADM SRVGRP=RDMGRP SRVID=1
GWADM SRVGRP=RGWGRP SRVID=1
GWTDOMAIN SRVGRP=RGWGRP SRVID=2 REPLYQ=N
simpserv SRVGRP=APPGRP SRVID=1

*SERVICES
TOUPPER
8-12 Administering the BEA TUXEDO System

CONFIGURING LOCAL AND REMOTE DOMAINS

r the

e

d

 in
Defining the Exported Services

For the sample remote domain gateway configuration file (rapp.dom), shown in
Listing 8-4, only the required parameters are defined. Default settings are used fo
other parameters.

This configuration file is similar to the local domain gateway configuration file. Th
difference is in which services are exported and imported.

The DM_LOCAL_SERVICES section provides information about the services exporte
by each local domain. In this example, the TOUPPER service is exported and included
in the DM_LOCAL_SERVICES section. No service is imported so there are no entries
the DM_REMOTE_SERVICES section.

Listing 8-4 Example of a Remote Domains Gateway Configuration File

rapp.dom
#

*DM_LOCAL_DOMAINS

RAPP GWGRP=RGWGRP
 TYPE=TDOMAIN
 DOMAINID=”222222"

*DM_REMOTE_DOMAINS

LAPP TYPE=TDOMAIN
 DOMAINID=”111111"

*DM_TDOMAIN

RAPP NWADDR=”//mach2:5000"

LAPP NWADDR=”//mach1:5000"

*DM_LOCAL_SERVICES
TOUPPER
*DM_REMOTE_SERVICES
Administering the BEA TUXEDO System 8-13

8 WORKING WITH MULTIPLE DOMAINS

 it for

 to

 in

ou

ata

ay to
Using Data Compression Between Domains

Data compression is useful in most applications and vital to supporting large
configurations. When data is sent between Domains, you can elect to compress
faster performance. This is configured by setting the CMPLIMIT parameter in the
dmconfig (5). See Chapter 6, “Building Networked Applications,” for more
information on data compression.

Ensuring Security in Domains

Because Domains can exist under diverse ownership, multiple ways are offered
enable you to provide sufficient security:

� Local Domains—Provides a first level of security. A partial view of the
application (that is, a subset of services) can be made available to remote
domains. This partial view is defined by including the corresponding services
the DM_LOCAL_SERVICES section of the DMCONFIG file.

� Domains Passwords—Authentication techniques are required to ensure the
proper identity of each remote domain. Domains provides a facility for the
definition of passwords on a per-remote-domain basis. This is configured by
setting SECURITY=DM_PW in dmconfig (5).

� Access Control—Access control provides another level of security in which y
can restrict access to services within a local domain such that only selected
remote domains can execute these services. This is configured in the
DM_ACCESS_CONTROL section of the dmconfig (5).

� Link-Level Encryption— Encryption can be used across domains to ensure d
privacy, so a network-based eavesdropper cannot learn the content of BEA
TUXEDO messages or application-generated messages from domain gatew
domain gateway. This is configured by setting MINENCRYPTBITS and
MAXENCRYPTBITS in the dmconfig (5). (See Chapter 6, “Building Networked
Applications,” for more information.)
8-14 Administering the BEA TUXEDO System

ROUTING SERVICE REQUESTS TO REMOTE DOMAINS

st of

ts (to

e for
ges

e

trol

s.
Creating a Domain Access Control List (ACL)

To create a domain ACL, you must specify the name of the domain ACL and a li
the remote domains that are part of the list (the Domain Import List) in the
DM_ACCESS_CONTROL section of the DMCONFIG file. The following chart describes
these two fields.

Routing Service Requests to Remote

Domains

Information for data-dependent routing used by gateways to route service reques
specific remote domains) is provided in the DM_ROUTING section of the DMCONFIG file.
The FML32, VIEW32, FML, VIEW, X_C_TYPE, and X_COMMON typed buffers are
supported. To create a routing table for a domain, you must specify the buffer typ
which the routing entry is valid, the name of the routing entry and field, and the ran
and associated remote domain names of the routing field. The following table
describes these fields.

Domain ACL Field Description

Domain ACL name The name of this ACL.

A valid name consists of a string of 1-30 characters, inclusive. It must b
printable and it may not include a colon, a pound sign, or a new line
character. An example is: ACLGRP1

Domain import VIEW list The list of remote domains that are granted access for this access con
list.

A valid value in this field is a set of one or more comma-separated string
An example is: REMDOM1,REMDOM2,REMDOM3
Administering the BEA TUXEDO System 8-15

8 WORKING WITH MULTIPLE DOMAINS

e

n

e
Routing Table
Fields

Description

Buffer type A list of types and subtypes of data buffers for which this routing entry is valid. Th
types may include FML32, VIEW32, FML, VIEW, X_C_TYPE, or X_COMMON. No
subtype can be specified for type FML; subtypes are required for the other types.
The * (or wildcard) value is not allowed. Duplicate type /subtype pairs cannot
be specified for the same routing criteria name; more than one routing entry ca
have the same criteria name as long as the type /subtype pairs are unique. If
multiple buffer types are specified for a single routing entry, the data types of th
routing field for each buffer type must be the same.

Valid values for type are: [: subtype1 [, subtype2 . .
.]][; type2 [: subtype3 [, subtype4 . . .]]] . . .

where the maximum length is 256 characters over 32 type /subtype
combinations.

Valid values for subtype are names may not include semicolons, colons,
commas, or asterisks.

An example is FML.

Domain routing
criteria

The name (identifier) of the routing entry.

A valid value is any string of 1-15 characters, inclusive.

An example is ROUTTAB1.

Routing field
name

The name of the routing field. This field is assumed to be a field name that is
identified in an FML field table (for FML buffers) or an FML VIEW table (for VIEW,
X_C_TYPE, or X_COMMON buffers).

A valid value is an identifier string that is 1-30 characters, inclusive.

An example is FIELD1 .
8-16 Administering the BEA TUXEDO System

ROUTING SERVICE REQUESTS TO REMOTE DOMAINS

nge
e
 and
s

a

 by

r

ote

ter

.
t
ge
Ranges The ranges and associated remote domain names (RDOM) for the routing field. The
routing field can be of any data type supported in FML. A numeric routing field
must have numeric range values, and a string routing field must have string ra
values. String range values for string, carray, and character field types must b
placed inside a pair of single quotes and cannot be preceded by a sign. Short
long integer values are a string of digits, optionally preceded by a plus or minu
sign. Floating point numbers are of the form accepted by the C compiler or
atof() as follows: an optional sign, then a string of digits optionally containing
decimal point, then an optional e or E followed by an optional sign or space,
followed by an integer. When a field value matches a range, the associated RDOM
value specifies the remote domains to which the request should be routed. An
RDOM value of * indicates that the request can go to any remote domain known
the gateway group.

Valid values are a comma-separated ordered list of range/RDOM pairs where a
range is one of two types: (a) a single value (signed numeric value or characte
string in single quotes); or (b) a range of the form lower-upper (where lower and
upper are both signed numeric values or character strings in single quotes). N
that lower must be less than or equal to upper. Within a range/RDOM pair, the range
is separated from the RDOM by a colon (:). MIN can be used to indicate the
minimum value for the data type of the associated FIELD ; for strings and carrays,
it is the null string; for character fields, it is 0; for numeric values, it is the
minimum numeric value that can be stored in the field. MAX can be used to indicate
the maximum value for the data type of the associated FIELD ; for strings and
carrays, it is effectively an unlimited string of octal-255 characters; for a charac
field, it is a single octal-255 character; for numeric values, it is the maximum
numeric value that can be stored in the field. Thus, MIN - -5 is all numbers less
than or equal to -5 and - MAX is the set of all numbers greater than or equal to 6
The meta-character * (wildcard) in the position of a range indicates any values no
covered by the other ranges previously seen in the entry; only one wildcard ran
is allowed per entry and it should be last (ranges following it are ignored).

An example is 1-100:REMDOM3.

Routing Table
Fields

Description
Administering the BEA TUXEDO System 8-17

8 WORKING WITH MULTIPLE DOMAINS
8-18 Administering the BEA TUXEDO System

CHAPTER

the

 for
9 Managing Workstation

Clients

This chapter discusses the following topics:

� Workstation Terms

� What Is a Workstation Client?

� Setting Environment Variables

� Setting the Maximum Number of Workstation Clients

� Configuring a Workstation Listener (WSL)

� Modifying the MACHINES Section to Support Workstation Clients

Workstation Terms

Workstation
Workstation Extension—The workstation product that is an extension of
base BEA TUXEDO system.

DLL
Dynamic Link Libraries—A collection of functions grouped into a load
module that is dynamically linked with an executable program at run time
a Microsoft Windows or an OS/2 application.
Administering the BEA TUXEDO System 9-1

9 Managing Workstation Clients

t

at

 to
chine
. All
ork.

 has
rent

s as a

WSC
Workstation Client—A client process running on a remote site.

WSH
Workstation Handler—A client process running on an application site tha
acts as a surrogate on behalf of the WSC.

WSL
Workstation Listener—A server process running on an application site th
listens for WSCs to connect.

What Is a Workstation Client?

The Workstation Extension of the BEA TUXEDO system allows application clients
reside on a machine that does not have a full server-side installation, that is, a ma
that does not support any administration or application servers, or a Bulletin Board
communication between the client and the application takes place over the netw

The client process can be running UNIX, MS-DOS, Windows, or OS/2. The client
access to the ATMI interface for clients. The networking behind the calls is transpa
to the user. The client process registers with the system and has the same statu
native client. The client can do the following:

� Send and receive messages

� Begin, end, or commit transactions

� Send and receive unsolicited messages

� Pass application security (on a mandatory basis)

� Communicate information about remote clients through the tmadmin (1)
command

Note: A client process communicates with the native domain through the WSH
rather than through a BRIDGE process.
9-2 Administering the BEA TUXEDO System

What Is a Workstation Client?

lient
is

h

twork
 the

te

d
ase.
Illustration of an Application with Two Workstation

Clients

Figure 9-1 shows an example of an application with two WSCs connected. The c
on the left is running on a UNIX system workstation, while the client on the right
running on an MS-DOS workstation. Both WSCs are communicating with the
application through the WSH process. Initially, both joined by communicating wit
the WSL (indicated by the heavily dashed line).

The administrative servers and the application servers are located entirely on SITE1 .
Any request by a WSC to access the resource manager (RM) is sent over the ne
to the WSH. This process sends the request to the appropriate server and sends
reply back to the WSC.

The application is running in SHM mode. If the application was distributed over
several nodes, the procedure would be very similar. The WSC would communica
with one WSH, and the request would be sent to a BRIDGE process, which would
forward it to the correct node.

Note: As used in this book, the term “resource manager” refers to an entity that
interacts with the BEA TUXEDO system and implements the XA standar
interfaces. The most common example of a resource manager is a datab
Resource managers provide transaction capabilities and permanence of
actions; they are the entities accessed and controlled within a global
transaction.
Administering the BEA TUXEDO System 9-3

9 Managing Workstation Clients
Figure 9-1 A Bank Application with Two Workstation Clients

How the Workstation Client Connects to an Application

A workstation client connects to an application in the following manner.
9-4 Administering the BEA TUXEDO System

Setting Environment Variables

s is

C

re

s
e

s

d,

g
1. The client connects to the WSL process using a known network address. Thi
initiated when the client calls either tpchkauth() or tpinit() . The WSL returns
the address of a WSH to the client.

2. The WSL process sends a message to the WSH process informing it of the
connection request.

3. The WSC connects to the WSH. (All further communication between the WS
and the application takes place through the WSH.)

Setting Environment Variables

Eight environment variables can be used to pass information to the system. All a
optional except TUXDIR and WSNADDR. Defaults are available for all except
WSENVFILE:

� TUXDIR—This contains the location of the BEA TUXEDO software on this
workstation. It must be set for the client to connect.

� WSNADDR— This contains the network address of the WSL that the client want
to contact. This must match the address of a WSL process, as specified in th
application configuration file.

� WSDEVICE—This contains the network device to be used. The default is an
empty string. WSDEVICE must be set if TLI is being used.

� WSENVFILE—This contains the name of a file in which all environment variable
may be set. There is no default for this variable.

� WSTYPE—This contains the machine type. If the value of WSTYPE matches the
value of TYPE in the configuration file for the WSL machine, no
encoding/decoding is performed. The default is the empty string. Keep in min
when deciding whether to use the default, that a value of “empty string” will
match any other “empty string” value. Be sure to specify the value of WSTYPE
whenever that value does not match the value of TYPE on the WSL machine.

� WSRPLYMAX—This contains the amount of core memory to be used for bufferin
application replies. The default is 32,000 bytes.
Administering the BEA TUXEDO System 9-5

9 Managing Workstation Clients

tion

h
ss

ires

, an

u

e.
� TMPDIR—This contains the directory in which to store replies when the
WSRPLYMAX limit has been reached. The default is the working directory.

� APP_PW—This contains the password in a secure application. Clients that run
from scripts can get the application password from this variable.

Setting the Maximum Number of

Workstation Clients

To join workstation clients to an application, you must specify the MAXWSCLIENTS
parameter in the MACHINES section of the UBBCONFIG file.

MAXWSCLIENTS is the only parameter that has special significance for the Worksta
feature. MAXWSCLIENTS tells the BEA TUXEDO system at boot time how many
accesser slots to reserve exclusively for workstation clients. For native clients, eac
accesser slot requires one semaphore. However, the Workstation handler proce
(executing on the native platform on behalf of workstation clients) multiplexes
Workstation client accessers through a single accesser slot and, therefore, requ
only one semaphore. This points out an additional benefit of the Workstation
extension. By putting more clients out on workstations and off the native platform
application reduces its IPC resource requirements.

MAXWSCLIENTS takes its specified number of accesser slots from the total set in
MAXACCESSERS. This is important to remember when specifying MAXWSCLIENTS;
enough slots must be left to accommodate native clients as well as servers. If yo
specify a value for MAXWSCLIENTS greater than MAXACCESSERS, native clients and
servers fail at tpinit() time. The following table describes the MAXWSCLIENTS
parameter.

Parameter Description

MAXWSCLIENTS Specifies the maximum number of WSCs that may connect to a nod

The default is 0. If not specified, WSCs may not connect to the
machine being described.

The syntax is MAXWSCLIENTS=number .
9-6 Administering the BEA TUXEDO System

Configuring a Workstation Listener (WSL)

s and
server
he
tact
ss
re

tion

er

is a
rvers
ilable
d to
Configuring a Workstation Listener (WSL)

Workstation clients access your application through the services of a WSL proces
one or more WSH processes. The WSL and WSH are specified in one entry as a
supplied by the BEA TUXEDO system, although they are separate processes. T
WSL can support multiple workstation clients and acts as the single point of con
for all the workstation clients connected to your application at the network addre
specified on the WSL command line. The listener schedules work for one or mo
workstation handler processes. A WSH process acts as a surrogate within the
administrative domain of your application for workstation clients on remote
workstations. The WSH uses a multiplexing scheme to support multiple Worksta
clients concurrently.

To join Workstation clients to an application, you must list the Workstation Listen
(WSL) processes in the SERVERS section of the UBBCONFIG file. Use the same syntax
you use when listing a server.

Format of the CLOPT Parameter

Use the command-line option string (CLOPT) to pass information to a WSL process.
The format of the CLOPT parameter is as follows.

CLOPT="[-A] [servopts-options] -- -n netaddr [-d device]]\
 [-w WSHname] [-t timeout-factor][-T Client-timeout]\
 [-m minh][-M maxh][-x mpx-factor]\
 [-p minwshport][-P maxwshport]\
 [-I init-timeout][-c compression-threshold][-k\
compression-threshold]\
 [-z bits][-Z bits][-H external-netaddr]"

The -A value indicates that the WSL is to be booted to offer all its services. This
default, but it is shown to emphasize the distinction between system-supplied se
and application servers. The latter can be booted to offer only a subset of their ava
services. The -- syntax marks the beginning of a list of parameters that are passe
the WSL after the latter has been booted.
Administering the BEA TUXEDO System 9-7

9 Managing Workstation Clients

e

se
f

er

he

ex

t

Command-line Options of the CLOPT Parameter

You can specify the following command-line options in the CLOPT string after the --
(double minus signs):

� -n netaddr is the network address that WSCs use to contact the listener. Th
WSC must set the environment variable (WSNADDR) to this value. This is a
required parameter.

� [-d device] is the network device name. This is an optional parameter becau
some transport interfaces (sockets) do not require it. However, it is required i
the provider is TLI.

� [-t timeout] allows more time for a client to join when there is a large numb
of clients attempting to join simultaneously. The value is multiplied by the
SCANUNIT parameter. The default is 3 in a nonsecure application and 6 in an
application with security on it.

� [-w name] is the name of the WSH process that should be booted for this
listener. The default is WSH, which is the name of the handler provided. If
another handler process is built with the buildwsh (1) command, that name is
specified here.

� [-m number] specifies the minimum number of handlers that should be booted
and always available. The default is 0.

� [-M number] specifies the maximum number of handlers that can be booted. T
default is the value of MAXWSCLIENTS for that node divided by the multiplexing
value.

� [-x number] specifies the maximum number of clients that a WSH can multipl
at a time. The default is 10 and the value must be greater than 0.

� [-T client-timeout] specifies the inactive client timeout option. The inactive
client timeout is the time (in minutes) allowed for a client to stay idle. If a clien
does not make any requests within this time period, the WSH disconnects the
client. If this argument is not given or is set to 0, the timeout is infinite.

� [-p minwshport] [-P maxwshport] specifies the range for port numbers
available for use by WSHs associated with this listener server. Port numbers
must fall in the range between 0 and 65535. The default is 2048 for minwshport
and 65535 for maxwshport .
9-8 Administering the BEA TUXEDO System

Modifying the MACHINES Section to Support Workstation Clients

Modifying the MACHINES Section to

Support Workstation Clients

Listing 9-1 shows an example of how you can add the Workstation feature to the
bankapp application.

Listing 9-1 UBBCONFIG Configuration

MACHINES
SITE1
 ...
 MAXWSCLIENTS=150

 ...
SITE2

 ...
 MAXWSCLIENTS=0
 ...

SERVERS
 ...
WSL SRVGRP=”BANKB1" SRVID=500 RESTART=Y
 CLOPT=”-A -- -N 0x0002ffffaaaaaaaa \
 -d /dev/tcp -m 5 -M 30 -x 5"

 ...

Notice the following specifications in the MACHINES and SERVERS sections:

� The MACHINES section shows the default MAXWSCLIENTS as being overridden for
two sites. For SITE1 , the default is raised to 150, while it is lowered to 0 for
SITE2 , which will not have WSCs connected to it.

� The SERVERS section shows a WSL process listed for group BANKB1. The WSL
has a server ID of 500 and it is marked as restartable.

� The command-line options show the following:
Administering the BEA TUXEDO System 9-9

9 Managing Workstation Clients

e
� The WSL will advertise all of its services (-A).

� The WSL will listen at network address 0x0002ffffaaaaaaaa (-N).

� The network provider will be /dev/tcp (-d).

� A minimum of 5 WSHs will be booted (-m).

� A maximum of 30 WSHs will be booted (-M).

� Each handler will be allowed a maximum of 5 clients connected at any on
time (-x).
9-10 Administering the BEA TUXEDO System

CHAPTER

cility
to
10Managing Queued

Messages

This chapter describes how to configure the BEA TUXEDO Queued Message Fa
for your application, and how to manage the facility when the application goes in
production.

The following topics are presented:

� Terms and Definitions

� Overview of the BEA TUXEDO Queued Message Facility

� Administrative Tasks

� Setting the QMCONFIG Environment Variable

� Using qmadmin, the /Q Administrative Interface

� Creating an Application Queue Space and Queues

� Modifying the Configuration File

Terms and Definitions

The following terms are used in this chapter.

/Q
A short name for the BEA TUXEDO Queued Message Facility
Administering the BEA TUXEDO System 10-1

10 Managing Queued Messages

es or

re

ue

table

 be
ges can
eter

sages
eues.
QMCONFIG

An environment variable that holds the name of the device (file) where /Q
queue space is located.

Queue
A named stable storage area where service requests from client process
responses from application servers are stored.

Queue Space
A collection of queues that can be administered as a unit.

Request Queue
A space associated with an application server where service requests a
placed for processing by the server.

TMQUEUE
A BEA TUXEDO system server that accepts messages from a tpenqueue()
call and places them on a /Q queue.

TMQFORWARD

A BEA TUXEDO system server that dequeues a message from a /Q que
and forwards the message to an application server.

TMS_QM
A BEA TUXEDO system server that manages transactions for /Q.

Overview of the BEA TUXEDO Queued

Message Facility

The BEA TUXEDO Queued Message Facility allows messages to be queued to s
storage for later processing. Primitives are added to the BEA TUXEDO system
application-transaction manager interface, (ATMI), that provides for messages to
added to or read from stable-storage queues. Reply messages and error messa
be queued for later return to client programs. An administrative command interpr
is provided for creating, listing, and modifying the queues. Prewritten servers are
included to accept requests to enqueue and dequeue messages, to forward mes
from the queue for processing, and to manage the transactions that involve the qu
10-2 Administering the BEA TUXEDO System

Administrative Tasks

lines in

ile.

r

s

 to
.

e

 as

n

d
 queue
roup.
Administrative Tasks

The BEA TUXEDO system administrator is responsible for defining servers and
creating queue space and queues like those shown between the vertical dashed
Figure 10-1.

The administrator must define at least one queue server group with TMS_QM as the
transaction manager server for the group.

Two additional system-provided servers need to be defined in the configuration f
These servers perform the following functions:

� The message queue server, TMQUEUE(5), is used to enqueue and dequeue
messages. This provides a surrogate server for doing message operations fo
clients and servers, whether or not they are local to the queue.

� The message forwarding server, TMQFORWARD(5), is used to dequeue and forward
messages to application servers. The BEA TUXEDO system provides routine
for servers that handle server initialization and termination, allocate buffers to
receive and dispatch incoming requests to service routines, and route replies
the correct destination. All of this processing is transparent to the application

� Existing servers do not dequeue their own messages or enqueue replies. On
goal of /Q is to be able to use existing servers to service queued messages
without change. The TMQFORWARD server, for example:

� Dequeues a message from one or more queues in the queue space

� Forwards the message to a server that has a service with the same name
the queue

� Waits for the reply

� Queues the success reply or failure reply on the associated reply or failure
queues (assuming the originator specified a reply or failure queue)

Also, the administrator must create a queue space using the queue administratio
program, qmadmin(1). The queue space contains a collection of queues. In
Figure 10-1, for example, four queues are present within the queue space nameAPP.
There is a one-to-one mapping of queue space to queue server group since each
space is a resource manager (RM) instance and only a single RM can exist in a g
Administering the BEA TUXEDO System 10-3

10 Managing Queued Messages

iated
ing

pace.

ueue

eue
age
The notion of queue space allows for reducing the administrative overhead assoc
with a queue by sharing the overhead among a collection of queues in the follow
ways:

� The queues in a queue space share the stable storage area for messages.

� A single message queue server, such as TMQUEUE in Figure 10-1, can be used to
enqueue and dequeue messages for multiple queues within a single queue s

� A single message forwarding server, such as TMQFORWARD in Figure 10-1, can be
used to dequeue and forward messages for multiple queues within a single q
space.

� A single transaction manager server, such as TMS_QM in Figure 10-1, can be used
to complete transactions for multiple queues within a single queue space.

� The administrator can define a single server group in the application
configuration for the queue space by specifying the group in UBBCONFIG or by
using tmconfig (1) to add the group dynamically.

� Finally, when the administrator moves messages between queues within a qu
space, the overhead is less than if the messages were in different stable stor
areas, because a one-phase commit can be done.
10-4 Administering the BEA TUXEDO System

Administrative Tasks

ined by

es so
ntified
Figure 10-1 shows how the BEA TUXEDO Queued Message Facility works. The
queue spaces and queues shown between the vertical dashed lines must be def
the system administrator.

Figure 10-1 Overview of the Queued Message Facility

In Figure 10-1 (Steps 1, 2, and 3), a client enqueues a message to the SERVICE1 queue
in the APP queue space using tpenqueue() . Optionally, the names of a reply queue
and a failure queue can be included in the call to tpenqueue() . In Figure 10-1 they
are the queues CLIENT_REPLY1 and FAILURE_Q. The client can specify a “correlation
identifier” value to accompany the message. This value is persistent across queu
that any reply or failure message associated with the queued message can be ide
when it is read from the reply or the failure queue.
Administering the BEA TUXEDO System 10-5

10 Managing Queued Messages

e
dering
of

t (step
t can

n. The
ther
ssage

 which

ue

e

lient

are not
t or

ueue.

e

e

ed to

th
The client can use the default queue ordering (for example, a time after which th
message should be dequeued), or can specify an override of the default queue or
(asking, for example, that this message be put at the top of the queue or ahead
another message on the queue). The call to tpenqueue() sends the message to the
TMQUEUE server, the message is queued to stable storage, and an acknowledgmen
3) is sent to the client. The acknowledgment is not seen directly by the client, bu
be assumed when the client gets a successful return. (A failure return includes
information about the nature of the failure.)

A message identifier assigned by the queue manager is returned to the applicatio
identifier can be used to dequeue a specific message. It can also be used in ano
tpenqueue() to identify a message already on the queue that the subsequent me
should be enqueued ahead of.

Before an enqueued message is made available for dequeuing, the transaction in
the message is enqueued must be committed successfully.

When the message reaches the top of the queue, the TMQFORWARD server dequeues the
message and forwards it, via tpcall() , to a service with the same name as the que
name. In Figure 10-1 the queue and the service are both named SERVICE1; steps 4, 5,
and 6 show the transfer and return of the message. The client identifier and the
application authentication key are set to the client that caused the message to b
enqueued; they accompany the dequeued message as it is sent to the service.

When the service returns a reply, TMQFORWARD enqueues the reply (with an optional
user-return code) to the reply queue (step 7 in Figure 10-1). Sometime later, the c
uses tpdequeue() to read from the reply queue (CLIENT_REPLY1), and to get the
reply message (steps 8, 9, and 10 in Figure 10-1). Messages on the reply queue
automatically cleaned up; they must be dequeued, either by an application clien
server, or by a TMQFORWARD server.

Part of the task of defining a queue is specifying the order for messages on the q
Queue ordering can be time-based, priority based, FIFO or LIFO , or a combination of
these sort criteria. The administrator specifies one or more of these criteria for th
queue, listing the most significant criteria first. FIFO or LIFO can be specified only as
the least significant sort criteria. Messages are put on the queue according to th
specified sort criteria, and dequeued from the top of the queue.

The administrator can configure as many message queuing servers as are need
keep up with the requests generated by clients for the stable queues.

Data-dependent routing can be used to route between multiple server groups wi
servers offering the same service.
10-6 Administering the BEA TUXEDO System

Setting the QMCONFIG Environment Variable

uted

sed by
e
e

ersal

 line
tion

or a
For housekeeping purposes, the administrator can set up a command to be exec
when a threshold is reached for a queue that does not routinely get drained. The
threshold can be based on the bytes, blocks, or percentage of the queue space u
the queue, or the number of messages on the queue. The command set up by th
administrator might boot a TMQFORWARD server to drain the queue or send mail to th
administrator for manual handling.

Setting the QMCONFIG Environment

Variable

The environment variable QMCONFIG must be set and exported before work can be
done to create a queue space. A BEA TUXEDO system application uses a Univ
Device List (UDL). The QMCONFIG variable must contain the full path name of the
device list, such as the path shown in the following example.

$ QMCONFIG = /dev/rawfs; export QMCONFIG

The commands provided by qmadmin, (the /Q administrative interface), will not work
unless this location is defined. The information can be furnished on the command
as well as in the environment variable. If it is specified in both places, the informa
on the command line takes precedence.

Using qmadmin, the /Q Administrative

Interface

/Q has an administrative program, qmadmin(1), that is used to create and administer
queues. The following sections include a sampling of the available commands. F
complete list of qmadmin commands, refer to the qmadmin(1) reference page in the
BEA TUXEDO Reference Manual.
Administering the BEA TUXEDO System 10-7

10 Managing Queued Messages

ues.

 an

will

Creating an Application Queue Space and

Queues

Complete the following four steps to create an application queue space and que

1. Create an entry in the UDL with the qmadmin crdl command. The device may be
created on a raw slice or in a UNIX file. For example:

qmadmin # to start the qmadmin command

crdl device offset size

where device is the same device named in the QMCONFIG variable; offset is
the block number within the UDL where space may begin to be allocated (the
first entry must have an offset of 0), and size is the number of blocks to
allocate. To make the example more realistic, it might be like the following:

crdl /dev/rawfs 500 500

which says create an entry on the device /dev/rawfs 500 blocks from the start
of the UDL and allocate 500 blocks. Implicit in this request is the presence of
existing entry, since the offset 0 is not specified. If you enter crdl without
arguments, the software prompts you for information. You can create up to 25
entries on a device list.

2. Create a queue space on the device. This will be a space on the device that
contain a collection of queues. Space is created with the qmadmin qspacecreate
command.

qspacecreate queue_space_name ipckey pages queues trans procs\
messages errorq inityn

If you enter qspacecreate without arguments, the software prompts you for
information. This is probably the better choice for this command because the
prompts explain the information you need to provide. The following is an
example from the qmadmin(1) reference page.

 > qspacecreate
 Queue space name: myqueuespace
 IPC Key for queue space: 42000
 Size of queue space in disk pages: 50000
 Number of queues in queue space: 30
 Number of concurrent transactions in queue space: 20
10-8 Administering the BEA TUXEDO System

Creating an Application Queue Space and Queues

e
ue

s. The
t be
s.

e

u

r

f
d on
 Number of concurrent processes in queue space: 30
 Number of messages in queue space: 20000
 Error queue name: ERRORQ
 Initialize extents (y, n [default=n]): y
 Blocking factor [default=16]: 16

The IPC Key value must be unique and different from the value specified in th
RESOURCES section. The number of disk pages specified as the size of the que
space varies from application to application and depends on the number of
queues, the number of messages to be handled and the size of the message
specification for the number of concurrent processes in the queue space mus
large enough to include four or five possible BEA TUXEDO system processe

3. Open the queue space.

qopen queue_space_name

The queue space has to be open for you to proceed.

4. Create individual queues within the queue space. Queues are created with th
qmadmin qcreate command, as follows.

qcreate queue_name qorder out-of-order retries delay high low

This is another command where it is better to allow the software to prompt yo
for information. The following is an example from qmadmin(1) (using mostly
default values where available).

>qcreate Queue name: service1 queue order (priority, time, fifo,
lifo): fifo out-of-ordering enqueuing (top, msgid,
[default=none]):none retries [default=0]: 0 retry delay in
seconds [default=0]: 0 High limit for queue capacity warning (b
for bytes used, B for blocks used, % for percent used, m for
messages [default=100%]): 100% Reset (low) limit for queue
capacity warning [default=0%]: 50% queue capacity command:
/usr/app/bin/mailadmin myqueuespace service1

Retries specifies the number of times the system attempts to enqueue the
message.

We recommend that you read the qmadmin(1) reference page in the BEA Tuxedo
Reference Manual carefully and that you also read the “Administration” chapte
of the BEA TUXEDO System /Q Guide. The parameters that you enter for the
qcreate command control the way the queue operates for your application. O
particular importance is the choice for the order in which messages are place
the queue (they are always removed from the top).
Administering the BEA TUXEDO System 10-9

10 Managing Queued Messages

ds to

s of

.

se. In

ple.

ued

space,
Modifying the Configuration File

In addition to creating a queue space and queues, the system administrator nee
associate these resources with the BEA TUXEDO Queued Message Facility
application by editing the configuration file as described in the remaining section
this chapter.

The configuration changes involve making an entry in the GROUPS section for the
group that owns the queue and the transaction server (TMS_QM), and listing (in the
SERVERS section) the two servers (TMQUEUE and TMQFORWARD).

Note: The chronological order of these specifications is not critical. The
configuration file can be created either before or after the queue space is
defined. The important thing is that the configuration must be defined and
queue space and queues must be created before the facility can be used

Associating a Queue with a Group

A server group must be defined for each queue space the application expects to u
addition to the standard requirements of a group name tag and a value for GRPNO, the
TMSNAME and OPENINFO parameters need to be set, as shown in the following exam

TMSNAME=TMS_QM

and

OPENINFO="TUXEDO/QM:device_name : queue_space_name "

(See the ubbconfig (5) reference page in the BEA Tuxedo Reference Manual for
details.)

TMS_QM is the name for the transaction manager server for the BEA TUXEDO Que
Message Facility . In the OPENINFO parameter, TUXEDO/QM is the literal name for the
resource manager as it appears in $TUXDIR/udataobj/RM. The values for
device_name and queue_space_name are instance-specific and must be set to the
path name for the universal device list and the name associated with the queue
respectively.

The following example includes some of the detail.
10-10 Administering the BEA TUXEDO System

Modifying the Configuration File

e is
e

t

ight
at
*GROUPS
QUE1
LMID = SITE1 GRPNO = 2
TMSNAME = TMS_QM TMSCOUNT = 2
OPENINFO = “TUXEDO/QM:/dev/rawfs:myqueuespace”

Note the use of quotation marks around the information for OPENINFO. We
recommend using quotation marks in this way to protect your entries in the
configuration file.

Listing the /Q Servers in the SERVERS Section

Three servers are provided with the BEA TUXEDO Queued Message Facility. On
the TMS server, TMS_QM, that is the transaction manager server for the /Q resourc
manager. TMS_QM is defined in the GROUPS section of the configuration file.

The other two, TMQUEUE(5) and TMQFORWARD(5), provide services to users. They mus
be defined in the SERVERS section of the configuration file, as follows.

*SERVERS
TMQUEUE SRVGRP=QUE1 SRVID=1 CLOPT="-s QSPACENAME:TMQUEUE - - "
TMQFORWARD SRVGRP=QUE1 SRVID=5 CLOPT="- - -I 2 -q STRING"

The application can also create its own queue servers. If the functionality of
TMQFORWARD, for example, does not fully meet the needs of the application, you m
want to have a special server written. You might, for example, create a server th
dequeues messages moved to the error queue, which TMQFORWARD does not do.
Administering the BEA TUXEDO System 10-11

10 Managing Queued Messages
10-12 Administering the BEA TUXEDO System

CHAPTER

.

line

 (for
11Securing Applications

This chapter discusses the levels of security that are available to BEA TUXEDO
system applications, and describes how to implement the level of security your
designers decide best serves the requirements of your application.

The following topics are presented:

� Security Strategy

� Configuring the RESOURCES SECURITY Parameter

� Implementing Operating System Security

� Implementing Application Password-level Security

� Implementing Security via an Authentication Server

� Implementing Security via Access Control Lists

Security Strategy

This section covers the levels of security provided by the BEA TUXEDO system
Application designers need to decide the appropriate level for their applications.

Operating System
For platforms that have underlying security mechanisms, this is the first
of defense. The security level is configured to “NONE” (configuration is
discussed below). This implies that there are no additional mechanisms
example, a BEA TUXEDO system password) beyond what the platform
provides.
Administering the BEA TUXEDO System 11-1

11 Securing Applications

r
 the

erver
ns.
e

 file
d (in
f

, a
to the
he

 to

wed
 the
 run.

al
ing an

 the

ord

y the
Most BEA TUXEDO applications are managed by a system administrato
who configures the application, starts up the application (servers run with
permissions of this administrator), and monitors the running application,
making dynamic changes as necessary. This arrangement implies that s
programs are “trusted,” since they run with the administrator’s permissio
This working method is supported by the login mechanism and read/writ
permissions on files, directories, and system resources provided by the
underlying operating system.

Client programs are run directly by users with their own permissions.
Normally, however, users have access to the administrative configuration
and interprocess communication mechanisms, such as the Bulletin Boar
shared memory), as part of normal processing. This is true regardless o
whether additional BEA TUXEDO system security is configured.

For some applications running on platforms that support greater security
more secure approach is to limit access to the files and IPC mechanisms
application administrator and to have “trusted” client programs run with t
permissions of the administrator (using a setuid mechanism). Combining
these practices with BEA TUXEDO system security allows the application
“know” who is making the request.

For the most secure environment, only workstation clients should be allo
to access the application; client programs should not be allowed to run on
same machines on which application server and administrative programs

BEA TUXEDO system security mechanisms can be used in addition to
operating system security to prevent unauthorized access. The addition
security can be used to avoid simple violations, such as someone access
unattended terminal. In addition, it can protect the boundaries of the
administrative domain from interdomain or workstation client access over
network by unauthorized users.

Application Password
This security level requires that every client provide an application passw
as one step in the process of joining the application. The security level is
configured to APP_PW. The administrator must provide an application
password when this level is configured. (The password can be changed b
administrator.) It is the responsibility of the administrator to inform
authorized users of the application about the password.

If this level of security is used, BEA TUXEDO system-supplied client
programs, ud(1) for example, prompt for the application password.
11-2 Administering the BEA TUXEDO System

Security Strategy

ing
he

e.
ted

e

ple,
)

is
ut
ation

ted

ch as

ly
ver
within
Application-written client programs must include code to obtain the
password from a user. The password should not be echoed to the user’s
screen. The password is placed in clear text in the TPINIT buffer and is
evaluated when the client calls tpinit() to join the application.

See “Writing Client Programs” in the BEA TUXEDO Programmer’s Guide
for examples of code for handling a password.

User Authentication
The third level of BEA TUXEDO system security is based on authenticat
each individual user in addition to providing the application password. T
security level is configured to USER_AUTH.

This level involves passing user-specific data to an authentication servic
Often, the data is a per-user password. This data is automatically encryp
when it is sent over the network from workstation clients. The default
authentication service, AUTHSVC, is provided by a BEA TUXEDO
system-supplied server, AUTHSVR. The operation of an authentication servic
is described in “Writing Service Routines” in the BEA TUXEDO
Programmer’s Guide. This server can be replaced with an application
authentication server that has logic specific to the application. (For exam
it might access the widely used Kerberos mechanism for authentication.

With this level of security, authentication is provided, but access control
not provided. That is, the user is checked when joining the application, b
then is free to execute any services, to post events, and to access applic
queues. It is possible for servers to do application-specific authorization
within the logic of the service routines, but there are no hooks for
authorization that check for access to events or application queues. The
alternative is to use the built-in access control checking.

Access Control
With the use of access control lists (ACLs), not only is a user authentica
when joining the application, but in addition, permissions are checked
automatically when attempts are made to access application entities (su
services). ACL security also includes the user-authentication security
equivalent to USER_AUTH.

Optional Access Control Lists
There are two levels of ACL checking. The first ACL security level is simp
called ACL. If ACL is configured, the access control lists are checked whene
a user attempts to access a service name, queue name, or event name
the application. If there is no ACL associated with the user’s name, the
Administering the BEA TUXEDO System 11-3

11 Securing Applications

nly
for

d
st a

.

and

as a

or
d

e
assumption is that permission is granted. For this reason, this level is
considered “optional.” It allows the administrator to configure access for o
those resources that need more security; ACLs need not be configured
services, queues, or events that are open to everyone.

For some applications, it may be necessary to use both system-level an
application authorization. An ACL can be used to control who can reque
service, and application logic can control data-dependent access (for
example, who can handle transactions for more than one million dollars)

Note that ACL checking is not done for administrative services, queues,
events with names that begin with a dot (.). For example, anyone can
subscribe to administrative events such as, .SysMachineBroadcast ,
.SysNetworkConfig , .SysServerCleaning .

Mandatory Access Control Lists
The second ACL security level is MANDATORY_ACL. This level is similar to
ACL, but an access control list must be configured for every entity (such
service, queue, or event) that users can access. If MANDATORY_ACL is specified
and there is no ACL for a particular entity, permission for that entity is
denied.

Link-Level Encryption
Users of the BEA TUXEDO Security Add-On Package (US/Canada or
International) can establish data privacy for messages moving over the
network links that connect the machines in a BEA TUXEDO application. F
a detailed description of this feature, see Chapter 6, “Building Networke
Applications.”

Configuring the RESOURCES SECURITY

Parameter

You can designate a security scheme by setting the value of one parameter in th
RESOURCES section of the configuration file: SECURITY. (The parameter AUTHSVC also
comes into play if SECURITY is set to USER_AUTH, ACL or MANDATORY_ACL.)

To set the SECURITY parameter, perform the following steps.
11-4 Administering the BEA TUXEDO System

Implementing Operating System Security

at
).

l
ociated

d

s an
.

ite
sers
rams.
is.
1. Open the UBBCONFIG file in a text editor.

2. Set the SECURITY parameter as follows.

SECURITY=METHOD where the value of METHOD is one of the following:

� NONE

� APP_PW

� USER_AUTH

� ACL

� MANDATORY_ACL

The default is NONE.

The value APP_PW indicates that application password security will be enforced (th
is, clients will be required to provide the application password during initialization
Setting APP_PW causes tmloadcf to prompt for an application password.

The value USER_AUTH is similar to APP_PW but, in addition, indicates that per-user
authentication will be done during client initialization.

The value ACL is similar to USER_AUTH but, in addition, indicates that access contro
checks will be done on service names, queue names, and event names. If an ass
ACL is not found for a name, it is assumed that permission is granted.

The value MANDATORY_ACL is similar to ACL, but permission is denied if an associate
ACL is not found for the name.

Implementing Operating System Security

Implementing operating system security is one of the easier tasks you will have a
administrator. It consists entirely of not implementing any higher level of security

In the RESOURCES section, set SECURITY to NONE. If you leave SECURITY blank, NONE
is the default.

Operating system security depends on the underlying password and the read/wr
permission structure of the operating system. You need to make sure that your u
are able to connect to the application and have access to application files and prog
Consult the administrator’s guide for your operating system to learn how to do th
Administering the BEA TUXEDO System 11-5

11 Securing Applications

 to be

ord.

y

n

Implementing Application Password-level

Security

Application password-level security requires all users to enter the same password
allowed access to the application.

It is implemented as follows:

� The application programmer writes code that prompts the user for the passw
The password must be put into the passwd field of the TPINIT buffer before
tpinit (3c) is called to join the application.

� The administrator sets the SECURITY parameter (in the RESOURCES section of the
UBBCONFIG file) to APP_PW.

� When the configuration is loaded via tmloadcf (1), the administrator is
prompted for a password. The password entered at that time becomes the
password for the application and remains in effect until it is changed by the
administrator via the passwd command of tmadmin (1).

At runtime, all clients need to provide this password to access the application.

Implementing Security via an

Authentication Server

User authentication-level security requires a server that can authenticate users b
checking individual passwords against a file of legal users.

The authentication server shipped with the BEA TUXEDO system, AUTHSVR, provides
two levels of security checks:

� User level security—determines whether or not a particular user can log o
to the system. When the tpinit (3c) function is called to join the application,
the user’s ID, client name, and user name are verified with a password.
11-6 Administering the BEA TUXEDO System

Implementing Security via an Authentication Server

se
ows

. If

in

,
ided
ame is
ou
do not
dcard
the
� Group level security—determines which application programs users can u
once they have logged on. Once users have logged on, the application kn
which users belong to which groups.

The Authentication Server

BEA TUXEDO system user authentication is provided by AUTHSVR(5).

AUTHSVR provides per-user authentication. When a client process calls tpinit (3c) to
join the application, AUTHSVR validates the user name, client name, and password
tpinit fails for security reasons, a security violation is logged both in the userlog ,
and as a system event. On success, AUTHSVR provides the client with an application key
that cannot be forged. The client presents the application key in the appkey field of the
TPSVCINFO structure on each service invocation.(See “Writing Client Programs”
the BEA TUXEDO Programmer’s Guide.)

Currently, authentication is not provided by a standard authentication mechanism
such as Kerberos, DCE, or public key encryption. When enhancements are prov
to use such mechanisms, authentication is based on the user name. The client n
used for application logic only (for example, filtering of broadcast messages). If y
are planning to use an alternate authentication scheme, we recommend that you
associate client names with users. In this case, administrators should use only wil
values for the client name in the user file; they should not use wildcard values for
user name.

Configuring the Authentication Server

To add AUTHSVR to an application, you must define AUTHSVR as a server in the
TUXCONFIG file. To do so, add the following lines to the UBBCONFIG file.

RESOURCES
SECURITY "USER_AUTH"
AUTHSVC "AUTHSVC"

SERVERS
AUTHSVR SRVGRP="groupname " SRVID=1 RESTART=Y GRACE=0 MAXGEN=2
CLOPT="-A"
Administering the BEA TUXEDO System 11-7

11 Securing Applications

ands:

er

.

r to

ble
th

ied
Adding, Modifying, and Deleting User Accounts

The shell-level commands tpusradd (1) and tpgrpadd (1) allow you to create files
containing lists of authorized users and groups. The tpusrdel (1), tpusrmod (1),
tpgrpdel (1), and tpgrpmod (1) commands enable you to maintain your user and
group files. The following parameters are used in one or more of these six comm

� usrname —a character string that represents the name of a user.

� client_name or cltname —a character string that represents the name of a
client.

� UID—an integer between 0 and 128K used internally by the application to ref
to a particular user. This is not the same as the UID parameter in the RESOURCES
section of the configuration file, which designates the owner of the application

� group_name or grpname —a character string that represents the name of a
group.

� GID—an integer between 0 and 16K used internally by the application to refe
an application group. This is not the same as the GID parameter in the
RESOURCES section of the configuration file, which designates the group of the
owner of the application.

Two files are used for user and group administration:

� $APPDIR/tpusr

� $APPDIR/tpgrp

The files are colon-delimited, flat ASCII files, readable only by the application's
administrator.

The files are kept in the application directory, specified by the environment varia
$APPDIR. The format of the files is irrelevant, since they are fully administered wi
shell-level commands.

The commands tpusradd (1), tpusrdel (1), and tpusrmod (1) are available for
modifying the files tpusr and tpgrp . For all of these commands, the environment
variable $APPDIR must be set to the path name of the BEA TUXEDO system
application that will be modified. In addition, only the application owner, as specif
in $TUXCONFIG, is allowed to use these commands.

Following is the syntax of the commands.
11-8 Administering the BEA TUXEDO System

Implementing Security via Access Control Lists

ction.

hat

s,
can
n
tpusradd [-u UID] [-g GID] [-c client_name] usrname

tpusrdel [-c client_name] usrname

tpusrmod [-u UID] [-g GID] [-c client_name] [-l new_login] [-n\
new_client_name] [-p] usrname

Section (1) of the BEA TUXEDO Reference Manual also includes the commands
tpaddusr (1), tpdelusr (1), and tpmodusr (1), which are functionally similar to the
three commands described here. tpaddusr (1), tpdelusr (1), and tpmodusr (1) are
provided for compatibility with releases prior to Release 6.0; if you are running
Release 6.0 or later, we recommend you use the commands described in this se

Adding, Modifying, and Deleting Groups

The commands tpgrpadd (1), tpgrpdel (1), and tpgrpmod (1) enable you to modify
the files tpusr and tpgrp . For all of these commands, the environment variable
$APPDIR must be set to the path name of the BEA TUXEDO system application t
will be modified. In addition, only the application owner, as specified in $TUXCONFIG,
is allowed to use these commands.

Following is the syntax of the commands.

tpgrpadd [-g GID] grpname
tpgrpdel grpname
tpgrpmod [-g GID] [-n new_grpname] grpname

Implementing Security via Access Control

Lists

Access control lists (ACLs) enhance the security features of the BEA TUXEDO
system. ACLs provide group-based access control to application entities (service
events, and /Q queues). By looking at the client's application key, these entities
identify the group to which the user belongs; by looking at the ACL, the entity ca
determine whether the client's group has access permission.

Access control is done at the group level for the following reasons:
Administering the BEA TUXEDO System 11-9

11 Securing Applications

ss

for

each

ore

ed

m,
er

te
� System administration is simplified. It is easier to give a group of people acce
to a new service than it is to give each individual user access to the service.

� Performance is improved. Because access permission needs to be checked
each invocation of an entity, permission should be resolved quickly. Because
there are fewer groups than users, it is quicker to search through the list of
privileged groups than it is to search through a list of privileged users.

If user-level ACLs are needed, they may be implemented by creating a group for
user, and then setting up the group to have the desired permissions for its single
member.

Limitations of ACLs

Access control lists have the following limitations:

� A user can be associated with only one group at a time. To be a member of m
than one group, a user must have multiple entries in the file $APPDIR/tpusr .

� ACLs are name based. They do not distinguish between services, events, or
queues; they look only at the name. Because of this, all entities must be nam
uniquely. It is not valid to have a queue and a service with the same name,
unless access to both entities is always either granted or denied.

� User identification aging is not supported. If a user is removed from the syste
it is up to the administrator to decide when it is appropriate to add another us
with the same ID to the application.

Administering ACLs

ACLs are stored in the file $APPDIR/tpacl , an ASCII file that is readable and writable
only by the application administrator. The file is administered with the following
commands:

� tpacladd

tpacladd [-g GID | group_name] [, GID | group_name ...] entity_name

entity_name is the name of the service, event, or /Q queue for which to crea
an ACL.
11-10 Administering the BEA TUXEDO System

Implementing Security via Access Control Lists
� tpacldel

tpacldel entity_name

entity_name is the name of the ACL entry that is to be deleted.

� tpaclmod

tpaclmod [-g GID | group_name][, GID | group_name ...] entity_name

The -g option allows the specification of a group or list of groups that can
access the feature provided by entity_name .
Administering the BEA TUXEDO System 11-11

11 Securing Applications
11-12 Administering the BEA TUXEDO System

CHAPTER

g, it
ents

rces
s

s that

at
plains
ly.
12Monitoring a Running

System

As an administrator, you must ensure that once your application is up and runnin
meets (and continues to meet) the performance, availability, and security requirem
your company has set for it. To perform this task, you need to monitor the resou
(such as shared memory), activities (such as transactions), and potential problem
(such as security breaches) in your configuration, and take any corrective action
are necessary.

To help you meet this responsibility, the BEA TUXEDO system provides tools th
enable you to oversee both system events and application events. This chapter ex
how to use these tools to keep your application performing fast, well, and secure

Specifically, this chapter discusses the following topics:

� Overview of System and Application Data

� Monitoring Methods

� Using the tmadmin Command Interpreter

� Running tmadmin Commands

� Monitoring a Running System with tmadmin

� Example: Output from tmadmin Commands

� Case Study: Monitoring Run-time bankapp
Administering the BEA TUXEDO System 12-1

12 Monitoring a Running System

 and

s for

he
Overview of System and Application Data

This section describes the types of data available for monitoring a running system
explains how to use that data.

Components and Activities for Which Data Is Available

Your BEA TUXEDO system maintains parameter settings and generates statistic
the following system components:

� Clients

� Conversations

� Groups

� Message queues

� Networks

� Servers

� Services

� Transactions

Where the Data Resides

To ensure that you have the information necessary for monitoring your system, t
BEA TUXEDO system provides the following three data repositories:

� UBBCONFIG—an ASCII file in which you define the parameters of your system
and application

� Bulletin Board—a segment of shared memory (on each machine in your
network) to which your system writes statistics about the components and
activities of your configuration
12-2 Administering the BEA TUXEDO System

Overview of System and Application Data

, see

data

,
s

d
r
� Log files—files to which your system writes messages

This chapter describes the data stored in the UBBCONFIG file and in the Bulletin Board,
and provides instructions for monitoring that data. For a description of the log files
Chapter 13, “Monitoring Log Files.”

How You Can Use the Data

The administrative data provided by your BEA TUXEDO system allows you to
monitor a multitude of potential trouble areas on your system. For example, this
allows you to:

� Tune the running system based on actual loads

� Detect security breaches

Moreover, you can set up your system so that it is able to use the statistics in the
Bulletin Board to make decisions and to modify system components dynamically
without your help. With proper configuration, your system may be able to do task
such as the following (when indicated by Bulletin Board statistics):

� Turn on load balancing

� Start a new copy of a server

� Shut down servers that are not being used

Thus, by monitoring the administrative data for your system, you can prevent an
resolve problems that threaten the performance, availability, and security of you
application.

Types of Data

Two types of administrative data are available on every running BEA TUXEDO
system: static and dynamic.
Administering the BEA TUXEDO System 12-3

12 Monitoring a Running System

sign

ry)

ple:

d that
our

ou

al
of
ch as

r

ugh

 to
Static Data

Static data about your configuration consists of configuration settings that you as
when you first configure your system and application. These settings are never
changed without intervention (either in real-time or through a program you have
provided). Examples include system-wide parameters (such as the number of
machines being used) and the amount of IPC resources (such as shared memo
allocated to your system on your local machine. Static data is kept in the UBBCONFIG
file and in the Bulletin Board.

At times you will need to check the static data about your configuration. For exam

� Suppose you want to add a large number of machines and you are concerne
by doing so you may exceed the maximum number of machines allowed in y
configuration (or, to be precise, allowed in the machine tables of the Bulletin
Board). You can look up the maximum number of machines allowed by
checking the current values of the system-wide parameters for your
configuration (one of which is MAXMACHINES).

� Suppose you think you may be able to improve the performance of your
application by tuning your system. To determine whether tuning is required, y
need to check on the amount of local IPC resources currently available.

Dynamic Data

Dynamic data about your configuration consists of information that changes in re
time, that is, while an application is running. For example, the load (the number
requests sent to a server) and the state of various configuration components (su
servers) change frequently. Dynamic data is kept in the Bulletin Board.

You will need to check the dynamic data about your configuration frequently. Fo
example:

� Suppose throughput is suffering and you want to know whether you have eno
servers running to accommodate the number of clients currently connected.

� Check the numbers of running servers and connected clients

� Check the load on one or more servers

These numbers will help you determine whether adding more servers is likely
improve performance.
12-4 Administering the BEA TUXEDO System

Monitoring Methods

en
elp

 of
ble to

oth

?

ntly
� Suppose you receive complaints from multiple users about slow response wh
making particular requests of your application. Checking load statistics may h
you determine whether it is appropriate to increase the value of BLOCKTIME.

Monitoring Methods

To monitor a running application, you need to keep track of the dynamic aspects
your configuration and sometimes check the static data. Thus, you need to be a
watch the Bulletin Board on an ongoing basis and consult the UBBCONFIG file when
necessary. The BEA TUXEDO system provides the following methods of doing b
tasks, as shown in this table.

Which method is best for you? The answer depends on your answers to several
questions.

� How much experience do you have as a BEA TUXEDO system administrator

If you have a lot of experience as an administrator (and shell programming
expertise), you may prefer to write programs that automate your most freque
run commands.

� Are you an experienced UNIX system user?

If not, you may be most comfortable using the Web-based GUI.

� What information do you want to view?

You Can Use the . . . By . . . For Instructions, See . . .

tmadmin command Entering commands after a prompt This chapter

AdminAPI Using the MIB (and the commands described in
this chapter) to write programs that monitor
your run-time application

Chapter 18, “Event
Broker/Monitor.”

BEA TUXEDO Web-based
GUI

Using a graphical interface The Help accessed directly
from the GUI
Administering the BEA TUXEDO System 12-5

12 Monitoring a Running System

ke
If you examine the RESOURCES section of the UBBCONFIG file through the
tmadmin command, you see only the current values; the defaults are not
displayed.

If you decide to monitor your system at run time through the tmadmin command
interpreter, continue reading; this chapter describes tmadmin and explains how to use
it.

Using the tmadmin Command Interpreter

This section provides the following information:

� A step-by-step description of what happens during a typical tmadmin session,
including:

� Descriptions of the operating modes for tmadmin sessions and instructions
for invoking them

� A table showing the system requirements for access to various tmadmin
commands

� Descriptions of the tmadmin meta-commands: commands that help you ma
the best—and most efficient—use of the tmadmin commands

� A step-by-step procedure that you can follow to run tmadmin for most tasks

Instructions for individual tasks are provided in later sections of this chapter.

What Is tmadmin?

The tmadmin command is an interpreter for 50 commands that let you view and
modify a Bulletin Board and its associated entities.

Note: tmadmin is supported on UNIX and Windows NT platforms.
12-6 Administering the BEA TUXEDO System

Using the tmadmin Command Interpreter

alues
rvers

ult
d

ou

ing

ies

ful

n,
How might you want to use tmadmin to modify your system while it is running?
Consider the following sample scenario. Suppose you want to check the current v
for all the parameters listed in the Bulletin Board, such as maximum number of se
and services. You can do this by running the tmadmin command, bbparms .

How a tmadmin Session Works

1. A tmadmin session starts when you (the administrator) enter the tmadmin
command at a shell prompt. The shell prompt($) is replaced by the tmadmin
prompt (>) which is used until you quit tmadmin .

$ tmadmin [operating_mode_option]
>

You can request one of three operating modes on the command line: the defa
mode (which allows you to view and change the Bulletin Board and associate
entities), read-only mode (-r), or configuration mode (-c).

2. tmadmin verifies that the configuration is running. If the configuration is not
running the following message is displayed:

No bulletin board exists. Entering boot mode
>

3. tmadmin checks the TUXCONFIG and TUXOFFSET environment variables to get the
location and offset at which the configuration file has been loaded. (Be sure y
have defined these variables before beginning a tmadmin session.)

4. tmadmin enters the Bulletin Board in one of the following three states, depend
on which operating mode you have requested.

� If you have requested the default operating mode (tmadmin with no options),
tmadmin enters the Bulletin Board as an administrative process, allowing
you to view and make changes to configuration components and/or activit
listed in the Bulletin Board.

� If you have requested read-only mode (tmadmin -r), tmadmin enters the
Bulletin Board as a client instead of as an administrator. This mode is use
if you want to leave the administrator slot unoccupied. (Only one tmadmin
process can be the administrator at one time.) If the -r option is specified by
a user other than the BEA TUXEDO administrator and security is turned o
the user is prompted for a password.
Administering the BEA TUXEDO System 12-7

12 Monitoring a Running System

 if
t,

h

hat

bers.

ny

d
� If you have requested configuration mode (tmadmin -c), tmadmin enters
the Bulletin Board as an administrative process, allowing you to make
changes to the configuration components and/or activities listed in the
Bulletin Board. You can request configuration mode on any machine,
whether the machine is active or inactive. (A machine is considered active
tmadmin can join the application as an administrative process or as a clien
via a running BBL.)

5. The > prompt is displayed on your screen and you enter a tmadmin command.

Not all tmadmin commands are available on every machine at all times. Whic
commands are available depends on several factors:

� The mode (read-only or configuration) of the current tmadmin session

� The current state of the configuration

� The type of machine on which you are working

For details, see the tmadmin (1) reference page in the BEA TUXEDO Reference
Manual.

Summary of tmadmin Options

Whenever you start a tmadmin session, you have a choice of operating modes for t
session: read-only mode, configuration mode, or the default operating mode. In
addition, you can generate a report of the BEA TUXEDO version and license num

Read-only Mode

In this mode, you can view the data in the Bulletin Board, but you cannot make a
changes. The advantage of working in read-only mode is that your administrator
process is not tied up by tmadmin ; the tmadmin process attaches to the Bulletin Boar
as a client, leaving your administrator slot available for other work.

To start a tmadmin session in read-only mode, specify the -r option on the command
line:

$ tmadmin -r
12-8 Administering the BEA TUXEDO System

Using the tmadmin Command Interpreter

n
ine

 the
Configuration Mode

In this mode, you can view the data in the Bulletin Board and, if you are the BEA
TUXEDO application administrator, you can make changes. You can start a tmadmin
session in configuration mode on any machine, including an inactive machine. O
most inactive machines, configuration mode is required. (The only inactive mach
on which you can start a tmadmin session without requesting configuration mode is
the MASTER machine.)

To start a tmadmin session in configuration mode, specify the -c option on the
command line:

$ tmadmin -c

Default Operating Mode

If you want to view and change Bulletin Board data during a tmadmin session, you
must:

1. Have administrator privileges (that is, your effective UID and GID must be those of
the administrator).

2. Invoke the command interpreter without any options:

$ tmadmin

Version number and license number report

To find out which version of the BEA TUXEDO system you are running and to get
license number for it, specify the -v option on the command line:

$ tmadmin -v

After displaying the version and license numbers, tmadmin exits, even if you have
specified -c or -r in addition to -v . When -v is requested, all other options are
ignored.

tmadmin Meta-commands

The tmadmin command interpreter is equipped with a set of meta-commands,
commands that help you use tmadmin . Table 12-1 lists the tmadmin meta-commands.
Administering the BEA TUXEDO System 12-9

12 Monitoring a Running System

 the

device

l
Note: The tables and examples in this chapter include the abbreviated forms of
tmadmin command names.

Default

The default meta-command (d) lets you set and unset defaults for the following
frequently used parameters for most tmadmin commands: group name, server ID,
machine, user name, client name, queue address, service name, device blocks,
offset, and UDL configuration device path. (For details, see the tmadmin (1) reference
page in the BEA TUXEDO Reference Manual.)

Note: You cannot assign defaults to any parameters for the boot and shutdown
commands.

Table 12-1 tmadmin Meta-commands

Use This Command Or its
Abbreviation

To

default d Set defaults for arguments of other
commands

dump du Download the current Bulletin Board into a
file

echo e Display input command lines

help h Display command list or command syntax

paginate page Pipe output of commands to a pager

quit q Terminate the session

verbose v Show output in verbose mode (a toggle key)

! shlcmd (n/a) Escape to the shell and run the specified shel
command

!! (n/a) Repeat the previous shell command

<RETURN> (n/a) Repeat the last tmadmin command
12-10 Administering the BEA TUXEDO System

Using the tmadmin Command Interpreter

 list of

en
Once defaults are set, they remain in effect until the session ends or until the
parameters are reset to different values. The remainder of this section provides a
instructions for checking, setting, and unsetting defaults:

� To check your current default settings, run the default meta-command without
any options. Listing 12-1 shows an example of the report that is displayed wh
no parameters are set.

Listing 12-1 Default Output

> d
Default Settings:
 Group Name: (not set)
 Server ID: (not set)
 Machine ID: (not set)
 Queue Name: (not set)
 Client Name: (not set)
 Service Name: (not set)
 User Name: (not set)
 Blocks: 1000
 Offset: 0
 Path: /home/apps/bank/bankdll # Path defaults to value of FSCONFIG
>

� To assign a new value as the default for a parameter, enter the default
command, specifying the parameter, as follows:

default - parameter new_value

For example, to change the default of the service name to “teller,” enter the
following command:

default -s teller

� To unset a default setting, run the default command with the appropriate
option for the parameter in question, followed by the * wildcard argument.

default - parameter *

For example, to unset the default for the service name (specified with the -s
argument), enter the following command:

default -s *
Administering the BEA TUXEDO System 12-11

12 Monitoring a Running System

ic

f

w

the
d line,
For most parameters, when you unset the default setting without specifying a
new one, the result is that you have no default for that parameter. This
generalization does not apply to the machine ID parameter, however.

In a multiprocessor environment, the value of the machine ID can be a specif
processor, the DBBL, or all . If the value of the machine ID is a specific
processor, information is retrieved only from that processor. To remind you of
this fact, the logical machine ID is added to the tmadmin session prompt (LMID

>), as shown in Listing 12-2.

Listing 12-2 Prompt When Machine ID Is Set to a Specific Processor

 # 1. default mid not previously set
> d -m SITE1 # 2. set SITE1 as default mid
SITE1 > # 3. prompt now shows default mid

If you unset the current default of the machine ID without specifying a new
default, the DBBL is used, automatically, as the new default. In other words, i
you enter

default -m *

DBBL becomes the machine ID. You can also simply specify DBBL as the ne
machine by entering the following:

default -m DBBL

Optional versus Required Arguments

Most tmadmin commands require explicit information about the resource on which
command is to act. Required arguments can always be specified on the comman
and can often be set via the default command, as well. tmadmin reports an error if
the required information is not available from either source.

Some tmadmin statistical commands interpret unspecified default parameters as all .
12-12 Administering the BEA TUXEDO System

Running tmadmin Commands

.

 in
Running tmadmin Commands

This section provides the basic procedure for running tmadmin commands.
Commands for doing specific monitoring tasks through tmadmin are provided in the
section “Monitoring a Running System with tmadmin” in this chapter.

Note: For complete details about tmadmin , see the tmadmin (1) reference page in the
BEA TUXEDO Reference Manual.

Perform the following steps to run the tmadmin commands.

1. Make sure the TUXCONFIG and TUXOFFSET environment variables have been set

2. Enter tmadmin in the appropriate operating mode.

� For default mode (which allows you to view and change information listed
the Bulletin Board), do not specify any options.

� For configuration mode, enter the -c option on the tmadmin command line.

� For read-only mode, enter the -r option on the tmadmin command line.

3. When the tmadmin session prompt (>) is displayed, enter your first tmadmin
command. Specify, on the command line, how much information from the
Bulletin Board you want to have displayed.

� For complete, detailed output, request verbose mode:

tmadmin_command -v

For example: bbparms -v

� For abbreviated (sometimes truncated) output, request terse mode:

tmadmin_command -t

For example: bbparms -t

4. After viewing the output of your first tmadmin command, continue entering
tmadmin commands until you are ready to end the session.

5. End the tmadmin session by entering:

quit
Administering the BEA TUXEDO System 12-13

12 Monitoring a Running System

ile

ou
Monitoring a Running System with

tmadmin

Table 12-2 provides a list of potential problems that you might want to check wh
monitoring your run-time system, along with a list of the tmadmin commands that
enable you to perform such a check. The table also suggests follow-up actions y
might take if the tmadmin command you run generates a particular type of output.

Note: For a comprehensive list of the tmadmin commands, see the tmadmin (1)
reference page in the BEA TUXEDO Reference Manual.

.

Table 12-2 Commands for Monitoring Tasks

To Determine
Whether . . .

Run this Command . . . If . . . Then . . .

Any servers are
stalled in a service

$ tmadmin -r
> printserver

The Current Service and
Request fields do not
change

The server is spending
excessive time on the current
service.

In a development environ-
ment, the server might be
stalled in an infinite loop; you
may want to stop it.

The load
distribution is
appropriate

$ tmadmin -r
> printserver

The values in the Load
Done field are not
reasonably similar

Check the layout of the MSSQs
and the data-dependent routing.

If the current servers have too
heavy a load, you may want to
boot more servers.

A particular service
is doing any work

$ tmadmin -r
> printservice

The value in the
Requests Completed
field is 0

Data-dependent routing may be
preventing requests from being
sent to that server for that
service. You can:

� Change the routing criteria
or

� Move the service to another
server.
12-14 Administering the BEA TUXEDO System

Monitoring a Running System with tmadmin
Any clients are
inactive

$ tmadmin -r
> printclient

� There has been no
activity for a long
time for a client, and

� Resources are
needed

Tell the client—via a broadcast
message—to exit

The work is
distributed in such a
way that it is
flowing smoothly
through the system

$ tmadmin -r
> printqueue

Some queues are always
heavy and others are not

Check the arrangement of
services within servers,
data-dependent routing, and/or
queue organization.

A client is tying up a
connection and
preventing a server
from doing any
work for another
client

$ tmadmin -r
> printconn

A client is maintaining
control of a connection
and is not issuing any
requests

1. Suspend the client by using
the client MIB. (We
recommend using the BEA
TUXEDO Web-based GUI
for this task.)

2. Terminate the client.

The network is
stable

$ tmadmin -r
> printnet

A machine is no longer
connected

You may want to:

1. Partition the machine (that
is, take it off the network).

2. Resolve the problem.

3. Reconnect the machine.

You must manually
commit or abort a
transaction

$ tmadmin -r
> printtrans

For example, the status
is TMGDECIDED

The first phase of the two-phase
commit has completed
successfully. This means you
must find out why the second
phase cannot be completed.

For example, you may find that
the coordinating TMS cannot
complete the transaction
because a participating site has
gone down.

Table 12-2 Commands for Monitoring Tasks

To Determine
Whether . . .

Run this Command . . . If . . . Then . . .
Administering the BEA TUXEDO System 12-15

12 Monitoring a Running System
Example: Output from tmadmin Commands

This section provides examples of output from the following tmadmin monitoring
commands:

� printqueue

� printconn

� printnet

� printtrans

Note: For a list of all 50 tmadmin commands, see the tmadmin (1) reference page in
the BEA TUXEDO Reference Manual.

Your operating
system resources
(such as shared
memory and
semaphores) on a
local machine are
sufficient

$tmadmin -r
> bbsread

You do not have
sufficient resources in
the operating system

Increase the IPC resources
(semaphores, shared memory
segments, and so on) in the
operating system.

You want to keep
the current values
for system-wide
parameters (in the
RESOURCES
section of your
UBBCONFIG file)

$ tmadmin -r
> bbparms

You do not have
sufficient resources for
your application

1. Stop the application.

2. Configure additional IPC
resources (assuming you
have enough available) by
increasing the values of
relevant parameters (such
as MAXSERVERS and
MAXCLIENTS) in the
RESOURCES section of the
configuration file.

3. Re-boot the application.

Table 12-2 Commands for Monitoring Tasks

To Determine
Whether . . .

Run this Command . . . If . . . Then . . .
12-16 Administering the BEA TUXEDO System

Example: Output from tmadmin Commands

printqueue Output

The following output from the printqueue command lets you check the distribution
of work in the bankapp application.

printqueue [qaddress]

tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL . All rights reserved.

>pq

a.out Name Queue Nam # Svrs Wk Q’d # Queued Ave. Len Machine

TLR 28706 1 0 0 0.0 SITE1

TMS_SQL BANKB1_T 2 0 0 0.0 SITE1

TLR 24946 1 0 0 0.1 SITE1

BAL 8533 1 0 0 0.0 SITE1

BAL 24915 1 0 0 0.0 SITE1

BTADD 28897 1 0 0 0.0 SITE1

XFER 4380 1 0 0 0.0 SITE1

XFER 28840 1 100 0 1.0 SITE1

TLR 12519 1 100 2 0.0 SITE1

BBL 24846 1 0 2 0.0 SITE1

ACCT 71 1 0 0 0.0 SITE1

TMS_SQL BANKB3_T 2 0 0 0.0 SITE1

BAL 28958 1 0 0 0.0 SITE1

ACCT 254 1 0 0 0.0 SITE1

BTADD 12310 1 0 0 0.0 SITE1

XFER 16494 1 0 0 0.0 SITE1

TMS_SQL BANKB2_T 2 0 0 0.0 SITE1

BTADD 8430 1 0 0 0.0 SITE1

ACCT 24641 1 0 0 0.0 SITE1
Administering the BEA TUXEDO System 12-17

12 Monitoring a Running System

 to
e

Note: By default, information is supplied for all queues. If you want your output
be limited to information about only one queue, specify the address for th
desired queue.

The output of this command includes the following information.

printconn Data

The following (verbose) output from the printconn command shows that the client
process has:

� Begun two conversations

� Maintained control of both lines

� Not yet sent any requests

printconn [-m machine]

tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL. All rights reserved.

> echo
Echo now on.

In the Column
Labeled . . .

You See . . .

a.out Name The name of the executable to which the queue is connected

Queue Name The symbolic queue name (set to either the RQADDR parameter of
UBBCONFIG or a randomly chosen value)

Svrs The number of servers connected to the queue

Wk Q’d The load factor of all requests currently queued

Queued The actual number of requests queued

Ave. Len The average queue length

Note: Not available in MP mode.

Machine The LMID of the machine on which the queue is located
12-18 Administering the BEA TUXEDO System

Example: Output from tmadmin Commands

 sent
> v
Verbose now on.

> pc

Originator
 Group/pid: Client/29704
 LMID: SITE1
 Sends: 0
Subordinate
 Group/server id: Group1/2
 LMID: SITE1
 Sends: -
 Service: TOUPPER1
Originator
 Group/pid: Client/29704
 LMID: SITE1
 Sends: 0
Subordinate
 Group/server id: Group1/2
 LMID: SITE1
 Sends: -
 Service: TOUPPER2

printnet Command Output

This section shows the output from the following procedure.

1. The printnet command was run. (The output shows the number of messages
and received by both sites.)

2. The BRIDGE process at SITE2 was stopped.

3. The printnet command was re-entered. (The output shows that SITE2 is no
longer connected to the master machine, SITE1 .)

printnet [-m machine_list]

tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL. All rights reserved.

> echo
Echo now on.

> pnw
Administering the BEA TUXEDO System 12-19

12 Monitoring a Running System

y in
 that

r
SITE1 Connected To: msgs sent msgs received
SITE2 100103

SITE2 Connected To: msgs sent msgs received
SITE1 104 101

> pnw
SITE1 Connected To: msgs sent msgs received

 Could not retrieve status from SITE2

>

printtrans Command Output

The printtrans command reports statistics only for transactions that are currentl
progress, specifically, statistics on the number of rollbacks, commits, and aborts
have been executed on your machine, group, or server.

This section shows the output produced by running the printtrans command in terse
and verbose modes:

� In terse mode, the GTRID (a unique string that identifies a transaction across an
application) and the transaction state are shown.

� In verbose mode, information about timeouts and participants is added.

Note: The index shown in the example is used by the administrator to commit o
abort the transaction.

printtrans [-m machine] [-g groupname]

tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL. All rights reserved.

> pt
>> index=0>gtrid=x0 x2bb8f464 x1
: Machine id: SITE1, Transaction status: TMGACTIVE
 Group count: 1

> v
Verbose now on.

> pt
>> index=0>gtrid=x0 x2bb8d464 x1
12-20 Administering the BEA TUXEDO System

Case Study: Monitoring Run-time bankapp

f the
 the
: Machine id: SITE1, Transaction status: TMGACTIVE
 Group count: 1, timeout: 300, time left: 299
 Known participants:
 group: GROUP1, status: TMGACTIVE, local, coord

>

Case Study: Monitoring Run-time bankapp

This section presents a sample configuration for a multiprocessor (MP) version o
bankapp application. This section also shows the output that was returned when
local IPC resources and system-wide parameters were checked by running the
appropriate tmadmin commands.

Configuration File for bankapp

For this case study, we will use the configuration defined in the UBBCONFIG file shown
in Listing 12-3.

Listing 12-3 UBBCONFIG File for bankapp (MP Version)

#Copyright (c) 1997, 1998 BEA Systems, Inc.
#All rights reserved

RESOURCES
IPCKEY 80952
UID 4196
GID 601
PERM 0660
MAXACCESSERS 40
MAXSERVERS 35
MAXSERVICES 75
MAXCONV 10
MAXGTT 20
MASTER SITE1,SITE2
SCANUNIT 10
SANITYSCAN 12
BBLQUERY 180
Administering the BEA TUXEDO System 12-21

12 Monitoring a Running System
BLOCKTIME 30
DBBLWAIT 6
OPTIONS LAN,MIGRATE
MODEL MP
LDBAL Y
#
MACHINES
mchn1 LMID=SITE1
 TUXDIR="/home/tuxroot"
 APPDIR="/home/apps/bank"
 ENVFILE="/home/apps/bank/ENVFILE"
 TLOGDEVICE="/home/apps/bank/TLOG"
 TLOGNAME=TLOG
 TUXCONFIG="/home/apps/bank/tuxconfig"
 TYPE="3B2"
 ULOGPFX="/home/apps/bank/ULOG"
wgs386 LMID=SITE2
 TUXDIR="/home2/tuxroot"
 APPDIR="/home2/apps/bank"
 ENVFILE="/home2/apps/bank/ENVFILE"
 TLOGDEVICE="/home2/apps/bank/TLOG"
 TLOGNAME=TLOG
 TUXCONFIG="/home2/apps/bank/tuxconfig"
 TYPE="386"
 ULOGPFX="/home2/apps/bank/ULOG"
#
GROUPS
DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2
For NT/Netware, :bankdb: becomes ;bankdb;
BANKB1 LMID=SITE1 GRPNO=1

OPENINFO="TUXEDO/SQL:/home/apps/bank/bankdl1:bankdb:readwrite"
BANKB2 LMID=SITE2 GRPNO=2

OPENINFO="TUXEDO/SQL:/home2/apps/bank/bankdl2:bankdb:readwrite"

NETWORK
SITE1 NADDR="//mach1.beasys.com:1900"
 BRIDGE="/dev/tcp"
 NLSADDR="//mach1.beasys.com:1900"
SITE2 NADDR="//mach386.beasys.com:1900"
 BRIDGE="/dev/tcp"
 NLSADDR="//mach386.beasys.com:1900"
SERVERS
#
DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=Y CLOPT="-A"

TLR SRVGRP=BANKB1 SRVID=1 RQADDR=tlr1 CLOPT="-A --
-T 100"
12-22 Administering the BEA TUXEDO System

Case Study: Monitoring Run-time bankapp
TLR SRVGRP=BANKB1 SRVID=2 RQADDR=tlr1 CLOPT="-A --
-T 200"
TLR SRVGRP=BANKB2 SRVID=3 RQADDR=tlr2 CLOPT="-A --
-T 600"
TLR SRVGRP=BANKB2 SRVID=4 RQADDR=tlr2 CLOPT="-A --
-T 700"
XFER SRVGRP=BANKB1 SRVID=5
XFER SRVGRP=BANKB2 SRVID=6
ACCT SRVGRP=BANKB1 SRVID=7
ACCT SRVGRP=BANKB2 SRVID=8
BAL SRVGRP=BANKB1 SRVID=9
BAL SRVGRP=BANKB2 SRVID=10
BTADD SRVGRP=BANKB1
BTADD SRVGRP=BANKB2 SRVID=12
AUDITC SRVGRP=BANKB1 SRVID=13 CONV=Y MIN=1 MAX=10
BALC SRVGRP=BANKB1 SRVID=24
BALC SRVGRP=BANKB2 SRVID=25
#

SERVICES
DEFAULT: LOAD=50 AUTOTRAN=N
WITHDRAWAL PRIO=50 ROUTING=ACCOUNT_ID
DEPOSIT PRIO=50 ROUTING=ACCOUNT_ID
TRANSFER PRIO=50 ROUTING=ACCOUNT_ID
INQUIRY PRIO=50 ROUTING=ACCOUNT_ID
CLOSE_ACCT PRIO=40 ROUTING=ACCOUNT_ID
OPEN_ACCT PRIO=40 ROUTING=BRANCH_ID
BR_ADD PRIO=20 ROUTING=BRANCH_ID
TLR_ADD PRIO=20 ROUTING=BRANCH_ID
ABAL PRIO=30 ROUTING=b_id
TBAL PRIO=30 ROUTING=b_id
ABAL_BID PRIO=30 ROUTING=b_id
TBAL_BID PRIO=30 ROUTING=b_id
ABALC_BID PRIO=30 ROUTING=b_id
TBALC_BID PRIO=30 ROUTING=b_id

ROUTING
ACCOUNT_ID FIELD=ACCOUNT_ID
 BUFTYPE="FML"
 RANGES="10000-59999:BANKB1,
 60000-109999:BANKB2,
 :"
BRANCH_ID FIELD=BRANCH_ID
 BUFTYPE="FML"
 RANGES="1-5:BANKB1,
 6-10:BANKB2,
 :"
b_id FIELD=b_id
 BUFTYPE="VIEW:aud"
Administering the BEA TUXEDO System 12-23

12 Monitoring a Running System

 RANGES="1-5:BANKB1,
 6-10:BANKB2,
 :"

Output from Checking the Local IPC Resources

To check the local IPC resources for this configuration, a tmadmin session was started,
and the bbsread command was run. The output of bbsread is shown in Listing 12-4.

Listing 12-4 bbsread Output

SITE1> bbsread

IPC resources for the bulletin board on machine SITE1:
SHARED MEMORY: Key: 0x1013c38
SEGMENT 0:
 ID: 15730
 Size: 36924
 Attached processes: 12
 Last attach/detach by: 4181

This semaphore is the system semaphore
SEMAPHORE: Key: 0x1013c38
 Id: 15666
 | semaphore | current | last | # waiting |
 | number | status | accesser | processes |
 |--|
 | 0 | free | 4181 | 0 |
 |------------|----------|----------|-----------|
This semaphore set is part of the user-level semaphore
SEMAPHORE: Key: IPC_PRIVATE
 Id: 11572
 | semaphore | current | last | # waiting |
 | number | status | accesser | processes |
 |--|
 | 0 | locked | 4181 | 0 |
 | 1 | locked | 4181 | 0 |
 | 2 | locked | 4181 | 0 |
 | 3 | locked | 4181 | 0 |
 | 4 | locked | 4181 | 0 |
 | 5 | locked | 4181 | 0 |
 | 6 | locked | 4181 | 0 |
12-24 Administering the BEA TUXEDO System

Case Study: Monitoring Run-time bankapp

, we
 | 7 | locked | 4181 | 0 |
 | 8 | locked | 4181 | 0 |
 | 9 | locked | 4181 | 0 |
 | 10 | locked | 4181 | 0 |
 | 11 | locked | 4181 | 0 |
 | 12 | locked | 4181 | 0 |
 | 13 | locked | 4181 | 0 |
 |------------|----------|----------|-----------|

Note: The display is the same with verbose mode on or off.

Output from Checking System-wide Parameter Settings

To check the current values of the system-wide parameters for this configuration
started a tmadmin session and ran the bbparms command. The output of bbparms is
shown in Listing 12-5.

Listing 12-5 Sample bbparms Output

> bbparms
Bulletin Board Parameters:
 MAXSERVERS: 35
 MAXSERVICES: 75
 MAXACCESSERS: 40
 MAXGTT: 20
 MAXCONV: 10
 MAXBUFTYPE: 16
 MAXBUFSTYPE: 32
 IPCKEY: 35384
 MASTER: SITE1,SITE2
 MODEL: MP
 LDBAL: Y
 OPTIONS: LAN,MIGRATE
 SCANUNIT: 10
 SANITYSCAN: 12
 DBBLWAIT: 6
 BBLQUERY: 180
 BLOCKTIME: 30
Administering the BEA TUXEDO System 12-25

12 Monitoring a Running System
Note: The display is the same with verbose mode on or off.
12-26 Administering the BEA TUXEDO System

CHAPTER
13Monitoring Log Files

To help you identify error conditions quickly and accurately, the BEA TUXEDO
system provides you with two log files:

� User log (ULOG)—a log of messages generated by the BEA TUXEDO system
while your application is running.

� Transaction log (TLOG)—a binary file that is not normally read by you (the
administrator), but that is used by the Transaction Manager Server (TMS). A
TLOG is created only on machines involved in BEA TUXEDO global
transactions.

These two logs are maintained and updated constantly while your application is
running.

This chapter discusses the following topics:

� What Is the ULOG?

� What Is tlisten?

� What Is the Transaction Log (TLOG)?

� Creating and Maintaining Logs

� Using Logs to Detect Failures
Administering the BEA TUXEDO System 13-1

13 Monitoring Log Files

and
 also

.
ing

our
 and
What Is the ULOG?

The user log (ULOG) is a central event logger. All messages generated by the BEA
TUXEDO system—error messages, warning messages, information messages,
debugging messages—are written to this log. Application clients and servers can
write to the user log.

A new log is created every day and there can be a different log on each machine
However, a ULOG can be shared across machines when a remote file system is be
used.

Purpose

The purpose of the ULOG is to give you, the administrator, a record of the events on y
system from which you can determine the cause of most BEA TUXEDO system
application failures.

How Is the ULOG Created?

The ULOG is created by the BEA TUXEDO system whenever one of the following
events occurs:

� A new configuration file is loaded

� An application is booted

How Is the ULOG Used?

You can view the ULOG, an ASCII file, with any text editor.

When a message is written to the ULOG through the tperrno global variable,
application clients and servers are notified, as follows:
13-2 Administering the BEA TUXEDO System

What Is the ULOG?

� If tperrno is set to TPESYSTEM after returning from an ATMI call, you can
conclude that:

� A BEA TUXEDO system error has occurred.

� An error message has been placed in the user log.

� If tperrno is set to TPEOS after returning from an ATMI call, you can conclude
that:

� An operating system error has occurred.

� An error message has been placed in the user log.

Message Format

A ULOG message consists of two parts: a tag and text. Each part consists of three
strings, as shown in the following table.

Consider the following example of a user log message.

121449.gumby!simpserv.27190: LIBTUX_CAT:262: std main starting

From the message tag we learn:

� The message was written into the log at around 12:15 P.M.

This Part . . . Consists of . . .

tag A 6-digit string (hhmmss) representing the time of day (in terms of
hour, minute, and second)

Name of the machine (as returned, on UNIX systems, by the uname -n
command)

Name and identifier of the process that is logging the message

text Message catalog name

Message number

BEA TUXEDO system message
Administering the BEA TUXEDO System 13-3

13 Monitoring Log Files

er.

r
.

� The machine on which the error occurred was gumby.

� The message was logged by the simpserv process (which has an ID of 27190).

From the message text we learn:

� The message came from the LIBTUX catalog.

� The number of the message is 262.

� The message itself reads as follows: std main starting.

For more information about a message, note its catalog name and catalog numb
With this information you can look up the message in the BEA TUXEDO System
Message Manual, which provides complete descriptions of all system messages.

Location

By default, the user log is called ULOG.mmddyy (where mmddyy represents the date in
terms of month, day, and year) and it is created in the $APPDIR directory.

You can place this file in any location, however, by setting the ULOGPFX parameter in
the MACHINES section.

What Is tlisten?

tlisten is the section of the ULOG in which error messages for the tlisten process
are recorded. (The tlisten process provides remote service connections for othe
machines.) As part of the ULOG file, a tlisten log can be viewed with any text editor

Each machine, including the master machine, should have a tlisten process running
on it. Separate tlisten logs are maintained in the ULOG on each machine. However,
they can be shared across remote file systems.
13-4 Administering the BEA TUXEDO System

What Is tlisten?

d.
 the

dded
Purpose

The tlisten log is a record of tlisten process failures. It is used, during the boot
process, by tmboot and, while an application is running, by tmadmin .

How Is the tlisten Log Created?

The tlisten log is created by the tlisten process as soon as that process is starte
Whenever a tlisten process failure occurs, an appropriate message is recorded in
tlisten log.

Message Format

Each tlisten log message includes the date and time at which the message was a
to the log.

Location

By default, the tlisten log resides in $TUXDIR/udataobj . You can store it in
another location, however, by entering the following command.

tlisten -L new_pathname

For example, if you want your TLOG file to be named TLLOG and to reside in the
/home/apps/logs directory, enter the following command.

tlisten -L /home/apps/logs/TLOG
Administering the BEA TUXEDO System 13-5

13 Monitoring Log Files

se.

olled

tes

e

lues
What Is the Transaction Log (TLOG)?

The transaction log (TLOG) keeps track of global transactions during the commit pha
A global transaction is recorded in the TLOG only when it is in the process of being
committed. The TLOG is used to record the reply from the global transaction
participants at the end of the first phase of a two-phase-commit protocol. The TLOG
records the decision about whether a global transaction should be committed or r
back.

We recommend that you create a TLOG on each machine that participates in global
transactions.

How Is the TLOG Created?

For instructions on creating a TLOG, see the section “Creating a Transaction Log
(TLOG)” in this chapter.

How Is the TLOG Used?

The TLOG file is used only by the Transaction Manager Server (TMS) that coordina
global transactions. It is not read by the administrator.

Location

The location and size of the TLOG are specified by four parameters that you set in th
MACHINES section of the UBBCONFIG file: TLOGDEVICE, LOGOFFSET, TLOGNAME, and
TLOGSIZE. (For descriptions of these parameters and instructions for assigning va
to them, see “Creating a Transaction Log (TLOG)” in this chapter.)
13-6 Administering the BEA TUXEDO System

Creating and Maintaining Logs

eed

Creating and Maintaining Logs

The ULOG is generated by various BEA TUXEDO system processes; you do not n
to create it. The TLOG, however, is not produced automatically; you must create it.

This section provides the following instructions:

� How to maintain the ULOG

� How to create TLOGs

How to Assign a Location for the ULOG

To override the default location for your ULOG file, specify the desired location as the
value of the ULOGPFX parameter in the MACHINES section of the UBBCONFIG file. (By
default, the value of ULOGPFX is $APPDIR/ULOG.) The value you assign becomes the
first part of the ULOG file name.

Listing 13-1 shows how you can override the default setting.

Listing 13-1 Overriding Default Settings in the MACHINES Section of Your
UBBCONFIG File

MACHINES
gumby LMID=SITE1
TUXDIR=”/usr/tuxedo”
APPDIR=”/home/apps”
TUXCONFIG=”/home/apps/tuxconfig”
ULOGPFX=”/home/apps/logs/ULOG”
...

The following ULOG was created for SITE1 on 04/13/98.

/home/apps/logs/ULOG.041398
Administering the BEA TUXEDO System 13-7

13 Monitoring Log Files

ng

Creating a Transaction Log (TLOG)

To create a TLOG, you must complete the following procedure:

� Step 1: Assign Values to MACHINES Parameters

� Step 2: Create a UDL Entry

� Step 3 (optional): Allocate Space for a New Device on an Existing System

� Step 4: Create the Log

This section provides instructions for each step.

Step 1: Assign Values to MACHINES Parameters

Your first step is to assign values to four parameters in the MACHINES section of the
UBBCONFIG file: TLOGDEVICE, TLOGNAME, TLOGOFFSET, and TLOGSIZE.

TLOGDEVICE

TLOGDEVICE specifies the device in the BEA TUXEDO file system that
contains the transaction log. This can be the same device used by TUXCONFIG.

Note: Technically, there is no reason that TLOGDEVICE cannot be a separate VTOC
file, but there are two reasons why it is not recommended: the TLOG is
generally too small to justify devoting a raw disk segment to it, and creati
TLOGDEVICE as a UNIX file leads to expensive delays when synchronous
writes to the TLOG are required.

The TLOG is stored as a BEA TUXEDO system VTOC table on the device
named in this parameter. If the TLOGDEVICE parameter is not specified, there
is no default; the BEA TUXEDO system assumes that no TLOG exists for the
machine. If no TLOG exists for a given machine, the associated LMID cannot
be used by server groups that participate in distributed transactions.

After TUXCONFIG has been created via tmloadcf , you must create a device
list entry for the TLOG on each machine for which TLOGDEVICE is specified.
This is done using the tmadmin crdl command. The BBL creates the log
automatically the first time the system is booted.

TLOGNAME

TLOGNAME specifies the name of the Distributed Transaction Processing
(DTP) transaction log for this machine. The default name is TLOG. If more
13-8 Administering the BEA TUXEDO System

Creating and Maintaining Logs

any

e.
r of

ared

be
than one transaction log exists on the same TLOGDEVICE, each transaction log
must have a unique name. If a name is specified, it must not conflict with
other table specified on the configuration.

TLOGOFFSET

TLOGOFFSET specifies the offset in pages from the beginning of TLOGDEVICE
to the start of the VTOC that contains the transaction log for this machin
The number must be greater than or equal to 0 and less than the numbe
pages on the device. The default value is 0.

TLOGOFFSET is rarely necessary. However, if two VTOCs share the same
device or if a VTOC is stored on a device (such as a file system) that is sh
with another application, TLOGOFFSET can be used to indicate a starting
address relative to the address of the device.

TLOGSIZE

TLOGSIZE specifies the number of pages for the TLOG. The default is 100
pages. Once a global transaction is complete, TLOG records are no longer
needed and are thrown away. The maximum number of pages that can
specified, subject to the amount of available space on TLOGDEVICE, is 2048
pages. Choosing a value is entirely application-dependent.

Listing 13-2 shows an example of the use of transaction log parameters.

Listing 13-2 Sample Transaction Log Parameters for a Specified Machine

MACHINES
gumby LMID=SITE1
...
TLOGDEVICE=”/home/apps/logs/TLOG”
TLOGNAME=TLOG
TLOGOFFSET=0
TLOGSIZE=100
...

Step 2: Create a UDL Entry

Next, create an entry in the Universal Device List (UDL) for the TLOGDEVICE on each
machine that requires a TLOG. You can perform this step either before or after
TUXCONFIG has been loaded, but you must do it before the system is booted.
Administering the BEA TUXEDO System 13-9

13 Monitoring Log Files

.

e.

e in

the

 the
isting
the

e
nter
To create an entry in the UDL for the TLOG device, complete the following procedure

1. On the master machine (with the application inactive), enter the following.

tmadmin -c

You do not have to create TLOGs on any machine other than the master machin
The BEA TUXEDO system creates TLOGs on nonmaster machines (as long as a
UDL exists on those machines) when the application is booted.

2. Enter the following command.

crdl -z config -b blocks

� -z config specifies the full path name for the device on which the UDL
should be created (and where the TLOG will reside).

� -b specifies the number of blocks to be allocated on the device.

� config should match the value of the TLOGDEVICE parameter in the
MACHINES section. If config is not specified, it defaults to the value of
FSCONFIG (a BEA TUXEDO system environment variable).

3. Repeat Steps 1 and 2 on each machine of your application that will participat
global transactions.

Note: If the TLOGDEVICE is mirrored between two machines, Step 3 is not
required on the paired machine.

During the boot process, the Bulletin Board Listener (BBL) initializes and opens
TLOG.

Step 3 (optional): Allocate Space for a New Device on an Existing System

In Step 2, you created a new BEA TUXEDO file system that can be used to hold
TLOG. Sometimes, however, it is necessary to add new devices or space to an ex
configuration or to check space usage. You can perform these tasks by running
command.

tmadmin -c

(You can run this command whether or not the system is booted.)

It is possible that the UDL exists on config but does not have sufficient space for th
log. To allocate space on a new device to an existing BEA TUXEDO file system, e
the following.
13-10 Administering the BEA TUXEDO System

Creating and Maintaining Logs

 is
pace

.

 if
EDO
 case,

n

DL,

le raw
 a
 raw
ible
set
evice

ated.
e

 the
crdl -z config -b blocks new_device

where new_device specifies the full path name for the new device on which space
to be allocated. This command creates a new entry on the UDL and makes the s
available for any tables that are created on config. (For example, this procedure can
be used for the TUXCONFIG file when there is not enough space for a modified
configuration, for allocating a new TLOG, or for increasing the size of the TLOG by
deleting an old log and then creating a larger one.) If you are running several
commands using the current configuration, it is possible to set the default
configuration by entering the default command (d), as follows:

d -z config

If you run this command, you will not need to enter the -z option after each command

Under rare circumstances, a device does not start at offset 0. This might happen
space has been allocated on a device (less than the entire device) to a BEA TUX
file system, and more space on the same device is available to be allocated. In this
you can allocate the second entry by entering the following command.

crdl -z config -b blocks -o new_device_offset new_device

Here, new_device_offset specifies the offset of the new space being allocated o
the device. (Note that the option is a lowercase o.) In this case, since the first entry on
the UDL is allocated at offset 0, TLOGOFFSET and/or TUXOFFSET are set to 0, instead
of to the offset of the new device. (The BEA TUXEDO system needs to find the U
from which it can determine the offset of other available space.)

A second (and rarer) reason that a device does not start at offset 0 is that a sing
device is shared. This happens, for example, if a UNIX file system is followed by
BEA TUXEDO file system on the same device. (This situation is risky because the
device must be writable by the BEA TUXEDO system administrator and it is poss
to overwrite the UNIX file system.) If the first entry on the UDL does not start at off
0 (as in this example), the device offset must be specified everywhere that the d
is referenced. To allocate the entry, enter the following command.

crdl -z config -b blocks -o offset -O offset new_device

Here, offset is the offset of the space to be allocated for the BEA TUXEDO file
system (UDL and tables). Note that the -o (lowercase o) specifies the offset of the
UDL and -O (uppercase O) specifies the offset of the new device space being alloc
Any devices that are created subsequently on this configuration must use both th-o
option with the offset of the first entry, and the -O option with the offset of the new
entry. (The offset may be 0 if a new device is being specified.) If the first entry on
Administering the BEA TUXEDO System 13-11

13 Monitoring Log Files

un.

ted

ially

 the

ted

ithin
TOC

 file

UDL is not allocated at offset 0, TLOGOFFSET and/or TUXOFFSET must be set to the
offset of the first entry. This is the only case in which TLOGOFFSET and TUXOFFSET
must be set in the UBBCONFIG file, and the TUXOFFSET environment variable must be
set when all BEA TUXEDO application and administrative processes are being r

To list the current UDL, enter the following command.

lidl -z config

where config was created using the above procedures. If the first entry was crea
with an offset other than 0, -o offset must be specified in addition to the
configuration device. In verbose mode, this command lists not only the space init
allocated for each device entry, but also the amount of free space.

It is also possible to generate a list of the tables on the configuration by entering
following command.

livtoc -z config

Here config was creating using the above procedures. If the first entry was crea
with an offset other than 0, -o offset must be specified in addition to the
configuration device. This command lists the table name, device number, offset w
the device, and number of pages for each table. The first two tables are always V
and UDL. TUXCONFIG table names are of the form _secname _SECT, where secname
is the name of a section in the UBBCONFIG file. The TLOG table name is based on the
TLOG parameter in the UBBCONFIG file, and defaults to TLOG. In the rare case in which
two applications share a single BEA TUXEDO file system for the TLOGDEVICE, the
TLOG parameter must be different for each application.

Note: A BEA TUXEDO system file system is a file that is managed by BEA
TUXEDO, which may be located on a raw disk or in an operating system
system. A BEA TUXEDO system file system contains one TUXCONFIG file
and one or more TLOG files.

Because the table names for the TUXCONFIG file are fixed, it is not possible for two
applications to share the same BEA TUXEDO file system for the TUXCONFIG file.

Step 4: Create the Log

Perform the following steps to create the log.

1. Make sure you have a TUXCONFIG file. (If you do not, the commands for creating
the TLOG will fail.)
13-12 Administering the BEA TUXEDO System

Creating and Maintaining Logs

on

e

 log,

ified
e
2. Start a tmadmin session by entering the following command.

tmadmin -c

3. At the tmadmin command prompt (>), enter the following.

crlog [-m machine]

where the value of machine is the LMID of a machine, as specified in
TUXCONFIG.

Note: The -m option is shown as optional because it can be specified with the
default (d) command of tmadmin . If you have not specified a machine with
the d command, however, the -m option is required on the crlog command
line.

Maintaining a TLOG

TLOGs require little maintenance. This section provides instructions for two comm
maintenance tasks: reinititalizing a TLOG and removing a TLOG:

� To reinitialize a TLOG, enter the following.

inlog [-yes] [-m machine]

The value of machine is the LMID of a machine, as specified in TUXCONFIG.

Be careful when using this command: it will reinitialize the log even if there ar
outstanding transactions. The result could be inconsistent TLOGs, possibly
causing transactions to abort.

� To delete a TLOG, enter the following.

dslog [-yes] [-m machine]

The value of machine is the LMID of a machine, as specified in TUXCONFIG.

If the application is not active or if there are transactions still outstanding in the
an error will be returned.

Note: The -yes and -m options are shown as optional because they can be spec
with the default (d) command. If you have not specified a machine with th
d command, however, the -m option is required on the inlog and dslog
command lines.
Administering the BEA TUXEDO System 13-13

13 Monitoring Log Files

nd
.

s,

lem.
.

ent
 the

 the
Using Logs to Detect Failures

The BEA TUXEDO log files can help you detect failures in both your application a
your system. This section provides instructions for analyzing the data in the logs

Analyzing the User Log (ULOG)

Note: Although application administrators are responsible for analyzing user log
application programmers may also consult the logs.

It is not unusual for multiple messages to be placed in the user log for a given prob
In general, the earlier messages will better reflect the exact nature of the problem

Consider the example shown in Listing 13-3. Notice how LIBTUX_CAT message 358
identifies the exact nature of the problem causing problems reported in subsequ
messages, namely, that there are not enough UNIX system semaphores to boot
application.

Listing 13-3 Sample ULOG Messages

151550.gumby!BBL.28041: LIBTUX_CAT:262: std main starting
151550.gumby!BBL.28041: LIBTUX_CAT:358: reached UNIX limit on semaphore ids
151550.gumby!BBL.28041: LIBTUX_CAT:248: fatal: system init function ...
151550.gumby!BBL.28040: CMDTUX_CAT:825: Process BBL at SITE1 failed ...
151550.gumby!BBL.28040: WARNING: No BBL available on site SITE1.
 Will not attempt to boot server processes on that site.

See the BEA TUXEDO System Message Manual for complete descriptions of user log
messages and recommendations for any actions that should be taken to resolve
problems indicated.
13-14 Administering the BEA TUXEDO System

Using Logs to Detect Failures

se
Analyzing the tlisten Log

Keep the following guidelines in mind as you check the tlisten messages in your
ULOG:

� A message is placed in the tlisten log every time the log is contacted.

� A sequence number is given to every accepted request.

� If you cannot boot your application and subsequently cannot find any tlisten
messages in your ULOG file, one of the following problems may have occurred:

� The tlisten process may not have been started.

� The tlisten process may be listening on the wrong network address.

To find out whether one of these errors has occurred, check the ULOG file.

Note: Application administrators are responsible for analyzing the tlisten
messages in the ULOG, but programmers may also find it useful to check the
messages.

The CMDTUX catalog in the BEA TUXEDO System Message Manual contains the
following information about tlisten messages:

� Descriptions of all messages

� Recommended actions that you (or a programmer) can take to resolve error
conditions reported in these messages

Example

Consider the following example of a message in a tlisten log.

042398; 27909;CMDTUX_CAT: 615 INFO: Terminating tlisten process

This message was recorded on April 23, 1998. Its purpose is simply to provide
information: the tlisten process is being terminated. No action is required.

Note: This message can be found in the CMDTUX catalog of the BEA TUXEDO System
Message Manual.
Administering the BEA TUXEDO System 13-15

13 Monitoring Log Files

t are

he
n.
Analyzing a Transaction Log (TLOG)

The TLOG is a binary file that contains only messages about global transactions tha
in the process of being committed. You should never need to examine this file.

If you do need to view the TLOG, you must first convert it to ASCII format so that it is
readable. The BEA TUXEDO system provides two tmadmin operations for this
purpose:

� dumptlog (dl) downloads (or dumps) the TLOG (a binary file) to an ASCII file.

� loadtlog uploads (or loads) an ASCII version of the TLOG into an existing
TLOG (a binary file).

The dumptlog and loadtlog commands are also useful when you need to move t
TLOG between machines as part of a server group migration or machine migratio
13-16 Administering the BEA TUXEDO System

CHAPTER

14Tuning Applications

This chapter discusses the following topics:

� Maximizing Your Application Resources

� When to Use MSSQ Sets

� Enabling Load Balancing

� Assigning Priorities to Interfaces or Services

� Bundling Services into Servers

� Enhancing Efficiency with Application Parameters

� Setting Application Parameters

� Determining IPC Requirements

� Measuring System Traffic

Maximizing Your Application Resources

Making correct decisions in response to the following questions can improve the
functioning of your BEA TUXEDO application:

� When should I use MSSQ sets?

� How should I assign load factors?

� How should I package interfaces and/or services into servers?

� How should I set my application parameters?
Administering the BEA TUXEDO System 14-1

14 Tuning Applications

k,

ble

ept
ying

ise is

ue.

s

.

� How should I tune my operating system IPC parameters?

� How should I hunt for and eliminate bottlenecks?

When to Use MSSQ Sets

When is it beneficial to use MSSQ sets?

Two analogies from everyday life may help to show why using MSSQ sets is
sometimes, but not always, beneficial:

� An application in which MSSQ sets are used appropriately is similar to a ban
where all the tellers offer the same services and customers wait in line for the
first available teller. This efficient arrangement ensures the best use of availa
services.

� An application in which it is better to avoid using MSSQ sets is similar to a
supermarket, where each cashier offers a different set of services: some acc
cash only; some accept credit cards; and still others serve only customers bu
fewer than ten items.

When to Use MSSQ Sets When Not to Use MSSQ Sets

There are several, but not too many servers. There are a large number of servers. (A comprom
to use many MSSQ sets.)

Buffer sizes are not too large. Buffer sizes are large enough to exhaust one que

The servers offer identical sets of services. Services are different for each server.

The messages involved are reasonably sized. Long messages are being passed to the service
causing the queue to be exhausted. This causes
nonblocking sends to fail, or blocking sends to block

Optimization and consistency of service
turnaround time is paramount.
14-2 Administering the BEA TUXEDO System

Enabling Load Balancing

hole.
 you

lified

one
Q

rvice

st
Enabling Load Balancing

You can control whether a load balancing algorithm is used on the system as a w
With load balancing, a load factor is applied to each service within the system, and
can track the total load on every server. Every service request is sent to the qua
server that is least loaded.

This algorithm, although effective, is expensive and should be used only when
necessary, that is, only when a service is offered by servers that use more than
queue. Services offered by only one server, or by multiple servers all in an MSS
(multiple server single queue) do not need load balancing. The LDBAL parameter for
these services should be set to N. In other cases, you may want to set LDBAL to Y.

To figure out how to assign load factors (located in the SERVICES section), run an
application for a long period of time. Note the average time it has taken for each se
to be performed. Assign a LOAD value of 50 (LOAD=50) to any service that takes
roughly the average amount of time. Any service taking longer than the average
amount of time to execute should have a LOAD>50; any service taking less than the
average amount of “code” time to execute should have a LOAD<50 .

Two Ways to Measure Service Performance Time

You can measure service performance time in one of the following ways:

� Enter servopts -r in the configuration file. The -r option causes a log of
services performed to be written to standard error. You can then use the
txrpt (1) command to analyze this information. (For details about servopts (5)
and txrpt (1), see the BEA TUXEDO Reference Manual.)

� Insert calls to time (2) at the beginning and end of a service routine. Services
that take the longest time receive the highest load; those that take the shorte
time receive the lowest load. (For details about time (2), see a UNIX System
Reference Manual.)
Administering the BEA TUXEDO System 14-3

14 Tuning Applications

ing

iority

y with
-out

ers

rvice

ages
 only
 time

tenth
rn of
Assigning Priorities to Interfaces or Services

You can exert significant control over the flow of data in an application by assign
priorities to BEA TUXEDO services using the PRIO parameter.

For an application running on a BEA TUXEDO system, you can specify the PRIO
parameter for each service named in the SERVICES section of the application’s
UBBCONFIG file.

For example, Server 1 offers Interfaces A, B, and C. Interfaces A and B have a pr
of 50 and Interface C has a priority of 70. An interface requested for C is always
dequeued before a request for A or B. Requests for A and B are dequeued equall
respect to one another. The system dequeues every tenth request in first-in, first
(FIFO) order to prevent a message from waiting indefinitely on the queue.

You can also dynamically change a priority with the tpsprio() call. Only preferred
clients should be able to increase the service priority. In a system on which serv
perform service requests, the server can call tpsprio() to increase the priority of its
interface or service calls so the user does not wait in line for every interface or se
request that is required.

Characteristics of the PRIO Parameter

The PRIO parameter should be used cautiously. Depending on the order of mess
on the queue (for example, A, B, and C), some (such as A and B) will be dequeued
one in ten times. This means reduced performance and potential slow turnaround
on the service.

The characteristics of the PRIO parameter are as follows:

� It determines the priority of an interface or a service on the server’s queue.

� The highest assigned priority gets first preference. This interface or service
should occur less frequently.

� A lower priority message does not remain forever enqueued, because every
message is retrieved on a FIFO basis. Response time should not be a conce
the lower priority interface or service.
14-4 Administering the BEA TUXEDO System

Bundling Services into Servers

iority

hem at
les,

here is a

r

an
to
.

u

 (or

Assigning priorities enables you to provide faster service to the most important
requests and slower service to the less important requests. You can also give pr
to specific users or in specific circumstances.

Bundling Services into Servers

The easiest way to package services into server executables is to not package t
all. Unfortunately, if you do not package services, the number of server executab
and also message queues and semaphores, rises beyond an acceptable level. T
trade-off between no bundling and too much bundling.

When to Bundle Services

You should bundle services for the following reasons:

� Functional similarity—If some services are similar in their role in the
application, you can bundle them in the same server. The application can offe
all or none of them at a given time. An example is the bankapp application, in
which the WITHDRAW, DEPOSIT, and INQUIRY services are all teller operations.
Administration of services becomes simpler.

� Similar libraries—For example, if you have three services that use the same
100K library and three services that use different 100K libraries, bundling the
first three services saves 200K. Often, functionally equivalent services have
similar libraries.

� Filling the queue—Bundle only as many services into a server as the queue c
handle. Each service added to an unfilled MSSQ set may add relatively little
the size of an executable, and nothing to the number of queues in the system
Once the queue is filled, however, the system performance degrades and yo
must create more executables to compensate.

� Placement of call-dependent services—Avoid placing in the same server two
more) services that call each other. If you do so, the server will issue a call to
itself, causing a deadlock.
Administering the BEA TUXEDO System 14-5

14 Tuning Applications

ur

um
on in

 set

itting
ng on
Enhancing Efficiency with Application

Parameters

You can set the following application parameters to enhance the efficiency of yo
system:

� MAXACCESSERS, MAXSERVERS, MAXINTERFACES, and MAXSERVICES

� MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE

� SANITYSCAN, BLOCKTIME, and individual transaction timeouts

� BBLQUERY and DBBLWAIT

Setting the MAXACCESSERS, MAXSERVERS,

MAXINTERFACES, and MAXSERVICES Parameters

The MAXACCESSERS, MAXSERVERS, MAXINTERFACES, and MAXSERVICES parameters
increase semaphore and shared memory costs, so you should choose the minim
value that satisfies the needs of the system. You should also allow for the variati
the number of clients accessing the system at the same time. Defaults may be
appropriate for a generous allocation of IPC resources; however, it is prudent to
these parameters to the lowest appropriate values for the application.

Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE

Parameters

You should increase the value of the MAXGTT parameter if the product of multiplying
the number of clients in the system times the percentage of time they are comm
a transaction is close to 100. This may require a great number of clients, dependi
14-6 Administering the BEA TUXEDO System

Setting Application Parameters

ith
r
an

u can

f
the speed of commit. If you increase MAXGTT, you should also increase TLOGSIZE
accordingly for every machine. You should set MAXGTT to 0 for applications that do not
use distributed transactions.

You can limit the number of buffer types and subtypes allowed in the application w
the MAXBUFTYPE and MAXBUFSTYPE parameters, respectively. The current default fo
MAXBUFTYPE is 16. Unless you are creating many user-defined buffer types, you c
omit MAXBUFTYPE. However, if you intend to use many different VIEW subtypes, you
may want to set MAXBUFSTYPE to exceed its current default of 32.

Setting the SANITYSCAN, BLOCKTIME, BBLQUERY, and

DBBLWAIT Parameters

If a system is running on slow processors (for example, due to heavy usage), yo
increase the timing parameters: SANITYCAN, BLOCKTIME, and individual transaction
timeouts. If networking is slow, you can increase the value of the BLOCKTIME,
BBLQUERY, and DBBLWAIT parameters.

Setting Application Parameters

The following table describes the system parameters available for tuning an
application.

Parameters Action

MAXACCESSERS, MAXSERVERS,
MAXINTERFACES, and MAXSERVICES

Set the smallest satisfactory value because o
IPC cost.

Allow for extra clients.
Administering the BEA TUXEDO System 14-7

14 Tuning Applications

 use

cation.
Determining IPC Requirements

The values of different system parameters determine IPC requirements. You can
the tmboot -c command to test a configuration’s IPC needs. The values of the
following parameters affect the IPC needs of an application:

� MAXACCESSERS

� REPLYQ

� RQADDR (that allows MSSQ sets to be formed)

� MAXSERVERS

� MAXSERVICES

� MAXGTT

Table 14-1 describes the system parameters that affect the IPC needs of an appli

Table 14-1 Tuning IPC Parameters

MAXGTT, MAXBUFTYPE, and
MAXBUFSTYPE

Increase MAXGTT for many clients; set
MAXGTT to 0 for nontransactional
applications.

Use MAXBUFTYPE only if you create eight or
more user-defined buffer types.

If you use many different VIEW subtypes,
increase the value of MAXBUFSTYPE.

BLOCKTIME, TRANTIME, and
SANITYSCAN

Increase the value for a slow system.

BLOCKTIME, TRANTIME, BBLQUERY, and
DBBLWAIT

Increase values for slow networking.

Parameters Action
14-8 Administering the BEA TUXEDO System

Determining IPC Requirements

r

rge
lly

 the

n’s

ize
of
 to
Parameter(s) Action

MAXACCESSSERSEquals the number of semaphores.

Number of message queues is almost equal to MAXACCESSERS +
number of servers with reply queues (number of servers in MSSQ set +
number of MSSQ sets).

MAXSERVERS,
MAXSERVICES,
and MAXGTT

While MAXSERVERS, MAXSERVICES, MAXGTT, and the overall size
of the ROUTING, GROUP, and NETWORK sections affect the size of
shared memory, an attempt to devise formulas that correlate these
parameters can become complex. Instead, simply run tmboot -c or
tmloadcf -c to calculate the minimum IPC resource requirements fo
your application.

Queue-related
kernel parameters

Need to be tuned to manage the flow of buffer traffic between clients
and servers. The maximum total size of a queue in bytes must be la
enough to handle the largest message in the application, and to typica
be 75 to 85 percent full. A smaller percentage is wasteful; a larger
percentage causes message sends to block too frequently.

Set the maximum size for a message to handle the largest buffer that
application sends.

Maximum queue length (the largest number of messages that are
allowed to sit on a queue at once) must be adequate for the applicatio
operations.

Simulate or run the application to measure the average fullness of a
queue or its average length. This may be a trial and error process in
which tunables are estimated before the application is run and are
adjusted after running under performance analysis.

For a large system, analyze the effect of parameter settings on the s
of the operating system kernel. If unacceptable, reduce the number
application processes or distribute the application to more machines
reduce MAXACCESSERS.
Administering the BEA TUXEDO System 14-9

14 Tuning Applications

ccur
 road,

, you

ntly,
ver is

rvice

The
ount

 at
gged,

ervice

ssage
Measuring System Traffic

As on any road in which traffic exists and runs at finite speed, bottlenecks can o
in your system. On a highway, cars can be counted with a cable strung across the
that causes a counter to be incremented each time a car drives over it. Similarly
can measure service traffic. For example, at boot time (that is, when tpsvrinit() is
invoked), you can initialize a global counter and record a starting time. Subseque
each time a particular service is called, the counter is incremented. When the ser
shut down (by invoking the tpsvrdone () function, the final count and the ending time
are recorded. This mechanism allows you to determine how busy a particular se
is over a specified period of time.

In the BEA TUXEDO system, bottlenecks can originate from data flow patterns.
quickest way to detect bottlenecks is to begin with the client and measure the am
of time required by relevant services.

Example: Detecting a System Bottleneck

Client 1 requires 4 seconds to print to the screen. Calls to time (2) determine that the
tpcall to service A is the culprit with a 3.7 second delay. Service A is monitored
the top and bottom and takes 0.5 seconds. This implies that a queue may be clo
which was determined by using the pq command.

On the other hand, suppose service A takes 3.2 seconds. The individual parts of s
A can be bracketed and measured. Perhaps service A issues a tpcall to service B,
which requires 2.8 seconds. It should be possible then to isolate queue time or me
send blocking time. Once the relevant amount of time has been identified, the
application can be retuned to handle the traffic.

Using time (2), you can measure the duration of the following:

� The entire client program

� A client service request only

� The entire service function

� The service function making a service request (if any)
14-10 Administering the BEA TUXEDO System

Measuring System Traffic

at

d

Detecting Bottlenecks on UNIX Platforms

The UNIX system sar (1) command provides valuable performance information th
can be used to find system bottlenecks. You can use sar (1) to do the following:

� Sample cumulative activity counters in the operating system at predetermine
intervals

� Extract data from a system file

The following table describes the sar (1) command options.

Use This Option To

-u Gather CPU utilization numbers, including the portion
of the time running in user mode, running in system
mode, idle with some process waiting for block I/O,
and otherwise idle.

-b Report buffer activity, including transfers per second of
data between system buffers and disk, or other block
devices.

-c Report system call activity. This includes system calls
of all types, as well as specific system calls such as
fork (2) and exec (2).

-w Monitor system swapping switching activity. This
includes the number of transfers for swapins and
swapouts.

-q Report average queue lengths while occupied and the
percent of time occupied.

-m Report message and system semaphore activities,
including the number of primitives per second.

-p Report paging activity, including the address
translation page faults, page faults and protection
errors, and the valid pages reclaimed for free lists.
Administering the BEA TUXEDO System 14-11

14 Tuning Applications

enu.

r
Note: Some flavors of the UNIX system do not provide the sar (1) command, but
offer equivalent commands instead. BSD, for example, offers the iostat (1)
command; Sun offers perfmeter (1).

Detecting Bottlenecks on Windows NT Platforms

On Windows NT platforms, use the Performance Monitor to collect system
information and detect bottlenecks. Select the following options from the Start m

Start —> Programs —> Administration Tools —> NT Performance Monitor

-r Report unused memory pages and disk blocks,
including the average number of pages available to use
processes and the disk blocks available for process
swapping.

Use This Option To
14-12 Administering the BEA TUXEDO System

CHAPTER

st be

rks,

ined.
 can

r
15 Migrating Applications

This chapter discusses the following topics:

� About Migration

� Migration Options

� Switching Master and Backup Machines

� Migrating a Server Group

� Migrating Machines

� Canceling a Migration

� Migrating Transaction Logs to a Backup Machine

Note: A migration requirement is that both the master and backup machines mu
running the same release of the BEA TUXEDO software.

About Migration

Whether you need to migrate all or portions of an application, the changes to the
application setup must be made with minimal service disruption. Machines, netwo
databases, the BEA TUXEDO system, and the application all need to be mainta
The BEA TUXEDO system provides a way to migrate the applications so that they
be serviced.

The BEA TUXEDO system offers migration tools that can also be used to recove
from a machine crash, network partitions, database corruptions, BEA TUXEDO
system problems, and application faults.
Administering the BEA TUXEDO System 15-1

15 Migrating Applications

e.

 you

e to
ackup

en a

 the

ter
ver, is
Migration Options

The following is a list of migration options:

� Switch master and backup machines.

� Migrate a server group from its primary machine to its alternate machine.

� Migrate all server groups from their primary machine to their alternate machin

� Cancel a migration.

� Migrate a transaction log.

By using a combination of these options and partitioned network recovery utilities,
can migrate entire machines.

Switching Master and Backup Machines

Server migration is the process of moving one or more servers from one machin
another. One special instance of this process is the ability to switch master and b
machines. This type of switching is done by migrating the DBBL from the master
machine to the backup machine. While this procedure is most frequently used wh
network is partitioned, it is also useful in situations that require you to shut down
master machine.

Use the master command to switch the master machine.

Use the tmadmin (1) master (m) command to switch master and backup machines
when the master machine must be shut down for maintenance, or when the mas
machine is no longer accessible. Switching master and backup machines, howe

Command Description

master(m) Switches the master machine to the backup machine or the
reverse
15-2 Administering the BEA TUXEDO System

Switching Master and Backup Machines

ate
 this

p

ackup
only a first step. In most cases, application servers need to be migrated to altern
sites, or the master machine needs to be restored. (These tasks are described in
chapter.)

How to Switch the Master and Backup Machines

To switch the master and backup machines, call the tmadmin (1) command interpreter
with the master (m) command from the backup machine.

Examples: Switching Master and Backup Machines

Listing 15-1 and Listing 15-2 illustrate how you can switch master and backup
machines. In the first example, the master machine is accessible from the backu
machine, and the DBBL process is migrated from the master machine to the backup
machine.

In the second example, because the master machine is not accessible from the b
machine, the DBBL process is created on the backup machine.

Listing 15-1 When the Master Machine Is Accessible from the Backup Machine

$ tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL. All rights reserved.
> master
are you sure? [y,n] y
Migrating active DBBL from SITE1 to SITE2, please wait...
DBBL has been migrated from SITE1 to SITE2
> q

Listing 15-2 When the Master Machine Is Not Accessible from the Backup
Machine

$ tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL. All rights reserved.
TMADMIN_CATT:199: Cannot become administrator. Limited set of commands available.
Administering the BEA TUXEDO System 15-3

15 Migrating Applications

r
e

may

mary
> master
are you sure? [y,n] y
Creating new DBBL on SITE2, please wait... New DBBL created on SITE2
> q

Migrating a Server Group

Use the following two tmadmin commands to migrate servers.

The tmadmin (1) migrategroup (migg) command takes the name of a single serve
group as an argument. You must first shut down the servers to be migrated with th-R
option (for example, tmshutdown -R -g GROUP1).

You must specify an alternate location in the LMID parameter (for the server group
being migrated) in the GROUPS section of the UBBCONFIG file. Servers in the group
must specify RESTART=Y and the MIGRATE option must be specified in the RESOURCES
section of the UBBCONFIG file.

If transactions are being logged for the server involved in a group migration, you
need to move the TLOG to the backup machine, load it, and perform a warm start.

Migrating a Server GroupWhen the Alternate Machine Is

Accessible from the Primary Machine

To migrate a server group when the alternate machine is accessible from the pri
machine, complete the following steps.

Use This Command To

migrategroup(migg) Migrate servers in a group to their alternate location

migratemach(migm) Migrate servers by using LMIDs
15-4 Administering the BEA TUXEDO System

Migrating a Server Group

rst
cond
1. Call tmshutdown (1) from the master machine with the -R and -g (group_name)
options.

2. Run tmadmin (1) from the master machine.

3. Call the migrategroup (migg) command with group_name as the argument.

4. Migrate the transaction log, if necessary.

5. Migrate the application data, if necessary.

Migrating a Server GroupWhen the AlternateMachine Is

Not Accessible from the Primary Machine

To migrate a server group when the alternate machine is not accessible from the
primary machine, complete the following steps.

1. Switch the master and backup machines, if necessary.

2. Run tmadmin (1) from the alternate machine.

3. Call the pclean (pcl) command with the primary machine as the argument.

4. Call the migrategroup (migg) command with group_name as the argument.

5. Call the tmboot (1) command to boot the server group.

Examples: Migrating a Server Group

Listing 15-3 and Listing 15-4 show how you can migrate a server group. In the fi
example, the alternate machine is accessible from the primary machine. In the se
example, the alternate machine is not accessible from the primary machine.

Listing 15-3 When the Alternate Machine Is Accessible from the Primary
Machine

$ tmshutdown -R -g GROUP1
Shutting down server processes...
Administering the BEA TUXEDO System 15-5

15 Migrating Applications

ance

ation
Server ID = 1 Group ID = GROUP1 machine = SITE1: shutdown succeeded
1 process stopped.
$ tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL.
> migg GROUP1
migg successfully completed
> q

Listing 15-4 When the Alternate Machine Is Not Accessible from the Primary
Machine

$ tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL.
> pclean SITE1
Cleaning the DBBL.
Pausing 10 seconds waiting for system to stabilize.
3 SITE1 servers removed from bulletin board
> migg GROUP1
migg successfully completed.
> boot -g GROUP1
Booting server processes ...
exec simpserv -A :
on SITE2 -> process id=22699 ... Started.
1 process started.
> q

Migrating Machines

Use the tmadmin (1) migratemach (migm) command to migrate all server groups from
one machine to another when the primary machine must be shut down for mainten
or when the primary machine is no longer accessible.

The command takes one logical machine identifier as an argument. The LMID names
the processor on which the server group(s) have been running. The alternate loc
must be the same for all server groups on the LMID. Servers on the LMID must specify
15-6 Administering the BEA TUXEDO System

Migrating Machines

ble.

y

mary
RESTART=Y and the MIGRATE options must be specified in the RESOURCES section of
the UBBCONFIG file. You must first shut down the server groups with the

tmshutdown (1) -R option, and servers in the groups must be marked as restarta

Migrating Machines When the Alternate Machine Is

Accessible from the Primary Machine

To migrate a machine when the alternate machine is accessible from the primar
machine, complete the following steps.

1. Call tmshutdown (1) from the master machine with the -R and -l
(primary_machine) options.

2. Run tmadmin (1) from the master machine.

3. Call the migratemach (migm) command with primary_machine as the
argument.

4. Migrate the transaction log, if necessary.

5. Migrate the application data, if necessary.

Migrating Machines When the Alternate Machine Is Not

Accessible from the Primary Machine

To migrate a machine when the alternate machine is not accessible from the pri
machine, complete the following steps.

1. Switch the master and backup machines if necessary.

2. Run tmadmin (1) from the alternate machine.

3. Call the pclean (pcl) command with primary_machine as the argument.

4. Call the migratemach (migm) command with primary_machine as the
argument.

5. Call the boot (b) command to boot the server groups.
Administering the BEA TUXEDO System 15-7

15 Migrating Applications

first
cond
Examples: Migrating a Machine

Listing 15-5 and Listing 15-6 illustrate how you can migrate server groups. In the
example, the alternate machine is accessible from the primary machine. In the se
example, the alternate machine is not accessible from the primary machine.

Listing 15-5 When the Alternate Machine Is Accessible from the Primary
Machine

$ tmshutdown -R -l SITE1
Shutting down server processes...
Server ID = 1 Group ID = GROUP1 machine = SITE1: shutdown
succeeded 1 process stopped.
$ tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL.
> migm SITE1
migm successfully completed
> q

Listing 15-6 When the Alternate Machine Is Not Accessible from the Primary
Machine

$ tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL.
>pclean SITE1
Cleaning the DBBL.
Pausing 10 seconds waiting for system to stabilize.
3 SITE1 servers removed from bulletin board
> migm SITE1
migm successfully completed.
> boot -l SITE1
Booting server processes ...
exec simpserv -A :
on SITE2 -- process id=22782 ... Started.
1 process started.
>q
15-8 Administering the BEA TUXEDO System

Canceling a Migration

t

en
Canceling a Migration

You can cancel a migration after a shutdown occurs, but before using the migrate
command, by using the -cancel option with the migrate command.

You can cancel a migration in the following ways:

� By using the tmadmin (1) migrategroup (migg) -cancel command to cancel a
server migration. Server entries are deleted from the Bulletin Board. You mus
reboot the servers once the migration procedure is canceled.

� By using the tmadmin (1) migratemach (migm) -cancel command to cancel a
machine migration.

Example: A Migration Cancellation

Listing 15-7 illustrates how a server group and a machine can be migrated betwe
their respective primary and alternate machines.

Listing 15-7 Canceling a Server Group Migration for Server Group GROUP1

$tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL.
> psr -g GROUP1

a.out Name Queue Name Grp Name ID RqDone Ld Done Current Service
---------- ---------- -------- -- ------ ------- ---------------
simpserv 00001.00001 GROUP1 1 - - (DEAD MIGRATING)
> psr -g GROUP1
TMADMIN_CAT:121: No such server
migg -cancel GROUP1
>boot -g GROUP1
Booting server processes...
exec simpserv -A:
on SITE1 ->process id_27636 ... Started. 1 process started.
> psr -g GROUP1

a.out Name Queue Name Grp Name ID RqDone Ld Done Current Service
---------- ---------- -------- -- ------ ------- ---------------
Administering the BEA TUXEDO System 15-9

15 Migrating Applications

.

rites

simpserv 00001.00001 GROUP1 1 - - (-)
> q

Migrating Transaction Logs to a Backup

Machine

To migrate transactions logs to a backup machine, complete the following steps

1. Shut down the servers in all the groups that write to the log to stop additional w
to the log.

2. Dump the TLOG into an ASCII file by running the following command.
dumptlog [-z config] [-o offset] [-n name] [-g groupname]

Note: The TLOG is specified by the config and offset arguments. Offset
defaults to 0 and name defaults to TLOG. If the -g option is chosen, only
those records for which the TMS from groupname is the coordinator are
dumped.

3. Copy filename to the backup machine.

4. Use loadtlog -m machine ASCII_file to read the name of the ASCII file
into the existing TLOG for the specified machine.

5. Use logstart machine to force a warm start of the TLOG.
(The information is read from the TLOG to create an entry in the transaction table
in shared memory.)

6. Migrate the servers to the backup machine.
15-10 Administering the BEA TUXEDO System

CHAPTER

out
e
ervice

ith

stem

rm

16Dynamically Modifying

Systems

The BEA TUXEDO system allows you to make changes to your configuration with
shutting it down. Without inconveniencing your users, you can suspend or resum
interfaces or services, advertise or unadvertise services, and change interface or s
parameters (such as LOAD and PRIORITY). If your configuration specifies interfaces or
services as AUTOTRAN, it is also possible to change the timeout value associated w
such transactions. Thus, you can adjust your system to reflect either current or
expected conditions.

This chapter discusses the following topics:

� Dynamic Modification Methods

� Procedures for Dynamically Modifying Your System

Dynamic Modification Methods

You have a choice of two methods for making changes to your system while the sy
is running:

� The Web-based GUI—a graphical user interface to the commands that perfo
administrative tasks, including dynamic system modification

� The tmadmin command interpreter—a shell-level command with 50
subcommands for performing various administrative tasks, including dynamic
system modification
Administering the BEA TUXEDO System 16-1

16 Dynamically Modifying Systems

n the
en
iled

ugh

vers,

EA
Because it is a graphical user interface, the Web-based GUI is simpler to use tha
tmadmin command interpreter. If you prefer using a GUI, bring it up on your scre
as soon as you are ready to begin an administrative task. The graphics and deta
procedures will guide you through any task you need to perform.

For instructions on using the tmadmin command interpreter, see Chapter 8,
“Monitoring a Running System.”

Instructions for dynamically modifying your system through tmadmin are provided in
this chapter.

Procedures for Dynamically Modifying Your

System

This section provides procedures for making the following types of changes, thro

tmadmin , while your system is running:

� Suspending and resuming services

� Advertising and unadvertising services

� Changing service parameters

� Changing the AUTOTRAN timeout value

Suspending and Resuming Services

This section provides instructions for suspending and resuming services and ser
and describes the results of these operations.

Note: The two commands described in this section have minimal impact on the B
TUXEDO system.
16-2 Administering the BEA TUXEDO System

Procedures for Dynamically Modifying Your System

queue
 group

 that

 that

Suspending Services

To suspend a server or a service, enter the suspend (or susp) command, as follows.

prompt> tmadmin
> susp

The suspend command marks as inactive one of the following:

� One service

� All services of a particular queue

� All services of a particular group ID/server ID combination

After you have suspended a service or a server, any requests remaining on the
are handled, but no new service requests are routed to the suspended server. If a
ID/server ID combination is specified and it is part of an MSSQ set, all servers in
MSSQ set become inactive for the services specified.

Resuming Services

To resume a server or a service, enter the resume (or res) command, as follows.

prompt> tmadmin
> res

The resume command undoes the effect of the suspend command: it marks as active
for the queue one of the following:

� One service

� All services of a particular queue

� All services of a particular group ID/server ID combination

If, in this state, the group ID or the server ID is part of an MSSQ set, all servers in
MSSQ set become active for the services specified.

Advertising and Unadvertising Services

This section provides instructions for advertising and unadvertising services and
servers, and describes the results of these operations.
Administering the BEA TUXEDO System 16-3

16 Dynamically Modifying Systems

u do

y, the

n you
ated

alues
Advertising Services

To advertise a service, enter the following command.

adv [{[-q queue_name] | [-g grpid] [-i srvid]}] service

Note: Although a service must be suspended before it may be unadvertised, yo
not need to “unsuspend” a service before re-advertising it. If you simply
advertise a service that has been suspended and unadvertised previousl
service will be unsuspended.

Unadvertising Services

To unadvertise a service, complete the following procedure.

1. Suspend the service.

2. Enter the following command.

unadv [{[-q queue_name] | [-g grpid] [-i srvid]}] service

Note: Unadvertising has more drastic results than suspending because whe
unadvertise a service, the service table entry for that service is dealloc
and the cleared space in the service table becomes available to other
services.

Changing Service Parameters (BEA TUXEDO System)

You can change the service parameter values for the following:

� A specific group ID/server ID combination

� A specific queue

The following table lists the names of the parameters for which you can change v
dynamically, along with the commands for changing them.

To Change . . . Enter the Following
Command . . .

Load value (LOAD) chl -s service_name
16-4 Administering the BEA TUXEDO System

Procedures for Dynamically Modifying Your System

ified
You must specify a service name (after the -s option) for all three commands.

You can specify this option on either the command line (for the chl , chp , or chtt
command) or on a default subcommand line.

Note: The -s option is listed as optional because the required value may be spec
on the default subcommand line.

Changing the AUTOTRAN Timeout Value

To change the transaction timeout (TRANTIME) of an interface or service with the
AUTOTRAN flag set, run the changetrantime (chtt) command, as follows.

chtt [-m machine] {-q qaddress [-g groupname] [-i srvid] |-g\
groupname -i srvid } -s service newtlim

Note: Transaction timeouts begun by application clients using tpbegin() or
tx_set_transaction_timeout() cannot be changed.

Dequeueing priority (PRIO) chp -s service_name

Transaction timeout value chtt -s service_name

To Change . . . Enter the Following
Command . . .
Administering the BEA TUXEDO System 16-5

16 Dynamically Modifying Systems
16-6 Administering the BEA TUXEDO System

CHAPTER

ut
17Dynamically

Reconfiguring
Applications

This chapter presents the following topics:

� Introduction to Dynamic Reconfiguration

� Overview of the tmconfig Command Interpreter

� General Instructions for Running tmconfig

� Procedures

� Final Advice About Dynamic Reconfiguration

Introduction to Dynamic Reconfiguration

At times you will want to modify an application’s configuration without having to sh
it down. The BEA TUXEDO system allows you to perform two types of dynamic
reconfiguration of your application. You can do the following:

� Modify existing entries in your configuration file (TUXCONFIG)

� Add components by adding entries for them to your configuration file
Administering the BEA TUXEDO System 17-1

17 Dynamically Reconfiguring Applications

son,
g:

t

e
ks
oose
ic
UI.

GUI

I.

ld
Both types of change are implemented by editing TUXCONFIG. Because TUXCONFIG is
a binary file, however, it cannot be edited through a simple text editor. For this rea
the BEA TUXEDO system provides the following tools for configuration file editin

� The Web-based GUI is a graphical user interface (GUI) to the commands tha
perform administrative tasks, including dynamic system modification.

� The tmconfig command interpreter is a shell-level command with 50
subcommands for performing various administrative tasks, including dynamic
system modification.

The BEA TUXEDO Web-based GUI is a graphical user interface to administrativ
tasks. You always have the choice between doing application administration tas
through this graphical interface or through a command-line interface. You can ch
the working style most familiar and comfortable to you. When it comes to dynam
reconfiguration, however, we recommend using the BEA TUXEDO Web-based G
You will find the dynamic reconfiguration is easier when you use the Web-based
instead of the tmconfig command interpreter.

The BEA TUXEDO Web-based GUI is not described in this document. Full
descriptions of the GUI are available by accessing the Help directly from the GU

If you prefer to work on the command line, run the tmconfig command interpreter.

Note: We recommend that you keep a copy of the tmconfig (1) and ubbconfig (5)
reference pages handy as you read this chapter. The input and output fie
names that correspond to UBBCONFIG parameters and reconfiguration
restrictions are listed in tmconfig (1) and TM_MIB(5) in the BEA TUXEDO
Reference Manual. These reference pages are the final authority on the
semantics, range values, and validations of configuration parameters.

Overview of the tmconfig Command

Interpreter

This section describes the following:

� What tmconfig does
17-2 Administering the BEA TUXEDO System

Overview of the tmconfig Command Interpreter

ers)

� How tmconfig works

What tmconfig Does

The tmconfig command enables you to browse and modify the TUXCONFIG file and
its associated entities, and to add new components (such as machines and serv
while your application is running.

When you modify your configuration file (TUXCONFIG on the MASTER machine),
tmconfig performs the following tasks:

� Updates the TUXCONFIG file on all nodes in the application that are currently
booted

� Propagates the TUXCONFIG file automatically to new machines as they are
booted.

The tmconfig command runs as a BEA TUXEDO system client.

Implications of Running as a Client

Keep in mind the following implications of the fact that tmconfig runs as a BEA
TUXEDO system client:

� tmconfig fails if it cannot allocate a TPINIT typed buffer.

� The username associated with the client is the login name of the user.
(tmconfig fails if the user’s login name cannot be determined.)

� For a secure application (that is, an application for which the SECURITY
parameter has been set in the UBBCONFIG file), tmconfig prompts for the
application password. If the application password is not provided, tmconfig
fails.

� If tmconfig cannot register as a client, an error message containing tperrno is
displayed and tmconfig exits. If this happens, check the user log to determine
the cause. The most likely causes for this type of failure are:

� The TUXCONFIG environment variable was not set correctly.

� The system was not booted on the machine on which tmconfig is being run.
Administering the BEA TUXEDO System 17-3

17 Dynamically Reconfiguring Applications

ies
isplay

 (by
(by

� tmconfig ignores all unsolicited messages.

� The client name for the tmconfig process that is displayed in the output from

printclient (a tmadmin command) will be tpsysadm .

How tmconfig Works

When you type tmconfig on a command line, you are launching the display of a ser
of menus and prompts through which you can request an operation (such as the d
or modification of a configuration file entry). tmconfig collects your menu choices,
performs the requested operation, and prompts you to request another operation
making another set of menu choices). It repeatedly offers to perform operations
repeatedly displaying the menus) until you exit the tmconfig session by selecting
QUIT from a menu.

Listing 17-1 shows the menus and prompts that are displayed once you enter the
tmconfig command, thus launching the session.

Note: The lines in the listing have been numbered in this example for your
convenience; during an actual tmconfig session, these numbers are not
displayed.

Listing 17-1 Menus and Prompts Displayed in a tmconfig Session

1 $ tmconfig
2 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
3 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
4 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:
5
6 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
7 6) CLEAR BUFFER 7) QUIT [1]:
8 Enter editor to add/modify fields [n]?
9 Perform operation [y]?

As shown here, you are asked to answer four questions:

� In which section of the configuration file do you want to view or modify an
entry?
17-4 Administering the BEA TUXEDO System

Overview of the tmconfig Command Interpreter

on

ch.

s for

mple,

r

r
� For the section of the configuration file you have just specified, which operati
do you want tmconfig to perform?

� Do you want to enter a text editor now?

� Do you want tmconfig to perform the requested operation now?

This section discusses these four questions and defines possible answers to ea

Sections of the Configuration File

When you start a tmconfig session, the following menu of sections (of TUXCONFIG,
the configuration file) is displayed.

Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:

Note: For details about these sections (including a list of configurable parameter
each section), see the ubbconfig (5) reference page in the BEA TUXEDO
Reference Manual.

To select a section, enter the appropriate number after the menu prompt. For exa
to select the MACHINES section, enter 2, as follows.

10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]: 2

The default selection is the RESOURCES section, in which parameters that apply to you
entire application are defined. To accept the default selection, simply press ENTER after
the menu and colon (:) prompt.

10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:

tmconfig Operations

Next, a menu of operations that tmconfig can perform is displayed.

Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
 6) CLEAR BUFFER 7) QUIT [1]:

To select an operation, enter the appropriate number after the menu prompt. Fo
example, to select the UPDATE section, enter 5, as follows.

6) CLEAR BUFFER 7) QUIT [1]: 5
Administering the BEA TUXEDO System 17-5

17 Dynamically Reconfiguring Applications

 of

e

.

n

Table 17-1 defines each operation.

Table 17-1 tmconfig Operations

Operation
Number . . .

Called . . . Performs the Following . . .

1 FIRST Displays the first record from the specified section. No key fields are
needed (they are ignored if they are in the input buffer).

Using the FIRST operation can reduce the amount of typing that is
needed. When adding a new entry to a section, instead of typing in all
the parameter names and values, use the FIRST operation to retrieve an
existing entry for the UBBCONFIG section. Then, select the ADD
operation and use the text editor to modify the parameter values.

2 NEXT Displays the next record from the specified section, based on the key
fields in the input buffer.

3 RETRIEVE Displays the record (requested with the appropriate key field(s)) from th
specified section.

4 ADD Adds the indicated record in the specified section. Any fields not
specified (unless required) take the default values specified in
ubbconfig (5). (All default values and validations used by
tmloadcf (1) are enforced.) The current value for all fields is returned
in the output buffer. This operation can be done only by the BEA
TUXEDO system administrator.

5 UPDATE Updates the record specified in the input buffer in the selected section
Any fields not specified in the input buffer remain unchanged. (All
default values and validations used by tmloadcf (1) are enforced.) The
current values for all fields are returned in the input buffer. This operatio
can be done only by the BEA TUXEDO system administrator.

6 CLEAR BUFFER Clears the input buffer (all fields are deleted). After this operation,
tmconfig immediately prompts for the section again.

7 QUIT Exits tmconfig gracefully (that is, the client is terminated). A value of
q for any prompt allows you to exit tmconfig .
17-6 Administering the BEA TUXEDO System

Overview of the tmconfig Command Interpreter

tents

ge is

ge

 of
Output from tmconfig Operations

After tmconfig has executed an operation, the results (a return value and the con
of the output buffer) are displayed on the screen.

� If the operation was successful but no update was done, the following messa
displayed.

Return value TAOK

Following is the message in the TA_STATUS field.

Operation completed successfully.

� If the operation was successful and an update was done, the following messa
is displayed.

Return value TAUPDATED

Following is the message in the TA_STATUS field.

Update completed successfully.

� If the operation failed, an error message is displayed:

� If there is a problem with permissions or a BEA TUXEDO system
communications error (rather than with the configuration parameters), one
the following return values is displayed: TAEPERM, TAEOS, TAESYSTEM, or
TAETIME.

� If there is a problem with a configuration parameter of the running
application, the name of that parameter is displayed as the value of the
TA_BADFLDNAME file, and the problem is indicated in the value of the
TA_STATUS field in the output buffer. If this type of problem occurs, one of
the following return values is displayed: TAERANGE, TAEINCONSIS,
TAECONFIG, TAEDUPLICATE, TAENOTFOUND, TAEREQUIRED, TAESIZE,
TAEUPDATE, or TAENOSPACE.

The following list describes the conditions indicated by both sets of error
messages.

TAEPERM
The UPDATE or ADD operation was selected but tmconfig is not being run by
the BEA TUXEDO system administrator.
Administering the BEA TUXEDO System 17-7

17 Dynamically Reconfiguring Applications

r is

eing

le,

ce in
 TAESYSTEM

A BEA TUXEDO system error has occurred. The exact nature of the erro
recorded in userlog (3c).

TAEOS
An operating system error has occurred. The exact nature of the error is
written to userlog (3c).

TAETIME
A blocking timeout has occurred. The input buffer is not updated so no
information is returned for retrieval operations. The status of update
operations can be checked by doing a retrieval on the record that was b
updated.

TAERANGE

A field value is either out of range or invalid.

TAEINCONSIS

A field value (or set of field values) is inconsistently specified. For examp
an existing RQADDR value may be specified for a different SRVGRP and
SERVERNAME.

TAECONFIG
An error occurred while the TUXCONFIG file was being read.

TAEDUPLICATE
The operation attempted to add a duplicate record.

TAENOTFOUND
The record specified for the operation was not found.

TAEREQUIRED
A field value is required but is not present.

TAESIZE
A field value for a string field is too long.

TAEUPDATE
The operation attempted to do an update that is not allowed.

TAENOSPACE
The operation attempted to do an update but there was not enough spa
the TUXCONFIG file and/or the Bulletin Board.
17-8 Administering the BEA TUXEDO System

General Instructions for Running tmconfig

nd
nt to
sure

ies

e

m
General Instructions for Running tmconfig

This section explains how to do the following:

� Set up your environment properly before starting a tmconfig session

� Walk through a tmconfig session

Preparing to Run tmconfig

Before you can start a tmconfig session, you must have the required permissions a
set the required environment variables. For your convenience, you may also wa
select a text editor other than the default. Complete the following procedure to en
you have set up your working environment properly before running tmconfig .

1. Log in as the BEA TUXEDO application administrator if you want to add entr
to TUXCONFIG, or to modify existing entries. (If you want to view existing
configuration file entries without changing or adding to them, this step is not
necessary.)

2. Assign values to two mandatory environment variables: TUXCONFIG and TUXDIR.

a. The value of TUXCONFIG must be the path name and binary configuration fil
name on the machine on which tmconfig is being run.

b. The value of TUXDIR must be the root directory for the BEA TUXEDO system
binary files. (tmconfig must be able to extract field names and identifiers fro
$TUXDIR/udataobj/tpadmin .)

3. You may also set the EDITOR environment variable; doing so is optional. The
value of EDITOR must be the name of the text editor you want to use when
changing parameter values; the default value is ed (a command-line editor).

Note: Many full-screen editors do not function properly unless the TERM
environment variable has also been set.
Administering the BEA TUXEDO System 17-9

17 Dynamically Reconfiguring Applications

tion.

t a
ons

ion

d
 By

Running tmconfig: A High-level Walk-through

This section provides a walk-through of a generic tmconfig session in which you
modify entries in your configuration file.

1. Enter tmconfig after a shell prompt.

$ tmconfig

Note: You can end a session at any time by entering q (short for quit) after the
Section menu prompt.

A menu of sections in the TMCONFIG file is displayed.

Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:

2. Select the section that you want to change by entering the appropriate menu
number, such as 2 for the MACHINES section. The default choice is the
RESOURCES section, represented by [1] at the end of the list of sections shown in
Step 1. If you specify a section (instead of accepting the default), that section
becomes the new default choice and remains so until you specify another sec

A menu of possible operations is displayed.

Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
 6) CLEAR BUFFER 7) QUIT [1]: 1

Note: Each operation listed here is available to be performed on one entry a
time of one section of the configuration file. The names of most operati
(FIRST and NEXT) are self-explanatory. When you select FIRST , you are
asking to have the first entry (in the specified section of the configurat
file) displayed on the screen. When you select NEXT, you are asking to have
the contents of the buffer replaced by the second entry in the specifie
section, and to have the new buffer contents displayed on the screen.
repeatedly choosing NEXT, you can view all the entries in a given section
of the configuration file in the order in which they are listed.

3. Select the operation that you want to have performed.

The default choice is the UPDATE operation, represented by [1] at the end of the
list of operations shown in Step 2.

A prompt is displayed, asking whether you want to enter a text editor to start
making changes to the TMCONFIG section you specified in Step 2.
17-10 Administering the BEA TUXEDO System

General Instructions for Running tmconfig

 of

r

h

2.)
Enter editor to add/modify fields [n]?

4. Select y or n (for yes or no, respectively). The default choice (shown at the end
the prompt) is [n] .

If you select yes (y), the specified editor is invoked and you can start adding o
changing fields. The format of each field is

field_name <tabs>field_value

where the name and value of the field are separated by one or more tabs.

In most cases, the field name is the same as the KEYWORD in the UBBCONFIG file,
prefixed with TA_.

Note: For details about valid input, see the following section (“Input Buffer
Considerations”). For descriptions of the field names associated with eac
section of UBBCONFIG, see the TM_MIB(5) reference page in the BEA TUXEDO
Reference Manual.

When you finish editing the input buffer, tmconfig reads it. If any errors occur,
a syntax error is displayed and tmconfig prompts you to decide whether to
correct the problem.

Enter editor to correct?

5. Select n or y.

If you decide not to correct the problem (by selecting n), the input buffer
contains no fields. Otherwise, the editor is executed again.

Once you have finished editing the input buffer, a prompt is displayed, asking
whether you want to have the operation you specified (in Step 3) performed
now.

Perform operation [y]?

6. Select n or y. The default choice (shown at the end of the prompt) is [y].

� If you select no, the menu of sections is displayed again. (Return to Step

� If you select yes, tmconfig executes the requested operation and displays
the following confirmation message.

Return value TAOK

The results of the operation are displayed on the screen.
Administering the BEA TUXEDO System 17-11

17 Dynamically Reconfiguring Applications

ou

 is

r of

ue
d

ce

ield

You have completed an operation on one section of TMCONFIG; you may now
start another operation on the same section or on another section. To allow y
to start a new operation, tmconfig displays, again, the menu of TMCONFIG

sections (as shown in Step 1).

Note: All output buffer fields are available in the input buffer unless the buffer
cleared.

7. Continue your tmconfig session (by requesting more operations) or quit the
session.

� To continue requesting operations, return to Step 2.

� To end your tmconfig session, select QUIT from the menu of operations
(shown in Step 3).

8. After you end your tmconfig session, you are given a chance to make an
ASCII-format backup copy of your newly modified TUXCONFIG file. In the
following example, the administrator chooses the default response to the offe
a backup (yes) and overrides the default name of the backup file (UBBCONFIG) by
specifying another name (backup).

Unload TUXCONFIG file into ASCII backup [y]?
Backup filename [UBBCONFIG]? backup
Configuration backed up in backup

Input Buffer Considerations

The following considerations apply to the input buffer used with tmconfig :

� If the value of a field you are typing extends beyond one line, you may contin
it on the next line if you insert one or more tabs at the beginning of the secon
line. (The tab characters are dropped when your input is read into tmconfig .)

� An empty line consisting of a single newline character is ignored.

� If more than one line is provided for a particular field name, the first occurren
is used and other occurrences are ignored.

� To enter an unprintable character as part of the value of a field, or to start a f
value with a tab, use a backslash followed by the two-character hexadecimal
representation of the desired character (see the ASCII (5) reference page in a
UNIX system reference manual). Here are a few examples:
17-12 Administering the BEA TUXEDO System

Procedures

by
� To insert a blank space, type “\20”.

� To insert a backslash, type “\\”.

Procedures

This section provides procedures for dynamically reconfiguring your application
making the following changes:

� Adding a new machine

� Adding a server to a running application

� Activating a newly configured server

� Adding a new group

� Changing the factory-based routing for an interface

� Changing the data-dependent routing (DDR) for the application

� Changing application-wide parameters

� Changing the application password

Adding a New Machine

Complete the following steps to add a new machine.

1. Start a tmconfig session.

2. Specify the MACHINE section of the configuration file (choice #2 in the list).

3. Request the FIRST operation; that is, request a display of the first entry in the
MACHINE section. (This operation is the default choice; press ENTER to select it.)

4. Request the ADD operation (choice #4 in the list).

5. Specify new values for four key fields:
Administering the BEA TUXEDO System 17-13

17 Dynamically Reconfiguring Applications
� TLOG

� TA_LMID

� TA_TYPE

� TA_PMID

Listing 17-2 illustrates a tmconfig session in which a machine is being added.

Listing 17-2 Adding a Machine

$ tmconfig
Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]: 2
Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
 6) CLEAR BUFFER 7) QUIT [1]:
Enter editor to add/modify fields [n]?
Perform operation [y]?
Return value TAOK
Buffer contents:
TA_OPERATION 4
TA_SECTION 1
TA_OCCURS 1
TA_PERM 432
TA_MAXACCESSERS 40
TA_MAXGTT 20
TA_MAXCONV 10
TA_MAXWSCLIENTS 0
TA_TLOGSIZE 100
TA_UID 4196
TA_GID 601
TA_TLOGOFFSET 0
TA_TUXOFFSET 0
TA_STATUS LIBTUX_CAT:1137: Operation completed successfully
TA_PMID mchn1
TA_LMID SITE1
TA_TUXCONFIG /home/apps/bank/tuxconfig
TA_TUXDIR /home/tuxroot
TA_STATE ACTIVE
TA_APPDIR /home/apps/bank
TA_TYPE 3B2
TA_TLOGDEVICE /home/apps/bank/TLOG
TA_TLOGNAME TLOG
TA_ULOGPFX /home/apps/bank/ULOG
TA_ENVFILE /home/apps/bank/ENVFILE
Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
17-14 Administering the BEA TUXEDO System

Procedures
 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
 10) NETGROUPS 11) NETMAPS 12) INTERFACES [2]:
Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
 6) CLEAR BUFFER 7) QUIT [1]: 4
Enter editor to add/modify fields [n]? y
491
g/home/s//usr/p
TA_TUXCONFIG /usr/apps/bank/tuxconfig
TA_TUXDIR /usr/tuxroot
TA_APPDIR /usr/apps/bank
TA_TLOGDEVICE /usr/apps/bank/TLOG
TA_ULOGPFX /usr/apps/bank/ULOG
TA_ENVFILE /usr/apps/bank/ENVFILE
g/TLOG/d
/SITE1/s//SITE3/p
TA_LMID SITE3
/3B2/s//SPARC/p
TA_TYPE SPARC
/mchn1/s//mchn2/p
TA_PMID mchn2
w
412
q
Perform operation [y]?
Return value TAUPDATED
Buffer contents:
TA_OPERATION 2
TA_SECTION 1
TA_OCCURS 1
TA_PERM 432
TA_MAXACCESSERS 40
TA_MAXGTT 20
TA_MAXCONV 10
TA_MAXWSCLIENTS 0
TA_TLOGSIZE 100
TA_UID 4196
TA_GID 601
TA_TLOGOFFSET 0
TA_TUXOFFSET 0
TA_STATUS LIBTUX_CAT:1136: Update completed successfully
TA_PMID mchn2
TA_LMID SITE3
TA_TUXCONFIG /usr/apps/bank/tuxconfig
TA_TUXDIR /usr/tuxroot
TA_STATE NEW
TA_APPDIR /usr/apps/bank
TA_TYPE SPARC
TA_TLOGDEVICE
TA_TLOGNAME TLOG
Administering the BEA TUXEDO System 17-15

17 Dynamically Reconfiguring Applications
TA_ULOGPFX /usr/apps/bank/ULOG
TA_ENVFILE /usr/apps/bank/ENVFILE

Adding a Server

Complete the following steps to add a server.

1. Start a tmconfig session.

2. Specify the SERVERS section of the configuration file (choice #4 in the list).

3. Request the CLEAR BUFFER operation (choice #6 in the list).

4. Request the ADD operation (choice #4 in the list).

5. Enter the text editor.

6. Specify new values for three key fields:

� TA_SERVERNAME

� TA_SRVGRP

� TA_SRVID

Listing 17-3 illustrates a tmconfig session in which a server is added.

Listing 17-3 Adding a Server

Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]: 4
Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
 6) CLEAR BUFFER 7) QUIT [4]: 6
Buffer cleared
Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
 10) NETGROUPS 11) NETMAPS 12) INTERFACES [4]:
Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
 6) CLEAR BUFFER 7) QUIT [6]: 4
Enter editor to add/modify fields [n]? y
1
c

17-16 Administering the BEA TUXEDO System

Procedures
TA_SERVERNAME XFER
TA_SRVGRP BANKB1
TA_SRVID 5
.
w
28
q
Perform operation [y]?
Return value TAOK
Buffer contents:
TA_OPERATION 3
TA_SECTION 3
TA_OCCURS 1
TA_SRVID 5
TA_SEQUENCE 0
TA_MIN 1
TA_MAX 1
TA_RQPERM 432
TA_RPPERM 432
TA_MAXGEN 5
TA_GRACE 86400
TA_STATUS LIBTUX_CAT:1137: Operation completed successfully
TA_SYSTEM_ACCESS FASTPATH
TA_ENVFILE
TA_SRVGRP BANKB1
TA_SERVERNAME XFER
TA_CLOPT -A
TA_CONV N
TA_RQADDR
TA_REPLYQ Y
TA_RCMD
TA_RESTART Y

Activating a Newly Configured Server

Complete the following steps to add a newly configured server.

1. Start a tmconfig session.

2. Select the MACHINES section.

3. Using the FIRST and NEXT operations, select the entry for which you want to
change the state from NEW to ACTIVE.
Administering the BEA TUXEDO System 17-17

17 Dynamically Reconfiguring Applications

iew
4. Select the UPDATE operation (choice #5 in the list).

5. Enter y (for ‘‘yes’’) when prompted to say whether you want to start editing.

6. Change the value of the TA_STATE field from NEW to ACTIVE.

7. tmconfig displays the revised entry for the specified machine so you can rev
your change (and, if necessary, edit it).

8. If the revised entry is acceptable, select QUIT (choice #6 in the list) to end the
tmconfig session.

Adding a New Group

Complete the following steps to add a group.

1. Start a tmconfig session.

2. Select the GROUPS section of the configuration file (choice #3 in the list).

3. Request the CLEAR BUFFER operation (choice #6 in the list).

4. Request the ADD operation (choice #4 in the list).

5. Enter y (for ‘‘yes’’) when prompted to say whether you want to start editing.

6. Specify new values for three key fields:

� TA_LMID

� TA_SRVGRP

� TA_GRPNO

Listing 17-4 illustrates a tmconfig session in which a group is added.

Listing 17-4 Adding a Group

Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]: 3
Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
 6) CLEAR BUFFER 7) QUIT [4]: 6
Buffer cleared
17-18 Administering the BEA TUXEDO System

Procedures
Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
 10) NETGROUPS 11) NETMAPS 12) INTERFACES [3]:
Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
 6) CLEAR BUFFER 7) QUIT [6]: 4
Enter editor to add/modify fields [n]? y
1
c
TA_LMID SITE3
TA_SRVGRP GROUP3
TA_GRPNO 3
.
w
42
q
Perform operation [y]?
Return value TAUPDATED
Buffer contents:
TA_OPERATION 2
TA_SECTION 2
TA_OCCURS 1
TA_GRPNO 3
TA_TMSCOUNT 0
TA_STATUS LIBTUX_CAT:1136: Update completed successfully
TA_LMID SITE3
TA_SRVGRP GROUP3
TA_TMSNAME
TA_OPENINFO
TA_CLOSEINFO
Administering the BEA TUXEDO System 17-19

17 Dynamically Reconfiguring Applications

ation.

n of

 in
.

Changing the Data-dependent Routing (DDR) for the
Application

Complete the following steps to change the data-dependent routing for an applic

1. Start a tmconfig session.

2. Select the ROUTING section of the configuration file (choice #7 in the list).

3. Using the FIRST and NEXT operations, select the entry for which you want to
change the DDR.

4. Select the UPDATE operation.

5. Enter y (for ‘‘yes’’) when prompted to say whether you want to start editing.

Do you want to edit(n)? y

6. Change the relevant fields to values such as those shown in the middle colum
the following table.

:

The value of the TA_RANGES field is the routing criterion. If the value of
account_ID is between 1 and 10 (inclusive), requests are sent to the servers
group 1. Otherwise, requests are sent to any other server in the configuration

Note: For details, see the tmconfig (1) reference page in the BEA TUXEDO
Reference Manual.

Field Sample Value Meaning

TA_ROUTINGNAME account_routing Name of the routing section

TA_BUFTYPE FML Buffer type

TA_FIELD account_ID The value of this field is subject to the criterion
(specified in the TA_RANGES field); that is, the
value of this field determines the routing result.

TA_RANGES 1-10:group1,*:* The routing criterion being used.
17-20 Administering the BEA TUXEDO System

Procedures

s, and

re.

cept

it.
Changing Application-wide Parameters

Some run-time parameters are relevant to all the components (machines, server
so on) of your configuration. These parameters are listed in the RESOURCES section of
the configuration file.

An easy way to familiarize yourself with the parameters in the RESOURCES section is
to display the first entry in that section. To do so, complete the following procedu

1. Start a tmconfig session.

2. Select the RESOURCES section of the configuration file. (The RESOURCES section,
choice #1 on the menu of configuration file sections, is the default selection.)

3. Using the FIRST and NEXT operations, select the entry that you want to display.
(Because the first entry is the default selection, in this case you can simply ac
the default.)

4. Select the FIRST operation (the default selection).

5. Respond “no” (by accepting the default) when asked whether you want to ed

Do you want to edit(n)?

6. Respond “yes” (by accepting the default) when asked whether you want the
specified operation (FIRST) to be performed.

Perform operation [y]?

Listing 17-5 illustrates a tmconfig session in which the first entry in the RESOURCES
section is displayed.

Listing 17-5 Displaying the First Entry in the RESOURCES Section

Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:
Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
 6) CLEAR BUFFER 7) QUIT [1]: 1
Enter editor to add/modify fields [n]?
Perform operation [y]?
Return value TAOK
Buffer contents:
TA_OPERATION 1
Administering the BEA TUXEDO System 17-21

17 Dynamically Reconfiguring Applications
TA_SECTION 0
TA_STATUS Operation completed successfully
TA_OCCURS 1
TA_PERM 432
TA_BBLQUERY 30
TA_BLOCKTIME 6
TA_DBBLWAIT 2
TA_GID 10
TA_IPCKEY 80997
TA_LICMAXUSERS 1000000
TA_MAXACCESSERS 100
TA_MAXBUFSTYPE 32
TA_MAXBUFTYPE 16
TA_MAXCONV 10
TA_MAXDRT 0
TA_MAXGROUPS 100
TA_MAXGTT 25
TA_MAXMACHINES 256
TA_MAXQUEUES 36
TA_MAXRFT 0
TA_MAXRTDATA 8
TA_MAXSERVERS 36
TA_MAXSERVICES 100
TA_MIBMASK 0
TA_SANITYSCAN 12
TA_SCANUNIT 10
TA_UID 5469
TA_MAXACLGROUPS 16384
TA_MAXNETGROUPS 8
TA_MAXINTERFACES 150
TA_MAXOBJECTS 1000
TA_STATE ACTIVE
TA_AUTHSVC
TA_CMTRET COMPLETE
TA_DOMAINID
TA_LDBAL Y
TA_LICEXPIRE 1998-09-15
TA_LICSERIAL 1234567890
TA_MASTER SITE1
TA_MODEL SHM
TA_NOTIFY DIPIN
TA_OPTIONS
TA_SECURITY NONE
TA_SYSTEM_ACCESS FASTPATH
TA_USIGNAL SIGUSR2
TA_PREFERENCES
TA_COMPONENTS TRANSACTIONS,QUEUE,TDOMAINS,TxRPC,
EVENTS,WEBGUI,WSCOMPRESSION,TDOMCOMPRESSION
17-22 Administering the BEA TUXEDO System

Procedures
Changing an Application Password

Complete the following steps to change an application password.

1. Start a tmconfig session.

2. Select the RESOURCES section (#1, the default choice on the menu of sections).

3. Clear the buffer.

4. Enter (in the buffer):

TA_PASSWORD new_password

wq!

Listing 17-6 illustrates a tmconfig session in which an application password is
changed.

Listing 17-6 Changing an Application Password

Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:
Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
 6) CLEAR BUFFER 7) QUIT [4]: 6
Buffer cleared
Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:
Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
 6) CLEAR BUFFER 7) QUIT [6]: 5
Enter editor to add/modify fields [n]? y
1
c
TA_PASSWORD neptune
.
w
49
q
Perform operation [y]?
Return value TAUPDATED
Buffer contents:
TA_OPERATION 1
TA_SECTION 0
TA_STATUS Operation completed successfully
Administering the BEA TUXEDO System 17-23

17 Dynamically Reconfiguring Applications
TA_OCCURS 1
TA_PERM 432
TA_BBLQUERY 30
TA_BLOCKTIME 6
TA_DBBLWAIT 2
TA_GID 10
TA_IPCKEY 80997
TA_LICMAXUSERS 1000000
TA_MAXACCESSERS 100
TA_MAXBUFSTYPE 32
TA_MAXBUFTYPE 16
TA_MAXCONV 10
TA_MAXDRT 0
TA_MAXGROUPS 100
TA_MAXGTT 25
TA_MAXMACHINES 256
TA_MAXQUEUES 36
TA_MAXRFT 0
TA_MAXRTDATA 8
TA_MAXSERVERS 36
TA_MAXSERVICES 100
TA_MIBMASK 0
TA_SANITYSCAN 12
TA_SCANUNIT 10
TA_UID 5469
TA_MAXACLGROUPS 16384
TA_MAXNETGROUPS 8
TA_MAXINTERFACES 150
TA_MAXOBJECTS 1000
TA_PASSWORD neptune
TA_STATE ACTIVE
TA_AUTHSVC
TA_CMTRET COMPLETE
TA_DOMAINID
TA_LDBAL Y
TA_LICEXPIRE 1998-09-15
TA_LICSERIAL 1234567890
TA_MASTER SITE1
TA_MODEL SHM
TA_NOTIFY DIPIN
TA_OPTIONS
TA_SECURITY NONE
TA_SYSTEM_ACCESS FASTPATH
TA_USIGNAL SIGUSR2
TA_PREFERENCES
TA_COMPONENTS TRANSACTIONS,QUEUE,TDOMAINS,TxRPC,EVENTS,WEBGUI,
 WSCOMPRESSION,TDOMCOMPRESSION
17-24 Administering the BEA TUXEDO System

Final Advice About Dynamic Reconfiguration

e
 is

e

Final Advice About Dynamic

Reconfiguration

Keep in mind the following restrictions. Be careful about setting parameters that
cannot be changed easily.

� Associated with each section is a set of key fields that are used to identify the
record upon which to operate. (For details see the tmconfig (1) reference page
in the BEA TUXEDO Reference Manual.) Key field values cannot be changed
while an application is running. Normally, it is sufficient to add a new entry
(with a new key field value) and use it instead of the old entry. In this case, th
old entry in the configuration is not booted by the administrator; the new entry
used, instead.

� Generally speaking, you cannot update a parameter while the configuration
component associated with it is booted. (For example, you cannot change an
entry in the MACHINES or NETWORK section while the machine associated with
that entry is booted.) Specifically:

� If any server in a group is booted, you cannot change the entry for that
group.

� If a server is booted, you cannot change its name, type (conversational or
not), or parameters related to its message queue. (You can change other
server parameters at any time but your changes will not take effect until th
next time the server is booted.)

� You can change a SERVICES entry at any time but your changes will not take
effect until the next time the service is advertised.

� Updates to the RESOURCES section are restricted by the following conditions.
The UID, GID, PERM, MAXACCESSERS, MAXGTT, and MAXCONV parameters
cannot be updated in the RESOURCES section but can be updated on a
per-machine basis. The IPCKEY, MASTER, MODEL, OPTIONS, USIGNAL,
MAXSERVERS, MAXSERVICES, MAXBUFTYPE, and MAXBUFSTYPE parameters
cannot be changed.

Note: Before shutting down the MASTER machine, make sure to migrate it to the
acting backup machine.
Administering the BEA TUXEDO System 17-25

17 Dynamically Reconfiguring Applications

to

is

ite
he
can

� Be sure to keep track of the section of the configuration file in which you are
working; tmconfig does not warn you if you try to perform an operation that is
wrong for the section currently available in the buffer. For example, if you try
update the ENVFILE parameter (in the MACHINES section) while you are working
in the RESOURCES section, the operation will appear to succeed (that is,
tmconfig will return TAOK), but the change will not appear in your unloaded
UBBCONFIG file. The only way you can be sure that an update has been done
by seeing the TAUPDATED status message displayed.

� With regard to interoperability, updates and additions are not allowed to any s
in an application if a Release 4.1 (R4.1) site is booted. You must shut down t
R4.1 site before updates can be done. When the updates are complete, you
reboot the R4.1 site; the updated TUXCONFIG will be propagated to the R4.1
node automatically.

In a multimachine configuration, always do the following:

� Specify a backup for the MASTER machine, along with the MIGRATE option (even
if application server migration is not anticipated).

� Set MAXSERVERS, MAXSERVICES, and other “MAX” parameters high enough to
allow for sufficient growth. If your application is, initially, a single-machine
configuration but is expected to grow to a multimachine configuration, use the
MP model, specifying the LAN option and a network entry for the initial
machine.

� Set the parameters in the MACHINES section carefully since updating them
requires shutting down the machine (and switching the MASTER to the backup in
the case of the MASTER machine).
17-26 Administering the BEA TUXEDO System

CHAPTER

ple

I to
emo
18Event Broker/Monitor

The BEA TUXEDO Event Broker/Monitor is a tool that enhances the tracking of
events in a running application. It extends the usefulness of the USERLOG (in which the
BEA TUXEDO system records system events) by providing the following:

� A system-wide summary of events

� A tool that lets you set up various types of automatic notification when certain
events occur

The BEA TUXEDO Event Broker/Monitor is built on the AdminAPI, the
administrative programming interface to the BEA TUXEDO system. It is an exam
of administration through programming.

The chapter discusses the following topics:

� Events

� Setting Up Event Detection

� Subscribing to Events

� Application-specific Event Broker/Monitors

� How an Event Broker/Monitor Might Be Deployed

� How the Event Broker/Monitor Works

Note: This chapter demonstrates how you can use the BEA TUXEDO AdminAP
enhance your application. For an actual example that you can run as a d
and copy from, see the bankapp application (distributed with the BEA
TUXEDO system) and the BEA TUXEDO Application Development Guide.
Administering the BEA TUXEDO System 18-1

18 Event Broker/Monitor

 be
trator

nd
verity
to the

sers
Events

An event is a change in a component of a running application. This change may
harmless or it may cause a problem that requires work by the operator or adminis
(and, in some cases, particular software) to be resolved.

Event Classifications

The BEA TUXEDO Event Monitor keeps track of events in a running application a
classifies them on the basis of severity. The Event Monitor uses the same three se
classifications used by the BEA TUXEDO system to sort system messages sent
USERLOG: information (INFO), warnings (WARN), and errors (ERROR).

� An INFO event is one of the following:

� A state change of a process

� The detection of a configuration change

� A WARN event is a configuration change that threatens the performance of the
application.

� An ERROR event is an abnormal occurrence, such as:

� A server dying

� A network connection being dropped

List of Events

Events affecting objects in the classes defined in TM_MIB(5) are tracked. The list is
published in EVENTS(5).

The designers of an Event Broker/Monitor need to decide which events to track. U
of the system need to know the list of events being tracked.
18-2 Administering the BEA TUXEDO System

Setting Up Event Detection

,
kes
e
n the

o a
Setting Up Event Detection

You can set the BEA TUXEDO system event detection logic to do two things:

� Post messages to a UNIX error message log (syslogd)

� Post events to the BEA TUXEDO event server

To activate event detection logic, set and export TMSYSLOGD_FACILITY to a numeric
value from 0 to 7.

For details, see syslogd (3c) in a UNIX system reference manual.

Subscribing to Events

Clients subscribe to events by calls to tpsubscribe (3c). A call to tpsubscribe has
a required argument, eventexpr , that points to a wildcard string. This string, in turn
identifies the events about which the user wants to know. The wildcard string ma
use of the syntax described in recomp (3c) to apply the subscription to more than on
type of event. The wildcard string is used to match the message distributed whe
event is detected.

In the BEA TUXEDO System Monitor the message includes the severity level, s
user can subscribe accordingly. Here are two examples:

� A user who wants to be notified of all events related to BEA TUXEDO
networking sets the value of eventexpr to the following.

\.SysNetwork.*

� A user who wants to subscribe to all events with a severity level of ERROR sets
the value of eventexpr to the following.

\.*(ERR|err)\.*
Administering the BEA TUXEDO System 18-3

18 Event Broker/Monitor

s, it

on
ent is
criber
table
utine

n

e
certain
awal

he
ers
ribes
ed
When a client leaves an application (by calling tpterm) all of its subscriptions are
“canceled.” If the client later rejoins the application and wants those subscription
must subscribe again. A well-behaved client unsubscribes before calling tpterm . A
client that accepts notification via unsolicited messages should issue a
tpunsubscribe (3c) call before leaving the application.

Another argument of the tpsubscribe call (in addition to eventexpr) is a pointer to
a structure of type TPEVCTL (defined in atmi.h). Through the use of the TPEVCTL
structure (or non-use, if the argument is NULL), the user can select the notificati
method to be used for sending information about subscribed events. If the argum
NULL, the event broker sends an unsolicited message to the subscriber. The subs
can alternatively elect to have the notification sent to a service or to a queue in s
storage. If a client wants to enter such a subscription, it must invoke a service ro
to subscribe on its behalf.

As a BEA TUXEDO system administrator, you can enter subscription requests o
behalf of a client or server process through calls to the EVENT_MIB(5). You may also
use two notification methods that are specified in entries in the EVENT_MIB (besides
the three available in tpsubscribe):

� A command can be invoked via the UNIX system (2) command.

� A message can be sent to the userlog .

Application-specific Event Broker/Monitors

By “application-specific Event Broker/Monitor” we mean a monitor customized to
recognize events generated by application code. For example, a stock brokerag
system could be programmed to post an event when a stock trades at or above a
price. A banking application might be programmed to post an event when a withdr
or deposit above a specified amount is detected.

The function of an application-specific Event Broker/Monitor is similar to that of t
BEA TUXEDO System Event Broker/Monitor: when an event is posted, subscrib
are notified (or an action specified by the subscriber is initiated). This section desc
the same three areas that were described above, pointing out how the customiz
monitor resembles and differs from the BEA TUXEDO system monitor.
18-4 Administering the BEA TUXEDO System

Application-specific Event Broker/Monitors

nt

e.

est

n

, see

ers
vents
h a

ch

sed as

to
 the
Events
The real distinction between a System Event Broker/Monitor and an Eve
Broker/Monitor for a specific application is the way events are defined.
System events are defined in advance by the BEA TUXEDO system cod
For an application, designers must select application events to monitor.
Application programs must be written to a) detect when an event of inter
has occurred, and b) post the event to the Event Monitor via tppost .

Event List
There is no difference between the Event Lists generated and used on a
application-specific Event Broker/Monitor and a BEA TUXEDO system
Event Broker/Monitor. The BEA TUXEDO System Event Broker/Monitor
makes a list of monitored events available to interested users. (For details
EVENTS(5) in the BEA TUXEDO Reference Manual.) In the same way, when
an application-specific Event Broker/Monitor is being used, interested us
should have access to a list of monitored events. The names of system e
begin with a dot (.); application-specific event names may not begin wit
dot (.).

Subscriptions
The process of subscribing to an event in an application-specific Event
Monitor is the same as that of subscribing with the BEA TUXEDO system
Event Monitor. Subscriptions are made by calls to tpsubscribe using the
published list of events, so the application can identify the events to whi
you are subscribing.

Note: For the BEA TUXEDO System Event Monitor, EVENTS(5) lists the notification
message generated by an event, as well as the event name. The event name is u
an argument when tppost is called. Subscribers, on the other hand, can take
advantage of the wildcard capability of regular expressions to make a single call
tpsubscribe to cover a whole category of events. We strongly recommend using
same format for the published event list for an application-specific Event
Monitor/Broker.
Administering the BEA TUXEDO System 18-5

18 Event Broker/Monitor

ndary
tion

on

any

duce

rver
ion

event
e

d of
How an Event Broker/Monitor Might Be

Deployed

The client interfaces with the Event Broker/Monitor through either of two servers
provided by the BEA TUXEDO system:

� TMSYSEVT(5)

� TMUSREVT(5)

These servers introduce the concept of a principal server and zero or more seco
servers. Both types (principal and secondary) process events and trigger notifica
actions.

To install the BEA TUXEDO system Event Broker/Monitor, configure:

� The principal server on the MASTER site

� Whatever secondary servers your installation might need on other machines
your network

With an application-specific Event Broker/Monitor, the primary server may be on
machine other than the MASTER; secondary servers may be located around your
network.

The reason for locating secondary servers on other nodes of your network is to re
the amount of network traffic caused by posting events and by distributing event
notifications to subscribers. The secondary server periodically polls the primary se
to get the latest version of the subscription list, which stores filtering and notificat
rules.

You can configure the polling interval as needed. There may be a perception that
messages are lost during this period between the time at which subscriptions ar
initially added and the time at which all secondary servers are updated. If the
application cannot “lose” messages, the programs must wait, at least until the en
the polling period, before tppost is called for the new event.
18-6 Administering the BEA TUXEDO System

How the Event Broker/Monitor Works

ee

How the Event Broker/Monitor Works

The BEA TUXEDO Event Broker/Monitor is built with the following AdminAPI
components:

� ATMI Extensions—The Event Monitor uses three function calls in the ATMI
library:

� tppost

� tpsubscribe

� tpunsubscribe

These three functions appear in both the C library and the COBOL library. (S
Sections (3c) and (3cbl) in the BEA TUXEDO Reference Manual for details.)

� MIB component—The EVENT_MIB management information base is the control
file in which you can store subscription information and filtering rules. In your
own application, you cannot define new events for the BEA TUXEDO system
Event Broker/Monitor, but you can customize the Event Broker/Monitor to do
the following:

� Track events

� Distribute notifications of special interest to the application
Administering the BEA TUXEDO System 18-7

18 Event Broker/Monitor
18-8 Administering the BEA TUXEDO System

CHAPTER

BEA
m,
ror
 to
19Troubleshooting

Applications

Other chapters of this document discuss many diagnostic tools provided by your
TUXEDO system: commands and log files that help you monitor a running syste
identify potential problems while there is still time to prevent them, and detect er
conditions once they have occurred. This chapter provides additional information
help you identify and recover from various system errors.

This chapter discusses the following topics:

� Distinguishing Between Types of Failures

� Broadcasting Unsolicited Messages

� Performing System File Maintenance

� Repairing Partitioned Networks

� Restoring Failed Machines

� Replacing System Components

� Replacing Application Components

� Cleaning Up and Restarting Servers Manually

� Aborting or Committing Transactions

� Recovering from Failures When Transactions Are Used
Administering the BEA TUXEDO System 19-1

19 Troubleshooting Applications

s
:

e
a

og

Note
ook
Distinguishing Between Types of Failures

The first step in troubleshooting is to determine the area in which the problem ha
occurred. In most applications, you must consider six possible sources of trouble

� Application

� BEA TUXEDO system

� Database management software

� Network

� Operating system

� Hardware

To resolve the trouble in most of these areas, you must work with the appropriat
administrator. If, for example, you determine that the trouble is being caused by
networking problem, you must work with the network administrator.

Determining the Cause of an Application Failure

To detect the source of an application failure, complete the following steps.

1. Check any BEA TUXEDO system warnings and error messages in the user l
(ULOG).

2. Select the messages you think are most likely to reflect the current problem.
the catalog name and the message number of each of those messages and l
them up in the BEA TUXEDO System Message Manual. The document entry
provides:

� Details about the error condition flagged by the message

� Recommendations for actions you can take to recover

3. Check any application warnings and error messages in the ULOG.
19-2 Administering the BEA TUXEDO System

Distinguishing Between Types of Failures

 Such
med,

og

Note
 them
4. Check any warnings and errors generated by application servers and clients.
messages are usually sent to the standard output and standard error files (na
by default stdout and stderr , respectively).

� The stdout and stderr files are located in $APPDIR.

� The stdout and stderr files for your clients and servers may have been
renamed. (You can rename the stdout and stderr files by specifying -e
and -o in the appropriate client and server definitions in your configuration
file. For details, see the servopts (5) reference page in the BEA TUXEDO
Reference Manual.)

5. Look for any core dumps in $APPDIR. Use a debugger such as sdb to get a stack
trace. If you find core dumps, notify the application developer.

6. Check your system activity reports (by running the sar (1) command) to
determine why your system is not functioning properly. Consider the following
possible reasons:

� The system may be running out of memory.

� The kernel might not be tuned correctly.

Determining the Cause of a BEA TUXEDO System Failure

To detect the source of a system failure, complete the following steps:

1. Check any BEA TUXEDO system warnings and error messages in the user l
(ULOG):

� TPEOS messages indicate errors in the operating system.

� TPESYSTEM messages indicate errors in the BEA TUXEDO system.

2. Select the messages you think are most likely to reflect the current problem.
the catalog name and message number of each of those messages and look
up in the BEA TUXEDO System Message Manual. The reference manual entry
provides the following:

� Details about the error condition flagged by the message

� Recommendations for actions you can take to recover

3. Prepare for debugging by completing the following steps:
Administering the BEA TUXEDO System 19-3

19 Troubleshooting Applications

iting

ge in a

e.

orm
� Set the following BEA TUXEDO system environment variables: TMDEBUG,
BRDBG, NWDBG, and WSDBG.

� Compile the BEA TUXEDO system.

Broadcasting Unsolicited Messages

To send an unsolicited message, enter the following command.

broadcast (bcst) [-m machine] [-u usrname] [-c cltname] [text]

By default, the message is sent to all clients. You have the choice, however, of lim
distribution to one of the following recipients:

� One machine (-m machine)

� One client group (-c client_group)

� One user (-u user)

The text may not include more than 80 characters. The system sends the messa
buffer of type STRING. This means that the client’s unsolicited message handling
function (specified by tpsetunsol(0)) must be able to handle a message of this typ
The tptypes() function may be useful in this case.

Performing System File Maintenance

This section provides instructions for the following tasks that you may need to perf
in the course of maintaining your file system:

� Creating a device list

� Destroying a device list

� Reinitializing a device

� Printing the Universal Device List
19-4 Administering the BEA TUXEDO System

Performing System File Maintenance

 with
G.

� Printing VTOC information

Creating a Device List

Complete the following steps to create a device list.

1. Start a tmadmin session.

2. Enter the following command.

crdl [-z devicename] [-b blocks]

� The value of devicename [devindx] is the desired device name. (Another
way to assign a name to a new device is by setting the FSCONFIG
environment variable to the desired device name.)

� The value of blocks is the number of blocks needed. The default value is
1000 pages.

Note: Because 35 blocks are needed for the administrative overhead associated
a TLOG, be sure to assign a value higher than 35 when you create a TLO

Destroying a Device List

To destroy a device list with index devindx , enter the following command.

dsdl [-z devicename] [yes] [devindx]

� You can specify the device by:

� Entering its name after the -z option (as shown here), or

� Setting the environment variable FSCONFIG to the device name

� If you include the yes option on the command line, you will not be prompted to
confirm your intention to destroy the file before the file is actually destroyed.

� The value of devindx is the index to the file to be destroyed.
Administering the BEA TUXEDO System 19-5

19 Troubleshooting Applications

.

 of

e of
Reinitializing a Device

To reinitialize a device on a device list, enter the following command.

initdl [-z devicename] [-yes] devindx

� You can specify the device by:

� Entering its name after the -z option (as shown here), or

� Setting the environment variable FSCONFIG to the device name

� If you include the -yes option on the command line, you will not be prompted
to confirm your intention to destroy the file before the file is actually destroyed

� The value of devindx is the index to the file to be destroyed.

Printing the Universal Device List (UDL)

To print a UDL, enter the following command.

lidl

To specify the device from which you want to obtain the UDL, you have a choice
two methods:

� Specify the following on the lidl command line.

-z device name [devindx]

� Set the environment variable FSCONFIG to the name of the desired device.

Printing VTOC Information

To get information about all VTOC table entries, enter the following command.

livtoc

To specify the device from which you want to obtain the VTOC, you have a choic
two methods:
19-6 Administering the BEA TUXEDO System

Repairing Partitioned Networks

hine.

he

ause
tion.
� Specify the following on the lidl command line.

-z device name [devindx]

� Set the environment variable FSCONFIG to the name of the desired device.

Repairing Partitioned Networks

A network partition exists if one or more machines cannot access the master mac
As the application administrator, you are responsible for detecting partitions and
recovering from them. This section provides instructions for troubleshooting a
partition, identifying its cause, and taking action to recover from it.

A network partition may be caused by the following:

� A network failure—one of two types:

� Transient failure, which corrects itself in minutes

� Severe failure, which requires you to take the partitioned machine out of t
network

� A machine failure on either:

� The master machine

� The nonmaster machine

� A BRIDGE failure

The procedure you follow to recover from a partitioned network depends on the c
of the partition. Recovery procedures for these situations are provided in this sec

Detecting Partitioned Networks

There are several ways to detect a network partition:

� You can check the user log (ULOG) for messages that may shed light on the
origin of the problem.
Administering the BEA TUXEDO System 19-7

19 Troubleshooting Applications

 the

stem

Three
� You can gather information about the network, server, and service by running
tmadmin commands provided for this purpose.

Checking the ULOG

When things go wrong with the network, BEA TUXEDO system administrative
servers start sending messages to the ULOG. If the ULOG is set up over a remote file
system, all messages are written to the same log. In such a case you can run the tail (1)
command on one file and check the failure messages displayed on the screen.

If, however, the remote file system is using the same network, the remote file sy
may no longer be available.

Example

151804.gumby!DBBL.28446: ... : ERROR: BBL partitioned, machine=SITE2

Gathering Information about the Network, Server, and Service

Listing 19-1 provides an example of a tmadmin session in which information is being
collected about a partitioned network, and a server and a service on that network.
tmadmin commands are run:

� pnw (the printnetwork command)

� psr (the printserver command)

� psc (the printservice command)

Listing 19-1 Example of a tmadmin Session

$ tmadmin
> pnw SITE2
Could not retrieve status from SITE2

> psr -m SITE1
a.out Name Queue Name Grp Name ID Rq Done Load Done Current Service
BBL 30002.00000 SITE1 0 - - (-)
DBBL 123456 SITE1 0 121 6050 MASTERBB
simpserv 00001.00001 GROUP1 1 - - (-)
BRIDGE 16900672 SITE1 0 - - (DEAD)
>psc -m SITE1
19-8 Administering the BEA TUXEDO System

Repairing Partitioned Networks

rk

ever,
plete

d

oot
Service Name Routine Name a.out Grp Name ID Machine # Done Status
------------ ------------ -------- -------- -- ------- ------------
ADJUNCTADMIN ADJUNCTADMIN BBL SITE1 0 SITE1 - PART
ADJUNCTBB ADJUNCTBB BBL SITE1 0 SITE1 - PART
TOUPPER TOUPPER simpserv GROUP1 1 SITE1 - PART
BRIDGESVCNM BRIDGESVCNM BRIDGE SITE1 1 SITE1 - PART

Restoring a Network Connection

This section provides instructions for recovering from transient and severe netwo
failures.

Recovering from Transient Network Failures

Because the BRIDGE tries, automatically, to recover from any transient network
failures and reconnects, transient network failures are usually not noticed. If, how
you do need to perform a manual recovery from a transient network failure, com
the following procedure.

1. On the master machine, start a tmadmin (1) session.

2. Run the reconnect command (rco), specifying the names of nonpartitioned an
partitioned machines.

rco non-partioned_node1 partioned_node2

Recovering from Severe Network Failures

Perform the following steps to recover from severe network failure.

1. On the master machine, start a tmadmin session.

2. Run the pclean command, specifying the name of the partitioned machine.

pcl partioned_machine

3. Migrate the application servers or, once the problem has been corrected, reb
the machine.
Administering the BEA TUXEDO System 19-9

19 Troubleshooting Applications

chine

s that

t
Restoring Failed Machines

The procedure you follow to restore a failed machine depends on whether that ma
was the master machine.

Restoring a Failed Master Machine

To restore a failed master machine, complete the following procedure.

1. Make sure that all IPC resources are removed for the BEA TUXEDO processe
died.

2. Start a tmadmin session on the ACTING MASTER (SITE2):

tmadmin

3. Boot the BBL on the MASTER (SITE1) by entering the following command:

boot -B SITE1

The BBL will not boot if you have not executed pclean on SITE1 .

4. Still in tmadmin , start a DBBL running again on the master site (SITE1) by
entering the following:

MASTER

5. If you have migrated application servers and data off the failed machine, boo
them or migrate them back.

Restoring a Failed Nonmaster Machine

To restore a failed nonmaster machine, complete the following procedure.

1. On the master machine, start a tmadmin session.

2. Run pclean , specifying the partitioned machine on the command line.

3. Fix the machine problem.
19-10 Administering the BEA TUXEDO System

Replacing System Components

t

e.

:

are
4. Restore the failed machine by booting the Bulletin Board Listener (BBL) for it
from the master machine.

5. If you have migrated application servers and data off the failed machine, boo
them or migrate them back.

In Listing 19-2, SITE2 , a nonmaster machine, is restored.

Listing 19-2 Example of Restoring a Failed Nonmaster Machine

$ tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL. All rights reserved

> pclean SITE2
Cleaning the DBBL.

Pausing 10 seconds waiting for system to stabilize.
3 SITE2 servers removed from bulletin board

> boot -B SITE2
Booting admin processes ...

Exec BBL -A :

on SITE2 -> process id=22923 ... Started.
1 process started.
> q

Replacing System Components

To replace BEA TUXEDO system components, complete the following procedur

1. Install the BEA TUXEDO system software that is being replaced.

2. Shut down those parts of the application that will be affected by the changes

� The BEA TUXEDO system servers may need to be shut down if libraries
being updated.
Administering the BEA TUXEDO System 19-11

19 Troubleshooting Applications

ts,
bles.

tin
� Application clients and servers must be shut down and rebuilt if relevant
BEA TUXEDO system header files or static libraries are being replaced.
(Application clients and servers do not need to be rebuilt if the BEA
TUXEDO system message catalogs, system commands, administrative
servers, or shared objects are being replaced.)

3. If relevant BEA TUXEDO system header files and static libraries have been
replaced, rebuild your application clients and servers.

4. Reboot the parts of the application that you shut down.

Replacing Application Components

To replace components of your application, complete the following procedure.

1. Install the application software. This software may consist of application clien
application servers, and various administrative files, such as the FML field ta

2. Shut down the application servers being replaced.

3. If necessary, build the new application servers.

4. Boot the new application servers.

Cleaning Up and Restarting Servers

Manually

By default, the BEA TUXEDO system cleans up resources associated with dead
processes (such as queues) and restarts restartable dead servers from the Bulle
Board (BB) at regular intervals during BBL scans. You may, however, request
cleaning at other times.
19-12 Administering the BEA TUXEDO System

Cleaning Up and Restarting Servers Manually

 be
Cleaning Up Resources Associated with Dead Processes

To request an immediate cleanup of resources associated with dead processes,
complete the following procedure.

1. Start a tmadmin session.

2. Enter bbclean machine .

The bbclean command takes one optional argument: the name of the machine to
cleaned.

Cleaning Up Resources

To clean up other resources, complete the following procedure.

1. Start a tmadmin session.

2. Enter pclean machine .

Note: You must specify a value for machine ; it is a required argument.

If You Specify . . . Then . . .

No machine The resources on the default machine are cleaned.

A machine The resources on that machine are cleaned.

DBBL The resources on the Distinguished Bulletin Board Listener
(DBBL) and the Bulletin Boards at all sites are cleaned.

If the Specified Machine Is . . . Then . . .

Not partitioned pclean will invoke bbclean .

Partitioned pclean will remove all entries for servers and
services from all nonpartitioned Bulletin Boards.
Administering the BEA TUXEDO System 19-13

19 Troubleshooting Applications

rred

 as
 is

.

nt
ction

This command is useful for restoring order to a system after partitioning has occu
unexpectedly.

Aborting or Committing Transactions

This section provides instructions for aborting and committing transactions.

Aborting a Transaction

To abort a transaction, enter the following command.

aborttrans (abort) [-yes] [-g groupname] tranindex

� To determine the value of tranindex , run the printtrans command (a
tmadmin command).

� If groupname is specified, a message is sent to the TMS of that group to mark
“aborted” the transaction for that group. If a group is not specified, a message
sent, instead, to the coordinating TMS, requesting an abort of the transaction
You must send abort messages to all groups in the transaction to control the
abort.

This command is useful when the coordinating site is partitioned or when the clie
terminates before calling a commit or an abort. If the timeout is large, the transa
remains in the transaction table unless it is aborted.

Committing a Transaction

To commit a transaction, enter the following command.

committrans (commit) [-yes] [-g groupname] tranindex

� Both groupname and tranindex are required arguments.

� The operation fails if the transaction is not precommitted or has been marked
aborted.
19-14 Administering the BEA TUXEDO System

Recovering from Failures When Transactions Are Used

hen

e.

 may
k
vity
ent
 the

r the

n a

tore
� This message should be sent to all groups to fully commit the transaction.

Cautions

Be careful about using this command. The only time you should need to run it is w
both of the following conditions apply:

� The coordinating TMS has gone down before all groups got the commit
message.

� The coordinating TMS will not be able to recover the transaction for some tim

Also, a client may be blocked on tpcommit() , which will be timed out. If you are
going to perform an administrative commit, be sure to inform this client.

Recovering from Failures When

Transactions Are Used

When the application you are administering includes database transactions, you
need to apply an after-image journal (AIJ) to a restored database following a dis
corruption failure. Or you may need to coordinate the timing of this recovery acti
with your site’s database administrator (DBA). Typically, the database managem
software automatically performs transaction rollback when an error occurs. When
disk containing database files has become permanently corrupt, however, you o
DBA may need to step in and perform the rollforward operation.

Assume that a disk containing portions of a database is corrupted at 3:00 P.M. o
Wednesday. For this example, assume that a shadow volume does not exist.

1. Shut down the BEA TUXEDO application. For instructions, see Chapter 4,
“Starting and Shutting Down Applications.”

2. Get the last full backup of the database and restore the file. For example, res
the full backup version of the database from last Sunday at 12:01 A.M.
Administering the BEA TUXEDO System 19-15

19 Troubleshooting Applications

nd
1:00

cific
3. Apply the incremental backup files, such as the incrementals from Monday a
Tuesday. For example, assume that this step restores the database up until 1
P.M. on Tuesday.

4. Apply the AIJ, or transaction journal file, that contains the transactions from
11:15 P.M. on Tuesday up to 2:50 P.M. on Wednesday.

5. Open the database again.

6. Restart the BEA TUXEDO applications.

Refer to the documentation for the resource manager (database product) for spe
instructions on the database rollforward process.
19-16 Administering the BEA TUXEDO System

Index

Symbols
/Q (Queued Message Facility) 10-1

A
access control in a configuration file

characteristics of the UID, GID, and
PERM parameters 3-9

defining 3-8
access control lists (ACLs)

using 11-9
ACLs

administering 11-10
limitations 11-10

AdminAPI 18-1
administration

configuration tools 2-2
using AdminAPI 2-3
using the command-line interface 2-

3
run-time tools 2-3

using the AdminAPI 2-6
using the command-line interface 2-

5
tasks

configuration 2-1
run-time 2-1

tools 2-1–2-6
Administration Guide

organization ??–xvi
administration phases

groundwork 1-2
operational 1-3

APP_PW 9-5
APP_PW variable 9-6
APPDIR parameter 3-21
application components

replacing 19-12
application failure 19-2
application parameters

SANITYSCAN parameter 14-7
setting 14-7
using 14-6

application type in a configuration file
characteristics of MODEL and

OPTIONS parameters 3-7
setting 3-7

applications
starting 4-1

authentication server
configuring 11-7
using 11-6

AUTHSVC parameter 3-15
AUTOTRAN parameter 7-7, 7-9, 7-11
AUTOTRAN timeout value

changing 16-5

B
bankapp application 12-21
BBLQUERY parameter 14-7, 14-8
BLOCKTIME parameter 3-13, 14-7, 14-8
Administering the BEA TUXEDO System I-1

bottlenecks, detecting system
example 14-10
sar(1) command options

-b option 14-11
-c option 14-11
-m option 14-11
-p option 14-11
-q option 14-11
-r option 14-12
-u option 14-11
-w option 14-11

buffer type and subtype limits in a
configuration file

characteristics of the MAXBUFTYPE
and MAXBUFSTYPES
parameters 3-12

setting 3-12
buffer types allowed for a service

BUFTYPE parameter examples 3-38
specifying 3-38

BUFTYPE parameter 3-38
bulletin board 12-2
bundling services into servers

when to bundle services 14-5

C

Chapter 16, “Event Broker/Monitor.” 2-3
CLOPT parameter

command line options 9-8
format 9-7

CLOSEINFO parameter 7-7
CMTRET parameter 7-3
configuration file

characteristics of TUXCONFIG
parameter 3-21

contents 3-3
creating 3-1–3-47
definition 3-2
identifying the location 3-21
MACHINES section

description of parameters in sample
MACHINES section 3-19

how to customize 3-20
identifying machines 3-18
sample 3-19

NETGROUPS section
configuring information 3-43
specifying NETGRPNO,

NETPRIO, NETGROUP,
MAXNETGROUPS, and
MAXPENDINGBYTES
parameters 3-43

RESOURCES section
description of parameters in

TUXEDO sample 3-4
TUXEDO sample 3-5

SERVERS section
identifying server process

information 3-25
sample 3-27

SERVICES section
sample 3-35, 3-37

setting domain-wide parameters 3-3–3-
18

configuration file forms
TUXCONFIG file 3-2
UBBCONFIG file 3-2

configuration file parameters
APPDIR 3-22
AUTHSVC 3-15
BLOCKTIME 3-14
BUFTYPE 3-38
CONV 3-34
ENVFILE 3-23
FASTPATH 3-17
GID 3-9
GRACE 3-34
IPCKEY 3-6
LDBAL 3-11, 3-36
LMID 3-20
MASTER 3-7
I-2 Administering the BEA TUXEDO System

4

-

ry
MAX 3-30
MAXACCESSERS 3-10
MAXBUFSTYPES 3-12
MAXBUFTYPE 3-12
MAXCONV 3-14
MAXGEN 3-33
MAXNETGROUPS 3-43, 3-44
MAXPENDINGBYTES 3-43, 3-44
MAXSERVERS 3-10
MAXSERVICES 3-11
MIN 3-30
MODEL 3-7
NETGROUP 3-43, 3-44
NETGRPNO 3-43
NETPRIO 3-43, 3-44
NO_OVERRIDE 3-18
NOTIFY 3-16
OPTIONS 3-7
PERM 3-9
PRIO 3-37
PROTECTED 3-17
RCMD 3-33
REPLYQ 3-32
RESTART 3-33
RPPERM 3-32
RQADDR 3-32
RQPERM 3-32
SANITYSCAN 3-14
SCANUNIT 3-14
SECURITY 3-15
SEQUENCE 3-30
SRVGRP 3-28
SRVID 3-28
SYSTEM_ACCESS 3-35
TUXCONFIG 3-21
TUXDIR 3-22
UID 3-9
ULOGPFX 3-22
USIGNAL 3-17

configuring a local and remote domain 8-5
configuring a networked application

assigning priorities to each network
group 6-8

example 6-5
steps 6-2
UBBCONFIG file 6-7

NETGROUPS section 6-7
configuring groups 3-24–??

defining server groups in GROUPS
section 3-24

configuring machines 3-18–3-24
identifying locations of M3 or TUXEDO

system software and
application servers 3-21

identifying log file location 3-22
identifying machines in the MACHINES

section 3-18
identifying the location of the

configuration file 3-21
overriding system-wide parameters 3-2
reserving the physical address and

machine ID 3-20
specifying environment variable settings

for processes 3-23
configuring network information

sample network groups configuration 3
44

specifying information in NETGROUPS
section 3-43

configuring routing
defining routing criteria in ROUTING

section 3-41
M3 factory-based routing example 3-43
specifying range criteria in sample

ROUTING section 3-42
configuring servers

characteristics of server name,
SRVGRP, and SRVID
parameters 3-27

command-line options 3-29
defining server access to shared memo

3-34
Administering the BEA TUXEDO System I-3

s

defining server name, group, and ID 3-
27

defining server restart information 3-33
identifying server environment file

location 3-31
identifying server process information in

SERVERS section 3-25
identifying server queue information 3-

31
setting order in which servers are booted

3-29
specifying a TUXEDO server as

conversational 3-34
using server command-line options 3-28

configuring the UBBCONFIG with
netgroups 3-47

configuring TUXEDO services
controlling data flow by service priority

3-37
enabling load balancing 3-36
identifying services in the SERVICES

section 3-35
sample SERVICES section 3-35, 3-37
specifying a list of allowable buffer

types for a service 3-38
specifying different service parameters

for different server groups 3-37
configuring workstation listener (WSL) 9-7

using the CLOPT parameter 9-7
configuring your system

determining your server needs 1-5
planning the overall design 1-4

CONV parameter 3-34
crdl command

blocks value 7-4
creating a TLOG device 4-4

D

data
dynamic 12-4

static 12-4
data flow in a configuration file

characteristics of PRIO parameter 3-37
controlling by service priority 3-37

data-dependent routing
characteristics 5-3
using in TUXEDO 5-3

DBBLWAIT parameter 14-7, 14-8
device

reinitializing a 19-6
device list

creating 19-5
destroying 19-5

distributing an application
benefits 5-2
characteristics 5-2
description of routing section parameter

5-9
domain gateway configuration file 5-9
example 5-3
modifying the domain gateway file to

support routing in TUXEDO 5-
9

modifying the GROUPS section 5-5
description of GROUPS parameters

5-5
modifying the SERVICES section

description of SERVICES
parameters 5-6

sample SERVICES section 5-7
modifying the SERVICES section for

TUXEDO 5-6
purpose 5-1
UBBCONFIG file example 5-8

DLL (Dynamic Link Libraries) 9-1
DMCONFIG file 8-4
DMTLOGDEV parameter 7-10
DMTLOGNAME parameter 7-10
DMTLOGSIZE parameter 7-10
domain access control list, creating 8-15
domain transaction log, creating 7-5
I-4 Administering the BEA TUXEDO System

-

6

domains
benefits of using BEA TUXEDO system

8-1
components of DMCONFIG file 8-4
configuring a local and remote domain

8-5
creating domain access control list

(ACL) 8-15
defining addressing 8-10
defining exported services 8-13
defining imported and exported services

8-10
defining local and remote domains 8-10
defining remote domain environment 8-

11
defining the local domain environment

8-8
domain gateway configuration file 8-2
ensuring security 8-14
example of /DOMAINS 8-7
illustration of /DOMAINS 8-7
local application configuration file

example 8-9
local domain configuration file example

8-11
remote application configuration file

example 8-12
remote domain gateway configuration

file example 8-13
routing service requests to remote

domains 8-15
working with multiple 8-1–8-17

E

encryption, link-level 6-15
ENVFILE parameter 3-23
environment variable settings in a

configuration file
characteristics of ENVFILE parameter

3-23

specifying 3-23
environment variables, setting

ROOTDIR 9-5
errors

identifying using log files 13-1
Event Broker/Monitor 18-1

F

FACTORYROUTING parameter 7-8
failback 6-12
failover 6-12
failure

determining cause of application 19-2
determining cause of system 19-3

failure types 19-2
FASTPATH parameter 3-17
figures

assigning priorities to network groups 6
8

bank application with two workstation
clients 9-4

BEA TUXEDO /DOMAIN gateway 8-4
example of a network grouping 3-45, 6-
flow of data over the BRIDGE 6-11
local and remote application (simpapp)

8-8
sample NETGROUPS and NETWORK

sections 3-47
TUXEDO message queueing illustration

10-5
file system maintenance 19-4

G

GID parameter 3-9
GRACE parameter 3-33
GROUPS parameters used to distribute an

application 5-5
Administering the BEA TUXEDO System I-5

-

I

IPC limits in a configuration file
characteristics of MAXACCESSERS,

MAXSERVERS,
MAXINTERFACES, and
MAXSERVICES parameters
3-10

defining 3-9
IPC requirements

tuning 14-8
MAXACCESSERS 14-9

tuning queue-related kernel parameters
14-9

IPC requirements, determining 14-8–14-9
IPCKEY parameter 3-6

K

kernel parameters
how to tune 14-9

L

LDBAL parameter 3-11, 3-36
listings

bbsread output 12-24
canceling a server group migration 15-9
configuration file for bankapp (MP

version) 12-21
local application configuration file 8-9
local domain gateway configuration file

8-11
migrating a machine when an alternate

machine is accessible 15-8
migrating a machine when an alternate

machine is not accessible 15-8
migration when a master machine is

accessible 15-3
migration when a master machine is not

accessible 15-3
migration when an alternate machine is

accessible 15-5
migration when an alternate machine is

not accessible 15-6
remote application configuration file 8-

12
remote domain gateway configuration

file 8-13
sample GROUPS and NETWORK

sections 7-14
sample MACHINES section 7-13
sample RESOURCES section 7-12
TMADMIN default output 12-11
tmadmin session example 19-8

LMID parameter 3-20
load balancing

enabling 14-3
measuring service performance time 14

3
load balancing in a configuration file

characteristics of the LDBAL parameter
3-11

enabling 3-11
load balancing TUXEDO services in a

configuration file
characteristics of the LDBAL parameter

3-36
enabling 3-36

locations of M3 or BEA TUXEDO system
software and application servers

identifying 3-21
locations of M3 or TUXEDO system

software and application servers
characteristics of TUXDIR and APPDIR

parameters 3-21
log file in a configuration file

characteristics of ULOGPFX parameter
3-22

identifying location 3-22
log files 12-3

using to detect failures 13-14–13-16
I-6 Administering the BEA TUXEDO System

M

MANDATORY_ACL parameter
restriction for M3 systems 11-9

master machine in a configuration file
characteristics of the MASTER

parameter 3-7
MAX parameter 3-30
MAXACCESSERS parameter 3-10, 14-7
MAXBUFSTYPE parameter 14-8
MAXBUFSTYPES parameter 3-12
MAXBUFTYPE parameter 3-12, 14-8

MAXBUFSTYPE parameter 14-6
MAXCONV parameter 3-14
MAXENCRYPTBITS parameter 6-17
MAXGEN parameter 3-33
MAXGTT 14-9
MAXGTT parameter 7-3, 14-8
MAXNETGROUPS parameter 3-43
MAXPENDINGBYTES parameter 3-43
MAXRDTRAN parameter 7-10
MAXSERVERS

MAXSERVICES 14-9
MAXSERVERS parameter 3-10, 14-7
MAXSERVICES parameter 3-10, 14-7
MAXTRAN parameter 7-11
MAXWSCLIENTS parameter 9-6
migrating applications 15-1–15-10

examples of switching master and
backup machines 15-3

when the master machine is
accessible from the backup
machine 15-3

when the master machine is not
accessible from the backup
machine 15-3

how to switch master and backup
machines 15-3, 15-10

migration options 15-2
canceling a migration 15-9
example of canceling a migration

canceling a server group migration
for a server group
GROUP1 15-9

example of migrating a machine
when the alternate machine is

accessible from the
primary machine 15-8

when the alternate machine is not
accessible from the
primary machine 15-8

example of migrating a server group
when the alternate machine is

accessible from the
primary machine 15-5

when the alternate machine is not
accessible from the
primary machine 15-6

migrating a server group 15-4
how to migrate a server group when

the alternate machine is
accessible from the
primary machine 15-4

how to migrate a server group when
the alternate machine is not
accessible from the
primary machine 15-5

migrating machines 15-6
how to migrate machines when the

alternate machine is
accessible from the
primary machine 15-7

how to migrate machines when the
alternate machine is not
accessible from the
primary machine 15-7

migrating transaction logs to a backup
site 15-10

switching master and backup machines
15-2

MIN parameter 3-30
MINENCRYPTBITS parameter 6-17
Administering the BEA TUXEDO System I-7

MODEL parameter 3-7
modifying systems, dynamically 16-1–16-5

procedures 16-2
advertising services 16-4
changing AUTOTRAN timeout

value 16-5
changing service parameters 16-4
resuming BEA TUXEDO services

16-3
suspending BEA TUXEDO services

16-3
unadvertising services 16-4

monitoring a running system 12-1–12-26
bankapp configuration file 12-21
checking local IPC resources 12-24
checking system-wide parameters 12-25
data repositories

bulletin board 12-2
log files 12-3
UBBCONFIG file 12-2

methods 12-5
output from TMADMIN commands

PRINTCONN 12-18
PRINTNET 12-19
PRINTQUEUE 12-17
PRINTTRANS 12-20

running TMADMIN commands 12-13
sample bankapp application 12-21
sample bankapp application output 12-

24–12-25
TMADMIN meta-commands 12-9
TMADMIN operating modes 12-8
types of administrative data 12-3
using AdminAPI 12-5
using statistics 12-3

monitoring log files 13-1–13-16
MSSQ (multiple server single queue) 14-2
MSSQ sets

example 14-2
multiple server single queue (MSSQ) 14-2

N

NETGROUP parameter 3-43
NETGROUPS section 6-7
NETGRPNO parameter 3-43
NETLOAD parameter 6-14
NETPRIO parameter 3-43
network data flow

advantages of data compression 6-13
failback 6-12
failover 6-12
using data compression

setting the compression level 6-12
network failures

recovering from severe 19-9
recovering from transient 19-9

network groups configuration
sample 3-44

networked application
balancing request loads 6-14
changing network configuration

parameters 6-17
negotiating encryption key size 6-16
running a 6-10
scheduling network data over parallel

circuits 6-10
specifying encryption key bits 6-17
using link-level encryption 6-15

networked applications 6-1–6-17
NO_OVERRIDE parameter 3-17
node

restoring a failed nonmaster 19-10
NOTIFY parameter 3-16

O

OPENINFO parameter 7-7
OPTIONS parameter 3-7
overriding system-wide parameters 3-24
I-8 Administering the BEA TUXEDO System

8

n
P

partitioned networks
detecting 19-7
repairing 19-7

performance time
servopts(5) -r option 14-3

PERM parameter 3-9
physical address and machine ID

characteristics of address and machine
ID, and LMID parameter 3-20

reserving 3-20
PRINTCONN command 12-18
PRINTNET command 12-19
PRINTNETWORK command 19-8
PRINTQUEUE command 12-17
PRINTSERVER command 19-8
PRINTSERVICE command 19-8
PRINTTRANS command 12-20
PRIO parameter 3-37, 14-4
PROTECTED parameter 3-17

Q

QMADMIN
using to create message queues 10-7

QMCONFIG 10-2
QMCONFIG environment variable

setting 10-7
queue 10-2
queue space 10-2
queued BEA TUXEDO messages

managing 10-1–10-11
queued messages

associating queue with group 10-10
creating application queue space and

queues 10-8
listing /Q servers in SERVER section

10-11
modifying the configuration file 10-10
setting the QMCONFIG environment

variable 10-7

using QMADMIN 10-7

R

range criteria in a configuration file
specifying 3-42

RCMD parameter 3-33
remote domains

routing service requests 8-15
REPLYQ parameter 3-32
request queue 10-2
resources

cleaning up 19-13
cleaning up those associated with dead

processes 19-13
RESOURCES section

identifying information 3-3
resources, maximizing application 14-1–14-
RESTART parameter 3-33
routing example for a five-site domain

configuration 5-11
ROUTING parameter 7-9
ROUTING parameters used to distribute an

application 5-9
RPPERM parameter 3-32
RQADDR parameter 3-32
RQPERM parameter 3-32

S

sanity checks and timeouts in a configuratio
file

characteristics of the SCANUNIT,
SANITYSCAN, and
BLOCKTIME parameters 3-13

example 3-13
setting the number of 3-13

SANITYSCAN parameter 3-13, 14-8
sar(1) command options

-b option 14-11
-c option 14-11
Administering the BEA TUXEDO System I-9

n
-m option 14-11
-p option 14-11
-q option 14-11
-r option 14-12
-u option 14-11
using 14-11
-w option 14-11

SCANUNIT parameter 3-13
scheduling network data 6-10
securing applications 11-1–11-11

ACL’s limitations 11-10
adding, modifying, deleting user

accounts 11-8
adding, modifying, deleting user groups

11-9
configuring authentication server 11-7
configuring SECURITY parameter 11-4
determining levels of security 11-1
implementing application password-

level security 11-6
implementing operating system security

11-5
using an authentication server 11-6
using shell-level commands 11-8

security
implementing application password-

level 11-6
implementing operating system 11-5

security level in a configuration file
characteristics of the SECURITY and

AUTHSVC parameters 3-15
setting 3-15

SECURITY parameter 3-15
configuring 11-4

SEQUENCE parameter 3-30
server access to shared memory

characteristics of SYSTEM_ACCESS
parameter 3-34

server command-line options 3-29
server environment file

characteristics 3-31

identifying location 3-31
server groups

defining 3-24
sample GROUPS section 3-25
specifying group name, number, and

LMID 3-24
server process information

description of parameters in sample
SERVERS section 3-25

identifying 3-25
sample SERVERS section 3-27

server queue information
characteristics of RQADDR, RQPERM,

REPLYQ, and RPPERM
parameters 3-32

example 3-31
identifying 3-31

server restart information
characteristics of RESTART, RCMD,

MAXGEN, and GRACE
parameters 3-33

defining 3-33
servers

bundling services into 14-5
servers boot order in a configuration file

characteristics of SEQUENCE, MIN,
and MAX parameters 3-30

setting 3-29
service parameters

changing 16-4
services

advertising 16-3
unadvertising 16-4

SERVICES parameters used to distribute a
application 5-6

setting domain-wide parameters
defining access control 3-8
defining IPC limits 3-9
description of parameters in sample

TUXEDO RESOURCES
section 3-4
I-10 Administering the BEA TUXEDO System

enabling load balancing 3-11
enabling unsolicited notification 3-15
identifying information in the

RESOURCES section 3-3
identifying the master machine 3-6
protecting shared memory 3-17
sample TUXEDO RESOURCES section

3-5
setting buffer type and subtype limits 3-

12
setting parameters of unsolicited

notification 3-16
setting the address of shared memory 3-6
setting the application type 3-7
setting the number of sanity checks and

timeouts 3-13
setting the security level 3-15
setting TUXEDO conversation limits 3-

14
shared memory

characteristics of the IPCKEY parameter
3-6

characteristics of the PROTECTED,
FASTPATH, and
NO_OVERRIDE parameters 3-
17

defining server access to 3-34
protecting 3-17
setting the address of 3-6

simpapp application illustrated 8-8
SPINCOUNT parameter 6-14
SRVGRP parameter 3-27
SRVID parameter 3-27
starting applications 4-1
support

technical xxiii
system components

replacing 19-11
SYSTEM_ACCESS parameter 3-35
system-wide parameters

overriding 3-24

T

tables
commands for monitoring TMADMIN

tasks 12-14
TMADMIN meta-commands 12-10

TAGENT log
analyzing 13-14

time(2) option 14-3
TLISTEN log

analyzing 13-15
message format 13-5
purpose 13-5
when created 13-5

TLOG 7-3, 13-1
analyzing 13-16
creating 13-8–13-13
how to use 13-6
location 13-6
maintaining 13-13
purpose 13-6

TLOGDEVICE parameter 7-5
TLOGNAME parameter 7-4
TLOGOFFSET parameter 7-5
TLOGSIZE parameter 7-5
TMADMIN command 12-6
TMADMIN meta-commands 12-9
tmboot(1) -c command

using 14-8
TMNETLOAD parameter 6-14
TMPDIR 9-5
TMPDIR variable 9-6
TMQFORWARD 10-2
TMQUEUE 10-2
TMS_QM 10-2
TMSCOUNT parameter 7-7
TMSNAME parameter 7-7
traffic, measuring system 14-10–14-12
transaction log, creating 7-3
transaction-related parameters in

MACHINES section, defining 7-4
Administering the BEA TUXEDO System I-11

e

4

2

transactions
aborting 19-14
committing 19-14
example of distributed BEA TUXEDO

application using 7-12
recovering from failures when using 19-

15
sample of distributed TUXEDO

application using
GROUPS section 7-14
MACHINES section 7-13
NETWORK section 7-14
RESOURCES section 7-12
ROUTING section 7-15
SERVERS section 7-15
SERVICES section 7-15

transactions, configuring 7-1–7-16
AUTOTRAN parameter 7-7, 7-9, 7-11
CLOSEINFO parameter 7-7
CMTRET parameter 7-3
creating a transaction log

creating the domain transaction log
7-5

creating the Universal Device List
(UDL) 7-4

defining transaction-related
parameters in MACHINES
section 7-4

creating a transaction log (TLOG) 7-3
defining each resource manager and the

transaction manager server in
GROUPS section 7-5

DMTLOGDEV parameter 7-10
DMTLOGNAME parameter 7-10
DMTLOGSIZE parameter 7-10
enabling a TUXEDO service to begin a

transaction in the SERVICES
section 7-8

example 7-1
FACTORYROUTING parameter 7-8
MAXGTT parameter 7-3

MAXRDTRAN parameter 7-10
MAXTRAN parameter 7-11
modifying the domain configuration file

to support transactions 7-9
modifying the UBBCONFIG file 7-2
OPENINFO parameter 7-7
ROUTING parameter 7-9
sample GROUPS section 7-6
specifying application-wide transactions

in the RESOURCES section 7-
3

TLOGDEVICE parameter 7-5
TLOGNAME parameter 7-4
TLOGOFFSET parameter 7-5
TLOGSIZE parameter 7-5
TMSCOUNT parameter 7-7
TMSNAME parameter 7-7
transaction values description in sampl

GROUPS section 7-6
TRANTIME parameter 7-8, 7-9, 7-11

TRANTIME parameter 7-8, 7-9, 7-11, 14-8
troubleshooting applications 19-1–19-16

aborting a transaction 19-14
application failure 19-2
broadcasting unsolicited messages 19-
checking the ULOG 19-8
cleaning up and restarting servers 19-1
cleaning up resources 19-13
cleaning up resources associated with

dead processes 19-13
committing a transaction 19-14
detecting partitioned networks 19-7
gathering information about network,

server, and service 19-8
M3 or TUXEDO system failure 19-3
maintaining system files 19-4

creating device list 19-5
destroying device list 19-5
printing the UDL 19-6
printing the VTOC 19-6
reinitializing a device 19-6
I-12 Administering the BEA TUXEDO System

recovering from severe network failures
19-9

recovering from transient network
failures 19-9

recovering when using transactions 19-
15

repairing partitioned networks 19-7
replacing application components 19-12
restoring failed master node 19-10
restoring failed nonmaster node 19-10
restoring failed nonmaster node example

19-11
types of failures 19-2

tsprio parameter 14-4
tuning applications 14-1–14-12

determining IPC requirements 14-8
maximizing application resources 14-1

bundling services into servers 14-5
enabling load balancing 14-3

measuring system traffic 14-10
detecting a system bottleneck 14-10

using application parameters 14-6
MAXGTT parameter 14-6
SANITYSCAN parameter 14-7

using MSSQ sets in BEA TUXEDO 14-
2

TUXCONFIG file 3-2
TUXCONFIG parameter 3-21
TUXDIR parameter 3-21
TUXDIR variable 9-5
TUXEDO conversation limits in a

configuration file
characteristics of the MAXCONV

parameter 3-14
setting 3-14

TUXEDO conversational server
characteristics of CONV parameter 3-34

TUXEDO queued message facility
administrative tasks 10-3–10-7
overview 10-2–??

TUXEDO queued messages

associating queue with group 10-10
creating application queue space and

queues 10-8
listing /Q servers in SERVER section

10-11
managing 10-1–10-11
modifying the configuration file 10-10
setting the QMCONFIG environment

variable 10-7
using QMADMIN 10-7

TUXEDO services
resuming 16-3
suspending 16-3

TUXEDO services in a configuration file
identifying 3-35
sample SERVICES section 3-35

U

UBBCONFIG file 3-2, 12-2
configuring with netgroups 3-47

UDL 10-7
printing 19-6

UDL (Universal Device List), creating 7-4
UID parameter 3-9
ULOG 13-1, 19-8

analyzing 13-14
assigning a location for 13-7
how to use 13-2
location 13-4
maintaining 13-7
message format 13-3
purpose 13-2
when created 13-2

ULOGPFX parameter 3-22
Universal Device List (UDL), creating 7-4
unsolicited messages

broadcasting 19-4
unsolicited notification in a configuration file

characteristics of NOTIFY and
USIGNAL parameters 3-16
Administering the BEA TUXEDO System I-13

setting parameters of 3-16
USIGNAL parameter 3-16

V

VTOC
printing 19-6

W

workstation clients
defined 9-2
how to connect to an application 9-4
illustration of a 2-workstation client

application 9-3
managing 9-1–9-9
modifying MACHINES section to

support 9-9
sample UBBCONFIG file 9-9

setting environment variables 9-5
setting number of

MAXACCESSERS parameter 9-6
MAXWSCLIENTS parameter 9-6

workstation listener (WSL), configuring 9-7
WSC (workstation client) 9-2
WSDEVICE variable 9-5
WSENFILE 9-5
WSENFILE variable 9-5
WSH (workstation handler) 9-2
WSL (workstation listener) 9-2
WSNADDR

WSDEVICE 9-5
WSNADDR variable 9-5
WSREPLYMAX variable 9-5
WSRPLYMAX 9-5
WSTYPE 9-5
WSTYPE variable 9-5
I-14 Administering the BEA TUXEDO System

	Copyright
	Preface
	Purpose of This Document
	Who Should Read This Document
	How This Document Is Organized

	How to Use This Document
	Opening the Document in a Web Browser
	Printing from a Web Browser
	Documentation Conventions

	Related Documentation
	BEA TUXEDO Documentation
	BEA Publications
	Other Publications

	Contact Information
	Documentation Support
	Customer Support

	1 Introduction to Administration
	The Administrator’s Job
	The Groundwork Phase
	The Operational Phase

	Roadmap for Your Responsibilities
	Planning Your Configuration
	Questions About the Design
	Questions About Server Applications

	2 Administration Tools
	Configuration and Run-time Administration
	Tools for Configuration
	Tools for Run-time Administration

	BEA TUXEDO Web-based GUI
	Command-line Interface
	AdminAPI

	3 Creating a Configuration File
	What Is the Configuration File?
	Two Forms of the Configuration File
	Contents of the Configuration File

	Setting Domain-wide Parameters
	Identifying Information in the RESOURCES Section
	Description of Parameters in a Sample RESOURCES Section
	Sample RESOURCES Section

	Setting the Address of Shared Memory
	Characteristics of the IPCKEY Parameter

	Identifying the Master Machine
	Characteristics of the MASTER Parameter

	Setting the Application Type
	Characteristics of the MODEL and OPTIONS Parameters

	Defining Access Control
	Characteristics of the UID, GID, and PERM Parameters

	Defining IPC Limits
	Characteristics of MAXACCESSERS, MAXSERVERS, and MAXSERVICES Parameters

	Enabling Load Balancing
	Characteristics of the LDBAL Parameter

	Setting Buffer Type and Subtype Limits
	Characteristics of the MAXBUFTYPE and MAXBUFSTYPES Parameters

	Setting the Number of Sanity Checks and Blocking Timeouts
	Example: Setting Sanity Checks and Timeouts
	Characteristics of the SCANUNIT, SANITYSCAN, and BLOCKTIME Parameters

	Setting Conversation Limits
	Characteristics of the MAXCONV Parameter

	Setting the Security Level
	Characteristics of the SECURITY and AUTHSVC Parameters

	Setting Parameters of Unsolicited Notification
	Characteristics of the NOTIFY and USIGNAL Parameters

	Protecting Shared Memory
	Characteristics of the PROTECTED, FASTPATH, and NO_OVERRIDE Parameters

	Configuring Machines
	Identifying Machines in the MACHINES Section
	Description of Parameters in a Sample MACHINES Section
	Example: MACHINES Section
	How to Customize the MACHINES Section

	Reserving the Physical Address and Machine ID
	Characteristics of the Address and Machine ID, and the LMID Parameter

	Identifying the Location of the Configuration File
	Characteristics of the TUXCONFIG Parameter

	Identifying the Locations of the System Software and Application Server Machines
	Characteristics of the TUXDIR and APPDIR Parameters

	Identifying the Location of the Log File
	Characteristics of the ULOGPFX Parameter

	Specifying Environment Variable Settings for Processes
	Characteristics of the ENVFILE Parameter

	Overriding System-wide Parameters

	Configuring Groups
	Specifying a Group Name, Number, and LMID

	Configuring Servers
	Identifying Server Information in the SERVERS Section
	Description of Parameters in a Sample SERVERS Section
	Example: SERVERS Section

	Defining Server Name, Group, and ID
	Characteristics of the Server Name, SRVGRP, and SRVID Parameters

	Using Server Command-Line Options
	Server Command-Line Options

	Setting the Order in Which Servers Are Booted
	Characteristics of the SEQUENCE, MIN, and MAX Parameters

	Identifying the Location of the Server Environment File
	Characteristics of the Server Environment File

	Identifying Server Queue Information
	MSSQ Example
	Characteristics of the RQADDR, RQPERM, REPLYQ, and RPPERM Parameters

	Defining Server Restart Information
	Characteristics of the RESTART, RCMD, MAXGEN, and GRACE Parameters

	Specifying a Server as Conversational
	Characteristics of the CONV Parameter

	Defining Server Access to Shared Memory
	Characteristics of the SYSTEM_ACCESS Parameter

	Configuring Services
	Identifying BEA TUXEDO Services in the SERVICES Section
	Sample SERVICES Section

	Enabling Load Balancing
	Characteristics of the LDBAL Parameter

	Controlling the Flow of Data by Service Priority
	Characteristics of the PRIO Parameter

	Specifying Different Service Parameters for Different Server Groups
	Sample SERVICES Section

	Specifying a List of Allowable Buffer Types for a Service
	Examples of the BUFTYPE Parameter

	Service Timeout Errors
	Situations that Cause a Service Timeout
	What Happens When a Timeout Occurs
	How a Service Timeout Is Reported
	How to Control a Service Timeout

	Configuring Routing
	Defining Routing Criteria in the ROUTING Section
	Specifying Range Criteria in the ROUTING Section

	Configuring Network Information
	Specifying Information in the NETGROUPS Section
	Specifying the NETGRPNO, NETPRIO, NETGROUP, MAXNETGROUPS, and MAXPENDINGBYTES Parameters

	Sample Network Groups Configuration
	Configuring the UBBCONFIG File with Netgroups

	4 Starting and Shutting Down Applications
	Starting Applications
	Prerequisite Checklist
	Set Environment Variables
	Create TUXCONFIG
	Propagate the BEA TUXEDO Software
	Create a TLOG Device
	Start tlisten at All Sites

	Booting the Application
	Using tmboot
	Default Boot Sequence for a Small Application
	Optimized Boot Sequence for Large Applications

	Shutting Down Applications
	Using tmshutdown
	Clearing Common Problems
	Common Startup Problems
	TLOG Not Created
	Server Not Built Correctly
	Incorrect OPENINFO String
	Unable to Propagate the BEA TUXEDO System

	Common Shutdown Problems

	5 Distributing Applications
	Why Distribute an Application?
	Benefits of a Distributed Application
	Characteristics of Distributing an Application

	Using Data-dependent Routing
	Characteristics of Data-dependent Routing
	Example: A Distributed Application

	Modifying and Creating the UBBCONFIG Sections for a Distributed Application
	Modifying the GROUPS Section
	Modifying the SERVICES Section
	Sample SERVICES Section

	Creating the ROUTING Section

	Example of UBBCONFIG Sections in a Distributed Application
	Modifying the Domain Gateway Configuration File to Support Routing
	What Is the Domains Gateway Configuration File?
	Description of Parameters in the ROUTING Section of the DMCONFIG File
	Routing Field Description
	Example of a Five-Site Domain Configuration Using Routing

	6 Building Networked Applications
	Terms and Definitions
	Configuring Networked Applications
	Example: A Network Configuration
	Example: A Network Configuration with Multiple Netgroups
	The UBBCONFIG File for the Network Example
	Assigning Priorities for Each Network Group
	The UBBCONFIG Example Considerations

	Running a Networked Application
	Scheduling Network Data over Parallel Data Circuits
	Network Data in Failover and Failback
	Using Data Compression for Network Data
	Taking Advantage of Data Compression
	Setting the Compression Level

	Balancing Network Request Loads
	NETLOAD
	SPINCOUNT

	Using Link-Level Encryption
	How LLE Works
	Encryption Key Size Negotiation
	MINENCRYPTBITS/MAXENCRYPTBITS
	How to Change Network Configuration Parameters

	7 Configuring Transactions
	Understanding Transactions
	Modifying the UBBCONFIG File to Accommodate Transactions
	Specifying Application-Wide Transactions in the RESOURCES Section
	Creating a Transaction Log (TLOG)
	Creating the UDL
	Defining Transaction-related Parameters in the MACHINES Section
	Creating the Domains Transaction Log

	Defining Each Resource Manager (RM) and the Transaction Manager Server in the GROUPS Section
	Sample of the GROUPS Section
	Description of Transaction Values in the Sample GROUPS Section
	Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO Parameters
	Characteristics of the AUTOTRAN, TRANTIME, and FACTORYROUTING Parameters

	Enabling a Service to Begin a Transaction in the SERVICES Section
	Characteristics of the AUTOTRAN, TRANTIME, and ROUTING Parameters

	Modifying the Domain Configuration File to Support Transactions
	Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE, MAXRDTRAN, and MAXTRAN Parameters
	Characteristics of the AUTOTRAN and TRANTIME Parameters

	Example: A Distributed Application Using Transactions
	The RESOURCES Section
	The MACHINES Section
	The GROUPS and NETWORK Sections
	The SERVERS, SERVICES, and ROUTING Sections

	8 Working with Multiple Domains
	Benefits of Using BEA TUXEDO System Domains
	What Is the Domains Gateway Configuration File?
	Components of the DMCONFIG File

	Configuring Local and Remote Domains
	Setting Environment Variables
	Example

	Building a Local Application Configuration File and a Local Domains Gateway Configuration File
	Building a Remote Application Configuration File and a Remote Domains Gateway Configuration File
	Example of a Domains-based Configuration
	Defining the Local Domains Environment
	Defining the Local and Remote Domains, Addressing, and Imported and Exported Services
	Defining the Remote Domains Environment
	Defining the Exported Services

	Using Data Compression Between Domains
	Ensuring Security in Domains
	Creating a Domain Access Control List (ACL)

	Routing Service Requests to Remote Domains

	9 Managing Workstation Clients
	Workstation Terms
	What Is a Workstation Client?
	Illustration of an Application with Two Workstation Clients
	How the Workstation Client Connects to an Application

	Setting Environment Variables
	Setting the Maximum Number of Workstation Clients
	Configuring a Workstation Listener (WSL)
	Format of the CLOPT Parameter
	Command-line Options of the CLOPT Parameter

	Modifying the MACHINES Section to Support Workstation Clients

	10 Managing Queued Messages
	Terms and Definitions
	Overview of the BEA TUXEDO Queued Message Facility
	Administrative Tasks
	Setting the QMCONFIG Environment Variable
	Using qmadmin, the /Q Administrative Interface
	Creating an Application Queue Space and Queues
	Modifying the Configuration File
	Associating a Queue with a Group
	Listing the /Q Servers in the SERVERS Section

	11 Securing Applications
	Security Strategy
	Configuring the RESOURCES SECURITY Parameter
	Implementing Operating System Security
	Implementing Application Password-level Security
	Implementing Security via an Authentication Server
	The Authentication Server
	Configuring the Authentication Server

	Adding, Modifying, and Deleting User Accounts
	Adding, Modifying, and Deleting Groups

	Implementing Security via Access Control Lists
	Limitations of ACLs
	Administering ACLs

	12 Monitoring a Running System
	Overview of System and Application Data
	Components and Activities for Which Data Is Available
	Where the Data Resides
	How You Can Use the Data
	Types of Data
	Static Data
	Dynamic Data

	Monitoring Methods
	Using the tmadmin Command Interpreter
	What Is tmadmin?
	How a tmadmin Session Works
	Summary of tmadmin Options
	tmadmin Meta-commands

	Running tmadmin Commands
	Monitoring a Running System with tmadmin
	Example: Output from tmadmin Commands
	printqueue Output
	printconn Data
	printnet Command Output
	printtrans Command Output

	Case Study: Monitoring Run-time bankapp
	Configuration File for bankapp
	Output from Checking the Local IPC Resources
	Output from Checking System-wide Parameter Settings

	13 Monitoring Log Files
	What Is the ULOG?
	Purpose
	How Is the ULOG Created?
	How Is the ULOG Used?
	Message Format
	Location

	What Is tlisten?
	Purpose
	How Is the tlisten Log Created?
	Message Format
	Location

	What Is the Transaction Log (TLOG)?
	How Is the TLOG Created?
	How Is the TLOG Used?
	Location

	Creating and Maintaining Logs
	How to Assign a Location for the ULOG
	Creating a Transaction Log (TLOG)
	Step 1: Assign Values to MACHINES Parameters
	Step 2: Create a UDL Entry
	Step 3 (optional): Allocate Space for a New Device on an Existing System
	Step 4: Create the Log
	Maintaining a TLOG

	Using Logs to Detect Failures
	Analyzing the User Log (ULOG)
	Analyzing the tlisten Log
	Example

	Analyzing a Transaction Log (TLOG)

	14 Tuning Applications
	Maximizing Your Application Resources
	When to Use MSSQ Sets
	Enabling Load Balancing
	Two Ways to Measure Service Performance Time

	Assigning Priorities to Interfaces or Services
	Characteristics of the PRIO Parameter

	Bundling Services into Servers
	When to Bundle Services

	Enhancing Efficiency with Application Parameters
	Setting the MAXACCESSERS, MAXSERVERS, MAXINTERFACES, and MAXSERVICES Parameters
	Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE Parameters
	Setting the SANITYSCAN, BLOCKTIME, BBLQUERY, and DBBLWAIT Parameters

	Setting Application Parameters
	Determining IPC Requirements
	Measuring System Traffic
	Example: Detecting a System Bottleneck
	Detecting Bottlenecks on UNIX Platforms
	Detecting Bottlenecks on Windows NT Platforms

	15 Migrating Applications
	About Migration
	Migration Options
	Switching Master and Backup Machines
	How to Switch the Master and Backup Machines
	Examples: Switching Master and Backup Machines

	Migrating a Server Group
	Migrating a Server Group When the Alternate Machine Is Accessible from the Primary Machine
	Migrating a Server Group When the Alternate Machine Is Not Accessible from the Primary Machine
	Examples: Migrating a Server Group

	Migrating Machines
	Migrating Machines When the Alternate Machine Is Accessible from the Primary Machine
	Migrating Machines When the Alternate Machine Is Not Accessible from the Primary Machine
	Examples: Migrating a Machine

	Canceling a Migration
	Example: A Migration Cancellation

	Migrating Transaction Logs to a Backup Machine

	16 Dynamically Modifying Systems
	Dynamic Modification Methods
	Procedures for Dynamically Modifying Your System
	Suspending and Resuming Services
	Suspending Services
	Resuming Services

	Advertising and Unadvertising Services
	Advertising Services
	Unadvertising Services

	Changing Service Parameters (BEA TUXEDO System)
	Changing the AUTOTRAN Timeout Value

	17 Dynamically Reconfiguring Applications
	Introduction to Dynamic Reconfiguration
	Overview of the tmconfig Command Interpreter
	What tmconfig Does
	Implications of Running as a Client

	How tmconfig Works
	Sections of the Configuration File
	tmconfig Operations

	Output from tmconfig Operations

	General Instructions for Running tmconfig
	Preparing to Run tmconfig
	Running tmconfig: A High-level Walk-through
	Input Buffer Considerations

	Procedures
	Adding a New Machine
	Adding a Server
	Activating a Newly Configured Server
	Adding a New Group
	Changing the Data-dependent Routing (DDR) for the Application
	Changing Application-wide Parameters
	Changing an Application Password

	Final Advice About Dynamic Reconfiguration

	18 Event Broker/Monitor
	Events
	Event Classifications
	List of Events

	Setting Up Event Detection
	Subscribing to Events
	Application-specific Event Broker/Monitors
	How an Event Broker/Monitor Might Be Deployed
	How the Event Broker/Monitor Works

	19 Troubleshooting Applications
	Distinguishing Between Types of Failures
	Determining the Cause of an Application Failure
	Determining the Cause of a BEA TUXEDO System Failure

	Broadcasting Unsolicited Messages
	Performing System File Maintenance
	Creating a Device List
	Destroying a Device List
	Reinitializing a Device
	Printing the Universal Device List (UDL)
	Printing VTOC Information

	Repairing Partitioned Networks
	Detecting Partitioned Networks
	Checking the ULOG
	Gathering Information about the Network, Server, and Service

	Restoring a Network Connection
	Recovering from Transient Network Failures
	Recovering from Severe Network Failures

	Restoring Failed Machines
	Restoring a Failed Master Machine
	Restoring a Failed Nonmaster Machine

	Replacing System Components
	Replacing Application Components
	Cleaning Up and Restarting Servers Manually
	Cleaning Up Resources Associated with Dead Processes
	Cleaning Up Resources

	Aborting or Committing Transactions
	Aborting a Transaction
	Committing a Transaction
	Cautions

	Recovering from Failures When Transactions Are Used

	Index

