EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

BEA TUXEDO

Programmer’s Guide



Copyright
Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Connect, BEA Jolt, BEA Manager, and BEA MessageQ are trademarks of
BEA Systems, Inc. BEA ObjectBroker is a registered trademark of BEA Systems, Inc. TUXEDO is a registered
trademark in the United States and other countries.

All other company names may be trademarks of the respective companies with which they are associated.
BEA TUXEDO Programmer’s Guide

Document Edition Date Software Version

6.5 February 1999 BEA TUXEDO Release 6.5




Contents

1. Introduction and Overview

The BEA TUXEDO System Development Environment ............ccccovceeeeeenneen 1-1
ClIENT PrOCESSES ...ttt e b e e e 1-2
Basic ClieNt OPEration ..........ccoiiuieeii ittt 1-2
Client Sending Repeated Service ReqUESES ........ccceevveeeeeieneiiiiiienene 1-3
Server Processes and Service SUDroUtiNeS.........cuuveeiiiiiiiee e 1-3
BasiC Server OPEratioN..........cccoiiuriieiiiiiiie et 1-3
Servers as REQUESTEIS .....ccoi ittt 1-5
The ATMI PHIMILIVES ..o 1-6
An Overview of X/Open's TX Interface .........ccccveeeiiiiiiiieniineiee 1-8
TYPEA BUFFEIS ... 1-9
Using VIEW and FML BUffers........cccoiiiiiiiiieeee e 1-10
Relationship Between Some VIEW Buffers and FML..................... 1-10
Corresponding Data Type Definitions ..........ccooiiiiieiiiiiiiiieeniiieeeees 1-13
Creating Header Files from View Descriptions...........cccvveeirivnneenn. 1-14
Header Files from Field Tables...........ccccoviiiniien 1-15
Other Header FIleS .......ocueiiiiiiie e 1-15
Environment Variables.........couiii e 1-16
Configuration File ...........ooiiiiiiiii e 1-17
Making the Configuration Usable..............ccoocoviiiiiiiin 1-17
The BUlletin BOArd...........oooiiiiiiiiiiiiiiees et 1-18
Starting and Stopping an Application ............cccoviieiiiieniie e 1-18
SEIVICE GAIEWAY ... eieiieii ittt ettt ettt ettt e et s 1-18
Programming Paradigms .........ccueeiiiiiiiiie oot 1-18
BUITEI TYPES ..ttt 1-19
CONFIGUIALION ... e 1-19

BEA TUXEDO Programmer’s Guide iii



EXAMPIES oo 1-1

2. Writing Client Programs

ADOUL THiS ChAPLET ....eiiiiiiiieie et 2-
Examples Taken from the Sample Application...........ccccccvieiiiiiiieennenn 2-1
PrEliMINAIIES ...t rbe e e et bn e e 2-
ClENT NAMING ..eeeiiitiee e et e e 2-
Unsolicited NOEIfICAtIoN ...........ocuiiiiiiie e 2-3
Security and Client Authentication ............ccoccviiiiiii e 2-4
Writing Client Programs with SECURITY Set......cccccoviiiiiiiiiiieiiniieeeee 2-6
Getting the SECUNtY Data .........ccuveiiiiiiiiie e -
Joining the APPIICALION .......couiiiiiiiiiiie e 2-7
Allocating the TPINIT BUffer ..., 2-10
The Application KeY ........ccoiiiiiiiii it 2-10
Joining and Leaving an ApplCcation ...........ccoccuiiiiiiiiieiene e 2-1:
BUffer ManagemeNnt...........oooiiiiiiiiiiie et 2-1
Typed BUffers for MESSAQGES. ......iouuiiii ittt 2-1
Buffer Types: STRING ........ooiiiiiiii e 2-15
Buffer Types: CARRAY ...ttt 2-16
Buffer Types: FML and FML32 .........ooiiiiiiiiie e 2-16
Buffer Types: VIEW, VIEW32, X_C_TYPE, and X_COMMON ... 2-16
Buffer Types: SUMMAIY ........oooiiiiiiiiiieie et 2-17
ATMI BUffer PrMItIVES ........cooiiiiiiiiie e 2-18
Allocating a Typed BUFfer.........ceeeiiiiiiiiiiiie e 2-18
tPAllOC EXAMPIES ...t 2-2(
What About FML Buffer Management FUnctions? .............cccceeeeees 2-20
Putting Data in the BUffer ..., 2-21
Resizing a Typed BUFfer .........oooiiiiiiiieie e 2-272
Checking for BUffer TYPE .....oeeiiiiiieiiiiee et 2-24
Freeing a Typed BUFfer ... 2-2¢F
SEIVICE CallS ...t -2
Sending Synchronous Messages: tpCall() ........oovvvvveriiiiie i, 2-2
Values for the flags Argument: tpcall().........ccceeeriiiieeniiiiiiiriiien, 2-29
Examples of the Use of flags Arguments...........ccccoviieiieniiiiee e, 2-31
Sending Asynchronous Messages: tpacall() .........cccoceeeriiieeiiiiiiiciniiinnn. 2-3

BEA TUXEDO Programmer’s Guide



Values for the flags Argument: tpacall()..........coovvvieiiiiiiiiniiiiieees 2-35

Getting an Asynchronous Reply: tpgetrply() ........ceevvvveeeiiiiiieeninnnnn 2-37
Getting and Setting Priority ..........cooiiiiiiiiiii e 2-37
Initiating a Conversational CoNNECHION..........cccovuviieiriiiiiiee e 2-40
Sending a Broadcast MESSAQgE .......cccuviiiiiiiiiiieei et 2-40
Compiling CHENt PrOgramS..........veiiiiiiie ettt 2-41
The buildclient ComMmMAaNd..........occuueiiiiiiii e 2-41
The buildclient -0 OPLON ... 2-41
The buildclient -f and -l OptioNS.........cceveiiiiiii e 2-41
3. Writing Service Routines
Writing ReqUESH/RESPONSE SEIVICES.....uvuieiiiiiie ittt 3-1
Examples Taken from the Sample Application............ccccooviiieeriiieienenen 3-1
Application Service TemPIate .........cooiiiiiiiiiiii e 3-2
The TPSVCINFO SrUCIUIE .....coiiiiiiie et 3-2
The tpreturn() and tpforward() FUNCLIONS ........ccoviiiiiiiiiiiii e 3-9
SENAING REPIES. ..ceiiiiiiiie e 3-9
Forwarding REQUESES........coiiiiiiiiiiiee ettt 3-16
Sending Unsolicited MESSAJES.......uuvviiiiiiieeriiiiie e 3-18
Advertising, Unadvertising ServiCes........ccccouuviiieeniiiiee e 3-20
System-Supplied Servers and SUBIOULINES............eeeiiiiiieiiiiii e 3-22
SySteM-SUPPIIEA SEIVEIS.....coeiiiieii ittt 3-22
AUTHSVR ..ottt 3-22
The BEA TUXEDO SysStem Main()......cccuvveeeririreeiiiiie e e ee e 3-23
BEA TUXEDO System-Supplied Subroutines.............cccccovivieniiiiiennnen. 3-24
1105V 1 1 T PP PPUPPRRTPPUPPPRTIN 3-24
EPSVIAONE() .ot 3-27
Compiling Subroutines to Build SErvers..........cccccoiiiiiiieiiiee e 3-29
The buildserver Command ............ccccciiiiiiiie i 3-29
The buildserver -0 OPtioN .........cuevveiiiiiii e 3-29
The buildserver -f and -l OPLioNS.......ccceeviiiiiiiieerii e 3-29
The buildserver -r OptioN.........ccceeiiiiiii i 3-30
The buildserver -8 Option .........coooiiiiiiiii e 3-30
USING Gt oottt e e e e et e e e e e e e s e e et et e e e ee e e s e s e e nnbeneaeeaeas 3-31

BEA TUXEDO Programmer’s Guide %



4. Conversational Clients and Services

Writing Conversational Clients and Services.........cccoceeveeennnneen,
Conversational Mode.............ueioiiiiiiiii e
The Connection DeSCIPLOr.......cooiuiiieiiiiiieeeree e
Buffer Management..........cccoceviiiiiiieniiieee e
Joining an APPlICAtioN.........couuiiiiiiiiieee e
Establishing @ ConNection ...........cccevviiiiiniiieieeeee e
Values for the flags Argument: tpconnect()....................
SENAING .ottt
Values for the flags Argument: tpsend() .........cccccvveeennee.
RECEIVING ..ottt
Values for the flags Argument: tprecv()......ccccovcvvveeriiiiieeenenee
Ending a Conversation ..........ccccooouvieeeniiieie e
Subordinate Calls tpreturn() ........cocvveeeviee e,
Hierarchy of Connections and tpreturn() ...........cccoeeenee

Ending a Conversation: SUMMary.........ccccocveeeriiieeenanns

Events and Their Significance.........ccccccceeiviiei e,
Disorderly DiSCONNECHION ........cuvviiiieiiiiie e
Request/Response Calls and Conversations...........cccc.eco.....
Configuration Parameters..........ccovveeiiiiiieniiiee e
Building Conversational Clients and Servers........................

5. Global Transactions in BEA TUXEDO System

INEFOAUCTION ... e
What Is a Global Transaction? ...........ccccevioiiiiie e
ATMI Transaction PrimitiVeS..........coocueeiiiiiiriniieee e
Explicitly Defining a Global Transaction.............cccccceeevinneen.
Starting the TranSaction ..........ccccovviieeiirnieee e,
Terminating the Transaction ..........c.cccccvvveviiiiiineeennenen.
Implicitly Defining a Global Transaction.............cc.cccceevvnnen.

IN & ClIENt PrOCESS ....eiiiiiiiiiiieiiie et

Ina Service ROULINE ..........oooiiiiiiiiiiieeece e

6. Using the Event Broker

L] (0o [1ox 1 [o] o N

Vi BEA TUXEDO Programmer’s Guide

...................... 5-



NOLITICATION ACHONS ...ceeiiie et e e e e e e s 6-2

User-Defined and System-Defined EVENtS ..........cocvveeiiiiiiniiiiiin e 6-3
Event Broker/Event MONItOr SEIVEIS .........ueiiiiiiiiiiiiiie e 6-4
Programming INterface...........cccoooiiiiiiiiiie e 6-4
POSHING EVENTS ...ttt ettt an e 6-5
tppost() Arguments: EVENINAME ...........ocoiiiiiii i 6-5
tppost() Arguments: data and 1en ... 6-5
tpPOSt() ArgumeEnts: flagS......coooieeiieiiii e 6-5
Example of EVENt POSHING ......ccoiiiiiieiiiiiiie et 6-6
SUDSCHDING t0 EVENTS ..ottt 6-7
tpsubscribe() Arguments: EVENTEXP .....couvveiiriiieieieiiie et 6-7
tpsubscribe() Arguments: filter ... 6-8
tpsubscribe() Arguments: Ctl.........oooiiiiiiiii i 6-8
Notification Via Unsolicited MeSSage .........ccoevviieieiiiiiiieniiieee e 6-8
Notification Via Service Call or Reliable Queue............ccccccveeeeeen, 6-9
tpsubscribe() Arguments: flags .......coveeiiiiiie i 6-10
Example of Event SUDSCIIPHON ... 6-10

7. Error Management

INEFOAUCTION ...ttt e e et e e s e e e e s nbee e e e 7-1
COMMUNICALING EFTOIS ..ottt e 7-2
ValuES Of PEITNO ..ottt 7-2
ProtOCOI EFTOIS ..ottt 7-3

BEA TUXEDO SyStem EITOIS ......uvviiiiiieiiiisiiniiieeie e 7-3
Operating SYSIEM EFTOIS........coiiiiiiieiiiiieiee ettt 7-3

Errors from Invalid ArgumentS..........c.ooiiiiiiieiiiiiie e 7-4
Other Possible Error Categories. ........oouuieeiiiieeee et 7-4

NO ENIY EITOIS ..o 7-5
PermiSSION EFTOIS ...cciiuiiiieiiiiiiii ettt 7-5
Resource Manager EITOrS...........cooooiiiiiiiiiiiiiii e 7-6
Transaction-Related Errors ... 7-6

Typed BUFfer EITOrS ... ..o 7-7

Call DESCIIPLON EFTOIS ....veeiieiieiieee ettt 7-7
General Communication Call Errors.........cccoovvevveeniieee e 7-9
Conversational EITOrS .........cooiiiiiiiiiiiiie it 7-9

BEA TUXEDO Programmer’s Guide  vii



viii

TIME-OUL EITOIS ettt e e e e e s 7-1C

Errors Leading t0 ADOI ........ooviiiiiiiie i 7-10
Errors Signaling Heuristic DeCISIONS .........cceeeiiiiiiie it 7-11
Application-SPECIfiC ErTOrS.......cuvviiiiiiiiie ittt 7-11
HOW t0 Deal With EFTOrS.....ccoiiiiiii it 7-1:
Fatal TranSaction EFTOIS .......coiiiiiiiiiiiiee ettt 7-1
THMIE-OUL .ttt ee e et e e e st e e e s seneeeeaane 7-1
Blocking vs. Transaction TiMe-OUt .........cccooiiiiiiiiiiiiiiee e 7-15
Effect on tpCcomMmIt() .......ooimeiiirieiee e 7-1€
Effect of the TPNOTRAN Flag.......cccuvuiiiiiiiiiiiiiiiie e 7-16
Roles of tpreturn() and tpforward() ........cooouveeeiriiieiiiir e 7-1
Service in Same Transaction as Caller..........cccoovieiiiii i 7-1
Service in Different Transaction with AUTOTRAN Set..........ccceeeeene. 7-18
Service Starts New EXplicit TranSaction .........ccccceevueiieeriiiie e, 7-1¢
TranSacCtioN RUIES ........cooiiiiiiii e -2
Communication EtQUETEE .........cooiiiiieiiiiii e 7-2(
BEA TUXEDO System-Supplied SUbroutines ...........cccoceeeeiiiiieiee e, 7-21
EPSVIINIE() «e ettt 7-21
EPSVIAONE() 1eiiniiie ettt ettt e 7-2:
Leaving the ApplICation ..o 7-22
Global Transactions and Resource Managers ..........c.ocueeeeviiieeeriineeeennns -2
Comprehensive EXample ... -2
The Central EVENT LOQ .....uuviiiiiiiie ettt ettt 7-2
How the Log IS NamMed........ccuiiiiiiiiiiie e 7-2
What Log Entries LOOK LIKe ......ccuuuiiiiiiiiiiiiie e 7-27
How to Write to the EVENE LOG ......vvveeiiiiiie it 7-29
Debugging AppliCation PrOCESSES ......cciiiiiiieiiiiiie ettt 7-C

BEA TUXEDO Programmer’s Guide



CHAPTER

1 Introduction and
Overview

The BEA TUXEDO System Development
Environment

The purpose of this chapter is to describe the environment in which you will be writing
code for a BEA TUXEDO system application.

In addition to the C code that expresses the logic of your application, you will be using
the Application-Transaction Monitor Interface (ATMI), which refers to the interface
between the BEA TUXEDO system transaction monitor and your application. The
ATMI primitives are C language functions that resemble UNIX system calls, but they
have the specific purpose of implementing the communication among application
modules running under the control of the BEA TUXEDO system transaction monitor,
including all the associated resources you need.

As you might remember from tiBEA TUXEDO Product Overviewhe BEA

TUXEDO system uses an enhanced client-server architecture. Chapters 2 through 7 of
this book describe how the ATMI primitives are used in writing and debugging clients
and services. This chapter provides some of the context within which you will be doing
that work.

BEA TUXEDO Programmer’s Guide  1-1



1

Introduction and Overview

Client Processes

A client process takes user input and sends it as a service request to a server proce
that offers the requested service.

Basic Client Operation

1-2

A client process uses one ATMI primitive to join an application, allocates a message
buffer by using another ATMI primitive, and uses still others to send the buffer to a
server and receive the reply.

The operation of a basic client process can be summarized by the pseudo-code sho
in Listing 1-1.

Listing 1-1 Pseudo-code for a Client

main()
{
allocate a TPINIT buffer
place initial client identification in buffer
enroll as a client of the BEA TUXEDO application
allocate buffer
do while true {
place user input in buffer
send service request
receive reply
pass reply to the user }
leave application

Most of the statements in Listing 1-1 are implemented with ATMI primitives. Placing
user input in a buffer and passing the reply to the user are implemented with C
language functions.

When client programs are ready to test, you useditlient (1) command to
compile and link edit them.

BEA TUXEDO Programmer’s Guide



Client Processes

Client Sending Repeated Service Requests

A client may send and receive any number of service requests before leaving the
application. These can be sent as a series of request/response calls or, if it is important
to carry state information from one call to the next, a connection to a conversational

server can be set up. The logic within the client program is about the same, but different
ATMI primitives are used.

Server Processes and Service Subroutines

Servers are processes that provide one or more services. They continually check their

message queue for service requests and dispatch them to the appropriate service
subroutines.

Basic Server Operation

Applications combine their service subroutines withrtaan() that BEA TUXEDO
provides in order to build server processes. This system supglied) is a set of
predefined functions. It performs server initialization and termination and allocates
buffers to receive and dispatch incoming requests to service routines. All of this
processing is transparent to the application.

Server and a service subroutine interaction can be summarized by the pseudo-code
shown in Figure 1-1.

BEA TUXEDO Programmer’s Guide  1-3



1 introduction and Overview

Figure 1-1 Pseudo-code for a Request/Response Server and a Service Subroutine

START PROGRAM

enroll as a server in the System/T application
adwertise services

_ perform until end
provided by

By stem/T check message queue for service request
dequeue request
dispatch request to service subroutine
recaive control hack fromsubroutine

end perform

SERVICE SUEBROUTINE

!

_ receive control from server
provided by process request
application return control to server

After some initialization a server allocates a buffer, waits until a request message is pl
on its message queue, dequeues the request, and dispatches it to a service subrout
for processing. If a reply is needed, the reply is considered part of request processir

The conversational paradigm is somewhat different. Pseudo-code is shown in
Figure 1-2.

1-4 BEA TUXEDO Programmer’s Guide



Client Processes

Figure 1-2 Pseudo-code for a Conversational Service Subroutine

SERVER

CONVERSATIONAL SEREVICE SUBROUTINE

¥

recerve control from server
perform while true

receive data from conversational client
process request
send data to conversational client

end perform
return control to server

The BEA TUXEDO system-suppliedain() contains the code needed to enroll as a
server, advertise services, allocate buffers, and dequeue request messages. The ATMI
primitives are used in service subroutines that process requests. When they are ready
to compile and test, service subroutines are link edited with the sexirgy by

means of theéuildserver (1) command to form an executable server.

Servers as Requesters

The serially reusable architecture of servers is particularly significant if the operation
requested by the user is logically divisible into several services, or several iterations of
the same service. Such operations can be overlapped by having a server assume the
role of a client and hand off part of the task to another server as part of fulfilling the
original client’s request. In such a capacity the server becomes a requester. Both clients

BEA TUXEDO Programmer’s Guide  1-5



1 introduction and Overview

and servers can be requesters. In fact, a client can only be a requester. The coding
model for such a system is easily accomplished with the routines that are provided b
ATMI.

A request/response server can also forward a request to another server. This is differe
from becoming a requester. In this case, the server does not assume the role of clie
since no reply is expected by the server that forwards a request. The reply is expectt
by the original client.

The ATMI Primitives

The Application-Transaction Monitor Interface is a reasonably compact set of
primitives used to open and close resources, begin and end transactions, allocate a
free buffers, and provide the communication between clients and servers. Table 1-1
summarizes them. Each routine is documented in Section 3C BElR@ UXEDO
Reference Manual

Table 1-1 ATMI Primitives

Group Name Operation
Application Interface tpinit() join an application
tpterm() leave an application
Buffer Management tpalloc() allocate a buffer
Interface
tprealloc() re-size a buffer
tpfree() free a buffer
tptypes() get buffer type
Request/Response  tpcall() send a request, wait for answer
Communication "
Interface tpacall() send request asynchronously
tpgetrply() get reply after asynchronous call
tpcancel() cancel communications handle for

outstanding reply

tpgprio() get priority of last request

tpsprio() set priority of next request

1-6 BEA TUXEDO Programmer’s Guide



Client Processes

Table 1-1 ATMI Primitives

Group Name Operation
Conversational tpconnect() begin a conversation
Interface - -

tpdiscon end a conversation

tpsend() send data in conversation

tprecv() receive data in conversation
Unsolicited tpnotify() notify by client id
Notification Interface -

tpbroadcast() notify by name

tpsetunsol()

set unsolicited message handling routine

tpgetunsol()

get unsolicited message

tpchkunsol()

check for unsolicited messages

Transaction

Management Interface

tpbegin()

begin a transaction

tpcommit() commit the current transaction
tpabort() abort the current transaction
tpgetlev() check if in transaction mode
Service Routine tpservice() start a service
Template . :
tpreturn() end service routine
tpforward() forward request and end service routine
Dynamic tpadvertise() advertise a service name
Advertisement dvert - -
Interface tpunadvertise() unadvertise a service name
Resource Manager  tpopen() open a resource manager
Interface
tpclose() close a resource manager
Event Broker/ Event tppost() post an event
Monitor Interface - .
tpsubscribe() subscribe to an event
tpunsubscribe() unsubscribe to an event

BEA TUXEDO Programmer’s Guide  1-7



1 introduction and Overview

An Overview of X/Open's TX Interface

In addition to ATMI's transaction management verbs, the BEA TUXEDO system also
supports X/Open’s TX Interface for defining and managing transactions. Because
X/Open used ATMI’s transaction demarcation verbs as the base for the TX Interface
the syntax and semantics of the TX Interface are quite similar to ATMI.

Table 1-2 introduces the routines in the TX Interface and highlights the main
differences with their corresponding ATMI routines. For maximum portability, the TX
routines can be used in place of the ATMI routines shown in Table 1-2.

Table 1-2 TX Verbs

TX Verbs Corresponding Main Differences
ATMI Verbs

tx_begin tpbegin Timeout value not passed as argument to
tx_begin . See
tx_set_transaction_timeout

tx_close tpclose None

tx_commit tpcommit tx_commit can optionally start a new
transaction before it returns. This is known as a
“chained” transaction.

tx_info tpgetlev tx_info  returns the settings of transaction
characteristics set via the thrieeset *
routines.

tx_open tpopen None

tx_rollback tpabort tx_rollback supports chained transactions.

tx_set_commit_return tpscmt None

tx_set_transaction_control None

Defines whether the application is using
chained or unchained transactions.

tx_set_transaction_timeout tpbegin

Transaction timeout parameter separated from
tx_begin

The TX interface requires that open()  be called before using any other TX verbs.
Thus, even if a client or a server is not accessing an XA-compliant resource manage
it must callix_open() before it can us&_begin() , tx_commit() , and

tx_rollback()

1-8 BEA TUXEDO Programmer’s Guide

to define transactions.



Client Processes

Listing 1-2 contains an example of how the TX Interface can be used to support
chained transactions. Note thatoegin()) must be used to start the first of a series
of chained transactions. Also, note that before catkngose() , the application
must switch to unchained transactions so that thexlastmmit()  or

tx_rollback() does not start a new transaction.

Listing 1-2 Chained Transactions Using TX Verbs

tx_open();
tx_set_transaction_control(TX_CHAINED);
tx_set_transaction_timeout(120);
tx_begin();
do_forever {
do work as part of transaction;
if (no more work exists)
tx_set_transaction_control(TX_UNCHAINED);
if (work done was successful)
tx_commit();
else
tx_rollback();
if (no more work exists)
break;

}

tx_close();

Typed Buffers

Messages are passed to servers in typed buffers. Why “typed?” Well, different types

of data require different software to initialize the buffer, send and receive the data and
perhaps encode and decode it, if the buffer is passed between heterogeneous machines.
Buffers are designated as being of a specific type so the routines appropriate to the
buffer and its contents can be invoked. These issues are typically not of concern to
application developers, but more details can be foumdfier (3c), tuxtypes (5),

andtypesw (5).

The BEA TUXEDO system provides nine buffer types for messag&sNG, CARRAY
VIEW, VIEW32, FML, FML32, X_OCTET X_COMMQNndX_C_TYPE Applications can
define additional types as needed. Consult the manual pages referred to above and
Administering the BEA TUXEDO System

BEA TUXEDO Programmer’s Guide  1-9



1

Introduction and Overview

TheSTRINGbuffer type is used when the data is an array of characters that terminate
with the null character.

The data in £ARRAYuUffer is an undefined array of characters, any of which can be
null. TheCARRAYs not self-describing and the length must always be provided when
transmitting this buffer type. The OCTETbuffer type is equivalent tOARRAY

TheVIEWtype is a C structure that the application defines and for which there has to
be a view description file. Buffers of theEw type must have subtypes, which
designate individual data structures. ®€_TYPEbuffer type is equivalent taIEW.

The X_comMMmobuffer type is similar t&/IEW but is used for both COBOL and C
programs so field types should be limited to short, long, and stringVIEne2 buffer

type is similar toviEw but allows for larger character fields, more fields, and larger
overall buffers.

An FML buffer is a proprietary BEA TUXEDO system type of self-defining buffer
where each data field carries its own identifier, an occurrence number, and possibly
length indicator. This type provides great flexibility at the expense of some processing
overhead in that all data manipulation is doner¥iafunction calls rather than native

C statements.

The FML32 data type is similar to FML but allows for larger character fields, more
fields, and larger overall buffers.

Using VIEW and FML Buffers

If you are using th&lEW or FMLbuffer types, some preliminary work is required to
create view description files or field table files. In the casa®is, a description file
must exist and must be available to client and server processes that use a data struct
described in th&lEwW. ForFMLbuffers, a field table file containing descriptions of all
fields that may be in the buffer must be available.

Relationship Between Some VIEW Buffers and FML

1-10

There are two kinds ofIEw buffers. One is based on BKIL buffer. The othewIEW
buffer is independent; it is simply a C structure. Both types are described in view
description files and compiled withewc (1), the BEA TUXEDO system view
compiler. We’re going to talk first about the FML variety.

BEA TUXEDO Programmer’s Guide



Client Processes

FML Views

BEA TUXEDO SystenFMLis a family of functions, some of which convertemL

buffer into a C structure or vice versa. The C structure that is derived from the fielded
buffer is referred to as éMLVIEW. The reason for convertirgML buffers to C

structures and back again is that wirilkeL buffers provide data independence and
convenience, they do involve processing overhead because they must be manipulated
usingFMLfunction calls. C structures, while not providing flexibility, offer the
performance required for lengthy manipulations on buffer data. If enough
manipulation of the data is called for, you can improve the performance of your
programs if you transfer fielded buffer data to C structures, operate on the data using
normal C functions, and then put the data back int&thebuffer for storage or

message transmission.

There are slight differences between a view description BiMafbased view and one

that is independent &ML Listing 1-3 shows a view description file with all of the
available data types. The filengview.v and the structure is based orFamn buffer.

Note that thecARRAY field has a count of 2 occurrences and has the “C” count flag to
indicate that an additional count element should be created in the structure so the
application can indicate how many of the occurrences are actually being used. It also
has the “L” length flag such that there is a length element (which occurs twice, once
for each occurrence of the field) indicating how many of the characters the application
has populated.

Listing 1-3 View Description File for FML View

VIEW MYVIEW
$ /* View structure */
#type cname fbname count flag size null

float floatl FLOAT1 1 - - 0.0
double doublel DOUBLE1l 1 - - 0.0
long longl LONG1 1 - - 0

short shortl SHORT1 1 - - 0

int intl INT1 1 - - 0

dect decl DEC1 1 - 9,16 O
char charl CHAR1 1 - - o'
string stringl STRING1 1 - 20 \O
carray carrayl CARRAY1 2 CL 20 "0
END

BEA TUXEDO Programmer’s Guide 1-11



1 introduction and Overview

FML Field Table Files

Field table files are always required when ugint records, including the use of
FML-dependenVIEWS A field table file maps the logical name of a field inRaL
buffer to a field identifier that uniquely identifies the field.

An example that could be used with the view shown in Listing 1-3 is shown in
Listing 1-4.

Listing 1-4 The myview.flds Field Table File

# name number type flags comments
FLOAT1 110 float - -

DOUBLE1 111 double - -
LONG1 112 long - -

SHORT1 113 short - -

INT1 114 long - -

DEC1 115 string - -

CHAR1 116 char - -

STRING1 117 string - -
CARRAY1 118 carray - -

Independent VIEWs

Listing 1-5 shows the view description file, similar to the example in Listing 1-3, but
for aviEwindependent fronfFML

Listing 1-5 View Description File for Independent Views

$ /* View data structure */

VIEW MYVIEW

#type cname fbname count flag size null
float floatl - 1 - - -
double doublel - 1 - - -
long longl - 1 - - -
short shortl - 1 - - -
int intl - 1 - - -
dec t decl - 1 - 9,16 -
char charl - 1 - - -
string stringl - 1 - 20 -
carray carrayl - 2 CcL 20 -
END

1-12 BEA TUXEDO Programmer’s Guide



Client Processes

Note that in this view description, the format is similar toRkedependent view,

except that the colummfisname andnull in the file are ignored by the view compiler.
These columns are not relevant wherrsi buffer does not stand behind the view,

but it is necessary to place some value (a dash, for example) in these columns to serve
as a placeholder.

Corresponding Data Type Definitions

TheCfloat anddouble fields correspond t6OBOLCOMP-1andCOMP-2
respectively.

The field typedong andshort correspond t89(9) COMP-5ands9(4) COMP-5
respectively ircOBOL (The use oEOMP-5is for use with MicroFocusOBOLso that
thecoBolinteger fields match the data format of the correspondifiglds; the data
type forvs coBoul would simply beCOMB

Thedec_t type maps to @0BOLCOMP-3packed decimal field. Packed decimals exist

in thecoBoOLenvironment as two decimal digits packed into each byte with the
low-order half byte used to store the sign. The length of a packed decimal may be 1 to
9 bytes with storage available for 1 to 17 digits and a signddhe field type is
supported within th&Ew definition for the conversion of packed decimals between
theC and thecoBoOLenvironments. Theec_t field is defined in a/IEW with a size of

two numbers separated by a comma. The number to the left of the comma is the total
number of bytes that the decimal occupies@BOL The number to the right is the
number of digits to the right of the decimal poinCBOL The formula for conversion

to thecoBoOLdeclaration is:

dec_t( m,n)<=>8S9(2* m( n+l), n)COMP-3

For example, say a size of 6,4 is specified iniEV. There are 4 digits to the right

of the decimal point, 7 digits to the left, and the last half byte stores the sigbOBlo&
application programmer would represent thi9@pvo(4) , with theV representing

the decimal point between the number of digits to each side. Note that there is no
dec_t type supported iAML; if FML-dependentIEWs are used, then the field must be
mapped to & type in theviEw file (for instance, the packed decimal can be mapped
to anFMLstring field and the mapping functions do the conversion between the
formats).

A decimal field can be initialized and accessed in C using the functions described on
thedecimal (3c) reference page.

BEA TUXEDO Programmer’s Guide 1-13



1

Introduction and Overview

Creating Header Files from View Descriptions

1-14

View description files are source files. To use the view in a program, you need a head:
file that defines the structures in the view. You can create a header file from the
myview.v view description file by invoking the view compilefewc (1). viewc

creates two files. One is the header file and the other is the binary version of the sourt
description filemyview.v. This binary file must be in the environment whengaw
buffer is allocated. For afML-dependenVIEW, the compiler is invoked as follows.

viewc myview.v

The header file it creates from thgview.v description file is shown in Listing 1-6.

Listing 1-6 Header File Created for FML View

struct MYVIEW {

float floatl;
double doublel;
long longl;
short shorti;
int intl;
dec t decl;
char charl;

char string1[20];

unsigned short L_carray1[2]; /* length array of carrayl */
short C_carrayl; /* count of carrayl */

char carrayl1[2][20];

To compile a view description of an independent view, usentheption on the
command line, as follows.

viewc -n myview.v

The header file created is the same with or withoutrtheption. Header files for
views must be brought into client programs and service subroutinesinvitite
statements.

For use withvVIEW32, theviewc32 command should be used.

BEA TUXEDO Programmer’s Guide



Client Processes

Header Files from Field Tables

To create a field header file from the field table file, usentkfielhdr (1) command.
For example:

mkfldhdr myview.flds

creates a file calleshyview.flds.h that can befinclude 'd in a service routine or
client program so you can refer to fields by their symbolic names. The
myview.flds.h header file produced bykfldhdr  from this field table file is shown
in Listing 1-7.

Listing 1-7 The myview.flds.h Header File

* fnrame fldid */
e */

#define FLOAT1 ((FLDID)24686) /* number: 110 type: float */
#define DOUBLE1 ((FLDID)32879) /* number: 111 type: double */
#define LONG1 ((FLDID)8304) /* number: 112 type:long */
#define SHORT1 ((FLDID)113) /* number: 113 type: short */
#define INT1 ((FLDID)8306) /* number: 114 type: long */
#define DEC1 ((FLDID)41075) /* number: 115 type: string */
#define CHAR1 ((FLDID)16500) /* number: 116 type: char */
#define STRING1 ((FLDID)41077) /* number: 117 type: string */
#defineCARRAY1 ((FLDID)49270) /* number: 118 type: carray */

For use withFML32, themkfldhdr32 command should be used.

Other Header Files

If you are using-MLor VIEWtyped buffers#include the header files generated from
their field table files or view description files as described above.

In addition, all BEA TUXEDO system application programs n#irstiude the
atmi.h  header file.

If you are usingFML buffers #include thefml.h header file in your programs.

BEA TUXEDO Programmer’s Guide 1-15



1

Introduction and Overview

Environment Variables

1-16

Environment variables needed either for clients or service routines associated with ¢
server can be set ENVFILES that are specified in the configuration file. The
environment variables that might have to be set for field tables and view descriptions
for example, are summarized in Table 1-3.

Table 1-3 BEA TUXEDO System Environment Variables

Variable Contains Used By
FIELDTBLS comma-separated list of field table file names client and server
processes using
FMLbuffers
FLDTBLDIR colon-separated list of directories to be used tdient and server
find field table files with relative file names  processes using
FMLbuffers
VIEWFILES comma-separated list of binary view client and server
description files processes using

VIEW buffers

VIEWDIR colon-separated list of directories to be used tdient and server
find binary view description files processes using
VIEW buffers

For theFML32 andVIEW32 record types, the environment variables are suffixed with
32, that isFLDTBLDIR32, FIELDTBLS32, VIEWFILES32, andVIEWDIR32.

TheccandCFLAGSenvironment variables are used by bh#dclient (1) and
buildserver (1) commands. You may want to set them in your environment to make
compilation of clients and servers more convenientC&éb the command that

invokes the C compiler. It defaults ¢o. SetCFLAGSto the link edit flags you may
want to use on the compile command line. Setting this variable is optional.

The location of the BEA TUXEDO system binary files must be known to your
application. It is the convention to install the BEA TUXEDO system software under a
root directory whose location is specified in théxDIR environment variable.
$TUXDIR/bin must be included in yourATHin order for your application to locate the
executables for BEA TUXEDO system commands.

BEA TUXEDO Programmer’s Guide



Client Processes

Configuration File

The configuration file specifies the configuration of an application to the BEA
TUXEDO system. For a BEA TUXEDO system application in production, it is the
responsibility of the BEA TUXEDO system administrator to set up a configuration file
that defines the application. In the development environment, the responsibility may
be delegated to application programmers to create their own.

If you are faced with the task of creating a configuration file, here are some
suggestions:

4 Borrow a file that already exists. For example, theuileshm that comes with
the sample application is a good starting point.

4 Keep it simple. For test purposes, set your application up as a shared memory,
single processor system. Use regular UNIX system files for your data.

4 Make sure theéPCKEY parameter in the configuration file does not conflict with
any others that may be in use at your installation. You should probably check
this with your BEA TUXEDO system administrator.

4 Set theulD andGID parameters so that you are the owner of the configuration.

4 Read the documentation. The configuration file is documented in the
ubbconfig (5) page in th8EA TUXEDO Reference Manuahd in the book
Administering the BEA TUXEDO System

Making the Configuration Usable
The configuration file is an ASCII file. To make it usable, you have to run

tmloadcf (1) to convertit to a binary file. THRUXCONFIGenvironment variable must
be set to the pathname for the binary file, and exported.

BEA TUXEDO Programmer’s Guide 1-17



1

Introduction and Overview

The Bulletin Board

The bulletin board is the BEA TUXEDO system name for a group of data structures ir
a segment of shared memory that is allocated from information stoTe&XkK@ONFIG
when the application is booted. Both client and server processes attach to the bullet
board. Part of the bulletin board associates service names with the queue address ¢
servers that advertise that service. Clients send their requests to the name of the serv
they want to invoke, rather than to a specific address.

All processes that are part of a BEA TUXEDO application share this IPC resource.

Starting and Stopping an Application

Execute themboot (1) command to bring up an application. The command gets the
IPC resources needed by the application, and starts administrative processes and tt
application servers.

When it is time to bring the application down, executartisdutdown (1) command.
tmshutdown stops the servers and releases the IPC resources used by the applicatic
except any that might be used by the database resource manager.

Service Gateway

GWTUX2TRNdGWTE2TUXre BEA TUXEDO system servers that provide connectivity
between BEA TUXEDO and BEA TOP END syste@@/TUX2TProvides
connectivity between BEA TUXEDO clients and BEA TOP END sen@¢TE2TUX
provides connectivity between BEA TOP END clients and BEA TUXEDO servers.
One or both of these gateway servers may be configured.

Programming Paradigms

1-18

Gateway servers support request/response messages only. The following BEA
TUXEDO client API calls for sending and receiving are allowed:

4 tpcall

BEA TUXEDO Programmer’s Guide



Service Gateway

4 tpacall (with or withoutTPNOREPLYlag)

4 tpgetrply
¢ tpforward

BEA TOP END servers cannot set thiePL_CONTEXTlag. If this flag is set, the
gateway server dissolves the BEA TOP END dialog and returns an error
(TPESVCFAIL) to the BEA TUXEDO client.

The following BEA TOP END client API calls are allowed:

¢ tp_client_send

4 tp_client_receive

Buffer Types

The gateway servers support BEA TUXE@BRRAY(X_OCTET buffers only.
Attempts to send other types of buffers from a BEA TUXEDO application generate an
error (TPESVCFAIL) which is logged by the gateway server.

Configuration

The GWTUX2TBNdGWTE2TUXjateway servers use the BEA TOP END remote client
and remote server service€nNTUX2Tassumes the role of a BEA TOP END client and
makes use of the remote client servies/TE2TUXassumes the role of a BEA TOP

END server and makes use of the remote server services. Therefore, you must provide
a BEA TOP END remote client/server configuration file on any BEA TUXEDO node
running these gateway processes.

Examples

The following example shows how gateway servers are defined in the BEA TUXEDO
UBBCONFIdile and in the BEA TOP END service definition file.

BEA TUXEDO Programmer’s Guide 1-19



1

Introduction and Overview

1-20

In this example, a BEA TUXEDO client issupsall  to theRSERVICESservice. The
request is forwarded (via ti@®VTUX2THateway) to a BEA TOP END systepiufo )
and invokes a BEA TOP END servideRRODUCT:RFUNC

Similarly, a BEA TOP END client issu@s client_send , specifyingLPRODUCHRS
thePRODUCANdLFUNCas theFUNCTION The request is forwarded (via tB&TE2TUX
gateway) to the BEA TUXEDO system and invokes a BEA TUXEDO service
(LSERVICE).

Listing 1-8 BEA TUXEDO UBBCONFIG File

HHHHHHH
#UBBCONFIG

*GROUPS

TOPENDGRP GRPNO=1

#

*SERVERS

GWTE2TUX SRVGRP="TOPENDGRP" SRVID=1001 RESTART=Y MAXGEN=3 GRACE=10
CLOPT="-- -f servicedefs -R 30"

GWTUX2TE SRVGRP="TOPENDGRP” SRVID=1002 RESTART=Y MAXGEN=3 GRACE=10
MIN=5 MAX=5
CLOPT="-- -f servicedefs”

Listing 1-9 BEA TOP END Service Definition File

BHHHHH

#service definition file
*TE_LOCAL_SERVICES
DEFAULT: PRODUCT=LPRODUCT
LSERVICE FUNCTION=LFUNC

*TE_REMOTE_SERVICES
RSERVICE PRODUCT=RPRODUCT FUNCTION=RFUNC

Listing 1-10 BEA TOP END Remote Configuration File

# TOP END remote configuration file

[top end configuration file]

[component type] remote server

[system] pluto

[primary node] // topendmach 5000

BEA TUXEDO Programmer’s Guide



CHAPTER

2 Writing Client
Programs

About This Chapter

The sections that follow describe the ATMI functions that enable a client program to

¢
¢
¢
¢
¢
¢

control the client name that is posted in the bulletin board

comply with the level of security set for the application

enter and leave an application

manipulate message buffers

communicate with a service and receive replies in request/response mode

modify the way a function performs by specifying various options

The chapter ends with information about how to compile client programs.

Examples Taken from the Sample Application

Many of the examples in this chapter are taken fiodit.c , a client program that is
part of the sample application.

Depending on command line optioasdit.c  retrieves either

4 the total account or teller balance for all the branches of the bank, or

4+ the account or teller balance for a specified branch

BEA TUXEDO Programmer’s Guide  2-1



2 Writing Client Programs

The syntax of the command line is as follows:
audit {-a|-t} [ bid ]

audit is the name of the executable created wheautiec  program is compiled.
The-a option requests that account balances be retrieved; tbption specifies the
teller balance. If no branch identifierg , is included on the command line, the default

is to retrieve the total account or teller balance for all the branches of the bank. If the
branch identifier is included, a balance of the type specified is retrieved for that brancl
only.

Preliminaries

Before a client program is ready to join the application, some preliminary processing
may be called for to take advantage of BEA TUXEDO system capabilities.

Client Naming

2-2

An application can associate bothsaname and acltname with an execution of a

client process. Values furnished for these names are combined by the BEA TUXEDC
system with the logical machine identifieMID) of the machine where the process
runs, in order to establish a unique identification for the process. It is left to the
discretion of application developers and programmers to work out ways of acquiring
the value for the fields. Once acquired they are passgiditQ) inaTPINIT buffer.
Some possible ways are shown in later examples.

Note: If the process is running outside the administrative domain of the application,
that is, if it is running on a workstation connected to the administrative
domain, the_MID used is the one for the machine used by the workstation
client to access the application.

Once a client process is uniquely identified, client authentication can be implementec
out-of-band messages can be sent to a specific client or to groups of clients via
tpnotify ~ (3¢) andipbroadcast  (3c), and detailed statistical information can be
gathered viamadmin (1).

BEA TUXEDO Programmer’s Guide



Preliminaries

Figure 2-1 shows an example of how names might be associated with clients accessing
an application. In the example, the application useslitifzene field to indicate a job

function.

Figure 2-1 Client Naming
LMLy SEIEAT S LEALL:: AROnIET
TR ISMIATIE Jm
cltaarne nakher dimame Mle

Iy I

| METWORE =27

LMIC: NODES
— LY LTS A
ElnanGe: D e

F U

L]

phrace comas s
Lagicod tannEchong

Unsolicited Notification

Unsolicited natification refers to any communication with a client that is not an
expected response to a service request (or an error code). The example that comes to
mind is a broadcast message to announce that the world is coming to an end in five
minutes. Within the client program there are three things you may want to do to handle
such messages:

4+ setflags in th@PINIT buffer to select the method used to detect messages

4 if you use the dip-in method, capisetunsol()
handling function

to name your message

4 if you use the dip-in method, capichkunsol()
messages have been received

to see if any unsolicited

The flag values in thePINIT buffer are described below in the section called “Joining
the Application."tpsetunsol  (3c) andtpchkunsol  (3c) are shown in examples later
in this chapter and are described in BEeA TUXEDO Reference Manual

BEA TUXEDO Programmer’s Guide  2-3



2 Writing Client Programs

Security and Client Authentication

2-4

The BEA TUXEDO system provides several levels of security:

¢
¢
¢
¢
¢
¢

Operating System

Application Password

User Authentication

Optional Access Control Lists
Mandatory Access Control Lists

Link-Level Encryption

Configuration of the security level is the responsibility of the system administrator and
is discussed in theook Administering the BEA TUXEDO Systerhe following
paragraphs explain the different levels and discuss what is needed when writing clier
programs withSECURITYset.

Operating System

For platforms that have underlying security mechanisms, this is the first line
of defense. The security level is configuredM@NE’ This implies, not that
there is no security, but that there are no additional mechanisms (for example
a BEA TUXEDO system password) beyond what the platform provides. The
BEA TUXEDO system has the notion of an application administrator who
configures the application, starts up the application (servers run with the
permissions of this administrator), and monitors the running application,
making dynamic changes as necessary. Note that this implies that server
programs are “trusted” since they run with the administrator’s permissions.
This is supported using the underlying operating system login mechanism anc
read/write permissions on files, directories, and system resources.

Client programs are run directly by the users with their own permissions.
However, they normally have access to the administrative configuration file
and the interprocess communication mechanisms, such as the Bulletin Boar
in shared memory, as part of normal processing. This is true whether or not
additional BEA TUXEDO system security is configured. For some
applications running on platforms supporting it, a more secure approach is tc
have the files and IPC mechanisms accessible only to the application
administrator and to have “trusted” client programs run with the permissions
of the administrator (usingsetuid mechanism). Combining this with BEA

BEA TUXEDO Programmer’s Guide



Preliminaries

TUXEDO system security will allow the application to “know” who the user

is that is making the request. For the most secure environment, only
workstation clients should be allowed to access the application; client
programs should not be allowed to run on the machines where application
server and administrative programs run. BEA TUXEDO system security
mechanisms can be used in addition to operating system security to prevent
unauthorized access. The additional security can be used to avoid simple
violations like someone accessing an unattended terminal. Or it can protect
the boundaries of the administrative domain from inter-domain or
workstation client access over the network by unauthorized users.

Application Password
This security level requires that every client provide an application password
as part of joining the application. The security level is configured to
“APP_PW The administrator must provide an application password when this
level is configured and this password can also be changed administratively. It
is the responsibility of the administrator to inform users of the application
what the password is. If this level of security is used, BEA TUXEDO
system-supplied client programsi(1) for example, prompt for the
application password. Application-written client programs must include code
to obtain the password from a user. The password should not be echoed to the
user’s terminal. The password is placed in clear text impheiT buffer and
evaluated when the client cailsnit() to join the application. Code for
handling a password is shown in examples later in this chapter.

User Authentication
The third level of BEA TUXEDO system security is based on authenticating
each individual user in addition to providing the application password. The
security level is set taJSER_AUTH This level involves passing user-specific
data to an authentication service. Often, the data is a per-user password. The
data is automatically encrypted when passed over the network from
workstation clients. The default authentication servis&THSVC' is
provided by a BEA TUXEDO system-supplied servesTHSVRThe
operation oAUTHSVRSs described in Chapter 3, “Writing Service Routines.”
This server can be replaced with an application authentication server with
logic specific to the application. (For example, it might access the
widely-used Kerberos mechanism for authentication.) With this level of
security, authentication but not authorization is provided. That is, the user is
checked when joining the application but then is free to execute any services,
post events, and access application queues. It is possible for the servers to do
application-specific authorization within the logic of the service routines, but

BEA TUXEDO Programmer’s Guide  2-5



2 Writing Client Programs

there are no hooks for authorization checking for access to events or
application queues. The alternative is to use the built-in access control
checking.

Optional Access Control Lists
With the use of access control lists (ACLSs), the user is not only authenticatec
when joining the application, but permissions are automatically checked
when accessing application entities such as services. ACL security also
includes the user-authentication security equivalentt8ER_AUTH There
are two levels of ACL checking. The first ACL security level is simply called
“ACL” If“ ACL is configured, the Access Control Lists are checked whenever
a user attempts to access a service name, queue name, or event name witt
the application. If there is no ACL associated with the name, the assumptior
is that permission is granted. This is why this level is considered “optional”
ACLs. It allows the administrator to configure access for those resources tha
need more security, but ACLs need not be configured for services, queues, ¢
events that are accessible to everyone. Some applications may find it
necessary to use both system level and application authorization. An ACL car
be used to control who can get to a service, and application logic can contro
data-dependent access (for example, who can handle transactions for more
than a million dollars).

Mandatory Access Control Lists
The second ACL security level iIMANDATORY_ACLThis level is similar to
“ACL,” but an access control list must be configured for every object for
which users are to have accessMANDATORY_ACIs specified and there is
no ACL for the name, permission is denied.

Link-Level Encryption
Users of the BEA TUXEDO system Security Add-On Package (Domestic or
International) can establish data privacy for messages moving over the
network links that connect machines of BEA TUXEDO system applications
(or domains).

Writing Client Programs with SECURITY Set

Two things need to be done for clients that are running in an application with
SECURITYset: a) getting the security data needed for the specific user, and b) passin
this information to the BEA TUXEDO system when joining the application.

2-6 BEA TUXEDO Programmer’s Guide



Preliminaries

Getting the Security Data

The functiontpchkauth  (3c) is provided so a check on the level of security can be
done before callingpinit) . This is necessary so that the program can prompt for
an application password and possibly user authentication data needed for the
tpinit() call. tpchkauth()  is called without arguments and returns one of the
following values.

TPNOAUTH
Nothing is required beyond the normal operating system login and file
permission security. This is returned for security lewsNE’

TPSYSAUTH
An application password is required. The client program should prompt the
user to provide the password, and should place it ipdhenwd field of the
TPINIT buffer (described below). This is required for security level
“APP_PW

TPAPPAUTH
The application password is required and in addition the client is expected to
provide a value to be passed to the authentication servicedatthdield of
the TPINIT buffer. This is returned for security levelSER_AUTH “ ACL,”
or “MANDATORY_ACL

Joining the Application

In an application configured wWitBECURITY, it is necessary to pass the security
information to the BEA TUXEDO system vial®INIT buffer. TheTPINIT buffer is

a special typed buffer used by a client program to pass client identification and
authentication information to the system as the client attempts to join the application.
Itis defined in theatmi.h header file and contains the following fields.

char  usrname[MAXTIDENT+2];
char clthame[MAXTIDENT+2];
char  passwd[MAXTIDENT+2];
char  grpname[MAXTIDENT+2];

long flags;
long datalen;
long data;

BEA TUXEDO Programmer’s Guide  2-7



2 Writing Client Programs

2-8

The usrname, cltname, and grpname Members of TPINIT

usrname , cltname , andgrpname are all NULL-terminated strings of up to
MAXTIDENTcharactersMAXTIDENTis defined as 3Qisrname is a hame representing

the caller; you might elect to use the operating system user nimge is a client
name whose semantics are application defined. You might use this field to indicate th
role of the user when executing the client program. It is also used for selection of
specific clients when sending broadcast messagssame allows a client to be
associated with a resource manager group that is defined in the configuration file. Thi
means that a client can access an XA-compliant resource manager as part of a glob
transaction. lgrpname is passed as a O-length string, the client is not associated with
a resource manager group and is in the default client group.

Theusmame andcitname fields are associated with the client process when
tpinit() is called and are used for authentication, broadcast notification, and the
retrieval of administrative statistics.

The passwd Member of TPINIT

passwd is a NULL-terminated string of up to 8 characters. It is an application
password in unencrypted format that is usedobyt() for validation against the
configured application password.

The flags Member of TPINIT

The setting ofiags is used to indicate the notification mechanism and system access
mode to be used. Selections override values specified in the configuration file (with
some exceptions explained below). Possible valuetatpr are:

TPU_DIP
Select unsolicited naotification by dip-in. This is the default method if nothing
is specified in the configuration file. It has the advantage of giving the
receiving program more control over when unsolicited messages are handlec
The system will detect unsolicited messages for your client process only
while you are within ATMI calls. You may want to check for unsolicited
messages as part of your regular checking routine following returns from
ATMI calls. If you specify this flag (or accept it as the default method), you
should include a call ttpsetunsol() early in your program. Until the
handler for unsolicited messages is known, no messages can be delivered.

BEA TUXEDO Programmer’s Guide



Preliminaries

TPU_SIG
Select unsolicited notification by signals. This method has the advantage of
immediate notification, but has the limitations that you must have the same
uid as the sending process, and is not available on all platforms (specifically,
it is not available with the MS-DOS instantiation of the workstation). If you
specify this option but do not qualify for it, the system resets your choice to
TPU_DIP and callsuserlog()  to note the event.

TPU_IGN
Ignore unsolicited notification.

TPSA_FASTPATH
Specifies a) that ATMI calls within application code can access BEA
TUXEDO system internal tables via shared memory, and b) that the shared
memory is not protected against access by application code outside of BEA
TUXEDO system libraries. Overrides the valueJBBCONFIGexcept when
NO_OVERRIDEs specified. This is the defaultdfrSTEM_ACCES810de is
unspecified.

TPSA_PROTECTED
Specifies that ATMI calls within application code can access BEA TUXEDO
system internal tables via shared memory but the shared memory is protected
against access by application code outside of BEA TUXEDO system
libraries. Overrides the value WBBCONFIG except whemO_OVERRIDES
specified.

The datalen and data Members of TPINIT

User-specific data is passed by usingdiwalen anddata fields when security is set

to “USER_AUTH “ACL,"” or “MANDATORY_ACLdatalen is the length of the
user-specificdata that follows. The buffer type switch entry for thelNIT typed

buffer setsdatalen based on the total size passed in for the typed buffer (the
application data size is the total size less the size afRineT structure itself plus the
size of the data placeholder as defined in the structure). There is a TRARIONEED,
provided inatmi.h , that calculates the size needed when you call it with the number
of bytes of applicatiomata you expect to pass.

data is a placeholder for variable length data that is forwarded to an authentication
service.data is always the last element of the structure.

BEA TUXEDO Programmer’s Guide  2-9



2 Writing Client Programs

Allocating the TPINIT Buffer

The client program must cafalloc() to allocate thaPINIT buffer. You can use

the functions described for message typed buffers in the “Buffer Management” sectiol
later in this chapter. A sample is shown in Listing 2-1. The intent in this example is to
prepare to pass 8 bytes of application-specifta to tpinit()

Listing 2-1 Allocating a TPINIT Typed Buffer

TPINIT *tpinfo;

if ((tpinfo = (TPINIT *)tpalloc("TPINIT",(char *)NULL,
TPINITNEED(8))) == (TPINIT *)NULL){
Error Routine

}

The Application Key

2-10

An application key is associated with each client program when it joins the application
You can think of this 32-bit value as the security credential for the client; it identifies
the client for security purposes. This value cannot be reset by the client (other than b
terminating its association and joining the application as a different user), and cannc
be forged. The value is provided to every service invocation as parttH tveINFO
structure in theppkey field (seepservice (3c)).

The following list indicates how the application key will be set for various security
levels and clients.

4 Messages from native BEA TUXEDO system-provided clients that must be run
by the administrator, such asadmin , dmadmin, andtmshutdown , will have the
application key of the administrator (the value is 0x80000000). This is
independent of the security level.

4 There are three classes of client users in a system with security SetNg 6r
“APP_PW:

BEA TUXEDO Programmer’s Guide



Preliminaries

4 Messages from native clients that agithit  (3c) with a client name of
tpsysadm and are run by the administrator will have the application key of
the administrator.

4 Messages from native clients that agithit  (3c) with a client name of
tpsysopr and are run by the administrator will have the application key of
the system operator (the value is 0xC0000000).

4 Other client programs will always have an application key of -1 (there is no
distinction between users).

Multiple users exist in the case where per-user authentication is done (security
set to USER_AUTH “ACL,” or “MANDATORY_AC):

4 Messages from native clients that agithit  (3c) with a client name of
tpsysadm and are run by the administrator will have the application key of
the administrator, and will not be authenticated.

4 Messages from authenticated clients thattpait  (3c) with a client name
of tpsysadm will have the application key of the administrator.

4 Messages from authenticated clients thattpait  (3c) with a client name
of tpsysopr ~ will have the application key of the system operator.

¢ For other clients, the key depends on the security level. FRER_AUTH
security, the defaukUTHSVReturns the configured user identifier. For
“ACL" or “MANDATORY_ACIsecurity, theAUTHSVReturns an application key
with the user identifier in the lower 17 bits and the group identifier in the
next 14 bits.

Any message that originates frapsvrinit ~ (3c) ortpsvrdone (3c) will have
the application key of the administrator. Messages that pass through a server but
originate at a client will have the application key of the client.

BEA TUXEDO Programmer’s Guide 2-11



2 Writing Client Programs

Joining and Leaving an Application

The two routines discussed in this section allow a client process to join and leave a
BEA TUXEDO system application. The syntax of these functions is as follows.

int

tpinit(tpinfo) /* Join a BEA TUXEDO Application */

TPINIT *tpinfo;

and

int

tpterm() /* Leave a BEA TUXEDO Application */

Before a client can make any service request, it must join the application. If a service
request (or any ATMI function) is called before invokipgit() , then it is invoked
automatically with alULL parameter. This implies that theINIT features mentioned
earlier in this chapter cannot be used; the default values are used for client naming,
unsolicited notification type, and system access mode, the client cannot be associat
with a resource manager group, and an application password cannot be specified. T
use these features, the application must explicitly invokepitkit) function. Once
invoked (either implicitly or explicitly), the calling process may initiate requests and
receive repliegpterm()  removes the process from the application. Wnm()

returns successfully, the process must again join the application before communicatin
with a BEA TUXEDO system server process. A typical client process might begin and
end as shown in Listing 2-2.

Listing 2-2 Typical Client Process Paradigm

main()
{
check level of security
call tpsetunsol() to name your handler for TPU_DIP
get usrname, cltname
prompt for application password
allocate a TPINIT buffer
place values into TPINIT buffer structure members

if (tpinit((TPINIT *) tpinfo) == -1){

error routine;

}

2-12 BEA TUXEDO Programmer’s Guide



Joining and Leaving an Application

allocate a message buffer
while user input exists {
place user input in the buffer
make a service call
receive the reply
check for unsolicited messages

}

free buffers

if (tpterm() == -1){
error routine;
}

}

The argument tepinit() is a pointer to a structul@INIT , that istypedef 'd in the
atmi.h  header file. If you use a buffer;TRINIT typed buffer must be allocated via
tpalloc() before callingpinit()

tpterm()  does not take an argument. Both functions return an integer. On error, the
value of the returned integer-is and the external global variabtgermo , is setto

a value that indicates the nature of the ertpermo is defined in thatmi.h header

file and documented on thgerro  (5) reference page. The convention is to assign an
error code to this global variable that reflects the type of error encountered. There is a
discussion of the valuespkrrmo  in Chapter 7, “Error Management.” The complete

list of error codes that can be returned for each of the ATMI functions can also be
found on the reference pages that describe the function andr¢he(3c) reference

page in thaBEA TUXEDO Reference Manual

An example ofpinit() andtpterm()  is shown in Listing 2-3. It is taken from the
audit.c  client program in the banking application.

Listing 2-3 Joining and Leaving the Application

#include <stdio.h> /* UNIX */

#include <string.h> /* UNIX */

#include <fml.h> /* BEA TUXEDO */
#include <atmi.h> /* BEA TUXEDO */
#include <Uunix.h> /* BEA TUXEDO */
#include <userlog.h> /* BEA TUXEDO */
#include "bank.h" /* BANKING #defines */
#include "aud.h" /* BANKING view defines */

BEA TUXEDO Programmer’s Guide 2-13



2 Writing Client Programs

2-14

main(argc, argv)
int argc;
char *argv([];

{

if (strrchr(argv([0],'/) != NULL)
proc_name = strrchr(argv([0],/)+1;
else

proc_name = argv[0];

/* Join application */

if (tpinit((TPINIT *) NULL) == -1) {

(void)userlog("%s: failed to join application\n", proc_name);
exit(1);

}

[* Leave application */
if (tpterm() == -1) {
(void)userlog("%s: failed to leave application\n", proc_name);
exit(1);
}
}

The previous example shows the client process attempting to join the application wit
a call totpinit() . If an error is encountered (that is, if the return code Jsa

message is written to the central event log via a callddog() . Theuserlog()

function takes arguments similargontf() and is documented in thserlog (3c)
reference page in tBEA TUXEDO Reference Manu@ls explained, the client

process is invoked by entering its name at the prompt with the mandatoryt

option. Its name is capturedargv[0] and is placed in the global variable

proc_name which gets written to the event log as part of the message. A similar
explanation applies to the call ggerm()

BEA TUXEDO Programmer’s Guide



Buffer Management

Buffer Management

Before messages can be sent between processes, a buffer must be allocated for the
message data. The following sections describe the buffer types supported by the BEA
TUXEDO system and how buffers are allocated, changed in size, tested for type, and
freed using ATMI functions.

Typed Buffers for Messages

Buffer Types:

The BEA TUXEDO system is delivered with nine message buffer types defined:
STRING CARRAY FML VIEW X_COMMON X_C_TYPE X_OCTET FML32 VIEW32

The buffer types are defined timtypesw.c  (which can be found in
$TUXDIR/lib/tmtypesw.c , with documentation ituxtypes (5)). When the BEA
TUXEDO system software is builintypesw.o is archived in the BEA TUXEDO
system libraries that are automatically linked in wherbtligclient and

buildserver ~ commands are invoked, so the nine defined types are available to your
application programs.

Thetmtypesw.c file can be edited to add or remove buffer types. Information about
how to do this can be found in theokAdministering the BEA TUXEDO Systeédmly
buffer types defined itmtypesw.c  can be known to your client or server programs.
Theubbconfig (5) BUFTYPEparameter can be used to specify the types and subtypes
a given service can know about.

STRING

The STRING buffer type is what is conventionally understood as a string in the C
language. It is a character array terminated by the null character. Data dependent
routing is not provided for this buffer type. If routing functions are desired, they must
be written as part of the application. Encoding and decoding is provided for this buffer

type.

BEA TUXEDO Programmer’s Guide 2-15



2 Writing Client Programs

Buffer Types:

Buffer Types:

Buffer Types:

CARRAY

The CARRAYOuUffer type (and equivalently OCTET is an array of characters, any of
which can be the null character. The application defines the semantics of the array; |
is not interpreted by the BEA TUXEDO system. Data dependent routing is not
provided for this buffer type. If routing functions are desired, they must be written as
part of the application. No encoding or decoding is provided @&RRAbuUffer when
crossing machine boundaries since the bytes are not interpreted by the system.

FML and FML32

FML buffers offer the advantages of data independence and flexibility; fields may be
present or absent, or may have multiple occurrences. Mgdyuffers interface well

with both the BEA TUXEDO system DBMS and the DES. The BEA TUXEDO system
DBMS supports fielded records in database files, anehthieclient process of the

BEA TUXEDO system DES uses fielded buffers for input and output data. In addition,
this data type provides the functionality of data dependent routing. Automatic
encoding and decoding is done if the buffer is passed between machines of differen

types.

FMLfunctions are used to manipul&eLtyped buffers. These functions include some
that convert fielded buffers to C structures and back again, thus providing both the
performance gains of C structures for lengthy field manipulations and the flexibility of
fielded buffers. A C structure that is derived from a fielded buffer is caNeBvs

FML32is similar toFML but allows for larger string and character fields, more fields,
and larger overall buffers. TH®1L32 buffer type uses environment variables suffixed
with “32”, for example FIELDTBLS32 andFLDTBLDIR32. FML32 functions (like their
FML counterparts but with 82" suffix) are used to manipulate these buffers.
Functions are also provided to convert between 16-bit and F24btuffers

(assuming that the limits are not exceeded), and functions are available to convert
betweerFML32 andVIEW32 buffers.

VIEW, VIEW32, X_C_TYPE, and X_COMMON

Buffers of theviEwtype (and equivalently_C_TYPEandX_COMMQnare C structures.

The C structure is passed between processesiEvatyped buffer of a specific

subtype. It can be one derived from a fielded buffer or one defined independently of .
fielded buffer. The ATMI buffer management primitives for allocating, resizing, and
freeing aviEw buffer are the same for both types, but there are differences in the way

2-16 BEA TUXEDO Programmer’s Guide



Buffer Management

the two types o IEWSthemselves are defined and in how they are handled within your
programs. These differences were described in the section titled, “The BEA TUXEDO
System Development Environment,” in Chapter 1. Both typ&sgyf buffer support

data dependent routing and automatic encoding and decoding when the buffer is
passed between unlike machines.

A comparison of how to create and use thewgwtypes is summarized in Table 2-1.

Table 2-1 Comparison of Two VIEW Types

FML-dependent VIEW FML-independent VIEW
Creating create the view description file with FML create the view description file without FML
information in it information in it

use theviewc compiler without then optionto use theviewc compiler with then option to
compile the description file compile the description file

Using set and export FIELDTBLS, FLDTBLDIR, set and export VIEWFILES and VIEWDIR in
VIEWFILES, VIEWDIR in the ENVFILE for the the ENVFILE for the machine the client process
machine the client process is running on is running on

#include fml.h , the header file created from #include the header file created from the
the field table file, and the header file created fromiew compiler in the programs that define
the view compiler in the programs that define FMIVIEW buffers

and VIEW buffers

Buffer Types:

Buffers of typex_comMmoshould contain only short, long, and character fields, which
are common to both the COBOL and C languages.

TheVIEW32 type is similar to th&IEWtype but supports larger character fields and
bigger records. It is also used for conversion to/from FML32 recordsvEles2

buffer type uses environment variables suffixed wih”; for example,
FIELDTBLS32, FLDTBLDIR32, VIEWFILES32, andVIEWDIR32.

Summary

Although system configuration and defining buffer types are application design issues
rather than programming issues, the above discussion has been included to explain
how processes know about the various buffer types so you can allocate buffers
correctly for the communication calls between processes.

BEA TUXEDO Programmer’s Guide 2-17



2 Writing Client Programs

ATMI Buffer Primitives

It is important for the BEA TUXEDO system programmer to know what buffer types
are required and expected by the application. The ATMI functions that allocate, resize
and free the buffers take the buffgwe andsubtype as arguments. For the types
provided by BEA TUXEDO, theubtype argument has meaning only whgpe is

VIEW, VIEW32, X_C_TYPE or X_COMMQNN this case, theubtype is the name of the
specific C structure defined a¥i&EW. In the other buffer types, tebtype argument

is NULL

Allocating a Typed Buffer

Initially, a client process does not have any buffers. Before a message can be sent, t
client process must allocate a buffer of a supported type to carry the message. A type
buffer is allocated by using thgalloc() function. The syntax of this function is:

char*

tpalloc(  type, subtype, size ) /* Allocate a new data buffer */
char* type ,* subtype ;

long size ;

The three arguments the function takestgpe subtype andsize The value ofype
must be a type known to BEA TUXEDO.

TheVIEW, VIEW32, X_C_TYPE andX_COMMObuffers require theubtypeargument.
(See Listing 2-4.) In the cases where a subtype is not relevant, assigsi thealue
to this argument. This is illustrated in Listing 2-5, Listing 2-6, and Listing 2-7.

Listing 2-4 Allocating a VIEW Buffer

struct aud *audv; /* pointer to aud view structure */

audv = (struct aud *) tpalloc("VIEW", "aud", sizeof(struct aud));

Listing 2-5 shows the allocation of an FML typed buffer.

2-18 BEA TUXEDO Programmer’s Guide



Buffer Management

Listing 2-5 Allocating an FML Buffer

FBFR *fbfr; /* pointer to an FML buffer structure */

fbfr = (FBFR *)tpalloc("FML", NULL, Fneeded(f, v))

Thesize argument can be set to zero for all the BEA TUXEDO system-supplied types
except folTCARRAYIf size is not specified (that is, if it is set to zero), BEA TUXEDO
uses a default size that is defined for each buffer type. Hithe argument is

specified, the size of the buffer will be the larger of the specified size or the default
size. The default size f@TRINGIis 512 bytes, and it i2024 bytes forFML, FML32,

VIEW, X_C_TYPE X_COMMQNnNdVIEW32.

For aCARRAYasize greater than zero must be specified (see example in Listing 2-6);
the default size is 0 and this caugsioc() to return aNULL pointer and set
tperrno  to TPEINVAL.

Note that in cases of errapalloc() always returns thRULL pointer. Other causes
for error include failure to specify a value for type (or subtype in the cagewy,
specifying a type that is not known to the system, and failing to join the application
before attempting allocation. Refer to thalloc  (3c) reference page for the complete
list of error codes and their explanation.

Upon successpalloc() returns a pointer of typghar . For types other thasTRING
andCARRAYYyou should cast it to the proper C structure pointer or &nvarmpointer.
(See Listing 2-4 and Listing 2-5.)

Listing 2-4 shows the allocation of@ewW typed buffer. It is taken from theidit.c
client program in the banking application. Thel structure is th&IEwtyped buffer
that is defined in Chapter 1, “Introduction and Overview.”

BEA TUXEDO Programmer’s Guide 2-19



2 Writing Client Programs

tpalloc Examples

Listing 2-6 shows the allocation ofGARRAMYped buffer. The value afisize must
not be zero.

Listing 2-6 Allocating a CARRAY Buffer

char *cptr;

long casize;

casize = 1024;

cptr = tpalloc("CARRAY", NULL, casize);

Listing 2-7 shows the allocation ofSTRING typed buffer. In the example, the default
size defined by the system is used as the value faidfheargument tapalloc()

Listing 2-7 Allocating a STRING Buffer

char *cptr;

cptr = tpalloc("STRING”, NULL, 0);

What About FML Buffer Management Functions?

2-20

If you've been looking at thBEA TUXEDO FML Programmer’s Guidespecially the
section in Chapter 5 called “Buffer Allocation and Initialization,” you probably realize
it is also possible to manag®iL buffers by the routines described there. However, if
the buffers are to be used in the communication calls in the ATMI interface, they mus
be managed by the routines described ongdilec  (3c) reference page.

Specifically, this means th&tlloc() , Frealloc() , andrFfree() should be

replaced bypalloc() , tprealloc() , andipfree() . Finit()  is not needed
becausepalloc() automatically initializes the buffer. Also, since teLtyped

buffer is given a default size by the systemgeded() should be used only when you
wish to assign the buffer a specific size that is larger than the default size as is show
above in Listing 2-5. Thé andv arguments tGneeded are integer values that
represent the number of fields and the space for field values in bytes required for the
fielded buffer. All the otheFMLfunctions described in Chapter 5 of BEA TUXEDO

FML Programmer’s Guidean be used with afMLtyped buffers regardless of how

the buffers were allocated.

BEA TUXEDO Programmer’s Guide



Buffer Management

Putting Data in the Buffer

Once the buffer has been allocated, data can be put in iauBheEw typed buffer

has three members (fields). They ar@l , the branch identifier taken from the
command line (if given)halance , used to return the requested balance;eansgg ,

used to return a message to the status line for the user.altienis used to query a
specific branch balance, theid member is set to the branch identifier to be queried,
and thebalance andermsg members are set to zero and the null string, respectively.
This is illustrated in Listing 2-8.

Listing 2-8 Placing Data in a Message Buffer - Example 1

audv = (struct aud *)tpalloc("VIEW", "aud", sizeof(struct aud));
/* Prepare aud structure */
audv->b_id = g_branchid;

audv->balance = 0.0;
(void)strcpy(audv->ermsg, **);

Whenaudit is used to query the total bank balance, the total balance at each site is
obtained by a call to th®aL server. To run a query on each site, a representative branch
identifier is specified. Representative branch identifiers are stored in an array named
sitelist[] . Hence, thewd structure is set up as illustrated in Listing 2-9.

Listing 2-9 Placing Data in a Message Buffer - Example 2

/* Prepare aud structure */

audv->b_id = sitelist[i];/* routing done on this field */
audv->balance = 0.0;
(void)strcpy(audv->ermsg, ");

An example of code that puts data intBRRING buffer is part of Listing 2-10.

BEA TUXEDO Programmer’s Guide 2-21



2 Writing Client Programs

Resizing a Typed Buffer

It is possible to resize the buffer that is initially allocatedphioc() if you want to
use the same buffer to input and send messages of different sizes. The function you

would use in this case igrealloc() . The syntax of the function is as follows.
char*

tprealloc( ptr, size ) I* Change a data buffer's size */

char* ptr ;

long size ;

For example, if a buffer has been allocated as $fFNG, it is possible to reallocate
a buffer of a different size but of the same type, as illustrated in Listing 2-10.

Listing 2-10 Resizing a Buffer

#include <stdio.h>
#include "atmi.h"

char instr[100];  /* string to capture stdin input strings */
long sllen, s2len; /* string 1 and string 2 lengths */
char *slptr, *s2ptr; /* string 1 and string 2 pointers */

main()

(void)gets(instr); /* get line from stdin */
sllen = (long)strlen(instr)+1; /* determine its length */

Join application

if ((s1ptr = tpalloc("STRING", NULL, sllen)) == NULL) {
fprintf(stderr, "tpalloc failed for echo of: %s\n", instr);
leave application
exit(1);

}
(void)strcpy(slptr, instr);
make communication call with buffer pointed to by s1ptr

(void)gets(instr); [* get another line from stdin */
s2len = (long)strlen(instr)+1; /* determine its length */
if ((s2ptr = tprealloc(s1ptr, s2len)) == NULL) {
fprintf(stderr, "tprealloc failed for echo of: %s\n", instr);
free s1ptr's buffer
leave application
exit(1);

2-22  BEA TUXEDO Programmer’s Guide



Buffer Management

}
(void)strcpy(s2ptr, instr);

make communication call with buffer pointed to by s2ptr

As illustrated tprealloc() takes two parameters, a pointer to the buffer that is to be
resized and a long integer that tells the function the new size of the buffer. The pointer
passed taprealloc() must have originally been allocated by a catpttioc() ;
otherwise the call will fail antbermo  will be set toTPEINVAL to signify that invalid
arguments have been passed to the function. The pointer returmeehalyc()

will point to a buffer of the same type as the original buffer. You must use the returned
pointer to reference the resized buffer because the location of the buffer may have
changed. The contents of the buffer, up to the smaller of the two sizes, remains
unchanged. Whetprealloc() is called to make a buffer larger, new space is
available beyond the existing contents. Wipesalloc() is called to make a buffer
smaller, the buffer does not actually become smaller; space beyond the specified size
is unusable. If you really want to free up the unused space, you must copy the data into
a buffer of the appropriate size and free the larger buffer.

tprealloc() returns the NULL pointer on error and sgksrmo  as indicated on the
tpalloc  (3c) reference page. Whemnealloc() returns the NULL pointer, the
contents of the buffer passed to it may have been altered and may be no longer valid.

Listing 2-11 shows an expanded version of the example in Listing 2-10 that could be
used to check for all error codegsealloc() can return.

Listing 2-11 Error Checking for tprealloc()

if ((s2ptr=tprealloc(slptr, s2len)) == NULL)
switch(tperrno) {
case TPEINVAL:
fprintf(stderr, "given invalid arguments\n");
fprintf(stderr, "will do tpalloc instead\n");
tpfree(s1ptr);
if ((s2ptr=tpalloc("STRING", NULL, s2len)) == NULL) {
fprintf(stderr, “tpalloc failed for echo of: %s\n", instr);
leave application
exit(1);

BEA TUXEDO Programmer’s Guide 2-23



2 Writing Client Programs

break;
case TPEPROTO:
fprintf(stderr, “tried to tprealloc before tpinit;\n");
fprintf(stderr, "program error; contact product support\n“);
leave application
exit(1);
case TPESYSTEM:
fprintf(stderr,
"BEA TUXEDO error occurred; consult today's userlog file\n");
leave application
exit(1);
case TPEOS:
fprintf(stderr, "Operating System error %d occurred\n",Uunixerr);
leave application
exit(1);
}

Checking for Buffer Type

Thetptypes()  function takes a pointer to a data buffer as its first argument and

2-24

returns the type and subtype (if there is one) for that buffer in its other two arguments
It returns a long integer which, on success, is the length of the buffer. The syntax of
this function is:

long
tptypes(  ptr, type, subtype ) /* Determine a data */
char* ptr ,* type ,* subtype ; [*buffer's type and subtype */

The pointer you supply to this function must point to a buffer originally allocated or
reallocated bypalloc() or tprealloc() , otherwise it will fail complaining of

invalid arguments. If the type is ngiEW, the subtype parameter will point to a
character array containing the null string upon return from the function call. All three
of the parameters oftypes()  are pointers to character. The first parameter is the
pointer to the typed buffer and must be non-null. Be sure to cast it as a pointer to a
character before passing it to this function since it is expecting a character pointer. Th
second and third parameters return the type and subtype of the buffer pointed to by ti
first parameter. The second parameter must be a character array of at least
TM_TYPELENcharacters, and the third parameter must be a character array of at leas
TM_STYPELENharacters. On success, the size of the buffer is returned. On error,
tptypes()  returns-1 and setsperrno  to an error code that signifies the problem.

All the possible codes are listed on thigo (3c) andtpalloc  (3c) reference pages.

BEA TUXEDO Programmer’s Guide



Buffer Management

In addition to the fragment shown below (in Listing 2-12), an exampiletyples()
can be found in Listing 3-2 in Chapter 3, “Writing Service Routines.” It demonstrates
a service routine checking the type of buffer received.

The size value returned Iptypes()  can be used to determine if the default buffer
size is large enough to hold your data.

Listing 2-12 Getting Buffer Size

iptr = (FBFR *)tpalloc("FML", NULL, 0);
ilen = tptypes(iptr, NULL, NULL);

i.f.(ilen < mydatasize)
tprealloc(iptr, mydatasize);

Freeing a Typed Buffer

To free a buffer allocated hyalloc() or reallocated byprealloc() , use the
tpfree()  function. The syntax of this function is:

void
tpfree(  ptr ) /* Free a data buffer */
char* ptr ;

The argument to this function is a pointer previously returned byahec() or
tprealloc() function. Iftpfree()  is given a pointer that does not point to a buffer
obtained frompalloc() or tprealloc() , it returns without freeing anything, and it
does not return an error conditiapfree() ~ expects a character pointer as its only
parameter. Listing 2-13 shows an example of its use.

Listing 2-13 Freeing a Buffer

struct aud *audv; /* pointer to aud view structure */
audv = (struct aud *)tpalloc("VIEW", "aud", sizeof(struct aud));

ip.f.ree((char *audv);

BEA TUXEDO Programmer’s Guide 2-25



2 Writing Client Programs

Service Calls

Once a client process has joined the application, allocated a buffer, and placed the
input data request in it, it can then send the request message to a service subroutine
processing and receive a reply message. The next sections discuss the ATMI functiol
that allow processes that are acting as clients to send message requests to services
receive replies either synchronously or asynchronously.

Thetpcall)  function sends a request to a service subroutine and synchronously
waits for its reply.

Thetpacall() function sends a request to a service and immediately returns. The
reply to the service call is asynchronously received by callingptfegrply()
function.

Sending Synchronous Messages: tpcall()

tpcall() is used to send synchronous messages. The syntax of this function is:

int

tpcall(  svc, idata, ilen, odata, olen, flags ) /* Send service request */
char* svc,* idata ; /* and await its reply */
long ilen ;

char** odata ;
long* olen, flags ;

tpcall() sends a request to the service that is specified in its first parasvet@he
service named isvemust be one offered in your applicatigscall)  waits for the
expected reply. Itis logically the same as callinggheall)  function immediately

followed bytpgetrply() . The request carries the priority that is set by the system for
the service specified isvc unless a different priority has been explicitly set by a call
to tpsprio()

The second parameter of the functi@lata , is a pointer that contains the address of
the data portion of the request. The pointer must reference a typed buffer that was
allocated by a prior call tipalloc() . Note that the type (and subtype)difta must
match the type (and subtype) expected by the service routine. If the types do not matc
the system setperrno  to TPEITYPE and the function call fails.

2-26 BEA TUXEDO Programmer’s Guide



Service Calls

The third parameteifen , specifies the length of the request data in the buffer pointed
to byidata . If the buffer is a self-defining type, that is,R¥L FML32, VIEW, VIEW32,
X_COMMQN_C_TYPE or STRING buffer,ilen is ignored and can be set to zero. If the
request requires no data, slata to theNULL pointer. This causes tllen parameter

to be ignored. If no data is being sent with the request, there is no need to allocate a
buffer foridata .

The next two parameters are the address of a pointer to the output éxiffer, and

a pointer to the length of the reply dad&n . The output buffer* odata , must have
been allocated by a previous caltgalloc() . This buffer is used to receive the reply
message. If the reply message sent back contains no data portion, upon successful
return fromtpcall)  , *olen will be set to zero, and the pointer and the contents of
the output buffer will remain unchanged. It is an error for eithetata or*olen to

point toNULL

The same buffer can be used for both the request and reply message. If this is the case,
thenodata must be set to theddress of the pointer returned from allocating the input
buffer.

Listing 2-14 shows the client prograaudit.c , making a synchronous call using the
same buffer for both the request and reply message. Using the same buffer is
appropriate in this particular case, since*helv message buffer has been set up to
accommodate both request and reply information in the same buffes. iihéeld is
queried by the service but not overwritten andthie andermsg fields have been
initialized to zero and the null string, respectively, in anticipation of the values to be
returned by the service. Tkec_name andhdr_type variables represent the service
name and the balance type (account or teller) requested.

Listing 2-14 Using the Same Buffer for Request and Reply Messages

)*. Create buffer and set data pointer */

audv = (struct aud *)tpalloc("VIEW", "aud", sizeof(struct aud));
/* Prepare aud structure */

audv->b_id = g_branchid;

audv->balance = 0.0;

(void)strcpy(audv->ermsg, ");

/* Do tpcall */

if (tpcall(svc_name,(char *)audv,sizeof(struct aud),

BEA TUXEDO Programmer’s Guide 2-27



2 Writing Client Programs

2-28

(char *)&audv,(long *)&audrl,0)==-1){
(void)fprintf (stderr, "%s service failed\n %s: %s\n”,
svC_name, svc_name, audv->ermsg);
retc = -1,

}

else
(void)printf ("Branch %Id %s balance is $%.2f\n",

audv->b_id, hdr_type, audv->balance);

Note: For an example in which different buffers are used for input and output, see
Listing 3-2 in Chapter 3, “Writing Service Routines.”

Buffers used for receiving messages can grow upon receipt of the message if the
message proves to be too large for the allocated buffer. BEA TUXEDO guarantees th:
a received message will fit into the buffer by growing the buffer automatically.
However, it is necessary for the programmer to test for size changes of reply buffersi
order to determine their actual sizes. The new size is accessible by the address return
in theolen parameter. To determine if a reply buffer changed in size, compare the siz
of the reply buffer before the call tacall() with the value of olen after its return.

If *olen is larger than the original size, the buffer has grown. If not, the buffer has not
changed in size. You should reference the output buffer by the value retutachin

after the call, because the output buffer may change for reasons other than increase
buffer size. This scenario does not apply to request buffers since there is no possibilit
that the request data will grow upon placing it in the buffer. Note that if you use the
same buffer for the request and reply message, and the pointer to the reply buffer
changed because the buffer grew, then the input buffer pointer no longer references
valid address.

Listing 2-15 offers a generic example of an application testing for a change in buffer
size after a call tepeall) . The logic exercised in this particular example is that the
input and output buffers must remain equal in size.

Listing 2-15 Testing for Change in Size of the Reply Buffer

char *svc, *idata, *odata;
long ilen, olen, bef_len, aft_len;

i.f (idata = tpalloc("STRING", NULL, 0) == NULL)
error

BEA TUXEDO Programmer’s Guide



Service Calls

if (odata = tpalloc("STRING", NULL, 0) == NULL)
error

place string value into idata buffer

ilen = olen = strlen(idata)+1;

bef len = olen;

if (tpcall(svc, idata, ilen, &odata, &olen, flags) == -1)
error

aft_len = olen;

if (aft_len > bef_len){ /* message buffer has grown */

if (idata = tprealloc(idata, olen) == NULL)
error

Values for the flags Argument: tpcall()

The last argument thatcall() takes isflags . The values given to thiags

argument can change the operation of the communication call in some way, allowing
additional flexibility to the application. fags is set to0, the communication is
conducted in the default manner.

TPNOTRAN
If the client process is in transaction mode when it qadigl()  , andflags
is set toTPNOTRANthe service that is invoked by the call will not be part of
the transaction; that is, the operations that the service performs are not part of
the caller’s transaction. There’s more on this subject in Chapter 5, “Global
Transactions in BEA TUXEDO System.”

TPNOCHANGE
By using this value, the calling program is indicating that it wants the
message returned in the same type of buffer that was originally allocated as
the output buffer. In other words, when this flag is set, the type of buffer
returned to the caller must be the same as the one pointed dodny . This
is known as strong type checking. The default is to allow a buffer type to be
different than the original one so long as the caller recognizes the type. In this
case, the buffer type féwdata changes to the received buffer type. This is
known as weak type checking. A calltpeypes()  informs the recipient of
the new buffer type.

BEA TUXEDO Programmer’s Guide 2-29



2 Writing Client Programs

2-30

TPNOBLOCK
TPNOBLOCKoncerns the action a function call takes if a blocking condition
exists. Callers of the communication routines typically block when waiting
for a reply to arrive although they may also block when trying to send a
request if all server queues or internal buffers are full. A default blocking
time-out period is defined for the application in the configuration file. It
specifies the amount of time a caller should wait for a blocking condition to
subside when one exists. If the condition persists beyond this limit, the
function call fails andperrno is set torPETIME. When the value afags
is set toTPNOBLOCKif a blocking condition exists, the call fails immediately
and the request message is not sent. In thistpas@p is set toTPEBLOCK
Note thatpcall() is a dual function in that it both sends a request and
receives a reply. WherPNOBLOCKS set, it affects only the send part of the
function; if all the server queues are filled or the internal buffers into which
the message buffers are copied are full, the call will not block but
immediately return. However, if it must wait for the reply (which is usually
the case), this flag setting does not immunize the call from blocking while it
waits.

TPNOTIME
By settingflags to TPNOTIME Yyou are telling the system to ignore the
blocking time-out limit because the caller is willing to wait indefinitely for
the blocking condition to subside. However, if the caller is in transaction
mode, this flag has no effect; it is subject to the transaction time-out limit. The
timing out of transactions is discussed in Chapter 5, “Global Transactions in
BEA TUXEDO System.”

TPSIGRSTRT
Another valid value for théags argument iFPSIGRSTRT, which concerns
the action to take if there is a signal interrupt. Whagsis set to this value,
the call is automatically made again. As a result, if a signal interrupts the
underlying system call, the function call is reissued. Wiegs is not set to
this value and there is a signal interrupt, the function call failspendo
returnsTPGOTSIG

Flag values can be 'd together.

tpcall() returns an integer. On failure, the value of this integer iand the value

of tperro  is set to an appropriate value reflecting the type of error that occurred.
Some of the causes for error have already been discussed, while others have
transaction implications and will be introduced in Chapter 5, “Global Transactions in
BEA TUXEDO System.” In general, communication calls may falil for a variety of
errors. Many of the errors returned on communication calls can be fixed on an

BEA TUXEDO Programmer’s Guide



Service Calls

application level. They include application defined errdESVCFAIL), errors in
processing return argumen®PESVCERR typed buffer errorstPEITYPE,

TPEOTYPE, time-out {PETIME), and protocol errorSPEPROTYH among others. They
are all discussed in Chapter 7, “Error Management,” and are listed mrdhe(3c)
andtpcall  (3c) reference pages. The communication of these failures will also be
explained in the discussion of tipesturn() function in Chapter 3, “Writing Service
Routines.”

Examples of the Use of flags Arguments

The next three examples shgwall() using the communication flags in various
scenarios.

Listing 2-16 is based on tHRANSFERservice, which is part of theFERserver process
of bankapp . TheTRANSFERservice assumes the role of a client when it calls on the
services ofWITHDRAWA&GNADEPOSIT. In the example, we have set the communication
flag to TPSIGRSTRTIn these service calls to give the transaction a better chance of
committing.

Listing 2-16 Sending a Synchronous Message with TPSIGRSTRT Set

[* Do a tpcall to withdraw from first account */

if (tpcall"WITHDRAWAL", (char *)reqfb,0, (char **)&reqfb,
(long *)&reqlen, TPSIGRSTRT) == -1) {
(void)Fchg(transf, STATLIN, 0,
"Cannot withdraw from debit account”, (FLDLEN)O);
tpfree((char *)reqfb);

/* Do a tpcall to deposit to second account */

if (tpcall"DEPOSIT", (char *)reqfb, 0, (char **)&reqfb,
(long *)&reglen, TPSIGRSTRT) == -1) {
(void)Fchg(transf, STATLIN, 0,
"Cannot deposit into credit account", (FLDLEN)O);
tpfree((char *)reqfb);

BEA TUXEDO Programmer’s Guide 2-31



2 Writing Client Programs

#include <stdio.h>
#include "atmi.h"

main()

char *rbuf;

Listing 2-17 illustrates a communication call that suppresses transaction mode. It is
being made to a service that is not affiliated with a resource manager and it would b
an error to allow it to participate in the transaction. Specifically in this example, an
accounts receivable report, accrcv is to be printed against a database named accoul
The service routinBEPORTnterprets the parameters and sends the byte stream for the
completed report as a reply. The client, shown here,tps#k) to send the byte
stream to a service call@RINTERthat prints out the byte stream to the appropriate
printer for this client. It receives a reply from tPRINTER service naming the printer
that was chosen to print the report to make it convenient for the user to pick up the hai
copy. Listing 2-19 shows a similar example using an asynchronous message call.

Listing 2-17 Sending a Synchronous Message with TPNOTRAN Set

* report buffer */

long rllen, r2len, r3len; /* buffer lengths of send, 1st reply,

Join application

and 2nd reply buffers for report */

if (rbuf = tpalloc("STRING", NULL, 0) == NULL) /* allocate space for report */
leave application and exit program

(void)strcpy(rbuf,

"REPORT=accrcv DBNAME=accounts"); /* send parms of report */
rllen = strlen(rbuf)+1; /* length of request */
Start transaction

if (tpcall("REPORT", rbuf, rllen, &rbuf,

&r2len, 0) == -1)
error routine

/* get report print stream */

if (tpcall"PRINTER", rbuf, r2len, &rbuf,
&r3len, TPNOTRAN) == -1) * send report to printer */

error routine

(void)printf("Report sent to %s printer\n”,

rbuf);

/* indicate which printer */

terminate transaction

free buffer
leave application

2-32 BEA TUXEDO Programmer’s Guide



Service Calls

In Listing 2-17, whererror routinehas been indicated, it should include printing an
error message, aborting the transaction, freeing allocated buffers, leaving the
application, and exiting the program.

Listing 2-18 illustrates the use of tieNOCHANGEommunication flag to enforce

strong buffer type checking. This example refers to the sERORTservice that is

used above in Listing 2-17. In this one, the reply is received/ie\a typed buffer

called rviewl and the elements are printegdrintf() statements. The strong type
check flag,TPNOCHANGEs used to force the reply to be returned in a buffer of type
VIEWand of subtypeviewl . A possible reason for this check is to guard against errors
that may occur in thREPORTservice subroutine in processing the request that could
result in a reply buffer of an incorrect type. Another reason is to prevent changes that
are not made consistently across all areas of dependency. For example, someone could
have changed trREPORTervice to standardize all replies in some othew format
without modifying the client process to reflect the change.

Listing 2-18 Sending a Synchronous Message with TPNOCHANGE Set

#include <stdio.h>
#include "atmi.h"
#include "rviewl.h"

main(argc, argv)
int argc;
char * argv[];

char *rbuf; [* report buffer */
struct rview1 *rrbuf; /* report reply buffer */
long rlen, rrlen;  /* buffer lengths of send and reply
buffers for report */
if (tpinit((TPINIT *) tpinfo) == -1)
fprintf(stderr, "%s: failed to join application\n", argv[0]);

if (rbuf = tpalloc("STRING", NULL, 0) == NULL) { /* allocate space for report */
tpterm();
exit(1);

* allocate space for return buffer */
if (rrbuf = (struct rviewl *)tpalloc("VIEW", "rview1", sizeof(struct rview1)) \
== NULL{
tpfree(rbuf);
tpterm();
exit(1);

}
(void)strepy(rbuf, "REPORT=accrcv DBNAME=accounts FORMAT=rview1");

BEA TUXEDO Programmer’s Guide 2-33



2 Writing Client Programs

rlen = strlen(rbuf)+1;  /* length of request */
/* get report in rviewl struct */
if (tpcall("REPORT", rbuf, rlen, (char **)&rrbuf, &rrlen, TPNOCHANGE) == -1) {
fprintf(stderr, "accounts receivable report failed in service call\n");
if (tperrno == TPEOTYPE)
fprintf(stderr, "report returned has wrong view type\n");
tpfree(rbuf);
tpfree(rrbuf);
tpterm();
exit(1);

(void)printf("Total accounts receivable %6d\n", rrbuf->total);
(void)printf("Largest three outstanding %-20s %6d\n", rrbuf->name1, rrbuf->amt1);

(void)printf(" %-20s %6d\n", rrbuf->name2, rrbuf->amt2);
(void)printf(" %-20s %6d\n", rrbuf->name3, rrbuf->amt3);
tpfree(rbuf);

tpfree(rrbuf);

tpterm();

Sending Asynchronous Messages: tpacall()

2-34

This section discusses the sending of asynchronous messages where the sender of
request does not wait for the reply. The first half of this communication is performed
by tpacall) . The syntax of this function is:

int

tpacalll  svc, data, len, flags ) I* Send service request */

char* svc,* data;
long len, flags ;

Thetpacall() function sends a request message to the service namedsirc the
parameter and immediately returns from the call. The next three parameters,

len , andflags , have the same semanticsdata ,ilen , andflags of thetpcall()

function. Upon successful completion of the cabgall() returns an integer that
serves as a descriptor used to get the correct reply for the sent request. While
tpacall() is in transaction mode (topic of Chapter 5, “Global Transactions in BEA
TUXEDO System,”), there may be no outstanding replies when the transaction
commits; that is, within a given transaction, for each request sent expecting a reply,
corresponding reply must eventually be received.

BEA TUXEDO Programmer’s Guide



Service Calls

Values for the flags Argument: tpacall()

The communication flags thadacall() takes as values for thilags argument

pertain to the send part of the communication. As a result, the flagTRNGCHANGE

is removed since it concerns the output buffer which is not present in this call, and the
valueTPNOREPLYs added since the receive part is not implicit to this communication
call. Whentpcall() is used, the fact that a reply is expected is impligécall()
represents only the sending part@fall) , and it is possible to indicate whether a
reply is expected or not.

TPNOREPLY
If the valueTPNOREPLYSs assigned to th#ags parameter, it signals to
tpacall() that a reply is not expected. Guidelines for using this flag value
correctly when a process is in transaction mode are discussed in Chapter 5,
“Global Transactions in BEA TUXEDO System.” When this flag is set, on
successpacall() returns the value af as the reply descriptor, whege
cannot be used hygetrply()

An example ofpacall() using theTPNOREPLY|TPNOTRAflags is shown in

Listing 2-19. This example is similar to the one presented above. In this case, however,
a reply is not expected from tIPRINTER service. By setting both of these flags, the
client is indicating that no reply is expected andRRENTER service is not to be a
participant in the current transaction. Chapter 7 fully discusses this situation. Refer to
the section called “Transaction Rules.”

Listing 2-19 Sending an Asynchronous Message with
TPNOTRAN|TPNOREPLY

#include <stdio.h>
#include "atmi.h"

main()

char *rbuf; * report buffer */

long rlen, rrlen; /* buffer lengths of send, reply buffers for report */

Join application

if (rbuf = tpalloc("STRING", NULL, 0) == NULL) /* allocate space for report */
(v%rifj(;rstrcpy(rbuf, "REPORT=accrcv DBNAME=accounts");/* send parms of report */

rlen = strlen(rbuf)+1; /* length of request */

start transaction

BEA TUXEDO Programmer’s Guide 2-35



2 Writing Client Programs

if (tpcall("REPORT", rbuf, rlen, &rbuf, &rrlen, 0)
== -1) /* get report print stream */
error
if (tpacall("PRINTER", rbuf, rrlen, TPNOTRAN|TPNOREPLY)
==-1) /* send report to printer */
error

commit transaction
free buffer
leave application

On error tpacall() returnsl and setgperrno  to a value that reflects the nature of
the errortpacall() returns many of the same error codegpasl() . Again, the
differences are based on the fact that one represents a synchronous call and the ott
an asynchronous call. These errors are discussed at length in Chapter 7, “Error
Management.”

Listing 2-20 illustrates a series of asynchronous calls being made that make up the tot
bank balance query. Since the banking application data is distributed among severa
database sites, an SQL query needs to be executed against each one. The audit cli
chooses to do this by selecting representative branch identifiers (that is, one branch
identifier per database site), and calling the ABAL or TBAL service for each one. The
representative branch identifier is not used in the actual SQL query, but it does caus
the BEA TUXEDO system to route the request to the proper database site. In the

following code, the for-loop invokepacall () once for each site. We’'ll see this same

logic handled in a different way in Chapter 4, “Conversational Clients and Services.”

Listing 2-20 Sending Asynchronous Requests

audv->balance = 0.0;
(void)strcpy(audv->ermsg, ™);

for (i=0; i<NSITE; i++) {
[* Prepare aud structure */
audv->b_id = sitelist[i]; /* routing done on this field */
/* Do tpacall */

if ((cd[i]=tpacall(sname, (char *)audv, sizeof(struct aud), 0))

2-36 BEA TUXEDO Programmer’s Guide



Service Calls

== -1) {
(void)fprintf (stderr,
"%s: %s service request failed for site rep %ld\n",
pgmname, sname, sitelist[i]);
tpfree((char *)audv);
return(-1);
}
}

Getting an Asynchronous Reply: tpgetrply()

tpgetrply() is the complementary functiontmcall() . It dequeues a reply from
a request previously sent Ipacall) . The syntax of this function is:

int

tpgetrply( cd, data, len, flags ) /* Receive reply to service request */

int* cd,; /* Call Descriptor */

char** data ;

long* len, flags ;

tpgetrply() takes the address of the call descriptor returnegddoyli() as its

first parametergd. In the default case, the function waits for the arrival of the reply
that corresponds to the value pointed to bycthparameter. In waiting for this specific
reply, a blocking time-out may occur. A time-out means tiustrply() fails and
tperrno  is set toTPETIME (unless itslags parameter is set ttPNOTIMB.

The second and third parametersptgetrply() , data andlen , have identical
semantics to those of thdata andolen parameters of thiecall)  function.data
contains the address of a pointer that was previously assigned by aalb¢Q

Getting and Setting Priority

ATMI provides two functions that allow you to determine and set the priority of the
message request. The priority affects how the request is dequeued by the server.
Servers dequeue requests with the highest priorities first. The syntax of these functions
is:

int

tpgprio(); /* Get service request priority */

and

int

tpsprio(  prio, flags ); I* Set service request priority */

int prio ;

long flags ;

BEA TUXEDO Programmer’s Guide 2-37



2 Writing Client Programs

Thetpgprio()  function can be called by a requester after invokingpttee!() or
tpacall)  function to retrieve the priority of the request message just sent. If it was
called and no request was sent, the function fails returniramd settingperrno  to
TPENOENTUpoON succesgpgprio()  returns an integer value in the range of 1 to 100,
100 being the highest priority value. If the priority has not been explicitly set by using
thetpsprio() ~ function, the value of the priority will be that of the service routine that
handles the request. The priority of the service is assigned the system default value
50 unless it has been specifically defined to some other value by the administrator. Se
Listing 2-21 for an example of determining the priority of a message that was sent ir
an asynchronous call.

Listing 2-21 Determining the Priority of the Sent Request

#include <stdio.h>
#include "atmi.h"

main ()

int cdl, cd2; [* call descriptors */

int prl, pr2; [* priorities to two calls */
char *bufl, *buf2; [* buffers */

long bufllen, buf2len;  /* buffer lengths */
Join application

if (bufL=tpalloc("FML", NULL, 0) == NULL)
error

if (buf2=tpalloc("FML", NULL, 0) == NULL)
error

populate FML buffers with send request

if ((cd1 = tpacall("servicel", bufl, 0, 0)) ==-1)
error

if ((prl = tpgprio()) == -1)

error

if ((cd2 = tpacall("service2", buf2, 0, 0)) ==-1)
error

if ((pr2 = tpgprio()) == -1)
error

if (prl >=pr2) { /* base the order of tpgetrplys on priority of calls */
if (tpgetrply(&cdl, &bufl, &bufllen, 0) ==-1)
error
if (tpgetrply(&cd2, &buf2, &buf2len, 0) ==-1)

2-38 BEA TUXEDO Programmer’s Guide



Service Calls

else {

error

if (tpgetrply(&cd2, &buf2, &buf2len, 0) == -1)

error

if (tpgetrply(&cd1l, &bufl, &bufllen, 0) == -1)

error

Itis also possible to use this function to retrieve the priority of the request just received
by the service. This is illustrated in Listing 3-3 in Chapter 3, “Writing Service
Routines.”

With thetpsprio()  function, the programmer can override the priority level the
request would normally inherit from the service to which it is dispatched. When
tpsprio()  is called, it affects the priority level only of the very next request that is
sent bytpcall() or tpacall() or forwarded by a service subroutine. This function
takes two parameters; the second one indicates how the first one is to be interpreted.
The first parameteprio , is an integer. In the default situation, its sign indicates
whether the request’s priority should be incremented or decremented in relation to the
existing priority. For the first parameter to be treated as a relative value, the second
parameterflags , must be set t0. If it is set toTPABSOLUTEthe priority value of the

next request that is sent out will receive the absolute value of the integer contained in
theprio parameter. The absolute valugpgd must be in the range of 1 to 100. If the
value is not in this range, the system uses the default value, 50.

Listing 2-22 shows an excerpt from thRANSFERservice acting as a client process to
call services ofVITHDRAWALIt invokestpsprio()  to increase the priority of the
request message it sends in its synchronous caliTiaDRAWALL does so to prevent
the request from being queued for thETHDRAWAEBervice (and later tHeEPOSIT
service) after already having waited on TRANSFERjueue.

BEA TUXEDO Programmer’s Guide 2-39



2 Writing Client Programs

Listing 2-22 Setting the Priority of a Request Message

[* increase the priority of withdraw call */
if (tpsprio(PRIORITY, OL) == -1)
(void)userlog("Unable to increase priority of withdraw\n");

if (tpcall"WITHDRAWAL", (char *)reqfb,0, (char **)&reqfb, (long *) \
&reglen, TPSIGRSTRT) == -1) {
(void)Fchg(transf, STATLIN, 0, "Cannot withdraw from debit account”, \
(FLDLEN)O);
tpfree((char *)regfb);
tpreturn(TPFAIL, 0,transb->data, OL, 0);

Initiating a Conversational Connection

The discussion in this chapter has centered around how client programs initiate a
request/response service request. Client programs can also connect to conversatior
servers by usingconnect()  instead ofpcall() ortpacall) . Chapter 4,
“Conversational Clients and Services,” describes that in detail.

Sending a Broadcast Message

Thetpbroadcast() function is used to send an unsolicited message to registered
clients within the application. It is mentioned in this chapter on client programs
because it can be called by clients. A more complete discussion of its use can be fout
in Chapter 3, “Writing Service Routines.”

2-40 BEA TUXEDO Programmer’s Guide



Compiling Client Programs

Compiling Client Programs

To compile your client programs you have several methods to choose from. You can
use regular C Compilation System utilities to make object files. The object files can be
kept as individual files or collected into an archive file. If you prefer, you can retain
your programs as source ) files. In any event, when you invokeildclient to
produce an executable client, you specify your input files on the command line with
the-f option.

The buildclient Command

buildclient (1) is used to put together an executable client program. Options identify
the name of the output file, input files provided by the application, and various
libraries.

buildclient invokes the UNIXcc command. The environment variabtesand
CFLAGScan be set to name an alternative compile command and to set flags for the
compile and link edit phases.

The buildclient -0 Option

The-o option is used to assign a name to the executable output file. If no name is
provided, the file is namealout .

The buildclient -f and -l Options

The-f and-l options are used to specify files to be used in the link edit phase. The
files specified in thef (first) option are brought in before the BEA TUXEDO system
libraries, whereas the files specified in the(last) option are brought in after these
libraries. There is a significance to the order of the options. The order is dependent on
function references and in what libraries the references are resolved. Input files should
be listed ahead of libraries that might be used to resolve their references. If input files
are c files, they are first compiled. Object files can be either separdiies or groups

of files in archive @) files. If more than a single file name is given as an argument to
a-f or-l option, the syntax calls for a list enclosed in double quotes. You can use as
many-f and-l options as you need.

BEA TUXEDO Programmer’s Guide 2-41



2 Writing Client Programs

The following represents the command line that was used to creaigthe
executable program. The environment variatigs set tocc and the environment
variableCFLAGSIs set to| $TUXDIR/include

buildclient -o audit -f audit.o

2-42 BEA TUXEDO Programmer’'s Guide



CHAPTER

3 Writing Service
Routines

Writing Request/Response Services

The preceding chapter discussed the ATMI primitives that can be used to write client
programs. In this chapter, some of the same functions are revisited in the context of the
service subroutines. As you may recall, services are C subroutines that are linked
together with the BEA TUXEDO system-providedin () to create executable server
programs.

In this chapter the discussion covers only services that operate in a request/response
mode. Conversational clients and servers are the subject of Chapter 4, “Conversational
Clients and Services.”

Examples Taken from the Sample Application

Most of the examples shown are taken from the services of the banking application.

BEA TUXEDO Programmer’s Guide  3-1



3 Writing Service Routines

Application Service Template

Since the communication details are taken care of by BEA TUXEDO systeiin’§),

the programmer can concentrate on the application logic rather than communication
implementation. For services to be compatible withnthia () provided, they must
adhere to certain conventions. These conventions are referred to as the service templ
for coding service routines; they are described here and aquséihéce (3c)

reference page of tHBEA TUXEDO Reference Manual

Request/response services have the following characteristics:

L4

A request/response service can receive only one request at a time and can send
only one reply.

When servicing a request, it works only on that request and can accept another
only after it has sent its reply to the requester or has forwarded the request to
another service for additional processing.

Service routines must terminate by calling eithenpheurn () or

tpforward () function. These functions behave similarly to the C language
return  statement except that control returns to BEA TUXEDO systeriiis()
instead of the calling function.

When communicating with another server yiacall (), the initiating service
must wait for all outstanding replies or must invalidate them witimcel ()
before callingpreturn () ortpforward ().

Service routines are invoked with one argumsewtjnfq which is a pointer to a
service information structure.

The following sections examine these concepts more closely.

The TPSVCINFO Structure

The typical service routine is defined as a function receiving one argument that is a
pointer to a structure. This service information structutgief 'd asTPSVCINFOIN
theatmi.n header file and includes the following members:

char  name[32]; /* service name being invoked */

long flags; /* describes service attributes */

char  *data; /*request data */

long len; /*request data length */

int cd; /* connection descriptor if ( flags & TPCONV) true */
int appkey; /* application authentication client key */

CLIENTID cltid; /* client identifier for originating client */

3-2 BEA TUXEDO Programmer’s Guide



Writing Request/Response Services

The members of the structure
indicate to the service routine the name with which it was invoked
tell the service attributes about itself or the caller

point to the request data

give the connection descriptor, if this is a conversational connection

¢

¢

¢

4 indicate the length of the request data
¢

4 provide the client key for authentication
¢

carry the identifier for the client originating the call

The name Member of TPSVCINFO

Thenamemember of the structure indicates to the service routine the name that the
requesting process used to invoke the service.

The flags Member of TPSVCINFO

Theflags member of the structure is used to let the service know if it is in transaction
mode or if the caller is expecting a reply. The various ways a service can be placed in
transaction mode are discussed in Chapter 5, “Global Transactions in BEA TUXEDO
System.” If the value dlagsis TPTRAN it indicates that the service is in transaction
mode. When a service is calledthyall () ortpacall () with theflagsparameter set

to TPNOTRANIt indicates that the service cannot participate in the current transaction,
but it is still possible for the service to be in transaction mode. So even when the caller
sets therPNOTRANOmMmMunication flag, it is possible foPTRANto be set in

svcinfo->flags . The case that allows this to happen is discussed in Chapter 5,
“Global Transactions in BEA TUXEDO System.” Tflags member is set to
TPNOREPLYf the service was called hyacall () with theTPNOREPLY

communication flag set. It is possible for flegsmember to be set to both of these
values. When this represents a valid situation is discussed in the next chapter.
However, if a called service is part of the same transaction as the calling process, it
must return a reply to the caller.

BEA TUXEDO Programmer’s Guide  3-3



3 Writing Service Routines

3-4

The data and len Members of TPSVCINFO

Thedatamember points to a buffer that was previously allocatagdiigc () within

the servemain() ; this buffer is used to receive the request messagdeiheember
contains the length of the request data that is in the buffer pointecietdoyt is
recommended that you use this buffer to send back the reply message or forward th
request message. This is further discussed when explaining the proper usage of the
tpreturn () andtpforward () functions. The contents of the buffer get overwritten
each time the service routine is invoked regardless of whether the buffer is used as tt
message buffer for returning or forwarding the reply.

The appkey Member of TPSVCINFO

The use of this member is left to the application to decide. If application-specific
authentication is part of your design, the application-specific authentication server,
which is called at the time a client joins the application, should return a client
authentication key as well as a success/failure indication. (This is the logic of the BEA
TUXEDO system defaulkUTHSVGservice.) The key is held by the system on behalf
of the client and is passed to subsequent service requestsippkeyfield. By the

time the key is passed to the service, the client has already passed authentication, t
theappkeyfield can be used within the service to identify in some way the user
invoking the service or some other parameters associated with the user. If not used, t
value is set tel by the system.

The cltid Member of TPSVCINFO

Thecltid member is a structure of ty@eIENTID . It is used by the system to carry the
identification of the client. You should not make changes in this structure.

Accessing Data that Comes with the Request

When accessing the request data pointed whaltg; the service must be coded to
expect the data to be in a buffer of the type defined for the service in the configuratio
file. For everything to be interpreted correctly by the system, the type and subtype o
the request buffer passed by the calling process must agree with the type that is cod
for the service called which, in turn, must agree with the typed buffer as defined for
that service in the configuration file.

Listing 3-1 illustrates a typical service definition; this one is taken from the ABAL
(account balance) service routin®AL is part of theBAL server.

BEA TUXEDO Programmer’s Guide



Writing Request/Response Services

Listing 3-1 Typical Service Definition

#include <stdio.h>  /* UNIX */

#include <atmi.h> /* TUXEDO */

#include <sglcode.h> /* TUXEDO */

#include "bank.flds.h" /* bankdb fields */
#include "aud.h" /* BANKING view defines */

EXEC SQL begin declare section;
static long branch_id; /* branch id */
static float bal; /* balance */
EXEC SQL end declare section;

/*
* Service to find sum of the account balances at a SITE
*/

void
#ifdef _ STDC__
ABAL(TPSVCINFO *transb)

#else

ABAL(transb)
TPSVCINFO *transb;
#endif

{

struct aud *transv; /* view of decoded message */
[* Set pointer to TPSVCINFO data buffer */

transv = (struct aud *)transb->data;

set the consistency level of the transaction

/* Get branch id from message, do query */

EXEC SQL declare acur cursor for

select SUM(BALANCE) from ACCOUNT;

EXEC SQL open acur; /* open */

EXEC SQL fetch acur into :bal; /* fetch */

if (SQLCODE != SQL_OK){ /* nothing found */
(void)strcpy (transv->ermsg,"abal failed in sqlaggregation");

EXEC SQL close acur;

tpreturn(TPFAIL, 0, transb->data, sizeof(struct aud), 0);

}

EXEC SQL close acur;

transv->balance = bal;

tpreturn (TPSUCCESS, 0, transb->data, sizeof(struct aud), 0);

BEA TUXEDO Programmer’s Guide  3-5



3 Writing Service Routines

In Listing 3-1, the request buffer on the client side was originally allocated by a call to
tpalloc () with thetypeparameter set telIEW and thesubtypeset toaud. The ABAL
service is defined in the configuration file as a service that knows abauethéyped
buffer. (This is by implication; thBUFTYPEparameter is not specified faBAL, which
means it defaults taLL.) ABALs servemain () allocated a buffer of thelEw type and
assigned the pointer to this buffer to thiea  member of th&PSVCINFOstructure that

was passed to theBAL subroutineABAL s able to retrieve the data buffer by accessing
thedata member as illustrated in the above example. Note that after this buffer is
retrieved and before the first database access is made, the consistency level of the
transaction is specified. Refer to the “Global Transactions and Resource Managers”
and the “Comprehensive Example” sections in Chapter 7 for more details on
transaction consistency levels.

Checking the Buffer Type

Listing 3-2 shows the service accessing the data buffer to determine its type. This
service knows about more than one buffer type and invokestyhes () ATMI

function primitive to determine the buffer type of the received request. It also finds out
the maximum size of the buffer so it knows whether to reallocate the buffer size or not
This example is derived from tiAL service. It represents what the subroutine would
look like if it accepted its request either asaathVIEW or anFMLbuffer. If its attempt

to determine the message type fails, it sends back a string with an error message pl
an appropriate return code; otherwise it executes the segment of code that is
appropriate for the buffer type. Tketurn () function is discussed after priority; it

is included in this example for completeness.

Listing 3-2 Checking for Buffer Type

#define TMTYPERR 1 /* return code indicating tptypes failed */
#define INVALMTY 2 /* return code indicating invalid message type */

void
ABAL (transb)

TPSVCINFO *transb;

{
struct aud *transv; /* view message */
FBFR *transf; /* fielded buffer message */
int repc; /* tpgetrply return code */
char typ[TMTYPELEN+1], subtyp[TMSTYPELEN+1]; /* type, subtype of message */
char *retstr; /* return string if tptypes fails */

3-6 BEA TUXEDO Programmer’s Guide



Writing Request/Response Services

* find out what type of buffer sent */
if (tptypes((char *)transb->data, typ, subtyp) == -1) {
retstr=tpalloc("STRING", NULL, 100);
(void)sprintf(retstr,
"Message garbled; tptypes cannot tell what type message\n");
tpreturn(TPFAIL, TMTYPERR, retstr, 100, 0);
}
/* Determine method of processing service request based on type */
if (stremp(typ, "FML") == 0) {
transf = (FBFR *)transb->data;
... code to do abal service for fielded buffer ...
tpreturn succeeds and sends FML buffer in reply

}
else if (stremp(typ, "VIEW") == 0 && strcmp(subtyp, "aud") == 0) {
transv = (struct aud *)transb->data;
... code to do abal service for aud struct ...
tpreturn succeeds and sends aud view buffer in reply
}
else {
retstr=tpalloc("STRING", NULL, 100);
(void)sprintf(retstr,
"Message garbled; is neither FML buffer nor aud view\n");
tpreturn(TPFAIL, INVALMTY, retstr, 100, 0);
}
}

Checking the Priority of the Service Request

Listing 3-3 shows the fictitiouBRINTERSservice testing the priority level of the request
just received by invoking thgprio()  function. Based on the priority level, the

print job is routed to the appropriate destination printer. The contepitsfofdata

are piped to that printer. Alsppuf->flags  is queried to see if a reply is expected. If
one is expected, the name of the destination printer is returned to the client. Again, the
use oftpreturn() is explained in the next section.

BEA TUXEDO Programmer’s Guide  3-7



3 Writing Service Routines

Listing 3-3 Determining the Priority of the Received Request

#include <stdio.h>
#include "atmi.h"

char *roundrobin();
PRINTER(pbuf)

TPSVCINFO *pbuf;  /* print buffer */

char prname[20], ocmd[30];  /* printer name, output command */

long rlen; [* return buffer length */
int prio; /* priority of request */
FILE *Ip_pipe; /* pipe file pointer */

prio=tpgprio();
if (prio <= 20)
(void)strcpy(prname,“bigjobs”); /* send low priority (verbose)
jobs to big comp. center
laser printer where operator
sorts output and puts it
in a bin */
else if (prio <= 60)
(void)strcpy(prname,roundrobin()); /* assign printer on a
rotating basis to one of
many local small laser printers
where output can be picked
up immediately; roundrobin() cycles
through list of printers */
else
(void)strcpy(prname,“hispeed");
* assign job to high-speed laser
printer; reserved for those who
need verbose output on a daily,
frequent basis */

(void)sprintf(ocmd, "Ip -d%s", prname); /* output Ip(1) command */

Ip_pipe = popen(ocmd, "w"); /* create pipe to command */
(void)fprintf(Ip_pipe, "%s", pbuf->data); /* print output there */
(void)pclose(lp_pipe); [* close pipe */

if ((pbuf->flags & TPNOREPLY))
tpreturn(TPSUCCESS, 0, NULL, 0, 0);
rlen = strlen(prname) + 1;
pbuf->data = tprealloc(pbuf->data, rlen); /* ensure enough space for name */
(void)strcpy(pbuf->data, prname);
tpreturn(TPSUCCESS, 0, pbuf->data, rlen, 0);

char *

3-8 BEA TUXEDO Programmer’s Guide



Writing Request/Response Services

roundrobin()

static char *printers[] = {"printerl", "printer2”, "printer3", "printer4"}
static int p = 0;

if (p > 3)
p=0;
return(printers[p++]);

The tpreturn() and tpforward() Functions

tpreturn() andtpforward() are functions that indicate that a service routine has
completed; they either send a reply back to the calling client or forward a request to
another service for further processing.

Sending Replies

The primary function of a service routine is to process a request and return the reply to
a client process. In performing this function, a service can in turn act as a requester and
make request calls to other services wgthall() ortpacall) . When

tpreturn() is called, control always returnsrin() . If the service has sent

requests with asynchronous replies, it must receive all expected replies or invalidate
them withtpcancel()  before returning control teain() , otherwise the outstanding
replies are automatically dropped when they are received by BEA TUXEDO system’s
main() , and an error is returned to the caller.

Thetpreturn() function, besides marking the end of the service routine, also causes
the reply message to be sent to the requester. If the client invoked the service with
tpcall) , after a successful call tareturn()  , the reply message is available in the
buffer pointed to byodata. If tpacall() was used to send the request, on success
fromtpreturn()  , the reply message is available in thgetrply() buffer that is
pointed to by*data. The syntax of this function is:

void

tpreturn(  rval, rcode, data, len, flags ) I* End service routine */
int rval , rcode ;

char* data ;

long len, flags ;

Currently theflags argument is not used.

BEA TUXEDO Programmer’s Guide  3-9



3 Writing Service Routines

3-10

tpreturn() Arguments: rval

Therval parameter can be settBSUCCESSTPFAIL, or TPEXIT. This value indicates
whether the service has completed successfully or not on an application-level. Thes
conditions are communicated to the calling client in the following way. When set to
TPSUCCESSthe calling function succeeded, and if there is a reply message, it is in the
caller’s buffer. If the service terminated unsuccessfully, (that is, the logic of the
application setval to TPFAIL ), an error is reported to the client process waiting for the
reply. The client'spcall () ortpgetrply () function call will fail and theperrno

variable will be set tdPESVCFAIL to indicate an application-defined failure. In the
case of this kind of failure, if a reply message was expected, it will be available in the
caller’s buffer. IfTPEXIT is set inrval, the functionality offPFAIL is performed, but

the server exits after the reply is sent back to the client. Note tivat i§ not set, the
default value offPFAIL is assigned to this parameter. The impact of the value of this
parameter when a process is in transaction mode is discussed in Chapter 5, “Global
Transactions in BEA TUXEDO System.”

The preceding discussion concerns the effecvalfif application-defined errors are

the only ones that occur. If, howevareturn () encounters errors while processing

its arguments, it sendsfailed message (if a reply is expected) to the calling process.
This is detected by the caller by the value placegeimno . In case ofailed
messagespermo  is set toTPESVCERRThis situation overrides the effect of the

value ofrval. If this type of error occurs, no reply data is returned, and the contents of
the caller’s output buffer and its length remain unchanged.

If tpreturn () sends back a message in a buffer whose type is not known or not
allowed by the caller (that is, the call was made Withs set toTPNOCHANGE
TPEOTYPHS returned inperrno . Application success or failure cannot be
determined, and the contents of the caller’s output buffer and its length remain
unchanged.

Also, the value returned iwal is not relevant in the case whereturn () is invoked

and a time-out occurs for the call waiting on the reply. This situation overrides all
others in determining the value that is returneglénno . tperrno  is settorPETIME

and the reply data is not sent, leaving the contents and length of the caller’s reply buffe
unchanged. There are two types of time-outs in BEA TUXEDO. Blocking time-out
was discussed when explaining tftRNOBLOCKNdTPNOTIMEcommunication flags.

The other type of time-out, transaction time-out, is discussed in Chapter 5, “Global
Transactions in BEA TUXEDO System.”

BEA TUXEDO Programmer’s Guide



Writing Request/Response Services

tpreturn() Arguments: rcode

Thercodeparameter can be used to return to the caller an application-defined return
code. The client can access the value returnecbigieby querying thepurcode

global variable. This code is sent regardless of application success or failure; that is, it
is returned in the case of succesTRESVCFAIL. As indicated, no reply messages can

be sent in the other error cases.

tpreturn() Arguments: data and len

datapoints to the reply message that is to be returned to the client process. The
message buffer must have been allocated by a previous galldo (). If you use

the same buffer that was passed to the service svthiefostructure, you need not be
concerned with buffer allocation or disposition since they are handled by the system
suppliedmain (). In fact, it is not possible to free this buffer in the service subroutine.
Any attempt to free the buffer usimgiree () quietly fails, achieving nothing.

However, this buffer can be grown by a service routine with a cgltdalloc ().

BEA TUXEDO treats the original buffer the same whether it has been resized or not.
If a buffer other than the one that was passed to the service routine is used to return the
message, it is up to the programmer to allocate it by invokingdhec () function

within the service routine. The buffer obtained in this way is automatically freed by
tpreturn (). If the reply message does not have a data part, no buffer is required;
simply setdatato the NULL pointer. Théen parameter indicates the amount of data

in the reply buffer, and it is this value that can be accessed ketheparameter of
thetpcall () or thelen parameter of thpgetrply () function. As indicated earlier,

the process acting as the client can use this returned value to test to see if the reply
buffer has grown. If a reply is expected by the client, and there is no data in the reply
buffer, that isdatais set to the NULL pointer, a reply with zero length is sent to the
client. The pointer to and the contents of the client’s buffer remain unchanged. When
thedata pointer is NULL, tpreturn () ignores theéen parameter. If no reply is
expected, that iS;PNOREPLYvas settpreturn () ignores the buffer and length
parameters and simply returns controiriin (); the server process is then free to
process another request.

tpreturn() Example

Listing 3-4 shows th@RANSFERservice that is part of theFERserver. Basically, the
TRANSFERservice makes synchronous calls toth&HDRAWABNADEPOSITservices.

It allocates a different buffer for the reply message since it must use the contents of the
request buffer for the calls to both theTHDRAWARNd theDEPOSIT services. If the

BEA TUXEDO Programmer’s Guide 3-11



3 Writing Service Routines

call to WITHDRAWAKhould fail,cannot withdraw is written to the status line of the
form, the reply buffer is freed, and thal parameter tepreturn () is set toTPFAIL .
If the call succeeds, the debit balance is retrieved from the reply buffer.

Note: The “to-accountid” retrieved in the variakleid in Listing 3-4 is moved to
the zeroth occurrence of tA€COUNT _Ifield in thetransf  fielded buffer. It
is hecessary to assign it to this position since it is this occurrence of a field in
anFMLbuffer that is used for data dependent routing. Refer to the book
Administering the BEA TUXEDO System.

A similar scenario is followed for the call EPOSIT. On success, the service frees

the reply buffer that was allocated within the service routine andvseto
TPSUCCESSnNd returns the pertinent account information to the status line.

Listing 3-4 How to Use tpreturn()

#include <stdio.h>  /* UNIX */

#include <string.h>  /* UNIX */

#include "fml.h" /* TUXEDO */

#include "atmi.h" /* TUXEDO */

#include "Usysflds.h" /* TUXEDO */
#include "userlog.h" /* TUXEDO */

#include "bank.h" /* BANKING #defines */
#include "bank.flds.h" /* bankdb fields */

/*

* Service to transfer an amount from a debit account to a credit
* account

*/

void
#ifdef _ STDC___
TRANSFER(TPSVCINFO *transb)

#else

TRANSFER(transb)
TPSVCINFO *transb;
#endif

FBFR *transf; /* fielded buffer of decoded message */
long db_id, cr_id;  /* from/to account id’'s */

float db_bal, cr_bal; /* from/to account balances *
float tamt; /* amount of the transfer */

3-12 BEA TUXEDO Programmer’s Guide



Writing Request/Response Services

FBFR *reqfb; /* fielded buffer for request message*/

int reglen; /* length of fielded buffer */

char t_amts[BALSTR]; /* string for transfer amount */
char db_amts[BALSTR]; /* string for debit account balance */
char cr_amts[BALSTR]; /* string for credit account balance */

[* Set pointr to TPSVCINFO data buffer */
transf = (FBFR *)transb->data;

/* Get debit (db_id) and credit (cr_id) account IDs */

/* must have valid debit account number */

if (((db_id = Fvall(transf, ACCOUNT_ID, 0)) < MINACCT) || (db_id > MAXACCT)) {
(void)Fchg(transf, STATLIN, 0,"Invalid debit account number",(FLDLEN)O);
tpreturn(TPFAIL, 0, transb->data, OL, 0);

/* must have valid credit account number */

if ((cr_id = Fvall(transf, ACCOUNT_ID, 1)) < MINACCT || cr_id > MAXACCT) {
(void)Fchg(transf,STATLIN, 0,"Invalid credit account number",(FLDLEN)O);
tpreturn(TPFAIL, 0, transb->data, OL, 0);

[* get amount to be withdrawn */

if (Fget(transf, SAMOUNT, 0, t_amts, < 0) O || strcmp(t_amts,") == 0) {
(void)Fchg(transf, STATLIN, 0, "Invalid amount",(FLDLEN)O);
tpreturn(TPFAIL, 0, transb->data, OL, 0);

(void)sscanf(t_amts,"%f", tamt);

/* must have valid amount to transfer */
if (tamt = 0.0) {
(void)Fchg(transf, STATLIN, 0,
"Transfer amount must be greater than $0.00",(FLDLEN)0);
tpreturn(TPFAIL, 0, transb->data, OL, 0);

/* make withdraw request buffer */
if ((regfb = (FBFR *)tpalloc("FML",NULL transb->len)) == (FBFR *)NULL) {
(void)userlog(“tpalloc failed in transfer\n");
(void)Fchg(transf, STATLIN, 0,
"unable to allocate request buffer", (FLDLEN)O);
tpreturn(TPFAIL, 0, transb->data, OL, 0);

reglen = Fsizeof(reqfb);

[* put ID in request buffer */
(void)Fchg(reqfb, ACCOUNT_ID,0,(char *)&db_id, (FLDLEN)O);

[* put amount in request buffer */
(void)Fchg(reqfb, SAMOUNT,0,t_amts, (FLDLEN)O0);

BEA TUXEDO Programmer’s Guide 3-13



3 Writing Service Routines

[* increase the priority of withdraw call */
if (tpsprio(PRIORITY, OL) == -1)
(void)userlog("Unable to increase priority of withdraw\n");

if (tpcall"WITHDRAWAL", (char *)reqfb,0, (char **)&reqfb,
(long *)&reqlen, TPSIGRSTRT) ==-1) {
(void)Fchg(transf, STATLIN, O,
"Cannot withdraw from debit account”, (FLDLEN)O);
tpfree((char *)regfb);
tpreturn(TPFAIL, 0,transb->data, OL, 0);
}

[* get "debit" balance from return buffer */

(void)strcpy(db_amts, Fvals((FBFR *)reqfb,SBALANCE,0));
void)sscanf(db_amts,"%f",db_bal);
if (db_amts == NULL) || (db_bal < 0.0)) {
(void)Fchg(transf, STATLIN, O,
"illegal debit account balance", (FLDLEN)O0);
tpfree((char *)regfb);
tpreturn(TPFAIL, 0, transb->data, OL, 0);

[* put deposit account ID in request buffer */
(void)Fchg(reqfb, ACCOUNT_ID,0,(char *)&cr_id, (FLDLEN)O);

[* put transfer amount in request buffer */
(void)Fchg(reqfb, SAMOUNT,0,t_amts, (FLDLEN)O);

/* Up the priority of deposit call */
if (tpsprio(PRIORITY, OL) == -1)
(void)userlog("Unable to increase priority of deposit\n");

/* Do a tpcall to deposit to second account */
if (tpcall("DEPOSIT", (char *)reqfb, 0, (char **)&reqfb,
(long *)&reglen, TPSIGRSTRT) ==-1) {
(void)Fchg(transf, STATLIN, 0,
"Cannot deposit into credit account”, (FLDLEN)O0);
tpfree((char *)reqfb);
tpreturn(TPFAIL, 0,transb->data, OL, 0);

[* get "credit" balance from return buffer */

(void)strcpy(cr_amts, Fvals((FBFR *)reqfb,SBALANCE,0));
(void)sscanf(cr_amts,"%f",&cr_bal);
if ((cr_amts == NULL) || (cr_bal 0.0)) {
(void)Fchg(transf, STATLIN, O,
"lllegal credit account balance", (FLDLEN)O);
tpreturn(TPFAIL, O, transb->data, OL, 0);

3-14 BEA TUXEDO Programmer’s Guide



Writing Request/Response Services

[* set buffer for successful return */

(void)Fchg(transf, FORMNAM, 0, "CTRANSFER", (FLDLEN)O0);
(void)Fchg(transf, SAMOUNT, 0, Fvals(reqfb,SAMOUNT,0), (FLDLEN)O0);
(void)Fchg(transf, STATLIN, 0, ", (FLDLEN)O0);

(void)Fchg(transf, SBALANCE, 0, db_amts, (FLDLEN)O);
(void)Fchg(transf, SBALANCE, 1, cr_amts, (FLDLEN)O);

tpfree((char *)reqfb);

tpreturn(TPSUCCESS, 0,transb->data, OL, 0);

}

Invalidating Descriptors: tpcancel()

If a service callingpgetrply () fails with TPETIME and decides not to wait any

longer, it can invalidate the descriptor with a catbtancel (). If the reply ever does
arrive, it is silently discardedpcancel () cannot be used for transaction replies
(request was done without the TPNOTRAN flag); within a transacipahert ()

does the same job of invalidating the transaction call descriptor. Listing 3-5 shows the
code.

Listing 3-5 Invalidate a Reply after Timing Out

int cdl;

if ((cd1=tpacall(sname, (char *)audv, sizeof(struct aud),
TPNOTRAN)) == -1) {

}
if (tpgetrply(cdl, (char **)&audv,&audrl, 0) == -1) {
if (tperrno == TPETIME) {
tpcancel(cdl);

}}
tpreturn(TPSUCCESS, 0,NULL, OL, 0);

BEA TUXEDO Programmer’s Guide 3-15



3 Writing Service Routines

Forwarding Requests

3-16

Thetpforward () function allows a service to forward a request to another service for
further processing. This differs from a service call in that the service that forwards the
request does not ever expect a reply. The reply is owed to the process that originate
the request, and the responsibility for providing the reply has been passed to the servi
to which the request has been forwarded. It becomes the responsibility of the last serv
in the forward chain to send the reply back by invokimgturn (). The process that
made the initial service call is the client and will be waiting for a reply.

The following figure gives you an idea of what a forward chain might look like. The
request is initiated with @call () and the eventual reply is provided by the
tpreturn () that is invoked by the last service in the chain.

Figure 3-1 Forwarding a Request

tpcalll) tpforward(

threturn() ele tpforward()

Service routines can forward requests at specified priorities in the same manner tha
client processes send requests. You may recall that this is accomplished by invoking
thetpsprio () function.

tpforward () is identical tapreturn () in that when it is callednain () regains
control, and the server process is free to do more work. The syntax of this function is

void

tpforward(  svc, data, len, flags ) I* Forward request */
char* svc,* data;

long len, flags ;

BEA TUXEDO Programmer’s Guide



Writing Request/Response Services

tpforward() Arguments

The first parameter afforward (), Svg is a character pointer that references the name
of the service to which the request is to be forwarded. The request buffer is pointed to
by its second parameteatata, and the length of the request data is availablerin

These two parameters and the remaining fiags, share the same meanings as the
corresponding ones specified fpreturn (). Recall that, at preseritagshas no

defined values.

Note: When acting as a client, a server process is not allowed to request services
from itself when a reply is expected. If the only available instance of the
desired service is offered by the server process making the request, the call will
fail indicating that a recursive call would have been made. However, if the
service routine sends the request withTRROREPLYommunication flag set
or forwards the request, the call will not fail since the caller is not waiting on
itself.

Callingtpforward () can be used to indicate success up to that point in processing the
request. If no application errors have been detected, you can ipakerd ();
otherwise, caltpreturn () with rval set toTPFAIL .

tpforward() Example

Listing 3-6 is taken from the@PEN_ACCBervice routine which is part of thheCT

server. It shows what the service would look like if it used a caffdavard () to

send its data buffer to thiEEPOSIT service. The example illustrates testing of the
SQLCODEo see if the account insertion was successful. If the new account is added
successfully, the branch record is updated to reflect the new account. On success, the
data buffer gets forwarded to thePOSIT service. On failurepreturn() is called

with rval set toTPFAIL and the failure reported to the status line of the form.

Listing 3-6 How to Use tpforward()

[* set pointer to TPSVCINFO data buffer */
transf = (FBFR *)transb->data;

/* Insert new account record into ACCOUNT?*/
account_id = ++last_acct; /* get new account number */

tir_bal = 0.0;

/* temporary balance of 0 */

EXEC SQL insert into ACCOUNT (ACCOUNT_ID, BRANCH_ID, BALANCE,

BEA TUXEDO Programmer’s Guide 3-17



3 Writing Service Routines

ACCT_TYPE, LAST_NAME, FIRST_NAME, MID_INIT, ADDRESS, PHONE) values
(:account_id, :branch_id, :tIr_bal, :acct_type, :last_name,
first_name, :mid_init, :address, :phone);
if (SQLCODE !=SQL_OK) { /* Failure to insert */
(void)Fchg(transf, STATLIN, 0,
"Cannot update ACCOUNT", (FLDLEN)0);
tpreturn(TPFAIL, 0, transh->data, OL, 0);

}
/* Update branch record with new LAST_ACCT */

EXEC SQL update BRANCH set LAST_ACCT =:last_acct where BRANCH_ID = :branch_id;
if (SQLCODE !=SQL_OK) { /* Failure to update */

(void)Fchg(transf, STATLIN, O,

"Cannot update BRANCH?", (FLDLEN)O);

tpreturn(TPFAIL, 0, transb->data, OL, 0);
}
/* up the priority of the deposit call */
if (tpsprio(PRIORITY, OL) == -1)

(void)userlog("Unable to increase priority of deposit\n");

[* tpforward same buffer to deposit service to add initial balance */
tpforward("DEPOSIT", transb->data, OL, 0);

Sending Unsolicited Messages

The BEA TUXEDO system allows unsolicited messages to be sent to client processe
without disturbing the processing of request/response calls or conversational
communications. Unsolicited messages can be sent to client processes by name
(tpbroadcast () or by an identifier received with a previously processed message
(tpnotify (). Messages sent Migbroadcast () can originate either in a service or in
another client. Messages senttpigotify () can originate only in a service, as shown

in the following table.

Initiator Receiver
tpbroadcast() client, server client
tpnotify() server client

3-18 BEA TUXEDO Programmer’s Guide



Writing Request/Response Services

tpbroadcast() Arguments

tpbroadcast () allows a message to be sent to registered clients of the application.
(Registered clients are those that have successfully made atpailkto () and have
not yet made a call tpterm ().) The syntax of the function is:

int

tpbroadcast(  Imid, usrname, cltname, data, len, flags )

char* Imid ,* usrname,* cltnhame ,* data ;
long len, flags ;

Imid, usrname andclthameare pointers to identifiers used to select the target list of
clients. A value ofNULL for any of these arguments acts as a wildcard for that
argument, so the message can be directed to groups of clients or to the entire universe.

Thedataargument points to the content of the message up to the length specified by
thelen argument. Idatapoints to a self-defining buffer type, for example Faf
buffer,len can ben. Theflagsargument can be:

TPNOBLOCK
If a blocking condition exists, don’t send the message.

TPNOTIME
Wait indefinitely; do not time out.

TPSIGRSTRT
When a signal interrupts any underlying system calls, the call is reissued. If
this flag is not set, a signal cauggisoadcast () to fail with theTPGOTSIG
error code.

tpbroadcast() Example

Listing 3-7 shows an example of a callyporoadcast () where all clients are
targeted. The message to be sent isSTRING buffer.

Listing 3-7 Using tpbroadcast()

char *strbuf;

if ((strbuf = tpalloc("STRING", NULL, 0)) == NULL) {
error routine

}
(void) strcpy(strbuf, "hello, world");

if (tpbroadcast(NULL, NULL, NULL, strbuf, 0, TPSIGRSTRT) == -1)
error routine

BEA TUXEDO Programmer’s Guide 3-19



3 Writing Service Routines

tpnotify() Arguments

tpnotify () can be called only from a service. The syntax of the function is:

int

tpnotify( clientid, data, len, flags )
CLIENTID * clientid ;

char* data ;

long len, flags ;

*clientid is a pointer to &LIENTID structure saved from th@SVCINFOstructure that
accompanied the service request to this service. Thus it can be segmotifiat () is

used to direct an out-of-band message to the client process that called the service. Ti
is not the same as the reply to the service request that would be sent when the servi
callstpreturn () (or when a conversational service cglksend () to send a reply to

the client), nor is it any part of a transaction, if one is in progress. It is used in cases
where the service encounters information in processing that needs to be passed to t
unsolicited message handler for the application.

The*data, len, andflags arguments are the same as they argfovadcast ().

Advertising, Unadvertising Services

3-20

When servers are booted, they advertise the services they offer based on the
specification in theicLOPTparameter in the configuration file. The default
specification calls for the server to advertise all services with which it was built; this
is the meaning of the\ option. (Se@bbconfig (5) orservopts (5).) When a service

is advertised, it takes up a service table entry in the bulletin board. This can lead an
application to decide to boot servers to offer some subset of their available services
As theservopts (5) reference page makes clear, theoption allows a
comma-separated list of services to be specified by service name. It also allows, wit
the-s services:funmotation, for a function with a name different from that of the
advertised service to be called to process the service request. The BEA TUXEDO
system administrator can use thivertise ~ andunadvertise =~ commands of

tmadmin (1) to control the services offered by servers.

Thetpadvertise () andtpunadvertise () functions allow that dynamic control to be
exercised within a service of a request/response server or conversational server to
advertise or unadvertise a service. The limitation is that the service to be advertised («
unadvertised) must be available within the same server as the service making the
request.

BEA TUXEDO Programmer’s Guide



Writing Request/Response Services

tpadvertise() Arguments

The syntax ofpadvertise  is:
int

tpadvertise( svcname, func )
char* svcname;

void (*  func);

*svchameis a pointer to a character string of 15 characters or less that names the
service to be advertised. Names longer than 15 characters are trun¢atedyalue
causes an errofTPEINVAL] .

funcis the address of a BEA TUXEDO system service function that is called to
perform the service (of course, it is not uncommon that this name is the same as the
name of the servicejuncis not permitted to bRULL

tpadvertise() Example

Listing 3-8 shows an example phdvertise () that is based on the following
hypothetical situation (this is an extension to an exigdiimfapp server):

SERVER TLRis specified to offer only the servig&R_INIT when booted.

After some initializationTLR_INIT advertises servic&EPOSITandwITHDRAWboth
performed by functiotir_funcs , and both built into th&LR server.

On return from advertising the two servic€sR_INIT unadvertises itself.

Listing 3-8 Dynamic Advertising and Unadvertising

extern void tlr_funcs()

|f (tpadvertise("DEPOSIT", (tIr_funcs)(TPSVCINFO *)) == -1)

check for errors ;
if (tpadvertise("WITHDRAW", (tIr funcs)(TPSVCINFO *)) == -1)
check for errors
if (tpunadvertise("TLR_INIT' ) =-1)
check for errors

tpreturn(TPSUCCESS, 0, transb >data,OL, 0);

BEA TUXEDO Programmer’s Guide 3-21



3 Writing Service Routines

tpunadvertise()

tpunadvertise (), of course, is called to remove a service from the service table of the
bulletin board. The syntax is:

tpunadvertise( svcname)
char* svcname;

The only argument is a pointer to thecnamedeing unadvertised. An example is
included above in Listing 3-8.

System-Supplied Servers and Subroutines

The BEA TUXEDO system is delivered with a server that provides a basic client
authentication servic&UTHSVRA standardhnain () routine and two subroutines called
by main () are also provided.

System-Supplied Servers

AUTHSVR

The servers described in this section are intended to save you the trouble of coding
services to do routine tasks.

AUTHSVES) can be used to provide individual client authentication for an application.
Itis called bytpinit  (3c) when the level of security for the applicatiomRaPPAUTH

The service iIMUTHSVRooKs in thedatafield of theTPINIT buffer for a user

password (not to be confused with the application password pagsvdield of the
TPINIT buffer). The string imlatais checked against thietc/passwd  file (by

default; the application can specify a different file to be checked). When used by a
native site client, thdatafield is sent along byinit () as it is received. This means
that if the application wants the password to be encrypted, the client program must b
coded accordingly. When used by a workstation cliginif () encrypts the data
before sending it across the network.

3-22 BEA TUXEDO Programmer’s Guide



System-Supplied Servers and Subroutines

The BEA TUXEDO System main()

To speed the development of servers, the BEA TUXEDO system provides a predefined
main () routine for server load modules. Thiain () is automatically included when
thebuildserver (1) command is executed.

The predefinednain () routine does the following:

¢
¢

runs the process immune to hangups (ignores the UNIX sy&teruP signal)

arranges for cleanup on receipt of the standard UNIX system software
termination signal§IGTERN). The server is shut down and must be rebooted if
needed again.

attaches to shared memory for bulletin board services
creates a message queue for the process

advertises the initial services to be offered by the server. The initial services are
either all the services link edited with the predefineth (), or a subset
specified by the BEA TUXEDO system administrator in the configuration file.

processes command line arguments up to the double d3gsthét indicates the
end of system-recognized arguments.

calls the functionpsvrinit () to process any command line arguments
occurring after the- and optionally to open the resource manager. Such
arguments are for application-specific initialization.

until ordered to halt, checks its request queue for service request messages

until ordered to halt, when a service request message arrives on the request
queue:

4 ifthe-r option was specified, records the starting time of the service request
4 updates the bulletin board to indicate that the sen@osy

4 allocates a buffer for the request message and dispatches the service; that is,
calls the service subroutine

BEA TUXEDO Programmer’s Guide 3-23



3 Writing Service Routines

4 until ordered to halt, when the service has returned from processing its input:
4 ifthe-r option was specified, records the ending time of the service request
4 updates statistics

4 updates the bulletin board to indicate that the servbL; that is, ready
for work

4 checks its queue for the next service request

4 when the server is about to halt, calis/rdone () to perform any required user
shutdown operations.

Themain () that the system provides is a closed abstraction and can not be modified b
the programmer. As indicated in the previous list items, it takes care of all the detail:
concerning entrance into and exit from an application, buffer and transaction
management, and communication. It leaves the programmer free to implement the
application through the logic of the service subroutines. Note that as a result of the
system suppliechain () doing the work of joining and leaving the application, it is an
error for services to make calls to tpait () ortpterm () functions. This error
returnsTPEPROTAN tperrno.

In addition to the above functionality, there are two user exitim() that allow the
programmer to do various initialization and exiting activities. The next sections
explain how these two system supplied subroutines are used.

BEA TUXEDO System-Supplied Subroutines

tpsvrinit()

There are two subroutinesroéin (), tpsvrinit () andtpsvrdone (), that are provided
with the BEA TUXEDO system software. The default versions can be modified to suit
your application.

When a server is booted, the BEA TUXEDO systedin () callstpsvrinit () during

its initialization phase before it handles any service requests. If an application does nc
provide this routine in a server, the default one is called that opens the resource
manager and makes an entry in the central event log indicating that the server has
successfully started. The central event log is discussed in Chapter 7, “Error
Management.” For now, simply understand that it is a UNIX System file to which

3-24 BEA TUXEDO Programmer’s Guide



System-Supplied Servers and Subroutines

processes can write messages by callingighgog (3c) function. Coming as it does
near the beginning of the system-supplen (), tpsvrinit () can be used for any
initialization purposes that might be needed by an application. Two possibilities are
illustrated here: receiving command line options and opening a database.

Note that although not shown in the following examples, message communication can
also be performed within this routine. Howewupsyrinit () fails if it returns with
asynchronous replies pending. In addition, the replies are ignored by BEA TUXEDO,
and the server exits gracefultgsvrinit () can also start and complete transactions,
but this is discussed in Chapter 7, “Error Management.”

The syntax of this function is:
int
tpsvrinit( arge, argv ) [* Server initialization routine */

int argc ;
char* argv ;

Using tpsvrinit() to Receive Command Line Options

When a server is booted, before callingtfizerinit () routine, it reads the options
specified for it in the configuration file. Using the UNIX functigetopt (3C) (see a
UNIX System programmer’s reference manual), it reads options up to the point where
it receives an EOF indication. The presence of a double dapbrf the command line
causegetopt to return an EOFgetopt places theargvindex of the next argument

to be processed in the external variadpiind . The predefinehain () then calls

tpsvrinit ().

Listing 3-9 shows an example of@vrinit () coded to receive command line
options.

Listing 3-9 Receiving Command Line Options in tpsvrinit()

tpsvrinit(argc, argv)

int argc;

char **argyv;

o
int c;
extern char *optarg;
extern int optind;

BEA TUXEDO Programmer’s Guide 3-25



3 Writing Service Routines

3-26

while((c = getopt(argc, argv, "f:x:")) I= EOF)
switch(c){

When the BEA TUXEDO systemisain () callstpsvrinit (), it picks up any

arguments that follow the double dash)on the command line. In the example
above, options andx each take an argument, as indicated by the coptarg points

to the beginning of the option argument. We have omitted the switch statement logic

Using tpsvrinit() to Open a Resource Manager

Listing 3-10 shows a code fragment that illustrates another common use of

tpsvrinit  (): opening a resource manager. BEA TUXEDO provides functions to
open a resource managenpen () andtx_open (). It also provides the
complementary functiongclose () andtx_close (). The details of these ATMI
primitives can be found in tH®EA TUXEDO Reference ManuAbplications that use
these calls to open and close their resource managers are portable in this respect. Tt
work by accessing the resource manager instance-specific information that is availab
in the configuration file. These calls are optional and can be used in place of the
resource manager specific calls that are sometimes part of the Data Manipulation
Language (DML) if the resource manager is a database. In the example that follows
the code does not pick up command line options, but there is no reason it could not bo
pick up options and open the database. Also, note the useusétiog (3c) function

to write to the central event log.

BEA TUXEDO Programmer’s Guide



System-Supplied Servers and Subroutines

Listing 3-10 Opening a Resource Manager in tpsvrinit()

tpsvrinit()

/* Open database */

if (tpopen() == -1) {
(void)userlog(“tpsvrinit: failed to open database: ");
switch (tperrno) {
case TPESYSTEM:
(void)userlog("System /T error\n");
break;
case TPEOS:
(void)userlog("Unix error %d\n",Uunixerr);
break;
case TPEPROTO:
(void)userlog("Called in improper context\n");
break;
case TPERMERR:
(void)userlog("RM failure\n");
break;

return(-1);  /* causes the server to exit */

return(0);

}

If an error occurs during the initialization activitigssvrinit () can be coded to

permit the server to exit gracefully before the server starts processing service requests.

tpsvrdone()

Using tpsvrdone() to Close a Resource Manager

As might be expectedysvrdone () can call on the services af close () to close
the resource manager in a manner analogous to theweiyiit () andtx_open ()
are used to open it. If the application does not define a closing routine for

tpsvrdone (), the BEA TUXEDO system calls the default version, which calls
tx_close () anduserlog () to close the resource manager and write to the central
event log. The message to the log indicates that the server is about to exit.

BEA TUXEDO Programmer’s Guide 3-27



3 Writing Service Routines

Note: Applications choosing to write their own versiongmfrinit () and
tpsvrdone () should remember that the default versions of these two routines
call tx_open () andtx_close (), respectively. If the application writes a new
version oftpsvrinit () that callstpopen () rather thanx_open (), they
should also write a new versiontpévrdone () that callgpclose (). In other
words, the open/close pairs have to be from the same set.

tpsvrdone () is called after the server has finished processing service requests but
before it exits. Since the server is still part of the system, further communication anc
transactions can take place within the routine. The rules that must be followed to do
this properly are covered in Chapter 7, “Error Management.” The syntax of this
function is:

void
tpsvrdone() /* Server termination routine */

Listing 3-11 shows the typical way in whigisvrdone () is used.

Listing 3-11 Closing a Resource Manager in tpsvrdone()

void
tpsvrdone()

[* Close the database */
if(tpclose() == -1)
(void)userlog(“tpsvrdone: failed to close database: ");
switch (tperrno) {
case TPESYSTEM:
(void)userlog("BEA TUXEDO error\n®);
break;
case TPEOS:
(void)userlog("Unix error %d\n",Uunixerr);
break;
case TPEPROTO:
(void)userlog("Called in improper context\n®);
break;
case TPERMERR:
(void)userlog("RM failure\n");
break;
}
return;
}
return;

}

3-28 BEA TUXEDO Programmer’s Guide



Compiling Subroutines to Build Servers

Compiling Subroutines to Build Servers

To compile your service subroutines, you have the same freedom you had in compiling
clients. You can use regular C Compilation System utilities to make object files. The
object files can be kept as individual files or collected into an archive file. If you prefer,
you can retain them as sourae)files. In any event, when you invokeildserver

to produce an executable server, you specify them on the command line with the
option. This applies to new versionsygdvrinit () andtpsvrdone () as well as your
application subroutines.

The buildserver Command

buildserver (1) is used to put together an executable server with the BEA TUXEDO
system’smain (). Options identify the name of the output file, input files provided by
the application, and various libraries that permit you to run a BEA TUXEDO system
application in a variety of ways.

buildserver  invokes theec command. The environment variableSandCFLAGS

can be set to name an alternative compile command and to set flags for the compile and
link edit phases. The keyuildserver ~ command line options are described in the
paragraphs that follow.

The buildserver -o Option

The-o option is used to assign a name to the executable output file. If no name is
provided, the file is nameSERVER

The buildserver -f and -1 Options

The-f and-I options are used to specify files to be used in the link edit phase. The
files specified in thef option are brought in before the BEA TUXEDO system and
resource manager libraries (first), whereas the files specified in thption are

brought in after these libraries (last). There is a significance to the order of the options.
The order is dependent on function references and in what libraries the references are
resolved. Source modules should be listed ahead of libraries that might be used to
resolve their references. Any files are first compiled. Object files can be either

BEA TUXEDO Programmer’s Guide 3-29



3 Writing Service Routines

separateo files or groups of files in archives() files. If more than a single file name
is given as an argument tefa or -l option, the syntax calls for a list enclosed in
double quotes. You can use as manyand-l options as you need.

The buildserver -r Option

The-r option is used to specify which resource manager access libraries should be lin
edited with the executable server. The choice is specified with a string from the
$TUXDIR/udataobj/RM file. Only one string can be specified. The database functions
in your service are the same regardless of which library is used.

All valid strings that name resource managers are contained in the
$TUXDIR/udataobj/RM  file. When integrating a new resource manager into BEA
TUXEDO, this file must be updated to include the information about the resource
manager. Refer to thwildtms (1) reference page and the boddministering the
BEA TUXEDO Systefior more information.

If you are using the ATMI transaction primitivegbegin () and
tpcommit ()/tpabort (), you should build your servers using thdidserver
command.

The buildserver -s Option

3-30

The-s option is used to specify the service names included in the server and the nan
of the functions that perform each service. Normally, the function name is the same ¢
the name of the service. In the sample program, our convention is to specify all
uppercase for the service name. For exampleQHEN_ACCBervice would be
processed by functiodPEN_ACC(). However, thes option ofbuildserver  does

allow you to specify an arbitrary name for the processing function for a service within
a server. For example, the command

buildserver -o ACCT -f acct.o -s NEW_ACCT:OPEN_ACCT -s CLOSE_ACCT

specifies that thelIEW_ACCTequest is to be processed by a function called
OPEN_ACC(), while service requestL OSE_ACCTs to be processed by the function
CLOSE_ACCY).

However, it is possible for the administrator to specify that only a subset of the service
that were used to create the server withbthidserver ~ command are to be

advertised when the server is booted. Refer to the Bdakinistering the BEA

TUXEDO System

BEA TUXEDO Programmer’s Guide



Using C++

Using C++

There are not many differences in using a C++ compiler instead of a C compiler to
develop application servers. The two areas affected are the declaration of the service
function, and the use of constructors and destructors.

When declaring a service function, it must be declared to have “C” linkage using
extern “C” . That is, the function prototype should be as follows:

#ifdef __cplusplus

extern "C"

#endif

MYSERVICE(TPSVCINFO *tpsvcinfo)

Declaring the name with “C” linkage ensures that the C++ compiler wilinaoigle

the name (many C++ compilers change the function name to include type information
for the parameters and function return). This allows for the linking of both C and C++
service routines into a single server without the application programmer indicating
what type each routine is. This also allows use of dynamic service advertisement,
which requires accessing the symbol table of the executable to find the function name.

C++ constructors are called to initialize class objects when they are created, and
destructors are invoked when class objects are destroyed. For automatic (local,
non-static) variables that have constructors and destructors, the constructor is called
when the variable comes into scope and the destructor is called when the variable goes
out of scope. However, whegrdéturn () ortpforward () is called, it does a non-local
goto (usindongjmp (3)) such that destructors for automatic variables will not be
called. To avoid this problem, the application should be written suctptiatn ()
ortpforward () is called from the service routine (instead of any functions called from
the service routine). In addition, either the service routine should not have any
automatic variables with destructors (they should be declared and used in a function
called by the service routine) or they should be declared and used in a nested scope
(within curly brackets {} ) such that the scope ends before caliegurn () or

tpforward (). Summarizing, there should be no automatic variables with destructors
in scope in the current function or on the stack wheturn () or tpforward () is

called.

For proper handling of global and static variables that have constructors and
destructors, many C++ compilers require thatrth@ () must be compiled using the

C++ compiler (special processing is included inrttein () to ensure that the
constructors are executed when the program starts and the destructors are executed

BEA TUXEDO Programmer’s Guide 3-31



3 Writing Service Routines

when the program exits). Since thein () is provided by the BEA TUXEDO system,
the application programmer does not compile it directly. To ensure that the file is
compiled using C++, theuildserver =~ command must use the C++ compiler. This is
done by setting the CC environment variable to the full pathname for the C++ compile
and setting theFLAGSenvironment variable to any options to be provided on the C++
command line.

3-32 BEA TUXEDO Programmer’s Guide



CHAPTER

4 Conversational Clients
and Services

Writing Conversational Clients and Services

This chapter covers the subject of conversational clients and services.

A conversational client differs in the following ways from a request/response client
(described in Chapter 2, “Writing Client Programs,”):

4 ltinitiates a request for service by usipgonnect () rather thanpcall () or
tpacall ().

4 It passes the service request to a conversational server.

A conversational service differs in the following ways from a request/response service
(described in Chapter 3, “Writing Service Routines,”):

4 Itis part of a server identified in the configuration file as offering only
conversational services.

4 Itis prohibited from making a call tpforward ().
Both conversational clients and servers have the following characteristics:

4 The logical connection between them remains active until terminated; any
number of messages can be transmitted across the connection.

4 They usapsend () andtprecv () calls to send and receive data in conversations.

BEA TUXEDO Programmer’s Guide 4-1



CHAPTER

Conversational Mode

In the conversational mode of communication, a half-duplex connection is established
between the client (or initiator) and a server. Control of the connection can be passed
back and forth between the initiator and the subordinate server. At any point in the
conversation, the process that has control can send messages; the process that does not
have control can only receive. The connection remains up until an event occurs that
tears it down. One evermPEV_SENDONLYhotifies the receiving program that control

of the connection has been passed to it and it can successfutpsead (). Other

events are notifications that something significant has occurred; they have the result of
either bringing the conversation to a normal conclusion or precipitating a disorderly
disconnection.

The Connection Descriptor

A connection descriptotd, is returned when a connection is established with
tpconnect (). Thecd is used to identify subsequent message transmissions with a
particular conversation. A client or conversational service can have more than one
conversation active simultaneously. The maximum number is 64.

Buffer Management

Data is passed in typed buffers just as in request/response mode. The buffer types must
be recognized by the application; they must be allocated with ATMI functions as
described in Chapter 2, “Writing Client Programs,” andpidloc  (3c) in theBEA

TUXEDO Reference Manual

BEA TUXEDO Programmer’s Guide 4-2



CHAPTER

Joining an Application

Conversational clients must join the application via a capitd() prior to
attempting to establish a connection to a service. The procedure for joining the
application is described in Chapter 2, “Writing Client Programs.”

Establishing a Connection

tpconnect () is the ATMI function used to set up a conversation. The syntax is:

int

tpconnect( name, data, len, flags )
char* name * data ;

long len, flags ;

namemust point to the name of a service posted in the bulletin board by a conversation
server. Ifnameis not a pointer to a conversational service, the call fails withand

tperrno  is set to the error cod®ENOENTIf the calling program has already reached
the maximum number of active connections allowed, the call will fail with the error
COdeTPELIMIT .

Data can be sent at the same time the connection is being established bylatving
point to a buffer previously allocated tpalloc (). The type and subtype of the buffer
pointed to bydata must be a type recognized by the service being called. If no data is
being sentgata can be set tBULL /en is used to specify how much of the buffer to
send. If the buffer is self-defining (for example, an FML buffer), can be set to.

The conversational service being called receivesidiee andlen pointers via the
TPSVCINFOdata structure passed to itdagin() when the service is invoked. So far,

this should sound a lot like what happens when a request/response service is invoked,
because it is. Differences begin to appear when we consider options flagthe
argument.

BEA TUXEDO Programmer’s Guide  4-3



CHAPTER

Values for the flags Argument: tpconnect()

As with other ATMI functions, the behavior of the called program can be controlled
by values of thélags argument ofpconnect (). Four of the values are identical to
their use inpcall () and are described in “Values for the flags Argument: tpcall()” in
Chapter 2, “Writing Client Programs.” They are:

TPNOTRAN TPNOBLOCK
TPNOTIME TPSIGRSTRT

New validflags options are:

TPSENDONLY
The calling program retains control of the connection, and the called service
is permitted only to receive. The called service learns of this through the
flags member of itSTPSVCINFOstructure;TPSVCINFO->flags ==
TPRECVONLYTPSENDONLYANdTPRECVONLYre mutually exclusive; one or
the other must be specified.

TPRECVONLY
Control of the connection is being passed to the called service, and the called
service can only send. The called service learns of this throudghdée
member of itS PSVCINFOstructure TPSVCINFO->flags == TPSENDONLY.
TPSENDONLWNATPRECVONLYre mutually exclusive; one or the other must
be specified.

As mentioned above, on successful completpennnect () returns a connection
descriptor that is used in all subsequent calls of the conversation. Your call to
tpconnect () should be coded something like that shown in Listing 4-1.

Listing 4-1 Establishing a Conversational Connection

#include atmi.h

#define FAIL -1

int cdl; [* Connection Descriptor */
main()

if ((cd = tpconnect(*“AUDITC”,NULL,0,TPSENDONLY)) == -1) {
error routine
}

}

BEA TUXEDO Programmer’s Guide 4-4



CHAPTER

Sending

After the conversational connection is set up, communication between the client (or
initiator) and the service is accomplished with send/receive calls. The connection is
half-duplex. That means communication can be in only one direction at a time. The
process that has control of the connection can send; the process that does not have
control can receive. Initially, control is decided by the originator and is specified by
the TPSENDONLYr TPRECVONLYlag value of thepconnect()  call; TPSENDONLY
means control is retained by the originaTRECVONLYneans control is given to the
called service. Aftetpconnect () returns successfully, data is sent across the open
connection with thepsend () function.

The syntax ofpsend () is:

int

tpsend( cd, data, len, flags, revent )
int cd;

char* data ;

long len ;

long flags ;

long* revent ;

cdis the connection descriptor returnedfmypnnect()  thatidentifies the connection
over which to send the datedata andlen are, respectively, a pointer to a buffer
created bypalloc() , and the length of the data to be sent. The same rules apply to
data andlen that have been outlined earlier: The buffer must be of a type recognized
by the program that receives it and length can li¢he buffer is self-defining. There

is no requirement that data be sent. If the data poinkulis, len is ignored.

BEA TUXEDO Programmer’s Guide  4-5



CHAPTER

Values for the flags Argument: tpsend()

There are four valid values for tiflegs argument ofpsend (). Three of them:

TPNOBLOCK
TPNOTIME
TPSIGRSTRT

have the same meaning described in Chapter 2 (in “Values for the flags Argument:
tpcall()” section). The fourth value is like one that is usegdonnect (), but has
added significance in this function.

TPRECVONLY
Signals the intent of the calling program to issue no maead () calls at
the moment and to pass control of the connection over to the other side of the
connection. When the called program receives the data, it also receives a
TPEV_SENDONL®vent at the address pointed tordwent .

It is not a requirement that control be passed each timpstirel () call is made. The
process authorized to makmend () calls on the connection can make as many calls
as necessary before turning over control of the connection. In fact, the logic of the
conversational program may be such that one side of the conversation retains control
of the connection throughout the life of the conversation.

Listing 4-2 showspsend () used in a code fragment.

Listing 4-2 Sending Data in Conversational Mode

if (tpsend(cd,line,0,TPRECVONLY,revent) == -1) {
(void)userlog(“%s: tpsend failed tperrno %d”,
argv[0],tperrno);
(void)tpabort(0);
(void)tpterm();
exit(1);

BEA TUXEDO Programmer’s Guide  4-6



CHAPTER

Receiving

The function used to receive data sent over an open connecpi@ays (). The syntax
is:

int

tprecv( cd, data, len, flags , revent )

int cd;

char* data ;

long* len ;

long flags ;

long* revent ;

cd is the connection descriptor. If the function is being issued from a subordinate
program (that is, not the originator of the connectioth)s in theTPSVCINFOstructure
for the program. Ifprecv () is being issued by the originatat] is the descriptor
returned bytpconnect (). When the call is madegita is a pointer to the address of
a previouslypalloc  'd buffer andlen is a pointer to the size of the bufftan, data ,
and* data are not allowed to beULL The call fails angperrmo is set toTPEINVAL.

Upon successful returfdata points to the data received aled contains the size of
the buffer. Iflenis greater than the total size of the buffer before the caltdos (),
it indicates the buffer's new size.l&nis 0, no data was received.

If an event exists foed, tprecv () returns a1l andtperrno  is set toTPEEVENT The

event type is returned in revent. With everRE SVCSUCCTPESVCFAIL, and
TPESENDONLYdata can be received. These three events are all normal completions of
thetprecv () call, so itis not correct to assume thereturn value means the call has
failed. A more complete discussion of events can be found in “Events and Their
Significance” later in this chapter.

BEA TUXEDO Programmer’s Guide  4-7



CHAPTER

Values for the flags Argument: tprecv()

tprecv () has four valid flags. Three of them are described in Chapter 2 (in the “Values
for the flags Argument: tpcall()” section). They are:

4 TPNOCHANGE
4 TPNOTIME
¢ TPSIGRSTRT

The fourth valid flag value iSPNOBLOCK

When the flag is setprecv () does not wait for data to arrive. If data is available, fine;
tprecv () gets the data and returns. If data is not available, the call faitpeanmd

is set toTPEBLOCKWhen the flag is not seprecv () waits and does not return until
data arrives or a timeout occurs.

Listing 4-3 shows a fragment of code usipgev ().

Listing 4-3 Receiving Data in Conversation

if (tprecv(cd,line,len, TPNOCHANGE,revent) !=-1) {
(void)userlog(“%s: tprecv failed tperrno %d revent %ld”,
argv[0],tperrno,revent);
(void)tpabort(0);
(void)tpterm();
exit(1);

BEA TUXEDO Programmer’s Guide  4-8



CHAPTER

Ending a Conversation

There are three ways in which the connection can be taken down in an orderly fashion
and the conversation ended normally. Figure 4-1 and Figure 4-2 show two scenarios
that help to illustrate how conversations are ended where global transactions are not
involved. The third approach of ending a conversation where a transaction is involved
is shown in Chapter 5, “Global Transactions in BEA TUXEDO System.”

Subordinate Calls tpreturn()

Figure 4-1 shows a simple A to B conversation. The connection is set up initially with
a call totpconnect () with theTPSENDONLYlag set. In due course, A turns control of
the connection over to B by callingsend () with theTPRECVONLYlag set. This
generates &aPEV_SENDONL¥vent. The next call by B tprecv () returns a1,

tperrno  is set toTPEEVENT and revent shows the evaiREV_SENDONLYB knows

from theTPEV_SENDONL®vent that it now controls the connection. Subsequently, B
callstpreturn () withrval set toTPSUCCESSThis generatesEPEV_SVCSUCevent

for A. The call tatpreturn () also brings down the connection. When A calls

tprecv () and learns of the event, it recognizes that the conversation has been
terminated. Data can be received on this cajptev () even if the event is
TPEV_SVCFAIL In this illustration, A can be either a client or a server, B can only be
a server.

Figure 4-1 Simple SENDONLY Connection and Return

A EYEHTS B
A [ e ]
ongnally &8 RECOHLY cannechan ™'

o | =tpoomnecH®secl®,. TPEENLOHLY )
ARLiERRLin : TPEV SENDOHLY

mpzend|cd] data  TPEECYOHLY], - tpreceipscinbo - of, Shuffer | drevents;

) : ol ed vo a SENCOHLY cranscman™

tprecvled], &baffer, . Srerent) TPEV EWCELCT

e TP VDCES S buffer, ),

BEA TUXEDO Programmer’s Guide  4-9



CHAPTER

Hierarchy of Connections and tpreturn()

A

cdl =tgronrech mwel®, . TFREC VML Y

wrecvice, bafer,  dreveniy

Figure 4-2 shows a hierarchy of connections. The scenario applies to a service in a
conversation, B, that has initiated a connection to a second service, C. In other words,
there are two active connections, A to B, and B to C. If B is in control of both
connections, a call tpreturn () has the following effect: the call will fail, a
TPEV_SVCERRvent will be posted on all open connections, and the connections will
be closed in a disorderly manner. The proper sequence is for B taseadl () with
theTPRECVONLYlag set on the connection to C, turning control of the B-C connection
over to C. C can then cafireturn () with rval set toTPSUCCESSTPFAIL or

TPEXIT, as appropriate. B can then aptkturn (), posting an event (either
TPEV_SVCSUCOr TPEV_SVCFAIL) for A. Both connections are terminated normally.

Figure 4-2 Connection Hierarchy

EVENTS EVEHTS

i C

e Bitgsveinb) e Cipraiaka)

ol | =tptiodnsct|"svcC", TPEERDOHMLY
rpsend{od] datg . TEFRECWORNLY],

TPEV_EERDOHLY
——ee o=

tprecwipcinfeecd | Sreveney
tpreniral TP UMCCESE buller, . ),

PV _saigullicL

e el Shii By, drorent];
wretum{TPEICCERS buer, ]:

TPEY _SMCEUCC

BEA TUXEDO Programmer’'s Guide 4-10



CHAPTER

Ending a Conversation: Summary

It is an error to end a conversation with connections still open. Ejitwnmit () or
tpreturn () will fail in a disorderly manner.

To summarize the ways a conversation can be ended in an orderly manner:

4 If the connection originated in a server, the originator turns over control of the
connection to the called process. That process can thaprealin (). This is
illustrated in Figure 4-1 above.

4 A subordinate process can aaleturn (). The subordinate must have control
of the connection and must make the catpteturn () before the originator
does. This is illustrated in Figure 4-2 above.

In each case, the subordinate has control andtpedisrn ().

Events and Their Significance

There are five events recognized in conversational communication. All five can be
posted fotprecv (), three of the five can be posted fiagend (). Table 4-1
summarizes them.

Table 4-1 Conversational Communication Events

Event Rec'By Meaning
TPEV_SENDONLY  tprecv () control of the connection has been passed; this process can now call
tpsend ()
TPEV_DISCONIMM  tpsend () a disorderly disconnect; the connection has been torn down; no further
tprecv () communication is possible; postedtpgliscon () in the originator of

tpretun ()  the connection, and posted to all open connections tpneturn  is
called while connections to subordinate services remain open. All
connections are closed in a disorderly fashion. If a transaction exists, it
is aborted.

BEA TUXEDO Programmer’s Guide 4-11



CHAPTER

Table 4-1 Conversational Communication Events

Event Rec'By

Meaning

TPEV_SVCERR tpsend

0

received by the originator of the connection, usually indicates the
subordinate program has issued a tpreturn without having control of the
connection

tprecv

0

received by the originator of the connection, indicates the subordinate
program has issued a tpreturn WitASUCCES®r TPFAIL and a valid

data buffer, but an error occurred that prevented the call from
completing

TPEV_SVCFAIL tpsend

0

received by the originator of the connection, indicates the subordinate
program has issuedtpreturn  without having control of the
connection, antpreturn  was called witiTPFAIL or TPEXIT and

no data

tprecv

0

received by the originator of the connection, indicates the subordinate
service finished unsuccessfullpieturn ~ was called witifPFAIL
or TPEXIT)

TPEV_SVCSUCC tprecv

0

received by the originator of the connection, indicates the subordinate
service finished successfully, that is, calipceturn () with
TPSUCCESS

Disorderly Disconnection

Thetpdiscon

() function has an innocent sound to it, as though it was the logical

opposite ofipconnect (), but it is really the equivalent of pulling the plug on the
connection. It can be called only by the initiator of a conversation.

The syntax is simple:

int
tpdiscon(cd)
int cd;

cd is the connection descriptor returnedtyonnect ().

BEA TUXEDO Programmer’s Guide 4-12



CHAPTER

tpdiscon () generates 8PEV_DISCONIMMevent for the service at the other end of the
connection, and thed is no longer valid. If a transaction is in progress, it is aborted.
Data may be lost. kpdiscon () is called from a service that was not the originator of
the connection identified byo, it fails with an error code GfPEBADDESC

The preferred way of bringing down a connection is for the subordinate to call
tpreturn ().

Request/Response Calls and Conversations

There is nothing that prevents a conversational service from making request/response
calls if it needs to communicate with another service. In the examples of connection
hierarchies shown in Figure 4-2 above, the calls from B to C could have been made
with tpcall () ortpacall () instead ofpconnect (). Remember, however, that
conversational services are not permitted to make catiéotavard ().

Configuration Parameters

There are some parameters in the configuration file that pertain only to conversational
processing. As noted in Chapter 1 (in the “Configuration File” section), the BEA
TUXEDO system administrator normally is responsible for setting up the production
version of the configuration file for the application, but you may need to set some
parameters in your own development configuration.

Here are the parameters you need to know about:

MAXCONV
sets the maximum number of simultaneous conversations for a single
machine. The range is from 0 to 32,767. The default is 10 when
conversational servers are specified. The parameter can be specified in the
RESOURCESection for all machines in the configuration and can be
overridden in th&ACHINESsection for each machine. Itis quite probable that
for an application under development the default is adequate.

CONV ={Y/N}
is a parameter in tl@ERVERSsection. Connections can only be made to
servers that have this value settdf it is set toN or left unspecified, a
tpconnect () call to a service of the server will fail.

BEA TUXEDO Programmer’s Guide 4-13



CHAPTER

MIN andMAX
are parameters in tlBERVERSsection that specify the minimum and
maximum number of occurrences of the server to be starteebbyt (1). If
not specifiedMIN defaults to 1 anthAaXdefaults toMIN. The same parameters
are available for use with request/response servers. However, conversational
servers are automatically spawned as needed. So if ypiNsell. andMAX
=10 , for exampletmboot starts one initially. Whentaconnect () call is
made to a service offered by that server, the system starts up a second copy.
As each copy is called a new one is spawned up to a limit of 10.

MAXSERVERS
specifies the high-water mark for all servers of the configuration. This figure
needs to take into account tieéXxvalues for all conversational servers. You
probably will not need to worry about this for an application under
development, but it could be something that needs attention when the
application reaches the production stage. The parameter iSRESGURCES
section.

Building Conversational Clients and Servers

The utilities described in Chapters 2 andu@dclient (1) andbuildserver (1), are
used for building conversational clients and servers.

Conversational servers must be built only with conversational services; that is, mixing
of conversational services and request/response services in the same server is not
allowed.

Conversational services and request/response services can not use the same name.

BEA TUXEDO Programmer’'s Guide 4-14



CHAPTER

5 Global Transactions in
BEA TUXEDO System

Introduction

The purpose of this chapter is to explain the concept of global transactions and how to
define and manage them in your application using the ATMI primitives for transaction
management.

A global transaction is a transaction that allows work involving more than one resource
manager and spanning more than one physical site to be treated as one logical unit. The
tpbegin () function allows you explicitly to start a transaction. The process that calls
tpbegin () is the initiator of the transaction and must complete it by calling

tpcommit () ortpabort (). Once a process is in transaction mode, any service requests
made to servers may be processed on behalf of the current transaction. The services
that are called and join the transaction are the participants. They may affect the
outcome of the transaction by the value they return when they invokediven ()
function. A process can determine if it is currently working on behalf of a transaction
by calling thetpgetlev () function. The rest of this chapter will explain these

functions in detail.

BEA TUXEDO Programmer’s Guide  5-1



S Global Transactions in BEA TUXEDO System

What Is a Global Transaction?

5-2

Before we get into how you can write applications that define and manage global
transactions, this section gives you some idea as to what is meant by a transaction t
is under the control of a transaction monitor.

The BEA TUXEDO system manages global transactions. As already indicated, a
global transaction is one that can execute in more than one server, accessing data fre
more than one resource manager. A global transaction may be composed of severa
local transactions, each accessing a single resource manager. A local transaction
accesses a single database or file and is controlled by the resource manager respons
for performing concurrency control and atomicity of updates at that distinct database
A given local transaction may be either successful or unsuccessful in completing its
access.

A global transaction is always treated as a specific sequence of operations that is
characterized by the four properties of atomicity, consistency, isolation, and durability
That is, it is a logical unit of work in which:

4+ All portions either succeed or have no effect.

¢ Operations are performed that correctly transform the resources from one
consistent state to another.

4 Intermediate results are not accessible to other transactions, although other
processes in the same transaction may access the data.

4+ All effects of a completed sequence cannot be altered by any kind of failure.

The BEA TUXEDO system is responsible for managing the status of the global
transaction and making the decision as to whether or not a global transaction should |
committed or rolled back. Global transactions are explicitly defined and controlled by
the ATMI function primitives that can be found on their respective reference pages in
theBEA TUXEDO Reference Manuahd are the topic of this chapter. More
specifically, the ATMI functions enable the application programmer to begin and
terminate transactions and to test if a client or service routine is currently in a
transaction.

BEA TUXEDO Programmer’s Guide



ATMI Transaction Primitives

ATMI Transaction Primitives

The ATMI primitivestpbegin() ,tpcommit() , andtpabort()  are used to explicitly

begin and end a transaction. The initiator of a transactionptsgin()  to mark its
beginning. After specifying the operations (service requests) to be applied to the
resource as part of this transaction, the initiator can then call gitoemit() or

tpabort()  to mark its completion. The calls to initiate and terminate a transaction
delineate the operations within the transaction. If the transaction is completed with a
call totpcommit() , the changes made as a result of the transaction are applied to the
resource and become permangsdbort()  causes the resource to be in the

consistent state at the start of the transaction. That is, any changes made to the resource
are rolled back. Any of the participants of a transaction can cause the global transaction
to fail by communicating their local failure to the initiator throughttieturn()

function. A two-phase commit protocol is used by BEA TUXEDO to coordinate the
commitment, rollback, and recovery of global transactions. This protocol will be
further discussed later in the chapter.

When thetpgetlev() function is invoked, it returns a 1 or a O that indicates if the
caller is within a transaction (1) or not (0).

Explicitly Defining a Global Transaction

Global transactions can be defined in either client or server processes. To explicitly
define a global transaction, call tieegin()  function. Follow it by the program
statements that are to be in transaction mode. Terminate the statements by a call to
tpcommit()  ortpabort()

The three functions have the following syntax:

int

tpbegin(  timeout, flags ) /* Begin transaction */
unsigned long timeout ;

long flags ;

int

tpcommit( flags ) /* Commit current transaction */
long flags ;

int

tpabort(  flags ) [* Abort current transaction */
long flags ;

BEA TUXEDO Programmer’s Guide  5-3



S Global Transactions in BEA TUXEDO System

5-4

A high-level view of defining a transaction is shown in Listing 5-1.

Listing 5-1 Delineating a Transaction

if (tpbegin(timeout,flags) == -1)
error routine
program statements

if (tpcommit(flags) == -1)
error routine

The process that makes the caligisegin() , the initiator, must also be the one that
terminates it by invoking eithepcommit()  ortpabort() . There is no limit to the
number of sequential transactions that a process may define using these functions. A
process may calpbegin()  exceptifit is already in transaction modeplegin()

is called in transaction mode, the call will fail because of an error in protocol and
tperrno  will be set torPEPROTOIf the process is in transaction mode, the transaction
is unaffected by the failure.

Any service subroutines that are called within the transaction delimitetsegin()
andtpcommit()/tpabort() become part of the current transaction. However, if
tpcall() or tpacall() have theflags parameter explicitly set ttPNOTRANthe
operations performed by the called service do not become part of that transaction. Th
in effect means that the calling process is not inviting the called service to be a
participant in the current transaction. As a result, any services performed by the calle
process will not be affected by the outcome of the current transaction. It should be
noted here that a call made withRNOTRANset that is directed to a service in an
XA-compliant server group may produce unexpected results. See the discussion und
“Implicitly Defining a Global Transaction” later in this chapter.

BEA TUXEDO Programmer’s Guide



ATMI Transaction Primitives

Starting the Transaction

The transaction is started by a caltgbegin() . tpbegin() takes two parameters,

only one of which is used at the present tirmeeout specifies the amount of time in
seconds a transaction has before timing figts  is currently undefined and must be
set to 0. The value of thineout parameter indicates the least amount of time in
seconds that a transaction should be given before timing auis Bpecified for this
parameter, the transaction is given the maximum number of seconds allowed by the
system before timing out (that is, the time-out value will equal the maximum value for
an unsigned long as defined by the system).

Note: The use of 0 or unrealistically large values fordheout parameter delays
system detection and reporting of errors. A time-out value is used to ensure
response to service requests within a reasonable time, and to terminate
transactions that have encountered problems such as network failures prior to
commit. For a transaction in which a person is waiting for a response, a small
value, often less than 30 seconds, is best. In a production system, the time-out
value should be large enough to accommodate expected delays due to system
load, and database contention; a small multiple of the expected average
response time is often an appropriate choice.

If a transaction times out, it is aborted. You can determine if a transaction has timed
out by testing the value gferrno  as illustrated in Listing 5-2. Note that if the
transaction timed out and it goes untested, a cgiktonmit()  will still cause the
transaction to be aborted. In this capeommit()  fails and return§PEABORT
tpcommit() intperrmo  and the transaction is implicitly aborted.

The value assigned to tliemeoutparameter should be consistent with SEANUNIT
parameter set by the BEA TUXEDO system administrator in the configuration file.
The system parameter specifies the frequency with which timed-out transactions and
blocked calls are looked for. Its value represents an interval of time between periodic
scans to find old transactions and timed out blocking calls within service requests. The
timeout parameter should be set to a value that is greater than the scanning unit. If the
time-out value were smaller, there would be some discrepancy between the time the
transaction timed out and its discovery. The default valuedaNUNITis 10 seconds.

The value you give temeout may need to be coordinated with your system
administrator to be sure it makes sense with regard to the system parameters.

Listing 5-2 illustrates the starting of a transaction with the time-out value set to 30
seconds followed by a check to see if a timeout occurred.

BEA TUXEDO Programmer’s Guide  5-5



S Global Transactions in BEA TUXEDO System

Listing 5-2 Testing for Transaction Timeout

if (tpbegin(30, 0) == -1) {
(void)userlog("%s: failed to begin transaction\n", argv[0]);
tpterm();
exit(1);

}

communication calls

if (tperro == TPETIME)
if (tpabort(0) == -1)
check for errors ;
}

else if (tpcommit(0) == -1){
check for errors ;

}

Note that a transaction is still subject to timing out even when a process calls on
another with th@PNOTRANOmmMunication flag set. This will be further discussed in
Chapter 7, “Error Management.”

The example in Listing 5-3 is excerpted from #Hoeit.c  client program of the
banking application.

Listing 5-3 Defining a Transaction

#include <stdio.h> /* UNIX */
#include <string.h> /* UNIX */
#include <atmi.h> /* TUXEDO */
#include <Uunix.h> /* TUXEDO */
#include <userlog.h> /* TUXEDO */

#include "bank.h" /* BANKING #defines */
#include "aud.h" /* BANKING view defines */
#define INVI O /* account inquiry */

#define ACCT 1 [* account inquiry */

#define TELL 2 [* teller inquiry */

static int sum_bal _((char *, char *));
static long sitelist{NSITE] = SITEREP; /* list of machines to audit */
static char pgmname[STATLEN]; [* program name = argv[0] */

5-6 BEA TUXEDO Programmer’s Guide



ATMI Transaction Primitives

static char result_str[STATLEN]; /* string to hold results of query */
main(argc, argv)

int argc;

char *argv([];

int aud_type=INVI; /* audit type -- invalid unless specified */

int clarg; /* command line arg index from optind */
int c; [* Option character */

int cflgs=0; /* Commit flags, currently unused */
int aflgs=0; * Abort flags, currently unused */

int nbl=0; /* count of branch list entries */

char svc_name[NAMELEN]; /* service name */

char hdr_type[NAMELEN]; /* heading to appear on output */
int retc; /* return value of sum_bal() */

struct aud *audv; /* pointer to audit buf struct */

int audrl=0; [* audit return length */

long g_branchid,; /* branch_id to query */

/* Get Command Line Options and Set Variables */
/* Join application */
if (tpinit((TPINIT *) NULL) == -1) {
(void)userlog("%s: failed to join application\n", pgmname);
exit(1);
/* Start global transaction */
if (tpbegin(30, 0) == -1) {
(void)userlog("%s: failed to begin transaction\n”, pgmname);

(void)tpterm();
exit(1);

if (nbl ==0) { /* no branch id specified so do a global sum */
retc = sum_bal(svc_name, hdr_type); /* sum_bal routine not shown */
}else {
/* Create buffer and set data pointer */
if ((audv = (struct aud *)tpalloc("VIEW", "aud", sizeof(struct aud)))
== (struct aud *)NULL) {

(void)userlog("audit: unable to allocate space for VIEW\An");
exit(1);

/* Prepare aud structure */

BEA TUXEDO Programmer’s Guide  5-7



S Global Transactions in BEA TUXEDO System

audv->b_id = g_branchid;
audv->balance = 0.0;
audv->ermsg[0] = \0';

/* Do tpcall */

if (tpcall(svc_name,(char *)audv,sizeof(struct aud),
(char **)audv,(long *)audrl,0) == -1){
(void)fprintf (stderr,"%s service failed\n%s: %s\n",
svC_name, svc_name, audv->ermsg);
retc = -1,

lelse {

(void)sprintf(result_str,"Branch %Id %s balance is $%.2f\n",
audv->b_id, hdr_type, audv->balance);

}
tpfree((char *)audv);

}
/* Commit global transaction */

if (retc < 0) /* sum_bal failed so abort */
(void) tpabort(aflgs);
else {
if (tpcommit(cflgs) == -1) {
(void)userlog("%s: failed to commit transaction\n",
pgmname);
(void)tpterm();
exit(1);

[*print out results only when transaction has committed successfully*/
(void)printf("%s",result_str);

/* Leave application */

if (tpterm() == -1) {

(void)userlog("%s: failed to leave application\n", pgmname);
exit(1);

5-8 BEA TUXEDO Programmer’s Guide



ATMI Transaction Primitives

Terminating the Transaction

As already indicated, a transaction is terminated by a call to githvermit() or

tpabort() . Both have thélags parameter defined. However, whilagsis not

currently used, you must set this parameter to zero to ensure compatibility with future
releases. Whetpcommit()  returns successfully, all changes to the resource as a
result of the current transaction become permaneibrt()  is called to indicate an
abnormal condition and explicitly aborts the transaction and invalidates the call
descriptors of any outstanding transactional replies (calls done with the TPNOTRAN
flag will not be invalidated). None of the changes that were produced as a result of the
transaction are applied to the resource tpaammit()  to succeed, the following two
conditions must be true:

4 The calling process must be the same one that initiated the transaction with a
call totpbegin()

4 The calling process must have no transaction replies (calls made without the
TPNOTRAN flag) outstanding.

If either condition is not true, the call fails apérrmo is set torPEPROTAndicating

an error in protocol. If a participant calffgommit()  ortpabort() , the transaction
is unaffected. Ifpcommit()  is called by the initiator with outstanding transaction
replies, the transaction is aborted and those reply descriptors associated with the
transaction become invalid.

tpcommit Initiates the Two-Phase Commit

Whentpcommit()  is called, it initiates the two-phase commit protocol mentioned
earlier. This protocol, as the name suggests, has two parts. In the first, each
participating resource manager indicates a readiness to commit. In the second, the
initiator gives permission to commit. The process that gadtsnmit() must be the
initiator of the transaction. As the initiator, this process starts the commit processing
in which the participants (the other server processes that took part in the transaction)
communicate their success or failure. This can be made known to the initiator by
tpreturn() through theval parameter that can be set to eithesUCCES®r

TPFAIL . If TPFAIL has been returnegbycommit()  fails,tperrmo  is set torPEABORT

and the transaction is implicitly aborted. All the work that is performed by every
process that participated in that transaction is undone. More will be said about the
transaction role ofreturn() andTPFORWAR()in Chapter 7, “Error Management.”

BEA TUXEDO Programmer’s Guide  5-9



S Global Transactions in BEA TUXEDO System

5-10

Setting When tpcommit() Should Return

When more than one machine is involved in a transaction, the application can elect t
specify thatpcommit()  should return successfully when all participants have
indicated a readiness to commit; that is, when phase 1 of the two-phase commit has
been logged as complete by all participants. The alternative choice is to have
tpcommit()  wait until all participants have finished phase 2 of the two-phase commit.
TheCMTRETparameter in the RESOURCES sectiowBBCONFIGan be set to either
LOGGEDDr COMPLETEO control this characteristic. The functibRSCMT() can be

called with itsflags argument set to eith@P_CMT_LOGGEDrTP_CMT_COMPLET®
override the setting in the configuration file.

The idea behind this option is that most of the time when all participants in a global
transaction have logged successful completion of phase 1, they will not fail to
complete phase 2. By settiml§_COMMIT_CONTRCOD LOGGEDyou allow slightly

faster return of calls tpcommit() , but you run the slight risk that a participant
(probably on a remote node) may heuristically complete its part of the transaction in
way that is not consistent with the commit decision. Whether it is prudent to accept th
risk depends to a large extent on the nature of your application. If your application
demands complete accuracy (for example, if you are running a financial application)
you would probably prefer to allow for the time required for all participants fully to
complete the two-phase commit process. If you are counting beans, you may prefer
have the application run as fast as possible even knowing you may be a few beans ¢
over a period of time.

Testing for Participant Errors

A client making a synchronous call to the fictiticRBPORTservice (line 18) is shown
in Listing 5-4. It demonstrates testing for errors that can be returned on a
communication call that indicate participant failure (lines 19-34).

BEA TUXEDO Programmer’s Guide



ATMI Transaction Primitives

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044

Listing 5-4 Testing for Participant Success or Failure

#include <stdio.h>
#include "atmi.h"

main()

char *sbuf, *rbuf;
long slen, rlen;
if (tpinit((TPINIT *) NULL) ==-1)
error message, exit program;
if (tpbegin(30, 0) ==-1)
error message, tpterm, exit program;
if ((sbuf=tpalloc("STRING", NULL, 100)) == NULL)
error message, tpabort, tpterm, exit program;
if ((rbuf=tpalloc("STRING", NULL, 2000)) == NULL)
error message, tpfree sbuf, tpabort, tpterm, exit program;
(void)strcpy(sbuf, "REPORT=accrcv DBNAME=accounts");
slen=strlen(sbuf);
if (tpcall"REPORT", sbuf, slen, &rbuf, &rlen, 0) == -1) {
switch(tperrno) {
case TPESVCERR:
fprintf(stderr,
"REPORT service's tpreturn encountered problems\n");
break;
case TPESVCFAIL:
fprintf(stderr,
"REPORT service TPFAILED with return code of %d\n", tpurcode);
break;
case TPEOTYPE:
fprintf(stderr,
"REPORT service's reply is not of any known data type\n");
break;

}
if (tpabort(0) == -1){

check for errors ;
}

}

else

if (tpcommit(0) == -1)

fprintf(stderr, "REPORT failed at commit time\n");

tpfree(rbuf);
tpfree(sbuf);
tpterm();
exit(0);
}

BEA TUXEDO Programmer’s Guide 5-11



S Global Transactions in BEA TUXEDO System

5-12

Committing a Transaction in Conversational Mode

Figure 5-1 shows a conversational connection hierarchy that includes a global
transaction. The originator of a connection in transaction mode (process A that calle
tpbegin()  followed bytpconnect() ) can caltpcommit()  after all services have
calledtpreturn(). If a hierarchy of connections exists as it does in Figure 5-1, each
subordinate service must caiteturn() when it no longer has replies outstanding.

A TPEV_SVCSUCOr TPEV_SVCFAIL event is sent back up the hierarchy to the process
that began the transaction. If all subordinates return successfully, the client (process

completes the transaction; otherwise the transaction is aborted.

Figure 5-1 Connection Hierarchy: Transaction Mode

A CALL "TFEENH" IEIH]
TFTRIDEF-REC
TFEATUE-REC

*# SEHCOHLY aa carawchion A5
KOTE SRCR" TO SERRICE-HAME

SET TFRECTOHLY TOTRUE
T ELL "TROOHHEDT " USIHG

5 FECYOHLY aa canrecbe AB

SET TPEECVONLY TO TRIE
CALL "“TFSERT" USIKG

CRLL “THOOASTT™ LELHD
TFTREDEF-REC
TREMMEAEC

CALL “TEREBCY* US40
TP COEF-EFC
TFTTRE-REC
DelTA-REC
TRSATIEARC

TPEHCEEF. FRATLEF B
TFTIFE-REC TPTTFE-REC
DATA-EEC CTH- R
TFIATURRES TPSTATIC RN
EVEHTS TREY S B DALY TPEY. SPCI0GS
B B BECHOHLY an canmection A8 8, SEHDOHLY onconnaction AE CALL “TRREC- U333
FELL “TFEVCETRET UTIHG CALL "TFRECY" USIHE TPE'COEF-EFC
TFRCINF.AFS TPSYCLER.REC TFTYFFSES
TFTIPE.ANC TPITFE-REC DATA-BNC
DARR-REC LT REC TRETANUEREC
TRITATO- RIS TRSTATIO RES
EET TPEUCCESS TO TRUE
FB BECVOMHLY vm o0 esition BIC A EENDOHLY o ettt p BiT COPY TFEETURH
MOTE SV 0E- TO SERVICE-HARME SET TREECHOHLY TO TRIDE
SET TPEEHDOHLY TO TBUE CALL "TFREND USR]
T &LL "TPAGHHECT " USIHG TPSVCLEF.REC
TFERCIEF.RFC TPITFE-REC
TFTTRE.AFC DT AFC
DaTL- s FRITATIOE PR
TREDITUEREC
EVENTS TPEV-SEHDOHLY TFER.SRC0GC

L 0 BRIV UHLY o earesesie BU

TALL "TFERCSTAET URIHG
JFXEACIEF - R
TFTTFE-REC
ME-SET
TPIIATLE-RRC

"o SEHDOHLY encorrachan BC
CALL “TFRECY" IFRIHG
gy e B A ]
TPTTFE-REC
H-AFC
TPITATLE RN

FET TFRUCTESS TO TRUE
CoOEY TERRTURM

BEA TUXEDO Programmer’s Guide



ATMI Transaction Primitives

Implicitly Defining a Global Transaction

Besides using the ATMI primitives explicitly to start and end a transaction, it is
possible for a global transaction to be started in two other ways.

In a Client Process

The BEA TUXEDO system provides a predefined client program that is part of its
Data Entry System. The program is calkid and is the form handler for the system.
Through the form specification languag#ORMit is possible to cause a transaction

to be started imio whenever a service request is generated TRAMIMODRBarameter

in theFORMstatement of theFORMpecification language allows you to have the client
process initiate a transaction for each service. In this case, the programmer does not
make explicit calls topbegin()  or tpcommit()/tpabort() to delineate the
transaction. If th@dRANMODRarameter of theORMstatement has been seffRAN

mio automatically starts and ends the transaction. The application logic to decide
whether to commit or roll back the transaction is built inio.

In a Service Routine

In another special case, a service routine can be placed in transaction mode through the
system parameteAUTOTRANIN the configuration file. IAUTOTRANS set toy, a

transaction is automatically started in the service subroutine when a request message
is received from another process. Let's look at some variations on this theme.

4 If a process is not in transaction mode and calls on the services of another
process, the system parameter is consulted for the called service, and if it is set
to start a transaction, one will be initiated with the call.

4 If a process is in transaction mode and calls on the services of another process, it
places the called process in transaction mode through the “rule of propagation”
and the system parameter is not consulted.

4 If a process is in transaction mode and calls on the services of another process,
but the caller has it#ags parameter set toPNOTRANthe services performed
by the called process are not part of the current transaction (suppresses
propagation rule). The system parameter will be consulted and

4 ifitis set toN (or not set), the called process is not placed in transaction
mode.

4 ifitis set toy, the service is placed in transaction mode, but this is a new
transaction.

BEA TUXEDO Programmer’s Guide 5-13



S Global Transactions in BEA TUXEDO System

5-14

Because a service can automatically be placed in transaction mode, it is possible fo
the call to be made with the communication flag s&tPteOTRANANd theflags

member of the service information structure to re@AMRANwhen queried. For
example, if the call is made with the communication flags set to
TPNOTRAN|TPNOREPL&Nd the service automatically starts a transaction when called,
theflags member of the information structure will be seTBRTRAN|TPNOREPLY

What a Service in an XA-Compliant Server Group Expects

A service that is part of an XA-compliant server group is generally written to perform
some operation via the group’s resource manager, which automatically opened the
associated database when the application was booted. In the normal case, the servi
expects to do its work within a transaction. If a service like this is called with the
caller’'s communication flags set T’PNOTRANthe results of the ensuing database
operation may be a little strange.

The solution is to write your application so that services in groups associated with
XA-compliant resource managers are always called in transaction mode or are alway
defined in the configuration file withUTOTRAN=YAnother precaution is to test early

in the service code to see what the transaction level is.

Testing Whether a Transaction Has Begun

In order correctly to interpret the error messages that can occur, it is important to kno
if a process is in transaction mode or not. It is an error for a process that is already i
transaction mode to make a callfibegin() . tpbegin()  will fail and settperro

to TPEPROTQo indicate that the function was invoked while the caller was already in
a transaction. However, the transaction will not be affected.

It might be helpful to think of transaction mode as something that is propagated unles
specifically suppressed. When one process in transaction mode calls on the services
another process, that process acquires the same “conditierio” ifas been placed in
transaction mode through the form specification language, all the service subroutine
it calls upon may be placed in transaction mode.

Service subroutines can be written so that they test to see if they are already in
transaction mode before invokimgegin() . Testing transaction level can be done
by querying thélags member of the service information structure that is passed to
the service routine. If its value is setM®TRAN the service is in transaction mode.
Also, this information can be retrieved by calling thgetlev() function. The

syntax of this function is:

int

tpgetlev() /* Get current transaction level */

BEA TUXEDO Programmer’s Guide



ATMI Transaction Primitives

tpgetlev() returnso if the caller is not in a transaction andf it is.

Listing 5-5 is a variation of thePEN_ACCBervice that shows testing for transaction
level using thepgetlev() function (line 12). If the process is not in transaction
mode, it starts one (line 14).thbegin()  fails, a message is returned to the status line
(line 16) and thecodeargument ofpreturn() is set to a code that can be retrieved
in the global variablepurcode (line 17 and line 1).

If the AUTOTRANONfiguration parameter discussed above is sgétyou avoid the
overhead of testing for transaction level and the need of explicitly calling the
tpbegin()  andtpcommit()/tpabort() transaction functions. For example, in the
fragment shown in Listing 5-5, ®PEN_ACCBervice is always to be called in
transaction mode, the system parameterBOTRANMINATRANTIMEcan be set in the
configuration file, eliminating the need to define the transaction or determine its

existence within the programming code (lines 7 and 10-19).

Listing 5-5 Testing Transaction Level

001 #define BEGFAIL 3 /* tpurcode setting for return if tpbegin fails */

002 void
003 OPEN_ACCT(transb)

004 TPSVCINFO *transb;

005 {
... other declarations ...
006 FBFR *transf; /* fielded buffer of decoded message */
007 intdotran;  /* checks whether service tpbegin/tpcommit/tpaborts */

008 /* set pointer to TPSVCINFO data buffer */

009 transf = (FBFR *)transb->data;

010 /* Test if transaction exists; initiate if no, check if yes */
011 dotran = 0;

012 if (tpgetlev() == 0) {

013 dotran =1,

014  if (tpbegin(30, 0) ==-1) {
015 Fchg(transf, STATLIN, O,

016 "Attempt to tpbegin within service routine failed\n");
017 tpreturn(TPFAIL, BEGFAIL, transb->data, 0, 0);
018

019}

BEA TUXEDO Programmer’s Guide 5-15



S Global Transactions in BEA TUXEDO System

5-16 BEA TUXEDO Programmer’s Guide



CHAPTER

6 Using the Event Broker

Introduction

The Event Broker is a BEA TUXEDO subsystem that receives event posting messages,
filters them, and distributes them to subscribers. A poster is a BEA TUXEDO system
process that detects when an event of interest has occurred and reports (posts) it to the
Event Broker. A subscriber is a BEA TUXEDO system process that requests that some
notification action be taken when a matching event is posted.

This concept of an “anonymous” broker that receives and distributes messages
provides another client-server communication paradigm to BEA TUXEDO. Instead of
a one-to-one relationship between a service requester and a service provider, an
arbitrary number of posters can post a message buffer for an arbitrary number of
subscribers. The posters simply post events, without having to know who receives the
information and what is done about it. The subscribers can get whatever information
they are interested in from the Event Broker, without having to know who posted it,
and they can be notified and take action in a variety of ways.

Typically, Event Broker applications are designed to handle exception events. The
application designer has to decide what events in the application need to be monitored.
In a banking application, for example, an event might be posted for an unusually large
withdrawal transaction; but it would not be particularly useful to post an event for
every withdrawal transaction. And not all users would need to subscribe to that event;
perhaps just the branch manager would need to be notified.

Following this introduction to the Event Broker’s features and some guidelines on its
use, this chapter explains how to post events, how to subscribe to events, and gives
some examples.

BEA TUXEDO Programmer’s Guide  6-1



6  Using the Event Broker

Notification Actions

6-2

When an event is posted, the Event Broker may be configured to invoke one or mor
of these notification actions for clients or servers who have subscribed:

4 Unsolicited notification message—Clients may receive event notification
messages in their unsolicited message handling routine, just as if they were sent

by tpnotify  (3c).

4 Service call—Servers may receive event notification messages as input to
service routines, just as if they were sentdagall  (3c).

4 Reliable queue—Event naotification messages may be stored in a BEA TUXEDO
system reliable queue, usingnqueue (3c). The event notification buffers are
stored until requested. A BEA TUXEDO system client or server process may
call tpdequeue (3c) to retrieve these notification buffers, or alternately
TMQFORWAKRS) may be configured to automatically dispatch a BEA TUXEDO
system service routine.

Further information on the use of these notification actions is given later in this
chapter.

In addition, the following notification actions may be configured by the system
administrator only, using the BEA TUXEDO system administrative API to create an
EVENT_MIE5) entry:

4 Invoke a system command.
4 Write a message to the system's log file on disk.

For information on th€VENT_MIE5), see th8EA TUXEDO Reference Manual

BEA TUXEDO Programmer’s Guide



Introduction

User-Defined and System-Defined Events

The Event Broker is used to monitor and report application-defined events such as a
large cash withdrawal as mentioned earlier for a banking application. BEA TUXEDO
itself detects and posts certain pre-defined events related to system warnings and
failures. This is done by the Event Monitor feature, which is a part of the
general-purpose Event Broker communication mechanism. For example,
system-generated events report on configuration changes, state changes, connection
failures, and machine partitioning. A list of the system-generated events detected by
the Event Monitor is given in th®VENT5) reference page in tHBEA TUXEDO
Reference Manual

Note that a leading dot (“.”) in the event name is used to distinguish system-generated
events from application-defined events.

System-generated events are defined in advance by BEA TUXEDO system code and
as such do not have to be posted. System-generated events can be subscribed to by
clients and servers just as application-defined events are. However, just as
application-defined events should be used for exceptional conditions, subscriptions to
system-generated events should be used mainly by system administrators, not by every
client in the application.

When incorporating the features offered by the Event Broker/Event Monitor into your
application, remember that it is not intended to be a mechanism for high volumes of
postings going to many subscribers. Don't try to post an event for every activity that
occurs, and don't think that everyone needs to subscribe. In an overload condition,
system performance could be affected and notifications could be dropped. To
minimize that possibility, the system administrator should ensure that the UNIX IPC
resources are carefully tuned as explained irBta&ad TUXEDO Installation Guide

BEA TUXEDO Programmer’s Guide  6-3



6  Using the Event Broker

Event Broker/Event Monitor Servers

The Event Broker server ®MUSREV(B). This is a BEA TUXEDO system-provided
server that processes event report message buffers and acts as an Event Broker to fi
and distribute them. The BEA TUXEDO system administrator must boot one or more
of these servers to activate event brokering.

TMSYSEV(H) is the BEA TUXEDO system-provided server that acts as an Event
Broker for system-generated evemtgSYSEVBNATMUSREVare similar, but separate
servers have been provided to allow the system administrator to have a different
replication strategy for processing system event notifications. This is discussed in
Administering the BEA TUXEDO System

Programming Interface

6-4

Event Broker programming interfaces are available to all BEA TUXEDO system
server and client processes, including Workstation and COBOL. Basic operations ar
as follows:

4 A client or servepostsa buffer to an application-defined event name.

4 This buffer is then transmitted to any number of processes thashbseribed
to the event.

4 Subscribers may be notified in a variety of ways, as discussed above, and event
may be filtered. Notification and filtering are configured through the
programming interface described in this chapter as well as through the BEA
TUXEDO system administrative API.

BEA TUXEDO Programmer’s Guide



Posting Events

Posting Events

To post an event, a BEA TUXEDO client or server cagitest (3c). The input is an
event name, buffer pointer, buffer length, and flags.

The syntax of theppost () function is:

tppost(char * eventname , char*  data , long len , long flags )

tppost() Arguments: eventname

Thetppost () eventname can contain up to 31 characters plus a null character. The

first character cannot be a dot (“.”), as this character is reserved as the starting character
for BEA TUXEDO system-generated events.

When choosing event names, keep in mind that subscribers can use wild card
capabilities to subscribe to multiple events with a single function call. Using the same
prefix for a category of related event names can be helpful.

tppost() Arguments: data and len

Thetppost () data argument must point to a buffer previously allocated by

tpalloc  (3c), andlen should specify the amount of data in the buffer that should be
posted with the event. Note thatiifta points to a buffer of a type that does not require
a length to be specified (for example, an FML fielded buffer), tbvenis ignored.

If data isNULL, len is ignored and the event is posted with no data.

tppost() Arguments: flags

tppost () can be used with a number of flags, for example, to determine how
transaction timeouts and blocking timeouts are to be handled. For details, see the
tppost (3c) reference page in tBEA TUXEDO Reference Manual

BEA TUXEDO Programmer’s Guide  6-5



6  Using the Event Broker

Example of Event Posting

Listing 6-1 shows an example of event posting taken from the BEA TUXEDO system
sample applicatiohankapp . This example is part of th@ITHDRAWAEervice. One of

the things that thevITHDRAWABervice does is check for withdrawals greater than
$10,000.00. In this example, an event caBatlK_TLR_WITHDRAWAS posted

whenever such a withdrawal is made.

Listing 6-1 Posting an Event with tppost()

)* Event logic related */
static float evt_thresh = 10000.00 ; /* default for event threshold */
static char emsg[200] ; /* used by event posting logic */

/* Post a BANK_TLR_WITHDRAWAL event ? */
if (amt < evt_thresh) {

/* no event to post */

tpreturn(TPSUCCESS, 0,transb->data , OL, 0);

[* prepare to post the event */

if (Fchg (transf, EVENT_NAME, 0, "BANK_TLR_WITHDRAWAL", (FLDLEN)O) == -1) ||
(Fchg (transf, EVENT_TIME, 0, gettime(), (FLDLEN)O) ==-1) ||

(Fchg (transf, AMOUNT, O, (char *)&amt, (FLDLEN)O0) == -1)) {

(void)sprintf (emsg, "Fchg failed for event fields: %s",

Fstrerror(Ferror)) ;

[* post the event */

else if (tppost ("BANK_TLR_WITHDRAWAL", /* event name */
(char *)transf, /* data */

oL, /*len*/

TPNOTRAN | TPSIGRSTRT) == -1) {

/* If event broker is not reachable, ignore the error */

if (tperrno != TPENOENT)

(void)sprintf (emsg, “tppost failed: %s", tpstrerror (tperrno));

Note that this example simply posts the event to the Event Broker: something
noteworthy has occurred in the application. Subscription to the event by interested
client(s), who can then take action as needed, is done independently.

6-6 BEA TUXEDO Programmer’s Guide



Subscribing to Events

Subscribing to Events

To subscribe to an event, a BEA TUXEDO system client or server calls

tpsubscribe  (3c). The input is an event name(s), optional filter rules, and flags to
specify the notification method. As mentioned earlier in this chapter, several
notification methods are available: unsolicited notification message, service call, and
reliable queue. (Other notification methods can be configured by the system
administrator using the BEA TUXEDO system administrative AP1.)

The syntax of thepsubscribe () function is:
tpsubscribe (char * eventexpr ,char* filter , TPEVCTL* ctl ,long flags )

Both system-generated events and application-defined events can be subscribed to
with tpsubscribe ().

For purposes of subscriptions (and ¥oB updates), service routines executing in a
BEA TUXEDO system server process are considered to be trusted code. This is a
recent enhancement to BEA TUXEDO system security; it permits some operations
that might have been prohibited in earlier versions.

tpsubscribe() Arguments: eventexpr

The event or set of events being subscribed to is namedebiexpr |, a
null-terminated string of up to 255 characters containing a regular expression. Regular
expressions are of the form specifieddoomp (3c). For example:

¢ If eventexpr is"™\..*" | the caller is subscribing to all system-generated
events.

¢ |If eventexpr is"\.SysServer.*" , the caller is subscribing to all
system-generated events related to servers.

¢ If eventexpr is"[A-Z].*" , the caller is subscribing to all user events starting
with A-Z.

¢ |If eventexpr is".*(ERR|err).*" , the caller is subscribing to all user events

containing either the substriiRRor the substringrr (for example,
account_error  andERROR_STATEvents would both qualify).

BEA TUXEDO Programmer’s Guide  6-7



6  Using the Event Broker

tpsubscribe() Arguments: filter

Thetpsubscribe () filter ~ argument, if present, is a string containing a boolean
filter rule that must be evaluated successfully before the Event Broker posts the even
Upon receiving an event to be posted, the Event Broker applies the filter rule, if one
exists, to the posted event’s data. If the data passes the filter rule, the Event Broker
invokes the notification method specified; otherwise, the Event Broker does not invoke
the notification method. The caller can subscribe to the same event multiple times witl
different filter rules.

By using the event filtering capability, subscribers can be more discriminating about
the events they are naotified of. For example, a poster can post an event for withdrawa
greater than $10,000.00, as illustrated above, but a subscriber may want to specify i
higher threshold for being notified, such as $50,000.00. Or, a subscriber may want t
be notified of large withdrawals only if made by customers with specified IDs.

Filter rules are specific to the typed buffers to which they are applied. See the
tpsubscribe  (3c) reference page in tBEA TUXEDO Reference Manual further
information on filter rules.

tpsubscribe() Arguments: ctl

Thect! argument tapsubscribe () controls how the subscriber is notified of the
event.

Notification Via Unsolicited Message

6-8

If the subscriber is a BEA TUXEDO system client processainds NULL, then the
Event Broker sends an unsolicited message to the subscriber when the event to whi
it is subscribed is posted. Basic operation is as follows. When an event name is postt
that evaluates successfully agaiegtntexpr , the Event Broker tests the posted data
against the associated filter rule. If the data passes the filter rule (or if there is no filte
rule for the event), then the subscriber receives an unsolicited notification along witt
any data posted with the event.

In order to receive unsolicited notifications, the client must register (via
tpsetunsol  (3c)) an unsolicited message handling routine.

BEA TUXEDO Programmer’s Guide



Subscribing to Events

Clients receiving event notification via unsolicited messages should remove their
subscriptions from the Event Broker’s list of active subscriptions before exiting. This
is done using thgpunsubscribe  (3c) function, as shown later in this chapter.

Notification Via Service Call or Reliable Queue

Event notification via service call gives you the ability to program responses to specific
conditions in your application and take action without human intervention. An
example is given later in this chapter. Event notification via reliable queue ensures that
event data will not get lost and also gives the subscriber the flexibility of retrieving the
event data at any time.

If the subscriber (either a client or a server process) wants event notifications to go to
service routines or to stable-storage queues, them'thgarameter opsubscribe ()

must point to a validPEVCTLstructure. This structure contains the following

elements:

long flags;
char namel[32];
char name2[32];
TPQCTL qgctl;

The following is a list of valid bits for thetl->flags element for controlling options
for event subscriptions.

TPEVSERVICE
When this flag bit is set, event notifications are sent to the BEA TUXEDO
system service routine namedcih>namel . Basic operation is as follows.
When an event name is posted that evaluates successfully against
eventexpr , the Event Broker tests the posted data against the associated
filter rule. If the data passes the filter rule (or if there is no filter rule for the
event), then a service request is sentttoname1 along with any data
posted with the event. The service nametftxnamel can be any valid
BEA TUXEDO system service name and it may or may not be active at the
time the subscription is made. Service routines invoked by the Event Broker
should return with no reply data (that is, they shouldtpadturn  (3c) with
aNULL data argument). Any data passedbteturn () will be dropped.

TPEVQUEUE
When this flag bit is set, event notifications are enqueued to the queue space
named irctl->namel and the queue nameddtt>name2 . Basic operation
is as follows. When an event name is posted that evaluates successfully
againsteventexpr , the Event Broker tests the posted data against the

BEA TUXEDO Programmer’s Guide  6-9



6  Using the Event Broker

associated filter rule. If the data passes the filter rule (or if there is no filter
rule for the event), then the Event Broker enqueues a message to the specifie
gqueue space/queue name along with any data posted with the event. The
gueue space and queue name can be any valid BEA TUXEDO system queu
space and queue name, either of which may or may not exist at the time the
subscription is made. In the TPEVCTL structuné>qct/ can contain
options further directing the Event Broker’s enqueuing of the posted event.
These are the same options that are used for control gfetiyeue (3c)
function. For example, thHePQTOPoption can be used to place a message at
the top of the queue. For further information on these options, see the
tpenqueue (3c) reference page in tiBEA TUXEDO Reference Manual

TPEVSERVICEandTPEVQUEURre mutually exclusive flags. For information on other
flag bits that can be used with eith&®EVSERVICEor TPEVQUEUEsee the
tpsubscribe  (3c) reference page in tlBEA TUXEDO Reference Manual

tpsubscribe() Arguments: flags

tpsubscribe () can be used with a number of flags, for example, to determine how
transaction timeouts and blocking timeouts are to be handled. For details, see the
tpsubscribe  (3c) reference page in tlBEA TUXEDO Reference Manual

Example of Event Subscription

Listing 6-2 shows part of bankapp application server that subscribes to
BANK_TLR_.* events, which would include tlBANK_TLR_WITHDRAWAvent from
the previous example as well as any other event names beginningANKhTLR .
When a matching event is posted, the subscriber is notified via a service call to a
service namewWATCHDOG

6-10 BEA TUXEDO Programmer’s Guide



Subscribing to Events

Listing 6-2 Subscribing to an Event with tpsubscribe()

[* Event Subscription handles */
static long sub_ev_largeamt = OL ;

/* Preset default for option 'w' - watchdog threshold */
(void)strcpy (amt_expr, "AMOUNT > 10000.00") ;

/*

* Subscribe to the events generated

* when a "large" amount is transacted.

*/

evctl.flags = TPEVSERVICE ;

(void)strcpy (evctl.namel, "WATCHDOG") ;

[* Subscribe */

sub_ev_largeamt = tpsubscribe ("BANK_TLR_.*",amt_expr,&evctl, TPSIGRSTRT) ;
if (sub_ev_largeamt == -1L) {

(void)userlog ("ERROR: tpsubscribe for event BANK_TLR_.* failed: %s",
tpstrerror(tperrno)) ;

return -1 ;

}

/* Unsubscribe to the subscribed events */

if (tpunsubscribe (sub_ev_largeamt, TPSIGRSTRT) ==-1)
(void)userlog ("ERROR: tpunsubscribe to event BANK_TLR_.* failed: %s",
tpstrerror(tperrno)) ;

return ;

}

/*

* Service called when a BANK_TLR_.* event is posted.

*/

void

#if defined(__STDC_ ) || defined(__cplusplus)
WATCHDOG(TPSVCINFO *transb)

#else

WATCHDOG(transb)

TPSVCINFO *transb;

#endif

BEA TUXEDO Programmer’s Guide 6-11



6  Using the Event Broker

FBFR *transf; /* fielded buffer of decoded message */

[* Set pointr to TPSVCINFO data buffer */

transf = (FBFR *)transb->data;

/* Print the log entry to stdout */

(void)fprintf (stdout, "%20s|%28s|%8Id|%10.2f\n",

Fvals (transf, EVENT_NAME, 0),

Fvals (transf, EVENT_TIME, 0),

Fvall (transf, ACCOUNT_ID, 0),

*( (float *)CFfind (transf, AMOUNT, O, NULL, FLD_FLOAT)) );
/* No data should be returned by the event subscriber's svc routine */
tpreturn(TPSUCCESS, 0,NULL, OL, 0);

In the above example, note the usepafisubscribe() before leaving the

application. This removes the event subscription from the Event Broker’s list of active
subscriptions. For information on the options available for this function, see the
tpunsubscribe  (3c) reference page in tlBEA TUXEDO Reference Manual

6-12 BEA TUXEDO Programmer’s Guide



CHAPTER

{ Error Management

Introduction

The purpose of this chapter is to review the transaction and communication concepts
discussed in the preceding chapters with the focus on how to manage and interpret
error conditions correctly.

What are the means used by the BEA TUXEDO system to communicate to the
application that a function call has failed, allowing the programmer to implement the
appropriate logic? What are the various scenarios for determining whether to commit
or abort a transaction? What errors are fatal to transactions? How does transaction
mode affect the concept of time-out and what are the implications? How does
transaction mode affect the roles of the function primitives and how they may be used?
What operations are part of one transaction and what are the determining factors? Does
the fate of one transaction ever determine the fate of another? What communication
rules must be followed between processes within and not within the same transaction?
How do global transaction primitives affect the use of local transaction-defining
functions (that is, functions used to explicitly mark the beginning and end of a local
transaction) that may be part of the Data Manipulation Language (DML) that is native
to the resource manager?

Many of these subjects have been touched upon already in earlier chapters. Now let’s
attempt to bring them together to explain the functionality of the ATMI, showing how
the various pieces fit together following consistent rules that create an environment
that combines message communication with transaction integrity.

BEA TUXEDO Programmer’s Guide  7-1



7

Error Management

Communicating Errors

The following discussion concerns how the BEA TUXEDO system communicates
errors to the application developer. It is couched in terms of categories of errors and
whether they are application or system-based. Hopefully, this discussion will give you
more insight as to what errors to expect, what effect they have on transactions, and
what kind of control you as a programmer have over them.

Throughout the guide, there has been a continual reference to the global variable
tperrno . In an environment of concurrent processes, this is a key way to inform
processes if their function calls have succeeded or not. All the ATMI functions that
normally return an integer or pointer, retutnor NULLonN error and seperrno  to a
value that reveals the nature of the error. In cases where the function does not return
its caller, as in the case pfeturn() or tpforward() since they are called to
terminate a service routine, the only way to communicate success or failure is throug
the global variablepurcode , in the requester.

The global variablepurcode can also be used to communicate user-defined
conditions. The value itpurcode is set from the value placed in thede argument
of tpreturn() . This code is sent regardless of the value ofwhle argument of
tpreturn() unless an error is encounteredttrgturn() or a transaction time-out
occurs.

Values of tperrno

7-2

The codes returned tperrno  represent categories of errors. All the ATMI functions
whose failure is reported by the value returneghénno have the four basic
categories of

4 protocol errorsTPEPROTD

4 BEA TUXEDO system errorsTPESYSTEW
4 operating system errors¥EOSY
¢

errors from invalid argument3®EINVAL)

BEA TUXEDO Programmer’s Guide



Communicating Errors

Protocol Errors

Protocol errors occur because an ATMI function was called in an incorrect context.
Refer to thentro  (3c) reference page. This type of error usually happens for one of
two reasons. Either the ATMI call is being made

4 in the wrong order
4 or by the wrong process.

For example, a client attempting to begin communication before joining the
application illustrates an error in protocol because these operations are being attempted
in the wrong order.

A transaction participant rather than the initiator caltgegmmit()  is another
protocol error because the participant is the wrong process to be gadtingnit()

A protocol error is one that is totally correctable at the application level by enforcing
the rules of order and propriety associated with the ATMI calls (that is, by making calls
in the correct order by the appropriate processes).

Since each ATMI call can return a protocol error, attempt to discover the exact error
in the context of the semantics of the specific call and ask the two questions:

4 s this call being made in the correct order?

4 s this call being made by the correct process?

BEA TUXEDO System Errors

When BEA TUXEDO system errors occur, messages explaining their exact nature are
written to the central event log. The section entitled “The Central Event Log” later in
this chapter explains this log in detail. Since these are system errors rather than
application errors, the system administrator may be needed to help correct them.

Operating System Errors

Operating system errors indicate that a system call has failed. A numeric value
identifying the failed system call is returned in the global variahleixerr

Operating system errors are seldom application errors; systems administrators may
need to be called on to correct them.

BEA TUXEDO Programmer’s Guide  7-3



[ Error Management

Errors from Invalid Arguments

All of the ATMI functions that take arguments can fall if invalid arguments are passed
to them. In the case where the function returns to the caller, the function fails and
causesperrno  to be set tdPEINVAL. In the case apreturn() ortpforward()

if this type of error is discovered while processing the argumgetsmo is set to
TPESVCERRHOor the function waiting on the call; that is, eithgrall() or

tpgetrply() . This is an application error and is correctable by the programmer.

Other Possible Error Categories

In addition to the four basic categories just discussed, others include

4 errors from lack of entries in system tables or the data structure used to identify
buffer types TPENOENY

errors from lack of permission to enter the applicatitPEPERIY!
resource manager errolPERMERR
transaction related errorsSHETRAN

errors from mismatching of typed buffemPEITYPE andTPEOTYPE

* & & o o

errors that apply only to asynchronous communication calls or conversational
calls because they involve call descripta8ELIMIT andTPEBADDESE

4 errors that can occur as a result of the communication calls in general
(TPESVCFAIL, TPESVCERRTPEBLOCK andTPGOTSIQ

4 transaction and blocking time-out erroT®ETIME)

4 errors from callingpcommit()  when the transaction should have been
explicitly aborted {PEABORY

4 errors that signal that a heuristic decision was (or may have been) taken
(TPEHAZARDTPEHEURISTIC)

7-4 BEA TUXEDO Programmer’s Guide



Communicating Errors

No Entry Errors

The no entry type erroTPENOENThas more than one meaning and depends on which
function call is returning it. The following table lists the functions and specifies the
reason for the failure in each case.

Function Explanation of TPNOENT Error

tpalloc() The type of buffer asked for is not known to the system. For a buffer type and/or subtype
to be known, there must be an entry for it in a type switch data structure that is defined
in the BEA TUXEDO system libraries. Refer to tugtypes (5) andtypesw (5)
reference pages. On an application level, make sure you have referenced a known type
correctly, otherwise see your system administrator.

tpinit() The calling process cannot join the application because there is no space left in the
bulletin board to make an entry for it. See your system administrator.

tpcall() The calling process is referencing a service that is not known to the system since there

tpacall() is no entry for it in the bulletin board. On an application level, make sure you have
referenced the service correctly, otherwise see your system administrator.

tpconnect() Cannot connect tbamebecause it does not exist or is not a conversational service

tpgprio() The calling process is asking for a request priority when no request has been made. The
system has no current entry for a request. This is an application error.

tpunadvertise() Cannot unadvertise the service name because it is not currently advertised by the calling
process

tpenqueue() Cannot access thyspacebecause it is not available (the associatd@UEUE) server

tpdequeue() is not available)

tppost() Cannot access the BEA TUXEDO system event broker

tpsubscribe()

tpunsubscribe()

Permission Errors

The only ATMI function that returns this type of errotgit() . If the calling

process does not have the correct permissions to enter the application, this call fails
returningTPEPERMPermissions are set in the configuration file and as such the
correction of this error is outside of your application. See the BEA TUXEDO system
administrator if you encounter this error.

BEA TUXEDO Programmer’s Guide  7-5



7

Error Management

Resource Manager Errors

These errors can occur with callsyfopen() andtpclose() , and they return the

value ofTPERMERR tperrno . The meaning of the BEA TUXEDO system error code

is intentionally vague in this case so as not to hinder portability. The exact nature of
the error must be determined by interrogating the resource manager in its own specif
manner. Obviously when this error code is returnetptpen() , itindicates that the
problem has to do with a failure on the part of the resource manager to open correct
and fortpclose() , to close correctly.

Transaction-Related Errors

7-6

When this type of error occursPETRANIS returned inpermo . tpbegin()

tpcancel() ,tpresume() ,tpconnect() ,tppost() ,andtheapcall) /tpacall()

functions can return this error code. Favegin() , it usually means some transient
system error occurred when attempting to start the transaction that may clear up wit
a repeated call.

tpcancel()  returns this error code when called for a transaction reply (the request
was done without thePNOTRANIag).

Fortpresume() , it means that the BEA TUXEDO system is unable to resume the
global transaction because the caller is currently participating in work outside any
global transaction with one or more resource managers. All such work must be
completed before a global transaction can be resumed. The caller’s state with respe
to the local transaction is unchanged.

For the other functions, it means a call was made in transaction mode to a service th
does not support transactions. What does this mean? Some services belong to serv
groups that access a DBMS that can support transactions, whereas other services n
be responsible for printing out a form and accessing a printer that knows nothing abol
transactions. The configuration of services into servers and server groups is an
administrative task. In order to determine which services support transactions, ask
your system administrator. This is an application error. For the communication call to
such a service to succeed, tIRNOTRANIag must be set. In other words, you may not
ask a service that does not support transactions to be a participant in the transaction.
you desire the service, it can be asked for only iffiPeOTRANIag is explicitly set or

if you access the service outside of your transaction.

BEA TUXEDO Programmer’s Guide



Communicating Errors

Typed Buffer Errors

Typed buffer errors are returned as a result of sending requests or replies to processes
in typed buffers that are unfamiliar to themPEITYPE is returned bypcall()

tpacall) , andtpconnect()  when the request data buffer is sent to a service that
does not know about this type. What does this mean? The buffer types that processes
know about are determined both by the configuration file and by the BEA TUXEDO
system libraries that have been linked into the process. These libraries define and
initialize a data structure that identifies the typed buffers that the process is to know
about. The library can be tailored to each process. Also, an application can supply its
own copy of a file that defines buffer types. An application can set up the buffer type
data structure (referred to as a buffer type switch) on a per process basis. Refer to the
tuxtypes (5) andtypesw (5) reference pages. This is an administrative decision and is
mentioned here to clarify what is meant by a process knowing about a typed buffer.
The rule for sending requests is that you must always send a request in a typed buffer
that a service knows about; this information can be obtained from your system
administrator.

TPEOTYPHS returned bypcall() , tpgetrply() , tpdequeue() , andtprecv()

when the reply message is sent in a buffer that is not known or not allowed by the
caller. What does this mean? Not known has the same semantics as previously
explained for the request buffer. Not allowed means that although the process knows
of the existence of this buffer type, the type returned to it does not match the type of
the buffer it allocated to receive the reply and the caller is not allowing for a change in
buffer type. The caller indicates this preference by seftaiggto TPNOCHANGEN this

case, strong type checking is enforced, returmeOTYPBEvhen violated. The default

is to have weak type checking, allowing a different buffer type to be returned as long
as it is known to the caller. Again, the rule for sending replies is that the reply buffer
must be known to the caller and you must observe strong type checking if it has been
indicated.

Call Descriptor Errors

The errors discussed in this section can occur only when making asynchronous calls or
conversational calls because they involve the misuse of call descriptors. Asynchronous
calls depend on call descriptors to identify replies with their corresponding requests.
Conversational sends and receives depend on call descriptors to identify the

BEA TUXEDO Programmer’s Guide  7-7



7

Error Management

7-8

connection; the call that initiates the connection depends on the availability of a call
descriptor. There are two things that the BEA TUXEDO system doesn't like you to do
with call descriptors:

4 exceed your limitPELIMIT )
4+ reference one that has become invalielHBADDESE

The limit for outstanding call descriptors (replies) has been defined for the system a
fifty and is a non-tunable parameter. The only way to change it is to recompile the
system. The maximum number of descriptors allowed should be ample for your
application, but this limit is system-defined and cannot be redefined by your
application.

The limit for call descriptors for simultaneous conversational connections is defined in
the configuration file and is more flexible than the limit for replies. MAXCONV
parameter in thRESOURCESection of the configuration file can be changed when the
application is not running; it can be dynamically changed im@HINESsection

when the application is running. (Seeonfig (1).)

There are two general ways that a call descriptor can become invalid. If a call
descriptor has been used to retrieve a message (including a failed message) and ar
attempt is made to reuse it, the system complains that you cannot reuse the descrip
and returnPEBADDES(nN tperrno

Sometimes a condition occurs where you can no longer reference a call descriptor
although it has never been used to retrieve a message. In this case we refer to the
descriptor as having become stale and any attempt to reference it TREBRODESC

to be returned. One of the conditions that causes this to happen is pabioy)
ortpcommit()  when there are still transaction replies (replies for requests sent
without theTPNOTRANIag) to be retrieved. The outstanding descriptors for these
transaction replies are considered stale. Another condition that causes this to happer
transaction time-out. When it is reported on the calpdetrply() , N0 message is
retrieved with that descriptor, and any further reference to it is invalid because it is
considered stale. This error can be corrected at the application level.

BEA TUXEDO Programmer’s Guide



Communicating Errors

General Communication Call Errors

These errors can occur when making communication calls but have nothing to do with
the nature of the call being synchronous or asynchronous.

The communication errorSPESVCERRNATPESVCFAIL, are the result of the reply
part of communication. They can be returned as a result of a gadhti¢) or
tpgetrply() and they are determined by the arguments passed to and the processing
done bytpreturn() . If tpreturn() encounters an error in processing or handling
arguments, it will causefailed message to be sent to the caller. Tilsd

message is detected by the receiver withno being set tdPESVCERRThe caller’s
data is not sent, and if the failure wastpgetrply() , the call descriptor becomes
invalid. If an error of this nature is not encountereddogturn()  , then the value
placed inrval determines the success or failure of the call. If the application logic
placed the valugPFAIL in this parameteMPESVCFAIL is returned inperrno  and
the data message is sent to the caller.

The error codeSPEBLOCKandTPGOTSIGcan happen on the request or the reply end
of message communication. As a result, it can be returned for all three of the
request/response communication catBEBLOCKS returned when a blocking

condition exists and the process sending a request either synchronously or
asynchronously has indicated that it does not want to wait on a blocking condition by
setting itflagsparameter tsPNOBLOCKA blocking condition can exist when sending
arequest if, for example, all the queues of the desired service are full tjyign

indicates a no blocking condition, it affects only the sending part of the
communication. If the call successfully sends the requiegsBLOCKwill not be

returned regardless of any blocking situation that may exist while the call waits for the
reply. TPEBLOCKs returned forpgetrply() when the call is made wiffagsset to
TPNOBLOCHKNd a blocking condition is encountered while awaiting the reply; for
example, if a message is not currently available.

TPGOTSIGreally does not flag an error condition but indicates when a signal interrupts
a BEA TUXEDO system call. If the communication functions set thagjsparameter
to TPSIGRSTRT, the calls will not fail and this code will not be returnedpirno

Conversational Errors

Once a conversational connection has been establiphedj() andtprecv() can
fail with aTPEEVENTerror. An event has occurred. No data is sempdgnd(). The
event type is returned in theventmember offPSVCINFQ A course of action is
dictated by the particular event.

In conversational servicegsend() ,tprecv() , andtpdiscon()  return
TPEBADDES@®vhen an unknown descriptor is specified.

BEA TUXEDO Programmer’s Guide  7-9



7

Error Management

Time-Out Errors

Time-out errors can occur for one of two reasons:

4 the maximum length of time a blocking call may remain blocked until the caller
regains control has exceeded the amount of time it was allotted, that is, a
blocking time-out occurred

¢ the duration of a transaction from start to finish has exceeded the amount of time
it was allotted, that is, a transaction time-out occurred

As a result, this error can be returned on communication calls for either blocking or
transaction time-out and apcommit()  for transaction time-out only. In every case,

if a process is in transaction mode am&ETIME is returned on a failed call, it means a
transaction time-out has occurred.

TPETIME indicates a blocking time-out on a communication call if
4 the call was not made in transaction mode and
4 the call was not made wiftagsset toTPNOBLOCK

You may recall that if this flag is set, a blocking time-out cannot occur because the cal
returns immediately if a blocking condition exists.

Blocking time-out is a value set by the administrator of the system and is defined in th
configuration file. Transaction time-out is defined by the application by the first
argument passed tpbegin()

Further implications concerning the concept of time-out will be discussed in the
section “Time-Out” later in this chapter.

Errors Leading to Abort

7-10

Errors by a participant in a transaction can cgusenmit()  to fail returning the error
code ofTPEABORTIN tpermo . The transaction is implicitly aborted because of the
failure and should be explicitly aborted. There are two ways that this error code can b
returned:

4 if a transaction has been marked abort-only by the initiator or one of the
participants, or

4 the transaction timed out and its status is known to be aborted

BEA TUXEDO Programmer’s Guide



How to Deal with Errors

Errors Signaling Heuristic Decisions

Based on howP_COMMIT_CONTRQASE settpcommit)  may returnTfPEHAZARDDr
TPEHEURISTIC. If TP_COMMIT_CONTRGOE set torP_CMT_LOGGEDthe application

gets control before the second phase of the two-phase commit is done, so it may not
hear about a heuristic that occurs during the second phase. (NOtEERAZARDDY
TPEHEURISTIC can be returned if only a single resource manager is involved in the
transaction and it returns a heuristic decision or a hazard indication during a one-phase
commit.) If TP_COMMIT_CONTRGs set toTP_CMT_COMPLETEthenTPEHEURISTIC

is returned if any of the resource managers reports a heuristic decisioREa#AZARD

is returned if any of the involved resource managers reports a haezarhzARD

simply means that a participant failed during the second phase of commit (or during a
one-phase commit) and we can’t know if it completed the transaction successfully or
unsuccessfully.

Application-Specific Errors

The previous sections dealt with the various categories into which system errors may
fall. Your application can set up a method whereby you can pass information about
user-defined errors to calling programs.

The mechanism involves use of fhede argument ofpreturn  (3) and the global
variabletpurcode (5).

How to Deal with Errors

Your application logic should test for error conditions after the calls that have return
values, and take suitable steps in the face of them. You may want totest NULL
(depending on which the call returns) has been returned after a function call. In the
event that it has been, you may invoke a function that contaisisca  statement to

test for specific values aferrno  and perform the appropriate application logic in
each case.

BEA TUXEDO Programmer’s Guide 7-11



7

Error Management

#include <stdio.h>
#include "atmi.h"

extern int tperrno;

Two routinesgpstrerror  (3c) andrstrerror  (3fml), are provided to retrieve the

text of an error message from the message catalogs for the BEA TUXEDO system ar
FML, respectively. The routines return a pointer to the error message. Your progran
can use the pointer to direct the texti¢erlog (3c) or to another destination. An
example is shown in Listing 7-1.

Listing 7-1 illustrates a general way of dealing with errors. The temizall () is
used in this example generically to represent an ATMI function call.

The code following thewitch  statement in Listing 7-1 illustrates hopurcode can
be used to disclose an application-defined code.

Listing 7-1 How to Deal with Errors

extern int tpurcode;

main

0

int rtnval,

if (tpinit((TPINIT *) NULL) == -1)
error message, exit program;
if (tpbegin(30, 0) == -1)
error message, tpterm, exit program;

allocate any buffers,
make atmi calls

check return value

rtnval

if (rtn

switch(tperrno) {

val ==

atmicall();

-1){

case TPEINVAL:
fprintf(stderr, "Invalid arguments were given to atmicall  \n");
fprintf(stderr, "e.g., service name was null or flags wrong\n");

break;

case ....
fprintf(stderr, ". . .");

7-12

break;

BEA TUXEDO Programmer’s Guide



How to Deal with Errors

Include all error cases described in the atmicall(3) reference page.
Other return codes are not possible, so there should be no default within
the switch statement.

if (tpabort(0) == -1) {
char *p;
fprintf(stderr, "abort was attempted but failed\n");
p = tpstrerror(tperrno);
userlog("%s", p);
}
}

else
if (tpcommit(0) == -1)
fprintf(stderr, "REPORT program failed at commit time\n");

The following code fragment shows how an application-specific
return code can be examined.

ret = tpcall(“servicename”, (char*)sendbuf, 0, (char **)&rcvbuf, &rcvlen, \
(long)0);

.(void) fprintf(stdout, “Returned tpurcode is: %d\n”, tpurcode);

free all buffers
tpterm();
exit(0);

The specific values aperrno  give you more insight into the nature of the problem

and on what level it can be corrected.

If your application has defined a list of error conditions specific to your processing, the

same can be said fguurcode

BEA TUXEDO Programmer’s Guide 7-13



7

Error Management

Fatal Transaction Errors

7-14

In managing transactions, it is important to understand which errors prove fatal to
transactions. When these errors are encountered, transactions should be explicitly
aborted on the application level by having the initiator of the transaction call

tpabort() . Basically, there are three conditions that cause a transaction to fail. They
are:

4 the initiator or a participant of the transaction caused it to be marked abort-only
for one of the following reasons:

4 tpreturn() encountered an error while processing its arguments
(TPESVCERR

therval argument ofpreturn() was set taPFAIL (TPESVCFAIL)

the type or subtype of the reply buffer is not known or allowed by the caller and,
as a result, success or failure cannot be determimeD{ Y P

the transaction timed oUtRETIME)

tpcommit()  was called by a participant rather than by the originator of a
transaction TPEPROT)

If TPESVCERRTPESVCFAIL, TPEOTYPEOr TPETIME is returned for any of the
communication calls, the transaction should be explicitly aborted with a call to
tpabort() . If there are still outstanding descriptors, there is no need to wait for them
before explicitly aborting the transaction. However, any attempt to access these
descriptors after the transaction has been terminated will reRBBADDESGInce

they are considered stale after the call.

Note that in the case 3PESVCERRTPESVCFAIL, andTPEOTYPE communication

calls are still allowed as long as the transaction has not timed out. With the return of
these errors, the transaction has been marked abort-only. In order for any further wol
to have any lasting effect, the communication calls should be made withghe
parameter set ttPNOTRANIN this way, the work performed for the transaction that
has been marked abort-only will not be rolled back when the transaction is aborted.

When a transaction time-out occurs, communication can continue, but it must be
conducted with the following conditions enforced. The communication requests

4 cannot require replies
4 cannot block

4 and cannot be performed on behalf of the caller’s transaction

BEA TUXEDO Programmer’s Guide



Time-Out

This means asynchronous calls can be made witfigdhggparameter set to
TPNOREPLY|TPNOBLOCK|TPNOTRAN

Callingtpcommit()  from the wrong participant in a transaction represents the only
protocol error that is fatal to transactions. This error can be corrected on the application
level during the development phase.

Callingtpcommit()  when there is initiator/participant failure or transaction time-out
represents the implicit abort error discussed earlier in the section “Errors Leading to
Abort.” Because the commit failed, the transaction should be aborted.

Time-Out

As already indicated, there are two possible types of time-out that can occur in the
BEA TUXEDO system. The effect of time-out on communication calls is different
depending on the type that occurred. Also, the following issues are addressed in the
following sections.

4 What happens if a transaction times out while committing?

4 Do calls to services that are not part of your transaction use time on your
transaction clock?

Blocking vs. Transaction Time-Out

We have defined blocking time-out as exceeding the amount of time a call can wait for
a blocking condition to clear up. Transaction time-out occurs when a transaction takes
longer than the amount of time defined for it in tieeoutargument tapbegin()

By default, if a process is not in transaction mode, blocking time-outs are performed.
When theflags parameter of a communication call is seTRNOTIME it applies to

blocking time-outs only. If a process is in transaction mode, blocking time-out and the
TPNOTIMEflag are not relevant. The process is sensitive to transaction time-out only
as it has been defined for it when the transaction was started. What are the implications
of the two different types of time-out with concern to communication calls?

BEA TUXEDO Programmer’s Guide 7-15



7

Error Management

If a process is not in transaction mode and a blocking time-out occurs on an
asynchronous call, the communication call that blocked will fail, but the call descriptor
is still valid and may be used on a re-issued call. Further communication in general i
unaffected.

In the case of transaction time-out, the call descriptor to an asynchronous transactic
reply (done without thePNOTRANIag) becomes stale and may no longer be
referenced. The only further communication allowed is the one case described earli¢
of no reply, no blocking, and no transaction.

Effect on tpcommit()

What is the state of a transaction if time-out occurs after the eptidbamit() ? It is
unknown; the transaction can have either succeeded or failed. If the transaction time
out and the system knows that it was aborted, this is communicated to you by the errc
codeTPEABORTeturned inperrno . If the status of the transaction is unknown,
TPETIMEIs the error code. When the state of the transaction is in doubt, you must quer
the resource to see if any of the changes that were part of that transaction have bee
applied to it in order to discover whether the transaction committed or aborted.

Effect of the TPNOTRAN Flag

7-16

When a process is in transaction mode and makes a communication clfiggatet

to TPNOTRANIt prohibits the called service from becoming a participant of that
transaction and as such the service’s success or failure cannot influence the outcon
of that transaction. This will be discussed in greater detail in the next section, “Roles
of tpreturn() and tpforward().” However, if the caller is expecting a reply, its
transaction clock is still ticking away while the services that generate the reply are
being performed. As a result, the transaction can time out while waiting for a reply tha
is due from a service that is not part of that transaction.

BEA TUXEDO Programmer’s Guide



Roles of tpreturn() and tpforward()

Roles of tpreturn() and tpforwardy)

If a process is called in transaction mogesturn() andtpforward() place the
service’s portion of the transaction in a state where it can be either committed or
aborted when the transaction is completed by its initiator. A service may be called
several times on behalf of the same transaction. It is not fully committed or aborted
until the initiator of the transaction catfgommit()  ortpabort()

Neithertpreturn() nor tpforward() should be called until all outstanding
descriptors for the communication calls made within the service have been retrieved.
If tpreturn() is called with outstanding descriptors withal set toTPSUCCESSthis
constitutes a protocol error and is returnedRBSVCERRO the process waiting on
tpgetrply() . If the process is in transaction mode, it will cause the caller’s current
transaction to be marked internally as abort-only. Even if the initiator of the transaction
should caltpcommit() , the transaction is aborted implicitly tpfeturn() is called

with outstanding descriptors witlhral set toTPFAIL, TPESVCFAIL is returned to the
process waiting otpgetrply() . The effect on the transaction is the same.

It is always the case that whepneturn() is called in transaction mode, it can
determine the fate of that transaction either from the processing errors it encounters or
from the value the application placesval. Callingtpforward()  can be used to

indicate success up to that point in processing the request. If no application errors have
been detectedpforward() is invoked, otherwisgreturn() with TPFAIL . If

tpforward() is called improperly, it is considered a processing error daitbé

message is returned to the requester.

Many of the ideas presented here have already been discussed in earlier sections, but
they bear repeating. The following sections highlight various possible scenarios
involving the transaction role @freturn() as well as the communication rules.

BEA TUXEDO Programmer’s Guide 7-17



7

Error Management

Service in Same Transaction as Caller

This is the straightforward case of the caller in transaction mode that calls another
service to participate in the current transaction. What are the implications?

L4

tpreturn() andtpforward()  , when called by the participating service, place
that service’s portion of the transaction in a state where it can be either aborted
or committed by the initiator.

The success or failure of the called process affects the current transaction. If any
of the errors that prove fatal to transactions are encountered by the participant,
the current transaction is marked abort-only.

The lasting effect of the work done by a successful participant is dependent on
the fate of the transaction; that is, if the transaction is aborted, the work of all
participants is undone.

The TPNOREPLY¥lag cannot be used when calling another service to participate
in the current transaction.

Service in Different Transaction with AUTOTRAN Set

7-18

If a communication call is made with tieNOTRANIag set and the called service is
configured so that a transaction will automatically get started when it is called, these
processes will both be in transaction mode but they will be in different transactions.
What are the implications?

L4

tpreturn() plays the initiator’s transaction role to terminate the transaction in
the service where the transaction was automatically started. Alternatively, if the
transaction is automatically started in a service that terminates with

tpforward()  , thetpreturn() in the last service in the forward chain plays the
initiator’s transaction role to terminate the transaction. Refer to Figure 7-1.

Because it is in transaction mod&eturn() is also vulnerable to failure and
is subject to the failure of any participant in the transaction as well as transaction
time-out and as a result is more likely to seridil@d message to the caller.

Any failed messages or application failures returned to the caller do not affect
the state of the caller’s transaction.

BEA TUXEDO Programmer’s Guide



Roles of tpreturn() and tpforward()

4 The caller is vulnerable to its own transaction timing out as it waits for its reply.

4+ If noreply is expected, the caller’s transaction cannot be affected in any way by
the communication call.

Figure 7-1 Transaction Roles of tpforward() and tpreturn() with AUTOTRAN

I'rareschen A I'ramgmcman B

AUTOTRAH
Eseging E

Tdf | - — -
TE=TAETA | { VO

Termanales Bl

Service Starts New Explicit Transaction

If a communication call is made wittPNOTRANand the called service is not
automatically placed in transaction mode by a configuration option, the service can
define as many transactions as it wants with explicit calbtgin() , tpcommit()
andtpabort() . As a result, the transaction is already completed before the call to
tpreturn() . What are the implications?

4 tpreturn() plays no transaction role; that is, the rolepodturn() would be
exactly the same whether transactions were explicitly defined within the service
routine or not.

4 tpreturn() can send any value backrival regardless of the outcome of the
transaction.

4+ Typically, the errors returned will be processing errors, buffer type errors, or
application failure, and the normal rules fGrESVCFAIL, TPEITYPE/TPEOTYPE
andTPESVCERRre followed.

4 Anyfailed messages or application failures returned to the caller do not affect
the state of the caller’s transaction.

The caller is vulnerable to its own transaction timing out as it waits for its reply.
If no reply is expected, the caller’s transaction cannot be affected in any way by
the communication call.

BEA TUXEDO Programmer’s Guide 7-19



7

Error Management

Transaction Rules

Certain rules are in effect when processes perform in transaction mode. Many of thel
have been touched upon already; but now, by way of summary, let's bring them
together and discuss them in one place.

Communication Etiquette

7-20

The basic communication etiquette that must be observed while in transaction mode
as follows:

L4

Processes that are participants in the same transaction must require replies for
their requests.

Requests requiring no reply can be made only ifldgs parameter ofpacall
is set toTPNOTRAN|TPNOREPLY

A service must retrieve all asynchronous transaction replies before calling
tpreturn() ortpforward  (this applies regardless of transaction mode).

The initiator must retrieve all asynchronous transaction replies (made without
the TPNOTRANIag) before callingpcommit()

The asynchronous replies that must be retrieved include those that are expected
from non-participants of the transaction, that is, replies expected for requests
made withtpacall ~ suppressing the transaction but not the reply.

If a transaction has not timed out but is marked abort-only, further
communication should be performed with TRNOTRANIag set so that the work
done as a result of the communication has lasting effect after the transaction is
rolled back.

If a transaction has timed out,

4 the descriptor for the timed out call becomes stale and any further reference
to it will return TPEBADDESC

4 further calls tapgetrply() ortprecv()  for any outstanding descriptors

will return the global state of transaction time-out by setjiegno  to
TPETIME

4 asynchronous calls can be made withftags parameter ofpacall() set
to TPNOREPLY|TPNOBLOCK|TPNOTRAN

BEA TUXEDO Programmer’s Guide



Transaction Rules

4 Once a transaction has been marked abort-only for reasons other than time-out, a
call totpgetrply() will return whatever represents the local state of the call,
that is, it can either return success or an error code that represents the local
condition.

4 Once a descriptor is used witiyetrply() to retrieve a reply or with
tpsend() ortprecv()  to report an error condition, it becomes invalid and any
further reference to it will returmPEBADDESCthis applies regardless of
transaction mode).

4 Once a transaction is aborted, all outstanding transaction call descriptors (made
without the TPNOTRAN flag) become stale, and any further reference to them
will return TPEBADDESC

BEA TUXEDO System-Supplied Subroutines

tpsvrinit()

tpsvrdone()

In both the standard subroutines, namgdyrinit() andtpsvrdone()
transactions may be defined and communication may be performed. What rules must
they follow?

The BEA TUXEDO system server abstraction caitsrinit() during

initialization. This routine is called after the process has become a server but before it
handles service requeststdévrinit() performs any asynchronous

communication, all replies must be retrieved before returning, or BEA TUXEDO will
ignore all pending replies and the server exitgpdfrinit() defines any

transactions, they must be completed with all asynchronous replies retrieved before
returning, or BEA TUXEDO will abort the transaction and ignore the outstanding
replies. The server exits gracefully.

The BEA TUXEDO system server abstraction cgitsrdone()  after it has finished
processing service requests but before it exits. Its services are no longer advertised, but
it has not yet left the application.tfsvrdone()  initiates communication, it must

retrieve all outstanding replies before it returns, or the pending replies will be ignored

BEA TUXEDO Programmer’s Guide 7-21



7

Error Management

by the BEA TUXEDO system and the server exits. If a transaction has been started
within this subroutine, it must be completed with all replies retrieved, or BEA
TUXEDO will abort the transaction and ignore the replies. The server exits.

Leaving the Application

tpterm()  is used to remove a client from an application. What transaction rules must
it obey? If the client is in transaction mode, the call fails WitAPROT@eturned in
tperro , and the client is still part of the application and in transaction mode. When
the call is successful, no further communication or participation in transactions is
allowed because the process is no longer part of the application.

Global Transactions and Resource Managers

7-22

An interesting point arises when using the ATMI transaction primitives to define
transactions. BEA TUXEDO makes an internal call to pass the global transaction
information to each resource manager participating in the transaction. When
tpcommit()  ortpabort()  is called, BEA TUXEDO makes internal calls to direct
each resource manager to commit or abort the work they did on behalf of the caller’:
global transaction. When you write service routines in a DTP environment, you neeg
not and should not make resource manager-specific calls to start, commit, or abort
transactions. When a global transaction has been initiated either explicitly or
implicitly, you should not make explicit calls to the resource manager’s transaction
primitives in your application code. Failure to follow this transaction rule will give
indeterminate results.

This represents a good occasion to use the transaction prinytegv() , to
determine if a process is already in a global transaction before calling the resource
manager’s transaction primitive.

Some resource managers offer specific options in their interface. (For example, a
resource manager might offer various transaction consistency levels or flags.) Some
resource manager providers offer programmers of distributed applications the
opportunity to negotiate these options using resource manager-specific calls; in othe
resource managers these options are hard-coded in the version of the transaction
interface supplied by the resource manager provider. Documentation for the resourc
managers you are using should be consulted for further information on this subject.

BEA TUXEDO Programmer’s Guide



Comprehensive Example

In the BEA TUXEDO system SQL resource manager sth@ansaction

statement is used to negotiate specific options (consistency level and access mode) for
a transaction that has already been started by the BEA TUXEDO system. The method
of setting such options will vary for other resource managers.

Comprehensive Example

Transaction integrity, message communication, and resource access represent the
major needs of an On-line-Transaction-Processing (OLTP) application.

Listing 7-2 shows the ATMI transaction, buffer management, and communication
routines working together with the SQL statements that access a resource manager.
The example is taken from the ACCT server that is part of the banking application and
illustrates the CLOSE_ACCT service.

The example illustrates the use of feetransaction statement (line 49) to set the
consistency level and access mode of the transaction (when read/write access is
specified the consistency level defaults to high consistency) before the first SQL
statement that accesses the database. The SQL query determines the amount to be
withdrawn in order to close the account based on the value aftb@UNT_ID(lines
50-58).

tpalloc() is invoked to allocate a buffer for the request message WITTEDRAWAL
service, and thaCCOUNT_IDand the amount to be withdrawn are placed in the buffer
(lines 62-74). This is followed bytpcall()  to thewITHDRAWAService (line 79). An
SQLdelete statement updates the database by removing the account in question (line
86).

If all is successful, the buffer allocated within the service is freed (line 98), the
TPSVCINFOdata buffer that was sent to the service is updated to indicate the successful
completion of the transaction (line 99); the transaction is automatically committed if
the service was the initiatapreturn() returnsTPSUCCESSnd the updated buffer

to the client process making the request to close the account. The successful
completion is reported to the status line of the form.

BEA TUXEDO Programmer’s Guide 7-23



7

Error Management

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023

024
025
026

027
028

029
030

7-24

After each function call, success or failure is determined. In the case of failure, the
buffer allocated within the service is freed, the transaction is aborted if started in the
service, and thePSVCINFObuffer is updated to show the cause of failure (lines
80-83).tpreturn() returnsTPFAIL and the message in the updated buffer is reported
to the status line of the form.

Note: When specifying the consistency level of a global transaction within a service
routine, take care to define the level in the same way for all those service
routines that may participate in the same transaction.

Listing 7-2 ACCT Server

#include <stdio.h> /* UNIX */
#include <string.h> /* UNIX */
#include <fml.h> /* TUXEDO */
#include <atmi.h> /* TUXEDO */
#include <Usysflds.h> [* TUXEDO */
#include <sglcode.h> /* TUXEDO */
#include <userlog.h> [* TUXEDO */
#include "bank.h" /* BANKING #defines */
#include "bank.flds.h" /* bankdb fields */
#include "event.flds.h" /* event fields */
EXEC SQL begin declare section;

static long account_id; /* account id */

static long branch_id; /* branch id */

static float bal, tlr_bal; /* BALANCE */

static char acct_type; /* account type*/

static char last_name[20], first_name[20]; /* last name, first name */
static char mid_init; /* middle initial */

static char address[60]; /* address  */

static char phone[14]; /* telephone */

static long last_acct; /* last account branch gave */
EXEC SQL end declare section;

static FBFR *reqfb; /* fielded buffer for request message */
static long reqlen; /* length of request buffer */
static char amts[BALSTR];  /* string representation of float */

code for OPEN_ACCT service
/*

* Service to close an account
*/

BEA TUXEDO Programmer’s Guide



Comprehensive Example

031 void
032 #ifdef _ STDC___
033 LOSE_ACCT(TPSVCINFO *transb)

034 #else

035 CLOSE_ACCT(transb)
036 TPSVCINFO *transb;
037 #endif

038 {
039 FBFR *transf; [* fielded buffer of decoded message */

040  /* set pointer to TPSVCINFO data buffer */
041 transf = (FBFR *)transb->data;

042  /* must have valid account number */

043  if (((account_id = Fvall(transf, ACCOUNT_ID, 0)) < MINACCT) ||

044 (account_id > MAXACCT)) {

045 (void)Fchg(transf, STATLIN, 0, "Invalid account number”, (FLDLEN)O);
046 tpreturn(TPFAIL, 0, transb->data, OL, 0);

047

048  /* Set transaction level */
049 EXEC SQL set transaction read write;

050 /* Retrieve AMOUNT to be deleted */

051 EXEC SQL declare ccur cursor for

052 select BALANCE from ACCOUNT where ACCOUNT _ID = :account _id;
053 EXEC SQL open ccur;

054  EXEC SQL fetch ccur into :bal;

055 if (SQLCODE !=SQL_OK){ /* nothing found */

056 (void)Fchg(transf, STATLIN, 0, getstr("account",SQLCODE), (FLDLEN)0);
057 EXEC SQL close ccur;

058 tpreturn(TPFAIL, 0, transb->data, OL, 0);

059 }

060  /* Do final withdrawal */

061 /* make withdraw request buffer */

062 if ((reqfb = (FBFR *)tpalloc("FML",NULL,transb->len)) == (FBFR *)NULL) {
063 (void)userlog(“tpalloc failed in close_acct\n");

064 (void)Fchg(transf, STATLIN, O,

065 "Unable to allocate request buffer", (FLDLEN)O);
066 tpreturn(TPFAIL, 0, transb->data, OL, 0);
067

}
068 reqglen = Fsizeof(reqfb);
069  (void)Finit(regfb,reqlen);

BEA TUXEDO Programmer’s Guide 7-25



7

Error Management

070
071

072
073
074

075
076
077

078
079
080
081
082
083
084

085

086
087
088
089
090
091
092
093

094
095
096
097
098
099
100

7-26

/* put ID in request buffer */
(void)Fchg(reqfb,ACCOUNT_ID,0,(char *)&account_id, (FLDLEN)O);

/* put amount into request buffer */
(void)sprintf(amts,"%.2f",bal);
(void)Fchg(reqfb, SAMOUNT,0,amts, (FLDLEN)O0);

* increase the priority of this withdraw */
if (tpsprio(PRIORITY, OL) == -1)
(void)userlog("Unable to increase priority of withdraw");

* tpcall to withdraw service to remove remaining balance */

if (tpcall"WITHDRAWAL", (char *)reqfb, OL, (char **)&reqfb,

(long *)&reqlen, TPSIGRSTRT) == -1) {

(void)Fchg(transf, STATLIN, 0,"Cannot make withdrawal", (FLDLEN)O0);
tpfree((char *)regfb);

tpreturn(TPFAIL, 0,transb->data, OL, 0);

}

/* Delete account record */

EXEC SQL delete from ACCOUNT where current of ccur;
if (SQLCODE != SQL_OK) { /* Failure to delete */
(void)Fchg(transf, STATLIN, 0,"Cannot close account”, (FLDLEN)O);
EXEC SQL close ccur;
tpfree((char *)reqfb);
tpreturn(TPFAIL, O, transb->data, OL, 0);

}
EXEC SQL close ccur;

* prepare buffer for successful return */

(void)Fchg(transf, SBALANCE, 0, Fvals(reqfb, SAMOUNT,0), (FLDLEN)O0);
(void)Fchg(transf, FORMNAM, 0, "CCLOSE", (FLDLEN)O0);
(void)Fchg(transf, STATLIN, 0, " ", (FLDLEN)O);

tpfree((char *)reqfb);

tpreturn(TPSUCCESS, 0, transb->data, OL, 0);

BEA TUXEDO Programmer’s Guide



The Central Event Log

The Central Event Log

The central event log is a UNIX system file to which you can send messages from BEA
TUXEDO system clients and services. Writing to the central event log is accomplished
through theuserlog (3c) function. The central event log simply provides a record of
events considered worth recording. Any organized analysis of the central event log
must be provided by the application. Application developers are encouraged to
establish fairly strict guidelines for events to be recorded indéog (3c).

Application debugging is made easier if the log is not flooded with trivial messages.

How the Log Is Named

One of the system parameters set up by the administrator determines the absolute
pathname prefix of the userlog error message file on each machingseflbg()

function concatenates the month, day, and year in the fonplyyto the prefix to

form the full file name of the central event log. That means that if a process sends a
message to the central event log on succeeding days, the message is written into
different files.

What Log Entries Look Like

Entries on the log consist of:

4 atag made up of the
4 time of day fhmmss
4 the name of the machine (the name that is returnecdye)

4 the name and process-ID of the process calisrgog()

4 the message text—For BEA TUXEDO system messages, text is preceded by the
message catalog name and message number.

4 optional arguments iprintf  (3S) format

BEA TUXEDO Programmer’s Guide 7-27



7

Error Management

7-28

For example, if the call:
userlog("Unknown User ‘%s’ \n", usrnm);

is made at 4:22:14pm by tBecurity ~ program, on a machine whaneame returns
the valuemachi, the resulting log entry will ook like this:

162214.machl!security.23451: Unknown User ‘abc’

assumin@3451 is the process ID farecurity , and that the variablesrnm contains
the valueabc .

If the above message was generated by BEA TUXEDO (as opposed to the applicatior
it might look like this:

162214.machl!security.23451: LIBSEC_CAT: 999: Unknown User 'abc’
whereLIBSEC_CAT: 999: represents a message catalog name and message numbe

If the message was sent to the central event log while the process is in transaction
mode, the user log entry will have additional components in the tag. These componen
consist of the literadtrid  followed by thregong hexadecimal integers. The integers
uniquely identify the global transaction and make up what is referred to as the globa
transaction identifier. This identifier is used mainly for administrative purposes, but it
does make an appearance in the tag that prefixes the messages in the central event
If the foregoing message is written to the central event log in transaction mode, the
resulting log entry will look like this:

162214.machl!security.23451: gtrid X2 x24e1b803 x239:
Unknown User 'abc'

BEA TUXEDO Programmer’s Guide



The Central Event Log

How to Write to the Event Log

You can either have the error message you wish to write to the log in a variable of type

char* and use the variable name as the argument to the call, or include the message
as a literal within quotation marks as the argument to the call, as shown in the example
below.

/* Open the database to be accessed by the transactions.*/
if(tpopen() == -1) {

userlog("tpsvrinit: Cannot open database");

return(-1);

}

In this example, the message is sent to the central eventipogdh() returns a
negative number.

userlog()  is similar to the UNIX System commapdhtf (3S). That is, the format
portion can contain literals and/or conversion specifications for a variable number of
arguments.

BEA TUXEDO Programmer’s Guide 7-29



7

Error Management

Debugging Application Processes

7-30

While it is possible to useserlog()  statements to help debug application software,
it is sometimes necessary to use a debugger command for more complex debugging

The standard UNIX system debugging commangdiig1). Refer to a UNIX System
programmer’s reference manual. Client processes compiled with thigtion are
debugged in the conventional manner explained osdtheeference page. The syntax
of thesdb command can take the following form:

sdb -W client - directory_list

For complete syntactical information, refer to the reference page. To run the client
process:

1. Set any desired breakpoints in the code.
2. Enter thesdb command.

3. Atthesdb prompt (*), type theun subcommand () and the options you want to
pass to the client programisin() .

The debugging of server programs is more complicated. Normally, servers are starte
using themboot command, which starts the server on the correct machine with the
correct options. When usirgghb , it is necessary to run the server directly rather than
through themboot command. The BEA TUXEDO systeimboot(1) command

passes undocumented command line options to the server's predefingd When

you want to run your server, you will need to pass it these options as well. To obtain
these options, rutmboot with the-n and-d1 options. Refer to Section 1 of tB&EA
TUXEDO Reference Manualhe-n option tellstmboot not to perform the actual
execution:d1 tells it to print out debugging level one statements. You can pass other
options as well tamboot in order to get information on a particular process rather than
all of them. The output frommboot will look something like the following, revealing

the command line options it passes to the servexis() :

exec server -g 1 -i 1 -u sfmax -U /tuxdir/appdir/lULOG -m 0 -A

When you want to run your server program usidig, you must pass the options
following the wordserver toitsrun (r) subcommand. As a result, thha command
will look like the following:

*r-g 1-i1-usfmax-U /tuxdir/appdir/ULOG -m 0 -A

BEA TUXEDO Programmer’s Guide



Debugging Application Processes

Also note that the server you are attempting to run fsdnmust not already be
running as part of the configuration, or the server will exit gracefully indicating a
duplicate server in the central event log.

BEA TUXEDO Programmer’s Guide 7-31



	1 Introduction and Overview
	The BEA TUXEDO System Development Environment
	Client Processes
	Basic Client Operation
	Client Sending Repeated Service Requests

	Server Processes and Service Subroutines
	Basic Server Operation
	Servers as Requesters
	The ATMI Primitives
	An Overview of X/Open's TX Interface

	Typed Buffers
	Using VIEW and FML Buffers
	Relationship Between Some VIEW Buffers and FML
	Corresponding Data Type Definitions
	Creating Header Files from View Descriptions
	Header Files from Field Tables

	Other Header Files
	Environment Variables
	Configuration File
	Making the Configuration Usable

	The Bulletin Board
	Starting and Stopping an Application


	Service Gateway
	Programming Paradigms
	Buffer Types
	Configuration
	Examples


	2 Writing Client Programs
	About This Chapter
	Examples Taken from the Sample Application

	Preliminaries
	Client Naming
	Unsolicited Notification
	Security and Client Authentication
	Writing Client Programs with SECURITY Set
	Getting the Security Data
	Joining the Application
	Allocating the TPINIT Buffer
	The Application Key


	Joining and Leaving an Application
	Buffer Management
	Typed Buffers for Messages
	Buffer Types: STRING
	Buffer Types: CARRAY
	Buffer Types: FML and FML32
	Buffer Types: VIEW, VIEW32, X_C_TYPE, and X_COMMON
	Buffer Types: Summary

	ATMI Buffer Primitives
	Allocating a Typed Buffer
	tpalloc Examples
	What About FML Buffer Management Functions?
	Putting Data in the Buffer
	Resizing a Typed Buffer
	Checking for Buffer Type
	Freeing a Typed Buffer


	Service Calls
	Sending Synchronous Messages: tpcall()
	Values for the flags Argument: tpcall()
	Examples of the Use of flags Arguments

	Sending Asynchronous Messages: tpacall()
	Values for the flags Argument: tpacall()
	Getting an Asynchronous Reply: tpgetrply()
	Getting and Setting Priority

	Initiating a Conversational Connection
	Sending a Broadcast Message

	Compiling Client Programs
	The buildclient Command
	The buildclient -o Option
	The buildclient -f and -l Options



	3 Writing Service Routines
	Writing Request/Response Services
	Examples Taken from the Sample Application
	Application Service Template
	The TPSVCINFO Structure

	The tpreturn() and tpforward() Functions
	Sending Replies
	Forwarding Requests
	Sending Unsolicited Messages
	Advertising, Unadvertising Services


	System-Supplied Servers and Subroutines
	System-Supplied Servers
	AUTHSVR

	The BEA TUXEDO System main()
	BEA TUXEDO System-Supplied Subroutines
	tpsvrinit()
	tpsvrdone()


	Compiling Subroutines to Build Servers
	The buildserver Command
	The buildserver -o Option
	The buildserver -f and -l Options
	The buildserver -r Option
	The buildserver -s Option


	Using C++

	4 Conversational Clients and Services
	Writing Conversational Clients and Services
	Conversational Mode
	The Connection Descriptor
	Buffer Management
	Joining an Application
	Establishing a Connection
	Values for the flags Argument: tpconnect()

	Sending
	Values for the flags Argument: tpsend()

	Receiving
	Values for the flags Argument: tprecv()
	Ending a Conversation
	Subordinate Calls tpreturn()
	Hierarchy of Connections and tpreturn()
	Ending a Conversation: Summary

	Events and Their Significance
	Disorderly Disconnection
	Request/Response Calls and Conversations
	Configuration Parameters
	Building Conversational Clients and Servers


	5 Global Transactions in BEA TUXEDO System
	Introduction
	What Is a Global Transaction?
	ATMI Transaction Primitives
	Explicitly Defining a Global Transaction
	Starting the Transaction
	Terminating the Transaction

	Implicitly Defining a Global Transaction
	In a Client Process
	In a Service Routine



	6 Using the Event Broker
	Introduction
	Notification Actions
	User-Defined and System-Defined Events
	Event Broker/Event Monitor Servers
	Programming Interface

	Posting Events
	tppost() Arguments: eventname
	tppost() Arguments: data and len
	tppost() Arguments: flags
	Example of Event Posting

	Subscribing to Events
	tpsubscribe() Arguments: eventexpr
	tpsubscribe() Arguments: filter
	tpsubscribe() Arguments: ctl
	Notification Via Unsolicited Message
	Notification Via Service Call or Reliable Queue

	tpsubscribe() Arguments: flags
	Example of Event Subscription


	7 Error Management
	Introduction
	Communicating Errors
	Values of tperrno
	Protocol Errors
	BEA TUXEDO System Errors
	Operating System Errors
	Errors from Invalid Arguments
	Other Possible Error Categories
	No Entry Errors
	Permission Errors
	Resource Manager Errors
	Transaction-Related Errors
	Typed Buffer Errors
	Call Descriptor Errors
	General Communication Call Errors
	Conversational Errors
	Time-Out Errors
	Errors Leading to Abort
	Errors Signaling Heuristic Decisions
	Application-Specific Errors


	How to Deal with Errors
	Fatal Transaction Errors

	Time-Out
	Blocking vs. Transaction Time-Out
	Effect on tpcommit()
	Effect of the TPNOTRAN Flag

	Roles of tpreturn() and tpforward()
	Service in Same Transaction as Caller
	Service in Different Transaction with AUTOTRAN Set
	Service Starts New Explicit Transaction

	Transaction Rules
	Communication Etiquette
	BEA TUXEDO System-Supplied Subroutines
	tpsvrinit()
	tpsvrdone()

	Leaving the Application
	Global Transactions and Resource Managers

	Comprehensive Example
	The Central Event Log
	How the Log Is Named
	What Log Entries Look Like
	How to Write to the Event Log

	Debugging Application Processes


