EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

BEA TUXEDO

FML Programmer’s Guide

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, TUXEDO, and WebLogic are registered trademarks of BEA Systems, Inc. BEA
Builder, BEA Connect, BEA Manager, BEA MessageQ, Jolt and M3 are trademarks of BEA Systems, Inc.
All other company names may be trademarks of the respective companies with which they are associated.

BEA TUXEDO FML Programmer’s Guide

Document Edition Date Software Version

6.5 February 1999 BEA TUXEDO Release 6.5

Contents

1. Introduction

About ThisGuIde and FIMLccooveiiiiieceeeee e 1-1
WHEE ISFIMIL? .ottt ettt ettt st e et e et et 1-1
How Does FML Fit into the BEA TUXEDO System?........cccceeeveevvennnne. 1-2
Who IS ThiS DOCUMENE FOI?......c..ooieiieeeceeeee et 1-2
L= = 0 TS S S TSRS 1-3
What Does This Document INCIUE?coveie e 1-3
What Other FML Documentation ISTher€?ccccovcveevececcecceceie e, 1-4
Concepts and DEfiNitioNScocooeeirireee s 1-5
BEA TUXEDO System Typed BUFferscocooereriiiene e 1-6

2. Overview

g0 o (171 o o OSSR 2-1
Dividing Records into Fields...........ccoueieiieie e 2-1
SEIUCIUIES ...ttt et et sttt et se e sn e 2-1

Fielded BUFfErS.. ..ot e 2-3
Implementing Fielded Buffers with FIML ..o 2-3
FIML FEAIUNES ... ettt et sttt e et ee st e e sr b e nree s 2-5
Fielded BUFfer SEPUCLUIE..........oiviee e 2-5
SUPPOIEd FIEld TYPES ..ottt et s enee e 2-6
TYPeINt INVIBEWS ... et e 2-7
TypedeC tiNVIEWS ... 2-7

Field Name to Identifier MappingsS........ccoerereneneie e 2-7
Run-Time: Field Table FileS.......cooiiee e 2-8
Compile-Time: Header FIles... ..o 2-8

Fielded BUFfer INAEXES.......cooi i 2-9
Multiply Occurring FIEldS..........ouioereiirieee e e 2-9

BEA TUXEDO FML Programmer’s Guide iii

iv

3.

4.

5.

Boolean Expressions and Fielded BUffers.........cocoeoeiinencinncccicnenns 2-10

VIEWS FEALUIES.......oieeiieiieeeccee e sttt s 2-10

Multiply Occurring Fields in VIEWS ... 2-12

Error HandliNg ... oot e 2-13
Setup

gL oo (1 (' o TSRS 31

DITECIONY SEIUCIUIE ...v ettt ettt se e e eeese e eenee s 31

Environment VariableS.ociriiriiicce e 32

Field Definition and Use

gL oo (1 (' o TSRS 4-1
DefiNiNG FIEIAS ... e s 4-1
Field Names and [dentifiers.........cooo oo 4-2
Field Tabhle FIlES. ..o e s 4-3
Field Table EXAMPIE.....coooiiie et e s 4-4
MaPPIiNG FUNCLIONS........ooiiee et e s 4-4
Loading the Field Tables.......ccccoocveicieececcceceee e 4-5

Field Header Files..... ..ot e e 4-5
Mapping Fieldsto C Structures and COBOL Records...........ccoovrereieneeninennne 4-7
VIBWETTES. ..ttt e s 4-8
VIEW DESCIIPLIONS ...ttt et e s 4-8
Flag OPLIONS. ...ttt e e e e e e 4-10

NUIT VEIUBS...... et e 4-12

VIBW COMPITEN ...ttt e et enen 4-13
VIEWC C HEAEY FilES...... i 4-14
COBOL COPY FlES....ccuiiiiiireeeeieie sttt st s issesesseesese e 4-15
VIEW DiSASSEMDIEF ...ttt e een 4-15

Field Manipulation Functions

INEFOAUCTION ...t e sr et st eraesreen e nneens 5-1
FML/FML32 and VIEW/VIEW32.......coo ettt st s st 5-2
FML PalramMELErSccuveeieie ettt sttt e saae e st ae e e e e s naeanneesnes 5-3
Field Identifier Mapping FUNCLIONS..........cooviiiie e s 5-5
L o T TSRS 5-5
FNAIME ... e e e e et et 5-5

BEA TUXEDO FML Programmer’s Guide

[0 1] 1TSS 5-6
Y I e e e eeee 5-7
L 1017 o o SRR 5-7
Buffer Allocation and Initialization............ccceeeeviiievie e 5-8
L= o =T DSOS 5-8
FNEEAEA ...t e e e st e e 5-8
T 0T O RSRROR 5-9
FAIOC .. ettt er e sreeraeane 5-10
L €= =TSR 5-11
FSIZEOT .ottt er e saesraeane 5-12
FUNUSEO ...ttt st sttt n e e e 5-12
FUSEA ...ttt st e et sr e r e e sraenae 5-13
FFEAIIOC. ...ttt r e e sraenne 5-13
Functionsfor Moving Fielded BUFfers..........ocooeiniiniiiee e 5-15
FIMOVE. ..o ettt e e sraee e 5-15
Y ettt et er e en e en e saesaeenne 5-16
Field Access and Modification FUNCLIONS..........cccooeveeiesicie e e 5-17
[0 [0 F USROS 5-17
=170 0o USSP 5-18
@ o USRNSSR 5-20
I e e e e e 5-21
o[SR 5-22
[0 L= I SRRSO 5-22
[0 (= 1 PSR RRSO 5-23
L T R 5-24
L T T | = R 5-25
L 1T [0 oSSR 5-26
0= SR 5-27
[0 1= ! o To PSR RSSRSRRRS 5-28
FOELIASE ...t eraenae 5-29
1 SRS URRRIN 5-30
11 0 OSSPSR 5-31
01 o 1 | RSP PRPRRIN 5-32
O] (=TSRSS PRSI 5-32
FVaSand Fvall ..o s 5-33

BEA TUXEDO FML Programmer’s Guide %

Buffer Update FUNCLIONSoouiiiieeee e 5-34

o0 [0 | SRRSO 5-34
FJOIN ettt ae sh et e r e b nre e 5-35
FOJOIN. ..ttt eb et e e et n e eneenea 5-35
oo SRS 5-36
FIOT O CPIY - vttt ettt e et sttt ae et ee e e e eneen b e e eneerennens 5-36
FUDTBEE . ..ttt et b eb e 5-37
VIEWS FUNCHONS.....covi ittt ettt sv et e sraeaae st sn e sn e nneeneans 5-37
FVTLOS. ..t st st st e e a et e e e 5-37
[(o) TSSO 5-39
[0 | SR 5-39
[T T SR 5-40
[0 o TR OSSPV P PP 5-40
[= T T SR 5-41
CONVErSION FUNCLIONS.......ccieiieciice ettt s st st st n e ere st saeene s 5-42
(O =o [0 USRS 5-42
(O o o o TSSOSO 5-43
(O o =L TSSO 5-44
(1o T = 1 oo TS 5-45
O 115 o SRRSO 5-46
(O 11510 (0o oSSR 5-47
CONVEtiNG StINGS....ccvvciie et et 5-48
FLY DOV .t e e e e e 5-49
CONVErSION RUIES........ooieiiie ettt s st s neeereen 5-50
INAEXING FUNCLIONS ..ottt st sae st v e s b e eaeens 5-53
FIAXUSED ...ttt st st sra e e sr e naeeneans 5-53
[T o L= SRS 5-53
[S 1 010 (= OSSR 5-54
FUNINABEX ...ttt sr ettt st st sraenaeeneans 5-54
EXAMPIE.. oot e e e 5-55
INPUL/OULPUL FUNCLIONS.......coiiieieeiececctee ettt et e e s sreenees 5-56
Fread and FWET.........ooue i 5-56
FCRKSUM ..ttt s st st neeereen 5-57
Fprint and FEPrintooo o 5-57
=7 o [SR 5-58

Vi BEA TUXEDO FML Programmer’s Guide

Boolean Expressions of Fielded BUFfers........c.ccooviiiniiiiie e 5-59

B 00l €8N EXPIrESSIONScoeiviieeieieenietie e ettt e e s e sneees 5-59
Field NameS @and TYPES. ...coeee ettt e e 5-61
SEINGS ettt ettt ettt et s re et e e re e te e e e s e e e e b e e e e ereesaesraereens 5-61
CONSLANES.......cvee ettt se e e b s sae s e e ene e 5-62

(O0 1917 £ o o PSS 5-62
Primary EXPreSSIONSccccurueriereeeireeieie e e e e see e ens 5-62
EXPreSSioN OPEratOrS.......cccoieuereerneeueeieriesienieseeseesteseesesseeseesessesessesees 5-63
Sample Boolean EXPreSSiONS.........coeieeerereeieierese e seesee e e 5-67

B 00l €8N FUNCLIONS......cc.iitiiiie et e e e s 5-67
Fboolco and FVDOOICO.coeiuiie i e 5-67
Fboolpr and FVDOOIPr......cc.coiiieieeeeeee e s 5-69
Fboolev and Ffloatev, Fvboolev and Fvfloatevccccceieincccnnne. 5-69
VIEW Conversion to and from Target Format.............ccocevieeieieeveneeneesieeen, 5-71
Fustot, Futtos and FCOOESELcooeueieireeieie e e s 5-71

6. Examples

VIBEWS EXAMPIES... .ottt et s 6-1
SAMPIE VIBWFITE ..o s 6-1
Sample Feld Table. .. .o e e 6-2
Sample Header File Produced by VIEWCccocoioiiieiinie e 6-2
Sample Header File Produced by mkfldhdr(1)cccooeveneiniinciciince 6-3
Sample COBOL COPY Filcccciviirieeiiireeiee sttt s 6-3
Sample VIEWS PrOgramcoco oo e 6-4
Example of VIEWS N bankappcoeoeererineienisee e 6-7

FML Examplesin bankappccceererniinineiee et 6-7

A. FML Error Messages

BEA TUXEDO FML Programmer’s Guide vii

Viii BEA TUXEDO FML Programmer’s Guide

CHAPTER

1 Introduction

About This Guide and FML

This chapter of the BEA TUXEDO FML Programmer’s Guide is intended to give you
an idea of what the guide is about, how the Field Manipulation Language fits into the
BEA TUXEDO system, and how you might get the most out of this document.

This guide assumes that you are familiar with the BEA TUXEDO system, and that you
have at least read tiB=A TUXEDO Application Devel opment Guide.

What Is FML?

FML is a set of C language functions for defining and manipulating storage structures
calledfi el ded buff ers, that contain attribute-value pairs in fields. The attribute is
the field's identifier, and the associated value represents the field's data content.

Fielded buffers provide an excellent structure for communicating parameterized data
between cooperating processes, by providing named access to a set of related fields.
Programs that need to communicate with other processes can use the FML software to
provide access to fields without concerning themselves with the structures that contain
them.

FML also provides a facility called VIEWS that allows you to map fielded buffers to
C structures or COBOL records (and the reverse as well). VIEWS lets you perform
lengthy manipulations of data in structures rather than in fielded buffers; applications
will run faster if data is transferred to structures for manipulation. VIEWS allows the
data independence of fielded buffers to be combined with the efficiency and simplicity
of classic record structures.

BEA TUXEDO FML Programmer’s Guide 1-1

1

Introduction

Theoriginal FML and VIEW interfaces allowed for 16-bit field identifiers, field
lengths, field occurrences, and record lengths. A newer FML32 and VIEW32 interface
allowsfor larger identifiers (32-hit), field lengths, field occurrences, and record
lengths. The interfaces are similar but the type definitions, header files, function
names, and command names are suffixed with “32".

How Does FML Fit into the BEA TUXEDO System?

Within the BEA TUXEDO system, FML functions are used to manipulate fielded
buffers.

Data entry programs written for the core portion of the BEA TUXEDO system use
FML functions; these programs use fielded buffers to forward user data entered at a
terminal to other processes. If you write programs that receive input in fielded buffers
from data entry programs, you will need to use FML functions.

Even if you elect to develop your own applications programs for handling user input
and output (and you do not use DES, the BEA TUXEDO-supplied data entry system)
or if programs are written to pass messages between processes, FML may still be tt
way you choose to deal with fielded buffers passed between these programs.

Who Is This Document For?

1-2

This is a guide for programmers who need to learn how to use FML functions. As a
programmer using FML, you might be working on BEA TUXEDO system data entry
programs, or other programs requiring inter-process communication of fielded data.
This guide also provides information for users of applications that make use of FML
with regard to setting up the environment correctly.

This guide gives detailed information about the features of FML and how the different
FML functions are used.

BEA TUXEDO FML Programmer’s Guide

About This Guide and FML

Prerequisites

To make full use of this guide, you should be familiar with the following:

4 The UNIX System environment—We assume, for example, that you do not need
a definition of a shell command or an environment variable, and that you
understand what is meant by a UNIX System file or running a process in the
background.

4 The C programming language—The functions and macros that make up FML
are intended to be incorporated in C language programs, so we assume you have
previously spent some time developing C programs. If you are using VIEWS in
COBOL (that is, COBOL records), little, if any, C language knowledge is
needed.

4 The BEA TUXEDO system—We assume, even if you have not yet worked on a
BEA TUXEDO application, that you at least have an understanding of what the
BEA TUXEDO system is intended to do, and that you have read about the
application development environment in B8A TUXEDO Programmer’s
Guideor the BEA TUXEDO COBOL Guide

What Does This Document Include?

4 Concepts and Definitions—Several definitions are extracted froiBEhe
TUXEDO Glossary. These explain ideas and terms that are used in the guide. In
some cases these things may sound familiar to you, but are used in a possibly
unfamiliar way. You will find these definitions toward the end of this chapter.

4 An Overview of FML—Chapter 2 offers an overview of the software. If you
have not used FML functions before, you may find it helpful to read through the
overview to get a general idea of how things work.

4 Setup and Customization—Chapter 3 gives you the information you need to set
up the environment variables, directory structure, and files that are required by
the BEA TUXEDO system in general, and FML in particular. This chapter also
shows you how to customize your installed FML software.

4+ Defining and Using FML Fielded Buffers and VIEWS—Chapter 4 outlines the
use of the FML and VIEWS software, and how to set up your C or COBOL
language programs to use the software.

BEA TUXEDO FML Programmer’s Guide 1-3

1 Introduction

4 FML Field Manipulation Functions—Chapter 5 deals with how to use the FML
and VIEWS functions to manipulate data.

4 Code Fragments—There are illustrations throughout Chapters 4 and 5 that show
you examples of the functions as they might be used in a C program. (COBOL
examples are given in tiBEA TUXEDO COBOL Guide.) Chapter 6 has a
VIEWS example and refers to other examples that are paan@hpp, the
sample application distributed with the BEA TUXEDO system.

What Other FML Documentation Is There?

In addition to this guide, documentation on FML function calls can be found in Section
3fml of theBEA TUXEDO Reference Manual. Three other pages in Section 5 of the
BEA TUXEDO Reference Manual are relevant to FMLconpi | at i on(5),

fiel d_tabl es(5), andvi ewfil e(5).

Table 1-1 Section 5 reference pages

Reference Page Description

conpi | ati on(5) describes how to compile application programs

field_tabl es(5) describes the structure of FML field tables

viewfil e(5) describes the structure of VIEW description files

1-4 BEA TUXEDO FML Programmer’s Guide

About This Guide and FML

Concepts and Definitions

Field Identifier
A fieldidentifier (f 1 di d) isatagfor anindividual dataiteminan FML record
or fielded buffer. The field identifier consists of the name of the field (a
number) and the type of the datain the field.

Fielded Buffer
A fielded buffer isadata structure in which each dataitem isaccompanied by
an identifying tag (afield identifier) that includes the type of the data and a
field number.

Field Types
Fieldsin FML and fielded buffers are typed. They can be any of the standard
Clanguagetypes: short, | ong, f1 oat, doubl e, and char . Two other types
are also supported: st ri ng (aseries of characters ending with a null
character) and car r ay (character arrays). The corresponding typesin
COBOL are COWP- 5, COWP- 1, COMP- 2 and PI C X. A C packed decimal type
is aso supported in VIEWS for integration with COBOL COWVP- 3.

VIEWS
VIEWS isapart of the Field Manipulation Language that allowsthe
exchange of data between fielded buffers and C structures or COBOL
records, by specifying mappings of fields to members of structures/records.
If extensive manipulations of fielded buffer information are to be done,
transferring the datato structureswill improve performance. Informationina
fielded buffer can be extracted from the fields in a buffer and placed in a
structure using VIEWS functions, manipulated, and the updated values
returned to the buffer, again using VIEWS functions. VIEWS can also be
used independently of FML, particularly in support of COBOL records.

BEA TUXEDO FML Programmer’s Guide 1-5

1 Introduction

BEA TUXEDO System Typed Buffers

Typed buffersisafeature of the BEA TUXEDO system that grew out of the FML idea
of afielded buffer. Two of the standard buffer types delivered with the BEA TUXEDO
system are FML typed buffers and VIEW typed buffers. An additional difference of
BEA TUXEDO VIEW buffersisthat they can be totally unrelated to an FML fielded
buffer. In this text the emphasisis very much on theideathat a VIEW is a structured
version of an FML record. In other texts, such asthe BEA TUXEDO Programmer’s
Guide you will find the emphasis shifts to thinking of VIEWSs as another of the
available BEA TUXEDO buffer types.

1-6 BEA TUXEDO FML Programmer’s Guide

CHAPTER

2

Overview

Introduction

This chapter begins by describing two waysin which theidea of fielded records or
fielded buffers can be handled: through structured records and through FML records.
It goes on to tell you about the features of the Field Manipulation Language, and to
describe the circumstances under which you might want to make use of them.

A comparison of FML records with traditional structured records clearly showsthe
advantages of using fielded buffers throughout an application.

Dividing Records into Fields

Structures

Except under unusual conditions where a data record is a complete and indivisible
entity, you need to be able to break records into fields to be able to use or change the
information the record contains. In the BEA TUXEDO system there are two ways to
divide recordsinto fields:

4 through C language data structures or COBOL records
4 through fielded buffers

One common way of subdividing records iswith a structure that divides a contiguous
area of storage into fields. The fields are given names for identification; the kind of
data carried in the field is shown by the data type declaration.

BEA TUXEDO FML Programmer’s Guide 2-1

2 Overview

For example, if adataitem in aC language program isto contain information about an
employee's identification number, name, address, and sex, it could be done with a
structure like the following:

struct S {
| ong enpi d;
char nane[20];
char addr[40];
char sex;

b
wherethe datatype of the field named enpi d isdeclared to be along integer, name and

addr are declared to be character arrays of 20 and 40 characters respectively, and sex
is declared to be a single character, presumably with arange of mor f .

If, inyour C program, the variable p pointsto astructure of type struct S, thereferences
p- >enpi d, p- >nane, p- >addr and p- >sex can be used to address the fields.

The COBOL COPY file for the same data structure would be as follows (the
application would supply the 01 line).

05 EMPID PI C S9(9) USAGE |'S COMP-5.
05 NAME Pl C X(20).
05 ADDR Pl C X(40).
05 SEX PI C X(01).
05 FILLER PI C X(03).

If, in your COBOL program, the 01 line is named MYREC, the references EMPI D | N
MYREC, NAVE | N MYREC, ADDR | N MYREC and SEX | N MYREC can be used to access
thefields.

Possible Disadvantages of Structures

While this way of representing dataiswidely used and often appropriate, it hastwo
major potential disadvantages:

4 Any timethe data structure is changed, all programs using the structure have to
be recompil ed.

4 Thesize of the structure and the offsets of the component fields are all fixed;
this most often results in wasted space, since not all fieldswill always contain a
value and since fields tend to be sized to hold the largest likely entry.

2-2 BEA TUXEDO FML Programmer’s Guide

Introduction

Fielded Buffers

Fielded buffers provide another way of subdividing arecord into fields.

A fielded buffer is a data structure that provides associative access to the fields of a
record; that is, the name of afield is associated with an identifier that includes the
storage location as well as the datatype of the field.

The main advantage of the fielded buffer is dataindependence. Fields can be added to
the buffer, deleted from it, or changed in length without forcing programs that
reference the fields to be recompiled. To achieve this data independence fields are
referenced by an identifier rather than the fixed offset prescribed by record structures,
and all accessto fields is through function calls.

Fielded buffers can be used throughout the BEA TUXEDO system as the standard
method of representing data sent between cooperating processes.

Implementing Fielded Buffers with FML

Fielded buffers are created, updated, accessed, input, and output via the Field
Manipulation Language (FML). FML hastwo main objectives:

4 To provide a convenient and standard discipline for creating and manipulating
fielded buffers

4 To provide data independence to programs making use of fielded buffers

FML isimplemented as alibrary of functions and macros that can be called from C
programs. There are three major groups of FML functions:

4+ A setof functionsfor creating, updating, accessing, and manipulating fielded
buffers

4 A setof functionsfor converting data from one type to another upon input to (or
output from) afielded buffer structure

4+ A set of functionsfor transferring data between fielded buffers and C structures
or COBOL records

BEA TUXEDO FML Programmer’s Guide 2-3

2 Overview

Thelast set of functionslisted above constitutesthe FML VIEWS software. VIEWSis
aset of functionsthat exchange data between FML fielded buffersand structuresin C
or COBOL language application programs. When a program receives afielded buffer
from another process, the program has the choice of:

4 Operating on the buffer data directly in the buffer using FML function calls (this
isnot available in COBOL)

4 Transferring the datafrom the fielded buffer to a structure using VIEWS
functions, and then operating on the data in the structure using normal C or
COBOL statements

If you need to perform lengthy manipulations on buffer data, the performance of your
program can be improved by transferring fielded buffer data to structures or records,
and operating on the data using normal C or COBOL statements. Then you can put the
data back into afielded buffer (again using VIEWS functions), and send the buffer off
to another process.

To use VIEWS, your program must know the format of incoming fielded buffer data.
Thisis done through a set of view descriptions kept in a cache on your system.

A view description is created and stored in a source viewfile. The view description
maps fields in fielded buffers to membersin C structures or COBOL records. The
source view descriptions are compiled, and can then be used to map data transferred
between fielded buffers and C structures or COBOL records in a program.

By keeping view descriptions cached in a centra file, you can increase the data
independence of your programs; you only need to change the view description(s) and
recompile them to effect changes in data format throughout an application that uses
VIEWS.

2-4 BEA TUXEDO FML Programmer’s Guide

FML Features

FML Features

This section describes the features of FML and VIEWS, and gives you some
preliminary information about how you can use them in application programs.

Fielded Buffer Structure

A fielded buffer, as mentioned earlier, is adata structure that provides associative
access to the fields of arecord.

Each field in an FML fielded buffer islabeled with an integer that combines
information about the data type of the accompanying field with a unique identifying
number. The label is called the field identifier, or f | di d. For variable-length items,
f1di d isfollowed by alength indicator. The buffer can be represented as a sequence
of fI di d/data pairs, with f | di d/length/datatriples for variable-length items.

Figure 2-1 illustrates this.

Figure2-1 A fielded buffer

Hdid data | Adid | len | data | fldid data

In the header filethat is#i ncl ude’'d whenever FML functions are used (f ni . h or

fm 32. h), field identifiers are t ypedef 'd as FLDI D (or FLDI D32 for FML32), field
value lengths as FLDLEN (FLDLEN32 for FML32), and field occurrence numbers as
FLDOCC (FLDOCC32 for FML32).

BEA TUXEDO FML Programmer’s Guide 2-5

2 Overview

Supported Field Types

The supported field typesareshort, | ong, float, doubl e, character, string,
and car r ay (character array). These types are #def i ne’dinfn . h (or f ml 32. h) as
shown in Listing 2-1.

Listing2-1 FML field typesasdefined in fml.h and fml32.h

/* short int */

/* long int */

/* character */

/* single-precision float */
/* doubl e-precision float */
/* string - null term nated */
/* character array */

#def i ne FLD_SHORT
#def i ne FLD _LONG
#def i ne FLD CHAR
#def i ne FLD _FLOAT
#def i ne FLD_DOUBLE
#def i ne FLD_STRI NG
#def i ne FLD_CARRAY

OO~ WNEO

FLD_STRI NGand FLD_CARRAY are both arrays, but differ in the following way:

4 A FLD_STRINGisavariable-length array of non-NULL characters terminated by
aNULL.

4 A FLD _CARRAY isavariable-length array of bytes, any of which may be NULL.

Functions that add or change a field have a FLDLEN argument that must be filled in
when you are dealing with FLD_CARRAY fields. The size of a string or carray islimited
to 65,535 charactersin FML, and 2 billion bytes for FML32.

It is not agood ideato store unsigned datatypesin fielded buffers. Y ou should either
convert al unsigned short data to long or cast the data into the proper unsigned data
type whenever you retrieve data from fielded buffers (using the FML conversion
functions).

Most FML functions do not perform type checking; they expect that the value you
update or retrieve from afielded buffer matchesits nativetype. For example, if abuffer
field is defined to be aFLD_LONG, you should always pass the address of along value.
The FML conversion functions convert data from a user specified type to the native
field type (and from the field type to a user specified type) in addition to placing the
datain (or retrieving the data from) the fielded buffer.

2-6 BEA TUXEDO FML Programmer’s Guide

FML Features

Type int in VIEWS

In addition to the data types supported by most FML functions, VIEWS indirectly
supportstypei nt in source view descriptions. When the view description iscompiled,
the view compiler automatically convertsany i nt types to either short or long types,
depending on your machine. See “VIEWS Features” later in this chapter

Type dec_t in VIEWS

VIEWS also supports thiec_t packed decimal type in source view descriptions. This
data type is useful for transferring VIEW structures to COBOL programs. Ina C
program using thedec_t type, the field must be initialized and accessed using the
functions described in theeci mal (3c) reference page. Within the COBOL program,
the field can be accessed directly using a packed decood{3) definition. Since
FML does not supportéec_t field, this field is automatically converted to the data
type of the corresponding FML field in the fielded buffer (for example, a string field)
when converting from a VIEW to FML.

Field Name to Identifier Mappings

In the BEA TUXEDO system, fields are usually referred to by their field identifier
(f1 di d), an integer. (See “Field Names and Identifiers” in Chapter 4 for a detailed
description of field identifiers.) This allows you to reference fields in a program
without using the field name, which may change.

There are two ways in which identifiers are assigned (mapped) to field names:
4 Through field table files (which are ordinary UNIX files)
4 Through C language headei cl ude) files

A typical application might use one, or both of the above methods to map field
identifiers to field names.

In order for FML to access the data in fielded records, there must be some way for FML
to access the field name/identifier mappings. FML gets this information in one of two
ways:

4 At run-time, through UNIX field table files, and FML mapping functions
4 At compile-time, through C header files

Field name/identifier mapping is not available in COBOL.

BEA TUXEDO FML Programmer’s Guide 2-7

2 Overview

Run-Time: Field Table Files

Field name/identifier mappings can be made availableto FML programs at run-time
through field table files. It is the responsibility of the programmer to set two
environment variables that tell FML where the field name/identifier mapping table
files are located.

The environment variable FLDTBLDI R contains a list of directories where field tables
can be found. The environment variable FI ELDTBLS contains alist of thefilesin the
table directories that are to be used. For FML 32, the environment variable names are
FLDTBLDI R32 and FI ELDTBLS32.

Within application programs, the FML function FI di d() providesfor arun-time
trandation of afield nametoitsfield identifier. Fnane() trandatesafield identifier to
its field name (see FI di d(3fml) and Fname(3fml)). (The function names for FML 32
areFl di d32 and Fnane32.) Thefirst invocation of either function causes spacein
memory to bedynamically allocated for thefield tables and the tablesto beloaded into
the address space of the process. The space can be recovered when the tables are no
longer needed. (See “Loading the Field Tables” in Chapter 4.)

This method should be used when field name/identifier mappings are likely to chang
throughout the life of the application. This topic is covered in more detail in Chapter 4

Compile-Time: Header Files

mkf | dhdr (1) (ornkf | dhdr 32) is provided to make header files out of field table files.
These header files aténcl ude'd in C programs, and provide another way to map
field names to field identifiers: at compile-time.

Using field header files, the C preprocessor converts all field name references to fiel
identifiers at compile-time; thus, you do not need to us<ded() or Fname()
functions as you would with the field table files described in the previous section.

If you always know what field names your program negidsg! ude-ing your field
table header file(s) saves some data space and means your program can get to the
at hand more quickly.

However, since this method resolves mappings at compile-time, it should not be use
if the field name/identifier mappings in the application are likely to change. This topic
is covered in more detail in Chapter 4, “Field Definition and Use.”

2-8 BEA TUXEDO FML Programmer’s Guide

FML Features

Fielded Buffer Indexes

When afielded buffer has many fields, access is expedited in FML by the use of an
internal index. The user is normally unaware of the existence of this index.

Fielded buffer indexes do, however, take up space in memory and on disk. When you
store afielded buffer on disk, or transmit afielded buffer between processes or
between computers, you can save disk space and/or transmittal timeby first discarding
the index.

A function, Funi ndex, isprovided to do that. When the fielded buffer isread from disk
(or received from asending process), the index can be explicitly reconstructed with the
function Fi ndex.

Note that these space savings do not apply to memory. The function Funi ndex does
not recover in-core memory used by the index of afielded buffer.

Multiply Occurring Fields

Any field in afielded buffer can occur more than once. Many FML functionstake an
argument that specifies which occurrence of afield isto be retrieved or modified. If a
field occurs more than once, thefirst occurrence is numbered 0, and additional
occurrences are numbered sequentially. The set of all occurrences make up alogical
sequence, but no overhead is associated with the occurrence number (that is, it is not
stored in the fielded buffer).

If another occurrence of afield isadded, it is added at the end of the set and isreferred
to asthe next highest occurrence. When an occurrence other than the highest is deleted,
all higher occurrences of the field are shifted down by one (for example, occurrence 6
becomes occurrence 5, 5 becomes 4, and so on).

BEA TUXEDO FML Programmer’s Guide 2-9

2 Overview

Boolean Expressions and Fielded Buffers

Often, application programs receive afielded buffer from another source (from a user's
terminal, from a database record, and so on) and the values of one or more fields will
determine the next action taken by the application program. FML provides severa
functions that create boolean expressions on fielded buffers or VIEWs and determine
if agiven buffer or VIEW meets the criteria specified by the expression.

Once you create a boolean expression, it is compiled into an evaluation tree. The
evaluation tree isthen used to determine if afielded buffer or VIEW matches the
specified boolean conditions.

For instance, a program may read a data record into a fielded buffer (Buffer A), and
apply aboolean expression to the buffer. If Buffer A meetsthe conditions specified by
the boolean expression, then an FML function is used to update another buffer, Buffer
B, with data from Buffer A.

VIEWS Features

VIEWSis particularly useful when a program does alot of processing onthedatain a
fielded buffer, either after the program has received the buffer or before the program
sends the buffer to another program.

Under such conditions, you may gain in processing efficiency by using the VIEWS
functions to transfer fielded buffer data from the buffer to a C structure before you
manipulate it. Thisis because the FML functions for manipulating fieldsin a buffer
reguire more processing time than C functions. Then, when you finish processing the
datain the C structure, you can transfer it back to the fielded buffer and send it on to
another program.

The VIEWS software has the following features:

4 You can create sour ce vi ew descri pti ons that specify C structure-to-fielded
buffer mappings or COBOL record-to-fielded buffer mappings, and make
possible the transfer of data between structures and buffers.

4+ A view compiler, viewc(l) (or vi ewc32), is used to generate obj ect vi ew
descri pti ons (stored in binary files) that are interpreted by your application
programs at run time; the compiler also generates header files that can be used in
C programs to define the structures used in view descriptions, and optionally

2-10 BEA TUXEDO FML Programmer’s Guide

FML Features

generates COPY filesthat can be used in COBOL programs to define the
records used in the view descriptions.

4+ A view disassembler is provided to translate object view descriptionsinto
readable form (that is, back into source view descriptions); the output of the
disassembler can be re-input to the view compiler.

¢ Datatransfers from C structures or COBOL records to fielded buffers can be
donein any one of four modes: FUPDATE, FJQ N, FQJO N, and FCONCAT; these
modes are similar to the ones supported by the following FML functions:
Fupdat e(), Fj oi n(), Foj oi n(), and Fconcat ().

4 Atruntime, object view descriptions are read into a viewfile cache on demand,
and remain there until the cacheis full; when the cacheis full and an object
view description that is not in the cache is needed, the least recently accessed
object view description is removed from the cache to make room for the new
one.

4+ All FML supported types can be used in view descriptions, and in addition,
integer and packed decimal are supported.

4 When transferring data between fielded buffers and structures, the source datais
automatically converted to the type of the destination data; for instance, if a
string field is mapped to an integer member, the string is converted to an integer
using Ft ypcvt () automatically.

4 Multiple field occurrences are supported.
4 User-specified and default null valuesin view descriptions are supported.

4 Asdescribed earlier for fielded buffers, functions exist to compile and evaluate
boolean expressions against application datain a VIEW.

A sourceviewfileis an ordinary UNIX text file that contains one or more source view
descriptions. Source viewfiles are used as input to the view compiler, vi ewc (1) (or
vi ewc32), which compiles the source view descriptions and stores them in object
viewfiles.

The view compiler also creates C header filesfor object viewfiles. These header files
can be included in application programs to define the structures used in object view
descriptions.

BEA TUXEDO FML Programmer’s Guide 2-11

2 Overview

Theview compiler optionally creates COBOL COPY filesfor object viewfiles. These
COPY files can be included in COPY programs to define the record formats used in
object view descriptions.

Null values are used to indicate empty membersin astructure, and can be specified by
the user for each structure member in aviewfile. If the user does not specify a null
value for amember, default null values are used.

Note that a structure member containing the null value for that member is not
transferred during a structure-to-fielded buffer transfer.

It isalso possible to inhibit the transfer of data between a C or COBOL structure
member and afield in afielded buffer, even though a mapping exists between them.
Thisis specified in the source viewfile.

The FML VIEWS functions are Fvst of (), Fvft os(), Fvnul | (), Fvopt (),

Fvsel i ni t (), and Fvsi ni t (). For COBOL, the VIEWS procedures provided are

FVSTOF and FVFTOS. Upon calling any view function, the named object viewfile, if
found, isloaded into the viewfile cache automatically. Each file specified in the
environment variable Vi EWFI LES is searched in order (see Chapter 3, “Setup,”). The
first object viewfile with the specified name will be loaded. Subsequent object
viewfiles with the same name, if any, are ignored.

Note that arrays of structures, pointers, unions, and typedefs are not supported in
VIEWS.

Multiply Occurring Fields in VIEWS

2-12

Since VIEWS is concerned with moving fields between fielded buffers and C
structures or COBOL records, it has to deal with the possibility of multiply occurring
fields in the buffer.

To store multiple occurrences of a field in a structure, a member is declared as an arr:
in C or with the OCCURS clause in COBOL; each occurrence of a field occupies one
element of the array. The size of the array reflects the maximum number of field
occurrences in the buffer.

When transferring data from fielded buffers to C structures or COBOL records, if the
receiving array has more elements than there are occurrences in the fielded buffer, t
extra elements are assigned the (default or user-specified) null value. If there are mo
occurrences in the buffer than there are elements in the array, the extra occurrences
the buffer are ignored.

When data is transferred from C structures or COBOL records to fielded buffers, arra:
members with the value equal to the (default or user-specified) null values are ignore

BEA TUXEDO FML Programmer’s Guide

Error Handling

Error Handling

When an FML function detects an error, one of the following valuesis returned:
4 NULL isreturned for functions that return a pointer

4 BADFLDI Disreturned for functions that return a FLDI D

4 -lisreturned for al others

All FML function call returns should be checked against the appropriate value above
to detect errors.

In all error cases, the external integer Fer r or is set to the error number as defined in
fm . h.Ferror32issettothe error number for FML32 asdefined in f m 32. h.

TheF_error () (or F_error32) functionis provided to produce a message on the
standard error output. It takes one parameter, a string; prints the argument string
appended with a colon and a blank; and then prints an error message followed by a
newline character. The error message displayed isthe one defined for the error number
currently in Fer r or , which is set when errors occur.

To be of most use, the argument string to the F_er r or () (or F_er r or 32) function
should include the name of the program that incurred the error.

Fstrerror (3fml) can be used to retrieve from a message catalog the text of an error
message; it returns a pointer that can be used as an argument to user | og(3c) or to
F_error (3fml) or F_err or 32(3fml).

The error codes that can be produced by an FML function are described on each FML
reference page in Section 3fml of the BEA TUXEDO Reference Manual.

BEA TUXEDO FML Programmer’s Guide 2-13

2 Overview

2-14 BEA TUXEDO FML Programmer’s Guide

CHAPTER

3 Setup

Introduction

This chapter deal s with the setup of the FML environment. Before you can begin to
work with FML fielded buffers, or use the VIEWS functions that movefiel ds between
structures and fielded buffers, you have to take care of such details as setting

environment variables appropriate for your application. These activities are described
in this chapter.

Directory Structure

The delivered FML software will reside in a subtree of the locd file system. Several
of the FML modules assume that the structure of this subtreeis as described in this
section. It isassumed that the environment variable TUXDI Ris set to thefull pathname
of the installation directory for the BEA TUXEDO system software. The
sub-directories are:

4 incl ude—contains header files needed by writers of C application code.

4 cobi ncl ude—contains COPY files needed by writers of COBOL application

code. (This directory is namedbi ncl u for operating systems with an 8.3 file
name limitation.)

4 Dbi n—contains the executable commands of FML.

BEA TUXEDO FML Programmer’s Guide 3-1

3 Setup

4 | i b—contains subroutine packages of FML; when compiling a program that
uses FML functions$TUXDI R/ 1'i b/ 1 i bf M . suffix and
$TUXDI R/ 1 i b/ 1i bgp. suf fi x should be included on the C compiler command
line to resolve external referencespf n 32. suf fi x contains the FML32 and
VIEW32 functions. (The suffix isa for POSIX operating systems without
shared objectsso.r el ease for use of shared objectd,i b for Windows 95,
Windows NT, and OS/2; it is part of the BEA TUXEDO system DLL for
platforms that use dynamic link libraries.)

C application software using FML must include the following header files in this order:

#i ncl ude <stdio. h>
#include “fml.h”

Thefilefml.h orfml32.h contains definitionsfor structures, symbolic constants, and
macros used by the FML software.

Environment Variables

Several environment variables are used by FML and VIEWS. This section gives a
summary of their use.

Thefollowing variableis used in FML to search for system supplied files:

4 TUXDIR—this variable should be set to the topmost node of the installed BEA
TUXEDO system software including FML.

The following variables are used throughout FML to access field table files (describec
in Chapter 4, “Field Definition and Use,”):

4 FIELDTBLS—This variable should contain a comma separated list of field table
files for the application. Files given as full path names are used as is; files listed
as relative path names are searched for through the list of directories specified
by theFLDTBLDI R variable.Fl ELDTBLS32 is used folFrM_32. If FI ELDTBLS is
not set, then the single file namied. t bl is used. KLDTBLDI R still applies; see
below.)

4 FLDTBLDI R—This variable specifies a colon separated list of directories to be
used to find field table files with relative file names. Its usage is similar to the
PATH environment variable. ELDTBLDI R is not set or is null, then its value is
taken to be the current directoRLDTBLDI R32 is used folFM.32.

3-2 BEA TUXEDO FML Programmer’s Guide

Environment Variables

In addition to the ones needed by FML (FLDTBLDI Rand FI ELDTBLS), two
environment variables are used by VIEWS functions:

4 VI EWFI LES—This variable should contain a comma separated list of object
viewfiles for the application. Files given as full pathnames are used as is; files
listed as relative path names are searched for through the list of directories
specified by th&/ EWDI R variable (see belowyl EWFI LES32 is used for
VI EWB2.

4 VI EWDI R—This variable specifies a colon separated list of directories to be used
to find view object files with relative file names. Its usage is similar teaTel
environment variable. N1 EWDI R is not set or is null, then its value is taken to
be the current directoryl EWDI R32 is used fovl EWB2.

BEA TUXEDO FML Programmer’s Guide 3-3

3 Setup

3-4 BEA TUXEDO FML Programmer’s Guide

CHAPTER

4 Field Definition and
Use

Introduction

Before you can begin to work with FML fielded buffers, or use the VIEWS functions
that move fields between structures and fielded buffers, certain details must be taken
care of, such as:

4 defining fields

4+ making field definitions available to applications programs (through field table
files and mapping functions at run-time, or C header files at compile time)

4 compiling source view descriptions into object view descriptions, and generating
corresponding C header filesand COBOL COPY files

These and related activities are described in this chapter.

Defining Fields

This section discusses
¢ how fields are defined in field tables for run-time use

4 theavailable functions for run-time use with the field table files

BEA TUXEDO FML Programmer’s Guide 4-1

4 Field Definition and Use

Field Names and Identifiers

4-2

A fieldidentifier (fi el di d) isdefined (t ypedef 'd) asaFLDI D(FLDI D32 for FML32),
and is composed of two parts: afield type and afield number (the number uniquely
identifies the field).

Field numbers are restricted to be between 1 and 8191, inclusive, for FML, and
between 1 and 33,554,431, inclusive, for FML32. Field number O and the
corresponding field identifier O isreserved to indicate a bad field identifier
(BADFLDI D). When FML is used with other software that aso usesfields, additional
restrictions may be imposed on field numbers.

The numbering convention adopted by the BEA TUXEDO system is as follows:
¢ field numbers 1-100 are reserved for system use

4 field numbers 101-8191 are for application-defined fields with FML, and field
numbers 101-33,554,431 for FML 32.

The mappings between field identifiers and field names are contained in either field
table files or field header files. Using field table files requires that you convert field
name references in C programs with the mapping functions described | ater in this
chapter; field header files allow the C preprocessor (cpp(1) in UNIX reference
manuals) to resolve name-to-fiel did mappings when a program is compiled.

The functions and programs that access field tables use the environment variables
FLDTBLDI Rand FI ELDTBLS to specify the source directories and field table files,
respectively, which are to be used (FLDTBLDI R32 and FI ELDTBLS32 are used for
FML32). These should be set as described in Chapter 3, “Setup.”

The use of multiple field tables allows you to establish separate directories and/or file
for separate groups of fields. Note that field names and field numbers should be uniqgt
across all field tables, since such tables are capable of being converted into C head
files, and field numbers that occur more than once may cause unpredictable results

BEA TUXEDO FML Programmer’s Guide

Defining Fields

Field Table Files

Field table files are created using a standard text editor, such asvi . They have the
following format:

¢
¢

Blank lines and lines beginning with # are ignored.

Lines beginning with $ ignored by the mapping functions but are passed through
(without the $) to header files generated by nkf | dhdr (1); for example, this
would allow the application to pass C comments, what strings, etc. to the
generated C header file; they are not passed through to the COBOL copy files.

Lines beginning with the string * base contain a base for offsetting subsequent
field numbers; this optional feature provides an easy way to group and renumber
sets of related fields.

All other lines should have the following form.
nane rel - nunber type flag conment
where:

4 nane istheidentifier for the field. It should not exceed the C preprocessor
identifier restrictions (that is, it should contain only alphanumeric characters
and the underscore character). Internally, the name istruncated to 30
characters, so hames must be unique within the first 30 characters.

4 rel -nunber istherelative numeric value of thefield; it is added to the
current base, if *base is specified, to obtain the field number of the field.

4 type isthetype of thefield, and is specified as one of the following: char,
string,short, | ong,float,doubl e,carray.

4 Thefl ag fieldisreserved for future use; use adash (-) in thisfield.

4 conment isanoptional field that can be used for clarifying information.

Note that these entries must be separated by white space (blanks or tabs).

BEA TUXEDO FML Programmer’s Guide 4-3

4 Field Definition and Use

Field Table Example

Thefollowing is an example field table in which the base shifts from 500 to 700. The
first fields in each group will be numbered 501 and 701, respectively.

Listing4-1 A UNIX Field TableFile

following are fields for EMPLOYEE service
enployee ID fields are based at 500

*base 500
#nane

SRVCDAY
*base 700

rel - nunber type flags conment

1 string - enp nane

2 | ong - emp id

3 char - job type

4 carray - servi ce date

all address fields are nowrelative to 700

EMPADDR
EMPCI TY
EMPSTATE
EMPZI P

1 string - street address
2 string - city

3 string - state

4 | ong - zi p code

Mapping Functions

Run-time mapping is done by the FI di d() and Fnane() functions that consult the set
of field tablefiles specified by the FLDTBLDI Rand FI ELDTBLS environment variables
(FI di d32() and Fname32() reference FLDTBLDI R32 and FI ELDTBLS32 for FML32).

Fl di d maps its argument, afield name, to afi el di d:
char *nane;

extern FLDI D Fldid();

FLDI D id;

id = FIdid(nane);

Fnane doesthe reverse trandation by mapping its argument, afi el di d, to afield
name:

extern char *Fnane();
nane = Fnane(id);

4-4 BEA TUXEDO FML Programmer’s Guide

Defining Fields

The identifier-to-name mapping is rarely used; that is, it is rare that one has afield
identifier and wants to know the corresponding name. One place where the field
identifier-to-field name mapping could be used isin abuffer print routine where you
want to display, in an intelligible form, the contents of a fielded buffer.

Loading the Field Tables

Upon the first call, FI di d() loadsthe field table files and performs the required
search. Thereafter, the files are kept loaded. FlI di d() returnsthe field identifier
corresponding to its argument on success, and returns BADFLDI D on failure, with
Ferror setto FBADNANE (Fer r or 32 is set for FML32).

To recover the data space used by the field tables loaded by FI di d() , the user may
unload all of the filesby acall to the Fnni d_unl oad() function.

The function Fname() actsin afashion similar to FI di d(), but provides a mapping
from afield identifier to afield name. It uses the same environment variable scheme
for determining the field tables to be loaded, but constructs a separate set of mapping
tables. On success, Fname() returnsapointer to acharacter string containing the name
corresponding to the f 1 di d argument. On failure, Fname() returnsNULL.

Note: The pointer isvalid only aslong as the table remains |oaded.

Aswith FI di d(), failureincludes either the inability to find or open afield table
(FFTOPEN), bad field table syntax (FFTSYNTAX), or a no-hit condition within the field
tables (FBADFLD). Thetable space used by the mapping tablescreated by Fname() may
be recovered by a cal to the function Fi dnm unl oad() .

Both mapping functions and other FML functions that use run-time mapping require
Fl ELDTBLS and FLDTBLDI R to be set properly. Otherwise, default values are used.
(See Chapter 3, “Setup,” for the defaults.)

Field Header Files

The commandrkf | dhdr (1) (ornkf | dhdr 32) converts field tables, as described
above, into header files suitable for processing by the C compiler. Each line of the
generated header file is of the following form.

#defi ne fnane fieldid

wheref nane is the name of the field, arfd e/ di d is its field-ID. The field-ID has
both the field type and field number encoded in it. The field number is an absolute
number, that ishase plusr el - nunber . The resulting file is suitable for inclusion in
a C program.

BEA TUXEDO FML Programmer’s Guide 4-5

4 Field Definition and Use

4-6

The header file need not be used if the run-time mapping functions are used as
described in the next sub-section. The advantage of compile-time mapping of names
toidentifiersis speed and a decrease of data space requirements. The disadvantage is
that changes made to field name/identifier mappings after, for instance, a service
routine has been compiled will not be propagated to the service routine (that is, it will
use the mappings it has already compiled).

nkf | dhdr (1) trand ates each field-table specified in the FI ELDTBLS environment
variable to a corresponding header file, whose name isformed by concatenatinga . h
suffix to the field-table name. The resulting files are created, by default, in the current
directory. The user may specify acreation directory to nmkf | dhdr (1) by specifying a
- d option followed by the name of the directory in which you want the header filesto
reside. For example,

FLDTBLDI R=/ proj ect/fldtbls

FI ELDTBLS=maskf t bl , DBf t bl , mi scft bl
export FLDTBLDI R FI ELDTBLS

nkf | dhdr

or

FLDTBLDI R32=/ project/fl dtbls

FI ELDTBLS32=nmaskft bl , DBft bl , m scfthl
export FLDTBLDI R32 FI ELDTBLS32

nkf | dhdr 32

will produce theinclude filesmaskf t bl . h, DBf t bl . h and mi scft bl . hinthe current
directory by processing ${ FLDTBLDI R}/ maskf t bl , ${ FLDTBLDI R}/ DBf t bl and
${ FLDTBLDI R}/ mi scf t bl . The command

nkf | dhdr - d${ FLDTBLDI R}

will process the sasmpleinput field-table files and produce the same output files, but
will place themin the directory given by ${ FLDTBLDI R} .

Y ou may override the environment variables (or avoid setting them) when using

nkf | dhdr by specifying on the command line the names of the field tablesto be
converted (this does not apply to the run-time mapping functions). In this case,
FLDTBLDI Risassumed to be the current directory and FI ELDTBLS isassumed to bethe
list of parameters that the user specified on the command line. For example,

nkf | dhdr nyfi el ds

will convert thefield tablefilenyf i el ds to afield header filenyfi el ds. h, and place
it in the current directory.

BEA TUXEDO FML Programmer’s Guide

Mapping Fields to C Structures and COBOL Records

Mapping Fields to C Structures and COBOL

Records

As mentioned in Chapter 2, “Overview,” FML VIEWS is a mechanism that allows the
exchange of data between fielded buffers and C structures or COBOL records. This

capability is provided since it is usually more efficient to perform lengthy

manipulations on C structures with C functions than on fielded buffers with FML
functions. It also provides a way for a COBOL program to send and receive messages

with a C program that handles FML fielded records.

This section discusses VIEWS and how to use it to provide fielded buffer/structure
mappings. The figure below shows the various components of VIEWS and how they
relate to one another. Each component is explained in the following sections.

Figure4-1 Views

contaned in

ViEW
description(s)

produces

produces

y viewfile V viewfile h

structured
record
description

viewdis

BEA TUXEDO FML Programmer’s Guide

COBOL
COPY
file

4-7

4 Field Definition and Use

Viewfiles

Source viewfiles are standard text files (created through any standard text editor, such
asvi) that contain one or more source view descriptions (the actua field-to-structure

mappings).

The view compiler produces (among other things) object viewfiles containing the
compiled object view descriptions. These object viewfiles can in turn be used as input
to the view disassembler (vi ewdi s or vi ewdi s32), which translates the object view
descriptions back into their source format (for verification or editing).

Y ou create and edit the source view descriptions (or edit the output of vi ewdi s) only;
compiled view descriptions are not readable by an editor.

Besidestheactua view description(s), viewfilescan contain comment lines, beginning
with # or $. Blank lines and lines beginning with # are ignored by the view compiler,
while lines beginning with $ are passed by the view compiler to any header files
generated. This lets you pass C comments, what strings, etc., to C header files
produced by the view compiler; they are not passed through to the COBOL copy files.

View Descriptions

Each source view description in a source viewfile consists of three parts:

4 A line beginning with the keyword Vi Ew(never with a 32 suffix), followed by
the name of the view description; the name can have a maximum of 33
alphanumeric characters (including the underscore character); when used with
t pal | oc(3c), the maximum number of charactersis 16.

4 A list of member descriptions.
4 A line beginning with the keyword END.

Thefirst line of each view description must begin with the keyword vi Ewfollowed by
the name of the view description. A member description (or mapping entry) isaline
with information about amember in the C structure or COBOL record. A linewith the
keyword END must be the last line in a view description.

Thus, a source view description has the general structure shown in Listing 4-2.

4-8 BEA TUXEDO FML Programmer’s Guide

Mapping Fields to C Structures and COBOL Records

Listing 4-2 Source View Description

Vi

EW vnane
type cname f bname count flag size nul |
H oo ooooo oo aoaoo I - -

END

In Listing 4-2:

L4

vnane isthe name of the view description, and should be avalid C identifier
name, sinceit is aso used as the name of a C structure; underscores are mapped
automatically to dashesin the COBOL COPY file.

t ype is the type of the member, and is specified as one of the following: i nt ,
short, | ong, char,float,doubl e, string, carray,dec_t;iftypeis -’, the
type of the member is defaulted to the typé lofane.

cnane is the identifier for the structure member, and should be a valid C
identifier name, since it is the name of a C structure member; underscores are
mapped automatically to dashes in the COBOL COPY file.

f bnane is the name of the field in the fielded buffer; this name must appear in a
field table file.

count is the number of elements to be allocated (that is, the maximum number
of occurrences to be stored for this member); must be less than or equal to
65,535 for FML, and less than or equal to 2,147,483,647 for FML32.

flagis a list of options, separated by commas, or ‘-’ meaning no options are set;
see below for a discussion of ag options.

si ze is the size of the member if the typesis i ng, carr ay, ordec_t ;

otherwise -’ should be specified, and the view compiler will compute the size.
Forstring orcarray, it must be less than or equal to 65,535 for FML and less
than or equal to 2,147,483,647 for FML32. Fordke_t type,si ze is two

numbers separated by a comma, the first being the number of bytes in the
decimal value (it must be greater than 0 and less than 10) and the second being
the number of decimal places to the right of the decimal point (it must be greater
than 0 and less than two times the number of bytes minus one).

nul | is the user-specified null value or to indicate the default null value for
that field; see below for a discussion of null values.

BEA TUXEDO FML Programmer’s Guide 4-9

4 Field Definition and Use

flag Options

4-10

Thefollowing is alist of the options that can be specified asthef | ag element of a
member description in aview description:

Cc

This option specifies that an additiona structure member, called the
associated count member (ACM), be generated, in addition to the structure
member described in the member description. When transferring datafrom a
fielded buffer to a structure, each ACM in the structure is set to the number
of occurrencestransferred to the associated structure member. A valueof Oin
an ACM indicates that no fields were transferred to the associated structure
member; a positive vaue indicates the number of fields actually transferred
to the structure member array; anegative valueindicatesthat therewere more
fieldsin the buffer than could be transferred to the structure member array
(the absol ute value of the ACM equals the number of fields not transferred to
the structure). During atransfer of datafrom a structure member array to a
fielded buffer, the ACM is used to indicate the number of array elements that
should be transferred. For example, if the ACM of amember isset to N, then
thefirst N non-null fields are transferred to the fielded buffer. If N is greater
than the dimension of the array, it then defaults to the dimension of the array.
In either event, after the transfer takes place, the ACM is set to the actual
number of array members transferred to the fielded buffer. The type of an
ACM inthe C header fileisdeclared to be short for FML and| ong for
FML32, and its name is generated as C_cnane, where cnane isthe cnane
entry for which the ACM is declared. For example, an ACM for a member
named par t s would be declared as follows:

short C parts;

For the COBOL COPY file, the typeisdeclared to be PI C S9(4) USAGE
cowp- 5 for FML and PI C S9(9) USAGE COwP- 5 for FML32, and its name
isgenerated as G cnane.

Note: Itispossiblefor the generated ACM nameto conflict with structure

members whose names begin with a C_ prefix. Such conflicts will be
reported by the view compiler, and are considered fatal errors by the
compiler. For example, if a structure member has the name C parts, it
would conflict with the name of an ACM generated for themember part s.

Specifies one-way mapping from structure or record to fielded buffer. The
mapping of amember with thisoption iseffective only when transferring data
from structures to fielded buffers. This option isignored if the - n command
line option is specified.

BEA TUXEDO FML Programmer’s Guide

Mapping Fields to C Structures and COBOL Records

This option is used only for member descriptions of typecarray or stri ng
to indicate the number of bytes transferred for these possibly variable length
fields. If astring orcarray field isalways used asafixed length data item,
then this option provides no benefit. The L option generates an associated
length member (ALM) for a structure member of typecarray or string.
When transferring data from afielded buffer to a structure, the ALM is set to
thelength of the corresponding transferred fields. If thelength of afield in the
fielded buffer exceeds the space allocated in the mapped structure member,
only the allocated number of bytesis transferred. The corresponding ALM is
set tothe size of thefielded buffer item. Therefore, if the ALM isgreater than
the dimension of the structure member array, the fielded buffer information
was truncated on transfer. When transferring data from astructure member to
afieldin afielded buffer, the ALM isused to indicate the number of bytesto
transfer to thefielded buffer, if itisacar r ay typefield. For strings, the ALM
isignored on transfer, but is set afterwardsto the number of bytestransferred.
Note that since car r ay fields may be of zero length, an ALM of 0 indicates
that azero length field should be transferred to the fielded buffer, unless the
valuein the associated structure member isthe null value.

AnALM isdefined in the C header file to be an unsigned short for FML and
an unsigned long for FML32, and has a generated name of L_cnane, where
cnane isthe name of the structure for which the ALM is declared. If the
number of occurrences of the member for which the ALM isdeclaredis1 (or
defaults to 1), then the ALM is declared as:

unsi gned short L_cnane;

whereas if the number of occurrencesis greater than 1, say N, the ALM is
declared as:

unsi gned short L_cnane[N];

and isreferred to as an ALM Array. In this case, each element in the ALM
array refersto acorresponding occurrence of the structure member (or field).
For the COBOL COPY file, thetypeisdeclaredto be PI C 9(4) USAGE
cowvp- 5 for FML and Pl C 9(9) USAGE COWP- 5 for FML32, and itsnameis
generated asL- cnanme. The COBOL OCCURS clause is used to define
multiple occurrences if the member occurs multiple times.

Note: It ispossiblefor the generated ALM name to conflict with structure
members whose names begin with an L_ prefix. Such conflicts will be
reported by the view compiler, and are considered fatal errors by the
compiler. For example, if a structure member hasthe name L_part s, it
will conflict with the name of an ALM generated for the member part s.

BEA TUXEDO FML Programmer’s Guide 4-11

4 Field Definition and Use

Null Values

"\0"; and forstri ng andcarr ay types, it is "".

Specifies zero-way mapping (no fielded buffer is mapped to the structure).
This can be used to allocate fillers in C structures or COBOL records. This
option isignored if the - n command line option is specified.

This option can be used to affect what VIEWS interprets as a null value for

string and carray type structure members. If thisoptionisnot used, astructure
member isnull if itsvaueis equal to the user-specified null value (without
considering any trailing null characters). If this option is set, however, a

member isnull if itsvaue is equal to the user-specified null value with the

last character propagated to full length (without considering any trailing null
character). Note that amember whose valueis null will not be transferred to

the destination buffer when datais transferred from the C structure or

COBOL record to the fielded buffer. For example, a structure member TEST

is of type carray[25] and a user-specified null value “abcde” is established for
it. If the P option is not set, TEST is considered null if the first five characters
are a, b, ¢, d, and e, respectively. If the P option is set, TEST is null if the first
four characters are a, b, ¢, and d, respectively, and the rest of the carray
contains the character 'e' (that is, 21 e's). This option is ignored- ifi the
command line option is specified.

Specifies one-way mapping from fielded buffer to structure or record. The
mapping of a member with this option is effective only when transferring data
from fielded buffers to structures. This option is ignored if- theommand

line option is specified.

Null values are used in VIEWS to indicate empty C structure or COBOL record
members. Default null values are provided, and you may also define your own.

The default null value for all numeric types is 0 (0.0det_t); for char types, it is

Escape convention constants can also be used to specify a null value. The view
compiler recognizes the following escape constadtist {whered is an octal digit),
\0, \n, \t, \v, \b, \r, \f, \\, ', and \".

4-12 BEA TUXEDO FML Programmer’s Guide

Mapping Fields to C Structures and COBOL Records

String, carray, and char null values may be enclosed in double or single quotes.
Unescaped quotes within a user-defined null value are not accepted by the view
compiler.

Alternatively, an element is null if its value is the same as the null value for that
element, except in the following cases:

4 if the Poptionis set for the structure member, and the structure member is of
string or carray type; see the preceding section for details on the P option flag

4 if amember is of type string, its value must be the same string as the null value

4 if amember is of type carray, and the null value is of length N, then the first N
charactersin the carray must be the same as the null value

You can also specify the keywordd®E” in the null field of a view member
description, which means there is no null value for the member.

The maximum size of default values for string and character array members is 2660
characters.

Note: Note that for string members, which usually end with @',‘a “\ 0" is not
required as the last character of a user-defined null value.

View Compiler

vi ewc is a view compiler program for FML and ewc32 is used for FML32. It takes

a source viewfile and produces an object viewfile, which is interpreted at runtime to
effect the actual mapping of data. At runtime, a C compiler must be available for

vi ewc. The command line looks like the following.

viewc [-n] [-d viewdir] [-C] viewfile [viewfile ...]

wherevi euf i | e is the name of a source viewfile containing source view descriptions.
You may specify one or mong ewfi | es on the command line.

If the - C option is specified, then one COBOL COPY file is created for each VIEW
defined in thevi ewfi I e. These copy files are created in the current directory.

The- n option can be used when compiling a view description file for a C structure or
COBOL record that does not map torw. buffer.

BEA TUXEDO FML Programmer’s Guide 4-13

4 Field Definition and Use

By default, all viewsin vi euf i | e are compiled and two or more files are created: an
object viewfile (suffixed with V"), and a header file (suffixed withH") for each
viewfile (see Figure 4-1).

The name of the object viewfile vgewfile.v. It is created in the current directory. The
- d option can be used to specify an alternate directory. Header files are created in tt
current directory.

Note: Users of the BEA TUXEDO system Workstation feature in an MS-DOS
environment will notice that the object viewfile is givenw suffix.

viewc C Header Files

4-14

Header files created by the view compileirdwc) can be used in any C application
programs to declare a C structure described by views. For example, the following viev
description

VI EW t est

#TYPE CNAME FBNAME COUNT FLAG Sl ZE NULL

int enpi d EMPI D 1 - - -1

f 1 oat sal ary EMPPAY 1 - - 0

| ong phone EMPPHONE 4 - - 0

string nane EVMPNAVE 1 - 32 "NO NAME"
END

produces a C header file that looks like this:

struct test {

| ong enpi d; /* null=-1%*/

fl oat sal ary; /* nul | =0. 000000 */
| ong phone[4] ; /* null=0 */

char nane[32] ; /* nul | =" NO NAME" */

h

BEA TUXEDO FML Programmer’s Guide

Mapping Fields to C Structures and COBOL Records

COBOL COPY Files

COBOL COPY files created by the view compiler with the - C option can be used in

any COBOL application programsto declare COBOL records described by views. For
example, the COBOL COPY file for the previous view description will look like the
following in thefile TEST. cbl .

* VI EWFI LE: "test.v"
* VI EWNAME: "test”

05 EMPI D PIC S9(9) USAGE |'S COVP-5.
05 SALARY USAGE |'S COWP-1.

05 PHONE OCCURS 4 TIMES PIC S9(9) USAGE |'S COWP-5.
05 NAME PI C X(32).

Note that the COPY file name is automatically converted to upper case by the view
compiler. The COPY file would be included in a COBOL program as follows.

01 MYREC CCPY TEST.

The output in the resulting COPY filesis more fully described in the BEA TUXEDO
COBOL Guide.

View Disassembler

Theview disassembler disassemblesan object viewfile produced by the view compiler
and displays view information in source viewfile format. In addition, it displaysthe
offsets of structure membersin the associated structure. It is usually used to verify the
correctness of an object view description.

The command linelooks like the following.
viewdis objviewfile...

By default, obj vi ewf i I e in the current directory is disassembled. If thisfileis not
found in the current directory, an error message is displayed. Y ou can specify one or
more view object files on the command line.

Theoutput of vi ewdi s lookssimilar totheoriginal sourceview description(s), and can
be edited and re-input to vi ewc. The order of the linesin the output of vi ewdi s may
be different from the order of the original source view description, but this does not
affect the correctness of the object file.

BEA TUXEDO FML Programmer’s Guide 4-15

4 Field Definition and Use

4-16 BEA TUXEDO FML Programmer’s Guide

CHAPTER

5 Field Manipulation
Functions

Introduction

This chapter describes all of the FML and FML VIEWS functions, with the exception
of the run-time mapping functions described in Chapter 4, “Field Definition and Use.”
In this chapter you will learn:

4 FML parameter conventions

how to use various field identifier mapping functions

how to allocate and initialize fielded buffers

how to move fielded buffers

how to access and modify fielded buffers

how to update fielded buffers

how to map fielded buffers to C structures

how to perform type conversions on data transferred to or from fielded buffers
how to use indexing functions

how to use input/output functions

* & & & & O ¢ > o o

how to construct boolean expressions to make program decisions based on the
contents of fielded buffers

BEA TUXEDO FML Programmer’s Guide 5-1

S Field Manipulation Functions

For COBOL programs, the FML functions are not directly available. A procedure
caled FI NI Tisavailabletoinitializearecord for receiving FML data, and FVSTOF and
FVFTOS are available to convert from a COBOL record to an FML buffer and back.
These are described in detail in the BEA TUXEDO COBOL Guide. The COBOL
interface will not be described further in this chapter.

FML/FML32 and VIEW/VIEW32

5-2

There are two variants of FML. The original FML interface is based on 16-bit values
for the length of fields and contains information identifying fields (hence FML16).
FML16 islimited to 8191 unique fields, individual field lengths of up to 64K bytes,
and atotal fielded buffer size of 64K. The definitions, types, and function prototypes
for thisinterfaceareinf m . h which must beincluded in an application program using
the FML16 interface; and functionslivein -1 f i . A second interface, FML32, uses
32-bit valuesfor the field lengths and identifiers. It allowsfor about 30 million fields,
and field and buffer lengths of about 2 billion bytes. The definitions, types, and
function prototypes for FML32 arein f m 32. h; and functionslivein -1 fm 32. All
definitions, types, and function names for FML32 have a “32” suffix (for example,
MAXFBLEN32, FBFR32, FLDI D32, FLDLEN32, F_OVHD32, Fchg32, and error code

Fer r or 32). Also the environment variables are suffixed wigk™ (for example,
FLDTBLDI R32, FI ELDTBLS32, VI EWFI LES32, andVvl EWDI R32). For FML32, a fielded
buffer pointer is of typeFBFR32 *”, a field length has the typeLDLEN32, and the
number of occurrences of a field has the tgppOCC32. Also note that the default
required alignment for FML32 buffers is 4-byte alignment.

Existing FML16 applications that are written correctly can easily be changed to use th
FML32 interface. All variables used in the calls to the FML functions must use the
proper typedefs{LDI D, FLDLEN, andrFLDOCC). Any call tot pal | oc for an FML typed
buffer should use the FMLTYPE definition instead of “FML". The application source
code can be changed to use the 32-bit functions simply by changing the include of
fni . hto inclusion off M 32. h followed by fml1632.h. Thém 1632. h contains

macros that convert all of the 16-bit type definitions to 32-bit type definitions, and
16-bit functions and macros to 32-bit functions and macros.

Functions are also provided to convert an FML32 fielded buffer to an FML16 fielded
buffer and vice versa.

BEA TUXEDO FML Programmer’s Guide

FML Parameters

#include “fml.h”

#include “fml32.h”

int

F32to16(FBFR *dest, FBFR32 *src)

int

F16t032(FBFR32 *dest, FBFR *src)

F32to16 convertsa32-bit FML buffer to a 16-bit FML buffer. It does this by
converting the buffer on afield-by-field basis and then creating the index for the
fielded buffer. A field is converted by generating a FLDID from a FLDID32, and
copying thefield value (and field length for string and carray fields). dest and sr ¢ are
pointersto the destination and source fielded buffers respectively. The source buffer is
not changed. These functions can fail for lack of space; they can be re-issued after
allocating enough additional space to complete the operation. F16t032 converts a
16-bit FML buffer to a32-bit FML buffer. It livesinthefml32 library or shared object
and setsFerror32 onerror. F32tol16 livesinthefml library or shared object and sets
Ferror on error. Note that both fml.h and fml32.h must be included to use these
functions; fml1632.h may not be included in the same file.

For the remainder of this chapter, rather than continuing to give both the FML and
FML32 names, and VIEW and VIEW32 names, the 16-bit functions will be described.

FML Parameters

To makeit easier to remember the parametersfor the FML functions, a convention has
been adopted for the sequence of function parameters. FML parameters appear in the
following sequence:

1. For functionsthat require apointer to afielded buffer (FBFR), thisparameter isfirst.
If afunction takes two fielded buffer pointers (such as the transfer functions), the
destination buffer comes first followed by the source buffer. A fielded buffer
pointer must point to an area that is aligned on a short boundary (or an error is
returned with Ferror set to FALIGNERR and the area must be afielded buffer (or
an error isreturned with Ferror ~ set to FNOTFLD).

2. For the input/output functions, a pointer to a stream follows the fielded buffer
pointer.

3. For functionsthat need one, afield identifier (type FLDID) appears next (in the
case of Fnext , itisapointer to afield identifier).

BEA TUXEDO FML Programmer’s Guide 5-3

S Field Manipulation Functions

5-4

. For functions that need afield occurrence (type FLDOCC), this parameter comes

next (for Fnext , it isapointer to an occurrence number).

. Infunctions where afield value is passed to or from the function, a pointer to the

beginning of the field value is given next (defined as a character pointer but may
be cast from any other pointer type).

. When afield valueis passed to a function that contains a character array (carray)

field, you must specify itslength as the next parameter (type FLDLEN). For
functions that retrieve afield value, a pointer to the length of the retrieval buffer
must be passed to the function and this length parameter is set to the length of the
valueretrieved.

. A few functions require special parameters and differ from the preceding

conventions; these special parameters appear after the above parameters and will
be discussed in the individual function descriptions.

. Thefollowing NULL values are defined for the various field types: 0 for short

and long; 0. 0 for float and double; \ 0 for string (1 bytein length); and a
zero-length string for carray.

BEA TUXEDO FML Programmer’s Guide

Field Identifier Mapping Functions

Field Identifier Mapping Functions

Fidid

Fname

Severa functions allow the programmer to query field tables or field identifiers for
information about fields during program execution.

FI di d returnsthe field identifier for a given valid field name and loads the field
name/fieldid mapping tables from the field table files, if they do not already exist:

FLDI D
FI di d(char *nane)

where nane isavadid field name.

The space used by the mapping tables in memory can be freed using the
Fnmi d_unl oad or Fnmi d_unl oad32 function. Notethat these tabl es are separate from
the tables loaded and used by the Fnane function.

Fnane returns the field name for a given valid field identifier and loads the
fieldid/name mapping tables from the field table files, if they do not already exist:

char *
Fnane(FLDI D fi el di d)

wherefi el di disavalid field identifier.

The space used by the mapping tables in memory can be freed using the
Fi dnm_unl oad or Fi dnm_unl oad32 function. Notethat these tables are separate from
the tables loaded and used by the FI di d function.

BEA TUXEDO FML Programmer’s Guide 5-5

S Field Manipulation Functions

Fldno

Fl dno extracts the field number from a given field identifier:

FLDOCC
Fl dno(FLDI D fi el di d)

wherefi el di disavalid field identifier.

Fldtype

Fl dt ype extracts the field type (an integer, asdefined in f ni . h) from a given field
identifier.

i nt
Fl dt ype(FLDI D fi el di d)

wherefi el di disavalid field identifier.

Table 5-1 shows the possible values returned by FI dt ype and their meanings.

Table5-1 Field Types Returned by Fldtype

Return Value M eaning
0 short integer
1 long integer
2 character
3 single-precision float
4 double-precision float
5 null-terminated string
6 character array

5-6 BEA TUXEDO FML Programmer’s Guide

Field Identifier Mapping Functions

Ftype

Fmkfldid

Ft ype returns a pointer to a string containing the name of the type of afield given a
field identifier:

char *
Ftype(FLDI D fi el did)

where fi el di disavalidfield identifier.
For example:

char *typenane

iybeharm = Ftype(fieldid);

returns a pointer to one of the following strings: short, I ong, char, f | oat, doubl e,
string,oOrcarray.

As part of an application generator, or to reconstruct afield identifier, it might be
useful to be able to make afield identifier from atype specification and an available
field number. Fkf | di d provides this functionality:

FLDI D
Frkfl did(int type, FLDID nun)

where
¢ typeisavalidtype (an integer; see Fl dt ype, above)

¢ numisafield number (it should be an unused field number, to avoid confusion
with existing fiel ds)

BEA TUXEDO FML Programmer’s Guide 5-7

S Field Manipulation Functions

Buffer Allocation and Initialization

Fielded

Fneeded

Most FML functionsrequire a pointer to afielded buffer as an argument. The typedef
FBFRisavailable for declaring such pointers, asin this example:

FBFR *fbfr;
In this chapter, the variable f bf r will be used to mean a pointer to a fielded buffer.

Never attempt to declare fielded buffers themselves, only pointers to them. The
functions used to reserve space for fielded buffers are explained in thefollowing pages,
but first we will describe a function that can be used to determine whether a given
buffer isin fact afielded buffer.

Fi el ded (or Fi el ded32) is used to test whether the specified buffer isfielded.

int
Fi el ded(FBFR *fbfr)

Fi el ded32 isused with 32-bit FML.

Fi el ded returnstrue (1) if the buffer is fielded. It returns false (0) if the buffer is not
fielded and does not set Fer r or in this case.

The amount of memory to allocate for a fielded buffer depends on the maximum
number of fieldsit will contain and the total amount of space needed for al the field
values. The function Fneeded can be used to determine the amount of space in bytes
needed for afielded buffer; it takes the number of fields and the space needed for all
field values (in bytes) as arguments.

| ong
Fneeded(FLDOCC F, FLDLEN V)

5-8 BEA TUXEDO FML Programmer’s Guide

Buffer Allocation and Initialization

where
¢ Fisthe number of fields
4 Visthe spacefor field values, in bytes

The space needed for field valuesis computed by estimating the amount of space that
would be required by each field value if stored in standard structures (e.g., alongis
stored as along and needs four bytes, etc.). For variable length fields, you should
estimate the average amount of space needed for the field. The space calculated by
Fneeded includes afixed overhead for each field; it adds that to the space needed for
the field values.

Once you obtain the estimate of space from Fneeded, you can allocate the desired
number of bytes using mal | oc(3) and set up a pointer to the allocated memory space.
For example, the following allocates space for afielded buffer large enough to contain
25 fields and 300 bytes of values:

#define NF 25

#define NV 300

extern char *mall oc;

i f((fbfr = (FBFR *)mal | oc(Fneeded(NF, NV))) == NULL)
F error("pgmnane"); /* no space to allocate buffer */

However, this allocated memory spaceisnot yet afielded buffer. Fi ni t must be used
to initializeit.

TheFi ni t function initializes an allocated memory space as afielded buffer.

int
Finit(FBFR *fbfr, FLDLEN bufl en)

where
4 fbfr isapointer to an uninitialized fielded buffer

¢ bufl enisthelength of the buffer, in bytes

BEA TUXEDO FML Programmer’s Guide 5-9

S Field Manipulation Functions

Falloc

A call toFi ni t toinitialize thememory spaceallocated in the previous exampl e above
would look like the following:

Finit(fbfr, Fneeded(NF, NV));

Now f bf r pointsto an initialized, empty fielded buffer. Up to Fneeded(NF, NV)
bytes minus a small amount (F_OvHD as defined in f i . h) are available in the buffer
to hold fields.

Note: Thenumbersused in the nal | oc(3) (from the previous section) and Fi ni t
calls must be the same.

Callsto Fneeded, nal | oc(3) and Fi ni t may be replaced by asingle call to Fal | oc,
which allocates the desired amount of space and initializes the buffer.

FBFR *
Fal | oc(FLDOCC F, FLDLEN V)

where

4 Fisthe number of fields

4 Visthe spacefor field values, in bytes

A call toFal | oc that would replace the examplesabove wouldlook like the following:
extern FBFR *Fal |l oc;

if((fbfr = Falloc(NF, NV)) == NULL)
F_error(“pgm_name”); /* couldn't allocate buffer */

Storage allocated with Falloc (or Fneeded , malloc (3) and Finit) should be freed
with Ffree .

Remember that when usingthe BEA TUXEDO system, the ATMI functionstpalloc
tprealloc ,andtpfree must beused to allocate and free message buffers, rather than
the FML functions Falloc , Frealloc , and Free .

5-10 BEA TUXEDO FML Programmer’s Guide

Buffer Allocation and Initialization

Ffree

Ff r ee isused to free memory space allocated as afielded buffer.

int
Ffree(FBFR *fbfr)

where

¢ fbfr isapointer to afielded buffer
For example:

#include <fni.h>

i f(Ffree(fbfr) < 0)
F error("pgmnane"); /* not fielded buffer */

Ff r ee isrecommended asopposedtof r ee(3), because Ff r ee will invalidate afiel ded
buffer whereas f r ee(3) will not. It is necessary to invalidate fielded buffers because
mal | oc(3) re-uses memory that has been freed, without clearing it. Thus, if f r ee(3)

were used, it would be possiblefor mal | oc to return a piece of memory that looks like
avalid fielded buffer, but is not.

Space for afielded buffer may a so be reserved directly. The buffer must begin on a
short boundary. The user must allocate at least F_OvHD bytes (defined inf mi . h) for
the buffer or an error will be returned from Fi ni t .

Thefollowing codeisanal ogousto the preceding example but Fneeded cannot be used
to size the static buffer since it is not a macro.

/* the first line aligns the buffer */

static short buffer[500/sizeof(short)];

FBFR *f bfr=(FBFR *) buf fer;

Finit(fbfr, 500);

It should be emphasized that the following codeis quite wrong:
FBFR badf bfr;

Finit (&adfbfr, Fneeded(NF, NV)):

The structure for FBFR is not defined in the user header files so this will result in a
compilation error.

BEA TUXEDO FML Programmer’s Guide 5-11

S Field Manipulation Functions

Fsizeof

Fsi zeof returnsthe size of afielded buffer in bytes:

| ong
Fsi zeof (FBFR *fbfr)

where

4 fbfrisapointer to afielded buffer
For example:

| ong bytes;

byieé = Fsi zeof (fbfr);

Fsi zeof returnsthe same number that Fneeded returned when the fielded buffer was
originally allocated.

Funused

Funused may be used to determine how much spaceisavailablein afielded buffer for
additional data:

| ong
Funused(FBFR * fbfr)

where

4 fbfrisapointer to afielded buffer
For example:

| ong unused;

ﬁnﬁséd = Funused(fbfr);

Note that Funused does not indicate where in the buffer the unused bytes are, only the
number of unused bytes.

5-12 BEA TUXEDO FML Programmer’s Guide

Buffer Allocation and Initialization

Fused

Frealloc

Fused may be used to determine how much spaceis used in afielded buffer for data
and overhead:

| ong
Fused(FBFR * fbfr)

where

¢ fbfr isapointer to afielded buffer
For example:

| ong used,;

used = Fused(fbfr);

Note that Fused does not indicate where in the buffer the used bytes are, only the
number of used bytes.

At some point, the buffer may run out of space, such as during the addition of a new
field value. Fr eal | oc can be used to increase (or decrease) the size of the buffer:

FBFR *
Freal | oc(FBFR *fbfr, FLDOCC nf, FLDLEN nv)

where
¢ fbfr isapointer to afielded buffer
¢ nf isthe new number of fieldsor O

4+ nvisthe new spacefor field values, in bytes

BEA TUXEDO FML Programmer’s Guide 5-13

S Field Manipulation Functions

5-14

For example:

FBFR *newf bfr;

if((newfbfr = Frealloc(fbfr, NF+5, NV+300)) == NULL)
F_error(“pgm_name”); /* couldn't re-allocate space */

else
fbfr = newfbfr; /* assign new pointer to old */

In this case, the application needed to remember the number of fields and number of
value space bytes previously allocated. Note that the argumentsto Frealloc ~ (aswith
itscounterpart realloc (3)) are absol ute val ues, not increments. Thisexamplewill not
work if space needsto be re-allocated severa times.

The following example shows a second way of incrementing the all ocated space:
/* define the increment size when buffer out of space */

#define INCR 400

FBFR *newfbfr;

if((newfbfr = Frealloc(fbfr, 0, Fsizeof(fbfr)+INCR)) == NULL)

F_error(“pgm_name”); /* couldn't re-allocate space */
else
fbfr = newfbfr; [* assign new pointer to old */

Note that you do not need to know the number of fields or the value space size with
which the buffer waslast initialized. Thus, the easiest way to increase the sizeisto use
the current size plus the increment as the value space. The above example could be
executed as many timesas heeded without remembering past executionsor values. The
user need not call Finit after calling Frealloc

If the amount of additional space requestedinthecall to Frealloc iscontiguousto the
old buffer, newfbfr and fbfr in the examples above will be the same. However,
defensive programming dictates that the user should declare newfbfr as a safeguard
against the case where either anew value or NULL isreturned. If Frealloc fails, do
not use fbfr again.

Note: Thebuffer size can only be decreased to the number of bytes currently being
used in the buffer.

BEA TUXEDO FML Programmer’s Guide

Functions for Moving Fielded Buffers

Functions for Moving Fielded Buffers

Fmove

The only restriction on thelocation of fielded buffersisthat they must bealigned on a
short boundary. Otherwise, fielded buffers are position-independent and may be
moved freely around in memory.

If src pointsto afielded buffer and dest points to an area of storage big enough to
hold it, then the following might be used to move the fielded buffer:

FBFR *src;
char *dest;

;Te;mby(dest, src, Fsizeof(src));

Thefunction mencpy, part of the C runtime memory management functions, movesthe
number of bytesindicated by its third argument from the area pointed to by its second
argument to the area pointed to by itsfirst argument.

While mencpy may be used to copy afielded buffer, the destination copy of the buffer
looksjust like the source copy. In particular, for example, the destination copy hasthe
same number of unused bytes as the source buffer.

Frnove actslike mencpy, but does not need an explicit length (it is computed):

int
Frove(char *dest, FBFR *src)

where
4 dest isapointer to the destination buffer

4 srcisapointer to the source fielded buffer

BEA TUXEDO FML Programmer’s Guide 5-15

S Field Manipulation Functions

Fcpy

5-16

For example:

FBFR *src;
char *dest;

i. f.(Fﬁove(dest,src) < 0)
F error("pgmnane");

Fnove checksthat the source buffer isindeed afielded buffer, but does not modify the
source buffer in any way.

The destination buffer need not be afielded buffer (that is, it need not have been
allocated using Fal | oc), but it must be aligned on ashor t boundary (4-byte
alignment for FML32). Thus, Frove providesan aternativeto Fcpy (see below) when
it isdesired to copy afielded buffer to anon-fielded buffer, but Fnove does not check
to make surethereis enough roomin the destination buffer to receive the source buffer.

Fcpy isused to overwrite one fielded buffer with another:

i nt
Fcpy(FBFR *dest, FBFR *src)

where
4 dest isapointer to the destination fielded buffer
4 srcisapointer to the source fielded buffer

Fcpy preserves the overall buffer length of the overwritten fielded buffer; thus, Fcpy
isuseful for expanding or reducing the size of afielded buffer. For example:

FBFR *src, *dest;

i.f.(F;:py(dest, src) < 0)
F_error(“*pgm_name”);

Unlike Fmove, where dest could point to an uninitialized area, Fcpy expects dest to
point to an initialized fielded buffer (allocated using Falloc) and also checksto see
that it is big enough to accommodate the data from the source buffer.

Note: Y ou cannot reduce the size of afielded buffer below the amount of space
needed for currently held data.

As with Fmove, the source buffer is not modified by Fcpy .

BEA TUXEDO FML Programmer’s Guide

Field Access and Modification Functions

Field Access and Modification Functions

Fadd

This section discusses how to update and access fielded buffers using the field types
of the fields without doing any conversions. The functions that allow you to convert
data from one type to another upon transfer to/from a fielded buffer are listed under
“Conversion Functions” later in this chapter.

TheFadd function adds a new field value to the fielded buffer.

int
Fadd(FBFR *fbfr, FLDID fieldid, char *value, FLDLEN /en)

where
4 fbfr is a pointer to a fielded buffer
¢ fieldidis afield identifier

4 val ueis a pointer to a new value. Its type is showntas *, but when it is
used, its type must be the same type as the value to be added (see below)

4 | enis the length of the value if its typeASD_CARRAY

If no occurrence of the field exists in the buffer, then the field is added. If one or more
occurrences of the field already exist, then the value is added as a new occurrence of
the field, and is assignhed an occurrence number 1 greater than the current highest
occurrence. (To add a specific occurrerredg must be used.)

Fadd, like all other functions that take or return a field value, expects a pointer to a field
value, never the value itself.

If the field type is such that the field length is fixed (short, long, char, float, or double)
or can be determined (string), the field length need not be given (it is ignored). If the
field type is a character array, the length must be specified; the length is defined as type
FLDLEN. For example:

FLDID fieldid, Fldid;

FBFR *f bfr;

fieldid = Fldid("fieldname"):

if(Fadd(fbfr, fieldid, "new value", (FLDLEN)9) < 0)
F _error("pgmnane");

BEA TUXEDO FML Programmer’s Guide 5-17

S Field Manipulation Functions

Fappend

gets the field identifier for the desired field and adds the field value to the buffer.

It isassumed (by default) that the native type of thefield isacharacter array so that the
length of the value must be passed to the function. If the value being added is not a
character array, the type of val ue must reflect the type of the value it points to; for
instance, the following example adds along field value:

long Ival;

I val = 123456789;
i f(Fadd(fbfr, fieldid, & val, (FLDLEN)O) < 0)
F error("pgmnane");

For character array fields, null fields may be indicated by alength of 0. For string
fields, the null string may be stored sincethe NUL L terminating byteis actually stored
as part of the field value: a string consisting of only the NULL terminating byte is
considered to have alength of 1. For all other types (fixed length types), you may
choose some specia valuethat isinterpreted by the applicationasaNULL, but thesize
of the value will betaken from itsfield type (e.g., length of four for along) regardiess
of what value is actually passed. Passing aNULL value address will result in an error
(FEI NVAL).

The Fappend function appends a new field value to the fielded buffer.

i nt
Fappend(FBFR *fbfr, FLDI D fieldid, char *value, FLDLEN /en)

where
4 fbfrisapointer to afielded buffer
¢ fieldidisafieldidentifier

4 val ueisapointer to anew value. Itstypeisshown aschar *, but whenitis
used, itstype must be the same type as the value to be appended (see below)

4 | enisthelength of thevalueif itstypeis FLD_CARRAY

Fappend appendsanew occurrence of thefield f i el di dwith avaluelocated at val ue
to the fielded buffer and puts the buffer into append mode. Append mode provides
optimized buffer construction for large buffers constructed of many rows of acommon

5-18 BEA TUXEDO FML Programmer’s Guide

Field Access and Modification Functions

set of fields. A buffer that isin append modeisrestricted asto what operations may be
performed on the buffer. Only calls to the following FML routines are allowed in
append mode: Fappend, Fi ndex, Funi ndex, Ff r ee, Fused, Funused and Fsi zeof .
Callsto Fi ndex or Funi ndex will end append mode. The following example shows
the construction of a 500 row buffer with 5 fields per row using Fappend.

for (i=0; i 500 ;i++) {

if ((Fappend(fbfr, LONGFLD1, & val 1[i], (FLDLEN)O) < 0) ||
(Fappend(fbfr, LONGFLD2, & val2[i], (FLDLEN)O) < 0) ||
(Fappend(fbfr, STRFLD1, &strl[i], (FLDLEN)O) < 0) ||
(Fappend(fbfr, STRFLD2, &str2[i], (FLDLEN)O) < 0) ||
(Fappend(fbfr, LONGFLD3, &l val 3[i], (FLDLEN)O) < 0)) {
F error("pgmnane");

br eak;
}

}
Fi ndex(fbfr, 0);

Fappend, like all other functionsthat take or return afield value, expects a pointer to
afield value, never the value itself.

If thefield typeissuch that the field length is fixed (short, long, char, float, or double)
or can be determined (string), the field length need not be given (it isignored). If the
field typeisacharacter array, thelength must be specified; thelength isdefined astype
FLDLEN.

It isassumed (by default) that the native type of thefield isacharacter array so that the
length of the value must be passed to the function. If the value being appended is not
acharacter array, the type of val ue must reflect the type of the value it pointsto.

For character array fields, null fields may be indicated by alength of 0. For string
fields, thenull string may be stored since the NUL L terminating byteisactually stored
as part of the field value: a string consisting of only the NULL terminating byte is
considered to have alength of 1. For al other types (fixed length types), you may
choose some special valuethat isinterpreted by the application asaNULL, but the size
of the value will be taken from itsfield type (e.g., length of four for along) regardless
of what value isactually passed. Passing a NULL value address will result in an error
(FEI NVAL).

BEA TUXEDO FML Programmer’s Guide 5-19

S Field Manipulation Functions

Fchg

5-20

Fchg changes the value of afield in the buffer.

int
Fchg(FBFR *fbfr, FLDI D fiel did, FLDOCC oc, char *value, FLDLEN /en)

where

4 fbfrisapointer to afielded buffer

¢ fieldidisafieldidentifier

4 oc isthe occurrence number of thefield
¢

val ue isapointer to anew value. Itstypeis shown aschar *, but whenitis
used, itstype must be the same type as the value to be added (see Fadd)

¢ | enisthelength of thevalueif itstypeis FLD_CARRAY

For example, to change afield of type car r ay to anew value stored in val ue:

FBFR *fbfr;

FLDI D fieldid;
FLDOCC oc;
FLDLEN | en;
char val ue[50] ;

strcpy(val ue, "new val ue");

flen = strlen(val ue);

if(Fchg(fbfr, fieldid, oc, value, len) < 0)
F_error (" pgmnnane");

If oc is- 1, then thefield value is added as anew occurrenceto the buffer. If oc isOor
greater and the field is found, then the field value is modified to the new value
specified. If oc isO or greater and the field is not found, then NULL occurrences are
added to the buffer until the value can be added as the specified occurrence. For
example, changing field occurrence 3 for afield that does not exist on a buffer will
cause three NULL occurrences to be added (occurrences 0, 1 and 2), followed by
occurrence 3 with the specified field value. Null values consist of the NULL string
"\ 0" (1 bytein length) for string and character values, 0 for long and short fields, 0. 0
for float and double values, and a zero-length string for a character array.

BEA TUXEDO FML Programmer’s Guide

Field Access and Modification Functions

Fcmp

The new or modified valueiscontained in val ue. If it isacharacter array, itslengthis
giveninlen (I en isignored for other field types). If the value pointer isNULL and
thefield isfound, then thefield is deleted. If the field occurrence to be deleted is not
found, it is considered an error (FNOTPRES).

The buffer must have enough room to contain the modified or added field value, or an
error isreturned (FNOSPACE).

Fcrp compares the field identifiers and field values of two fielded buffers.

int
Fcrp(FBFR *fbfr1, FBFR *fbfr2)

where
¢ fbfriandfbfr2arepointersto fielded buffers

The function returns a 0 if the buffers are identical; it returnsa- 1 on any of the
following conditions:

¢ thefieldidofafbfrifieldislessthanthefieldid of the corresponding field
of fbfr2

4 thevalueof afbfr1fieldislessthan the value of the corresponding field of
fbfr2

¢ fbfr1isshorter than fbfr2

Fcnp returnsalif any of the reverse set of the above conditionsistrue (for example,
if thefield id of af bfr2field islessthan thefield id of the corresponding field of
fbfri, etc.).

BEA TUXEDO FML Programmer’s Guide 5-21

S Field Manipulation Functions

Fdel

The Fdel function deletes the specified field occurrence.

int
Fdel (FBFR *fbfr, FLDI D fieldid, FLDOCC oc)

where

4 fbfrisapointer to afielded buffer

¢ fieldidisafieldidentifier

4 oc isthe occurrence number

For example,

FLDOCC occurrence

écéu;rence=m

if(Fdel (fbfr, fieldid, occurrence) < 0)
F_error (" pgmnnanme");

deletes the first occurrence of the field indicated by the specified field identifier. If it
does not exigt, the function returns - 1 (Fer r or is set to FNOTPRES).

Fdelall

Fdel al | deletesall occurrences of the specified field from the buffer:

int
Fdel al | (FBFR *fbfr, FLDID fiel did)

where

4 fbfr isapointer to afielded buffer
¢ fieldidisafieldidentifier

For example:

if(Fdelall (fbfr, fieldid) < 0)
F error("pgmnane"); /* field not present */

If the field is not found, the function returns - 1 (Fer r or is set to FNOTPRES).

5-22 BEA TUXEDO FML Programmer’s Guide

Field Access and Modification Functions

Fdelete

Fdel et e deletes all occurrences of dl fieldslisted in the array of field identifiers,
fieldid[]:

int

Fdel ete(FBFR *fbfr, FLDI D *fieldid)

where
¢ fbfr isapointer to afielded buffer
¢ fieldidisapointer tothelist of field identifiersto be deleted

Theupdateisdonedirectly to thefielded buffer. The array of field identifiers does not
need to be in any specific order, but the last entry in the array must be field identifier
0 (BADFLDI D). For example:

#i ncl ude "fldthbl.h"
FBFR *dest ;
FLDID fi el did[20];

fieldid[O] A /* fieldid for field A */
fieldid[1] D; /* fieldid for field D */
fieldid[f2] = BADFLDI D; /* sentinel value */
i f(Fdel ete(dest, fieldid) < 0)

F error("pgmnane");

If the destination buffer hasfields A, B, C, and D, this example will result in a buffer
that contains only occurrences of fields B and C.

Fdel et e isamore efficient way of deleting severa fields from a buffer than using
several Fdel al | calls.

BEA TUXEDO FML Programmer’s Guide 5-23

S Field Manipulation Functions

Ffind

Ffi nd finds the value of the specified field occurrence in the buffer:

char *
Ffind(FBFR *fbfr, FLDID fieldid FLDOCC oc, FLDLEN */en)

where

4 fbfrisapointer to afielded buffer
¢ fieldidisafieldidentifier

4 oc isthe occurrence number

4 | enisthelength of the value found

In the declaration above the return valueto Ff i nd is shown as a character pointer data
type (char * in C). The actual type of the pointer returned isthe same as the type of the
value it points to.

An example of the use of the functionis:

#include "fldtbl.h"
FBFR *fbfr;
FLDLEN | en;
char* Ffind, *val ue;

if((value=Ffind(fbfr,zl P,0, & en)) == NULL)
F _error ("pgm nanme");

If thefield isfound, itslength isreturned in| en (if 1 en isNULL, the length is not
returned), and its location is returned as the value of the function. If thefield is not
found, NULL isreturned, and Fer r or is set to FNOTPRES.

Ffi nd is useful for gaining “read-only” access to a field. The value returnédl ity
should not be used to modify the buffer. Field value modification should only be done
by the functiongadd or Fchg.

The value returned bsf i nd is valid only so long as the buffer remains unmodified.
The value is guaranteed to be aligned on a short boundary but may not be aligned or
long or double boundary, even if the field is of that type (see the conversion functions

5-24 BEA TUXEDO FML Programmer’s Guide

Field Access and Modification Functions

Ffindlast

described | ater in this document for aligned values). On processors that require proper
alignment of variables, referencing the value when not aligned properly will cause a
system error, asin the following example:

long *I11,12;

FLDLEN | engt h

char *Ffind

if((l1=(long *)Find(fbfr, ZIP, 0, & ength)) == NULL)
F _error("pgm nanme");

el se
12 = *1;

and should be re-written as:

if((l1l==(long *)Ffind(fbfr, ZIP, 0, & ength)) == NULL)

F error("pgmnane");

el se
mencpy(& 2,11, sizeof (long));

Thisfunction findsthelast occurrence of afield in afiel ded buffer and returnsapointer
to the field, as well asthe occurrence number and length of the field occurrence:

char *
Ffindl ast (FBFR *fbfr, FLDID fieldid FLDOCC *oc, FLDLEN */en)

where

¢ fbfr isapointer to afielded buffer

¢ fieldidisafiedidentifier

4 oc isapointer to the occurrence number of the last field occurrence found
4 | enisapointer to the length of the value found

In the declaration above thereturn valueto Ff i ndl ast isshown asacharacter pointer
datatype (char * in C). The actual type of the pointer returned is the same as the type
of the value it points to.

BEA TUXEDO FML Programmer’s Guide 5-25

S Field Manipulation Functions

Ffindocc

Ffi ndl ast actslikeFfi nd, except that you do not specify afield occurrence. Instead,
both the occurrence number and the value of the last field occurrence are returned.
However, if you specify NULL for occurrence on calling the function, the occurrence
number will not be returned.

Thevalue returned by Ff i ndl ast isvalid only aslong as the buffer remains
unchanged.

Ffi ndocc looks at occurrences of the specified field on the buffer and returns the
occurrence number of the first field occurrence that matches the user-specified field
value:

FLDOCC
Ffindocc(FBFR *fbfr, FLDID fieldid, char *value, FLDLEN /en;)

where
4 fbfr isapointer to afielded buffer
¢ fieldidisafieldidentifier

4 val ueisapointer to anew value. Itstypeis shown as char *, but when it is
used, itstype must be the same type as the value to be added (see Fadd)

4 | enisthelength of thevalueif typecarr ay

For example,

#include "fldtbl.h"
FBFR *fbfr;

FLDOCC oc;

| ong zi pval ue;

zi pval ue = 123456;
i f((oc=Ffindocc(fbfr, zl P, &i pvalue, 0)) < 0)
F error("pgmnane");

would set oc to the occurrence for the specified zip code.

5-26 BEA TUXEDO FML Programmer’s Guide

Field Access and Modification Functions

Fget

int

Regular expressions are supported for string fields. For example,

#i ncl ude "fldthbl.h"
FBFR *f bfr;

FLDQOCC oc;

char *nane;

name = "J.*"
if ((oc = Ffindocc(fbfr, NAME, name, 1)) < 0)
F _error ("pgm nane");

would set oc to the occurrence of NAME that starts with “J”.

Note: To enable pattern matching on strings, the fourth argumeéht talocc must
be nonzero. If zero, simple string compare is performed. If the field value is
not found,- 1 is returned.

For upward compatibility, a circumflex (*) and dollar sign ($) are implied to surround
the regular expression; thus, the above example is actually interpreted as “*(J.*)$".
This means that the regular expression must match the entire string value in the field.

Fget should be used to retrieve a field from a fielded buffer when the value is to be
modified:

Fget (FBFR *fbfr, FLDID fieldid, FLDOCC oc, char */oc, FLDLEN *maxl en)

where

4 fbfr is a pointer to a fielded buffer
¢ fieldidis afield identifier

4 oc is the occurrence number

4 /ocis a pointer to a buffer to copy the field value into

4 nax/ enis a pointer to the length of the source buffer on calling the function, and
a pointer to the length of the field on return

BEA TUXEDO FML Programmer’s Guide 5-27

S Field Manipulation Functions

Fgetalloc

Thecaller provides Fget with a pointer to aprivate buffer, aswell asthe length of the
buffer. If max! en is specified as NULL, then it is assumed that the destination buffer
islarge enough to accommodate the field value, and its length is not returned.

Fget returnsan error if the desired field is not in the buffer (FNOTPRES), or if the
destination buffer istoo small (FNOSPACE). For example,

FLDLEN | en;
char val ue[100];

| en=si zeof (val ue);
if(Fget(fbfr, zZIP, 0, value, & en) < 0)
F error("pgmnane");

gets the zip code assuming it is stored as a character array or string. If it isstored asa
long, then it would be retrieved by:

FLDLEN | en;
| ong val ue;

I en = sizeof (val ue);

if(Fget(fbfr, zZIP, 0, value, & en) < 0)
F error("pgmnane");

Like Fget , Fget al | oc finds and makes a copy of a buffer field, but it acquires space
for thefield viaacall tonal | oc(3):

char *
Fgetal | oc(FBFR *fbfr, FLDI D fieldid, FLDOCC oc, FLDLEN *extral en)

where

4 fbfrisapointer to afielded buffer
¢ fieldidisafieldidentifier

4 oc isthe occurrence number
¢

ext r al enisapointer to the additional length to be acquired on calling the
function, and a pointer to the actual length acquired on return

5-28° BEA TUXEDO FML Programmer’s Guide

Field Access and Modification Functions

Fgetlast

int
Fget | ast (FBFR

In the declaration above the return value to Fgetalloc is shown as a character pointer
datatype (char * in C). The actual type of the pointer returned is the same as the type
of the value it points to.

On success, Fget al | oc returns avalid pointer to the copy of the properly aligned
buffer field; on error it returnsNULL. If mal | oc(3) fails, Fget al | oc returnsan error
(Ferror isset to FMALLOC).

The last parameter to Fget al | oc specifiesan extraamount of space to be acquired if,

for instance, the gotten value is to be expanded before re-insertion into the fielded

buffer. On success, the length of the allocated buffer isreturned in ext r al en. For

example:

FLDLEN extral en;

FBFR *fi el dbfr

char *Fgetalloc;

extralen = O;

if (fieldbfr = (FBFR *)Fgetal l oc(fbfr, zZIP, 0, &extralen) == NULL)
F_error("pgmnane");

It is the responsibility of the caller to f r ee space acquired by Fget al | oc.

Fget | ast isused to retrievethelast occurrence of afield from afielded buffer when
the value is to be modified:

*fbfr, FLDI D fieldid, FLDOCC *oc, char */oc, FLDLEN * nmax/ en)

where

¢ fbfr isapointer to afielded buffer
¢ fieldidisafiedidentifier

4 oc isapointer to the occurrence number of the last field occurrence

4 | ocisapointer to abuffer to copy the field value into

4+ nax/ en isapointer to the length of the source buffer on calling the function, and
apointer to the length of the field on return

BEA TUXEDO FML Programmer’s Guide 5-29

S Field Manipulation Functions

Fnext

int

The caller provides Fget | ast with apointer to a private buffer, aswell as the length
of the buffer. Fget | ast acts like Fget , except that you do not specify afield
occurrence. I nstead, both the occurrence number and the value of the last field
occurrence are returned. However, if you specify NULL for occ on calling the
function, the occurrence number will not be returned.

Fnext findsthe next field in the buffer after the specified field occurrence:

Fnext (FBFR *fbfr, FLDID *fieldid, FLDOCC *oc, char *val ue, FLDLEN */en)

where
f bf r isapointer to afielded buffer
fiel di disapointer to afield identifier

¢
¢
4 oc isapointer to the occurrence number
¢

val ue isapointer of the same type as the value contained in the next field

4 | enisapointer to the length of * val ue

A fiel di d of FI RSTFLDI D should be specified to get the first field in a buffer; the
field identifier and occurrence number of the first field occurrence are returned in the
corresponding parameters; if thefieldisnot NULL, itsvalueis copied into the memory
location addressed by the val ue pointer; thel en parameter is used to determine if
val ue has enough space allocated to contain the field value (Fer r or isset to
FNOSPACE if it does not); and, the length of the valueisreturned in thel en parameter.
Note that if the value of the field is non-null, then the | en parameter is also assumed
to contain the length of the currently allocated space for val ue.

If thefield valueisNULL, then the val ue and | engt h parameters are not changed.

If no morefields are found, Fnext returns 0 (end of buffer) and fi el di d,
occurrence, and val ue are left unchanged.

If the val ue parameter isnot NULL, thel engt h parameter is also assumed to be
non-NULL.

5-30 BEA TUXEDO FML Programmer’s Guide

Field Access and Modification Functions

Fnum

The following example reads all field occurrencesin the buffer:

FLDID fiel did;
FLDQOCC occurrence;
char *val ue[100];
FLDLEN | en;

for(fieldi d=FI RSTFLDI D, | en=si zeof (val ue);
Fnext (fbfr, & i el di d, &ccurrence, val ue, & en) > 0;

| en=si zeof (val ue)) {
/* code for each field occurrence */

Fnumreturns the number of fields contained in the specified buffer, or - 1 on error:

FLDOCC
Fnunm(FBFR *f bfr)

where
¢ fbfr is a pointer to afielded buffer
For example:
if((cnt=Fnum(fbfr)) < 0)
F error("pgm nane");
el se

fprintf(stdout,"% fields in buffer\n",cnt);

would print the number of fieldsin the specified buffer.

BEA TUXEDO FML Programmer’s Guide 5-31

S Field Manipulation Functions

Foccur

Fpres

Foccur returnsthe number of occurrences for the specified field in the buffer:

FLDOCC
Foccur (FBFR *fbfr, FLDI D fieldid)

where
4 fbfrisapointer to afielded buffer
¢ fieldidisafieldidentifier

Zeroisreturned if the field doesnot occur in the buffer and - 1 isreturned on error. For
example:
FLDOCC cnt;
i f((cnt=Foccur (fbfr,ZIP)) < 0)
F error("pgm nane");
el se
fprintf(stdout,"Field ZI P occurs %l tines in buffer\n",cnt);

would print the number of occurrences of the field zI P in the specified buffer.

Fpr es returns true (1) if the specified field occurrence exists and false (0) otherwise:

i nt
Fpres(FBFR *fbfr, FLDI D fieldid FLDOCC oc)

where

4 fbfr isapointer to afielded buffer
¢ fieldidisafieldidentifier

4 oc isthe occurrence number

For example:

Fpres(fbfr, ZI P, 0)

would return true if the field zI P existsin the fielded buffer pointed to by f bf r.

5-32 BEA TUXEDO FML Programmer’s Guide

Field Access and Modification Functions

Fvals and Fvall

Fval s workslike Ff i nd for string values but guarantees that a pointer to avalueis
returned. Fval | workslike Ff i nd for long and short values, but returns the actual
value of the field as along, instead of a pointer to the value.

char*
Fval s(FBFR *fbfr, FLDID fi el di d, FLDOCC oc)

char*
Fval | (FBFR *fbfr, FLDI D fi el di d, FLDOCC oc)

wherein both functions

¢ fbfr isapointer to afielded buffer
¢ fieldidisafiedidentifier

4 oc isthe occurrence number

For Fval s, if the specified field occurrence is not found, the NULL string, \ 0, is
returned. This function isuseful for passing the value of afield to another function
without checking thereturnvalue. Thisfunctionisvalid only for fieldsof type st ri ng;
the NULL string is automatically returned for other field types (i.e., no conversionis
done).

For Fval | , if the specified field occurrence is not found, then O is returned. This
function is useful for passing the value of afield to another function without checking
the return value. Thisfunction isvalid only for fields of type | ong and short; Ois
automatically returned for other field types (i.e., no conversion is done).

BEA TUXEDO FML Programmer’s Guide 5-33

S Field Manipulation Functions

Buffer Update Functions

Fconcat

Thefunctionslisted in this section access and update entire fielded buffers, rather than
individual fields in the buffers. These functions use at most three parameters, dest ,
src, and fieldid, where

4 dest isapointer to a destination fielded buffer
4 srcisapointer to asource fielded buffer

¢ fieldidisafieldidentifier or an array of field identifiers

Fconcat addsfields from the source buffer to the fields that already exist in the
destination buffer.

i nt

Fconcat (FBFR *dest, FBFR *src)

Occurrences in the destination buffer are maintained (i.e., retained and not modified)
and new occurrences from the source buffer are added with greater occurrence

numbers than any existing occurrencesfor each field (the fieldsare maintained in field
identifier order).

In the following example:
FBFR *src, *dest;

i f(Fconcat (dest,src) < 0)
F error("pgmnane");

if dest hasfields A, B, and two occurrencesof C, and sr ¢ hasfields A, C, and D, the
resultant dest will have two occurrences of field A (destination field A and source
field A), field B, three occurrences of field C (two from dest and the third from src),
and field D.

This operation will fail if there is not enough space to contain the new fields
(FNOSPACE); in this case, the destination buffer remains unchanged.

5-34 BEA TUXEDO FML Programmer’s Guide

Buffer Update Functions

Fjoin

Fojoin

Fj oi n isused to join two fielded buffers based on matching fiel did/occurrence.

int

Fj oi n(FBFR *dest, FBFR *src)

For fieldsthat match on fieldid/occurrence, thefield valueisupdated in the destination
buffer with the value from the source buffer. Fields in the destination buffer that have
no corresponding fieldid/occurrence in the source buffer are deleted. Fields in the
source buffer that have no corresponding fieldid/occurrence in the destination buffer
are not added to the destination buffer. Thus,

i f(F oin(dest,src) < 0)
F error("pgmnane");

Using the input buffersin the previous example will result in a destination buffer that
has source field value A and source field value C. This function may fail due to lack
of spaceif the new values are larger than the old (FNOSPACE); in this case, the
destination buffer will have been modified. However, if this happens, the destination
buffer may be re-allocated using Fr eal | oc and the Fj oi n function repeated (even if
the destination buffer has been partially updated, repeating the function will give the
correct results).

Foj oi nissimilar toFj oi n, but it does not delete fieldsfrom the destination buffer that
have no corresponding fieldid/occurrence in the source buffer.

int

Foj oi n(FBFR * dest, FBFR *src)

Note that fields that exist in the source buffer that have no corresponding

fieldid/occurrence in the destination buffer are not added to the destination buffer. For
example:

i f(Fojoin(dest,src) < 0)
F error("pgmnane");

Using the input buffers from the previous example, dest will contain the source field
value A, the destination field value B, the source field value C, and the second
destination field value C. Aswith Fj oi n, thisfunction can fail for lack of space
(FNOSPACE) and can be re-issued again after allocating more space to compl ete the
operation.

BEA TUXEDO FML Programmer’s Guide 5-35

S Field Manipulation Functions

Fproj

Fprojcpy

Fpr oj isused to update a buffer in place so that only the desired fields are kept (in
other words, the result is a projection on specified fields).

i nt

Fproj (FBFR *fbfr, FLDID *fieldid)

These fields are specified in an array of field identifiers passed to the function. The
update is performed directly in the fielded buffer. For example:

#include "fldtbl.h"
FBFR *fbfr;
FLDI D fi el did[20];

fieldid[0] = A /* fieldid for field A */
fieldid[1] = D /* fieldid for field D */
fieldidf 2] = BADFLDI D, /* sentinel value */

if(Fproj(fbfr, fieldid) < 0)
F _error ("pgm nanme");

If the buffer hasfields A, B, C, and D, the exampleresultsin abuffer that containsonly
occurrences of fields A and D. Note that the entries in the array of field identifiers do
not need to be in any specific order, but the last value in the array of field identifiers
must be field identifier O (BADFLDI D).

Fpr oj cpy issimilar to Fproj but the projection is done into a destination buffer.
i nt
Fproj cpy(FBFR *dest, FBFR *src, FLDI D *fiel did)

Any fieldsin the destination buffer arefirst del eted and the results of the projection on
the source buffer are copied into the destination buffer. Using the above example,

i f(Fprojcpy(dest, src, fieldid) < 0)
F error("pgmnane");

will place the results of the projection in the destination buffer. The entriesin the array
of field identifiersmay bere-arranged; the field identifier array issorted if they are not
in numeric order.

5-36 BEA TUXEDO FML Programmer’s Guide

VIEWS Functions

Fupdate

Fupdat e updates the destination buffer with the field values in the source buffer.

int
Fupdat e(FBFR * dest, FBFR *src)

For fieldsthat match on fieldid/occurrence, thefield valueisupdated in the destination
buffer with the valuein the source buffer (like Fj oi n). Fields on the destination buffer
that have no corresponding field on the source buffer are left untouched (like Foj oi n).
Fields on the source buffer that have no corresponding field on the destination buffer
are added to the destination buffer (like Fconcat). For example:

i f (Fupdat e(dest,src) < 0)
F _error("pgmnane");

If the sr ¢ buffer hasfidds A, C, and D, and the dest buffer hasfields A, B, and two
occurrences of C, the updated destination buffer will contain: the sourcefield value A,
the destination field value B, the source field value C, the second destination field
vaue C, and the source field value D.

VIEWS Functions

Fuftos

Thisfunction transfersdatafrom afielded buffer to aC structure using aspecified view
description.

int
Fvftos(FBFR *fbfr, char *cstruct, char *view

where
¢ fbfr isapointer to afielded buffer
4 cstruct isapointer to astructure

4 vi ewisapointer to aview name string

BEA TUXEDO FML Programmer’s Guide 5-37

S Field Manipulation Functions

5-38

If the named view is not found, Fvft os returns-1, and Ferr or is set to FBADVI EW
Whentransferring datafrom afiel ded buffer to aC structure, the following rulesapply:

4 If afiddinthefielded buffer is not mapped to a C structure member, the field is
ignored.

4+ If afiedisnot in the fielded buffer, but appearsin the view description and is
mapped to a structure member, the corresponding null value is copied into the
member.

¢ If afiedinthefielded buffer contains data of type st ri ng or car r ay,
characters will be copied into the structure up to the size of the mapped structure
member (i.e., source values that are too long will be truncated). If the source
value is shorter than the mapped structure member, the remainder of the member
value will be padded with null (0) characters. String values will always be
terminated with anull character (even if this means truncating the value).

4 If the number of occurrences of afield in the buffer is equal to the number of
mapped structure members, then the fielded datais copied into the C structure.

4 If the number of occurrences of afield in the buffer is greater than the number of
mapped structure members, then the fielded datais ignored.

4 If the number of occurrences of afield in the buffer isless than the number of
mapped structure members, then the extra members are assigned the
corresponding null value.

For example,

#i ncl ude <stdio. h>
#include "fm . h"
#include "custdb.flds. h"
#i ncl ude "custdb. h"
struct custdb cust;

FBFR *fbfr;

fbfr = Fall oc(800, 1000);

Fvinit((char *)&cust, "custdb"); /* initialize cust */
str = "stringl";

Fadd(f bfr, ACTI ON, str, (FLDLEN) 8) ;

str = "abc";

Fadd(f bfr, BUG_ CURS, str, (FLDLEN) 4) ;
Fvftos(fbfr,(char *)&cust, "custdb");

would put “stringl” intocust . acti on[0] and “abc” intocust . bug[0] . All other
members in theust structure should contain null values.

View cust db is defined in “VIEWS Examples” in Chapter 6.

BEA TUXEDO FML Programmer’s Guide

VIEWS Functions

Fustof

Fvnull

Thisfunction transfersdatafrom aC structureto afielded buffer using aspecified view
description.

int
Fvstof (FBFR *fbfr, char *cstruct, int npde, char *view

where

¢ fbfr isapointer to afielded buffer

4 cstruct isapointer to astructure

4 node isone of the following: FUPDATE, FJO N, FOQJO N, FCONCAT
4 vi ewisapointer to aview name string

The transfer process obeys the rules listed under the FML function corresponding to
the node parameter (Fupdate, Fjoin, Fojoi n,and Fconcat, described in this
chapter).

If the named view isnot found, Fvst of returns- 1, and Ferr or is Set to FBADVI EW

Note: Null values are not transferred from a structure member to a fielded buffer.
That is, during a structure-to-field transfer, if a structure member contains the
(default or user-specified) null value defined for that member, the member is
ignored.

Fvnul | isused to determineif an occurrence in a C structure contains the null value
for that field.

int
Fvnul | (char *cstruct, char *cnane, FLDOCC oc, char *view)

where
4 cstruct isapointer to astructure

4 cnane isapointer to the name of a structure member

BEA TUXEDO FML Programmer’s Guide 5-39

S Field Manipulation Functions

4 oc istheindex to aparticular element
4 viewisapointer to aview name string

Fvnul | returns.

1 if an occurrence is null
0 if an occurrence is not null
-1 if an error occurred

Fusinit

This function initializes all elementsin a C structure to their appropriate null value.

i nt
Fvsinit(char *cstruct, char *view

where
4 cstruct isapointer to astructure

4 viewisapointer to aview name string

Fvopt

This function allows users to change flag options at run time.

i nt
Fvopt (char *cnane, int option, char *view)

where
¢ cnane isthe name of a structure member
4 optionisone of the options listed below

4 viewisapointer to aview name string

5-40 BEA TUXEDO FML Programmer’s Guide

VIEWS Functions

Fuselinit

Possible values for the opt i on parameter are:

F_FTCS
Allows one-way mapping from fielded buffersto C structures. Similar to the
S option in view descriptions.

F_STOF
Allows one-way mapping from C structuresto fielded buffers. Similar to the
F option in view descriptions.

F_BOTH
Allows two-way mapping between C structures and fielded buffers.

F_OFF
Turns off mapping of the specified member. Similar to the N option in view
descriptions.

Note that changes to view descriptions are not permanent. They are guaranteed only
until another view description is accessed.

Thisfunction initializes an individual member of a C structure to its appropriate null
value. It setsthe ACM of the element to O, if the C flag is used in the view file; it sets
the ALMsto thelength of the associated null value, if theL flagisusedintheview file.

int
Fvselinit(char *cstruct, char *cname, char *view

where
4 cstruct isapointer to astructure
4 cnane isapointer to the name of a structure member

4 vi ewisapointer to aview name string

BEA TUXEDO FML Programmer’s Guide 5-41

S Field Manipulation Functions

Conversion Functions

CFadd

FML providesaset of routinesthat perform data conversion upon reading or writing a
fielded buffer.

Generally, the functions behave like their non-conversion counterparts, except that
they provide conversion from a user type to the native field type when writing to a
buffer, and from the native type to a user type when reading from a buffer.

The native type of afield isthe type specified for it initsfield table entry and encoded
initsfield identifier. (The only exception to thisruleis CFf i ndocc, which, although
it is aread operation, converts from the user-specified type to the native type before
caling Ffi ndocc.) The function names are the same as their non-conversion FML
counterparts except they have a “C” prefix.

The CFadd function adds a user supplied item to a buffer creating a new field
occurrence within the buffer:

int
CFadd(FBFR *fbfr, FLDI D fieldid, char *value, FLDLEN /en, int type)

where

4 fbfr is a pointer to a fielded buffer
¢ fieldidis the field identifier of the field to be added
4 val ueis a pointer to the value to be added

4 | enis the length of the value, if of typar r ay

¢

t ype is the type of the value

5-42 BEA TUXEDO FML Programmer’s Guide

Conversion Functions

Before the field addition, the dataitem is converted from a user supplied type to the
type specified in the field table as the fielded buffer storage type of the field. If the
sourcetypeisFLD_CARRAY (character array), the length argument should be set to the
length of the array. For example,

i f(CFadd(fbfr, ZI P,"12345", (FLDLEN) O, FLD_STRING < 0)
F error("pgmnane");

If the zI P (zip code) field were stored in afielded buffer asalong integer, the function

would convert “12345" to a long integer representation, before adding it to the fielded
buffer pointed to by bf r (note that the field value length is given as 0 since the
function can determine it; the length is needed only for Bye CARRAY). The

following code fragment:

I ong zipval;

zipval = 12345;

i f (CFadd(fbfr, ZI P, &i pval , (FLDLEN) 0, FLD_ LONG) < 0)
F error("pgmnane");

puts the same value into the fielded buffer, but does so by presenting it as a long,
instead of as a string. Note that the value must first be put into a variable, since C does
not permit the construct &12345L. CFadd retutren success, and. on error, in

which caserer ror is set appropriately.

CFchg

The functionCFchg acts likeCFadd, except that it changes the value of a field (after
conversion of the supplied value):

int
CFchg(FBFR *fbfr, FLDI D fieldid, FLDOCC oc, char *value, FLDLEN /en, int type)

where

fbfr is a pointer to a fielded buffer

fi el di dis the field identifier of the field to be changed
oc is the occurrence number of the field to be changed
val ue is a pointer to the value to be added

I en is the length of the value, if of typerr ay

* & & & o o

type is the type of the value

BEA TUXEDO FML Programmer’s Guide 5-43

S Field Manipulation Functions

For example,

FLDOCC occurrence;
I ong zipval;

zi pval = 12345;
occurrence = 0;
i f(CFchg(fbfr, Zl P, occurrence, &i pval , (FLDLEN) O, FLD LONG) < 0)

F error("pgmnane");

would change the first occurrence (occurrence 0) of field zI P to the specified value,
doing any needed conversion.

If the specified occurrence is not found, then null occurrences are added to pad the
buffer with multiple occurrences until the value can be added as the specified
occurrence.

CFget

int

CFget (FBFR *f bfr,

5-44

CFget isthe conversion analog of Fget . The differenceisthat it copies a converted
value to the user-supplied buffer:

FLDI D fieldid FLDOCC oc, char *buf, FLDLEN */en, int type)

where

¢
¢
¢
¢
¢
¢

f bf r isapointer to afielded buffer

fiel di disthefield identifier of the field to be retrieved
oc is the occurrence number of thefield

buf isa pointer to the post-conversion buffer

I en isthe length of the value, if of typecar ray

t ype isthe type of the value

BEA TUXEDO FML Programmer’s Guide

Conversion Functions

Using the previous example,

FLDLEN | en;

| en=si zeof (zi pval);

i f(CFget (fbfr, ZI P,occurrence, &i pval , & en, FLD LONG < 0)

F _error("pgm nane");

would get the value that was just stored in the buffer, no matter what format, and
convert it back to along integer. If the length pointer isNULL, then the length of the
value retrieved and converted is not returned.

CFgetalloc

Crget al | oc islike Fget al | oc; you are responsible for freeing the nal | oc’d space
for the returned (converted) value withee:

char *
CrFgetal l oc(FBFR *fbfr, FLDID fieldid, FLDOCC oc, int type, FLDLEN *extral en)

where

4 fbfr is a pointer to a fielded buffer
¢ fieldidis the field identifier of the field to be converted

4 oc is the occurrence number of the field

4 typeis the type to which the value is converted

¢ extral enon calling the function is a pointer to the extra allocation amount; on
return, it is a pointer to the size of the total allocated area

In the declaration above the return valu€kget al | oc is shown as a character
pointer data typecpar * in C). The actual type of the pointer returned is the same as
the type of the value it points to.

BEA TUXEDO FML Programmer’s Guide 5-45

S Field Manipulation Functions

CFfind

The previously stored value could be retrieved into space alocated automatically for
you by the following code:

char *val ue;
FLDLEN extr a;

éxir.:a = 25;
i f((value=CFgetalloc(fbfr,zI P, 0, FLD LONG &extra)) == NULL)
F error("pgm nane");

Thevalueext r a inthefunction call indicates that the function should not only allocate
enough space for the retrieved value but an additional 25 bytes and the total amount of
space allocated will be returned in thisvariable.

CFf i nd returns a pointer to a converted value of the desired field:

char *
CH i nd(FBFR *fbfr, FLDID fieldid, FLDOCC oc, FLDLEN /en, int type)

where
4 fbfr isapointer to afielded buffer

¢ fieldidisthefieldidentifier of thefield to be retrieved
4 oc isthe occurrence number of thefield

4 | enisthelength of the post-conversion value

4 typeisthetypeto which the valueis converted

In the declaration abovethe return valueto CFf i nd isshown asacharacter pointer data
type (char * in C). The actual type of the pointer returned isthe same as the type of the
value it points to.

5-46 BEA TUXEDO FML Programmer’s Guide

Conversion Functions

Like Ff i nd, this pointer should be considered read only. For example:

char *CFfind;
FLDLEN | en;
I ong *val ue;

if((value=(long *)CFfind(fbfr, Zl P, occurrence, & en, FLD LONG) == NULL)
F error("pgm nane");

would return a pointer to along containing the value of the first occurrence of the ZIP
field. If the length pointer is NULL, then the length of the value found is not returned.
Unlike Ff i nd, the value returned is guaranteed to be properly aligned for the
corresponding user-specified type.

Note: The duration of the validity of the pointer returned by CFf i nd is guaranteed

CFfindocc

only until the next buffer operation, even if it is non-destructive, since the
converted value is retained in a single private buffer. This differs from the
value returned by Ff i nd, which is guaranteed until the next modification of
the buffer.

CFf i ndocc looks at occurrences of the specified field on the buffer and returns the
occurrence number of the first field occurrence that matches the user-specified field
value after it has been converted (it is converted to the type of the field identifier).

FLDOCC

CFf i ndocc(FBFR *fbfr, FLDID fieldid, char *value, FLDLEN /en, int type)
where
¢ fbfr isapointer to afielded buffer

¢
¢
¢
¢

fi el di disthefield identifier of the field to be retrieved
val ue isapointer to the unconverted matching value
I en isthelength of the unconverted matching value

t ype is the type of the unconverted matching value

BEA TUXEDO FML Programmer’s Guide 5-47

S Field Manipulation Functions

For example,

#include "fldtbl.h"
FBFR *fbfr;

FLDOCC oc;

char zipval ue[20];

strcpy(zi pval ue, "123456") ;
i f((oc=CFfindocc(fbfr,zlP,zipvalue, 0, FLD STRING) < 0)
F_error("pgmnane");

would convert the string to the type of fi el di d ZI P (possibly along) and set oc to the
occurrence for the specified zip code. If the field value is not found, - 1 is returned.

Note: Since CFfi ndocc convertsthe user-specified value to the native field type
before examining thefield values, regular expressionswill only work whenthe
user-specified type and the native field type are both FLD_STRI NG. Thus,

CFf i ndocc has no utility with regular expressions.

Converting Strings

5-48

A set of functions (Fadds(3fml), Fchgs(3fml), Fget s(3fml), Fget sa(3fml) and

Ff i nds(3fml) and their FML 32 counterparts) has been provided to handle the case of
conversion to/from a user type of FLD_STRI NG. These functions call their
non-string-function counterparts, providing at ype of FLD_STRI NG, and al en of 0.
Note that the duration of the validity of the pointer returned by Ff i nds isthe same as
that described for CFf i nd.

See Section 3fml of the BEA TUXEDO Reference Manual for descriptions of these
functions.

BEA TUXEDO FML Programmer’s Guide

Conversion Functions

Ftypcvt

The functions CFadd, CFchg, CFget , CFget al | oc, and CFf i nd use the function
Ft ypcvt to perform the appropriate data conversion. The synopsis of Ft ypcvt usage
isasfollows (it does not follow the parameter order conventions):

char *
Ft ypcvt (FLDLEN *tol en, int totype, char *fronval, int frontype, FLDLEN fronien)

where

4 tol enisapointer to the length of the converted value

4 totype isthetypeto which to convert

4 fronval isapointer to the value from which to convert

¢ front ype isthetype from which to convert

¢ from enisthelength of the from valueif the from typeis FLD_CARRAY

Ft ypcvt converts from the value *f r onval , which hastype f r ont ype, and length
from enif front ype istype FLD_CARRAY (otherwisef r onl en isinferred from
front ype), toavalue of typet ot ype. Ft ypcvt returns a pointer to the converted
value, and sets*t ol en to the converted length, upon success. Upon failure, Ft ypcvt
returns NULL. Asan example of its usage, the function CFchg is presented:

CFchg(fbfr,fieldid, oc,val ue,len,type)

FBFR *f bfr; /* fielded buffer */

FLDI D fiel di d; /* field to be changed */

FLDOCC oc; /* occurrence of field to be changed */
char *val ue; /* location of new val ue */

FLDLEN | en; /* length of new val ue */

int type; /* type of new val ue */

char *convl oc; /* location of post-conversion value */
FLDLEN convl en; /* length of post-conversion val ue */

extern char *Ftypcvt;

/* convert value to fielded buffer type */
if((convloc = Ftypcvt(&convl en, FLDTYPE(fi el di d), val ue, type,len)) == NULL)
return(-1);

i f(Fchg(fbfr,fieldid,oc,convloc,convlen) < 0)

return(-1);
return(l);

The user may call Ft ypcvt directly to do field value conversion without adding or
modifying afielded buffer.

BEA TUXEDO FML Programmer’s Guide 5-49

S Field Manipulation Functions

Conversion Rules

A description of conversion rulesis now presented. In this description, ol dval
represents a pointer to the data item being converted, and newal apointer to the
post-conversion vaue:

4 When both types are identical, *newal isidentical to*ol dval .

4 When both types are numeric, i.e., any of long, short, float, or double, the
conversion is done by the C assignment operator, with proper type casting. For
example, converting a short to afloat is done by:

*((float *)newal) = *((short *) ol dval)

4 When converting from anumeric to a string, an appropriate spri nt f is used.
For example, converting a short to a string is done by:

sprintf(newal,"%l",*((short *)ol dval))

4 When converting from a string to a numeric, the appropriate function (for
example, at of , at ol) isused, with the result assigned to a typecasted receiving
location, for example:

*((float *)newal) = atof (ol dval)

4 When converting from type char to any numeric type, or from a numeric type to
achar, the char is considered to be a “shorter short.” For example,

*((float *)newal) = *((char *)ol dval)
is the method used to convertiaar to a float. Similarly,
*((char *)newal) = *((short *)ol dval)

is used to convert a short telaar .

4 A char is converted to a string by appending a NULL character. In this regard, a
char is not a “shorter short.” If it were, assignment would be done by
converting it to a short, and then converting the short to a stringpviant f . In
the same sense, a string is converteddbaa by assigning the first character of
the string to the character.

4 Thecarray type is used to store an arbitrary sequence of bytes. In this sense, it
can encode any user data type. Nevertheless, the following conversions are
specified for carray types:

5-50 BEA TUXEDO FML Programmer’s Guide

Conversion Functions

4 A carray isconverted to astring by appending the NULL byte to the
carray. Inthissense, acarray could be used to store a string, less the
overhead of thetrailing NULL (note that this does not always save space,
since fields are aligned on short boundaries within a fielded buffer). A string
is converted to acar r ay by removing itsterminating NULL byte.

4 When acarray isconverted to any numeric, it isfirst converted to a string,
and the string is then converted to a numeric. Likewise, anumericis
converted to acar r ay, by first converting it to a string, and then converting
thestringto acarr ay.

4 A carray isconverted to achar by assigning the first character of the array
tothechar. Likewise, achar isconverted to acarr ay by assigning it as the
first byte of the array, and setting the length of the array to 1.

Note that acar ray of length 1 and achar have the following differences:

4 A char hasonly the overhead of its associated f i el di d, whileacarray
contains alength code, in addition to the associated f i el di d.

4 A carray isconverted to numeric by first becoming a string, and then
undergoing an at oi call; achar becomes anumeric by typecasting. For
example, achar with value ASCII "1’ (decimal 49) convertsto a short of
value 49; acar ray of length 1, with the single byte an ASCII '1’ converts to
ashort of value 1. Likewise achar 'a (decimal 97) converts to a short of
value 97; the car r ay 'a convertsto ashort of value 0 (since at oi ("a")
produces a0 result).

When converting to or from adec_t type, the associated conversion function as
described in deci nal (3) isused (_gp_deccvasc, _gp_deccvdbl ,
_gp_deccvflt, gp_deccvint, gp_deccvl ong, gp_dect oasc,
_gp_dectodbl ,_gp_dectoflt,_gp_dectoint,and_gp_dect ol ong).

BEA TUXEDO FML Programmer’s Guide 5-51

S Field Manipulation Functions

Table 5-2 summarizes the conversion rules presented in this section.

Table5-2 Summary of Conversion Rules

srctyp dest type

- char short long float double string carray dec t
char - cast cast cast cast st[0]=c array[0]=c d
short cast - cast cast cast sprintf sprintf d
long cast cast - cast cast sprintf sprintf d
float cast cast cast - cast sprintf sprintf d
double cast cast cast cast - sprintf sprintf d
string c=st[0] atoi atol atof atof - drop 0 d
carray c=array[0] atoi atol atof atof add 0 - d
dec_t d d d d d d d -

Table 5-3 defines the entries in Table 5-2.

Table 5-3 Meanings of Entriesin the Summary of Conversion Rules

Entry M eaning

- no conversion need be done, src and dest are same type
cast conversion done using C assignment with type casting
sprintf conversion done using sprintf function

aoi conversion done using atoi function

aof conversion done using atof function

atol conversion done using atol function

add 0 conversion done by concatenating NULL byte

drop O conversion done by dropping terminating NULL byte
c=array[0] character set to first byte of array

array[0]=c first byte of array is set to character

c=<[0] character set to first byte of string

st[0]=c first byte of string setto ¢

d deci mal (3c) conversion function

5-52 BEA TUXEDO FML Programmer’s Guide

Indexing Functions

Indexing Functions

Fidxused

Findex

When afielded buffer isinitialized by Fi ni t or Fal | oc, anindex isautomatically set
up. Thisindex is used to expedite fielded buffer accesses and is transparent to you. As
fields are added to or deleted from the fielded buffer, the index is automatically
updated.

However, when storing a fielded buffer on along-term storage device, or when
transferring it between cooperating processes, it may be desirable to save space by
eliminating itsindex and regenerating it upon receipt. The functions described in this
section may be used to perform such index manipulations.

This function returns the amount of space used by the index of a buffer:

| ong
Fi dxused(FBFR *fbfr)

where
¢ fbfr isapointer to afielded buffer

Y ou can use this function to determine the size of the index of abuffer and whether
significant time or space would be saved by deleting the index.

The function Fi ndex may be used at any time to index an unindexed fielded buffer:

int
Fi ndex(FBFR *fbfr. FLDOCC intvl)

where
¢ fbfr isapointer to afielded buffer

4 intvl istheindexing interval

BEA TUXEDO FML Programmer’s Guide 5-53

S Field Manipulation Functions

The second argument to Fi ndex specifiestheindexing interval for the buffer. If O is
specified, thevalue FSTDXI NT (defined inf ni . h) isused. The user may ensurethat all
fields areindexed by specifying an interval of 1.

Note that more space may be made available in an existing buffer for user data by
increasing the indexing interval, and re-indexing the buffer. This represents a
space/time trade-off, however, since reducing the number of index elements (by
increasing the index interval), means, in general, that searches for fields will take
longer. Most operations will attempt to drop the entire index if they run out of space
before returning a “no space” error.

Frstrindex

This function can be used insteadrofidex in cases where the fielded buffer has not
been altered since its index was removed:

i nt
Frstrindex(FBFR *fbfr, FLDOCC num dx)

where
4 fbfr is a pointer to a fielded buffer

¢ num dx is the value returned by tiFani ndex function.

Funindex

Funi ndex discards the index of a fielded buffer and returns the number of index entries
the buffer had before the index was stripped:

FLDOCC
Funi ndex(FBFR *f bfr)

where

4 fbfr is a pointer to a fielded buffer

5-54 BEA TUXEDO FML Programmer’s Guide

Indexing Functions

Example

To transmit afielded buffer without its index, something similar to the following
should be done:

1

Remove the index:

save = Funi ndex(fbfr);

Get the number of bytes to send (that is, the number of significant bytes from the
beginning of the buffer):

numto_send = Fused(fbfr);
Send the buffer without the index:
transmt (fbfr,numto_send);
Restore the index to the buffer:

Frstrindex(fbfr,save);

On the receiving side, the index could be regenerated with the following statement:

Fi ndex(fbfr);

Note that the receiving process cannot call Fr st ri ndex becauseit did not remove the
index itself, and the index was not sent with the file.

Note: The space used in memory by the index isnot freed by calling Funi ndex; this

function only saves space on disk or when sending abuffer to another process.
Of course, you are dways freeto send afielded buffer and itsindex to another
process and avoid using these functions.

BEA TUXEDO FML Programmer’s Guide 5-55

S Field Manipulation Functions

Input/Output Functions

The functions described in this section provide for input and output of fielded buffers
to standard 1/0O or to file streams.

Fread and Fwrite

5-56

The /O functions Fr ead and Fwr i t e work with the Standard 1/O Library:

int Fread(FBFR *fbfr, FILE *iop)
int Fwrite(FBFR *fbfr, FILE *iop)

The stream to or from which the I/O is directed is determined by a FI LE pointer
argument. This argument must be set up using the normal Standard 1/O Library
functions.

A fielded buffer may be written into a Standard 1/O stream with the function Fwri t e,
like this:

if (Fwrite(fbfr, iop) < 0)
F error("pgmnane");

A buffer written with Fwr i t e may be read with Fr ead, asin:

if(Fread(fbfr, iop) < 0)
F error("pgm nane");

Although the contents of the fielded buffer pointed to by f bf r are replaced by the
fielded buffer read in, the capacity of the fielded buffer (size of the buffer) remains
unchanged.

Fwr i t e discards the buffer index, writing only as much of the fielded buffer as has
been used (as returned by Fused).

Fr ead restorestheindex of abuffer by calling Fi ndex. The buffer isindexed with the
same indexing interval with which it waswritten by Fwri t e.

BEA TUXEDO FML Programmer’s Guide

Input/Output Functions

Fchksum

A checksum may be calculated for verifying 1/O:
| ong chk;
chk = Fchksum(fbfr);

Theuser isresponsiblefor calling Fchksum writing the checksum val ue out along with
the fielded buffer, and checking it on input. Fwr i t e does not write the checksum
automatically.

Fprint and Ffprint

The function Fpri nt prints afielded buffer on the standard output in ASCII format:
Fprint (FBFR *f bfr)

where

¢ fbfr isapointer to afielded buffer

Ff print issimilar to Fpri nt, except the text is printed to a specified output stream:
Ffprint(FBFR *fbfr, FILE *iop)

where

¢ fbfr isapointer to afielded buffer

4 iopisapointer of type FI LE to the output stream

Each of these print functions prints, for each field occurrence, the field name and the
field value, separated by atab and followed by a new-line. Fnane isused to determine
the field name; if the field name cannot be determined, then the field identifier is
printed. Non-printable charactersin the field valuesfor strings and character arraysare
represented by a backslash followed by their two-character hexadecimal value.
Backslashes occurring in the text are escaped with an extra backslash. A blank lineis
printed following the output of the printed buffer.

BEA TUXEDO FML Programmer’s Guide 5-57

S Field Manipulation Functions

Fextread

Fext r ead may be used to construct a fielded buffer from its printed format, i.e. from
the output of Fpri nt (hexadecimal valuesoutput by Fpri nt areinterpreted properly).

i nt
Fextread(FBFR *fbfr, FILE *iop)

Fext r ead accepts an optional flag preceding the field-name/field-identifier
specification in the output of Fpri nt as shown in Table 5-4.

Table5-4 Fextread Flags

flag indicates

+ field should be changed in the buffer

- field should be deleted from the buffer

= one field should be assigned to another

comment line - ignored

If no flag is given, the default action isto Fadd the field to the buffer.

Field values may be extended across lines by having the overflow lines begin with a

tab (the tab is discarded). A single blank line signals end of buffer; successive blank
linesyield anull buffer.

If an error hasoccurred, - 1 isreturned, and Fer r or isset accordingly. If end of fileis
reached before ablank line, Fer ror isset to FSYNTAX.

5-58 BEA TUXEDO FML Programmer’s Guide

Boolean Expressions of Fielded Buffers

Boolean Expressions of Fielded Buffers

Thefunctionsin this section deal with the eval uation of bool ean expressionswhere the
“variables” of the expression are the values of fields in a fielded buffer or a VIEW.
Functions described in this section allow you to:

4 compile boolean expression into a compact form suitable for evaluation

4 evaluate a boolean expression against a fielded buffer or a VIEW, returning a
true or false answer

4 print a compiled boolean expression

A function is provided that compiles the expression into a compact form suitable for
efficient evaluation. A second function evaluates the compiled form against a fielded
buffer to produce a true or false answer.

Boolean Expressions

This section describes, in detail, the expressions accepted by the boolean compilation
function and how the expression is evaluated. Table 5-5 shows the Backus-Naur Form
definitions of the accepted boolean expressions.

Standard C language operators not supported include the shift operators (<< and >>),
the bitwise “or” and “and” operator$|(and &&), the conditional operator (?), the

prefix and postfix incrementation and decrementation operators (++ and --), the
address and indirection operators (& and *), the assignment operator (=), and the
comma operator (,). The following sections describe boolean expressions in greater
detail.

BEA TUXEDO FML Programmer’s Guide 5-59

S Field Manipulation Functions

Table 5-5 BNF Boolean Expression Definitions

Expression Definition

<boolean> <boolean> | | <logical and>| <logical and>
<logical and> <logica and> & & <xor expr>| <xor expr>
<xor expr> <xor expr> " <equality expr>| <equality expr>

<equality expr>

<equality expr> <eq op> <relational expr>| <relational expr>

<eqg op>

== 1=| %%]| %

<relational expr>

<relational expr> <rel op> <additive expr>| <additive expr>

<rel op>

<| <=| >=]| >|

<additive expr>

<additive expr> <add op> <multiplicative expr>| <multiplicative expr>

<add op>

+| -

<multiplicative expr>

<multiplicative expr> <mult op> <unary expr>| <unary expr>

<mult op> 11| %
<unary expr> <unary op> <primary expr>| <primary expr>
<unary op> -~

<primary expr>

(<boolean>) | <unsigned constant>| <field ref>

<unsigned constant>

<unsigned number> | <string>

<unsigned number>

<unsigned float> | <unsigned int>

<string>

' <character> { <character>. . .}’

<fied ref>

<field name> | <field name>[<field occurrence>]

<field occurrence>

<unsigned int> | <meta>

<meta>

?

5-60 BEA TUXEDO FML Programmer’s Guide

Boolean Expressions of Fielded Buffers

Field Names and Types

Strings

The only variables allowed in the boolean expressions are field references. There are
several restrictions on field names. Names are made up of letters and digits; the first
character must be aletter. The underscore () counts as a letter; it is useful for
improving the readability of long variable names. Up to 30 characters are significant.
There are no reserved words.

For afielded buffer evaluation, any field that is referenced in a boolean expression

must exist in afield table. Thisimplies that the FLDTBLDI Rand FI ELDTBLS

environment variables are set, as described in Chapter 3, “Setup,” before using the
boolean compilation function. The field types used in booleans are those allowed for
FML fields; namely, short, long, float, double, char, string, and carray. Along with the
field name, the field type is kept in the field table. Thus, the field type can always be
determined.

For a VIEW evaluation, any field that is referenced in a boolean expression must exist
as a C structure element name, not the associated fielded buffer name, in the VIEW.
This implies that th& BEWDI R andVi EWFI LES environment variables are set, as
described in Chapter 3, “Setup,” before using the boolean compilation function. The
field types used in booleans are those allowed for FML VIEWS; namely, short, long,
float, double, char, string, carray, plus int and dec_t. Along with the field name, the
field type is kept in the view definition. Thus, the field type can always be determined.

A string is a group of characters within single quotes. The ASCII code for a character
may be substituted for the character via an escape sequence. An escape sequence takes
the form of a backslash followed by exactly two hexadecimal digits. NOTE THAT

THIS IS NOT AS IT IS IN C where a hexadecimal escape sequence starts with \x.

As an example, consider ‘hello’ and ‘hell\6f'. They are equivalent strings because the
hexadecimal code for an ‘o’ is 6f.

Octal escape sequences and escape sequences such as “\n” are not supported.

BEA TUXEDO FML Programmer’s Guide 5-61

S Field Manipulation Functions

Constants
Numeric integer and floating point constants are accepted, asin C (octal and
hexadecimal constants are not recognized). Integer constants are treated as longs and
floating point constants are treated as doubles (decimal constants for the dec_t type
are not supported).

Conversion

To evaluate a boolean expression, the following conversions are performed by the
boolean compiler:

4 short and int values are converted to longs

4 float and decimal values are converted to doubles
4 characters are converted to strings
¢

when comparing a non-quoted string within afield with a numeric, the string is
converted to a numeric value

4+ when comparing a constant (that is, quoted) string with a numeric, the numeric
is converted to a string, and alexical comparison is done

4+ when comparing along and a double, the long is converted to a double

Primary Expressions

Boolean expressions are built from primary expressions, which can be any of the
following:

4 field name—a field name

fiel d name[const ant —a field name and a constant subscript
fiel d name[?—a field name and the* subscript

const an —a constant

(expression —an expression in parentheses

5-62 BEA TUXEDO FML Programmer’s Guide

Boolean Expressions of Fielded Buffers

A field name or afield name followed by a subscript isaprimary expression. The
subscript indicates which occurrence of the field is being referenced. The subscript
may be either an integer constant, or ?indicating any occurrence; the subscript cannot
be an expression. If the field name is not subscripted, field occurrence O is assumed.

If afield name reference appears without an arithmetic, unary, equality, or relational
operator, then itsvalue is the long integer value 1 if the field exists and O if the field
does not exist. This may be used to test the existence of afield in the fielded buffer
regardless of field type (note that there is no * indirection operator).

A constant is a primary expression. Its type may be long, double, or carray, as
discussed in the conversion section.

A parenthesized expression isaprimary expression whose type and value are identical
to those of the unadorned expression. Parentheses may be used to change the
precedence of operators, which is discussed in the next section.

Expression Operators

Table 5-6 lists the precedence of expression operators, with the operators having the
highest precedence at the top of thelist.

Table 5-6 Boolean Expression Operators

Type Operators

unary +, -1, ~
multiplicative * |, %

additive +, -

relational <,>, <=,>= ==, 1=
equality and matching ==, 1=, %%, %
exclusive OR A

logical AND &&

logical OR [l

Within each operator type, the operators have the same precedence. The following
sections discuss each operator type in detail. Asin C, you can override the precedence
of operators by using parentheses.

BEA TUXEDO FML Programmer’s Guide 5-63

S Field Manipulation Functions

5-64

Unary Operators

The unary operators recognized are the unary plus operator (+), the unary minus
operator (-), the one’s complement operator (~), and the logical not operator (!).
Expressions with unary operators group right-to-left:

+ expression
- expression
~ expression
I expression

The unary plus operator has no effect on the operand (it is recognized and ignored).
The result of the unary minus operator is the negative of its operand. The usual
arithmetic conversions are performed. Unsigned entities do not exist in FML and thu:
cause no problems with this operator.

The result of the logical negation operator is 1 if the value of its operand is 0, and O i
the value of its operand is non-zero. The type of the result is long.

The result of the one’s complement operator is the one’s complement of its operand
The type of the result is long.

Multiplicative Operators

The multiplicative operators *, /, and % group left-to-right. The usual arithmetic
conversions are performed.

expressi on * expression
expressi on / expression
expr essi on % expressi on

The binary * operator indicates multiplication. The * operator is associative and
expressions with several multiplications at the same level may be rearranged by the
compiler.

The binary / operator indicates division. When positive integers are divided truncatior
is toward 0, but the form of truncation is machine-dependent if either operand is
negative.

The binary % operator yields the remainder from the division of the first expression by
the second. The usual arithmetic conversions are performed. The operands must not
float or double.

BEA TUXEDO FML Programmer’s Guide

Boolean Expressions of Fielded Buffers

Additive Operators

Theadditive operators + and - group | eft-to-right. The usual arithmetic conversionsare
performed.

expressi on + expression
expressi on - expression

The result of the + operator is the sum of the operands. The operator + is associative
and expressions with several additions at the same level may be rearranged by the
compiler. The operands must not both be strings; if oneisastring, it is converted to
the arithmetic type of the other.

The result of the - operator is the difference of the operands. The usual arithmetic
conversions are performed. The operands must not both be strings; if oneisastring, it
is converted to the arithmetic type of the other.

Equality and Match Operators
These operators group left-to-right.

expressi on == expressi on
expression ! = expressi on
expressi on %6 expressi on
expression ! % expressi on

The == (equal to) and the != (not equal to) operatorsyield 0 if the specified relation is
falseand 1 if it istrue. The type of the result islong. The usual arithmetic conversions
are performed.

The %% operator takes, asits second expression, aregular expression against whichiit
matches itsfirst expression. The second expression (the regular expression) must be a
quoted string. The first expression may be an FML field name or aquoted string. This
operator yieldsalif thefirst expression isfully matched by the second expression (the
regular expression). The operator yieldsa 0 in all other cases.

The!% operator isthe not regular expression match operator. It takes exactly the same
operands as the %% operator, but yields exactly the opposite results. The relationship
between %% and !% is analogous to the relationship between ==and !=.

The regular expressions allowed are described on the r econp(3c) manual page.

BEA TUXEDO FML Programmer’s Guide 5-65

S Field Manipulation Functions

5-66

Relational Operators
These operators group |eft-to-right.

expr essi on < expression
expr essi on > expression
expr essi on <= expression
expr essi on >= expression

The operators < (less than), > (greater than), <= (less than or equal to) and >= (greater
than or equal to) all yield O if the specified relationisfalseand 1 if it istrue. The type
of the result islong. The usual arithmetic conversions are performed.

Exclusive OR Operator
The~ operator groups left-to-right.
expressi on expression

It returns the bitwise exclusive OR function of the operands. The result isalways a
long.

Logical AND Operator
expressi on && expression

The & & operator groups left-to-right. It returns 1 if both its operands are non-zero, 0
otherwise. The & & operator guarantees | eft-to-right evaluation. However, it is not
guaranteed that the second operand is not evaluated if the first operand is O; thisis
different from the C language. The operands need not have the same type. The result
isalwaysalong.

Logical OR Operator
The| | operator groups left-to-right.
expression || expression

It returns 1 if either of its operandsis non-zero, and O otherwise. The | | operator
guarantees left-to-right evaluation. However, it is not guaranteed that the second
operand is not evaluated if the first operand is non-zero; this is different from the C
language. The operands need not have the same type, and the result is aways along.

BEA TUXEDO FML Programmer’s Guide

Boolean Expressions of Fielded Buffers

Sample Boolean Expressions

The following field table defines the fields used for the sample boolean expressions:

EMPI D 200 carray

SEX 201 char
AGE 202 short
DEPT 203 | ong
SALARY 204 fl oat
NAVE 205 string

Recall that boolean expressions always evaluate to either true or false. The following
example:

"EMPI O 2] 96’ 123.*" && AGE < 32"

would be true if field occurrence 2 of EMPI D exists and begins with the characters

“123" and the age field (occurrence 0) appears and is less than 32. This example uses
a constant integer as a subscriper®l D. The ? subscript is used in the following
example:

"PETS[?] == 'dog’ "

This expression would be trueRETS exists and any occurrence of it contained the
characters “dog”.

Boolean Functions

The following sections describe the various functions that take boolean expressions as
arguments.

Fboolco and Fvboolco

Fbool co compiles a boolean expression for FML and returns a pointer to an evaluation
tree:

char *
Fbool co(char *expression)

where* expr essi on is a pointer to an expression to be compiled.

BEA TUXEDO FML Programmer’s Guide 5-67

S Field Manipulation Functions

5-68

Fvbool co compiles aboolean expression for a VIEW and returns a pointer to an
evaluation tree:

char *
Fvbool co(char *expression, char *vi ewnane)

where* expr essi on isapointer to an expression to be compiled, and * vi ewname isa
pointer to the view name for which the fields are eval uated.

Space is allocated using nal | oc(3) to hold the evaluation tree. For example,

#i ncl ude "<stdio.h>"
#include "fm . h"
extern char *Fbool co;
char *tree;

if((tree=Fbool co("FIRSTNAME %6’ J.*n’ &% SEX == 'M ")) == NULL)
F error("pgmnane");

would compile abool ean expression that checks whether the FI RSTNAMVE field isinthe
buffer, begins with ‘J’ and ends with ‘n’ (e.g., John, Joan, etc.), and wheth&®xthe
field is equal to M.

The first and second characters of the tree array form the least significant byte and tt
most significant byte, respectively, of an unsigned 16 bit quantity that gives the length
in bytes, of the entire array. This value is useful for copying or otherwise manipulating
the array.

The evaluation tree produced Blyool co is used by the other boolean functions listed
below; this avoids having to constantly re-compile the expression.

free(3) should be used to free the space allocated to an evaluation tree when the
boolean expression will no longer be used. Compiling many boolean expressions
without freeing the evaluation tree when no longer needed may cause a program to rt
out of data space.

BEA TUXEDO FML Programmer’s Guide

Boolean Expressions of Fielded Buffers

Fboolpr and Fvboolpr

Fbool pr prints acompiled expression to the specified file stream. The expression is
fully parenthesized, as it was parsed (as indicated by the evaluation tree),

voi d
Fbool pr(char *tree, FILE *iop)

where

4 *treeisapointer to a Boolean tree previously compiled by Fbool co
4 *i op isapointer of type FI LE to an output file stream

Fvbool pr printsacompiled expression to the specified file stream.

voi d
Fvbool pr(char *tree, FILE *iop, char *viewnane)

where

4 *treeisapointer to a Boolean tree previously compiled by Fvbool co
4 *i op isapointer of type FI LE to an output file stream

4 *vi ewnane isthe name of the view whose fields are used.
Thisfunction is useful for debugging.

Executing Fboolpr on the expression compiled above would yield

(((FIRSTNAME[O]) 986 (' J.*n")) && ((SEX[0]) == ("M)))

Fboolev and Ffloatev, Fvboolev and Fvfloatev

These functions evaluate a fielded buffer against a boolean expression.

int Fbool ev(FBFR *fbfr,char *tree)
doubl e Ffl oatev(FBFR *fbfr,char *tree)

where
¢ fbfr isthefielded buffer referenced by an evaluation tree produced by Fbool co

4 treeisapointer to an evaluation tree that references the fielded buffer pointed
toby fbfr

BEA TUXEDO FML Programmer’s Guide 5-69

S Field Manipulation Functions

5-70

The VIEW equivalents are as follows.
int
Fvbool ev(FBFR *fbfr,char *tree, char *vi ewnane)

doubl e
Fvfl oatev(FBFR *fbfr,char *tree, char *vi ewnane)

Fbool ev returnstrue (1) if thefielded buffer matchesthe boolean conditions specified
in the evauation tree. This function does not change either the fielded buffer or the
evaluation tree. Using the evaluation tree compiled above:

#i ncl ude <stdio. h>
#include "fm . h"
#include "fldtbl.h"
FBFR *fbfr;

Fchg(f bfr, FI RSTNAME, O, "John", 0) ;

Fchg(fbfr, SEX, 0,"M', 0);

i f(Fbool ev(fbfr,tree) > 0)
fprintf(stderr,"Buffer selected\n");

el se
fprintf(stderr,"Buffer not selected\n");

would print "Buffer selected".

Ffl oat ev or Ff | oat ev32 issimilar to Fbool ev, but returns the value of the
expression as adouble. For example,

#i ncl ude <stdio. h>
#include "fm . h"
FBFR *fbfr;
mai n() {
char *Fbool co;
char *tree;
doubl e Ffl oatev;

if (tree=Fbool co("3.3+3.3")) {
printf("%f", Ffloatev(fbfr,tree));
}

}

would print 6.6. If Fbool ev were used in place of Ff | oat ev in the above example, a
1 would be printed.

BEA TUXEDO FML Programmer’s Guide

VIEW Conversion to and from Target Format

VIEW Conversion to and from Target Format

A VIEW can be converted to and from atarget record format. The default target format
isIBM System/370 COBOL records.

Fustot, Fvttos and Fcodeset

The three functions that provide target conversion are as follows.

| ong
Fvstot (char *cstruct, char *trecord, long treclen, char *vi ewnane)

| ong
Fvttos(char *cstruct, char *trecord, char *vi ewnane)

int

Fcodeset (char *transl ation_table)

The Fvst ot function transfers data from a C structure to atarget record type. The
Fvt t os functiontransfersdatafrom atarget recordto aC structure. trecord isapointer
to the target record. cstruct is a pointer to a C structure. viewname is a pointer to the
name of a compiled view description. The Vi EADI R and VI EWFI LES environment
variables are used to find the directory and file containing the compiled view
description.

To convert from an FML buffer to atarget record, first call Fvf t os to convert the FML
buffer to a C structure, and call Fvst ot to convert to atarget record. To convert from
atarget record to an FML buffer, first call Fvt t os to convert to a C structure and then
call Fvst of to convert the structure to an FML buffer.

The default target isIBM/370 COBOL records. The default data conversion isdone as
shown in Table 5-7.

BEA TUXEDO FML Programmer’s Guide 5-71

S Field Manipulation Functions

5-72

Table5-7 Data Conversion from a structureto arecord

Struct Record

float COMP-1

double COMP-2

long S9(9) COMP

short S9(4) COMP

int S9(9) COMP or S9(4) COMP
dec_t(m, n) S9(2*m-(n+1))V9(n)COMP-3
ASCII char EBCDIC char

ASCII string EBCDIC string

carray character array

Nofiller bytesare provided between fieldsin the|IBM/370 record. The COBOL SYNC
clause should not be specified for any data itemsthat are a part of the structure
corresponding to the view. An integer field is converted to either afour or two-byte
integer depending on the size of integers on the machine on which the conversion is
done. A string field in the view must beterminated with anull when converting to/from
theIBM/370format. Thedatain acarray field is passed unchanged; no datatranslation
is performed.

Packed decimals exist in the IBM/370 environment as two decimal digits packed into
one byte with the low-order half byte used to store the sign. The length of a packed
decimal may be 1 to 16 bytes with storage available for 1 to 31 digits and a sign.
Packed decimals are supported in C structures using the dec_t field type. Thedec_t
field has adefined size consisting of two numbers separated by a comma. The number
to the left of the comma s the total number of bytes that the decimal occupies. The
number to the right is the number of digitsto the right of the decimal point. The
formulafor conversion is:

dec_t(m n) <=> S9(2*m (n+l))V9(n) COWP-3

Decimal values may be converted to and from other data types (e.g., int, long, string,
double, and float) using the functions described in deci mal (3c).

BEA TUXEDO FML Programmer’s Guide

VIEW Conversion to and from Target Format

See the Fvst of (3fml) reference page for the default character conversion of ASCII
to/from EBCDIC.

An alternate character translation table can be used at run-time by calling Fcodeset .
The translation_table must point to 512 bytes of binary data. The first 256 bytes of
data are interpreted as the ASCI| to EBCDIC trandlation table. The second 256 bytes
of dataareinterpreted asthe EBCDIC to ASCI| table. Any data after the 512th byteis
ignored. If the pointer is NULL, the default translation is used.

BEA TUXEDO FML Programmer’s Guide 5-73

S Field Manipulation Functions

5-74 BEA TUXEDO FML Programmer’s Guide

CHAPTER

Examples

VIEWS Examples

The VIEWS examples that follow are unrelated to the example FML program that
appears later in this chapter.

Sample Viewfile

Thefollowing is asample of aviewfile containing a source view description, cust db.

Listing 6-1 Sample Viewfile

BEG NNI NG OF VI EWFI LE

VI EW cust db

/* This is a coomment */

/* This is another comment */

#TYPE CNAVE FBNAME COUNT FLAG SIZE NULL

carray bug BUG_CURS 4 - 12 "no bugs"

| ong custid CUSTI D 2 - - -1

short super SUPER NUM 1 - - 999

| ong youi d I D 1 - - -1

fl oat t ape TAPE_SENT 1 - - -.001

char ch CHR 1 - - "o"

string action ACTI ON 4 - 20 "no action"
END

#END OF VI EWFI LE

BEA TUXEDO FML Programmer’s Guide

6-1

6 Examples

Sample Field Table

Thefollowing isasample of afield table needed to compiletheview in the last section.

Listing 6-2 SampleField Table

name nunber type flags conment s
CUSTI D 2048 | ong - -

VERSI ON_RUN 2055 string - -

I D 2056 | ong - -

CHR 2057 char - -
TAPE_SENT 2058 f | oat - -
SUPER_NUM 2066 short - -

ACTI ON 2074 string - -
BUG_CURS 2085 carray - -

Sample Header File Produced by viewc

Thefollowing figure shows a header file produced by the view compiler; assume that
the viewfilein the earlier section was used as input to vi ewc.

Listing 6-3 Sample Header File Produced by viewc

struct custdb {

char bug[4][12]; /* null="no bugs" */
| ong custid[2]; /* null=-1 */
short super; /* nul | =999 */
| ong youi d; /* null=-1 */
fl oat t ape; /* nul | =-0.001000 */
char ch; /* nul | ="0" */
char action[4][20]; /* null="no action" */
b

6-2 BEA TUXEDO FML Programmer’s Guide

VIEWS Examples

Sample Header File Produced by mkfldhdr(1)

Thefollowing isaheader file produced from afield tablefile by nkf | dhdr (1); assume
that afield tablefile containing the field definitions of the fields shown inthe previous
examples was used asinput to nkf | dhdr (1).

Listing 6-4 Sample Header File Produced by mkfldhdr (1)

/* custdb.flds.h as generated by nkfl dhdr froma field table: */
/* f nane fldid */
I e T */

#define ACTION
#defi ne BUG _CURS

((FLDI D)43034) /* nunber: 2074 type: string */

((FLDI D)51237) /* nunber: 2085 type: carray */
#define CUSTID ((FLDI D) 10240) /* nunber: 2048 type: |long */
#define SUPER NUM ((FLD D) 2066) /* nunber: 2066 type: short */
#defi ne TAPE_SENT ((FLDI D)26634) /* nunber: 2058 type: float */
#define VERSION RUN ((FLDI D) 43015) /* nunber: 2055 type: string */
#define ID ((FLDI D) 10248) /* nunber: 2056 type: |ong */
#define CHR ((FLDI D) 18441) [/* nunber: 2057 type: char */

Sample COBOL COPY File

The following isthe COBOL COPY file, CUSTDB. cbl , produced by vi ewc with the
- C command line option.

Listing 6-5 Sample COBOL COPY File

* VI EWFI LE: "t.v"
* VI EANAVE: " cust db”

05 BUG OCCURS 4 TI MES PIC X(12).
* NULL="no bugs"

05 CUSTID OCCURS 2 TI MES PIC S9(9) USAGE IS COWP-5.
* NULL=-1

05 SUPER PIC S9(4) USAGE | S COWP-5.
* NULL=999

05 FILLER PI C X(02).

05 YUl D PIC S9(9) USAGE IS COWP-5.
* NULL=-1

BEA TUXEDO FML Programmer’s Guide 6-3

6 Examples
05 TAPE USACGE | S COWP- 1.
* NULL=- 0. 001000
05 CH Pl C X(01).
* NULL=" O’
05 ACTI ON CCCURS 4 TI MES PI C X(20).
* NULL="no acti on"
05 FILLER PI C X(03).

A sample COBOL program including aCOBOL COPY file produced by vi ewc - Cis
shown in the BEA TUXEDO COBOL Guide.

Sample VIEWS Program

Thefollowing program is an example of the use of VIEWS to map a structure to a
fielded buffer. The environment variables discussed in Chapter 3, “Setup,” must be
properly set for this program to work.

Information on compiling FML programs can be found ondtwepi | ati on(5)
reference page in tHeEA TUXEDO Reference Manual.

Listing 6-6 Sample VIEWS Program

/* sanpl e VIEWS program */
#i ncl ude stdio. h>
#include "fm .h"

#include "custdb.flds.h" /* field header file shown in Fig. 6-3 */
#i ncl ude "custdb. h" /* C structure header file produced by */
/* viewc shown in Fig. 6.2 */

#define NF 800
#define NV 400
extern Ferror;
mai n()

/* decl are needed program variables and FM. functions */

FBFR *fbfr,*Fall oc();

void F_ error();

char *str, *cstruct, buff[2100]
struct custdb cust;

/* allocate a fielded buffer */

6-4

if ((fbfr = Falloc(NF, N\V)) == NULL) {

BEA TUXEDO FML Programmer’s Guide

VIEWS Examples

F error("sanpl e. prograni);

exit(1l);
}
/* initialize str pointer to point to buff */
/* copy string values into buff, and */

/* Fadd values into sone of the fields in fbfr */

str = &buff;
strcpy(str,"13579");
if (Fadd(fbfr, ACTION, str, (FLDLEN)6) < 0)
F error("Fadd");
strcpy(str,"act11");
if (Fadd(fbfr, ACTION, str, (FLDLEN)6) < 0)
F error("Fadd");
strcpy(str,"This is a one test.");
i f (Fadd(fbfr, BUG CURS, str, (FLDLEN)19) < 0)
F error("Fadd");
strcpy(str,"This is a two test.");
i f (Fadd(fbfr, BUG CURS, str, (FLDLEN)19) < 0)
F error("Fadd");
strcpy(str,"This is a three test.");
i f (Fadd(fbfr, BUG CURS, str, (FLDLEN)21) < 0)
F error("Fadd");

/* Print out the current contents of the fbfr */
printf("fielded buffer before:\n"); Fprint(fbfr);
/* Put values in the C structure */

cust.tape = 12345;

cust . super 999;

cust.youid 80;

cust.custid[0] = -1; cust.custid[1l] = 75;
str = cust.bug[0][0];
strncpy(str,"no bugs12345",12);
str = cust.bug[1][0];
strncpy(str, "yesbugs01234",12);
str = cust.bug[2][0];
strncpy(str,"no bugsi ghts", 12);
str = cust.bug[3][0];
strncpy(str,"no bugsysabc", 12);
str = cust.action[0][O];
strcpy(str, "yesaction");

str = cust.action[1][0];
strcpy(str,"no action");

str = cust.action[2][0];
strcpy(str,"222action");

str = cust.action[3][0];

BEA TUXEDO FML Programmer’s Guide 6-5

6 Examples

strcpy(str,"no action");
cust.ch ='0";
cstruct = (char *)&cust;

/* Update the fbfr with the values in the C structure */
/* using the custdb view description. */

if (Fvstof (fbfr, cstruct, FUPDATE, "custdb") < 0) {
F error("custdb");
Ffree(fbfr);
exit(1l);

}

/* Note that the follow ng would transfer */
/* data fromfbfr to cstruct */
/*
if (Fvftos(fbfr,cstruct,"custdb") < 0) {
F error("custdb");
Ffree(fbfr);
exit(1l);
Pl

/* print out the values in the C structure and */
/* the values in the fbfr */

printf("cstruct contains:\en");
printf("action=%:\n", cust.action[0][0]);
printf("action=%:\n",cust.action[1][0]);
printf("action= %:\n", cust.action[2][0]);
printf("action= %:\n",cust.action[3][0]);
printf("custid=% d\n",cust.custid[0]);
printf("custid=% d\n",cust.custid[1]);
printf("youi d=% d\n", cust. youi d);
printf("tape=%\n", cust.tape);
printf("super=%\n", cust.super);
printf("bug=:% 12s:\n", cust. bug[0][0]);
printf("bug=:% 12s:\n", cust. bug[1][0]);
printf("bug=:% 12s:\n", cust. bug[2][0]);
printf("bug=:% 12s:\en", cust. bug[3][0]);
printf("ch=:%:\n\n", cust.ch);

printf("fielded buffer after:\n");
Fprint(fbfr);

Ffree(fbfr);

exit(0);

6-6 BEA TUXEDO FML Programmer’s Guide

FML Examples in bankapp

Example of VIEWS in bankapp

bankapp is asample application distributed with the BEA TUXEDO system. It
includes two filesin which a VIEWS structure is used. The structure in the exampleis
onethat doesnot map to an FML buffer, so FML functionsare not used to get datainto
or out of the structure members.

$TUXDI R/ apps/ bankapp/ audi t . ¢ isaclient program that uses command line
options to determine how to set up a service request in a Vi Ewtyped buffer.

The code in the server $TUXDI R/ apps/ bankapp/ BAL. ec accepts the service request
and shows the fields from a VI Ewbuffer being used to formulate ESQL statements.

FML Examples in bankapp

bankapp is asample application distributed with the BEA TUXEDO system. The
servers

ACCT. ec
BTADD. ec
TLR. ec

show FML functions being used to manipulate datain FM_ typed buffersthat have been
passed to the servers from BEA TUXEDO system data entry masks under the control
of m o. It is especially worth noting that in these servers the ATMI functions

tpal I oc() andt pr eal | oc() areused to alocate message buffers, rather than the FML
functions Fal | oc() and Fr eal | oc().

BEA TUXEDO FML Programmer’s Guide 6-7

6 Examples

6-8 BEA TUXEDO FML Programmer’s Guide

APPENDIX

A

FML Error Messages

Thefollowing table liststhe error codes, numbers, and messages that you might see if

an error occurs during the execution of an FML program.

Table A-1 FML Error Codes and Messages

Error Code # Error Message

FALI GN 1 fielded buffer not aligned
FNOTFLD 2 buffer not fielded

FNOSPACE 3 no space in fielded buffer
FNOTPRES 4 field not present

FBADFLD 5 unknown field number or type
FTYPERR 6 illegal field type

FEUNI X 7 UNIX system call error
FBADNAME 8 unknown field name

FMALLOC 9 mal | oc failed

FSYNTAX 10 bad syntax in boolean expression
FFTOPEN 11 cannot find or open field table
FFTSYNTAX 12 syntax error in field table

FEI NVAL 13 invalid argument to function
FBADTBL 14 destructive concurrent accessto field table
FBADVI EW 15 cannot find or get view

BEA TUXEDO FML Programmer’s Guide

A-1

A EML ERROR MESSAGES

A-2

Table A-1 FML Error Codes and M essages

Error Code # Error Message
FVESYNTAX 16 syntax error in viewfile
FVFOPEN 17 cannot find or open viewfile
FBADACM 18 ACM contains negative value
FNOCNAME 19 cname not found

BEA TUXEDO FML Programmer’s Guide

	Copyright
	1 Introduction
	About This Guide and FML
	What Is FML?
	How Does FML Fit into the BEA TUXEDO System?
	Who Is This Document For?
	Prerequisites
	What Does This Document Include?
	What Other FML Documentation Is There?
	Concepts and Definitions
	BEA TUXEDO System Typed Buffers

	2 Overview
	Introduction
	Dividing Records into Fields
	Structures
	Fielded Buffers

	Implementing Fielded Buffers with FML

	FML Features
	Fielded Buffer Structure
	Supported Field Types
	Type int in VIEWS
	Type dec_t in VIEWS

	Field Name to Identifier Mappings
	Run-Time: Field Table Files
	Compile-Time: Header Files

	Fielded Buffer Indexes
	Multiply Occurring Fields
	Boolean Expressions and Fielded Buffers
	VIEWS Features
	Multiply Occurring Fields in VIEWS

	Error Handling

	3 Setup
	Introduction
	Directory Structure
	Environment Variables

	4 Field Definition and Use
	Introduction
	Defining Fields
	Field Names and Identifiers
	Field Table Files
	Field Table Example
	Mapping Functions
	Loading the Field Tables

	Field Header Files

	Mapping Fields to C Structures and COBOL Records
	Viewfiles
	View Descriptions
	flag Options
	Null Values

	View Compiler
	viewc C Header Files
	COBOL COPY Files
	View Disassembler

	5 Field Manipulation Functions
	Introduction
	FML/FML32 and VIEW/VIEW32
	FML Parameters
	Field Identifier Mapping Functions
	Fldid
	Fname
	Fldno
	Fldtype
	Ftype
	Fmkfldid

	Buffer Allocation and Initialization
	Fielded
	Fneeded
	Finit
	Falloc
	Ffree
	Fsizeof
	Funused
	Fused
	Frealloc

	Functions for Moving Fielded Buffers
	Fmove
	Fcpy

	Field Access and Modification Functions
	Fadd
	Fappend
	Fchg
	Fcmp
	Fdel
	Fdelall
	Fdelete
	Ffind
	Ffindlast
	Ffindocc
	Fget
	Fgetalloc
	Fgetlast
	Fnext
	Fnum
	Foccur
	Fpres
	Fvals and Fvall

	Buffer Update Functions
	Fconcat
	Fjoin
	Fojoin
	Fproj
	Fprojcpy
	Fupdate

	VIEWS Functions
	Fvftos
	Fvstof
	Fvnull
	Fvsinit
	Fvopt
	Fvselinit

	Conversion Functions
	CFadd
	CFchg
	CFget
	CFgetalloc
	CFfind
	CFfindocc
	Converting Strings
	Ftypcvt
	Conversion Rules

	Indexing Functions
	Fidxused
	Findex
	Frstrindex
	Funindex
	Example

	Input/Output Functions
	Fread and Fwrite
	Fchksum
	Fprint and Ffprint
	Fextread

	Boolean Expressions of Fielded Buffers
	Boolean Expressions
	Field Names and Types
	Strings
	Constants
	Conversion
	Primary Expressions
	Expression Operators
	Sample Boolean Expressions

	Boolean Functions
	Fboolco and Fvboolco
	Fboolpr and Fvboolpr
	Fboolev and Ffloatev, Fvboolev and Fvfloatev

	VIEW Conversion to and from Target Format
	Fvstot, Fvttos and Fcodeset

	6 Examples
	VIEWS Examples
	Sample Viewfile
	Sample Field Table
	Sample Header File Produced by viewc
	Sample Header File Produced by mkfldhdr(1)
	Sample COBOL COPY File
	Sample VIEWS Program
	Example of VIEWS in bankapp

	FML Examples in bankapp

	A FML Error Messages

