BEA TUXEDO

COBOL Guide

BEA TUXEDO Release 6.5
Document Edition 6.5
February 1999

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Connect, BEA Jolt, BEA Manager, and BEA MessageQ are trademarks of
BEA Systems, Inc. BEA ObjectBroker is a registered trademark of BEA Systems, Inc. TUXEDO is a registered
trademark in the United States and other countries.

All other company names may be trademarks of the respective companies with which they are associated.
BEA TUXEDO COBOL Guide

Document Edition Date Software Version

6.5 February 1999 BEA TUXEDO Release 6.5

Contents

1. Introduction and a Simple Application

ADOUL ThiS ChaDLEN ...ttt sr e e e 1-1
SOME PreliMiNariesc.eieiierieriie et 1-2
The CSIMPAPP TULO @oviiiieiieee et 1-2
Step 1: Copy the CSIMPAPP Fil€S.....cccooiieiieee e 1-2
Step 2: Examine the Client Program ... ieeneein e 1-4
REFEIENCES.......ceieeiit ettt 1-7
Step 3: Compilethe Client ... 1-8
REFEIENCES.......ceiee it 1-8
Step 4: EXamine the SEIVEXc.o i 1-8
REFEIENCES.......ceiieceiet et 1-12
Step 5: BUild the SErVEY ... e 1-12
REFEIENCES.......ceieeeeiee s 1-12
Step 6: Edit the Configuration File ... 1-13
REFEIENCES.......ceiceieee s 1-14
Step 7: Load the Configuration File..........cccooeeiiiiniiir e 1-14
REFEIENCES.......ceiceiee s 1-15
Step 8: Boot the AppliCationcooveeiireieeecre e 1-15
REFEIENCES.......ceeceie s 1-15
Step 9: ENter @ REQUESEociiiiiee ettt 1-15
Step 10: USiNG tMadMIiNoo.eiie e e e e 1-16
REFEIENCES.......ceeeeie s 1-16
Step 11: Shut Down the AppliCation...........cooeviieiercreeee e 1-17
REFEIENCES.......ceiee i 1-17
SUMIMEBY e.vttiitieetieestaesie e e e s ste e st e s e e sre e s stesssee st e asseesreeesteannnessseansaesreenns 1-18

BEA TUXEDO COBOL Guide iii

2. STOCKAPP Files

Directory Structure for STOCKAPRPc.ooiiie et e 2-1
] =3RS 2-1
Additional PATH Component for SUNOS...........ccoeiirereneieie e 2-6
3. STOCKAPP (lient Programs
A Look at STOCKAPP Client Programsccccoceveveeneeienenieee e seeseeneas 31
System Client PrOgrams..........c.ooeoeeieeirine e seeee e se e s 31
RECOI TYPES....eieeeeietie ettt sttt sttt st e et e e enea 3-2
BUY.cbl—A Request/response Client ..o, -2
BUY.CDI SOUICE COUE ...oiiiiiiiie et 3-3
Building Client Programsueeeiiieaioi et ee et eee e 3-:
RETEIENCES ... 3
4. STOCKAPP Servers
A LOOK @t STOCKAPP SEIVEIS. .. .utiiiiiiiiie ettt ae et ee e 4-
Service DefiNItIONScoooii i 4-;
BUIIAING SEIVEIS ...t 4-;
Using the buildserver Command in the STOCKAPP..........ccocoiiiiiieiniinnns 4-2
The BUYSELL SEIVEN ..ottt 4-3
Servers Built in STOCKAPP.MKoooiiiiiiiii e 4-4
RETEIEBNCES ... et 4
5. The STOCKAPP Makefile
A Look at the STOCKAPP MaKefilecooiiiiiiee e 5-1
Editing STOCKAPP.IMKutiiiiiiii it 5-1
TUXDIR . e e e e e e e e e 5-1
APPDIR .. e 5-2
RUNNING STOCKAPP.IMK....uuttiitiie it 5-2
6. Edit STOCKAPP Configuration File
Configuration File for STOCKAPPoocoiiiiiiiii e 6-1
INT0] =TT (o B I E] T T 0 PP UPOURPN 6-:
RETEIENCES ... et 6

BEA TUXEDO COBOL Guide

7. Create TUXCONFIG

Loading the Configuration File..........ccoo e 7-1
REFEIENCES ...ttt 7-2

8. Boot the Application

EXECULING tMDOOL. ..ottt e et e 81
The Userlog: ULOG........ooie ettt e e 8-2
REFEIBINCES.. ...t e e e 8-2

9. Run STOCKAPP

RUN the APPIICALTON......eeieiee et e e e ene e 9-1

Running the audit Client Program ..o 9-1
USING tMaOMIN ..ot sr e raeens 9-2
Shutting STOCKAPP DOWNcoviiiiiieieee ettt 9-2
REFEIENCES.. ... e e e 9-2

10. The BEA TUXEDO System Development Environment

[T g0 o (17 1o o OO RS 10-1

ClIENE PrOCESSES.c.eceeetieie ettt ettt e sttt ae e e bes e e e e aneeseeneeneas 10-2
BasiC Client OPErationcccceeeereie e se e s enes 10-2

Client Sending Repeated Service REQUESEScccoeeerereneseeseeenne 10-3
Server Processes and Service SUDIOULINES.c.evoerereveereenie e 10-3
BaSiC SErVer OPeratioN........cccciireueie et s e s eees 10-3
SErVErS 8S REQUESLENS......cc.uiiiiiiieee ettt seesiee et st e e es 10-5
The ATMI CallS ..ottt e et et s 10-6
An Overview of X/Open's TX INterfaceccoovveeveievenee e 10-7
TYPEA RECOIUS. ...ttt ettt e anen e 10-9

Using VIEW and FML BUFfErS......coco i 10-10

Relationship Between VIEW Buffersand FMLcccocveiiinn. 10-11

Corresponding Data Type Definitions..........cooeveeneieieencie v 10-13

Creating COBOL COPY Filesfrom View Descriptions................ 10-14
FML/VIEW CONVEISION......cciieireiieeie ettt sresie s e e eien s sese v 10-15
Environment VariableS.........cco i 10-18
Configuration Filecueoeie e e e e e 10-19

Making the Configuration Usable............ccocevveveniece e, 10-19

BEA TUXEDO COBOL Guide \Y

The BUELIN BOAIcoieieieiece et s 10-20
Starting and Stopping an Applicationccccevereieiennieeineens 10-20

11. Writing Client Programs

INEFOTUCTION <.ttt et en e 11-1

PrelimiNariES.o et e 11-2

CHENt NAMING ..ottt ea e 11-2

Unsolicited NOtICatioNcc.eoieieieeee e 11-3

SECUNLY SLALEOY ..eveeeeeueerereerieeteseereeeetee e eeesest s e e e s e seneesee e eseeseeeanas 11-4

The TPINFDEF-REC RECOId.........ccovieriieiienie et 11-7
The USRNAME, CLTNAME and GRPNAME Members of

TPINFDEF-REC ..ot iieiie et sestesestesestesessesessesnsesinsens 11-7

The PASSWD Member of TPINFDEF-REC...........cccccooveienievinieeennen. 11-7

The Settings Members of TPINFDEF-REC...........cccocvoivniieneienn. 11-8

The DATALEN Member of TPINFDEF-REC........ccccccovvvvivvnniinnn, 11-9

Joining and Leaving an AppliCationcocooeiririnie i 11-9

Record Management..........cccciiiiieieieereiecee sttt sttt st aes e st e 11-12

Typed Records fOr MESSAgES.......ccvrerirenierienee e 11-13

Record Types: STRING.......coivie e e 11-13

Record Types: CARRAY ...t e 11-13

Record Types: FML and FML32.......cccoco i 11-14

Record Types: VIEW, X_COMMON and VIEW32ccccoveuene 11-14

Record TYPES: SUMIMEAIYcoereiiereiierieseereeeieree e eresrese e sreseeseens 11-15

ATMI RECOId CallS.....oieiiee et 11-16

SEIVICE CallS .ttt e e e e 11-16

Sending Synchronous Messages: TPCALLccooveeccce e, 11-17

Valuesfor the Settings: TPCALLccocoveieiiiieeeeeeeeceee e e, 11-20

Examples of the Use of SEttingscccoovereieieneeneeieisrenecnens 11-22

Sending Asynchronous Messages: TPACALLcoeeveececiececieeee, 11-26

Valuesfor the Settings: TPACALL ..c.ooveee e 11-26

Getting an Asynchronous Reply: TPGETRPLYccccccoevevieveennes 11-29

Getting and Setting Priority........ccccovceeve v s, 11-29

Initiating a Conversational ConNNECtion...........ccccceevveeveeveeceeeseeereee. 11-34

Sending a Broadcast MESSage.........cccccueeuieveeeieeieeeiee et see st sie e 11-34

Handling Unsolicited Notificationcccccccvviivevn v 11-34

Vi BEA TUXEDO COBOL Guide

Compiling Client Programs..........cco i reeoeeeieierieeee st s 11-38

The buildclient Command...........cccoeieiririieniiee s 11-38
The buildclient -0 OPtioN ..o 11-38
The buildclient -f and -I Options..........coceoeriiiniiie e 11-38
The buildclient -r OptioN..........cooeieie i e 11-39

12. Writing Service Routines

Writing ReqUESt/RESPONSE SENVICES.cviieireeieiieriee et e 12-1
Application Service TEMPlateo e 12-2
The TPSVCSTART ROULINE.......oci ettt 12-3
The TPSV CDEF-REC StrUCIUFE.....c..civiieeieieeeee et 12-3
The Settings of TPSVCDEF-RECcocooveviiiiiieee e 12-4
The APPKEY Member of TPSVCDEF-REC..........ccoovieiinieeeee. 12-5
The CLIENTID Member of TPSVCDEF-REC.........ccccooveiireennne. 12-5
Accessing Data that Comes with the Request.............cccooveveeieinincceee, 12-5
Checking The Priority of the Service Request.........cccooveeieienecenne 12-8
The TPRETURN and TPFORWAR ROULINEScoeiiieiiirecieie e 12-11
SENAiNGg REPIIES. ... s 12-11
TPRETURN Arguments: TP-RETURN-VAL IN
TPSVCRET-REC ...ttt e e 12-12
TPRETURN Arguments: APPL-CODE IN TPSVCRET-REC...... 12-13
TPRETURN Arguments: DATA-REC and LEN IN
TPTYPE-REC.....c ot e 12-13
TPRETURN EXample.......cooo oo e 12-13
Invalidating Handles: TPCANCELcccoovevivieve e, 12-16
FOrwarding REQUESES........coeeiruireeieie ettt e e 12-17
TPFORWAR ATQUMENES ...ccvviiiiectieesieeeesiie e seiesssaesees e asnaesnnee s 12-18
TPFORWAR EX@MPIE.....coiieieeiieie et e 12-18
Sending Unsolicited MESSAgES..........coovvveeiieerieie ettt 12-20
TPBROADCAST ArQUMENTS......ccveieeieiiiiieesiesstieseeeiesssaesssessneens 12-20
TPBROADCAST EXaMPIe....ccoieiiie e e 12-22
TPNOTIFY ATQUMENES......ciiiiieceieiciie e e s seeee e stensnee st sseese e 12-22
Advertising, UnadvertiSing SErVICeS........coovvvvieveeceese et 12-23
TPADVERTISE ArQUMENTS.....cciiiiiieieieisiieeseesriessraesees e asnnesnnee s 12-24
TPADVERTISE EX8MPIE...c.uiiiieiieiie et 12-24
TPUNADVERTISE ...ttt s 12-25

BEA TUXEDO COBOL Guide Vii

System-supplied Servers and SUDIOULINES..........coerereiereenieie e eens 12-26

System-Supplied Server: AUTHSVR ..o 12-26
The BEA TUXEDO System Controlling Program............cccccoeveneeneeennenenne. 12-26
BEA TUXEDO System-Supplied Subroutines.............coccoeeeernecennene. 12-28
TPSVRINIT Lottt 12-28

Using TPSVRINIT to Receive Command Line Options................ 12-29

Using TPSVRINIT to Open a Resource Managercccceeeeenene. 12-30
TPSVRDONE ..ottt s 12-32
Compiling Subroutinesto Build SErVErs.........ccccoeirriie s 12-33
The buildserver Commandocoeiiieriiinenec e 12-34
Thebuildserver -0 OptioN ... 12-34
Thebuildserver -f and -1 OptioNS.........ccccoeierrieeiniree e 12-34

The buildserver -r OPtioN. ..o 12-35

The buildserver -S OptioN..........ocieerereee e 12-35

13. Conversational Clients and Services

INEFOTUCTION <.ttt et en e 13-1
Conversational MOE..........ooeeiruiriiieee et e 13-2
The Communications Handle...........cocooiiiiiiiie e 13-2
ReCOrd ManagemMeNtcoe et s eeen 13-2
JoiNiNg an APPlICALION.......ccueieieeieiieee et e e 13-3
Establishing a CONNECLION.........coceriiuiriie et 13-3
Valuesfor the Settings: TPCONNECTcoooeiiiiieierereee e 13-4

=T To] oo TSP 13-5
Valuesfor the Settings: TPSENDccccooevirievieie e 13-6
RECEIVING. ... ittt sr e saesraennas 13-7
Valuesfor the Settings: TPRECVcooovevieieciee e 13-8

ENding a CONVErSationc.cccoueiecieiieceee ettt st st sraeneeereens 13-9
Subordinate Calls TPRETURN........cccoiiiiriee e 13-9
Hierarchy of Connectionsand TPRETURNcccccvveveviieiiennens 13-10

Ending a Conversation: SUMMAIYccceeeveeiieeseeeiesresie e eseseensese s 13-11
Events and Their SignifiCancCe...........ccoccevee e cieie e 13-12
Disorderly DiSCONNECLION..........ccevveiieeiectie et ere e 13-13
Request/Response Calls and Conversations............ccoceeeeveereeieeeneeeenene 13-13
Configuration Parameters..........cooveieiieereeeiee ettt s 13-14
Building Conversational Clientsand SErvers.........cocoovvceevieiceeveeieeseesee s 13-15

Viii BEA TUXEDO COBOL Guide

14. Global Transactions in the BEA TUXEDO System

[T g0 o (17 1o o OO RS 14-1
What Isa Global TranSaCtion?.........cccueeireoeeerinere e 14-2
ATMI Transaction PrimitiVeS...........coeiereririeee e e 14-3
Explicitly Defining a Global Transactionccccooveeiieieveice e 14-3
Starting the TranSactioncccovevvevecie e 14-6
Terminating the TranSactioncoocoeeeririee s e 14-10
Implicitly Defining a Global Transactionccceeiinieninencie e 14-15
What a Service in an XA-Compliant Server Group Expects.......... 14-15
15. Error Management

[T g0 o (17 1o o OO RS 15-1
COMMUNICALING EITOIS ...ttt st st sttt eae e 15-2
Values Of TP-STATUS ..ottt e 15-2
PrOtOCOI EFTOIS ... ettt ettt sttt e e e enes 15-3
BEA TUXEDO SyStem EITOIS......cccocueiieieeeeeneee e seeseee e s 15-3
Operating SYSIEM ErTOrS......ooiueieiere et e en e e s 15-3
Errorsfrom Invalid Arguments...........ocoeererneneeinesee s e 154
Other Possible Error Categories.........oovvieieeuieie e 154

NO ENEPY EITOIS. ...t 15-5
PErMISSION EITOIS......coieiieeieeie et e e e 15-5
Resource Manager EITOIS.......ccciiiver et 15-6
Transaction-Related Errors.......ooocriieeeniniene e 15-6

Typed RECOI EFTOIS.cueieeieieeeie ettt e aeie e 15-6
Communication Handle ErTorsccccereieirenienie e 15-7

General Communication Call Errors..........ccoveveieiinecie e e 15-8
ConVersational EFTOrScoeeereereniesieseeeeie e e 15-9
TIME-0UL ETTOIS....ciiiitiiiieie ettt sttt s e e e b e 15-9
ErrorsLeading to ADOIcovievieee e 15-10
Heuristic DECISION EITOFS......c.cooiiieeeeie et e 15-10
HOW t0 D8l With EFTOIS.....cuceiieieciietie ettt e e s 15-11
Fatal Transaction EXTOrS......cccociriierie it e s 15-12
THME-OUL ...ttt e ettt e e s enee s 15-13
Blocking vs. Transaction TiME-0UL........c.cccveevecriesesrieie e e ce s 15-13
Effect ON TPCOMMIT ..ottt e e e 15-14

BEA TUXEDO COBOL Guide iX

Effect of the TPNOTRAN Flag.......cccoviiiiiiiie e 15-14

Roles of TPRETURN and TPFORWAR ..ot 15-15
Servicein Same Transaction as Callerocooeiiiieeirniene e 15-16
Servicein Different Transaction with AUTOTRAN Setccooceeneeee. 15-16
Service Starts New Explicit Transaction..........cccvceveeceeeneniecescnceneeeen. 15-18
TranSaCtioN RUIESc..oiiieiii ettt e e e 15-18
CommuniCation ELiQUELLE...........coiereiieee et 15-19
BEA TUXEDO System-Supplied Subroutines.............cocooeoeernecennnne. 15-20
TPSVRINIT Lottt e e e 15-20
TPSVRDONE ...ttt sttt et s s bbb e 15-20

Leaving the APPlICALIONocciieuiieee e 15-20
Globa Transactions and Resource Managers..........coe v veeeieeeeserreeeesieriesienens 15-21
The Central EVENE LOJcoceieie et e e bbb e 15-22
How the LOg ISNaME.......ccoocuieiiieeeeeee et 15-22
What Log Entries LOOK LiKe.......ccocovciiiiciiieiciececc e 15-22
How to Writeto the EVENt LOgccvveviceiicecce et 15-23

16. Workstation COBOL Language Binding Feature

INEFOTUCTION <.ttt et en e 16-1
UNIX ottt sttt ettt st e st se et seebe st et seenenees e e e 16-2
Programming Consideration with UNIX Clients..........cocooeeiniecienenns 16-2
Writing Client Programscoooeoeeeennieee e seesee s seeeeneeeens 16-2
Building Client Programs..........ccocoeeereneeieeeerenie e seeseeeeeens 16-2
Environment Variables.........c.ooeiiiniie e 16-3

DOS .ttt b et ettt et ettt e s e e ere e e 16-4
Programming Considerations with MS-DOS Clients........c..cccocvevvvvviennnnns 16-4
Writing Client Programsccccveieeieieceesee e sieese e sree e evaennes 16-4
Building Client Programs...........cccccveveeiesecieie e se e eenen 16-4
Environment Variables.........c.ooeeiiiniie e 16-5
WWINAOWS ...ttt ettt bt et es ettt b sb e neneas 16-6
Programming Considerations with the Windows DLLc.cccccvevvennene. 16-6
Writing Client Programscoccveciecveiecieesiesee s esree s svee e sraennas 16-6
Building Client Programs...........cccceveveeieseceieie e e esese e seeneens 16-6
Building ACCEPT/DISPLAY ClHentS.....c.ccoveeeeieiecreeriesceecceeceennn 16-8

BEA TUXEDO COBOL Guide

Programming Considerations with OS/2 Clients.........c.cccceeeeveciecceeeenen. 16-9
Writing Presentation Manager Client Programs............cccceeeeeeeeennen. 16-9
Blocking Network BENQVIOFcccccveeieeieeciece e 16-9
Building Client Programs.........ccccccoeviiiieiesee s 16-9

BEA TUXEDO COBOL Guide Xi

Xii BEA TUXEDO COBOL Guide

CHAPTER

1 Introduction and a
Simple Application

About This Chapter

This chapter contains atutoria that describes a simple one-client, one-server

application called CSI MPAPP. Aninteractiveform of thischapter isdistributed with the
BEA TUXEDO system software.

If you follow the ten steps of the tutorial you will:

L4

¢
¢
¢
¢

learn how aBEA TUXEDO application is organized

see how clients and servers are written and compiled

understand how an application is described in the configuration file
actually create an executable version of CSI MPAPP

boot, run and shutdown the application

BEA TUXEDO COBOL Guide

1

Introduction and a Simple Application

Some Preliminaries

Before you can run this tutorial the BEA TUXEDO system software must be installed
so that the files and commands referred to in this chapter are available.

If you are personally responsible for installing the BEA TUXEDO system software,
consult the BEA TUXEDO Installation Guide for information about how to install the
BEA TUXEDO system.

If the installation has already been done by someone else, you need to know the
pathname of the root directory of the installed software. Y ou aso need to have read
and execute permissions on the directories and files in the BEA TUXEDO system
directory structure so you can copy CSI MPAPP files and execute BEA TUXEDO
commands.

The CSIMPAPP Tutorial

CSI MPAPP isavery basic BEA TUXEDO system application. It has one client and one
server. The server performs only one service; it accepts a string from the client and
returns the same string in upper case.

Thetutorial consists of ten steps (plus an eleventh step for shutdown) designed to
introduce you to the BEA TUXEDO system by showing how an application is
developed and by encouraging you to bring the application up and run it. Each of the
steps includes one or more smaller steps.

Step 1: Copy the CSIMPAPP Files

1-2

1. Make adirectory for CSI MPAPP and cd to it:

nmkdi r CSI MPDI R
cd CSI MPDI R

Thisis suggested so you will be able to see clearly the CSI MPAPP files you have
at the start and the additiona files you create along the way. Use the standard
shell (/ bi n/ sh) or the Korn shell; not csh.

BEA TUXEDO COBOL Guide

The CSIMPAPP Tutorial

2. Set and export environment variables

TUXDI R=<pat hnane of the BEA TUXEDO System root directory>
APPDI R=<pat hname of your present working directory>
TUXCONFI G=$APPDI R/ TUXCONFI G

COBDI R=<pat hnanme of the COBQA. conpil er directory>
COBCPY=$TUXDI R/ cobi ncl ude

COBOPT="-C ANS85 -C ALIGN=8 - C NO BMCOWP - C TRUNC=ANS| -C OSEXT=chl"
CFLAGS="-1$TUXDI R/ i ncl ude"

PATH=$PATH: $TUXDI R/ bi n

LD_LI BRARY_PATH=$COBDI R/ cobl i b: ${LD_LI BRARY_PATH}

export TUXDI R APPDI R TUXCONFI G UBBCONFI G COBDI R COBCPY
export COBCPT CFLAGS PATH LD LI BRARY_PATH

You need TUXDI R and PATH to be able to access filesin the BEA TUXEDO
system directory structure and to execute BEA TUXEDO system commands. On
SunOSs, / usr / 5bi n must bethe first directory in your PATH. On AlX, LI BPATH
must be set instead of LD _LI BRARY_PATH. On HPUX, SHLI B_PATH must be set
instead of LD_LI1 BRARY_PATH. You need to set TUXCONFI Gto be able to load the
configuration file as shownin Step 7.

3. Copy the CsI MPAPP files.
cp $TUXDI R/ apps/ CSI MPAPP/ * .

Later on you will be editing some of the files and making them executable, so it
is best to begin with a copy of the files rather than the originals delivered with
the software.

4. Listthefiles.

$1s

CSI MPCL. cbl
CSI MPSRV. chl
READVE

TPSVRI NI T. cbl
UBBCSI MPLE
WUBBCSI MPLE
envfile

ws

$
The files that make up the application are:

4 CsI MPCL. cbl —the source code for the client program
4 CsI MPSRV. cbl —the source code for the server program

4 TPSVRI NI T. cbl —the source code for the server initialization program

BEA TUXEDO COBOL Guide 1-3

1

Introduction and a Simple Application

uBBCSI MPLE—the ASCII form of the configuration file for the application
WUBBCSI MPLE—the config file for the Workstation example

ws—a directory with MAK files for client programs for three workstation
platforms

Step 2: Examine the Client Program

1-4

Page through the client program source code:
$ nore CSI MPCL. cbl

The output is shown in Listing 1-1.

Listing 1-1 Source code of CSIMPCL .cbl

1 | DENTI FI CATI ON DI VI SI ON.

2 PROGRAM | D. CSI MPCL.

3 AUTHOR. TUXEDO DEVELOPMENT.
4 ENVI RONMENT DI VI SI ON

5 CONFI GURATI ON SECTI ON.

6 WORKI NG- STORAGE SECTI ON.

7

LR R R R R Rk kR R R R R R R R R R Rk ko

8 * Tuxedo definitions
9 RS R RS RS S EES

10 01 TPTYPE- REC.
11 COPY TPTYPE.
12+

13 01 TPSTATUS- REC.
14 COPY TPSTATUS.
15 *

16 01 TPSVCDEF- REC.
17 COPY TPSVCDEF.
18 *

19 01 TPI NFDEF- REC VALUE LOW VALUES.
20 COPY TPI NFDEF.

21 LR R Rk kR R R R R R R R Rk

22 * Log nessages definitions
23 LR R R R R R

24 01 LOGMSG

25 05 FILLER PIC X(8) VALUE "CSI MPCL: ".
26 05 LOGVSG TEXT PI C X(50).

27 01 LOGVSG LEN PIC S9(9) COWP-5.

28 *

BEA TUXEDO COBOL Guide

The CSIMPAPP Tutorial

01 USER- DATA- REC PI C X(75).
01 SEND- STRI NG PI C X(100).
01 RECV- STRI NG PI C X(100) .

LR R R R R R R Rk R R O R R R R R R R R R

* Conmand |ine argunents
RS R R SRS S EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEIEEEEEEEES
LI NKAGE SECTI ON.
01 CVD- LI NE.
05 ARG LENGTH PI C 9(4) COWP.
05 ARG
10 ARGS PIC X OCCURS 0 TO 100 DEPENDI NG
ON ARG LENGTH.

LR R R I R R R R Rk Ik R R R R R R R R O O

* Start programwith command |ine args
LR R R

PROCEDURE DI VI SI ON USI NG CMVD- LI NE.
START- CSI MPCL.

MOVE LENGIH OF LOGVBG TO LOGVSG LEN.

PERFORM CHECK- ARGS.

PERFORM DO- TPI NI T.

MOVE ARG TO SEND- STRI NG.

PERFORM DO- TPCALL.

DI SPLAY RECV- STRI NG

PERFORM DO- TPTERM

PERFORM EXI T- PROGRAM

LR R R I R R Rk Ik kR R R R R R R R S

* Check Argunents bei ng passed
LR R S R R R
CHECK- ARGS.
| F ARG LENGTH = 0
DI SPLAY "Usage: CSIMPCL string"
PERFORM EXI T- PROGRAM
END- | F.
| F ARG LENGTH = 100
DI SPLAY "Command Line Too Long"
PERFORM EXI T- PROGRAM
END- | F.

MOVE "Started" TO LOGVSG TEXT.
PERFORM DO- USERLCG.

LR R R R R R R R R R R R R R R R R Rk R o

* Now register the client with the system
LR R I
DO TPINIT.

MOVE SPACES TO USRNAME.

MOVE SPACES TO CLTNAME.

MOVE SPACES TO PASSVD.

MOVE SPACES TO GRPNAME.

BEA TUXEDO COBOL Guide

1-5

1

Introduction and a Simple Application

1-6

80

MOVE ZERO TO DATALEN.
SET TPU-DI P TO TRUE.

CALL "TPI NI TI ALI ZE" USI NG TPI NFDEF- REC
USER- DATA- REC
TPSTATUS- REC.

I F NOT TPCK
MOVE "TPI NI TI ALI ZE Fai | ed" TO LOGMVSG TEXT
PERFORM DO- USERLOG
PERFORM EXI T- PROGRAM

END- | F.

LR S R R R R Rk kR Sk kR R Rk R R R R R R R

* |ssue a TPCALL
IR R R RS SRS SRS RS SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]
DO TPCALL.
MOVE ARG LENGTH TO LEN.
MOVE " STRI NG' TO REC- TYPE.
MOVE " CSI MPSRV" TO SERVI CE- NAME.
SET TPBLOCK TO TRUE.
SET TPNOTRAN TO TRUE.
SET TPNOTI ME TO TRUE.
SET TPSI GRSTRT TO TRUE.
SET TPCHANGE TO TRUE.

CALL "TPCALL" USI NG TPSVCDEF- REC
TPTYPE- REC
SEND- STRI NG
TPTYPE- REC
RECV- STRI NG
TPSTATUS- REC.

I F NOT TPCK
MOVE "TPCALL Failed" TO LOGVBG TEXT
PERFORM DO- USERLOG

END- | F.

LR R R S R R R R R R R R R R R R R Rk S R o o

* Leave TUXEDO
RS R SRR SR EE RS EEEESEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES
DO TPTERM
CALL "TPTERM' USI NG TPSTATUS- REC.
I F NOT TPCK
MOVE "TPTERM Fai | ed" TO LOGVESG TEXT
PERFORM DO USERLOG
END- | F.

LR S R S R R R R R R R R R R R R R Rk R S b o o o

* Log nessages to the userlog

khkkhkkhhkhkhhdhhdhhdhdrhrhdrddrhrddrddrdhdhdhdrddhdrdddrdrdddrddrddixx

BEA TUXEDO COBOL Guide

The CSIMPAPP Tutorial

References

131 DO USERLOG
132 CALL "USERLOG' USI NG LOGVBG

133 LOGVSG- LEN
134 TPSTATUS- REC.
135

136 LR R R R R R Sk kR Ok R R R R R R R R Rk kR kR

137 *Leave Application

138 LR R I R R O
139 EXI T- PROGRAM

140 MOVE "Ended" TO LOGVSG- TEXT.

141 PERFORM DO- USERLOG.

142 STOP RUN.

Here are the important thingsto see in thisfile:

lines 11, 14, CcorPY Files needed whenever BEA TUXEDO ATMI cdlls

17,20 are used

line 83 TPI NI TIALI ZE ~ The ATMI call used by aclient program to join an
application.

line 106 TPCALL Sends the message record to the service specified in

SERVI CE- NAME. TPCALL waits for areturn
message. STRI NG is one of the three basic BEA
TUXEDO record types. The argument, LEN | N
TPTYPE- REC, specifies the length of the record
contained in USER- DATA- REC.

line 122 TPTERM The ATMI call used to leave an application. A call to
TPTERMis used to leave the application prior to
performing a STOP RUN.

line 52 DI SPLAY Thisisthe successful conclusion of the program. It
prints out the message returned from the server.

The ATMI calls cited above are documented in the following pages in the BEA
TUXEDO Reference Manual: TPI NI TI ALI ZE(3cbl), TPTERM3cbl), TPCALL (3chl),
USERLOG(3chl).

BEA TUXEDO COBOL Guide 1-7

1 Introduction and a Simple Application

Step 3: Compile the Client

1. Runbuildclient tocompilethe client program:
buildclient -C -0 CSIMPCL -f CSIMPCL. chl
where the output file is CSI MPCL, and the input source fileis CSI MPCL. cbl .

2. Check theresults:

$ |'s CSI MPCL*
CSI MPCL CSl MPCL. cbl CSI MPCL. i dy CSI MPCL. i nt CSI MPCL. 0

As can be seen, we now have an executable module called CSI MPCL.

References

bui | dcl i ent isdocumented inbui | dcl i ent (1) in the BEA TUXEDO Reference
Manual.

Step 4: Examine the Server

1. Page through the server program source code:

$ pg CSI MPSRV. cbl

Listing 1-2 Source code of CSIM PSRV .cbl

1 | DENTI FI CATI ON DI VI SI ON.

2 PROGRAM | D. CSI MPSRV.

3 AUTHOR. BEA TUXEDO DEVELOPMENT.
4 ENVI RONMENT DI VI SI ON.

5 CONFI GURATI ON SECTI ON.

6 WORKI NG- STORAGE SECTI ON.

7

ER S R R R R R kR R R R R R R R Rk R T kR

8 * Tuxedo definitions

9 ER R o R R R R R R R R R R R R kR R R R R R O R R R

10 01 TPSVCRET- REC.
11 COPY TPSVCRET.
12+

13 01 TPTYPE- REC.
14 COPY TPTYPE.

15 *

1-8 BEA TUXEDO COBOL Guide

The CSIMPAPP Tutorial

01 TPSTATUS- REC.
CCOPY TPSTATUS.

01 TPSVCDEF- REC.
CCOPY TPSVCDEF.

R R I R R R Ik R R kR R R R R R R ko kO O

* Log nmessage definitions
LR R S R

01 LOGVBG
05 FILLER PI C X(10) VALUE
"CSI MPSRV :".
05 LOGVBG TEXT PIC X(50).
01 LOGVSG LEN PIC S9(9) COWP-5.

LR R R I R R R R Rk Ik kR R AR R R R R R R R kO O o

* User defined data records

RS R R SRS EEESEEEEEEEEEEEEEREEEEEEEEEEEEEEEIEEEEEEEEEEEEEES
01 RECV- STRI NG PI C X(100).
01 SEND- STRI NG PI C X(100).

LI NKAGE SECTI ON.

PROCEDURE Di VI SI ON.
*
START- FUNDUPSR.
MOVE LENGIH OF LOGVBG TO LOGVSG LEN.
MOVE "Started" TO LOGVSG TEXT.
PERFORM DO- USERLCG.

LR R R R Rk kR R R R R R R R S O

* Get the data that was sent by the client
RS R R SRS EEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEIEEEEEEEEEEEEEES
MOVE LENGTH OF RECV- STRI NG TO LEN.
CALL "TPSVCSTART" USI NG TPSVCDEF- REC
TPTYPE- REC
RECV- STRI NG
TPSTATUS- REC.

I F NOT TPOK
MOVE " TPSVCSTART Fai |l ed" TO LOGVSG TEXT
PERFORM DO- USERLOG
PERFORM EXI T- PROGRAM

END- | F.

| F TPTRUNCATE
MOVE "Data was truncated" TO LOGMSG TEXT
PERFORM DO- USERLOG
PERFORM EXI T- PROGRAM

END- | F.

| NSPECT RECV- STRI NG CONVERTI NG
"abcdef ghi j kl mopqgr st uvwyz" TO

BEA TUXEDO COBOL Guide

1 Introduction and a Simple Application

68 " ABCDEFGHI JKLMNOPORSTUVWKYZ" .
69 MOVE " Success" TO LOGVEG TEXT.
70 PERFORM DO- USERLOG.

71 SET TPSUCCESS TO TRUE.

72 COPY TPRETURN REPLACI NG

73 DATA- REC BY RECV- STRI NG
74

75 LR I R R R R R R R R R R R R

76 * Wite out a log err nessages
77 LR R R R

78 DO- USERLOG

79 CALL "USERLOG' USI NG LOGVEG
80 LOGVSG LEN
81 TPSTATUS- REC.

82 LR R R R R R R R R R R R Rk R I

83 * EXIT PROGRAM

84 LR Rk R R R R R R R R R R R o R R

85 EXI T- PROGRAM

86 MOVE " Fai | ed" TO LOGVSG TEXT.

87 PERFORM DO- USERLOG.

88 SET TPFAIL TO TRUE.

89 COPY TPRETURN REPLACI NG

90 DATA- REC BY RECV- STRI NG,

Here are the important things to see in thisfile:

line 49 TPSVCSTART Thisroutineisused to receive the service's parameters and
data. After a successful call, the RECV- STRI NGcontains
the data sent by the client.

lines | NSPECT statement Converts the input to uppercase.

66-68

line 72 COPY TPRETURN Returnsthe converted string to the client with
TPSUCCESS set.

line 79 USERLOG This routine logs messages that are used by the BEA

TUXEDO system and applications.

2. Pagethrough the server program source code:

$ pg TPSVRI NI T.cbl

1-10 BEA TUXEDO COBOL Guide

The CSIMPAPP Tutorial

Listing 1-3 Sour ce code of TPSVRINIT.cbl

1 | DENTI FI CATI ON DI VI SI ON.

2 PROGRAM | D. TPSVRI NI T.

3 ENVI RONVENT DI VI SI ON.

4 CONFI GURATI ON SECTI ON.

5 *

6 DATA DI VI SI ON.

7 WORKI NG STORAGE SECTI ON.

8 *

9 01 LOGVBG

10 05 FILLER PIC X(11) VALUE "TPSVRINIT :".
11 05 LOGVSG TEXT PI C X(50) .

12 01 LOGVBG LEN PI C S9(9) COWP-5.
13 =

14 01 TPSTATUS- REC.

15 COPY TPSTATUS.

16 LR R R R R R kR R Rk R R R R R R R S R R
17 LI NKAGE SECTI ON.

18 01 CVD- LI NE

19 05 ARGC PIC 9(4) COWP-5.

20 05 ARG

21 10 ARGS PIC X OCCURS 0 TO 9999 DEPENDI NG ON ARGC.

22 %

23 01 SERVER-I NI T- STATUS.

24 COPY TPSTATUS.

25 LR R R R R R R R R kR R R R R R R R R O O O R
26 PROCEDURE DI VI SI ON USI NG CVD- LI NE SERVER- | NI T- STATUS.

27 A-000.

28 MOVE LENGIH OF LOGVBG TO LOGVSG LEN.

29 LR R R R R R R Rk kR R R R R R R R R R O R

30 * There are no command |ine paraneters in this TPSVRIN T
31 LR R R R

32 | F ARG NOT EQUAL TO SPACES

33 MOVE "TPSVRINIT fail ed" TO LOGVBG TEXT
34 CALL "USERLOG' USI NG LOGVEG

35 LOGMVSG- LEN

36 TPSTATUS- REC

37 ELSE

38 MOVE "Wl conme to the sinple service" TO LOGVBG TEXT
39 CALL "USERLOG' USI NG LOGVEG

40 LOGMVSG- LEN

41 TPSTATUS- REC

42 END- | F.

43 *

44 SET TPOK | N SERVER- | NI T- STATUS TO TRUE.

45 *

46 EXIT PROGRAM

BEA TUXEDO COBOL Guide 1-11

1 Introduction and a Simple Application

This subroutine is called during server initialization, before the server begins
processing service requests. A default is provided by the BEA TUXEDO system that
writes a message to USERL OG indicating that the server has been booted.

References

The ATMI calls and structure cited above are documented in the following pagesin
the BEA TUXEDO Reference Manual: TPSVCSTART(3chl), TPSVRI NI T(3cbl),
TPRETURN(3chl), USERLOG(3chl).

Step 5: Build the Server

1. Runbuil dserver to compilethe server program:

bui | dserver -C -0 CSIMPSRV -f CSI MPSRV.chl -f TPSVRINIT.chl -s CSI MPSRV

where the executable file to be created is named CSI MPSRV, and CSI MPSRV. cbl
and TPSVRI NI T. cbl are theinput source files.

2. Check theresults:

$1s

CSI MPCL CSI MPCL. i nt CSI MPSRV. cbl CSI MPSRV. o TPSVRINI T. i nt

CSI MPCL. cbl CSI MPCL. o CSI MPSRV. i dy TPSVRI NI T. cbl TPSVRINIT. o

CSI MPCL. i dy CSI MPSRV CSI MPSRV. i nt TPSVRINIT.idy UBBCSI MPLE
As can be seen, we now have an executable module called CSI MPSRV.

References

bui | dser ver isdocumented in bui | dser ver (1) in the BEA TUXEDO Reference
Manual.

1-12 BEA TUXEDO COBOL Guide

The CSIMPAPP Tutorial

1. Editthefile:

Step 6: Edit the Configuration File

Listing 1-4 The CSIMPAPP configuration file

#Skel et on UBBCONFI G file for the BEA TUXEDO COBOL Sinple

Application.

#Repl ace the <bracketed> items with the appropriate val ues.

* RESOURCES
| PCKEY

#Exanpl e:
#| PCKEY

MASTER
MAXACCESSERS
MAXSERVERS
MAXSERVI CES
MODEL

LDBAL

*MACHI NES
DEFAULT:

#Exanpl e:
#
#
#

<Machi ne- nane>

#Exanpl e:
#usl t ux

* GROUPS
GROUP1

* SERVERS
DEFAULT:

CSI PSRV

*SERVI CES
CSI PSRV

<Replace with a valid | PC Key>

123456

sinmpl e
5

5

10

SHM

N

APPDI R="<Repl ace with t he current pathnanme>"
TUXCONFI G=" <Repl ace wi th TUXCONFI G Pat hnane>"
TUXDI R="<Root directory of BEA TUXEDO (not /)>"
ENVFI LE="<pat hname of file of environnent vars>"

APPDI R="/ horre/ ne/ si npapp"
TUXCONFI G="/ hone/ ne/ si npapp/ TUXCONFI G'
TUXDI R="/usr/tuxedo"

LM D=si npl e

LM D=si npl e

LM D=si npl e GRPNO=1 OPENI NFO=NONE
CLOPT="- A"

SRVGRP=GROUP1 SRVI D=1

BEA TUXEDO COBOL Guide 1-13

1 Introduction and a Simple Application

2. Change values enclosed in angle brackets to your own local values:

| PCKEY Use avaue that will not conflict with any other users.

TUXCONFI G Provide the full pathname of the binary t uxconf i g fileto be created
inStep 7.

TUXD R Providethefull pathname of your BEA TUXEDO system root directory.

APPDI R Provide the full pathname of the directory where you intend to boot the

application; in this case, the current directory.

ENVFI LE Provide the full pathname for the environment file to be used by nt,
vi ewc, t ml oadcf , and so on.

machi ne- name Provide the machine name as returned by unane - n.

3. The pathnames for TUXCONFI G and TUXDI R must beidentical to those you set and
exported in Step 1 in “Step 1: Copy the CSIMPAPP Files.” The strings must be
the actual values; environment variables (SUCHTaSCONFI G) are not
acceptable. Do not forget to remove the angle brackets.

References

The configuration file is documentedubbconf i g(5) in theBEA TUXEDO
Reference Manual.

Step 7: Load the Configuration File

1. Runtn oadcf to load the configuration file:

$ tnl oadcf UBBCSI MPLE
Initialize TUXCONFI G file: /usr/me/ CSI MPDIR/ TUXCONFIG [y, q] ? Yy
$

2. Check the results:

$1s
CSI MPCL CSI MPCL. 0 CSI MPSRV. i nt TPSVRI NI T. i nt
CSI MPCL. cbl CSI VPSRV CSI MPSRV. 0 TPSVRIN T. o

CSI MPCL. i dy CSI MPSRV. cbl TPSVRI NI T. cbl TUXCONFI G
CSI MPCL. i nt CSI MPSRV. i dy TPSVRI NI T. i dy UBBCSI MPLE

We see that we now have a file callrékCONFI G The TUXCONFI Gfile is a new
file system under the control of the BEA TUXEDO system.

1-14 BEA TUXEDO COBOL Guide

The CSIMPAPP Tutorial

References

tm oadcf isdocumented int m oadcf (1) in the BEA TUXEDO Reference Manual.

Step 8: Boot the Application

Execute t nboot to bring up the application:
$ tnboot
Boot all admin and server processes? (y/n): vy
Booting all admn and server processes in /usr/ne/CSlI MPDI R TUXCONFI G

Booting all admin processes ...

exec BBL - A
process id=24223 ... Started.

Booti ng server processes ...
exec CSIMPSRV -A :

process id=24257 ... Started.
2 processes started.

$

BBL isthe administrative process that monitors the application shared memory
structures. CSI MPSRV is our server that runs continuously awaiting requests.

References

t mboot is documented int mboot (1) in the BEA TUXEDO Reference Manual.

Step 9: Enter a Request

Run the client program to submit a request:

$ CSIMPCL "hell o world"
HELLO WORLD

We are successful!!!

BEA TUXEDO COBOL Guide 1-15

1 Introduction and a Simple Application

Step 10: Using tmadmin

t madm n is an interactive program that an administrator can use to check an
application and make dynamic changes. It requires the TUXCONFI Gvariable to be set.
We will show you just two of the many t radni n commands.

1. Enter the command:
t madm n
You will seethe following lines.
tmadm n - Copyright (c) 1987 ATT; 1991 USL. Al rights reserved.
>
The greater-than sign (>) isthe t madni n prompt.

2. Enter thepri ntserver (psr) command to display information about the
Servers:

> psr
a.out Nanme Queue Name G p Nane | D RgDone Load Done Current Service

BBL 531993 sinple 0 0 0 (IDLE)
CSIMPSRV 00001. 00001 GROUPL 1 0 0 (IDLE)
>

3. Enter thepri ntservice(psc) command to display information about the
services:

> psc
Service Name Routine Nane a.out Nane G p Nane |ID Machine # Done Status

ADJUNCTBB ADJUNCTBB BBL sinmpl e 0 simple - AVAI L
ADJUNCTADM N ADJUNCTADM N BBL sinmpl e 0 simple - AVAI L
CSI MPSRV CSI MPSRV CSI MPSRV GROUP1 1 simpl e - AVAI L

>

4. Leavetmadni n by entering aq at the prompt. You can boot and shut down the
application from within t madni n. We have done those functions with shell
commandsin Steps 8 and 11, respectively.

References

t madm n isdocumented int madni n(1) in the BEA TUXEDO Reference Manual.

1-16 BEA TUXEDO COBOL Guide

The CSIMPAPP Tutorial

Step 11: Shut Down the Application

1. Runt mshut down to bring the application down:

$ tnshut down
Shutdown all adm n and server processes? (y/n): vy
Shutting down all adm n and server processes in /usr/nme/ CSI MPDI R TUXCONFI G

Shutting down server processes ...
Server Id =1 Goup Id = GROJPL Machine = sinple: shutdown succeeded.
Shutting down adm n processes ...

Server Id = 0 Goup Id = sinple Machine = sinple: shutdown succeeded.
2 processes stopped.
$

2. Check the uLOG

$ cat ULOG

$

140533. usl tux! BBL. 22964: LI BTUX CAT: 262: std main starting

140540. usl t ux! CSI MPSRV. 22965: COBAPI _CAT: 1067: INFO std main starting
140542. usl t ux! CSI MPSRV. 22965: TPSVRINIT : Wl cone to the sinple service
140610. usl tux! ?proc. 22966: CSI MPCL: St arted

140614. usl t ux! CSI MPSRV. 22965: CSI MPSRV : Started

140614. usl t ux! CSI MPSRV. 22965: CSI MPSRV : Success

140614. usl tux! ?proc. 22966: switch to new log file

/ hone/ usr_nnf CSI VPDI R/ ULOG. 112592

140614. usl tux! ?proc. 22966: CSI MPCL: Ended

Each line of the ULOGfor this session contains something of interest. First let’s
look at the format of a ULOGIine:

time (hhnmmss). machi ne_unane! process_nane. process_id: | og nessage
Now let'slook at an individual line:

140542. Message from TPSVRINI T i n CSI MPSRV

References

t mshut down isdocumented in t nshut down(1) in the BEA TUXEDO Reference
Manual.

The USERLOGis documented in USERLOG(3chl).

BEA TUXEDO COBOL Guide 1-17

1 Introduction and a Simple Application

Summary

If you have reached this point, you have successfully brought up, run and brought
down aBEA TUXEDO system application. Y ou have seen what a client program and
aserver look like. Y ou have edited a configuration file to refer to your own
environment. Y ou have invoked t madni n to check on the activity of your application.
In all the applications you may work on in the future the basic elements of client
processes, server processes and a configuration file will be present, and you will have
all of the BEA TUXEDO shell commands at your fingertips.

Good luck!

1-18 BEA TUXEDO COBOL Guide

CHAPTER

2 STOCKAPP Files

Directory Structure for STOCKAPP

This chapter describes the directory structure that pertains to the COBOL language
binding feature under the apps directory, which issubordinate to the root directory for
your BEA TUXEDO system software. We will also take alook at the filesin the
STOCKAPP directory. The directory structure is shown in Figure 2-1.

Figure2-1 COBOL Directory structure under apps/

apps/
l

CSIMPAPP/ STOCEKAPP/

CSlI MPAPP is described in Chapter 1, “Introduction and a Simple Application.”

Files

Table 2-1 lists the files of the stock application. The left hand column lists the source
files delivered with the BEA TUXEDO system software. The center column lists files
that are generated when the stock application is built. The right hand column gives a
brief summary of the purpose of the file.

BEA TUXEDO COBOL Guide 2-1

2 STOCKAPP Files

2-2

Table2-1 Sock Application Files

Source Generated Purpose
BUY. chl BUY. o Client
BUY
BUYSR. cbl BUYSR. o Contains BUY service
BUYSR
ENVFI LE ENVFI LE used by t nl oadcf
FI LES Descriptive list of al the filesin STOCKAPP
FUNDPR. chbl FUNDPR. o Client
FUNDPR
FUNDPRSR. cbl FUNDPRSR. 0 Contains PRI CE QUOTE service
FUNDPRSR
FUNDUP. cbl FUNDUP. o Client
FUNDUP
FUNDUPSR. cbl FUNDUPSR. o0 Contains FUND UPDATE service
FUNDUPSR
READVE On-line version of the installation and boot
procedures
SELL. cbl SELL. o0 SELL Client
SELLSR. chl SELLSR. o Contains SELL service
SELLSR
STKVAR Contains variable settings, except for those
within ENVFI LE
STOCKAPP. 1k Application makefile
UBBCBSHM TUXCONFI G Sample UBBCONFI Gfilefor useinaSHM mode
configuration
cust CUST. cbl View used to definestructure passed between the
cust.V cust.h BUYandSELL clientsand the BUYSR and
SELLSR servers
quot e QUOTE. chl View used to definestructure passed between the
quot e. V FUNDPR and FUNDUP clients and all the servers
quote. h

BEA TUXEDO COBOL Guide

Files

Of thefilesin the directory, eight are . cbl files; BUY. cbl , SELL. cbl , FUNDPR. cbl
and FUNDUP. cbl areclient programs; FUNDUPSR. cbl isaconversational server; three
others are servers or are associated with servers, two are there to generate data or
transactions for the application.

The remaining files have various roles; some are files you need in any application,
others are present simply to facilitate the use of STOCKAPP as an example. In
subsequent chapters we will closely examine anumber of thefiles, and give a more
compl ete explanation of their role in the sample application. For now we just want to
discuss the STKVARfile.

Edit STKVAR to Set Environment Variables

STKVAR is afile of environment variables needed by STOCKAPP. A complete copy of
STKVAR isshown in Listing 2-1. The file takes up almost 100 lines, due largely to the
extensive comments, but there are only afew that you should be concerned about
immediately.

Thefirst line referencing TUXDI R ensuresthat it is set. If it is not, execution of thefile
fails with the message:

TUXDI R paraneter null or not set

So set TUXDI Rto the root directory of your BEA TUXEDO system directory structure,
and export it.

As STKVARIs delivered, APPDI Ris set to the directory in which the STOCKAPP source
files arelocated: ${ TUXDI R} / apps/ STOCKAPP. APPDI R is a directory where BEA
TUXEDO system looks for your application-specific files. Y ou might prefer to copy
the STOCKAPP filesto adifferent directory to safeguard the original sourcefiles. If you
do, then the directory you use should be entered here. It does not have to be under
TUXDI R.

The other variables specified in STKVAR play variousroles in the sample application
and you will need to be aware of them when you are devel oping your own application.
They will al be mentioned at appropriate places later in this guide. Grouping them all
in STKVARis done to show you an exampl e that you may want to adapt at alater time
for use with areal application.

When you have made all hecessary changes to STKVAR, execute STKVAR as follows:

. | STKVAR

BEA TUXEDO COBOL Guide 2-3

2 STOCKAPP Files

Listing2-1 STKVAR: Environment Variablesfor STOCKAPP

#i dent " @ #) apps: STOCKAPP/ STKVAR

z This file sets all the environment variables needed by the TUXEDO software
to run the STOCKAPP

z This directory contains all the TUXEDO software

System adm nistrator nmust set this variable

iuxu R=${ TUXDI R ?}

z This directory contains all the user witten code

z Contains the full path name of the directory that the application
generator should place the files it creates

iPPDI R=${ HOVE} / STOCKAPP

z Environment file to be used by tmnl oadcf

§03DI R=${ COBDI R: ?}

z This directory contains the cobol files needed

for conmpiling and |inking.

ﬁD_Ll BRARY_PATH=$COBDI R/ cobl i b: ${ LD LI BRARY_PATH}

i Add coblib to LD LI BRARY PATH

EN\/FI LE=${ APPDI R} / ENVFI LE

z List of field table files to be used by CBLVIEWC, tm oadcf, etc.
Iﬁl ELDTBLS=fi el ds, Usysfl ds

z List of directories to search to find field table files

IﬁLDTBLD| R=${ TUXDI R} / udat aobj : ${ APPDI R}

z Set device for the transaction log; this should match the TLOGDEVI CE
paraneter under this site’s LMD in the *MACH NES secti on of the
UBBCBSHM fi | e

iL%DEVI CE=${ APPDI R}/ TLOG

z Device for the configuration file

#

2-4 BEA TUXEDO COBOL Guide

Files

UBBCBSHMV=$APPDI R/ UBBCBSHM

#

Device for binary file that gives /T all its information
#

TUXCONFI G=${ APPDI R} / TUXCONFI G

#

Set the prefix of the file which is to contain the central user |og;
this should match the ULOGPFX paraneter under this site’s LMD in the
*MACHI NES section of the UBBCONFIG file

ﬁLOGPFx:${ APPDI R} / ULOG

z List of directories to search to find view files

;\#/I EWDI R=${ APPDI R}

z List of view files to be used by CBLVIEWC, tnloadcf, etc.
;\#/I EWFI LES=quot e. V, cust . V

z Set the COBCPY

?DBCPY=$TUXDI R/ cobi ncl ude

z Set the COBOPT

&@Tf'- C ANS85 -C ALI GN=8 - C NO BMCOWP - C TRUNC=ANSI -C OSEXT=cbl "
z Set the CFLAGS

ZFLAGS:"- | $TUXDI R/ i ncl ude -1$TUXD R/ sysi ncl ude"

z Export all variables just set

#

export TUXDI R APPDI R ENVFI LE

export FI ELDTBLS FLDTBLDI R TLOGDEVI CE

export UBBCBSHM TUXCONFI G ULOGPFX LD LI BRARY_PATH
export VI EMDI R VI EWFI LES COBDI R COBCPY COBCPT CFLAGS
#

Add TUXDIR/'bin to PATH if not already there

#

a="'echo $PATH | grep ${TUXDI R}/ bin'"

if [x"$a" = x]

then

PATH=${ TUXDI R} / bi n: ${ PATH}

export PATH

fi

#

Add APPDIR to PATH if not already there

BEA TUXEDO COBOL Guide 2-5

2 STOCKAPP Files

#

a="‘echo $PATH | grep ${APPDI R} "
if [x"$a" = x]

t hen

PATH=${ PATH} : ${ APPDI R}

export PATH

fi

#

Add COBDIR to PATH if not already there
#

a="‘echo $PATH | grep ${COBDI R} "
if [x"$a" = x]

t hen

PATH=${ PATH} : ${ COBDI R}

export PATH

fi

OnAIX, LI BPATHmust beset instead of LD LI BRARY_PATH. OnHPUX, SHLI B_PATH
must be set instead of LD LI BRARY_PATH.

Additional PATH Component for Sun0S

If your operating system is SUnOS, you need to put / usr / 5bi n at the front of your
PATH. The following command can be used:

PATH=/ usr / 5bi n: $PATH, export PATH

Another requirement for SUnOS users. use / bi n/ sh rather than csh for your shell.

2-6 BEA TUXEDO COBOL Guide

CHAPTER

3 STOCKAPP Client
Programs

A Look at STOCKAPP Client Programs

This chapter is devoted to the client side of the STOCKAPP sample application.

In the client-server architecture of the BEA TUXEDO system, there are two modes of
communication:

4+ Reguest/response mode, which is characterized by the sending of asingle
request for a service to be performed by the server and getting back a single
response.

4 Conversational mode; in this mode a dedicated connection is established
between a client (or a server acting like a client) and a server. The connection
remains active until terminated. While the connection is active, messages
containing service requests and responses can be sent and received between the
two participating processes.

System Client Programs

Figure 3-1 showsthe hierarchy for STOCKAPP. The user selects one of the four service
requests. The oval shapesin the illustration represent application services.

BEA TUXEDO COBOL Guide 3-1

3 STOCKAPP Client Programs

Figure3-1 STOCKAPP Input/Output Hierarchy

BUY

Request travels from service screen to server
process in VIEW record. If service succeeds,
reply record is sent to confirmation screen; otherwise,
1t1s sent back to oniginal service screen.

Account: A Account: sELL Funtin’Stnck:FUNDpR FmdetDCEUNDUP

Fund/Stoclk: Fund/Stock: . o

Am . . Buy Price: Buy Price:

ount: Amount: S el Price:
Frice: Drice: Sell Price: Sell Price:
FUNDPRSR
BUYEER | SELLSRE FUNDPESE FUNDUPSE
confirm, | confinn, get the up;iate the
account account price ofa priceofa
infio info fundéstock fundistock
Record Types

M essage records are an essentia part of the BEA TUXEDO system, asis the concept
of typed records. Inthe BEA TUXEDO system, atyped record is arecord designed to
hold aspecific datatype. Fivetypesare defined: VI EW STRI NG, CARRAY, X_OCTET, and

X_COWON. Applications have the ability to define additional types.

BUY.cbl—A Request/response Client

BUY. cbl isan example of aclient program. It makes account inquiries that call on the
service BUYSR. As an executable, it isinvoked as follows:

BUY

3-2 BEA TUXEDO COBOL Guide

A Look at STOCKAPP Client Programs

BUY.cbl Source Code

Because of space constraints we are not going to print the entire source code of
BUY. cbl , but we want to call your attention to the following sections of the program:

* Now register the client with the system
* |Issue a TPCALL
* Clean up

The indicated sections contain al of the placesin BUY. cbl wherethe BEA TUXEDO
ATMI callsare used. Note also that BUY. cbl isan example of aprogram that uses a
VI Ewtyped record and a structure that is defined in the cust file. The source code for
the structure can be found in the view description file, cust . V.

Building Client Programs

View description files, of which cust isan example, are processed by the view
compiler, vi enc(1). vi ewc hasthree output files: aCOBOL file (CUST. cbl), abinary
view description file (cust . V), and a header file (cust . h).

The client programs, BUY. cbl , FUNDPR. cbl , FUNDUP. cbl , and SELL. cbl , are
processed by bui | dcl i ent (1) to compile them and/or link edit them with the
necessary BEA TUXEDO libraries.

Y ou can use any of these commandsindividually, if you choose, but rulesfor all these
steps are included in STOCKAPP. nk.

References

The use of ATMI calls in client programs is covered in Chapter 11, “Writing Client
Programs.”

The subject of typed records is covered in Chapter 10, “The BEA TUXEDO System
Development Environment,” and Chapter 11, “Writing Client Programs.”

All commands and ATMI calls are described in Sections 1 and 3 8BAGUXEDO
Reference Manual.

BEA TUXEDO COBOL Guide 3-3

3 STOCKAPP Client Programs

3-4 BEA TUXEDO COBOL Guide

CHAPTER

4 STOCKAPP Servers

A Look at STOCKAPP Servers

This chapter describes the servers delivered with STOCKAPP, identifies the services
coded for the stock application and describes how the services are link edited into
servers.

Serversare executabl e processes that offer one or more services. Inthe BEA TUXEDO
system, they continually accept requests (from processes acting as clients) and
dispatch them to the appropriate services. Services are subroutines of COBOL
language code written specifically for an application. It is the services accessing a
resource manager that providethe functionality for which your BEA TUXEDO system
transaction processing application is being developed. Service routines are one part of
the application that must be written by the BEA TUXEDO system programmer
(user-defined clients being another part).

All the services of STOCKAPP use functions provided in the Application Transaction
Management Interface (ATMI). These functions allow the services

4 to communicate synchronously or asynchronously with other services
4 to define global transactions

4 to send replies back to clients

This chapter provides

4 adescription of aservicethat is part of the stock application

4 the relationships between the STOCKAPP services and servers

4 thebui | dser ver command options used to compile and build each server

BEA TUXEDO COBOL Guide 4-1

4 STOCKAPP Servers

Service Definitions

There are four servicesin STOCKAPP. Each STOCKAPP service matches a COBOL
function name in the source code of a server as shown in the following list:

BUYSR
buys a fund/stock record; offered by the BUYSELL server; accepts a Vvl EW
record as input, inserts a CUSTFI LE record

SELLSR
sells afund/stock record; offered by the BUYSELL server; acceptsa Vi EW
record as input, inserts a CUSTFI LE record

FUNDPRSR
price quote; offered by the PRI CEQUOTE server; accepts a VI Ewrecord as
input

FUNDUPSR
fund update; conversational service; offered by FUNDUPDATE server; accepts
aVl Ewrecord as input

Building Servers

bui | dser ver isused to put together an executabl e server. Optionsidentify the names
of the output file, the input files provided by the application, and various libraries that
permit you to run a BEA TUXEDO system application in a variety of ways.

bui | dser ver with the - C option invokes the cobcc command. The environment
variables ALTCC and ALTCFLAGS can be set to name an alternative compile command
and to set flagsfor the compile and link edit phases. Thekey bui | dser ver command
line options areillustrated in the examples that follow.

4-2 BEA TUXEDO COBOL Guide

A Look at STOCKAPP Servers

Using the buildserver Command in the STOCKAPP

This section providesthe bui | dser ver command used in STOCKAPP. nk to compile
and build each server in the stock application. Refer to the bui | dser ver (1) reference
page in Section 1 of the BEA TUXEDO Reference Manual for complete details.

The BUYSELL Server

The BUYSELL server is derived from files that contain the code for the BUYSR and
SELLSR functions. The BUYSELL server isfirst compiled to a BUYSELL. o file before
supplying it to the bui | dser ver command so that any compile-time errors can be
clearly identified and dealt with before this step. The BUYSELL. o fileis created in the
following step (donefor you in STOCKAPP. nk). Thebui | dser ver command that was
used to build the BUYSELL server follows:

bui |l dserver -C -v -0 BUYSELL -s SELLSR -f SELLSR chl -s BUYSR -f BUYSR cbl
The explanation of the command line optionsis as follows:
4 The- Coption isused to build servers with COBOL modules.

4 The- v option is used to specify the verbose mode. It writesthe cc command to
its standard output.

4 The- s option is used to specify the service namesin the server that are
available to be advertised when the server is booted. If the name of the function
that performs a service is different from the service name, the function name
becomes part of the argument of the - s option. In the STOCKAPP, the function
name is the same as the name of the service so only the service names
themselves need to be specified. It is our convention to specify all uppercase for
the service name. However, the - s option of bui | dser ver does alow you to
specify an arbitrary name for the processing function for a service within a
server. Refer to the bui | dser ver (1) manual page for details. It is also possible
for the administrator to specify that only a subset of the services that were used
to create the server with the bui | dser ver command isto be avail able when the
server is booted. For more information, see Administering the BEA TUXEDO
System.

4 The- o option is used to assign a name to the executable output file. If no name
is provided, the file is named SERVER.

BEA TUXEDO COBOL Guide 4-3

4 STOCKAPP Servers

4 The-f option specifies the filesthat are used in thelink edit phase. Also refer to
the-1 onthebuil dserver manua page. The programming chapters of this
guide describe both of these options in some detail, aswell. Thereisa
significance to the order in which thefiles are listed. The order is dependent on
function references and in what libraries the references are resolved. Source
modules should be listed ahead of libraries that might be used to resolve their
references. If these are .. cbl files, they are first compiled. Object files can be
either separate . o files or groups of filesin archive (. a) files. If more than a
singlefile nameis given as an argument to a - f, the syntax calls for alist
enclosed in double quotes. You can use as many - f options as you need.

4 The- s option names the SELLSR and BUYSR services to be the services that
comprise the BUYSELL server. The - o option assigns the name BUYSELL to the
executable output file and the - f option specifies that the SELLSR. cbl and the
BUYSR. cbl filesareto be used in the link edit phase of the build.

Servers Built in STOCKAPP.mk

The preceding section on building a STOCKAPP server was included because it is
important that you understand how thebui | dser ver command isspecified. However,
inactua practiceyou are apt to incorporate the build into amakefile and that isthe way
it is donein STOCKAPP. The STOCKAPP makefile is discussed in Chapter 5, “The
STOCKAPP Makefile.”

References

4-4

The writing and debugging of service subroutines using ATMI functions is the main
subject of Chapters 12 through 15 of this guide.

Examples obui | dser ver command lines can also be found in these chapters and, of
course, in Section 1 of tHBEA TUXEDO Reference Manual.

BEA TUXEDO COBOL Guide

CHAPTER

5 The STOCKAPP
Makefile

A Look at the STOCKAPP Makefile

STOCKAPP includes amakef i | e that makes all scripts executable, converts the view
description fileto binary format, and does all the necessary precompiles, compilesand
builds to create the application servers. It can also be used to clean up when you want
to make afresh start.

Editing STOCKAPP.mk

As STOCKAPP. nk is delivered there are a few fields you may want to edit, and some
others that may benefit from alittle explanation.

TUXDIR

If you look at STOCKAPP. nk, you come to the following comment and to the TUXDI R
parameter:

#

Root directory of TUXEDO System This file nust either be edited to set
this value correctly, or the correct val ue nust be passed via "nmake -f

STOCKAPP. nk TUXDI R=/correct/rootdir", or the build of STOCKAPP will fail.
#

TUXDIR=. . /..

The TUXDI R parameter should be set to the absolute pathname of the root directory of
your BEA TUXEDO system installation.

BEA TUXEDO COBOL Guide 5-1

S The STOCKAPP Makefile

APPDIR

Y ou may want to give some thought to the setting of the APPDI R parameter. As
STOCKAPP is delivered, APPDI Ris set to the directory where the STOCKAPP files are
located, relative to TUXDI R. The section in STOCKAPP. nk isasfollows:

Directory where the STOCKAPP application source and executables live.
This file nust either be edited to set this value correctly, or the
correct value must be passed via "make -f STOCKAPP. nk

APPDI R=/correct/appdir", or the build of STOCKAPP will fail.

PPDI R=$(TUXDI R) / apps/ STOCKAPP

H > HHHHHHR

If you have copied thefilesto another directory, asis suggested in the READVE file, you
should set this parameter to the name of the directory to which you copied thefiles.
When you run the makef i | e, the application will be built in this directory.

Running STOCKAPP.mk

When you have compl eted the changes you wish to make to STOCKAPP. nk, run it with
the following command line:

nohup make -f STOCKAPP.nk install &

Check the nohup. out file to make sure the process completed successfully.

5-2 BEA TUXEDO COBOL Guide

CHAPTER

O Edit STOCKAPP
Configuration File

Configuration File for STOCKAPP

A configuration file bringstogether all the detail about how an application mapsto the
machines on which it runs. As STOCKAPP is delivered, there is a configuration file in

the ASCII format described in ubbconf i g(5). The file called UBBCBSHMcontains the
configuration for an application on a single computer.

The configuration file was delivered with the value of some parameters enclosed in
angle brackets (<>). Y ou need to replace these generic values with values that pertain
to your installation. All of these fields occur within the RESOURCES, MACHI NES and
GROUPS sectionsin thefile. In Listing 6-1 we show UBBCBSHM An explanation of the
values that need to be replaced follows Listing 6-1.

If you want to enable the application password feature, add thisline to the RESOURCES
section:

SECURITY APP_PW

BEA TUXEDO COBOL Guide 6-1

© Edit STOCKAPP Configuration File

Listing 6-1 Configuration filefieldsto bereplaced

#Copyright (c) 1992 Unix System Laboratories, Inc.
#All rights reserved
#Skel et on UBBCONFI G file for the TUXEDO COBOL Sanpl e Application.

* RESOURCES
| PCKEY 226164
001 u D <user id fromid(1l)>
002 Ganb <group id fromid(1l)>

MASTER S| TE1
PERM 0660
MAXACCESSERS 20
MAXSERVERS 15
MAXSERVI CES 30
MODEL SHM
LDBAL Y
MAXGT T 100
MAXBUFTYPE 16
MAXBUFSTYPE 32
SCANUNI T 10
SANI TYSCAN 12
DBBLWAI T 6
BBLQUERY 180
BLOCKTI ME 10

TAGENT “TAGENT"

#

*MACHINES

003 < SITE1’'s unane> LMID=SITE1l

004 TUXDIR="< TUXDI R1>"

005 APPDIR="< APPDI R1>"
ENVFILE="< APPDI R1>/ENVFILE"
TUXCONFIG="< APPDI R1>/TUXCONFIG"
TUXOFFSET=0

006 TYPE="< machi ne type>"
ULOGPFX="< APPDI R>/ULOG"
MAXWSCLIENTS=5

#

*GROUPS

COBAPI LMID=SITE1 GRPNO=1
#

#

*SERVERS

FUNDUPSR SRVGRP=COBAPI SRVID=1 CONV=Y ENVFILE="<APPDIR1>/ENVFILE"
FUNDPRSR SRVGRP=COBAPI SRVID=2 ENVFILE="<APPDIR1>/ENVFILE"
BUYSELL SRVGRP=COBAPI SRVID=3 ENVFILE="<APPDIR1>/ENVFILE"

#

#

*SERVICES

6-2 BEA TUXEDO COBOL Guide

Configuration File for STOCKAPP

Notes to Listing 6-1

The following list describes the nature of the value you must provide for the

angle-bracketed values.
Line Value
001 U D—The effective user ID for the owner of the bulletin board IPC structures. In a

multiprocessor configuration, the value must be the same on all machines. You avoid
problems if this is the same as the owner of the System/T software.

002

A D—The effective group ID for the owner of the bulletin board IPC structures. In
a multiprocessor configuration, the value must be the same on all machines. Users of
the application should share this group ID.

003

SI TE1 nane—The node name of the machine. Use the value produced by the
UNIX command:

unane -n

004

TUXDI R—The absolute pathname of the root directory for the BEA TUXEDO
system software. Make this a global change to put the value in all occurrences of
<TUXDI R1> in the file.

005

APPDI R—The absolute pathname of the directory where the application runs. Make
this a global change to put the value in all occurrencegBPBl R1> in the file.

006

machi ne t ype—This parameter is important in a networked application where
machines of different types are present. BEA TUXEDO checks for the value on all
communication between machines. Only if the values are different are the message
encode/ decode routines called to convert the data.

References

All of the configuration parameters and their values are described in ubbconf i g(5) in
the BEA TUXEDO Reference Manual.

BEA TUXEDO COBOL Guide 6-3

© Edit STOCKAPP Configuration File

6-4 BEA TUXEDO COBOL Guide

CHAPTER

[Create TUXCONFIG

This chapter describes how to prepare to boot STOCKAPP.

As with all the steps since Chapter 1, “Introduction and a Simple Application,” of this
guide, you should be in the directory where ySTUBCKAPP files are located and the
environment must be set by entering:

. | STKVAR

Loading the Configuration File

Once the configuration file has been edited to your satisfaction, it must be loaded to a
binary file. The binary configuration file has a file nam&@oXCONFI G, its pathname
relative toAPPDI R is in the environment variabl@UXCONFI G. The file should be

created by a person with the effective user ID and group ID of the BEA TUXEDO
system administrator, which should be the same agithandd D values in your
configuration file. If these conditions are not observed, you may run into permission
problems in runnin@TOCKAPP. The command line for creatim@XCONFI Gis:

tm oadcf UBBCBSHM

There is a y option to suppress prompts that ask if you really want to install
TUXCONFI G or to overwrite it if it already exists.

If you have specifie@ECURI TY as an option for the configuratiany oadcf prompts

you to enter an application password. The password you select can be up to 30
characters long. Client processes joining the application will have to come up with the
password.

tm oadcf parses the ASCII configuration file for syntax errors before it loads it, so if
there are errors in the file, the job fails.

BEA TUXEDO COBOL Guide 7-1

7 Create TUXCONFIG

References

For instructions on running t nconf i g, see Chapter 19, “Dynamically Reconfiguring
Applications,” inAdministering the BEA TUXEDO System.

The following page in Section 1 of tB&A TUXEDO Reference Manual is important:
t m oadcf (1).

7-2 BEA TUXEDO COBOL Guide

CHAPTER

8 Boot the Application

This chapter covers booting the application.

Executing tmboot

Aswith most proceduresin this guide, we start by setting the environment. The
variables particularly needed by t mboot are TUXCONFI G, APPDI R, and, of course,
TUXDI R. The command to boot the compl ete application is simply:

t mboot
which causes the prompt:
Boot all admin and server processes? (y/n): vy
When you respond y to the prompt, you get a running report that startslike this:
Booting all admn and server processes in /usr/ne/appdir/tuxconfig
Booting all admin processes ...
exec BBL - A
process id=24223 ... Started.

The display continues until all serversin the configuration have been started. It ends
with a count of the number started.

There are options that can be used to boot only a portion of the configuration. For
example, if the - Aflag is used, only administrative servers are booted, but with no
options specified, everything is booted.

In addition to the report on servers booted, t mboot also sends messages to the ULOG.

BEA TUXEDO COBOL Guide 8-1

8 Bootthe Application

The Userlog: ULOG

We havereferred previously to the ULOG, but thisisthefirst timeit has actually played
an important role in the process under discussion. It is called ULOG (short for user log)
because that is the default prefix; the actual file name of thelog is ULOGfollowed by
thedateintheform: . nmdyy. L og messagescan be directed to ULOGfrom user-written
modulesthrough acall to USERLOG(3chl), but it isa so used heavily by BEA TUXEDO
system processes such ast nboot .

References

For more information about the t mhoot command, see Chapter 4, “Starting and
Shutting Down Applications,” ilddministering the BEA TUXEDO System.

Chapter 15, “Error Management,” contains background information on the user of the
userlog. In addition, throughout the guide there are examples of messages being se
to the log.

The following pages in Sections 1 and 3cbl of B TUXEDO Reference Manual
are importantt nboot (1) andUSERLOG(3cbl).

8-2 BEA TUXEDO COBOL Guide

CHAPTER

O Run STOCKAPP

Run the Application

Thischapter covers some of the scripts and commandsyou can use after STOCKAPP has
been booted.

We recognize the probability, since you have a system that is active, that you already
have set the STOCKAPP environment. However, if that is not the case (that is, if you are
logging in cold to arunning system), you will need to enter the following

. | STKVAR

to set your environment for STOCKAPP.

Running the audit Client Program

The BUY. cbl client program was described in Chapter 3, “STOCKAPP Client
Programs” To execute the program, enter the command line as follows:

BUY

BEA TUXEDO COBOL Guide 9-1

O Run STOCKAPP

Using tmadmin

This book is not the place to go into an extensive description of the BEA TUXEDO
system administrative interface, t madni n. We simply want to encourage you to use it
while STOCKAPP is running in order to see the kind of information you can produce
with t madni n subcommands.

Shutting STOCKAPP Down

When you want to bring STOCKAPP down, the command
t nshut down

(or the shut down command of t madni n), entered without arguments, will cause all
application servers, gateway servers, TMSs, and administrative servers to be shut
down and their associated | PC resources to be removed.

The shut down command must be issued from the MASTER node.

References

9-2

For an extensive discussion on using the t madnmi n command-lineinterface for
administration, see Chapter 14, “Monitoring a Running Systerfdin nistering the
BEA TUXEDO System.

The following pages in Section 1 of tBEA TUXEDO Reference Manual are
important:t radmi n(1) andt mshut down(1).

BEA TUXEDO COBOL Guide

CHAPTER

10The BEA TUXEDO

System Development
Environment

Introduction

The purpose of this chapter isto describe the environment in which you will bewriting
code for aBEA TUXEDO system application.

In addition to the COBOL code that expresses the logic of your application, you will
be using the A pplication-Transaction Monitor Interface (ATMI), which refers to the
interface between the BEA TUXEDO system and your application. The ATMI calls
are COBOL callsthat have the specific purpose of implementing the communication
among application modules running under the control of BEA TUXEDO, including all
the associated resources you need.

Asyou might remember from the BEA TUXEDO Product Overview, the BEA
TUXEDO system uses an enhanced client-server architecture. The remaining chapters
of thisbook describe how the ATMI calls are used in writing and debugging clients
and services. Thischapter provides some of the context withinwhich you will be doing
that work.

BEA TUXEDO COBOL Guide 10-1

10 The BEA TUXEDO System Development Environment

Client Processes

A client process takes user input and sends it as a service request to a server process
that offers the requested service.

Basic Client Operation

10-2

A client process uses one ATMI call to join an application, another to send the data
structure to a server and still others to receive the reply.

The operation of abasic client process can be summarized by the pseudo-code shown
inListing 10-1.

Listing 10-1 Pseudo-code for a Client

START PROGRAM

enroll as a client of the BEA TUXEDO application
place initial client identification in data structure
performuntil end

get user input

pl ace user input in DATA- REC

send service request

receive reply

pass reply to the user

end perform

| eave application

END PROGRAM

Most of the statementsin Listing 10-1 areimplemented with ATMI calls. Placing user
input in a DATA- REC and passing the reply to the user are implemented with COBOL
calls.

When client programs are ready to test, you use the bui | dcl i ent - Ccommand to
compile and link edit them.

BEA TUXEDO COBOL Guide

Client Processes

Client Sending Repeated Service Requests

A client may send and receive any humber of service requests before leaving the
application. These can be sent as a series of request/response calls or, if it isimportant
to carry state information from one call to the next, a connection to a conversational
server can be set up. Thelogicwithinthe client program is about the same, but different
ATMI calls are used.

Server Processes and Service Subroutines

Servers are processes that provide one or more services. They continually check their
message gqueue for service requests and dispatch them to the appropriate service
subroutines.

Basic Server Operation

Applications combine their service subroutines with the controlling program that the
BEA TUXEDO system providesin order to build server processes. This system
supplied controlling program is a set of predefined routines. It performs server
initialization and termination and places user input in data structures to receive and
dispatch incoming requeststo service routines. All of this processing is transparent to
the application.

Server and a service subroutine interaction can be summarized by the pseudo-code
shown in Figure 10-1.

BEA TUXEDO COBOL Guide 10-3

10 The BEA TUXEDO System Development Environment

10-4

Figure 10-1 Pseudo-code for a Request/Response Server and a Service
Subroutine

START PROGERAM

enroll as a server in the System /T application
adwerti se services

perform until end
provided by check message quene for service request
SystemlT dequene request
dispatch request to serwice subroutine —
receive control back from subroutine

end perform

SERVICE SUBROUTINE
&

receive control from server

provided by
application

process request
return control to server
After someinitialization a server waits until arequest message is put on its message

gueue, dequeues the request and dispatchesit to a service subroutine for processing. If
areply isneeded, thereply is considered part of request processing.

The conversational paradigm is somewhat different. Pseudo-code is shown in
Figure 10-2.

BEA TUXEDO COBOL Guide

Client Processes

Figure 10-2 Pseudo-code for a Conver sational Service Subroutine

SERVER

CONVERSATIOMAL SERVICE SUBROUTINE
I

receive contral from server

perform while true
recerve data from conversational client
process request
send data to conwversational client

end perform

return control to server

The BEA TUXEDO system-supplied controlling program containsthe code needed to
enroll asaserver, advertise services and degueue request messages. The ATMI calls
are used in service subroutines that process requests. When they are ready to compile
and test, service subroutines are link edited with the server by means of the

bui | dser ver - Ccommand to form an executable server.

Servers as Requesters

The serialy reusable architecture of serversis particularly significant if the operation
requested by the user islogically divisibleinto severa services, or several iterations of

the same service. Such operations can be overlapped by having a server assume the

role of aclient and hand off part of the task to another server as part of fulfilling the

original client’s request. In such a capacity the server becomes a requester. Both clients
and servers can be requesters. In fact, a client can only be a requester. The coding
model for such a system is easily accomplished with the routines that are provided by
ATMI.

Arequest/response server can also forward a request to another server. This is different
from becoming a requester. In this case, the server does not assume the role of client
since no reply is expected by the server that forwards a request. The reply is expected
by the original client.

BEA TUXEDO COBOL Guide 10-5

10 The BEA TUXEDO System Development Environment

The ATMI Calls

10-6

The Application-Transaction Monitor Interface is a reasonably compact set of calls
used to open and close resources, begin and end transactions, and provide the
communication between clients and servers. Table 10-1 summarizes them. Each
routine is documented on its own page in the BEA TUXEDO Reference Manual.

Table10-1 ATMI Calls

Group Name Operation
Application Interface TPI NI TI ALI ZE join an application client
TPTERM leave an application client
Request/response TPCALL send arequest, wait for answer
Communication Interface TPACALL send request asynchronously
TPGETRPLY get reply after asynchronous
call
TPCANCEL cancel communications
handle for outstanding reply
TPGPRI O get priority of last request
TPSPRI O set priority of next request
Conversational Interface TPCONNECT begin a conversation
TPDI SCON end a conversation
TPSEND send data in conversation
TPRECV receive datain conversation
Unsolicited Notification Interface TPNOTI FY notify by client id
TPBRCOADCAST notify by name
TPSETUNSCL set unsolicited message
handling routine
TPGETUNSCL get unsolicited message
TPCHKUNSCL check for unsolicited

messages

BEA TUXEDO COBOL Guide

Client Processes

Table10-1 ATMI Calls

Group Name Operation

Transaction M anagement TPBEG N begin atransaction

Interface - -
TPCOW T commit the current transaction
TPABORT abort the current transaction
TPGETLEV check if in transaction mode

Service Routine Template TPSVCSTART start a service
TPRETURN end service routine
TPFORWAR forward request and end

service routine
Dynamic Advertisement TPADVERTI SE advertise a service name

Interface

TPUNADVERTI SE

unadvertise a service name

Resource Manager Interface

TPOPEN

open aresource manager

TPCLOSE

close aresource manager

Events TPSUBSCRI BE subscribe to events
SeeEV_ENTS_(S) andthereference 1pposT post events
pages listed in the next column.

TPUNSUBSCRI B unsubscribe events

An Overview of X/Open’s TX Interface

In addition to ATMI’s transaction management verbs, BEA TUXEDO also supports
X/Open's TX Interface for defining and managing transactions. Because X/Open used
ATMI’s transaction demarcation verbs as the base for the TX Interface, the syntax and
semantics of the TX Interface are quite similar to ATMI.

Table 10-2 introduces the routines in the TX Interface and highlights the main
differences with their corresponding ATMI routines. For maximum portability, the TX
routines can be used in place of the ATMI routines shown in Table 10-1.

BEA TUXEDO COBOL Guide 10-7

10 The BEA TUXEDO System Development Environment

Table 10-2 TX Calls

TX Verbs Corresponding Main Differences
ATMI Verbs
TXBEG N TPBEG N Timeout vaue not passed as

argument to TXBEGIN. See
TXSETTIMEOUT.

TXCLOSE TPCLOSE None

TXCOW T TPCOW T TXCOW T can optionally start anew
transaction before it returns. Thisis
known as a “chained” transaction.

TXI NFORM TPGETLEV TXI NFORMreturns the settings of
transaction characteristics set via the
threeTXSET* routines.

TXOPEN TPOPEN None

TXROLLBACK TPABORT TXROLLBACK supports chained
transactions.

TXSETCOW TRET TPSCMT None

TXSETTRANCTL None Defines whether the application is

using chained or unchained
transactions.

TXSETTI MEQUT TPBEG N Transaction timeout parameter
separated from TXBEGIN.

There are two points to keep in mind when using the TX Interface. First, the TX
interface requires that TXOPEN be called before using any other TX verbs. Thus, even
if aclient or aserver isnot accessing an XA-compliant resource manager, it must call
TXOPEN beforeit can use TXBEG N, TXCOWM T, and TXROLLBACK to define transactions.

The second rule concerns the default TPSVRI NI T and TPSVRDONE routines provided
with BEA TUXEDO. If an application writer wantsto use the TX Interfacein service
routines, then the default BEA TUXEDO system TPSVRI NI T and TPSVRDONE routines
should not be used. This is because these routines call TPOPEN and TPCLOSE which
would preclude the use of TX verbsin service routines. Thus, application writers
should supply their own TPSVRI NI T and TPSVRDONE routines that call TXOPEN and
TXCLGCSE.

10-8 BEA TUXEDO COBOL Guide

Client Processes

Listing 10-2 is an example of how the TX Interface can be used to support chained
transactions. Note that TXBEG N must be used to start the first of a series of chained
transactions. Also, note that before calling TXCLOSE, the application must switch to
unchained transactions so that the last TXCOMM T or TXROLLBACK does hot start a new
transaction.

Listing 10-2 Chained Transaction Example

CALL "TXOPEN' USI NG TX- RETURN- STATUS.
SET TXCHAI NED TO TRUE.
CALL "TXSETTRANCTL" USI NG TX- | NFO- AREA
TX- RETURN- STATUS.
MOVE 120 TRANSACTI ON- TI MEQUT.
CALL "TXSETTI MEQUT" USI NG TX- | NFO- AREA
TX- RETURN- STATUS.
do forever
do work as part of transaction.
if no nore work exists
SET TXCHAI NED TO FALSE.
CALL "TXSETTRANCTL" USI NG TX-| NFO- AREA
TX- RETURN- STATUS.
i f work done was successful
CALL "TXCOMWM T" USI NG TX- RETURN- STATUS.
el se
CALL "TXROLLBACK" USI NG TX- RETURN- STATUS.
if no nore work exists
| eave
end do
CALL "TXCLCSE' USI NG TX- RETURN- STATUS.

Typed Records

M essages are passed to serversin typed records, actually pairs of records. Why

“typed?” Well, different types of data require different software to initialize the record,
send and receive the data and perhaps encode and decode it, if the record is passed
between heterogeneous machines. Records are designated as being of a specific type
so the routines appropriate to the record and its contents can be invoked. These issues
are typically not of concern to application developers, but more details can be found in
buf f er (3c),t uxt ypes(5), andt ypesw(5) in theBEA TUXEDO Reference Manual.

BEA TUXEDO COBOL Guide 10-9

10 The BEA TUXEDO System Development Environment

BEA TUXEDO provides eight record types for messages: STRI NG, CARRAY, VI EW
VI EWB2, X_OCTET, X_COMMON, FM_, and FM_32. Applications can define additional
types as needed. Consult the manual pages referred to above and Administering the
BEA TUXEDO System.

The STRI NGrecord type allows an arbitrary number of characters which may not
contain LOW VALUE characters anywhere within the record but could be at the end of
the record. When sending data, LEN | N TPTYPE-REC must contain the number of
bytes to be transferred.

Thedatain a CARRAY record type alows an arbitrary number of characters which may
contain LOW VALUE characters. When sending data, LEN | N TPTYPE-REC must
contain the number of bytesto be transferred. The X_OCTET record typeis equivalent
to CARRAY.

The vI Ewtype isa COBOL data structure that the application defines and for which
there has to be a view description file. Records of the VI Ewtype must have subtypes,
that designateindividua datastructures. The X_COvMON record typeissimilar to Vi EW
but is used for both COBOL and C programs so field types should be limited to PI C
S9(4) COWP-5, Pl C S9(9) COMP-5,and Pl C X(any-1 engt h) . The Vvl EWB2 record
typeissimilar to Vi Ewbut alows for larger character fields, more fields, and larger
overall records.

An FM. record is a proprietary BEA TUXEDO system type of self-defining buffer
where each data field carries its own identifier, an implied occurrence number and
possibly alength indicator. Thistype provides great flexibility at the expense of some
processing overhead in that all data manipulation is done via FM function calls. The
FM function calls are not available from COBOL. COBOL procedures are provided with
proceduresto initialize an FM. record, and convert FM records to/from VI Ewrecords.
Thisisused primarily for applicationsthat have COBOL programs communicating with
C programs that use FML records.

Using VIEW and FML Buffers

If you are using the Vi Ewor FML buffer types, some preliminary work is required to
create view description files or field table files. In the case of VI Ews, adescriptionfile
must exist and must be availableto client and server processes that use adata structure
described in the vi Ew The BEA TUXEDO system view compiler program, vi ewc, is
used with the - Coptionto produce one or more COBOL COPY files (one per view) from
a source viewfile. These COPY files contain Data Description Records, which may be
used in the LI NKAGE SECTI ON or the WORKI NG STORAGE section of the DATA

DI VI SI ON according to the demands of the program.

For FM_ buffers, afield tablefile containing descriptions of all fieldsthat may beinthe
buffer must be available.

10-10 BEA TUXEDO COBOL Guide

Client Processes

Relationship Between VIEW Buffers and FML

There are two kinds of Vi Ewbuffers. One is based on an FM_ buffer. The other vi Ew
buffer is independent; it is simply a C structure. Both types are described in view
description files and compiled with vi ewc (1), the BEA TUXEDO system view
compiler. We're going to talk first about the FML variety.

FML Views

BEA TUXEDO systenFM. is a family of functions some of which convertrm

buffer into acOBOL record or vice versa. The COBOL record that is derived from the
fielded buffer is referred to as &wL VI EW FM. buffers must be converted GoBOL
records for manipulation since tREL are functions not available @BOL programs.
The Vi Ewis then converted back into anL buffer for message transmission to a C
program that expects &L buffer.

There are slight differences between a view description Biatbased view and one

that is independent &ivL. Listing 10-3 shows a view description file with all of the
available data types. Note that {RRAY1 field has a count of two occurrences and
has the “C” count flag to indicate that an additional count element should be created in
the record so the application can indicate how many of the occurrences are actually
being used. It also has the “L” length flag such that there is a length element (which
occurs twice, once for each occurrence of the field) indicating how many of the
characters the application has populated.

Listing 10-3 View Description Filefor FML View

VI EW MyVI EW
$/* View structure */

#type cnane fbnanme count flag size null
float floatl FLOAT1 1 - - 0.0
doubl e doubl el DOUBLEl1l 1 - - 0.0
| ong | ongl LONGL 1 - - 0
short shortl SHORT1 1 - - 0
int intl | NT1 1 - - 0
dec_t decl DEC1 1 - 9,16 O
char charl CHARL 1 - - \NO
string stringl STRINGL 1 - 20 N0
carray carrayl CARRAY1l 2 CcL 20 A0

END

BEA TUXEDO COBOL Guide 10-11

10 The BEA TUXEDO System Development Environment

FML Field Table Files

Field table files are always required when using FM_ records, including the use of
FM_-dependent VI EWs. A field table file maps the logical name of afield in an FM
buffer to afield identifier that uniquely identifies the field.

An example that could be used with the view shown in Listing 10-3 is shown in
Listing 10-4.

Listing 10-4 The myview.fldsField Table File

name nunber type flags comments
FLOAT1 110 fl oat - -
DOUBLE1 111 double - -

LONGL 112 | ong - -
SHORT1 113 short - -
I NT1 114 | ong - -
DEC1 115 string - -

CHAR1 116 char - -
STRINGL 117 string - -
CARRAY1 118 carray - -

Independent VIEWs

Listing 10-5 shows the view description file, similar to the examplein Listing 10-3,
but for a Vi Ewindependent from FM_.

Listing 10-5 View Description Filefor Independent Views

$/* View data structure */

VI EW MyVI EW

#type chame fbnane count flag size null
f | oat floatl - 1 - - -
doubl e doubl el - 1 - - -
| ong | ongl - 1 - - -
short short1 - 1 - - -
i nt intl - 1 - - -
dec_t decl - 1 - 9,16 -
char charl - 1 - - -
string stringl - 1 - 20 -
carray carrayl - 2 CL 20 -

END

10-12 BEA TUXEDO COBOL Guide

Client Processes

Note that in this view description, the format is similar to the FM_-dependent view,
except that the columnsf bnane and nul | inthefileareignored by the view compiler.
These columns are not relevant when an FML buffer does not stand behind the view,
but it is necessary to place some value (a dash, for example) in these columnsto serve
as aplaceholder.

Corresponding Data Type Definitions

The COBOL application programmer should definef | oat and doubl e fieldsin the
application as COVP- 1 and COVP- 2, respectively.

The UNIX field types| ong and short correspond to S9(9) COWP- 5 and S9(4)
COMVP- 5 respectively in COBOL (the use of COvP- 5 is for use with MicroFocus COBOL
so that the COBOL integer fields match the data format of the corresponding C fields;
the data type for vs coBOL | I would simply be COWP) .

Thedec_t type mapsto a COBOL COVP- 3 packed decimal field. Packed decimal s exist
in the COBOL environment as two decimal digits packed into each byte with the
low-order half byte used to store the sign. The length of a packed decimal may be 1 to
9 bytes with storage available for 1 to 17 digitsand asign. Thedec_t field typeis
supported within the Vi Ewdefinition for the conversion of packed decimals between
the C and the cOBAL environments. Thedec_t field isdefined in avi Ewwith asize of
two numbers separated by a comma. The number to the left of the commais the total
number of bytes that the decimal occupiesin COBOL. The number to the right isthe
number of digitsto theright of thedecimal point in COBOL. The formulafor conversion
to the COBOL declaration is:

dec_t(m n) => S9(2*m (n+l), n) COWP-3

For example, say asize of 6,4 is specified in the Vi Ew There are 4 digits to the right
of the decimal point, 7 digitsto the left and thelast half byte storesthe sign. The coBOL
application programmer would represent this as 9(7) Vo(4) , with the Vv representing
the decimal point between the number of digitsto each side. Note that there is no
dec_t typesupportedin FM_; if FML-dependent VI Evg are used, then the field must be
mapped to a C type in the Vi Ewfile (for instance, the packed decimal can be mapped
to an FML string field and the mapping functions do the conversion between the
formats).

BEA TUXEDO COBOL Guide 10-13

10 The BEA TUXEDO System Development Environment

Creating COBOL COPY Files from View Descriptions

View description files are source files. To use the VI Ewin a program, you need a
COBOL cory file that defines the data structures in the view. Y ou can create a
COBOL cory file from the nyvi ew. v view description file by invoking the view
compiler, vi ewc.

viewc -C -n nyvi ew. v

Note that the - n option is specified only if the Vi Ewis independent of any FM_
definition. vi ewc - Ccreates three files. Oneisthe COBOL CCPY file, MVl EW cbl ,
another isthe header file, nyvi ew. h, for C routines that share the same view, and the
other isthe binary version of the source description file, myvi ew. V. This binary file
must be in the environment when a Vi Ewrecord is defined.

The COBOL corY file created from nyvi ew. v is shown in Listing 10-6.

Listing 10-6 Resulting MYVIEW COBOL Copy File

* VI EWFI LE: " nyvi ew. v"
* VI EWNAME: " MYVI EW

05 FLOAT1 USACE | S COWP- 1.
05 DOUBLE1l USACE | S COWP- 2.
05 LONGL Pl C S9(9) USAGE IS COW-5
05 SHORT1 Pl C S9(4) USAGE IS COW-5
05 FILLER Pl C X(02).
05 INT1 Pl C S9(9) USAGE IS COW-5.
05 DECL.
07 DEC EXP Pl C S9(4) USAGE IS COW-5
07 DEC PCS Pl C S9(4) USAGE IS COW-5
07 DEC NDGTS Pl C S9(4) USAGE IS COW-5
* DEC-DGIS is the actual packed deci mal val ue
07 DEC DGTS Pl C S9(1)Vv9(16) COWP-3.
07 FILLER Pl C X(07).
05 CHARL Pl C X(01).
05 STRI NGL Pl C X(20).
05 FILLER Pl C X(01).

05 L- CARRAY1 OCCURS 2 TI MES PI C 9(4) USAGE | S COW-5.
* LENGTH OF CARRAY1

05 C- CARRAY1 PI C S9(4) USAGE | S COWP-5.
* CQUNT OF CARRAY1

05 CARRAY1 OCCURS 2 TI MES PI C X(20).

05 FILLER PI C X(02).

10-14 BEA TUXEDO COBOL Guide

Client Processes

COBOL cory filesfor views must be brought into client programs and service
subroutines with COPY statements. In Listing 10-6 note that there are some FILLER
fields. These are created by the view compiler so that the alignment of fieldsin coBOL
matches the alignment in C. Also, note the format of the packed decimal value, DEC1.
Itis composed of 5 fields; the DEG- EXP, DEC- POS, DEC- NDGTS and FI LLERfields are
used only in C (they are defined in the dec _t type) but areincluded in the cOBOL record
for filler; they should not be used by the COBCOL application programmer. The actual
packed decimal value isstored in the DEC- DGTS value; thisisthe value that should be
set and/or accessed by the COBOL programmer. All of the ATM primitives take care of
correctly populating the DEC- DGTS in packed decimal format before the record is
passed to the COBOL program from a C program, and convert back to the dec_t type
when passed from the COBOL program to a C program. The only restriction is that a
COBOL program cannot directly pass the record to a C function without going through
the ATM interface (the decimal formats won’t match).

Also note that there is an CARRAY1 length field that occurs twice, once for each
occurrence o€ARRAY1 and there is also th@ CARRAY1 count field.

vi ewc also creates a C version of the header file which can be used if an application
desires to mix C and COBOL service and/or client programs.

FML/VIEW Conversion

TheFM function interface consists of about eighty 16-bit primitives and the same
number forFML32. This interface was designed for use with the C language. Instead of
providing acoBOL version of this interfaceSOBOL procedures are provided to convert

a received-M_ buffer to acoBOL record for processing, and then convert the record
back toFM..

If a cOBQL client or server is the originator of &v. message, the record must be
initialized using theéel NI T procedureFl NI T takes th&M. record (suitably aligned on
a full-word boundary) anBM_- LENGTHin anFM_I NFOrecord which is set to length of
theFM record. The initialization is shown in Listing 10-7. If e record is received
in a program, it is automatically initialized (unleS3NOCHANGE is set). That means
that if a program first receives & record instead of being the originator of the
message, it is unnecessary to €al T.

BEA TUXEDO COBOL Guide 10-15

10 The BEA TUXEDO System Development Environment

Listing 10-7 FML/VIEW Conversion

WORKI NG STORAGE SECTI ON.
*RECORD TYPE AND LENGTH
01 TPTYPE- REC.
CCOPY TPTYPE.
*STATUS OF CALL
01 TPSTATUS- REC.
COPY TPSTATUS.
* SERVI CE CALL FLAGS/ RECORD
01 TPSVCDEF- REC.
CCOPY TPSVCDEF.
* TPINI T FLAGS/ RECORD
01 TPI NFDEF- REC.
CCPY TPI NFDEF.
* FML CALL FLAGS/ RECORD
01 FM.- REC.
CCOPY FM.I NFO

*
*

* APPLI CATI ON FML RECORD - ALI GNED
01 MYFM..
05 FBFR-DTA OCCURS 100 TI MES PI C S9(9) USAGE IS COWP- 5.
* APPLI CATI ON VI EW RECORD
01 MYVI EW
CCOPY MYVI EW

* MOVE DATA | NTO MyVI EW

* INITIALI ZE FML RECORD

MOVE LENGIH OF MYFML TO FM.- LENGTH.

CALL "FINIT* USING MYFM. FM.- REC.

IF NOT FOX
MOVE "FINIT Fail ed" TO LOGVSG TEXT
PERFORM DO- USERLOG
PERFORM EXI T- PROGRAM

END-| F.

* Convert VIEWto FM. Record
SET FUPDATE TO TRUE.
MOVE "MYVI EW TO VI EWNAME.
CALL "FVSTOF" USI NG MYFML MyVI EW FM.- REC.
I F NOT FOK
MOVE " FVSTOF Fail ed" TO LOGVEG TEXT
PERFORM DO- USERLOG
PERFORM EXI T- PROGRAM
END- | F.
* CALL THE SERVI CE USI NG THE FM. RECORD

10-16 BEA TUXEDO COBOL Guide

Client Processes

MOVE "FM." TO REC TYPE I N TPTYPE- REC.
MOVE SPACES TO SUB- TYPE I N TPTYPE- REC.
MOVE LENGTH OF MYFML TO LEN
CALL "TPCALL" USING TPSVCDEF- REC
TPTYPE- REC
MYFML
TPTYPE- REC
MYFML
TPSTATUS- REC.
I'F NOT TPCK
MOVE " TPCALL MYFM. Fail ed" TO LOGVSG TEXT
PERFORM DO- USERLOG
PERFCRM EXI T- PROGRAM
END- | F.
* CONVERT THE FML RECORD BACK TO MyVI EW
CALL "FVFTOS' USING MYFML MyVI EW FML- REC.
I F NOT' FOK
MOVE " FVFTOS Fai | ed" TO LOGVBG TEXT
PERFORM DO- USERLOG
PERFCRM EXI T- PROGRAM

END- | F.

The FVSTCOF procedure is used to convert an FML record to a Vi Ewrecord. Theview is
defined by including the copy file generated by the view compiler. The FM_- REC
record provides the Vi EANAME and the FML- MODE transfer mode which can be set to
FUPDATE, FQJIO N FJO Nor FCONCAT. The actions of these modes are the same as
those described in Fupdat e(3fml), Foj oi n(3fml), Fj oi n(3fml), and Fconcat (3fml).

The FVFTOS procedure is used to convert aVvi Ewrecord into an FM record. The
parameters are the same as for FVSTOF procedure but the FM_- MODE need not be set.
Fields are copied from the fielded buffer into the structure based on the element
descriptionsin the view. If afield in the fielded buffer has no corresponding element
in the COBAL record, it isignored. If an element specified in the COBOL record has no
corresponding field in the fielded buffer, anull valueis copied into the element. The
null value used is definable for each element in the view description. To store multiple
occurrences in the COBOL record, the record element should be defined with OCCURS.
If the buffer has fewer occurrences of the field than there are occurrences of the
element, the extra element slots are assigned null values. On the other hand, if the
buffer has more occurrences of thefield than there are occurrences of the element, the
surplus occurrences are ignored.

For FML32 and VI EWB2, theFI NI T32, FVSTOF32, and FVFTOS32 procedures should be
used.

Upon successful completion, FM_- STATUS is set to FOK. On error, FM_- STATUS is set
to anon-zero value (see the reference manual pages).

BEA TUXEDO COBOL Guide 10-17

10 The BEA TUXEDO System Development Environment

Environment Variables

Environment variables needed either for clients or service routines associated with a
server can be set in ENVFI LES that are specified in the configuration file. The
environment variables, for example, that need to be set for view descriptions are
summarized in Table 10-3.

Table 10-3 BEA TUXEDO System Environment Variables
Variable Contains Used by

FI ELDTBLS commaseparated list of field table filenames client and server processes
using FML buffers

FLDTBLDI R colon separated list of directoriesto beused client and server processes

to find field table fileswith relative file using FML buffers
names

VI EWFI LES comma separated list of binary view client and server processes
description files using VI EWrecords

VI EWDI R colon separated list of directoriestobeused client and server processes
to find binary view description files can be using VI EWrecords
found

For the FML32 and VI EWB2 record types, the environment variables are suffixed with
“32,” that is,FLDTBLDI R32, FI ELDTBLS32, VI EWFI LES32, andvl EWDI R32.

TheALTCC andALTCFLAGS environment variables are used by el dcl i ent and

bui | dser ver commands when run with the€ option for COBOL. You may want to
set them in your environment to make compilation of clients and servers more
convenient. SeALTCC to the command that invokes the COBOL compiler. It defaults
to cobcc. SetALTCFLAGS to the link edit flags you may want to use on the compile
command line. Setting these variables are optional.

SetCOBOPT to the arguments you may want to use on the compile command line. This
variable is also optional. SEBCPY to the directories that contain a set of the COBOL
CoPY files to be used by the compiler. ®€BDI Rto the directory that contains the
COBOL compiler software.

The location of the BEA TUXEDO system binary files must be known to your
application. It is the convention to install the BEA TUXEDO system software under a
root directory whose location is specified in théxDi R environment variable.

$TUXDI R bi n must be included in yowATH in order for your application to locate the
executables for BEA TUXEDO system commands.

10-18 BEA TUXEDO COBOL Guide

Client Processes

Configuration File

The configuration file specifies the configuration of an application to the BEA
TUXEDO system. For aBEA TUXEDO system application in production, it is the
responsibility of the BEA TUXEDO administrator to set up a configuration file that
defines the application. In the development environment, the responsibility may be
delegated to application programmers to create their own.

If you are faced with the task of creating a configuration file, here are some
suggestions:

4 Borrow afilethat already exists. For example, the file ubbshmthat comes with
the sample application is a good starting point.

¢ Keepit simple. For test purposes set your application up as a shared memory,
single processor system. Use regular UNIX filesfor your data.

4 Make sure the | PCKEY parameter in the configuration file does not conflict with
any othersthat may bein use at your installation. You should probably check
thiswith your BEA TUXEDO system administrator.

4 Setthe U Dand G D parameters so that you are the owner of the configuration.

4 Read the documentation. The configuration file is documented in ubbconf i g(5)
in the BEA TUXEDO Reference Manual and in Administering the BEA TUXEDO
System.

Making the Configuration Usable
The configuration file is an ASCII file. To make it usable, you have to run

t m oadcf (1) to convert it to abinary file. The TUXCONFI Genvironment variable must
be set to the pathname for the binary file, and exported.

BEA TUXEDO COBOL Guide 10-19

10 The BEA TUXEDO System Development Environment

The Bulletin Board

Thebulletin board isthe BEA TUXEDO system name for agroup of data structuresin
a segment of shared memory that is allocated from information stored in TUXCONFI G
when the application is booted. Both client and server processes attach to the bulletin
board. Part of the bulletin board associates service names with the queue address of
serversthat advertise that service. Clients send their requests to the name of the service
they want to invoke, rather than to a specific address.

All processes that are part of aBEA TUXEDO application share this UNIX shared
memory.

Starting and Stopping an Application

Execute the t mboot (1) command to bring up an application. The command gets the
I PC resources needed by the application, starts administrative processes and the
application servers.

When it istime to bring the application down, execute thet mshut down (1) command.
t mshut down stops the servers and rel eases the | PC resources used by the application,
except any that might be used by the database resource manager.

10-20 BEA TUXEDO COBOL Guide

CHAPTER

11 writing Client
Programs

Introduction

This chapter describes the ATMI routines that enable a client program to do the

following:

L4

¢
¢
¢
¢
¢

control the client name that is posted in the bulletin board

comply with the level of security set for the application

enter and |eave an application

mani pulate message records

communicate with a service and receive replies in request/response mode

modify the way aroutine performs by specifying various options

The chapter ends with information about how to compile client programs.

BEA TUXEDO COBOL Guide

11 Writing Client Programs

Preliminaries

Before aclient program is ready to join the application some preliminary processing
may be called for to take advantage of BEA TUXEDO system capabilities.

Client Naming

11-2

An application can associate both a USRNAME and a CL TNAME with an execution of a
client process. Vaues furnished for these names are combined by the BEA TUXEDO
system with the logical machine identifier (LM D) of the machine where the process
runs, in order to establish a unique identification for the process. It is left to the
discretion of application devel opers and programmers to work out ways of acquiring
the value for the fields. Once acquired they are passed to TPI NI TI ALI ZEina
TPINFDEF-REC record. Some possible ways are shown in later examples.

Note: If the processisrunning outside the administrative domain of the application,
that is, if it isrunning on aworkstation connected to the administrative
domain, the LM Dused is the one for the machine used by the workstation
client to access the application.

Once aclient processis uniquely identified client authentication can be implemented,
out-of -band messages can be sent to a specific client or to groups of clients via
TPNOTI FY and TPBROADCAST and detailed statistical information can be gathered via
t madm n(1).

Figure 11-1 shows an example of how names might be associated with clients
accessing an application. In the example, the application uses the CLTNAME field to
indicate ajob routine.

BEA TUXEDO COBOL Guide

Preliminaries

Figure11-1 Client Naming

LMID: MNODEF — LMID: NODE]
USRNAME: JOAHW N USENAME: JANE
CLTNAME: TELLER 0 CLTNAME: TELLER
D
D I B -5 E D
1
A
M — LMID: NODEF
g M USRNAME: 4wz
- o CLTNAME: TELLER
n] D
D Bl)
= 2
A
physical connections
e logical connections

Unsolicited Notification

Unsolicited notification refers to any communication with a client that is not an
expected response to a service request (or an error code). The example that comesto
mind is a broadcast message to announce that the world is coming to an end in five
minutes. Within the client program there are three things you may want to do to handle
such messages:

L4

L4

select settings in the TPINFD EF-REC record to select the method used to detect
messages

if you usethe dip-in method, call TPSETUNSCL to hame your message handling
routine

if you usethe dip-in method, call TPCHKUNSCL to see if any unsolicited
messages have been received

if you usethe dip-in method, call TPGETUNSCL to get any unsolicited messages

The setting values are described below in “The TPINFDEF-REC Record.”
TPSETUNSCL andTPCHKUNSOL are shown in examples later in this chapter and are
described in Section 3cbl of tiBEA TUXEDO Reference Manual.

BEA TUXEDO COBOL Guide 11-3

11 Writing Client Programs

Security Strategy

11-4

The BEA TUXEDO system provides five incremental levels of security.

Operating System

For platforms that have underlying security mechanisms, thisisthe first line

of defense. The security level is configured RONE” (configuration is
discussed below). This implies, not that there is no security, but that there ar
no additional mechanisms (for example, the BEA TUXEDO system
application password) beyond what the platform provides.

The BEA TUXEDO system has the notion of an application administrator
who configures the application, starts up the application (servers run with the
permissions of this administrator), and monitors the running application,
making dynamic changes as necessary. Note that this implies that server
programs are “trusted” since they run with the administrator’s permissions.
This is supported using the underlying operating system login mechanism anc
read/write permissions on files, directories, and system resources.

Client programs are run directly by the users with their own permissions.
However, they normally have access to the administrative configuration file
and the interprocess communication mechanisms, such as the Bulletin Boar
in shared memory, as part of normal processing. This is true whether or not
additional BEA TUXEDO system security is configured. For some
applications running on platforms supporting such, a more secure approach i
to have the files and IPC mechanisms accessible only to the application
administrator and to have “trusted” client programs run with the permissions
of the administrator (using a “setuid” mechanism). Combining this with BEA
TUXEDO system security will allow the application to “know” who the user
is that is making the request. For the most secure environment, only
workstation clients should be allowed to access the application; client
programs should not be allowed to run on the machines where application
server and administrative programs run.

The BEA TUXEDO system security mechanisms can be used in addition to
operating system security to prevent unauthorized access. The additional
security can be used to avoid simple violations like someone accessing an
unattended terminal. Or it can protect the boundaries of the administrative
domain from inter-domain or workstation client access over the network by
unauthorized users.

BEA TUXEDO COBOL Guide

Preliminaries

Application Password

This security level requiresthat every client provide an application password
as part of joining the application. The security level is configured to APP_PW
The administrator must provide an application password when this level is
configured and this password can also be changed administratively. It isthe
responsibility of the administrator to inform users of the application what the
password is.

If thislevel of security isused, BEA TUXEDO system system-supplied client
programs, ud(1) for example, prompt for the application password.
Application-written client programs must include code to obtain the

password from a user. The password should not be echoed to the user’s
terminal. The password is placed in clear text inTAENFDEF-REC record
and evaluated when the client catl® NI TI ALI ZE to join the application.

See “Writing Client Programs” in tHBEA TUXEDO Programmer’s Guide
for examples of code for handling a password.

User Authentication

The third level of BEA TUXEDO system security is based on authenticating
each individual user in addition to providing the application password. The
security level is set toUSER_AUTH".

This level involves passing user-specific data to an authentication service.
Often, the data is a per-user password. This data is automatically encrypted
when passed over the network from workstation clients. The default
authentication service AUTHSVC,” is provided by a BEA TUXEDO
system-supplied serveXUTHSVR. The operation ofUTHSVR is described in
“Writing Service Routines” in thBEA TUXEDO Programmer’s Guide. This
server can be replaced with an application authentication server with logic
specific to the application. (For example, it might access the widely-used
Kerberos mechanism for authentication.)

With this level of security, authentication but not authorization is provided.
That is, the user is checked when joining the application but then is free to
execute any services, post events, and access application queues. Itis possible
for the servers to do application-specific authorization within the logic of the
service routines, but there are no hooks for authorization checking for access
to events or application queues. The alternative is to use the built-in access
control checking.

BEA TUXEDO COBOL Guide 11-5

11 Writing Client Programs

11-6

Optiona Access Control Lists
With the use of access control lists (ACLS), the user is not only authenticated
when joining the application, but permissions are automatically checked
when accessing application entities such as services. ACL security aso
includes the user-authentication security equivalent to USER_AUTH.

Therearetwo levels of ACL checking. Thefirst ACL security level issimply
called ACL. If ACL isconfigured, the Access Control Lists are checked
whenever auser attempts to access a service name, queue name, or event

name within the application. If thereisno ACL associated with the name, the
assumption isthat permission is granted. Thisiswhy thislevel is considered
“optional” ACLs. It allows the administrator to configure access for those
resources that need more security, but ACLs need not be configured for
services, queues, or events that are accessible to everyone.

Some applications may find it necessary to use both system level and
application authorization. An ACL can be used to control who can getto a
service, and application logic can control data-dependent access (for
example, who can handle transactions for more than a million dollars).

Mandatory Access Control Lists
The second ACL security level iSENDATORY_ACL.” This level is similar to
ACL, but an access control list must be configured for every object for which
users are to have accesVMNDATORY_ACL is specified and there is no ACL
for the name, permission is denied.

A routine, TPCHKAUTH, is provided so the level of security can be checked before
calling TPI NI TI ALI ZE. TPCHKAUTH returns a value corresponding to:

TPNOAUTH
normal UNIX login and file permission security

TPSYSAUTH
an application password is required. The client program should place it in the
PASSVD field of the TPINFDEF-REC record.

TPAPPAUTH
the application password is required. In addition, the client is expected to
provide a value to be passed to the application-specific authentication service
in the DATALEN field of the TPINFDEF-REC record.

BEA TUXEDO COBOL Guide

Preliminaries

The TPINFDEF-REC Record

The TPINFDEF-REC record isa special BEA TUXEDO system typed record used by
aclient program to pass client identification and authentication information to the
system asthe client attemptsto join the application. It is defined in the COBOL copy
file and contains the following fields:

05 USRNANE PI C X(30).

05 CLTNAME PI C X(30).

05 PASSWD PI C X(30).

05 GRPNAME PI C X(30).

05 NOTI FI CATI ON- FLAG PI C S9(9) COWP-5.
88 TPU-SI G VALUE 1.
88 TPU-DI P VALUE 2.
88 TPU- 1 GN VALUE 3.

05 ACCESS- FLAG PIC S9(9) COVP-5.
88 TPSA- FASTPATH VALUE 1.
88 TPSA- PROTECTED VALUE 2.

05 DATALEN PIC S9(9) COVP-5.

The USRNAME, CLTNAME and GRPNAME Members of TPINFDEF-REC

USRNANME, CLTNAME and GRPNAME are al strings of up to MAXTI DENT characters.
MAXTI DENT is defined as 30. USRNAME is a name representing the caller; you might
elect to use the number returned by get ui d(2). CLTNAME is a client name whose
semantics are application defined. GRPNAME allows a client to be associated with a
resource manager group that is defined in the configuration file. This meansthat a
client can access an XA-compliant resource manager as part of a global transaction.
Currently, GRPNAMVE must be passed as SPACES, the client is not associated with a
resource manager group and isin the default client group. The USRNAMVE and CLTNAVE
fieldsare associated with theclient processwhen TPI NI TI ALI ZEiscalled and areused
for both broadcast notification and the retrieval of administrative statistics.

The PASSWD Member of TPINFDEF-REC

PASSWD is a SPACES string of up to MAXTI DENT characters. It isan application
password in unencrypted format that is used by TPI NI TI ALI ZE for validation against
the application password stored in the TUXCONFI Gfile.

BEA TUXEDO COBOL Guide n-7

11 Writing Client Programs

The Settings Members of TPINFDEF-REC

11-8

The settings members of TPINFDEF-REC are used to indicate the notification
mechanism and system access mode to be used. Selections override values specified
in the configuration file (with some exceptions explained below). Possible settings
values are:

TPU-D P
Select unsolicited notification by dip-in. Thisisthe default method if nothing
is specified in the configuration file. It has the advantage of giving the
receiving program more control over when unsolicited messages are handled.
The system will detect unsolicited messages for your client process only
while you are within ATMI calls. Y ou may want to check for unsolicited
messages as part of your regular checking routine following returns from
ATMI cdlls. If you specify this setting (or accept it as the default method),
you should include a call to TPSETUNSCL early in your program. Until the
handler for unsolicited messagesis known no messages can be delivered.

TPU-SI G
Select unsolicited notification by signals. This method has the advantage of
immediate notification, but has the limitations that you must have the same
ui d asthe sending process, and isnot available on all platforms (specifically,
it is not available with the MS-DOS instantiation of the Workstation). If you
specify this option but do not qualify for it, the system resets your choice to
TPU- DI P and calls USERLOG to note the event.

TPU- 1 GN
Ignore unsolicited notification.

TPSA- FASTPATH
Specifies ATMI calls within application code can access BEA TUXEDO
system internal tables via shared memory and that the shared memory is not
protected against access by application code outside of BEA TUXEDO
system libraries. Overrides the value in UBBCONFI G, except when
NO_OVERRI DE is specified. Thisisthe default if SYSTEM ACCESS modeis
unspecified.

TPSA- PROTECTED
Specifies ATMI calls within application code can access BEA TUXEDO
system internal tables viashared memory but the shared memory is protected
against access by application code outside of BEA TUXEDO system
libraries. Overrides the value in UBBCONFI G, except when NO_OVERRI DE is
specified.

BEA TUXEDO COBOL Guide

Joining and Leaving an Application

The DATALEN Member of TPINFDEF-REC

DATALEN is the length of the application-specific datathat will be sent to the
authentication service. For native clients, it is not encoded by the system; it is passed
to the authentication service asthe client program providesit. For workstation clients,
client authentication is handled by the system; it is passed over the network in
encrypted form.

Joining and Leaving an Application

The two routines discussed in this section allow a client processto join and leave a
BEA TUXEDO application. The syntax of these routinesis:

01 TPI NFDEF- REC.
COPY TPI NFDEF.
01 USER- DATA- REC Pl C X(any- 1 ength).
01 TPSTATUS- REC.
COPY TPSTATUS.
CALL "TPI NI TI ALI ZE' USI NG TPI NFDEF- REC USER- DATA- REC TPSTATUS- REC.

and

01 TPSTATUS- REC.
COPY TPSTATUS.
CALL "TPTERM' USI NG TPSTATUS- REC.

Before a client can make any service request, it must join the application. If a service
request (or any ATMI routine) is called before invoking TPI NI TI ALI ZE, then it is
invoked automatically with a SPACES parameter. Thisimplies that the features
mentioned above cannot be used; the default values are used for client naming,
unsolicited notification type, and system access mode, the client cannot be associated
with a resource manager group, and an application password cannot be specified. To
use these features, the application must explicitly invoke the TPI NI TI ALI ZE routine.
Onceinvoked (either implicitly or explicitly), the calling process may initiate requests
and receive replies. TPTERMremoves the process from the application. When TPTERM
returns successfully the process must again join the application before communicating
withaBEA TUXEDO system server process. A typical client process might begin and
end asillustrated in Listing 11-1.

BEA TUXEDO COBOL Guide 11-9

11 Writing Client Programs

Listing 11-1 Typical Client Process Paradigm

Check | evel of security
CALL TPSETUNSOL. to nane your handl er routine for TPU DI P
get USRNAME, CLTNAME
pronpt for application PASSWD
SET TPU-DI P TO TRUE.
CALL "TPI NI TI ALI ZE' USI NG TPI NFDEF- REC
USER- DATA- REC
TPSTATUS- REC.
I F NOT TPOK
error processing

make service call
receive the reply
check for unsolicited nessages

CALL "TPTERM' USI NG TPSTATUS- REC.
I F NOT TPCK
error processing

EXI T PROGRAM

The argumentsto TPI NI Tl ALI ZE are a structure, TPINFDEF-REC, that is defined in
the COBOL corY file, the user data and a status structure, TPSTATUS REC, that is
also defined in the COBOL COPY file.

TPTERMdoes not take an argument. Both routines return TP- STATUS | N

TPSTATUSREC set to [TPCK] upon success. On error, the command fails and sets

TP- STATUS, to avalue that indicates the nature of the error. TPSTATUS-REC is

defined in the COBOL COPY file. Thereisadiscussion of the values of TP- STATUSIN
Chapter 15, “Error Management.” The complete list of error codes that can be returne
for each of the ATMI routines can also be found on the manual pages that describe tt
routine and NTRQ(3cbl) in theBEA TUXEDO Reference Manual.

An example offPI NI TI ALI ZE andTPTERMIs shown in Listing 11-2.

11-10 BEA TUXEDO COBOL Guide

Joining and Leaving an Application

Listing 11-2 Joining and Leaving the Application

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. FI G1- 3.

AUTHOR TUXEDO DEVELCPMENT.
ENVI RONMVENT DI VI SI ON.

CONFI GURATI ON SECTI ON.

*

WORKI NG- STORAGE SECTI ON.

LR R S kR R S kR R R R R R kR O R

* Tuxedo definitions

LR R R RS SRS SRS EEEEEEEEEEEEREEREEEEEEEEEEEEIEEEEEIEEEEEEEEES
01 TPSTATUS- REC.

COPY TPSTATUS.

*

01 TPI NFDEF- REC.
COPY TPI NFDEF.

LR R R R R S kR R Rk R R R R R R R kR Ok kO

* Log nessages definitions
LR R R R R O

01 LOGVBG
05 FILLER PIC X(10) VALUE "FI Gl12-3 =>".
05 LOGVSG TEXT PI C X(50) .

01 LOGVSG LEN PIC S9(9) COWP-5.

*

01 USER- DATA-REC PIC X(75).

LR IR I O Rk R IR I R R R Rk R kR
PROCEDURE DI VI SI ON.

START- HERE.

MOVE LENGIH OF LOGVBG TO LOGMSG LEN.

LR R R b kR R kR I R R R R R R R Rk kR

* Now register the client with the system

LR R I R R O
MOVE SPACES TO USRNAME.

MOVE SPACES TO CLTNAME.

MOVE SPACES TO PASSVD.

MOVE SPACES TO GRPNAME.

MOVE ZERO TO DATALEN.

SET TPU-DI P TO TRUE.

*

CALL "TPI NI TI ALI ZE* USI NG TPI NFDEF- REC
USER- DATA- REC
TPSTATUS- REC.
I'F NOT TPOK
MOVE "TPI NI TI ALI ZE FAI LED' TO LOGVSG TEXT
PERFORM DO- USERLOG
PERFCRM EX| T- PROGRAM

LR I R R kR kR R R R R R R R R kR Rk ko

BEA TUXEDO COBOL Guide

11-11

11 Writing Client Programs

* Application specific code

LR R R R kR R R R R R R R R R Rk S ko S O

R R R R kR R R R R R R Rk R R R O O O R

*Leave Application
EE R R R I
CALL "TPTERM' USI NG TPSTATUS- REC.
I F NOT TPOK
MOVE "TPTERM FAI LED' TO LOGVBG TEXT
PERFORM DO- USERLOG
EXI T- PROGRAM
STOP RUN.

IR R R R R R R R R R R R R Rk R R R O O R Ok

* Log nessages to the userlog

IR R AR R R R R R R R R R R R R R R T kO R

DO USERLOG
CALL "USERLOG' USI NG LOGVSG
LOGVSG LEN

TPSTATUS- REC.

The previous example shows the client process attempting to join the application with
acall toTPI NI TI ALI ZE. If an error is encountered, a message is written to the central
event log viaacall to USERLOG

Record Management

Before messages can be sent between processes, a record must be defined for the
message data. The following sections describe the record types supported by BEA
TUXEDO and how records are tested for type using routines in the ATMI.

11-12 BEA TUXEDO COBOL Guide

Record Management

Typed Records for Messages

BEA TUXEDO isdelivered with eight message record types defined:

STRING CARRAY VIEW FML X COMMON X OCTET VI EWB2 FM.32

Note: A ninth type, X_C TYPE, is defined but should not be used from COBOL .

The eight record types are defined in t nt ypesw. ¢ (which can befound in

$TUXDI R/ |i b/ t mt ypesw. ¢, with documentation in t uxt ypes(5)). When the BEA
TUXEDO system software is built, t nt ypesw. o isarchived in the BEA TUXEDO
system libraries that are automatically linked in when the bui | dcl i ent and

bui | dser ver commands are invoked, so the eight defined types are available to your
application programs.

Thet nt ypesw. ¢ file can be edited to add or remove record types. | nformation about
how to do this can be found in Administering the BEA TUXEDO System. Only record
types defined int mt ypesw. ¢ can be known to your client or server programs. The
ubbconfig(5) BUFTYPE parameter can be used to specify thetypesand subtypesagiven
service can know about.

Record Types: STRING

The STRI NG record type is what is conventionally understood as a string in the C
language. It is an arbitrary number of characters which may not contain LOwW VALUE
characters anywhere within the record but may be at the end of the record. Data
dependent routing is not provided for this record type. If routing routines are desired,
they must be written as part of the application. Encoding and decoding is provided for
thisrecord type.

Record Types: CARRAY

The CARRAY record type (and equivalently X_OCTET) isan arbitrary number of
characters which may contain LOW VALUE characters. The application defines the
semantics; it is not interpreted by BEA TUXEDO. Data dependent routing is not
provided for this record type. If routing routines are desired, they must be written as
part of the application. No encoding or decoding isprovided for a CARRAY record when
crossing machine boundaries since the bytes are not interpreted by the system.

BEA TUXEDO COBOL Guide 11-13

11 Writing Client Programs

Record Types: FML and FML32

Records of the FM_ type are very flexible buffers that hold field identifier/field value
pairs. FM buffers offer the advantages of dataindependence and flexibility; fields may
be present or absent, or may have multiple occurrences. Also, FML buffersinterface
well with both the BEA TUXEDO system DBMS and the DES. The BEA TUXEDO
system DBM S supports fielded recordsin databasefiles, and the ni o client process of
the BEA TUXEDO system DES uses fielded buffers for input and output data. In
addition, thisdatatype providesthe functionality of datadependent routing. Automatic
encoding and decoding is done if the buffer is passed between machines of different

types.

In C, FM functions are used to manipulate FM. typed buffers. These functions are not
available in COBOL. However, functions are provided to initialize an FM_ buffer, to
convert FML buffersto COBOL records, VI EVé, and back again.

The FML32 type issimilar to the FM. type but supports larger character fields, more
fields, and larger overall records. It isalso used on conversion to/from Vi EWB2 records.
The FML32 buffer type uses environment variables suffixed with “32”, that is,
Fl ELDTBLS32 andFLDTBLDI R32. The primary use dfM_32 in COBOL is simply to
work with C programs that are usigEW82 or FML32 typed buffers.

Record Types: VIEW, X_COMMON and VIEW32

Records of the/ Ewtype (and equivalently_CovmoN) are COBOL data structures
that the application defines. The data structure is passed between process&nin a
typed record of a specific subtype. The process for definlngarecord was
described in Chapter 10, “The BEA TUXEDO System Development Environment.” A
VI Ewcan be one derived from a fielded buffer (tfpe) or one defined independently
of a fielded buffer. The ATMI primitives all take both types/oEwbuffer, but there

are differences in the way the two types/bEws themselves are defined and in how
they are handled within your programs. These differences were described in
Chapter 10, “The BEA TUXEDO System Development Environment.” Both types of
VI Ewbuffer support data dependent routing and automatic encoding and decoding
when the buffer is passed between unlike machines.

The comparison of how to create and use thevmEwtypes is summarized in
Table 11-1.

11-14 BEA TUXEDO COBOL Guide

Record Management

Table 11-1 Comparison of Two VIEW Types

FML -dependent VIEW

FML -independent VIEW

Creating

create the view description file with
FM information in it

create the view description file
without FM_ information in it

usethevi ewc - Ccompiler without
the - n option to compile the
description file

usethevi ewc - Ccompiler with the
- n option to compile the description
file

Using

set and export FI ELDTBLS,
FLDTBLD R, VI EWFI LES,

VI EMDI Rin the ENVFI LE for the
machine the client processisrunning
on

set and export VI EWFI LES and

VI EMDI Rin the ENVFI LE for the
machine the client processisrunning
on

include the copy file FMLI NFQ, the
copy file created from the view
compiler in the programs that define
FM. and VI EWbuffers

includethe copy file created from the
view compiler in the programs that
define VI EWbuffers

An X_COMMON record should contain only

Pl C S9(4) COMP-5 (short)
PI C S9(9) COMP-5 (I ong)

and

PI C (character)

fields, which are common to both the COBOL and C languages.

The VI EWB2 record issimilar to the Vi Ewtype but supportslarger character fields and
bigger records. It is also used for conversion to/from FM_32 records. The VI EVB2
buffer type uses environment variables suffixed with “32”, tha®lig DTBLS32,
FLDTBLDI R32, VI EWFI LES32, andVl EWDI R32. The primary use ofl EW82 in
COBOL is simply to work with C programs that are usih@ws2 or FM_32 typed

buffers.

Record Types: Summary

Although system configuration and defining record types are application design issues
rather than programming issues, the above discussion has been included to explain
how processes know about the various record types so you can correctly define records
for the communication calls between processes.

BEA TUXEDO COBOL Guide 11-15

11 Writing Client Programs

ATMI Record Calls

It isimportant for the BEA TUXEDO programmer to know what record types are
required and expected by the application. The ATMI routines take REC- TYPE and
SUB- TYPE, both in TPTYPE-REC, as arguments. For the types provided by BEA
TUXEDO, the REG- TYPE specifiesthe type of record that isto be sent. The SUB- TYPE
argument has meaning only when REC- TYPE iSVI EW VI EWB2, or X_COMMON. In this
case, the SUB- TYPE isthe hame of the specific data structure defined as avi EW or
X_COWMON. In the other record types, the SUB- TYPE argument iS SPACES. LEN I N
TPTYPE-REC specifies the amount of datato send and the amount received.

Service Calls

Once a client process has joined the application and placed the input datarequest in a
record, it can then send the request message to a service subroutine for processing and
receive areply message. The next sections discussthe ATMI routines that allow
processes that are acting as clients to send message requests to services and receive
replies either synchronously or asynchronously.

The TPCALL routine sends a request to a service subroutine and synchronously waits
for itsreply.

The TPACALL routine sends a request to a service and immediately returns. The reply
to the service call isasynchronously received by calling the TPGETRPLY routine.

11-16 BEA TUXEDO COBOL Guide

Service Calls

Sending Synchronous Messages: TPCALL

TPCALL isused to send synchronous messages. The syntax of thisroutineis:

01 TPSVCDEF- REC.
COPY TPSVCDEF.
01 | TPTYPE- REC.
COPY TPTYPE.
01 | DATA- REC.
COPY User Dat a.
01 OTPYTPE- REC.
COPY TPTYPE.
01 QDATA- REC.
COPY User Dat a.
01 TPSTATUS- REC.
COPY TPSTATUS.
CALL "TPCALL" USI NG TPSVCDEF- REC
| TPTYPE- REC
| DATA- REC
OTPTYPE- REC
ODATA- REC
TPSTATUS- REC.

TPCALL sends arequest to the service that is specified initsfirst parameter,

SERVI CE- NAME | N TPSVCDEF-REC. The service named in SERVI CE- NAVE must be
one offered in your application. TPCALL waitsfor the expected reply. It islogically the
same as calling the TPACALL routine immediately followed by TPGETRPLY. The
request carries the priority that is set by the system for the service specified in

SERVI CE- NAME unless adifferent priority has been explicitly set by acall to TPSPRI O.

The parameter of theroutine, IDATA-REC, containsthe data portion of therequest and
LEN I NITPTYPE-REC specifies how much of IDATA-REC to send. Note that the
REC- TYPE and SUB- TYPE, both in ITPTYPE-REC, must match the type (and subtype)
expected by the service routine. If the types do not match, the system sets TP- STATUS
to TPEI TYPE and the routine call fails.

If therecord isaself-defining type, that is, avi EW VI EWB2, FM_, FML32, or X_COMVION
record, LEN | NITPTYPE-REC isignored and can be set to zero. If REC- TYPE I N
ITPTYPE-REC isSTRI NGand LEN | NITPTYPE-REC is0, thentherequestis sent with
no data portion. If the request requires no data, set REC- TYPE | NITPTYPE-REC to
SPACES. This causes the IDATA-REC and LEN | NITPTYPE-REC parametersto be
ignored.

BEA TUXEDO COBOL Guide 11-17

11 Writing Client Programs

The next two parameters indicate the record that is to receive the reply message,
ODATA-REC, and the length of the reply data, LEN | NOTPTYPE-REC. If thereply
message sent back containsno data portion, upon successful return from TPCALL, LEN
I NOTPTYPE-REC will be set to zero, and the contents of the output record will remain
unchanged. It is an error for LEN | N OTPTYPE-REC to be zero on input.

The same record can be used for both the request and reply message. If thisisthe case,
then ODATA-REC must be REDEFI NED to IDATA-REC.

Listing 11-3 showsa client program making a synchronous call using the same record
for both the regquest and reply message. Using the same record is appropriate in this
particular case, since the AUDV- REC message record has been set up to accommodate
both request and reply information in the samerecord. The B- | Dfield is queried by the
service but not overwritten and the BALANCE field has been initialized to zero in
anticipation of the value to be returned by the service. The SERVI CE- NAME variable
represents the service name requested.

Listing 11-3 Using the Same Record for Request and Reply M essages

WORKI NG STORAGE SECTI ON.

IR R R R R R Rk Rk kR R R R R R R R R

* Tuxedo definitions
RS R R SRS S S SRS SR SRS EEEEEEEEEEEEEEEEEEREEEEEIEEEEEEEEEEEES
01 TPTYPE- REC.
COPY TPTYPE.
*
01 TPSTATUS- REC.
COPY TPSTATUS.
*
01 TPSVCDEF- REC.
COPY TPSVCDEF.

LR R R R R R R Rk kR R R R R R R R R

* Log nmessages definitions

IR R R R R R Rk Rk kR R R R R R R R R

01 LOGVBG
05 FILLER PIC X(6) VALUE "FIG =>",
05 LOGWSG TEXT PI C X(50).
01 LOGWVSG LEN PIC S9(9) COWP-5.
*
01 USER- DATA- REC PI C X(75).
RS R R SRS S S SRS EES
* This VIEWrecord (audv) will be sent to the server
LIRS R R SRS S S SRS SR SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES
01 AUDV- REC.

11-18 BEA TUXEDO COBOL Guide

Service Calls

CCPY AUDV.

*
LR IR R R Rk kR R R R R R R R Rk

PROCEDURE Di VI SI ON.
START-FI G
MOVE LENGIH OF LOGVBG TO LOGVSG LEN.

LR R R R R kR R R R R R R Rk kR Ok R

* Prepare the audv record
LR R I R R R R O
MOVE " BRANCH' TO B-1D | N AUDV- REC.
MOVE O TO BALANCE | N AUDV- REC.
MOVE LENGTH OF AUDV- REC TO LEN.
MOVE "VI EW TO REC- TYPE.
MOVE "audv" TO SUB- TYPE.
MOVE " SOVESERVI CE" TO SERVI CE- NAME.
SET TPBLOCK TO TRUE
SET TPNOTRAN TO TRUE.
SET TPNOTI ME TO TRUE.
SET TPSI GRSTRT TO TRUE.
SET TPNOCHANGE TO TRUE.
CALL "TPCALL" USI NG TPSVCDEF- REC
TPTYPE- REC
AUDV- REC
TPTYPE- REC
AUDV- REC
TPSTATUS- REC.
I F NOT TPOK
MOVE " Servi ce Failed" TO LOGVBG TEXT
PERFORM DO- USERLOG
PERFORM EXI T- PROGRAM
DI SPLAY BRANCH and BALANCE

Note: For an example in which different records are used for input and output see
Listing 12-2 in Chapter 12, “Writing Service Routines.”

If the reply is larger tha®DATA-REC, thenODATA-REC will contain as much of the
message as will fit in the record. The remainder is discardetruad L sets
TP- STATUS | NTPSTATUS REC to TPTRUNCATE.

BEA TUXEDO COBOL Guide 11-19

11 Writing Client Programs

Values for the Settings: TPCALL

Thelast argument that TPCALL takesis TPSTATUS-REC. The settingsin the
TPSTATUSREC argument can change the operation of the communication cal in
some way by allowing additional flexibility to the application. Valid settings are:

TPNOTRAN
If the client process isin transaction mode when it calls TPCALL, and the
setting is TPNOTRAN, the service that isinvoked by the call will not be part of
the transaction; that is, the operations that the service performs are not part of
the caller’s transaction. There’s more on this subject in Chapter 14, “Global
Transactions in the BEA TUXEDO System.” EitH@NOTRAN or TPTRAN
must be set.

TPTRAN
If the client process is in transaction mode when it g&is\L L, and the
setting iSTPTRAN, the service that is invoked by the call will be part of the
transaction; that is, the operations that the service performs are part of the
caller’s transaction. Eith@PNOTRAN or TPTRAN must be set.

TPNOCHANGE
By using this value, the calling program is indicating that it wants the
message returned in the same type of record that was originally defined as th
output record. In other words when this setting is set, the type of record
returned to the caller must be the samREzs TYPE | NOTPTYPE-REC and
SUB- TYPE | NOTPTYPE-REC. This is known as strong record type checking.
Either TPNOCHANGE or TPCHANGE must be set.

TPCHANCE
This setting allows a record type to be different than the original one so long
as the caller recognizes the type. In this case, the recordRBGEYPE | N
OTPTYPE-REC, changes to the received record type. This is known as weak
type checking. EitheTPNOCHANGE or TPCHANGE must be set.

TPNOBLOCK
TPNOBLOCK concerns the action a routine call takes if a blocking condition
exists. Callers of the communication routines typically block when waiting
for a reply to arrive although they may also block when trying to send a
request if all server queues or internal records are full. A default blocking
time-out period is defined for the application in the configuration file. It
specifies the amount of time a caller should wait for a blocking condition to
subside when one exists. If the condition persists beyond this limit, the
routine call fails and’P- STATUS is set toTPETI ME. When the valid setting is

11-20 BEA TUXEDO COBOL Guide

Service Calls

TPNOBLOCK, if ablocking condition exists, the call failsimmediately and the
request messageisnot sent. Inthiscase, TP- STATUSis set to TPEBLOCK. Note
that TPCALL isadual routinein that it both sends arequest and receives a
reply. When TPNOBLOCK is set, it affects only the send part of the routine; if
all the server queues arefilled or the internal recordsinto which the message
records are copied are full, the call will not block but immediately return.
However, if it must wait for the reply (which isusually the case), this setting
does not immunize the call from blocking while it waits. Either TPNOBLOCK
or TPBLOCK must be set.

TPBLOCK
When the valid setting is TPBLOCK, if a blocking condition exists, the caller

blocks until the condition changes or atimeout occurs, either transaction or
blocking. Either TPNOBLOCK or TPBLOCK must be set.

TPNOTI ME
By setting TPNOTI ME, you are telling the system to ignore the blocking

time-out limit because the caller is willing to wait indefinitely for the
blocking condition to subside. However, if the caller isin transaction mode
this setting has no effect; it is subject to the transaction time-out limit. The
timing out of transactions will be discussed in Chapter 14, “Global
Transactions in the BEA TUXEDO System.” Eithi@NOTI ME or TPTI ME

must be set.

TPTI ME
TPTI ME indicates that you are telling the system to receive the blocking
time-out if a blocking condition exists and the blocking time is reached.
Either TPNOTI ME or TPTI ME must be set.

TPSI GRSTRT
Another valid setting iFPSI GRSTRT. This value concerns the action to take
if there is a signal interrupt. Whamwsl GRSTRT is set, the call is
automatically made again. As a result, in the event that a signal interrupts the
underlying system call, the routine call is reissued. WItRSh GRSTRT is not
set and there is a signal interrupt, the routine call failSTen8TATUS returns
TPGOTSI G. EitherTPSI GRSTRT or TPNOSI GRSTRT must be set.

TPNOSI GRSTRT

WhenTPNOSI GRSTRT is set and there is a signal interrupt, the call is not
restarted and the routine call fails. Eithi@sl GRSTRT or TPNOSI GRSTRT
must be set.

BEA TUXEDO COBOL Guide 11-21

11 Writing Client Programs

TPCALL sets TP- STATUS to TPOK upon success. On failure, the value of TP- STATUS is

set to an appropriate value reflecting the type of error that occurred. Some of the causes

for error have already been discussed, while others have transaction implications and

will be introduced in Chapter 15, “Error Management.” In general, communication
calls may fail for a variety of errors. Many of the errors returned on communication
calls can be fixed on an application level. They include application defined errors
(TPESVCFAI L), errors in processing return argumermRESVCERR), typed record

errors {PEl TYPE, TPEOTYPE), time-out {PETI ME), and protocol errorsTPEPROTO)
among others. They are all discussed in Chapter 15, “Error Management,” and are
listed on tha NTROandTPCALL manual pages. The communication of these failures
will also be explained in the discussion of RRETURN routine in Chapter 12,

“Writing Service Routines.”

Examples of the Use of Settings

The next three figures give examplesrBEALL using the communication settings in
various scenarios.

The example shown in Listing 11-4 is based on a service which assumes the role of
client when it calls on the serviceswfTHDRAWAL andDEPCSI T. In the example, we
have set the communication settingresl GRSTRT in these service calls to give the
transaction a better chance of committing.

Listing 11-4 Sending a Synchronous M essage with TPSIGRSTRT Set

WORKI NG STORAGE SECTI ON.

LR R R R R R R Rk ko R R R R R R R O

* Tuxedo definitions

RS R R SRS S S SRS SR SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES
01 TPTYPE- REC.
COPY TPTYPE.

01 TPSTATUS- REC.
COPY TPSTATUS.

01 TPSVCDEF- REC.
CCOPY TPSVCDEF.

LR R R R R R R Rk kR R R R R R R O

* This VIEWrecord (audv) will be sent to the server
LR R R R L

01 AUDV- REC.
CCPY AUDV.

11-22 BEA TUXEDO COBOL Guide

Service Calls

LR IR R R R Rk kR R R R R R R R R ko

PROCEDURE DI VI SI ON.
START- FI G

LR R I R R kR R R R R R R R Rk kR kS kO

* Prepare the audv record for w thdrawal
LR R O R R R R O

MOVE "W THDRAWAL" TO SERVI CE- NAMVE.

SET TPSI GRSTRT TO TRUE.

PERFORM DO- TPCALL.

I F NOT TPOK
MOVE " Cannot wi thdraw from debit account” TO LOGVSG TEXT
PERFORM DO- USERLOG
PERFORM EXI T- PROGRAM

MOVE " DEPCSI T" TO SERVI CE- NAME.

SET TPSI GRSTRT TO TRUE.

PERFORM DO- TPCALL.

I F NOT TPOK
MOVE " Cannot deposit into credit account" TO LOGVSG TEXT
PERFORM DO- USERLOG
PERFORM EXI T- PROGRAM

LR R R R S kR Rk R I R R R R R kR Rk kO R

* Performa TPCALL
LR R R RS SRS SRS EEEEEEEEEEEEEEREEEEEEEEEEEEEIEEEEEIEEEEEEEEES
DO TPCALL.
MOVE LENGTH OF AUDV- REC TO LEN.
MOVE "VI EW TO REC TYPE.
MOVE "audv" TO SUB- TYPE.
SET TPBLOCK TO TRUE.
SET TPNOTRAN TO TRUE.
SET TPNOTI ME TO TRUE.
SET TPNOCHANGE TO TRUE.
CALL "TPCALL" USI NG TPSVCDEF- REC
TPTYPE- REC
AUDV- REC
TPTYPE- REC
AUDV- REC
TPSTATUS- REC.

Listing 11-5 illustrates a communication call that suppresses transaction mode. It is
being made to a service that is not affiliated with a resource manager and it would be
an error to alow it to participate in the transaction. Specifically in this example, an
accounts receivable report, ACCRCV is to be printed against a database named
ACCOUNTS. The service routine REPORT interprets the parameters and sends the byte
stream for the compl eted report asareply. Theclient, shown here, uses TPCALL to send

BEA TUXEDO COBOL Guide 11-23

11 Writing Client Programs

the byte stream to a service called PRI NTER that prints out the byte stream to the
appropriate printer for this client. It receives areply from the PRI NTER service naming
the printer that was chosen to print the report to make it convenient for the user to pick
up the hard copy. Listing 11-6 shows a similar example using an asynchronous

message call.

Listing 11-5 Sending a Synchronous M essage with TPNOTRAN Set

WORKI NG- STORAGE SECTI ON.

IR R R R R R R Rk kR R R R R R R R R o

* Tuxedo definitions
RS R R SRS S S SRS SR SRS EEEEEEEEEEEEEEEEEEEEEEEIEEEEEEEEEIEEES
01 | TPTYPE- REC.
COPY TPTYPE.
01 OTPTYPE- REC.
COPY TPTYPE.

01 TPSTATUS- REC.
COPY TPSTATUS.

01 TPSVCDEF- REC.
COPY TPSVCDEF.

LR R R I
01 REPORT- REQUEST Pl C X(100) VALUE SPACES.
01 REPORT- QUTPUT Pl C X(50000) VALUE SPACES.

LR R R T R R R R I R
PROCEDURE DI VI SI ON.

START- FI G.

join application
start transaction

LR R R R R R R R O O R R R R R R Rk Rk ko

* Send report request to REPORT service
* Receive results into REPORT- QUTPUT
LR R R R R
MOVE " REPORT=accr cv DBNAME=account s" TO REPORT- REQUEST.
MOVE " STRI NG' TO REG TYPE I N | TYPE- REC.
MOVE 29 TO LEN IN I TYPE- REC.
MOVE " STRI NG' TO REG TYPE I N O TYPE- REC.
MOVE 50000 TO LEN I N OTYPE- REC.
MOVE " REPORT" TO SERVI CE- NAME.
SET TPTRAN TO TRUE.
SET TPBLOCK TO TRUE.
SET TPNOTI ME TO TRUE.
SET TPSI GRSTRT TO TRUE.

11-24 BEA TUXEDO COBOL Guide

Service Calls

SET TPNOCHANGE TO TRUE.
CALL "TPCALL" USI NG TPSVCDEF- REC
| TPTYPE- REC
REPORT- REQUEST
OTPTYPE- REC
REPORT- QUTPUT
TPSTATUS- REC.
I F NOT TPOK
error processing
| F TPETRUNCATE
The report was truncated
error processing
LR R R R R R R

* Send REPORT- QUTPUT to PRI NTER service
R R RS S SR RS EEEEEREEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES
MOVE " PRI NTER' TO SERVI CE- NAME.
SET TPNOTRAN TO TRUE.
MOVE " STRI NG' TO REC- TYPE | N | TTYPE- REC.
MOVE LEN I N OTYPE- REC TO LEN I N | TYPE- REC.
CALL "TPCALL" USI NG TPSVCDEF- REC
| TPTYPE- REC
REPORT- QUTPUT
OTPTYPE- REC
REPORT- QUTPUT
TPSTATUS- REC.
I F NOT TPOK
error processing

term nate transaction
| eave application

In Listing 11-5 where error processing has been indicated, it should include printing
an error message, aborting the transaction, leaving the application, and exiting the
program.

Listing 11-5 also illustrates the use of the TPNOCHANGE communication setting to
enforce strong record type checking. The strong record type checking, TPNOCHANGE is
used to forcethereply to bereturned in arecord of type STRI NG. A possibl e reason for
this check isto guard against errors that may occur in the REPORT service subroutine
in processing the request that could result in areply record of an incorrect type.
Another, isto prevent changes that are not made consistently across all areas of
dependency. For example, someone could have changed the REPORT service to
standardize all repliesin some other STRI NG format without modifying the client
process to reflect the change.

BEA TUXEDO COBOL Guide 11-25

11 Writing Client Programs

Sending Asynchronous Messages: TPACALL

This section discusses the sending of asynchronous messages where the sender of the
reguest does not wait for the reply. The first half of this communication is performed
by TPACALL. The syntax of thisroutineis:

01 TPSVCDEF- REC.
COPY TPSVCDEF.
01 TPTYPE- REC.
COPY TPTYPE.
01 DATA- REC.
CCOPY User Dat a.
01 TPSTATUS- REC.
COPY TPSTATUS.
CALL "TPACALL" USI NG TPSVCDEF- REC TPTYPE- REC DATA- REC TPSTATUS- REC.

TheTPACALL routine sends arequest message to the service named in SERVI CE- NAVE

I N TPSVCDEF-REC and immediately returns from the call. The three parameters,
DATA-REC, LEN | N TPTYPE-REC, and the settingsin TPSTATUS-REC, have the

same semantics as IDATA-REC, LEN | NITPTYPE-REC, and the settings in
TPSTATUSREC of the TPCALL routine. Upon successful completion of the call,

TPACALL returns avaluein COMM HANDLE | N TPSVCDEF-REC which servesasa
communications handle that can be used to get the correct reply for the sent request.

While TPACALL is in transaction mode (the topic of Chapter 14, “Global Transactions
in the BEA TUXEDO System,”), there may be no outstanding replies when the
transaction commits; that is, within a given transaction, for each request sent expectir
a reply a corresponding reply must eventually be received.

Values for the Settings: TPACALL

The communication settings thERACALL takes as valid fof PSTATUS REC pertain

to the send part of the communication. As a result, the setting VRNOEHANGE is
removed since it concerns the output record which is not present in this call, and the
valuesTPNOREPLY andTPREPLY are added since the receive part is not implicit to this
communication call. WhenPCALL is used the fact that a reply is expected is implicit.
TPACALL represents only the sending parfBEALL, and it is possible to indicate
whether a reply is expected or not.

TPNOREPLY
If the valueTPNOREPLY is set, it signals tOPACALL that a reply is not
expected. Guidelines for using this setting correctly when a process is in
transaction mode are discussed in Chapter 14, “Global Transactions in the

11-26 BEA TUXEDO COBOL Guide

Service Calls

BEA TUXEDO System.” WhelmPNOREPLY is set, on SUCCEFPACALL
returns the value df in COM HANDLE, an invalid communications handle,
where0 cannot be used BJPGETRPLY. EitherTPNOREPLY or TPREPLY must
be set.

TPREPLY
If the valueTPREPLY is set, it signals tOPACALL that a reply is expected.
WhenTPREPLY is set, on succeS®ACALL returns a valid communications
handle inCOVMM HANDLE. EitherTPNOREPLY or TPREPLY must be set.

An example offPACALL using theTPNOREPLY| TPNOTRAN setting is shown in

Listing 11-6. This example is similar to the one presented above in Listing 11-5. In this
case, however, a reply is not expected fronPRIENTER service. By setting both of
these settings, the client is indicating that no reply is expected aPd thEER service

is not to be a participant in the current transaction. Chapter 15 fully discusses this
situation. Refer to the “Transaction Rules” section.

Listing 11-6 Sending an Asynchronous Message with TPNOTRAN or
TPNOREPLY

WORKI NG- STORAGE SECTI ON.

LR R R R R kR R R R R R R R R R R Rk kO R

* Tuxedo definitions
LR R R RS S S S SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEIEEEEEIEEEEEEEEES
01 | TPTYPE- REC.
COPY TPTYPE.
01 OTPTYPE- REC.
COPY TPTYPE.

01 TPSTATUS- REC.
COPY TPSTATUS.

01 TPSVCDEF- REC.
COPY TPSVCDEF.

LR R R R R kR R R R R R R R R R Rk R Ok kO
01 REPORT- REQUEST Pl C X(100) VALUE SPACES.
01 REPORT- OQUTPUT PI C X(50000) VALUE SPACES.

LR IR R R Rk kR R R R R R R R R R R Rk o
PROCEDURE DI VI SI ON.

START- FI G

join application
start transaction

IR R R R R R R R R Rk R R Rk O R R R R R R R R R

* Send report request to REPORT service

BEA TUXEDO COBOL Guide 11-27

11 Writing Client Programs

* Receive results into REPORT- QUTPUT
R R S R S
MOVE " REPCORT=accr cv DBNAME=account s" TO REPORT- REQUEST.
MOVE "STRI NG' TO REC- TYPE I N | TPTYPE- REC.
MOVE 29 TO LEN IN | TPTYPE- REC.
MOVE " STRING' TO REC- TYPE I N A TYPE- REC.
MOVE 50000 TO LEN I N OTPTYPE- REC.
MOVE " REPORT" TO SERVI CE- NAME.
SET TPTRAN TO TRUE.
SET TPBLOCK TO TRUE.
SET TPNOTI ME TO TRUE.
SET TPSI GRSTRT TO TRUE.
SET TPREPLY TO TRUE.
SET TPNCOCHANGE TO TRUE.
CALL "TPCALL" USI NG TPSVCDEF- REC
| TPTYPE- REC
REPORT- REQUEST
OTPTYPE- REC
REPORT- OUTPUT
TPSTATUS- REC.
I F NOT TPOK
error processing
| F TPETRUNCATE
The report was truncated
error processing

LR S R R R R R R R R R R R R R R R R R R o R R

* Send REPORT- QUTPUT to PRI NTER service
RS R RS S SRR RS S EEEESEEEREEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]
MOVE " PRI NTER' TO SERVI CE- NAME.
SET TPNOTRAN TO TRUE.
SET TPNOREPLY TO TRUE.
MOVE "STRI NG' TO REC- TYPE | N | TPTYPE- REC.
MOVE LEN I N OTPTYPE- REC TO LEN I N | TPTYPE- REC.
CALL "TPACALL" USI NG TPSVCDEF- REC
| TPTYPE- REC
REPORT- QUTPUT
TPSTATUS- REC.
I F NOT TPOK
error processing

commt transaction
| eave application

On error, TPACALL sets TP- STATUS to a value that reflects the nature of the error.

TPACALL returns many of the same error codes as TPCALL. Again, the differences are
based on the fact that one represents a synchronouscall and the other an asynchronous
call. These errors are discussed at length in Chapter 15, “Error Management.”

11-28 BEA TUXEDO COBOL Guide

Service Calls

Getting an Asynchronous Reply: TPGETRPLY

TPGETRPLY is the complementary routine to TPACALL. It receivesareply from a
request previously sent by TPACALL. The syntax of thisroutineis:

01 TPSVCDEF- REC.
COPY TPSVCDEF.
01 TPTYPE- REC.
COPY TPTYPE.
01 DATA- REC
COPY User Dat a.
01 TPSTATUS- REC.
COPY TPSTATUS.
CALL "TPGETRPLY" USI NG TPSVCDEF- REC TPTYPE- REC DATA- REC TPSTATUS- REC.

TPGETRPLY takes the value of the communication handle returned by TPACALL in
COVM HANDLE | N TPSVCDEF-REC. In the default case, the routine waits for the
arrival of thereply that correspondsto the value contained in COMV+ HANDLE. |nwaiting
for this specific reply, a blocking time-out may occur. A time-out means that
TPGETRPLY fails and TP- STATUS is set to TPETI ME (unless TPNOTI ME is set).

The second and third arguments to TPGETRPLY, DATA-REC and LEN | N
TPTYPE-REC, have identical semanticsto those of the ODATA-REC and LEN I N
OTPTYPE-REC parameters of the TPCALL routine.

Getting and Setting Priority

ATMI providestwo routines that allow you to determine and set the priority of the
message request. The priority affects how the request is dequeued by the server.
Servers dequeue requests with the highest priorities first. The syntax of these routines
is:

01 TPPRI DEF- REC.
COPY TPPRI DEF.
01 TPSTATUS- REC.
COPY TPSTATUS.
CALL "TPGPRI O' USING TPPRI DEF- REC TPSTATUS- REC.

and

01 TPPRI DEF- REC.
COPY TPPRI DEF.
01 TPSTATUS- REC.
COPY TPSTATUS.
CALL "TPSPRI O' USING TPPRI DEF- REC TPSTATUS- REC.

BEA TUXEDO COBOL Guide 11-29

11 Writing Client Programs

The TPGPRI Oroutine can be called by arequester after invoking the TPCALL or
TPACALL routineto retrievethe priority of the request messagejust sent. If it wascalled
and no request was sent, the routine fails and sets TP- STATUS to TPENCENT. Upon
success, TPGPRI Osets TP- STATUS to TPOK and returns an integer va ue in the range of
1to 100, 100 being the highest priority value, in PRI ORI TY | N TPPRIDEF-REC. If
the priority has not been explicitly set by using the TPSPRI Oroutine, the value of the
priority will bethat of the service routine that handles the request. The priority of the
service is assigned the system default value of 50 unlessit has been specifically
defined to some other value by the administrator. See Listing 11-7 for an example of
retrieving the priority of a message that was sent off in an asynchronous call.

Listing 11-7 Determining the Priority of the Sent Request

WORKI NG STORAGE SECTI ON.

LR R R R R R R R R Rk ik R R R R R R R R R R

* Tuxedo definitions
RS R R SRS S S SRS SR SRS EEEEEEEEEEEEEEEEEEEEEEEIEEEEEEEEEEEES
01 TPTYPE- REC- 1.
COPY TPTYPE.
01 TPTYPE- REC- 2.
COPY TPTYPE.

01 TPSTATUS- REC.
COPY TPSTATUS.

01 TPSVCDEF- REC- 1.
CCOPY TPSVCDEF.
01 TPSVCDEF- REC- 2.
CCOPY TPSVCDEF.

01 TPPRI DEF- REC- 1.
CCPY TPPRI DEF.
01 TPPRI DEF- REC- 2.
CCPY TPPRI DEF.
LR R R R R R R Rk S R R R R R R R o
01 DATA-REC-1 Pl C X(100) VALUE SPACES.
01 DATA- REC-2 Pl C X(100) VALUE SPACES.
LR R R R R R R R kR T R R R R R R R R O
PROCEDURE DI VI SI ON.
START- FI G

}' o.i n. appl i cation
popul ate DATA- REC1 and DATA- REC2 with send request

MOVE " CARRAY" TO REC- TYPE | N TYPE- REC- 1.
MOVE 100 TO LEN I N TYPE- REC- 1.

11-30 BEA TUXEDO COBOL Guide

Service Calls

MOVE " SERVI CE1" TO SERVI CE- NAME | N TPSVCDEV- REC- 1.
SET TPTRAN TO TRUE | N TPSVCDEV- REC- 1.
SET TPBLOCK TO TRUE | N TPSVCDEV- REC- 1
SET TPNOTI ME TO TRUE | N TPSVCDEV- REC- 1.
SET TPSI GRSTRT TO TRUE | N TPSVCDEV- REC- 1.
SET TPREPLY TO TRUE | N TPSVCDEV- REC- 1
CALL "TPACALL" USI NG TPSVCDEF- REC- 1
TPTYPE- REC- 1
DATA- REC- 1
TPSTATUS- REC
I F NOT TPOK
error processing
CALL "TPGPRI O' USI NG TPPRI DEF- REC-1 TPSTATUS- REC
I F NOT TPOK
error processing
MOVE " CARRAY" TO REC TYPE | N TYPE- REC 2
MOVE 100 TO LEN I N TYPE- REC- 2
MOVE " SERVI CE2" TO SERVI CE- NAME | N TPSVCDEV- REGC- 2
SET TPTRAN TO TRUE | N TPSVCDEV- REC- 2.
SET TPBLOCK TO TRUE | N TPSVCDEV- REC- 2
SET TPNOTI ME TO TRUE | N TPSVCDEV- REC- 2
SET TPSI GRSTRT TO TRUE | N TPSVCDEV- REC- 2
SET TPREPLY TO TRUE | N TPSVCDEV- REC- 2
CALL "TPACALL" USI NG TPSVCDEF- REC- 2
TPTYPE- REC- 2
DATA- REC- 2
TPSTATUS- REC
I F NOT TPOK
error processing
CALL "TPGPRI O' USI NG TPPRI DEF- REC- 2 TPSTATUS- REC
I F NOT TPOK
error processing
IF PRIORITY IN TPSVCDEF- REC-1 >= PRIORITY | N TPSVCDEF- REC- 2
PERFORM DO- GETREPLY1
PERFORM DO- GETREPLY2
ELSE
PERFORM DO- GETREPLY2
PERFORM DO- GETREPLY1
END- | F.

| eave application
DO GETRPLY1.
SET TPGETHANDLE TO TRUE | N TPSVCDEV- REC- 1
SET TPCHANGE TO TRUE | N TPSVCDEV- REC- 1
SET TPBLOCK TO TRUE | N TPSVCDEV- REC 1.
SET TPNOTI ME TO TRUE | N TPSVCDEV- REC- 1
SET TPSI GRSTRT TO TRUE | N TPSVCDEV- REC- 1
CALL "TPGETRPLY" USI NG TPSVCDEF- REC 1
TPTYPE- REC- 1
DATA- REGC- 1
TPSTATUS- REC

BEA TUXEDO COBOL Guide 11-31

11 Writing Client Programs

I F NOT TPOK
error processing
DO GETRPLY2

SET TPGETHANDLE TO TRUE | N TPSVCDEV- REC- 2.
SET TPCHANGE TO TRUE | N TPSVCDEV- REC- 2.
SET TPBLOCK TO TRUE | N TPSVCDEV- REC- 2.
SET TPNOTI ME TO TRUE | N TPSVCDEV- REC- 2.
SET TPSI GRSTRT TO TRUE | N TPSVCDEV- REC- 2.
CALL " TPGETRPLY" USI NG TPSVCDEF- REC- 2

TPTYPE- REC- 2

DATA- REC- 2

TPSTATUS- REC.
I F NOT TPOK

error processing

Itisalso possibleto use TPGPRI Oto retrieve the priority of the request just received by
the service. This is illustrated in Listing 12-3 in Chapter 12, “Writing Service
Routines.”

With the TPSPRI Oroutine, the programmer can override the priority level the request
would normally inherit from the service to which it is dispatched. WIrRSPRI Ois
called, it affects the priority level of the very next request only that is serrdsy L

or TPACALL or forwarded by a service subroutine. Forwarding requests will be
discussed later in Chapter 12, “Writing Service Routines.” This routine takes two
parametersTPPRIDEF-REC andTPSTATUS REC, and the second one indicates how
the first one is to be interpreted. The first membRrORI TY | NTPPRIDEF-REC, is

an integer. In the default situation, its sign indicates whether the request’s priority
should be incremented or decremented in relation to the existing priority. For the firs
member to be treated as a relative value, the settings must b@ sktTeABSOLUTE

is set, the priority value of the next request that is sent out will receive the absolute
value of the integer containedPRI ORI TY. The absolute value &Rl ORI TY must be

in the range of 1 to 100. If the value is not in this range, the system uses the default
value, 50. IfTPRELATI VE is set, the priority value of the next request is sent out at the
relative value of the integer containedPiRl ORI TY.

Listing 11-8 shows an excerpt from thRANSFER service acting as a client process to
call services of¥ THDRAWAL. It invokesTPSPRI Oto increase the priority of the request
message it sends in its synchronous callf ttHDRAWAL. It does so to prevent the
request from being queued for iNeTHDRAWAL service (and later tHaEPQSI T service)
after already having waited on tlRANSFER queue.

11-32 BEA TUXEDO COBOL Guide

Service Calls

Listing 11-8 Setting the Priority of a Request M essage

WORKI NG STORAGE SECTI ON.

LR R R S kR R kR I R R R R kR Rk O kR

* Tuxedo definitions
LR R R RS S S S SRS EEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEIEEEEEEEEES
01 TPTYPE- REC.
COPY TPTYPE.

01 TPSTATUS- REC.
COPY TPSTATUS.

01 TPSVCDEF- REC.
CCPY TPSVCDEF.

01 TPPRI DEF- REC.
CCPY TPPRI DEF.

LR R R R R S kR R Rk R R R R R R R kR Ok kO

01 DATA- REC PI C X(100) VALUE SPACES.
LR R R R R
PROCEDURE DI VI SI ON.
START- FI G.

join application

MOVE 30 TO PRI ORITY.
SET TPRELATI VE TO TRUE.
CALL "TPSPRI O' USI NG TPPRI DEF- REC TPSTATUS- REC
I F NOT TPOK
error processing
MOVE " CARRAY" TO REC- TYPE.
MOVE 100 TO LEN.
MOVE " W THDRAWAL" TO SERVI CE- NAME.
SET TPTRAN TO TRUE .
SET TPBLOCK TO TRUE .
SET TPNOTI ME TO TRUE .
SET TPSI GRSTRT TO TRUE .
SET TPREPLY TO TRUE .
CALL "TPACALL" USI NG TPSVCDEF- REC
TPTYPE- REC
DATA- REC
TPSTATUS- REC.
I F NOT TPOK
error processing

| eave application

BEA TUXEDO COBOL Guide

11-33

11 Writing Client Programs

Initiating a Conversational Connection

The discussion in this chapter has centered around how client programs initiate a
reguest/response service request. Client programs can also connect to conversational
servers by using TPCONNECT instead of TPCALL or TPACALL. Chapter 13,
“Conversational Clients and Services,” describes this topic in detail.

Sending a Broadcast Message

The TPBROADCAST routine is used to send an unsolicited message to registered client:
within the application. It is mentioned in this chapter on client programs because it cal
be called by clients. A more complete discussion of its use can be found in Chapter 1.
“Writing Service Routines.”

Handling Unsolicited Notification

The three routines in this section allow a client to handle unsolicited messages. The
areTPGETUNSOL, TPSETUNSOL andTPCHKUNSQL. The syntax fomTPSETUNSOL is:

01 CURR-RQUTI NE PIC S9(9) COWP-5.
01 PREV-RQUTI NE PIC S9(9) COWP-5.
01 TPSTATUS- REC
CCOPY TPSTATUS.
CALL "TPSETUNSCL" USI NG CURR- ROUTI NE PREV- ROUTI NE TPSTATUS- REC.

TPSETUNSOL allows a client to identify the routine that should be invoked when an
unsolicited message is received by the BEA TUXEDO libraries. Prior to the first call
to TPSETUNSQL, any unsolicited messages received by the BEA TUXEDO libraries on
behalf of the client are logged and ignored. A caffRSETUNSOL with a function
number,CURR- ROUTI NE, set to0 has the same effect. The method used by the system
for notification and detection is determined by the application default, which can be
overridden on a per-client basis (& NI Tl ALI ZE).

The routine number passeddoRR- ROUTI NE, on the call tarPSETUNSOL selects one
of 16 predefined routines. The routine names must bedi spat ch1 through

tm di spat ch8 for C routines that provide unsolicited message handling and
TNVDI SPATCH9 throughTMDI SPATCH16 for COBOL routines that provide the same
message handling. The routinem di spat chl through_t m di spat ch8 must
conform to the parameter definition describedpret unsol (3c). Routines

TNVDI SPATCH9 throughTMDI SPATCH16 must USeTPGETUNSOL to receive the data.

11-34 BEA TUXEDO COBOL Guide

Service Calls

Listing 11-9 isan example of aclient setting a COBOL unsolicited function.

Listing 11-9 Setting an Unsolicited Function

Call TPSETUNSCOL - Set a COBOL unsolicited nmessage handl er
Rout i ne TMDI SPATCHO wi |l be called

* % X %

MOVE 9 to CURR- ROUTI NE.
CALL "TPSETUNSOL" USI NG

CURR- ROUTI NE

PREV- ROUTI NE

TPSTATUS- REC.
I F NOT TPOK

Routi ne TMDI SPATCH9 wi || receive unsolicited nessages
ELSE
Process error condition

The syntax of TPGETUNSOL is:

01 TPTYPE- REC.
COPY TPTYPE.
01 DATA- REC
COPY User data.
01 TPSTATUS- REC.
COPY TPSTATUS.
CALL "TPGETUNSOL" USI NG TPTYPE- REC DATA- REC TPSTATUS- REC.

TPGETUNSCL gets unsolicited messagesthat were sent via TPBROADCAST or TPNOTI FY.
Thisroutine may be called only from an unsolicited message handler.

Upon successful return, LEN | N TPTYPE-REC contains the actual number of bytes

moved into DATA-REC. REC- TYPE and SUB- TYPE, both in TPTYPE-REC, contain the
data’s type and sub-type, respectively. If the message is largeD AT REC, then
DATA-REC will contain only as many bytes as will fit in the record. The remainder of
the message is discarded and $ETRRUNCATE. If LENis 0, upon successful
completion, then the message has no data portioDAm&-REC was not modified.

Listing 11-10 is an example of a COBOL program receiving an unsolicited message.

BEA TUXEDO COBOL Guide 11-35

11 Writing Client Programs

Listing 11-10 Receiving an Unsolicited M essage

I DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. TMDI SPATCHO.
ENVI RONVENT DI VI SI ON.
CONFI GURATI ON SECTI ON.
SOURCE- COWPUTER. USL- 486.
OBJECT- COWPUTER. USL- 486.
*
DATA Di VI SI ON.
WORKI NG- STORAGE SECTI ON.
*
01 TPTYPE- REC.
COPY TPTYPE.
*
01 TPSTATUS- REC.
COPY TPSTATUS.

*

01 DATA-REC

*

PROCEDURE Di VI SI ON.

*

A-000.

*
MOVE " CARRAY" TO REC- TYPE.
MOVE 1000 TO LEN.

Pl C X(1000) .

CALL "TPGETUNSCL" USI NG TPTYPE- REC

DATA- REC

TPSTATUS- REC.

I'F NOT TPOK

error processing

Process nessage

DI SPLAY "TPCGETUNSOL | S TPOK".
DI SPLAY "MESSAGE | S" DATA- REC.

DI SPLAY "LENGTH I S" LEN.
EXIT PROGRAM

The syntax of TPCHKUNSOL is:

01 MSG- NUM PIC S9(9)
01 TPSTATUS- REC
CCOPY TPSTATUS.

COwWP- 5.

CALL " TPCHKUNSCL" USI NG M5G NUM TPSTATUS- REC.

11-36 BEA TUXEDO COBOL Guide

Service Calls

TPCHKUNSCL is used by aclient to trigger checking for unsolicited messages. Callsto
thisroutine in a client using signal-based notification do nothing and return
immediately. Calls to thisroutine can result in calls to an application-defined
unsolicited message handling routine by the BEA TUXEDO system libraries.

Upon successful completion, TPCHKUNSOL sets TP- STATUS to [TPOK] and returns the
number of unsolicited messages dispatched in MSG-NUM.

Listing 11-11 is an example of a COBOL program checking for the arrival of an
unsolicited message.

Listing 11-11 Arrival of an Unsolicited M essage

* Check for unsolicited nessages

CALL " TPCHKUNSCL" USI NG MESS- NUM
TPSTATUS- REC.

I F TPOK
IF MESSS-NUM IS = 0
No nessages were processed by the
unsol icited function

ELSE
MESS- NUM nunmber of messages were
processed by the unsolicited function
END- | F
ELSE
process error
END- | F

BEA TUXEDO COBOL Guide 11-37

11 Writing Client Programs

Compiling Client Programs

To compile your client programs you have severa methods to choose from. Y ou can
use regular COBOL Compilation System utilitiesto make object files. The object files
can be kept asindividual files or collected into an archive file. If you prefer, you can
retain your programs as source (. cbl) files. In any event, when you invoke

bui | dcl i ent to produce an executable client, you specify your input files on the
command line with the - f option.

The buildclient Command

bui | dcl i ent (1) isused to put together an executabl e client program. Optionsidentify
the name of the output file, input files provided by the application, and various
libraries. When compiling a COBOL client, the - C option must be used to indicate that
the language is COBOL. This ensures that the correct language libraries are included in
linking the program.

bui | dcl i ent with the - C option invokes the cobcc command. The environment
variables ALTCC and ALTCFLAGS can be set to name an alternative compile command
and to set flags for the compile and link edit phases. The default value for ALTCC is
cobcc.

The buildclient -o Option

The - o option is used to assign a name to the executable output file. If no nameis
provided, thefileis named a. out .

The buildclient -f and -1 Options

The-f and -1 options are used to specify files to be used in the link edit phase. The
files specifiedinthe-f (first) option are brought in before the BEA TUXEDO
libraries, whereas the files specified in the - | (last) option are brought in after these
libraries. Thereisasignificance to the order of the options. The order is dependent on
routine references and in what libraries the references are resolved. Input files should
be listed ahead of libraries that might be used to resolve their references. If input files
are. cbl and. cfiles, they arefirst compiled. Object files can be either separate. o files

11-38 BEA TUXEDO COBOL Guide

Compiling Client Programs

or groups of filesin archive (. a) files. If more than asingle file name isgiven as an
argumenttoa-f or- | option, thesyntax callsfor alist enclosed in double quotes. Y ou
canuseasmany -f and -1 options as you need.

Thefollowing represents the command line that was used to create the BUY executable
program. The environment variable ALTCCis set to cobcc. The environment variable
ALTCFLAGS issetto-1 $TUXDI R/ i ncl ude.

buildclient -C -0 BUY -f BUY. chl

The buildclient -r Option

The-r optionisused to specify which resource manager accesslibraries should belink
edited with the executable client. The choice is specified with a string from the
$TUXDI R/ udat aobj / RMfile. Only one string can be specified. The database routines
in your service are the same regardless of which library is used.

All valid strings that name resource managers are contained in the

$TUXDI R/ udat aobj / Rvfile. When integrating a new resource manager into the BEA
TUXEDO system, thisfile must be updated to include the information about the
resource manager. For more information, refer to bui | dt ns(1) in the BEATUXEDO
Reference Manual and Administering the BEA TUXEDO System.

BEA TUXEDO COBOL Guide 11-39

11 Writing Client Programs

11-40 BEA TUXEDO COBOL Guide

CHAPTER

12 Writing Service
Routines

Writing Request/Response Services

The preceding chapter discussed the ATMI callsthat can be used to write client
programs. In this chapter, some of the same routines are revisited in the context of the
service subroutines. As you may recall, services are COBOL subroutines that are
linked together with the BEA TUXEDO system-provided controlling program to
create executable server programs.

In this chapter the discussion covers only services that operate in a request/response
mode. Conversational clients and servers are the subject of Chapter 13,
“Conversational Clients and Services.”

Note: You have probably noticed that we refer to the service routines described in

this chapter as request/response. The service can receive exactly one request
and send at most one reply.

BEA TUXEDO COBOL Guide 12-1

12 Writing Service Routines

Application Service Template

12-2

Since the communication details are taken care of by the BEA TUXEDO system'’s
controlling program, the programmer can concentrate on the application logic rather
than communication implementation. For services to be compatible with the
controlling program provided, they must adhere to certain conventions. These
conventions are described here and onmm#®/CSTART(3cbl) reference page in the

BEA TUXEDO Reference Manual, and they are referred to collectively as the service
template for coding service routines.

Request/response services have the following characteristics:

L4

a request/response service can receive only one request at a time and can send
only one reply.

when servicing a request, it works only on that request and can accept another
only after it has sent its reply to the requester or has forwarded the request to
another service for additional processing.

service routines must begin by calling tfRSVCSTART routine.

service routines must terminate by calling eitherTiPlRRETURN or TPFORWAR
routine.

when communicating with another server VRACALL, the initiating service
must wait for all outstanding replies or must invalidate them WHEANCEL
before callingTPRETURN or TPFORWAR.

service routines are invoked witiP'SYCDEF-REC, which is a service
information data structure, the user data recoRI,YPE-REC, used whenever
sending or receiving application data, aRETATUS REC, which is used by the
ATMI routines for return codes and setting definitions.

The following sections examine these concepts more closely.

BEA TUXEDO COBOL Guide

Application Service Template

The TPSVCSTART Routine

TPSVCSTART isthe very first routine to be called when writing a service routine. It is
an error to issueany other call within aserviceroutine before calling TPSVCSTART. The
syntax of thisroutineis:

01 TPSVCDEF- REC.
COPY TPSVCDEF.
01 TPTYPE- REC.
COPY TPTYPE.
01 DATA- REC
COPY User
01 TPSTATUS- REC.
COPY TPSTATUS.
CALL "TPSVCSTART"

Dat a.

USI NG TPSVCDEF- REC TPTYPE- REC DATA- REC TPSTATUS- REC.

The TPSVCDEF-REC Structure

The serviceinformation datastructureis defined as TPSVCDEF in the COBOL COPY file
and includes the following members:

05
05

05

05

05

05

05

05

05

COMM HANDLE
TPBLOCK- FLAG

88 TPNOBLOCK

88 TPBLCCK
TPTRAN- FLAG

88 TPNOTRAN

88 TPTRAN
TPREPLY- FLAG

88 TPNOREPLY

88 TPREPLY
TPTI ME- FLAG

88 TPNOTI ME

88 TPTI ME
TPSI GRSTRT- FLAG

88 TPNOS|I GRSTRT

88 TPSI GRSTRT
TPGETANY- FLAG

88 TPGETANY

88 TPGETHANDLE
TPSENDRECV- FLAG

88 TPSENDONLY

88 TPRECVONLY
TPNOCHANGE- FLAG

Pl C S9(9)
Pl C S9(9)
VALUE 0.
VALUE 1.
Pl C S9(9)
VALUE 0.
VALUE 1.
Pl C S9(9)
VALUE 0.
VALUE 1.
Pl C S9(9)
VALUE 0.
VALUE 1.
Pl C S9(9)
VALUE 0.
VALUE 1.
Pl C S9(9)
VALUE 0.
VALUE 1.
Pl C S9(9)
VALUE 0.
VALUE 1.
Pl C S9(9)

COWP- 5.
COWP- 5.

COWP- 5.

COWP- 5.

COWP- 5.

COWP- 5.

COWP- 5.

COWP- 5.

COWP- 5.

BEA TUXEDO COBOL Guide

12-3

12 Writing Service Routines

88 TPNOCHANGE VALUE 0.
88 TPCHANGE VALUE 1.
05 TPSERVI CETYPE- FLAG PIC S9(9) COWP-5.
88 TPREQRSP VALUE 0.
88 TPCONV VALUE 1.
*
05 APPKEY PIC S9(9) COWP-5.
05 CLIENTID OCCURS 4 TIMES PIC S9(9) COWP-5.
05 SERVI CE- NAME PI C X(15).

The members of the structure
indicate to the service routine the name with which it was invoked
tell the service attributes about itself or the caller

give the communications handle, if thisis a conversational connection

* & & o

provide the client key for authentication
4 carry theidentifier for the client originating the call

The SERVI CE- NAME member of the structure indicates to the service routine the name
that the requesting process used to invoke the service.

The Settings of TPSVCDEF-REC

12-4

The TPNOTRAN and TPTRAN settings of the structure are used to let the service know if
itisintransaction modeor if thecaller isexpecting areply. The variouswaysa service

can be placed in transaction mode are discussed in Chapter 14, “Global Transactior
in the BEA TUXEDO System.” If the setting TRTRAN, it indicates that the service is

in transaction mode. When a service is calle@®GALL or TPACALL with a setting of
TPNOTRAN, it indicates that the service cannot participate in the current transaction, bu
it is still possible for the service to be in transaction mode. So even when the caller se
TPNOTRAN, it is possible fomPTRAN to be set. The case that allows this to happen is
discussed in Chapter 14, “Global Transactions in the BEA TUXEDO System.”

TPNOREPLY is set if the service was called DJACALL with the TPNOREPLY
communication setting set. It is possible for both the settings to be set. When this
represents a valid situation is discussed in the next chapter. However, if a called servi
is part of the same transaction as the calling process, it must return a reply to the call

BEA TUXEDO COBOL Guide

Application Service Template

The APPKEY Member of TPSVCDEF-REC

The use of this member iseft to the application to decide. If application-specific
authentication is part of your design, the application-specific authentication server,
which iscalled at the time a client joins the application, should return a client
authentication key aswell as asuccess/failureindication. (Thisisthelogic of the BEA
TUXEDO system default AUTHSVC service.) The key is held by the system on behalf
of the client and is passed to subsequent service requests in the APPKEY field. By the
time the key is passed to the service, the client has already passed authentication, but
the APPKEY field can be used within the service to identify in some way the user
invoking the service or some other parameters associated with the user. If not used, the
valueisset to - 1 by the system.

The CLIENTID Member of TPSVCDEF-REC

The CLI ENTI Disused by the system to carry the identification of the client. You
should not make changes in thisfield.

Accessing Data that Comes with the Request

When accessing the request datato be placed in DATA-REC, the service must be coded
to expect the datato be in arecord of the type defined for the servicein the
configuration file. LEN | N TPTYPE-REC contains the maximum number of bytesthat
should be moved. LENis not allowed to be 0 on input.

Upon successful return, DATA-REC contains the data received and LEN contains the
actual number of bytesmoved. If the length of the message isgreater than DATA-REC,
DATA-REC will receive only as much of the message as possible and TPTRUNCATE is
set in TPTYPE-REC. If LENis0, no datawas received and DATA-REC remains
unchanged. REC- TYPE and SUB- TYPE, both in TPTYPE-REC, contain the type and
subtype for the service called, which in turn must agree with the typed record as
defined for that service in the configuration file.

Listing 12-1 illustrates atypical service definition.

BEA TUXEDO COBOL Guide 12-5

12 Writing Service Routines

Listing 12-1 Typical Service Definition

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. BUYSR.

AUTHOR TUXEDO DEVELOPMENT.
ENVI RONMVENT DI VI SI ON.

CONFI GURATI ON SECTI ON.
SOURCE- COVWPUTER. USL- 486.
OBJECT- COWPUTER. USL- 486.

I NPUT- OQUTPUT SECTI ON.

R R R R R R R R R R R R R R R

* Tuxedo definitions

RS R R SRS S EEEE SR SRS R EEREEREEREEEEEEEEEEEEEEEEEEEEEEEEEEEES
01 TPSVCRET- REC.
COPY TPSVCRET.

01 TPTYPE- REC.
CCOPY TPTYPE.

01 TPSTATUS- REC.
COPY TPSTATUS.

01 TPSVCDEF- REC.
COPY TPSVCDEF.

R R R R R R Rk Ik kR R R R R R R R R R R O

* Log nmessage definitions
LR R R R I R

01 LOGVBG
05 LOGVSG TEXT PI C X(50) .
*
01 LOGVSG LEN PIC S9(9) COW-5.

R R R R Rk R R Ik kR R R R R R R R kO O o

* User defined data records

IR SRR SRS S S SRS SR SRS RS SRS EEREEEEEEEEEEEEEEEEEEEEEEEEEEEES
01 CUST- REC.
COPY CUST.

LI NKAGE SECTI ON.

PROCEDURE DI VI SI ON.
*
START- BUYSR.
MOVE LENGTH OF LOGVEG TO LOGWVSG LEN.
CPEN files or DATABASE

LR R R R I R Rk Rk kR R R R R R R kI O O

* Cet the data that was sent by the client

12-6 BEA TUXEDO COBOL Guide

Application Service Template

LR IR R R R Rk kR R R R R R R R R ko

MOVE " Server Started" TO LOGVEG TEXT.
PERFORM DO- USERLCOG.
MOVE LENGTH OF CUST- REC TO LEN I N TPTYPE- REC.
CALL " TPSVCSTART" USI NG TPSVCDEF- REC
TPTYPE- REC
CUST- REC
T PSTATUS- REC.
| F TPTRUNCATE
MOVE "I nput data exceeded CUST-REC | ength" TO LOGVEG TEXT
PERFORM DO USERLOG
PERFORM A- 999- EXI T.
I F NOT TPOK
MOVE " TPSVCSTART Fai |l ed" TO LOGVBG TEXT
PERFORM DO USERLOG
PERFORM A- 999- EXI T.
| F REC-TYPE NOT = "VI EW
MOVE "REC- TYPE in not VIEW TO LOGVSG TEXT
PERFORM DO USERLOG
PERFORM A- 999- EXI T.
I F SUB-TYPE NOT = "cust"
MOVE " SUB- TYPE in not cust" TO LOGVESG TEXT
PERFORM DO USERLOG
PERFORM A- 999- EXI T.

set consistency | evel of the transaction

*****;*;*;**
* Exit
LR IR R R Rk kR R R R R Rk Rk
A-999-EXI T.
MOVE "Exi ting" TO LOGVEG TEXT.
PERFORM DO- USERLOG
SET TPFAIL TO TRUE
OOPY TPRETURN REPLACI NG TPSVCRET- REC BY TPSVCRET- REC
TPTYPE- REC BY TPTYPE- REC
DATA- REC BY CUST- REC
TPSTATUS- REC BY TPSTATUS- REC.

LR IR kI kR kR I R R R Rk bk kO S

* Wite to userlog
LR R R I R
DO USERLOG.
CALL "USERLOG' USI NG LOGMSG
LOGVBG- LEN
TPSTATUS- REC.

BEA TUXEDO COBOL Guide 12-7

12 Writing Service Routines

In the above example, the request record on the client side was originally sent with

REC- TYPE set to VI Ewand the SUB- TYPE set to cust . The BUYSR serviceisdefined in

the configuration file as a service that knows about the VI Ewtyped record. BUYSRis

able to retrieve the data record by accessing the CUST- REC record as illustrated in the
above example. Note that after this record is retrieved and before the first database

access is made, the consistency level of the transaction is specified. Refer to

Chapter 14, “Global Transactions in the BEA TUXEDO System,” for more details on
transaction consistency levels.

Checking The Priority of the Service Request

Listing 12-2 shows the fictitiouBRI NTSR service testing the priority level of the

request just received by invoking theGPRI Oroutine. Based on the priority level, the
print job is routed to the appropriate destination prirRe4VE. The contents of

I NPUT- REC are sent to that printer. Also, theSVCDEF- REC settings are queried to see

if a reply is expected. If one is expected, the name of the destination printer is returne
to the client. Again, the use TPRETURN is explained in the next section.

Listing 12-2 Determining the Priority of the Received Request

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. PRI NTSR.
AUTHOR TUXEDO DEVELOPMENT.
ENVI RONMVENT DI VI SI ON.

CONFI GURATI ON SECTI ON.
SOURCE- COVWPUTER. USL- 486.
OBJECT- COWUTER. USL- 486.

I NPUT- OQUTPUT SECTI ON.

R R R R R Rk R Ik kR R R R R R R R R R Ik

* Tuxedo definitions
LIRS R R SRS S EEEE SR SRS R EEREEREEREEEEEEEEEEEEEEEEEEEEEEEEEEEES

01 TPSVCRET- REC.
COPY TPSVCRET.

01 TPTYPE- REC.
COPY TPTYPE.

01 TPSTATUS- REC.
COPY TPSTATUS.

01 TPSVCDEF- REC.

12-8 BEA TUXEDO COBOL Guide

Application Service Template

CCPY TPSVCDEF.

01 TPPRI DEF- REC.
CCPY TPPRI DEF.

LR R R R R R R R I R R R R Rk ok Rk kS

* Log nessage definitions
LR R R

01 LOGVBG
05 FILLER PI C S9(9) VALUE
"TP- STATUS=".
05 LOG TP- STATUS PIC S9(9).
05 LOGVSG TEXT PI C X(50).

01 LOGVMSG LEN PIC S9(9) COWP-5.

LR IR I kR R R R R R R R R R

* User defined data records

IR R R SRS S SRS EEES]
01 | NPUT- REC PI C X(1000).
01 PRNAMVE PI C X(20).

LI NKAGE SECTI ON.

PROCEDURE DI VI SI ON.
*
START- PRI NTSR.
MOVE LENGIH OF LOGVBG TO LOGVSG LEN.
OPEN fil es or DATABASE

LR IR I kR R R R R R R R o

* Get the data that was sent by the client
(R R R SRS S SRS EEEREEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEES]
MOVE ZERO to TP- STATUS.
MOVE " Server Started" TO LOGVBG TEXT.
PERFORM DO- USERLOG.
MOVE LENGTH OF | NPUT- REC TO LEN.
CALL " TPSVCSTART" USI NG TPSVCDEF- REC
TPTYPE- REC
| NPUT- REC
TPSTATUS- REC.
I F NOT TPOK
MOVE " TPSVCSTART Fail ed" TO LOGVBG TEXT
PERFORM DO USERLOG
SET TPFAI L TO TRUE.
PERFORM A- 999- EXI T.

Check ot her paraneters
CALL "TPGPRI O' USI NG TPPRI DEF- REC
TPSTATUS- REC.
I F NOT TPOK
MOVE "TPGPRI O Fai | ed" TO LOGMSG TEXT

BEA TUXEDO COBOL Guide

12 Writing Service Routines

PERFORM DO- USERLOG
SET TPFAIL TO TRUE.
PERFORM A- 999- EXI T.
IF PRRORITY < 20
MOVE " Bl GIOBS" TO RNAMVE
ELSE IF PRIORITY < 60
MOVE " MEDJOBS" TO RNAMVE
ELSE
MOVE " H GHSPEED' TO RNAME.
Print | NPUT- REC on RNAME printer
| F TPNOREPLY
MOVE SPACES TO REC- TYPE
MOVE O TO LEN
SET TPSUCCESS TO TRUE
PERFORM A- 999-EXI T
| F TPREPLY
MOVE " STRI NG' TO REC- TYPE
MOVE LENGTH OF PRNAME TO LEN
SET TPSUCCESS TO TRUE
PERFORM A- 999- EXI T.
LR R S R R I R
* Exit
LR R S R R R R
A-999-EXIT.
MOVE "Exiting" TO LOGVSG TEXT.
PERFORM DO USERLCG.
SET TPSUCCESS TO TRUE.
COPY TPRETURN REPLACI NG TPSVCRET- REC BY TPSVCRET- REC
TPTYPE- REC buTPTYPE- REC
DATA- REC BY PRNAMVE
TPSTATUS- REC BY TPSTATUS- REC.

LR R R R R Rk R R Ik kR R R R R R R kO O o

* Wite to userlog
LR R R R
DO USERLOG.
MOVE TP- STATUS TO LOG TP- STATUS.
CALL "USERLOG' USI NG LOGVSG
LOGVSG- LEN
TPSTATUS- REC.

12-10 BEA TUXEDO COBOL Guide

The TPRETURN and TPFORWAR Routines

The TPRETURN and TPFORWAR Routines

TPRETURN and TPFORWAR are routines that indicate that a service routine has
completed; they either send areply back to the calling client or forward a request to
another service for further processing.

Sending Replies

The primary function of aservice routineisto process arequest and return thereply to
aclient process. In performing this routine, aservice can in turn act as arequester and
make request calls to other services with TPCALL or TPACALL. When TPRETURN iS
called, control always returns to the controlling program. If the service has sent
requests with asynchronous replies, it must receive al expected replies or invalidate
them with TPCANCEL before returning control to the controlling program; otherwisethe
outstanding replies are automatically dropped when they are received by the BEA
TUXEDO system’s controlling program, and an error is returned to the caller.

The TPRETURN routine, besides marking the end of the service routine, also causes the
reply message to be sent to the requester. If the client invoked the servitemith,

after a successful call PRETURN, the reply message is available in @R2ATA-REC
record. IfTPACALL was used to send the request, on successTiPRETURN, the reply
message is available TPGETRPLY's DATA-REC record. The syntax of this routine is:

01 TPSVCRET- REC
COPY TPSVCRET.
01 TPTYPE- REC.
COPY TPTYPE.
01 DATA- REC.
CCOPY User Dat a.
01 TPSTATUS- REC
COPY TPSTATUS.
COPY TPRETURN REPLACI NG TPSVCRET- REC BY TPSVCRET- REC
TPTYPE- REC BY TPTYPE- REC
DATA- REC BY DATA- REC
TPSTATUS- REC BY TPSTATUS- REC.

Currently the settings are not used.

BEA TUXEDO COBOL Guide 12-11

12 Writing Service Routines

TPRETURN Arguments: TP-RETURN-VAL IN TPSVCRET-REC

The TP- RETURN- VAL | N TPSVCRET-REC parameter can be set to TPSUCCESS,

TPFAI L or TPEXI T. Thisvalue indicates whether the service has completed

successfully or not on an application-level. These conditions are communicated to the
calling client in the following way. When set to TPSUCCESS, the calling routine
succeeded, and if there is a reply message, it is in the caller’s record. If the service
terminated unsuccessfully (that is, if the logic of the applicatiomPSeRETURN- VAL

I N TPSVCRET-REC to TPFAI L), an error is reported to the client process waiting for
the reply. The client’$PCALL or TPGETRPLY routine call will fail andrp- STATUS will

be set tarPESVCFAI L to indicate an application-defined failure. In the case of this kind
of failure if a reply message was expected, it will be available in the caller’s record. If
TPEXI T is set inTP- RETURN- VAL | NTPSVCRET-REC, the functionality offPFAI L is
performed, but the server exits after the reply is sent back to the client. Note that if
TP- RETURN- VAL is not set, the default value OPFAI L is assigned to this parameter.
The impact of the value of this parameter when a process is in transaction mode is
discussed in Chapter 14, “Global Transactions in the BEA TUXEDO System.”

The preceding discussion concerns the effedPORETURN- VAL if

application-defined errors are the only ones that occur. If, howeRRETURN

encounters errors while processing its arguments, it sefialehmessage (if a reply

is expected) to the calling process. This is detected by the caller by the value set in
TP- STATUS. In case ofailed messaged,P- STATUS is set toTPESVCERR. This

situation overrides the effect of the valueref RETURN- VAL. If this type of error

occurs, no reply data is returned, and the contents of the caller’s output record and i
length remain unchanged.

If TPRETURN sends back a message in a record whose type is not known or not allowe
by the caller (that is, the call was made with a settingPOfOCHANGE), TPEOTYPE is
returned inTP- STATUS. Application success or failure cannot be determined and the
contents of the caller's output record and its length remain unchanged.

Also, the value returned iFP- RETURN- VAL is not relevant in the case WHEPRETURN

is invoked and a time-out occurs for the call waiting on the reply. This situation
overrides all others in determining the value that is return@e-isTATUS.

TP- STATUS is set toTPETI ME and the reply data is not sent leaving the contents and
length of the caller’s reply record unchanged. There are two types of time-outs in the
BEA TUXEDO system. Blocking time-out was discussed when explaining the
TPNOBLOCK andTPNOTI ME communication settings. The other type of time-out,
transaction time-out, is discussed in Chapter 14, “Global Transactions in the BEA
TUXEDO System.”

12-12 BEA TUXEDO COBOL Guide

The TPRETURN and TPFORWAR Routines

TPRETURN Arguments: APPL-CODE IN TPSVCRET-REC

The APPL- CODE | N TPSVCRET-REC parameter can be used to return to the caller an
application-defined return code. The client can access the value returned in

APPL- CODE by querying APPL- RETURN- CODE | N TPSTATUS-REC. This codeis sent
regardless of application success or failure; that is, it is returned in the case of
TPSUCCESS or TPESVCFAI L. Asindicated, no reply messages can be sent in the other
error cases.

TPRETURN Arguments: DATA-REC and LEN IN TPTYPE-REC

DATA-REC is the reply message that isto be returned to the client process with the
length of the message specified by LEN | NTPTYPE-REC. If therecord isself-defining
(for example a vi Ewrecord), LENisignored and can be set to 0. If REC- TYPE I N
TPTYPE-REC is STRI NGand LENis 0, then the request is sent with no data portion. If
the reply message does not have adata part, REC- TYPE is SPACES, and DATA-REC and
LEN areignored. If areply isexpected by the client, and there is no data in the reply
record, then areply with no data portion is sent to the client. If no reply is expected,
that is, TPNOREPLY was set, TPRETURN ignores any data passed to it and simply returns
control to the controlling program; the server processis then free to process another
request.

TPRETURN Example

Listing 12-3 shows the TRANSFER service which makes synchronous calls to the

W THDRAWAL and DEPCSI T services. If the call to W THDRAWAL should fail, Cannot

wi t hdraw from debit account iswritten to the status line of the form, the reply
record isfreed and the TP- RETURN- VAL | N TPSVCRET-REC parameter to TPRETURN
is set to TPFAI L. If the call succeeds, the debit balance isretrieved from the reply
record.

A similar scenario is followed for the call to DEPOSI T. On success, the service sets
TP- RETURN- VAL | NTPSVCRET-REC to TPSUCCESS and returnsthe pertinent account
information to the status line.

BEA TUXEDO COBOL Guide 12-13

12 Writing Service Routines

Listing 12-3 How to Use TPRETURN

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. TRANSFER
AUTHOR. TUXEDO DEVEL OPMENT.
ENVI RONVENT DI VI SI ON.

CONFI GURATI ON SECTI ON.
SQURCE- COWPUTER. USL- 486.
OBJECT- COWUTER. USL-486.

I NPUT- QUTPUT SECTI ON.

LR R I R R R R Ik ko T R R R AR R R R S O

* Tuxedo definitions

IR SRR SRS SR SRS SR SRS R EEREEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEES
01 TPSVCRET- REC.
COPY TPSVCRET.

01 TPTYPE- REC.
CCOPY TPTYPE.

01 TPSTATUS- REC.
COPY TPSTATUS.

01 TPSVCDEF- REC.
CCPY TPSVCDEF.

R R R R R R R R R T R R R R R R R R Rk O

* User defined data records
RS R R SRS SR SRS SR EREEEEEEEEEREEEEEEEEEEEEEEEIEEEEEEEEEEEEEES
01 TRANS- REC.
COPY TRANS- AMOUNT.

LI NKAGE SECTI ON.
PROCEDURE DI VI SI ON.

START- TRANSFER

LR R R R Rk R Ik kT kR R R R R R R R O

* Get the data that was sent by the client
RS R R SRS SR SRS EEEEEEEEEEEEREEEEEEEEEEEEEEEIEEEEEIEEEEEIEEEES
MOVE LENGTH OF TRANS- REC TO LEN.
CALL "TPSVCSTART" US| NG TPSVCDEF- REC
TPTYPE- REC
TRANS- REC
TPSTATUS- REC.
I F NOT TPOK

MOVE " Transacti on Encountered An Error" TO STATUS- LI NE

SET TPFAIL TO TRUE

COPY TPRETURN REPLACI NG TPSVCRET- REC BY TPSVCRET- REC

TPTYPE- REC BY TPTYPE- REC
DATA- REC BY TRANS- REC

12-14 BEA TUXEDO COBOL Guide

The TPRETURN and TPFORWAR Routines

TPSTATUS- REC BY TPSTATUS- REC.
ELSE
. Check ot her paraneters
LR R R R

* nmust have a valid debit and credit account nunber
LR R R SRS S S SRS RS EE]

CALL " FI ND- ACCOUNT- FUNCTI ON' USI NG TRANS- DEBI T- ACCOUNT I N TRANS- REC.

| F TRANS- DEBI T- ACCOUNT is not valid
MOVE "l nvalid Debit Account Number"
TO STATUS- LI NE | N TRANS- REC
SET TPFAI L TO TRUE
COPY TPRETURN REPLACI NG
DATA- REC BY TRANS- REC.

CALL " Fl ND- ACCOUNT- FUNCTI ON' US| NG TRANS- CREDI T- ACCOUNT | N TRANS- REC.

| F TRANS- CREDI T- ACCOUNT s not valid
MOVE "Invalid Gedit Account Nunber"
TO STATUS- LI NE | N TRANS- REC
SET TPFAI L TO TRUE
COPY TPRETURN REPLACI NG
DATA- REC BY TRANS- REC.

LR R R Rk kR R R R R R R R

* Check anount to transfer
LR R R S
I F TRANS- AMOUNT | N TRANS- REC < 0
MOVE "I nvalid Transfer Anount Requested"
TO STATUS-LINE | N TRANS- REC
SET TPFAIL TO TRUE
COPY TPRETURN REPLACI NG
DATA- REC BY TRANS- REC.

LR IR Rk kR R R R Rk kb kS

* NMake W thdrawal using another service
LR I R R I
MOVE "W THDRAWAL" TO SERVI CE- NAME.
. . . set other TPCALL paraneters
CALL "TPCALL" USING . . .
I F NOT TPOK
MOVE " Cannot withdraw from debit account”
TO STATUS- LI NE | N TRANS- REC
SET TPFAIL TO TRUE
COPY TPRETURN REPLACI NG
DATA- REC BY TRANS- REC.

LR IR kR R R R R R R R R O R Rk o

* Make Deposit using another service
LR R R R
MOVE " DEPOSI T" TO SERVI CE- NAME.
. . . set other TPCALL paraneters
CALL "TPCALL" USING . . .
I F NOT TPOK
MOVE " Cannot Deposit into credit account"

BEA TUXEDO COBOL Guide

12-15

12 Writing Service Routines

TO STATUS- LI NE I N TRANS- REC
SET TPFAIL TO TRUE
CCOPY TPRETURN REPLACI NG

DATA- REC BY TRANS- REC.

MOVE "Transfer conpleted" TO STATUS-LINE I N TRANS- REC
. . MOVE all the data into TRANS- REC needed by the client
SET TPSUCCESS TO TRUE
COPY TPRETURN REPLACI NG
DATA- REC BY TRANS- REC.

Invalidating Handles: TPCANCEL

If aservice calling TPGETRPLY fails with TPETI ME and decides not to wait any longer,
it can invalidate the handle with a call to TPCANCEL. If the reply ever does arrive, it is
silently discarded. TPCANCEL cannot be used for transaction replies (request was done
without the TPNOTRAN setting); within atransaction TPABORT does the same job of
invalidating the transaction communications handle. Listing 12-4 shows the code.

Listing 12-4 Invalidate a Reply after Timing Out

. . Set up paraneters to TPACALL

SI:_I' TPNOTRAN TO TRUE.

CALL "TPACALL" USI NG TPSVCDEF- REC
TPTYPE- REC
DEBI T- REC
TPSTATUS- REC.

IF NOT TPOK

error processing

CALL "TPGETRPLY" USI NG TPSVCDEF- REC

TPTYPE- REC
DEBI T- REC
TPSTATUS- REC.
I'F NOT TPOK
error processing
I F TPETI ME

CALL " TPCANCEL" TPSVCDEF- REC
TPSTATUS- REC.

SET TPSUCCESS TO TRUE.

COPY TPRETURN REPLACI NG TPSVCRET- REC BY TPSVCRET- REC
TPTYPE- REC BY TPTYPE- REC
DATA- REC BY DEBI T- REC
TPSTATUS- REC BY TPSTATUS- REC.

12-16 BEA TUXEDO COBOL Guide

The TPRETURN and TPFORWAR Routines

Forwarding Requests

The TPFORWAR routine allows a service to forward a request to another service for
further processing. Thisdiffersfrom aservice call in that the service that forwards the
request does not ever expect areply. Thereply is owed to the process that originated
therequest, and the responsibility for providing the reply has been passed to the service
to which therequest hasbeen forwarded. It becomes the responsibility of thelast server
in the forward chain to send the reply back by invoking TPRETURN. The process that
made the initial service call isthe client and will be waiting for areply.

The following figure gives you an idea of what a forward chain might look like. The
request isinitiated with aTPCALL and the eventual reply is provided by the TPRETURN
that isinvoked by the last service in the chain.

Figure12-1 Forwarding a Request

. TPCALL .TPFDRWA

TFRETURN . TPFORWAR

Service routines can forward requests at specified priorities in the same manner that
client processes send requests. Y ou may recall that thisis accomplished by invoking
the TPSPRI Oroutine.

TPFORWAR is identical to TPRETURN in that when it is called, the controlling program
regains control, and the server process is free to do more work. The syntax of this
routineis:

01 TPSVCDEF- REC.
COPY TPSVCDEF.
01 TPTYPE- REC.
COPY TPTYPE.
01 DATA- REC
COPY User Dat a.
01 TPSTATUS- REC.

BEA TUXEDO COBOL Guide 12-17

12 Writing Service Routines

CCOPY TPSTATUS.
CCPY TPFORWAR REPLACI NG TPSVCDEF- REC BY TPSVCDEF- REC
TPTYPE- REC BY TPTYPE- REC
DATA- REC BY DATA- REC
TPSTATUS- REC BY TPSTATUS- REC

TPFORWAR Arguments

The name of the service to which the request is to be forwarded is specified in
TPSVCDEF-REC. Therequest record is its third parameter, DATA-REC, and the
length of the request dataisavailablein LEN | N TPTYPE-REC. Thesetwo parameters
share the same meanings as the corresponding ones specified for TPRETURN.

Note: When acting asaclient, a server processis not allowed to request services
from itself when areply is expected. If the only avail able instance of the
desired serviceisoffered by the server process making the request, the call will
fail indicating that a recursive call would have been made. However, if the
service routine sends the request with the TPNOREPLY communication setting
set or forwards the request the call will not fail since the caller is not waiting
on itself.

Calling TPFORWAR can be used to indicate success up to that point in processing the
reguest. If no application errors have been detected, you can invoke TPFORWAR;
otherwise, call TPRETURN with TP- RETURN- VAL | N TPSVCRET-REC set to TPFAI L.

TPFORWAR Example

The examplein Listing 12-5 is a service routine which shows what the service would
look likeif it used a call to TPFORWAR to send its data record to the DEPCSI T service.
If the new account is added successfully, the branch record is updated to reflect the
new account. On success, the data record gets forwarded to the DEPCSI T service. On
failure, TPRETURNIs called with TP- RETURN- VAL | N TPSVCRET-REC set to TPFAI L
and the failure reported to the status line of the form.

12-18 BEA TUXEDO COBOL Guide

The TPRETURN and TPFORWAR Routines

Listing 12-5 How to Use TPFORWAR

LR R R o R R Rk Rk kR R R R R R

* Get the data that was sent by the client
IR R SRS S S SRS SRS SRS SR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]
MOVE LENGTH OF TRANS- REC TO LEN.
CALL " TPSVCSTART" USI NG TPSVCDEF- REC
TPTYPE- REC
TRANS- REC
TPSTATUS- REC.
I F NOT TPOK
MOVE " Transaction Encountered An Error" TO STATUS- LI NE
SET TPFAI L TO TRUE.
COPY TPRETURN REPLACI NG
DATA- REC BY TRANS- REC.
ELSE
Check ot her paraneters
(R E R SRS S S SRS RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES]

* | nsert new account record
(R R R SRS S S EEE RS EE]
CALL " ADD- NEW ACCOUNT- FUNCTI ON" USI NG TRANS- ACCOUNT | N TRANS- REC.
I F Adding New Account Failed
MOVE " Account not added" TO STATUS-LINE | N TRANS- REC
SET TPFAI L TO TRUE
COPY TPRETURN REPLACI NG
DATA- REC BY TRANS- REC.
(R E R SRS S S EEE RS EE]
* Forward record to the DEPCSIT service to add initial
* bal ance into account
(R R R SRS EEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]
MOVE " DEPCSI T" TO SERVI CE- NAME.
. . . set other TPFORVAR paraneters
COPY TPFORWAR REPLACI NG
DATA- REC BY TRANS- REC.

BEA TUXEDO COBOL Guide

12-19

12 Writing Service Routines

Sending Unsolicited Messages

The BEA TUXEDO system allows unsolicited messages to be sent to client processes
without disturbing the processing of request/response calls or conversational
communications. Unsolicited messages can be sent to client processes by name
(TPBROADCAST) or by an identifier received with a previously processed message
(TPNOTI FY). Messages sent via TPBROADCAST can originate either in aservice or in
another client. Messages sent via TPNOTI FY can originate only in a service, as shown
in the following table.

Table 12-1 Unsolicited M essages

Initiator Receiver
TPBROADCAST client, server client
TABLE server client

TPBROADCAST Arguments

01

01

01

01

TPBROADCAST allows a message to be sent to registered clients of the application.
(Registered clients are those that have successfully made acall to TPI NI TI ALI ZE and
have not yet made a call to TPTERM). TPBROADCAST can be called in both client and
service routines. The syntax of the routine is:

TPBCTDEF- REC
CCPY TPBCTDEF.
TPTYPE- REC.
CCPY TPTYPE.

CCOPY User Dat a.
TPSTATUS- REC.
COPY TPSTATUS.

CALL " TPBROADCAST" USI NG TPBCTDEF- REC TPTYPE- REC DATA- REC TPSTATUS- REC.

LM D, USRNAME, and CLTNAME, all in TPBCTDEF-REC, are identifiers used to select
the target list of clients. A value of SPACES for any of these arguments acts as a
wildcard for that argument, so the message can be directed to groups of clients or to
the entire universe.

The DATA-REC argument identifies the data portion of the message up to the length
specified by the LEN | N TPTYPE-REC argument. If the record is self-defining, for
example, a Vvl Ewrecord, LEN isignored and can be set to 0. The settings can be:

12-20 BEA TUXEDO COBOL Guide

The TPRETURN and TPFORWAR Routines

TPNOBLOCK
If a blocking condition exists, don’t send the message. ETtig®BL OCK or
TPBLOCK must be set.

TPBLOCK
The calling program blocks until data is available to receive. Either
TPNOBLOCK or TPBLOCK must be set.

TPNOTI ME
Wait indefinitely; do not time out. Eith@PNOTI ME or TPTI ME must be set.

TPTI ME
Timeout if a blocking condition exists and the blocking time is reached.
Either TPNOTI ME or TPTI ME must be set.

TPSI GRSTRT
When a signal interrupts any underlying system calls, the call is reissued. If
this setting is not set, a signal causeBROADCAST to fail with theTPGOTSI G
error code. EitheTPSI GRSTRT or TPNOSI GRSTRT must be set.

TPNOSI GRSTRT
When a signal interrupts any underlying system calls, then the interrupted call
is not restarted and the call fails. Eith@s| GRSTRT or TPNOSI GRSTRT must
be set.

BEA TUXEDO COBOL Guide 12-21

12 Writing Service Routines

TPBROADCAST Example

Listing 12-6 showsan example of acall to TPBROADCAST whereall clientsaretargeted.

The message to be sent isin a STRI NG record.

Listing 12-6 Using TPBROADCAST

LR R R R R R R R R R R kR R R R R R R R

* Prepare the record to broadcast ed

LR R R R R R R R R R R R R R R

MOVE "HELLO, WORLD' TO DATA- REC.
MOVE 11 TO LEN.
MOVE " STRI NG' TO REC TYPE.

SET TPNOBLOCK TO TRUE.
SET TPNOTI ME TO TRUE
SET TPSI GRSTRT TO TRUE.

MOVE SPACES TO LM D.

MOVE SPACES TO USRNAME.

MOVE SPACES TO CLTNAME.

CALL "TPBROADCAST" USI NG TPBCTDEF- REC
TPTYPE- REC
DATA- REC
TPSTATUS- REC.

I'F NOT TPOK

error processing

TPNOTIFY Arguments

TPNOTI FY can be called only from a service. The syntax of theroutineis:

01 TPSVCDEF- REC.
COPY TPSVCDEF.
01 TPTYPE- REC.
COPY TPTYPE.
01 DATA- REC.
CCOPY User Dat a.
01 TPSTATUS- REC.
COPY TPSTATUS.

CALL "TPNOTI FY" USI NG TPSVCDEF- REC TPTYPE- REC DATA- REC TPSTATUS- REC.

12-22 BEA TUXEDO COBOL Guide

The TPRETURN and TPFORWAR Routines

CLI ENTI D contains a client identifier saved from the TPSVCDEF- REC structure that
accompanied the service request to this service. Thusit can be seen that TPNOTI FY is
used to direct an out-of-band message to the client process that called the service. This
isnot the same asthereply to the service request that would be sent by when the service
calls TPRETURN (or when a conversational service calls TPSEND to send areply to the
client), nor isit any part of atransaction, if oneisin progress. It isused in caseswhere
the service encountersinformation in processing that needs to be passed to the
unsolicited message handler for the application.

The DATA-REC, LEN | N TPTYPE-REC and settings arguments are the same as they
are for TPBROADCAST.

Advertising, Unadvertising Services

When servers are booted, they advertise the services they offer based on the
specification in their CLOPT parameter in the configuration file. The default
specification calls for the server to advertise al services with which it was built; this
is the meaning of the - A option. (See ubbconf i g(5) or ser vopt s(5) in the BEA
TUXEDO Reference Manual). When a service is advertised, it takesup a service table
entry in the bulletin board. This can lead an application to decide to boot serversto
offer some subset of their available services. Asthe ser vopt s(5) manual page makes
clear, the- s option allowsacomma-separated list of servicesto be specified by service
name. It also allows, with the - s services:func notation, for aroutine with a name
different from that of the advertised service to be called to process the service request.
The BEA TUXEDO administrator can usethe adverti se and unadverti se
commands of t madni n(1) to control the services offered by servers.

The TPADVERTI SE and TPUNADVERTI SE routines allow that dynamic control to be
exercised within a service of arequest/response server or conversational server to
advertise or unadvertise aservice. Thelimitation isthat the serviceto be advertised (or
unadvertised) must be available within the same server as the service making the
request.

BEA TUXEDO COBOL Guide 12-23

12 Writing Service Routines

TPADVERTISE Arguments
The syntax of TPADVERTI SE is:
01 SERVI CE- NAVE PI C X(15).
01 PROGRAM NAVE PI C X(32).

01 TPSTATUS- REC
COPY TPSTATUS.
CALL " TPADVERTI SE' USI NG SERVI CE- NAME PROGRAM- NAME TPSTATUS- REC.

SERVICE-NAME isacharacter string of 15 characters or less that names the serviceto
be advertised. Names longer than 15 characters are truncated; a SPACES value causes
an error, [TPEI NVAL] .

PROGRAM-NAME is the name of a BEA TUXEDO service routine that is called to
perform the service. Of course, it is not uncommon that this name is the same as the
name of the service. PROGRAM-NAME is not permitted to be SPACES.

TPADVERTISE Example

Listing 12-7 shows an example of TPADVERTI SE that is based on the following
hypothetical situation:

4 SERVER TLRis specified to offer only the service TLRI NI T when booted.

¢ After someinitialization, TLRI NI T advertises services DEPOSI T and W THDRAW
both performed by routine TLRFUNCS, and both built into the TLR server.

4 On return from advertising the two services, TLRI NI T unadvertises itself.

12-24 BEA TUXEDO COBOL Guide

The TPRETURN and TPFORWAR Routines

Listing 12-7 Dynamic Advertising and Unadvertising

LR R R R R Rk kR O R

* Advertise DEPCSIT service to be processed by
* routine TLRFUNCS
EE R R S R R R R R R R R
MOVE " DEPCSI T" TO SERVI CE- NAME.
MOVE " TLRFUNCS' TO PROGRAM NAME.
CALL "TPADVERTI SE" USI NG SERVI CE- NAME
PROGRAM REC
TPSTATUS- REC.
I F NOT TPOK
error processing
EE R R R R I R
* Advertise WTHDRAW service to be processed by
* the sane routine TLRFUNCS
EE R R O R R R R R
MOVE "W THDRAW TO SERVI CE- NAME.
MOVE " TLRFUNCS' TO PROGRAM NAME.
CALL "TPADVERTI SE" USI NG SERVI CE- NAME
PROGRAM REC
TPSTATUS- REC.
I F NOT TPOK
error processing

LR R R Rk Sk kR R R R R R T R

* Unadvertise TLRINIT service (yourself)
EE R R R R R R
MOVE "TLRI NI T" TO SERVI CE- NAME.
CALL " TPUNADVERTI SE' USI NG SERVI CE- NAME
TPSTATUS- REC.
I F NOT TPOK
error processing

TPUNADVERTISE

TPUNADVERTI SE, of course, is called to remove a service from the service table of the
bulletin board. The syntax is:

01 SERVI CE- NAME PI C X(15).
01 TPSTATUS- REC.
COPY TPSTATUS.
CALL "TPUNADVERTI SE" USI NG SERVI CE- NAME TPSTATUS- REC.

The only argument isaname to the SERVICE-NAME being unadvertised. An example
isincluded abovein Listing 12-7.

BEA TUXEDO COBOL Guide 12-25

12 Writing Service Routines

System-supplied Servers and Subroutines

The BEA TUXEDO system is delivered with a basic client authentication service:
AUTHSVR.

System-Supplied Server: AUTHSVR

AUTHSVR(5) can be used to provide individua client authentication for an application.
Itiscalled by TPI NI TI ALI ZE when the level of security for the applicationis TPAUTH,
USER_AUTH, ACL, or MANDATORY_ACL.

Theservicein AUTHSVRIooksin the USER-DATA-REC record for auser password (not
to be confused with the application password in the PASSWD field of the
TPINFDEF-REC record). The string in USER-DATA-REC is checked against the

/ et c/ passwd file by default. (The application can specify adifferent file to be
checked.) When used by anativesiteclient, the USER-DATA-REC record is sent along
by TPI NI TI ALI ZE asit is received. This means that if the application wants the
password to be encrypted, the client program must be coded accordingly. When used

by aworkstation client, TPI NI TI ALI ZE encrypts the data before sending it across the
network.

The BEA TUXEDO System Controlling
Program

To speed the devel opment of serversthe BEA TUXEDO system provides apredefined
controlling program routine for server load modules. This controlling program is
automatically included when the bui | dser ver - Ccommand is executed.

12-26 BEA TUXEDO COBOL Guide

The BEA TUXEDO System Controlling Program

The predefined controlling routine does the following:

¢
¢

L4

runs the process immune to hangups (ignores the UNIX System SI GHUP signal)

arranges for cleanup on receipt of the standard UNIX System software
termination signal (SI GTERM). The server is shut down and must be rebooted if
needed again.

attaches to shared memory for bulletin board services
creates a message queue for the process

advertises the initial servicesto be offered by the server. Theinitial services are
either al the services link edited with the predefined controlling program, or a
subset specified by the BEA TUXEDO administrator in the configuration file.

processes command line arguments up to the double dash (- -) that indicates the
end of system-recognized arguments.

calls the routine TPSVRI NI T to process any command line arguments occurring
after the - - and optionally to open the resource manager. Such arguments are for
application-specific initialization.

until ordered to halt:
4 checksitsreguest queue for service request messages
4 when a service reguest message arrives on the request queue:

—if the - r option was specified, records the starting time of the service
request

—updates the bulletin board to indicate that the serngwdy

—allocates a record for the request message and dispatches the service;
that is, calls the service subroutine

4 when the service has returned from processing its input:

—if the - r option was specified, records the ending time of the service
request

—updates statistics

—updates the bulletin board to indicate that the servedLE; that is,
ready for work

—checks its queue for the next service request
when the server is about to halt, caisVRDONE to perform any required user
shutdown operations.

BEA TUXEDO COBOL Guide 12-27

12 Writing Service Routines

The controlling program that the system providesis a closed abstraction and can not
be modified by the programmer. Asindicated in the previouslist items, it takes care of
all the details concerning entrance into and exit from an application, record and
transaction management, and communication. It |leaves the programmer free to
implement the application through the logic of the service subroutines. Note that as a
result of the system supplied controlling program doing the work of joining and
leaving the application, it is an error for services to make callsto the TPI NI TI ALI ZE
or TPTERMroutines. This error returns TPEPROTO N TP- STATUS.

In addition to the above functionality, there are two user exits in the controlling
program that allow the programmer to do various initialization and exiting activities.
The next sections explain how these two system supplied subroutines are used.

BEA TUXEDO System-Supplied Subroutines

TPSVRINIT

There are two subroutines of the controlling program, TPSVRI NI T and TPSVRDONE,
that are provided with the BEA TUXEDO system software. The default versions can
be modified to suit your application.

When a server is booted the BEA TUXEDO controlling program calls TPSVRI NI T

during itsinitialization phase before it handles any service requests. If an application

does not provide this routine in a server, the default oneis called that opens the

resource manager and makesan entry in the central event log indicating that the server

has successfully started. The central event log is discussed in Chapter 15, “Error
Management.” For now, simply understand that it is a UNIX System file to which
processes can write messages by callingy88&_0OG routine. Coming as it does near
the beginning of the system supplied controlling progrePsyVRI NI T can be used for
any initialization purposes that might be needed by an application. Two possibilities
are illustrated here: receiving command line options and opening a database.

Note that although not shown in the following examples, message communication ca
also be performed within this routine. HoweVvEPSVRI NI T fails if it returns with
asynchronous replies pending. In addition, the replies are ignored by the BEA
TUXEDO system and the server exits gracefuii§SvRI NI T can also start and
complete transactions, as discussed in Chapter 14, “Global Transactions in the BEA
TUXEDO System.”

12-28 BEA TUXEDO COBOL Guide

The BEA TUXEDO System Controlling Program

The syntax of thisroutineis:

LI NKAGE SECTI ON.
01 QD LI NE

05 ARGC PIC 9(4) COWP-5.

05 ARGV.

10 ARGS PI C X OCCURS 0 TO 9999 DEPENDI NG ON ARGC.
01 TPSTATUS- REC.
COPY TPSTATUS.

PROCEDURE DI VI SI ON USI NG CVD- LI NE TPSTATUS- REC.
* User code
EXI T PROGRAM

Using TPSVRINIT to Receive Command Line Options

When a server is booted, before calling the TPSVRI NI T routine, it reads the options
specified for it in the configuration file. The options are passed through ARGC, which
contains the number of arguments that have been passed, and ARGV, which contains
the arguments separated by a single SPACE character. The predefined controlling
program then callSTPSVRI NI T.

Listing 12-8 shows an example of a TPSVRI NI T coded to receive command line
options.

Listing 12-8 Receiving Command Line Optionsin TPSVRINIT

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. TPSVRI NI T.
ENVI RONVENT DI VI SI ON.
CONFI GURATI ON SECTI ON.
SCURCE- COWPUTER. USL- 486.
OBJECT- COWPUTER. USL- 486.

DATA DI VI SI ON.
WORKI NG STORAGE SECTI ON.

LI NKAGE SECTI ON.

01 CVD-LINE
05 ARGC PIC 9(4) COWP-5.
05 ARGV.
10 ARGS PIC X OCCURS 0 TO 9999 DEPENDI NG ON ARGC.
01 SERVER-I NI T- STATUS.
CCOPY TPSTATUS.

BEA TUXEDO COBOL Guide 12-29

12 Writing Service Routines

*

PROCEDURE DI VI SI ON USI NG CMD- LI NE SERVER- | NI T- STATUS.

LR R I R R R

* ARGC i ndi cates the nunber of argunents and ARGV contains the
* argunents separated by a single SPACE

LR R I R R R Rk R R R Rk R R R R R R R R R R R Rk

A- START.
*
I NSPECT the ARGV |ine and process argunents
| F argunents are invalid
SET TPEI NVAL | N SERVER-I NI T- STATUS TO TRUE.
ELSE argunents are OK conti nue
SET TPOK | N SERVER-| NI T- STATUS TO TRUE.

EXIT PROGRAM

Using TPSVRINIT to Open a Resource Manager

Listing 12-9 shows a code fragment that illustrates another common use of

TPSVRI NI T: opening aresource manager. The BEA TUXEDO system provides a
routine to generically open aresource manager, TPOPEN. It also providesthe
complementary routine, TPCLOSE. The details of these ATMI calls can be found in
Section 3cbhl of the BEA TUXEDO Reference Manual. Applicationsthat use these calls
to open and close their resource managers are portable in this respect. They work by
accessing the resource manager instance-specific information that is available in the
configuration file. These calls are optional and can be used in place of the resource
manager specific calls that are sometimes part of the Data Manipulation Language
(DML) if the resource manager is a database. In the example that follows, the code
does not pick up command line options, but thereisno reason it could not both pick up
options and open the database. Also, note the use of the USERLOG routine to write to
the central event log.

Listing 12-9 Opening a resource manager in TPSVRINIT

| DENTI FI CATI ON DI VI S| ON.
PROGRAM- | D. TPSVRINI'T.
ENVI RONMENT DI VI SI ON.
CONFI GURATI ON SECTI ON.
SOURCE- COVPUTER. USL- 486.
OBJECT- COVPUTER USL- 486.

DATA DI VI SI ON.

12-30 BEA TUXEDO COBOL Guide

The BEA TUXEDO System Controlling Program

WORKI NG STORAGE SECTI ON.
01 TPSTATUS- REC.
COPY TPSTATUS.
01 LOGMBG Pl C X(50).
01 LOGMBG LEN PIC S9(9) COMP-5.

LI NKAGE SECTI ON.
01 CMD-LINE
05 ARGC PIC 9(4) COWP-5.
05 ARGV.
10 ARGS PIC X OCCURS 0 TO 9999 DEPENDI NG ON ARGC.
01 SERVER-I NI T- STATUS.
COPY TPSTATUS.

PROCEDURE DI VI SI ON US| NG CVD- LI NE SERVER- | NI T- STATUS.
A- START.
I NSPECT the ARGV |ine and process argunents
| F argunents are invalid
MOVE "Invalid Argunments Passed" TO LOGVBG
PERFORM EXI T- NOW
ELSE argunents are OK continue

CALL "TPCPEN' USI NG TPSTATUS- REC.
I F NOT TPOK
MOVE " TPOPEN Fail ed" TO LOGVSG
ELSE | F TPESYSTEM
MOVE "System /T error has occurred" TO LOGVSG
ELSE | F TPECS
MOVE "An Operating Systemerror has occurred" TO LOGVSG
ELSE | F TPEPROTO
MOVE " TPOPEN was called in an i nproper Context" TO LOGVSG
ELSE | F TPERVERR
MOVE "Resource nanager Failed to Open" TO LOGVSG
PERFORM EXI T- NOW
SET TPOK | N SERVER-| NI T- STATUS TO TRUE.
EXI T PROGRAM
EXI T- NOW
SET TPEI NVAL | N SERVER- I NI T- STATUS TO TRUE
MOVE 50 LOGVSG LEN.
CALL "USERLOG' USI NG LOGVSG
LOGMSG- LEN
TPSTATUS- REC.
EXI T PROGRAM

If an error occursduring theinitialization activities, TPSVRI NI T can be coded to permit
the server to exit gracefully before the server starts processing service requests.

BEA TUXEDO COBOL Guide 12-31

12 Writing Service Routines

TPSVRDONE

Using TPSVRDONE to Close a resource manager

As might be expected, TPSVRDONE can call on the services of TPCLOSE to close the
resource manager in amanner analogous to the way TPSVRI NI T and TPOPEN are used

to openit. If the application does not define a closing routine for TPSVRDONE, the BEA
TUXEDO system callsthe default version which calls TPCLOSE and USERLOGto close

the resource manager and write to the central event log. The message to the log

indicates that the server is about to exit. TPSVRDONE is called after the server has

finished processing service requests but beforeit exits. Since the server is till part of

the system, further communication and transactions can take place within the routine.

The rules that must be followed to do this properly are covered in Chapter 14, “Globa
Transactions in the BEA TUXEDO System.” The syntax of this routine is:

01 TPSTATUS- REC.
COPY TPSTATUS.
PROCEDURE DI VI SI ON.
* User code
EXIT PROGRAM

The following example shows the typical way in whit/sVRDONE is used.

Listing 12-10 Closing a resour ce manager in TPSVRDONE

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. TPSVRDONE.
ENVI RONMENT DI VI SI ON.
CONFI GURATI ON SECTI ON.
SOURCE- COMPUTER. USL- 486.
OBJECT- COVWPUTER USL- 486.

DATA DI VI SI ON,
WORKI NG- STORAGE SECTI ON.
01 TPSTATUS- REC.
COPY TPSTATUS.
01 LOGMBG Pl C X(50).
01 LOGMBG LEN Pl C S9(9) COMP-5.
01 SERVER- DONE- STATUS.
COPY TPSTATUS.
PROCEDURE DI VI SI O\
A- START.
CALL "TPCLOSE" US| NG TPSTATUS- REC.
IF NOT TPOK

12-32 BEA TUXEDO COBOL Guide

Compiling Subroutines to Build Servers

MOVE "TPCLCSE Fai |l ed" TO LOGVSG
ELSE | F TPESYSTEM
MOVE "System /T error has occurred" TO LOGVSG
ELSE | F TPECS
MOVE "An Operating Systemerror has occurred" TO LOGVSG
ELSE | F TPEPROTO
MOVE "TPCLOSE was cal led in an inproper Context" TO LOGVEG
ELSE | F TPERVERR
MOVE "Resource nanager Failed to Open" TO LOGVSG
PERFORM EXI T- NOW
SET TPOK | N SERVER- DONE- STATUS TO TRUE.
EXIT PROGRAM
EXI T- NOW
SET TPEI NVAL | N SERVER- DONE- STATUS TO TRUE
MOVE 50 LOGMSG LEN.
CALL "USERLOG' USI NG LOGVBG
LOGWVSG- LEN
TPSTATUS- REC.
EXIT PROGRAM

Compiling Subroutines to Build Servers

To compileyour service subroutines you have the same freedom you had in compiling
clients. Y ou can use regular COBOL Compilation System utilitiesto make object files.
The object files can be kept as individual files or collected into an archivefile. If you
prefer, you can retain them as source (. cbl) files. In any event, when you invoke
bui | dser ver - Cto produce an executable server, you specify them on the command
linewiththe-f option. Thisappliesto new versionsof TPSVRI NI T and TPSVRDONE as
well as your application subroutines.

BEA TUXEDO COBOL Guide 12-33

12 Writing Service Routines

The buildserver Command

bui | dser ver isused to put together an executable server with the BEA TUXEDO
systems’s controlling program. Options identify the name of the output file, input files
provided by the application, and various libraries that permit you to run a BEA
TUXEDO application in a variety of ways. When compiling@oL server, the C

option must be used to indicate that the langua@eseL. This ensures that the correct
language libraries are included in linking the program.

bui | dser ver invokes theeobcc command. The environment variabksrcc and
ALTCFLAGS can be set to name an alternative compile command and to set settings fc
the compile and link edit phases. The keyl dserver command line options are
described in the paragraphs that follow.

The buildserver -o Option

The- o option is used to assign a name to the executable output file. If no name is
provided, the file is name8ERVER.

The buildserver -f and -I Options

The-f and-1 options are used to specify files to be used in the link edit phase. The
files specified in thef option are brought in before the BEA TUXEDO system and
resource manager libraries (first), whereas the files specified in thption are

brought in after these libraries (last). There is a significance to the order of the option:s
The order is dependent on routine references and in what libraries the references al
resolved. Source modules should be listed ahead of libraries that might be used to
resolve their references. Angbl files are first compiled. Object files can be either
separate o files or groups of files in archive) files. If more than a single file name

is given as an argument teor-1 option, the syntax calls for a list enclosed in
double quotes. You can use as mahynd- | options as you need.

12-34 BEA TUXEDO COBOL Guide

Compiling Subroutines to Build Servers

The buildserver -r Option

The-r optionisused to specify which resource manager accesslibraries should belink
edited with the executable server. The choice is specified with a string from the
$TUXDI R/ udat aobj / RMfile. Only one string can be specified. The database routines
in your service are the same regardless of which library is used.

All valid strings that name resource managers are contained in the

$TUXDI R/ udat aobj / Rvfile. When integrating a new resource manager into the BEA
TUXEDO system, thisfile must be updated to include the information about the
resource manager. Refer to the bui | dt ns(1) reference page and Administering the
BEA TUXEDO System for more information.

The buildserver -s Option

The- s option isused to specify the service namesincluded in the server and the name
of the routines that perform each service. Normally, the routine name is the same as
the name of the service. In the sample program our convention is to specify all
uppercase for the service name. For example, the BUYSR service would be processed
by routine BUYSR() . Thefollowing representsthe command lineto create the BUYSEL L
server.

bui | dserver -C -0 BUYSELL \
-s SELLSR -f SELLSR. cbl \
-s BUYSR -f BUYSR. chl

However, itispossiblefor theadministrator to specify that only asubset of the services
that were used to create the server with the bui | dser ver command are to be
advertised when the server is booted. Refer to Administering the BEA TUXEDO
System.

BEA TUXEDO COBOL Guide 12-35

CHAPTER

13 Conversational Clients
and Services

Introduction

This chapter covers the subject of conversationa clients and services.

A conversational client differs in the following ways from a request/response client
(described in Chapter 11, “Writing Client Programs,”):

4 ltinitiates a request for service by USITRCONNECT rather tharrPCALL or
TPACALL.

4 It passes the service request to a conversational server.

A conversational service differs in the following ways from a request/response service
(described in Chapter 12, “Writing Service Routines,”):

4 Itis part of a server identified in the configuration file as offering only
conversational services.

4 Itis prohibited from invokingrPFORWAR.
Both conversational clients and servers have the following characteristics:

4 The logical connection between them remains active until terminated; any
number of messages can be transmitted across the connection.

4 They useTPSEND andTPRECV calls to send and receive data in conversations.

BEA TUXEDO COBOL Guide 13-1

13 conversational Clients and Services

Conversational Mode

In the conversational mode of communication, ahalf-duplex connection is established
between the client (or initiator) and aserver. Control of the connection can be passed
back and forth between the initiator and the subordinate server. At any point in the
conversation, the process that has control can send messages; the process that does not
have control can only receive. The connection remains up until an event occurs that
tearsit down. One event, TPEV- SENDONLY, asetting of TPEVENT | NTPSTATUS-REC,
notifies the receiving program that control of the connection has been passed to it and
it can successfully call TPSEND. Other events are notifications that something
significant has occurred; they have the result of either bringing the conversation to a
normal conclusion or precipitating a disorderly disconnection.

The Communications Handle

A communications handle, COMM HANDLE | N TPSVCDEF-REC, is returned when a
connection is established with TPCONNECT or TPSVCSTART. COMM HANDLE is used to
identify subsequent message transmissions with a particular conversation. A client or
conversational service can have more than one conversation active simultaneously.
Themaximum number isten. A client process can have up to ten connections open, all
outgoing. A service processcan have oneincoming connection and up to nine outgoing
connections.

Record Management

13-2

Dataispassed intyped recordsjust asin request/response mode. Therecord types must
be recognized by the application; they must be defined with ATMI routines as
described in Chapter 11, “Writing Client Programs.”

BEA TUXEDO COBOL Guide

Conversational Mode

Joining an Application

Conversationa clients must join the application viaacall to TPI NI TI ALI ZE before
attempting to establish a connection to a service. The procedure for joining the
application is described in Chapter 11, “Writing Client Programs.”

Establishing a Connection

TPCONNECT is the ATMI routine used to set up a conversation. The syntax is

01 TPSVCDEF- REC.
COPY TPSVCDEF.

01 TPTYPE- REC.
COPY TPTYPE.

01 DATA- REC.
COPY User Data.

01 TPSTATUS- REC.
COPY TPSTATUS.

CALL "TPCONNECT" USI NG TPSVCDEF- REC TPTYPE- REC DATA- REC TPSTATUS- REC.

SERVI CE- NAME | N TPSVCDEF-REC must contain the name of a service posted in the

bulletin board by a conversational serveiSERVI CE- NAME is not a reference to a
conversational service, the call fails arm STATUS | NTPSTATUS REC is set to the

error codeTPENCENT. If the calling program has already reached the maximum number

of active connections allowed, the call will fail with the error cogeLI M T.

Data can be sent at the same time the connection is being established through the

DATA-REC with the length of the data specified bsN | N TPTYPE-REC. The

REC- TYPE andSUB- TYPE of the data contained DATA-REC must be a type
recognized by the service being called. If no data is beingREMTYPE is SPACES,
andDATA-REC andLEN are ignored. If the record is self-defining (for example, a
VIEW record),LENis ignored and can be settoThe conversational service being

called receives thBATA-REC andLEN when the service is invoked. So far this should
sound a lot like what happens when a request/response service is invoked, because it

is. Differences begin to appear when we consider values for the settings.

BEA TUXEDO COBOL Guide 13-3

13 conversational Clients and Services

Values for the Settings: TPCONNECT

Aswith other ATMI routines, the behavior of the called program can be controlled by
settings of TPCONNECT. Eight of the settings are identical to their use in TPCALL and
are described in the section titled “Values for the Settings: TPCALL” in Chapter 11.

They are:
TPNOTRAN TPNOBLOCK TPNOTI ME TPSI GRSTRT
TPTRAN TPBLOCK TPTI MVE TPNOSI GRSTRT

New valid settings are:

TPSENDONLY
The calling program retains control of the connection and the called service
is permitted only to receive. The called service learns of this through the
TPSENDONLY setting of TPSENDRECV- FLAG | N TPSVCDEF-REC;
TPSENDONLY andTPRECVONLY are mutually exclusive; one or the other must
be specified.

TPRECVONLY
Control of the connection is being passed to the called service and the calle
service can only send. The called service learns of this through the
TPRECVONLY setting of TPSENDRECV- FLAG | N TPSVCDEF-REC;
TPSENDONLY andTPRECVONLY are mutually exclusive; one or the other must
be specified.

As mentioned above, on successful compleTiPOONNECT returns aCOVM HANDLE
I NTPSVCDEF-REC that is used in all subsequent calls of the conversation. Your call
to TPCONNECT should be coded something like that shown in Listing 13-1.

Listing 13-1 Establishing a Conver sational Connection

* Prepare the record to send
MOVE "HELLO' TO DATA- REC.
MOVE 5 TO LEN.

MOVE " STRING' TO REC TYPE

*

SET TPBLOCK TO TRUE.
SET TPNOTRAN TO TRUE.
SET TPNOTI ME TO TRUE.
SET TPSI GRSTRT TO TRUE.
SET TPSENDONLY TO TRUE.

13-4 BEA TUXEDO COBOL Guide

Conversational Mode

Sending

CALL " TPCONNECT" USI NG TPSVCDEF- REC
TPTYPE- REC
DATA- REC
TPSTATUS- REC.

I F NOT TPOK

error processing ...
ELSE
COMM HANDLE i s valid.

After the conversational connection is set up, communication between the client (or
initiator) and the service is accomplished with send/receive calls. The connection is
half-duplex. That means communication can be in only one direction at atime. The
process that has control of the connection can send; the process that does not have
control can receive. Initialy, control is decided by the originator and is specified by
the TPRECVONLY setting value of the TPCONNECT call; TPRECVONLY means control is
given to the called service. After TPCONNECT returns successfully, datais sent across
the open connection with the TPSEND routine.

The syntax of TPSENDis:

01 TPSVCDEF- REC.
COPY TPSVCDEF.

01 TPTYPE- REC.

COPY TPTYPE.

01 DATA- REC
COPY User

Dat a.

01 TPSTATUS- REC.
COPY TPSTATUS.

CALL "TPSEND' USI NG TPSVCDEF- REC TPTYPE- REC USER- DATA- REC TPSTATUS- REC.

COVMM HANDLE | N TPSVCDEF-REC isthe communications handle returned by
TPCONNECT or TPSVCSTART that identifies the connection over which to send the data.
DATA-REC and LEN | NTPTYPE-REC are, respectively, astructure that contains the
data and the length of the datato be sent. The same rules apply to DATA-REC and LEN
that have been outlined earlier: therecord must be of atyperecognized by the program
that receivesit and length can be 0 if the record is self-defining. Thereis no
requirement that data be sent.

BEA TUXEDO COBOL Guide 13-5

13 conversational Clients and Services

Values for the Settings: TPSEND

13-6

There are eight valid settings for TPSEND. The following six settings have the same
meanings described in “Values for the Settings: TPCALL” in Chapter 11.

TPNOBLOCK TPNOTI ME TPSI GRSTRT
TPBLOCK TPTI ME TPNOSI GRSTRT

The other settings are like ones that are us@@@NNECT, but have added
significance in this routine.

TPRECVONLY
Signals the intent of the calling program to issue no MeSEND calls at the
moment and to pass control of the connection over to the other side of the
connection. When the called program receives the data, it also receives a
TPEV- SENDONLY event. EitheMPRECVONLY or TPSENDONLY must be set.

TPSENDONLY
Signals the intent of the calling program to retain control of the connection.
Either TPRECVONLY or TPSENDONLY must be set.

It is not a requirement that control be passed each timePSEND call is made. The
process authorized to maRBSEND calls on the connection can make as many calls as
necessary before turning over control of the connection. In fact, the logic of the
conversational program may be such that one side of the conversation retains contr
of the connection throughout the life of the conversation.

Listing 13-2 showg PSEND used in a code fragment.

Listing 13-2 Sending Datain Conversational M ode

SET TPNOBLOCK TO TRUE.
SET TPNOTI ME TO TRUE.
SET TPSI GRSTRT TO TRUE.
SET TPRECVONLY TO TRUE.

CALL "TPSEND' USI NG TPSVCDEF- REC
TPTYPE- REC
DATA- REC
TPSTATUS- REC.
I F NOT TPOK
error processing .

BEA TUXEDO COBOL Guide

Conversational Mode

Receiving

Theroutine used to receive data sent over an open connectionisTPRECV. Thesyntax is:

01 TPSVCDEF- REC.
COPY TPSVCDEF.

01 TPTYPE- REC.
COPY TPTYPE.

01 DATA- REC
COPY User Data.

01 TPSTATUS- REC.
COPY TPSTATUS.

CALL "TPRECV" USI NG TPSVCDEF- REC TPTYPE- REC DATA- REC TPSTATUS- REC.

If the routine is being issued from a subordinate program (that is, not the originator of
the connection), COMV HANDLE, the communications handle, isin the
TPSVCDEF-REC structure for the program. If TPRECV is being issued by the
originator, COM HANDL E i sthe handl e returned by TPCONNECT. When thecall ismade,
DATA-REC specifies where the datais to be placed, LEN | N TPTYPE-REC contains
the maximum number of bytes and REC- TYPE | N TPTYPE-REC and SUB- TYPE | N
TPTYPE-REC have the data’s type and sub-typeN is not allowed to be on input.
If it is, the call fails and'P- STATUS is set tOTPEI NVAL.

Upon successful returMATA-REC contains the data received ar#N contains the
actual number of bytes moved. If the length of the message is greatB/XRArREC,
DATA-REC will receive as much of the message as possible am@BRUNCATE. If
LENis 0, no data was received aBdATA-REC remains unchanged.

If an event exists fotOMVt HANDLE, TPRECV returnsTP- STATUS set toTPEEVENT. The
event type is returned IPPEVENT. With eventsTPESVCSUCC, TPESVCFAI L, and
TPESENDONLY data can be received. A more complete discussion of events can be
found in “Events and Their Significance” later in this chapter.

BEA TUXEDO COBOL Guide 13-7

13 conversational Clients and Services

Values for the Settings: TPRECV

TPRECV has eight valid settings. Six are described in Chapter 11 (in the section called
“Values for the Settings: TPCALL"). They are:

TPNOCHANGE TPNOTI ME TPSI GRSTRT
TPCHANGE TPTI ME TPNGSI GRSTRT

The last two valid settings are:

TPNOBLOCK
The calling program waits for data to arrive to receive it. If data is available,
fine; TPRECV gets the data and returns. If data is not available, the call fails
andTP- STATUS is set toTPEBLOCK. TPNOBLOCK or TPBLOCK must be set.

TPBLOCK
The calling program blocks until data is available to recdi?ROBLOCK or
TPBLOCK must be set.

Listing 13-3 shows a fragment of code usFRRECV.

Listing 13-3 Receiving Data in Conversation

SET TPNOCHANGE TO TRUE.
SET TPBLOCK TO TRUE.
SET TPNOTI ME TO TRUE.
SET TPSI GRSTRT TO TRUE.

MOVE LENGTH OF DATA- REC TO LEN

CALL "TPRECV' USI NG TPSVCDEF- REC
TPTYPE- REC
DATA- REC
TPSTATUS- REC.
I F NOT TPCK
error processing .

13-8 BEA TUXEDO COBOL Guide

Conversational Mode

Ending a Conversation

There are three waysin which the connection can be taken down in an orderly fashion
and the conversation ended normally. Figure 13-1 and Figure 13-2 show two scenarios
that illustrate how conversations are ended when global transactions are not involved.
(For adescription of ending a conversation when atransaction isinvolved, see
Chapter 14, “Global Transactions in the BEA TUXEDO System.”)

Subordinate Calls TPRETURN

Figure 13-1 shows a simple “A-to-B” conversation. The connection is set up initially
with a call toTPCONNECT with theTPSENDONLY setting of therPSENDRECV- FLAG | N
TPSVCDEF-REC set. In due course, A turns control of the connection over to B by
calling TPSEND with a valid setting of PRECVONLY. This generatesSEPEV- SENDONLY
event. The next call by B ttPRECV returnsTP- STATUS | N TPSTATUS-REC set to
TPEEVENT andTPEVENT set toTPEV- SENDONLY. B knows from the'PEV- SENDONLY
event that it now controls the connection. Subsequently, BRREISTURN with

TP- RETURN- VAL | N TPSVCRET-REC set toTPSUCCESS. This generates a

TPEV- SVCSUCC event setting foTPEVENT | N TPSTATUS-REC for A. The call to
TPRETURN also brings down the connection. When A cal#geCv and learns of the
event, it recognizes that the conversation has been terminated. Data can be received on
this call toTPRECV even if the event iSPEV- SVCFAI L. In this illustration, A can be
either a client or a server; B can be only a server.

BEA TUXEDO COBOL Guide 13-9

13 conversational Clients and Services

Figure13-1 Simple SENDONLY Connection and Return

EVENTS

MOVE"SVCB" TO SERVICE-NAME.

SET TPSENDONLY TO TRUE.
CALL "TPCONNECT"

SET TPRECVONLY TO TRUE. TPEV-SENDONLY

CALL "TPSEND"

CALL "TPRECV" TPEV-SVCSUCC

B

CALL "TPSVCSTART"

* originally a RECVONLY
connection

CALL "TPRECV"

* changed to a SENDONLY
connection

SET TPSUCCESS TO TRUE.
COPY TPRETURN.

Hierarchy of Connections and TPRETURN

Figure 13-2 shows a hierarchy of connections. The scenario appliesto aserviceina
conversation, B, that hasinitiated a connection to a second service, C. In other words,

there are two active connections, A to B, and B to C. If B isin control of both
connections, a call to TPRETURN has the following effect: the call will fail, a

TPEV- SVCERR event setting for TPEVENT | N TPSTATUS REC will be posted on all
open connections and the connections will be closed in a disorderly manner. The
proper sequenceisfor B to call TPSENDwith the TPRECVONL Y setting on the connection
to C, turning control of the B-C connection over to C. C can then call TPRETURN with
TP- RETURN- VAL | N TPSVCRET-REC set to TPSUCCESS, TPFAI L, or TPEXI T, as
appropriate. B can then call TPRETURN, setting an event (either TPEV- SVCSUCC or

TPEV- SVCFAI L) for A. Both connections are terminated normally.

13-10 BEA TUXEDO COBOL Guide

Conversational Mode

Figure13-2 Connection Hierarchy

EVENTS EVENTS
A B C
Move SVCB
to SERVICE-NAME
Call "TPCONNECT" .
Call "TPSVCSTART"
Move SVCC
to SERVICE-NAME
Call "TPCONNECT" 5 Call "TPSVCSTART”
Call "TPRECV"
Call "TPRECV" “‘_ Copy TPRETUR
Call "TPRECV" Copy TPRETURN

Ending a Conversation: Summary

It isan error to end a conversation with conn
TPRETURN will fail in a disorderly manner.

ections still open. Either TPCOMM T or

To summarize the ways in which a conversation can be ended in an orderly manner:

4 If the connection originated in a server, the originator turns over control of the
connection to the called process. That process can then call TPRETURN. Thisis

illustrated in Figure 13-1, above.

4 A subordinate process can call TPRETURN. The subordinate must have control of

the connection and must make the cal to
Thisisillustrated in Figure 13-2, above.

TPRETURN before the originator does.

BEA TUXEDO COBOL Guide 13-11

13 conversational Clients and Services

Events and Their Significance

There are five events recognized in conversational communication. All five can be
posted for TPRECV; three can be posted for TPSEND.Table 13-1 summarizes these
events.

Table 13-1 Conversational Communication Events

Event Received by M eaning
TPEV- SENDONLY TPRECV Control of the connection has been passed; this process
can now call TPSEND
TPEV- DI SCONI MM TPSEND A disorderly disconnect; the connection has been torn
TPRECV down; no further communication is possible; posted by
TPRETURN TPDI SCONintheoriginator of the connection, and posted

to all open connections when TPRETURN is called while
connections to subordinate services remain open. All
connections are closed in adisorderly fashion. If a
transaction exists, it is aborted.

TPEV- SVCERR TPSEND Received by the originator of the connection, usually
indicates the subordinate program hasissued a TPRETURN
without having control of the connection

TPRECV Received by the originator of the connection, indicatesthe
subordinate program hasissued a TPRETURN with
TPSUCCESS or TPFAI L and avalid data record, but an
error occurred that prevented the call from completing

TPEV- SVCFAI L TPSEND Received by the originator of the connection, indicatesthe
subordinate program has issued a TPRETURN without
having control of the connection and TPRETURN was
called with TPFAI L or TPEXI T and no data

TPRECV Received by the originator of the connection, indicatesthe
subordinate service finished unsuccessfully (TPRETURN
was called with TPFAI L or TPEXI T)

TPEV- SVCSUCC TPRECV Received by the originator of the connection, indicatesthe
subordinate service finished successfully, that is, called
TPRETURN with TPSUCCESS

13-12 BEA TUXEDO COBOL Guide

Conversational Mode

Disorderly Disconnection

The name of the TPDI SCON routine suggests that this routine is the opposite of
TPCONNECT, but thisis not the case; TPDI SCON isreally the equivalent of pulling the
plug on the connection. It can be called only by the initiator of a conversation.

The syntax issimple:

01 TPSVCDEF- REC.
COPY TPSVCDEF.

01 TPSTATUS- REC.
COPY TPSTATUS.

CALL "TPDI SCON' USI NG TPSVCDEF- REC TPSTATUS- REC.

COMM HANDLE | N TPSVCDEF- RECis the communications handle returned by
TPCONNECT.

TPDI SCON generates a TPEV- DI SCONI MMevent setting of TPEVENT | N
TPSTATUS-REC for the service at the other end of the connection and the

COMM HANDLE isno longer valid. If atransactionisin progress, it is aborted. Data may
belost. If TPDI SCONis called from a service that was not the originator of the
connection identified by COVM HANDLE, it failswith TP- STATUS set to [TPEBADDESC] .

The preferred way of bringing down a connection is for the subordinate to call
TPRETURN.

Request/Response Calls and Conversations

There is nothing that prevents a conversational service from making request/response
callsif it needsto communicate with another service. In the example of connection
hierarchies shown earlier in Figure 13-2, the callsfrom B to C could have been made
with TPCALL or TPACALL instead of TPCONNECT. Remember, however, that
conversationa services are not permitted to make calls to TPFORWAR.

BEA TUXEDO COBOL Guide 13-13

13 conversational Clients and Services

Configuration Parameters

Some parametersin the configuration file apply only to conversationa processing. As
noted in the “Configuration File” section of Chapter 10, “The BEA TUXEDO System
Development Environment,” the BEA TUXEDO system administrator normally is
responsible for setting up the production version of the configuration file for the
application, but you may need to set some parameters in your own development
configuration.

You need to know about the following parameters:

MAXCONV
sets the maximum number of simultaneous conversations for a single
machine. The range is from 0 to 32,767. The default is 10 when
conversational servers are specified. The parameter can be specified in the
RESOURCES section for all machines in the configuration and can be
overridden in the/ACHI NES section for each machine. For an application
under development, the default value is probably adequate.

CONV={ Y| N}
is a parameter in th&ERVERS section. Connections can be made only to
servers that have this value settdf it is set toN or left unspecified, a
TPCONNECT call to a service of the server will fail.

M N & NMAX
are parameters in tIl8ERVERS section that specify the minimum and
maximum number of occurrences of the server to be starteabloyt (1). If
not specifiedM Ndefaults to 1 antax defaults tavi N. The same parameters
are available for use with request/response servers. However, conversation:
servers are automatically spawned as needed. So if ypunset 1 andvAx
= 10, for examplet mboot starts one initially. When aPCONNECT call is
made to a service offered by that server, the system starts up a second cop
As each copy is called a new one is spawned, up to a limit of ten.

MAXSERVERS
specifies the high-water mark for all servers of the configuration. This figure
needs to take into account ti#eX values for all conversational servers. You
probably won't need to worry about this for an application under
development, but it could be something that needs attention when the
application reaches the production stage. The parameter iSRESDERCES
section.

13-14 BEA TUXEDO COBOL Guide

Building Conversational Clients and Servers

Building Conversational Clients and Servers

The utilities described in Chapters 11 and 12, bui | dcl i ent and bui | dser ver , are
used for building conversationa clients and servers.

Conversational servers must be built only with conversational services; that is, mixing
of conversational services and request/response services in the same server is not
allowed. Conversational services and request/response services cannot use the same
name.

BEA TUXEDO COBOL Guide 13-15

13 conversational Clients and Services

13-16 BEA TUXEDO COBOL Guide

CHAPTER

14 Global Transactions in

the BEA TUXEDO
System

Introduction

The purpose of this chapter isto explain the concept of global transactions and how to
define and manage them in your application using the ATMI calls for transaction
management.

A global transactionisatransaction that allowswork involving more than one resource
manager and spanning morethan one physical siteto betreated asonelogical unit. The
TPBEG Nroutine alows you to explicitly start atransaction. The process that calls
TPBEG Nistheinitiator of the transaction and must complete it by calling TPCOvWM T
or TPABORT. Once aprocessis in transaction mode, any service requests made to
servers may be processed on behalf of the current transaction. The servicesthat are
called and join the transaction are the participants. They may affect the outcome of the
transaction by the value they return when they invokethe TPRETURNroutine. A process
can determineif it is currently working on behalf of atransaction by calling the
TPGETLEV routine. The rest of this chapter will explain these routines in detail.

BEA TUXEDO COBOL Guide 14-1

14 Giobal Transactions in the BEA TUXEDO S ystem

What Is a Global Transaction?

14-2

Before we get into how you can write applications that define and manage global
transactions, this section gives you someidea as to what is meant by atransaction that
is under the control of a transaction monitor.

The BEA TUXEDO system manages global transactions. As aready indicated, a
global transaction is one that can execute in more than one server, accessing data from
more than one resource manager. A global transaction may be composed of severa
local transactions, each accessing a single resource manager. A local transaction
accesses asingle database or file and is controlled by the resource manager responsible
for performing concurrency control and atomicity of updates at that distinct database.
A given loca transaction may be either successful or unsuccessful in completing its
access.

A global transaction is always treated as a specific sequence of operationsthat is
characterized by thefour properties of atomicity, consistency, isolation, and durability.
That is, itisalogical unit of work in which:

4 all portions either succeed or have no effect

4 operations are performed that correctly transform the resources from one
consistent state to another

4 intermediate results are not accessible to other transactions, athough other
processes in the same transaction may access the data

4 all effects of a completed sequence cannot be altered by any kind of failure

The BEA TUXEDO system is responsible for managing the status of the global
transaction and making the decision asto whether or not aglobal transaction should be
committed or rolled back. Global transactions are explicitly defined and controlled by
the ATMI routine calls that are described in Section 3chl of the BEA TUXEDO
Reference Manual.

BEA TUXEDO COBOL Guide

ATMI Transaction Primitives

ATMI Transaction Primitives

More specifically, the ATMI routines enabl e the application programmer to begin and
terminate transactions and to test if aclient or service routineiscurrently in a
transaction. The ATMI calls, TPBEG N, TPCOW T, and TPABORT are used to explicitly
begin and end a transaction. Theinitiator of atransaction uses TPBEG Nto mark its
beginning. After specifying the operations (service requests) to be applied to the
resource as part of thistransaction, the initiator can then call either TPCOWM T or
TPABORT to mark its completion. The calls to initiate and terminate a transaction
delineate the operations within the transaction. If the transaction is completed with a
call to TPCOWM T, the changes made as a result of the transaction are applied to the
resource and become permanent. TPABORT causes the resource to be in the consistent
state at the start of the transaction. That is, any changes made to the resource arerolled
back. Any of the participants of atransaction can causethe global transaction to fail by
communicating their local failure to the initiator through the TPRETURN routine. A
two-phase commit protocol is used by the BEA TUXEDO system to coordinate the
commitment, rollback, and recovery of global transactions. This protocol will be
further discussed later in the chapter.

When the TPGETLEV routineis invoked, it returns a setting in TPTRXLEV-REC that
indicatesif the caller iswithin atransaction (TP- I N- TRAN) or not
(TP- NOT- | N- TRAN) .

Explicitly Defining a Global Transaction

Global transactions can be defined in either client or server processes. To explicitly
define aglobal transaction, call the TPBEG N routine. Follow it by the program
statements that are to be in transaction mode. Terminate the statements by a call to
TPCOW T or TPABCORT.

The three routines have the following syntax:

*

01 TPTRXDEF- REC.
COPY TPTRXDEF.

01 TPSTATUS- REC.
COPY TPSTATUS.

BEA TUXEDO COBOL Guide 14-3

14 Giobal Transactions in the BEA TUXEDO S ystem

14-4

CALL "TPBEG N' USI NG TPTRXDEF- REC TPSTATUS- REC
CALL "TPCOW T" USI NG TPTRXDEF- REC TPSTATUS- REC.
CALL "TPABORT" USI NG TPTRXDEF- REC TPSTATUS- REC

A high-level view of defining atransaction is shownin Listing 14-1.

Listing 14-1 Delineating a Transaction

MOVE O TO T- QUT.
CALL "TPBEG N' USI NG
TPTRXDEF- REC
TPSTATUS- REC.
I'F NOT TPOK

error processing

program st at enent s

CALL "TPCOW T" USI NG
TPTRXDEF- REC
TPSTATUS- REC.
I'F NOT TPOK
error processing

The process that makes the call to TPBEG N, the initiator, must also be the one that
terminatesit by invoking either TPCOW T or TPABORT. Thereisno limit to the number
of segquential transactionsthat a process may define using these routines. Any process

may call TPBEG N except if
4 itisalready in transaction mode or

4 itiswaiting for any outstanding replies.

With reference to the second point, it is an error to make the sequence of calls shown

inListing 14-2.

BEA TUXEDO COBOL Guide

ATMI Transaction Primitives

Listing 14-2 Error - Starting a Transaction with an Outstanding Reply

MOVE " BUY" TO SERVI CE- NAMVE.

SET TPBLOCK TO TRUE.

SET TPNOTRAN TO TRUE.

SET TPREPLY TO TRUE.

SET TPNOTI ME TO TRUE.

SET TPSI GRSTRT TO TRUE.

CALL "TPACALL" USI NG
TPSVCDEF- REC
TPTYPE- REC
BUY- REC
TPSTATUS- REC.

I'F NOT TPOK

error processing

MOVE O TO T- QUT.
CALL "TPBEG N' USI NG
TPTRXDEF- REC
TPSTATUS- REC.
I'F NOT TPOK
error processing
* ERROR TP- STATUS is set to TPEPROTO

program st atenents

SET TPBLOCK TO TRUE.

SET TPNOTRAN TO TRUE.

SET TPCHANGE TO TRUE.

SET TPNOTI ME TO TRUE.

SET TPSI GRSTRT TO TRUE.

SET TPGETANY TO TRUE.

CALL "TPGETRPLY" USI NG
TPSVCDEF- REC
TPTYPE- REC
VK- AREA
TPSTATUS- REC.

I'F NOT TPOK

error processing

If TPBEG Nis called with either of these two conditions existing, the call will fail
because of an error in protocol and TP- STATUS will be set to TPEPROTO. If the process
isin transaction mode, the transaction is unaffected by the failure.

BEA TUXEDO COBOL Guide 14-5

14 Giobal Transactions in the BEA TUXEDO S ystem

Any service subroutines that are called within the transaction delimiters of TPBEG N

and TPCOVMM T/ TPABORT become part of the current transaction. However, if TPCALL

or TPACALL have explicitly set TPNOTRAN, the operations performed by the called

service do not become part of that transaction. Thisin effect means that the calling
process is not inviting the called service to be a participant in the current transaction.

As aresult, any services performed by the called process will not be affected by the
outcome of the current transaction. It should be noted here that a call made with
TPNOTRAN set that is directed to aservice in an XA-compliant server group may

produce unexpected results. See the discussion under “Implicitly Defining a Global
Transaction” later in this chapter.

Starting the Transaction

14-6

The transaction is started by a calif®BEG N. The value off- OUT indicates the least
amount of time in seconds that a transaction should be given before timingoast. If
specified for this parameter, the transaction is given the maximum number of seconc
allowed by the system before timing out (that is, the time-out value will equal the
maximum value for an unsigned long as defined by the system).

Note: The use of O or unrealistically large values forTheur parameter delays
system detection and reporting of errors. A time-out value is used to ensure
response to service requests within a reasonable time, and to terminate
transactions that have encountered problems such as network failures prior t
commit. For a transaction in which a human is waiting for a response, a small
value, often less than 30 seconds, is best. In a production system, the time-ol
value should be large enough to accommodate expected delays due to syste
load, and database contention; a small multiple of the expected average
response time is often an appropriate choice.

If a transaction times out, it is aborted. You can determine if a transaction has timed
out by testing the value aP- STATUS as illustrated in Listing 14-3. Note that if the
transaction timed out and it goes untested, a calPoavm T will still cause the
transaction to be aborted. In this cagegovM T fails and return¥PEABCRT in

TP- STATUS and the transaction is implicitly aborted.

The value assigned to theOUT parameter should be consistent with SBNUNI T
parameter set by the BEA TUXEDO system administrator in the configuration file.
The system parameter specifies the frequency with which timed-out transactions an
blocked calls are looked for. Its value represents an interval of time between periodi
scans to find old transactions and timed out blocking calls within service requests. Th
T- OUT parameter should be set to a value that is greater than the scanning unit. If th

BEA TUXEDO COBOL Guide

ATMI Transaction Primitives

time-out value were smaller, there would be some discrepancy between the time the
transaction timed out and its discovery. The default value for SCANUNI T is 10 seconds.
The value you giveto T- OUT may need to be coordinated with your system
administrator to be sure it makes sense with regard to the system parameters.

Listing 14-3 illustrates the starting of a transaction with the time-out value set to 30
seconds followed by acheck to see if atimeout occurred.

Listing 14-3 Testing for Transaction Time Out

MOVE 30 TO T- QUT.
CALL "TPBEGA N' USI NG TPTRXDEF- REC TPSTATUS- REC.
IF NOT TPOK
MOVE "Failed to BEA N a transacti on" TO LOG REC- TEXT.
MWVE 29 to LOG REC-LEN
CALL "USERLOG' USI NG
LOG REC TEXT
LOG REG LEN
TPSTATUS- REC
CALL "TPTERM' USI NG
TPSTATUS- REC
PERFORM A- 999- EXI T.

communi cation CALL statenents
| F TPETI ME
CALL "TPABORT" USI NG
TPTRXDEF- REC
TPSTATUS- REC
IF NOT TPOK
error processing
ELSE
CALL "TPCOW T" USI NG
TPTRXDEF- REC
TPSTATUS- REC

IF NOT TPOK
error processing

Note that atransaction is still subject to timing out even when a process calls on
another with the TPNOTRAN communication flag set. Thiswill be further discussed in
Chapter 15, “Error Management.”

BEA TUXEDO COBOL Guide 14-7

14 Giobal Transactions in the BEA TUXEDO S ystem

The example in Listing 14-4 illustrates how to define a transaction.

Listing 14-4 Defining a Transaction

DATA Di VI SI ON.
WORKI NG- STORAGE SECTI ON.
*
01 TPTYPE- REC.
COPY TPTYPE.
*
01 TPSTATUS- REC.
COPY TPSTATUS.
*
01 TPI NFDEF- REC.
COPY TPI NFDEF.
*
01 TPSVCDEF- REC.
COPY TPSVCDEF.
*
01 TPTRXDEF- REC.
COPY TPTRXDEF.

*

01 LOG REC PIC X(30) VALUE " ".
01 LOG REC-LEN PIC S9(9) COWP-5.
*
01 USR- DATA- REC PI C X(16).
*
01 AUDV- REC.
05 AUDV- BRANCH- | D PIC S9(9) COW-5.
05 AUDV- BALANCE PIC S9(9) COW-5.
05 AUDV- ERRVSG PI C X(60) .

*

PROCEDURE Di VI SI ON.

*

A-000.

* Get Conmmand Line Options set Variables (Q BRANCH
MOVE SPACES TO USRNAME.
MOVE SPACES TO CLTNAME
MOVE SPACES TO PASSWD.
MOVE SPACES TO GRPNAME.
CALL "TPI NI TI ALI ZE" USI NG TPI NFDEF- REC
USR- DATA- REC
TPSTATUS- REC.
I F NOT TPOK
MOVE "Failed to join application" TO LOG REC
MOVE 26 TO LOG REC- LEN
CALL "USERLOG' USI NG LOG REC
LOG REGC- LEN

14-8 BEA TUXEDO COBOL Guide

ATMI Transaction Primitives

TPSTATUS- REC
PERFORM A- 999- EXI T.
Start gl obal transaction
MOVE 30 TO T- QUT.
CALL "TPBEG N' USI NG TPTRXDEF- REC TPSTATUS- REC.
IF NOT TPOK
MOVE 29 to LOG REC- LEN
MOVE "Failed to begin a transaction" TO LOG REC
CALL "USERLOG' USI NG LOG REC
LOG REGC- LEN
TPSTATUS- REC
PERFORM DO TPTERM
Set up record
MOVE Q BRANCH TO AUDV- BRANCH- | D.
MOVE ZERCS TO AUDV- BALANCE.
MOVE SPACES TO AUDV- ERRMSG
Set up TPCALL records
MOVE " GETBALANCE' TO SERVI CE- NAMVE.
MOVE "VI EW TO REC- TYPE.
MOVE LENGTH OF AUDV- REC TO LEN.
SET TPBLOCK TO TRUE
SET TPTRAN | N TPSVCDEF- REC TO TRUE.
SET TPNOTI ME TO TRUE.
SET TPSI GRSTRT TO TRUE.
SET TPCHANGE TO TRUE.

CALL "TPCALL" USI NG TPSVCDEF- REC
TPTYPE- REC
AUDV- REC
TPTYPE- REC
AUDV- REC
TPSTATUS- REC.
IF NOT TPCK
MOVE 19 to LOG REC- LEN
MOVE " Service call failed" TO LOG REC
CALL "USERLOG' USI NG LOG REC
LOG REGC- LEN
TPSTATUS- REC
PERFORM DO TPABORT
PERFORM DO TPTERM
Conm t global transaction
CALL "TPCOW T" USI NG TPTRXDEF- REC
TPSTATUS- REC
IF NOT TPOK
MOVE 16 to LOG REC- LEN
MOVE "Failed to commt" TO LOG REC
CALL "USERLOG' USI NG LOG REC
LOG REGC- LEN
TPSTATUS- REC
PERFORM DO TPTERM
Show results only when transaction has conpl eted successfully

BEA TUXEDO COBOL Guide 14-9

14 Giobal Transactions in the BEA TUXEDO S ystem

DI SPLAY " BRANCH=" Q BRANCH.
DI SPLAY " BALANCE=" AUDV- BALANCE.
PERFORM DO TPTERM
* Abort the transaction
DO TPABORT.
CALL "TPABORT" USI NG TPTRXDEF- REC
TPSTATUS- REC
I F NOT TPOK
MOVE 26 to LOG REC LEN
MOVE "Failed to abort transaction" TO LOG REC
CALL "USERLOG' USI NG LOG REC
LOG REC- LEN
TPSTATUS- REC.
* Leave the application
DO TPTERM
CALL "TPTERM' USI NG TPSTATUS- REC.
I F NOT TPOK
MOVE 27 to LOG REC LEN
MOVE "Failed to | eave application" TO LOG REC
CALL "USERLOG' USI NG LOG REC
LOG REC- LEN
TPSTATUS- REC.
EXIT PROGRAM

*

A-999-EXIT.

*

EXIT PROGRAM

Terminating the Transaction

As already indicated, atransaction is terminated by a call to either TPCOW T or
TPABORT. When TPCOW T returns successfully, all changesto the resource asaresult
of the current transaction become permanent. TPABORT is called to indicate an
abnormal condition and explicitly aborts the transaction and invalidates the
communications handles of any outstanding replies. None of the changes that were
produced as a result of the transaction are applied to the resource. For TPCOW T to
succeed, the following two conditions must be true:

4 the calling process must be the same one that initiated the transaction with a call
to TPBEG N

4 the calling process must have no replies outstanding

If either condition is not true, the call fails and TP- STATUS is set to TPEPROTO
indicating an error in protocol. If a participant calls TPCOMM T or TPABORT, the
transaction is unaffected. If TPCOWM T is called by the initiator with outstanding
replies, the transaction is aborted and those reply descriptors become invalid.

14-10 BEA TUXEDO COBOL Guide

ATMI Transaction Primitives

TPCOMMIT Initiates the 2-phase Commit

When TPCOWM T is called, it initiates the two-phase commit protocol mentioned
earlier. This protocol, as the name suggests, has two parts. In the first, each
participating resource manager indicates a readiness to commit. In the second, the
initiator gives permission to commit. The process that calls TPCOWM T must be the
initiator of the transaction. Asthe initiator, this process starts the commit processing
in which the participants (the other server processes that took part in the transaction)
communicate their success or failure. This can be made known to the initiator by
TPRETURN through the TP- RETURN- VAL parameter that can be set to either TPSUCCESS
or TPFAI L. If TPFAI L has been returned, TPCOW T fails, TP- STATUS is set to
TPEABORT, and the transaction isimplicitly aborted. All the work that is performed by
every process that participated in that transaction is undone. More will be said about
the transaction role of TPRETURN and TPFORWAR in Chapter 15, “Error Management.”

Setting When TPCOMMIT Should Return

When more than one machine is involved in a transaction, the application can elect to
specify thatrPcOW T should return successfully when all participants have indicated
areadiness to commit; that is, when phase 1 of the two-phase commit has been logged
as complete by all participants. The alternative choice is toTRe@M T wait until

all participants have finished phase 2 of the two-phase commiCMIRET parameter

in the RESOURCES section ofuBBCONFI G can be set to eith&OGGED or COVPLETE to

control this characteristic. The routimBSCMI can be called witift PCMTDEF-REC

set to eithefrP- CMI- LOGGED or TP- CMT- COMPLETE to override the setting in the
configuration file.

The idea behind this option is that most of the time when all participants in a global
transaction have logged successful completion of phase 1, they will not fail to
complete phase 2. By settimg- COVM T- CONTROL to LOGGED you allow slightly

faster return of calls toPCOW T, but you run the slight risk that a participant

(probably on a remote node) may heuristically complete its part of the transaction in a
way that is not consistent with the commit decision. Whether it is prudent to accept the
risk depends to a large extent on the nature of your application. If your application
demands complete accuracy (for example, if you are running a financial application)
you would probably prefer to allow for the time required for all participants fully to
complete the two-phase commit process. If you are counting beans, you may prefer to
have the application run as fast as possible even knowing you may be a few beans off
over a period of time.

BEA TUXEDO COBOL Guide 14-11

14 Giobal Transactions in the BEA TUXEDO S ystem

Testing for Participant Errors

Listing 14-5 shows a client making a synchronous call to afictitious REPORT service
(line 24). It demonstrates testing for errors that can be returned on a communication
call that indicate participant failure (lines 30-42).

Listing 14-5 Testing for Participant Successor Failure

01 R,
02 CALL "TPI NI TI ALI ZE" USI NG TPI NFDEF- REC
03 USR- DATA- REC
04 TPSTATUS- REC.
05 IF NOT TPOK
06 error nessage,
07 EXIT PROGRAM .
08 MOVE 30 TO T- QUT.
09 CALL "TPBEG N' USI NG TPTRXDEF- REC TPSTATUS- REC.
10 I'F NOT TPOK
11 error nessage,
12 PERFORM DO TPTERM
13 * Set up record
14 MOVE " REPORT=accrcv DBNAME=accounts" TP- RECORD.
15 MOVE 27 TO LEN.
16 MOVE " REPORTS" TO SERVI CE- NAME.
17 MOVE " STRI NG' TO REC- TYPE.
18 SET TPBLOCK TO TRUE.
19 SET TPTRAN | N TPSVCDEF- REC TO TRUE.
20 SET TPNOTI ME TO TRUE.
21 SET TPSI GRSTRT TO TRUE.
22 SET TPCHANGE TO TRUE.
*

23

24 CALL "TPCALL" USI NG TPSVCDEF- REC
25 TPTYPE- REC
26 TP- RECORD

27 TPTYPE- REC
28 TP- RECORD

29 TPSTATUS- REC.
30 IF TPOK

31 PERFORM DO TPCOW T
32 PERFCRM DO TPTERM

33 * Check return status

34 | F TPESVCERR

35 DI SPLAY "REPORT service's TPRETURN encount ered probl ens”

36 ELSE | F TPESVCFAI L

37 DI SPLAY "REPORT service FAILED with return code=" APPL- RETURN- CODE
38 ELSE | F TPEOTYPE

14-12 BEA TUXEDO COBOL Guide

ATMI Transaction Primitives

39 DI SPLAY "REPORT service's reply is not of any known REC- TYPE"
40 *

41 PERFORM DO TPABORT

42 PERFORM DO TPTERM

43 * Conmit global transaction

44 DO TPCOWM T.

45 CALL "TPCOW T" USI NG TPTRXDEF- REC

46 TPSTATUS- REC
a7 IF NOT TPOK
48 error mnmessage

49 * Abort the transaction
50 DO- TPABORT.
51 CALL "TPABORT" USI NG TPTRXDEF- REC

52 TPSTATUS- REC
53 IF NOT TPOK
54 error nmessage

55 * Leave the application

56 DO TPTERM

57 CALL "TPTERM' USI NG TPSTATUS- REC.
58 I F NOT TPOK

59 error nmessage

60 EXI T PROGRAM

Committing a Transaction in Conversational Mode

Figure 14-1 shows a conversationa connection hierarchy that includes a global
transaction. The originator of a connection in transaction mode (process A that called
TPBEG N followed by TPCONNECT) can call TPCOW T after all services have called
TPRETURN. If a hierarchy of connections exists asit doesin Figure 14-1, each
subordinate service must call TPRETURN when it no longer has replies outstanding. A
TPEV- SVCSUCC or TPEV- SVCFAI L event setting for TPEVENT | N TPSTATUSREC is
sent back up the hierarchy to the process that began the transaction. If al subordinates
return successfully, the client (Process A) completes the transaction; otherwise the
transaction is aborted.

BEA TUXEDO COBOL Guide 14-13

14 Giobal Transactions in the BEA TUXEDO S ystem

Figure 14-1 Connection Hierarchy: Transaction Mode

C
(Cis RECVONLY in BC)

Call "TPEVCETART"

Call "TPRECV"

set TRRENDONLY
to TRUE

(Cis SENDONLY on CB)

Copy TPRETURN

A B
Call "TPBEGIN" (Bis RECVONLY on 4B)
{4 1s SENDONLY on AB)
AB Call "TPEVCETART"
Call "TPCONNECT" Set TPRENDONLY
to TRUE
(B is SENDONLY on BC)
Call "TECONNECT”
BC
Set TFRECWVONLY —
ta TRUE
(41s RECVONLY an BA)
(B is SENDONLY on AE)
CB
Call "TERECV" e |
Cdl "TPRECY"
B4 Copy TPRETURN
Call "TECOMMIT"
EVENTE EVENTS

14-14 BEA TUXEDO COBOL Guide

ATMI Transaction Primitives

Implicitly Defining a Global Transaction

Besidesusing the ATMI callsexplicitly to start and end atransaction, it is possible for

aglobal transaction to be started in a service routine. A service routine can be placed
intransaction modethrough the system parameter, AUTOTRAN, in the configuration file.

If AUTOTRANIS Set to Y, atransaction is automatically started in the service subroutine

when a request message is received from another process. Let's look at some variations
on this theme.

4 If a process is not in transaction mode and calls on the services of another
process, the system parameter is consulted for the called service, and if it is set
to start a transaction, one will be initiated with the call.

4 If a process is in transaction mode and calls on the services of another process, it
places the called process in transaction mode through the “rule of propagation”
and the system parameter is not consulted.

4 If a process is in transaction mode and calls on the services of another process,
but the caller SeIPTRAN- FLAG | N TPSVCDEF-REC to TPNOTRAN, the services
performed by the called process are not part of the current transaction
(suppresses propagation rule). The system parameter will be consulted and

4 if AUTOTRANEN (or not set), the called process is not placed in transaction
mode.

4 if AUTOTRANEY, the service is placed in transaction mode, but this is a new
transaction.

Because a service can automatically be placed in transaction mode, it is possible for
the call to be made with the communication settingRMOTRAN and the setting
member of the service information structure to re@mRMRAN when queried.

What a Service in an XA-Compliant Server Group Expects

A service that is part of an XA-compliant server group is generally written to perform
some operation via the group’s resource manager, which automatically opened the
associated database when the application was booted. In the normal case, the service
expects to do its work within a transaction. If a service like this is called with the
caller's communication setting @PNOTRAN, the results of the ensuing database
operation may be a little strange.

BEA TUXEDO COBOL Guide 14-15

14 Giobal Transactions in the BEA TUXEDO S ystem

The solution isto write your application so that servicesin groups associated with
XA-compliant resource managers are always called in transaction mode or are aways
defined in the configuration file with AUTOTRAN=Y. Another precaution isto test early
in the service code to see what the transaction level is.

Testing Whether a Transaction has Begun

In order correctly to interpret the error messagesthat can occur, it isimportant to know
if aprocessisin transaction mode or not. It is an error for a process that is aready in
transaction mode to make a call to TPBEG N. TPBEG N will fail and set TP- STATUS to
TPEPROTO0 indicate that the routine was invoked while the caller was already in a
transaction. However, the transaction will not be affected.

It might be hel pful to think of transaction mode as something that is propagated unless
specifically suppressed. When one processin transaction mode calls on the services of
another process, that process acquires the same “condition.”

Service subroutines can be written so that they test to see if they are already in
transaction mode before invokimf@BEG N. Testing transaction level can be done by
querying the settings of the service information structure that is passed to the servic
routine. If its value is set tOPTRAN, the service is in transaction mode. Also, this
information can be retrieved by calling theGETLEV routine. The syntax of this

routine is:

01 TPTRXLEV- REC
CCOPY TPTRXLEV.
01 TPSTATUS- REC
CCOPY TPSTATUS.
CALL "TPGETLEV" USI NG TPTRXLEV- REC TPSTATUS- REC

TPGETLEV returnsTP- NOT- | N- TRAN if the caller is not in a transaction and
TP- I N- TRAN if it is.

Listing 14-6 is an example of a service that shows testing for transaction level using
the TPGETLEV routine (line 3). If the process is not in transaction mode, it starts one
(line 5). If TPBEG N fails, a message is returned to the status line (line 9) and

APPL- CODE | N TPSVCRET-REC is set to a code that can be retrieved in

APPL- RETURN- CODE | NTPSTATUS-REC (line 11 and line 1).

If the AUTOTRAN configuration parameter discussed above is setyou avoid the
overhead of testing for transaction level and the need of explicitly callirPEES N
andTPCOWMM T/ TPABORT transaction routines. For example, in the fragment shown in
Listing 14-6, if the service is always to be called in transaction mode, the system

14-16 BEA TUXEDO COBOL Guide

ATMI Transaction Primitives

parameters AUTOTRAN and TRANTI ME can be set in the configuration file eliminating
the need to define the transaction or determine its existence within the programming
code (line 4).

Listing 14-6 Testing Transaction Level

. . . Application defined codes
001 77 BEG FAl LED PIC S9(9) VALUE 3.

002 PROCEDURE DI VI SI ON.

003 CALL "TPGETLEV' USI NG TPTRCLEV- REC
TPSTATUS- REC.
004 | F NOT TPOK
error processing EXI T PROGRAM

005 | F TP-NOT- 1 N TRAN

006 MOVE 30 TO T- QUT.

007 CALL "TPBEGQ N' USI NG
TPTRXDEF- REC
TPSTATUS- REC.

008 IF NOT TPOK

009 MOVE "Attenmpt to TPBEG N wi thin service failed"
TO USER- MESSAGE.

010 SET TPFAIL TO TRUE

011 MOVE BEG- FAI LED TO APPL- CCDE.

012 COPY TPRETURN REPLACI NG

DATA- REC BY USER- MESSAGE.

BEA TUXEDO COBOL Guide 14-17

14 Giobal Transactions in the BEA TUXEDO S ystem

14-18 BEA TUXEDO COBOL Guide

CHAPTER

15 Error Management

Introduction

The purpose of this chapter is to review the transaction and communication concepts
discussed in the preceding chapters with the focus on how to manage and interpret
error conditions correctly.

What are the means used by the BEA TUXEDO system to communicate to the
application that aroutine call has failed allowing the programmer to implement the
appropriate logic? What are the various scenarios for determining whether to commit
or abort atransaction? What errors are fatal to transactions? How does transaction
mode affect the concept of time-out and what are the implications? How does
transaction mode affect the roles of the routine calls and how they may be used? What
operations are part of one transaction and what are the determining factors? Does the
fate of one transaction ever determine the fate of another? What communication rules
must be followed between processes within and not within the same transaction? How
do global transaction calls affect the use of local transaction-defining routines (that is,
routines used to explicitly mark the beginning and end of alocal transaction) that may
be part of the Data Manipulation Language (DML) that is native to the resource
manager?

Many of these subjects have been touched upon already in earlier chapters. Now let’s
attempt to bring them together to explain the functionality of the ATMI, showing how
the various pieces fit together following consistent rules that create an environment
that combines message communication with transaction integrity.

BEA TUXEDO COBOL Guide 15-1

15 Error Management

Communicating Errors

Thefollowing discussion concerns how the BEA TUXEDO system communicates
errors to the application developer. It is couched in terms of categories of errors and
whether they are application or system-based. Hopefully, this discussion will giveyou
more insight asto what errors to expect, what effect they have on transactions, and
what kind of control you as a programmer have over them.

Throughout the guide, there has been a continual reference to the field TP- STATUS of
TPSTATUSREC. In an environment of concurrent processes, thisis akey way to
inform processes if their routine calls have succeeded or not. All the ATMI routines
set TP- STATUS to avalue that reveal sthe nature of theerror. In caseswheretheroutine
does not return to its caller, asin the case of TPRETURN or TPFORWAR, since they are
called to terminate a service routine, the only way to communicate success or failure
isthrough APPL- RETURN- CODE | N TPSTATUS-REC in the requester.

APPL- RETURN- CODE | N TPSTATUS-REC can also be used to communicate
user-defined conditions. Thevaluein APPL- RETURN- CODE is set from the value placed
in APPL- CODE | N TPSVCRET-REC during TPRETURN. This code is sent regardl ess of
the setting of TP- RETURN- VAL | N TPSVCRET-REC unless an error is encountered by
TPRETURN or atransaction time-out occurs.

Values of TP-STATUS

15-2

The setting returned by TP- STATUS | N TPSTATUS-REC represent categories of
errors. All the ATMI routines whose failure is reported by the setting returned by
TP- STATUS have the four basic categories of

4 protocol errors (TPEPROTO)

4 BEA TUXEDO system errors (TPESYSTEM
4 operating system errors (TPECS)
¢

errors from invalid members (TPEI NVAL)

BEA TUXEDO COBOL Guide

Communicating Errors

Protocol Errors

Protocol errors occur because an ATMI routine was called in an incorrect context.
Refer to the | NTRO(3cbl) reference page. This type of error usually happens for one of
the following reasons:

4 The ATMI call isbeing made in the wrong order.
4 The ATMI call is being made by the wrong process.

A transaction participant rather than the initiator calling TPCOWM T is a protocol error
because the participant isthe wrong processto be calling TPCOVWM T. Thistype of error
isonethat istotally correctable at the application level by enforcing the rules of order
and propriety associated with the ATMI calls (that is, by making calls in the correct
order by the appropriate processes). Since each ATMI call can return aprotocol error,
try to discover the exact error in the context of the semantics of the specific call and
ask two questions:

4 Isthiscall being made in the correct order?

4 Isthis call being made by the correct process?

BEA TUXEDO System Errors

When BEA TUXEDO system errors occur, messages explaining their exact nature are
written to the central event log. The last major section in this chapter explainsthislog
in detail. Since these are system errors rather than application errors, the systems
administrator may be needed to help correct them.

Operating System Errors

Operating system errorsindicate that a system call has failed. A numeric value
identifying the failed system call isreturned in the global variable, Uuni xerr .
Operating system errors are seldom application errors; systems administrators may
need to be called on to correct them.

BEA TUXEDO COBOL Guide 15-3

15 Error Management

Errors from Invalid Arguments

All of the ATMI routines that take arguments can fail if invalid arguments are passed
to them. In the case where the routine returns to the caller, the routine fails and sets
TPEI NVAL. In the case of TPRETURN or TPFORWAR if thistype of error is discovered
while processing the arguments, TPESVCERR is set for the routine waiting on the call;
that is either TPCALL or TPGETRPLY. Thisisan application error and is correctable by
the programmer.

Other Possible Error Categories

154

In addition to the four basic categoriesjust discussed, othersinclude

L4

* & & o o

errors from lack of entries in system tables or the data structure used to identify
record types (TPENCENT)

errors from incorrect permission to enter the application (TPEPERM)
resource manager errors (TPERVERR)

transaction related errors (TPETRAN)

errors from mismatching of typed records (TPEI TYPE and TPEOTYPE)

errors that apply only to asynchronous communication calls or conversational
calls because they involve communications handles (TPELI M T and
TPEBADDESC)

errors that can occur as aresult of the communication callsin general
(TPESVCFAI L, TPESVCERR, TPEBLOCK, and TPEGOTSI G)

transaction and blocking time-out errors (TPETI ME)

errors from calling TPCOVMM T when the transaction should have been explicitly
aborted (TPEABORT)

errors that signal that a heuristic decision was (or may have been) taken
(TPEHAZARD, TPEHEUR! STI C)

BEA TUXEDO COBOL Guide

Communicating Errors

No Entry Errors

The no entry type error, TPENCENT, has more than one meaning and depends on which
routine call is returning it. The routine that allows you to join the application,

TPI NI Tl ALI ZE, the routine that unlists an advertised service, TPUNADVERTI SE, and
the communication routines, TPCALL, TPACALL, TPCONNECT and TPGPRI O are the
routines that return this error. The following table lists the routines and specifies the
reason for the failure in each case.

Table 15-1 Error Routines

Function Explanation

TPI NI TI ALI ZE The calling process cannot join the application because there is no
space left in the bulletin board to make an entry for it. See your
systems administrator.

TPCALL The calling processis referencing a service, SERVI CE- NAME | N
TPSVCDEF-REC that is not known to the system since thereis no
entry for it in the bulletin board. On an application level, make sure
you have referenced the service correctly; otherwise, see your
systems administrator.

TPACALL Same as TPCALL.

TPCONNECT Cannot connect to SERVI CE- NAME | N TPSVCDEF-REC because
it does not exist or is not a conversational service

TPGPRI O The calling process is asking for a request priority when no request
has been made. The system has no current entry for arequest. This
isan application error.

TPUNADVERTI SE Cannot unadvertise the service name because it is not currently
advertised by the calling process

Permission Errors

The only ATMI routine that returnsthiserror isTPI NI TI ALI ZE. If the calling process
does not have the correct permissionsto enter the application, this call fails returning
TPEPERM Permissionsare set in the configuration file and as such the correction of this
error isoutside of your application. See the BEA TUXEDO administrator if it is
encountered.

BEA TUXEDO COBOL Guide 15-5

15 Error Management

Resource Manager Errors

These errors can occur with callsto TPOPEN and TPCLOSE and they return a setting of
TPERMERR. The meaning of the BEA TUXEDO system error code isintentionally
vaguein this case so as hot to hinder portability. The exact nature of the error must be
determined by interrogating the resource manager in its own specific manner.
Obviously when this error code is returned for TPOPEN, it indicates that the problem
has to do with afailure on the part of the resource manager to open correctly and for
TPCLCSE, to close correctly.

Transaction-Related Errors

When this type of error occurs, TPETRAN s returned in TP- STATUS. TPBEG N,
TPCANCEL and the TPCALL/TPACALL routines can return this error code. For TPBEG N,
it usually means some transient system error occurred when attempting to start the
transaction that may clear up with arepeated call.

TPCANCEL returns this error code when called from within a transaction.

In the case of the communication routines, it means a call was made in transaction
mode to a service that does not support transactions. What does this mean? Some
services belong to server groups that access a DBM S that can support transactions
whereas other services may be responsible for printing out aform and accessing a
printer that knows nothing about transactions. The configuration of services into
servers and server groups is an administrative task. In order to determine which
services support transactions ask your systems administrator. This is an application
error. For the communication call to such a service to succeed, the TPNOTRAN setting
for TPSVCDEF-REC must be set. In other words, you may not ask a service that does
not support transactions to be a participant in the transaction. If you desire the service,
it can be asked for only if the TPNOTRAN setting is explicitly set or if you access the
service outside of your transaction.

Typed Record Errors

15-6

Typed record errors are returned as aresult of sending processes requests or repliesin
typed records that are unfamiliar to them. TPEI TYPE is returned by TPCALL and
TPACALL when therequest datarecordissent to aservicethat doesnot know about this
type. What does this mean? Therecord types that processes know about are determined
both by the configuration fileand by the BEA TUXEDO librariesthat have been linked
into the process. These libraries define and initialize a data structure to the typed

BEA TUXEDO COBOL Guide

Communicating Errors

records that the process is to know about. The library can be tailored to each process.
Also, an application can supply its own copy of afile that defines record types. An
application can set up therecord type datastructure (referred to asarecord type switch)
on aper process basis. Refer tothet uxt ypes(5) and t ypesw(5) manual pages. Thisis
an administrative decision and is mentioned hereto clarify what is meant by a process
knowing about a typed record. Therule for sending requestsis that you must always
send arequest in atyped record that a service knows about; this information can be
obtained from your systems administrator.

TPEOTYPE isreturned by TPCALL and TPGETRPLY when the reply messageissentin a
record that isnot known or not allowed by the caller. What doesthis mean? Not known
has the same semantics as previously explained for the request record. Not allowed
means that although the process knows of the existence of this record type, the type
returned to it does not match the type of the record it allocated to receive thereply and
the caller isnot allowing for a change in record type. The caller indicates this
preference by setting TPNOCHANGE. | n this case, strong type checking is enforced,
returning TPEOTYPE when violated. The default is to have weak type checking
allowing a different record type to be returned as long as it is known to the caller.
Again, therulefor sending repliesis that the reply record must be known to the caller
and you must observe strong type checking if it has been indicated.

Communication Handle Errors

The errorsdiscussed in this section can occur only when making asynchronous calls or
conversational calls because they involve the misuse of the communication handle,
COMM HANDLE | N TPSVCDEF-REC. Asynchronous calls depend on communication
handlesto identify replieswith their corresponding requests. Conversational sendsand
receives depend on communication handles to identify the connection; the call that
initiates the connection depends on the availability of acommunicationshandle. There
are two things that the BEA TUXEDO system does not like you to do with
communication handles.

4 exceed your limit (TPELI M T)
4 reference one that has become invalid (TPEBADDESC)

The limit for outstanding communication handles (replies) has been defined for the
system as fifty and is a non-tunable parameter. The only way to changeit isto
recompile the system. The maximum number of handles allowed should be ample for
your application, but this limit is system-defined and cannot be redefined by your
application.

BEA TUXEDO COBOL Guide 15-7

15 Error Management

Thelimit for communications handles for simultaneous conversational connectionsis
defined in the configuration file and is more flexible than the limit for replies. The
MAXCONV parameter in the RESOURCES section of the configuration file can be changed
when the application is not running; it can be dynamically changed in the MACHI NES
section when the application is running (see t nconf i g(1)).

There are two general ways that a communications handle can become invalid. If a
communi cations handle has been used to retrieve a message (including a failed
message) and an attempt is made to reuse it, the system complains that you cannot
reuse the handle and returns TPEBADDESC.

Sometimes a condition occurs where you can no longer reference a communications
handle although it has never been used to retrieve a message. In this case we refer to
the handle as having become stale and any attempt to reference it causes TPEBADDESC
to be returned. One of the conditions that causes this to happen is calling TPABORT or
TPCOW T whenthere arestill repliesto beretrieved. The outstanding handlesfor these
replies are considered stale. Another condition that causes thisto happen istransaction
time-out. When it is reported on the call to TPGETRPLY, no message is retrieved with
that handle, and any further referencetoitisinvalid becauseit is considered stale. This
error can be corrected at the application level.

General Communication Call Errors

These errors can occur only when making communication calls but have nothing to do
with the nature of the call being synchronous or asynchronous.

The communication errors, TPESVCERR and TPESVCFAI L are the result of the reply

part of communication. They can be returned as aresult of acall to TPCALL or
TPGETRPLY and they are determined by the arguments passed to and the processing

done by TPRETURN. |f TPRETURN encounters an error in processing or handling

arguments, it will cause a failed message to be sent to the caller. This failed message

is detected by the receiver with TP- STATUS being set to TPESVCERR. The caller’s data

is not sent, and if the failure was OPGETRPLY, the communications handle becomes
invalid. If an error of this nature is not encounteredPRETURN, then the setting for
TP- RETURN- VAL determines the success or failure of the call. If the application logic
SetTPFAI L, TPESVCFAI L is returned and the data message is sent to the caller.

The error codeSPEBLOCK andTPEGOTSI G can happen on the request or the reply end
of message communication. As a result, it can be returned for all three of the
request/response communication catfREBLOCK is returned when a blocking

condition exists and the process sending a request either synchronously or
asynchronously has indicated that it does not want to wait on a blocking condition by

15-8 BEA TUXEDO COBOL Guide

Communicating Errors

setting TPNOBLOCK. A blocking condition can exist when sending a request if, for
example, al the queues of the desired service are full. When TPCALL indicates a no
blocking condition, it affects only the sending part of the communication. If the call
successfully sends the request, TPEBLOCK will not be returned regardl ess of any
blocking situation that may exist while the call waits for the reply. TPEBLOCK is
returned for TPGETRPLY when the call is made set to TPNOBLOCK and a blocking
condition is encountered while awaiting the reply; for example, if amessageis not
currently available.

TPEGOTSI Grealy does not flag an error condition but indicates when a signal
interrupts a BEA TUXEDO call. If the communication routines set TPSI GRSTRT, the
callswill not fail and this code will not be returned.

Conversational Errors

Once a conversational connection has been established, TPSEND and TPRECV can fall
with a TPEEVENT error. No datais sent by TPSEND. The event typeisreturned in the
TPEVENT member of TPSTATUS-REC. A course of action is dictated by the particular
event.

In conversational services TPSEND, TPRECV and TPDI SCON return TPEBADDESC when
an unknown handle is specified.

Time-out Errors

Time-out errors can occur for one of two reasons:

4+ the maximum length of time ablocking call may remain blocked until the caller
regains control has exceeded the amount of time it was allotted, that is, a
blocking time-out occurred

4 theduration of atransaction from start to finish has exceeded the amount of time
it was dllotted, that is, a transaction time-out occurred

Asaresult, thiserror can be returned on communication calls for either blocking or
transaction time-out and on TPCOWM T for transaction time-out only. In every case, if
aprocess isin transaction mode and TPETI ME is returned on afailed call, it means a
transaction time-out has occurred.

BEA TUXEDO COBOL Guide 15-9

15 Error Management

TPETI ME indicates a blocking time-out on a communication call if
4 thecall was not made in transaction mode and
¢ thecall was not made with TPNOBLOCK set

Y ou may recall that if TPNOBLOCK is set, a blocking time-out cannot occur because the
call returnsimmediately if a blocking condition exists.

Blocking time-out isavalue set by the administrator of the system and isdefined inthe
configuration file. Transaction time-out is defined by the application by the first
argument passed to TPBEG N.

Further implications concerning the concept of time-out will be discussed in the
section “Time-out” later in this chapter.

Errors Leading to Abort

Errors by a participant in a transaction can caws®wvMm T to fail returning the error
code of TPEABORT. The transaction is implicitly aborted because of the failure and
should be explicitly aborted. There are two ways that this error code can be returnec

4 If a transaction has been marked abort-only by the initiator or one of the
participants.

¢ |If the transaction timed out and its status is known to be aborted.

Heuristic Decision Errors

Based on howP- COMM T- CONTRCL is set,TPCOMM T may returnTPEHAZARD or

TPEHEURI STI C. If TP- COVM T- CONTROL is set toTP- CMI- LOGGED, the application

gets control before the second phase of the two-phase commit is done, so it may na
hear about a heuristic that occurs during the second phasectivM T- CONTROL is

set toTP- CMT- COMPLETE, the application finds out about heuristics, but may still get
backTPEHAZARD. SinceTPEHAZARD simply means that a participant failed during the
second phase, we cannot know if it completed the transaction successfully or
unsuccessfully.

15-10 BEA TUXEDO COBOL Guide

How to Deal with Errors

How to Deal with Errors

Listing 15-1 illustrates a general way of dealing with errors. The term ATMICALL(3)
is used in this example to generically represent an ATMI routine call.

Listing 15-1 How to Deal with Errors

CALL "TPI NI TI ALI ZE" USI NG TPI NFDEF- REC
USR- DATA- REC
TPSTATUS- REC.
I F NOT TPOK
error nessage, EXIT PROGRAM
CALL "TPBEG N' USI NG TPTRXDEF- REC
TPSTATUS- REC.
I F NOT TPOK
error nessage, EXIT PROGRAM
Make atm calls
Check return val ues
I F TPEI NVAL
DI SPLAY "Invalid argunents were given."
| F TPEPROTO
DI SPLAY "A call was nmmde in an inproper context."

I'nclude all error cases described in the | NTRQ(3chl)
reference page. Qther return codes are not possible, so
there shoul d be no need to test them

conti nue

The specific settings of TPSTATUS-REC give you more insight into the nature of the
problem and the level on which it can be corrected.

BEA TUXEDO COBOL Guide 15-11

15 Error Management

Fatal Transaction Errors

In managing transactions, it is important to understand which errors prove fatal to
transactions. When these errors are encountered, transactions should be explicitly
aborted on the application level by having theinitiator of the transaction call TPABORT.
Basically, there are three conditions that cause a transaction to fail. They are:

4 Theinitiator or a participant of the transaction caused it to be marked abort-only
for one of the following reasons:

4 TPRETURN encountered an error while processing its members (TPESVCERR).

4 The TP- RETURN- VAL argument of TPRETURN was Set to TPFAI L
(TPESVCFAI L).

4 Thetype or subtype of the reply record is not known or alowed by the caller
and, as aresult, success or failure cannot be determined (TPEOTYPE).

4 Thetransaction timed out (TPETI ME).

4 TPCOW T was called by a participant rather than by the originator of a
transaction (TPEPROTO).

If TPESVCERR, TPESVCFAI L, TPEOTYPE, or TPETI ME is returned for any of the
communication calls, the transaction should be explicitly aborted with acall to
TPABCRT. If there are still outstanding descriptors, there is no need to wait for them
before explicitly aborting the transaction. However, any attempt to access these
descriptors after the transaction has been terminated will return TPEBADDESC since
they are considered stale after the call.

Note that in the case of TPESVCERR, TPESVCFAI L, and TPEOTYPE, communication
calls are still allowed as long as the transaction has not timed out. With the return of
these errors, the transaction has been marked abort-only. In order for any further work
to have any lasting effect, the communi cation calls should be made with TPNOTRAN set.
In this way the work performed for the transaction that has been marked abort-only
will not be rolled back when the transaction is aborted.

When atransaction time-out occurs, communication can continue, but it must be
conducted with the following conditions enforced. The communication requests

4 cannot require replies
4 cannot block

4 and cannot be performed on behalf of the caller’s transaction

15-12 BEA TUXEDO COBOL Guide

How to Deal with Errors

This means asynchronous calls can be made with setting of TPNOREPLY, TPNOBLOCK
or TPNOTRAN.

Calling TPCOMM T from the wrong participant in a transaction represents the only
protocol error that isfatal to transactions. Thiserror can be corrected on the application
level during the development phase.

Calling TPCOMM T when there isinitiator/participant failure or transaction time-out
represents the implicit abort error discussed earlier in the section “Errors Leading to
Abort.” Because the commit failed, the transaction should be aborted.

Time-out

As already indicated there are two possible types of time-out that can occur in the BEA
TUXEDO system. The effect of time-out on communication calls is different

depending on the type that occurred. In addition, the following sections address the
following issues:

4 What happens if a transaction times out while committing?

4+ Do calls to services that are not part of your transaction use time on your
transaction clock?

Blocking vs. Transaction Time-out

We have defined blocking time-out as exceeding the amount of time a call can wait for
a blocking condition to clear up. Transaction time-out occurs when a transaction takes
longer than the amount of time defined for it by th@ur | N TPTRXDEF-REC

argument tarPBEG N. By default, if a process is not in transaction mode, blocking
time-outs are performed. When the communication call is SERNOTI ME, it applies

to blocking time-outs only. If a process is in transaction mode, blocking time-out and
the TPNOTI ME setting are not relevant. The process is sensitive to transaction time-out
only as it has been defined for it when the transaction was started. What are the
implications of the two different types of time-out with concern to communication
calls?

BEA TUXEDO COBOL Guide 15-13

15 Error Management

If aprocessis not in transaction mode and a blocking time-out occurs on an
asynchronous call, the communication call that blocked will fail, but the
communications handleis still valid and may be used on are-issued call. Further
communication in general is unaffected.

In the case of transaction time-out, the communications handle to an asynchronous
reply becomes stale and may no longer bereferenced. The only further communication
allowed is the one case described earlier of no reply, no blocking, and no transaction.

Effect on TPCOMMIT

What is the state of atransaction if time-out occurs after the call to TPCOWM T? It is
unknown; the transaction can have either succeeded or failed. If the transaction timed
out and the system knows that it was aborted, thisis communicated to you by the error
code TPEABORT returned in TP- STATUS. If the status of the transaction is unknown,
TPETI ME istheerror code. When the state of thetransactionisin doubt, you must query
the resource to seeif any of the changes that were part of that transaction have been
applied to it in order to discover whether the transaction committed or aborted.

Effect of the TPNOTRAN Flag

When a processis in transaction mode and makes a communication call with a setting

of TPNOTRAN, it prohibits the called service from becoming a participant of that

transaction and as such the service’s success or failure cannot influence the outcon
of that transaction. This will be discussed in greater detail in the next section, “Roles
of TPRETURN and TPFORWAR.” However, if the caller is expecting a reply, its
transaction clock is still ticking away while the services that generate the reply are
being performed. As a result, the transaction can time out while waiting for a reply tha
is due from a service that is not part of that transaction.

15-14 BEA TUXEDO COBOL Guide

How to Deal with Errors

Roles of TPRETURN and TPFORWAR

If aprocessiscalled in transaction mode, TPRETURN and TPFORWAR place the service’s
portion of the transaction in a state where it can be either committed or aborted when
the transaction is completed by its initiator. A service may be called several times on
behalf of the same transaction. It is not fully committed or aborted until the initiator of
the transaction calfSPCOVM T or TPABORT.

NeitherTPRETURN nor TPFORWAR should be called until all outstanding descriptors for
the communication calls made within the service have been retrieveRRHTURN is

called with outstanding descriptors witR- RETURN- VAL set toTPSUCCESS, this
constitutes a protocol error and is returnedRESVCERR to the process waiting on
TPGETRPLY. If the process is in transaction mode, it will cause the caller’s current
transaction to be marked internally as abort-only. Even if the initiator of the transaction
should callfPcowMm T, the transaction is aborted implicitly TPRETURN is called with
outstanding descriptors wifliP- RETURN- VAL set tOTPFAI L, TPESVCFAI L is returned

to the process waiting OFPGETRPLY. The effect on the transaction is the same.

It is always the case that wh&RRETURN is called in transaction mode, it can

determine the fate of that transaction either from the processing errors it encounters or
from the value the application placesTi® RETURN- VAL. Calling TPFORWAR can be

used to indicate success up to that point in processing the request. If no application
errors have been detect®eFORWAR is invoked, otherwis8PRETURN with TPFAI L. If
TPFORWARIs called improperly, it is considered a processing error daited message

is returned to the requester.

Many of the ideas presented here have already been discussed in earlier sections, but
they bear repeating. The following sections highlight various possible scenarios
involving the transaction role GPRETURN as well as the communication rules.

BEA TUXEDO COBOL Guide 15-15

15 Error Management

Service in Same Transaction as Caller

Thisisthe straightforward case of the caller in transaction mode that calls another
service to participate in the current transaction. What are the implications?

L4

TPRETURN and TPFORWAR, when called by the participating service, place that
service’s portion of the transaction in a state where it can be either aborted or
committed by the initiator

the success or failure of the called process affects the current transaction. If any
of the errors that prove fatal to transactions are encountered by the participant,
the current transaction is marked abort-only

the lasting effect of the work done by a successful participant is dependent on
the fate of the transaction, that is, if the transaction is aborted, the work of all
participants is undone

the TPNOREPLY flag cannot be used when calling another service to participate in
the current transaction

Service in Different Transaction with AUTOTRAN Set

If a communication call is made with tHeNOTRAN flag set and the called service is
configured so that a transaction will automatically get started when it is called, these
processes will both be in transaction mode but they will be in different transactions.
What are the implications?

L4

TPRETURN plays the initiator’s transaction role to terminate the transaction in the
service where the transaction was automatically started. Alternatively, if the
transaction is automatically started in a service that terminateTRAGRWAR,

the TPRETURN in the last service in the forward chain plays the initiator’s
transaction role to terminate the transaction. Refer to Figure 15-1.

Because it is in transaction mod®RETURN is also vulnerable to failure and is
subject to the failure of any participant in the transaction, as well as to
transaction time-out. As a resufPRETURN is more likely to send failed
message to the caller.

Any failed messages or application failures returned to the caller do not affect
the state of the caller’s transaction.

15-16 BEA TUXEDO COBOL Guide

How to Deal with Errors

4 Thecaller isvulnerable to its own transaction timing out as it waits for its reply.

4+ If noreply is expected, the caller’s transaction cannot be affected in any way by
the communication call.

Figure15-1 Transaction Roles of TPFORWAR and TPRETURN with
AUTOTRAN

Transaction & Transaction B

TPCALL TPFDRWAR
CLIENT SVC-B

’/ with TPHNOTEAN

AUTOTEAN
Begins B

TPEETUERN TFFORWAR

Tertninates B

BEA TUXEDO COBOL Guide 15-17

15 Error Management

Service Starts New Explicit Transaction

If a communication call is made with TPNOTRAN, and the called service is not
automatically placed in transaction mode by a configuration option, the service can
define as many transactions asit wantswith explicit callsto TPBEG N, TPCOMM T, and
TPABORT. Asaresult, thetransactionisalready completed beforethe call to TPRETURN.
What are the implications?

4 TPRETURN plays no transaction role; that is, the role of TPRETURN would be
exactly the same whether transactions were explicitly defined within the service
routine or not.

4 TPRETURN can send any value back in TP- RETURN- VAL regardless of the
outcome of the transaction.

4+ Typicdly the errorsreturned will be processing errors, record type errors, or
application failure and the normal rulesfor TPESVCFAI L, TPEI TYPE/ TPEOTYPE,
and TPESVCERR are followed.

4+ Any failed messages or application failures returned to the caller do not affect
the state of the caller’s transaction.

4 The caller is vulnerable to its own transaction timing out as it waits for its reply.

4+ If noreply is expected, the caller’s transaction cannot be affected in any way by
the communication call.

Transaction Rules

Certain rules are in effect when processes perform in transaction mode. Many of thel
have been touched upon already, but now, by way of summary, let's bring them
together and discuss them in one place.

15-18 BEA TUXEDO COBOL Guide

Transaction Rules

Communication Etiquette

The basic communication etiquette that must be observed whilein transaction mode is
asfollows:

L4

processes that are participants in the same transaction must require replies for
their requests

requests requiring no reply can be made only if TPACALL is set to TPNOTRAN or
TPNOREPLY

a service must retrieve all asynchronous replies before calling TPRETURN or
TPFORWAR (this applies regardless of transaction mode)

the initiator must retrieve all asynchronous replies before calling TPCOVWM T

the asynchronous replies that must be retrieved include those that are expected
from non-participants of the transaction, that is replies expected for requests
made with TPACALL suppressing the transaction but not the reply

if atransaction has not timed out but is marked abort-only, further
communication should be performed with TPNOTRAN set so that the work done as
aresult of the communication has lasting effect after the transaction isrolled
back

if atransaction has timed out,

4 the descriptor for the timed out call becomes stale and any further reference
to it will return TPEBADDESC

4 further callsto TPGETRPLY or TPRECV for any outstanding descriptors will
return the global state of transaction time-out by setting TP- STATUS to
TPETI ME

4 asynchronous calls can be made with TPACALL set to TPNOREPLY or
TPNOBLOCK or TPNOTRAN

once atransaction has been marked abort-only for reasons other than time-out, a
call to TPGETRPLY will return whatever represents the local state of the call, that
is, it can either return success or an error code that represents the local condition

once a descriptor is used with TPGETRPLY to retrieve areply or with TPSEND or
TPRECV to report an error condition, it becomesinvalid and any further reference
to it will return TPEBADDESC (this applies regardless of transaction mode)

once atransaction is aborted, all outstanding communications handles become
stale, and any further reference to them will return TPEBADDESC

BEA TUXEDO COBOL Guide 15-19

15 Error Management

BEA TUXEDO System-Supplied Subroutines

TPSVRINIT

TPSVRDONE

In both the standard subroutines, namely TPSVRI NI T and TPSVRDONE, transactions
may be defined and communication may be performed. What rules must they follow?

The BEA TUXEDO system server abstraction calls TPSVRI NI T during initialization.
Thisroutineis called after the process hasbecome a server but beforeit handles service
requests. If TPSVRI NI T performs any asynchronous communication, all replies must
be retrieved before returning, or the BEA TUXEDO system will ignore all pending
replies and the server exits. If TPSVRI NI T defines any transactions, they must be
completed with all asynchronous replies retrieved before returning, or the BEA
TUXEDO system will abort the transaction and ignore the outstanding replies. The
server exits gracefully.

The BEA TUXEDO system server abstraction calls TPSVRDONE after it has finished
processing service requests but beforeit exits. Its servicesare no longer advertised, but
it has not yet left the application. If TPSVRDONE initiates communication, it must
retrieve al outstanding replies before it returns, or the pending replieswill be ignored
by the BEA TUXEDO system and the server exits. If atransaction has been started
within this subroutine, it must be completed with all replies retrieved, or the BEA
TUXEDO system will abort the transaction and ignore the replies. The server exits.

Leaving the Application

TPTERMis used to remove aclient from an application. What transaction rules must it
obey? If the client isin transaction mode, the call fails with TPEPROTOreturned in
TP- STATUS, andtheclientis till part of the application and in transaction mode. When
the call is successful, no further communication or participation in transactionsis
allowed because the processis no longer part of the application.

15-20 BEA TUXEDO COBOL Guide

Global Transactions and Resource Managers

Global Transactions and Resource Managers

An interesting point arises when using the ATMI transaction calls to define

transactions. The BEA TUXEDO system makes an internal call to pass the global
transaction information to each resource manager participating in the transaction.

When TPCOW T or TPABORT iscalled, the BEA TUXEDO system makesinternal calls

to direct each resource manager to commit or abort the work they did on behalf of the
caller’'s global transaction. When you write service routines in a DTP environment you
need not and should not make resource manager-specific calls to start, commit, or abort
transactions. When a global transaction has been initiated either explicitly or
implicitly, you should not make explicit calls to the resource manager’s transaction
calls in your application code. Failure to follow this transaction rule will give
indeterminate results.

This represents a good occasion to use the transactiomR@ETLEV, to determine if
a process is already in a global transaction before calling the resource manager’s
transaction call.

Some resource managers offer specific options in their interface. (For example, a
resource manager might offer various transaction consistency levels or flags.) Some
resource manager providers offer programmers of distributed applications the
opportunity to negotiate these options using resource manager-specific calls; in other
resource managers these options are hard-coded in the version of the transaction
interface supplied by the resource manager provider. Documentation for the resource
managers you are using should be consulted for further information on this subject.

In the BEA TUXEDO System/SQL Resource Managers#te t r ansacti on

statement is used to negotiate specific options (consistency level and access mode) for
a transaction that has already been started by the BEA TUXEDO system. The method
of setting such options will vary for other resource managers.

BEA TUXEDO COBOL Guide 15-21

15 Error Management

The Central Event Log

The central event log isa UNIX System file to which you can send messages from
BEA TUXEDO clients and services. Writing to the central event log is accomplished
through the USERL OGroutine. The central event log simply provides arecord of events
considered worth recording. Any organized analysis of the central event log must be
provided by the application.

How the Log Is Named

One of the system parameters set up by the administrator determines the absolute
pathname prefix of the userlog error message file on each machine. The USERLOG
routine concatenates the month, day and year in the form nmddyy to the prefix to form
the full file name of the central event log. That meansthat if aprocess sends amessage
to the central event log on succeeding days, the message is written into different files.

What Log Entries Look Like

Each log entry consists of atag and message text.

4+ A tagismade up of the following:
4 timeof day (hhmmss)
4 name of the machine (the name that is returned by unane - n)

4 name and process-ID of the process calling USERLOG

4 Themessage text for BEA TUXEDO system messages is preceded by the
message catalog name, message number, and classification level.

For example, if the call
01 LOG REC PI C X(15) VALUE " UNKNOWN USER ".

01 LOGREC-LEN PIC S9(9) VALUES |S 13.
CALL "USERLGOG' USI NG LOG REC LOGREC- LEN TPSTATUS- REC.

15-22 BEA TUXEDO COBOL Guide

The Central Event Log

is made at 4:22:14pm by the securi t y program, on a machine where uname -n
returns the value mach1, the resulting log entry will look like this:

162214. machl! security. 23451: UNKNOWN USER
assuming 23451 isthe process ID for security.

If the above message was generated by the BEA TUXEDO system (as opposed to the
application), it might look like this:

162214. machl! security. 23451: COBAPI _CAT: 999: UNKNOWN USER
where COBAPI _CAT: 999: represents a message catal og name and message number.

If the message was sent to the central event log while the processisin transaction
mode, the user log entry will have additional componentsin thetag. These components
consist of theliteral gt ri d followed by threel ong hexadecimal integers. Theintegers
uniquely identify the global transaction and make up what is referred to as the global
transaction identifier. Thisidentifier isused mainly for administrative purposes, but it
does make an appearance in the tag that prefixes the messagesin the central event log.
If the foregoing message is written to the central event log in transaction mode, the
resulting log entry will look like this:

162214. machl! security. 23451: gtrid x2 x24e1b803 x239:
UNKNOAN USER

How to Write to the Event Log

Y ou can either have the error message you wish to write to the log in arecord and use
the record name as the argument to the call, or include the message as a literal within
guotation marks as the argument to the call, as is shown in the example bel ow.

01 TPSTATUS- REC.
COPY TPSTATUS.

01 LOGVEG Pl C X(50).

01 LOGVEG LEN PI C S9(9) COWP-5.

CALL "TPCOPEN' USI NG TPSTSTUS- REC.
I'F NOT TPOK
MOVE "TPSVRI NI T: Cannot Open Data Base" TO LOGVEG
MOVE 43 LOGVSG- LEN
CALL "USERLOG' USI NG LOGVBG
LOGVSG- LEN
TPSTATUS- REC.

In thisexample, the message is sent to the central event log if TPOPENis not successful.

BEA TUXEDO COBOL Guide 15-23

15 Error Management

15-24 BEA TUXEDO COBOL Guide

CHAPTER

16 Workstation COBOL
Language Binding
Feature

Introduction

Thischapter specifically coversthe use of the COBOL language binding feature of the
Workstation on the following workstation platforms:

4 UNIX
¢ MS-DOS
4 Windows
¢ 0S/2

The material in this chapter isintended to supplement the material presented in the
programming chapters of this guide and the BEA TUXEDO Workstation Guide.

BEA TUXEDO COBOL Guide 16-1

16 workstation COBOL Language Binding Feature

UNIX

Programming Consideration with UNIX Clients

This section covers items specific to writing and building BEA TUXEDO COBOL
client programs to run under UNIX.

Writing Client Programs

COBOL client programs for UNIX workstations are the same as COBOL client
programs withinthe BEA TUXEDO administrative domain. Y ou do have avail ableall
of the ATMI functions.

Building Client Programs

Workstation client programs are compiled and link edited with the bui | dcl i ent
command. If you are building a UNIX Workstation client on the native node, use the
- woption. This specifies that the client should be built using the workstation libraries.
On anative node, where both native and workstation libraries are present, the default
isto use the native libraries. The - w option ensures that the correct libraries for a
workstation client are used. On aworkstation, where only the workstation libraries are
present, it is not necessary to use the - w.

Listing 16-1 shows an example of thebui | dcl i ent command line on the native node.

Listing 16-1 Example of UNIX buildclient Command Lines

ALTCC=cobcc ALTCFLAGS="-1 /APPDI R/ i ncl ude"

COBCPY=$TUXDI R/ cobi ncl ude

COBOPT="-C ANS85 - C ALI G\=8 -C NO BMCOWP - C TRUNC=ANSI -C OSEXT=chl "
export COBOPT COBCPY ALTCC ALTCFLAGS

buildclient -C -w -0 enpclient -f nane.cbl -f "userlibl.a userlib2. a"

The - o option provides a name for your a. out file. Input files are specified with a - f
firstfiles option in Listing 16-1 to indicate that they are called in ahead of system
libraries. bui | dcl i ent needs TUXDI Rto locate system libraries. CCdefaultsto cc, but
can be set to another compiler as in the example.

16-2 BEA TUXEDO COBOL Guide

UNIX

Environment Variables

Workstation clients make use of several environment variables. The following are
checked by TPI NI TI ALI ZE when the workstation client attempts to join the
application:

WSENVFI LE
names a file containing environment variable settings to be set in the client’s
environment.

WENADDR
specifies the network address of the workstation listener process through
which the client gains access to the application. Use the value specified in the
application configuration file for the workstation listener to be called. If the
value begins with the charactexs it is interpreted as a string of hex-digits,
otherwise it is interpreted as ASCII characters.

WEDEVI CE
is the device name to be used to access the network and is not required by all
transport layer interfaces.

WETYPE
is used withinTPI NI TI ALI ZE when invoked by a workstation client to
negotiate encode/decode responsibilities with the native site. An unspecified
WSTYPE always causes encoding, even if it is also unspecified on the native
site. The only way to ensure that encode/decode is turned off is to explicitly
specify the sameBTYPE value for both sites.

WERPL YMAX
is used byrPI NI TI ALI ZE to set the maximum amount of core memory that
ATMI uses for buffering application replies before they are dumped to disk.
The system default limit for this is 32,000 bytes. The available memory on
your machine is the key factor in deciding whether you should use
WBRPLYMAX to set a lower limit. Writing replies to disk causes a substantial
reduction in performance.

Other environment variables may be needed by Workstation COBOL clients on a
UNIX workstation depending on what BEA TUXEDO features are being used.

Note: MicroFocus COBOL does not support shared objects on UNIX.BENSL. a
is delivered as a shared object and is requireelibydcl i ent when linking
a workstation client. As a result, Workstation for UNIX 3.2 is not supported.

BEA TUXEDO COBOL Guide 16-3

16 workstation COBOL Language Binding Feature

DOS

Programming Considerations with MS-DOS Clients

This section covers items specific to writing and building BEA TUXEDO COBOL
client programs to run under MS-DOS.

Writing Client Programs

COBOL client programs for MS-DOS workstations are the same as COBOL client
programswithin the BEA TUXEDO administrative domain. Y ou have available all of
the ATMI functions.

Building Client Programs

The COBOL sourcefilesthat call ATMI functions must be compiled with the COBOL
compiler using LITLINK option. Workstation client object files are link edited with
the bui | del t command. While the syntax of the command is straightforward, the
usage varies according to the compilation system used. Listing 16-2 shows a sample
bui | dcl t command line.

Listing 16-2 Example of M S-DOS buildclt Command Lines

COBCPY=C: \ TUXEDO\ COBI NC
COBDI R=C: \ COBQOL\ LBR; C: \ COBOL\ EXEDLL
PATH=C: \ C700\ BI N; C: \ COBQOL\ EXEDLL; . ..
TUXDI R=C: \ t uxedo
| NCLUDE=C: \ TUXEDQ\ | NCLUDE; C: \ NET\ TOOLKI T\ | NCLUDE; C: \ C700\ | NCLUDE
LI B=C: \ NET\ TOOLKI T\ LI B; C: \ C700\ LI B; C: \ TUXEDO\ LI B; C:\ COBOL\ LI B
buildclt -C -o EMP. EXE -f EMP+MFC7| NTF+C7DOSI F+C7DOSLB \
-f "/NCE/ NO / SE: 300/ CQ ST: 10000" -| "LLIBSOCK LLI BCE"

16-4 BEA TUXEDO COBOL Guide

DOS

bui | dcl t has the following options:

-0 nane
thefile name of the executablefile being created. Thedefaultiscl i ent . exe.

-f firstfiles
one or more object files to be included before the BEA TUXEDO libraries.
- can aso be used to pass options to the compiler or linker. If more than one
file name is specified, the names are separated by white space and thelist is
enclosed in quotation marks. The - f option can appear more than once.

-1 libfiles
specifies libraries to be included after the BEA TUXEDO libraries. If more
than onefile name is specified, the names are separated by white space and
thelist is enclosed in quotation marks. The - | option can appear more than
once.

After the client programs have been developed and tested they can be moved to the
MS-DOS workstations where they will be available to users.

Environment Variables

Workstation clients make use of several environment variables. The following are
checked by TPI NI TI ALI ZE when the client attempts to join the application:

WSENVFI LE
names a file containing environment variable settings to be set in the client’s
environment. All of the other environment variables needed by client
programs can be contained in this file.

WENADDR
specifies the network address of the workstation listener process through
which the client gains access to the application. Use the value specified in the
application configuration file for the workstation listener to be called. If the
value begins with the charactexs, it is interpreted as a string of hex-digits,
otherwise it is interpreted as ASCII characters.

WETYPE
is used withinTPI NI TI ALI ZE when invoked by a workstation client to
negotiate encode/decode responsibilities with the native site. An unspecified
WSTYPE always causes encoding, even if it is also unspecified on the native
site. The only way to ensure that encode/decode is turned off is to specify the
samewsTYPE value for both sites.

BEA TUXEDO COBOL Guide 16-5

16 workstation COBOL Language Binding Feature

WERPLYNMAX
isused by TPI NI TI ALI ZE to set the maximum amount of core memory that
ATMI uses for buffering application replies before they are dumped to disk.
The system default limit for thisis 32,000 bytes. The available memory on
your machine is the key factor in deciding whether you should use
WSRPLYMAX to set alower limit. Writing replies to disk causes a substantial
reduction in performance.

Other environment variables may be needed by Workstation COBOL clients on an
MS-DOS workstation depending on what BEA TUXEDO features are being used.

Windows

Programming Considerations with the Windows DLL

This section covers items specific to writing and building BEA TUXEDO system
client programsto run under Microsoft Windows. They are intended to supplement the
material presented in the programming chapters of this guide and the BEA TUXEDO
Workstation Guide.

Writing Client Programs

The ATMI calls used in Windows client programs are the same as those described in
the programming chapters of this guide.

Building Client Programs

The COBOL sourcefilesthat call ATMI functions must be compiled with the COBOL
compiler using LITLINK option. Workstation client object files are link edited with
the bui | dcl t command. While the syntax of the command is straightforward, the
usage varies according to the compilation system used. Listing 16-3 shows a sample
bui | dcl t command line.

16-6 BEA TUXEDO COBOL Guide

Windows

Listing 16-3 Example of Windows buildclt Command Lines

COBCPY=C: \ TUXEDO\ COBI NC
COBDI R=C: \ COBOL\ LBR; C: \ COBOL\ EXEDLL
PATH=C: \ COBOL\ EXEDLL; . ..
TUXDI R=C: \ t uxedo
LI B=C:\ NET\ TOOLKI T\ LI B; C: \ MSVC\ LI B; C: \ TUXEDQO\ LI B; C: \ COBOL\ LI B
buildclt -C\-W\-0 EMP.EXE \-f EMP \
-f "/ NOD NO / NOE/ CO¥ SE: 300" -d EMP. DEF -1 W.I BSOCK

For W ndows NT:

buildclt -C-W-0 EMP. EXE \
-f enpobj -d enp. def

bui | dcl t has the following options:

-W
specifies that the client should be built using Windows libraries.

-d deffile
specifies the module definition file used for linking a Windows program.

-0 nane
thefile name of the executablefile being created. Thedefaultiscl i ent . exe.

-f firstfiles
one or more object files to be included before the BEA TUXEDO libraries.

-f can aso be used to pass options to the compiler or linker. If more than one
file name is specified, the names are separated by white space and thelist is
enclosed in quotation marks. The - f option can appear more than once.

-1 libfiles
specifies libraries to be included after the BEA TUXEDO libraries. If more
than onefile name is specified, the names are separated by white space and
thelist is enclosed in quotation marks. The - | option can appear more than
once.

Listing 16-4 isthe module definition file used in the Windows bui | dcl t command
line.

BEA TUXEDO COBOL Guide 16-7

16 workstation COBOL Language Binding Feature

Listing 16-4 Example of a Windows M odule Definition File

NAVE EMP

DESCRI PTI ON "EMPLOYEE CLI ENT ATM"
EXETYPE W NDOWS

CODE PRELOAD MOVEABLE DI SCARDABLE
DATA PRELOAD FI XED MULTI PLE
HEAPSI ZE 15000

STACKSI ZE 15000

EXPORTS Wor dPr oc

Building ACCEPT/DISPLAY (lients

To build an executable client for an ACCEPT/DISPLAY application (like
CSIMPAPP, for example), use the procedure shown in Listing 16-5.

Listing 16-5 Building ACCEPT/DISPLAY clients

a) conpile the COBOL nodul e and create a file. obj
cobol file.cbl onf(obj) litlink;

b) use the follow ng |ink statenent
l'i nk FI LE+cblwi naf, ,,\
wcobat m +cobws+wt uxws+ \
| cobol +I cobol dw+cobw+cobf p87w+ \
w i bsock, FI LE. def /nod/ noe;

For Wndows NT the |link statenment is:

cbllink -oEWMP. exe EMP. Obj \
cobws.lib ncobatm .lib wtuxws32.lib \
libcmt.lib user32.1ib

Blocking Network Behavior

Refer to the BEA TUXEDO Workstation Guide.

Restoring the Environment

Refer to the BEA TUXEDO Workstation Guide.

16-8 BEA TUXEDO COBOL Guide

0S/2

0S/2

Programming Considerations with 0S/2 Clients

This section covers items specific to writing and building BEA TUXEDO System
COBOL client programs to run under OS/2. They are intended to supplement the
material presented in the programming chapters of this guide and the BEA TUXEDO
Workstation Guide.

Writing Presentation Manager Client Programs

The ATMI calls used in Presentation Manager client programs are the same as those
described in the programming chapters of this guide. They must, however, be
incorporated into Presentation Manager modules.

Blocking Network Behavior

Refer to the BEA TUXEDO Workstation Guide.

Building Client Programs

The COBOL sourcefilesthat call ATMI functions must be compiled with the COBOL
compiler using LITLINK options and must use the OPTLINK calling convention.
There is an example of the use of the OPTLINK calling conventionin

$TUXDI R/ apps/ CSI MPAPP/ ws/ 0s2/ csi npcl . cbl . Workstation client object files
are link edited with the bui | dcl't command. While the syntax of the command is
straightforward, the usage varies according to the compilation system used.

Listing 16-6 showsasamplebui | dcl t .

BEA TUXEDO COBOL Guide 16-9

16 workstation COBOL Language Binding Feature

Listing 16-6 Example of OS/2 Presentation M anager buildclt Command Lines

COBCPY=C: \ TUXEDO\ COBI NC

COBDI R=C: \ COBOL\ LBR; C: \ COBOL\ EXEDLL
PATH=C: \ COBCOL\ EXEDLL; . ..

TUXDI R=C: \ t uxedo

LI B=C:\ TCPI P\ LI B; C: \ | BMCPP\ LI B; C: \ TOOLKT2\ OS2LI B; C:\ TUXEDO\ LI B; C: \ COBOL\ LI B
buildclt -C-P -0 enp.exe -f enp.obj -d enp.def

bui | dcl t hasthe following options:

-P
specifies that the client should be built using OS/2 Presentation Manager
libraries.

-0 nane
the file name of the executablefile being created. The defaultiscl i ent . exe.

-d deffile

specifies the module definition file used for linking a Windows program.

-f firstfiles
one or more object filesto be included before the BEA TUXEDO libraries.

- f can also be used to pass optionsto the compiler or linker. If more than one
file name is specified, the names are separated by white space and the list is
enclosed in quotation marks. The - f option can appear more than once.

-l I'ibfiles
specifieslibrariesto be included after the BEA TUXEDO libraries. If more

than one file nameis specified, the names are separated by white space and
the list is enclosed in quotation marks. The -1 option can appear more than
once.

Listing 16-7 shows the module definition file used in the OS/2 Presentation Manager
bui | dcl t command line.

16-10 BEA TUXEDO COBOL Guide

0S/2

Listing 16-7 Exampleof an OS/2 Presentation Manager M odule Definition File

NAME EMP W NDOWAPI
PROTMODE

EXETYPE os2

HEAPSI ZE 15000

STACKSI ZE 15000
EXPCORTS EMPVNDPROC

Listing 16-8 shows a sample OS/2 character-mode bui | dcl t command line.

Listing 16-8 Exampleof OS/2 Character-Mode buildclt Command Lines

COBCPY=C: \ TUXEDO\ COBI NC

COBDI R=C: \ COBOL\ LBR; C: \ COBOL\ EXEDLL

PATH=C: \ COBOL\ EXEDLL; . ..

TUXDI R=C: \ t uxedo

LI B=C:\ TCPI P\ LI B; C: \ MSVC\ LI B; C: \ TUXEDQO LI B; C:\ COBOL\ LI B
buildclt -C -0 -0 enp.exe -f enp.obj

bui | dcl t has the following option:

-0
specifies that the client should be built using OS/2 character-mode libraries.

BEA TUXEDO COBOL Guide 16-11

16 workstation COBOL Language Binding Feature

16-12 BEA TUXEDO COBOL Guide

	Copyright
	1 Introduction and a Simple Application
	About This Chapter
	Some Preliminaries

	The CSIMPAPP Tutorial
	Step 1: Copy the CSIMPAPP Files
	Step 2: Examine the Client Program
	References

	Step 3: Compile the Client
	References

	Step 4: Examine the Server
	References

	Step 5: Build the Server
	References

	Step 6: Edit the Configuration File
	References

	Step 7: Load the Configuration File
	References

	Step 8: Boot the Application
	References

	Step 9: Enter a Request
	Step 10: Using tmadmin
	References

	Step 11: Shut Down the Application
	References

	Summary

	2 STOCKAPP Files
	Directory Structure for STOCKAPP
	Files
	Edit STKVAR to Set Environment Variables
	Additional PATH Component for SunOS

	3 STOCKAPP Client Programs
	A Look at STOCKAPP Client Programs
	System Client Programs
	Record Types

	BUY.cbl—A Request/response Client
	BUY.cbl Source Code

	Building Client Programs
	References

	4 STOCKAPP Servers
	A Look at STOCKAPP Servers
	Service Definitions
	Building Servers
	Using the buildserver Command in the STOCKAPP
	The BUYSELL Server
	Servers Built in STOCKAPP.mk

	References

	5 The STOCKAPP Makefile
	A Look at the STOCKAPP Makefile
	Editing STOCKAPP.mk
	TUXDIR
	APPDIR

	Running STOCKAPP.mk

	6 Edit STOCKAPP Configuration File
	Configuration File for STOCKAPP
	Notes to Listing�6-1
	References

	7 Create TUXCONFIG
	Loading the Configuration File
	References

	8 Boot the Application
	Executing tmboot
	The Userlog: ULOG
	References

	9 Run STOCKAPP
	Run the Application
	Running the audit Client Program
	Using tmadmin
	Shutting STOCKAPP Down
	References

	10 The BEA TUXEDO System Development Environment
	Introduction
	Client Processes
	Basic Client Operation
	Client Sending Repeated Service Requests

	Server Processes and Service Subroutines
	Basic Server Operation
	Servers as Requesters
	The ATMI Calls
	An Overview of X/Open's TX Interface
	Typed Records
	Using VIEW and FML Buffers
	Relationship Between VIEW Buffers and FML
	Corresponding Data Type Definitions
	Creating COBOL COPY Files from View Descriptions

	FML/VIEW Conversion
	Environment Variables
	Configuration File
	Making the Configuration Usable

	The Bulletin Board
	Starting and Stopping an Application

	11 Writing Client Programs
	Introduction
	Preliminaries
	Client Naming
	Unsolicited Notification
	Security Strategy
	The TPINFDEF-REC Record
	The USRNAME, CLTNAME and GRPNAME Members of TPINFDEF-REC
	The PASSWD Member of TPINFDEF-REC
	The Settings Members of TPINFDEF-REC
	The DATALEN Member of TPINFDEF-REC

	Joining and Leaving an Application
	Record Management
	Typed Records for Messages
	Record Types: STRING
	Record Types: CARRAY
	Record Types: FML and FML32
	Record Types: VIEW, X_COMMON and VIEW32
	Record Types: Summary

	ATMI Record Calls

	Service Calls
	Sending Synchronous Messages: TPCALL
	Values for the Settings: TPCALL
	Examples of the Use of Settings

	Sending Asynchronous Messages: TPACALL
	Values for the Settings: TPACALL
	Getting an Asynchronous Reply: TPGETRPLY
	Getting and Setting Priority
	Initiating a Conversational Connection
	Sending a Broadcast Message

	Handling Unsolicited Notification

	Compiling Client Programs
	The buildclient Command
	The buildclient -o Option
	The buildclient -f and -l Options
	The buildclient -r Option

	12 Writing Service Routines
	Writing Request/Response Services
	Application Service Template
	The TPSVCSTART Routine
	The TPSVCDEF-REC Structure
	The Settings of TPSVCDEF-REC
	The APPKEY Member of TPSVCDEF-REC
	The CLIENTID Member of TPSVCDEF-REC

	Accessing Data that Comes with the Request
	Checking The Priority of the Service Request

	The TPRETURN and TPFORWAR Routines
	Sending Replies
	TPRETURN Arguments: TP-RETURN-VAL IN TPSVCRET-REC
	TPRETURN Arguments: APPL-CODE IN TPSVCRET-REC
	TPRETURN Arguments: DATA-REC and LEN IN TPTYPE-REC
	TPRETURN Example
	Invalidating Handles: TPCANCEL

	Forwarding Requests
	TPFORWAR Arguments
	TPFORWAR Example

	Sending Unsolicited Messages
	TPBROADCAST Arguments
	TPBROADCAST Example
	TPNOTIFY Arguments

	Advertising, Unadvertising Services
	TPADVERTISE Arguments
	TPADVERTISE Example
	TPUNADVERTISE

	System-supplied Servers and Subroutines
	System-Supplied Server: AUTHSVR

	The BEA TUXEDO System Controlling Program
	BEA TUXEDO System-Supplied Subroutines
	TPSVRINIT
	Using TPSVRINIT to Receive Command Line Options
	Using TPSVRINIT to Open a Resource Manager
	TPSVRDONE

	Compiling Subroutines to Build Servers
	The buildserver Command
	The buildserver -o Option
	The buildserver -f and -l Options
	The buildserver -r Option
	The buildserver -s Option

	13 Conversational Clients and Services
	Introduction
	Conversational Mode
	The Communications Handle
	Record Management
	Joining an Application
	Establishing a Connection
	Values for the Settings: TPCONNECT
	Sending
	Values for the Settings: TPSEND
	Receiving
	Values for the Settings: TPRECV

	Ending a Conversation
	Subordinate Calls TPRETURN
	Hierarchy of Connections and TPRETURN

	Ending a Conversation: Summary
	Events and Their Significance
	Disorderly Disconnection
	Request/Response Calls and Conversations

	Configuration Parameters
	Building Conversational Clients and Servers

	14 Global Transactions in the BEA TUXEDO System
	Introduction
	What Is a Global Transaction?
	ATMI Transaction Primitives
	Explicitly Defining a Global Transaction
	Starting the Transaction
	Terminating the Transaction

	Implicitly Defining a Global Transaction
	What a Service in an XA-Compliant Server Group Expects

	15 Error Management
	Introduction
	Communicating Errors
	Values of TP-STATUS
	Protocol Errors
	BEA TUXEDO System Errors
	Operating System Errors
	Errors from Invalid Arguments
	Other Possible Error Categories
	No Entry Errors
	Permission Errors
	Resource Manager Errors
	Transaction-Related Errors
	Typed Record Errors
	Communication Handle Errors
	General Communication Call Errors
	Conversational Errors
	Time-out Errors

	Errors Leading to Abort
	Heuristic Decision Errors

	How to Deal with Errors
	Fatal Transaction Errors
	Time-out
	Blocking vs. Transaction Time-out
	Effect on TPCOMMIT
	Effect of the TPNOTRAN Flag
	Roles of TPRETURN and TPFORWAR
	Service in Same Transaction as Caller
	Service in Different Transaction with AUTOTRAN Set
	Service Starts New Explicit Transaction

	Transaction Rules
	Communication Etiquette
	BEA TUXEDO System-Supplied Subroutines
	TPSVRINIT
	TPSVRDONE

	Leaving the Application
	Global Transactions and Resource Managers
	The Central Event Log
	How the Log Is Named
	What Log Entries Look Like
	How to Write to the Event Log

	16 Workstation COBOL Language Binding Feature
	Introduction
	UNIX
	Programming Consideration with UNIX Clients
	Writing Client Programs
	Building Client Programs
	Environment Variables

	DOS
	Programming Considerations with MS-DOS Clients
	Writing Client Programs
	Building Client Programs
	Environment Variables

	Windows
	Programming Considerations with the Windows DLL
	Writing Client Programs
	Building Client Programs
	Building ACCEPT/DISPLAY Clients

	OS/2
	Programming Considerations with OS/2 Clients
	Writing Presentation Manager Client Programs
	Blocking Network Behavior
	Building Client Programs

