
BEA TUXEDO
COBOL Guide

B E A T U X E D O R e l e a s e 6 . 5
D o c u m e n t E d i t i o n 6 . 5

F e b r u a r y 1 9 9 9

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Connect, BEA Jolt, BEA Manager, and BEA MessageQ are trademarks of
BEA Systems, Inc. BEA ObjectBroker is a registered trademark of BEA Systems, Inc. TUXEDO is a registered
trademark in the United States and other countries.

All other company names may be trademarks of the respective companies with which they are associated.

BEA TUXEDO COBOL Guide

Document Edition Date Software Version

6.5 February 1999 BEA TUXEDO Release 6.5

Contents

1. Introduction and a Simple Application
About This Chapter ... 1-1

Some Preliminaries .. 1-2

The CSIMPAPP Tutorial... 1-2

Step 1: Copy the CSIMPAPP Files .. 1-2

Step 2: Examine the Client Program .. 1-4

References... 1-7

Step 3: Compile the Client ... 1-8

References... 1-8

Step 4: Examine the Server .. 1-8

References... 1-12

Step 5: Build the Server ... 1-12

References... 1-12

Step 6: Edit the Configuration File .. 1-13

References... 1-14

Step 7: Load the Configuration File... 1-14

References... 1-15

Step 8: Boot the Application .. 1-15

References... 1-15

Step 9: Enter a Request .. 1-15

Step 10: Using tmadmin ... 1-16

References... 1-16

Step 11: Shut Down the Application.. 1-17

References... 1-17

Summary .. 1-18
BEA TUXEDO COBOL Guide iii

. 3-2

. 3-3

. 3-3

... 3-3

.. 4-1

. 4-2

.. 4-2

. 4-3

4-3

4-4

... 4-4

5-1

. 5-1

5-1

. 5-2

. 5-2

6-1

. 6-3

... 6-3
2. STOCKAPP Files
Directory Structure for STOCKAPP ... 2-1

Files ... 2-1

Additional PATH Component for SunOS.. 2-6

3. STOCKAPP Client Programs
A Look at STOCKAPP Client Programs .. 3-1

System Client Programs ... 3-1

Record Types... 3-2

BUY.cbl—A Request/response Client ..

BUY.cbl Source Code ..

Building Client Programs..

References ...

4. STOCKAPP Servers
A Look at STOCKAPP Servers...

Service Definitions ..

Building Servers ...

Using the buildserver Command in the STOCKAPP................................

The BUYSELL Server ..

Servers Built in STOCKAPP.mk ..

References ...

5. The STOCKAPP Makefile
A Look at the STOCKAPP Makefile ..

Editing STOCKAPP.mk..

TUXDIR..

APPDIR..

Running STOCKAPP.mk..

6. Edit STOCKAPP Configuration File
Configuration File for STOCKAPP ..

Notes to Listing 6-1 ...

References ...
iv BEA TUXEDO COBOL Guide

7. Create TUXCONFIG
Loading the Configuration File ... 7-1

References .. 7-2

8. Boot the Application
Executing tmboot... 8-1

The Userlog: ULOG... 8-2

References .. 8-2

9. Run STOCKAPP
Run the Application... 9-1

Running the audit Client Program... 9-1

Using tmadmin ... 9-2

Shutting STOCKAPP Down .. 9-2

References .. 9-2

10. The BEA TUXEDO System Development Environment
Introduction ... 10-1

Client Processes... 10-2

Basic Client Operation ... 10-2

Client Sending Repeated Service Requests 10-3

Server Processes and Service Subroutines ... 10-3

Basic Server Operation... 10-3

Servers as Requesters ... 10-5

The ATMI Calls ... 10-6

An Overview of X/Open’s TX Interface .. 10-7

Typed Records.. 10-9

Using VIEW and FML Buffers... 10-10

Relationship Between VIEW Buffers and FML 10-11

Corresponding Data Type Definitions .. 10-13

Creating COBOL COPY Files from View Descriptions 10-14

FML/VIEW Conversion... 10-15

Environment Variables... 10-18

Configuration File .. 10-19

Making the Configuration Usable... 10-19
BEA TUXEDO COBOL Guide v

The Bulletin Board ... 10-20

Starting and Stopping an Application ... 10-20

11. Writing Client Programs
Introduction ... 11-1

Preliminaries .. 11-2

Client Naming .. 11-2

Unsolicited Notification ... 11-3

Security Strategy .. 11-4

The TPINFDEF-REC Record... 11-7

The USRNAME, CLTNAME and GRPNAME Members of
TPINFDEF-REC.. 11-7

The PASSWD Member of TPINFDEF-REC.................................... 11-7

The Settings Members of TPINFDEF-REC...................................... 11-8

The DATALEN Member of TPINFDEF-REC 11-9

Joining and Leaving an Application .. 11-9

Record Management.. 11-12

Typed Records for Messages.. 11-13

Record Types: STRING .. 11-13

Record Types: CARRAY.. 11-13

Record Types: FML and FML32 .. 11-14

Record Types: VIEW, X_COMMON and VIEW32 11-14

Record Types: Summary ... 11-15

ATMI Record Calls .. 11-16

Service Calls .. 11-16

Sending Synchronous Messages: TPCALL ... 11-17

Values for the Settings: TPCALL ... 11-20

Examples of the Use of Settings ... 11-22

Sending Asynchronous Messages: TPACALL 11-26

Values for the Settings: TPACALL .. 11-26

Getting an Asynchronous Reply: TPGETRPLY............................. 11-29

Getting and Setting Priority... 11-29

Initiating a Conversational Connection... 11-34

Sending a Broadcast Message ... 11-34

Handling Unsolicited Notification ... 11-34
vi BEA TUXEDO COBOL Guide

Compiling Client Programs... 11-38

The buildclient Command.. 11-38

The buildclient -o Option .. 11-38

The buildclient -f and -l Options... 11-38

The buildclient -r Option... 11-39

12. Writing Service Routines
Writing Request/Response Services.. 12-1
Application Service Template ... 12-2

The TPSVCSTART Routine .. 12-3
The TPSVCDEF-REC Structure.. 12-3

The Settings of TPSVCDEF-REC .. 12-4
The APPKEY Member of TPSVCDEF-REC................................... 12-5
The CLIENTID Member of TPSVCDEF-REC 12-5

Accessing Data that Comes with the Request.. 12-5
Checking The Priority of the Service Request.................................. 12-8

The TPRETURN and TPFORWAR Routines .. 12-11

Sending Replies .. 12-11
TPRETURN Arguments: TP-RETURN-VAL IN

TPSVCRET-REC .. 12-12
TPRETURN Arguments: APPL-CODE IN TPSVCRET-REC...... 12-13
TPRETURN Arguments: DATA-REC and LEN IN

TPTYPE-REC.. 12-13

TPRETURN Example... 12-13
Invalidating Handles: TPCANCEL .. 12-16

Forwarding Requests.. 12-17

TPFORWAR Arguments .. 12-18
TPFORWAR Example.. 12-18

Sending Unsolicited Messages... 12-20
TPBROADCAST Arguments ... 12-20

TPBROADCAST Example... 12-22
TPNOTIFY Arguments... 12-22

Advertising, Unadvertising Services.. 12-23

TPADVERTISE Arguments ... 12-24
TPADVERTISE Example... 12-24
TPUNADVERTISE .. 12-25
BEA TUXEDO COBOL Guide vii

System-supplied Servers and Subroutines... 12-26
System-Supplied Server: AUTHSVR .. 12-26

The BEA TUXEDO System Controlling Program.. 12-26

BEA TUXEDO System-Supplied Subroutines 12-28
TPSVRINIT .. 12-28
Using TPSVRINIT to Receive Command Line Options 12-29

Using TPSVRINIT to Open a Resource Manager 12-30
TPSVRDONE ... 12-32

Compiling Subroutines to Build Servers ... 12-33
The buildserver Command ... 12-34

The buildserver -o Option ... 12-34
The buildserver -f and -l Options .. 12-34
The buildserver -r Option .. 12-35

The buildserver -s Option.. 12-35

13. Conversational Clients and Services
Introduction ... 13-1
Conversational Mode... 13-2

The Communications Handle ... 13-2
Record Management... 13-2
Joining an Application.. 13-3

Establishing a Connection... 13-3

Values for the Settings: TPCONNECT... 13-4
Sending.. 13-5
Values for the Settings: TPSEND ... 13-6

Receiving... 13-7
Values for the Settings: TPRECV... 13-8

Ending a Conversation ... 13-9

Subordinate Calls TPRETURN... 13-9
Hierarchy of Connections and TPRETURN 13-10

Ending a Conversation: Summary.. 13-11
Events and Their Significance.. 13-12

Disorderly Disconnection... 13-13
Request/Response Calls and Conversations... 13-13

Configuration Parameters .. 13-14

Building Conversational Clients and Servers .. 13-15
viii BEA TUXEDO COBOL Guide

14. Global Transactions in the BEA TUXEDO System
Introduction ... 14-1

What Is a Global Transaction? .. 14-2

ATMI Transaction Primitives.. 14-3

Explicitly Defining a Global Transaction .. 14-3

Starting the Transaction .. 14-6

Terminating the Transaction ... 14-10

Implicitly Defining a Global Transaction .. 14-15

What a Service in an XA-Compliant Server Group Expects 14-15

15. Error Management
Introduction ... 15-1

Communicating Errors .. 15-2

Values of TP-STATUS .. 15-2

Protocol Errors ... 15-3

BEA TUXEDO System Errors... 15-3

Operating System Errors .. 15-3

Errors from Invalid Arguments .. 15-4

Other Possible Error Categories ... 15-4

No Entry Errors ... 15-5

Permission Errors .. 15-5

Resource Manager Errors.. 15-6

Transaction-Related Errors ... 15-6

Typed Record Errors ... 15-6

Communication Handle Errors ... 15-7

General Communication Call Errors... 15-8

Conversational Errors ... 15-9

Time-out Errors... 15-9

Errors Leading to Abort ... 15-10

Heuristic Decision Errors ... 15-10

How to Deal with Errors.. 15-11

Fatal Transaction Errors ... 15-12

Time-out ... 15-13

Blocking vs. Transaction Time-out .. 15-13

Effect on TPCOMMIT ... 15-14
BEA TUXEDO COBOL Guide ix

Effect of the TPNOTRAN Flag.. 15-14

Roles of TPRETURN and TPFORWAR ... 15-15

Service in Same Transaction as Caller ... 15-16

Service in Different Transaction with AUTOTRAN Set 15-16

 Service Starts New Explicit Transaction ... 15-18

Transaction Rules .. 15-18

Communication Etiquette... 15-19

BEA TUXEDO System-Supplied Subroutines 15-20

TPSVRINIT .. 15-20

TPSVRDONE ... 15-20

Leaving the Application .. 15-20

Global Transactions and Resource Managers.. 15-21

The Central Event Log .. 15-22

How the Log Is Named... 15-22

What Log Entries Look Like.. 15-22

How to Write to the Event Log .. 15-23

16. Workstation COBOL Language Binding Feature
Introduction ... 16-1

UNIX ... 16-2

Programming Consideration with UNIX Clients 16-2

Writing Client Programs ... 16-2

Building Client Programs.. 16-2

Environment Variables.. 16-3

DOS ... 16-4

Programming Considerations with MS-DOS Clients............................... 16-4

Writing Client Programs ... 16-4

Building Client Programs.. 16-4

Environment Variables.. 16-5

Windows .. 16-6

Programming Considerations with the Windows DLL 16-6

Writing Client Programs ... 16-6

Building Client Programs.. 16-6

Building ACCEPT/DISPLAY Clients .. 16-8
x BEA TUXEDO COBOL Guide

OS/2... 16-9

Programming Considerations with OS/2 Clients 16-9

Writing Presentation Manager Client Programs 16-9

Blocking Network Behavior ... 16-9

Building Client Programs.. 16-9
BEA TUXEDO COBOL Guide xi

xii BEA TUXEDO COBOL Guide

CHAPTER
1 Introduction and a
Simple Application

About This Chapter

This chapter contains a tutorial that describes a simple one-client, one-server
application called CSIMPAPP. An interactive form of this chapter is distributed with the
BEA TUXEDO system software.

If you follow the ten steps of the tutorial you will:

t learn how a BEA TUXEDO application is organized

t see how clients and servers are written and compiled

t understand how an application is described in the configuration file

t actually create an executable version of CSIMPAPP

t boot, run and shutdown the application
BEA TUXEDO COBOL Guide 1-1

1 Introduction and a Simple Application
Some Preliminaries

Before you can run this tutorial the BEA TUXEDO system software must be installed
so that the files and commands referred to in this chapter are available.

If you are personally responsible for installing the BEA TUXEDO system software,
consult the BEA TUXEDO Installation Guide for information about how to install the
BEA TUXEDO system.

If the installation has already been done by someone else, you need to know the
pathname of the root directory of the installed software. You also need to have read
and execute permissions on the directories and files in the BEA TUXEDO system
directory structure so you can copy CSIMPAPP files and execute BEA TUXEDO
commands.

The CSIMPAPP Tutorial

CSIMPAPP is a very basic BEA TUXEDO system application. It has one client and one
server. The server performs only one service; it accepts a string from the client and
returns the same string in upper case.

The tutorial consists of ten steps (plus an eleventh step for shutdown) designed to
introduce you to the BEA TUXEDO system by showing how an application is
developed and by encouraging you to bring the application up and run it. Each of the
steps includes one or more smaller steps.

Step 1: Copy the CSIMPAPP Files

1. Make a directory for CSIMPAPP and cd to it:

mkdir CSIMPDIR
cd CSIMPDIR

This is suggested so you will be able to see clearly the CSIMPAPP files you have
at the start and the additional files you create along the way. Use the standard
shell (/bin/sh) or the Korn shell; not csh.
1-2 BEA TUXEDO COBOL Guide

The CSIMPAPP Tutorial
2. Set and export environment variables

TUXDIR=<pathname of the BEA TUXEDO System root directory>
APPDIR=<pathname of your present working directory>
TUXCONFIG=$APPDIR/TUXCONFIG
COBDIR=<pathname of the COBOL compiler directory>
COBCPY=$TUXDIR/cobinclude
COBOPT="-C ANS85 -C ALIGN=8 -C NOIBMCOMP -C TRUNC=ANSI -C OSEXT=cbl"
CFLAGS="-I$TUXDIR/include"
PATH=$PATH:$TUXDIR/bin
LD_LIBRARY_PATH=$COBDIR/coblib:${LD_LIBRARY_PATH}
export TUXDIR APPDIR TUXCONFIG UBBCONFIG COBDIR COBCPY
export COBOPT CFLAGS PATH LD_LIBRARY_PATH

You need TUXDIR and PATH to be able to access files in the BEA TUXEDO
system directory structure and to execute BEA TUXEDO system commands. On
SunOS, /usr/5bin must be the first directory in your PATH. On AIX, LIBPATH
must be set instead of LD_LIBRARY_PATH. On HPUX, SHLIB_PATH must be set
instead of LD_LIBRARY_PATH. You need to set TUXCONFIG to be able to load the
configuration file as shown in Step 7.

3. Copy the CSIMPAPP files.

cp $TUXDIR/apps/CSIMPAPP/* .

Later on you will be editing some of the files and making them executable, so it
is best to begin with a copy of the files rather than the originals delivered with
the software.

4. List the files.

$ ls
CSIMPCL.cbl
CSIMPSRV.cbl
README
TPSVRINIT.cbl
UBBCSIMPLE
WUBBCSIMPLE
envfile
ws
$

The files that make up the application are:

t CSIMPCL.cbl—the source code for the client program

t CSIMPSRV.cbl—the source code for the server program

t TPSVRINIT.cbl—the source code for the server initialization program
BEA TUXEDO COBOL Guide 1-3

1 Introduction and a Simple Application
t UBBCSIMPLE—the ASCII form of the configuration file for the application

t WUBBCSIMPLE—the config file for the Workstation example

t ws—a directory with .MAK files for client programs for three workstation
platforms

Step 2: Examine the Client Program

Page through the client program source code:

$ more CSIMPCL.cbl

The output is shown in Listing 1-1.

Listing 1-1 Source code of CSIMPCL.cbl

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. CSIMPCL.
3 AUTHOR. TUXEDO DEVELOPMENT.
4 ENVIRONMENT DIVISION.
5 CONFIGURATION SECTION.
6 WORKING-STORAGE SECTION.
7 ***
8 * Tuxedo definitions
9 ***
10 01 TPTYPE-REC.
11 COPY TPTYPE.
12 *
13 01 TPSTATUS-REC.
14 COPY TPSTATUS.
15 *
16 01 TPSVCDEF-REC.
17 COPY TPSVCDEF.
18 *
19 01 TPINFDEF-REC VALUE LOW-VALUES.
20 COPY TPINFDEF.
21 ***
22 * Log messages definitions
23 ***
24 01 LOGMSG.
25 05 FILLER PIC X(8) VALUE "CSIMPCL:".
26 05 LOGMSG-TEXT PIC X(50).
27 01 LOGMSG-LEN PIC S9(9) COMP-5.
28 *
1-4 BEA TUXEDO COBOL Guide

The CSIMPAPP Tutorial
29 01 USER-DATA-REC PIC X(75).
30 01 SEND-STRING PIC X(100).
31 01 RECV-STRING PIC X(100).
32 ***
33 * Command line arguments
34 ***
35 LINKAGE SECTION.
36 01 CMD-LINE.
37 05 ARG-LENGTH PIC 9(4) COMP.
38 05 ARG.
39 10 ARGS PIC X OCCURS 0 TO 100 DEPENDING
40 ON ARG-LENGTH.
41 **
42 * Start program with command line args
43 **
44
45 PROCEDURE DIVISION USING CMD-LINE.
46 START-CSIMPCL.
47 MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.
48 PERFORM CHECK-ARGS.
49 PERFORM DO-TPINIT.
50 MOVE ARG TO SEND-STRING.
51 PERFORM DO-TPCALL.
52 DISPLAY RECV-STRING.
53 PERFORM DO-TPTERM.
54 PERFORM EXIT-PROGRAM.
55
56 **
57 * Check Arguments being passed
58 **
59 CHECK-ARGS.
60 IF ARG-LENGTH = 0
61 DISPLAY "Usage: CSIMPCL string"
62 PERFORM EXIT-PROGRAM
63 END-IF.
64 IF ARG-LENGTH = 100
65 DISPLAY "Command Line Too Long"
66 PERFORM EXIT-PROGRAM
67 END-IF.
68
69 MOVE "Started" TO LOGMSG-TEXT.
70 PERFORM DO-USERLOG.
71
72 ***
73 * Now register the client with the system.
74 ***
75 DO-TPINIT.
76 MOVE SPACES TO USRNAME.
77 MOVE SPACES TO CLTNAME.
78 MOVE SPACES TO PASSWD.
79 MOVE SPACES TO GRPNAME.
BEA TUXEDO COBOL Guide 1-5

1 Introduction and a Simple Application
80 MOVE ZERO TO DATALEN.
81 SET TPU-DIP TO TRUE.
82
83 CALL "TPINITIALIZE" USING TPINFDEF-REC
84 USER-DATA-REC
85 TPSTATUS-REC.
86
87 IF NOT TPOK
88 MOVE "TPINITIALIZE Failed" TO LOGMSG-TEXT
89 PERFORM DO-USERLOG
90 PERFORM EXIT-PROGRAM
91 END-IF.
92
93 ***
94 * Issue a TPCALL
95 ***
96 DO-TPCALL.
97 MOVE ARG-LENGTH TO LEN.
98 MOVE "STRING" TO REC-TYPE.
99 MOVE "CSIMPSRV" TO SERVICE-NAME.
100 SET TPBLOCK TO TRUE.
101 SET TPNOTRAN TO TRUE.
102 SET TPNOTIME TO TRUE.
103 SET TPSIGRSTRT TO TRUE.
104 SET TPCHANGE TO TRUE.
105
106 CALL "TPCALL" USING TPSVCDEF-REC
107 TPTYPE-REC
108 SEND-STRING
109 TPTYPE-REC
110 RECV-STRING
111 TPSTATUS-REC.
112
113 IF NOT TPOK
114 MOVE "TPCALL Failed" TO LOGMSG-TEXT
115 PERFORM DO-USERLOG
116 END-IF.
117
118 ***
119 * Leave TUXEDO
120 ***
121 DO-TPTERM.
122 CALL "TPTERM" USING TPSTATUS-REC.
123 IF NOT TPOK
124 MOVE "TPTERM Failed" TO LOGMSG-TEXT
125 PERFORM DO-USERLOG
126 END-IF.
127
128 ***
129 * Log messages to the userlog
130 ***
1-6 BEA TUXEDO COBOL Guide

The CSIMPAPP Tutorial
131 DO-USERLOG.
132 CALL "USERLOG" USING LOGMSG
133 LOGMSG-LEN
134 TPSTATUS-REC.
135
136 ***
137 *Leave Application
138 ***
139 EXIT-PROGRAM.
140 MOVE "Ended" TO LOGMSG-TEXT.
141 PERFORM DO-USERLOG.
142 STOP RUN.

Here are the important things to see in this file:

References

The ATMI calls cited above are documented in the following pages in the BEA
TUXEDO Reference Manual: TPINITIALIZE(3cbl), TPTERM(3cbl), TPCALL(3cbl),
USERLOG(3cbl).

lines 11, 14,
17, 20

COPY Files needed whenever BEA TUXEDO ATMI calls
are used

line 83 TPINITIALIZE The ATMI call used by a client program to join an
application.

line 106 TPCALL Sends the message record to the service specified in
SERVICE-NAME. TPCALL waits for a return
message. STRING is one of the three basic BEA
TUXEDO record types. The argument, LEN IN
TPTYPE-REC, specifies the length of the record
contained in USER-DATA-REC.

line 122 TPTERM The ATMI call used to leave an application. A call to
TPTERM is used to leave the application prior to
performing a STOP RUN.

line 52 DISPLAY This is the successful conclusion of the program. It
prints out the message returned from the server.
BEA TUXEDO COBOL Guide 1-7

1 Introduction and a Simple Application
Step 3: Compile the Client

1. Run buildclient to compile the client program:

buildclient -C -o CSIMPCL -f CSIMPCL.cbl

where the output file is CSIMPCL, and the input source file is CSIMPCL.cbl.

2. Check the results:

$ ls CSIMPCL*
CSIMPCL CSIMPCL.cbl CSIMPCL.idy CSIMPCL.int CSIMPCL.o

As can be seen, we now have an executable module called CSIMPCL.

References

buildclient is documented in buildclient(1) in the BEA TUXEDO Reference
Manual.

Step 4: Examine the Server

1. Page through the server program source code:

$ pg CSIMPSRV.cbl

Listing 1-2 Source code of CSIMPSRV.cbl

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. CSIMPSRV.
3 AUTHOR. BEA TUXEDO DEVELOPMENT.
4 ENVIRONMENT DIVISION.
5 CONFIGURATION SECTION.
6 WORKING-STORAGE SECTION.
7 **
8 * Tuxedo definitions
9 **
10 01 TPSVCRET-REC.
11 COPY TPSVCRET.
12 *
13 01 TPTYPE-REC.
14 COPY TPTYPE.
15 *
1-8 BEA TUXEDO COBOL Guide

The CSIMPAPP Tutorial
16 01 TPSTATUS-REC.
17 COPY TPSTATUS.
18 *
19 01 TPSVCDEF-REC.
20 COPY TPSVCDEF.
21 **
22 * Log message definitions
23 **
24 01 LOGMSG.
25 05 FILLER PIC X(10) VALUE
26 "CSIMPSRV :".
27 05 LOGMSG-TEXT PIC X(50).
28 01 LOGMSG-LEN PIC S9(9) COMP-5.
29 **
31 * User defined data records
32 **
33 01 RECV-STRING PIC X(100).
34 01 SEND-STRING PIC X(100).
35 *
36 LINKAGE SECTION.
37 *
38 PROCEDURE DIVISION.
39 *
40 START-FUNDUPSR.
41 MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.
42 MOVE "Started" TO LOGMSG-TEXT.
43 PERFORM DO-USERLOG.
44
45 **
46 * Get the data that was sent by the client
47 **
48 MOVE LENGTH OF RECV-STRING TO LEN.
49 CALL "TPSVCSTART" USING TPSVCDEF-REC
50 TPTYPE-REC
51 RECV-STRING
52 TPSTATUS-REC.
53
54 IF NOT TPOK
55 MOVE "TPSVCSTART Failed" TO LOGMSG-TEXT
56 PERFORM DO-USERLOG
57 PERFORM EXIT-PROGRAM
58 END-IF.
59
60 IF TPTRUNCATE
61 MOVE "Data was truncated" TO LOGMSG-TEXT
62 PERFORM DO-USERLOG
63 PERFORM EXIT-PROGRAM
64 END-IF.
65
66 INSPECT RECV-STRING CONVERTING
67 "abcdefghijklmnopqrstuvwxyz" TO
BEA TUXEDO COBOL Guide 1-9

1 Introduction and a Simple Application
68 "ABCDEFGHIJKLMNOPQRSTUVWXYZ".
69 MOVE "Success" TO LOGMSG-TEXT.
70 PERFORM DO-USERLOG.
71 SET TPSUCCESS TO TRUE.
72 COPY TPRETURN REPLACING
73 DATA-REC BY RECV-STRING.
74
75 **
76 * Write out a log err messages
77 **
78 DO-USERLOG.
79 CALL "USERLOG" USING LOGMSG
80 LOGMSG-LEN
81 TPSTATUS-REC.
82 **
83 * EXIT PROGRAM
84 **
85 EXIT-PROGRAM.
86 MOVE "Failed" TO LOGMSG-TEXT.
87 PERFORM DO-USERLOG.
88 SET TPFAIL TO TRUE.
89 COPY TPRETURN REPLACING
90 DATA-REC BY RECV-STRING.

Here are the important things to see in this file:

2. Page through the server program source code:

$ pg TPSVRINIT.cbl

line 49 TPSVCSTART This routine is used to receive the service’s parameters and
data. After a successful call, the RECV-STRING contains
the data sent by the client.

lines
66-68

INSPECT statement Converts the input to uppercase.

line 72 COPY TPRETURN Returns the converted string to the client with
TPSUCCESS set.

line 79 USERLOG This routine logs messages that are used by the BEA
TUXEDO system and applications.
1-10 BEA TUXEDO COBOL Guide

The CSIMPAPP Tutorial
Listing 1-3 Source code of TPSVRINIT.cbl

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. TPSVRINIT.
3 ENVIRONMENT DIVISION.
4 CONFIGURATION SECTION.
5 *
6 DATA DIVISION.
7 WORKING-STORAGE SECTION.
8 *
9 01 LOGMSG.
10 05 FILLER PIC X(11) VALUE "TPSVRINIT :".
11 05 LOGMSG-TEXT PIC X(50).
12 01 LOGMSG-LEN PIC S9(9) COMP-5.
13 *
14 01 TPSTATUS-REC.
15 COPY TPSTATUS.
16 ***
17 LINKAGE SECTION.
18 01 CMD-LINE.
19 05 ARGC PIC 9(4) COMP-5.
20 05 ARG.
21 10 ARGS PIC X OCCURS 0 TO 9999 DEPENDING ON ARGC.
22 *
23 01 SERVER-INIT-STATUS.
24 COPY TPSTATUS.
25 ***
26 PROCEDURE DIVISION USING CMD-LINE SERVER-INIT-STATUS.
27 A-000.
28 MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.
29 ***
30 * There are no command line parameters in this TPSVRINIT
31 ***
32 IF ARG NOT EQUAL TO SPACES
33 MOVE "TPSVRINIT failed" TO LOGMSG-TEXT
34 CALL "USERLOG" USING LOGMSG
35 LOGMSG-LEN
36 TPSTATUS-REC
37 ELSE
38 MOVE "Welcome to the simple service" TO LOGMSG-TEXT
39 CALL "USERLOG" USING LOGMSG
40 LOGMSG-LEN
41 TPSTATUS-REC
42 END-IF.
43 *
44 SET TPOK IN SERVER-INIT-STATUS TO TRUE.
45 *
46 EXIT PROGRAM.
BEA TUXEDO COBOL Guide 1-11

1 Introduction and a Simple Application
This subroutine is called during server initialization, before the server begins
processing service requests. A default is provided by the BEA TUXEDO system that
writes a message to USERLOG indicating that the server has been booted.

References

The ATMI calls and structure cited above are documented in the following pages in
the BEA TUXEDO Reference Manual: TPSVCSTART(3cbl), TPSVRINIT(3cbl),
TPRETURN(3cbl), USERLOG(3cbl).

Step 5: Build the Server

1. Run buildserver to compile the server program:

buildserver -C -o CSIMPSRV -f CSIMPSRV.cbl -f TPSVRINIT.cbl -s CSIMPSRV

where the executable file to be created is named CSIMPSRV, and CSIMPSRV.cbl
and TPSVRINIT.cbl are the input source files.

2. Check the results:

$ ls
CSIMPCL CSIMPCL.int CSIMPSRV.cbl CSIMPSRV.o TPSVRINIT.int
CSIMPCL.cbl CSIMPCL.o CSIMPSRV.idy TPSVRINIT.cbl TPSVRINIT.o
CSIMPCL.idy CSIMPSRV CSIMPSRV.int TPSVRINIT.idy UBBCSIMPLE

As can be seen, we now have an executable module called CSIMPSRV.

References

buildserver is documented in buildserver(1) in the BEA TUXEDO Reference
Manual.
1-12 BEA TUXEDO COBOL Guide

The CSIMPAPP Tutorial
Step 6: Edit the Configuration File

1. Edit the file:

Listing 1-4 The CSIMPAPP configuration file

#Skeleton UBBCONFIG file for the BEA TUXEDO COBOL Simple
Application.
#Replace the <bracketed> items with the appropriate values.

*RESOURCES
IPCKEY <Replace with a valid IPC Key>

#Example:
#IPCKEY 123456

MASTER simple
MAXACCESSERS 5
MAXSERVERS 5
MAXSERVICES 10
MODEL SHM
LDBAL N

*MACHINES
DEFAULT:
 APPDIR="<Replace with the current pathname>"
 TUXCONFIG="<Replace with TUXCONFIG Pathname>"
 TUXDIR="<Root directory of BEA TUXEDO (not /)>"
 ENVFILE="<pathname of file of environment vars>"
#Example:
APPDIR="/home/me/simpapp"
TUXCONFIG="/home/me/simpapp/TUXCONFIG"
TUXDIR="/usr/tuxedo"

<Machine-name> LMID=simple

#Example:
#usltux LMID=simple

*GROUPS
GROUP1
 LMID=simple GRPNO=1 OPENINFO=NONE

*SERVERS
DEFAULT:
 CLOPT="-A"

CSIMPSRV SRVGRP=GROUP1 SRVID=1

*SERVICES
CSIMPSRV
BEA TUXEDO COBOL Guide 1-13

1 Introduction and a Simple Application

e
2. Change values enclosed in angle brackets to your own local values:

3. The pathnames for TUXCONFIG and TUXDIR must be identical to those you set and
exported in Step 1 in “Step 1: Copy the CSIMPAPP Files.” The strings must b
the actual values; environment variables (such as $TUXCONFIG) are not
acceptable. Do not forget to remove the angle brackets.

References

The configuration file is documented in ubbconfig(5) in the BEA TUXEDO
Reference Manual.

Step 7: Load the Configuration File

1. Run tmloadcf to load the configuration file:

$ tmloadcf UBBCSIMPLE
Initialize TUXCONFIG file: /usr/me/CSIMPDIR/TUXCONFIG [y, q] ? y
$

2. Check the results:

$ ls
CSIMPCL CSIMPCL.o CSIMPSRV.int TPSVRINIT.int
CSIMPCL.cbl CSIMPSRV CSIMPSRV.o TPSVRINIT.o
CSIMPCL.idy CSIMPSRV.cbl TPSVRINIT.cbl TUXCONFIG
CSIMPCL.int CSIMPSRV.idy TPSVRINIT.idy UBBCSIMPLE

We see that we now have a file called TUXCONFIG. The TUXCONFIG file is a new
file system under the control of the BEA TUXEDO system.

IPCKEY Use a value that will not conflict with any other users.

TUXCONFIG Provide the full pathname of the binary tuxconfig file to be created
in Step 7.

TUXDIR Provide the full pathname of your BEA TUXEDO system root directory.

APPDIR Provide the full pathname of the directory where you intend to boot the
application; in this case, the current directory.

ENVFILE Provide the full pathname for the environment file to be used by mc,
viewc, tmloadcf, and so on.

machine-name Provide the machine name as returned by uname -n.
1-14 BEA TUXEDO COBOL Guide

The CSIMPAPP Tutorial
References

tmloadcf is documented in tmloadcf(1) in the BEA TUXEDO Reference Manual.

Step 8: Boot the Application

Execute tmboot to bring up the application:

$ tmboot
Boot all admin and server processes? (y/n): y
Booting all admin and server processes in /usr/me/CSIMPDIR/TUXCONFIG

Booting all admin processes ...

exec BBL -A:
 process id=24223 ... Started.

Booting server processes ...

exec CSIMPSRV -A :
 process id=24257 ... Started.
2 processes started.
$

BBL is the administrative process that monitors the application shared memory
structures. CSIMPSRV is our server that runs continuously awaiting requests.

References

tmboot is documented in tmboot(1) in the BEA TUXEDO Reference Manual.

Step 9: Enter a Request

Run the client program to submit a request:

$ CSIMPCL "hello world"
HELLO WORLD

We are successful!!!
BEA TUXEDO COBOL Guide 1-15

1 Introduction and a Simple Application
Step 10: Using tmadmin

tmadmin is an interactive program that an administrator can use to check an
application and make dynamic changes. It requires the TUXCONFIG variable to be set.
We will show you just two of the many tmadmin commands.

1. Enter the command:

tmadmin

You will see the following lines.

tmadmin - Copyright (c) 1987 ATT; 1991 USL. All rights reserved.

>

The greater-than sign (>) is the tmadmin prompt.

2. Enter the printserver(psr) command to display information about the
servers:

> psr
a.out Name Queue Name Grp Name ID RqDone Load Done Current Service
---------- ---------- -------- -- ------ --------- ---------------
BBL 531993 simple 0 0 0 (IDLE)
CSIMPSRV 00001.00001 GROUP1 1 0 0 (IDLE)
>

3. Enter the printservice(psc) command to display information about the
services:

> psc
Service Name Routine Name a.out Name Grp Name ID Machine # Done Status
------------ ------------ ---------- -------- -- ------- ---- -------
ADJUNCTBB ADJUNCTBB BBL simple 0 simple - AVAIL
ADJUNCTADMIN ADJUNCTADMIN BBL simple 0 simple - AVAIL
CSIMPSRV CSIMPSRV CSIMPSRV GROUP1 1 simple - AVAIL
>

4. Leave tmadmin by entering a q at the prompt. You can boot and shut down the
application from within tmadmin. We have done those functions with shell
commands in Steps 8 and 11, respectively.

References

tmadmin is documented in tmadmin(1) in the BEA TUXEDO Reference Manual.
1-16 BEA TUXEDO COBOL Guide

The CSIMPAPP Tutorial
Step 11: Shut Down the Application

1. Run tmshutdown to bring the application down:

$ tmshutdown
Shutdown all admin and server processes? (y/n): y
Shutting down all admin and server processes in /usr/me/CSIMPDIR/TUXCONFIG

Shutting down server processes ...

Server Id = 1 Group Id = GROUP1 Machine = simple: shutdown succeeded.

Shutting down admin processes ...

Server Id = 0 Group Id = simple Machine = simple: shutdown succeeded.
2 processes stopped.
$

2. Check the ULOG:

$ cat ULOG*
$
140533.usltux!BBL.22964: LIBTUX_CAT:262: std main starting
140540.usltux!CSIMPSRV.22965: COBAPI_CAT:1067: INFO: std main starting
140542.usltux!CSIMPSRV.22965: TPSVRINIT :Welcome to the simple service
140610.usltux!?proc.22966: CSIMPCL:Started
140614.usltux!CSIMPSRV.22965: CSIMPSRV :Started
140614.usltux!CSIMPSRV.22965: CSIMPSRV :Success
140614.usltux!?proc.22966: switch to new log file
/home/usr_nm/CSIMPDIR/ULOG.112592
140614.usltux!?proc.22966: CSIMPCL:Ended

Each line of the ULOG for this session contains something of interest. First let’s
look at the format of a ULOG line:

time (hhmmss).machine_uname!process_name.process_id: log message

Now let’s look at an individual line:

140542. Message from TPSVRINIT in CSIMPSRV

References

tmshutdown is documented in tmshutdown(1) in the BEA TUXEDO Reference
Manual.

The USERLOG is documented in USERLOG(3cbl).
BEA TUXEDO COBOL Guide 1-17

1 Introduction and a Simple Application
Summary

If you have reached this point, you have successfully brought up, run and brought
down a BEA TUXEDO system application. You have seen what a client program and
a server look like. You have edited a configuration file to refer to your own
environment. You have invoked tmadmin to check on the activity of your application.
In all the applications you may work on in the future the basic elements of client
processes, server processes and a configuration file will be present, and you will have
all of the BEA TUXEDO shell commands at your fingertips.

Good luck!
1-18 BEA TUXEDO COBOL Guide

CHAPTER

urce
iles
es a
2 STOCKAPP Files

Directory Structure for STOCKAPP

This chapter describes the directory structure that pertains to the COBOL language
binding feature under the apps directory, which is subordinate to the root directory for
your BEA TUXEDO system software. We will also take a look at the files in the
STOCKAPP directory. The directory structure is shown in Figure 2-1.

Figure 2-1 COBOL Directory structure under apps/

CSIMPAPP is described in Chapter 1, “Introduction and a Simple Application.”

Files

Table 2-1 lists the files of the stock application. The left hand column lists the so
files delivered with the BEA TUXEDO system software. The center column lists f
that are generated when the stock application is built. The right hand column giv
brief summary of the purpose of the file.
BEA TUXEDO COBOL Guide 2-1

2 STOCKAPP Files
Table 2-1 Stock Application Files

Source Generated Purpose

BUY.cbl BUY.o

BUY

Client

BUYSR.cbl BUYSR.o

BUYSR

Contains BUY service

ENVFILE ENVFILE used by tmloadcf

FILES Descriptive list of all the files in STOCKAPP

FUNDPR.cbl FUNDPR.o
FUNDPR

Client

FUNDPRSR.cbl FUNDPRSR.o
FUNDPRSR

Contains PRICE QUOTE service

FUNDUP.cbl FUNDUP.o
FUNDUP

Client

FUNDUPSR.cbl FUNDUPSR.o
FUNDUPSR

Contains FUND UPDATE service

README On-line version of the installation and boot
procedures

SELL.cbl SELL.o SELL Client

SELLSR.cbl SELLSR.o
SELLSR

Contains SELL service

STKVAR Contains variable settings, except for those
within ENVFILE

STOCKAPP.mk Application makefile

UBBCBSHM TUXCONFIG Sample UBBCONFIG file for use in a SHM mode
configuration

cust CUST.cbl
cust.V cust.h

View used to define structure passed between the
BUY and SELL clients and the BUYSR and
SELLSR servers

quote QUOTE.cbl
quote.V
quote.h

View used to define structure passed between the
FUNDPR and FUNDUP clients and all the servers
2-2 BEA TUXEDO COBOL Guide

Files
Of the files in the directory, eight are .cbl files; BUY.cbl, SELL.cbl, FUNDPR.cbl
and FUNDUP.cbl are client programs; FUNDUPSR.cbl is a conversational server; three
others are servers or are associated with servers, two are there to generate data or
transactions for the application.

The remaining files have various roles; some are files you need in any application,
others are present simply to facilitate the use of STOCKAPP as an example. In
subsequent chapters we will closely examine a number of the files, and give a more
complete explanation of their role in the sample application. For now we just want to
discuss the STKVAR file.

Edit STKVAR to Set Environment Variables

STKVAR is a file of environment variables needed by STOCKAPP. A complete copy of
STKVAR is shown in Listing 2-1. The file takes up almost 100 lines, due largely to the
extensive comments, but there are only a few that you should be concerned about
immediately.

The first line referencing TUXDIR ensures that it is set. If it is not, execution of the file
fails with the message:

TUXDIR: parameter null or not set

So set TUXDIR to the root directory of your BEA TUXEDO system directory structure,
and export it.

As STKVAR is delivered, APPDIR is set to the directory in which the STOCKAPP source
files are located: ${TUXDIR}/apps/STOCKAPP. APPDIR is a directory where BEA
TUXEDO system looks for your application-specific files. You might prefer to copy
the STOCKAPP files to a different directory to safeguard the original source files. If you
do, then the directory you use should be entered here. It does not have to be under
TUXDIR.

The other variables specified in STKVAR play various roles in the sample application
and you will need to be aware of them when you are developing your own application.
They will all be mentioned at appropriate places later in this guide. Grouping them all
in STKVAR is done to show you an example that you may want to adapt at a later time
for use with a real application.

When you have made all necessary changes to STKVAR, execute STKVAR as follows:

. ./STKVAR
BEA TUXEDO COBOL Guide 2-3

2 STOCKAPP Files
Listing 2-1 STKVAR: Environment Variables for STOCKAPP

#ident "@(#)apps:STOCKAPP/STKVAR
#
This file sets all the environment variables needed by the TUXEDO software
to run the STOCKAPP
#
This directory contains all the TUXEDO software
System administrator must set this variable
#
TUXDIR=${TUXDIR:?}
#
This directory contains all the user written code
#
Contains the full path name of the directory that the application
generator should place the files it creates
#
APPDIR=${HOME}/STOCKAPP
#
Environment file to be used by tmloadcf
#
COBDIR=${COBDIR:?}
#
This directory contains the cobol files needed
for compiling and linking.
#
LD_LIBRARY_PATH=$COBDIR/coblib:${LD_LIBRARY_PATH}
#
Add coblib to LD_LIBRARY_PATH
#
ENVFILE=${APPDIR}/ENVFILE
#
List of field table files to be used by CBLVIEWC, tmloadcf, etc.
#
FIELDTBLS=fields,Usysflds
#
List of directories to search to find field table files
#
FLDTBLDIR=${TUXDIR}/udataobj:${APPDIR}
#
Set device for the transaction log; this should match the TLOGDEVICE
parameter under this site’s LMID in the *MACHINES section of the
UBBCBSHM file
#
TLOGDEVICE=${APPDIR}/TLOG
#
Device for the configuration file
#

2-4 BEA TUXEDO COBOL Guide

Files
UBBCBSHM=$APPDIR/UBBCBSHM
#
Device for binary file that gives /T all its information
#
TUXCONFIG=${APPDIR}/TUXCONFIG
#
Set the prefix of the file which is to contain the central user log;
this should match the ULOGPFX parameter under this site’s LMID in the
*MACHINES section of the UBBCONFIG file
#
ULOGPFX=${APPDIR}/ULOG
#
List of directories to search to find view files
#
VIEWDIR=${APPDIR}
#
List of view files to be used by CBLVIEWC, tmloadcf, etc.
#
VIEWFILES=quote.V,cust.V
#
Set the COBCPY
#
COBCPY=$TUXDIR/cobinclude
#
Set the COBOPT
#
COBOPT="-C ANS85 -C ALIGN=8 -C NOIBMCOMP -C TRUNC=ANSI -C OSEXT=cbl"
#
Set the CFLAGS
#
CFLAGS="-I$TUXDIR/include -I$TUXDIR/sysinclude"
#
Export all variables just set
#
export TUXDIR APPDIR ENVFILE
export FIELDTBLS FLDTBLDIR TLOGDEVICE
export UBBCBSHM TUXCONFIG ULOGPFX LD_LIBRARY_PATH
export VIEWDIR VIEWFILES COBDIR COBCPY COBOPT CFLAGS
#
Add TUXDIR/bin to PATH if not already there
#
a="‘echo $PATH | grep ${TUXDIR}/bin‘"
if [x"$a" = x]
then
PATH=${TUXDIR}/bin:${PATH}
export PATH
fi
#
Add APPDIR to PATH if not already there
BEA TUXEDO COBOL Guide 2-5

2 STOCKAPP Files
#
a="‘echo $PATH | grep ${APPDIR}‘"
if [x"$a" = x]
then
PATH=${PATH}:${APPDIR}
export PATH
fi
#
Add COBDIR to PATH if not already there
#
a="‘echo $PATH | grep ${COBDIR}‘"
if [x"$a" = x]
then
PATH=${PATH}:${COBDIR}
export PATH
fi

On AIX, LIBPATH must be set instead of LD_LIBRARY_PATH. On HPUX, SHLIB_PATH
must be set instead of LD_LIBRARY_PATH.

Additional PATH Component for SunOS

If your operating system is SunOS, you need to put /usr/5bin at the front of your
PATH. The following command can be used:

PATH=/usr/5bin:$PATH;export PATH

Another requirement for SunOS users: use /bin/sh rather than csh for your shell.
2-6 BEA TUXEDO COBOL Guide

CHAPTER
3 STOCKAPP Client
Programs

A Look at STOCKAPP Client Programs

This chapter is devoted to the client side of the STOCKAPP sample application.

In the client-server architecture of the BEA TUXEDO system, there are two modes of
communication:

t Request/response mode, which is characterized by the sending of a single
request for a service to be performed by the server and getting back a single
response.

t Conversational mode; in this mode a dedicated connection is established
between a client (or a server acting like a client) and a server. The connection
remains active until terminated. While the connection is active, messages
containing service requests and responses can be sent and received between the
two participating processes.

System Client Programs

Figure 3-1 shows the hierarchy for STOCKAPP. The user selects one of the four service
requests. The oval shapes in the illustration represent application services.
BEA TUXEDO COBOL Guide 3-1

3 STOCKAPP Client Programs
Figure 3-1 STOCKAPP Input/Output Hierarchy

Record Types

Message records are an essential part of the BEA TUXEDO system, as is the concept
of typed records. In the BEA TUXEDO system, a typed record is a record designed to
hold a specific data type. Five types are defined: VIEW, STRING, CARRAY, X_OCTET, and
X_COMMON. Applications have the ability to define additional types.

BUY.cbl—A Request/response Client

BUY.cbl is an example of a client program. It makes account inquiries that call on the
service BUYSR. As an executable, it is invoked as follows:

BUY
3-2 BEA TUXEDO COBOL Guide

A Look at STOCKAPP Client Programs

t

em
BUY.cbl Source Code

Because of space constraints we are not going to print the entire source code of
BUY.cbl, but we want to call your attention to the following sections of the program:

* Now register the client with the system
* Issue a TPCALL
* Clean up

The indicated sections contain all of the places in BUY.cbl where the BEA TUXEDO
ATMI calls are used. Note also that BUY.cbl is an example of a program that uses a
VIEW typed record and a structure that is defined in the cust file. The source code for
the structure can be found in the view description file, cust.V.

Building Client Programs

View description files, of which cust is an example, are processed by the view
compiler, viewc(1). viewc has three output files: a COBOL file (CUST.cbl), a binary
view description file (cust.V), and a header file (cust.h).

The client programs, BUY.cbl, FUNDPR.cbl, FUNDUP.cbl, and SELL.cbl, are
processed by buildclient(1) to compile them and/or link edit them with the
necessary BEA TUXEDO libraries.

You can use any of these commands individually, if you choose, but rules for all these
steps are included in STOCKAPP.mk.

References

The use of ATMI calls in client programs is covered in Chapter 11, “Writing Clien
Programs.”

The subject of typed records is covered in Chapter 10, “The BEA TUXEDO Syst
Development Environment,” and Chapter 11, “Writing Client Programs.”

All commands and ATMI calls are described in Sections 1 and 3 of the BEA TUXEDO
Reference Manual.
BEA TUXEDO COBOL Guide 3-3

3 STOCKAPP Client Programs
3-4 BEA TUXEDO COBOL Guide

CHAPTER
4 STOCKAPP Servers

A Look at STOCKAPP Servers

This chapter describes the servers delivered with STOCKAPP, identifies the services
coded for the stock application and describes how the services are link edited into
servers.

Servers are executable processes that offer one or more services. In the BEA TUXEDO
system, they continually accept requests (from processes acting as clients) and
dispatch them to the appropriate services. Services are subroutines of COBOL
language code written specifically for an application. It is the services accessing a
resource manager that provide the functionality for which your BEA TUXEDO system
transaction processing application is being developed. Service routines are one part of
the application that must be written by the BEA TUXEDO system programmer
(user-defined clients being another part).

All the services of STOCKAPP use functions provided in the Application Transaction
Management Interface (ATMI). These functions allow the services

t to communicate synchronously or asynchronously with other services

t to define global transactions

t to send replies back to clients

This chapter provides

t a description of a service that is part of the stock application

t the relationships between the STOCKAPP services and servers

t the buildserver command options used to compile and build each server
BEA TUXEDO COBOL Guide 4-1

4 STOCKAPP Servers
Service Definitions

There are four services in STOCKAPP. Each STOCKAPP service matches a COBOL
function name in the source code of a server as shown in the following list:

BUYSR

buys a fund/stock record; offered by the BUYSELL server; accepts a VIEW
record as input, inserts a CUSTFILE record

SELLSR

sells a fund/stock record; offered by the BUYSELL server; accepts a VIEW
record as input, inserts a CUSTFILE record

FUNDPRSR

price quote; offered by the PRICEQUOTE server; accepts a VIEW record as
input

FUNDUPSR

fund update; conversational service; offered by FUNDUPDATE server; accepts
a VIEW record as input

Building Servers

buildserver is used to put together an executable server. Options identify the names
of the output file, the input files provided by the application, and various libraries that
permit you to run a BEA TUXEDO system application in a variety of ways.

buildserver with the -C option invokes the cobcc command. The environment
variables ALTCC and ALTCFLAGS can be set to name an alternative compile command
and to set flags for the compile and link edit phases. The key buildserver command
line options are illustrated in the examples that follow.
4-2 BEA TUXEDO COBOL Guide

A Look at STOCKAPP Servers
Using the buildserver Command in the STOCKAPP

This section provides the buildserver command used in STOCKAPP.mk to compile
and build each server in the stock application. Refer to the buildserver(1) reference
page in Section 1 of the BEA TUXEDO Reference Manual for complete details.

The BUYSELL Server

The BUYSELL server is derived from files that contain the code for the BUYSR and
SELLSR functions. The BUYSELL server is first compiled to a BUYSELL.o file before
supplying it to the buildserver command so that any compile-time errors can be
clearly identified and dealt with before this step. The BUYSELL.o file is created in the
following step (done for you in STOCKAPP.mk). The buildserver command that was
used to build the BUYSELL server follows:

buildserver -C -v -o BUYSELL -s SELLSR -f SELLSR.cbl -s BUYSR -f BUYSR.cbl

The explanation of the command line options is as follows:

t The -C option is used to build servers with COBOL modules.

t The -v option is used to specify the verbose mode. It writes the cc command to
its standard output.

t The -s option is used to specify the service names in the server that are
available to be advertised when the server is booted. If the name of the function
that performs a service is different from the service name, the function name
becomes part of the argument of the -s option. In the STOCKAPP, the function
name is the same as the name of the service so only the service names
themselves need to be specified. It is our convention to specify all uppercase for
the service name. However, the -s option of buildserver does allow you to
specify an arbitrary name for the processing function for a service within a
server. Refer to the buildserver(1) manual page for details. It is also possible
for the administrator to specify that only a subset of the services that were used
to create the server with the buildserver command is to be available when the
server is booted. For more information, see Administering the BEA TUXEDO
System.

t The -o option is used to assign a name to the executable output file. If no name
is provided, the file is named SERVER.
BEA TUXEDO COBOL Guide 4-3

4 STOCKAPP Servers

ain

, of
t The -f option specifies the files that are used in the link edit phase. Also refer to
the -l on the buildserver manual page. The programming chapters of this
guide describe both of these options in some detail, as well. There is a
significance to the order in which the files are listed. The order is dependent on
function references and in what libraries the references are resolved. Source
modules should be listed ahead of libraries that might be used to resolve their
references. If these are .cbl files, they are first compiled. Object files can be
either separate .o files or groups of files in archive (.a) files. If more than a
single file name is given as an argument to a -f, the syntax calls for a list
enclosed in double quotes. You can use as many -f options as you need.

t The -s option names the SELLSR and BUYSR services to be the services that
comprise the BUYSELL server. The -o option assigns the name BUYSELL to the
executable output file and the -f option specifies that the SELLSR.cbl and the
BUYSR.cbl files are to be used in the link edit phase of the build.

Servers Built in STOCKAPP.mk

The preceding section on building a STOCKAPP server was included because it is
important that you understand how the buildserver command is specified. However,
in actual practice you are apt to incorporate the build into a makefile and that is the way
it is done in STOCKAPP. The STOCKAPP makefile is discussed in Chapter 5, “The
STOCKAPP Makefile.”

References

The writing and debugging of service subroutines using ATMI functions is the m
subject of Chapters 12 through 15 of this guide.

Examples of buildserver command lines can also be found in these chapters and
course, in Section 1 of the BEA TUXEDO Reference Manual.
4-4 BEA TUXEDO COBOL Guide

CHAPTER
5 The STOCKAPP
Makefile

A Look at the STOCKAPP Makefile

STOCKAPP includes a makefile that makes all scripts executable, converts the view
description file to binary format, and does all the necessary precompiles, compiles and
builds to create the application servers. It can also be used to clean up when you want
to make a fresh start.

Editing STOCKAPP.mk

As STOCKAPP.mk is delivered there are a few fields you may want to edit, and some
others that may benefit from a little explanation.

TUXDIR

If you look at STOCKAPP.mk, you come to the following comment and to the TUXDIR
parameter:

#
Root directory of TUXEDO System. This file must either be edited to set
this value correctly, or the correct value must be passed via "make -f
STOCKAPP.mk TUXDIR=/correct/rootdir", or the build of STOCKAPP will fail.
#
TUXDIR=../..

The TUXDIR parameter should be set to the absolute pathname of the root directory of
your BEA TUXEDO system installation.
BEA TUXEDO COBOL Guide 5-1

5 The STOCKAPP Makefile
APPDIR

You may want to give some thought to the setting of the APPDIR parameter. As
STOCKAPP is delivered, APPDIR is set to the directory where the STOCKAPP files are
located, relative to TUXDIR. The section in STOCKAPP.mk is as follows:

#
Directory where the STOCKAPP application source and executables live.
This file must either be edited to set this value correctly, or the
correct value must be passed via "make -f STOCKAPP.mk
APPDIR=/correct/appdir", or the build of STOCKAPP will fail.
#
APPDIR=$(TUXDIR)/apps/STOCKAPP
#

If you have copied the files to another directory, as is suggested in the README file, you
should set this parameter to the name of the directory to which you copied the files.
When you run the makefile, the application will be built in this directory.

Running STOCKAPP.mk

When you have completed the changes you wish to make to STOCKAPP.mk, run it with
the following command line:

nohup make -f STOCKAPP.mk install &

Check the nohup.out file to make sure the process completed successfully.
5-2 BEA TUXEDO COBOL Guide

CHAPTER
6 Edit STOCKAPP
Configuration File

Configuration File for STOCKAPP

A configuration file brings together all the detail about how an application maps to the
machines on which it runs. As STOCKAPP is delivered, there is a configuration file in
the ASCII format described in ubbconfig(5). The file called UBBCBSHM contains the
configuration for an application on a single computer.

The configuration file was delivered with the value of some parameters enclosed in
angle brackets (<>). You need to replace these generic values with values that pertain
to your installation. All of these fields occur within the RESOURCES, MACHINES and
GROUPS sections in the file. In Listing 6-1 we show UBBCBSHM. An explanation of the
values that need to be replaced follows Listing 6-1.

If you want to enable the application password feature, add this line to the RESOURCES
section:

SECURITY APP_PW
BEA TUXEDO COBOL Guide 6-1

6 Edit STOCKAPP Configuration File
Listing 6-1 Configuration file fields to be replaced

 #Copyright (c) 1992 Unix System Laboratories, Inc.
 #All rights reserved
 #Skeleton UBBCONFIG file for the TUXEDO COBOL Sample Application.
 *RESOURCES
 IPCKEY 226164
001 UID <user id from id(1)>
002 GID <group id from id(1)>
 MASTER SITE1
 PERM 0660
 MAXACCESSERS 20
 MAXSERVERS 15
 MAXSERVICES 30
 MODEL SHM
 LDBAL Y
 MAXGTT 100
 MAXBUFTYPE 16
 MAXBUFSTYPE 32
 SCANUNIT 10
 SANITYSCAN 12
 DBBLWAIT 6
 BBLQUERY 180
 BLOCKTIME 10
 TAGENT “TAGENT"
 #
 *MACHINES
003 < SITE1’s uname> LMID=SITE1
004 TUXDIR="< TUXDIR1>"
005 APPDIR="< APPDIR1>"
 ENVFILE="< APPDIR1>/ENVFILE"
 TUXCONFIG="< APPDIR1>/TUXCONFIG"
 TUXOFFSET=0
006 TYPE="< machine type>"
 ULOGPFX="< APPDIR>/ULOG"
 MAXWSCLIENTS=5
 #
 *GROUPS
 COBAPI LMID=SITE1 GRPNO=1
 #
 #
 *SERVERS
 FUNDUPSR SRVGRP=COBAPI SRVID=1 CONV=Y ENVFILE="<APPDIR1>/ENVFILE"
 FUNDPRSR SRVGRP=COBAPI SRVID=2 ENVFILE="<APPDIR1>/ENVFILE"
 BUYSELL SRVGRP=COBAPI SRVID=3 ENVFILE="<APPDIR1>/ENVFILE"
 #
 #
 *SERVICES
6-2 BEA TUXEDO COBOL Guide

Configuration File for STOCKAPP

 a
oid

n
rs of

f

ke

all
age
Notes to Listing 6-1

The following list describes the nature of the value you must provide for the
angle-bracketed values.

References

All of the configuration parameters and their values are described in ubbconfig(5) in
the BEA TUXEDO Reference Manual.

Line Value

001 UID—The effective user ID for the owner of the bulletin board IPC structures. In
multiprocessor configuration, the value must be the same on all machines. You av
problems if this is the same as the owner of the System/T software.

002 GID—The effective group ID for the owner of the bulletin board IPC structures. I
a multiprocessor configuration, the value must be the same on all machines. Use
the application should share this group ID.

003 SITE1 name—The node name of the machine. Use the value produced by the
UNIX command:

uname -n

004 TUXDIR—The absolute pathname of the root directory for the BEA TUXEDO
system software. Make this a global change to put the value in all occurrences o
<TUXDIR1> in the file.

005 APPDIR—The absolute pathname of the directory where the application runs. Ma
this a global change to put the value in all occurrences of <APPDIR1> in the file.

006 machine type—This parameter is important in a networked application where
machines of different types are present. BEA TUXEDO checks for the value on
communication between machines. Only if the values are different are the mess
encode/decode routines called to convert the data.
BEA TUXEDO COBOL Guide 6-3

6 Edit STOCKAPP Configuration File
6-4 BEA TUXEDO COBOL Guide

CHAPTER

his

 to a

ion

 the

 if
7 Create TUXCONFIG

This chapter describes how to prepare to boot STOCKAPP.

As with all the steps since Chapter 1, “Introduction and a Simple Application,” of t
guide, you should be in the directory where your STOCKAPP files are located and the
environment must be set by entering:

. ./STKVAR

Loading the Configuration File

Once the configuration file has been edited to your satisfaction, it must be loaded
binary file. The binary configuration file has a file name of TUXCONFIG; its pathname
relative to APPDIR is in the environment variable, TUXCONFIG. The file should be
created by a person with the effective user ID and group ID of the BEA TUXEDO
system administrator, which should be the same as the UID and GID values in your
configuration file. If these conditions are not observed, you may run into permiss
problems in running STOCKAPP. The command line for creating TUXCONFIG is:

tmloadcf UBBCBSHM

There is a -y option to suppress prompts that ask if you really want to install
TUXCONFIG or to overwrite it if it already exists.

If you have specified SECURITY as an option for the configuration, tmloadcf prompts
you to enter an application password. The password you select can be up to 30
characters long. Client processes joining the application will have to come up with
password.

tmloadcf parses the ASCII configuration file for syntax errors before it loads it, so
there are errors in the file, the job fails.
BEA TUXEDO COBOL Guide 7-1

7 Create TUXCONFIG

References

For instructions on running tmconfig, see Chapter 19, “Dynamically Reconfiguring
Applications,” in Administering the BEA TUXEDO System.

The following page in Section 1 of the BEA TUXEDO Reference Manual is important:
tmloadcf(1).
7-2 BEA TUXEDO COBOL Guide

CHAPTER
8 Boot the Application

This chapter covers booting the application.

Executing tmboot

As with most procedures in this guide, we start by setting the environment. The
variables particularly needed by tmboot are TUXCONFIG, APPDIR, and, of course,
TUXDIR. The command to boot the complete application is simply:

tmboot

which causes the prompt:

Boot all admin and server processes? (y/n): y

When you respond y to the prompt, you get a running report that starts like this:

Booting all admin and server processes in /usr/me/appdir/tuxconfig
Booting all admin processes ...
exec BBL -A:
process id=24223 ... Started.

The display continues until all servers in the configuration have been started. It ends
with a count of the number started.

There are options that can be used to boot only a portion of the configuration. For
example, if the -A flag is used, only administrative servers are booted, but with no
options specified, everything is booted.

In addition to the report on servers booted, tmboot also sends messages to the ULOG.
BEA TUXEDO COBOL Guide 8-1

8 Boot the Application

f the
 sent
The Userlog: ULOG

We have referred previously to the ULOG, but this is the first time it has actually played
an important role in the process under discussion. It is called ULOG (short for user log)
because that is the default prefix; the actual file name of the log is ULOG followed by
the date in the form: .mmddyy. Log messages can be directed to ULOG from user-written
modules through a call to USERLOG(3cbl), but it is also used heavily by BEA TUXEDO
system processes such as tmboot.

References

For more information about the tmboot command, see Chapter 4, “Starting and
Shutting Down Applications,” in Administering the BEA TUXEDO System.

Chapter 15, “Error Management,” contains background information on the user o
userlog. In addition, throughout the guide there are examples of messages being
to the log.

The following pages in Sections 1 and 3cbl of the BEA TUXEDO Reference Manual
are important: tmboot(1) and USERLOG(3cbl).
8-2 BEA TUXEDO COBOL Guide

CHAPTER
9 Run STOCKAPP

Run the Application

This chapter covers some of the scripts and commands you can use after STOCKAPP has
been booted.

We recognize the probability, since you have a system that is active, that you already
have set the STOCKAPP environment. However, if that is not the case (that is, if you are
logging in cold to a running system), you will need to enter the following

. ./STKVAR

to set your environment for STOCKAPP.

Running the audit Client Program

The BUY.cbl client program was described in Chapter 3, “STOCKAPP Client
Programs” To execute the program, enter the command line as follows:

BUY
BEA TUXEDO COBOL Guide 9-1

9 Run STOCKAPP
Using tmadmin

This book is not the place to go into an extensive description of the BEA TUXEDO
system administrative interface, tmadmin. We simply want to encourage you to use it
while STOCKAPP is running in order to see the kind of information you can produce
with tmadmin subcommands.

Shutting STOCKAPP Down

When you want to bring STOCKAPP down, the command

tmshutdown

(or the shutdown command of tmadmin), entered without arguments, will cause all
application servers, gateway servers, TMSs, and administrative servers to be shut
down and their associated IPC resources to be removed.

The shutdown command must be issued from the MASTER node.

References

For an extensive discussion on using the tmadmin command-line interface for
administration, see Chapter 14, “Monitoring a Running System,” in Administering the
BEA TUXEDO System.

The following pages in Section 1 of the BEA TUXEDO Reference Manual are
important: tmadmin(1) and tmshutdown(1).
9-2 BEA TUXEDO COBOL Guide

CHAPTER
10 The BEA TUXEDO
System Development
Environment

Introduction

The purpose of this chapter is to describe the environment in which you will be writing
code for a BEA TUXEDO system application.

In addition to the COBOL code that expresses the logic of your application, you will
be using the Application-Transaction Monitor Interface (ATMI), which refers to the
interface between the BEA TUXEDO system and your application. The ATMI calls
are COBOL calls that have the specific purpose of implementing the communication
among application modules running under the control of BEA TUXEDO, including all
the associated resources you need.

As you might remember from the BEA TUXEDO Product Overview, the BEA
TUXEDO system uses an enhanced client-server architecture. The remaining chapters
of this book describe how the ATMI calls are used in writing and debugging clients
and services. This chapter provides some of the context within which you will be doing
that work.
BEA TUXEDO COBOL Guide 10-1

10 The BEA TUXEDO System Development Environment
Client Processes

A client process takes user input and sends it as a service request to a server process
that offers the requested service.

Basic Client Operation

A client process uses one ATMI call to join an application, another to send the data
structure to a server and still others to receive the reply.

The operation of a basic client process can be summarized by the pseudo-code shown
in Listing 10-1.

Listing 10-1 Pseudo-code for a Client

START PROGRAM
enroll as a client of the BEA TUXEDO application
place initial client identification in data structure
perform until end
get user input
place user input in DATA-REC
send service request
receive reply
pass reply to the user
end perform
leave application
END PROGRAM

Most of the statements in Listing 10-1 are implemented with ATMI calls. Placing user
input in a DATA-REC and passing the reply to the user are implemented with COBOL
calls.

When client programs are ready to test, you use the buildclient -C command to
compile and link edit them.
10-2 BEA TUXEDO COBOL Guide

Client Processes
Client Sending Repeated Service Requests

A client may send and receive any number of service requests before leaving the
application. These can be sent as a series of request/response calls or, if it is important
to carry state information from one call to the next, a connection to a conversational
server can be set up. The logic within the client program is about the same, but different
ATMI calls are used.

Server Processes and Service Subroutines

Servers are processes that provide one or more services. They continually check their
message queue for service requests and dispatch them to the appropriate service
subroutines.

Basic Server Operation

Applications combine their service subroutines with the controlling program that the
BEA TUXEDO system provides in order to build server processes. This system
supplied controlling program is a set of predefined routines. It performs server
initialization and termination and places user input in data structures to receive and
dispatch incoming requests to service routines. All of this processing is transparent to
the application.

Server and a service subroutine interaction can be summarized by the pseudo-code
shown in Figure 10-1.
BEA TUXEDO COBOL Guide 10-3

10 The BEA TUXEDO System Development Environment
Figure 10-1 Pseudo-code for a Request/Response Server and a Service
Subroutine

After some initialization a server waits until a request message is put on its message
queue, dequeues the request and dispatches it to a service subroutine for processing. If
a reply is needed, the reply is considered part of request processing.

The conversational paradigm is somewhat different. Pseudo-code is shown in
Figure 10-2.
10-4 BEA TUXEDO COBOL Guide

Client Processes

lients
ing
d by

fferent
 client
ected
Figure 10-2 Pseudo-code for a Conversational Service Subroutine

The BEA TUXEDO system-supplied controlling program contains the code needed to
enroll as a server, advertise services and dequeue request messages. The ATMI calls
are used in service subroutines that process requests. When they are ready to compile
and test, service subroutines are link edited with the server by means of the
buildserver -C command to form an executable server.

Servers as Requesters

The serially reusable architecture of servers is particularly significant if the operation
requested by the user is logically divisible into several services, or several iterations of
the same service. Such operations can be overlapped by having a server assume the
role of a client and hand off part of the task to another server as part of fulfilling the
original client’s request. In such a capacity the server becomes a requester. Both c
and servers can be requesters. In fact, a client can only be a requester. The cod
model for such a system is easily accomplished with the routines that are provide
ATMI.

A request/response server can also forward a request to another server. This is di
from becoming a requester. In this case, the server does not assume the role of
since no reply is expected by the server that forwards a request. The reply is exp
by the original client.
BEA TUXEDO COBOL Guide 10-5

10 The BEA TUXEDO System Development Environment
The ATMI Calls

The Application-Transaction Monitor Interface is a reasonably compact set of calls
used to open and close resources, begin and end transactions, and provide the
communication between clients and servers. Table 10-1 summarizes them. Each
routine is documented on its own page in the BEA TUXEDO Reference Manual.

Table 10-1 ATMI Calls

Group Name Operation

Application Interface TPINITIALIZE join an application client

TPTERM leave an application client

Request/response TPCALL send a request, wait for answer

Communication Interface TPACALL send request asynchronously

TPGETRPLY get reply after asynchronous
call

TPCANCEL cancel communications
handle for outstanding reply

TPGPRIO get priority of last request

TPSPRIO set priority of next request

Conversational Interface TPCONNECT begin a conversation

TPDISCON end a conversation

TPSEND send data in conversation

TPRECV receive data in conversation

Unsolicited Notification Interface TPNOTIFY notify by client id

TPBROADCAST notify by name

TPSETUNSOL set unsolicited message
handling routine

TPGETUNSOL get unsolicited message

TPCHKUNSOL check for unsolicited
messages
10-6 BEA TUXEDO COBOL Guide

Client Processes

rts
used
 and

X
An Overview of X/Open’s TX Interface

In addition to ATMI’s transaction management verbs, BEA TUXEDO also suppo
X/Open’s TX Interface for defining and managing transactions. Because X/Open
ATMI’s transaction demarcation verbs as the base for the TX Interface, the syntax
semantics of the TX Interface are quite similar to ATMI.

Table 10-2 introduces the routines in the TX Interface and highlights the main
differences with their corresponding ATMI routines. For maximum portability, the T
routines can be used in place of the ATMI routines shown in Table 10-1.

Transaction Management
Interface

TPBEGIN begin a transaction

TPCOMMIT commit the current transaction

TPABORT abort the current transaction

TPGETLEV check if in transaction mode

Service Routine Template TPSVCSTART start a service

TPRETURN end service routine

TPFORWAR forward request and end
service routine

Dynamic Advertisement
Interface

TPADVERTISE advertise a service name

TPUNADVERTISE unadvertise a service name

Resource Manager Interface TPOPEN open a resource manager

TPCLOSE close a resource manager

Events

See EVENTS(5) and the reference
pages listed in the next column.

TPSUBSCRIBE subscribe to events

TPPOST post events

TPUNSUBSCRIB unsubscribe events

Table 10-1 ATMI Calls

Group Name Operation
BEA TUXEDO COBOL Guide 10-7

10 The BEA TUXEDO System Development Environment
There are two points to keep in mind when using the TX Interface. First, the TX
interface requires that TXOPEN be called before using any other TX verbs. Thus, even
if a client or a server is not accessing an XA-compliant resource manager, it must call
TXOPEN before it can use TXBEGIN, TXCOMMIT, and TXROLLBACK to define transactions.

The second rule concerns the default TPSVRINIT and TPSVRDONE routines provided
with BEA TUXEDO. If an application writer wants to use the TX Interface in service
routines, then the default BEA TUXEDO system TPSVRINIT and TPSVRDONE routines
should not be used. This is because these routines call TPOPEN and TPCLOSE which
would preclude the use of TX verbs in service routines. Thus, application writers
should supply their own TPSVRINIT and TPSVRDONE routines that call TXOPEN and
TXCLOSE.

Table 10-2 TX Calls

TX Verbs Corresponding
ATMI Verbs

Main Differences

TXBEGIN TPBEGIN Timeout value not passed as
argument to TXBEGIN. See
TXSETTIMEOUT.

TXCLOSE TPCLOSE None

TXCOMMIT TPCOMMIT TXCOMMIT can optionally start a new
transaction before it returns. This is
known as a “chained” transaction.

TXINFORM TPGETLEV TXINFORM returns the settings of
transaction characteristics set via the
three TXSET* routines.

TXOPEN TPOPEN None

TXROLLBACK TPABORT TXROLLBACK supports chained
transactions.

TXSETCOMMITRET TPSCMT None

TXSETTRANCTL None Defines whether the application is
using chained or unchained
transactions.

TXSETTIMEOUT TPBEGIN Transaction timeout parameter
separated from TXBEGIN.
10-8 BEA TUXEDO COBOL Guide

Client Processes

rd,
ssed
ic type
 issues
nd in
Listing 10-2 is an example of how the TX Interface can be used to support chained
transactions. Note that TXBEGIN must be used to start the first of a series of chained
transactions. Also, note that before calling TXCLOSE, the application must switch to
unchained transactions so that the last TXCOMMIT or TXROLLBACK does not start a new
transaction.

Listing 10-2 Chained Transaction Example

CALL "TXOPEN" USING TX-RETURN-STATUS.
SET TXCHAINED TO TRUE.
CALL "TXSETTRANCTL" USING TX-INFO-AREA
 TX-RETURN-STATUS.
MOVE 120 TRANSACTION-TIMEOUT.
CALL "TXSETTIMEOUT" USING TX-INFO-AREA
 TX-RETURN-STATUS.
do forever
 do work as part of transaction.
 if no more work exists
 SET TXCHAINED TO FALSE.
 CALL "TXSETTRANCTL" USING TX-INFO-AREA
 TX-RETURN-STATUS.
 if work done was successful
 CALL "TXCOMMIT" USING TX-RETURN-STATUS.
 else
 CALL "TXROLLBACK" USING TX-RETURN-STATUS.
 if no more work exists
 leave
end do
CALL "TXCLOSE" USING TX-RETURN-STATUS.

Typed Records

Messages are passed to servers in typed records, actually pairs of records. Why
“typed?” Well, different types of data require different software to initialize the reco
send and receive the data and perhaps encode and decode it, if the record is pa
between heterogeneous machines. Records are designated as being of a specif
so the routines appropriate to the record and its contents can be invoked. These
are typically not of concern to application developers, but more details can be fou
buffer(3c), tuxtypes(5), and typesw(5) in the BEA TUXEDO Reference Manual.
BEA TUXEDO COBOL Guide 10-9

10 The BEA TUXEDO System Development Environment
BEA TUXEDO provides eight record types for messages: STRING, CARRAY, VIEW,
VIEW32, X_OCTET, X_COMMON, FML, and FML32. Applications can define additional
types as needed. Consult the manual pages referred to above and Administering the
BEA TUXEDO System.

The STRING record type allows an arbitrary number of characters which may not
contain LOW-VALUE characters anywhere within the record but could be at the end of
the record. When sending data, LEN IN TPTYPE-REC must contain the number of
bytes to be transferred.

The data in a CARRAY record type allows an arbitrary number of characters which may
contain LOW-VALUE characters. When sending data, LEN IN TPTYPE-REC must
contain the number of bytes to be transferred. The X_OCTET record type is equivalent
to CARRAY.

The VIEW type is a COBOL data structure that the application defines and for which
there has to be a view description file. Records of the VIEW type must have subtypes,
that designate individual data structures. The X_COMMON record type is similar to VIEW
but is used for both COBOL and C programs so field types should be limited to PIC
S9(4) COMP-5, PIC S9(9) COMP-5, and PIC X(any-length). The VIEW32 record
type is similar to VIEW but allows for larger character fields, more fields, and larger
overall records.

An FML record is a proprietary BEA TUXEDO system type of self-defining buffer
where each data field carries its own identifier, an implied occurrence number and
possibly a length indicator. This type provides great flexibility at the expense of some
processing overhead in that all data manipulation is done via FML function calls. The
FML function calls are not available from COBOL. COBOL procedures are provided with
procedures to initialize an FML record, and convert FML records to/from VIEW records.
This is used primarily for applications that have COBOL programs communicating with
C programs that use FML records.

Using VIEW and FML Buffers
If you are using the VIEW or FML buffer types, some preliminary work is required to
create view description files or field table files. In the case of VIEWs, a description file
must exist and must be available to client and server processes that use a data structure
described in the VIEW. The BEA TUXEDO system view compiler program, viewc, is
used with the -C option to produce one or more COBOL COPY files (one per view) from
a source viewfile. These COPY files contain Data Description Records, which may be
used in the LINKAGE SECTION or the WORKING STORAGE section of the DATA
DIVISION according to the demands of the program.

For FML buffers, a field table file containing descriptions of all fields that may be in the
buffer must be available.
10-10 BEA TUXEDO COBOL Guide

Client Processes

he

ed in
ally
ich
Relationship Between VIEW Buffers and FML

There are two kinds of VIEW buffers. One is based on an FML buffer. The other VIEW
buffer is independent; it is simply a C structure. Both types are described in view
description files and compiled with viewc(1), the BEA TUXEDO system view
compiler. We’re going to talk first about the FML variety.

FML Views

BEA TUXEDO system FML is a family of functions some of which convert an FML
buffer into a COBOL record or vice versa. The COBOL record that is derived from t
fielded buffer is referred to as an FML VIEW. FML buffers must be converted to COBOL
records for manipulation since the FML are functions not available to COBOL programs.
The VIEW is then converted back into an FML buffer for message transmission to a C
program that expects an FML buffer.

There are slight differences between a view description of an FML-based view and one
that is independent of FML. Listing 10-3 shows a view description file with all of the
available data types. Note that the CARRAY1 field has a count of two occurrences and
has the “C” count flag to indicate that an additional count element should be creat
the record so the application can indicate how many of the occurrences are actu
being used. It also has the “L” length flag such that there is a length element (wh
occurs twice, once for each occurrence of the field) indicating how many of the
characters the application has populated.

Listing 10-3 View Description File for FML View

VIEW MYVIEW
$/* View structure */
#type cname fbname count flag size null
float float1 FLOAT1 1 - - 0.0
double double1 DOUBLE1 1 - - 0.0
long long1 LONG1 1 - - 0
short short1 SHORT1 1 - - 0
int int1 INT1 1 - - 0
dec_t dec1 DEC1 1 - 9,16 0
char char1 CHAR1 1 - - ’\0’
string string1 STRING1 1 - 20 ’\0’
carray carray1 CARRAY1 2 CL 20 ’\0’
END
BEA TUXEDO COBOL Guide 10-11

10 The BEA TUXEDO System Development Environment
FML Field Table Files

Field table files are always required when using FML records, including the use of
FML-dependent VIEWS. A field table file maps the logical name of a field in an FML
buffer to a field identifier that uniquely identifies the field.

An example that could be used with the view shown in Listing 10-3 is shown in
Listing 10-4.

Listing 10-4 The myview.flds Field Table File

name number type flags comments
FLOAT1 110 float - -
DOUBLE1 111 double - -
LONG1 112 long - -
SHORT1 113 short - -
INT1 114 long - -
DEC1 115 string - -
CHAR1 116 char - -
STRING1 117 string - -
CARRAY1 118 carray - -

Independent VIEWs

Listing 10-5 shows the view description file, similar to the example in Listing 10-3,
but for a VIEW independent from FML.

Listing 10-5 View Description File for Independent Views

$/* View data structure */
VIEW MYVIEW
#type cname fbname count flag size null
float float1 - 1 - - -
double double1 - 1 - - -
long long1 - 1 - - -
short short1 - 1 - - -
int int1 - 1 - - -
dec_t dec1 - 1 - 9,16 -
char char1 - 1 - - -
string string1 - 1 - 20 -
carray carray1 - 2 CL 20 -
END
10-12 BEA TUXEDO COBOL Guide

Client Processes
Note that in this view description, the format is similar to the FML-dependent view,
except that the columns fbname and null in the file are ignored by the view compiler.
These columns are not relevant when an FML buffer does not stand behind the view,
but it is necessary to place some value (a dash, for example) in these columns to serve
as a placeholder.

Corresponding Data Type Definitions

The COBOL application programmer should define float and double fields in the
application as COMP-1 and COMP-2, respectively.

The UNIX field types long and short correspond to S9(9) COMP-5 and S9(4)
COMP-5 respectively in COBOL (the use of COMP-5 is for use with MicroFocus COBOL
so that the COBOL integer fields match the data format of the corresponding C fields;
the data type for VS COBOL II would simply be COMP).

The dec_t type maps to a COBOL COMP-3 packed decimal field. Packed decimals exist
in the COBOL environment as two decimal digits packed into each byte with the
low-order half byte used to store the sign. The length of a packed decimal may be 1 to
9 bytes with storage available for 1 to 17 digits and a sign. The dec_t field type is
supported within the VIEW definition for the conversion of packed decimals between
the C and the COBOL environments. The dec_t field is defined in a VIEW with a size of
two numbers separated by a comma. The number to the left of the comma is the total
number of bytes that the decimal occupies in COBOL. The number to the right is the
number of digits to the right of the decimal point in COBOL. The formula for conversion
to the COBOL declaration is:

dec_t(m, n) => S9(2*m-(n+1),n)COMP-3

For example, say a size of 6,4 is specified in the VIEW. There are 4 digits to the right
of the decimal point, 7 digits to the left and the last half byte stores the sign. The COBOL
application programmer would represent this as 9(7)V9(4), with the V representing
the decimal point between the number of digits to each side. Note that there is no
dec_t type supported in FML; if FML-dependent VIEWs are used, then the field must be
mapped to a C type in the VIEW file (for instance, the packed decimal can be mapped
to an FML string field and the mapping functions do the conversion between the
formats).
BEA TUXEDO COBOL Guide 10-13

10 The BEA TUXEDO System Development Environment
Creating COBOL COPY Files from View Descriptions

View description files are source files. To use the VIEW in a program, you need a
COBOL COPY file that defines the data structures in the view. You can create a
COBOL COPY file from the myview.v view description file by invoking the view
compiler, viewc.

viewc -C -n myview.v

Note that the -n option is specified only if the VIEW is independent of any FML
definition. viewc -C creates three files. One is the COBOL COPY file, MYVIEW.cbl,
another is the header file, myview.h, for C routines that share the same view, and the
other is the binary version of the source description file, myview.V. This binary file
must be in the environment when a VIEW record is defined.

The COBOL COPY file created from myview.v is shown in Listing 10-6.

Listing 10-6 Resulting MYVIEW COBOL Copy File

* VIEWFILE: "myview.v"
* VIEWNAME: "MYVIEW"
 05 FLOAT1 USAGE IS COMP-1.
 05 DOUBLE1 USAGE IS COMP-2.
 05 LONG1 PIC S9(9) USAGE IS COMP-5.
 05 SHORT1 PIC S9(4) USAGE IS COMP-5.
 05 FILLER PIC X(02).
 05 INT1 PIC S9(9) USAGE IS COMP-5.
 05 DEC1.
 07 DEC-EXP PIC S9(4) USAGE IS COMP-5.
 07 DEC-POS PIC S9(4) USAGE IS COMP-5.
 07 DEC-NDGTS PIC S9(4) USAGE IS COMP-5.
* DEC-DGTS is the actual packed decimal value
 07 DEC-DGTS PIC S9(1)V9(16) COMP-3.
 07 FILLER PIC X(07).
 05 CHAR1 PIC X(01).
 05 STRING1 PIC X(20).
 05 FILLER PIC X(01).
 05 L-CARRAY1 OCCURS 2 TIMES PIC 9(4) USAGE IS COMP-5.
* LENGTH OF CARRAY1
 05 C-CARRAY1 PIC S9(4) USAGE IS COMP-5.
* COUNT OF CARRAY1
 05 CARRAY1 OCCURS 2 TIMES PIC X(20).
 05 FILLER PIC X(02).
10-14 BEA TUXEDO COBOL Guide

Client Processes

tion

d of
t

COBOL COPY files for views must be brought into client programs and service
subroutines with COPY statements. In Listing 10-6 note that there are some FILLER
fields. These are created by the view compiler so that the alignment of fields in COBOL
matches the alignment in C. Also, note the format of the packed decimal value, DEC1.
It is composed of 5 fields; the DEC-EXP, DEC-POS, DEC-NDGTS and FILLER fields are
used only in C (they are defined in the dec_t type) but are included in the COBOL record
for filler; they should not be used by the COBOL application programmer. The actual
packed decimal value is stored in the DEC-DGTS value; this is the value that should be
set and/or accessed by the COBOL programmer. All of the ATMI primitives take care of
correctly populating the DEC-DGTS in packed decimal format before the record is
passed to the COBOL program from a C program, and convert back to the dec_t type
when passed from the COBOL program to a C program. The only restriction is that a
COBOL program cannot directly pass the record to a C function without going through
the ATMI interface (the decimal formats won’t match).

Also note that there is an L-CARRAY1 length field that occurs twice, once for each
occurrence of CARRAY1 and there is also the C-CARRAY1 count field.

viewc also creates a C version of the header file which can be used if an applica
desires to mix C and COBOL service and/or client programs.

FML/VIEW Conversion

The FML function interface consists of about eighty 16-bit primitives and the same
number for FML32. This interface was designed for use with the C language. Instea
providing a COBOL version of this interface, COBOL procedures are provided to conver
a received FML buffer to a COBOL record for processing, and then convert the record
back to FML.

If a COBOL client or server is the originator of an FML message, the record must be
initialized using the FINIT procedure. FINIT takes the FML record (suitably aligned on
a full-word boundary) and FML-LENGTH in an FMLINFO record which is set to length of
the FML record. The initialization is shown in Listing 10-7. If an FML record is received
in a program, it is automatically initialized (unless TPNOCHANGE is set). That means
that if a program first receives an FML record instead of being the originator of the
message, it is unnecessary to call FINIT.
BEA TUXEDO COBOL Guide 10-15

10 The BEA TUXEDO System Development Environment
Listing 10-7 FML/VIEW Conversion

WORKING-STORAGE SECTION.
*RECORD TYPE AND LENGTH
 01 TPTYPE-REC.
 COPY TPTYPE.
*STATUS OF CALL
 01 TPSTATUS-REC.
 COPY TPSTATUS.
* SERVICE CALL FLAGS/RECORD
 01 TPSVCDEF-REC.
 COPY TPSVCDEF.
* TPINIT FLAGS/RECORD
 01 TPINFDEF-REC.
 COPY TPINFDEF.
* FML CALL FLAGS/RECORD
 01 FML-REC.
 COPY FMLINFO.
*
*
* APPLICATION FML RECORD - ALIGNED
 01 MYFML.
 05 FBFR-DTA OCCURS 100 TIMES PIC S9(9) USAGE IS COMP-5.
* APPLICATION VIEW RECORD
 01 MYVIEW.
 COPY MYVIEW.

.....

* MOVE DATA INTO MYVIEW

.....

* INITIALIZE FML RECORD
 MOVE LENGTH OF MYFML TO FML-LENGTH.
 CALL "FINIT" USING MYFML FML-REC.
 IF NOT FOK
 MOVE "FINIT Failed" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 PERFORM EXIT-PROGRAM
 END-IF.

* Convert VIEW to FML Record
 SET FUPDATE TO TRUE.
 MOVE "MYVIEW" TO VIEWNAME.
 CALL "FVSTOF" USING MYFML MYVIEW FML-REC.
 IF NOT FOK
 MOVE "FVSTOF Failed" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 PERFORM EXIT-PROGRAM
 END-IF.
* CALL THE SERVICE USING THE FML RECORD
10-16 BEA TUXEDO COBOL Guide

Client Processes
 MOVE "FML" TO REC-TYPE IN TPTYPE-REC.
 MOVE SPACES TO SUB-TYPE IN TPTYPE-REC.
 MOVE LENGTH OF MYFML TO LEN.
 CALL "TPCALL" USING TPSVCDEF-REC
 TPTYPE-REC
 MYFML
 TPTYPE-REC
 MYFML
 TPSTATUS-REC.
 IF NOT TPOK
 MOVE "TPCALL MYFML Failed" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 PERFORM EXIT-PROGRAM
 END-IF.
* CONVERT THE FML RECORD BACK TO MYVIEW
 CALL "FVFTOS" USING MYFML MYVIEW FML-REC.
 IF NOT FOK
 MOVE "FVFTOS Failed" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 PERFORM EXIT-PROGRAM
 END-IF.

The FVSTOF procedure is used to convert an FML record to a VIEW record. The view is
defined by including the copy file generated by the view compiler. The FML-REC
record provides the VIEWNAME and the FML-MODE transfer mode which can be set to
FUPDATE, FOJOIN FJOIN or FCONCAT. The actions of these modes are the same as
those described in Fupdate(3fml), Fojoin(3fml), Fjoin(3fml), and Fconcat(3fml).

The FVFTOS procedure is used to convert a VIEW record into an FML record. The
parameters are the same as for FVSTOF procedure but the FML-MODE need not be set.
Fields are copied from the fielded buffer into the structure based on the element
descriptions in the view. If a field in the fielded buffer has no corresponding element
in the COBOL record, it is ignored. If an element specified in the COBOL record has no
corresponding field in the fielded buffer, a null value is copied into the element. The
null value used is definable for each element in the view description. To store multiple
occurrences in the COBOL record, the record element should be defined with OCCURS.
If the buffer has fewer occurrences of the field than there are occurrences of the
element, the extra element slots are assigned null values. On the other hand, if the
buffer has more occurrences of the field than there are occurrences of the element, the
surplus occurrences are ignored.

For FML32 and VIEW32, the FINIT32, FVSTOF32, and FVFTOS32 procedures should be
used.

Upon successful completion, FML-STATUS is set to FOK. On error, FML-STATUS is set
to a non-zero value (see the reference manual pages).
BEA TUXEDO COBOL Guide 10-17

10 The BEA TUXEDO System Development Environment

lts

This
L

r a

Environment Variables

Environment variables needed either for clients or service routines associated with a
server can be set in ENVFILEs that are specified in the configuration file. The
environment variables, for example, that need to be set for view descriptions are
summarized in Table 10-3.

For the FML32 and VIEW32 record types, the environment variables are suffixed with
“32,” that is, FLDTBLDIR32, FIELDTBLS32, VIEWFILES32, and VIEWDIR32.

The ALTCC and ALTCFLAGS environment variables are used by the buildclient and
buildserver commands when run with the -C option for COBOL. You may want to
set them in your environment to make compilation of clients and servers more
convenient. Set ALTCC to the command that invokes the COBOL compiler. It defau
to cobcc. Set ALTCFLAGS to the link edit flags you may want to use on the compile
command line. Setting these variables are optional.

Set COBOPT to the arguments you may want to use on the compile command line.
variable is also optional. Set COBCPY to the directories that contain a set of the COBO
COPY files to be used by the compiler. Set COBDIR to the directory that contains the
COBOL compiler software.

The location of the BEA TUXEDO system binary files must be known to your
application. It is the convention to install the BEA TUXEDO system software unde
root directory whose location is specified in the TUXDIR environment variable.
$TUXDIR/bin must be included in your PATH in order for your application to locate the
executables for BEA TUXEDO system commands.

Table 10-3 BEA TUXEDO System Environment Variables

Variable Contains Used by

FIELDTBLS comma separated list of field table file names client and server processes
using FML buffers

FLDTBLDIR colon separated list of directories to be used
to find field table files with relative file
names

client and server processes
using FML buffers

VIEWFILES comma separated list of binary view
description files

client and server processes
using VIEW records

VIEWDIR colon separated list of directories to be used
to find binary view description files can be
found

client and server processes
using VIEW records
10-18 BEA TUXEDO COBOL Guide

Client Processes
Configuration File

The configuration file specifies the configuration of an application to the BEA
TUXEDO system. For a BEA TUXEDO system application in production, it is the
responsibility of the BEA TUXEDO administrator to set up a configuration file that
defines the application. In the development environment, the responsibility may be
delegated to application programmers to create their own.

If you are faced with the task of creating a configuration file, here are some
suggestions:

t Borrow a file that already exists. For example, the file ubbshm that comes with
the sample application is a good starting point.

t Keep it simple. For test purposes set your application up as a shared memory,
single processor system. Use regular UNIX files for your data.

t Make sure the IPCKEY parameter in the configuration file does not conflict with
any others that may be in use at your installation. You should probably check
this with your BEA TUXEDO system administrator.

t Set the UID and GID parameters so that you are the owner of the configuration.

t Read the documentation. The configuration file is documented in ubbconfig(5)
in the BEA TUXEDO Reference Manual and in Administering the BEA TUXEDO
System.

Making the Configuration Usable

The configuration file is an ASCII file. To make it usable, you have to run
tmloadcf(1) to convert it to a binary file. The TUXCONFIG environment variable must
be set to the pathname for the binary file, and exported.
BEA TUXEDO COBOL Guide 10-19

10 The BEA TUXEDO System Development Environment
The Bulletin Board

The bulletin board is the BEA TUXEDO system name for a group of data structures in
a segment of shared memory that is allocated from information stored in TUXCONFIG
when the application is booted. Both client and server processes attach to the bulletin
board. Part of the bulletin board associates service names with the queue address of
servers that advertise that service. Clients send their requests to the name of the service
they want to invoke, rather than to a specific address.

All processes that are part of a BEA TUXEDO application share this UNIX shared
memory.

Starting and Stopping an Application

Execute the tmboot(1) command to bring up an application. The command gets the
IPC resources needed by the application, starts administrative processes and the
application servers.

When it is time to bring the application down, execute the tmshutdown(1) command.
tmshutdown stops the servers and releases the IPC resources used by the application,
except any that might be used by the database resource manager.
10-20 BEA TUXEDO COBOL Guide

CHAPTER
11 Writing Client
Programs

Introduction

This chapter describes the ATMI routines that enable a client program to do the
following:

t control the client name that is posted in the bulletin board

t comply with the level of security set for the application

t enter and leave an application

t manipulate message records

t communicate with a service and receive replies in request/response mode

t modify the way a routine performs by specifying various options

The chapter ends with information about how to compile client programs.
BEA TUXEDO COBOL Guide 11-1

11 Writing Client Programs
Preliminaries

Before a client program is ready to join the application some preliminary processing
may be called for to take advantage of BEA TUXEDO system capabilities.

Client Naming

An application can associate both a USRNAME and a CLTNAME with an execution of a
client process. Values furnished for these names are combined by the BEA TUXEDO
system with the logical machine identifier (LMID) of the machine where the process
runs, in order to establish a unique identification for the process. It is left to the
discretion of application developers and programmers to work out ways of acquiring
the value for the fields. Once acquired they are passed to TPINITIALIZE in a
TPINFDEF-REC record. Some possible ways are shown in later examples.

Note: If the process is running outside the administrative domain of the application,
that is, if it is running on a workstation connected to the administrative
domain, the LMID used is the one for the machine used by the workstation
client to access the application.

Once a client process is uniquely identified client authentication can be implemented,
out-of-band messages can be sent to a specific client or to groups of clients via
TPNOTIFY and TPBROADCAST and detailed statistical information can be gathered via
tmadmin(1).

Figure 11-1 shows an example of how names might be associated with clients
accessing an application. In the example, the application uses the CLTNAME field to
indicate a job routine.
11-2 BEA TUXEDO COBOL Guide

Preliminaries

Figure 11-1 Client Naming

Unsolicited Notification

Unsolicited notification refers to any communication with a client that is not an
expected response to a service request (or an error code). The example that comes to
mind is a broadcast message to announce that the world is coming to an end in five
minutes. Within the client program there are three things you may want to do to handle
such messages:

t select settings in the TPINFDEF-REC record to select the method used to detect
messages

t if you use the dip-in method, call TPSETUNSOL to name your message handling
routine

t if you use the dip-in method, call TPCHKUNSOL to see if any unsolicited
messages have been received

t if you use the dip-in method, call TPGETUNSOL to get any unsolicited messages

The setting values are described below in “The TPINFDEF-REC Record.”
TPSETUNSOL and TPCHKUNSOL are shown in examples later in this chapter and are
described in Section 3cbl of the BEA TUXEDO Reference Manual.
BEA TUXEDO COBOL Guide 11-3

11 Writing Client Programs

 are

r
 the

r
s.

 and

.
 file
oard
 not

ch is

ons
A
r

on

 to
al
an
ve
 by
Security Strategy

The BEA TUXEDO system provides five incremental levels of security.

Operating System
For platforms that have underlying security mechanisms, this is the first line
of defense. The security level is configured to “NONE” (configuration is
discussed below). This implies, not that there is no security, but that there
no additional mechanisms (for example, the BEA TUXEDO system
application password) beyond what the platform provides.

The BEA TUXEDO system has the notion of an application administrato
who configures the application, starts up the application (servers run with
permissions of this administrator), and monitors the running application,
making dynamic changes as necessary. Note that this implies that serve
programs are “trusted” since they run with the administrator’s permission
This is supported using the underlying operating system login mechanism
read/write permissions on files, directories, and system resources.

Client programs are run directly by the users with their own permissions
However, they normally have access to the administrative configuration
and the interprocess communication mechanisms, such as the Bulletin B
in shared memory, as part of normal processing. This is true whether or
additional BEA TUXEDO system security is configured. For some
applications running on platforms supporting such, a more secure approa
to have the files and IPC mechanisms accessible only to the application
administrator and to have “trusted” client programs run with the permissi
of the administrator (using a “setuid” mechanism). Combining this with BE
TUXEDO system security will allow the application to “know” who the use
is that is making the request. For the most secure environment, only
workstation clients should be allowed to access the application; client
programs should not be allowed to run on the machines where applicati
server and administrative programs run.

The BEA TUXEDO system security mechanisms can be used in addition
operating system security to prevent unauthorized access. The addition
security can be used to avoid simple violations like someone accessing
unattended terminal. Or it can protect the boundaries of the administrati
domain from inter-domain or workstation client access over the network
unauthorized users.
11-4 BEA TUXEDO COBOL Guide

Preliminaries

ing
he

e.
ted

ic

d.
 to
ssible
he
cess
ess
Application Password
This security level requires that every client provide an application password
as part of joining the application. The security level is configured to APP_PW.
The administrator must provide an application password when this level is
configured and this password can also be changed administratively. It is the
responsibility of the administrator to inform users of the application what the
password is.

If this level of security is used, BEA TUXEDO system system-supplied client
programs, ud(1) for example, prompt for the application password.
Application-written client programs must include code to obtain the
password from a user. The password should not be echoed to the user’s
terminal. The password is placed in clear text in the TPINFDEF-REC record
and evaluated when the client calls TPINITIALIZE to join the application.

See “Writing Client Programs” in the BEA TUXEDO Programmer’s Guide
for examples of code for handling a password.

User Authentication
The third level of BEA TUXEDO system security is based on authenticat
each individual user in addition to providing the application password. T
security level is set to “USER_AUTH”.

This level involves passing user-specific data to an authentication servic
Often, the data is a per-user password. This data is automatically encryp
when passed over the network from workstation clients. The default
authentication service, “AUTHSVC,” is provided by a BEA TUXEDO
system-supplied server, AUTHSVR. The operation of AUTHSVR is described in
“Writing Service Routines” in the BEA TUXEDO Programmer’s Guide. This
server can be replaced with an application authentication server with log
specific to the application. (For example, it might access the widely-used
Kerberos mechanism for authentication.)

With this level of security, authentication but not authorization is provide
That is, the user is checked when joining the application but then is free
execute any services, post events, and access application queues. It is po
for the servers to do application-specific authorization within the logic of t
service routines, but there are no hooks for authorization checking for ac
to events or application queues. The alternative is to use the built-in acc
control checking.
BEA TUXEDO COBOL Guide 11-5

11 Writing Client Programs

 a

ich

 the

o
rvice
Optional Access Control Lists
With the use of access control lists (ACLs), the user is not only authenticated
when joining the application, but permissions are automatically checked
when accessing application entities such as services. ACL security also
includes the user-authentication security equivalent to USER_AUTH.

There are two levels of ACL checking. The first ACL security level is simply
called ACL. If ACL is configured, the Access Control Lists are checked
whenever a user attempts to access a service name, queue name, or event
name within the application. If there is no ACL associated with the name, the
assumption is that permission is granted. This is why this level is considered
“optional” ACLs. It allows the administrator to configure access for those
resources that need more security, but ACLs need not be configured for
services, queues, or events that are accessible to everyone.

Some applications may find it necessary to use both system level and
application authorization. An ACL can be used to control who can get to
service, and application logic can control data-dependent access (for
example, who can handle transactions for more than a million dollars).

Mandatory Access Control Lists
The second ACL security level is “MANDATORY_ACL.” This level is similar to
ACL, but an access control list must be configured for every object for wh
users are to have access. If MANDATORY_ACL is specified and there is no ACL
for the name, permission is denied.

A routine, TPCHKAUTH, is provided so the level of security can be checked before
calling TPINITIALIZE. TPCHKAUTH returns a value corresponding to:

TPNOAUTH

normal UNIX login and file permission security

TPSYSAUTH

an application password is required. The client program should place it in
PASSWD field of the TPINFDEF-REC record.

TPAPPAUTH

the application password is required. In addition, the client is expected t
provide a value to be passed to the application-specific authentication se
in the DATALEN field of the TPINFDEF-REC record.
11-6 BEA TUXEDO COBOL Guide

Preliminaries
The TPINFDEF-REC Record

The TPINFDEF-REC record is a special BEA TUXEDO system typed record used by
a client program to pass client identification and authentication information to the
system as the client attempts to join the application. It is defined in the COBOL COPY
file and contains the following fields:

05 USRNAME PIC X(30).
05 CLTNAME PIC X(30).
05 PASSWD PIC X(30).
05 GRPNAME PIC X(30).
05 NOTIFICATION-FLAG PIC S9(9) COMP-5.
 88 TPU-SIG VALUE 1.
 88 TPU-DIP VALUE 2.
 88 TPU-IGN VALUE 3.
05 ACCESS-FLAG PIC S9(9) COMP-5.
 88 TPSA-FASTPATH VALUE 1.
 88 TPSA-PROTECTED VALUE 2.
05 DATALEN PIC S9(9) COMP-5.

The USRNAME, CLTNAME and GRPNAME Members of TPINFDEF-REC

USRNAME, CLTNAME and GRPNAME are all strings of up to MAXTIDENT characters.
MAXTIDENT is defined as 30. USRNAME is a name representing the caller; you might
elect to use the number returned by getuid(2). CLTNAME is a client name whose
semantics are application defined. GRPNAME allows a client to be associated with a
resource manager group that is defined in the configuration file. This means that a
client can access an XA-compliant resource manager as part of a global transaction.
Currently, GRPNAME must be passed as SPACES, the client is not associated with a
resource manager group and is in the default client group. The USRNAME and CLTNAME
fields are associated with the client process when TPINITIALIZE is called and are used
for both broadcast notification and the retrieval of administrative statistics.

The PASSWD Member of TPINFDEF-REC

PASSWD is a SPACES string of up to MAXTIDENT characters. It is an application
password in unencrypted format that is used by TPINITIALIZE for validation against
the application password stored in the TUXCONFIG file.
BEA TUXEDO COBOL Guide 11-7

11 Writing Client Programs
The Settings Members of TPINFDEF-REC

The settings members of TPINFDEF-REC are used to indicate the notification
mechanism and system access mode to be used. Selections override values specified
in the configuration file (with some exceptions explained below). Possible settings
values are:

TPU-DIP

Select unsolicited notification by dip-in. This is the default method if nothing
is specified in the configuration file. It has the advantage of giving the
receiving program more control over when unsolicited messages are handled.
The system will detect unsolicited messages for your client process only
while you are within ATMI calls. You may want to check for unsolicited
messages as part of your regular checking routine following returns from
ATMI calls. If you specify this setting (or accept it as the default method),
you should include a call to TPSETUNSOL early in your program. Until the
handler for unsolicited messages is known no messages can be delivered.

TPU-SIG

Select unsolicited notification by signals. This method has the advantage of
immediate notification, but has the limitations that you must have the same
uid as the sending process, and is not available on all platforms (specifically,
it is not available with the MS-DOS instantiation of the Workstation). If you
specify this option but do not qualify for it, the system resets your choice to
TPU-DIP and calls USERLOG to note the event.

TPU-IGN

Ignore unsolicited notification.

TPSA-FASTPATH

Specifies ATMI calls within application code can access BEA TUXEDO
system internal tables via shared memory and that the shared memory is not
protected against access by application code outside of BEA TUXEDO
system libraries. Overrides the value in UBBCONFIG, except when
NO_OVERRIDE is specified. This is the default if SYSTEM_ACCESS mode is
unspecified.

TPSA-PROTECTED

Specifies ATMI calls within application code can access BEA TUXEDO
system internal tables via shared memory but the shared memory is protected
against access by application code outside of BEA TUXEDO system
libraries. Overrides the value in UBBCONFIG, except when NO_OVERRIDE is
specified.
11-8 BEA TUXEDO COBOL Guide

Joining and Leaving an Application
The DATALEN Member of TPINFDEF-REC

DATALEN is the length of the application-specific data that will be sent to the
authentication service. For native clients, it is not encoded by the system; it is passed
to the authentication service as the client program provides it. For workstation clients,
client authentication is handled by the system; it is passed over the network in
encrypted form.

Joining and Leaving an Application

The two routines discussed in this section allow a client process to join and leave a
BEA TUXEDO application. The syntax of these routines is:

01 TPINFDEF-REC.
 COPY TPINFDEF.
01 USER-DATA-REC PIC X(any-length).
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPINITIALIZE" USING TPINFDEF-REC USER-DATA-REC TPSTATUS-REC.

and

01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPTERM" USING TPSTATUS-REC.

Before a client can make any service request, it must join the application. If a service
request (or any ATMI routine) is called before invoking TPINITIALIZE, then it is
invoked automatically with a SPACES parameter. This implies that the features
mentioned above cannot be used; the default values are used for client naming,
unsolicited notification type, and system access mode, the client cannot be associated
with a resource manager group, and an application password cannot be specified. To
use these features, the application must explicitly invoke the TPINITIALIZE routine.
Once invoked (either implicitly or explicitly), the calling process may initiate requests
and receive replies. TPTERM removes the process from the application. When TPTERM
returns successfully the process must again join the application before communicating
with a BEA TUXEDO system server process. A typical client process might begin and
end as illustrated in Listing 11-1.
BEA TUXEDO COBOL Guide 11-9

11 Writing Client Programs

rned
e the
Listing 11-1 Typical Client Process Paradigm

. . .
Check level of security
 CALL TPSETUNSOL to name your handler routine for TPU-DIP
 get USRNAME, CLTNAME
 prompt for application PASSWD
 SET TPU-DIP TO TRUE.
 CALL "TPINITIALIZE" USING TPINFDEF-REC
 USER-DATA-REC
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
. . .
make service call
receive the reply
check for unsolicited messages
. . .
CALL "TPTERM" USING TPSTATUS-REC.
IF NOT TPOK
 error processing
. . .
EXIT PROGRAM.

The arguments to TPINITIALIZE are a structure, TPINFDEF-REC, that is defined in
the COBOL COPY file, the user data and a status structure, TPSTATUS-REC, that is
also defined in the COBOL COPY file.

TPTERM does not take an argument. Both routines return TP-STATUS IN
TPSTATUS-REC set to [TPOK] upon success. On error, the command fails and sets
TP-STATUS, to a value that indicates the nature of the error. TPSTATUS-REC is
defined in the COBOL COPY file. There is a discussion of the values of TP-STATUS in
Chapter 15, “Error Management.” The complete list of error codes that can be retu
for each of the ATMI routines can also be found on the manual pages that describ
routine and INTRO(3cbl) in the BEA TUXEDO Reference Manual.

An example of TPINITIALIZE and TPTERM is shown in Listing 11-2.
11-10 BEA TUXEDO COBOL Guide

Joining and Leaving an Application
Listing 11-2 Joining and Leaving the Application

IDENTIFICATION DIVISION.
PROGRAM-ID. FIG1-3.
AUTHOR. TUXEDO DEVELOPMENT.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
*
WORKING-STORAGE SECTION.

* Tuxedo definitions

01 TPSTATUS-REC.
COPY TPSTATUS.
*
01 TPINFDEF-REC.
COPY TPINFDEF.

* Log messages definitions

01 LOGMSG.
 05 FILLER PIC X(10) VALUE "FIG12-3 =>".
 05 LOGMSG-TEXT PIC X(50).
01 LOGMSG-LEN PIC S9(9) COMP-5.
*
01 USER-DATA-REC PIC X(75).
**
PROCEDURE DIVISION.
START-HERE.
MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.

* Now register the client with the system.

MOVE SPACES TO USRNAME.
MOVE SPACES TO CLTNAME.
MOVE SPACES TO PASSWD.
MOVE SPACES TO GRPNAME.
MOVE ZERO TO DATALEN.
SET TPU-DIP TO TRUE.
*
CALL "TPINITIALIZE" USING TPINFDEF-REC
 USER-DATA-REC
 TPSTATUS-REC.
IF NOT TPOK
 MOVE "TPINITIALIZE FAILED" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 PERFORM EXIT-PROGRAM.

BEA TUXEDO COBOL Guide 11-11

11 Writing Client Programs
* Application specific code

. . .

*Leave Application

CALL "TPTERM" USING TPSTATUS-REC.
IF NOT TPOK
 MOVE "TPTERM FAILED" TO LOGMSG-TEXT
 PERFORM DO-USERLOG.
EXIT-PROGRAM.
STOP RUN.

* Log messages to the userlog

DO-USERLOG.
CALL "USERLOG" USING LOGMSG
 LOGMSG-LEN
 TPSTATUS-REC.

The previous example shows the client process attempting to join the application with
a call to TPINITIALIZE. If an error is encountered, a message is written to the central
event log via a call to USERLOG.

Record Management

Before messages can be sent between processes, a record must be defined for the
message data. The following sections describe the record types supported by BEA
TUXEDO and how records are tested for type using routines in the ATMI.
11-12 BEA TUXEDO COBOL Guide

Record Management
Typed Records for Messages

BEA TUXEDO is delivered with eight message record types defined:

STRING CARRAY VIEW FML X_COMMON X_OCTET VIEW32 FML32

Note: A ninth type, X_C_TYPE, is defined but should not be used from COBOL.

The eight record types are defined in tmtypesw.c (which can be found in
$TUXDIR/lib/tmtypesw.c, with documentation in tuxtypes(5)). When the BEA
TUXEDO system software is built, tmtypesw.o is archived in the BEA TUXEDO
system libraries that are automatically linked in when the buildclient and
buildserver commands are invoked, so the eight defined types are available to your
application programs.

The tmtypesw.c file can be edited to add or remove record types. Information about
how to do this can be found in Administering the BEA TUXEDO System. Only record
types defined in tmtypesw.c can be known to your client or server programs. The
ubbconfig(5) BUFTYPE parameter can be used to specify the types and subtypes a given
service can know about.

Record Types: STRING

The STRING record type is what is conventionally understood as a string in the C
language. It is an arbitrary number of characters which may not contain LOW-VALUE
characters anywhere within the record but may be at the end of the record. Data
dependent routing is not provided for this record type. If routing routines are desired,
they must be written as part of the application. Encoding and decoding is provided for
this record type.

Record Types: CARRAY

The CARRAY record type (and equivalently X_OCTET) is an arbitrary number of
characters which may contain LOW-VALUE characters. The application defines the
semantics; it is not interpreted by BEA TUXEDO. Data dependent routing is not
provided for this record type. If routing routines are desired, they must be written as
part of the application. No encoding or decoding is provided for a CARRAY record when
crossing machine boundaries since the bytes are not interpreted by the system.
BEA TUXEDO COBOL Guide 11-13

11 Writing Client Programs

a

” A

 of
g
Record Types: FML and FML32

Records of the FML type are very flexible buffers that hold field identifier/field value
pairs. FML buffers offer the advantages of data independence and flexibility; fields may
be present or absent, or may have multiple occurrences. Also, FML buffers interface
well with both the BEA TUXEDO system DBMS and the DES. The BEA TUXEDO
system DBMS supports fielded records in database files, and the mio client process of
the BEA TUXEDO system DES uses fielded buffers for input and output data. In
addition, this data type provides the functionality of data dependent routing. Automatic
encoding and decoding is done if the buffer is passed between machines of different
types.

In C, FML functions are used to manipulate FML typed buffers. These functions are not
available in COBOL. However, functions are provided to initialize an FML buffer, to
convert FML buffers to COBOL records, VIEWs, and back again.

The FML32 type is similar to the FML type but supports larger character fields, more
fields, and larger overall records. It is also used on conversion to/from VIEW32 records.
The FML32 buffer type uses environment variables suffixed with “32”, that is,
FIELDTBLS32 and FLDTBLDIR32. The primary use of FML32 in COBOL is simply to
work with C programs that are using VIEW32 or FML32 typed buffers.

Record Types: VIEW, X_COMMON and VIEW32

Records of the VIEW type (and equivalently X_COMMON) are COBOL data structures
that the application defines. The data structure is passed between processes in VIEW
typed record of a specific subtype. The process for defining a VIEW record was
described in Chapter 10, “The BEA TUXEDO System Development Environment.
VIEW can be one derived from a fielded buffer (type FML) or one defined independently
of a fielded buffer. The ATMI primitives all take both types of VIEW buffer, but there
are differences in the way the two types of VIEWS themselves are defined and in how
they are handled within your programs. These differences were described in
Chapter 10, “The BEA TUXEDO System Development Environment.” Both types
VIEW buffer support data dependent routing and automatic encoding and decodin
when the buffer is passed between unlike machines.

The comparison of how to create and use the two VIEW types is summarized in
Table 11-1.
11-14 BEA TUXEDO COBOL Guide

Record Management

sues
lain
cords
An X_COMMON record should contain only

PIC S9(4) COMP-5 (short)
PIC S9(9) COMP-5 (long)
and
PIC (character)

fields, which are common to both the COBOL and C languages.

The VIEW32 record is similar to the VIEW type but supports larger character fields and
bigger records. It is also used for conversion to/from FML32 records. The VIEW32
buffer type uses environment variables suffixed with “32”, that is, FIELDTBLS32,
FLDTBLDIR32, VIEWFILES32, and VIEWDIR32. The primary use of VIEW32 in
COBOL is simply to work with C programs that are using VIEW32 or FML32 typed
buffers.

Record Types: Summary

Although system configuration and defining record types are application design is
rather than programming issues, the above discussion has been included to exp
how processes know about the various record types so you can correctly define re
for the communication calls between processes.

Table 11-1 Comparison of Two VIEW Types

FML-dependent VIEW FML-independent VIEW

Creating create the view description file with
FML information in it

create the view description file
without FML information in it

use the viewc -C compiler without
the -n option to compile the
description file

use the viewc -C compiler with the
-n option to compile the description
file

Using set and export FIELDTBLS,
FLDTBLDIR, VIEWFILES,
VIEWDIR in the ENVFILE for the
machine the client process is running
on

set and export VIEWFILES and
VIEWDIR in the ENVFILE for the
machine the client process is running
on

include the copy file FMLINFO, the
copy file created from the view
compiler in the programs that define
FML and VIEW buffers

include the copy file created from the
view compiler in the programs that
define VIEW buffers
BEA TUXEDO COBOL Guide 11-15

11 Writing Client Programs
ATMI Record Calls

It is important for the BEA TUXEDO programmer to know what record types are
required and expected by the application. The ATMI routines take REC-TYPE and
SUB-TYPE, both in TPTYPE-REC, as arguments. For the types provided by BEA
TUXEDO, the REC-TYPE specifies the type of record that is to be sent. The SUB-TYPE
argument has meaning only when REC-TYPE is VIEW, VIEW32, or X_COMMON. In this
case, the SUB-TYPE is the name of the specific data structure defined as a VIEW, or
X_COMMON. In the other record types, the SUB-TYPE argument is SPACES. LEN IN
TPTYPE-REC specifies the amount of data to send and the amount received.

Service Calls

Once a client process has joined the application and placed the input data request in a
record, it can then send the request message to a service subroutine for processing and
receive a reply message. The next sections discuss the ATMI routines that allow
processes that are acting as clients to send message requests to services and receive
replies either synchronously or asynchronously.

The TPCALL routine sends a request to a service subroutine and synchronously waits
for its reply.

The TPACALL routine sends a request to a service and immediately returns. The reply
to the service call is asynchronously received by calling the TPGETRPLY routine.
11-16 BEA TUXEDO COBOL Guide

Service Calls
Sending Synchronous Messages: TPCALL

TPCALL is used to send synchronous messages. The syntax of this routine is:

01 TPSVCDEF-REC.
 COPY TPSVCDEF.
01 ITPTYPE-REC.
 COPY TPTYPE.
01 IDATA-REC.
 COPY User Data.
01 OTPYTPE-REC.
 COPY TPTYPE.
01 ODATA-REC.
 COPY User Data.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPCALL" USING TPSVCDEF-REC
 ITPTYPE-REC
 IDATA-REC
 OTPTYPE-REC
 ODATA-REC
 TPSTATUS-REC.

TPCALL sends a request to the service that is specified in its first parameter,
SERVICE-NAME IN TPSVCDEF-REC. The service named in SERVICE-NAME must be
one offered in your application. TPCALL waits for the expected reply. It is logically the
same as calling the TPACALL routine immediately followed by TPGETRPLY. The
request carries the priority that is set by the system for the service specified in
SERVICE-NAME unless a different priority has been explicitly set by a call to TPSPRIO.

The parameter of the routine, IDATA-REC, contains the data portion of the request and
LEN IN ITPTYPE-REC specifies how much of IDATA-REC to send. Note that the
REC-TYPE and SUB-TYPE, both in ITPTYPE-REC, must match the type (and subtype)
expected by the service routine. If the types do not match, the system sets TP-STATUS
to TPEITYPE and the routine call fails.

If the record is a self-defining type, that is, a VIEW, VIEW32, FML, FML32, or X_COMMON
record, LEN IN ITPTYPE-REC is ignored and can be set to zero. If REC-TYPE IN
ITPTYPE-REC is STRING and LEN IN ITPTYPE-REC is 0, then the request is sent with
no data portion. If the request requires no data, set REC-TYPE IN ITPTYPE-REC to
SPACES. This causes the IDATA-REC and LEN IN ITPTYPE-REC parameters to be
ignored.
BEA TUXEDO COBOL Guide 11-17

11 Writing Client Programs
The next two parameters indicate the record that is to receive the reply message,
ODATA-REC, and the length of the reply data, LEN IN OTPTYPE-REC. If the reply
message sent back contains no data portion, upon successful return from TPCALL, LEN
IN OTPTYPE-REC will be set to zero, and the contents of the output record will remain
unchanged. It is an error for LEN IN OTPTYPE-REC to be zero on input.

The same record can be used for both the request and reply message. If this is the case,
then ODATA-REC must be REDEFINED to IDATA-REC.

Listing 11-3 shows a client program making a synchronous call using the same record
for both the request and reply message. Using the same record is appropriate in this
particular case, since the AUDV-REC message record has been set up to accommodate
both request and reply information in the same record. The B-ID field is queried by the
service but not overwritten and the BALANCE field has been initialized to zero in
anticipation of the value to be returned by the service. The SERVICE-NAME variable
represents the service name requested.

Listing 11-3 Using the Same Record for Request and Reply Messages

WORKING-STORAGE SECTION.

* Tuxedo definitions

 01 TPTYPE-REC.
 COPY TPTYPE.
*
 01 TPSTATUS-REC.
 COPY TPSTATUS.
*
 01 TPSVCDEF-REC.
 COPY TPSVCDEF.

* Log messages definitions

 01 LOGMSG.
 05 FILLER PIC X(6) VALUE "FIG =>".
 05 LOGMSG-TEXT PIC X(50).
 01 LOGMSG-LEN PIC S9(9) COMP-5.
*
 01 USER-DATA-REC PIC X(75).

* This VIEW record (audv) will be sent to the server

 01 AUDV-REC.
11-18 BEA TUXEDO COBOL Guide

Service Calls
 COPY AUDV.
*
**
 PROCEDURE DIVISION.
 START-FIG.
 MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.

* Prepare the audv record

 MOVE "BRANCH" TO B-ID IN AUDV-REC.
 MOVE 0 TO BALANCE IN AUDV-REC.
 MOVE LENGTH OF AUDV-REC TO LEN.
 MOVE "VIEW" TO REC-TYPE.
 MOVE "audv" TO SUB-TYPE.
 MOVE "SOMESERVICE" TO SERVICE-NAME.
 SET TPBLOCK TO TRUE.
 SET TPNOTRAN TO TRUE.
 SET TPNOTIME TO TRUE.
 SET TPSIGRSTRT TO TRUE.
 SET TPNOCHANGE TO TRUE.
 CALL "TPCALL" USING TPSVCDEF-REC
 TPTYPE-REC
 AUDV-REC
 TPTYPE-REC
 AUDV-REC
 TPSTATUS-REC.
 IF NOT TPOK
 MOVE "Service Failed" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 PERFORM EXIT-PROGRAM.
 DISPLAY BRANCH and BALANCE
 . . .

Note: For an example in which different records are used for input and output see
Listing 12-2 in Chapter 12, “Writing Service Routines.”

If the reply is larger than ODATA-REC, then ODATA-REC will contain as much of the
message as will fit in the record. The remainder is discarded and TPCALL sets
TP-STATUS IN TPSTATUS-REC to TPTRUNCATE.
BEA TUXEDO COBOL Guide 11-19

11 Writing Client Programs

bal

he

s the

.

ng

eak

g

 to
Values for the Settings: TPCALL

The last argument that TPCALL takes is TPSTATUS-REC. The settings in the
TPSTATUS-REC argument can change the operation of the communication call in
some way by allowing additional flexibility to the application. Valid settings are:

TPNOTRAN

If the client process is in transaction mode when it calls TPCALL, and the
setting is TPNOTRAN, the service that is invoked by the call will not be part of
the transaction; that is, the operations that the service performs are not part of
the caller’s transaction. There’s more on this subject in Chapter 14, “Glo
Transactions in the BEA TUXEDO System.” Either TPNOTRAN or TPTRAN
must be set.

TPTRAN

If the client process is in transaction mode when it calls TPCALL, and the
setting is TPTRAN, the service that is invoked by the call will be part of the
transaction; that is, the operations that the service performs are part of t
caller’s transaction. Either TPNOTRAN or TPTRAN must be set.

TPNOCHANGE

By using this value, the calling program is indicating that it wants the
message returned in the same type of record that was originally defined a
output record. In other words when this setting is set, the type of record
returned to the caller must be the same as REC-TYPE IN OTPTYPE-REC and
SUB-TYPE IN OTPTYPE-REC. This is known as strong record type checking
Either TPNOCHANGE or TPCHANGE must be set.

TPCHANGE

This setting allows a record type to be different than the original one so lo
as the caller recognizes the type. In this case, the record type, REC-TYPE IN
OTPTYPE-REC, changes to the received record type. This is known as w
type checking. Either TPNOCHANGE or TPCHANGE must be set.

TPNOBLOCK

TPNOBLOCK concerns the action a routine call takes if a blocking condition
exists. Callers of the communication routines typically block when waitin
for a reply to arrive although they may also block when trying to send a
request if all server queues or internal records are full. A default blocking
time-out period is defined for the application in the configuration file. It
specifies the amount of time a caller should wait for a blocking condition
subside when one exists. If the condition persists beyond this limit, the
routine call fails and TP-STATUS is set to TPETIME. When the valid setting is
11-20 BEA TUXEDO COBOL Guide

Service Calls

e

s the
TPNOBLOCK, if a blocking condition exists, the call fails immediately and the
request message is not sent. In this case, TP-STATUS is set to TPEBLOCK. Note
that TPCALL is a dual routine in that it both sends a request and receives a
reply. When TPNOBLOCK is set, it affects only the send part of the routine; if
all the server queues are filled or the internal records into which the message
records are copied are full, the call will not block but immediately return.
However, if it must wait for the reply (which is usually the case), this setting
does not immunize the call from blocking while it waits. Either TPNOBLOCK
or TPBLOCK must be set.

TPBLOCK

When the valid setting is TPBLOCK, if a blocking condition exists, the caller
blocks until the condition changes or a timeout occurs, either transaction or
blocking. Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME

By setting TPNOTIME, you are telling the system to ignore the blocking
time-out limit because the caller is willing to wait indefinitely for the
blocking condition to subside. However, if the caller is in transaction mode
this setting has no effect; it is subject to the transaction time-out limit. The
timing out of transactions will be discussed in Chapter 14, “Global
Transactions in the BEA TUXEDO System.” Either TPNOTIME or TPTIME
must be set.

TPTIME

TPTIME indicates that you are telling the system to receive the blocking
time-out if a blocking condition exists and the blocking time is reached.
Either TPNOTIME or TPTIME must be set.

TPSIGRSTRT

Another valid setting is TPSIGRSTRT. This value concerns the action to tak
if there is a signal interrupt. When TPSIGRSTRT is set, the call is
automatically made again. As a result, in the event that a signal interrupt
underlying system call, the routine call is reissued. When TPSIGRSTRT is not
set and there is a signal interrupt, the routine call fails and TP-STATUS returns
TPGOTSIG. Either TPSIGRSTRT or TPNOSIGRSTRT must be set.

TPNOSIGRSTRT

When TPNOSIGRSTRT is set and there is a signal interrupt, the call is not
restarted and the routine call fails. Either TPSIGRSTRT or TPNOSIGRSTRT
must be set.
BEA TUXEDO COBOL Guide 11-21

11 Writing Client Programs

n
on

re
s

e of a
TPCALL sets TP-STATUS to TPOK upon success. On failure, the value of TP-STATUS is
set to an appropriate value reflecting the type of error that occurred. Some of the causes
for error have already been discussed, while others have transaction implications and
will be introduced in Chapter 15, “Error Management.” In general, communicatio
calls may fail for a variety of errors. Many of the errors returned on communicati
calls can be fixed on an application level. They include application defined errors
(TPESVCFAIL), errors in processing return arguments (TPESVCERR), typed record
errors (TPEITYPE, TPEOTYPE), time-out (TPETIME), and protocol errors (TPEPROTO)
among others. They are all discussed in Chapter 15, “Error Management,” and a
listed on the INTRO and TPCALL manual pages. The communication of these failure
will also be explained in the discussion of the TPRETURN routine in Chapter 12,
“Writing Service Routines.”

Examples of the Use of Settings

The next three figures give examples of TPCALL using the communication settings in
various scenarios.

The example shown in Listing 11-4 is based on a service which assumes the rol
client when it calls on the services of WITHDRAWAL and DEPOSIT. In the example, we
have set the communication setting to TPSIGRSTRT in these service calls to give the
transaction a better chance of committing.

Listing 11-4 Sending a Synchronous Message with TPSIGRSTRT Set

 WORKING-STORAGE SECTION.

* Tuxedo definitions

 01 TPTYPE-REC.
 COPY TPTYPE.
*
 01 TPSTATUS-REC.
 COPY TPSTATUS.
 *
 01 TPSVCDEF-REC.
 COPY TPSVCDEF.

* This VIEW record (audv) will be sent to the server

 01 AUDV-REC.
 COPY AUDV.
*

11-22 BEA TUXEDO COBOL Guide

Service Calls
**
 PROCEDURE DIVISION.
 START-FIG.

* Prepare the audv record for withdrawal

 . . .
 MOVE "WITHDRAWAL" TO SERVICE-NAME.
 SET TPSIGRSTRT TO TRUE.
 PERFORM DO-TPCALL.
 IF NOT TPOK
 MOVE "Cannot withdraw from debit account" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 PERFORM EXIT-PROGRAM.
 MOVE "DEPOSIT" TO SERVICE-NAME.
 SET TPSIGRSTRT TO TRUE.
 PERFORM DO-TPCALL.
 IF NOT TPOK
 MOVE "Cannot deposit into credit account" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 PERFORM EXIT-PROGRAM.
 . . .

* Perform a TPCALL

 DO-TPCALL.
 MOVE LENGTH OF AUDV-REC TO LEN.
 MOVE "VIEW" TO REC-TYPE.
 MOVE "audv" TO SUB-TYPE.
 SET TPBLOCK TO TRUE.
 SET TPNOTRAN TO TRUE.
 SET TPNOTIME TO TRUE.
 SET TPNOCHANGE TO TRUE.
 CALL "TPCALL" USING TPSVCDEF-REC
 TPTYPE-REC
 AUDV-REC
 TPTYPE-REC
 AUDV-REC
 TPSTATUS-REC.
 . . .

Listing 11-5 illustrates a communication call that suppresses transaction mode. It is
being made to a service that is not affiliated with a resource manager and it would be
an error to allow it to participate in the transaction. Specifically in this example, an
accounts receivable report, ACCRCV is to be printed against a database named
ACCOUNTS. The service routine REPORT interprets the parameters and sends the byte
stream for the completed report as a reply. The client, shown here, uses TPCALL to send
BEA TUXEDO COBOL Guide 11-23

11 Writing Client Programs
the byte stream to a service called PRINTER that prints out the byte stream to the
appropriate printer for this client. It receives a reply from the PRINTER service naming
the printer that was chosen to print the report to make it convenient for the user to pick
up the hard copy. Listing 11-6 shows a similar example using an asynchronous
message call.

Listing 11-5 Sending a Synchronous Message with TPNOTRAN Set

 WORKING-STORAGE SECTION.

* Tuxedo definitions

 01 ITPTYPE-REC.
 COPY TPTYPE.
 01 OTPTYPE-REC.
 COPY TPTYPE.
*
 01 TPSTATUS-REC.
 COPY TPSTATUS.
*
 01 TPSVCDEF-REC.
 COPY TPSVCDEF.

 01 REPORT-REQUEST PIC X(100) VALUE SPACES.
 01 REPORT-OUTPUT PIC X(50000) VALUE SPACES.
**
 PROCEDURE DIVISION.
 START-FIG.
 . . .
 join application
 start transaction
 . . .
**
* Send report request to REPORT service
* Receive results into REPORT-OUTPUT
**
 MOVE "REPORT=accrcv DBNAME=accounts" TO REPORT-REQUEST.
 MOVE "STRING" TO REC-TYPE IN ITYPE-REC.
 MOVE 29 TO LEN IN ITYPE-REC.
 MOVE "STRING" TO REC-TYPE IN OITYPE-REC.
 MOVE 50000 TO LEN IN OTYPE-REC.
 MOVE "REPORT" TO SERVICE-NAME.
 SET TPTRAN TO TRUE.
 SET TPBLOCK TO TRUE.
 SET TPNOTIME TO TRUE.
 SET TPSIGRSTRT TO TRUE.
11-24 BEA TUXEDO COBOL Guide

Service Calls
 SET TPNOCHANGE TO TRUE.
 CALL "TPCALL" USING TPSVCDEF-REC
 ITPTYPE-REC
 REPORT-REQUEST
 OTPTYPE-REC
 REPORT-OUTPUT
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
 IF TPETRUNCATE
 The report was truncated
 error processing
**
* Send REPORT-OUTPUT to PRINTER service
**
 MOVE "PRINTER" TO SERVICE-NAME.
 SET TPNOTRAN TO TRUE.
 MOVE "STRING" TO REC-TYPE IN ITTYPE-REC.
 MOVE LEN IN OTYPE-REC TO LEN IN ITYPE-REC.
 CALL "TPCALL" USING TPSVCDEF-REC
 ITPTYPE-REC
 REPORT-OUTPUT
 OTPTYPE-REC
 REPORT-OUTPUT
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
 . . .
 terminate transaction
 leave application

In Listing 11-5 where error processing has been indicated, it should include printing
an error message, aborting the transaction, leaving the application, and exiting the
program.

Listing 11-5 also illustrates the use of the TPNOCHANGE communication setting to
enforce strong record type checking. The strong record type checking, TPNOCHANGE is
used to force the reply to be returned in a record of type STRING. A possible reason for
this check is to guard against errors that may occur in the REPORT service subroutine
in processing the request that could result in a reply record of an incorrect type.
Another, is to prevent changes that are not made consistently across all areas of
dependency. For example, someone could have changed the REPORT service to
standardize all replies in some other STRING format without modifying the client
process to reflect the change.
BEA TUXEDO COBOL Guide 11-25

11 Writing Client Programs

ns

cting

 the
is
it.

he
Sending Asynchronous Messages: TPACALL

This section discusses the sending of asynchronous messages where the sender of the
request does not wait for the reply. The first half of this communication is performed
by TPACALL. The syntax of this routine is:

01 TPSVCDEF-REC.
 COPY TPSVCDEF.
01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY User Data.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPACALL" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

The TPACALL routine sends a request message to the service named in SERVICE-NAME
IN TPSVCDEF-REC and immediately returns from the call. The three parameters,
DATA-REC, LEN IN TPTYPE-REC, and the settings in TPSTATUS-REC, have the
same semantics as IDATA-REC, LEN IN ITPTYPE-REC, and the settings in
TPSTATUS-REC of the TPCALL routine. Upon successful completion of the call,
TPACALL returns a value in COMM-HANDLE IN TPSVCDEF-REC which serves as a
communications handle that can be used to get the correct reply for the sent request.
While TPACALL is in transaction mode (the topic of Chapter 14, “Global Transactio
in the BEA TUXEDO System,”), there may be no outstanding replies when the
transaction commits; that is, within a given transaction, for each request sent expe
a reply a corresponding reply must eventually be received.

Values for the Settings: TPACALL

The communication settings that TPACALL takes as valid for TPSTATUS-REC pertain
to the send part of the communication. As a result, the setting value TPNOCHANGE is
removed since it concerns the output record which is not present in this call, and
values TPNOREPLY and TPREPLY are added since the receive part is not implicit to th
communication call. When TPCALL is used the fact that a reply is expected is implic
TPACALL represents only the sending part of TPCALL, and it is possible to indicate
whether a reply is expected or not.

TPNOREPLY

If the value TPNOREPLY is set, it signals to TPACALL that a reply is not
expected. Guidelines for using this setting correctly when a process is in
transaction mode are discussed in Chapter 14, “Global Transactions in t
11-26 BEA TUXEDO COBOL Guide

Service Calls

 this

is
BEA TUXEDO System.” When TPNOREPLY is set, on success TPACALL
returns the value of 0 in COMM-HANDLE, an invalid communications handle,
where 0 cannot be used by TPGETRPLY. Either TPNOREPLY or TPREPLY must
be set.

TPREPLY

If the value TPREPLY is set, it signals to TPACALL that a reply is expected.
When TPREPLY is set, on success TPACALL returns a valid communications
handle in COMM-HANDLE. Either TPNOREPLY or TPREPLY must be set.

An example of TPACALL using the TPNOREPLY|TPNOTRAN setting is shown in
Listing 11-6. This example is similar to the one presented above in Listing 11-5. In
case, however, a reply is not expected from the PRINTER service. By setting both of
these settings, the client is indicating that no reply is expected and the PRINTER service
is not to be a participant in the current transaction. Chapter 15 fully discusses th
situation. Refer to the “Transaction Rules” section.

Listing 11-6 Sending an Asynchronous Message with TPNOTRAN or
TPNOREPLY

 WORKING-STORAGE SECTION.

* Tuxedo definitions

 01 ITPTYPE-REC.
 COPY TPTYPE.
 01 OTPTYPE-REC.
 COPY TPTYPE.
*
 01 TPSTATUS-REC.
 COPY TPSTATUS.
*
 01 TPSVCDEF-REC.
 COPY TPSVCDEF.

 01 REPORT-REQUEST PIC X(100) VALUE SPACES.
 01 REPORT-OUTPUT PIC X(50000) VALUE SPACES.
**
 PROCEDURE DIVISION.
 START-FIG.
 . . .
 join application
 start transaction
 . . .
 **
 * Send report request to REPORT service
BEA TUXEDO COBOL Guide 11-27

11 Writing Client Programs
 * Receive results into REPORT-OUTPUT
 **
 MOVE "REPORT=accrcv DBNAME=accounts" TO REPORT-REQUEST.
 MOVE "STRING" TO REC-TYPE IN ITPTYPE-REC.
 MOVE 29 TO LEN IN ITPTYPE-REC.
 MOVE "STRING" TO REC-TYPE IN OITYPE-REC.
 MOVE 50000 TO LEN IN OTPTYPE-REC.
 MOVE "REPORT" TO SERVICE-NAME.
 SET TPTRAN TO TRUE.
 SET TPBLOCK TO TRUE.
 SET TPNOTIME TO TRUE.
 SET TPSIGRSTRT TO TRUE.
 SET TPREPLY TO TRUE.
 SET TPNOCHANGE TO TRUE.
 CALL "TPCALL" USING TPSVCDEF-REC
 ITPTYPE-REC
 REPORT-REQUEST
 OTPTYPE-REC
 REPORT-OUTPUT
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
 IF TPETRUNCATE
 The report was truncated
 error processing
**
* Send REPORT-OUTPUT to PRINTER service
**
 MOVE "PRINTER" TO SERVICE-NAME.
 SET TPNOTRAN TO TRUE.
 SET TPNOREPLY TO TRUE.
 MOVE "STRING" TO REC-TYPE IN ITPTYPE-REC.
 MOVE LEN IN OTPTYPE-REC TO LEN IN ITPTYPE-REC.
 CALL "TPACALL" USING TPSVCDEF-REC
 ITPTYPE-REC
 REPORT-OUTPUT
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
 . . .
 commit transaction
 leave application

On error, TPACALL sets TP-STATUS to a value that reflects the nature of the error.
TPACALL returns many of the same error codes as TPCALL. Again, the differences are
based on the fact that one represents a synchronous call and the other an asynchronous
call. These errors are discussed at length in Chapter 15, “Error Management.”
11-28 BEA TUXEDO COBOL Guide

Service Calls
Getting an Asynchronous Reply: TPGETRPLY

TPGETRPLY is the complementary routine to TPACALL. It receives a reply from a
request previously sent by TPACALL. The syntax of this routine is:

01 TPSVCDEF-REC.
 COPY TPSVCDEF.
01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY User Data.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPGETRPLY" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

TPGETRPLY takes the value of the communication handle returned by TPACALL in
COMM-HANDLE IN TPSVCDEF-REC. In the default case, the routine waits for the
arrival of the reply that corresponds to the value contained in COMM-HANDLE. In waiting
for this specific reply, a blocking time-out may occur. A time-out means that
TPGETRPLY fails and TP-STATUS is set to TPETIME (unless TPNOTIME is set).

The second and third arguments to TPGETRPLY, DATA-REC and LEN IN
TPTYPE-REC, have identical semantics to those of the ODATA-REC and LEN IN
OTPTYPE-REC parameters of the TPCALL routine.

Getting and Setting Priority

ATMI provides two routines that allow you to determine and set the priority of the
message request. The priority affects how the request is dequeued by the server.
Servers dequeue requests with the highest priorities first. The syntax of these routines
is:

01 TPPRIDEF-REC.
 COPY TPPRIDEF.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPGPRIO" USING TPPRIDEF-REC TPSTATUS-REC.

and

01 TPPRIDEF-REC.
 COPY TPPRIDEF.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPSPRIO" USING TPPRIDEF-REC TPSTATUS-REC.
BEA TUXEDO COBOL Guide 11-29

11 Writing Client Programs
The TPGPRIO routine can be called by a requester after invoking the TPCALL or
TPACALL routine to retrieve the priority of the request message just sent. If it was called
and no request was sent, the routine fails and sets TP-STATUS to TPENOENT. Upon
success, TPGPRIO sets TP-STATUS to TPOK and returns an integer value in the range of
1 to 100, 100 being the highest priority value, in PRIORITY IN TPPRIDEF-REC. If
the priority has not been explicitly set by using the TPSPRIO routine, the value of the
priority will be that of the service routine that handles the request. The priority of the
service is assigned the system default value of 50 unless it has been specifically
defined to some other value by the administrator. See Listing 11-7 for an example of
retrieving the priority of a message that was sent off in an asynchronous call.

Listing 11-7 Determining the Priority of the Sent Request

 WORKING-STORAGE SECTION.

* Tuxedo definitions

 01 TPTYPE-REC-1.
 COPY TPTYPE.
 01 TPTYPE-REC-2.
 COPY TPTYPE.
*
 01 TPSTATUS-REC.
 COPY TPSTATUS.
*
 01 TPSVCDEF-REC-1.
 COPY TPSVCDEF.
 01 TPSVCDEF-REC-2.
 COPY TPSVCDEF.
*
 01 TPPRIDEF-REC-1.
 COPY TPPRIDEF.
 01 TPPRIDEF-REC-2.
 COPY TPPRIDEF.

 01 DATA-REC-1 PIC X(100) VALUE SPACES.
 01 DATA-REC-2 PIC X(100) VALUE SPACES.
**
 PROCEDURE DIVISION.
START-FIG.
 . . .
 join application
 populate DATA-REC1 and DATA-REC2 with send request
 . . .
 MOVE "CARRAY" TO REC-TYPE IN TYPE-REC-1.
 MOVE 100 TO LEN IN TYPE-REC-1.
11-30 BEA TUXEDO COBOL Guide

Service Calls
 MOVE "SERVICE1" TO SERVICE-NAME IN TPSVCDEV-REC-1.
 SET TPTRAN TO TRUE IN TPSVCDEV-REC-1.
 SET TPBLOCK TO TRUE IN TPSVCDEV-REC-1.
 SET TPNOTIME TO TRUE IN TPSVCDEV-REC-1.
 SET TPSIGRSTRT TO TRUE IN TPSVCDEV-REC-1.
 SET TPREPLY TO TRUE IN TPSVCDEV-REC-1.
 CALL "TPACALL" USING TPSVCDEF-REC-1
 TPTYPE-REC-1
 DATA-REC-1
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
 CALL "TPGPRIO" USING TPPRIDEF-REC-1 TPSTATUS-REC
 IF NOT TPOK
 error processing
 MOVE "CARRAY" TO REC-TYPE IN TYPE-REC-2.
 MOVE 100 TO LEN IN TYPE-REC-2.
 MOVE "SERVICE2" TO SERVICE-NAME IN TPSVCDEV-REC-2.
 SET TPTRAN TO TRUE IN TPSVCDEV-REC-2.
 SET TPBLOCK TO TRUE IN TPSVCDEV-REC-2.
 SET TPNOTIME TO TRUE IN TPSVCDEV-REC-2.
 SET TPSIGRSTRT TO TRUE IN TPSVCDEV-REC-2.
 SET TPREPLY TO TRUE IN TPSVCDEV-REC-2.
 CALL "TPACALL" USING TPSVCDEF-REC-2
 TPTYPE-REC-2
 DATA-REC-2
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
 CALL "TPGPRIO" USING TPPRIDEF-REC-2 TPSTATUS-REC
 IF NOT TPOK
 error processing
 IF PRIORITY IN TPSVCDEF-REC-1 >= PRIORITY IN TPSVCDEF-REC-2
 PERFORM DO-GETREPLY1
 PERFORM DO-GETREPLY2
 ELSE
 PERFORM DO-GETREPLY2
 PERFORM DO-GETREPLY1
 END-IF.
 . . .
 leave application
DO-GETRPLY1.
 SET TPGETHANDLE TO TRUE IN TPSVCDEV-REC-1.
 SET TPCHANGE TO TRUE IN TPSVCDEV-REC-1.
 SET TPBLOCK TO TRUE IN TPSVCDEV-REC-1.
 SET TPNOTIME TO TRUE IN TPSVCDEV-REC-1.
 SET TPSIGRSTRT TO TRUE IN TPSVCDEV-REC-1.
 CALL "TPGETRPLY" USING TPSVCDEF-REC-1
 TPTYPE-REC-1
 DATA-REC-1
 TPSTATUS-REC.
BEA TUXEDO COBOL Guide 11-31

11 Writing Client Programs

est

y
 first

te

ault
the

o
t
 IF NOT TPOK
 error processing
 DO-GETRPLY2
 SET TPGETHANDLE TO TRUE IN TPSVCDEV-REC-2.
 SET TPCHANGE TO TRUE IN TPSVCDEV-REC-2.
 SET TPBLOCK TO TRUE IN TPSVCDEV-REC-2.
 SET TPNOTIME TO TRUE IN TPSVCDEV-REC-2.
 SET TPSIGRSTRT TO TRUE IN TPSVCDEV-REC-2.
 CALL "TPGETRPLY" USING TPSVCDEF-REC-2
 TPTYPE-REC-2
 DATA-REC-2
 TPSTATUS-REC.
 IF NOT TPOK
 error processing

It is also possible to use TPGPRIO to retrieve the priority of the request just received by
the service. This is illustrated in Listing 12-3 in Chapter 12, “Writing Service
Routines.”

With the TPSPRIO routine, the programmer can override the priority level the requ
would normally inherit from the service to which it is dispatched. When TPSPRIO is
called, it affects the priority level of the very next request only that is sent by TPCALL
or TPACALL or forwarded by a service subroutine. Forwarding requests will be
discussed later in Chapter 12, “Writing Service Routines.” This routine takes two
parameters, TPPRIDEF-REC and TPSTATUS-REC, and the second one indicates how
the first one is to be interpreted. The first member, PRIORITY IN TPPRIDEF-REC, is
an integer. In the default situation, its sign indicates whether the request’s priorit
should be incremented or decremented in relation to the existing priority. For the
member to be treated as a relative value, the settings must be set to 0. If TPABSOLUTE
is set, the priority value of the next request that is sent out will receive the absolu
value of the integer contained in PRIORITY. The absolute value of PRIORITY must be
in the range of 1 to 100. If the value is not in this range, the system uses the def
value, 50. If TPRELATIVE is set, the priority value of the next request is sent out at
relative value of the integer contained in PRIORITY.

Listing 11-8 shows an excerpt from the TRANSFER service acting as a client process t
call services of WITHDRAWAL. It invokes TPSPRIO to increase the priority of the reques
message it sends in its synchronous call to WITHDRAWAL. It does so to prevent the
request from being queued for the WITHDRAWAL service (and later the DEPOSIT service)
after already having waited on the TRANSFER queue.
11-32 BEA TUXEDO COBOL Guide

Service Calls
Listing 11-8 Setting the Priority of a Request Message

 WORKING-STORAGE SECTION.

* Tuxedo definitions

 01 TPTYPE-REC.
 COPY TPTYPE.
*
 01 TPSTATUS-REC.
 COPY TPSTATUS.
*
 01 TPSVCDEF-REC.
 COPY TPSVCDEF.
*
 01 TPPRIDEF-REC.
 COPY TPPRIDEF.

 01 DATA-REC PIC X(100) VALUE SPACES.
**
 PROCEDURE DIVISION.
 START-FIG.
 . . .
 join application
 . . .
 MOVE 30 TO PRIORITY.
 SET TPRELATIVE TO TRUE.
 CALL "TPSPRIO" USING TPPRIDEF-REC TPSTATUS-REC
 IF NOT TPOK
 error processing
 MOVE "CARRAY" TO REC-TYPE.
 MOVE 100 TO LEN.
 MOVE "WITHDRAWAL" TO SERVICE-NAME.
 SET TPTRAN TO TRUE .
 SET TPBLOCK TO TRUE .
 SET TPNOTIME TO TRUE .
 SET TPSIGRSTRT TO TRUE .
 SET TPREPLY TO TRUE .
 CALL "TPACALL" USING TPSVCDEF-REC
 TPTYPE-REC
 DATA-REC
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
 . . .
 leave application
BEA TUXEDO COBOL Guide 11-33

11 Writing Client Programs

ents
t can
r 12,

They

call
 on

em
be
Initiating a Conversational Connection

The discussion in this chapter has centered around how client programs initiate a
request/response service request. Client programs can also connect to conversational
servers by using TPCONNECT instead of TPCALL or TPACALL. Chapter 13,
“Conversational Clients and Services,” describes this topic in detail.

Sending a Broadcast Message

The TPBROADCAST routine is used to send an unsolicited message to registered cli
within the application. It is mentioned in this chapter on client programs because i
be called by clients. A more complete discussion of its use can be found in Chapte
“Writing Service Routines.”

Handling Unsolicited Notification

The three routines in this section allow a client to handle unsolicited messages.
are TPGETUNSOL, TPSETUNSOL and TPCHKUNSOL. The syntax for TPSETUNSOL is:

01 CURR-ROUTINE PIC S9(9) COMP-5.
01 PREV-ROUTINE PIC S9(9) COMP-5.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPSETUNSOL" USING CURR-ROUTINE PREV-ROUTINE TPSTATUS-REC.

TPSETUNSOL allows a client to identify the routine that should be invoked when an
unsolicited message is received by the BEA TUXEDO libraries. Prior to the first
to TPSETUNSOL, any unsolicited messages received by the BEA TUXEDO libraries
behalf of the client are logged and ignored. A call to TPSETUNSOL with a function
number, CURR-ROUTINE, set to 0 has the same effect. The method used by the syst
for notification and detection is determined by the application default, which can
overridden on a per-client basis (see TPINITIALIZE).

The routine number passed, in CURR-ROUTINE, on the call to TPSETUNSOL selects one
of 16 predefined routines. The routine names must be _tm_dispatch1 through
_tm_dispatch8 for C routines that provide unsolicited message handling and
TMDISPATCH9 through TMDISPATCH16 for COBOL routines that provide the same
message handling. The routine _tm_dispatch1 through _tm_dispatch8 must
conform to the parameter definition described in tpsetunsol(3c). Routines
TMDISPATCH9 through TMDISPATCH16 must use TPGETUNSOL to receive the data.
11-34 BEA TUXEDO COBOL Guide

Service Calls

 of

age.
Listing 11-9 is an example of a client setting a COBOL unsolicited function.

Listing 11-9 Setting an Unsolicited Function

*
* Call TPSETUNSOL - Set a COBOL unsolicited message handler
* Routine TMDISPATCH9 will be called
*
 MOVE 9 to CURR-ROUTINE.
 CALL "TPSETUNSOL" USING
 CURR-ROUTINE
 PREV-ROUTINE
 TPSTATUS-REC.
 IF NOT TPOK
 Routine TMDISPATCH9 will receive unsolicited messages
 ELSE
 Process error condition

The syntax of TPGETUNSOL is:

01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY User data.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPGETUNSOL" USING TPTYPE-REC DATA-REC TPSTATUS-REC.

TPGETUNSOL gets unsolicited messages that were sent via TPBROADCAST or TPNOTIFY.
This routine may be called only from an unsolicited message handler.

Upon successful return, LEN IN TPTYPE-REC contains the actual number of bytes
moved into DATA-REC. REC-TYPE and SUB-TYPE, both in TPTYPE-REC, contain the
data’s type and sub-type, respectively. If the message is larger than DATA-REC, then
DATA-REC will contain only as many bytes as will fit in the record. The remainder
the message is discarded and sets TPTRUNCATE. If LEN is 0, upon successful
completion, then the message has no data portion and DATA-REC was not modified.

Listing 11-10 is an example of a COBOL program receiving an unsolicited mess
BEA TUXEDO COBOL Guide 11-35

11 Writing Client Programs
Listing 11-10 Receiving an Unsolicited Message

 IDENTIFICATION DIVISION.
 PROGRAM-ID. TMDISPATCH9.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. USL-486.
 OBJECT-COMPUTER. USL-486.
*
 DATA DIVISION.
 WORKING-STORAGE SECTION.
*
 01 TPTYPE-REC.
 COPY TPTYPE.
*
 01 TPSTATUS-REC.
 COPY TPSTATUS.
*
 01 DATA-REC PIC X(1000).
*
 PROCEDURE DIVISION.
*
 A-000.
*
 MOVE "CARRAY" TO REC-TYPE.
 MOVE 1000 TO LEN.
 CALL "TPGETUNSOL" USING TPTYPE-REC
 DATA-REC
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
*
 Process message
 DISPLAY "TPGETUNSOL IS TPOK".
 DISPLAY "MESSAGE IS" DATA-REC.
 DISPLAY "LENGTH IS" LEN.
 EXIT PROGRAM.
*

The syntax of TPCHKUNSOL is:

01 MSG-NUM PIC S9(9) COMP-5.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPCHKUNSOL" USING MSG-NUM TPSTATUS-REC.
11-36 BEA TUXEDO COBOL Guide

Service Calls
TPCHKUNSOL is used by a client to trigger checking for unsolicited messages. Calls to
this routine in a client using signal-based notification do nothing and return
immediately. Calls to this routine can result in calls to an application-defined
unsolicited message handling routine by the BEA TUXEDO system libraries.

Upon successful completion, TPCHKUNSOL sets TP-STATUS to [TPOK] and returns the
number of unsolicited messages dispatched in MSG-NUM.

Listing 11-11 is an example of a COBOL program checking for the arrival of an
unsolicited message.

Listing 11-11 Arrival of an Unsolicited Message

*
* Check for unsolicited messages
*
 CALL "TPCHKUNSOL" USING MESS-NUM
 TPSTATUS-REC.
*
 IF TPOK
 IF MESS-NUM IS = 0
 No messages were processed by the
 unsolicited function
 ELSE
 MESS-NUM number of messages were
 processed by the unsolicited function
 END-IF
 ELSE
 process error
 END-IF
BEA TUXEDO COBOL Guide 11-37

11 Writing Client Programs
Compiling Client Programs

To compile your client programs you have several methods to choose from. You can
use regular COBOL Compilation System utilities to make object files. The object files
can be kept as individual files or collected into an archive file. If you prefer, you can
retain your programs as source (.cbl) files. In any event, when you invoke
buildclient to produce an executable client, you specify your input files on the
command line with the -f option.

The buildclient Command

buildclient(1) is used to put together an executable client program. Options identify
the name of the output file, input files provided by the application, and various
libraries. When compiling a COBOL client, the -C option must be used to indicate that
the language is COBOL. This ensures that the correct language libraries are included in
linking the program.

buildclient with the -C option invokes the cobcc command. The environment
variables ALTCC and ALTCFLAGS can be set to name an alternative compile command
and to set flags for the compile and link edit phases. The default value for ALTCC is
cobcc.

The buildclient -o Option

The -o option is used to assign a name to the executable output file. If no name is
provided, the file is named a.out.

The buildclient -f and -l Options

The -f and -l options are used to specify files to be used in the link edit phase. The
files specified in the -f (first) option are brought in before the BEA TUXEDO
libraries, whereas the files specified in the -l (last) option are brought in after these
libraries. There is a significance to the order of the options. The order is dependent on
routine references and in what libraries the references are resolved. Input files should
be listed ahead of libraries that might be used to resolve their references. If input files
are .cbl and .c files, they are first compiled. Object files can be either separate.o files
11-38 BEA TUXEDO COBOL Guide

Compiling Client Programs
or groups of files in archive (.a) files. If more than a single file name is given as an
argument to a -f or -l option, the syntax calls for a list enclosed in double quotes. You
can use as many -f and -l options as you need.

The following represents the command line that was used to create the BUY executable
program. The environment variable ALTCC is set to cobcc. The environment variable
ALTCFLAGS is set to -I $TUXDIR/include.

buildclient -C -o BUY -f BUY.cbl

The buildclient -r Option

The -r option is used to specify which resource manager access libraries should be link
edited with the executable client. The choice is specified with a string from the
$TUXDIR/udataobj/RM file. Only one string can be specified. The database routines
in your service are the same regardless of which library is used.

All valid strings that name resource managers are contained in the
$TUXDIR/udataobj/RM file. When integrating a new resource manager into the BEA
TUXEDO system, this file must be updated to include the information about the
resource manager. For more information, refer to buildtms(1) in the BEA TUXEDO
Reference Manual and Administering the BEA TUXEDO System.
BEA TUXEDO COBOL Guide 11-39

11 Writing Client Programs
11-40 BEA TUXEDO COBOL Guide

CHAPTER

 in
quest
12 Writing Service
Routines

Writing Request/Response Services

The preceding chapter discussed the ATMI calls that can be used to write client
programs. In this chapter, some of the same routines are revisited in the context of the
service subroutines. As you may recall, services are COBOL subroutines that are
linked together with the BEA TUXEDO system-provided controlling program to
create executable server programs.

In this chapter the discussion covers only services that operate in a request/response
mode. Conversational clients and servers are the subject of Chapter 13,
“Conversational Clients and Services.”

Note: You have probably noticed that we refer to the service routines described
this chapter as request/response. The service can receive exactly one re
and send at most one reply.
BEA TUXEDO COBOL Guide 12-1

12 Writing Service Routines

’s
ther

e

end

er

Application Service Template

Since the communication details are taken care of by the BEA TUXEDO system
controlling program, the programmer can concentrate on the application logic ra
than communication implementation. For services to be compatible with the
controlling program provided, they must adhere to certain conventions. These
conventions are described here and on the TPSVCSTART(3cbl) reference page in the
BEA TUXEDO Reference Manual, and they are referred to collectively as the servic
template for coding service routines.

Request/response services have the following characteristics:

t a request/response service can receive only one request at a time and can s
only one reply.

t when servicing a request, it works only on that request and can accept anoth
only after it has sent its reply to the requester or has forwarded the request to
another service for additional processing.

t service routines must begin by calling the TPSVCSTART routine.

t service routines must terminate by calling either the TPRETURN or TPFORWAR
routine.

t when communicating with another server via TPACALL, the initiating service
must wait for all outstanding replies or must invalidate them with TPCANCEL
before calling TPRETURN or TPFORWAR.

t service routines are invoked with TPSVCDEF-REC, which is a service
information data structure, the user data record, TPTYPE-REC, used whenever
sending or receiving application data, and TPSTATUS-REC, which is used by the
ATMI routines for return codes and setting definitions.

The following sections examine these concepts more closely.
12-2 BEA TUXEDO COBOL Guide

Application Service Template
The TPSVCSTART Routine

TPSVCSTART is the very first routine to be called when writing a service routine. It is
an error to issue any other call within a service routine before calling TPSVCSTART. The
syntax of this routine is:

01 TPSVCDEF-REC.
 COPY TPSVCDEF.
01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY User Data.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPSVCSTART" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

The TPSVCDEF-REC Structure

The service information data structure is defined as TPSVCDEF in the COBOL COPY file
and includes the following members:

 05 COMM-HANDLE PIC S9(9) COMP-5.
 05 TPBLOCK-FLAG PIC S9(9) COMP-5.
 88 TPNOBLOCK VALUE 0.
 88 TPBLOCK VALUE 1.
 05 TPTRAN-FLAG PIC S9(9) COMP-5.
 88 TPNOTRAN VALUE 0.
 88 TPTRAN VALUE 1.
 05 TPREPLY-FLAG PIC S9(9) COMP-5.
 88 TPNOREPLY VALUE 0.
 88 TPREPLY VALUE 1.
 05 TPTIME-FLAG PIC S9(9) COMP-5.
 88 TPNOTIME VALUE 0.
 88 TPTIME VALUE 1.
 05 TPSIGRSTRT-FLAG PIC S9(9) COMP-5.
 88 TPNOSIGRSTRT VALUE 0.
 88 TPSIGRSTRT VALUE 1.
 05 TPGETANY-FLAG PIC S9(9) COMP-5.
 88 TPGETANY VALUE 0.
 88 TPGETHANDLE VALUE 1.
 05 TPSENDRECV-FLAG PIC S9(9) COMP-5.
 88 TPSENDONLY VALUE 0.
 88 TPRECVONLY VALUE 1.
 05 TPNOCHANGE-FLAG PIC S9(9) COMP-5.
BEA TUXEDO COBOL Guide 12-3

12 Writing Service Routines

tions

, but
r sets
s

s
ervice
 caller.
 88 TPNOCHANGE VALUE 0.
 88 TPCHANGE VALUE 1.
 05 TPSERVICETYPE-FLAG PIC S9(9) COMP-5.
 88 TPREQRSP VALUE 0.
 88 TPCONV VALUE 1.
*
 05 APPKEY PIC S9(9) COMP-5.
 05 CLIENTID OCCURS 4 TIMES PIC S9(9) COMP-5.
 05 SERVICE-NAME PIC X(15).

 The members of the structure

t indicate to the service routine the name with which it was invoked

t tell the service attributes about itself or the caller

t give the communications handle, if this is a conversational connection

t provide the client key for authentication

t carry the identifier for the client originating the call

The SERVICE-NAME member of the structure indicates to the service routine the name
that the requesting process used to invoke the service.

The Settings of TPSVCDEF-REC

The TPNOTRAN and TPTRAN settings of the structure are used to let the service know if
it is in transaction mode or if the caller is expecting a reply. The various ways a service
can be placed in transaction mode are discussed in Chapter 14, “Global Transac
in the BEA TUXEDO System.” If the setting is TPTRAN, it indicates that the service is
in transaction mode. When a service is called by TPCALL or TPACALL with a setting of
TPNOTRAN, it indicates that the service cannot participate in the current transaction
it is still possible for the service to be in transaction mode. So even when the calle
TPNOTRAN, it is possible for TPTRAN to be set. The case that allows this to happen i
discussed in Chapter 14, “Global Transactions in the BEA TUXEDO System.”

TPNOREPLY is set if the service was called by TPACALL with the TPNOREPLY
communication setting set. It is possible for both the settings to be set. When thi
represents a valid situation is discussed in the next chapter. However, if a called s
is part of the same transaction as the calling process, it must return a reply to the
12-4 BEA TUXEDO COBOL Guide

Application Service Template
The APPKEY Member of TPSVCDEF-REC

The use of this member is left to the application to decide. If application-specific
authentication is part of your design, the application-specific authentication server,
which is called at the time a client joins the application, should return a client
authentication key as well as a success/failure indication. (This is the logic of the BEA
TUXEDO system default AUTHSVC service.) The key is held by the system on behalf
of the client and is passed to subsequent service requests in the APPKEY field. By the
time the key is passed to the service, the client has already passed authentication, but
the APPKEY field can be used within the service to identify in some way the user
invoking the service or some other parameters associated with the user. If not used, the
value is set to -1 by the system.

The CLIENTID Member of TPSVCDEF-REC

The CLIENTID is used by the system to carry the identification of the client. You
should not make changes in this field.

Accessing Data that Comes with the Request

When accessing the request data to be placed in DATA-REC, the service must be coded
to expect the data to be in a record of the type defined for the service in the
configuration file. LEN IN TPTYPE-REC contains the maximum number of bytes that
should be moved. LEN is not allowed to be 0 on input.

Upon successful return, DATA-REC contains the data received and LEN contains the
actual number of bytes moved. If the length of the message is greater than DATA-REC,
DATA-REC will receive only as much of the message as possible and TPTRUNCATE is
set in TPTYPE-REC. If LEN is 0, no data was received and DATA-REC remains
unchanged. REC-TYPE and SUB-TYPE, both in TPTYPE-REC, contain the type and
subtype for the service called, which in turn must agree with the typed record as
defined for that service in the configuration file.

Listing 12-1 illustrates a typical service definition.
BEA TUXEDO COBOL Guide 12-5

12 Writing Service Routines
Listing 12-1 Typical Service Definition

 IDENTIFICATION DIVISION.
 PROGRAM-ID. BUYSR.
 AUTHOR. TUXEDO DEVELOPMENT.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. USL-486.
 OBJECT-COMPUTER. USL-486.
*
 INPUT-OUTPUT SECTION.
 . . .
**
* Tuxedo definitions
**
 01 TPSVCRET-REC.
 COPY TPSVCRET.
*
 01 TPTYPE-REC.
 COPY TPTYPE.
*
 01 TPSTATUS-REC.
 COPY TPSTATUS.
*
 01 TPSVCDEF-REC.
 COPY TPSVCDEF.
**
* Log message definitions
**
 01 LOGMSG.
 05 LOGMSG-TEXT PIC X(50).
*
 01 LOGMSG-LEN PIC S9(9) COMP-5.
**
* User defined data records
**
 01 CUST-REC.
 COPY CUST.
*
 LINKAGE SECTION.
*
 PROCEDURE DIVISION.
*
 START-BUYSR.
 MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.
 OPEN files or DATABASE
**
* Get the data that was sent by the client
12-6 BEA TUXEDO COBOL Guide

Application Service Template
**
 MOVE "Server Started" TO LOGMSG-TEXT.
 PERFORM DO-USERLOG.
 MOVE LENGTH OF CUST-REC TO LEN IN TPTYPE-REC.
 CALL "TPSVCSTART" USING TPSVCDEF-REC
 TPTYPE-REC
 CUST-REC
 T PSTATUS-REC.
 IF TPTRUNCATE
 MOVE "Input data exceeded CUST-REC length" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 PERFORM A-999-EXIT.
 IF NOT TPOK
 MOVE "TPSVCSTART Failed" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 PERFORM A-999-EXIT.
 IF REC-TYPE NOT = "VIEW"
 MOVE "REC-TYPE in not VIEW" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 PERFORM A-999-EXIT.
 IF SUB-TYPE NOT = "cust"
 MOVE "SUB-TYPE in not cust" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 PERFORM A-999-EXIT.
 . . .
 set consistency level of the transaction
 . . .
**
* Exit
**
 A-999-EXIT.
 MOVE "Exiting" TO LOGMSG-TEXT.
 PERFORM DO-USERLOG.
 SET TPFAIL TO TRUE.
 COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC
 TPTYPE-REC BY TPTYPE-REC
 DATA-REC BY CUST-REC
 TPSTATUS-REC BY TPSTATUS-REC.
**
* Write to userlog
**
 DO-USERLOG.
 CALL "USERLOG" USING LOGMSG
 LOGMSG-LEN
 TPSTATUS-REC.
BEA TUXEDO COBOL Guide 12-7

12 Writing Service Routines

 on

rned
In the above example, the request record on the client side was originally sent with
REC-TYPE set to VIEW and the SUB-TYPE set to cust. The BUYSR service is defined in
the configuration file as a service that knows about the VIEW typed record. BUYSR is
able to retrieve the data record by accessing the CUST-REC record as illustrated in the
above example. Note that after this record is retrieved and before the first database
access is made, the consistency level of the transaction is specified. Refer to
Chapter 14, “Global Transactions in the BEA TUXEDO System,” for more details
transaction consistency levels.

Checking The Priority of the Service Request

Listing 12-2 shows the fictitious PRINTSR service testing the priority level of the
request just received by invoking the TPGPRIO routine. Based on the priority level, the
print job is routed to the appropriate destination printer, RNAME. The contents of
INPUT-REC are sent to that printer. Also, the TPSVCDEF-REC settings are queried to see
if a reply is expected. If one is expected, the name of the destination printer is retu
to the client. Again, the use of TPRETURN is explained in the next section.

Listing 12-2 Determining the Priority of the Received Request

 IDENTIFICATION DIVISION.
 PROGRAM-ID. PRINTSR.
 AUTHOR. TUXEDO DEVELOPMENT.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. USL-486.
 OBJECT-COMPUTER. USL-486.
*
 INPUT-OUTPUT SECTION.
 . . .
**
* Tuxedo definitions
**
 01 TPSVCRET-REC.
 COPY TPSVCRET.
*
 01 TPTYPE-REC.
 COPY TPTYPE.
*
 01 TPSTATUS-REC.
 COPY TPSTATUS.
*
 01 TPSVCDEF-REC.
12-8 BEA TUXEDO COBOL Guide

Application Service Template
 COPY TPSVCDEF.
*
 01 TPPRIDEF-REC.
 COPY TPPRIDEF.
**
* Log message definitions
**
 01 LOGMSG.
 05 FILLER PIC S9(9) VALUE
 "TP-STATUS=".
 05 LOG-TP-STATUS PIC S9(9).
 05 LOGMSG-TEXT PIC X(50).
*
 01 LOGMSG-LEN PIC S9(9) COMP-5.
**
* User defined data records
**
 01 INPUT-REC PIC X(1000).
 01 PRNAME PIC X(20).
*
 LINKAGE SECTION.
*
 PROCEDURE DIVISION.
*
 START-PRINTSR.
 MOVE LENGTH OF LOGMSG TO LOGMSG-LEN.
 OPEN files or DATABASE
**
* Get the data that was sent by the client
**
 MOVE ZERO to TP-STATUS.
 MOVE "Server Started" TO LOGMSG-TEXT.
 PERFORM DO-USERLOG.
 MOVE LENGTH OF INPUT-REC TO LEN.
 CALL "TPSVCSTART" USING TPSVCDEF-REC
 TPTYPE-REC
 INPUT-REC
 TPSTATUS-REC.
 IF NOT TPOK
 MOVE "TPSVCSTART Failed" TO LOGMSG-TEXT
 PERFORM DO-USERLOG
 SET TPFAIL TO TRUE.
 PERFORM A-999-EXIT.
 . . .
 Check other parameters
 CALL "TPGPRIO" USING TPPRIDEF-REC
 TPSTATUS-REC.
 IF NOT TPOK
 MOVE "TPGPRIO Failed" TO LOGMSG-TEXT
BEA TUXEDO COBOL Guide 12-9

12 Writing Service Routines
 PERFORM DO-USERLOG
 SET TPFAIL TO TRUE.
 PERFORM A-999-EXIT.
 IF PRIORITY < 20
 MOVE "BIGJOBS" TO RNAME
 ELSE IF PRIORITY < 60
 MOVE "MEDJOBS" TO RNAME
 ELSE
 MOVE "HIGHSPEED" TO RNAME.
 . . .
 Print INPUT-REC on RNAME printer
 . . .
 IF TPNOREPLY
 MOVE SPACES TO REC-TYPE
 MOVE 0 TO LEN
 SET TPSUCCESS TO TRUE
 PERFORM A-999-EXIT
 IF TPREPLY
 MOVE "STRING" TO REC-TYPE
 MOVE LENGTH OF PRNAME TO LEN
 SET TPSUCCESS TO TRUE
 PERFORM A-999-EXIT.
**
* Exit
**
 A-999-EXIT.
 MOVE "Exiting" TO LOGMSG-TEXT.
 PERFORM DO-USERLOG.
 SET TPSUCCESS TO TRUE.
 COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC
 TPTYPE-REC buTPTYPE-REC
 DATA-REC BY PRNAME
 TPSTATUS-REC BY TPSTATUS-REC.
**
* Write to userlog
**
 DO-USERLOG.
 MOVE TP-STATUS TO LOG-TP-STATUS.
 CALL "USERLOG" USING LOGMSG
 LOGMSG-LEN
 TPSTATUS-REC.
12-10 BEA TUXEDO COBOL Guide

The TPRETURN and TPFORWAR Routines

s the

The TPRETURN and TPFORWAR Routines

TPRETURN and TPFORWAR are routines that indicate that a service routine has
completed; they either send a reply back to the calling client or forward a request to
another service for further processing.

Sending Replies

The primary function of a service routine is to process a request and return the reply to
a client process. In performing this routine, a service can in turn act as a requester and
make request calls to other services with TPCALL or TPACALL. When TPRETURN is
called, control always returns to the controlling program. If the service has sent
requests with asynchronous replies, it must receive all expected replies or invalidate
them with TPCANCEL before returning control to the controlling program; otherwise the
outstanding replies are automatically dropped when they are received by the BEA
TUXEDO system’s controlling program, and an error is returned to the caller.

The TPRETURN routine, besides marking the end of the service routine, also cause
reply message to be sent to the requester. If the client invoked the service with TPCALL,
after a successful call to TPRETURN, the reply message is available in the ODATA-REC
record. If TPACALL was used to send the request, on success from TPRETURN, the reply
message is available in TPGETRPLY’s DATA-REC record. The syntax of this routine is:

 01 TPSVCRET-REC.
 COPY TPSVCRET.
 01 TPTYPE-REC.
 COPY TPTYPE.
 01 DATA-REC.
 COPY User Data.
 01 TPSTATUS-REC.
 COPY TPSTATUS.
 COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC
 TPTYPE-REC BY TPTYPE-REC
 DATA-REC BY DATA-REC
 TPSTATUS-REC BY TPSTATUS-REC.

Currently the settings are not used.
BEA TUXEDO COBOL Guide 12-11

12 Writing Service Routines

ice

r

nd
d. If

t if
.
 is

t in

nd its

wed

he

d
 the

TPRETURN Arguments: TP-RETURN-VAL IN TPSVCRET-REC

The TP-RETURN-VAL IN TPSVCRET-REC parameter can be set to TPSUCCESS,
TPFAIL or TPEXIT. This value indicates whether the service has completed
successfully or not on an application-level. These conditions are communicated to the
calling client in the following way. When set to TPSUCCESS, the calling routine
succeeded, and if there is a reply message, it is in the caller’s record. If the serv
terminated unsuccessfully (that is, if the logic of the application set TP-RETURN-VAL

IN TPSVCRET-REC to TPFAIL), an error is reported to the client process waiting fo
the reply. The client’s TPCALL or TPGETRPLY routine call will fail and TP-STATUS will
be set to TPESVCFAIL to indicate an application-defined failure. In the case of this ki
of failure if a reply message was expected, it will be available in the caller’s recor
TPEXIT is set in TP-RETURN-VAL IN TPSVCRET-REC, the functionality of TPFAIL is
performed, but the server exits after the reply is sent back to the client. Note tha
TP-RETURN-VAL is not set, the default value of TPFAIL is assigned to this parameter
The impact of the value of this parameter when a process is in transaction mode
discussed in Chapter 14, “Global Transactions in the BEA TUXEDO System.”

The preceding discussion concerns the effect of TP-RETURN-VAL if
application-defined errors are the only ones that occur. If, however, TPRETURN
encounters errors while processing its arguments, it sends a failed message (if a reply
is expected) to the calling process. This is detected by the caller by the value se
TP-STATUS. In case of failed messages, TP-STATUS is set to TPESVCERR. This
situation overrides the effect of the value of TP-RETURN-VAL. If this type of error
occurs, no reply data is returned, and the contents of the caller’s output record a
length remain unchanged.

If TPRETURN sends back a message in a record whose type is not known or not allo
by the caller (that is, the call was made with a setting of TPNOCHANGE), TPEOTYPE is
returned in TP-STATUS. Application success or failure cannot be determined and t
contents of the caller’s output record and its length remain unchanged.

Also, the value returned in TP-RETURN-VAL is not relevant in the case when TPRETURN
is invoked and a time-out occurs for the call waiting on the reply. This situation
overrides all others in determining the value that is returned in TP-STATUS.
TP-STATUS is set to TPETIME and the reply data is not sent leaving the contents an
length of the caller’s reply record unchanged. There are two types of time-outs in
BEA TUXEDO system. Blocking time-out was discussed when explaining the
TPNOBLOCK and TPNOTIME communication settings. The other type of time-out,
transaction time-out, is discussed in Chapter 14, “Global Transactions in the BEA
TUXEDO System.”
12-12 BEA TUXEDO COBOL Guide

The TPRETURN and TPFORWAR Routines
TPRETURN Arguments: APPL-CODE IN TPSVCRET-REC

The APPL-CODE IN TPSVCRET-REC parameter can be used to return to the caller an
application-defined return code. The client can access the value returned in
APPL-CODE by querying APPL-RETURN-CODE IN TPSTATUS-REC. This code is sent
regardless of application success or failure; that is, it is returned in the case of
TPSUCCESS or TPESVCFAIL. As indicated, no reply messages can be sent in the other
error cases.

TPRETURN Arguments: DATA-REC and LEN IN TPTYPE-REC

DATA-REC is the reply message that is to be returned to the client process with the
length of the message specified by LEN IN TPTYPE-REC. If the record is self-defining
(for example a VIEW record), LEN is ignored and can be set to 0. If REC-TYPE IN
TPTYPE-REC is STRING and LEN is 0, then the request is sent with no data portion. If
the reply message does not have a data part, REC-TYPE is SPACES, and DATA-REC and
LEN are ignored. If a reply is expected by the client, and there is no data in the reply
record, then a reply with no data portion is sent to the client. If no reply is expected,
that is, TPNOREPLY was set, TPRETURN ignores any data passed to it and simply returns
control to the controlling program; the server process is then free to process another
request.

TPRETURN Example

Listing 12-3 shows the TRANSFER service which makes synchronous calls to the
WITHDRAWAL and DEPOSIT services. If the call to WITHDRAWAL should fail, Cannot
withdraw from debit account is written to the status line of the form, the reply
record is freed and the TP-RETURN-VAL IN TPSVCRET-REC parameter to TPRETURN
is set to TPFAIL. If the call succeeds, the debit balance is retrieved from the reply
record.

A similar scenario is followed for the call to DEPOSIT. On success, the service sets
TP-RETURN-VAL IN TPSVCRET-REC to TPSUCCESS and returns the pertinent account
information to the status line.
BEA TUXEDO COBOL Guide 12-13

12 Writing Service Routines
Listing 12-3 How to Use TPRETURN

 IDENTIFICATION DIVISION.
 PROGRAM-ID. TRANSFER.
 AUTHOR. TUXEDO DEVELOPMENT.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. USL-486.
 OBJECT-COMPUTER. USL-486.
*
 INPUT-OUTPUT SECTION.
 . . .
**
* Tuxedo definitions
**
 01 TPSVCRET-REC.
 COPY TPSVCRET.
*
 01 TPTYPE-REC.
 COPY TPTYPE.
*
 01 TPSTATUS-REC.
 COPY TPSTATUS.
*
 01 TPSVCDEF-REC.
 COPY TPSVCDEF.
**
* User defined data records
**
 01 TRANS-REC.
 COPY TRANS-AMOUNT.
*
 LINKAGE SECTION.
*
 PROCEDURE DIVISION.
*
 START-TRANSFER.
**
* Get the data that was sent by the client
**
 MOVE LENGTH OF TRANS-REC TO LEN.
 CALL "TPSVCSTART" USING TPSVCDEF-REC
 TPTYPE-REC
 TRANS-REC
 TPSTATUS-REC.
 IF NOT TPOK
 MOVE "Transaction Encountered An Error" TO STATUS-LINE
 SET TPFAIL TO TRUE.
 COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC
 TPTYPE-REC BY TPTYPE-REC
 DATA-REC BY TRANS-REC
12-14 BEA TUXEDO COBOL Guide

The TPRETURN and TPFORWAR Routines
 TPSTATUS-REC BY TPSTATUS-REC.
 ELSE
 . . . Check other parameters
**
* must have a valid debit and credit account number
**
 CALL "FIND-ACCOUNT-FUNCTION" USING TRANS-DEBIT-ACCOUNT IN TRANS-REC.

 IF TRANS-DEBIT-ACCOUNT is not valid
 MOVE "Invalid Debit Account Number"
 TO STATUS-LINE IN TRANS-REC
 SET TPFAIL TO TRUE
 COPY TPRETURN REPLACING
 DATA-REC BY TRANS-REC.

 CALL "FIND-ACCOUNT-FUNCTION" USING TRANS-CREDIT-ACCOUNT IN TRANS-REC.

 IF TRANS-CREDIT-ACCOUNT is not valid
 MOVE "Invalid Credit Account Number"
 TO STATUS-LINE IN TRANS-REC
 SET TPFAIL TO TRUE
 COPY TPRETURN REPLACING
 DATA-REC BY TRANS-REC.
**
* Check amount to transfer
**
 IF TRANS-AMOUNT IN TRANS-REC < 0
 MOVE "Invalid Transfer Amount Requested"
 TO STATUS-LINE IN TRANS-REC
 SET TPFAIL TO TRUE
 COPY TPRETURN REPLACING
 DATA-REC BY TRANS-REC.
**
* Make Withdrawal using another service
**
 MOVE "WITHDRAWAL" TO SERVICE-NAME.
 . . . set other TPCALL parameters
 CALL "TPCALL" USING . . .
 IF NOT TPOK
 MOVE "Cannot withdraw from debit account"
 TO STATUS-LINE IN TRANS-REC
 SET TPFAIL TO TRUE
 COPY TPRETURN REPLACING
 DATA-REC BY TRANS-REC.
**
* Make Deposit using another service
**
 MOVE "DEPOSIT" TO SERVICE-NAME.
 . . . set other TPCALL parameters
 CALL "TPCALL" USING . . .
 IF NOT TPOK
 MOVE "Cannot Deposit into credit account"
BEA TUXEDO COBOL Guide 12-15

12 Writing Service Routines
 TO STATUS-LINE IN TRANS-REC
 SET TPFAIL TO TRUE
 COPY TPRETURN REPLACING
 DATA-REC BY TRANS-REC.
 . . .
 MOVE "Transfer completed" TO STATUS-LINE IN TRANS-REC
 . . . MOVE all the data into TRANS-REC needed by the client
 SET TPSUCCESS TO TRUE
 COPY TPRETURN REPLACING
 DATA-REC BY TRANS-REC.

Invalidating Handles: TPCANCEL

If a service calling TPGETRPLY fails with TPETIME and decides not to wait any longer,
it can invalidate the handle with a call to TPCANCEL. If the reply ever does arrive, it is
silently discarded. TPCANCEL cannot be used for transaction replies (request was done
without the TPNOTRAN setting); within a transaction TPABORT does the same job of
invalidating the transaction communications handle. Listing 12-4 shows the code.

Listing 12-4 Invalidate a Reply after Timing Out

. . . Set up parameters to TPACALL
SET TPNOTRAN TO TRUE.
CALL "TPACALL" USING TPSVCDEF-REC
 TPTYPE-REC
 DEBIT-REC
 TPSTATUS-REC.
IF NOT TPOK
 error processing
. . .
CALL "TPGETRPLY" USING TPSVCDEF-REC
 TPTYPE-REC
 DEBIT-REC
 TPSTATUS-REC.
IF NOT TPOK
 error processing
IF TPETIME
 CALL "TPCANCEL" TPSVCDEF-REC
 TPSTATUS-REC.
 . . .
 SET TPSUCCESS TO TRUE.
 COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC
 TPTYPE-REC BY TPTYPE-REC
 DATA-REC BY DEBIT-REC
 TPSTATUS-REC BY TPSTATUS-REC.
12-16 BEA TUXEDO COBOL Guide

The TPRETURN and TPFORWAR Routines
Forwarding Requests

The TPFORWAR routine allows a service to forward a request to another service for
further processing. This differs from a service call in that the service that forwards the
request does not ever expect a reply. The reply is owed to the process that originated
the request, and the responsibility for providing the reply has been passed to the service
to which the request has been forwarded. It becomes the responsibility of the last server
in the forward chain to send the reply back by invoking TPRETURN. The process that
made the initial service call is the client and will be waiting for a reply.

The following figure gives you an idea of what a forward chain might look like. The
request is initiated with a TPCALL and the eventual reply is provided by the TPRETURN
that is invoked by the last service in the chain.

Figure 12-1 Forwarding a Request

Service routines can forward requests at specified priorities in the same manner that
client processes send requests. You may recall that this is accomplished by invoking
the TPSPRIO routine.

TPFORWAR is identical to TPRETURN in that when it is called, the controlling program
regains control, and the server process is free to do more work. The syntax of this
routine is:

01 TPSVCDEF-REC.
 COPY TPSVCDEF.
01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY User Data.
01 TPSTATUS-REC.
BEA TUXEDO COBOL Guide 12-17

12 Writing Service Routines
 COPY TPSTATUS.
COPY TPFORWAR REPLACING TPSVCDEF-REC BY TPSVCDEF-REC
 TPTYPE-REC BY TPTYPE-REC
 DATA-REC BY DATA-REC
 TPSTATUS-REC BY TPSTATUS-REC.

TPFORWAR Arguments

The name of the service to which the request is to be forwarded is specified in
TPSVCDEF-REC. The request record is its third parameter, DATA-REC, and the
length of the request data is available in LEN IN TPTYPE-REC. These two parameters
share the same meanings as the corresponding ones specified for TPRETURN.

Note: When acting as a client, a server process is not allowed to request services
from itself when a reply is expected. If the only available instance of the
desired service is offered by the server process making the request, the call will
fail indicating that a recursive call would have been made. However, if the
service routine sends the request with the TPNOREPLY communication setting
set or forwards the request the call will not fail since the caller is not waiting
on itself.

Calling TPFORWAR can be used to indicate success up to that point in processing the
request. If no application errors have been detected, you can invoke TPFORWAR;
otherwise, call TPRETURN with TP-RETURN-VAL IN TPSVCRET-REC set to TPFAIL.

TPFORWAR Example

The example in Listing 12-5 is a service routine which shows what the service would
look like if it used a call to TPFORWAR to send its data record to the DEPOSIT service.
If the new account is added successfully, the branch record is updated to reflect the
new account. On success, the data record gets forwarded to the DEPOSIT service. On
failure, TPRETURN is called with TP-RETURN-VAL IN TPSVCRET-REC set to TPFAIL
and the failure reported to the status line of the form.
12-18 BEA TUXEDO COBOL Guide

The TPRETURN and TPFORWAR Routines
Listing 12-5 How to Use TPFORWAR

 . . .
**
* Get the data that was sent by the client
**
 MOVE LENGTH OF TRANS-REC TO LEN.
 CALL "TPSVCSTART" USING TPSVCDEF-REC
 TPTYPE-REC
 TRANS-REC
 TPSTATUS-REC.
 IF NOT TPOK
 MOVE "Transaction Encountered An Error" TO STATUS-LINE
 SET TPFAIL TO TRUE.
 COPY TPRETURN REPLACING
 DATA-REC BY TRANS-REC.
 ELSE
 . . . Check other parameters
**
* Insert new account record
**
 CALL "ADD-NEW-ACCOUNT-FUNCTION" USING TRANS-ACCOUNT IN TRANS-REC.
 IF Adding New Account Failed
 MOVE "Account not added" TO STATUS-LINE IN TRANS-REC
 SET TPFAIL TO TRUE
 COPY TPRETURN REPLACING
 DATA-REC BY TRANS-REC.
**
* Forward record to the DEPOSIT service to add initial
* balance into account
**
 MOVE "DEPOSIT" TO SERVICE-NAME.
 . . . set other TPFORWAR parameters
 COPY TPFORWAR REPLACING
 DATA-REC BY TRANS-REC.
BEA TUXEDO COBOL Guide 12-19

12 Writing Service Routines
Sending Unsolicited Messages

The BEA TUXEDO system allows unsolicited messages to be sent to client processes
without disturbing the processing of request/response calls or conversational
communications. Unsolicited messages can be sent to client processes by name
(TPBROADCAST) or by an identifier received with a previously processed message
(TPNOTIFY). Messages sent via TPBROADCAST can originate either in a service or in
another client. Messages sent via TPNOTIFY can originate only in a service, as shown
in the following table.

TPBROADCAST Arguments

TPBROADCAST allows a message to be sent to registered clients of the application.
(Registered clients are those that have successfully made a call to TPINITIALIZE and
have not yet made a call to TPTERM). TPBROADCAST can be called in both client and
service routines. The syntax of the routine is:

01 TPBCTDEF-REC.
 COPY TPBCTDEF.
01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY User Data.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPBROADCAST" USING TPBCTDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

LMID, USRNAME, and CLTNAME, all in TPBCTDEF-REC, are identifiers used to select
the target list of clients. A value of SPACES for any of these arguments acts as a
wildcard for that argument, so the message can be directed to groups of clients or to
the entire universe.

The DATA-REC argument identifies the data portion of the message up to the length
specified by the LEN IN TPTYPE-REC argument. If the record is self-defining, for
example, a VIEW record, LEN is ignored and can be set to 0. The settings can be:

Table 12-1 Unsolicited Messages

Initiator Receiver

TPBROADCAST client, server client

TABLE server client
12-20 BEA TUXEDO COBOL Guide

The TPRETURN and TPFORWAR Routines

. If

 call
TPNOBLOCK

If a blocking condition exists, don’t send the message. Either TPNOBLOCK or
TPBLOCK must be set.

TPBLOCK

The calling program blocks until data is available to receive. Either
TPNOBLOCK or TPBLOCK must be set.

TPNOTIME

Wait indefinitely; do not time out. Either TPNOTIME or TPTIME must be set.

TPTIME

Timeout if a blocking condition exists and the blocking time is reached.
Either TPNOTIME or TPTIME must be set.

TPSIGRSTRT

When a signal interrupts any underlying system calls, the call is reissued
this setting is not set, a signal causes TPBROADCAST to fail with the TPGOTSIG
error code. Either TPSIGRSTRT or TPNOSIGRSTRT must be set.

TPNOSIGRSTRT

When a signal interrupts any underlying system calls, then the interrupted
is not restarted and the call fails. Either TPSIGRSTRT or TPNOSIGRSTRT must
be set.
BEA TUXEDO COBOL Guide 12-21

12 Writing Service Routines
TPBROADCAST Example

Listing 12-6 shows an example of a call to TPBROADCAST where all clients are targeted.
The message to be sent is in a STRING record.

Listing 12-6 Using TPBROADCAST

 . . .
**
* Prepare the record to broadcasted
**
 MOVE "HELLO, WORLD" TO DATA-REC.
 MOVE 11 TO LEN.
 MOVE "STRING" TO REC-TYPE.
*
 SET TPNOBLOCK TO TRUE.
 SET TPNOTIME TO TRUE.
 SET TPSIGRSTRT TO TRUE.
*
 MOVE SPACES TO LMID.
 MOVE SPACES TO USRNAME.
 MOVE SPACES TO CLTNAME.
 CALL "TPBROADCAST" USING TPBCTDEF-REC
 TPTYPE-REC
 DATA-REC
 TPSTATUS-REC.
 IF NOT TPOK
 error processing

TPNOTIFY Arguments

TPNOTIFY can be called only from a service. The syntax of the routine is:

01 TPSVCDEF-REC.
 COPY TPSVCDEF.
01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY User Data.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPNOTIFY" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.
12-22 BEA TUXEDO COBOL Guide

The TPRETURN and TPFORWAR Routines
CLIENTID contains a client identifier saved from the TPSVCDEF-REC structure that
accompanied the service request to this service. Thus it can be seen that TPNOTIFY is
used to direct an out-of-band message to the client process that called the service. This
is not the same as the reply to the service request that would be sent by when the service
calls TPRETURN (or when a conversational service calls TPSEND to send a reply to the
client), nor is it any part of a transaction, if one is in progress. It is used in cases where
the service encounters information in processing that needs to be passed to the
unsolicited message handler for the application.

The DATA-REC, LEN IN TPTYPE-REC and settings arguments are the same as they
are for TPBROADCAST.

Advertising, Unadvertising Services

When servers are booted, they advertise the services they offer based on the
specification in their CLOPT parameter in the configuration file. The default
specification calls for the server to advertise all services with which it was built; this
is the meaning of the -A option. (See ubbconfig(5) or servopts(5) in the BEA
TUXEDO Reference Manual). When a service is advertised, it takes up a service table
entry in the bulletin board. This can lead an application to decide to boot servers to
offer some subset of their available services. As the servopts(5) manual page makes
clear, the -s option allows a comma-separated list of services to be specified by service
name. It also allows, with the -s services:func notation, for a routine with a name
different from that of the advertised service to be called to process the service request.
The BEA TUXEDO administrator can use the advertise and unadvertise
commands of tmadmin(1) to control the services offered by servers.

The TPADVERTISE and TPUNADVERTISE routines allow that dynamic control to be
exercised within a service of a request/response server or conversational server to
advertise or unadvertise a service. The limitation is that the service to be advertised (or
unadvertised) must be available within the same server as the service making the
request.
BEA TUXEDO COBOL Guide 12-23

12 Writing Service Routines
TPADVERTISE Arguments

The syntax of TPADVERTISE is:

01 SERVICE-NAME PIC X(15).
01 PROGRAM-NAME PIC X(32).
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPADVERTISE" USING SERVICE-NAME PROGRAM-NAME TPSTATUS-REC.

SERVICE-NAME is a character string of 15 characters or less that names the service to
be advertised. Names longer than 15 characters are truncated; a SPACES value causes
an error, [TPEINVAL].

PROGRAM-NAME is the name of a BEA TUXEDO service routine that is called to
perform the service. Of course, it is not uncommon that this name is the same as the
name of the service. PROGRAM-NAME is not permitted to be SPACES.

TPADVERTISE Example

Listing 12-7 shows an example of TPADVERTISE that is based on the following
hypothetical situation:

t SERVER TLR is specified to offer only the service TLRINIT when booted.

t After some initialization, TLRINIT advertises services DEPOSIT and WITHDRAW
both performed by routine TLRFUNCS, and both built into the TLR server.

t On return from advertising the two services, TLRINIT unadvertises itself.
12-24 BEA TUXEDO COBOL Guide

The TPRETURN and TPFORWAR Routines
Listing 12-7 Dynamic Advertising and Unadvertising

 . . .
**
* Advertise DEPOSIT service to be processed by
* routine TLRFUNCS
**
 MOVE "DEPOSIT" TO SERVICE-NAME.
 MOVE "TLRFUNCS" TO PROGRAM-NAME.
 CALL "TPADVERTISE" USING SERVICE-NAME
 PROGRAM-REC
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
**
* Advertise WITHDRAW service to be processed by
* the same routine TLRFUNCS
**
 MOVE "WITHDRAW" TO SERVICE-NAME.
 MOVE "TLRFUNCS" TO PROGRAM-NAME.
 CALL "TPADVERTISE" USING SERVICE-NAME
 PROGRAM-REC
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
**
* Unadvertise TLRINIT service (yourself)
**
 MOVE "TLRINIT" TO SERVICE-NAME.
 CALL "TPUNADVERTISE" USING SERVICE-NAME
 TPSTATUS-REC.
 IF NOT TPOK
 error processing

TPUNADVERTISE

TPUNADVERTISE, of course, is called to remove a service from the service table of the
bulletin board. The syntax is:

01 SERVICE-NAME PIC X(15).
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPUNADVERTISE" USING SERVICE-NAME TPSTATUS-REC.

The only argument is a name to the SERVICE-NAME being unadvertised. An example
is included above in Listing 12-7.
BEA TUXEDO COBOL Guide 12-25

12 Writing Service Routines
System-supplied Servers and Subroutines

The BEA TUXEDO system is delivered with a basic client authentication service:
AUTHSVR.

System-Supplied Server: AUTHSVR

AUTHSVR(5) can be used to provide individual client authentication for an application.
It is called by TPINITIALIZE when the level of security for the application is TPAUTH,
USER_AUTH, ACL, or MANDATORY_ACL.

The service in AUTHSVR looks in the USER-DATA-REC record for a user password (not
to be confused with the application password in the PASSWD field of the
TPINFDEF-REC record). The string in USER-DATA-REC is checked against the
/etc/passwd file by default. (The application can specify a different file to be
checked.) When used by a native site client, the USER-DATA-REC record is sent along
by TPINITIALIZE as it is received. This means that if the application wants the
password to be encrypted, the client program must be coded accordingly. When used
by a workstation client, TPINITIALIZE encrypts the data before sending it across the
network.

The BEA TUXEDO System Controlling
Program

To speed the development of servers the BEA TUXEDO system provides a predefined
controlling program routine for server load modules. This controlling program is
automatically included when the buildserver -C command is executed.
12-26 BEA TUXEDO COBOL Guide

The BEA TUXEDO System Controlling Program

The predefined controlling routine does the following:

t runs the process immune to hangups (ignores the UNIX System SIGHUP signal)

t arranges for cleanup on receipt of the standard UNIX System software
termination signal (SIGTERM). The server is shut down and must be rebooted if
needed again.

t attaches to shared memory for bulletin board services

t creates a message queue for the process

t advertises the initial services to be offered by the server. The initial services are
either all the services link edited with the predefined controlling program, or a
subset specified by the BEA TUXEDO administrator in the configuration file.

t processes command line arguments up to the double dash (--) that indicates the
end of system-recognized arguments.

t calls the routine TPSVRINIT to process any command line arguments occurring
after the -- and optionally to open the resource manager. Such arguments are for
application-specific initialization.

t until ordered to halt:

t checks its request queue for service request messages

t when a service request message arrives on the request queue:

—if the -r option was specified, records the starting time of the service
request

—updates the bulletin board to indicate that the server is BUSY

—allocates a record for the request message and dispatches the service;
that is, calls the service subroutine

t when the service has returned from processing its input:

—if the -r option was specified, records the ending time of the service
request

—updates statistics

—updates the bulletin board to indicate that the server is IDLE; that is,
ready for work

—checks its queue for the next service request

t when the server is about to halt, calls TPSVRDONE to perform any required user
shutdown operations.
BEA TUXEDO COBOL Guide 12-27

12 Writing Service Routines

r

ties

 can

EA
The controlling program that the system provides is a closed abstraction and can not
be modified by the programmer. As indicated in the previous list items, it takes care of
all the details concerning entrance into and exit from an application, record and
transaction management, and communication. It leaves the programmer free to
implement the application through the logic of the service subroutines. Note that as a
result of the system supplied controlling program doing the work of joining and
leaving the application, it is an error for services to make calls to the TPINITIALIZE
or TPTERM routines. This error returns TPEPROTO in TP-STATUS.

In addition to the above functionality, there are two user exits in the controlling
program that allow the programmer to do various initialization and exiting activities.
The next sections explain how these two system supplied subroutines are used.

BEA TUXEDO System-Supplied Subroutines

There are two subroutines of the controlling program, TPSVRINIT and TPSVRDONE,
that are provided with the BEA TUXEDO system software. The default versions can
be modified to suit your application.

TPSVRINIT

When a server is booted the BEA TUXEDO controlling program calls TPSVRINIT
during its initialization phase before it handles any service requests. If an application
does not provide this routine in a server, the default one is called that opens the
resource manager and makes an entry in the central event log indicating that the server
has successfully started. The central event log is discussed in Chapter 15, “Erro
Management.” For now, simply understand that it is a UNIX System file to which
processes can write messages by calling the USERLOG routine. Coming as it does near
the beginning of the system supplied controlling program, TPSVRINIT can be used for
any initialization purposes that might be needed by an application. Two possibili
are illustrated here: receiving command line options and opening a database.

Note that although not shown in the following examples, message communication
also be performed within this routine. However, TPSVRINIT fails if it returns with
asynchronous replies pending. In addition, the replies are ignored by the BEA
TUXEDO system and the server exits gracefully. TPSVRINIT can also start and
complete transactions, as discussed in Chapter 14, “Global Transactions in the B
TUXEDO System.”
12-28 BEA TUXEDO COBOL Guide

The BEA TUXEDO System Controlling Program
The syntax of this routine is:

LINKAGE SECTION.
01 CMD-LINE.
 05 ARGC PIC 9(4) COMP-5.
 05 ARGV.
 10 ARGS PIC X OCCURS 0 TO 9999 DEPENDING ON ARGC.
01 TPSTATUS-REC.
 COPY TPSTATUS.
PROCEDURE DIVISION USING CMD-LINE TPSTATUS-REC.
* User code
EXIT PROGRAM.

Using TPSVRINIT to Receive Command Line Options

When a server is booted, before calling the TPSVRINIT routine, it reads the options
specified for it in the configuration file. The options are passed through ARGC, which
contains the number of arguments that have been passed, and ARGV, which contains
the arguments separated by a single SPACE character. The predefined controlling
program then calls TPSVRINIT.

Listing 12-8 shows an example of a TPSVRINIT coded to receive command line
options.

Listing 12-8 Receiving Command Line Options in TPSVRINIT

 IDENTIFICATION DIVISION.
 PROGRAM-ID. TPSVRINIT.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. USL-486.
 OBJECT-COMPUTER. USL-486.
*
 DATA DIVISION.
 WORKING-STORAGE SECTION.
*
 LINKAGE SECTION.
*
 01 CMD-LINE.
 05 ARGC PIC 9(4) COMP-5.
 05 ARGV.
 10 ARGS PIC X OCCURS 0 TO 9999 DEPENDING ON ARGC.
 01 SERVER-INIT-STATUS.
 COPY TPSTATUS.
BEA TUXEDO COBOL Guide 12-29

12 Writing Service Routines
*
 PROCEDURE DIVISION USING CMD-LINE SERVER-INIT-STATUS.
**
* ARGC indicates the number of arguments and ARGV contains the
* arguments separated by a single SPACE.
**
 A-START.
*
 . . . INSPECT the ARGV line and process arguments
 IF arguments are invalid
 SET TPEINVAL IN SERVER-INIT-STATUS TO TRUE.
 ELSE arguments are OK continue
 SET TPOK IN SERVER-INIT-STATUS TO TRUE.
*
 EXIT PROGRAM.

Using TPSVRINIT to Open a Resource Manager

Listing 12-9 shows a code fragment that illustrates another common use of
TPSVRINIT: opening a resource manager. The BEA TUXEDO system provides a
routine to generically open a resource manager, TPOPEN. It also provides the
complementary routine, TPCLOSE. The details of these ATMI calls can be found in
Section 3cbl of the BEA TUXEDO Reference Manual. Applications that use these calls
to open and close their resource managers are portable in this respect. They work by
accessing the resource manager instance-specific information that is available in the
configuration file. These calls are optional and can be used in place of the resource
manager specific calls that are sometimes part of the Data Manipulation Language
(DML) if the resource manager is a database. In the example that follows, the code
does not pick up command line options, but there is no reason it could not both pick up
options and open the database. Also, note the use of the USERLOG routine to write to
the central event log.

Listing 12-9 Opening a resource manager in TPSVRINIT

 IDENTIFICATION DIVISION.
 PROGRAM-ID. TPSVRINIT.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. USL-486.
 OBJECT-COMPUTER. USL-486.
*
 DATA DIVISION.
12-30 BEA TUXEDO COBOL Guide

The BEA TUXEDO System Controlling Program
 WORKING-STORAGE SECTION.
 01 TPSTATUS-REC.
 COPY TPSTATUS.
 01 LOGMSG PIC X(50).
 01 LOGMSG-LEN PIC S9(9) COMP-5.
*
 LINKAGE SECTION.
 01 CMD-LINE.
 05 ARGC PIC 9(4) COMP-5.
 05 ARGV.
 10 ARGS PIC X OCCURS 0 TO 9999 DEPENDING ON ARGC.
 01 SERVER-INIT-STATUS.
 COPY TPSTATUS.
*
 PROCEDURE DIVISION USING CMD-LINE SERVER-INIT-STATUS.
 A-START.
 . . . INSPECT the ARGV line and process arguments
 IF arguments are invalid
 MOVE "Invalid Arguments Passed" TO LOGMSG
 PERFORM EXIT-NOW.
 ELSE arguments are OK continue

 CALL "TPOPEN" USING TPSTATUS-REC.
 IF NOT TPOK
 MOVE "TPOPEN Failed" TO LOGMSG
 ELSE IF TPESYSTEM
 MOVE "System /T error has occurred" TO LOGMSG
 ELSE IF TPEOS
 MOVE "An Operating System error has occurred" TO LOGMSG
 ELSE IF TPEPROTO
 MOVE "TPOPEN was called in an improper Context" TO LOGMSG
 ELSE IF TPERMERR
 MOVE "Resource manager Failed to Open" TO LOGMSG
 PERFORM EXIT-NOW.
 SET TPOK IN SERVER-INIT-STATUS TO TRUE.
 EXIT PROGRAM.
 EXIT-NOW.
 SET TPEINVAL IN SERVER-INIT-STATUS TO TRUE
 MOVE 50 LOGMSG-LEN.
 CALL "USERLOG" USING LOGMSG
 LOGMSG-LEN
 TPSTATUS-REC.
 EXIT PROGRAM.

If an error occurs during the initialization activities, TPSVRINIT can be coded to permit
the server to exit gracefully before the server starts processing service requests.
BEA TUXEDO COBOL Guide 12-31

12 Writing Service Routines

obal
TPSVRDONE

Using TPSVRDONE to Close a resource manager

As might be expected, TPSVRDONE can call on the services of TPCLOSE to close the
resource manager in a manner analogous to the way TPSVRINIT and TPOPEN are used
to open it. If the application does not define a closing routine for TPSVRDONE, the BEA
TUXEDO system calls the default version which calls TPCLOSE and USERLOG to close
the resource manager and write to the central event log. The message to the log
indicates that the server is about to exit. TPSVRDONE is called after the server has
finished processing service requests but before it exits. Since the server is still part of
the system, further communication and transactions can take place within the routine.
The rules that must be followed to do this properly are covered in Chapter 14, “Gl
Transactions in the BEA TUXEDO System.” The syntax of this routine is:

 01 TPSTATUS-REC.
 COPY TPSTATUS.
 PROCEDURE DIVISION.
* User code
 EXIT PROGRAM.

The following example shows the typical way in which TPSVRDONE is used.

Listing 12-10 Closing a resource manager in TPSVRDONE

 IDENTIFICATION DIVISION.
 PROGRAM-ID. TPSVRDONE.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. USL-486.
 OBJECT-COMPUTER. USL-486.
*
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 TPSTATUS-REC.
 COPY TPSTATUS.
 01 LOGMSG PIC X(50).
 01 LOGMSG-LEN PIC S9(9) COMP-5.
 01 SERVER-DONE-STATUS.
 COPY TPSTATUS.
 PROCEDURE DIVISION.
 A-START.
 CALL "TPCLOSE" USING TPSTATUS-REC.
 IF NOT TPOK
12-32 BEA TUXEDO COBOL Guide

Compiling Subroutines to Build Servers
 MOVE "TPCLOSE Failed" TO LOGMSG
 ELSE IF TPESYSTEM
 MOVE "System /T error has occurred" TO LOGMSG
 ELSE IF TPEOS
 MOVE "An Operating System error has occurred" TO LOGMSG
 ELSE IF TPEPROTO
 MOVE "TPCLOSE was called in an improper Context" TO LOGMSG
 ELSE IF TPERMERR
 MOVE "Resource manager Failed to Open" TO LOGMSG
 PERFORM EXIT-NOW.
 SET TPOK IN SERVER-DONE-STATUS TO TRUE.
 EXIT PROGRAM.
 EXIT-NOW.
 SET TPEINVAL IN SERVER-DONE-STATUS TO TRUE
 MOVE 50 LOGMSG-LEN.
 CALL "USERLOG" USING LOGMSG
 LOGMSG-LEN
 TPSTATUS-REC.
 EXIT PROGRAM.

Compiling Subroutines to Build Servers

To compile your service subroutines you have the same freedom you had in compiling
clients. You can use regular COBOL Compilation System utilities to make object files.
The object files can be kept as individual files or collected into an archive file. If you
prefer, you can retain them as source (.cbl) files. In any event, when you invoke
buildserver -C to produce an executable server, you specify them on the command
line with the -f option. This applies to new versions of TPSVRINIT and TPSVRDONE as
well as your application subroutines.
BEA TUXEDO COBOL Guide 12-33

12 Writing Service Routines

iles

t

s for

is

he
d

ions.
s are
 to

The buildserver Command

buildserver is used to put together an executable server with the BEA TUXEDO
systems’s controlling program. Options identify the name of the output file, input f
provided by the application, and various libraries that permit you to run a BEA
TUXEDO application in a variety of ways. When compiling a COBOL server, the -C
option must be used to indicate that the language is COBOL. This ensures that the correc
language libraries are included in linking the program.

buildserver invokes the cobcc command. The environment variables ALTCC and
ALTCFLAGS can be set to name an alternative compile command and to set setting
the compile and link edit phases. The key buildserver command line options are
described in the paragraphs that follow.

The buildserver -o Option

The -o option is used to assign a name to the executable output file. If no name
provided, the file is named SERVER.

The buildserver -f and -l Options

The -f and -l options are used to specify files to be used in the link edit phase. T
files specified in the -f option are brought in before the BEA TUXEDO system an
resource manager libraries (first), whereas the files specified in the -l option are
brought in after these libraries (last). There is a significance to the order of the opt
The order is dependent on routine references and in what libraries the reference
resolved. Source modules should be listed ahead of libraries that might be used
resolve their references. Any .cbl files are first compiled. Object files can be either
separate .o files or groups of files in archive (.a) files. If more than a single file name
is given as an argument to a -f or -l option, the syntax calls for a list enclosed in
double quotes. You can use as many -f and -l options as you need.
12-34 BEA TUXEDO COBOL Guide

Compiling Subroutines to Build Servers
The buildserver -r Option

The -r option is used to specify which resource manager access libraries should be link
edited with the executable server. The choice is specified with a string from the
$TUXDIR/udataobj/RM file. Only one string can be specified. The database routines
in your service are the same regardless of which library is used.

All valid strings that name resource managers are contained in the
$TUXDIR/udataobj/RM file. When integrating a new resource manager into the BEA
TUXEDO system, this file must be updated to include the information about the
resource manager. Refer to the buildtms(1) reference page and Administering the
BEA TUXEDO System for more information.

The buildserver -s Option

The -s option is used to specify the service names included in the server and the name
of the routines that perform each service. Normally, the routine name is the same as
the name of the service. In the sample program our convention is to specify all
uppercase for the service name. For example, the BUYSR service would be processed
by routine BUYSR(). The following represents the command line to create the BUYSELL
server.

buildserver -C -o BUYSELL \
 -s SELLSR -f SELLSR.cbl \
 -s BUYSR -f BUYSR.cbl

However, it is possible for the administrator to specify that only a subset of the services
that were used to create the server with the buildserver command are to be
advertised when the server is booted. Refer to Administering the BEA TUXEDO
System.
BEA TUXEDO COBOL Guide 12-35

CHAPTER

rvice
13 Conversational Clients
and Services

Introduction

This chapter covers the subject of conversational clients and services.

A conversational client differs in the following ways from a request/response client
(described in Chapter 11, “Writing Client Programs,”):

t It initiates a request for service by using TPCONNECT rather than TPCALL or
TPACALL.

t It passes the service request to a conversational server.

A conversational service differs in the following ways from a request/response se
(described in Chapter 12, “Writing Service Routines,”):

t It is part of a server identified in the configuration file as offering only
conversational services.

t It is prohibited from invoking TPFORWAR.

Both conversational clients and servers have the following characteristics:

t The logical connection between them remains active until terminated; any
number of messages can be transmitted across the connection.

t They use TPSEND and TPRECV calls to send and receive data in conversations.
BEA TUXEDO COBOL Guide 13-1

13 Conversational Clients and Services
Conversational Mode

In the conversational mode of communication, a half-duplex connection is established
between the client (or initiator) and a server. Control of the connection can be passed
back and forth between the initiator and the subordinate server. At any point in the
conversation, the process that has control can send messages; the process that does not
have control can only receive. The connection remains up until an event occurs that
tears it down. One event, TPEV-SENDONLY, a setting of TPEVENT IN TPSTATUS-REC,
notifies the receiving program that control of the connection has been passed to it and
it can successfully call TPSEND. Other events are notifications that something
significant has occurred; they have the result of either bringing the conversation to a
normal conclusion or precipitating a disorderly disconnection.

The Communications Handle

A communications handle, COMM-HANDLE IN TPSVCDEF-REC, is returned when a
connection is established with TPCONNECT or TPSVCSTART. COMM-HANDLE is used to
identify subsequent message transmissions with a particular conversation. A client or
conversational service can have more than one conversation active simultaneously.
The maximum number is ten. A client process can have up to ten connections open, all
outgoing. A service process can have one incoming connection and up to nine outgoing
connections.

Record Management

Data is passed in typed records just as in request/response mode. The record types must
be recognized by the application; they must be defined with ATMI routines as
described in Chapter 11, “Writing Client Programs.”
13-2 BEA TUXEDO COBOL Guide

Conversational Mode

he

ber

he

ld
use it
Joining an Application

Conversational clients must join the application via a call to TPINITIALIZE before
attempting to establish a connection to a service. The procedure for joining the
application is described in Chapter 11, “Writing Client Programs.”

Establishing a Connection

TPCONNECT is the ATMI routine used to set up a conversation. The syntax is

01 TPSVCDEF-REC.
 COPY TPSVCDEF.

01 TPTYPE-REC.
 COPY TPTYPE.

01 DATA-REC.
 COPY User Data.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPCONNECT" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

SERVICE-NAME IN TPSVCDEF-REC must contain the name of a service posted in t
bulletin board by a conversational server. If SERVICE-NAME is not a reference to a
conversational service, the call fails and TP-STATUS IN TPSTATUS-REC is set to the
error code TPENOENT. If the calling program has already reached the maximum num
of active connections allowed, the call will fail with the error code TPELIMIT.

Data can be sent at the same time the connection is being established through t
DATA-REC with the length of the data specified by LEN IN TPTYPE-REC. The
REC-TYPE and SUB-TYPE of the data contained in DATA-REC must be a type
recognized by the service being called. If no data is being sent, REC-TYPE is SPACES,
and DATA-REC and LEN are ignored. If the record is self-defining (for example, a
VIEW record), LEN is ignored and can be set to 0. The conversational service being
called receives the DATA-REC and LEN when the service is invoked. So far this shou
sound a lot like what happens when a request/response service is invoked, beca
is. Differences begin to appear when we consider values for the settings.
BEA TUXEDO COBOL Guide 13-3

13 Conversational Clients and Services

1.

ice

t

alled

t

call
Values for the Settings: TPCONNECT

As with other ATMI routines, the behavior of the called program can be controlled by
settings of TPCONNECT. Eight of the settings are identical to their use in TPCALL and
are described in the section titled “Values for the Settings: TPCALL” in Chapter 1
They are:

TPNOTRAN TPNOBLOCK TPNOTIME TPSIGRSTRT
TPTRAN TPBLOCK TPTIME TPNOSIGRSTRT

New valid settings are:

TPSENDONLY
The calling program retains control of the connection and the called serv
is permitted only to receive. The called service learns of this through the
TPSENDONLY setting of TPSENDRECV-FLAG IN TPSVCDEF-REC;
TPSENDONLY and TPRECVONLY are mutually exclusive; one or the other mus
be specified.

TPRECVONLY
Control of the connection is being passed to the called service and the c
service can only send. The called service learns of this through the
TPRECVONLY setting of TPSENDRECV-FLAG IN TPSVCDEF-REC;
TPSENDONLY and TPRECVONLY are mutually exclusive; one or the other mus
be specified.

As mentioned above, on successful completion TPCONNECT returns a COMM-HANDLE
IN TPSVCDEF-REC that is used in all subsequent calls of the conversation. Your
to TPCONNECT should be coded something like that shown in Listing 13-1.

Listing 13-1 Establishing a Conversational Connection

 . . .
* Prepare the record to send
 MOVE "HELLO" TO DATA-REC.
 MOVE 5 TO LEN.
 MOVE "STRING" TO REC-TYPE.
*
 SET TPBLOCK TO TRUE.
 SET TPNOTRAN TO TRUE.
 SET TPNOTIME TO TRUE.
 SET TPSIGRSTRT TO TRUE.
 SET TPSENDONLY TO TRUE.
13-4 BEA TUXEDO COBOL Guide

Conversational Mode
*
 CALL "TPCONNECT" USING TPSVCDEF-REC
 TPTYPE-REC
 DATA-REC
 TPSTATUS-REC.
 IF NOT TPOK
 error processing ...
 ELSE
 COMM-HANDLE is valid.

Sending

After the conversational connection is set up, communication between the client (or
initiator) and the service is accomplished with send/receive calls. The connection is
half-duplex. That means communication can be in only one direction at a time. The
process that has control of the connection can send; the process that does not have
control can receive. Initially, control is decided by the originator and is specified by
the TPRECVONLY setting value of the TPCONNECT call; TPRECVONLY means control is
given to the called service. After TPCONNECT returns successfully, data is sent across
the open connection with the TPSEND routine.

The syntax of TPSEND is:

01 TPSVCDEF-REC.
 COPY TPSVCDEF.

01 TPTYPE-REC.
 COPY TPTYPE.

01 DATA-REC.
 COPY User Data.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPSEND" USING TPSVCDEF-REC TPTYPE-REC USER-DATA-REC TPSTATUS-REC.

COMM-HANDLE IN TPSVCDEF-REC is the communications handle returned by
TPCONNECT or TPSVCSTART that identifies the connection over which to send the data.
DATA-REC and LEN IN TPTYPE-REC are, respectively, a structure that contains the
data and the length of the data to be sent. The same rules apply to DATA-REC and LEN
that have been outlined earlier: the record must be of a type recognized by the program
that receives it and length can be 0 if the record is self-defining. There is no
requirement that data be sent.
BEA TUXEDO COBOL Guide 13-5

13 Conversational Clients and Services

he
 a

n.

 as

ontrol
Values for the Settings: TPSEND

There are eight valid settings for TPSEND. The following six settings have the same
meanings described in “Values for the Settings: TPCALL” in Chapter 11.

TPNOBLOCK TPNOTIME TPSIGRSTRT
TPBLOCK TPTIME TPNOSIGRSTRT

The other settings are like ones that are used in TPCONNECT, but have added
significance in this routine.

TPRECVONLY
Signals the intent of the calling program to issue no more TPSEND calls at the
moment and to pass control of the connection over to the other side of t
connection. When the called program receives the data, it also receives
TPEV-SENDONLY event. Either TPRECVONLY or TPSENDONLY must be set.

TPSENDONLY
Signals the intent of the calling program to retain control of the connectio
Either TPRECVONLY or TPSENDONLY must be set.

It is not a requirement that control be passed each time the TPSEND call is made. The
process authorized to make TPSEND calls on the connection can make as many calls
necessary before turning over control of the connection. In fact, the logic of the
conversational program may be such that one side of the conversation retains c
of the connection throughout the life of the conversation.

Listing 13-2 shows TPSEND used in a code fragment.

Listing 13-2 Sending Data in Conversational Mode

 . . .
 SET TPNOBLOCK TO TRUE.
 SET TPNOTIME TO TRUE.
 SET TPSIGRSTRT TO TRUE.
 SET TPRECVONLY TO TRUE.
*
 CALL "TPSEND" USING TPSVCDEF-REC
 TPTYPE-REC
 DATA-REC
 TPSTATUS-REC.
 IF NOT TPOK
 error processing . . .
13-6 BEA TUXEDO COBOL Guide

Conversational Mode

e
Receiving

The routine used to receive data sent over an open connection is TPRECV. The syntax is:

01 TPSVCDEF-REC.
 COPY TPSVCDEF.

01 TPTYPE-REC.
 COPY TPTYPE.

01 DATA-REC.
 COPY User Data.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPRECV" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

If the routine is being issued from a subordinate program (that is, not the originator of
the connection), COMM-HANDLE, the communications handle, is in the
TPSVCDEF-REC structure for the program. If TPRECV is being issued by the
originator, COMM-HANDLE is the handle returned by TPCONNECT. When the call is made,
DATA-REC specifies where the data is to be placed, LEN IN TPTYPE-REC contains
the maximum number of bytes and REC-TYPE IN TPTYPE-REC and SUB-TYPE IN
TPTYPE-REC have the data’s type and sub-type. LEN is not allowed to be 0 on input.
If it is, the call fails and TP-STATUS is set to TPEINVAL.

Upon successful return, DATA-REC contains the data received and LEN contains the
actual number of bytes moved. If the length of the message is greater than DATA-REC,
DATA-REC will receive as much of the message as possible and set TPTRUNCATE. If
LEN is 0, no data was received and DATA-REC remains unchanged.

If an event exists for COMM-HANDLE, TPRECV returns TP-STATUS set to TPEEVENT. The
event type is returned in TPEVENT. With events TPESVCSUCC, TPESVCFAIL, and
TPESENDONLY data can be received. A more complete discussion of events can b
found in “Events and Their Significance” later in this chapter.
BEA TUXEDO COBOL Guide 13-7

13 Conversational Clients and Services

le,
ils
Values for the Settings: TPRECV

TPRECV has eight valid settings. Six are described in Chapter 11 (in the section called
“Values for the Settings: TPCALL”). They are:

TPNOCHANGE TPNOTIME TPSIGRSTRT
TPCHANGE TPTIME TPNOSIGRSTRT

The last two valid settings are:

TPNOBLOCK

The calling program waits for data to arrive to receive it. If data is availab
fine; TPRECV gets the data and returns. If data is not available, the call fa
and TP-STATUS is set to TPEBLOCK. TPNOBLOCK or TPBLOCK must be set.

TPBLOCK

The calling program blocks until data is available to receive. TPNOBLOCK or
TPBLOCK must be set.

Listing 13-3 shows a fragment of code using TPRECV.

Listing 13-3 Receiving Data in Conversation

 . . .
 SET TPNOCHANGE TO TRUE.
 SET TPBLOCK TO TRUE.
 SET TPNOTIME TO TRUE.
 SET TPSIGRSTRT TO TRUE.
*
 MOVE LENGTH OF DATA-REC TO LEN.
*
 CALL "TPRECV" USING TPSVCDEF-REC
 TPTYPE-REC
 DATA-REC
 TPSTATUS-REC.
 IF NOT TPOK
 error processing . . .
13-8 BEA TUXEDO COBOL Guide

Conversational Mode

lly

y

ved on
Ending a Conversation

There are three ways in which the connection can be taken down in an orderly fashion
and the conversation ended normally. Figure 13-1 and Figure 13-2 show two scenarios
that illustrate how conversations are ended when global transactions are not involved.
(For a description of ending a conversation when a transaction is involved, see
Chapter 14, “Global Transactions in the BEA TUXEDO System.”)

Subordinate Calls TPRETURN

Figure 13-1 shows a simple “A-to-B” conversation. The connection is set up initia
with a call to TPCONNECT with the TPSENDONLY setting of the TPSENDRECV-FLAG IN
TPSVCDEF-REC set. In due course, A turns control of the connection over to B b
calling TPSEND with a valid setting of TPRECVONLY. This generates a TPEV-SENDONLY
event. The next call by B to TPRECV returns TP-STATUS IN TPSTATUS-REC set to
TPEEVENT and TPEVENT set to TPEV-SENDONLY. B knows from the TPEV-SENDONLY
event that it now controls the connection. Subsequently, B calls TPRETURN with
TP-RETURN-VAL IN TPSVCRET-REC set to TPSUCCESS. This generates a
TPEV-SVCSUCC event setting for TPEVENT IN TPSTATUS-REC for A. The call to
TPRETURN also brings down the connection. When A calls TPRECV and learns of the
event, it recognizes that the conversation has been terminated. Data can be recei
this call to TPRECV even if the event is TPEV-SVCFAIL. In this illustration, A can be
either a client or a server; B can be only a server.
BEA TUXEDO COBOL Guide 13-9

13 Conversational Clients and Services
Figure 13-1 Simple SENDONLY Connection and Return

Hierarchy of Connections and TPRETURN

Figure 13-2 shows a hierarchy of connections. The scenario applies to a service in a
conversation, B, that has initiated a connection to a second service, C. In other words,
there are two active connections, A to B, and B to C. If B is in control of both
connections, a call to TPRETURN has the following effect: the call will fail, a
TPEV-SVCERR event setting for TPEVENT IN TPSTATUS-REC will be posted on all
open connections and the connections will be closed in a disorderly manner. The
proper sequence is for B to call TPSEND with the TPRECVONLY setting on the connection
to C, turning control of the B-C connection over to C. C can then call TPRETURN with
TP-RETURN-VAL IN TPSVCRET-REC set to TPSUCCESS, TPFAIL, or TPEXIT, as
appropriate. B can then call TPRETURN, setting an event (either TPEV-SVCSUCC or
TPEV-SVCFAIL) for A. Both connections are terminated normally.
13-10 BEA TUXEDO COBOL Guide

Conversational Mode
Figure 13-2 Connection Hierarchy

Ending a Conversation: Summary

It is an error to end a conversation with connections still open. Either TPCOMMIT or
TPRETURN will fail in a disorderly manner.

To summarize the ways in which a conversation can be ended in an orderly manner:

t If the connection originated in a server, the originator turns over control of the
connection to the called process. That process can then call TPRETURN. This is
illustrated in Figure 13-1, above.

t A subordinate process can call TPRETURN. The subordinate must have control of
the connection and must make the call to TPRETURN before the originator does.
This is illustrated in Figure 13-2, above.
BEA TUXEDO COBOL Guide 13-11

13 Conversational Clients and Services
Events and Their Significance

There are five events recognized in conversational communication. All five can be
posted for TPRECV; three can be posted for TPSEND.Table 13-1 summarizes these
events.

Table 13-1 Conversational Communication Events

Event Received by Meaning

TPEV-SENDONLY TPRECV Control of the connection has been passed; this process
can now call TPSEND

TPEV-DISCONIMM TPSEND

TPRECV

TPRETURN

A disorderly disconnect; the connection has been torn
down; no further communication is possible; posted by
TPDISCON in the originator of the connection, and posted
to all open connections when TPRETURN is called while
connections to subordinate services remain open. All
connections are closed in a disorderly fashion. If a
transaction exists, it is aborted.

TPEV-SVCERR TPSEND Received by the originator of the connection, usually
indicates the subordinate program has issued a TPRETURN
without having control of the connection

TPRECV Received by the originator of the connection, indicates the
subordinate program has issued a TPRETURN with
TPSUCCESS or TPFAIL and a valid data record, but an
error occurred that prevented the call from completing

TPEV-SVCFAIL TPSEND Received by the originator of the connection, indicates the
subordinate program has issued a TPRETURN without
having control of the connection and TPRETURN was
called with TPFAIL or TPEXIT and no data

TPRECV Received by the originator of the connection, indicates the
subordinate service finished unsuccessfully (TPRETURN
was called with TPFAIL or TPEXIT)

TPEV-SVCSUCC TPRECV Received by the originator of the connection, indicates the
subordinate service finished successfully, that is, called
TPRETURN with TPSUCCESS
13-12 BEA TUXEDO COBOL Guide

Conversational Mode
Disorderly Disconnection

The name of the TPDISCON routine suggests that this routine is the opposite of
TPCONNECT, but this is not the case; TPDISCON is really the equivalent of pulling the
plug on the connection. It can be called only by the initiator of a conversation.

The syntax is simple:

01 TPSVCDEF-REC.
 COPY TPSVCDEF.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPDISCON" USING TPSVCDEF-REC TPSTATUS-REC.

COMM-HANDLE IN TPSVCDEF-REC is the communications handle returned by
TPCONNECT.

TPDISCON generates a TPEV-DISCONIMM event setting of TPEVENT IN
TPSTATUS-REC for the service at the other end of the connection and the
COMM-HANDLE is no longer valid. If a transaction is in progress, it is aborted. Data may
be lost. If TPDISCON is called from a service that was not the originator of the
connection identified by COMM-HANDLE, it fails with TP-STATUS set to [TPEBADDESC].

The preferred way of bringing down a connection is for the subordinate to call
TPRETURN.

Request/Response Calls and Conversations

There is nothing that prevents a conversational service from making request/response
calls if it needs to communicate with another service. In the example of connection
hierarchies shown earlier in Figure 13-2, the calls from B to C could have been made
with TPCALL or TPACALL instead of TPCONNECT. Remember, however, that
conversational services are not permitted to make calls to TPFORWAR.
BEA TUXEDO COBOL Guide 13-13

13 Conversational Clients and Services

m

t

 the

ional

copy.

re

Configuration Parameters

Some parameters in the configuration file apply only to conversational processing. As
noted in the “Configuration File” section of Chapter 10, “The BEA TUXEDO Syste
Development Environment,” the BEA TUXEDO system administrator normally is
responsible for setting up the production version of the configuration file for the
application, but you may need to set some parameters in your own developmen
configuration.

You need to know about the following parameters:

MAXCONV
sets the maximum number of simultaneous conversations for a single
machine. The range is from 0 to 32,767. The default is 10 when
conversational servers are specified. The parameter can be specified in
RESOURCES section for all machines in the configuration and can be
overridden in the MACHINES section for each machine. For an application
under development, the default value is probably adequate.

CONV = { Y | N }
is a parameter in the SERVERS section. Connections can be made only to
servers that have this value set to Y. If it is set to N or left unspecified, a
TPCONNECT call to a service of the server will fail.

MIN & MAX
are parameters in the SERVERS section that specify the minimum and
maximum number of occurrences of the server to be started by tmboot(1). If
not specified, MIN defaults to 1 and MAX defaults to MIN. The same parameters
are available for use with request/response servers. However, conversat
servers are automatically spawned as needed. So if you set MIN = 1 and MAX
= 10, for example, tmboot starts one initially. When a TPCONNECT call is
made to a service offered by that server, the system starts up a second
As each copy is called a new one is spawned, up to a limit of ten.

MAXSERVERS
specifies the high-water mark for all servers of the configuration. This figu
needs to take into account the MAX values for all conversational servers. You
probably won’t need to worry about this for an application under
development, but it could be something that needs attention when the
application reaches the production stage. The parameter is in the RESOURCES
section.
13-14 BEA TUXEDO COBOL Guide

Building Conversational Clients and Servers
Building Conversational Clients and Servers

The utilities described in Chapters 11 and 12, buildclient and buildserver, are
used for building conversational clients and servers.

Conversational servers must be built only with conversational services; that is, mixing
of conversational services and request/response services in the same server is not
allowed. Conversational services and request/response services cannot use the same
name.
BEA TUXEDO COBOL Guide 13-15

13 Conversational Clients and Services
13-16 BEA TUXEDO COBOL Guide

CHAPTER
14 Global Transactions in
the BEA TUXEDO
System

Introduction

The purpose of this chapter is to explain the concept of global transactions and how to
define and manage them in your application using the ATMI calls for transaction
management.

A global transaction is a transaction that allows work involving more than one resource
manager and spanning more than one physical site to be treated as one logical unit. The
TPBEGIN routine allows you to explicitly start a transaction. The process that calls
TPBEGIN is the initiator of the transaction and must complete it by calling TPCOMMIT
or TPABORT. Once a process is in transaction mode, any service requests made to
servers may be processed on behalf of the current transaction. The services that are
called and join the transaction are the participants. They may affect the outcome of the
transaction by the value they return when they invoke the TPRETURN routine. A process
can determine if it is currently working on behalf of a transaction by calling the
TPGETLEV routine. The rest of this chapter will explain these routines in detail.
BEA TUXEDO COBOL Guide 14-1

14 Global Transactions in the BEA TUXEDO System
What Is a Global Transaction?

Before we get into how you can write applications that define and manage global
transactions, this section gives you some idea as to what is meant by a transaction that
is under the control of a transaction monitor.

The BEA TUXEDO system manages global transactions. As already indicated, a
global transaction is one that can execute in more than one server, accessing data from
more than one resource manager. A global transaction may be composed of several
local transactions, each accessing a single resource manager. A local transaction
accesses a single database or file and is controlled by the resource manager responsible
for performing concurrency control and atomicity of updates at that distinct database.
A given local transaction may be either successful or unsuccessful in completing its
access.

A global transaction is always treated as a specific sequence of operations that is
characterized by the four properties of atomicity, consistency, isolation, and durability.
That is, it is a logical unit of work in which:

t all portions either succeed or have no effect

t operations are performed that correctly transform the resources from one
consistent state to another

t intermediate results are not accessible to other transactions, although other
processes in the same transaction may access the data

t all effects of a completed sequence cannot be altered by any kind of failure

The BEA TUXEDO system is responsible for managing the status of the global
transaction and making the decision as to whether or not a global transaction should be
committed or rolled back. Global transactions are explicitly defined and controlled by
the ATMI routine calls that are described in Section 3cbl of the BEA TUXEDO
Reference Manual.
14-2 BEA TUXEDO COBOL Guide

ATMI Transaction Primitives
ATMI Transaction Primitives

More specifically, the ATMI routines enable the application programmer to begin and
terminate transactions and to test if a client or service routine is currently in a
transaction. The ATMI calls, TPBEGIN, TPCOMMIT, and TPABORT are used to explicitly
begin and end a transaction. The initiator of a transaction uses TPBEGIN to mark its
beginning. After specifying the operations (service requests) to be applied to the
resource as part of this transaction, the initiator can then call either TPCOMMIT or
TPABORT to mark its completion. The calls to initiate and terminate a transaction
delineate the operations within the transaction. If the transaction is completed with a
call to TPCOMMIT, the changes made as a result of the transaction are applied to the
resource and become permanent. TPABORT causes the resource to be in the consistent
state at the start of the transaction. That is, any changes made to the resource are rolled
back. Any of the participants of a transaction can cause the global transaction to fail by
communicating their local failure to the initiator through the TPRETURN routine. A
two-phase commit protocol is used by the BEA TUXEDO system to coordinate the
commitment, rollback, and recovery of global transactions. This protocol will be
further discussed later in the chapter.

When the TPGETLEV routine is invoked, it returns a setting in TPTRXLEV-REC that
indicates if the caller is within a transaction (TP-IN-TRAN) or not
(TP-NOT-IN-TRAN).

Explicitly Defining a Global Transaction

Global transactions can be defined in either client or server processes. To explicitly
define a global transaction, call the TPBEGIN routine. Follow it by the program
statements that are to be in transaction mode. Terminate the statements by a call to
TPCOMMIT or TPABORT.

The three routines have the following syntax:

*
 01 TPTRXDEF-REC.
 COPY TPTRXDEF.
*
 01 TPSTATUS-REC.
 COPY TPSTATUS.
BEA TUXEDO COBOL Guide 14-3

14 Global Transactions in the BEA TUXEDO System
*
 CALL "TPBEGIN" USING TPTRXDEF-REC TPSTATUS-REC.
*
 CALL "TPCOMMIT" USING TPTRXDEF-REC TPSTATUS-REC.
*
 CALL "TPABORT" USING TPTRXDEF-REC TPSTATUS-REC.

A high-level view of defining a transaction is shown in Listing 14-1.

Listing 14-1 Delineating a Transaction

. . .
MOVE 0 TO T-OUT.
CALL "TPBEGIN" USING
TPTRXDEF-REC
TPSTATUS-REC.
IF NOT TPOK
 error processing
. . .
 program statements
. . .
CALL "TPCOMMIT" USING
 TPTRXDEF-REC
 TPSTATUS-REC.
IF NOT TPOK
 error processing

The process that makes the call to TPBEGIN, the initiator, must also be the one that
terminates it by invoking either TPCOMMIT or TPABORT. There is no limit to the number
of sequential transactions that a process may define using these routines. Any process
may call TPBEGIN except if

t it is already in transaction mode or

t it is waiting for any outstanding replies.

With reference to the second point, it is an error to make the sequence of calls shown
in Listing 14-2.
14-4 BEA TUXEDO COBOL Guide

ATMI Transaction Primitives
Listing 14-2 Error - Starting a Transaction with an Outstanding Reply

 . . .
 MOVE "BUY" TO SERVICE-NAME.
 SET TPBLOCK TO TRUE.
 SET TPNOTRAN TO TRUE.
 SET TPREPLY TO TRUE.
 SET TPNOTIME TO TRUE.
 SET TPSIGRSTRT TO TRUE.
 CALL "TPACALL" USING
 TPSVCDEF-REC
 TPTYPE-REC
 BUY-REC
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
 . . .
 MOVE 0 TO T-OUT.
 CALL "TPBEGIN" USING
 TPTRXDEF-REC
 TPSTATUS-REC.
 IF NOT TPOK
 error processing
* ERROR TP-STATUS is set to TPEPROTO
 . . .
 program statements
 . . .
 SET TPBLOCK TO TRUE.
 SET TPNOTRAN TO TRUE.
 SET TPCHANGE TO TRUE.
 SET TPNOTIME TO TRUE.
 SET TPSIGRSTRT TO TRUE.
 SET TPGETANY TO TRUE.
 CALL "TPGETRPLY" USING
 TPSVCDEF-REC
 TPTYPE-REC
 WK-AREA
 TPSTATUS-REC.
 IF NOT TPOK
 error processing

If TPBEGIN is called with either of these two conditions existing, the call will fail
because of an error in protocol and TP-STATUS will be set to TPEPROTO. If the process
is in transaction mode, the transaction is unaffected by the failure.
BEA TUXEDO COBOL Guide 14-5

14 Global Transactions in the BEA TUXEDO System

al

f
onds

re

ior to
mall
e-out
ystem

ed

.
 and
iodic
. The
If the
Any service subroutines that are called within the transaction delimiters of TPBEGIN
and TPCOMMIT/TPABORT become part of the current transaction. However, if TPCALL
or TPACALL have explicitly set TPNOTRAN, the operations performed by the called
service do not become part of that transaction. This in effect means that the calling
process is not inviting the called service to be a participant in the current transaction.
As a result, any services performed by the called process will not be affected by the
outcome of the current transaction. It should be noted here that a call made with
TPNOTRAN set that is directed to a service in an XA-compliant server group may
produce unexpected results. See the discussion under “Implicitly Defining a Glob
Transaction” later in this chapter.

Starting the Transaction

The transaction is started by a call to TPBEGIN. The value of T-OUT indicates the least
amount of time in seconds that a transaction should be given before timing out. I0 is
specified for this parameter, the transaction is given the maximum number of sec
allowed by the system before timing out (that is, the time-out value will equal the
maximum value for an unsigned long as defined by the system).

Note: The use of 0 or unrealistically large values for the T-OUT parameter delays
system detection and reporting of errors. A time-out value is used to ensu
response to service requests within a reasonable time, and to terminate
transactions that have encountered problems such as network failures pr
commit. For a transaction in which a human is waiting for a response, a s
value, often less than 30 seconds, is best. In a production system, the tim
value should be large enough to accommodate expected delays due to s
load, and database contention; a small multiple of the expected average
response time is often an appropriate choice.

If a transaction times out, it is aborted. You can determine if a transaction has tim
out by testing the value of TP-STATUS as illustrated in Listing 14-3. Note that if the
transaction timed out and it goes untested, a call to TPCOMMIT will still cause the
transaction to be aborted. In this case, TPCOMMIT fails and returns TPEABORT in
TP-STATUS and the transaction is implicitly aborted.

The value assigned to the T-OUT parameter should be consistent with the SCANUNIT
parameter set by the BEA TUXEDO system administrator in the configuration file
The system parameter specifies the frequency with which timed-out transactions
blocked calls are looked for. Its value represents an interval of time between per
scans to find old transactions and timed out blocking calls within service requests
T-OUT parameter should be set to a value that is greater than the scanning unit.
14-6 BEA TUXEDO COBOL Guide

ATMI Transaction Primitives
time-out value were smaller, there would be some discrepancy between the time the
transaction timed out and its discovery. The default value for SCANUNIT is 10 seconds.
The value you give to T-OUT may need to be coordinated with your system
administrator to be sure it makes sense with regard to the system parameters.

Listing 14-3 illustrates the starting of a transaction with the time-out value set to 30
seconds followed by a check to see if a timeout occurred.

Listing 14-3 Testing for Transaction Time Out

. . .
MOVE 30 TO T-OUT.
CALL "TPBEGIN" USING TPTRXDEF-REC TPSTATUS-REC.
IF NOT TPOK
 MOVE "Failed to BEGIN a transaction" TO LOG-REC-TEXT.
 MOVE 29 to LOG-REC-LEN
 CALL "USERLOG" USING
 LOG-REC-TEXT
 LOG-REC-LEN
 TPSTATUS-REC
 CALL "TPTERM" USING
 TPSTATUS-REC
 PERFORM A-999-EXIT.
. . .
 communication CALL statements
. . .
IF TPETIME
 CALL "TPABORT" USING
 TPTRXDEF-REC
 TPSTATUS-REC
IF NOT TPOK
 error processing
ELSE
 CALL "TPCOMMIT" USING
 TPTRXDEF-REC
 TPSTATUS-REC
 IF NOT TPOK
 error processing

Note that a transaction is still subject to timing out even when a process calls on
another with the TPNOTRAN communication flag set. This will be further discussed in
Chapter 15, “Error Management.”
BEA TUXEDO COBOL Guide 14-7

14 Global Transactions in the BEA TUXEDO System
The example in Listing 14-4 illustrates how to define a transaction.

Listing 14-4 Defining a Transaction

 DATA DIVISION.
 WORKING-STORAGE SECTION.
*
 01 TPTYPE-REC.
 COPY TPTYPE.
*
 01 TPSTATUS-REC.
 COPY TPSTATUS.
*
 01 TPINFDEF-REC.
 COPY TPINFDEF.
*
 01 TPSVCDEF-REC.
 COPY TPSVCDEF.
*
 01 TPTRXDEF-REC.
 COPY TPTRXDEF.
*
 01 LOG-REC PIC X(30) VALUE " ".
 01 LOG-REC-LEN PIC S9(9) COMP-5.
*
 01 USR-DATA-REC PIC X(16).
*
 01 AUDV-REC.
 05 AUDV-BRANCH-ID PIC S9(9) COMP-5.
 05 AUDV-BALANCE PIC S9(9) COMP-5.
 05 AUDV-ERRMSG PIC X(60).
*
 PROCEDURE DIVISION.
*
 A-000.
 . . .
* Get Command Line Options set Variables (Q-BRANCH)
 MOVE SPACES TO USRNAME.
 MOVE SPACES TO CLTNAME.
 MOVE SPACES TO PASSWD.
 MOVE SPACES TO GRPNAME.
 CALL "TPINITIALIZE" USING TPINFDEF-REC
 USR-DATA-REC
 TPSTATUS-REC.
 IF NOT TPOK
 MOVE "Failed to join application" TO LOG-REC
 MOVE 26 TO LOG-REC-LEN
 CALL "USERLOG" USING LOG-REC
 LOG-REC-LEN
14-8 BEA TUXEDO COBOL Guide

ATMI Transaction Primitives
 TPSTATUS-REC
 PERFORM A-999-EXIT.
* Start global transaction
 MOVE 30 TO T-OUT.
 CALL "TPBEGIN" USING TPTRXDEF-REC TPSTATUS-REC.
 IF NOT TPOK
 MOVE 29 to LOG-REC-LEN
 MOVE "Failed to begin a transaction" TO LOG-REC
 CALL "USERLOG" USING LOG-REC
 LOG-REC-LEN
 TPSTATUS-REC
 PERFORM DO-TPTERM.
* Set up record
 MOVE Q-BRANCH TO AUDV-BRANCH-ID.
 MOVE ZEROS TO AUDV-BALANCE.
 MOVE SPACES TO AUDV-ERRMSG.
* Set up TPCALL records
 MOVE "GETBALANCE" TO SERVICE-NAME.
 MOVE "VIEW" TO REC-TYPE.
 MOVE LENGTH OF AUDV-REC TO LEN.
 SET TPBLOCK TO TRUE.
 SET TPTRAN IN TPSVCDEF-REC TO TRUE.
 SET TPNOTIME TO TRUE.
 SET TPSIGRSTRT TO TRUE.
 SET TPCHANGE TO TRUE.
*
 CALL "TPCALL" USING TPSVCDEF-REC
 TPTYPE-REC
 AUDV-REC
 TPTYPE-REC
 AUDV-REC
 TPSTATUS-REC.
 IF NOT TPOK
 MOVE 19 to LOG-REC-LEN
 MOVE "Service call failed" TO LOG-REC
 CALL "USERLOG" USING LOG-REC
 LOG-REC-LEN
 TPSTATUS-REC
 PERFORM DO-TPABORT
 PERFORM DO-TPTERM.
* Commit global transaction
 CALL "TPCOMMIT" USING TPTRXDEF-REC
 TPSTATUS-REC
 IF NOT TPOK
 MOVE 16 to LOG-REC-LEN
 MOVE "Failed to commit" TO LOG-REC
 CALL "USERLOG" USING LOG-REC
 LOG-REC-LEN
 TPSTATUS-REC
 PERFORM DO-TPTERM.
* Show results only when transaction has completed successfully
BEA TUXEDO COBOL Guide 14-9

14 Global Transactions in the BEA TUXEDO System
 DISPLAY "BRANCH=" Q-BRANCH.
 DISPLAY "BALANCE=" AUDV-BALANCE.
 PERFORM DO-TPTERM.
* Abort the transaction
 DO-TPABORT.
 CALL "TPABORT" USING TPTRXDEF-REC
 TPSTATUS-REC
 IF NOT TPOK
 MOVE 26 to LOG-REC-LEN
 MOVE "Failed to abort transaction" TO LOG-REC
 CALL "USERLOG" USING LOG-REC
 LOG-REC-LEN
 TPSTATUS-REC.
* Leave the application
 DO-TPTERM.
 CALL "TPTERM" USING TPSTATUS-REC.
 IF NOT TPOK
 MOVE 27 to LOG-REC-LEN
 MOVE "Failed to leave application" TO LOG-REC
 CALL "USERLOG" USING LOG-REC
 LOG-REC-LEN
 TPSTATUS-REC.
 EXIT PROGRAM.
*
 A-999-EXIT.
*
 EXIT PROGRAM.

Terminating the Transaction

As already indicated, a transaction is terminated by a call to either TPCOMMIT or
TPABORT. When TPCOMMIT returns successfully, all changes to the resource as a result
of the current transaction become permanent. TPABORT is called to indicate an
abnormal condition and explicitly aborts the transaction and invalidates the
communications handles of any outstanding replies. None of the changes that were
produced as a result of the transaction are applied to the resource. For TPCOMMIT to
succeed, the following two conditions must be true:

t the calling process must be the same one that initiated the transaction with a call
to TPBEGIN

t the calling process must have no replies outstanding

If either condition is not true, the call fails and TP-STATUS is set to TPEPROTO
indicating an error in protocol. If a participant calls TPCOMMIT or TPABORT, the
transaction is unaffected. If TPCOMMIT is called by the initiator with outstanding
replies, the transaction is aborted and those reply descriptors become invalid.
14-10 BEA TUXEDO COBOL Guide

ATMI Transaction Primitives

ct to
ed
ogged

bal

 in a
t the
n
ion)
o
fer to
ns off
TPCOMMIT Initiates the 2-phase Commit

When TPCOMMIT is called, it initiates the two-phase commit protocol mentioned
earlier. This protocol, as the name suggests, has two parts. In the first, each
participating resource manager indicates a readiness to commit. In the second, the
initiator gives permission to commit. The process that calls TPCOMMIT must be the
initiator of the transaction. As the initiator, this process starts the commit processing
in which the participants (the other server processes that took part in the transaction)
communicate their success or failure. This can be made known to the initiator by
TPRETURN through the TP-RETURN-VAL parameter that can be set to either TPSUCCESS
or TPFAIL. If TPFAIL has been returned, TPCOMMIT fails, TP-STATUS is set to
TPEABORT, and the transaction is implicitly aborted. All the work that is performed by
every process that participated in that transaction is undone. More will be said about
the transaction role of TPRETURN and TPFORWAR in Chapter 15, “Error Management.”

Setting When TPCOMMIT Should Return

When more than one machine is involved in a transaction, the application can ele
specify that TPCOMMIT should return successfully when all participants have indicat
a readiness to commit; that is, when phase 1 of the two-phase commit has been l
as complete by all participants. The alternative choice is to have TPCOMMIT wait until
all participants have finished phase 2 of the two-phase commit. The CMTRET parameter
in the RESOURCES section of UBBCONFIG can be set to either LOGGED or COMPLETE to
control this characteristic. The routine TPSCMT can be called with TPCMTDEF-REC
set to either TP-CMT-LOGGED or TP-CMT-COMPLETE to override the setting in the
configuration file.

The idea behind this option is that most of the time when all participants in a glo
transaction have logged successful completion of phase 1, they will not fail to
complete phase 2. By setting TP-COMMIT-CONTROL to LOGGED you allow slightly
faster return of calls to TPCOMMIT, but you run the slight risk that a participant
(probably on a remote node) may heuristically complete its part of the transaction
way that is not consistent with the commit decision. Whether it is prudent to accep
risk depends to a large extent on the nature of your application. If your applicatio
demands complete accuracy (for example, if you are running a financial applicat
you would probably prefer to allow for the time required for all participants fully t
complete the two-phase commit process. If you are counting beans, you may pre
have the application run as fast as possible even knowing you may be a few bea
over a period of time.
BEA TUXEDO COBOL Guide 14-11

14 Global Transactions in the BEA TUXEDO System
Testing for Participant Errors

Listing 14-5 shows a client making a synchronous call to a fictitious REPORT service
(line 24). It demonstrates testing for errors that can be returned on a communication
call that indicate participant failure (lines 30-42).

Listing 14-5 Testing for Participant Success or Failure

01 . . .
02 CALL "TPINITIALIZE" USING TPINFDEF-REC
03 USR-DATA-REC
04 TPSTATUS-REC.
05 IF NOT TPOK
06 error message,
07 EXIT PROGRAM .
08 MOVE 30 TO T-OUT.
09 CALL "TPBEGIN" USING TPTRXDEF-REC TPSTATUS-REC.
10 IF NOT TPOK
11 error message,
12 PERFORM DO-TPTERM.
13 * Set up record
14 MOVE "REPORT=accrcv DBNAME=accounts" TP-RECORD.
15 MOVE 27 TO LEN.
16 MOVE "REPORTS" TO SERVICE-NAME.
17 MOVE "STRING" TO REC-TYPE.
18 SET TPBLOCK TO TRUE.
19 SET TPTRAN IN TPSVCDEF-REC TO TRUE.
20 SET TPNOTIME TO TRUE.
21 SET TPSIGRSTRT TO TRUE.
22 SET TPCHANGE TO TRUE.
23 *
24 CALL "TPCALL" USING TPSVCDEF-REC
25 TPTYPE-REC
26 TP-RECORD
27 TPTYPE-REC
28 TP-RECORD
29 TPSTATUS-REC.
30 IF TPOK
31 PERFORM DO-TPCOMMIT
32 PERFORM DO-TPTERM.
33 * Check return status
34 IF TPESVCERR
35 DISPLAY "REPORT service’s TPRETURN encountered problems"
36 ELSE IF TPESVCFAIL
37 DISPLAY "REPORT service FAILED with return code=" APPL-RETURN-CODE
38 ELSE IF TPEOTYPE
14-12 BEA TUXEDO COBOL Guide

ATMI Transaction Primitives
39 DISPLAY "REPORT service’s reply is not of any known REC-TYPE"
40 *
41 PERFORM DO-TPABORT
42 PERFORM DO-TPTERM.
43 * Commit global transaction
44 DO-TPCOMMIT.
45 CALL "TPCOMMIT" USING TPTRXDEF-REC
46 TPSTATUS-REC
47 IF NOT TPOK
48 error message
49 * Abort the transaction
50 DO-TPABORT.
51 CALL "TPABORT" USING TPTRXDEF-REC
52 TPSTATUS-REC
53 IF NOT TPOK
54 error message
55 * Leave the application
56 DO-TPTERM.
57 CALL "TPTERM" USING TPSTATUS-REC.
58 IF NOT TPOK
59 error message
60 EXIT PROGRAM.

Committing a Transaction in Conversational Mode

Figure 14-1 shows a conversational connection hierarchy that includes a global
transaction. The originator of a connection in transaction mode (process A that called
TPBEGIN followed by TPCONNECT) can call TPCOMMIT after all services have called
TPRETURN. If a hierarchy of connections exists as it does in Figure 14-1, each
subordinate service must call TPRETURN when it no longer has replies outstanding. A
TPEV-SVCSUCC or TPEV-SVCFAIL event setting for TPEVENT IN TPSTATUS-REC is
sent back up the hierarchy to the process that began the transaction. If all subordinates
return successfully, the client (Process A) completes the transaction; otherwise the
transaction is aborted.
BEA TUXEDO COBOL Guide 14-13

14 Global Transactions in the BEA TUXEDO System
Figure 14-1 Connection Hierarchy: Transaction Mode
14-14 BEA TUXEDO COBOL Guide

ATMI Transaction Primitives

iations

set

ss, it
n”

ss,

e for

rm
the
ervice
Implicitly Defining a Global Transaction

Besides using the ATMI calls explicitly to start and end a transaction, it is possible for
a global transaction to be started in a service routine. A service routine can be placed
in transaction mode through the system parameter, AUTOTRAN, in the configuration file.
If AUTOTRAN is set to Y, a transaction is automatically started in the service subroutine
when a request message is received from another process. Let’s look at some var
on this theme.

t If a process is not in transaction mode and calls on the services of another
process, the system parameter is consulted for the called service, and if it is
to start a transaction, one will be initiated with the call.

t If a process is in transaction mode and calls on the services of another proce
places the called process in transaction mode through the “rule of propagatio
and the system parameter is not consulted.

t If a process is in transaction mode and calls on the services of another proce
but the caller set TPTRAN-FLAG IN TPSVCDEF-REC to TPNOTRAN, the services
performed by the called process are not part of the current transaction
(suppresses propagation rule). The system parameter will be consulted and

t if AUTOTRAN=N (or not set), the called process is not placed in transaction
mode.

t if AUTOTRAN=Y, the service is placed in transaction mode, but this is a new
transaction.

Because a service can automatically be placed in transaction mode, it is possibl
the call to be made with the communication setting of TPNOTRAN and the setting
member of the service information structure to return TPTRAN when queried.

What a Service in an XA-Compliant Server Group Expects

A service that is part of an XA-compliant server group is generally written to perfo
some operation via the group’s resource manager, which automatically opened
associated database when the application was booted. In the normal case, the s
expects to do its work within a transaction. If a service like this is called with the
caller’s communication setting of TPNOTRAN, the results of the ensuing database
operation may be a little strange.
BEA TUXEDO COBOL Guide 14-15

14 Global Transactions in the BEA TUXEDO System

y
rvice

ing
e

 in

The solution is to write your application so that services in groups associated with
XA-compliant resource managers are always called in transaction mode or are always
defined in the configuration file with AUTOTRAN=Y. Another precaution is to test early
in the service code to see what the transaction level is.

Testing Whether a Transaction has Begun

In order correctly to interpret the error messages that can occur, it is important to know
if a process is in transaction mode or not. It is an error for a process that is already in
transaction mode to make a call to TPBEGIN. TPBEGIN will fail and set TP-STATUS to
TPEPROTO to indicate that the routine was invoked while the caller was already in a
transaction. However, the transaction will not be affected.

It might be helpful to think of transaction mode as something that is propagated unless
specifically suppressed. When one process in transaction mode calls on the services of
another process, that process acquires the same “condition.”

Service subroutines can be written so that they test to see if they are already in
transaction mode before invoking TPBEGIN. Testing transaction level can be done b
querying the settings of the service information structure that is passed to the se
routine. If its value is set to TPTRAN, the service is in transaction mode. Also, this
information can be retrieved by calling the TPGETLEV routine. The syntax of this
routine is:

01 TPTRXLEV-REC.
 COPY TPTRXLEV.
01 TPSTATUS-REC.
 COPY TPSTATUS.
CALL "TPGETLEV" USING TPTRXLEV-REC TPSTATUS-REC.

TPGETLEV returns TP-NOT-IN-TRAN if the caller is not in a transaction and
TP-IN-TRAN if it is.

Listing 14-6 is an example of a service that shows testing for transaction level us
the TPGETLEV routine (line 3). If the process is not in transaction mode, it starts on
(line 5). If TPBEGIN fails, a message is returned to the status line (line 9) and
APPL-CODE IN TPSVCRET-REC is set to a code that can be retrieved in
APPL-RETURN-CODE IN TPSTATUS-REC (line 11 and line 1).

If the AUTOTRAN configuration parameter discussed above is set to Y, you avoid the
overhead of testing for transaction level and the need of explicitly calling the TPBEGIN
and TPCOMMIT/TPABORT transaction routines. For example, in the fragment shown
Listing 14-6, if the service is always to be called in transaction mode, the system
14-16 BEA TUXEDO COBOL Guide

ATMI Transaction Primitives
parameters AUTOTRAN and TRANTIME can be set in the configuration file eliminating
the need to define the transaction or determine its existence within the programming
code (line 4).

Listing 14-6 Testing Transaction Level

 . . . Application defined codes
001 77 BEG-FAILED PIC S9(9) VALUE 3.
 . . .
002 PROCEDURE DIVISION.
 . . .
003 CALL "TPGETLEV" USING TPTRCLEV-REC
 TPSTATUS-REC.
004 IF NOT TPOK
 error processing EXIT PROGRAM
005 IF TP-NOT-IN-TRAN
006 MOVE 30 TO T-OUT.
007 CALL "TPBEGIN" USING
 TPTRXDEF-REC
 TPSTATUS-REC.
008 IF NOT TPOK
009 MOVE "Attempt to TPBEGIN within service failed"
 TO USER-MESSAGE.
010 SET TPFAIL TO TRUE.
011 MOVE BEG-FAILED TO APPL-CODE.
012 COPY TPRETURN REPLACING
 DATA-REC BY USER-MESSAGE.
 . . .
BEA TUXEDO COBOL Guide 14-17

14 Global Transactions in the BEA TUXEDO System
14-18 BEA TUXEDO COBOL Guide

CHAPTER

 let’s
ow
ent
15 Error Management

Introduction

The purpose of this chapter is to review the transaction and communication concepts
discussed in the preceding chapters with the focus on how to manage and interpret
error conditions correctly.

What are the means used by the BEA TUXEDO system to communicate to the
application that a routine call has failed allowing the programmer to implement the
appropriate logic? What are the various scenarios for determining whether to commit
or abort a transaction? What errors are fatal to transactions? How does transaction
mode affect the concept of time-out and what are the implications? How does
transaction mode affect the roles of the routine calls and how they may be used? What
operations are part of one transaction and what are the determining factors? Does the
fate of one transaction ever determine the fate of another? What communication rules
must be followed between processes within and not within the same transaction? How
do global transaction calls affect the use of local transaction-defining routines (that is,
routines used to explicitly mark the beginning and end of a local transaction) that may
be part of the Data Manipulation Language (DML) that is native to the resource
manager?

Many of these subjects have been touched upon already in earlier chapters. Now
attempt to bring them together to explain the functionality of the ATMI, showing h
the various pieces fit together following consistent rules that create an environm
that combines message communication with transaction integrity.
BEA TUXEDO COBOL Guide 15-1

15 Error Management
Communicating Errors

The following discussion concerns how the BEA TUXEDO system communicates
errors to the application developer. It is couched in terms of categories of errors and
whether they are application or system-based. Hopefully, this discussion will give you
more insight as to what errors to expect, what effect they have on transactions, and
what kind of control you as a programmer have over them.

Throughout the guide, there has been a continual reference to the field TP-STATUS of
TPSTATUS-REC. In an environment of concurrent processes, this is a key way to
inform processes if their routine calls have succeeded or not. All the ATMI routines
set TP-STATUS to a value that reveals the nature of the error. In cases where the routine
does not return to its caller, as in the case of TPRETURN or TPFORWAR, since they are
called to terminate a service routine, the only way to communicate success or failure
is through APPL-RETURN-CODE IN TPSTATUS-REC in the requester.

APPL-RETURN-CODE IN TPSTATUS-REC can also be used to communicate
user-defined conditions. The value in APPL-RETURN-CODE is set from the value placed
in APPL-CODE IN TPSVCRET-REC during TPRETURN. This code is sent regardless of
the setting of TP-RETURN-VAL IN TPSVCRET-REC unless an error is encountered by
TPRETURN or a transaction time-out occurs.

Values of TP-STATUS

The setting returned by TP-STATUS IN TPSTATUS-REC represent categories of
errors. All the ATMI routines whose failure is reported by the setting returned by
TP-STATUS have the four basic categories of

t protocol errors (TPEPROTO)

t BEA TUXEDO system errors (TPESYSTEM)

t operating system errors (TPEOS)

t errors from invalid members (TPEINVAL)
15-2 BEA TUXEDO COBOL Guide

Communicating Errors
Protocol Errors

Protocol errors occur because an ATMI routine was called in an incorrect context.
Refer to the INTRO(3cbl) reference page. This type of error usually happens for one of
the following reasons:

t The ATMI call is being made in the wrong order.

t The ATMI call is being made by the wrong process.

A transaction participant rather than the initiator calling TPCOMMIT is a protocol error
because the participant is the wrong process to be calling TPCOMMIT. This type of error
is one that is totally correctable at the application level by enforcing the rules of order
and propriety associated with the ATMI calls (that is, by making calls in the correct
order by the appropriate processes). Since each ATMI call can return a protocol error,
try to discover the exact error in the context of the semantics of the specific call and
ask two questions:

t Is this call being made in the correct order?

t Is this call being made by the correct process?

BEA TUXEDO System Errors

When BEA TUXEDO system errors occur, messages explaining their exact nature are
written to the central event log. The last major section in this chapter explains this log
in detail. Since these are system errors rather than application errors, the systems
administrator may be needed to help correct them.

Operating System Errors

Operating system errors indicate that a system call has failed. A numeric value
identifying the failed system call is returned in the global variable, Uunixerr.
Operating system errors are seldom application errors; systems administrators may
need to be called on to correct them.
BEA TUXEDO COBOL Guide 15-3

15 Error Management
Errors from Invalid Arguments

All of the ATMI routines that take arguments can fail if invalid arguments are passed
to them. In the case where the routine returns to the caller, the routine fails and sets
TPEINVAL. In the case of TPRETURN or TPFORWAR if this type of error is discovered
while processing the arguments, TPESVCERR is set for the routine waiting on the call;
that is either TPCALL or TPGETRPLY. This is an application error and is correctable by
the programmer.

Other Possible Error Categories

In addition to the four basic categories just discussed, others include

t errors from lack of entries in system tables or the data structure used to identify
record types (TPENOENT)

t errors from incorrect permission to enter the application (TPEPERM)

t resource manager errors (TPERMERR)

t transaction related errors (TPETRAN)

t errors from mismatching of typed records (TPEITYPE and TPEOTYPE)

t errors that apply only to asynchronous communication calls or conversational
calls because they involve communications handles (TPELIMIT and
TPEBADDESC)

t errors that can occur as a result of the communication calls in general
(TPESVCFAIL, TPESVCERR, TPEBLOCK, and TPEGOTSIG)

t transaction and blocking time-out errors (TPETIME)

t errors from calling TPCOMMIT when the transaction should have been explicitly
aborted (TPEABORT)

t errors that signal that a heuristic decision was (or may have been) taken
(TPEHAZARD, TPEHEURISTIC)
15-4 BEA TUXEDO COBOL Guide

Communicating Errors
No Entry Errors

The no entry type error, TPENOENT, has more than one meaning and depends on which
routine call is returning it. The routine that allows you to join the application,
TPINITIALIZE, the routine that unlists an advertised service, TPUNADVERTISE, and
the communication routines, TPCALL, TPACALL, TPCONNECT and TPGPRIO are the
routines that return this error. The following table lists the routines and specifies the
reason for the failure in each case.

Permission Errors

The only ATMI routine that returns this error is TPINITIALIZE. If the calling process
does not have the correct permissions to enter the application, this call fails returning
TPEPERM. Permissions are set in the configuration file and as such the correction of this
error is outside of your application. See the BEA TUXEDO administrator if it is
encountered.

Table 15-1 Error Routines

Function Explanation

TPINITIALIZE The calling process cannot join the application because there is no
space left in the bulletin board to make an entry for it. See your
systems administrator.

TPCALL The calling process is referencing a service, SERVICE-NAME IN
TPSVCDEF-REC that is not known to the system since there is no
entry for it in the bulletin board. On an application level, make sure
you have referenced the service correctly; otherwise, see your
systems administrator.

TPACALL Same as TPCALL.

TPCONNECT Cannot connect to SERVICE-NAME IN TPSVCDEF-REC because
it does not exist or is not a conversational service

TPGPRIO The calling process is asking for a request priority when no request
has been made. The system has no current entry for a request. This
is an application error.

TPUNADVERTISE Cannot unadvertise the service name because it is not currently
advertised by the calling process
BEA TUXEDO COBOL Guide 15-5

15 Error Management
Resource Manager Errors

These errors can occur with calls to TPOPEN and TPCLOSE and they return a setting of
TPERMERR. The meaning of the BEA TUXEDO system error code is intentionally
vague in this case so as not to hinder portability. The exact nature of the error must be
determined by interrogating the resource manager in its own specific manner.
Obviously when this error code is returned for TPOPEN, it indicates that the problem
has to do with a failure on the part of the resource manager to open correctly and for
TPCLOSE, to close correctly.

Transaction-Related Errors

When this type of error occurs, TPETRAN is returned in TP-STATUS. TPBEGIN,
TPCANCEL and the TPCALL/TPACALL routines can return this error code. For TPBEGIN,
it usually means some transient system error occurred when attempting to start the
transaction that may clear up with a repeated call.

TPCANCEL returns this error code when called from within a transaction.

In the case of the communication routines, it means a call was made in transaction
mode to a service that does not support transactions. What does this mean? Some
services belong to server groups that access a DBMS that can support transactions
whereas other services may be responsible for printing out a form and accessing a
printer that knows nothing about transactions. The configuration of services into
servers and server groups is an administrative task. In order to determine which
services support transactions ask your systems administrator. This is an application
error. For the communication call to such a service to succeed, the TPNOTRAN setting
for TPSVCDEF-REC must be set. In other words, you may not ask a service that does
not support transactions to be a participant in the transaction. If you desire the service,
it can be asked for only if the TPNOTRAN setting is explicitly set or if you access the
service outside of your transaction.

Typed Record Errors

Typed record errors are returned as a result of sending processes requests or replies in
typed records that are unfamiliar to them. TPEITYPE is returned by TPCALL and
TPACALL when the request data record is sent to a service that does not know about this
type. What does this mean? The record types that processes know about are determined
both by the configuration file and by the BEA TUXEDO libraries that have been linked
into the process. These libraries define and initialize a data structure to the typed
15-6 BEA TUXEDO COBOL Guide

Communicating Errors
records that the process is to know about. The library can be tailored to each process.
Also, an application can supply its own copy of a file that defines record types. An
application can set up the record type data structure (referred to as a record type switch)
on a per process basis. Refer to the tuxtypes(5) and typesw(5) manual pages. This is
an administrative decision and is mentioned here to clarify what is meant by a process
knowing about a typed record. The rule for sending requests is that you must always
send a request in a typed record that a service knows about; this information can be
obtained from your systems administrator.

TPEOTYPE is returned by TPCALL and TPGETRPLY when the reply message is sent in a
record that is not known or not allowed by the caller. What does this mean? Not known
has the same semantics as previously explained for the request record. Not allowed
means that although the process knows of the existence of this record type, the type
returned to it does not match the type of the record it allocated to receive the reply and
the caller is not allowing for a change in record type. The caller indicates this
preference by setting TPNOCHANGE. In this case, strong type checking is enforced,
returning TPEOTYPE when violated. The default is to have weak type checking
allowing a different record type to be returned as long as it is known to the caller.
Again, the rule for sending replies is that the reply record must be known to the caller
and you must observe strong type checking if it has been indicated.

Communication Handle Errors

The errors discussed in this section can occur only when making asynchronous calls or
conversational calls because they involve the misuse of the communication handle,
COMM-HANDLE IN TPSVCDEF-REC. Asynchronous calls depend on communication
handles to identify replies with their corresponding requests. Conversational sends and
receives depend on communication handles to identify the connection; the call that
initiates the connection depends on the availability of a communications handle. There
are two things that the BEA TUXEDO system does not like you to do with
communication handles.

t exceed your limit (TPELIMIT)

t reference one that has become invalid (TPEBADDESC)

The limit for outstanding communication handles (replies) has been defined for the
system as fifty and is a non-tunable parameter. The only way to change it is to
recompile the system. The maximum number of handles allowed should be ample for
your application, but this limit is system-defined and cannot be redefined by your
application.
BEA TUXEDO COBOL Guide 15-7

15 Error Management

s

ic

d

n by
The limit for communications handles for simultaneous conversational connections is
defined in the configuration file and is more flexible than the limit for replies. The
MAXCONV parameter in the RESOURCES section of the configuration file can be changed
when the application is not running; it can be dynamically changed in the MACHINES
section when the application is running (see tmconfig(1)).

There are two general ways that a communications handle can become invalid. If a
communications handle has been used to retrieve a message (including a failed
message) and an attempt is made to reuse it, the system complains that you cannot
reuse the handle and returns TPEBADDESC.

Sometimes a condition occurs where you can no longer reference a communications
handle although it has never been used to retrieve a message. In this case we refer to
the handle as having become stale and any attempt to reference it causes TPEBADDESC
to be returned. One of the conditions that causes this to happen is calling TPABORT or
TPCOMMIT when there are still replies to be retrieved. The outstanding handles for these
replies are considered stale. Another condition that causes this to happen is transaction
time-out. When it is reported on the call to TPGETRPLY, no message is retrieved with
that handle, and any further reference to it is invalid because it is considered stale. This
error can be corrected at the application level.

General Communication Call Errors

These errors can occur only when making communication calls but have nothing to do
with the nature of the call being synchronous or asynchronous.

The communication errors, TPESVCERR and TPESVCFAIL are the result of the reply
part of communication. They can be returned as a result of a call to TPCALL or
TPGETRPLY and they are determined by the arguments passed to and the processing
done by TPRETURN. If TPRETURN encounters an error in processing or handling
arguments, it will cause a failed message to be sent to the caller. This failed message
is detected by the receiver with TP-STATUS being set to TPESVCERR. The caller’s data
is not sent, and if the failure was on TPGETRPLY, the communications handle become
invalid. If an error of this nature is not encountered by TPRETURN, then the setting for
TP-RETURN-VAL determines the success or failure of the call. If the application log
set TPFAIL, TPESVCFAIL is returned and the data message is sent to the caller.

The error codes TPEBLOCK and TPEGOTSIG can happen on the request or the reply en
of message communication. As a result, it can be returned for all three of the
request/response communication calls. TPEBLOCK is returned when a blocking
condition exists and the process sending a request either synchronously or
asynchronously has indicated that it does not want to wait on a blocking conditio
15-8 BEA TUXEDO COBOL Guide

Communicating Errors
setting TPNOBLOCK. A blocking condition can exist when sending a request if, for
example, all the queues of the desired service are full. When TPCALL indicates a no
blocking condition, it affects only the sending part of the communication. If the call
successfully sends the request, TPEBLOCK will not be returned regardless of any
blocking situation that may exist while the call waits for the reply. TPEBLOCK is
returned for TPGETRPLY when the call is made set to TPNOBLOCK and a blocking
condition is encountered while awaiting the reply; for example, if a message is not
currently available.

TPEGOTSIG really does not flag an error condition but indicates when a signal
interrupts a BEA TUXEDO call. If the communication routines set TPSIGRSTRT, the
calls will not fail and this code will not be returned.

Conversational Errors

Once a conversational connection has been established, TPSEND and TPRECV can fail
with a TPEEVENT error. No data is sent by TPSEND. The event type is returned in the
TPEVENT member of TPSTATUS-REC. A course of action is dictated by the particular
event.

In conversational services TPSEND, TPRECV and TPDISCON return TPEBADDESC when
an unknown handle is specified.

Time-out Errors

Time-out errors can occur for one of two reasons:

t the maximum length of time a blocking call may remain blocked until the caller
regains control has exceeded the amount of time it was allotted, that is, a
blocking time-out occurred

t the duration of a transaction from start to finish has exceeded the amount of time
it was allotted, that is, a transaction time-out occurred

As a result, this error can be returned on communication calls for either blocking or
transaction time-out and on TPCOMMIT for transaction time-out only. In every case, if
a process is in transaction mode and TPETIME is returned on a failed call, it means a
transaction time-out has occurred.
BEA TUXEDO COBOL Guide 15-9

15 Error Management

ned:

y not

et
e
TPETIME indicates a blocking time-out on a communication call if

t the call was not made in transaction mode and

t the call was not made with TPNOBLOCK set

You may recall that if TPNOBLOCK is set, a blocking time-out cannot occur because the
call returns immediately if a blocking condition exists.

Blocking time-out is a value set by the administrator of the system and is defined in the
configuration file. Transaction time-out is defined by the application by the first
argument passed to TPBEGIN.

Further implications concerning the concept of time-out will be discussed in the
section “Time-out” later in this chapter.

Errors Leading to Abort

Errors by a participant in a transaction can cause TPCOMMIT to fail returning the error
code of TPEABORT. The transaction is implicitly aborted because of the failure and
should be explicitly aborted. There are two ways that this error code can be retur

t If a transaction has been marked abort-only by the initiator or one of the
participants.

t If the transaction timed out and its status is known to be aborted.

Heuristic Decision Errors

Based on how TP-COMMIT-CONTROL is set, TPCOMMIT may return TPEHAZARD or
TPEHEURISTIC. If TP-COMMIT-CONTROL is set to TP-CMT-LOGGED, the application
gets control before the second phase of the two-phase commit is done, so it ma
hear about a heuristic that occurs during the second phase. If TP-COMMIT-CONTROL is
set to TP-CMT-COMPLETE, the application finds out about heuristics, but may still g
back TPEHAZARD. Since TPEHAZARD simply means that a participant failed during th
second phase, we cannot know if it completed the transaction successfully or
unsuccessfully.
15-10 BEA TUXEDO COBOL Guide

How to Deal with Errors
How to Deal with Errors

Listing 15-1 illustrates a general way of dealing with errors. The term ATMICALL(3)
is used in this example to generically represent an ATMI routine call.

Listing 15-1 How to Deal with Errors

. . .
CALL "TPINITIALIZE" USING TPINFDEF-REC
 USR-DATA-REC
 TPSTATUS-REC.
IF NOT TPOK
 error message, EXIT PROGRAM
CALL "TPBEGIN" USING TPTRXDEF-REC
 TPSTATUS-REC.
IF NOT TPOK
 error message, EXIT PROGRAM
 Make atmi calls
 Check return values
IF TPEINVAL
 DISPLAY "Invalid arguments were given."
IF TPEPROTO
 DISPLAY "A call was made in an improper context."
. . .
 Include all error cases described in the INTRO(3cbl)
 reference page. Other return codes are not possible, so
 there should be no need to test them.
. . .
 continue

The specific settings of TPSTATUS-REC give you more insight into the nature of the
problem and the level on which it can be corrected.
BEA TUXEDO COBOL Guide 15-11

15 Error Management
Fatal Transaction Errors

In managing transactions, it is important to understand which errors prove fatal to
transactions. When these errors are encountered, transactions should be explicitly
aborted on the application level by having the initiator of the transaction call TPABORT.
Basically, there are three conditions that cause a transaction to fail. They are:

t The initiator or a participant of the transaction caused it to be marked abort-only
for one of the following reasons:

t TPRETURN encountered an error while processing its members (TPESVCERR).

t The TP-RETURN-VAL argument of TPRETURN was set to TPFAIL
(TPESVCFAIL).

t The type or subtype of the reply record is not known or allowed by the caller
and, as a result, success or failure cannot be determined (TPEOTYPE).

t The transaction timed out (TPETIME).

t TPCOMMIT was called by a participant rather than by the originator of a
transaction (TPEPROTO).

If TPESVCERR, TPESVCFAIL, TPEOTYPE, or TPETIME is returned for any of the
communication calls, the transaction should be explicitly aborted with a call to
TPABORT. If there are still outstanding descriptors, there is no need to wait for them
before explicitly aborting the transaction. However, any attempt to access these
descriptors after the transaction has been terminated will return TPEBADDESC since
they are considered stale after the call.

Note that in the case of TPESVCERR, TPESVCFAIL, and TPEOTYPE, communication
calls are still allowed as long as the transaction has not timed out. With the return of
these errors, the transaction has been marked abort-only. In order for any further work
to have any lasting effect, the communication calls should be made with TPNOTRAN set.
In this way the work performed for the transaction that has been marked abort-only
will not be rolled back when the transaction is aborted.

When a transaction time-out occurs, communication can continue, but it must be
conducted with the following conditions enforced. The communication requests

t cannot require replies

t cannot block

t and cannot be performed on behalf of the caller’s transaction
15-12 BEA TUXEDO COBOL Guide

How to Deal with Errors

g to

 BEA

the

it for
akes

and
-out

This means asynchronous calls can be made with setting of TPNOREPLY, TPNOBLOCK
or TPNOTRAN.

Calling TPCOMMIT from the wrong participant in a transaction represents the only
protocol error that is fatal to transactions. This error can be corrected on the application
level during the development phase.

Calling TPCOMMIT when there is initiator/participant failure or transaction time-out
represents the implicit abort error discussed earlier in the section “Errors Leadin
Abort.” Because the commit failed, the transaction should be aborted.

Time-out

As already indicated there are two possible types of time-out that can occur in the
TUXEDO system. The effect of time-out on communication calls is different
depending on the type that occurred. In addition, the following sections address
following issues:

t What happens if a transaction times out while committing?

t Do calls to services that are not part of your transaction use time on your
transaction clock?

Blocking vs. Transaction Time-out

We have defined blocking time-out as exceeding the amount of time a call can wa
a blocking condition to clear up. Transaction time-out occurs when a transaction t
longer than the amount of time defined for it by the T-OUT IN TPTRXDEF-REC
argument to TPBEGIN. By default, if a process is not in transaction mode, blocking
time-outs are performed. When the communication call is set to TPNOTIME, it applies
to blocking time-outs only. If a process is in transaction mode, blocking time-out
the TPNOTIME setting are not relevant. The process is sensitive to transaction time
only as it has been defined for it when the transaction was started. What are the
implications of the two different types of time-out with concern to communication
calls?
BEA TUXEDO COBOL Guide 15-13

15 Error Management

come
oles

re
 that
If a process is not in transaction mode and a blocking time-out occurs on an
asynchronous call, the communication call that blocked will fail, but the
communications handle is still valid and may be used on a re-issued call. Further
communication in general is unaffected.

In the case of transaction time-out, the communications handle to an asynchronous
reply becomes stale and may no longer be referenced. The only further communication
allowed is the one case described earlier of no reply, no blocking, and no transaction.

Effect on TPCOMMIT

What is the state of a transaction if time-out occurs after the call to TPCOMMIT? It is
unknown; the transaction can have either succeeded or failed. If the transaction timed
out and the system knows that it was aborted, this is communicated to you by the error
code TPEABORT returned in TP-STATUS. If the status of the transaction is unknown,
TPETIME is the error code. When the state of the transaction is in doubt, you must query
the resource to see if any of the changes that were part of that transaction have been
applied to it in order to discover whether the transaction committed or aborted.

Effect of the TPNOTRAN Flag

When a process is in transaction mode and makes a communication call with a setting
of TPNOTRAN, it prohibits the called service from becoming a participant of that
transaction and as such the service’s success or failure cannot influence the out
of that transaction. This will be discussed in greater detail in the next section, “R
of TPRETURN and TPFORWAR.” However, if the caller is expecting a reply, its
transaction clock is still ticking away while the services that generate the reply a
being performed. As a result, the transaction can time out while waiting for a reply
is due from a service that is not part of that transaction.
15-14 BEA TUXEDO COBOL Guide

How to Deal with Errors

hen
s on
r of

r

tion

ers or

ion

s, but
Roles of TPRETURN and TPFORWAR

If a process is called in transaction mode, TPRETURN and TPFORWAR place the service’s
portion of the transaction in a state where it can be either committed or aborted w
the transaction is completed by its initiator. A service may be called several time
behalf of the same transaction. It is not fully committed or aborted until the initiato
the transaction calls TPCOMMIT or TPABORT.

Neither TPRETURN nor TPFORWAR should be called until all outstanding descriptors fo
the communication calls made within the service have been retrieved. If TPRETURN is
called with outstanding descriptors with TP-RETURN-VAL set to TPSUCCESS, this
constitutes a protocol error and is returned as TPESVCERR to the process waiting on
TPGETRPLY. If the process is in transaction mode, it will cause the caller’s current
transaction to be marked internally as abort-only. Even if the initiator of the transac
should call TPCOMMIT, the transaction is aborted implicitly. If TPRETURN is called with
outstanding descriptors with TP-RETURN-VAL set to TPFAIL, TPESVCFAIL is returned
to the process waiting on TPGETRPLY. The effect on the transaction is the same.

It is always the case that when TPRETURN is called in transaction mode, it can
determine the fate of that transaction either from the processing errors it encount
from the value the application places in TP-RETURN-VAL. Calling TPFORWAR can be
used to indicate success up to that point in processing the request. If no applicat
errors have been detected TPFORWAR is invoked, otherwise TPRETURN with TPFAIL. If
TPFORWAR is called improperly, it is considered a processing error and a failed message
is returned to the requester.

Many of the ideas presented here have already been discussed in earlier section
they bear repeating. The following sections highlight various possible scenarios
involving the transaction role of TPRETURN as well as the communication rules.
BEA TUXEDO COBOL Guide 15-15

15 Error Management

r

any
t,

n

 in

ese
ns.

he

t
Service in Same Transaction as Caller

This is the straightforward case of the caller in transaction mode that calls another
service to participate in the current transaction. What are the implications?

t TPRETURN and TPFORWAR, when called by the participating service, place that
service’s portion of the transaction in a state where it can be either aborted o
committed by the initiator

t the success or failure of the called process affects the current transaction. If
of the errors that prove fatal to transactions are encountered by the participan
the current transaction is marked abort-only

t the lasting effect of the work done by a successful participant is dependent o
the fate of the transaction, that is, if the transaction is aborted, the work of all
participants is undone

t the TPNOREPLY flag cannot be used when calling another service to participate
the current transaction

Service in Different Transaction with AUTOTRAN Set

If a communication call is made with the TPNOTRAN flag set and the called service is
configured so that a transaction will automatically get started when it is called, th
processes will both be in transaction mode but they will be in different transactio
What are the implications?

t TPRETURN plays the initiator’s transaction role to terminate the transaction in t
service where the transaction was automatically started. Alternatively, if the
transaction is automatically started in a service that terminates with TPFORWAR,
the TPRETURN in the last service in the forward chain plays the initiator’s
transaction role to terminate the transaction. Refer to Figure 15-1.

t Because it is in transaction mode, TPRETURN is also vulnerable to failure and is
subject to the failure of any participant in the transaction, as well as to
transaction time-out. As a result, TPRETURN is more likely to send a failed
message to the caller.

t Any failed messages or application failures returned to the caller do not affec
the state of the caller’s transaction.
15-16 BEA TUXEDO COBOL Guide

How to Deal with Errors

by
t The caller is vulnerable to its own transaction timing out as it waits for its reply.

t If no reply is expected, the caller’s transaction cannot be affected in any way
the communication call.

Figure 15-1 Transaction Roles of TPFORWAR and TPRETURN with
AUTOTRAN
BEA TUXEDO COBOL Guide 15-17

15 Error Management

y.

by

them
 Service Starts New Explicit Transaction

If a communication call is made with TPNOTRAN, and the called service is not
automatically placed in transaction mode by a configuration option, the service can
define as many transactions as it wants with explicit calls to TPBEGIN, TPCOMMIT, and
TPABORT. As a result, the transaction is already completed before the call to TPRETURN.
What are the implications?

t TPRETURN plays no transaction role; that is, the role of TPRETURN would be
exactly the same whether transactions were explicitly defined within the service
routine or not.

t TPRETURN can send any value back in TP-RETURN-VAL regardless of the
outcome of the transaction.

t Typically the errors returned will be processing errors, record type errors, or
application failure and the normal rules for TPESVCFAIL, TPEITYPE/TPEOTYPE,
and TPESVCERR are followed.

t Any failed messages or application failures returned to the caller do not affect
the state of the caller’s transaction.

t The caller is vulnerable to its own transaction timing out as it waits for its repl

t If no reply is expected, the caller’s transaction cannot be affected in any way
the communication call.

Transaction Rules

Certain rules are in effect when processes perform in transaction mode. Many of
have been touched upon already, but now, by way of summary, let’s bring them
together and discuss them in one place.
15-18 BEA TUXEDO COBOL Guide

Transaction Rules
Communication Etiquette

The basic communication etiquette that must be observed while in transaction mode is
as follows:

t processes that are participants in the same transaction must require replies for
their requests

t requests requiring no reply can be made only if TPACALL is set to TPNOTRAN or
TPNOREPLY

t a service must retrieve all asynchronous replies before calling TPRETURN or
TPFORWAR (this applies regardless of transaction mode)

t the initiator must retrieve all asynchronous replies before calling TPCOMMIT

t the asynchronous replies that must be retrieved include those that are expected
from non-participants of the transaction, that is replies expected for requests
made with TPACALL suppressing the transaction but not the reply

t if a transaction has not timed out but is marked abort-only, further
communication should be performed with TPNOTRAN set so that the work done as
a result of the communication has lasting effect after the transaction is rolled
back

t if a transaction has timed out,

t the descriptor for the timed out call becomes stale and any further reference
to it will return TPEBADDESC

t further calls to TPGETRPLY or TPRECV for any outstanding descriptors will
return the global state of transaction time-out by setting TP-STATUS to
TPETIME

t asynchronous calls can be made with TPACALL set to TPNOREPLY or
TPNOBLOCK or TPNOTRAN

t once a transaction has been marked abort-only for reasons other than time-out, a
call to TPGETRPLY will return whatever represents the local state of the call, that
is, it can either return success or an error code that represents the local condition

t once a descriptor is used with TPGETRPLY to retrieve a reply or with TPSEND or
TPRECV to report an error condition, it becomes invalid and any further reference
to it will return TPEBADDESC (this applies regardless of transaction mode)

t once a transaction is aborted, all outstanding communications handles become
stale, and any further reference to them will return TPEBADDESC
BEA TUXEDO COBOL Guide 15-19

15 Error Management
BEA TUXEDO System-Supplied Subroutines

In both the standard subroutines, namely TPSVRINIT and TPSVRDONE, transactions
may be defined and communication may be performed. What rules must they follow?

TPSVRINIT

The BEA TUXEDO system server abstraction calls TPSVRINIT during initialization.
This routine is called after the process has become a server but before it handles service
requests. If TPSVRINIT performs any asynchronous communication, all replies must
be retrieved before returning, or the BEA TUXEDO system will ignore all pending
replies and the server exits. If TPSVRINIT defines any transactions, they must be
completed with all asynchronous replies retrieved before returning, or the BEA
TUXEDO system will abort the transaction and ignore the outstanding replies. The
server exits gracefully.

TPSVRDONE

The BEA TUXEDO system server abstraction calls TPSVRDONE after it has finished
processing service requests but before it exits. Its services are no longer advertised, but
it has not yet left the application. If TPSVRDONE initiates communication, it must
retrieve all outstanding replies before it returns, or the pending replies will be ignored
by the BEA TUXEDO system and the server exits. If a transaction has been started
within this subroutine, it must be completed with all replies retrieved, or the BEA
TUXEDO system will abort the transaction and ignore the replies. The server exits.

Leaving the Application

TPTERM is used to remove a client from an application. What transaction rules must it
obey? If the client is in transaction mode, the call fails with TPEPROTO returned in
TP-STATUS, and the client is still part of the application and in transaction mode. When
the call is successful, no further communication or participation in transactions is
allowed because the process is no longer part of the application.
15-20 BEA TUXEDO COBOL Guide

Global Transactions and Resource Managers

 you
 abort

n

’s

a
ome

other
n
urce
ct.

de) for
ethod
Global Transactions and Resource Managers

An interesting point arises when using the ATMI transaction calls to define
transactions. The BEA TUXEDO system makes an internal call to pass the global
transaction information to each resource manager participating in the transaction.
When TPCOMMIT or TPABORT is called, the BEA TUXEDO system makes internal calls
to direct each resource manager to commit or abort the work they did on behalf of the
caller’s global transaction. When you write service routines in a DTP environment
need not and should not make resource manager-specific calls to start, commit, or
transactions. When a global transaction has been initiated either explicitly or
implicitly, you should not make explicit calls to the resource manager’s transactio
calls in your application code. Failure to follow this transaction rule will give
indeterminate results.

This represents a good occasion to use the transaction call, TPGETLEV, to determine if
a process is already in a global transaction before calling the resource manager
transaction call.

Some resource managers offer specific options in their interface. (For example,
resource manager might offer various transaction consistency levels or flags.) S
resource manager providers offer programmers of distributed applications the
opportunity to negotiate these options using resource manager-specific calls; in
resource managers these options are hard-coded in the version of the transactio
interface supplied by the resource manager provider. Documentation for the reso
managers you are using should be consulted for further information on this subje

In the BEA TUXEDO System/SQL Resource Manager, the set transaction
statement is used to negotiate specific options (consistency level and access mo
a transaction that has already been started by the BEA TUXEDO system. The m
of setting such options will vary for other resource managers.
BEA TUXEDO COBOL Guide 15-21

15 Error Management
The Central Event Log

The central event log is a UNIX System file to which you can send messages from
BEA TUXEDO clients and services. Writing to the central event log is accomplished
through the USERLOG routine. The central event log simply provides a record of events
considered worth recording. Any organized analysis of the central event log must be
provided by the application.

How the Log Is Named

One of the system parameters set up by the administrator determines the absolute
pathname prefix of the userlog error message file on each machine. The USERLOG
routine concatenates the month, day and year in the form mmddyy to the prefix to form
the full file name of the central event log. That means that if a process sends a message
to the central event log on succeeding days, the message is written into different files.

What Log Entries Look Like

Each log entry consists of a tag and message text.

t A tag is made up of the following:

t time of day (hhmmss)

t name of the machine (the name that is returned by uname -n)

t name and process-ID of the process calling USERLOG

t The message text for BEA TUXEDO system messages is preceded by the
message catalog name, message number, and classification level.

For example, if the call

01 LOG-REC PIC X(15) VALUE "UNKNOWN USER ".
01 LOGREC-LEN PIC S9(9) VALUES IS 13.
CALL "USERLOG" USING LOG-REC LOGREC-LEN TPSTATUS-REC.
15-22 BEA TUXEDO COBOL Guide

The Central Event Log
is made at 4:22:14pm by the security program, on a machine where uname -n
returns the value mach1, the resulting log entry will look like this:

162214.mach1!security.23451: UNKNOWN USER

assuming 23451 is the process ID for security.

If the above message was generated by the BEA TUXEDO system (as opposed to the
application), it might look like this:

162214.mach1!security.23451: COBAPI_CAT: 999: UNKNOWN USER

where COBAPI_CAT: 999: represents a message catalog name and message number.

If the message was sent to the central event log while the process is in transaction
mode, the user log entry will have additional components in the tag. These components
consist of the literal gtrid followed by three long hexadecimal integers. The integers
uniquely identify the global transaction and make up what is referred to as the global
transaction identifier. This identifier is used mainly for administrative purposes, but it
does make an appearance in the tag that prefixes the messages in the central event log.
If the foregoing message is written to the central event log in transaction mode, the
resulting log entry will look like this:

162214.mach1!security.23451: gtrid x2 x24e1b803 x239:
 UNKNOWN USER

How to Write to the Event Log

You can either have the error message you wish to write to the log in a record and use
the record name as the argument to the call, or include the message as a literal within
quotation marks as the argument to the call, as is shown in the example below.

01 TPSTATUS-REC.
 COPY TPSTATUS.
01 LOGMSG PIC X(50).
01 LOGMSG-LEN PIC S9(9) COMP-5.
. . .
CALL "TPOPEN" USING TPSTSTUS-REC.
IF NOT TPOK
 MOVE "TPSVRINIT: Cannot Open Data Base" TO LOGMSG
 MOVE 43 LOGMSG-LEN
 CALL "USERLOG" USING LOGMSG
 LOGMSG-LEN
 TPSTATUS-REC.
. . .

In this example, the message is sent to the central event log if TPOPEN is not successful.
BEA TUXEDO COBOL Guide 15-23

15 Error Management
15-24 BEA TUXEDO COBOL Guide

CHAPTER
16 Workstation COBOL
Language Binding
Feature

Introduction

This chapter specifically covers the use of the COBOL language binding feature of the
Workstation on the following workstation platforms:

t UNIX

t MS-DOS

t Windows

t OS/2

The material in this chapter is intended to supplement the material presented in the
programming chapters of this guide and the BEA TUXEDO Workstation Guide.
BEA TUXEDO COBOL Guide 16-1

16 Workstation COBOL Language Binding Feature
UNIX

Programming Consideration with UNIX Clients

This section covers items specific to writing and building BEA TUXEDO COBOL
client programs to run under UNIX.

Writing Client Programs

COBOL client programs for UNIX workstations are the same as COBOL client
programs within the BEA TUXEDO administrative domain. You do have available all
of the ATMI functions.

Building Client Programs

Workstation client programs are compiled and link edited with the buildclient
command. If you are building a UNIX Workstation client on the native node, use the
-w option. This specifies that the client should be built using the workstation libraries.
On a native node, where both native and workstation libraries are present, the default
is to use the native libraries. The -w option ensures that the correct libraries for a
workstation client are used. On a workstation, where only the workstation libraries are
present, it is not necessary to use the -w.

Listing 16-1 shows an example of the buildclient command line on the native node.

Listing 16-1 Example of UNIX buildclient Command Lines

ALTCC=cobcc ALTCFLAGS="-I /APPDIR/include"
COBCPY=$TUXDIR/cobinclude
COBOPT="-C ANS85 -C ALIGN=8 -C NOIBMCOMP -C TRUNC=ANSI -C OSEXT=cbl"
export COBOPT COBCPY ALTCC ALTCFLAGS
buildclient -C -w -o empclient -f name.cbl -f "userlib1.a userlib2.a"

The -o option provides a name for your a.out file. Input files are specified with a -f
firstfiles option in Listing 16-1 to indicate that they are called in ahead of system
libraries. buildclient needs TUXDIR to locate system libraries. CC defaults to cc, but
can be set to another compiler as in the example.
16-2 BEA TUXEDO COBOL Guide

UNIX

nt’s

h
 the
e

,

by all

ified
ive
itly

t
sk.
n

al

a

d.
Environment Variables

Workstation clients make use of several environment variables. The following are
checked by TPINITIALIZE when the workstation client attempts to join the
application:

WSENVFILE

names a file containing environment variable settings to be set in the clie
environment.

WSNADDR

specifies the network address of the workstation listener process throug
which the client gains access to the application. Use the value specified in
application configuration file for the workstation listener to be called. If th
value begins with the characters 0x, it is interpreted as a string of hex-digits
otherwise it is interpreted as ASCII characters.

WSDEVICE

is the device name to be used to access the network and is not required
transport layer interfaces.

WSTYPE

is used within TPINITIALIZE when invoked by a workstation client to
negotiate encode/decode responsibilities with the native site. An unspec
WSTYPE always causes encoding, even if it is also unspecified on the nat
site. The only way to ensure that encode/decode is turned off is to explic
specify the same WSTYPE value for both sites.

WSRPLYMAX

is used by TPINITIALIZE to set the maximum amount of core memory tha
ATMI uses for buffering application replies before they are dumped to di
The system default limit for this is 32,000 bytes. The available memory o
your machine is the key factor in deciding whether you should use
WSRPLYMAX to set a lower limit. Writing replies to disk causes a substanti
reduction in performance.

Other environment variables may be needed by Workstation COBOL clients on
UNIX workstation depending on what BEA TUXEDO features are being used.

Note: MicroFocus COBOL does not support shared objects on UNIX 3.2. LIBNSL.a
is delivered as a shared object and is required by buildclient when linking
a workstation client. As a result, Workstation for UNIX 3.2 is not supporte
BEA TUXEDO COBOL Guide 16-3

16 Workstation COBOL Language Binding Feature
DOS

Programming Considerations with MS-DOS Clients

This section covers items specific to writing and building BEA TUXEDO COBOL
client programs to run under MS-DOS.

Writing Client Programs

COBOL client programs for MS-DOS workstations are the same as COBOL client
programs within the BEA TUXEDO administrative domain. You have available all of
the ATMI functions.

Building Client Programs

The COBOL source files that call ATMI functions must be compiled with the COBOL
compiler using LITLINK option. Workstation client object files are link edited with
the buildclt command. While the syntax of the command is straightforward, the
usage varies according to the compilation system used. Listing 16-2 shows a sample
buildclt command line.

Listing 16-2 Example of MS-DOS buildclt Command Lines

COBCPY=C:\TUXEDO\COBINC
COBDIR=C:\COBOL\LBR;C:\COBOL\EXEDLL
PATH=C:\C700\BIN;C:\COBOL\EXEDLL;...
TUXDIR=C:\tuxedo
INCLUDE=C:\TUXEDO\INCLUDE;C:\NET\TOOLKIT\INCLUDE;C:\C700\INCLUDE
LIB=C:\NET\TOOLKIT\LIB;C:\C700\LIB;C:\TUXEDO\LIB;C:\COBOL\LIB
buildclt -C -o EMP.EXE -f EMP+MFC7INTF+C7DOSIF+C7DOSLB \
 -f "/NOE/NOI/SE:300/CO/ST:10000" -l "LLIBSOCK LLIBCE"
16-4 BEA TUXEDO COBOL Guide

DOS

nt’s

h
 the
e

,

ified
ive
 the
buildclt has the following options:

-o name
the file name of the executable file being created. The default is client.exe.

-f firstfiles
one or more object files to be included before the BEA TUXEDO libraries.
-f can also be used to pass options to the compiler or linker. If more than one
file name is specified, the names are separated by white space and the list is
enclosed in quotation marks. The -f option can appear more than once.

-l libfiles
specifies libraries to be included after the BEA TUXEDO libraries. If more
than one file name is specified, the names are separated by white space and
the list is enclosed in quotation marks. The -l option can appear more than
once.

After the client programs have been developed and tested they can be moved to the
MS-DOS workstations where they will be available to users.

Environment Variables

Workstation clients make use of several environment variables. The following are
checked by TPINITIALIZE when the client attempts to join the application:

WSENVFILE

names a file containing environment variable settings to be set in the clie
environment. All of the other environment variables needed by client
programs can be contained in this file.

WSNADDR

specifies the network address of the workstation listener process throug
which the client gains access to the application. Use the value specified in
application configuration file for the workstation listener to be called. If th
value begins with the characters 0x, it is interpreted as a string of hex-digits
otherwise it is interpreted as ASCII characters.

WSTYPE

is used within TPINITIALIZE when invoked by a workstation client to
negotiate encode/decode responsibilities with the native site. An unspec
WSTYPE always causes encoding, even if it is also unspecified on the nat
site. The only way to ensure that encode/decode is turned off is to specify
same WSTYPE value for both sites.
BEA TUXEDO COBOL Guide 16-5

16 Workstation COBOL Language Binding Feature
WSRPLYMAX

is used by TPINITIALIZE to set the maximum amount of core memory that
ATMI uses for buffering application replies before they are dumped to disk.
The system default limit for this is 32,000 bytes. The available memory on
your machine is the key factor in deciding whether you should use
WSRPLYMAX to set a lower limit. Writing replies to disk causes a substantial
reduction in performance.

Other environment variables may be needed by Workstation COBOL clients on an
MS-DOS workstation depending on what BEA TUXEDO features are being used.

Windows

Programming Considerations with the Windows DLL

This section covers items specific to writing and building BEA TUXEDO system
client programs to run under Microsoft Windows. They are intended to supplement the
material presented in the programming chapters of this guide and the BEA TUXEDO
Workstation Guide.

Writing Client Programs

The ATMI calls used in Windows client programs are the same as those described in
the programming chapters of this guide.

Building Client Programs

The COBOL source files that call ATMI functions must be compiled with the COBOL
compiler using LITLINK option. Workstation client object files are link edited with
the buildclt command. While the syntax of the command is straightforward, the
usage varies according to the compilation system used. Listing 16-3 shows a sample
buildclt command line.
16-6 BEA TUXEDO COBOL Guide

Windows
Listing 16-3 Example of Windows buildclt Command Lines

COBCPY=C:\TUXEDO\COBINC
COBDIR=C:\COBOL\LBR;C:\COBOL\EXEDLL
PATH=C:\COBOL\EXEDLL;...
TUXDIR=C:\tuxedo
LIB=C:\NET\TOOLKIT\LIB;C:\MSVC\LIB;C:\TUXEDO\LIB;C:\COBOL\LIB
buildclt -C \-W \-o EMP.EXE \-f EMP \
 -f "/NOD/NOI/NOE/CO/SE:300" -d EMP.DEF -l WLIBSOCK

For Windows NT:

buildclt -C -W -o EMP.EXE \
 -f empobj -d emp.def

buildclt has the following options:

-W

specifies that the client should be built using Windows libraries.

-d deffile
specifies the module definition file used for linking a Windows program.

-o name
the file name of the executable file being created. The default is client.exe.

-f firstfiles
one or more object files to be included before the BEA TUXEDO libraries.
-f can also be used to pass options to the compiler or linker. If more than one
file name is specified, the names are separated by white space and the list is
enclosed in quotation marks. The -f option can appear more than once.

-l libfiles
specifies libraries to be included after the BEA TUXEDO libraries. If more
than one file name is specified, the names are separated by white space and
the list is enclosed in quotation marks. The -l option can appear more than
once.

Listing 16-4 is the module definition file used in the Windows buildclt command
line.
BEA TUXEDO COBOL Guide 16-7

16 Workstation COBOL Language Binding Feature
Listing 16-4 Example of a Windows Module Definition File

NAME EMP
DESCRIPTION "EMPLOYEE CLIENT ATMI"
EXETYPE WINDOWS
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD FIXED MULTIPLE
HEAPSIZE 15000
STACKSIZE 15000
EXPORTS WordProc

Building ACCEPT/DISPLAY Clients

To build an executable client for an ACCEPT/DISPLAY application (like
CSIMPAPP, for example), use the procedure shown in Listing 16-5.

Listing 16-5 Building ACCEPT/DISPLAY clients

a) compile the COBOL module and create a file.obj
 cobol file.cbl omf(obj) litlink;
b) use the following link statement
 link FILE+cblwinaf,,,\
 wcobatmi+cobws+wtuxws+ \
 lcobol+lcoboldw+cobw+cobfp87w+ \
 wlibsock,FILE.def /nod/noe;
 For Windows NT the link statement is:
 cbllink -oEMP.exe EMP.obj \
 cobws.lib ncobatmi.lib wtuxws32.lib \
 libcmt.lib user32.lib

Blocking Network Behavior

Refer to the BEA TUXEDO Workstation Guide.

Restoring the Environment

Refer to the BEA TUXEDO Workstation Guide.
16-8 BEA TUXEDO COBOL Guide

OS/2
OS/2

Programming Considerations with OS/2 Clients

This section covers items specific to writing and building BEA TUXEDO System
COBOL client programs to run under OS/2. They are intended to supplement the
material presented in the programming chapters of this guide and the BEA TUXEDO
Workstation Guide.

Writing Presentation Manager Client Programs

The ATMI calls used in Presentation Manager client programs are the same as those
described in the programming chapters of this guide. They must, however, be
incorporated into Presentation Manager modules.

Blocking Network Behavior

Refer to the BEA TUXEDO Workstation Guide.

Building Client Programs

The COBOL source files that call ATMI functions must be compiled with the COBOL
compiler using LITLINK options and must use the OPTLINK calling convention.
There is an example of the use of the OPTLINK calling convention in
$TUXDIR/apps/CSIMPAPP/ws/os2/csimpcl.cbl. Workstation client object files
are link edited with the buildclt command. While the syntax of the command is
straightforward, the usage varies according to the compilation system used.
Listing 16-6 shows a sample buildclt.
BEA TUXEDO COBOL Guide 16-9

16 Workstation COBOL Language Binding Feature
Listing 16-6 Example of OS/2 Presentation Manager buildclt Command Lines

COBCPY=C:\TUXEDO\COBINC
COBDIR=C:\COBOL\LBR;C:\COBOL\EXEDLL
PATH=C:\COBOL\EXEDLL;...
TUXDIR=C:\tuxedo

LIB=C:\TCPIP\LIB;C:\IBMCPP\LIB;C:\TOOLKT2\OS2LIB;C:\TUXEDO\LIB;C:\COBOL\LIB
buildclt -C -P -o emp.exe -f emp.obj -d emp.def

buildclt has the following options:

-P

specifies that the client should be built using OS/2 Presentation Manager
libraries.

-o name
the file name of the executable file being created. The default is client.exe.

-d deffile
specifies the module definition file used for linking a Windows program.

-f firstfiles
one or more object files to be included before the BEA TUXEDO libraries.
-f can also be used to pass options to the compiler or linker. If more than one
file name is specified, the names are separated by white space and the list is
enclosed in quotation marks. The -f option can appear more than once.

-l libfiles
specifies libraries to be included after the BEA TUXEDO libraries. If more
than one file name is specified, the names are separated by white space and
the list is enclosed in quotation marks. The -l option can appear more than
once.

Listing 16-7 shows the module definition file used in the OS/2 Presentation Manager
buildclt command line.
16-10 BEA TUXEDO COBOL Guide

OS/2
Listing 16-7 Example of an OS/2 Presentation Manager Module Definition File

NAME EMP WINDOWAPI
PROTMODE
EXETYPE OS2
HEAPSIZE 15000
STACKSIZE 15000
EXPORTS EMPWNDPROC

Listing 16-8 shows a sample OS/2 character-mode buildclt command line.

Listing 16-8 Example of OS/2 Character-Mode buildclt Command Lines

COBCPY=C:\TUXEDO\COBINC
COBDIR=C:\COBOL\LBR;C:\COBOL\EXEDLL
PATH=C:\COBOL\EXEDLL;...
TUXDIR=C:\tuxedo
LIB=C:\TCPIP\LIB;C:\MSVC\LIB;C:\TUXEDO\LIB;C:\COBOL\LIB
buildclt -C -O -o emp.exe -f emp.obj

buildclt has the following option:

-O

specifies that the client should be built using OS/2 character-mode libraries.
BEA TUXEDO COBOL Guide 16-11

16 Workstation COBOL Language Binding Feature
16-12 BEA TUXEDO COBOL Guide

	Copyright
	1 Introduction and a Simple Application
	About This Chapter
	Some Preliminaries

	The CSIMPAPP Tutorial
	Step 1: Copy the CSIMPAPP Files
	Step 2: Examine the Client Program
	References

	Step 3: Compile the Client
	References

	Step 4: Examine the Server
	References

	Step 5: Build the Server
	References

	Step 6: Edit the Configuration File
	References

	Step 7: Load the Configuration File
	References

	Step 8: Boot the Application
	References

	Step 9: Enter a Request
	Step 10: Using tmadmin
	References

	Step 11: Shut Down the Application
	References

	Summary

	2 STOCKAPP Files
	Directory Structure for STOCKAPP
	Files
	Edit STKVAR to Set Environment Variables
	Additional PATH Component for SunOS

	3 STOCKAPP Client Programs
	A Look at STOCKAPP Client Programs
	System Client Programs
	Record Types

	BUY.cbl—A Request/response Client
	BUY.cbl Source Code

	Building Client Programs
	References

	4 STOCKAPP Servers
	A Look at STOCKAPP Servers
	Service Definitions
	Building Servers
	Using the buildserver Command in the STOCKAPP
	The BUYSELL Server
	Servers Built in STOCKAPP.mk

	References

	5 The STOCKAPP Makefile
	A Look at the STOCKAPP Makefile
	Editing STOCKAPP.mk
	TUXDIR
	APPDIR

	Running STOCKAPP.mk

	6 Edit STOCKAPP Configuration File
	Configuration File for STOCKAPP
	Notes to Listing�6-1
	References

	7 Create TUXCONFIG
	Loading the Configuration File
	References

	8 Boot the Application
	Executing tmboot
	The Userlog: ULOG
	References

	9 Run STOCKAPP
	Run the Application
	Running the audit Client Program
	Using tmadmin
	Shutting STOCKAPP Down
	References

	10 The BEA TUXEDO System Development Environment
	Introduction
	Client Processes
	Basic Client Operation
	Client Sending Repeated Service Requests

	Server Processes and Service Subroutines
	Basic Server Operation
	Servers as Requesters
	The ATMI Calls
	An Overview of X/Open's TX Interface
	Typed Records
	Using VIEW and FML Buffers
	Relationship Between VIEW Buffers and FML
	Corresponding Data Type Definitions
	Creating COBOL COPY Files from View Descriptions

	FML/VIEW Conversion
	Environment Variables
	Configuration File
	Making the Configuration Usable

	The Bulletin Board
	Starting and Stopping an Application

	11 Writing Client Programs
	Introduction
	Preliminaries
	Client Naming
	Unsolicited Notification
	Security Strategy
	The TPINFDEF-REC Record
	The USRNAME, CLTNAME and GRPNAME Members of TPINFDEF-REC
	The PASSWD Member of TPINFDEF-REC
	The Settings Members of TPINFDEF-REC
	The DATALEN Member of TPINFDEF-REC

	Joining and Leaving an Application
	Record Management
	Typed Records for Messages
	Record Types: STRING
	Record Types: CARRAY
	Record Types: FML and FML32
	Record Types: VIEW, X_COMMON and VIEW32
	Record Types: Summary

	ATMI Record Calls

	Service Calls
	Sending Synchronous Messages: TPCALL
	Values for the Settings: TPCALL
	Examples of the Use of Settings

	Sending Asynchronous Messages: TPACALL
	Values for the Settings: TPACALL
	Getting an Asynchronous Reply: TPGETRPLY
	Getting and Setting Priority
	Initiating a Conversational Connection
	Sending a Broadcast Message

	Handling Unsolicited Notification

	Compiling Client Programs
	The buildclient Command
	The buildclient -o Option
	The buildclient -f and -l Options
	The buildclient -r Option

	12 Writing Service Routines
	Writing Request/Response Services
	Application Service Template
	The TPSVCSTART Routine
	The TPSVCDEF-REC Structure
	The Settings of TPSVCDEF-REC
	The APPKEY Member of TPSVCDEF-REC
	The CLIENTID Member of TPSVCDEF-REC

	Accessing Data that Comes with the Request
	Checking The Priority of the Service Request

	The TPRETURN and TPFORWAR Routines
	Sending Replies
	TPRETURN Arguments: TP-RETURN-VAL IN TPSVCRET-REC
	TPRETURN Arguments: APPL-CODE IN TPSVCRET-REC
	TPRETURN Arguments: DATA-REC and LEN IN TPTYPE-REC
	TPRETURN Example
	Invalidating Handles: TPCANCEL

	Forwarding Requests
	TPFORWAR Arguments
	TPFORWAR Example

	Sending Unsolicited Messages
	TPBROADCAST Arguments
	TPBROADCAST Example
	TPNOTIFY Arguments

	Advertising, Unadvertising Services
	TPADVERTISE Arguments
	TPADVERTISE Example
	TPUNADVERTISE

	System-supplied Servers and Subroutines
	System-Supplied Server: AUTHSVR

	The BEA TUXEDO System Controlling Program
	BEA TUXEDO System-Supplied Subroutines
	TPSVRINIT
	Using TPSVRINIT to Receive Command Line Options
	Using TPSVRINIT to Open a Resource Manager
	TPSVRDONE

	Compiling Subroutines to Build Servers
	The buildserver Command
	The buildserver -o Option
	The buildserver -f and -l Options
	The buildserver -r Option
	The buildserver -s Option

	13 Conversational Clients and Services
	Introduction
	Conversational Mode
	The Communications Handle
	Record Management
	Joining an Application
	Establishing a Connection
	Values for the Settings: TPCONNECT
	Sending
	Values for the Settings: TPSEND
	Receiving
	Values for the Settings: TPRECV

	Ending a Conversation
	Subordinate Calls TPRETURN
	Hierarchy of Connections and TPRETURN

	Ending a Conversation: Summary
	Events and Their Significance
	Disorderly Disconnection
	Request/Response Calls and Conversations

	Configuration Parameters
	Building Conversational Clients and Servers

	14 Global Transactions in the BEA TUXEDO System
	Introduction
	What Is a Global Transaction?
	ATMI Transaction Primitives
	Explicitly Defining a Global Transaction
	Starting the Transaction
	Terminating the Transaction

	Implicitly Defining a Global Transaction
	What a Service in an XA-Compliant Server Group Expects

	15 Error Management
	Introduction
	Communicating Errors
	Values of TP-STATUS
	Protocol Errors
	BEA TUXEDO System Errors
	Operating System Errors
	Errors from Invalid Arguments
	Other Possible Error Categories
	No Entry Errors
	Permission Errors
	Resource Manager Errors
	Transaction-Related Errors
	Typed Record Errors
	Communication Handle Errors
	General Communication Call Errors
	Conversational Errors
	Time-out Errors

	Errors Leading to Abort
	Heuristic Decision Errors

	How to Deal with Errors
	Fatal Transaction Errors
	Time-out
	Blocking vs. Transaction Time-out
	Effect on TPCOMMIT
	Effect of the TPNOTRAN Flag
	Roles of TPRETURN and TPFORWAR
	Service in Same Transaction as Caller
	Service in Different Transaction with AUTOTRAN Set
	Service Starts New Explicit Transaction

	Transaction Rules
	Communication Etiquette
	BEA TUXEDO System-Supplied Subroutines
	TPSVRINIT
	TPSVRDONE

	Leaving the Application
	Global Transactions and Resource Managers
	The Central Event Log
	How the Log Is Named
	What Log Entries Look Like
	How to Write to the Event Log

	16 Workstation COBOL Language Binding Feature
	Introduction
	UNIX
	Programming Consideration with UNIX Clients
	Writing Client Programs
	Building Client Programs
	Environment Variables

	DOS
	Programming Considerations with MS-DOS Clients
	Writing Client Programs
	Building Client Programs
	Environment Variables

	Windows
	Programming Considerations with the Windows DLL
	Writing Client Programs
	Building Client Programs
	Building ACCEPT/DISPLAY Clients

	OS/2
	Programming Considerations with OS/2 Clients
	Writing Presentation Manager Client Programs
	Blocking Network Behavior
	Building Client Programs

