
BEA TUXEDO
Programmer�s Guide

B E A T UX E DO R e l e a s e 6 . 5
D o c um e n t E d i t i o n 6 . 5

F e b r u a r y 1 9 99

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Connect, BEA Jolt, BEA Manager, and BEA MessageQ are trademarks of
BEA Systems, Inc. BEA ObjectBroker is a registered trademark of BEA Systems, Inc. TUXEDO is a registered
trademark in the United States and other countries.

All other company names may be trademarks of the respective companies with which they are associated.

BEA TUXEDO Programmer’s Guide

Document Edition Date Software Version

6.5 February 1999 BEA TUXEDO Release 6.5

1-1

.... 1-2

.. 1-2

... 1-3

.... 1-3

.. 1-3

.... 1-5

1-6

1-8

.. 1-9

-10

-10

-13

-14

1-15

. 1-15

1-16

1-17

-17

1-18

-18

. 1-18

1-18

1-19

1-19
Contents

1. Introduction and Overview

The BEA TUXEDO System Development Environment

Client Processes...

Basic Client Operation ...

Client Sending Repeated Service Requests

Server Processes and Service Subroutines ...

Basic Server Operation...

Servers as Requesters ...

The ATMI Primitives ...

An Overview of X/Open's TX Interface ...

Typed Buffers...

Using VIEW and FML Buffers... 1

Relationship Between Some VIEW Buffers and FML..................... 1

Corresponding Data Type Definitions .. 1

Creating Header Files from View Descriptions 1

Header Files from Field Tables...

Other Header Files ..

Environment Variables...

Configuration File ..

Making the Configuration Usable... 1

The Bulletin Board ...

Starting and Stopping an Application ... 1

Service Gateway...

Programming Paradigms..

Buffer Types...

Configuration ...
BEA TUXEDO Programmer’s Guide iii

1-19

.. 2-1

. 2-1

... 2-2

. 2-2

2-3

. 2-4

2-6

. 2-7

2-7

10

-10

2-12

.2-15

2-15

-15

-16

16

-17

-18

-18

2-20

-20

-21

-22

-24

-25

. 2-26

. 2-26

-29

-31

2-34
Examples ..

2. Writing Client Programs

About This Chapter ...

Examples Taken from the Sample Application...

Preliminaries ...

Client Naming ...

Unsolicited Notification ...

Security and Client Authentication ...

Writing Client Programs with SECURITY Set..

Getting the Security Data ...

Joining the Application ...

Allocating the TPINIT Buffer ... 2-

The Application Key ... 2

Joining and Leaving an Application ..

Buffer Management ..

Typed Buffers for Messages...

Buffer Types: STRING ... 2

Buffer Types: CARRAY...2

Buffer Types: FML and FML32 ...2-

Buffer Types: VIEW, VIEW32, X_C_TYPE, and X_COMMON... 2-16

Buffer Types: Summary .. 2

ATMI Buffer Primitives ... 2

Allocating a Typed Buffer... 2

tpalloc Examples ...

What About FML Buffer Management Functions?2

Putting Data in the Buffer ... 2

Resizing a Typed Buffer ...2

Checking for Buffer Type ... 2

Freeing a Typed Buffer ... 2

Service Calls ...

Sending Synchronous Messages: tpcall() ..

Values for the flags Argument: tpcall()... 2

Examples of the Use of flags Arguments.. 2

Sending Asynchronous Messages: tpacall() ...
iv BEA TUXEDO Programmer’s Guide

-35

-37

-37

2-40

. 2-40

2-41

2-41

-41

-41

... 3-1

. 3-1

. 3-2

3-2

. 3-9

.. 3-9

3-16

3-18

-20

.. 3-22

. 3-22

-22

-23

-24

-24

3-27

3-29

3-29

-29

-29

-30

-30

3-31
Values for the flags Argument: tpacall()... 2

Getting an Asynchronous Reply: tpgetrply() 2

Getting and Setting Priority .. 2

Initiating a Conversational Connection..

Sending a Broadcast Message ...

Compiling Client Programs...

The buildclient Command..

The buildclient -o Option .. 2

The buildclient -f and -l Options... 2

3. Writing Service Routines

Writing Request/Response Services...

Examples Taken from the Sample Application...

Application Service Template ...

The TPSVCINFO Structure ..

The tpreturn() and tpforward() Functions ...

Sending Replies...

Forwarding Requests...

Sending Unsolicited Messages..

Advertising, Unadvertising Services... 3

System-Supplied Servers and Subroutines..

System-Supplied Servers...

AUTHSVR.. 3

The BEA TUXEDO System main()... 3

BEA TUXEDO System-Supplied Subroutines .. 3

tpsvrinit()... 3

tpsvrdone() ..

Compiling Subroutines to Build Servers...

The buildserver Command ...

The buildserver -o Option ... 3

The buildserver -f and -l Options.. 3

The buildserver -r Option.. 3

The buildserver -s Option ... 3

Using C++ ...
BEA TUXEDO Programmer’s Guide v

.. 4-1

... 4-2

.. 4-2

.. 4-2

. 4-3

.. 4-3

4-4

... 4-5

. 4-6

.. 4-7

. 4-8

.. 4-9

. 4-9

-10

4-11

4-11

4-12

.. 4-13

4-13

4-14

.. 5-1

... 5-2

. 5-3

5-3

. 5-5

. 5-9

-13

5-13

5-13

.. 6-1
4. Conversational Clients and Services

Writing Conversational Clients and Services ..

Conversational Mode..

The Connection Descriptor...

Buffer Management..

Joining an Application...

Establishing a Connection ..

Values for the flags Argument: tpconnect() ..

Sending ..

Values for the flags Argument: tpsend() ..

Receiving..

Values for the flags Argument: tprecv()..

Ending a Conversation ...

Subordinate Calls tpreturn() ...

Hierarchy of Connections and tpreturn() .. 4

Ending a Conversation: Summary...

Events and Their Significance..

Disorderly Disconnection...

Request/Response Calls and Conversations...

Configuration Parameters...

Building Conversational Clients and Servers...

5. Global Transactions in BEA TUXEDO System

Introduction ...

What Is a Global Transaction? ...

ATMI Transaction Primitives...

Explicitly Defining a Global Transaction...

Starting the Transaction ...

Terminating the Transaction ..

Implicitly Defining a Global Transaction... 5

In a Client Process...

In a Service Routine ..

6. Using the Event Broker

Introduction ...
vi BEA TUXEDO Programmer’s Guide

6-2

.. 6-3

. 6-4

.. 6-4

... 6-5

.. 6-5

.. 6-5

.. 6-5

.. 6-6

... 6-7

.. 6-7

. 6-8

. 6-8

6-8

6-9

6-10

6-10

.. 7-1

.. 7-2

.. 7-2

. 7-3

7-3

. 7-3

7-4

.. 7-4

. 7-5

. 7-5

.. 7-6

. 7-6

7-7

7-7

7-9

. 7-9
Notification Actions ...

User-Defined and System-Defined Events ..

Event Broker/Event Monitor Servers..

Programming Interface...

Posting Events ..

tppost() Arguments: eventname ...

tppost() Arguments: data and len ...

tppost() Arguments: flags...

Example of Event Posting ..

Subscribing to Events ...

tpsubscribe() Arguments: eventexpr ..

tpsubscribe() Arguments: filter ...

tpsubscribe() Arguments: ctl ...

Notification Via Unsolicited Message ..

Notification Via Service Call or Reliable Queue................................

tpsubscribe() Arguments: flags ..

Example of Event Subscription..

7. Error Management

Introduction ...

Communicating Errors ..

Values of tperrno..

Protocol Errors ...

BEA TUXEDO System Errors ...

Operating System Errors..

Errors from Invalid Arguments...

Other Possible Error Categories..

No Entry Errors..

Permission Errors ...

Resource Manager Errors..

Transaction-Related Errors ..

Typed Buffer Errors ..

Call Descriptor Errors ...

General Communication Call Errors...

Conversational Errors ..
BEA TUXEDO Programmer’s Guide vii

-10

-10

-11

-11

7-11

7-14

7-15

-15

-16

-16

7-17

. 7-18

18

7-19

. 7-20

7-20

-21

-21

7-21

-22

. 7-22

. 7-23

7-27

7-27

-27

-29

.7-30
Time-Out Errors .. 7

Errors Leading to Abort .. 7

Errors Signaling Heuristic Decisions .. 7

Application-Specific Errors... 7

How to Deal with Errors..

Fatal Transaction Errors ...

Time-Out ...

Blocking vs. Transaction Time-Out ... 7

Effect on tpcommit() .. 7

Effect of the TPNOTRAN Flag.. 7

Roles of tpreturn() and tpforward() ...

Service in Same Transaction as Caller ..

Service in Different Transaction with AUTOTRAN Set 7-

Service Starts New Explicit Transaction..

Transaction Rules ...

Communication Etiquette...

BEA TUXEDO System-Supplied Subroutines .. 7

tpsvrinit() ... 7

tpsvrdone() ..

Leaving the Application ... 7

Global Transactions and Resource Managers ...

Comprehensive Example ..

The Central Event Log ..

How the Log Is Named...

What Log Entries Look Like.. 7

How to Write to the Event Log .. 7

Debugging Application Processes ..
viii BEA TUXEDO Programmer’s Guide

CHAPTER

ting

sing
e
e
hey
n
itor,

h 7 of
nts
oing
1 Introduction and

Overview

The BEA TUXEDO System Development

Environment

The purpose of this chapter is to describe the environment in which you will be wri
code for a BEA TUXEDO system application.

In addition to the C code that expresses the logic of your application, you will be u
the Application-Transaction Monitor Interface (ATMI), which refers to the interfac
between the BEA TUXEDO system transaction monitor and your application. Th
ATMI primitives are C language functions that resemble UNIX system calls, but t
have the specific purpose of implementing the communication among applicatio
modules running under the control of the BEA TUXEDO system transaction mon
including all the associated resources you need.

As you might remember from the BEA TUXEDO Product Overview, the BEA
TUXEDO system uses an enhanced client-server architecture. Chapters 2 throug
this book describe how the ATMI primitives are used in writing and debugging clie
and services. This chapter provides some of the context within which you will be d
that work.
BEA TUXEDO Programmer’s Guide 1-1

1 Introduction and Overview

ocess

age
 a

shown

ng
Client Processes

A client process takes user input and sends it as a service request to a server pr
that offers the requested service.

Basic Client Operation

A client process uses one ATMI primitive to join an application, allocates a mess
buffer by using another ATMI primitive, and uses still others to send the buffer to
server and receive the reply.

The operation of a basic client process can be summarized by the pseudo-code
in Listing 1-1.

Listing 1-1 Pseudo-code for a Client

main()
 {
 allocate a TPINIT buffer
 place initial client identification in buffer
 enroll as a client of the BEA TUXEDO application
 allocate buffer
 do while true {
 place user input in buffer
 send service request
 receive reply
 pass reply to the user }
 leave application
 }

Most of the statements in Listing 1-1 are implemented with ATMI primitives. Placi
user input in a buffer and passing the reply to the user are implemented with C
language functions.

When client programs are ready to test, you use the buildclient (1) command to
compile and link edit them.
1-2 BEA TUXEDO Programmer’s Guide

Client Processes

e
ortant
nal
erent

 their
e

s

ode
Client Sending Repeated Service Requests

A client may send and receive any number of service requests before leaving th
application. These can be sent as a series of request/response calls or, if it is imp
to carry state information from one call to the next, a connection to a conversatio
server can be set up. The logic within the client program is about the same, but diff
ATMI primitives are used.

Server Processes and Service Subroutines

Servers are processes that provide one or more services. They continually check
message queue for service requests and dispatch them to the appropriate servic
subroutines.

Basic Server Operation

Applications combine their service subroutines with the main() that BEA TUXEDO
provides in order to build server processes. This system supplied main () is a set of
predefined functions. It performs server initialization and termination and allocate
buffers to receive and dispatch incoming requests to service routines. All of this
processing is transparent to the application.

Server and a service subroutine interaction can be summarized by the pseudo-c
shown in Figure 1-1.
BEA TUXEDO Programmer’s Guide 1-3

1 Introduction and Overview

ne

is put
routine
ssing.
Figure 1-1 Pseudo-code for a Request/Response Server and a Service Subrouti

After some initialization a server allocates a buffer, waits until a request message
on its message queue, dequeues the request, and dispatches it to a service sub
for processing. If a reply is needed, the reply is considered part of request proce

The conversational paradigm is somewhat different. Pseudo-code is shown in
Figure 1-2.
1-4 BEA TUXEDO Programmer’s Guide

Client Processes

 a
 ATMI

 ready

tion
ns of
e the
he
lients
Figure 1-2 Pseudo-code for a Conversational Service Subroutine

The BEA TUXEDO system-supplied main() contains the code needed to enroll as
server, advertise services, allocate buffers, and dequeue request messages. The
primitives are used in service subroutines that process requests. When they are
to compile and test, service subroutines are link edited with the server main() by
means of the buildserver (1) command to form an executable server.

Servers as Requesters

The serially reusable architecture of servers is particularly significant if the opera
requested by the user is logically divisible into several services, or several iteratio
the same service. Such operations can be overlapped by having a server assum
role of a client and hand off part of the task to another server as part of fulfilling t
original client’s request. In such a capacity the server becomes a requester. Both c
BEA TUXEDO Programmer’s Guide 1-5

1 Introduction and Overview

ing
d by

fferent
 client
ected

te and
1-1
and servers can be requesters. In fact, a client can only be a requester. The cod
model for such a system is easily accomplished with the routines that are provide
ATMI.

A request/response server can also forward a request to another server. This is di
from becoming a requester. In this case, the server does not assume the role of
since no reply is expected by the server that forwards a request. The reply is exp
by the original client.

The ATMI Primitives

The Application-Transaction Monitor Interface is a reasonably compact set of
primitives used to open and close resources, begin and end transactions, alloca
free buffers, and provide the communication between clients and servers. Table
summarizes them. Each routine is documented in Section 3C of the BEA TUXEDO
Reference Manual.

Table 1-1 ATMI Primitives

Group Name Operation

Application Interface tpinit() join an application

tpterm() leave an application

Buffer Management
Interface

tpalloc() allocate a buffer

tprealloc() re-size a buffer

tpfree() free a buffer

tptypes() get buffer type

Request/Response
Communication
Interface

tpcall() send a request, wait for answer

tpacall() send request asynchronously

tpgetrply() get reply after asynchronous call

tpcancel() cancel communications handle for
outstanding reply

tpgprio() get priority of last request

tpsprio() set priority of next request
1-6 BEA TUXEDO Programmer’s Guide

Client Processes
Conversational
Interface

tpconnect() begin a conversation

tpdiscon end a conversation

tpsend() send data in conversation

tprecv() receive data in conversation

Unsolicited
Notification Interface

tpnotify() notify by client id

tpbroadcast() notify by name

tpsetunsol() set unsolicited message handling routine

tpgetunsol() get unsolicited message

tpchkunsol() check for unsolicited messages

Transaction
Management Interface

tpbegin() begin a transaction

tpcommit() commit the current transaction

tpabort() abort the current transaction

tpgetlev() check if in transaction mode

Service Routine
Template

tpservice() start a service

tpreturn() end service routine

tpforward() forward request and end service routine

Dynamic
Advertisement
Interface

tpadvertise() advertise a service name

tpunadvertise() unadvertise a service name

Resource Manager
Interface

tpopen() open a resource manager

tpclose() close a resource manager

Event Broker/ Event
Monitor Interface

tppost() post an event

tpsubscribe() subscribe to an event

tpunsubscribe() unsubscribe to an event

Table 1-1 ATMI Primitives

Group Name Operation
BEA TUXEDO Programmer’s Guide 1-7

1 Introduction and Overview

lso
e
ace,

X

.
ager,

An Overview of X/Open's TX Interface

In addition to ATMI’s transaction management verbs, the BEA TUXEDO system a
supports X/Open’s TX Interface for defining and managing transactions. Becaus
X/Open used ATMI’s transaction demarcation verbs as the base for the TX Interf
the syntax and semantics of the TX Interface are quite similar to ATMI.

Table 1-2 introduces the routines in the TX Interface and highlights the main
differences with their corresponding ATMI routines. For maximum portability, the T
routines can be used in place of the ATMI routines shown in Table 1-2.

The TX interface requires that tx_open() be called before using any other TX verbs
Thus, even if a client or a server is not accessing an XA-compliant resource man
it must call tx_open() before it can use tx_begin() , tx_commit() , and
tx_rollback() to define transactions.

Table 1-2 TX Verbs

TX Verbs Corresponding
ATMI Verbs

Main Differences

tx_begin tpbegin Timeout value not passed as argument to
tx_begin . See
tx_set_transaction_timeout .

tx_close tpclose None

tx_commit tpcommit tx_commit can optionally start a new
transaction before it returns. This is known as a
“chained” transaction.

tx_info tpgetlev tx_info returns the settings of transaction
characteristics set via the three tx_set_*
routines.

tx_open tpopen None

tx_rollback tpabort tx_rollback supports chained transactions.

tx_set_commit_return tpscmt None

tx_set_transaction_control None Defines whether the application is using
chained or unchained transactions.

tx_set_transaction_timeout tpbegin Transaction timeout parameter separated from
tx_begin .
1-8 BEA TUXEDO Programmer’s Guide

Client Processes

s

pes
 and
chines.
the
 to

nd
Listing 1-2 contains an example of how the TX Interface can be used to support
chained transactions. Note that tx_begin() must be used to start the first of a serie
of chained transactions. Also, note that before calling tx_close() , the application
must switch to unchained transactions so that the last tx_commit() or
tx_rollback() does not start a new transaction.

Listing 1-2 Chained Transactions Using TX Verbs

tx_open();
tx_set_transaction_control(TX_CHAINED);
tx_set_transaction_timeout(120);
tx_begin();
do_forever {
 do work as part of transaction;
 if (no more work exists)
 tx_set_transaction_control(TX_UNCHAINED);
 if (work done was successful)
 tx_commit();
 else
 tx_rollback();
 if (no more work exists)
 break;
}
tx_close();

Typed Buffers

Messages are passed to servers in typed buffers. Why “typed?” Well, different ty
of data require different software to initialize the buffer, send and receive the data
perhaps encode and decode it, if the buffer is passed between heterogeneous ma
Buffers are designated as being of a specific type so the routines appropriate to
buffer and its contents can be invoked. These issues are typically not of concern
application developers, but more details can be found in buffer (3c), tuxtypes (5),
and typesw (5).

The BEA TUXEDO system provides nine buffer types for messages: STRING, CARRAY,
VIEW, VIEW32, FML, FML32, X_OCTET, X_COMMON, and X_C_TYPE. Applications can
define additional types as needed. Consult the manual pages referred to above a
Administering the BEA TUXEDO System.
BEA TUXEDO Programmer’s Guide 1-9

1 Introduction and Overview

ates

be
en

s to

r

ibly a
sing

e

ructure
ll

The STRING buffer type is used when the data is an array of characters that termin
with the null character.

The data in a CARRAY buffer is an undefined array of characters, any of which can
null. The CARRAY is not self-describing and the length must always be provided wh
transmitting this buffer type. The X_OCTET buffer type is equivalent to CARRAY.

The VIEW type is a C structure that the application defines and for which there ha
be a view description file. Buffers of the VIEW type must have subtypes, which
designate individual data structures. The X_C_TYPE buffer type is equivalent to VIEW.
The X_COMMON buffer type is similar to VIEW but is used for both COBOL and C
programs so field types should be limited to short, long, and string. The VIEW32 buffer
type is similar to VIEW but allows for larger character fields, more fields, and large
overall buffers.

An FML buffer is a proprietary BEA TUXEDO system type of self-defining buffer
where each data field carries its own identifier, an occurrence number, and poss
length indicator. This type provides great flexibility at the expense of some proces
overhead in that all data manipulation is done via FML function calls rather than native
C statements.

The FML32 data type is similar to FML but allows for larger character fields, mor
fields, and larger overall buffers.

Using VIEW and FML Buffers

If you are using the VIEW or FML buffer types, some preliminary work is required to
create view description files or field table files. In the case of VIEWs, a description file
must exist and must be available to client and server processes that use a data st
described in the VIEW. For FML buffers, a field table file containing descriptions of a
fields that may be in the buffer must be available.

Relationship Between Some VIEW Buffers and FML

There are two kinds of VIEW buffers. One is based on an FML buffer. The other VIEW
buffer is independent; it is simply a C structure. Both types are described in view
description files and compiled with viewc (1), the BEA TUXEDO system view
compiler. We’re going to talk first about the FML variety.
1-10 BEA TUXEDO Programmer’s Guide

Client Processes

lded

ulated

sing

 to
e
 also
nce
tion
FML Views

BEA TUXEDO System FML is a family of functions, some of which convert an FML
buffer into a C structure or vice versa. The C structure that is derived from the fie
buffer is referred to as an FML VIEW. The reason for converting FML buffers to C
structures and back again is that while FML buffers provide data independence and
convenience, they do involve processing overhead because they must be manip
using FML function calls. C structures, while not providing flexibility, offer the
performance required for lengthy manipulations on buffer data. If enough
manipulation of the data is called for, you can improve the performance of your
programs if you transfer fielded buffer data to C structures, operate on the data u
normal C functions, and then put the data back into the FML buffer for storage or
message transmission.

There are slight differences between a view description of an FML-based view and one
that is independent of FML. Listing 1-3 shows a view description file with all of the
available data types. The file is myview.v and the structure is based on an FML buffer.
Note that the CARRAY1 field has a count of 2 occurrences and has the “C” count flag
indicate that an additional count element should be created in the structure so th
application can indicate how many of the occurrences are actually being used. It
has the “L” length flag such that there is a length element (which occurs twice, o
for each occurrence of the field) indicating how many of the characters the applica
has populated.

Listing 1-3 View Description File for FML View

VIEW MYVIEW
$ /* View structure */
#type cname fbname count flag size null
float float1 FLOAT1 1 - - 0.0
double double1 DOUBLE1 1 - - 0.0
long long1 LONG1 1 - - 0
short short1 SHORT1 1 - - 0
int int1 INT1 1 - - 0
dec_t dec1 DEC1 1 - 9,16 0
char char1 CHAR1 1 - - '\0'
string string1 STRING1 1 - 20 '\0'
carray carray1 CARRAY1 2 CL 20 '\0'
END
BEA TUXEDO Programmer’s Guide 1-11

1 Introduction and Overview

ut
FML Field Table Files

Field table files are always required when using FML records, including the use of
FML-dependent VIEWS. A field table file maps the logical name of a field in an FML
buffer to a field identifier that uniquely identifies the field.

An example that could be used with the view shown in Listing 1-3 is shown in
Listing 1-4.

Listing 1-4 The myview.flds Field Table File

name number type flags comments
 FLOAT1 110 float - -
 DOUBLE1 111 double - -
 LONG1 112 long - -
 SHORT1 113 short - -
 INT1 114 long - -
 DEC1 115 string - -
 CHAR1 116 char - -
 STRING1 117 string - -
 CARRAY1 118 carray - -

Independent VIEWs

Listing 1-5 shows the view description file, similar to the example in Listing 1-3, b
for a VIEW independent from FML.

Listing 1-5 View Description File for Independent Views

$ /* View data structure */
 VIEW MYVIEW
 #type cname fbname count flag size null
 float float1 - 1 - - -
 double double1 - 1 - - -
 long long1 - 1 - - -
 short short1 - 1 - - -
 int int1 - 1 - - -
 dec_t dec1 - 1 - 9,16 -
 char char1 - 1 - - -
 string string1 - 1 - 20 -
 carray carray1 - 2 CL 20 -
 END
1-12 BEA TUXEDO Programmer’s Guide

Client Processes

.

 serve

t

 1 to

n

 total

o

d

d on
Note that in this view description, the format is similar to the FML-dependent view,
except that the columns fbname and null in the file are ignored by the view compiler
These columns are not relevant when an FML buffer does not stand behind the view,
but it is necessary to place some value (a dash, for example) in these columns to
as a placeholder.

Corresponding Data Type Definitions

The C float and double fields correspond to COBOL COMP-1 and COMP-2,
respectively.

The field types long and short correspond to S9(9) COMP-5 and S9(4) COMP-5
respectively in COBOL. (The use of COMP-5 is for use with MicroFocus COBOL so that
the COBOL integer fields match the data format of the corresponding C fields; the data
type for VS COBOL II would simply be COMP.)

The dec_t type maps to a COBOL COMP-3 packed decimal field. Packed decimals exis
in the COBOL environment as two decimal digits packed into each byte with the
low-order half byte used to store the sign. The length of a packed decimal may be
9 bytes with storage available for 1 to 17 digits and a sign. The dec_t field type is
supported within the VIEW definition for the conversion of packed decimals betwee
the C and the COBOL environments. The dec_t field is defined in a VIEW with a size of
two numbers separated by a comma. The number to the left of the comma is the
number of bytes that the decimal occupies in COBOL. The number to the right is the
number of digits to the right of the decimal point in COBOL. The formula for conversion
to the COBOL declaration is:

dec_t(m, n) <=> S9(2* m-(n+1), n)COMP-3

For example, say a size of 6,4 is specified in the VIEW. There are 4 digits to the right
of the decimal point, 7 digits to the left, and the last half byte stores the sign. The COBOL
application programmer would represent this as 9(7)V9(4) , with the V representing
the decimal point between the number of digits to each side. Note that there is n
dec_t type supported in FML; if FML-dependent VIEWs are used, then the field must be
mapped to a C type in the VIEW file (for instance, the packed decimal can be mappe
to an FML string field and the mapping functions do the conversion between the
formats).

A decimal field can be initialized and accessed in C using the functions describe
the decimal (3c) reference page.
BEA TUXEDO Programmer’s Guide 1-13

1 Introduction and Overview

ader

ource
Creating Header Files from View Descriptions

View description files are source files. To use the view in a program, you need a he
file that defines the structures in the view. You can create a header file from the
myview.v view description file by invoking the view compiler, viewc (1). viewc
creates two files. One is the header file and the other is the binary version of the s
description file, myview.V. This binary file must be in the environment when a VIEW
buffer is allocated. For an FML-dependent VIEW, the compiler is invoked as follows.

viewc myview.v

The header file it creates from the myview.v description file is shown in Listing 1-6.

Listing 1-6 Header File Created for FML View

struct MYVIEW {
 float float1;
 double double1;
 long long1;
 short short1;
 int int1;
 dec_t dec1;
 char char1;
 char string1[20];
 unsigned short L_carray1[2]; /* length array of carray1 */
 short C_carray1; /* count of carray1 */
 char carray1[2][20];
};

To compile a view description of an independent view, use the -n option on the
command line, as follows.

viewc -n myview.v

The header file created is the same with or without the -n option. Header files for
views must be brought into client programs and service subroutines with #include
statements.

For use with VIEW32, the viewc32 command should be used.
1-14 BEA TUXEDO Programmer’s Guide

Client Processes

Header Files from Field Tables

To create a field header file from the field table file, use the mkfldhdr (1) command.
For example:

mkfldhdr myview.flds

creates a file called myview.flds.h that can be #include ’d in a service routine or
client program so you can refer to fields by their symbolic names. The
myview.flds.h header file produced by mkfldhdr from this field table file is shown
in Listing 1-7.

Listing 1-7 The myview.flds.h Header File

/* fname fldid */
/* ----- ----- */

#define FLOAT1 ((FLDID)24686) /* number: 110 type: float */
#define DOUBLE1 ((FLDID)32879) /* number: 111 type: double */
#define LONG1 ((FLDID)8304) /* number: 112 type: long */
#define SHORT1 ((FLDID)113) /* number: 113 type: short */
#define INT1 ((FLDID)8306) /* number: 114 type: long */
#define DEC1 ((FLDID)41075) /* number: 115 type: string */
#define CHAR1 ((FLDID)16500) /* number: 116 type: char */
#define STRING1 ((FLDID)41077) /* number: 117 type: string */
#defineCARRAY1 ((FLDID)49270) /* number: 118 type: carray */

For use with FML32, the mkfldhdr32 command should be used.

Other Header Files

If you are using FML or VIEW typed buffers, #include the header files generated from
their field table files or view description files as described above.

In addition, all BEA TUXEDO system application programs must #include the
atmi.h header file.

If you are using FML buffers, #include the fml.h header file in your programs.
BEA TUXEDO Programmer’s Guide 1-15

1 Introduction and Overview

ith a

ions,

th

ke

r a

Environment Variables

Environment variables needed either for clients or service routines associated w
server can be set in ENVFILEs that are specified in the configuration file. The
environment variables that might have to be set for field tables and view descript
for example, are summarized in Table 1-3.

For the FML32 and VIEW32 record types, the environment variables are suffixed wi
32 , that is, FLDTBLDIR32, FIELDTBLS32 , VIEWFILES32 , and VIEWDIR32.

The CC and CFLAGS environment variables are used by the buildclient (1) and
buildserver (1) commands. You may want to set them in your environment to ma
compilation of clients and servers more convenient. Set CC to the command that
invokes the C compiler. It defaults to cc . Set CFLAGS to the link edit flags you may
want to use on the compile command line. Setting this variable is optional.

The location of the BEA TUXEDO system binary files must be known to your
application. It is the convention to install the BEA TUXEDO system software unde
root directory whose location is specified in the TUXDIR environment variable.
$TUXDIR/bin must be included in your PATH in order for your application to locate the
executables for BEA TUXEDO system commands.

Table 1-3 BEA TUXEDO System Environment Variables

Variable Contains Used By

FIELDTBLS comma-separated list of field table file names client and server
processes using
FML buffers

FLDTBLDIR colon-separated list of directories to be used to
find field table files with relative file names

client and server
processes using
FML buffers

VIEWFILES comma-separated list of binary view
description files

client and server
processes using
VIEW buffers

VIEWDIR colon-separated list of directories to be used to
find binary view description files

client and server
processes using
VIEW buffers
1-16 BEA TUXEDO Programmer’s Guide

Client Processes

file

ay

ry,

.

Configuration File

The configuration file specifies the configuration of an application to the BEA
TUXEDO system. For a BEA TUXEDO system application in production, it is the
responsibility of the BEA TUXEDO system administrator to set up a configuration
that defines the application. In the development environment, the responsibility m
be delegated to application programmers to create their own.

If you are faced with the task of creating a configuration file, here are some
suggestions:

� Borrow a file that already exists. For example, the file ubbshm that comes with
the sample application is a good starting point.

� Keep it simple. For test purposes, set your application up as a shared memo
single processor system. Use regular UNIX system files for your data.

� Make sure the IPCKEY parameter in the configuration file does not conflict with
any others that may be in use at your installation. You should probably check
this with your BEA TUXEDO system administrator.

� Set the UID and GID parameters so that you are the owner of the configuration

� Read the documentation. The configuration file is documented in the
ubbconfig (5) page in the BEA TUXEDO Reference Manual and in the book
Administering the BEA TUXEDO System.

Making the Configuration Usable

The configuration file is an ASCII file. To make it usable, you have to run
tmloadcf (1) to convert it to a binary file. The TUXCONFIG environment variable must
be set to the pathname for the binary file, and exported.
BEA TUXEDO Programmer’s Guide 1-17

1 Introduction and Overview

s in

lletin
ss of
ervice

e.

e
d the

ation,

ty

s.
The Bulletin Board

The bulletin board is the BEA TUXEDO system name for a group of data structure
a segment of shared memory that is allocated from information stored in TUXCONFIG
when the application is booted. Both client and server processes attach to the bu
board. Part of the bulletin board associates service names with the queue addre
servers that advertise that service. Clients send their requests to the name of the s
they want to invoke, rather than to a specific address.

All processes that are part of a BEA TUXEDO application share this IPC resourc

Starting and Stopping an Application

Execute the tmboot (1) command to bring up an application. The command gets th
IPC resources needed by the application, and starts administrative processes an
application servers.

When it is time to bring the application down, execute the tmshutdown (1) command.
tmshutdown stops the servers and releases the IPC resources used by the applic
except any that might be used by the database resource manager.

Service Gateway

GWTUX2TE and GWTE2TUX are BEA TUXEDO system servers that provide connectivi
between BEA TUXEDO and BEA TOP END systems. GWTUX2TE provides
connectivity between BEA TUXEDO clients and BEA TOP END servers. GWTE2TUX
provides connectivity between BEA TOP END clients and BEA TUXEDO server
One or both of these gateway servers may be configured.

Programming Paradigms

Gateway servers support request/response messages only. The following BEA
TUXEDO client API calls for sending and receiving are allowed:

� tpcall
1-18 BEA TUXEDO Programmer’s Guide

Service Gateway

e an

nt
d

rovide
de

DO
� tpacall (with or without TPNOREPLY flag)

� tpgetrply

� tpforward

BEA TOP END servers cannot set the APPL_CONTEXT flag. If this flag is set, the
gateway server dissolves the BEA TOP END dialog and returns an error
(TPESVCFAIL) to the BEA TUXEDO client.

The following BEA TOP END client API calls are allowed:

� tp_client_send

� tp_client_receive

Buffer Types

The gateway servers support BEA TUXEDO CARRAY (X_OCTET) buffers only.
Attempts to send other types of buffers from a BEA TUXEDO application generat
error (TPESVCFAIL) which is logged by the gateway server.

Configuration

The GWTUX2TE and GWTE2TUX gateway servers use the BEA TOP END remote clie
and remote server services. GWTUX2TE assumes the role of a BEA TOP END client an
makes use of the remote client services. GWTE2TUX assumes the role of a BEA TOP
END server and makes use of the remote server services. Therefore, you must p
a BEA TOP END remote client/server configuration file on any BEA TUXEDO no
running these gateway processes.

Examples

The following example shows how gateway servers are defined in the BEA TUXE
UBBCONFIG file and in the BEA TOP END service definition file.
BEA TUXEDO Programmer’s Guide 1-19

1 Introduction and Overview

0

In this example, a BEA TUXEDO client issues tpcall to the RSERVICE service. The
request is forwarded (via the GWTUX2TE gateway) to a BEA TOP END system (pluto)
and invokes a BEA TOP END service (RPRODUCT:RFUNC).

Similarly, a BEA TOP END client issues tp_client_send , specifying LPRODUCT as
the PRODUCT and LFUNC as the FUNCTION. The request is forwarded (via the GWTE2TUX
gateway) to the BEA TUXEDO system and invokes a BEA TUXEDO service
(LSERVICE).

Listing 1-8 BEA TUXEDO UBBCONFIG File

##############
#UBBCONFIG
*GROUPS
TOPENDGRP GRPNO=1

#
*SERVERS
GWTE2TUX SRVGRP="TOPENDGRP" SRVID=1001 RESTART=Y MAXGEN=3 GRACE=10

CLOPT=”-- -f servicedefs -R 30”
GWTUX2TE SRVGRP=”TOPENDGRP” SRVID=1002 RESTART=Y MAXGEN=3 GRACE=1

MIN=5 MAX=5
CLOPT=”-- -f servicedefs”

Listing 1-9 BEA TOP END Service Definition File

############
#service definition file
*TE_LOCAL_SERVICES
DEFAULT: PRODUCT=LPRODUCT
LSERVICE FUNCTION=LFUNC

*TE_REMOTE_SERVICES
RSERVICE PRODUCT=RPRODUCT FUNCTION=RFUNC

Listing 1-10 BEA TOP END Remote Configuration File

TOP END remote configuration file
[top end configuration file]
[component type] remote server
[system] pluto
[primary node] // topendmach 5000
1-20 BEA TUXEDO Programmer’s Guide

CHAPTER

 to
2 Writing Client

Programs

About This Chapter

The sections that follow describe the ATMI functions that enable a client program

� control the client name that is posted in the bulletin board

� comply with the level of security set for the application

� enter and leave an application

� manipulate message buffers

� communicate with a service and receive replies in request/response mode

� modify the way a function performs by specifying various options

The chapter ends with information about how to compile client programs.

Examples Taken from the Sample Application

Many of the examples in this chapter are taken from audit.c , a client program that is
part of the sample application.

Depending on command line options, audit.c retrieves either

� the total account or teller balance for all the branches of the bank, or

� the account or teller balance for a specified branch
BEA TUXEDO Programmer’s Guide 2-1

2 Writing Client Programs

lt
f the
anch

sing

DO

ring

ion,

nted,
The syntax of the command line is as follows:

audit {-a|-t} [bid]

audit is the name of the executable created when the audit.c program is compiled.
The -a option requests that account balances be retrieved; the -t option specifies the
teller balance. If no branch identifier, bid , is included on the command line, the defau
is to retrieve the total account or teller balance for all the branches of the bank. I
branch identifier is included, a balance of the type specified is retrieved for that br
only.

Preliminaries

Before a client program is ready to join the application, some preliminary proces
may be called for to take advantage of BEA TUXEDO system capabilities.

Client Naming

An application can associate both a usrname and a cltname with an execution of a
client process. Values furnished for these names are combined by the BEA TUXE
system with the logical machine identifier (LMID) of the machine where the process
runs, in order to establish a unique identification for the process. It is left to the
discretion of application developers and programmers to work out ways of acqui
the value for the fields. Once acquired they are passed to tpinit() in a TPINIT buffer.
Some possible ways are shown in later examples.

Note: If the process is running outside the administrative domain of the applicat
that is, if it is running on a workstation connected to the administrative
domain, the LMID used is the one for the machine used by the workstation
client to access the application.

Once a client process is uniquely identified, client authentication can be impleme
out-of-band messages can be sent to a specific client or to groups of clients via
tpnotify (3c) and tpbroadcast (3c), and detailed statistical information can be
gathered via tmadmin (1).
2-2 BEA TUXEDO Programmer’s Guide

Preliminaries

ssing

es to
five
ndle

g

Figure 2-1 shows an example of how names might be associated with clients acce
an application. In the example, the application uses the cltname field to indicate a job
function.

Figure 2-1 Client Naming

Unsolicited Notification

Unsolicited notification refers to any communication with a client that is not an
expected response to a service request (or an error code). The example that com
mind is a broadcast message to announce that the world is coming to an end in
minutes. Within the client program there are three things you may want to do to ha
such messages:

� set flags in the TPINIT buffer to select the method used to detect messages

� if you use the dip-in method, call tpsetunsol() to name your message
handling function

� if you use the dip-in method, call tpchkunsol() to see if any unsolicited
messages have been received

The flag values in the TPINIT buffer are described below in the section called “Joinin
the Application.” tpsetunsol (3c) and tpchkunsol (3c) are shown in examples later
in this chapter and are described in the BEA TUXEDO Reference Manual.
BEA TUXEDO Programmer’s Guide 2-3

2 Writing Client Programs

and

lient

line

ple,
he

r
s.

 and

.
 file
oard
 not

is to

ons

Security and Client Authentication

The BEA TUXEDO system provides several levels of security:

� Operating System

� Application Password

� User Authentication

� Optional Access Control Lists

� Mandatory Access Control Lists

� Link-Level Encryption

Configuration of the security level is the responsibility of the system administrator
is discussed in the book Administering the BEA TUXEDO System. The following
paragraphs explain the different levels and discuss what is needed when writing c
programs with SECURITY set.

Operating System
For platforms that have underlying security mechanisms, this is the first
of defense. The security level is configured to “NONE.” This implies, not that
there is no security, but that there are no additional mechanisms (for exam
a BEA TUXEDO system password) beyond what the platform provides. T
BEA TUXEDO system has the notion of an application administrator who
configures the application, starts up the application (servers run with the
permissions of this administrator), and monitors the running application,
making dynamic changes as necessary. Note that this implies that serve
programs are “trusted” since they run with the administrator’s permission
This is supported using the underlying operating system login mechanism
read/write permissions on files, directories, and system resources.

Client programs are run directly by the users with their own permissions
However, they normally have access to the administrative configuration
and the interprocess communication mechanisms, such as the Bulletin B
in shared memory, as part of normal processing. This is true whether or
additional BEA TUXEDO system security is configured. For some
applications running on platforms supporting it, a more secure approach
have the files and IPC mechanisms accessible only to the application
administrator and to have “trusted” client programs run with the permissi
of the administrator (using a setuid mechanism). Combining this with BEA
2-4 BEA TUXEDO Programmer’s Guide

Preliminaries

r

on

vent
le
tect

ord

his
ly. It

de
to the

ing
he

. The

.”
th

r is
ices,
 to do
ut
TUXEDO system security will allow the application to “know” who the use
is that is making the request. For the most secure environment, only
workstation clients should be allowed to access the application; client
programs should not be allowed to run on the machines where applicati
server and administrative programs run. BEA TUXEDO system security
mechanisms can be used in addition to operating system security to pre
unauthorized access. The additional security can be used to avoid simp
violations like someone accessing an unattended terminal. Or it can pro
the boundaries of the administrative domain from inter-domain or
workstation client access over the network by unauthorized users.

Application Password
This security level requires that every client provide an application passw
as part of joining the application. The security level is configured to
“APP_PW.” The administrator must provide an application password when t
level is configured and this password can also be changed administrative
is the responsibility of the administrator to inform users of the application
what the password is. If this level of security is used, BEA TUXEDO
system-supplied client programs, ud(1) for example, prompt for the
application password. Application-written client programs must include co
to obtain the password from a user. The password should not be echoed
user’s terminal. The password is placed in clear text in the TPINIT buffer and
evaluated when the client calls tpinit() to join the application. Code for
handling a password is shown in examples later in this chapter.

User Authentication
The third level of BEA TUXEDO system security is based on authenticat
each individual user in addition to providing the application password. T
security level is set to “USER_AUTH.” This level involves passing user-specific
data to an authentication service. Often, the data is a per-user password
data is automatically encrypted when passed over the network from
workstation clients. The default authentication service, “AUTHSVC,” is
provided by a BEA TUXEDO system-supplied server, AUTHSVR. The
operation of AUTHSVR is described in Chapter 3, “Writing Service Routines
This server can be replaced with an application authentication server wi
logic specific to the application. (For example, it might access the
widely-used Kerberos mechanism for authentication.) With this level of
security, authentication but not authorization is provided. That is, the use
checked when joining the application but then is free to execute any serv
post events, and access application queues. It is possible for the servers
application-specific authorization within the logic of the service routines, b
BEA TUXEDO Programmer’s Guide 2-5

2 Writing Client Programs

ted

d
ver
within
tion
al”
 that
s, or

 can
ntrol
ore

 or

ns

ssing
there are no hooks for authorization checking for access to events or
application queues. The alternative is to use the built-in access control
checking.

Optional Access Control Lists
With the use of access control lists (ACLs), the user is not only authentica
when joining the application, but permissions are automatically checked
when accessing application entities such as services. ACL security also
includes the user-authentication security equivalent to “USER_AUTH.” There
are two levels of ACL checking. The first ACL security level is simply calle
“ ACL.” If “ ACL” is configured, the Access Control Lists are checked whene
a user attempts to access a service name, queue name, or event name
the application. If there is no ACL associated with the name, the assump
is that permission is granted. This is why this level is considered “option
ACLs. It allows the administrator to configure access for those resources
need more security, but ACLs need not be configured for services, queue
events that are accessible to everyone. Some applications may find it
necessary to use both system level and application authorization. An ACL
be used to control who can get to a service, and application logic can co
data-dependent access (for example, who can handle transactions for m
than a million dollars).

Mandatory Access Control Lists
The second ACL security level is “MANDATORY_ACL.” This level is similar to
“ACL,” but an access control list must be configured for every object for
which users are to have access. If “MANDATORY_ACL” is specified and there is
no ACL for the name, permission is denied.

Link-Level Encryption
Users of the BEA TUXEDO system Security Add-On Package (Domestic
International) can establish data privacy for messages moving over the
network links that connect machines of BEA TUXEDO system applicatio
(or domains).

Writing Client Programs with SECURITY Set

Two things need to be done for clients that are running in an application with
SECURITY set: a) getting the security data needed for the specific user, and b) pa
this information to the BEA TUXEDO system when joining the application.
2-6 BEA TUXEDO Programmer’s Guide

Preliminaries

or

he

d to

tion.
Getting the Security Data

The function tpchkauth (3c) is provided so a check on the level of security can be
done before calling tpinit() . This is necessary so that the program can prompt f
an application password and possibly user authentication data needed for the
tpinit() call. tpchkauth() is called without arguments and returns one of the
following values.

TPNOAUTH

Nothing is required beyond the normal operating system login and file
permission security. This is returned for security level “NONE.”

TPSYSAUTH

An application password is required. The client program should prompt t
user to provide the password, and should place it in the passwd field of the
TPINIT buffer (described below). This is required for security level
“APP_PW.”

TPAPPAUTH

The application password is required and in addition the client is expecte
provide a value to be passed to the authentication service in the data field of
the TPINIT buffer. This is returned for security level “USER_AUTH,” “ ACL,”
or “MANDATORY_ACL.”

Joining the Application

In an application configured with SECURITY, it is necessary to pass the security
information to the BEA TUXEDO system via a TPINIT buffer. The TPINIT buffer is
a special typed buffer used by a client program to pass client identification and
authentication information to the system as the client attempts to join the applica
It is defined in the atmi.h header file and contains the following fields.

char usrname[MAXTIDENT+2];
char cltname[MAXTIDENT+2];
char passwd[MAXTIDENT+2];
char grpname[MAXTIDENT+2];
long flags;
long datalen;
long data;
BEA TUXEDO Programmer’s Guide 2-7

2 Writing Client Programs

e the
f

 This
lobal
ith

e

ess
ith

ng

dled.

ou

ed.
The usrname, cltname, and grpname Members of TPINIT

usrname , cltname , and grpname are all NULL-terminated strings of up to
MAXTIDENT characters. MAXTIDENT is defined as 30. usrname is a name representing
the caller; you might elect to use the operating system user name. cltname is a client
name whose semantics are application defined. You might use this field to indicat
role of the user when executing the client program. It is also used for selection o
specific clients when sending broadcast messages. grpname allows a client to be
associated with a resource manager group that is defined in the configuration file.
means that a client can access an XA-compliant resource manager as part of a g
transaction. If grpname is passed as a 0-length string, the client is not associated w
a resource manager group and is in the default client group.

The usrname and cltname fields are associated with the client process when

tpinit() is called and are used for authentication, broadcast notification, and th
retrieval of administrative statistics.

The passwd Member of TPINIT

passwd is a NULL-terminated string of up to 8 characters. It is an application
password in unencrypted format that is used by tpinit() for validation against the
configured application password.

The flags Member of TPINIT

The setting of flags is used to indicate the notification mechanism and system acc
mode to be used. Selections override values specified in the configuration file (w
some exceptions explained below). Possible values for flags are:

TPU_DIP

Select unsolicited notification by dip-in. This is the default method if nothi
is specified in the configuration file. It has the advantage of giving the
receiving program more control over when unsolicited messages are han
The system will detect unsolicited messages for your client process only
while you are within ATMI calls. You may want to check for unsolicited
messages as part of your regular checking routine following returns from
ATMI calls. If you specify this flag (or accept it as the default method), y
should include a call to tpsetunsol() early in your program. Until the
handler for unsolicited messages is known, no messages can be deliver
2-8 BEA TUXEDO Programmer’s Guide

Preliminaries

e of
me
ally,
u
 to

red
EA

O
cted

ber

on
TPU_SIG

Select unsolicited notification by signals. This method has the advantag
immediate notification, but has the limitations that you must have the sa
uid as the sending process, and is not available on all platforms (specific
it is not available with the MS-DOS instantiation of the workstation). If yo
specify this option but do not qualify for it, the system resets your choice
TPU_DIP and calls userlog() to note the event.

TPU_IGN

Ignore unsolicited notification.

TPSA_FASTPATH

Specifies a) that ATMI calls within application code can access BEA
TUXEDO system internal tables via shared memory, and b) that the sha
memory is not protected against access by application code outside of B
TUXEDO system libraries. Overrides the value in UBBCONFIG, except when
NO_OVERRIDE is specified. This is the default if SYSTEM_ACCESS mode is
unspecified.

TPSA_PROTECTED

Specifies that ATMI calls within application code can access BEA TUXED
system internal tables via shared memory but the shared memory is prote
against access by application code outside of BEA TUXEDO system
libraries. Overrides the value in UBBCONFIG, except when NO_OVERRIDE is
specified.

The datalen and data Members of TPINIT

User-specific data is passed by using the datalen and data fields when security is set
to “USER_AUTH,” “ ACL,” or “MANDATORY_ACL.” datalen is the length of the
user-specific data that follows. The buffer type switch entry for the TPINIT typed
buffer sets datalen based on the total size passed in for the typed buffer (the
application data size is the total size less the size of the TPINIT structure itself plus the
size of the data placeholder as defined in the structure). There is a macro, TPINITNEED,
provided in atmi.h , that calculates the size needed when you call it with the num
of bytes of application data you expect to pass.

data is a placeholder for variable length data that is forwarded to an authenticati
service. data is always the last element of the structure.
BEA TUXEDO Programmer’s Guide 2-9

2 Writing Client Programs

ction
s to

tion.
ies
n by
nnot

n
Allocating the TPINIT Buffer

The client program must call tpalloc() to allocate the TPINIT buffer. You can use
the functions described for message typed buffers in the “Buffer Management” se
later in this chapter. A sample is shown in Listing 2-1. The intent in this example i
prepare to pass 8 bytes of application-specific data to tpinit() .

Listing 2-1 Allocating a TPINIT Typed Buffer

.

.

.
TPINIT *tpinfo;
.
.
.
if ((tpinfo = (TPINIT *)tpalloc("TPINIT",(char *)NULL,
 TPINITNEED(8))) == (TPINIT *)NULL){
 Error Routine
}

The Application Key

An application key is associated with each client program when it joins the applica
You can think of this 32-bit value as the security credential for the client; it identif
the client for security purposes. This value cannot be reset by the client (other tha
terminating its association and joining the application as a different user), and ca
be forged. The value is provided to every service invocation as part of the TPSVCINFO
structure in the appkey field (see tpservice (3c)).

The following list indicates how the application key will be set for various security
levels and clients.

� Messages from native BEA TUXEDO system-provided clients that must be ru
by the administrator, such as tmadmin , dmadmin , and tmshutdown , will have the
application key of the administrator (the value is 0x80000000). This is
independent of the security level.

� There are three classes of client users in a system with security set to “NONE” or
“APP_PW”:
2-10 BEA TUXEDO Programmer’s Guide

Preliminaries

o

ty

r but
� Messages from native clients that call tpinit (3c) with a client name of
tpsysadm and are run by the administrator will have the application key of
the administrator.

� Messages from native clients that call tpinit (3c) with a client name of
tpsysopr and are run by the administrator will have the application key of
the system operator (the value is 0xC0000000).

� Other client programs will always have an application key of -1 (there is n
distinction between users).

� Multiple users exist in the case where per-user authentication is done (securi
set to “USER_AUTH,” “ ACL,” or “MANDATORY_ACL”):

� Messages from native clients that call tpinit (3c) with a client name of
tpsysadm and are run by the administrator will have the application key of
the administrator, and will not be authenticated.

� Messages from authenticated clients that call tpinit (3c) with a client name
of tpsysadm will have the application key of the administrator.

� Messages from authenticated clients that call tpinit (3c) with a client name
of tpsysopr will have the application key of the system operator.

� For other clients, the key depends on the security level. For “USER_AUTH”
security, the default AUTHSVR returns the configured user identifier. For
“ACL” or “ MANDATORY_ACL” security, the AUTHSVR returns an application key
with the user identifier in the lower 17 bits and the group identifier in the
next 14 bits.

� Any message that originates from tpsvrinit (3c) or tpsvrdone (3c) will have
the application key of the administrator. Messages that pass through a serve
originate at a client will have the application key of the client.
BEA TUXEDO Programmer’s Guide 2-11

2 Writing Client Programs

e a

rvice

ng,
iated

d. To

nd

ating
 and
Joining and Leaving an Application

The two routines discussed in this section allow a client process to join and leav
BEA TUXEDO system application. The syntax of these functions is as follows.

int
tpinit(tpinfo) /* Join a BEA TUXEDO Application */
TPINIT *tpinfo;

and

int
tpterm() /* Leave a BEA TUXEDO Application */

Before a client can make any service request, it must join the application. If a se
request (or any ATMI function) is called before invoking tpinit() , then it is invoked
automatically with a NULL parameter. This implies that the TPINIT features mentioned
earlier in this chapter cannot be used; the default values are used for client nami
unsolicited notification type, and system access mode, the client cannot be assoc
with a resource manager group, and an application password cannot be specifie
use these features, the application must explicitly invoke the tpinit() function. Once
invoked (either implicitly or explicitly), the calling process may initiate requests a
receive replies. tpterm() removes the process from the application. When tpterm()
returns successfully, the process must again join the application before communic
with a BEA TUXEDO system server process. A typical client process might begin
end as shown in Listing 2-2.

Listing 2-2 Typical Client Process Paradigm

main()
{
 check level of security
 call tpsetunsol() to name your handler for TPU_DIP
 get usrname, cltname
 prompt for application password
 allocate a TPINIT buffer
 place values into TPINIT buffer structure members

 if (tpinit((TPINIT *) tpinfo) == -1){
 error routine;
 }
2-12 BEA TUXEDO Programmer’s Guide

Joining and Leaving an Application

 the

an
e is a
e
e

 allocate a message buffer
 while user input exists {
 place user input in the buffer
 make a service call
 receive the reply
 check for unsolicited messages
 }
 free buffers
 . . .
 if (tpterm() == -1){
 error routine;
 }
}

The argument to tpinit() is a pointer to a structure TPINIT , that is typedef ’d in the
atmi.h header file. If you use a buffer, a TPINIT typed buffer must be allocated via
tpalloc() before calling tpinit() .

tpterm() does not take an argument. Both functions return an integer. On error,
value of the returned integer is -1 and the external global variable, tperrno , is set to
a value that indicates the nature of the error. tperrno is defined in the atmi.h header
file and documented on the tperrno (5) reference page. The convention is to assign
error code to this global variable that reflects the type of error encountered. Ther
discussion of the values of tperrno in Chapter 7, “Error Management.” The complet
list of error codes that can be returned for each of the ATMI functions can also b
found on the reference pages that describe the function and the intro (3c) reference
page in the BEA TUXEDO Reference Manual.

An example of tpinit() and tpterm() is shown in Listing 2-3. It is taken from the
audit.c client program in the banking application.

Listing 2-3 Joining and Leaving the Application

#include <stdio.h> /* UNIX */
#include <string.h> /* UNIX */
#include <fml.h> /* BEA TUXEDO */
#include <atmi.h> /* BEA TUXEDO */
#include <Uunix.h> /* BEA TUXEDO */
#include <userlog.h> /* BEA TUXEDO */
#include "bank.h" /* BANKING #defines */
#include "aud.h" /* BANKING view defines */
BEA TUXEDO Programmer’s Guide 2-13

2 Writing Client Programs

 with

...

main(argc, argv)
int argc;
char *argv[];

{
 ...
 if (strrchr(argv[0],'/') != NULL)
 proc_name = strrchr(argv[0],'/')+1;
 else
 proc_name = argv[0];
 ...
 /* Join application */
 if (tpinit((TPINIT *) NULL) == -1) {
 (void)userlog("%s: failed to join application\n", proc_name);
 exit(1);
 }
 ...
 /* Leave application */
 if (tpterm() == -1) {
 (void)userlog("%s: failed to leave application\n", proc_name);
 exit(1);
 }
}

The previous example shows the client process attempting to join the application
a call to tpinit() . If an error is encountered (that is, if the return code is -1), a
message is written to the central event log via a call to userlog() . The userlog()
function takes arguments similar to printf() and is documented in the userlog (3c)
reference page in the BEA TUXEDO Reference Manual. As explained, the client
process is invoked by entering its name at the prompt with the mandatory -a or -t
option. Its name is captured in argv[0] and is placed in the global variable
proc_name which gets written to the event log as part of the message. A similar
explanation applies to the call to tpterm() .
2-14 BEA TUXEDO Programmer’s Guide

Buffer Management

r the
 BEA
, and

our

ut

.
pes

t
ust
ffer
Buffer Management

Before messages can be sent between processes, a buffer must be allocated fo
message data. The following sections describe the buffer types supported by the
TUXEDO system and how buffers are allocated, changed in size, tested for type
freed using ATMI functions.

Typed Buffers for Messages

The BEA TUXEDO system is delivered with nine message buffer types defined:

STRING CARRAY FML VIEW X_COMMON X_C_TYPE X_OCTET FML32 VIEW32

The buffer types are defined in tmtypesw.c (which can be found in
$TUXDIR/lib/tmtypesw.c , with documentation in tuxtypes (5)). When the BEA
TUXEDO system software is built, tmtypesw.o is archived in the BEA TUXEDO
system libraries that are automatically linked in when the buildclient and
buildserver commands are invoked, so the nine defined types are available to y
application programs.

The tmtypesw.c file can be edited to add or remove buffer types. Information abo
how to do this can be found in the book Administering the BEA TUXEDO System. Only
buffer types defined in tmtypesw.c can be known to your client or server programs
The ubbconfig (5) BUFTYPE parameter can be used to specify the types and subty
a given service can know about.

Buffer Types: STRING

The STRING buffer type is what is conventionally understood as a string in the C
language. It is a character array terminated by the null character. Data dependen
routing is not provided for this buffer type. If routing functions are desired, they m
be written as part of the application. Encoding and decoding is provided for this bu
type.
BEA TUXEDO Programmer’s Guide 2-15

2 Writing Client Programs

ay; it

 as

 be

m

ion,

rent

e
he
 of

,
d

rt

 of a
nd
way
Buffer Types: CARRAY

The CARRAY buffer type (and equivalently X_OCTET) is an array of characters, any of
which can be the null character. The application defines the semantics of the arr
is not interpreted by the BEA TUXEDO system. Data dependent routing is not
provided for this buffer type. If routing functions are desired, they must be written
part of the application. No encoding or decoding is provided for a CARRAY buffer when
crossing machine boundaries since the bytes are not interpreted by the system.

Buffer Types: FML and FML32

FML buffers offer the advantages of data independence and flexibility; fields may
present or absent, or may have multiple occurrences. Also, FML buffers interface well
with both the BEA TUXEDO system DBMS and the DES. The BEA TUXEDO syste
DBMS supports fielded records in database files, and the mio client process of the
BEA TUXEDO system DES uses fielded buffers for input and output data. In addit
this data type provides the functionality of data dependent routing. Automatic
encoding and decoding is done if the buffer is passed between machines of diffe
types.

FML functions are used to manipulate FML typed buffers. These functions include som
that convert fielded buffers to C structures and back again, thus providing both t
performance gains of C structures for lengthy field manipulations and the flexibility
fielded buffers. A C structure that is derived from a fielded buffer is called a VIEW.

FML32 is similar to FML but allows for larger string and character fields, more fields
and larger overall buffers. The FML32 buffer type uses environment variables suffixe
with “32”, for example, FIELDTBLS32 and FLDTBLDIR32. FML32 functions (like their
FML counterparts but with a “32” suffix) are used to manipulate these buffers.
Functions are also provided to convert between 16-bit and 32-bit FML buffers
(assuming that the limits are not exceeded), and functions are available to conve
between FML32 and VIEW32 buffers.

Buffer Types: VIEW, VIEW32, X_C_TYPE, and X_COMMON

Buffers of the VIEW type (and equivalently X_C_TYPE and X_COMMON) are C structures.
The C structure is passed between processes in a VIEW typed buffer of a specific
subtype. It can be one derived from a fielded buffer or one defined independently
fielded buffer. The ATMI buffer management primitives for allocating, resizing, a
freeing a VIEW buffer are the same for both types, but there are differences in the
2-16 BEA TUXEDO Programmer’s Guide

Buffer Management

our
DO

.

ch

sues
lain

the two types of VIEWS themselves are defined and in how they are handled within y
programs. These differences were described in the section titled, “The BEA TUXE
System Development Environment,” in Chapter 1. Both types of VIEW buffer support
data dependent routing and automatic encoding and decoding when the buffer is
passed between unlike machines.

A comparison of how to create and use the two VIEW types is summarized in Table 2-1

Buffers of type X_COMMON should contain only short, long, and character fields, whi
are common to both the COBOL and C languages.

The VIEW32 type is similar to the VIEW type but supports larger character fields and
bigger records. It is also used for conversion to/from FML32 records. The VIEW32
buffer type uses environment variables suffixed with “32”, for example,
FIELDTBLS32 , FLDTBLDIR32, VIEWFILES32 , and VIEWDIR32.

Buffer Types: Summary

Although system configuration and defining buffer types are application design is
rather than programming issues, the above discussion has been included to exp
how processes know about the various buffer types so you can allocate buffers
correctly for the communication calls between processes.

Table 2-1 Comparison of Two VIEW Types

FML-dependent VIEW FML-independent VIEW

Creating create the view description file with FML
information in it

create the view description file without FML
information in it

use the viewc compiler without the -n option to
compile the description file

use the viewc compiler with the -n option to
compile the description file

Using set and export FIELDTBLS, FLDTBLDIR,
VIEWFILES, VIEWDIR in the ENVFILE for the
machine the client process is running on

set and export VIEWFILES and VIEWDIR in
the ENVFILE for the machine the client process
is running on

#include fml.h , the header file created from
the field table file, and the header file created from
the view compiler in the programs that define FML
and VIEW buffers

#include the header file created from the
view compiler in the programs that define
VIEW buffers
BEA TUXEDO Programmer’s Guide 2-17

2 Writing Client Programs

es
size,

nt, the
 typed
ATMI Buffer Primitives

It is important for the BEA TUXEDO system programmer to know what buffer typ
are required and expected by the application. The ATMI functions that allocate, re
and free the buffers take the buffer type and subtype as arguments. For the types
provided by BEA TUXEDO, the subtype argument has meaning only when type is
VIEW, VIEW32, X_C_TYPE, or X_COMMON. In this case, the subtype is the name of the
specific C structure defined as a VIEW. In the other buffer types, the subtype argument
is NULL.

Allocating a Typed Buffer

Initially, a client process does not have any buffers. Before a message can be se
client process must allocate a buffer of a supported type to carry the message. A
buffer is allocated by using the tpalloc() function. The syntax of this function is:

char*
tpalloc(type, subtype, size) /* Allocate a new data buffer */
char * type , * subtype ;
long size ;

The three arguments the function takes are type, subtype, and size. The value of type
must be a type known to BEA TUXEDO.

The VIEW, VIEW32, X_C_TYPE, and X_COMMON buffers require the subtype argument.
(See Listing 2-4.) In the cases where a subtype is not relevant, assign the NULL value
to this argument. This is illustrated in Listing 2-5, Listing 2-6, and Listing 2-7.

Listing 2-4 Allocating a VIEW Buffer

struct aud *audv; /* pointer to aud view structure */
 . . .
audv = (struct aud *) tpalloc("VIEW", "aud", sizeof(struct aud));
 . . .

Listing 2-5 shows the allocation of an FML typed buffer.
2-18 BEA TUXEDO Programmer’s Guide

Buffer Management

pes

ult

-6);

n
e
Listing 2-5 Allocating an FML Buffer

FBFR *fbfr; /* pointer to an FML buffer structure */
 . . .
fbfr = (FBFR *)tpalloc("FML", NULL, Fneeded(f, v))
 . . .

The size argument can be set to zero for all the BEA TUXEDO system-supplied ty
except for CARRAY. If size is not specified (that is, if it is set to zero), BEA TUXEDO
uses a default size that is defined for each buffer type. If the size argument is
specified, the size of the buffer will be the larger of the specified size or the defa
size. The default size for STRING is 512 bytes, and it is 1024 bytes for FML, FML32,
VIEW, X_C_TYPE, X_COMMON, and VIEW32.

For a CARRAY a size greater than zero must be specified (see example in Listing 2
the default size is 0 and this causes tpalloc() to return a NULL pointer and set
tperrno to TPEINVAL.

Note that in cases of error, tpalloc() always returns the NULL pointer. Other causes
for error include failure to specify a value for type (or subtype in the case of VIEW),
specifying a type that is not known to the system, and failing to join the applicatio
before attempting allocation. Refer to the tpalloc (3c) reference page for the complet
list of error codes and their explanation.

Upon success, tpalloc() returns a pointer of type char . For types other than STRING
and CARRAY, you should cast it to the proper C structure pointer or to an FML pointer.
(See Listing 2-4 and Listing 2-5.)

Listing 2-4 shows the allocation of a VIEW typed buffer. It is taken from the audit.c
client program in the banking application. The aud structure is the VIEW typed buffer
that is defined in Chapter 1, “Introduction and Overview.”
BEA TUXEDO Programmer’s Guide 2-19

2 Writing Client Programs

t

ze
 if

ust

hown

r the
tpalloc Examples

Listing 2-6 shows the allocation of a CARRAY typed buffer. The value of casize must
not be zero.

Listing 2-6 Allocating a CARRAY Buffer

char *cptr;
long casize;
. . .
casize = 1024;
cptr = tpalloc("CARRAY", NULL, casize);
. . .

Listing 2-7 shows the allocation of a STRING typed buffer. In the example, the defaul
size defined by the system is used as the value for the size argument to tpalloc() .

Listing 2-7 Allocating a STRING Buffer

char *cptr;
 . . .
cptr = tpalloc("STRING", NULL, 0);
. . .

What About FML Buffer Management Functions?

If you’ve been looking at the BEA TUXEDO FML Programmer’s Guide, especially the
section in Chapter 5 called “Buffer Allocation and Initialization,” you probably reali
it is also possible to manage FML buffers by the routines described there. However,
the buffers are to be used in the communication calls in the ATMI interface, they m
be managed by the routines described on the tpalloc (3c) reference page.
Specifically, this means that Falloc() , Frealloc() , and Ffree() should be
replaced by tpalloc() , tprealloc() , and tpfree() . Finit() is not needed
because tpalloc() automatically initializes the buffer. Also, since the FML typed
buffer is given a default size by the system, Fneeded() should be used only when you
wish to assign the buffer a specific size that is larger than the default size as is s
above in Listing 2-5. The f and v arguments to Fneeded are integer values that
represent the number of fields and the space for field values in bytes required fo
fielded buffer. All the other FML functions described in Chapter 5 of the BEA TUXEDO
FML Programmer’s Guide can be used with all FML typed buffers regardless of how
the buffers were allocated.
2-20 BEA TUXEDO Programmer’s Guide

Buffer Management

d,
ly.

e is
nch
med
Putting Data in the Buffer

Once the buffer has been allocated, data can be put in it. The aud VIEW typed buffer
has three members (fields). They are b_id , the branch identifier taken from the
command line (if given); balance , used to return the requested balance; and ermsg ,
used to return a message to the status line for the user. When audit is used to query a
specific branch balance, the b_id member is set to the branch identifier to be querie
and the balance and ermsg members are set to zero and the null string, respective
This is illustrated in Listing 2-8.

Listing 2-8 Placing Data in a Message Buffer - Example 1

...
audv = (struct aud *)tpalloc("VIEW", "aud", sizeof(struct aud));

/* Prepare aud structure */

audv->b_id = q_branchid;
audv->balance = 0.0;
(void)strcpy(audv->ermsg, "");
...

When audit is used to query the total bank balance, the total balance at each sit
obtained by a call to the BAL server. To run a query on each site, a representative bra
identifier is specified. Representative branch identifiers are stored in an array na
sitelist[] . Hence, the aud structure is set up as illustrated in Listing 2-9.

Listing 2-9 Placing Data in a Message Buffer - Example 2

...
/* Prepare aud structure */

audv->b_id = sitelist[i];/* routing done on this field */
audv->balance = 0.0;
(void)strcpy(audv->ermsg, "");
...

An example of code that puts data into a STRING buffer is part of Listing 2-10.
BEA TUXEDO Programmer’s Guide 2-21

2 Writing Client Programs

 you
Resizing a Typed Buffer

It is possible to resize the buffer that is initially allocated by tpalloc() if you want to
use the same buffer to input and send messages of different sizes. The function
would use in this case is tprealloc() . The syntax of the function is as follows.

char*
tprealloc(ptr, size) /* Change a data buffer's size */
char * ptr ;
long size ;

For example, if a buffer has been allocated as type STRING, it is possible to reallocate
a buffer of a different size but of the same type, as illustrated in Listing 2-10.

Listing 2-10 Resizing a Buffer

#include <stdio.h>
#include "atmi.h"

char instr[100]; /* string to capture stdin input strings */
long s1len, s2len; /* string 1 and string 2 lengths */
char *s1ptr, *s2ptr; /* string 1 and string 2 pointers */

main()

{
 (void)gets(instr); /* get line from stdin */
 s1len = (long)strlen(instr)+1; /* determine its length */

 join application

 if ((s1ptr = tpalloc("STRING", NULL, s1len)) == NULL) {
 fprintf(stderr, "tpalloc failed for echo of: %s\n", instr);
 leave application
 exit(1);
 }
 (void)strcpy(s1ptr, instr);

 make communication call with buffer pointed to by s1ptr

 (void)gets(instr); /* get another line from stdin */
 s2len = (long)strlen(instr)+1; /* determine its length */
 if ((s2ptr = tprealloc(s1ptr, s2len)) == NULL) {
 fprintf(stderr, "tprealloc failed for echo of: %s\n", instr);
 free s1ptr's buffer
 leave application
 exit(1);
2-22 BEA TUXEDO Programmer’s Guide

Buffer Management

 be
inter

rned
ve

d size
a into

 valid.

 be
 }
 (void)strcpy(s2ptr, instr);

 make communication call with buffer pointed to by s2ptr
 . . .
}

As illustrated, tprealloc() takes two parameters, a pointer to the buffer that is to
resized and a long integer that tells the function the new size of the buffer. The po
passed to tprealloc() must have originally been allocated by a call to tpalloc() ;
otherwise the call will fail and tperrno will be set to TPEINVAL to signify that invalid
arguments have been passed to the function. The pointer returned by tprealloc()
will point to a buffer of the same type as the original buffer. You must use the retu
pointer to reference the resized buffer because the location of the buffer may ha
changed. The contents of the buffer, up to the smaller of the two sizes, remains
unchanged. When tprealloc() is called to make a buffer larger, new space is
available beyond the existing contents. When tprealloc() is called to make a buffer
smaller, the buffer does not actually become smaller; space beyond the specifie
is unusable. If you really want to free up the unused space, you must copy the dat
a buffer of the appropriate size and free the larger buffer.

tprealloc() returns the NULL pointer on error and sets tperrno as indicated on the
tpalloc (3c) reference page. When tprealloc() returns the NULL pointer, the
contents of the buffer passed to it may have been altered and may be no longer

Listing 2-11 shows an expanded version of the example in Listing 2-10 that could
used to check for all error codes tprealloc() can return.

Listing 2-11 Error Checking for tprealloc()

. . .
if ((s2ptr=tprealloc(s1ptr, s2len)) == NULL)
 switch(tperrno) {
 case TPEINVAL:
 fprintf(stderr, "given invalid arguments\n");
 fprintf(stderr, "will do tpalloc instead\n");
 tpfree(s1ptr);
 if ((s2ptr=tpalloc("STRING", NULL, s2len)) == NULL) {
 fprintf(stderr, "tpalloc failed for echo of: %s\n", instr);
 leave application
 exit(1);
 }
BEA TUXEDO Programmer’s Guide 2-23

2 Writing Client Programs

nts.
 of

or

ree
e
 a
. The
by the

least
,

 break;
 case TPEPROTO:
 fprintf(stderr, "tried to tprealloc before tpinit;\n");
 fprintf(stderr, "program error; contact product support\n");
 leave application
 exit(1);
 case TPESYSTEM:
 fprintf(stderr,
 "BEA TUXEDO error occurred; consult today's userlog file\n");
 leave application
 exit(1);
 case TPEOS:
 fprintf(stderr, "Operating System error %d occurred\n",Uunixerr);
 leave application
 exit(1);
}

Checking for Buffer Type

The tptypes() function takes a pointer to a data buffer as its first argument and
returns the type and subtype (if there is one) for that buffer in its other two argume
It returns a long integer which, on success, is the length of the buffer. The syntax
this function is:

long
tptypes(ptr, type, subtype) /* Determine a data */
char * ptr , * type , * subtype ; /* buffer's type and subtype */

The pointer you supply to this function must point to a buffer originally allocated
reallocated by tpalloc() or tprealloc() , otherwise it will fail complaining of
invalid arguments. If the type is not VIEW, the subtype parameter will point to a
character array containing the null string upon return from the function call. All th
of the parameters of tptypes() are pointers to character. The first parameter is th
pointer to the typed buffer and must be non-null. Be sure to cast it as a pointer to
character before passing it to this function since it is expecting a character pointer
second and third parameters return the type and subtype of the buffer pointed to
first parameter. The second parameter must be a character array of at least
TM_TYPELEN characters, and the third parameter must be a character array of at
TM_STYPELEN characters. On success, the size of the buffer is returned. On error
tptypes() returns -1 and sets tperrno to an error code that signifies the problem.
All the possible codes are listed on the intro (3c) and tpalloc (3c) reference pages.
2-24 BEA TUXEDO Programmer’s Guide

Buffer Management

tes

r

r

In addition to the fragment shown below (in Listing 2-12), an example of tptypes()
can be found in Listing 3-2 in Chapter 3, “Writing Service Routines.” It demonstra
a service routine checking the type of buffer received.

The size value returned by tptypes() can be used to determine if the default buffe
size is large enough to hold your data.

Listing 2-12 Getting Buffer Size

. . .
iptr = (FBFR *)tpalloc("FML", NULL, 0);
ilen = tptypes(iptr, NULL, NULL);
. . .
if (ilen < mydatasize)
 tprealloc(iptr, mydatasize);

Freeing a Typed Buffer

To free a buffer allocated by tpalloc() or reallocated by tprealloc() , use the
tpfree() function. The syntax of this function is:

void
tpfree(ptr) /* Free a data buffer */
char * ptr ;

The argument to this function is a pointer previously returned by the tpalloc() or
tprealloc() function. If tpfree() is given a pointer that does not point to a buffe
obtained from tpalloc() or tprealloc() , it returns without freeing anything, and it
does not return an error condition. tpfree() expects a character pointer as its only
parameter. Listing 2-13 shows an example of its use.

Listing 2-13 Freeing a Buffer

struct aud *audv; /* pointer to aud view structure */
. . .
audv = (struct aud *)tpalloc("VIEW", "aud", sizeof(struct aud));
. . .
tpfree((char *)audv);
BEA TUXEDO Programmer’s Guide 2-25

2 Writing Client Programs

he
tine for
ctions
ces and

ly

e

 for
ll

f
as

atch,
Service Calls

Once a client process has joined the application, allocated a buffer, and placed t
input data request in it, it can then send the request message to a service subrou
processing and receive a reply message. The next sections discuss the ATMI fun
that allow processes that are acting as clients to send message requests to servi
receive replies either synchronously or asynchronously.

The tpcall() function sends a request to a service subroutine and synchronous
waits for its reply.

The tpacall() function sends a request to a service and immediately returns. Th
reply to the service call is asynchronously received by calling the tpgetrply()
function.

Sending Synchronous Messages: tpcall()

tpcall() is used to send synchronous messages. The syntax of this function is:

int
tpcall(svc, idata, ilen, odata, olen, flags) /* Send service request */
char * svc , * idata ; /* and await its reply */
long ilen ;
char ** odata ;
long * olen , flags ;

tpcall() sends a request to the service that is specified in its first parameter, svc. The
service named in svc must be one offered in your application. tpcall() waits for the
expected reply. It is logically the same as calling the tpacall() function immediately
followed by tpgetrply() . The request carries the priority that is set by the system
the service specified in svc unless a different priority has been explicitly set by a ca
to tpsprio() .

The second parameter of the function, idata , is a pointer that contains the address o
the data portion of the request. The pointer must reference a typed buffer that w
allocated by a prior call to tpalloc() . Note that the type (and subtype) of idata must
match the type (and subtype) expected by the service routine. If the types do not m
the system sets tperrno to TPEITYPE and the function call fails.
2-26 BEA TUXEDO Programmer’s Guide

Service Calls

ted

e

te a

sful
of

 case,
t

o

 be

The third parameter, ilen , specifies the length of the request data in the buffer poin
to by idata . If the buffer is a self-defining type, that is, an FML, FML32, VIEW, VIEW32,
X_COMMON, X_C_TYPE, or STRING buffer, ilen is ignored and can be set to zero. If th
request requires no data, set idata to the NULL pointer. This causes the ilen parameter
to be ignored. If no data is being sent with the request, there is no need to alloca
buffer for idata .

The next two parameters are the address of a pointer to the output buffer, odata , and
a pointer to the length of the reply data, olen . The output buffer, ** odata , must have
been allocated by a previous call to tpalloc() . This buffer is used to receive the reply
message. If the reply message sent back contains no data portion, upon succes
return from tpcall() , *olen will be set to zero, and the pointer and the contents
the output buffer will remain unchanged. It is an error for either ** odata or *olen to
point to NULL.

The same buffer can be used for both the request and reply message. If this is the
then odata must be set to the address of the pointer returned from allocating the inpu
buffer.

Listing 2-14 shows the client program, audit.c , making a synchronous call using the
same buffer for both the request and reply message. Using the same buffer is
appropriate in this particular case, since the *audv message buffer has been set up t
accommodate both request and reply information in the same buffer. The b_id field is
queried by the service but not overwritten and the bal and ermsg fields have been
initialized to zero and the null string, respectively, in anticipation of the values to
returned by the service. The svc_name and hdr_type variables represent the service
name and the balance type (account or teller) requested.

Listing 2-14 Using the Same Buffer for Request and Reply Messages

. . .
/* Create buffer and set data pointer */

audv = (struct aud *)tpalloc("VIEW", "aud", sizeof(struct aud));

 /* Prepare aud structure */

audv->b_id = q_branchid;
audv->balance = 0.0;
(void)strcpy(audv->ermsg, "");

 /* Do tpcall */

if (tpcall(svc_name,(char *)audv,sizeof(struct aud),
BEA TUXEDO Programmer’s Guide 2-27

2 Writing Client Programs

ee

e
s that

rs in
turned
 size

 not

ase in
ibility
he
er
ces a

ffer
e
 (char **)&audv,(long *)&audrl,0)== -1){
 (void)fprintf (stderr, "%s service failed\n %s: %s\n”,
 svc_name, svc_name, audv->ermsg);
 retc = -1;
}
else
 (void)printf ("Branch %ld %s balance is $%.2f\n",
 audv->b_id, hdr_type, audv->balance);
. . .

Note: For an example in which different buffers are used for input and output, s
Listing 3-2 in Chapter 3, “Writing Service Routines.”

Buffers used for receiving messages can grow upon receipt of the message if th
message proves to be too large for the allocated buffer. BEA TUXEDO guarantee
a received message will fit into the buffer by growing the buffer automatically.
However, it is necessary for the programmer to test for size changes of reply buffe
order to determine their actual sizes. The new size is accessible by the address re
in the olen parameter. To determine if a reply buffer changed in size, compare the
of the reply buffer before the call to tpcall() with the value of *olen after its return.
If *olen is larger than the original size, the buffer has grown. If not, the buffer has
changed in size. You should reference the output buffer by the value returned in odata
after the call, because the output buffer may change for reasons other than incre
buffer size. This scenario does not apply to request buffers since there is no poss
that the request data will grow upon placing it in the buffer. Note that if you use t
same buffer for the request and reply message, and the pointer to the reply buff
changed because the buffer grew, then the input buffer pointer no longer referen
valid address.

Listing 2-15 offers a generic example of an application testing for a change in bu
size after a call to tpcall() . The logic exercised in this particular example is that th
input and output buffers must remain equal in size.

Listing 2-15 Testing for Change in Size of the Reply Buffer

char *svc, *idata, *odata;
long ilen, olen, bef_len, aft_len;
. . .
if (idata = tpalloc("STRING", NULL, 0) == NULL)
 error

2-28 BEA TUXEDO Programmer’s Guide

Service Calls

ing

f
rt of

al

d as

 be
 this
s
if (odata = tpalloc("STRING", NULL, 0) == NULL)
 error

place string value into idata buffer

ilen = olen = strlen(idata)+1;
. . .
bef_len = olen;
if (tpcall(svc, idata, ilen, &odata, &olen, flags) == -1)
 error

aft_len = olen;

if (aft_len > bef_len){ /* message buffer has grown */

 if (idata = tprealloc(idata, olen) == NULL)
 error
}

Values for the flags Argument: tpcall()

The last argument that tpcall() takes is flags . The values given to the flags

argument can change the operation of the communication call in some way, allow
additional flexibility to the application. If flags is set to 0, the communication is
conducted in the default manner.

TPNOTRAN

If the client process is in transaction mode when it calls tpcall() , and flags
is set to TPNOTRAN, the service that is invoked by the call will not be part o
the transaction; that is, the operations that the service performs are not pa
the caller’s transaction. There’s more on this subject in Chapter 5, “Glob
Transactions in BEA TUXEDO System.”

TPNOCHANGE

By using this value, the calling program is indicating that it wants the
message returned in the same type of buffer that was originally allocate
the output buffer. In other words, when this flag is set, the type of buffer
returned to the caller must be the same as the one pointed to by *odata . This
is known as strong type checking. The default is to allow a buffer type to
different than the original one so long as the caller recognizes the type. In
case, the buffer type for *odata changes to the received buffer type. This i
known as weak type checking. A call to tptypes() informs the recipient of
the new buffer type.
BEA TUXEDO Programmer’s Guide 2-29

2 Writing Client Programs

n
g

 to

ch

y
e it

he
s in

.

s in

TPNOBLOCK

TPNOBLOCK concerns the action a function call takes if a blocking conditio
exists. Callers of the communication routines typically block when waitin
for a reply to arrive although they may also block when trying to send a
request if all server queues or internal buffers are full. A default blocking
time-out period is defined for the application in the configuration file. It
specifies the amount of time a caller should wait for a blocking condition
subside when one exists. If the condition persists beyond this limit, the
function call fails and tperrno is set to TPETIME. When the value of flags
is set to TPNOBLOCK, if a blocking condition exists, the call fails immediately
and the request message is not sent. In this case, tperrno is set to TPEBLOCK.
Note that tpcall() is a dual function in that it both sends a request and
receives a reply. When TPNOBLOCK is set, it affects only the send part of the
function; if all the server queues are filled or the internal buffers into whi
the message buffers are copied are full, the call will not block but
immediately return. However, if it must wait for the reply (which is usuall
the case), this flag setting does not immunize the call from blocking whil
waits.

TPNOTIME

By setting flags to TPNOTIME, you are telling the system to ignore the
blocking time-out limit because the caller is willing to wait indefinitely for
the blocking condition to subside. However, if the caller is in transaction
mode, this flag has no effect; it is subject to the transaction time-out limit. T
timing out of transactions is discussed in Chapter 5, “Global Transaction
BEA TUXEDO System.”

TPSIGRSTRT

Another valid value for the flags argument is TPSIGRSTRT, which concerns
the action to take if there is a signal interrupt. When flags is set to this value,
the call is automatically made again. As a result, if a signal interrupts the
underlying system call, the function call is reissued. When flags is not set to
this value and there is a signal interrupt, the function call fails and tperrno
returns TPGOTSIG.

Flag values can be or ’d together.

tpcall() returns an integer. On failure, the value of this integer is -1 and the value
of tperrno is set to an appropriate value reflecting the type of error that occurred
Some of the causes for error have already been discussed, while others have
transaction implications and will be introduced in Chapter 5, “Global Transaction
BEA TUXEDO System.” In general, communication calls may fail for a variety of
errors. Many of the errors returned on communication calls can be fixed on an
2-30 BEA TUXEDO Programmer’s Guide

Service Calls

e

e
n
f
application level. They include application defined errors (TPESVCFAIL), errors in
processing return arguments (TPESVCERR), typed buffer errors (TPEITYPE,
TPEOTYPE), time-out (TPETIME), and protocol errors (TPEPROTO), among others. They
are all discussed in Chapter 7, “Error Management,” and are listed on the intro (3c)
and tpcall (3c) reference pages. The communication of these failures will also b
explained in the discussion of the tpreturn() function in Chapter 3, “Writing Service
Routines.”

Examples of the Use of flags Arguments

The next three examples show tpcall() using the communication flags in various
scenarios.

Listing 2-16 is based on the TRANSFER service, which is part of the XFER server process
of bankapp . The TRANSFER service assumes the role of a client when it calls on th
services of WITHDRAWAL and DEPOSIT. In the example, we have set the communicatio
flag to TPSIGRSTRT in these service calls to give the transaction a better chance o
committing.

Listing 2-16 Sending a Synchronous Message with TPSIGRSTRT Set

 /* Do a tpcall to withdraw from first account */

if (tpcall("WITHDRAWAL", (char *)reqfb,0, (char **)&reqfb,
 (long *)&reqlen,TPSIGRSTRT) == -1) {
 (void)Fchg(transf, STATLIN, 0,
 "Cannot withdraw from debit account", (FLDLEN)0);
 tpfree((char *)reqfb);
}
...
 /* Do a tpcall to deposit to second account */

if (tpcall("DEPOSIT", (char *)reqfb, 0, (char **)&reqfb,
 (long *)&reqlen, TPSIGRSTRT) == -1) {
 (void)Fchg(transf, STATLIN, 0,
 "Cannot deposit into credit account", (FLDLEN)0);
 tpfree((char *)reqfb);
}

BEA TUXEDO Programmer’s Guide 2-31

2 Writing Client Programs

t is
ld be
n

counts.
 the

 hard
ll.
Listing 2-17 illustrates a communication call that suppresses transaction mode. I
being made to a service that is not affiliated with a resource manager and it wou
an error to allow it to participate in the transaction. Specifically in this example, a
accounts receivable report, accrcv is to be printed against a database named ac
The service routine REPORT interprets the parameters and sends the byte stream for
completed report as a reply. The client, shown here, uses tpcall() to send the byte
stream to a service called PRINTER that prints out the byte stream to the appropriate
printer for this client. It receives a reply from the PRINTER service naming the printer
that was chosen to print the report to make it convenient for the user to pick up the
copy. Listing 2-19 shows a similar example using an asynchronous message ca

Listing 2-17 Sending a Synchronous Message with TPNOTRAN Set

#include <stdio.h>
#include "atmi.h"

main()

{
char *rbuf; /* report buffer */
long r1len, r2len, r3len; /* buffer lengths of send, 1st reply,
 and 2nd reply buffers for report */
join application

if (rbuf = tpalloc("STRING", NULL, 0) == NULL) /* allocate space for report */
 leave application and exit program
(void)strcpy(rbuf,
 "REPORT=accrcv DBNAME=accounts"); /* send parms of report */
r1len = strlen(rbuf)+1; /* length of request */

start transaction

if (tpcall("REPORT", rbuf, r1len, &rbuf,
 &r2len, 0) == -1) /* get report print stream */
 error routine
if (tpcall("PRINTER", rbuf, r2len, &rbuf,
 &r3len, TPNOTRAN) == -1) /* send report to printer */
 error routine
(void)printf("Report sent to %s printer\n",
 rbuf); /* indicate which printer */

terminate transaction
free buffer
leave application
}

2-32 BEA TUXEDO Programmer’s Guide

Service Calls

n

e
ors
ld
 that
 could
In Listing 2-17, where error routine has been indicated, it should include printing a
error message, aborting the transaction, freeing allocated buffers, leaving the
application, and exiting the program.

Listing 2-18 illustrates the use of the TPNOCHANGE communication flag to enforce
strong buffer type checking. This example refers to the same REPORT service that is
used above in Listing 2-17. In this one, the reply is received in a VIEW typed buffer
called rview1 and the elements are printed in printf() statements. The strong type
check flag, TPNOCHANGE, is used to force the reply to be returned in a buffer of typ
VIEW and of subtype rview1 . A possible reason for this check is to guard against err
that may occur in the REPORT service subroutine in processing the request that cou
result in a reply buffer of an incorrect type. Another reason is to prevent changes
are not made consistently across all areas of dependency. For example, someone
have changed the REPORT service to standardize all replies in some other VIEW format
without modifying the client process to reflect the change.

Listing 2-18 Sending a Synchronous Message with TPNOCHANGE Set

#include <stdio.h>
#include "atmi.h"
#include "rview1.h"

main(argc, argv)
int argc;
char * argv[];

{
char *rbuf; /* report buffer */
struct rview1 *rrbuf; /* report reply buffer */
long rlen, rrlen; /* buffer lengths of send and reply
 buffers for report */
if (tpinit((TPINIT *) tpinfo) == -1)
 fprintf(stderr, "%s: failed to join application\n", argv[0]);

if (rbuf = tpalloc("STRING", NULL, 0) == NULL) { /* allocate space for report */
 tpterm();
 exit(1);
}
 /* allocate space for return buffer */
if (rrbuf = (struct rview1 *)tpalloc("VIEW", "rview1", sizeof(struct rview1)) \
== NULL{
 tpfree(rbuf);
 tpterm();
 exit(1);
}
(void)strcpy(rbuf, "REPORT=accrcv DBNAME=accounts FORMAT=rview1");
BEA TUXEDO Programmer’s Guide 2-33

2 Writing Client Programs

r of the
ed

A

ly, a
rlen = strlen(rbuf)+1; /* length of request */
 /* get report in rview1 struct */
if (tpcall("REPORT", rbuf, rlen, (char **)&rrbuf, &rrlen, TPNOCHANGE) == -1) {
 fprintf(stderr, "accounts receivable report failed in service call\n");
 if (tperrno == TPEOTYPE)
 fprintf(stderr, "report returned has wrong view type\n");
 tpfree(rbuf);
 tpfree(rrbuf);
 tpterm();
 exit(1);
}
(void)printf("Total accounts receivable %6d\n", rrbuf->total);
(void)printf("Largest three outstanding %-20s %6d\n", rrbuf->name1, rrbuf->amt1);
(void)printf(" %-20s %6d\n", rrbuf->name2, rrbuf->amt2);
(void)printf(" %-20s %6d\n", rrbuf->name3, rrbuf->amt3);
tpfree(rbuf);
tpfree(rrbuf);
tpterm();
}

Sending Asynchronous Messages: tpacall()

This section discusses the sending of asynchronous messages where the sende
request does not wait for the reply. The first half of this communication is perform
by tpacall() . The syntax of this function is:

int
tpacall(svc, data, len, flags) /* Send service request */
char * svc , * data ;
long len , flags ;

The tpacall() function sends a request message to the service named in the svc
parameter and immediately returns from the call. The next three parameters, data ,
len , and flags , have the same semantics as idata , ilen , and flags of the tpcall()
function. Upon successful completion of the call, tpacall() returns an integer that
serves as a descriptor used to get the correct reply for the sent request. While
tpacall() is in transaction mode (topic of Chapter 5, “Global Transactions in BE
TUXEDO System,”), there may be no outstanding replies when the transaction
commits; that is, within a given transaction, for each request sent expecting a rep
corresponding reply must eventually be received.
2-34 BEA TUXEDO Programmer’s Guide

Service Calls

d the
ion

ue
r 5,

n

ever,

er to
Values for the flags Argument: tpacall()

The communication flags that tpacall() takes as values for the flags argument
pertain to the send part of the communication. As a result, the flag value TPNOCHANGE
is removed since it concerns the output buffer which is not present in this call, an
value TPNOREPLY is added since the receive part is not implicit to this communicat
call. When tpcall() is used, the fact that a reply is expected is implicit. tpacall()
represents only the sending part of tpcall() , and it is possible to indicate whether a
reply is expected or not.

TPNOREPLY
If the value TPNOREPLY is assigned to the flags parameter, it signals to
tpacall() that a reply is not expected. Guidelines for using this flag val
correctly when a process is in transaction mode are discussed in Chapte
“Global Transactions in BEA TUXEDO System.” When this flag is set, o
success tpacall() returns the value of 0 as the reply descriptor, where 0
cannot be used by tpgetrply() .

An example of tpacall() using the TPNOREPLY|TPNOTRAN flags is shown in
Listing 2-19. This example is similar to the one presented above. In this case, how
a reply is not expected from the PRINTER service. By setting both of these flags, the
client is indicating that no reply is expected and the PRINTER service is not to be a
participant in the current transaction. Chapter 7 fully discusses this situation. Ref
the section called “Transaction Rules.”

Listing 2-19 Sending an Asynchronous Message with
TPNOTRAN|TPNOREPLY

#include <stdio.h>
#include "atmi.h"

main()

{
char *rbuf; /* report buffer */
long rlen, rrlen; /* buffer lengths of send, reply buffers for report */

join application

if (rbuf = tpalloc("STRING", NULL, 0) == NULL) /* allocate space for report */
 error
(void)strcpy(rbuf, "REPORT=accrcv DBNAME=accounts");/* send parms of report */
rlen = strlen(rbuf)+1; /* length of request */

start transaction
BEA TUXEDO Programmer’s Guide 2-35

2 Writing Client Programs

f

 other

 total
eral
t client
nch
The
ause

e
e
es.”

if (tpcall("REPORT", rbuf, rlen, &rbuf, &rrlen, 0)
 == -1) /* get report print stream */
 error
if (tpacall("PRINTER", rbuf, rrlen, TPNOTRAN|TPNOREPLY)
 == -1) /* send report to printer */
 error

. . .
commit transaction
free buffer
leave application
}

On error, tpacall() returns -1 and sets tperrno to a value that reflects the nature o
the error. tpacall() returns many of the same error codes as tpcall() . Again, the
differences are based on the fact that one represents a synchronous call and the
an asynchronous call. These errors are discussed at length in Chapter 7, “Error
Management.”

Listing 2-20 illustrates a series of asynchronous calls being made that make up the
bank balance query. Since the banking application data is distributed among sev
database sites, an SQL query needs to be executed against each one. The audi
chooses to do this by selecting representative branch identifiers (that is, one bra
identifier per database site), and calling the ABAL or TBAL service for each one.
representative branch identifier is not used in the actual SQL query, but it does c
the BEA TUXEDO system to route the request to the proper database site. In th
following code, the for-loop invokes tpacall () once for each site. We’ll see this sam
logic handled in a different way in Chapter 4, “Conversational Clients and Servic

Listing 2-20 Sending Asynchronous Requests

audv->balance = 0.0;
(void)strcpy(audv->ermsg, "");

for (i=0; i<NSITE; i++) {

 /* Prepare aud structure */

 audv->b_id = sitelist[i]; /* routing done on this field */

 /* Do tpacall */

 if ((cd[i]=tpacall(sname, (char *)audv, sizeof(struct aud), 0))
2-36 BEA TUXEDO Programmer’s Guide

Service Calls

y

e
r.
tions
 == -1) {
 (void)fprintf (stderr,
 "%s: %s service request failed for site rep %ld\n",
 pgmname, sname, sitelist[i]);
 tpfree((char *)audv);
 return(-1);
 }
}

Getting an Asynchronous Reply: tpgetrply()

tpgetrply() is the complementary function to tpacall() . It dequeues a reply from
a request previously sent by tpacall() . The syntax of this function is:

int
tpgetrply(cd, data, len, flags) /* Receive reply to service request */
int * cd ; /* Call Descriptor */
char ** data ;
long * len , flags ;

tpgetrply() takes the address of the call descriptor returned by tpacall() as its
first parameter, cd . In the default case, the function waits for the arrival of the repl
that corresponds to the value pointed to by the cd parameter. In waiting for this specific
reply, a blocking time-out may occur. A time-out means that tpgetrply() fails and
tperrno is set to TPETIME (unless its flags parameter is set to TPNOTIME).

The second and third parameters to tpgetrply() , data and len , have identical
semantics to those of the odata and olen parameters of the tpcall() function. data
contains the address of a pointer that was previously assigned by a call to tpalloc() .

Getting and Setting Priority

ATMI provides two functions that allow you to determine and set the priority of th
message request. The priority affects how the request is dequeued by the serve
Servers dequeue requests with the highest priorities first. The syntax of these func
is:

int
tpgprio(); /* Get service request priority */

and

int
tpsprio(prio, flags); /* Set service request priority */
int prio ;
long flags ;
BEA TUXEDO Programmer’s Guide 2-37

2 Writing Client Programs

as

0,
ing
at
lue of
r. See
nt in
The tpgprio() function can be called by a requester after invoking the tpcall() or
tpacall() function to retrieve the priority of the request message just sent. If it w
called and no request was sent, the function fails returning -1 and setting tperrno to
TPENOENT. Upon success, tpgprio() returns an integer value in the range of 1 to 10
100 being the highest priority value. If the priority has not been explicitly set by us
the tpsprio() function, the value of the priority will be that of the service routine th
handles the request. The priority of the service is assigned the system default va
50 unless it has been specifically defined to some other value by the administrato
Listing 2-21 for an example of determining the priority of a message that was se
an asynchronous call.

Listing 2-21 Determining the Priority of the Sent Request

#include <stdio.h>
#include "atmi.h"

main ()
{
int cd1, cd2; /* call descriptors */
int pr1, pr2; /* priorities to two calls */
char *buf1, *buf2; /* buffers */
long buf1len, buf2len; /* buffer lengths */

join application

if (buf1=tpalloc("FML", NULL, 0) == NULL)
 error
if (buf2=tpalloc("FML", NULL, 0) == NULL)
 error

populate FML buffers with send request

if ((cd1 = tpacall("service1", buf1, 0, 0)) == -1)
 error
if ((pr1 = tpgprio()) == -1)
 error
if ((cd2 = tpacall("service2", buf2, 0, 0)) == -1)
 error
if ((pr2 = tpgprio()) == -1)
 error

if (pr1 >= pr2) { /* base the order of tpgetrplys on priority of calls */
 if (tpgetrply(&cd1, &buf1, &buf1len, 0) == -1)
 error
 if (tpgetrply(&cd2, &buf2, &buf2len, 0) == -1)
2-38 BEA TUXEDO Programmer’s Guide

Service Calls

ived

s
n
eted.

o the
nd

ed in

o
 error
}
else {
 if (tpgetrply(&cd2, &buf2, &buf2len, 0) == -1)
 error
 if (tpgetrply(&cd1, &buf1, &buf1len, 0) == -1)
 error
}
. . .
}

It is also possible to use this function to retrieve the priority of the request just rece
by the service. This is illustrated in Listing 3-3 in Chapter 3, “Writing Service
Routines.”

With the tpsprio() function, the programmer can override the priority level the
request would normally inherit from the service to which it is dispatched. When
tpsprio() is called, it affects the priority level only of the very next request that i
sent by tpcall() or tpacall() or forwarded by a service subroutine. This functio
takes two parameters; the second one indicates how the first one is to be interpr
The first parameter, prio , is an integer. In the default situation, its sign indicates
whether the request’s priority should be incremented or decremented in relation t
existing priority. For the first parameter to be treated as a relative value, the seco
parameter, flags , must be set to 0. If it is set to TPABSOLUTE, the priority value of the
next request that is sent out will receive the absolute value of the integer contain
the prio parameter. The absolute value of prio must be in the range of 1 to 100. If the
value is not in this range, the system uses the default value, 50.

Listing 2-22 shows an excerpt from the TRANSFER service acting as a client process t
call services of WITHDRAWAL. It invokes tpsprio() to increase the priority of the
request message it sends in its synchronous call to WITHDRAWAL. It does so to prevent
the request from being queued for the WITHDRAWAL service (and later the DEPOSIT
service) after already having waited on the TRANSFER queue.
BEA TUXEDO Programmer’s Guide 2-39

2 Writing Client Programs

a
tional

d

found
Listing 2-22 Setting the Priority of a Request Message

/* increase the priority of withdraw call */
if (tpsprio(PRIORITY, 0L) == -1)
 (void)userlog("Unable to increase priority of withdraw\n");

if (tpcall("WITHDRAWAL", (char *)reqfb,0, (char **)&reqfb, (long *) \
 &reqlen,TPSIGRSTRT) == -1) {
 (void)Fchg(transf, STATLIN, 0, "Cannot withdraw from debit account", \
 (FLDLEN)0);
 tpfree((char *)reqfb);
 tpreturn(TPFAIL, 0,transb->data, 0L, 0);
}

Initiating a Conversational Connection

The discussion in this chapter has centered around how client programs initiate
request/response service request. Client programs can also connect to conversa
servers by using tpconnect() instead of tpcall() or tpacall() . Chapter 4,
“Conversational Clients and Services,” describes that in detail.

Sending a Broadcast Message

The tpbroadcast() function is used to send an unsolicited message to registere
clients within the application. It is mentioned in this chapter on client programs
because it can be called by clients. A more complete discussion of its use can be
in Chapter 3, “Writing Service Routines.”
2-40 BEA TUXEDO Programmer’s Guide

Compiling Client Programs

 can
n be
in

ith

tify

the

is

The

nt on
ould

 files

t to
e as
Compiling Client Programs

To compile your client programs you have several methods to choose from. You
use regular C Compilation System utilities to make object files. The object files ca
kept as individual files or collected into an archive file. If you prefer, you can reta
your programs as source (.c) files. In any event, when you invoke buildclient to
produce an executable client, you specify your input files on the command line w
the -f option.

The buildclient Command

buildclient (1) is used to put together an executable client program. Options iden
the name of the output file, input files provided by the application, and various
libraries.

buildclient invokes the UNIX cc command. The environment variables CC and
CFLAGS can be set to name an alternative compile command and to set flags for
compile and link edit phases.

The buildclient -o Option

The -o option is used to assign a name to the executable output file. If no name
provided, the file is named a.out .

The buildclient -f and -l Options

The -f and -l options are used to specify files to be used in the link edit phase.
files specified in the -f (first) option are brought in before the BEA TUXEDO system
libraries, whereas the files specified in the -l (last) option are brought in after these
libraries. There is a significance to the order of the options. The order is depende
function references and in what libraries the references are resolved. Input files sh
be listed ahead of libraries that might be used to resolve their references. If input
are .c files, they are first compiled. Object files can be either separate .o files or groups
of files in archive (.a) files. If more than a single file name is given as an argumen
a -f or -l option, the syntax calls for a list enclosed in double quotes. You can us
many -f and -l options as you need.
BEA TUXEDO Programmer’s Guide 2-41

2 Writing Client Programs
The following represents the command line that was used to create the audit
executable program. The environment variable CC is set to cc and the environment
variable CFLAGS is set to -I $TUXDIR/include .

buildclient -o audit -f audit.o
2-42 BEA TUXEDO Programmer’s Guide

CHAPTER

lient
of the
d

onse
tional

ion.
3 Writing Service

Routines

Writing Request/Response Services

The preceding chapter discussed the ATMI primitives that can be used to write c
programs. In this chapter, some of the same functions are revisited in the context
service subroutines. As you may recall, services are C subroutines that are linke
together with the BEA TUXEDO system-provided main () to create executable server
programs.

In this chapter the discussion covers only services that operate in a request/resp
mode. Conversational clients and servers are the subject of Chapter 4, “Conversa
Clients and Services.”

Examples Taken from the Sample Application

Most of the examples shown are taken from the services of the banking applicat
BEA TUXEDO Programmer’s Guide 3-1

3 Writing Service Routines

tion

mplate

end

er

s a
Application Service Template

Since the communication details are taken care of by BEA TUXEDO system’s main (),
the programmer can concentrate on the application logic rather than communica
implementation. For services to be compatible with the main () provided, they must
adhere to certain conventions. These conventions are referred to as the service te
for coding service routines; they are described here and on the tpservice (3c)
reference page of the BEA TUXEDO Reference Manual.

Request/response services have the following characteristics:

� A request/response service can receive only one request at a time and can s
only one reply.

� When servicing a request, it works only on that request and can accept anoth
only after it has sent its reply to the requester or has forwarded the request to
another service for additional processing.

� Service routines must terminate by calling either the tpreturn () or
tpforward () function. These functions behave similarly to the C language
return statement except that control returns to BEA TUXEDO system’s main ()
instead of the calling function.

� When communicating with another server via tpacall (), the initiating service
must wait for all outstanding replies or must invalidate them with tpcancel ()
before calling tpreturn () or tpforward ().

� Service routines are invoked with one argument, svcinfo, which is a pointer to a
service information structure.

The following sections examine these concepts more closely.

The TPSVCINFO Structure

The typical service routine is defined as a function receiving one argument that i
pointer to a structure. This service information structure is typdef ’d as TPSVCINFO in
the atmi.h header file and includes the following members:

char name[32]; /* service name being invoked */
long flags; /* describes service attributes */
char *data; /* request data */
long len; /* request data length */
int cd; /* connection descriptor if (flags & TPCONV) true */
int appkey; /* application authentication client key */
CLIENTID cltid; /* client identifier for originating client */
3-2 BEA TUXEDO Programmer’s Guide

Writing Request/Response Services

the

tion
ed in
DO

ion,
aller

s, it
The members of the structure

� indicate to the service routine the name with which it was invoked

� tell the service attributes about itself or the caller

� point to the request data

� indicate the length of the request data

� give the connection descriptor, if this is a conversational connection

� provide the client key for authentication

� carry the identifier for the client originating the call

The name Member of TPSVCINFO

The name member of the structure indicates to the service routine the name that
requesting process used to invoke the service.

The flags Member of TPSVCINFO

The flags member of the structure is used to let the service know if it is in transac
mode or if the caller is expecting a reply. The various ways a service can be plac
transaction mode are discussed in Chapter 5, “Global Transactions in BEA TUXE
System.” If the value of flags is TPTRAN, it indicates that the service is in transaction
mode. When a service is called by tpcall () or tpacall () with the flags parameter set
to TPNOTRAN, it indicates that the service cannot participate in the current transact
but it is still possible for the service to be in transaction mode. So even when the c
sets the TPNOTRAN communication flag, it is possible for TPTRAN to be set in
svcinfo->flags . The case that allows this to happen is discussed in Chapter 5,
“Global Transactions in BEA TUXEDO System.” The flags member is set to
TPNOREPLY if the service was called by tpacall () with the TPNOREPLY
communication flag set. It is possible for the flags member to be set to both of these
values. When this represents a valid situation is discussed in the next chapter.
However, if a called service is part of the same transaction as the calling proces
must return a reply to the caller.
BEA TUXEDO Programmer’s Guide 3-3

3 Writing Service Routines

d the
 the

s the

r,

BEA
lf

n, but

d, the

ation
e of
coded
for

The data and len Members of TPSVCINFO

The data member points to a buffer that was previously allocated by tpalloc () within
the server main() ; this buffer is used to receive the request message. The len member
contains the length of the request data that is in the buffer pointed to by data. It is
recommended that you use this buffer to send back the reply message or forwar
request message. This is further discussed when explaining the proper usage of
tpreturn () and tpforward () functions. The contents of the buffer get overwritten
each time the service routine is invoked regardless of whether the buffer is used a
message buffer for returning or forwarding the reply.

The appkey Member of TPSVCINFO

The use of this member is left to the application to decide. If application-specific
authentication is part of your design, the application-specific authentication serve
which is called at the time a client joins the application, should return a client
authentication key as well as a success/failure indication. (This is the logic of the
TUXEDO system default AUTHSVC service.) The key is held by the system on beha
of the client and is passed to subsequent service requests in the appkey field. By the
time the key is passed to the service, the client has already passed authenticatio
the appkey field can be used within the service to identify in some way the user
invoking the service or some other parameters associated with the user. If not use
value is set to -1 by the system.

The cltid Member of TPSVCINFO

The cltid member is a structure of type CLIENTID . It is used by the system to carry the
identification of the client. You should not make changes in this structure.

Accessing Data that Comes with the Request

When accessing the request data pointed to by data, the service must be coded to
expect the data to be in a buffer of the type defined for the service in the configur
file. For everything to be interpreted correctly by the system, the type and subtyp
the request buffer passed by the calling process must agree with the type that is
for the service called which, in turn, must agree with the typed buffer as defined
that service in the configuration file.

Listing 3-1 illustrates a typical service definition; this one is taken from the ABAL
(account balance) service routine. ABAL is part of the BAL server.
3-4 BEA TUXEDO Programmer’s Guide

Writing Request/Response Services
Listing 3-1 Typical Service Definition

#include <stdio.h> /* UNIX */
#include <atmi.h> /* TUXEDO */
#include <sqlcode.h> /* TUXEDO */
#include "bank.flds.h" /* bankdb fields */
#include "aud.h" /* BANKING view defines */

EXEC SQL begin declare section;
static long branch_id; /* branch id */
static float bal; /* balance */
EXEC SQL end declare section;

/*
 * Service to find sum of the account balances at a SITE
 */

void
#ifdef __STDC__
ABAL(TPSVCINFO *transb)

#else

ABAL(transb)
TPSVCINFO *transb;
#endif

{
 struct aud *transv; /* view of decoded message */

 /* Set pointer to TPSVCINFO data buffer */

 transv = (struct aud *)transb->data;

 set the consistency level of the transaction

 /* Get branch id from message, do query */

 EXEC SQL declare acur cursor for
 select SUM(BALANCE) from ACCOUNT;
 EXEC SQL open acur; /* open */
 EXEC SQL fetch acur into :bal; /* fetch */
 if (SQLCODE != SQL_OK) { /* nothing found */
 (void)strcpy (transv->ermsg,"abal failed in sql aggregation");
 EXEC SQL close acur;
 tpreturn(TPFAIL, 0, transb->data, sizeof(struct aud), 0);
 }
 EXEC SQL close acur;
 transv->balance = bal;
 tpreturn (TPSUCCESS, 0, transb->data, sizeof(struct aud), 0);
}

BEA TUXEDO Programmer’s Guide 3-5

3 Writing Service Routines

ll to

g
s
the
ers”

is

 out
 not.
ld

e plus
In Listing 3-1, the request buffer on the client side was originally allocated by a ca
tpalloc () with the type parameter set to VIEW and the subtype set to aud . The ABAL
service is defined in the configuration file as a service that knows about the VIEW typed
buffer. (This is by implication; the BUFTYPE parameter is not specified for ABAL, which
means it defaults to ALL.) ABAL’s server main () allocated a buffer of the VIEW type and
assigned the pointer to this buffer to the data member of the TPSVCINFO structure that
was passed to the ABAL subroutine. ABAL is able to retrieve the data buffer by accessin
the data member as illustrated in the above example. Note that after this buffer i
retrieved and before the first database access is made, the consistency level of
transaction is specified. Refer to the “Global Transactions and Resource Manag
and the “Comprehensive Example” sections in Chapter 7 for more details on
transaction consistency levels.

Checking the Buffer Type

Listing 3-2 shows the service accessing the data buffer to determine its type. Th
service knows about more than one buffer type and invokes the tptypes () ATMI
function primitive to determine the buffer type of the received request. It also finds
the maximum size of the buffer so it knows whether to reallocate the buffer size or
This example is derived from the ABAL service. It represents what the subroutine wou
look like if it accepted its request either as an aud VIEW or an FML buffer. If its attempt
to determine the message type fails, it sends back a string with an error messag
an appropriate return code; otherwise it executes the segment of code that is
appropriate for the buffer type. The tpreturn () function is discussed after priority; it
is included in this example for completeness.

Listing 3-2 Checking for Buffer Type

#define TMTYPERR 1 /* return code indicating tptypes failed */
#define INVALMTY 2 /* return code indicating invalid message type */

void
ABAL(transb)

TPSVCINFO *transb;

{
 struct aud *transv; /* view message */
 FBFR *transf; /* fielded buffer message */
 int repc; /* tpgetrply return code */
 char typ[TMTYPELEN+1], subtyp[TMSTYPELEN+1]; /* type, subtype of message */
 char *retstr; /* return string if tptypes fails */
3-6 BEA TUXEDO Programmer’s Guide

Writing Request/Response Services

t

f
n, the

/* find out what type of buffer sent */
 if (tptypes((char *)transb->data, typ, subtyp) == -1) {
 retstr=tpalloc("STRING", NULL, 100);
 (void)sprintf(retstr,
 "Message garbled; tptypes cannot tell what type message\n");
 tpreturn(TPFAIL, TMTYPERR, retstr, 100, 0);
 }
/* Determine method of processing service request based on type */
 if (strcmp(typ, "FML") == 0) {
 transf = (FBFR *)transb->data;
... code to do abal service for fielded buffer ...
 tpreturn succeeds and sends FML buffer in reply
 }
 else if (strcmp(typ, "VIEW") == 0 && strcmp(subtyp, "aud") == 0) {
 transv = (struct aud *)transb->data;
... code to do abal service for aud struct ...
 tpreturn succeeds and sends aud view buffer in reply
 }
 else {
 retstr=tpalloc("STRING", NULL, 100);
 (void)sprintf(retstr,
 "Message garbled; is neither FML buffer nor aud view\n");
 tpreturn(TPFAIL, INVALMTY, retstr, 100, 0);
 }
}

Checking the Priority of the Service Request

Listing 3-3 shows the fictitious PRINTER service testing the priority level of the reques
just received by invoking the tpgprio() function. Based on the priority level, the
print job is routed to the appropriate destination printer. The contents of pbuf->data
are piped to that printer. Also, pbuf->flags is queried to see if a reply is expected. I
one is expected, the name of the destination printer is returned to the client. Agai
use of tpreturn() is explained in the next section.
BEA TUXEDO Programmer’s Guide 3-7

3 Writing Service Routines
Listing 3-3 Determining the Priority of the Received Request

#include <stdio.h>
#include "atmi.h"

char *roundrobin();

PRINTER(pbuf)

TPSVCINFO *pbuf; /* print buffer */

{
char prname[20], ocmd[30]; /* printer name, output command */
long rlen; /* return buffer length */
int prio; /* priority of request */
FILE *lp_pipe; /* pipe file pointer */

prio=tpgprio();
if (prio <= 20)
 (void)strcpy(prname,"bigjobs"); /* send low priority (verbose)
 jobs to big comp. center
 laser printer where operator
 sorts output and puts it
 in a bin */
else if (prio <= 60)
 (void)strcpy(prname,roundrobin()); /* assign printer on a
 rotating basis to one of
 many local small laser printers
 where output can be picked
 up immediately; roundrobin() cycles
 through list of printers */
else
 (void)strcpy(prname,"hispeed");
 /* assign job to high-speed laser
 printer; reserved for those who
 need verbose output on a daily,
 frequent basis */

(void)sprintf(ocmd, "lp -d%s", prname); /* output lp(1) command */
lp_pipe = popen(ocmd, "w"); /* create pipe to command */
(void)fprintf(lp_pipe, "%s", pbuf->data); /* print output there */
(void)pclose(lp_pipe); /* close pipe */

if ((pbuf->flags & TPNOREPLY))
 tpreturn(TPSUCCESS, 0, NULL, 0, 0);
rlen = strlen(prname) + 1;
pbuf->data = tprealloc(pbuf->data, rlen); /* ensure enough space for name */
(void)strcpy(pbuf->data, prname);
tpreturn(TPSUCCESS, 0, pbuf->data, rlen, 0);

char *
3-8 BEA TUXEDO Programmer’s Guide

Writing Request/Response Services

s
t to

ply to
r and

date

m’s

ses
ith
e
s
roundrobin()

{
static char *printers[] = {"printer1", "printer2", "printer3", "printer4"};
static int p = 0;

if (p > 3)
 p=0;
return(printers[p++]);
}

The tpreturn() and tpforward() Functions

tpreturn() and tpforward() are functions that indicate that a service routine ha
completed; they either send a reply back to the calling client or forward a reques
another service for further processing.

Sending Replies

The primary function of a service routine is to process a request and return the re
a client process. In performing this function, a service can in turn act as a requeste
make request calls to other services with tpcall() or tpacall() . When
tpreturn() is called, control always returns to main() . If the service has sent
requests with asynchronous replies, it must receive all expected replies or invali
them with tpcancel() before returning control to main() , otherwise the outstanding
replies are automatically dropped when they are received by BEA TUXEDO syste
main() , and an error is returned to the caller.

The tpreturn() function, besides marking the end of the service routine, also cau
the reply message to be sent to the requester. If the client invoked the service w
tpcall() , after a successful call to tpreturn() , the reply message is available in th
buffer pointed to by *odata. If tpacall() was used to send the request, on succes
from tpreturn() , the reply message is available in the tpgetrply() buffer that is
pointed to by *data. The syntax of this function is:

void
tpreturn(rval, rcode, data, len, flags) /* End service routine */
int rval , rcode ;
char * data ;
long len , flags ;

Currently the flags argument is not used.
BEA TUXEDO Programmer’s Guide 3-9

3 Writing Service Routines

hese
 to
 the

he

 the

his
bal

ss.

s of

l

uffer
t

al
tpreturn() Arguments: rval

The rval parameter can be set to TPSUCCESS, TPFAIL , or TPEXIT . This value indicates
whether the service has completed successfully or not on an application-level. T
conditions are communicated to the calling client in the following way. When set
TPSUCCESS, the calling function succeeded, and if there is a reply message, it is in
caller’s buffer. If the service terminated unsuccessfully, (that is, the logic of the
application set rval to TPFAIL), an error is reported to the client process waiting for t
reply. The client’s tpcall () or tpgetrply () function call will fail and the tperrno
variable will be set to TPESVCFAIL to indicate an application-defined failure. In the
case of this kind of failure, if a reply message was expected, it will be available in
caller’s buffer. If TPEXIT is set in rval, the functionality of TPFAIL is performed, but
the server exits after the reply is sent back to the client. Note that if rval is not set, the
default value of TPFAIL is assigned to this parameter. The impact of the value of t
parameter when a process is in transaction mode is discussed in Chapter 5, “Glo
Transactions in BEA TUXEDO System.”

The preceding discussion concerns the effect of rval if application-defined errors are
the only ones that occur. If, however, tpreturn () encounters errors while processing
its arguments, it sends a failed message (if a reply is expected) to the calling proce
This is detected by the caller by the value placed in tperrno . In case of failed
messages, tperrno is set to TPESVCERR. This situation overrides the effect of the
value of rval. If this type of error occurs, no reply data is returned, and the content
the caller’s output buffer and its length remain unchanged.

If tpreturn () sends back a message in a buffer whose type is not known or not
allowed by the caller (that is, the call was made with flags set to TPNOCHANGE),
TPEOTYPE is returned in tperrno . Application success or failure cannot be
determined, and the contents of the caller’s output buffer and its length remain
unchanged.

Also, the value returned in rval is not relevant in the case when tpreturn () is invoked
and a time-out occurs for the call waiting on the reply. This situation overrides al
others in determining the value that is returned in tperrno . tperrno is set to TPETIME
and the reply data is not sent, leaving the contents and length of the caller’s reply b
unchanged. There are two types of time-outs in BEA TUXEDO. Blocking time-ou
was discussed when explaining the TPNOBLOCK and TPNOTIME communication flags.
The other type of time-out, transaction time-out, is discussed in Chapter 5, “Glob
Transactions in BEA TUXEDO System.”
3-10 BEA TUXEDO Programmer’s Guide

Writing Request/Response Services

turn

t is, it
n

tem
e.

 not.
rn the

by
;
a

ply
eply
e
hen

of the
tpreturn() Arguments: rcode

The rcode parameter can be used to return to the caller an application-defined re
code. The client can access the value returned in rcode by querying the tpurcode
global variable. This code is sent regardless of application success or failure; tha
is returned in the case of success or TPESVCFAIL. As indicated, no reply messages ca
be sent in the other error cases.

tpreturn() Arguments: data and len

data points to the reply message that is to be returned to the client process. The
message buffer must have been allocated by a previous call to tpalloc (). If you use
the same buffer that was passed to the service in the svcinfo structure, you need not be
concerned with buffer allocation or disposition since they are handled by the sys
supplied main (). In fact, it is not possible to free this buffer in the service subroutin
Any attempt to free the buffer using tpfree () quietly fails, achieving nothing.
However, this buffer can be grown by a service routine with a call to tprealloc ().
BEA TUXEDO treats the original buffer the same whether it has been resized or
If a buffer other than the one that was passed to the service routine is used to retu
message, it is up to the programmer to allocate it by invoking the tpalloc () function
within the service routine. The buffer obtained in this way is automatically freed
tpreturn (). If the reply message does not have a data part, no buffer is required
simply set data to the NULL pointer. The len parameter indicates the amount of dat
in the reply buffer, and it is this value that can be accessed in the olen parameter of
the tpcall () or the len parameter of the tpgetrply () function. As indicated earlier,
the process acting as the client can use this returned value to test to see if the re
buffer has grown. If a reply is expected by the client, and there is no data in the r
buffer, that is, data is set to the NULL pointer, a reply with zero length is sent to th
client. The pointer to and the contents of the client’s buffer remain unchanged. W
the data pointer is NULL, tpreturn () ignores the len parameter. If no reply is
expected, that is, TPNOREPLY was set, tpreturn () ignores the buffer and length
parameters and simply returns control to main (); the server process is then free to
process another request.

tpreturn() Example

Listing 3-4 shows the TRANSFER service that is part of the XFER server. Basically, the
TRANSFER service makes synchronous calls to the WITHDRAWAL and DEPOSIT services.
It allocates a different buffer for the reply message since it must use the contents
request buffer for the calls to both the WITHDRAWAL and the DEPOSIT services. If the
BEA TUXEDO Programmer’s Guide 3-11

3 Writing Service Routines

d in

call to WITHDRAWAL should fail, cannot withdraw is written to the status line of the
form, the reply buffer is freed, and the rval parameter to tpreturn () is set to TPFAIL .
If the call succeeds, the debit balance is retrieved from the reply buffer.

Note: The “to-account id” retrieved in the variable cr_id in Listing 3-4 is moved to
the zeroth occurrence of the ACCOUNT_ID field in the transf fielded buffer. It
is necessary to assign it to this position since it is this occurrence of a fiel
an FML buffer that is used for data dependent routing. Refer to the book
Administering the BEA TUXEDO System.

A similar scenario is followed for the call to DEPOSIT. On success, the service frees
the reply buffer that was allocated within the service routine and sets rval to
TPSUCCESS and returns the pertinent account information to the status line.

Listing 3-4 How to Use tpreturn()

#include <stdio.h> /* UNIX */
#include <string.h> /* UNIX */
#include "fml.h" /* TUXEDO */
#include "atmi.h" /* TUXEDO */
#include "Usysflds.h" /* TUXEDO */
#include "userlog.h" /* TUXEDO */
#include "bank.h" /* BANKING #defines */
#include "bank.flds.h" /* bankdb fields */

/*
 * Service to transfer an amount from a debit account to a credit
 * account
 */

void
#ifdef __STDC__
TRANSFER(TPSVCINFO *transb)

#else

TRANSFER(transb)
TPSVCINFO *transb;
#endif

{
 FBFR *transf; /* fielded buffer of decoded message */
 long db_id, cr_id; /* from/to account id’s */
 float db_bal, cr_bal; /* from/to account balances */
 float tamt; /* amount of the transfer */
3-12 BEA TUXEDO Programmer’s Guide

Writing Request/Response Services
 FBFR *reqfb; /* fielded buffer for request message*/
 int reqlen; /* length of fielded buffer */
 char t_amts[BALSTR]; /* string for transfer amount */
 char db_amts[BALSTR]; /* string for debit account balance */
 char cr_amts[BALSTR]; /* string for credit account balance */

/* Set pointr to TPSVCINFO data buffer */
transf = (FBFR *)transb->data;

/* Get debit (db_id) and credit (cr_id) account IDs */

/* must have valid debit account number */
if (((db_id = Fvall(transf, ACCOUNT_ID, 0)) < MINACCT) || (db_id > MAXACCT)) {
 (void)Fchg(transf, STATLIN, 0,"Invalid debit account number",(FLDLEN)0);
 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
}
/* must have valid credit account number */
if ((cr_id = Fvall(transf, ACCOUNT_ID, 1)) < MINACCT || cr_id > MAXACCT) {
 (void)Fchg(transf,STATLIN, 0,"Invalid credit account number",(FLDLEN)0);
 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
}

/* get amount to be withdrawn */
if (Fget(transf, SAMOUNT, 0, t_amts, < 0) 0 || strcmp(t_amts,"") == 0) {
 (void)Fchg(transf, STATLIN, 0, "Invalid amount",(FLDLEN)0);
 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
}
(void)sscanf(t_amts,"%f",tamt);

/* must have valid amount to transfer */
if (tamt = 0.0) {
 (void)Fchg(transf, STATLIN, 0,
 "Transfer amount must be greater than $0.00",(FLDLEN)0);
 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
}

/* make withdraw request buffer */
if ((reqfb = (FBFR *)tpalloc("FML",NULL,transb->len)) == (FBFR *)NULL) {
 (void)userlog("tpalloc failed in transfer\n");
 (void)Fchg(transf, STATLIN, 0,
 "unable to allocate request buffer", (FLDLEN)0);
 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
}
reqlen = Fsizeof(reqfb);

/* put ID in request buffer */
(void)Fchg(reqfb,ACCOUNT_ID,0,(char *)&db_id, (FLDLEN)0);

/* put amount in request buffer */
(void)Fchg(reqfb,SAMOUNT,0,t_amts, (FLDLEN)0);

BEA TUXEDO Programmer’s Guide 3-13

3 Writing Service Routines
/* increase the priority of withdraw call */
if (tpsprio(PRIORITY, 0L) == -1)
 (void)userlog("Unable to increase priority of withdraw\n");

if (tpcall("WITHDRAWAL", (char *)reqfb,0, (char **)&reqfb,
 (long *)&reqlen,TPSIGRSTRT) == -1) {
 (void)Fchg(transf, STATLIN, 0,
 "Cannot withdraw from debit account", (FLDLEN)0);
 tpfree((char *)reqfb);
 tpreturn(TPFAIL, 0,transb->data, 0L, 0);
}

/* get "debit" balance from return buffer */

(void)strcpy(db_amts, Fvals((FBFR *)reqfb,SBALANCE,0));
void)sscanf(db_amts,"%f",db_bal);
if ((db_amts == NULL) || (db_bal < 0.0)) {
 (void)Fchg(transf, STATLIN, 0,
 "illegal debit account balance", (FLDLEN)0);
 tpfree((char *)reqfb);
 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
}

/* put deposit account ID in request buffer */
(void)Fchg(reqfb,ACCOUNT_ID,0,(char *)&cr_id, (FLDLEN)0);

/* put transfer amount in request buffer */
(void)Fchg(reqfb,SAMOUNT,0,t_amts, (FLDLEN)0);

/* Up the priority of deposit call */
if (tpsprio(PRIORITY, 0L) == -1)
 (void)userlog("Unable to increase priority of deposit\n");

/* Do a tpcall to deposit to second account */
if (tpcall("DEPOSIT", (char *)reqfb, 0, (char **)&reqfb,
 (long *)&reqlen, TPSIGRSTRT) == -1) {
 (void)Fchg(transf, STATLIN, 0,
 "Cannot deposit into credit account", (FLDLEN)0);
 tpfree((char *)reqfb);
 tpreturn(TPFAIL, 0,transb->data, 0L, 0);
}

/* get "credit" balance from return buffer */

(void)strcpy(cr_amts, Fvals((FBFR *)reqfb,SBALANCE,0));
(void)sscanf(cr_amts,"%f",&cr_bal);
if ((cr_amts == NULL) || (cr_bal 0.0)) {
 (void)Fchg(transf, STATLIN, 0,
 "Illegal credit account balance", (FLDLEN)0);
 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
}

3-14 BEA TUXEDO Programmer’s Guide

Writing Request/Response Services

s the

/* set buffer for successful return */
(void)Fchg(transf, FORMNAM, 0, "CTRANSFER", (FLDLEN)0);
(void)Fchg(transf, SAMOUNT, 0, Fvals(reqfb,SAMOUNT,0), (FLDLEN)0);
(void)Fchg(transf, STATLIN, 0, "", (FLDLEN)0);
(void)Fchg(transf, SBALANCE, 0, db_amts, (FLDLEN)0);
(void)Fchg(transf, SBALANCE, 1, cr_amts, (FLDLEN)0);
tpfree((char *)reqfb);
tpreturn(TPSUCCESS, 0,transb->data, 0L, 0);
}

Invalidating Descriptors: tpcancel()

If a service calling tpgetrply () fails with TPETIME and decides not to wait any
longer, it can invalidate the descriptor with a call to tpcancel (). If the reply ever does
arrive, it is silently discarded. tpcancel () cannot be used for transaction replies
(request was done without the TPNOTRAN flag); within a transaction, tpabort ()
does the same job of invalidating the transaction call descriptor. Listing 3-5 show
code.

Listing 3-5 Invalidate a Reply after Timing Out

int cd1;
 .
 .
 .
 if ((cd1=tpacall(sname, (char *)audv, sizeof(struct aud),
 TPNOTRAN)) == -1) {
 .
 .
 .
 }
 if (tpgetrply(cd1, (char **)&audv,&audrl, 0) == -1) {
 if (tperrno == TPETIME) {
 tpcancel(cd1);
 .
 .
 .
 }
 }
 tpreturn(TPSUCCESS, 0,NULL, 0L, 0);
BEA TUXEDO Programmer’s Guide 3-15

3 Writing Service Routines

 for
 the

nated
ervice
erver

e

 that
king

n is:
Forwarding Requests

The tpforward () function allows a service to forward a request to another service
further processing. This differs from a service call in that the service that forwards
request does not ever expect a reply. The reply is owed to the process that origi
the request, and the responsibility for providing the reply has been passed to the s
to which the request has been forwarded. It becomes the responsibility of the last s
in the forward chain to send the reply back by invoking tpreturn (). The process that
made the initial service call is the client and will be waiting for a reply.

The following figure gives you an idea of what a forward chain might look like. Th
request is initiated with a tpcall () and the eventual reply is provided by the
tpreturn () that is invoked by the last service in the chain.

Figure 3-1 Forwarding a Request

Service routines can forward requests at specified priorities in the same manner
client processes send requests. You may recall that this is accomplished by invo
the tpsprio () function.

tpforward () is identical to tpreturn () in that when it is called, main () regains
control, and the server process is free to do more work. The syntax of this functio

void
tpforward(svc, data, len, flags) /* Forward request */
char * svc , * data ;
long len , flags ;
3-16 BEA TUXEDO Programmer’s Guide

Writing Request/Response Services

e
ed to

es

ll will

on

 the

ed
s, the
tpforward() Arguments

The first parameter of tpforward (), svc, is a character pointer that references the nam
of the service to which the request is to be forwarded. The request buffer is point
by its second parameter, data, and the length of the request data is available in len.
These two parameters and the remaining one, flags, share the same meanings as the
corresponding ones specified for tpreturn (). Recall that, at present, flags has no
defined values.

Note: When acting as a client, a server process is not allowed to request servic
from itself when a reply is expected. If the only available instance of the
desired service is offered by the server process making the request, the ca
fail indicating that a recursive call would have been made. However, if the
service routine sends the request with the TPNOREPLY communication flag set
or forwards the request, the call will not fail since the caller is not waiting
itself.

Calling tpforward () can be used to indicate success up to that point in processing
request. If no application errors have been detected, you can invoke tpforward ();
otherwise, call tpreturn () with rval set to TPFAIL .

tpforward() Example

Listing 3-6 is taken from the OPEN_ACCT service routine which is part of the ACCT
server. It shows what the service would look like if it used a call to tpforward () to
send its data buffer to the DEPOSIT service. The example illustrates testing of the
SQLCODE to see if the account insertion was successful. If the new account is add
successfully, the branch record is updated to reflect the new account. On succes
data buffer gets forwarded to the DEPOSIT service. On failure, tpreturn() is called
with rval set to TPFAIL and the failure reported to the status line of the form.

Listing 3-6 How to Use tpforward()

 ...
/* set pointer to TPSVCINFO data buffer */
transf = (FBFR *)transb->data;
...
/* Insert new account record into ACCOUNT*/
account_id = ++last_acct; /* get new account number */
tlr_bal = 0.0; /* temporary balance of 0 */
EXEC SQL insert into ACCOUNT (ACCOUNT_ID, BRANCH_ID, BALANCE,
BEA TUXEDO Programmer’s Guide 3-17

3 Writing Service Routines

sses

e

n
ACCT_TYPE, LAST_NAME, FIRST_NAME, MID_INIT, ADDRESS, PHONE) values
(:account_id, :branch_id, :tlr_bal, :acct_type, :last_name,
 :first_name, :mid_init, :address, :phone);
if (SQLCODE != SQL_OK) { /* Failure to insert */
 (void)Fchg(transf, STATLIN, 0,
 "Cannot update ACCOUNT", (FLDLEN)0);
 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
}

/* Update branch record with new LAST_ACCT */

EXEC SQL update BRANCH set LAST_ACCT = :last_acct where BRANCH_ID = :branch_id;
if (SQLCODE != SQL_OK) { /* Failure to update */
 (void)Fchg(transf, STATLIN, 0,
 "Cannot update BRANCH", (FLDLEN)0);
 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
}
/* up the priority of the deposit call */
if (tpsprio(PRIORITY, 0L) == -1)
 (void)userlog("Unable to increase priority of deposit\n");

/* tpforward same buffer to deposit service to add initial balance */
tpforward("DEPOSIT", transb->data, 0L, 0);

Sending Unsolicited Messages

The BEA TUXEDO system allows unsolicited messages to be sent to client proce
without disturbing the processing of request/response calls or conversational
communications. Unsolicited messages can be sent to client processes by name
(tpbroadcast ()) or by an identifier received with a previously processed messag
(tpnotify ()). Messages sent via tpbroadcast () can originate either in a service or in
another client. Messages sent via tpnotify () can originate only in a service, as show
in the following table.

Initiator Receiver

tpbroadcast() client, server client

tpnotify() server client
3-18 BEA TUXEDO Programmer’s Guide

Writing Request/Response Services

n.

f

iverse.

d by

. If
tpbroadcast() Arguments

tpbroadcast () allows a message to be sent to registered clients of the applicatio
(Registered clients are those that have successfully made a call to tpinit () and have
not yet made a call to tpterm ().) The syntax of the function is:

int
tpbroadcast(lmid, usrname, cltname, data, len, flags)
char * lmid , * usrname , * cltname , * data ;
long len , flags ;

lmid, usrname, and cltname are pointers to identifiers used to select the target list o
clients. A value of NULL for any of these arguments acts as a wildcard for that
argument, so the message can be directed to groups of clients or to the entire un

The data argument points to the content of the message up to the length specifie
the len argument. If data points to a self-defining buffer type, for example, an FML
buffer, len can be 0. The flags argument can be:

TPNOBLOCK
If a blocking condition exists, don’t send the message.

TPNOTIME
Wait indefinitely; do not time out.

TPSIGRSTRT
When a signal interrupts any underlying system calls, the call is reissued
this flag is not set, a signal causes tpbroadcast () to fail with the TPGOTSIG
error code.

tpbroadcast() Example

Listing 3-7 shows an example of a call to tpbroadcast () where all clients are
targeted. The message to be sent is in a STRING buffer.

Listing 3-7 Using tpbroadcast()

char *strbuf;

 if ((strbuf = tpalloc("STRING", NULL, 0)) == NULL) {
 error routine
 }

 (void) strcpy(strbuf, "hello, world");

 if (tpbroadcast(NULL, NULL, NULL, strbuf, 0, TPSIGRSTRT) == -1)
 error routine
BEA TUXEDO Programmer’s Guide 3-19

3 Writing Service Routines

. This
ervice

ses
 to the

his

 an
ces.

 with

O

 to
d (or
e
tpnotify() Arguments

tpnotify () can be called only from a service. The syntax of the function is:

int
tpnotify(clientid, data, len, flags)
CLIENTID * clientid ;
char * data ;
long len , flags ;

*clientid is a pointer to a CLIENTID structure saved from the TPSVCINFO structure that
accompanied the service request to this service. Thus it can be seen that tpnotify () is
used to direct an out-of-band message to the client process that called the service
is not the same as the reply to the service request that would be sent when the s
calls tpreturn () (or when a conversational service calls tpsend () to send a reply to
the client), nor is it any part of a transaction, if one is in progress. It is used in ca
where the service encounters information in processing that needs to be passed
unsolicited message handler for the application.

The *data, len, and flags arguments are the same as they are for tpbroadcast ().

Advertising, Unadvertising Services

When servers are booted, they advertise the services they offer based on the
specification in their CLOPT parameter in the configuration file. The default
specification calls for the server to advertise all services with which it was built; t
is the meaning of the -A option. (See ubbconfig (5) or servopts (5).) When a service
is advertised, it takes up a service table entry in the bulletin board. This can lead
application to decide to boot servers to offer some subset of their available servi
As the servopts (5) reference page makes clear, the -s option allows a
comma-separated list of services to be specified by service name. It also allows,
the -s services:func notation, for a function with a name different from that of the
advertised service to be called to process the service request. The BEA TUXED
system administrator can use the advertise and unadvertise commands of
tmadmin (1) to control the services offered by servers.

The tpadvertise () and tpunadvertise () functions allow that dynamic control to be
exercised within a service of a request/response server or conversational server
advertise or unadvertise a service. The limitation is that the service to be advertise
unadvertised) must be available within the same server as the service making th
request.
3-20 BEA TUXEDO Programmer’s Guide

Writing Request/Response Services

 the
tpadvertise() Arguments

The syntax of tpadvertise is:

int
tpadvertise(svcname , func)
char * svcname ;
void (* func);

*svcname is a pointer to a character string of 15 characters or less that names the
service to be advertised. Names longer than 15 characters are truncated; a NULL value
causes an error, [TPEINVAL] .

func is the address of a BEA TUXEDO system service function that is called to
perform the service (of course, it is not uncommon that this name is the same as
name of the service). func is not permitted to be NULL.

tpadvertise() Example

Listing 3-8 shows an example of tpadvertise () that is based on the following
hypothetical situation (this is an extension to an existing bankapp server):

SERVER TLR is specified to offer only the service TLR_INIT when booted.

After some initialization, TLR_INIT advertises services DEPOSIT and WITHDRAW, both
performed by function tlr_funcs , and both built into the TLR server.

On return from advertising the two services, TLR_INIT unadvertises itself.

Listing 3-8 Dynamic Advertising and Unadvertising

extern void tlr_funcs()
 .
 .
 .
 if (tpadvertise("DEPOSIT", (tlr_funcs)(TPSVCINFO *)) == -1)
 check for errors ;
 if (tpadvertise("WITHDRAW", (tlr_funcs)(TPSVCINFO *)) == -1)
 check for errors ;
 if (tpunadvertise("TLR_INIT") == -1)
 check for errors ;
 tpreturn(TPSUCCESS, 0, transb->data,0L, 0);
BEA TUXEDO Programmer’s Guide 3-21

3 Writing Service Routines

 the

ing

on.

 a

st be
tpunadvertise()

tpunadvertise (), of course, is called to remove a service from the service table of
bulletin board. The syntax is:

tpunadvertise(svcname)
char * svcname ;

The only argument is a pointer to the svcname being unadvertised. An example is
included above in Listing 3-8.

System-Supplied Servers and Subroutines

The BEA TUXEDO system is delivered with a server that provides a basic client
authentication service: AUTHSVR. A standard main () routine and two subroutines called
by main () are also provided.

System-Supplied Servers

The servers described in this section are intended to save you the trouble of cod
services to do routine tasks.

AUTHSVR

AUTHSVR(5) can be used to provide individual client authentication for an applicati
It is called by tpinit (3c) when the level of security for the application is TPAPPAUTH.

The service in AUTHSVR looks in the data field of the TPINIT buffer for a user
password (not to be confused with the application password in the passwd field of the
TPINIT buffer). The string in data is checked against the /etc/passwd file (by
default; the application can specify a different file to be checked). When used by
native site client, the data field is sent along by tpinit () as it is received. This means
that if the application wants the password to be encrypted, the client program mu
coded accordingly. When used by a workstation client, tpinit () encrypts the data
before sending it across the network.
3-22 BEA TUXEDO Programmer’s Guide

System-Supplied Servers and Subroutines

fined

re

est

t is,
The BEA TUXEDO System main()

To speed the development of servers, the BEA TUXEDO system provides a prede
main () routine for server load modules. This main () is automatically included when
the buildserver (1) command is executed.

The predefined main () routine does the following:

� runs the process immune to hangups (ignores the UNIX system SIGHUP signal)

� arranges for cleanup on receipt of the standard UNIX system software
termination signal (SIGTERM). The server is shut down and must be rebooted if
needed again.

� attaches to shared memory for bulletin board services

� creates a message queue for the process

� advertises the initial services to be offered by the server. The initial services a
either all the services link edited with the predefined main (), or a subset
specified by the BEA TUXEDO system administrator in the configuration file.

� processes command line arguments up to the double dash (--) that indicates the
end of system-recognized arguments.

� calls the function tpsvrinit () to process any command line arguments
occurring after the -- and optionally to open the resource manager. Such
arguments are for application-specific initialization.

� until ordered to halt, checks its request queue for service request messages

� until ordered to halt, when a service request message arrives on the request
queue:

� if the -r option was specified, records the starting time of the service requ

� updates the bulletin board to indicate that the server is BUSY

� allocates a buffer for the request message and dispatches the service; tha
calls the service subroutine
BEA TUXEDO Programmer’s Guide 3-23

3 Writing Service Routines

st

d by
tails

he
he
n

suit

s not

as

� until ordered to halt, when the service has returned from processing its input:

� if the -r option was specified, records the ending time of the service reque

� updates statistics

� updates the bulletin board to indicate that the server is IDLE ; that is, ready
for work

� checks its queue for the next service request

� when the server is about to halt, calls tpsvrdone () to perform any required user
shutdown operations.

The main () that the system provides is a closed abstraction and can not be modifie
the programmer. As indicated in the previous list items, it takes care of all the de
concerning entrance into and exit from an application, buffer and transaction
management, and communication. It leaves the programmer free to implement t
application through the logic of the service subroutines. Note that as a result of t
system supplied main () doing the work of joining and leaving the application, it is a
error for services to make calls to the tpinit () or tpterm () functions. This error
returns TPEPROTO in tperrno.

In addition to the above functionality, there are two user exits in main () that allow the
programmer to do various initialization and exiting activities. The next sections
explain how these two system supplied subroutines are used.

BEA TUXEDO System-Supplied Subroutines

There are two subroutines of main (), tpsvrinit () and tpsvrdone (), that are provided
with the BEA TUXEDO system software. The default versions can be modified to
your application.

tpsvrinit()

When a server is booted, the BEA TUXEDO system main () calls tpsvrinit () during
its initialization phase before it handles any service requests. If an application doe
provide this routine in a server, the default one is called that opens the resource
manager and makes an entry in the central event log indicating that the server h
successfully started. The central event log is discussed in Chapter 7, “Error
Management.” For now, simply understand that it is a UNIX System file to which
3-24 BEA TUXEDO Programmer’s Guide

System-Supplied Servers and Subroutines

re

 can

DO,
s,

here
processes can write messages by calling the userlog (3c) function. Coming as it does
near the beginning of the system-supplied main (), tpsvrinit () can be used for any
initialization purposes that might be needed by an application. Two possibilities a
illustrated here: receiving command line options and opening a database.

Note that although not shown in the following examples, message communication
also be performed within this routine. However, tpsvrinit () fails if it returns with
asynchronous replies pending. In addition, the replies are ignored by BEA TUXE
and the server exits gracefully. tpsvrinit () can also start and complete transaction
but this is discussed in Chapter 7, “Error Management.”

The syntax of this function is:

int
tpsvrinit(argc, argv) /* Server initialization routine */
int argc ;
char ** argv ;

Using tpsvrinit() to Receive Command Line Options

When a server is booted, before calling the tpsvrinit () routine, it reads the options
specified for it in the configuration file. Using the UNIX function getopt (3C) (see a
UNIX System programmer’s reference manual), it reads options up to the point w
it receives an EOF indication. The presence of a double dash (--) on the command line
causes getopt to return an EOF. getopt places the argv index of the next argument
to be processed in the external variable optind . The predefined main () then calls
tpsvrinit ().

Listing 3-9 shows an example of a tpsvrinit () coded to receive command line
options.

Listing 3-9 Receiving Command Line Options in tpsvrinit()

tpsvrinit(argc, argv)
int argc;
char **argv;
{
 int c;
 extern char *optarg;
 extern int optind;
 .
 .
 .
BEA TUXEDO Programmer’s Guide 3-25

3 Writing Service Routines

ogic.

t. They
ilable

n
ows,
t both
 while((c = getopt(argc, argv, "f:x:")) != EOF)
 switch(c){
 .
 .
 .
 }
 .
 .
 .
}

When the BEA TUXEDO system’s main () calls tpsvrinit (), it picks up any
arguments that follow the double dash (--) on the command line. In the example
above, options f and x each take an argument, as indicated by the colon. optarg points
to the beginning of the option argument. We have omitted the switch statement l

Using tpsvrinit() to Open a Resource Manager

Listing 3-10 shows a code fragment that illustrates another common use of
tpsvrinit (): opening a resource manager. BEA TUXEDO provides functions to
open a resource manager, tpopen () and tx_open (). It also provides the
complementary functions, tpclose () and tx_close (). The details of these ATMI
primitives can be found in the BEA TUXEDO Reference Manual. Applications that use
these calls to open and close their resource managers are portable in this respec
work by accessing the resource manager instance-specific information that is ava
in the configuration file. These calls are optional and can be used in place of the
resource manager specific calls that are sometimes part of the Data Manipulatio
Language (DML) if the resource manager is a database. In the example that foll
the code does not pick up command line options, but there is no reason it could no
pick up options and open the database. Also, note the use of the userlog (3c) function
to write to the central event log.
3-26 BEA TUXEDO Programmer’s Guide

System-Supplied Servers and Subroutines

uests.

Listing 3-10 Opening a Resource Manager in tpsvrinit()

tpsvrinit()
{

 /* Open database */

 if (tpopen() == -1) {
 (void)userlog("tpsvrinit: failed to open database: ");
 switch (tperrno) {
 case TPESYSTEM:
 (void)userlog("System /T error\n");
 break;
 case TPEOS:
 (void)userlog("Unix error %d\n",Uunixerr);
 break;
 case TPEPROTO:
 (void)userlog("Called in improper context\n");
 break;
 case TPERMERR:
 (void)userlog("RM failure\n");
 break;
 }
 return(-1); /* causes the server to exit */
 }
 return(0);
}

If an error occurs during the initialization activities, tpsvrinit () can be coded to
permit the server to exit gracefully before the server starts processing service req

tpsvrdone()

Using tpsvrdone() to Close a Resource Manager

As might be expected, tpsvrdone () can call on the services of tx_close () to close
the resource manager in a manner analogous to the way tpsvrinit () and tx_open ()
are used to open it. If the application does not define a closing routine for
tpsvrdone (), the BEA TUXEDO system calls the default version, which calls
tx_close () and userlog () to close the resource manager and write to the central
event log. The message to the log indicates that the server is about to exit.
BEA TUXEDO Programmer’s Guide 3-27

3 Writing Service Routines

es

ut
and
 do
Note: Applications choosing to write their own versions of tpsvrinit () and
tpsvrdone () should remember that the default versions of these two routin
call tx_open () and tx_close (), respectively. If the application writes a new
version of tpsvrinit () that calls tpopen () rather than tx_open (), they
should also write a new version of tpsvrdone () that calls tpclose (). In other
words, the open/close pairs have to be from the same set.

tpsvrdone () is called after the server has finished processing service requests b
before it exits. Since the server is still part of the system, further communication
transactions can take place within the routine. The rules that must be followed to
this properly are covered in Chapter 7, “Error Management.” The syntax of this
function is:

void
tpsvrdone() /* Server termination routine */

Listing 3-11 shows the typical way in which tpsvrdone () is used.

Listing 3-11 Closing a Resource Manager in tpsvrdone()

void
tpsvrdone()
{

 /* Close the database */
 if(tpclose() == -1)
 (void)userlog("tpsvrdone: failed to close database: ");
 switch (tperrno) {
 case TPESYSTEM:
 (void)userlog("BEA TUXEDO error\n");
 break;
 case TPEOS:
 (void)userlog("Unix error %d\n",Uunixerr);
 break;
 case TPEPROTO:
 (void)userlog("Called in improper context\n");
 break;
 case TPERMERR:
 (void)userlog("RM failure\n");
 break;
 }
 return;
 }
 return;
}

3-28 BEA TUXEDO Programmer’s Guide

Compiling Subroutines to Build Servers

piling
The
fer,

O
y
em

le and

is

he
d

ions.
es are
 to
Compiling Subroutines to Build Servers

To compile your service subroutines, you have the same freedom you had in com
clients. You can use regular C Compilation System utilities to make object files.
object files can be kept as individual files or collected into an archive file. If you pre
you can retain them as source (.c) files. In any event, when you invoke buildserver
to produce an executable server, you specify them on the command line with the-f
option. This applies to new versions of tpsvrinit () and tpsvrdone () as well as your
application subroutines.

The buildserver Command

buildserver (1) is used to put together an executable server with the BEA TUXED
system’s main (). Options identify the name of the output file, input files provided b
the application, and various libraries that permit you to run a BEA TUXEDO syst
application in a variety of ways.

buildserver invokes the cc command. The environment variables CC and CFLAGS
can be set to name an alternative compile command and to set flags for the compi
link edit phases. The key buildserver command line options are described in the
paragraphs that follow.

The buildserver -o Option

The -o option is used to assign a name to the executable output file. If no name
provided, the file is named SERVER.

The buildserver -f and -l Options

The -f and -l options are used to specify files to be used in the link edit phase. T
files specified in the -f option are brought in before the BEA TUXEDO system an
resource manager libraries (first), whereas the files specified in the -l option are
brought in after these libraries (last). There is a significance to the order of the opt
The order is dependent on function references and in what libraries the referenc
resolved. Source modules should be listed ahead of libraries that might be used
resolve their references. Any .c files are first compiled. Object files can be either
BEA TUXEDO Programmer’s Guide 3-29

3 Writing Service Routines

e link

ns

name
e as

thin

ices
separate .o files or groups of files in archive (.a) files. If more than a single file name
is given as an argument to a -f or -l option, the syntax calls for a list enclosed in
double quotes. You can use as many -f and -l options as you need.

The buildserver -r Option

The -r option is used to specify which resource manager access libraries should b
edited with the executable server. The choice is specified with a string from the
$TUXDIR/udataobj/RM file. Only one string can be specified. The database functio
in your service are the same regardless of which library is used.

All valid strings that name resource managers are contained in the
$TUXDIR/udataobj/RM file. When integrating a new resource manager into BEA
TUXEDO, this file must be updated to include the information about the resource
manager. Refer to the buildtms (1) reference page and the book Administering the
BEA TUXEDO System for more information.

If you are using the ATMI transaction primitives, tpbegin () and
tpcommit ()/tpabort (), you should build your servers using the buildserver
command.

The buildserver -s Option

The -s option is used to specify the service names included in the server and the
of the functions that perform each service. Normally, the function name is the sam
the name of the service. In the sample program, our convention is to specify all
uppercase for the service name. For example, the OPEN_ACCT service would be
processed by function OPEN_ACCT(). However, the -s option of buildserver does
allow you to specify an arbitrary name for the processing function for a service wi
a server. For example, the command

buildserver -o ACCT -f acct.o -s NEW_ACCT:OPEN_ACCT -s CLOSE_ACCT

specifies that the NEW_ACCT request is to be processed by a function called
OPEN_ACCT(), while service request CLOSE_ACCT is to be processed by the function
CLOSE_ACCT().

However, it is possible for the administrator to specify that only a subset of the serv
that were used to create the server with the buildserver command are to be
advertised when the server is booted. Refer to the book Administering the BEA
TUXEDO System.
3-30 BEA TUXEDO Programmer’s Guide

Using C++

 to
rvice

tion
++

g
t,
ame.

alled
 goes

om

tion
ope

tors

uted
Using C++

There are not many differences in using a C++ compiler instead of a C compiler
develop application servers. The two areas affected are the declaration of the se
function, and the use of constructors and destructors.

When declaring a service function, it must be declared to have “C” linkage using
extern “C” . That is, the function prototype should be as follows:

#ifdef __cplusplus
extern "C"
#endif
MYSERVICE(TPSVCINFO *tpsvcinfo)

Declaring the name with “C” linkage ensures that the C++ compiler will not mangle
the name (many C++ compilers change the function name to include type informa
for the parameters and function return). This allows for the linking of both C and C
service routines into a single server without the application programmer indicatin
what type each routine is. This also allows use of dynamic service advertisemen
which requires accessing the symbol table of the executable to find the function n

C++ constructors are called to initialize class objects when they are created, and
destructors are invoked when class objects are destroyed. For automatic (local,
non-static) variables that have constructors and destructors, the constructor is c
when the variable comes into scope and the destructor is called when the variable
out of scope. However, when tpreturn () or tpforward () is called, it does a non-local
goto (using longjmp (3)) such that destructors for automatic variables will not be
called. To avoid this problem, the application should be written such that tpreturn ()
or tpforward () is called from the service routine (instead of any functions called fr
the service routine). In addition, either the service routine should not have any
automatic variables with destructors (they should be declared and used in a func
called by the service routine) or they should be declared and used in a nested sc
(within curly brackets {}) such that the scope ends before calling tpreturn () or
tpforward (). Summarizing, there should be no automatic variables with destruc
in scope in the current function or on the stack when tpreturn () or tpforward () is
called.

For proper handling of global and static variables that have constructors and
destructors, many C++ compilers require that the main () must be compiled using the
C++ compiler (special processing is included in the main () to ensure that the
constructors are executed when the program starts and the destructors are exec
BEA TUXEDO Programmer’s Guide 3-31

3 Writing Service Routines

s
piler
++
when the program exits). Since the main () is provided by the BEA TUXEDO system,
the application programmer does not compile it directly. To ensure that the file is
compiled using C++, the buildserver command must use the C++ compiler. This i
done by setting the CC environment variable to the full pathname for the C++ com
and setting the CFLAGS environment variable to any options to be provided on the C
command line.
3-32 BEA TUXEDO Programmer’s Guide

CHAPTER

nt

rvice

s.
4 Conversational Clients

and Services

Writing Conversational Clients and Services

This chapter covers the subject of conversational clients and services.

A conversational client differs in the following ways from a request/response clie
(described in Chapter 2, “Writing Client Programs,”):

� It initiates a request for service by using tpconnect () rather than tpcall () or
tpacall ().

� It passes the service request to a conversational server.

A conversational service differs in the following ways from a request/response se
(described in Chapter 3, “Writing Service Routines,”):

� It is part of a server identified in the configuration file as offering only
conversational services.

� It is prohibited from making a call to tpforward ().

Both conversational clients and servers have the following characteristics:

� The logical connection between them remains active until terminated; any
number of messages can be transmitted across the connection.

� They use tpsend () and tprecv () calls to send and receive data in conversation
BEA TUXEDO Programmer’s Guide 4-1

CHAPTER

shed
ssed

he
oes not

that
l

ult of
rly

a
ne

s must
Conversational Mode

In the conversational mode of communication, a half-duplex connection is establi
between the client (or initiator) and a server. Control of the connection can be pa
back and forth between the initiator and the subordinate server. At any point in t
conversation, the process that has control can send messages; the process that d
have control can only receive. The connection remains up until an event occurs
tears it down. One event, TPEV_SENDONLY, notifies the receiving program that contro
of the connection has been passed to it and it can successfully call tpsend (). Other
events are notifications that something significant has occurred; they have the res
either bringing the conversation to a normal conclusion or precipitating a disorde
disconnection.

The Connection Descriptor

A connection descriptor, cd , is returned when a connection is established with
tpconnect (). The cd is used to identify subsequent message transmissions with
particular conversation. A client or conversational service can have more than o
conversation active simultaneously. The maximum number is 64.

Buffer Management

Data is passed in typed buffers just as in request/response mode. The buffer type
be recognized by the application; they must be allocated with ATMI functions as
described in Chapter 2, “Writing Client Programs,” and in tpalloc (3c) in the BEA
TUXEDO Reference Manual.
BEA TUXEDO Programmer’s Guide 4-2

CHAPTER

ation

d
r

r
a is

,
oked,
Joining an Application

Conversational clients must join the application via a call to tpinit() prior to
attempting to establish a connection to a service. The procedure for joining the
application is described in Chapter 2, “Writing Client Programs.”

Establishing a Connection

tpconnect () is the ATMI function used to set up a conversation. The syntax is:

int
tpconnect(name, data, len, flags)
char * name, * data ;
long len , flags ;

name must point to the name of a service posted in the bulletin board by a convers
server. If name is not a pointer to a conversational service, the call fails with a -1 and
tperrno is set to the error code TPENOENT. If the calling program has already reache
the maximum number of active connections allowed, the call will fail with the erro
code TPELIMIT .

Data can be sent at the same time the connection is being established by havingdata
point to a buffer previously allocated by tpalloc (). The type and subtype of the buffe
pointed to by data must be a type recognized by the service being called. If no dat
being sent, data can be set to NULL. len is used to specify how much of the buffer to
send. If the buffer is self-defining (for example, an FML buffer), len can be set to 0.
The conversational service being called receives the data and len pointers via the
TPSVCINFO data structure passed to it by main() when the service is invoked. So far
this should sound a lot like what happens when a request/response service is inv
because it is. Differences begin to appear when we consider options for the flags
argument.
BEA TUXEDO Programmer’s Guide 4-3

CHAPTER

ed

in

vice

alled

t
Values for the flags Argument: tpconnect()

As with other ATMI functions, the behavior of the called program can be controll
by values of the flags argument of tpconnect (). Four of the values are identical to
their use in tpcall () and are described in “Values for the flags Argument: tpcall()”
Chapter 2, “Writing Client Programs.” They are:

TPNOTRAN TPNOBLOCK
TPNOTIME TPSIGRSTRT

New valid flags options are:

TPSENDONLY

The calling program retains control of the connection, and the called ser
is permitted only to receive. The called service learns of this through the
flags member of its TPSVCINFO structure; TPSVCINFO->flags ==

TPRECVONLY. TPSENDONLY and TPRECVONLY are mutually exclusive; one or
the other must be specified.

TPRECVONLY

Control of the connection is being passed to the called service, and the c
service can only send. The called service learns of this through the flags
member of its TPSVCINFO structure; TPSVCINFO->flags == TPSENDONLY.
TPSENDONLY and TPRECVONLY are mutually exclusive; one or the other mus
be specified.

As mentioned above, on successful completion tpconnect () returns a connection
descriptor that is used in all subsequent calls of the conversation. Your call to
tpconnect () should be coded something like that shown in Listing 4-1.

Listing 4-1 Establishing a Conversational Connection

#include atmi.h
#define FAIL -1
int cd1; /* Connection Descriptor */
main()
{
 if ((cd = tpconnect(“AUDITC”,NULL,0,TPSENDONLY)) == -1) {
 error routine
 }
}

BEA TUXEDO Programmer’s Guide 4-4

CHAPTER

 (or
 is
he
ave
by

n

y to
zed
Sending

After the conversational connection is set up, communication between the client
initiator) and the service is accomplished with send/receive calls. The connection
half-duplex. That means communication can be in only one direction at a time. T
process that has control of the connection can send; the process that does not h
control can receive. Initially, control is decided by the originator and is specified
the TPSENDONLY or TPRECVONLY flag value of the tpconnect() call; TPSENDONLY
means control is retained by the originator, TPRECVONLY means control is given to the
called service. After tpconnect () returns successfully, data is sent across the ope
connection with the tpsend () function.

The syntax of tpsend () is:

int
tpsend(cd, data, len, flags, revent)
int cd ;
char * data ;
long len ;
long flags ;
long * revent ;

cd is the connection descriptor returned by tpconnect() that identifies the connection
over which to send the data. *data and len are, respectively, a pointer to a buffer
created by tpalloc() , and the length of the data to be sent. The same rules appl
data and len that have been outlined earlier: The buffer must be of a type recogni
by the program that receives it and length can be 0 if the buffer is self-defining. There
is no requirement that data be sent. If the data pointer is NULL, len is ignored.
BEA TUXEDO Programmer’s Guide 4-5

CHAPTER

nt:

f the
 a

lls
e
ntrol
Values for the flags Argument: tpsend()

There are four valid values for the flags argument of tpsend (). Three of them:

TPNOBLOCK
TPNOTIME
TPSIGRSTRT

have the same meaning described in Chapter 2 (in “Values for the flags Argume
tpcall()” section). The fourth value is like one that is used in tpconnect (), but has
added significance in this function.

TPRECVONLY

Signals the intent of the calling program to issue no more tpsend () calls at
the moment and to pass control of the connection over to the other side o
connection. When the called program receives the data, it also receives
TPEV_SENDONLY event at the address pointed to by revent .

It is not a requirement that control be passed each time the tpsend () call is made. The
process authorized to make tpsend () calls on the connection can make as many ca
as necessary before turning over control of the connection. In fact, the logic of th
conversational program may be such that one side of the conversation retains co
of the connection throughout the life of the conversation.

Listing 4-2 shows tpsend () used in a code fragment.

Listing 4-2 Sending Data in Conversational Mode

if (tpsend(cd,line,0,TPRECVONLY,revent) == -1) {
 (void)userlog(“%s: tpsend failed tperrno %d”,
 argv[0],tperrno);
 (void)tpabort(0);
 (void)tpterm();
 exit(1);
 }
BEA TUXEDO Programmer’s Guide 4-6

CHAPTER

ns of

Receiving

The function used to receive data sent over an open connection is tprecv (). The syntax
is:

int
tprecv(cd , data , len , flags , revent)
int cd ;
char ** data ;
long * len ;
long flags ;
long * revent ;

cd is the connection descriptor. If the function is being issued from a subordinate
program (that is, not the originator of the connection), cd is in the TPSVCINFO structure
for the program. If tprecv () is being issued by the originator, cd is the descriptor
returned by tpconnect (). When the call is made, *data is a pointer to the address of
a previously tpalloc ’d buffer and len is a pointer to the size of the buffer. len, data ,
and *data are not allowed to be NULL. The call fails and tperrno is set to TPEINVAL.

Upon successful return, *data points to the data received and len contains the size of
the buffer. If len is greater than the total size of the buffer before the call to tprecv (),
it indicates the buffer’s new size. If len is 0, no data was received.

If an event exists for cd, tprecv () returns a -1 and tperrno is set to TPEEVENT. The
event type is returned in revent. With events TPESVCSUCC, TPESVCFAIL, and
TPESENDONLY, data can be received. These three events are all normal completio
the tprecv () call, so it is not correct to assume the -1 return value means the call has
failed. A more complete discussion of events can be found in “Events and Their
Significance” later in this chapter.
BEA TUXEDO Programmer’s Guide 4-7

CHAPTER

lues

e;

Values for the flags Argument: tprecv()

tprecv () has four valid flags. Three of them are described in Chapter 2 (in the “Va
for the flags Argument: tpcall()” section). They are:

� TPNOCHANGE

� TPNOTIME

� TPSIGRSTRT

The fourth valid flag value is TPNOBLOCK.

When the flag is set, tprecv () does not wait for data to arrive. If data is available, fin
tprecv () gets the data and returns. If data is not available, the call fails and tperrno
is set to TPEBLOCK. When the flag is not set, tprecv () waits and does not return until
data arrives or a timeout occurs.

Listing 4-3 shows a fragment of code using tprecv ().

Listing 4-3 Receiving Data in Conversation

if (tprecv(cd,line,len,TPNOCHANGE,revent) != -1) {
 (void)userlog(“%s: tprecv failed tperrno %d revent %ld”,
 argv[0],tperrno,revent);
 (void)tpabort(0);
 (void)tpterm();
 exit(1);
}

BEA TUXEDO Programmer’s Guide 4-8

CHAPTER

shion
rios
 not
lved

ith
f

 B

be
Ending a Conversation

There are three ways in which the connection can be taken down in an orderly fa
and the conversation ended normally. Figure 4-1 and Figure 4-2 show two scena
that help to illustrate how conversations are ended where global transactions are
involved. The third approach of ending a conversation where a transaction is invo
is shown in Chapter 5, “Global Transactions in BEA TUXEDO System.”

Subordinate Calls tpreturn()

Figure 4-1 shows a simple A to B conversation. The connection is set up initially w
a call to tpconnect () with the TPSENDONLY flag set. In due course, A turns control o
the connection over to B by calling tpsend () with the TPRECVONLY flag set. This
generates a TPEV_SENDONLY event. The next call by B to tprecv () returns a -1 ,
tperrno is set to TPEEVENT, and revent shows the event TPEV_SENDONLY. B knows
from the TPEV_SENDONLY event that it now controls the connection. Subsequently,
calls tpreturn () with rval set to TPSUCCESS. This generates a TPEV_SVCSUCC event
for A. The call to tpreturn () also brings down the connection. When A calls
tprecv () and learns of the event, it recognizes that the conversation has been
terminated. Data can be received on this call to tprecv () even if the event is
TPEV_SVCFAIL. In this illustration, A can be either a client or a server, B can only
a server.

Figure 4-1 Simple SENDONLY Connection and Return

BEA TUXEDO Programmer’s Guide 4-9

CHAPTER

n a
ords,

will

ion

.

Hierarchy of Connections and tpreturn()

Figure 4-2 shows a hierarchy of connections. The scenario applies to a service i
conversation, B, that has initiated a connection to a second service, C. In other w
there are two active connections, A to B, and B to C. If B is in control of both
connections, a call to tpreturn () has the following effect: the call will fail, a
TPEV_SVCERR event will be posted on all open connections, and the connections
be closed in a disorderly manner. The proper sequence is for B to call tpsend () with
the TPRECVONLY flag set on the connection to C, turning control of the B-C connect
over to C. C can then call tpreturn () with rval set to TPSUCCESS, TPFAIL or
TPEXIT , as appropriate. B can then call tpreturn (), posting an event (either
TPEV_SVCSUCC or TPEV_SVCFAIL) for A. Both connections are terminated normally

Figure 4-2 Connection Hierarchy
BEA TUXEDO Programmer’s Guide 4-10

CHAPTER

e

ll

er

, it
Ending a Conversation: Summary

It is an error to end a conversation with connections still open. Either tpcommit () or
tpreturn () will fail in a disorderly manner.

To summarize the ways a conversation can be ended in an orderly manner:

� If the connection originated in a server, the originator turns over control of the
connection to the called process. That process can then call tpreturn (). This is
illustrated in Figure 4-1 above.

� A subordinate process can call tpreturn (). The subordinate must have control
of the connection and must make the call to tpreturn () before the originator
does. This is illustrated in Figure 4-2 above.

In each case, the subordinate has control and calls tpreturn ().

Events and Their Significance

There are five events recognized in conversational communication. All five can b
posted for tprecv (), three of the five can be posted for tpsend (). Table 4-1
summarizes them.

Table 4-1 Conversational Communication Events

Event Rec’By Meaning

TPEV_SENDONLY tprecv () control of the connection has been passed; this process can now ca
tpsend ()

TPEV_DISCONIMM tpsend ()
tprecv ()
tpreturn ()

a disorderly disconnect; the connection has been torn down; no furth
communication is possible; posted by tpdiscon () in the originator of
the connection, and posted to all open connections when tpreturn is
called while connections to subordinate services remain open. All
connections are closed in a disorderly fashion. If a transaction exists
is aborted.
BEA TUXEDO Programmer’s Guide 4-11

CHAPTER

he

te

te

te

te
Disorderly Disconnection

The tpdiscon () function has an innocent sound to it, as though it was the logical
opposite of tpconnect (), but it is really the equivalent of pulling the plug on the
connection. It can be called only by the initiator of a conversation.

The syntax is simple:

int
tpdiscon(cd)
int cd;

cd is the connection descriptor returned by tpconnect ().

TPEV_SVCERR tpsend () received by the originator of the connection, usually indicates the
subordinate program has issued a tpreturn without having control of t
connection

tprecv () received by the originator of the connection, indicates the subordina
program has issued a tpreturn with TPSUCCESS or TPFAIL and a valid
data buffer, but an error occurred that prevented the call from
completing

TPEV_SVCFAIL tpsend () received by the originator of the connection, indicates the subordina
program has issued a tpreturn without having control of the
connection, and tpreturn was called with TPFAIL or TPEXIT and
no data

tprecv () received by the originator of the connection, indicates the subordina
service finished unsuccessfully (tpreturn was called with TPFAIL
or TPEXIT)

TPEV_SVCSUCC tprecv () received by the originator of the connection, indicates the subordina
service finished successfully, that is, called tpreturn () with
TPSUCCESS

Table 4-1 Conversational Communication Events

Event Rec’By Meaning
BEA TUXEDO Programmer’s Guide 4-12

CHAPTER

e
d.
of

onse
tion
ade

ional

tion

 the

at
tpdiscon () generates a TPEV_DISCONIMM event for the service at the other end of th
connection, and the cd is no longer valid. If a transaction is in progress, it is aborte
Data may be lost. If tpdiscon () is called from a service that was not the originator
the connection identified by cd , it fails with an error code of TPEBADDESC.

The preferred way of bringing down a connection is for the subordinate to call
tpreturn ().

Request/Response Calls and Conversations

There is nothing that prevents a conversational service from making request/resp
calls if it needs to communicate with another service. In the examples of connec
hierarchies shown in Figure 4-2 above, the calls from B to C could have been m
with tpcall () or tpacall () instead of tpconnect (). Remember, however, that
conversational services are not permitted to make calls to tpforward ().

Configuration Parameters

There are some parameters in the configuration file that pertain only to conversat
processing. As noted in Chapter 1 (in the “Configuration File” section), the BEA
TUXEDO system administrator normally is responsible for setting up the produc
version of the configuration file for the application, but you may need to set some
parameters in your own development configuration.

Here are the parameters you need to know about:

MAXCONV
sets the maximum number of simultaneous conversations for a single
machine. The range is from 0 to 32,767. The default is 10 when
conversational servers are specified. The parameter can be specified in
RESOURCES section for all machines in the configuration and can be
overridden in the MACHINES section for each machine. It is quite probable th
for an application under development the default is adequate.

CONV = { Y/N }

is a parameter in the SERVERS section. Connections can only be made to
servers that have this value set to Y. If it is set to N or left unspecified, a
tpconnect () call to a service of the server will fail.
BEA TUXEDO Programmer’s Guide 4-13

CHAPTER

ional

copy.

re

ixing
not

ame.
MIN and MAX

are parameters in the SERVERS section that specify the minimum and
maximum number of occurrences of the server to be started by tmboot (1). If
not specified, MIN defaults to 1 and MAX defaults to MIN. The same parameters
are available for use with request/response servers. However, conversat
servers are automatically spawned as needed. So if you set MIN = 1 and MAX

= 10 , for example, tmboot starts one initially. When a tpconnect () call is
made to a service offered by that server, the system starts up a second
As each copy is called a new one is spawned up to a limit of 10.

MAXSERVERS

specifies the high-water mark for all servers of the configuration. This figu
needs to take into account the MAX values for all conversational servers. You
probably will not need to worry about this for an application under
development, but it could be something that needs attention when the
application reaches the production stage. The parameter is in the RESOURCES
section.

Building Conversational Clients and Servers

The utilities described in Chapters 2 and 3, buildclient (1) and buildserver (1), are
used for building conversational clients and servers.

Conversational servers must be built only with conversational services; that is, m
of conversational services and request/response services in the same server is
allowed.

Conversational services and request/response services can not use the same n
BEA TUXEDO Programmer’s Guide 4-14

CHAPTER

ow to
tion

urce
it. The
alls

ests
vices

tion
5 Global Transactions in

BEA TUXEDO System

Introduction

The purpose of this chapter is to explain the concept of global transactions and h
define and manage them in your application using the ATMI primitives for transac
management.

A global transaction is a transaction that allows work involving more than one reso
manager and spanning more than one physical site to be treated as one logical un
tpbegin () function allows you explicitly to start a transaction. The process that c
tpbegin () is the initiator of the transaction and must complete it by calling
tpcommit () or tpabort (). Once a process is in transaction mode, any service requ
made to servers may be processed on behalf of the current transaction. The ser
that are called and join the transaction are the participants. They may affect the
outcome of the transaction by the value they return when they invoke the tpreturn ()
function. A process can determine if it is currently working on behalf of a transac
by calling the tpgetlev () function. The rest of this chapter will explain these
functions in detail.
BEA TUXEDO Programmer’s Guide 5-1

5 Global Transactions in BEA TUXEDO System

l
n that

a from
eral
n
onsible
ase.
 its

is
ility.

uld be
 by
s in

What Is a Global Transaction?

Before we get into how you can write applications that define and manage globa
transactions, this section gives you some idea as to what is meant by a transactio
is under the control of a transaction monitor.

The BEA TUXEDO system manages global transactions. As already indicated, a
global transaction is one that can execute in more than one server, accessing dat
more than one resource manager. A global transaction may be composed of sev
local transactions, each accessing a single resource manager. A local transactio
accesses a single database or file and is controlled by the resource manager resp
for performing concurrency control and atomicity of updates at that distinct datab
A given local transaction may be either successful or unsuccessful in completing
access.

A global transaction is always treated as a specific sequence of operations that
characterized by the four properties of atomicity, consistency, isolation, and durab
That is, it is a logical unit of work in which:

� All portions either succeed or have no effect.

� Operations are performed that correctly transform the resources from one
consistent state to another.

� Intermediate results are not accessible to other transactions, although other
processes in the same transaction may access the data.

� All effects of a completed sequence cannot be altered by any kind of failure.

The BEA TUXEDO system is responsible for managing the status of the global
transaction and making the decision as to whether or not a global transaction sho
committed or rolled back. Global transactions are explicitly defined and controlled
the ATMI function primitives that can be found on their respective reference page
the BEA TUXEDO Reference Manual and are the topic of this chapter. More
specifically, the ATMI functions enable the application programmer to begin and
terminate transactions and to test if a client or service routine is currently in a
transaction.
5-2 BEA TUXEDO Programmer’s Guide

ATMI Transaction Primitives

n
ith a
o the

source
ction

e

itly

ll to
ATMI Transaction Primitives

The ATMI primitives tpbegin() , tpcommit() , and tpabort() are used to explicitly
begin and end a transaction. The initiator of a transaction uses tpbegin() to mark its
beginning. After specifying the operations (service requests) to be applied to the
resource as part of this transaction, the initiator can then call either tpcommit() or
tpabort() to mark its completion. The calls to initiate and terminate a transactio
delineate the operations within the transaction. If the transaction is completed w
call to tpcommit() , the changes made as a result of the transaction are applied t
resource and become permanent. tpabort() causes the resource to be in the
consistent state at the start of the transaction. That is, any changes made to the re
are rolled back. Any of the participants of a transaction can cause the global transa
to fail by communicating their local failure to the initiator through the tpreturn()
function. A two-phase commit protocol is used by BEA TUXEDO to coordinate th
commitment, rollback, and recovery of global transactions. This protocol will be
further discussed later in the chapter.

When the tpgetlev() function is invoked, it returns a 1 or a 0 that indicates if the
caller is within a transaction (1) or not (0).

Explicitly Defining a Global Transaction

Global transactions can be defined in either client or server processes. To explic
define a global transaction, call the tpbegin() function. Follow it by the program
statements that are to be in transaction mode. Terminate the statements by a ca
tpcommit() or tpabort() .

The three functions have the following syntax:

int
tpbegin(timeout, flags) /* Begin transaction */
unsigned long timeout ;
long flags ;

int
tpcommit(flags) /* Commit current transaction */
long flags ;

int
tpabort(flags) /* Abort current transaction */
long flags ;
BEA TUXEDO Programmer’s Guide 5-3

5 Global Transactions in BEA TUXEDO System

t

s. Any

on

. This

alled
e

under
A high-level view of defining a transaction is shown in Listing 5-1.

Listing 5-1 Delineating a Transaction

. . .
if (tpbegin(timeout,flags) == -1)
 error routine
 program statements
. . .
if (tpcommit(flags) == -1)
 error routine

The process that makes the call to tpbegin() , the initiator, must also be the one tha
terminates it by invoking either tpcommit() or tpabort() . There is no limit to the
number of sequential transactions that a process may define using these function
process may call tpbegin() except if it is already in transaction mode. If tpbegin()
is called in transaction mode, the call will fail because of an error in protocol and
tperrno will be set to TPEPROTO. If the process is in transaction mode, the transacti
is unaffected by the failure.

Any service subroutines that are called within the transaction delimiters of tpbegin()
and tpcommit()/tpabort() become part of the current transaction. However, if
tpcall() or tpacall() have the flags parameter explicitly set to TPNOTRAN, the
operations performed by the called service do not become part of that transaction
in effect means that the calling process is not inviting the called service to be a
participant in the current transaction. As a result, any services performed by the c
process will not be affected by the outcome of the current transaction. It should b
noted here that a call made with TPNOTRAN set that is directed to a service in an
XA-compliant server group may produce unexpected results. See the discussion
“Implicitly Defining a Global Transaction” later in this chapter.
5-4 BEA TUXEDO Programmer’s Guide

ATMI Transaction Primitives

 the
 for

re

ior to
mall
e-out
ystem

ed

.
 and
iodic
. The
 If the
 the

0
Starting the Transaction

The transaction is started by a call to tpbegin() . tpbegin() takes two parameters,
only one of which is used at the present time. timeout specifies the amount of time in
seconds a transaction has before timing out; flags is currently undefined and must be
set to 0. The value of the timeout parameter indicates the least amount of time in
seconds that a transaction should be given before timing out. If 0 is specified for this
parameter, the transaction is given the maximum number of seconds allowed by
system before timing out (that is, the time-out value will equal the maximum value
an unsigned long as defined by the system).

Note: The use of 0 or unrealistically large values for the timeout parameter delays
system detection and reporting of errors. A time-out value is used to ensu
response to service requests within a reasonable time, and to terminate
transactions that have encountered problems such as network failures pr
commit. For a transaction in which a person is waiting for a response, a s
value, often less than 30 seconds, is best. In a production system, the tim
value should be large enough to accommodate expected delays due to s
load, and database contention; a small multiple of the expected average
response time is often an appropriate choice.

If a transaction times out, it is aborted. You can determine if a transaction has tim
out by testing the value of tperrno as illustrated in Listing 5-2. Note that if the
transaction timed out and it goes untested, a call to tpcommit() will still cause the
transaction to be aborted. In this case, tpcommit() fails and returns TPEABORT
tpcommit() in tperrno and the transaction is implicitly aborted.

The value assigned to the timeout parameter should be consistent with the SCANUNIT
parameter set by the BEA TUXEDO system administrator in the configuration file
The system parameter specifies the frequency with which timed-out transactions
blocked calls are looked for. Its value represents an interval of time between per
scans to find old transactions and timed out blocking calls within service requests
timeout parameter should be set to a value that is greater than the scanning unit.
time-out value were smaller, there would be some discrepancy between the time
transaction timed out and its discovery. The default value for SCANUNIT is 10 seconds.
The value you give to timeout may need to be coordinated with your system
administrator to be sure it makes sense with regard to the system parameters.

Listing 5-2 illustrates the starting of a transaction with the time-out value set to 3
seconds followed by a check to see if a timeout occurred.
BEA TUXEDO Programmer’s Guide 5-5

5 Global Transactions in BEA TUXEDO System

n
Listing 5-2 Testing for Transaction Timeout

if (tpbegin(30, 0) == -1) {
 (void)userlog("%s: failed to begin transaction\n", argv[0]);
 tpterm();
 exit(1);
}
. . .
communication calls
. . .
 if (tperrno == TPETIME){
 if (tpabort(0) == -1)
 check for errors ;
 }
 else if (tpcommit(0) == -1){
 check for errors ;
 }
. . .

Note that a transaction is still subject to timing out even when a process calls on
another with the TPNOTRAN communication flag set. This will be further discussed i
Chapter 7, “Error Management.”

The example in Listing 5-3 is excerpted from the audit.c client program of the
banking application.

Listing 5-3 Defining a Transaction

#include <stdio.h> /* UNIX */
#include <string.h> /* UNIX */
#include <atmi.h> /* TUXEDO */
#include <Uunix.h> /* TUXEDO */
#include <userlog.h> /* TUXEDO */
#include "bank.h" /* BANKING #defines */
#include "aud.h" /* BANKING view defines */

#define INVI 0 /* account inquiry */
#define ACCT 1 /* account inquiry */
#define TELL 2 /* teller inquiry */

static int sum_bal _((char *, char *));
static long sitelist[NSITE] = SITEREP; /* list of machines to audit */
static char pgmname[STATLEN]; /* program name = argv[0] */
5-6 BEA TUXEDO Programmer’s Guide

ATMI Transaction Primitives
static char result_str[STATLEN]; /* string to hold results of query */

main(argc, argv)
int argc;
char *argv[];
{
 int aud_type=INVI; /* audit type -- invalid unless specified */
 int clarg; /* command line arg index from optind */
 int c; /* Option character */
 int cflgs=0; /* Commit flags, currently unused */
 int aflgs=0; /* Abort flags, currently unused */
 int nbl=0; /* count of branch list entries */
 char svc_name[NAMELEN]; /* service name */
 char hdr_type[NAMELEN]; /* heading to appear on output */
 int retc; /* return value of sum_bal() */
 struct aud *audv; /* pointer to audit buf struct */
 int audrl=0; /* audit return length */
 long q_branchid; /* branch_id to query */

 . . . /* Get Command Line Options and Set Variables */

 /* Join application */

 if (tpinit((TPINIT *) NULL) == -1) {
 (void)userlog("%s: failed to join application\n", pgmname);
 exit(1);
 }

 /* Start global transaction */

 if (tpbegin(30, 0) == -1) {
 (void)userlog("%s: failed to begin transaction\n", pgmname);
 (void)tpterm();
 exit(1);
 }

 if (nbl == 0) { /* no branch id specified so do a global sum */
 retc = sum_bal(svc_name, hdr_type); /* sum_bal routine not shown */

} else {

 /* Create buffer and set data pointer */

 if ((audv = (struct aud *)tpalloc("VIEW", "aud", sizeof(struct aud)))
 == (struct aud *)NULL) {
 (void)userlog("audit: unable to allocate space for VIEW\n");
 exit(1);
 }

 /* Prepare aud structure */

BEA TUXEDO Programmer’s Guide 5-7

5 Global Transactions in BEA TUXEDO System
 audv->b_id = q_branchid;
 audv->balance = 0.0;
 audv->ermsg[0] = '\0';

 /* Do tpcall */

 if (tpcall(svc_name,(char *)audv,sizeof(struct aud),
 (char **)audv,(long *)audrl,0) == -1){
 (void)fprintf (stderr,"%s service failed\n%s: %s\n",
 svc_name, svc_name, audv->ermsg);
 retc = -1;

 }else {

 (void)sprintf(result_str,"Branch %ld %s balance is $%.2f\n",
 audv->b_id, hdr_type, audv->balance);
 }
 tpfree((char *)audv);
 }

 /* Commit global transaction */

 if (retc < 0) /* sum_bal failed so abort */
 (void) tpabort(aflgs);
 else {
 if (tpcommit(cflgs) == -1) {
 (void)userlog("%s: failed to commit transaction\n",
 pgmname);
 (void)tpterm();
 exit(1);
 }
 /*print out results only when transaction has committed successfully*/
 (void)printf("%s",result_str);
 }

 /* Leave application */

 if (tpterm() == -1) {
 (void)userlog("%s: failed to leave application\n", pgmname);
 exit(1);
 }
5-8 BEA TUXEDO Programmer’s Guide

ATMI Transaction Primitives

ture

AN
f the

e

he

ing
tion)

e
Terminating the Transaction

As already indicated, a transaction is terminated by a call to either tpcommit() or
tpabort() . Both have the flags parameter defined. However, while flags is not
currently used, you must set this parameter to zero to ensure compatibility with fu
releases. When tpcommit() returns successfully, all changes to the resource as a
result of the current transaction become permanent. tpabort() is called to indicate an
abnormal condition and explicitly aborts the transaction and invalidates the call
descriptors of any outstanding transactional replies (calls done with the TPNOTR
flag will not be invalidated). None of the changes that were produced as a result o
transaction are applied to the resource. For tpcommit() to succeed, the following two
conditions must be true:

� The calling process must be the same one that initiated the transaction with a
call to tpbegin() .

� The calling process must have no transaction replies (calls made without the
TPNOTRAN flag) outstanding.

If either condition is not true, the call fails and tperrno is set to TPEPROTO indicating
an error in protocol. If a participant calls tpcommit() or tpabort() , the transaction
is unaffected. If tpcommit() is called by the initiator with outstanding transaction
replies, the transaction is aborted and those reply descriptors associated with th
transaction become invalid.

tpcommit Initiates the Two-Phase Commit

When tpcommit() is called, it initiates the two-phase commit protocol mentioned
earlier. This protocol, as the name suggests, has two parts. In the first, each
participating resource manager indicates a readiness to commit. In the second, t
initiator gives permission to commit. The process that calls tpcommit() must be the
initiator of the transaction. As the initiator, this process starts the commit process
in which the participants (the other server processes that took part in the transac
communicate their success or failure. This can be made known to the initiator by
tpreturn() through the rval parameter that can be set to either TPSUCCESS or
TPFAIL . If TPFAIL has been returned, tpcommit() fails, tperrno is set to TPEABORT,
and the transaction is implicitly aborted. All the work that is performed by every
process that participated in that transaction is undone. More will be said about th
transaction role of tpreturn() and TPFORWAR() in Chapter 7, “Error Management.”
BEA TUXEDO Programmer’s Guide 5-9

5 Global Transactions in BEA TUXEDO System

ct to

 has

it.

bal

 in a
t the
n
ion)

fer to
ns off
Setting When tpcommit() Should Return

When more than one machine is involved in a transaction, the application can ele
specify that tpcommit() should return successfully when all participants have
indicated a readiness to commit; that is, when phase 1 of the two-phase commit
been logged as complete by all participants. The alternative choice is to have
tpcommit() wait until all participants have finished phase 2 of the two-phase comm
The CMTRET parameter in the RESOURCES section of UBBCONFIG can be set to either
LOGGED or COMPLETE to control this characteristic. The function TPSCMT() can be
called with its flags argument set to either TP_CMT_LOGGED or TP_CMT_COMPLETE to
override the setting in the configuration file.

The idea behind this option is that most of the time when all participants in a glo
transaction have logged successful completion of phase 1, they will not fail to
complete phase 2. By setting TP_COMMIT_CONTROL to LOGGED you allow slightly
faster return of calls to tpcommit() , but you run the slight risk that a participant
(probably on a remote node) may heuristically complete its part of the transaction
way that is not consistent with the commit decision. Whether it is prudent to accep
risk depends to a large extent on the nature of your application. If your applicatio
demands complete accuracy (for example, if you are running a financial applicat
you would probably prefer to allow for the time required for all participants fully to
complete the two-phase commit process. If you are counting beans, you may pre
have the application run as fast as possible even knowing you may be a few bea
over a period of time.

Testing for Participant Errors

A client making a synchronous call to the fictitious REPORT service (line 18) is shown
in Listing 5-4. It demonstrates testing for errors that can be returned on a
communication call that indicate participant failure (lines 19-34).
5-10 BEA TUXEDO Programmer’s Guide

ATMI Transaction Primitives
Listing 5-4 Testing for Participant Success or Failure

001 #include <stdio.h>
002 #include "atmi.h"
003
004 main()
005 {
006 char *sbuf, *rbuf;
007 long slen, rlen;
008 if (tpinit((TPINIT *) NULL) == -1)
009 error message, exit program;
010 if (tpbegin(30, 0) == -1)
011 error message, tpterm, exit program;
012 if ((sbuf=tpalloc("STRING", NULL, 100)) == NULL)
013 error message, tpabort, tpterm, exit program;
014 if ((rbuf=tpalloc("STRING", NULL, 2000)) == NULL)
015 error message, tpfree sbuf, tpabort, tpterm, exit program;
016 (void)strcpy(sbuf, "REPORT=accrcv DBNAME=accounts");
017 slen=strlen(sbuf);
018 if (tpcall("REPORT", sbuf, slen, &rbuf, &rlen, 0) == -1) {
019 switch(tperrno) {
020 case TPESVCERR:
021 fprintf(stderr,
022 "REPORT service's tpreturn encountered problems\n");
023 break;
024 case TPESVCFAIL:
025 fprintf(stderr,
026 "REPORT service TPFAILED with return code of %d\n", tpurcode);
027 break;
028 case TPEOTYPE:
029 fprintf(stderr,
030 "REPORT service's reply is not of any known data type\n");
031 break;
032 }
033 if (tpabort(0) == -1){
034 check for errors ;
035 }
036 }
037 else
038 if (tpcommit(0) == -1)
039 fprintf(stderr, "REPORT failed at commit time\n");
040 tpfree(rbuf);
041 tpfree(sbuf);
042 tpterm();
043 exit(0);
044 }
BEA TUXEDO Programmer’s Guide 5-11

5 Global Transactions in BEA TUXEDO System

alled

ch
.
ss
ss A)
Committing a Transaction in Conversational Mode

Figure 5-1 shows a conversational connection hierarchy that includes a global
transaction. The originator of a connection in transaction mode (process A that c
tpbegin() followed by tpconnect()) can call tpcommit() after all services have
called tpreturn(). If a hierarchy of connections exists as it does in Figure 5-1, ea
subordinate service must call tpreturn() when it no longer has replies outstanding
A TPEV_SVCSUCC or TPEV_SVCFAIL event is sent back up the hierarchy to the proce
that began the transaction. If all subordinates return successfully, the client (proce
completes the transaction; otherwise the transaction is aborted.

Figure 5-1 Connection Hierarchy: Transaction Mode
5-12 BEA TUXEDO Programmer’s Guide

ATMI Transaction Primitives

s
.

nt
s not

gh the

ssage

set

ss, it
n”

ss,
Implicitly Defining a Global Transaction

Besides using the ATMI primitives explicitly to start and end a transaction, it is
possible for a global transaction to be started in two other ways.

In a Client Process

The BEA TUXEDO system provides a predefined client program that is part of it
Data Entry System. The program is called mio and is the form handler for the system
Through the form specification language, UFORM, it is possible to cause a transaction
to be started in mio whenever a service request is generated. The TRANMODE parameter
in the FORM statement of the UFORM specification language allows you to have the clie
process initiate a transaction for each service. In this case, the programmer doe
make explicit calls to tpbegin() or tpcommit()/tpabort() to delineate the
transaction. If the TRANMODE parameter of the FORM statement has been set to TRAN,
mio automatically starts and ends the transaction. The application logic to decide
whether to commit or roll back the transaction is built into mio .

In a Service Routine

In another special case, a service routine can be placed in transaction mode throu
system parameter, AUTOTRAN, in the configuration file. If AUTOTRAN is set to Y, a
transaction is automatically started in the service subroutine when a request me
is received from another process. Let’s look at some variations on this theme.

� If a process is not in transaction mode and calls on the services of another
process, the system parameter is consulted for the called service, and if it is
to start a transaction, one will be initiated with the call.

� If a process is in transaction mode and calls on the services of another proce
places the called process in transaction mode through the “rule of propagatio
and the system parameter is not consulted.

� If a process is in transaction mode and calls on the services of another proce
but the caller has its flags parameter set to TPNOTRAN, the services performed
by the called process are not part of the current transaction (suppresses
propagation rule). The system parameter will be consulted and

� if it is set to N (or not set), the called process is not placed in transaction
mode.

� if it is set to Y, the service is placed in transaction mode, but this is a new
transaction.
BEA TUXEDO Programmer’s Guide 5-13

5 Global Transactions in BEA TUXEDO System

e for

led,

rm
the
ervice

h
lways

now
dy in

 in

nless
ices of

tines

to
Because a service can automatically be placed in transaction mode, it is possibl
the call to be made with the communication flag set to TPNOTRAN and the flags
member of the service information structure to return TPTRAN when queried. For
example, if the call is made with the communication flags set to
TPNOTRAN|TPNOREPLY and the service automatically starts a transaction when cal
the flags member of the information structure will be set to TPTRAN|TPNOREPLY.

What a Service in an XA-Compliant Server Group Expects

A service that is part of an XA-compliant server group is generally written to perfo
some operation via the group’s resource manager, which automatically opened
associated database when the application was booted. In the normal case, the s
expects to do its work within a transaction. If a service like this is called with the
caller’s communication flags set to TPNOTRAN, the results of the ensuing database
operation may be a little strange.

The solution is to write your application so that services in groups associated wit
XA-compliant resource managers are always called in transaction mode or are a
defined in the configuration file with AUTOTRAN=Y. Another precaution is to test early
in the service code to see what the transaction level is.

Testing Whether a Transaction Has Begun

In order correctly to interpret the error messages that can occur, it is important to k
if a process is in transaction mode or not. It is an error for a process that is alrea
transaction mode to make a call to tpbegin() . tpbegin() will fail and set tperrno
to TPEPROTO to indicate that the function was invoked while the caller was already
a transaction. However, the transaction will not be affected.

It might be helpful to think of transaction mode as something that is propagated u
specifically suppressed. When one process in transaction mode calls on the serv
another process, that process acquires the same “condition.” If mio has been placed in
transaction mode through the form specification language, all the service subrou
it calls upon may be placed in transaction mode.

Service subroutines can be written so that they test to see if they are already in
transaction mode before invoking tpbegin() . Testing transaction level can be done
by querying the flags member of the service information structure that is passed
the service routine. If its value is set to TPTRAN, the service is in transaction mode.
Also, this information can be retrieved by calling the tpgetlev() function. The
syntax of this function is:

int
tpgetlev() /* Get current transaction level */
5-14 BEA TUXEDO Programmer’s Guide

ATMI Transaction Primitives

e
d

tpgetlev() returns 0 if the caller is not in a transaction and 1 if it is.

Listing 5-5 is a variation of the OPEN_ACCT service that shows testing for transaction
level using the tpgetlev() function (line 12). If the process is not in transaction
mode, it starts one (line 14). If tpbegin() fails, a message is returned to the status lin
(line 16) and the rcode argument of tpreturn() is set to a code that can be retrieve
in the global variable tpurcode (line 17 and line 1).

If the AUTOTRAN configuration parameter discussed above is set to Y, you avoid the
overhead of testing for transaction level and the need of explicitly calling the
tpbegin() and tpcommit()/tpabort() transaction functions. For example, in the
fragment shown in Listing 5-5, if OPEN_ACCT service is always to be called in
transaction mode, the system parameters AUTOTRAN and TRANTIME can be set in the
configuration file, eliminating the need to define the transaction or determine its
existence within the programming code (lines 7 and 10-19).

Listing 5-5 Testing Transaction Level

001 #define BEGFAIL 3 /* tpurcode setting for return if tpbegin fails */

002 void
003 OPEN_ACCT(transb)

004 TPSVCINFO *transb;

005 {
 ... other declarations ...
006 FBFR *transf; /* fielded buffer of decoded message */
007 int dotran; /* checks whether service tpbegin/tpcommit/tpaborts */

008 /* set pointer to TPSVCINFO data buffer */

009 transf = (FBFR *)transb->data;

010 /* Test if transaction exists; initiate if no, check if yes */

011 dotran = 0;
012 if (tpgetlev() == 0) {
013 dotran = 1;
014 if (tpbegin(30, 0) == -1) {
015 Fchg(transf, STATLIN, 0,
016 "Attempt to tpbegin within service routine failed\n");
017 tpreturn(TPFAIL, BEGFAIL, transb->data, 0, 0);
018 }
019 }
 . . .
BEA TUXEDO Programmer’s Guide 5-15

5 Global Transactions in BEA TUXEDO System
5-16 BEA TUXEDO Programmer’s Guide

CHAPTER

ages,
tem
t to the
ome

d of

f
s the
tion
 it,

he
tored.
large

vent;

n its
ives
6 Using the Event Broker

Introduction

The Event Broker is a BEA TUXEDO subsystem that receives event posting mess
filters them, and distributes them to subscribers. A poster is a BEA TUXEDO sys
process that detects when an event of interest has occurred and reports (posts) i
Event Broker. A subscriber is a BEA TUXEDO system process that requests that s
notification action be taken when a matching event is posted.

This concept of an “anonymous” broker that receives and distributes messages
provides another client-server communication paradigm to BEA TUXEDO. Instea
a one-to-one relationship between a service requester and a service provider, an
arbitrary number of posters can post a message buffer for an arbitrary number o
subscribers. The posters simply post events, without having to know who receive
information and what is done about it. The subscribers can get whatever informa
they are interested in from the Event Broker, without having to know who posted
and they can be notified and take action in a variety of ways.

Typically, Event Broker applications are designed to handle exception events. T
application designer has to decide what events in the application need to be moni
In a banking application, for example, an event might be posted for an unusually
withdrawal transaction; but it would not be particularly useful to post an event for
every withdrawal transaction. And not all users would need to subscribe to that e
perhaps just the branch manager would need to be notified.

Following this introduction to the Event Broker’s features and some guidelines o
use, this chapter explains how to post events, how to subscribe to events, and g
some examples.
BEA TUXEDO Programmer’s Guide 6-1

6 Using the Event Broker

more

ent

DO

 an
Notification Actions

When an event is posted, the Event Broker may be configured to invoke one or
of these notification actions for clients or servers who have subscribed:

� Unsolicited notification message—Clients may receive event notification
messages in their unsolicited message handling routine, just as if they were s
by tpnotify (3c).

� Service call—Servers may receive event notification messages as input to
service routines, just as if they were sent by tpacall (3c).

� Reliable queue—Event notification messages may be stored in a BEA TUXE
system reliable queue, using tpenqueue (3c). The event notification buffers are
stored until requested. A BEA TUXEDO system client or server process may
call tpdequeue (3c) to retrieve these notification buffers, or alternately
TMQFORWARD(5) may be configured to automatically dispatch a BEA TUXEDO
system service routine.

Further information on the use of these notification actions is given later in this
chapter.

In addition, the following notification actions may be configured by the system
administrator only, using the BEA TUXEDO system administrative API to create
EVENT_MIB(5) entry:

� Invoke a system command.

� Write a message to the system's log file on disk.

For information on the EVENT_MIB(5), see the BEA TUXEDO Reference Manual.
6-2 BEA TUXEDO Programmer’s Guide

Introduction

as a
DO
d

ction
d by

rated

e and
to by

ns to
 every

our
s of
hat
n,

PC
User-Defined and System-Defined Events

The Event Broker is used to monitor and report application-defined events such
large cash withdrawal as mentioned earlier for a banking application. BEA TUXE
itself detects and posts certain pre-defined events related to system warnings an
failures. This is done by the Event Monitor feature, which is a part of the
general-purpose Event Broker communication mechanism. For example,
system-generated events report on configuration changes, state changes, conne
failures, and machine partitioning. A list of the system-generated events detecte
the Event Monitor is given in the EVENTS(5) reference page in the BEA TUXEDO
Reference Manual.

Note that a leading dot (“.”) in the event name is used to distinguish system-gene
events from application-defined events.

System-generated events are defined in advance by BEA TUXEDO system cod
as such do not have to be posted. System-generated events can be subscribed
clients and servers just as application-defined events are. However, just as
application-defined events should be used for exceptional conditions, subscriptio
system-generated events should be used mainly by system administrators, not by
client in the application.

When incorporating the features offered by the Event Broker/Event Monitor into y
application, remember that it is not intended to be a mechanism for high volume
postings going to many subscribers. Don’t try to post an event for every activity t
occurs, and don’t think that everyone needs to subscribe. In an overload conditio
system performance could be affected and notifications could be dropped. To
minimize that possibility, the system administrator should ensure that the UNIX I
resources are carefully tuned as explained in the BEA TUXEDO Installation Guide.
BEA TUXEDO Programmer’s Guide 6-3

6 Using the Event Broker

to filter
ore

t
n

s are

ents
Event Broker/Event Monitor Servers

The Event Broker server is TMUSREVT(5). This is a BEA TUXEDO system-provided
server that processes event report message buffers and acts as an Event Broker
and distribute them. The BEA TUXEDO system administrator must boot one or m
of these servers to activate event brokering.

TMSYSEVT(5) is the BEA TUXEDO system-provided server that acts as an Event
Broker for system-generated events. TMSYSEVT and TMUSREVT are similar, but separate
servers have been provided to allow the system administrator to have a differen
replication strategy for processing system event notifications. This is discussed i
Administering the BEA TUXEDO System.

Programming Interface

Event Broker programming interfaces are available to all BEA TUXEDO system
server and client processes, including Workstation and COBOL. Basic operation
as follows:

� A client or server posts a buffer to an application-defined event name.

� This buffer is then transmitted to any number of processes that have subscribed
to the event.

� Subscribers may be notified in a variety of ways, as discussed above, and ev
may be filtered. Notification and filtering are configured through the
programming interface described in this chapter as well as through the BEA
TUXEDO system administrative API.
6-4 BEA TUXEDO Programmer’s Guide

Posting Events

e
racter

ame

be
e

e
Posting Events

To post an event, a BEA TUXEDO client or server calls tppost (3c). The input is an
event name, buffer pointer, buffer length, and flags.

The syntax of the tppost () function is:

tppost(char * eventname , char * data , long len , long flags)

tppost() Arguments: eventname

The tppost () eventname can contain up to 31 characters plus a null character. Th
first character cannot be a dot (“.”), as this character is reserved as the starting cha
for BEA TUXEDO system-generated events.

When choosing event names, keep in mind that subscribers can use wild card
capabilities to subscribe to multiple events with a single function call. Using the s
prefix for a category of related event names can be helpful.

tppost() Arguments: data and len

The tppost () data argument must point to a buffer previously allocated by
tpalloc (3c), and len should specify the amount of data in the buffer that should
posted with the event. Note that if data points to a buffer of a type that does not requir
a length to be specified (for example, an FML fielded buffer), then len is ignored.

If data is NULL, len is ignored and the event is posted with no data.

tppost() Arguments: flags

tppost () can be used with a number of flags, for example, to determine how
transaction timeouts and blocking timeouts are to be handled. For details, see th
tppost (3c) reference page in the BEA TUXEDO Reference Manual.
BEA TUXEDO Programmer’s Guide 6-5

6 Using the Event Broker

tem

ed
Example of Event Posting

Listing 6-1 shows an example of event posting taken from the BEA TUXEDO sys
sample application bankapp . This example is part of the WITHDRAWAL service. One of
the things that the WITHDRAWAL service does is check for withdrawals greater than
$10,000.00. In this example, an event called BANK_TLR_WITHDRAWAL is posted
whenever such a withdrawal is made.

Listing 6-1 Posting an Event with tppost()

.

.

.
/* Event logic related */
static float evt_thresh = 10000.00 ; /* default for event threshold */
static char emsg[200] ; /* used by event posting logic */
.
.
.
/* Post a BANK_TLR_WITHDRAWAL event ? */
if (amt < evt_thresh) {
/* no event to post */
tpreturn(TPSUCCESS, 0,transb->data , 0L, 0);
}
/* prepare to post the event */
if ((Fchg (transf, EVENT_NAME, 0, "BANK_TLR_WITHDRAWAL", (FLDLEN)0) == -1) ||
(Fchg (transf, EVENT_TIME, 0, gettime(), (FLDLEN)0) == -1) ||
(Fchg (transf, AMOUNT, 0, (char *)&amt, (FLDLEN)0) == -1)) {
(void)sprintf (emsg, "Fchg failed for event fields: %s",
Fstrerror(Ferror)) ;
}
/* post the event */
else if (tppost ("BANK_TLR_WITHDRAWAL", /* event name */
(char *)transf, /* data */
0L, /* len */
TPNOTRAN | TPSIGRSTRT) == -1) {
/* If event broker is not reachable, ignore the error */
if (tperrno != TPENOENT)
(void)sprintf (emsg, "tppost failed: %s", tpstrerror (tperrno));
}

Note that this example simply posts the event to the Event Broker: something
noteworthy has occurred in the application. Subscription to the event by interest
client(s), who can then take action as needed, is done independently.
6-6 BEA TUXEDO Programmer’s Guide

Subscribing to Events

 and

d to

 a
ns

gular

Subscribing to Events

To subscribe to an event, a BEA TUXEDO system client or server calls
tpsubscribe (3c). The input is an event name(s), optional filter rules, and flags to
specify the notification method. As mentioned earlier in this chapter, several
notification methods are available: unsolicited notification message, service call,
reliable queue. (Other notification methods can be configured by the system
administrator using the BEA TUXEDO system administrative API.)

The syntax of the tpsubscribe () function is:

tpsubscribe (char * eventexpr , char * filter , TPEVCTL * ctl , long flags)

Both system-generated events and application-defined events can be subscribe
with tpsubscribe ().

For purposes of subscriptions (and for MIB updates), service routines executing in a
BEA TUXEDO system server process are considered to be trusted code. This is
recent enhancement to BEA TUXEDO system security; it permits some operatio
that might have been prohibited in earlier versions.

tpsubscribe() Arguments: eventexpr

The event or set of events being subscribed to is named by eventexpr , a
null-terminated string of up to 255 characters containing a regular expression. Re
expressions are of the form specified in recomp (3c). For example:

� If eventexpr is "\\..*" , the caller is subscribing to all system-generated
events.

� If eventexpr is "\\.SysServer.*" , the caller is subscribing to all
system-generated events related to servers.

� If eventexpr is "[A-Z].*" , the caller is subscribing to all user events starting
with A-Z.

� If eventexpr is ".*(ERR|err).*" , the caller is subscribing to all user events
containing either the substring ERR or the substring err (for example,
account_error and ERROR_STATE events would both qualify).
BEA TUXEDO Programmer’s Guide 6-7

6 Using the Event Broker

vent.
ne
ker
oke
 with

out
awals
ify a
nt to

which
osted
a
filter
with
tpsubscribe() Arguments: filter

The tpsubscribe () filter argument, if present, is a string containing a boolean
filter rule that must be evaluated successfully before the Event Broker posts the e
Upon receiving an event to be posted, the Event Broker applies the filter rule, if o
exists, to the posted event’s data. If the data passes the filter rule, the Event Bro
invokes the notification method specified; otherwise, the Event Broker does not inv
the notification method. The caller can subscribe to the same event multiple times
different filter rules.

By using the event filtering capability, subscribers can be more discriminating ab
the events they are notified of. For example, a poster can post an event for withdr
greater than $10,000.00, as illustrated above, but a subscriber may want to spec
higher threshold for being notified, such as $50,000.00. Or, a subscriber may wa
be notified of large withdrawals only if made by customers with specified IDs.

Filter rules are specific to the typed buffers to which they are applied. See the
tpsubscribe (3c) reference page in the BEA TUXEDO Reference Manual for further
information on filter rules.

tpsubscribe() Arguments: ctl

The ctl argument to tpsubscribe () controls how the subscriber is notified of the
event.

Notification Via Unsolicited Message

If the subscriber is a BEA TUXEDO system client process and ctl is NULL, then the
Event Broker sends an unsolicited message to the subscriber when the event to
it is subscribed is posted. Basic operation is as follows. When an event name is p
that evaluates successfully against eventexpr , the Event Broker tests the posted dat
against the associated filter rule. If the data passes the filter rule (or if there is no
rule for the event), then the subscriber receives an unsolicited notification along
any data posted with the event.

In order to receive unsolicited notifications, the client must register (via
tpsetunsol (3c)) an unsolicited message handling routine.
6-8 BEA TUXEDO Programmer’s Guide

Subscribing to Events

r
his

cific

 that
 the

go to

d
e

the
ker

pace

Clients receiving event notification via unsolicited messages should remove thei
subscriptions from the Event Broker’s list of active subscriptions before exiting. T
is done using the tpunsubscribe (3c) function, as shown later in this chapter.

Notification Via Service Call or Reliable Queue

Event notification via service call gives you the ability to program responses to spe
conditions in your application and take action without human intervention. An
example is given later in this chapter. Event notification via reliable queue ensures
event data will not get lost and also gives the subscriber the flexibility of retrieving
event data at any time.

If the subscriber (either a client or a server process) wants event notifications to
service routines or to stable-storage queues, then the ctl parameter of tpsubscribe ()
must point to a valid TPEVCTL structure. This structure contains the following
elements:

long flags;
char name1[32];
char name2[32];
TPQCTL qctl;

The following is a list of valid bits for the ctl->flags element for controlling options
for event subscriptions.

TPEVSERVICE
When this flag bit is set, event notifications are sent to the BEA TUXEDO
system service routine named in ctl->name1 . Basic operation is as follows.
When an event name is posted that evaluates successfully against
eventexpr , the Event Broker tests the posted data against the associate
filter rule. If the data passes the filter rule (or if there is no filter rule for th
event), then a service request is sent to ctl->name1 along with any data
posted with the event. The service name in ctl->name1 can be any valid
BEA TUXEDO system service name and it may or may not be active at
time the subscription is made. Service routines invoked by the Event Bro
should return with no reply data (that is, they should call tpreturn (3c) with
a NULL data argument). Any data passed to tpreturn () will be dropped.

TPEVQUEUE
When this flag bit is set, event notifications are enqueued to the queue s
named in ctl->name1 and the queue named in ctl->name2 . Basic operation
is as follows. When an event name is posted that evaluates successfully
against eventexpr , the Event Broker tests the posted data against the
BEA TUXEDO Programmer’s Guide 6-9

6 Using the Event Broker

er
cified
e
ueue
 the

nt.

 at

r

w
e

associated filter rule. If the data passes the filter rule (or if there is no filt
rule for the event), then the Event Broker enqueues a message to the spe
queue space/queue name along with any data posted with the event. Th
queue space and queue name can be any valid BEA TUXEDO system q
space and queue name, either of which may or may not exist at the time
subscription is made. In the TPEVCTL structure, ctl->qctl can contain
options further directing the Event Broker’s enqueuing of the posted eve
These are the same options that are used for control of the tpenqueue (3c)
function. For example, the TPQTOP option can be used to place a message
the top of the queue. For further information on these options, see the
tpenqueue (3c) reference page in the BEA TUXEDO Reference Manual.

TPEVSERVICE and TPEVQUEUE are mutually exclusive flags. For information on othe
flag bits that can be used with either TPEVSERVICE or TPEVQUEUE, see the
tpsubscribe (3c) reference page in the BEA TUXEDO Reference Manual.

tpsubscribe() Arguments: flags

tpsubscribe () can be used with a number of flags, for example, to determine ho
transaction timeouts and blocking timeouts are to be handled. For details, see th
tpsubscribe (3c) reference page in the BEA TUXEDO Reference Manual.

Example of Event Subscription

Listing 6-2 shows part of a bankapp application server that subscribes to
BANK_TLR_.* events, which would include the BANK_TLR_WITHDRAWAL event from
the previous example as well as any other event names beginning with BANK_TLR_.
When a matching event is posted, the subscriber is notified via a service call to a
service named WATCHDOG.
6-10 BEA TUXEDO Programmer’s Guide

Subscribing to Events
Listing 6-2 Subscribing to an Event with tpsubscribe()

.

.

.
/* Event Subscription handles */
static long sub_ev_largeamt = 0L ;
.
.
.
/* Preset default for option 'w' - watchdog threshold */
(void)strcpy (amt_expr, "AMOUNT > 10000.00") ;
.
.
.
/*
 * Subscribe to the events generated
 * when a "large" amount is transacted.
 */
evctl.flags = TPEVSERVICE ;
(void)strcpy (evctl.name1, "WATCHDOG") ;
/* Subscribe */
sub_ev_largeamt = tpsubscribe ("BANK_TLR_.*",amt_expr,&evctl,TPSIGRSTRT) ;
if (sub_ev_largeamt == -1L) {
(void)userlog ("ERROR: tpsubscribe for event BANK_TLR_.* failed: %s",
tpstrerror(tperrno)) ;
return -1 ;
}
.
.
.
{
/* Unsubscribe to the subscribed events */
if (tpunsubscribe (sub_ev_largeamt, TPSIGRSTRT) == -1)
(void)userlog ("ERROR: tpunsubscribe to event BANK_TLR_.* failed: %s",
tpstrerror(tperrno)) ;
return ;
}
/*
* Service called when a BANK_TLR_.* event is posted.
*/
void
#if defined(__STDC__) || defined(__cplusplus)
WATCHDOG(TPSVCINFO *transb)
#else
WATCHDOG(transb)
TPSVCINFO *transb;
#endif
BEA TUXEDO Programmer’s Guide 6-11

6 Using the Event Broker

tive
{
FBFR *transf; /* fielded buffer of decoded message */
/* Set pointr to TPSVCINFO data buffer */
transf = (FBFR *)transb->data;
/* Print the log entry to stdout */
(void)fprintf (stdout, "%20s|%28s|%8ld|%10.2f\n",
Fvals (transf, EVENT_NAME, 0),
Fvals (transf, EVENT_TIME, 0),
Fvall (transf, ACCOUNT_ID, 0),
*((float *)CFfind (transf, AMOUNT, 0, NULL, FLD_FLOAT)));
/* No data should be returned by the event subscriber's svc routine */
tpreturn(TPSUCCESS, 0,NULL, 0L, 0);
}

In the above example, note the use of tpunsubscribe() before leaving the
application. This removes the event subscription from the Event Broker’s list of ac
subscriptions. For information on the options available for this function, see the
tpunsubscribe (3c) reference page in the BEA TUXEDO Reference Manual.
6-12 BEA TUXEDO Programmer’s Guide

CHAPTER

epts
ret

 the
mit

ion

sed?
 Does
tion
tion?

al
tive

 let’s
ow
ent
7 Error Management

Introduction

The purpose of this chapter is to review the transaction and communication conc
discussed in the preceding chapters with the focus on how to manage and interp
error conditions correctly.

What are the means used by the BEA TUXEDO system to communicate to the
application that a function call has failed, allowing the programmer to implement
appropriate logic? What are the various scenarios for determining whether to com
or abort a transaction? What errors are fatal to transactions? How does transact
mode affect the concept of time-out and what are the implications? How does
transaction mode affect the roles of the function primitives and how they may be u
What operations are part of one transaction and what are the determining factors?
the fate of one transaction ever determine the fate of another? What communica
rules must be followed between processes within and not within the same transac
How do global transaction primitives affect the use of local transaction-defining
functions (that is, functions used to explicitly mark the beginning and end of a loc
transaction) that may be part of the Data Manipulation Language (DML) that is na
to the resource manager?

Many of these subjects have been touched upon already in earlier chapters. Now
attempt to bring them together to explain the functionality of the ATMI, showing h
the various pieces fit together following consistent rules that create an environm
that combines message communication with transaction integrity.
BEA TUXEDO Programmer’s Guide 7-1

7 Error Management

s
and
 you
and

e

at

urn to

ough

s
Communicating Errors

The following discussion concerns how the BEA TUXEDO system communicate
errors to the application developer. It is couched in terms of categories of errors
whether they are application or system-based. Hopefully, this discussion will give
more insight as to what errors to expect, what effect they have on transactions,
what kind of control you as a programmer have over them.

Throughout the guide, there has been a continual reference to the global variabl
tperrno . In an environment of concurrent processes, this is a key way to inform
processes if their function calls have succeeded or not. All the ATMI functions th
normally return an integer or pointer, return -1 or NULL on error and set tperrno to a
value that reveals the nature of the error. In cases where the function does not ret
its caller, as in the case of tpreturn() or tpforward() since they are called to
terminate a service routine, the only way to communicate success or failure is thr
the global variable, tpurcode , in the requester.

The global variable tpurcode can also be used to communicate user-defined
conditions. The value in tpurcode is set from the value placed in the rcode argument
of tpreturn() . This code is sent regardless of the value of the rval argument of
tpreturn() unless an error is encountered by tpreturn() or a transaction time-out
occurs.

Values of tperrno

The codes returned in tperrno represent categories of errors. All the ATMI function
whose failure is reported by the value returned in tperrno have the four basic
categories of

� protocol errors (TPEPROTO)

� BEA TUXEDO system errors (TPESYSTEM)

� operating system errors (TPEOS)

� errors from invalid arguments (TPEINVAL)
7-2 BEA TUXEDO Programmer’s Guide

Communicating Errors

xt.
 of

mpted

ing
alls

rror

e are
r in

.

ay
Protocol Errors

Protocol errors occur because an ATMI function was called in an incorrect conte
Refer to the intro (3c) reference page. This type of error usually happens for one
two reasons. Either the ATMI call is being made

� in the wrong order

� or by the wrong process.

For example, a client attempting to begin communication before joining the
application illustrates an error in protocol because these operations are being atte
in the wrong order.

A transaction participant rather than the initiator calling tpcommit() is another
protocol error because the participant is the wrong process to be calling tpcommit() .

A protocol error is one that is totally correctable at the application level by enforc
the rules of order and propriety associated with the ATMI calls (that is, by making c
in the correct order by the appropriate processes).

Since each ATMI call can return a protocol error, attempt to discover the exact e
in the context of the semantics of the specific call and ask the two questions:

� Is this call being made in the correct order?

� Is this call being made by the correct process?

BEA TUXEDO System Errors

When BEA TUXEDO system errors occur, messages explaining their exact natur
written to the central event log. The section entitled “The Central Event Log” late
this chapter explains this log in detail. Since these are system errors rather than
application errors, the system administrator may be needed to help correct them

Operating System Errors

Operating system errors indicate that a system call has failed. A numeric value
identifying the failed system call is returned in the global variable, Uunixerr .
Operating system errors are seldom application errors; systems administrators m
need to be called on to correct them.
BEA TUXEDO Programmer’s Guide 7-3

7 Error Management

sed
d

tify

l
Errors from Invalid Arguments

All of the ATMI functions that take arguments can fail if invalid arguments are pas
to them. In the case where the function returns to the caller, the function fails an
causes tperrno to be set to TPEINVAL. In the case of tpreturn() or tpforward() ,
if this type of error is discovered while processing the arguments, tperrno is set to
TPESVCERR for the function waiting on the call; that is, either tpcall() or
tpgetrply() . This is an application error and is correctable by the programmer.

Other Possible Error Categories

In addition to the four basic categories just discussed, others include

� errors from lack of entries in system tables or the data structure used to iden
buffer types (TPENOENT)

� errors from lack of permission to enter the application (TPEPERM)

� resource manager errors (TPERMERR)

� transaction related errors (TPETRAN)

� errors from mismatching of typed buffers (TPEITYPE and TPEOTYPE)

� errors that apply only to asynchronous communication calls or conversationa
calls because they involve call descriptors (TPELIMIT and TPEBADDESC)

� errors that can occur as a result of the communication calls in general
(TPESVCFAIL, TPESVCERR, TPEBLOCK, and TPGOTSIG)

� transaction and blocking time-out errors (TPETIME)

� errors from calling tpcommit() when the transaction should have been
explicitly aborted (TPEABORT)

� errors that signal that a heuristic decision was (or may have been) taken
(TPEHAZARD, TPEHEURISTIC)
7-4 BEA TUXEDO Programmer’s Guide

Communicating Errors

ich
e

fails

em

type
ined

 type

e

there

. The

alling
No Entry Errors

The no entry type error, TPENOENT, has more than one meaning and depends on wh
function call is returning it. The following table lists the functions and specifies th
reason for the failure in each case.

Permission Errors

The only ATMI function that returns this type of error is tpinit() . If the calling
process does not have the correct permissions to enter the application, this call
returning TPEPERM. Permissions are set in the configuration file and as such the
correction of this error is outside of your application. See the BEA TUXEDO syst
administrator if you encounter this error.

Function Explanation of TPNOENT Error

tpalloc() The type of buffer asked for is not known to the system. For a buffer type and/or sub
to be known, there must be an entry for it in a type switch data structure that is def
in the BEA TUXEDO system libraries. Refer to the tuxtypes (5) and typesw (5)
reference pages. On an application level, make sure you have referenced a known
correctly, otherwise see your system administrator.

tpinit() The calling process cannot join the application because there is no space left in th
bulletin board to make an entry for it. See your system administrator.

tpcall()
tpacall()

The calling process is referencing a service that is not known to the system since
is no entry for it in the bulletin board. On an application level, make sure you have
referenced the service correctly, otherwise see your system administrator.

tpconnect() Cannot connect to name because it does not exist or is not a conversational service

tpgprio() The calling process is asking for a request priority when no request has been made
system has no current entry for a request. This is an application error.

tpunadvertise() Cannot unadvertise the service name because it is not currently advertised by the c
process

tpenqueue()
tpdequeue()

Cannot access the qspace because it is not available (the associated TMQUEUE(5) server
is not available)

tppost()
tpsubscribe()
tpunsubscribe()

Cannot access the BEA TUXEDO system event broker
BEA TUXEDO Programmer’s Guide 7-5

7 Error Management

e
 of

ecific

rectly

 with

st

y

spect

e that
erver
s may
bout

sk
ll to
t
ion. If
Resource Manager Errors

These errors can occur with calls to tpopen() and tpclose() , and they return the
value of TPERMERR in tperrno . The meaning of the BEA TUXEDO system error cod
is intentionally vague in this case so as not to hinder portability. The exact nature
the error must be determined by interrogating the resource manager in its own sp
manner. Obviously when this error code is returned for tpopen() , it indicates that the
problem has to do with a failure on the part of the resource manager to open cor
and for tpclose() , to close correctly.

Transaction-Related Errors

When this type of error occurs, TPETRAN is returned in tperrno . tpbegin() ,
tpcancel() , tpresume() , tpconnect() , tppost() , and the tpcall() /tpacall()
functions can return this error code. For tpbegin() , it usually means some transient
system error occurred when attempting to start the transaction that may clear up
a repeated call.

tpcancel() returns this error code when called for a transaction reply (the reque
was done without the TPNOTRAN flag).

For tpresume() , it means that the BEA TUXEDO system is unable to resume the
global transaction because the caller is currently participating in work outside an
global transaction with one or more resource managers. All such work must be
completed before a global transaction can be resumed. The caller’s state with re
to the local transaction is unchanged.

For the other functions, it means a call was made in transaction mode to a servic
does not support transactions. What does this mean? Some services belong to s
groups that access a DBMS that can support transactions, whereas other service
be responsible for printing out a form and accessing a printer that knows nothing a
transactions. The configuration of services into servers and server groups is an
administrative task. In order to determine which services support transactions, a
your system administrator. This is an application error. For the communication ca
such a service to succeed, the TPNOTRAN flag must be set. In other words, you may no
ask a service that does not support transactions to be a participant in the transact
you desire the service, it can be asked for only if the TPNOTRAN flag is explicitly set or
if you access the service outside of your transaction.
7-6 BEA TUXEDO Programmer’s Guide

Communicating Errors

esses

at
esses
O
d
ow
ly its

type
 to the
d is
fer.
buffer

e

nows
e of
e in

long
ffer
been

alls or
nous
sts.
Typed Buffer Errors

Typed buffer errors are returned as a result of sending requests or replies to proc
in typed buffers that are unfamiliar to them. TPEITYPE is returned by tpcall() ,
tpacall() , and tpconnect() when the request data buffer is sent to a service th
does not know about this type. What does this mean? The buffer types that proc
know about are determined both by the configuration file and by the BEA TUXED
system libraries that have been linked into the process. These libraries define an
initialize a data structure that identifies the typed buffers that the process is to kn
about. The library can be tailored to each process. Also, an application can supp
own copy of a file that defines buffer types. An application can set up the buffer
data structure (referred to as a buffer type switch) on a per process basis. Refer
tuxtypes (5) and typesw (5) reference pages. This is an administrative decision an
mentioned here to clarify what is meant by a process knowing about a typed buf
The rule for sending requests is that you must always send a request in a typed
that a service knows about; this information can be obtained from your system
administrator.

TPEOTYPE is returned by tpcall() , tpgetrply() , tpdequeue() , and tprecv()
when the reply message is sent in a buffer that is not known or not allowed by th
caller. What does this mean? Not known has the same semantics as previously
explained for the request buffer. Not allowed means that although the process k
of the existence of this buffer type, the type returned to it does not match the typ
the buffer it allocated to receive the reply and the caller is not allowing for a chang
buffer type. The caller indicates this preference by setting flags to TPNOCHANGE. In this
case, strong type checking is enforced, returning TPEOTYPE when violated. The default
is to have weak type checking, allowing a different buffer type to be returned as
as it is known to the caller. Again, the rule for sending replies is that the reply bu
must be known to the caller and you must observe strong type checking if it has
indicated.

Call Descriptor Errors

The errors discussed in this section can occur only when making asynchronous c
conversational calls because they involve the misuse of call descriptors. Asynchro
calls depend on call descriptors to identify replies with their corresponding reque
Conversational sends and receives depend on call descriptors to identify the
BEA TUXEDO Programmer’s Guide 7-7

7 Error Management

call
 do

m as
e

d in

he

d an
criptor

tor
he

pen is

 is
connection; the call that initiates the connection depends on the availability of a
descriptor. There are two things that the BEA TUXEDO system doesn’t like you to
with call descriptors:

� exceed your limit (TPELIMIT)

� reference one that has become invalid (TPEBADDESC)

The limit for outstanding call descriptors (replies) has been defined for the syste
fifty and is a non-tunable parameter. The only way to change it is to recompile th
system. The maximum number of descriptors allowed should be ample for your
application, but this limit is system-defined and cannot be redefined by your
application.

The limit for call descriptors for simultaneous conversational connections is define
the configuration file and is more flexible than the limit for replies. The MAXCONV
parameter in the RESOURCES section of the configuration file can be changed when t
application is not running; it can be dynamically changed in the MACHINES section
when the application is running. (See tmconfig (1).)

There are two general ways that a call descriptor can become invalid. If a call
descriptor has been used to retrieve a message (including a failed message) an
attempt is made to reuse it, the system complains that you cannot reuse the des
and returns TPEBADDESC in tperrno .

Sometimes a condition occurs where you can no longer reference a call descrip
although it has never been used to retrieve a message. In this case we refer to t
descriptor as having become stale and any attempt to reference it causes TPEBADDESC
to be returned. One of the conditions that causes this to happen is calling tpabort()
or tpcommit() when there are still transaction replies (replies for requests sent
without the TPNOTRAN flag) to be retrieved. The outstanding descriptors for these
transaction replies are considered stale. Another condition that causes this to hap
transaction time-out. When it is reported on the call to tpgetrply() , no message is
retrieved with that descriptor, and any further reference to it is invalid because it
considered stale. This error can be corrected at the application level.
7-8 BEA TUXEDO Programmer’s Guide

Communicating Errors

 with

ssing

d

n by

r the

pts
General Communication Call Errors

These errors can occur when making communication calls but have nothing to do
the nature of the call being synchronous or asynchronous.

The communication errors, TPESVCERR and TPESVCFAIL, are the result of the reply
part of communication. They can be returned as a result of a call to tpcall() or
tpgetrply() and they are determined by the arguments passed to and the proce
done by tpreturn() . If tpreturn() encounters an error in processing or handling
arguments, it will cause a failed message to be sent to the caller. This failed
message is detected by the receiver with tperrno being set to TPESVCERR. The caller’s
data is not sent, and if the failure was on tpgetrply() , the call descriptor becomes
invalid. If an error of this nature is not encountered by tpreturn() , then the value
placed in rval determines the success or failure of the call. If the application logic
placed the value TPFAIL in this parameter, TPESVCFAIL is returned in tperrno and
the data message is sent to the caller.

The error codes TPEBLOCK and TPGOTSIG can happen on the request or the reply en
of message communication. As a result, it can be returned for all three of the
request/response communication calls. TPEBLOCK is returned when a blocking
condition exists and the process sending a request either synchronously or
asynchronously has indicated that it does not want to wait on a blocking conditio
setting its flags parameter to TPNOBLOCK. A blocking condition can exist when sending
a request if, for example, all the queues of the desired service are full. When tpcall()
indicates a no blocking condition, it affects only the sending part of the
communication. If the call successfully sends the request, TPEBLOCK will not be
returned regardless of any blocking situation that may exist while the call waits fo
reply. TPEBLOCK is returned for tpgetrply() when the call is made with flags set to
TPNOBLOCK and a blocking condition is encountered while awaiting the reply; for
example, if a message is not currently available.

TPGOTSIG really does not flag an error condition but indicates when a signal interru
a BEA TUXEDO system call. If the communication functions set their flags parameter
to TPSIGRSTRT, the calls will not fail and this code will not be returned in tperrno .

Conversational Errors

Once a conversational connection has been established, tpsend() and tprecv() can
fail with a TPEEVENT error. An event has occurred. No data is sent by tpsend(). The
event type is returned in the revent member of TPSVCINFO. A course of action is
dictated by the particular event.

In conversational services tpsend() , tprecv() , and tpdiscon() return
TPEBADDESC when an unknown descriptor is specified.
BEA TUXEDO Programmer’s Guide 7-9

7 Error Management

r

time

 or
,

 call

n the

n be
Time-Out Errors

Time-out errors can occur for one of two reasons:

� the maximum length of time a blocking call may remain blocked until the calle
regains control has exceeded the amount of time it was allotted, that is, a
blocking time-out occurred

� the duration of a transaction from start to finish has exceeded the amount of
it was allotted, that is, a transaction time-out occurred

As a result, this error can be returned on communication calls for either blocking
transaction time-out and on tpcommit() for transaction time-out only. In every case
if a process is in transaction mode and TPETIME is returned on a failed call, it means a
transaction time-out has occurred.

TPETIME indicates a blocking time-out on a communication call if

� the call was not made in transaction mode and

� the call was not made with flags set to TPNOBLOCK

You may recall that if this flag is set, a blocking time-out cannot occur because the
returns immediately if a blocking condition exists.

Blocking time-out is a value set by the administrator of the system and is defined i
configuration file. Transaction time-out is defined by the application by the first
argument passed to tpbegin() .

Further implications concerning the concept of time-out will be discussed in the
section “Time-Out” later in this chapter.

Errors Leading to Abort

Errors by a participant in a transaction can cause tpcommit() to fail returning the error
code of TPEABORT in tperrno . The transaction is implicitly aborted because of the
failure and should be explicitly aborted. There are two ways that this error code ca
returned:

� if a transaction has been marked abort-only by the initiator or one of the
participants, or

� the transaction timed out and its status is known to be aborted
7-10 BEA TUXEDO Programmer’s Guide

How to Deal with Errors

y not

e
hase

ing a
ly or

 may
out

urn

he
Errors Signaling Heuristic Decisions

Based on how TP_COMMIT_CONTROL is set, tpcommit() may return TPEHAZARD or
TPEHEURISTIC. If TP_COMMIT_CONTROL is set to TP_CMT_LOGGED, the application
gets control before the second phase of the two-phase commit is done, so it ma
hear about a heuristic that occurs during the second phase. (Note that TPEHAZARD or
TPEHEURISTIC can be returned if only a single resource manager is involved in th
transaction and it returns a heuristic decision or a hazard indication during a one-p
commit.) If TP_COMMIT_CONTROL is set to TP_CMT_COMPLETE, then TPEHEURISTIC
is returned if any of the resource managers reports a heuristic decision, and TPEHAZARD
is returned if any of the involved resource managers reports a hazard. TPEHAZARD
simply means that a participant failed during the second phase of commit (or dur
one-phase commit) and we can’t know if it completed the transaction successful
unsuccessfully.

Application-Specific Errors

The previous sections dealt with the various categories into which system errors
fall. Your application can set up a method whereby you can pass information ab
user-defined errors to calling programs.

The mechanism involves use of the rcode argument of tpreturn (3) and the global
variable tpurcode (5).

How to Deal with Errors

Your application logic should test for error conditions after the calls that have ret
values, and take suitable steps in the face of them. You may want to test if -1 or NULL
(depending on which the call returns) has been returned after a function call. In t
event that it has been, you may invoke a function that contains a switch statement to
test for specific values of tperrno and perform the appropriate application logic in
each case.
BEA TUXEDO Programmer’s Guide 7-11

7 Error Management

 and
ram
Two routines, tpstrerror (3c) and Fstrerror (3fml), are provided to retrieve the
text of an error message from the message catalogs for the BEA TUXEDO system
FML, respectively. The routines return a pointer to the error message. Your prog
can use the pointer to direct the text to userlog (3c) or to another destination. An
example is shown in Listing 7-1.

Listing 7-1 illustrates a general way of dealing with errors. The term atmicall () is
used in this example generically to represent an ATMI function call.

The code following the switch statement in Listing 7-1 illustrates how tpurcode can
be used to disclose an application-defined code.

Listing 7-1 How to Deal with Errors

#include <stdio.h>
#include "atmi.h"

extern int tperrno;
extern int tpurcode;

main()

{
int rtnval;

if (tpinit((TPINIT *) NULL) == -1)
 error message, exit program;
if (tpbegin(30, 0) == -1)
 error message, tpterm, exit program;

allocate any buffers,
make atmi calls
check return value

rtnval = atmicall();

if (rtnval == -1) {
 switch(tperrno) {
 case TPEINVAL:
 fprintf(stderr, "Invalid arguments were given to atmicall \n");
 fprintf(stderr, "e.g., service name was null or flags wrong\n");
 break;
 case ...:
 fprintf(stderr, ". . .");
 break;
7-12 BEA TUXEDO Programmer’s Guide

How to Deal with Errors

, the

Include all error cases described in the atmicall(3) reference page.
Other return codes are not possible, so there should be no default within
the switch statement.

if (tpabort(0) == -1) {
 char *p;
 fprintf(stderr, "abort was attempted but failed\n");
 p = tpstrerror(tperrno);
 userlog("%s", p);
}
}
else
if (tpcommit(0) == -1)
fprintf(stderr, "REPORT program failed at commit time\n");

The following code fragment shows how an application-specific
return code can be examined.
.
.
.
ret = tpcall(“servicename”, (char*)sendbuf, 0, (char **)&rcvbuf, &rcvlen, \
(long)0);
.
.
.
(void) fprintf(stdout, “Returned tpurcode is: %d\n”, tpurcode);

free all buffers
tpterm();
exit(0);
}

The specific values of tperrno give you more insight into the nature of the problem
and on what level it can be corrected.

If your application has defined a list of error conditions specific to your processing
same can be said for tpurcode .
BEA TUXEDO Programmer’s Guide 7-13

7 Error Management

o
tly

hey

ly

nd,

em

n of
 work

t
ed.

Fatal Transaction Errors

In managing transactions, it is important to understand which errors prove fatal t
transactions. When these errors are encountered, transactions should be explici
aborted on the application level by having the initiator of the transaction call
tpabort() . Basically, there are three conditions that cause a transaction to fail. T
are:

� the initiator or a participant of the transaction caused it to be marked abort-on
for one of the following reasons:

� tpreturn() encountered an error while processing its arguments
(TPESVCERR)

� the rval argument of tpreturn() was set to TPFAIL (TPESVCFAIL)

� the type or subtype of the reply buffer is not known or allowed by the caller a
as a result, success or failure cannot be determined (TPEOTYPE)

� the transaction timed out (TPETIME)

� tpcommit() was called by a participant rather than by the originator of a
transaction (TPEPROTO)

If TPESVCERR, TPESVCFAIL, TPEOTYPE, or TPETIME is returned for any of the
communication calls, the transaction should be explicitly aborted with a call to
tpabort() . If there are still outstanding descriptors, there is no need to wait for th
before explicitly aborting the transaction. However, any attempt to access these
descriptors after the transaction has been terminated will return TPEBADDESC since
they are considered stale after the call.

Note that in the case of TPESVCERR, TPESVCFAIL, and TPEOTYPE, communication
calls are still allowed as long as the transaction has not timed out. With the retur
these errors, the transaction has been marked abort-only. In order for any further
to have any lasting effect, the communication calls should be made with the flags
parameter set to TPNOTRAN. In this way, the work performed for the transaction tha
has been marked abort-only will not be rolled back when the transaction is abort

When a transaction time-out occurs, communication can continue, but it must be
conducted with the following conditions enforced. The communication requests

� cannot require replies

� cannot block

� and cannot be performed on behalf of the caller’s transaction
7-14 BEA TUXEDO Programmer’s Guide

Time-Out

ly
ation

ut
g to

he
t
 the

it for
akes

ed.

 the
nly
tions
This means asynchronous calls can be made with the flags parameter set to
TPNOREPLY|TPNOBLOCK|TPNOTRAN.

Calling tpcommit() from the wrong participant in a transaction represents the on
protocol error that is fatal to transactions. This error can be corrected on the applic
level during the development phase.

Calling tpcommit() when there is initiator/participant failure or transaction time-o
represents the implicit abort error discussed earlier in the section “Errors Leadin
Abort.” Because the commit failed, the transaction should be aborted.

Time-Out

As already indicated, there are two possible types of time-out that can occur in t
BEA TUXEDO system. The effect of time-out on communication calls is differen
depending on the type that occurred. Also, the following issues are addressed in
following sections.

� What happens if a transaction times out while committing?

� Do calls to services that are not part of your transaction use time on your
transaction clock?

Blocking vs. Transaction Time-Out

We have defined blocking time-out as exceeding the amount of time a call can wa
a blocking condition to clear up. Transaction time-out occurs when a transaction t
longer than the amount of time defined for it in the timeout argument to tpbegin() .
By default, if a process is not in transaction mode, blocking time-outs are perform
When the flags parameter of a communication call is set to TPNOTIME, it applies to
blocking time-outs only. If a process is in transaction mode, blocking time-out and
TPNOTIME flag are not relevant. The process is sensitive to transaction time-out o
as it has been defined for it when the transaction was started. What are the implica
of the two different types of time-out with concern to communication calls?
BEA TUXEDO Programmer’s Guide 7-15

7 Error Management

ptor
ral is

ction

arlier

timed
 error

uery
been

come
oles

re
 that
If a process is not in transaction mode and a blocking time-out occurs on an
asynchronous call, the communication call that blocked will fail, but the call descri
is still valid and may be used on a re-issued call. Further communication in gene
unaffected.

In the case of transaction time-out, the call descriptor to an asynchronous transa
reply (done without the TPNOTRAN flag) becomes stale and may no longer be
referenced. The only further communication allowed is the one case described e
of no reply, no blocking, and no transaction.

Effect on tpcommit()

What is the state of a transaction if time-out occurs after the call to tpcommit() ? It is
unknown; the transaction can have either succeeded or failed. If the transaction
out and the system knows that it was aborted, this is communicated to you by the
code TPEABORT returned in tperrno . If the status of the transaction is unknown,
TPETIME is the error code. When the state of the transaction is in doubt, you must q
the resource to see if any of the changes that were part of that transaction have
applied to it in order to discover whether the transaction committed or aborted.

Effect of the TPNOTRAN Flag

When a process is in transaction mode and makes a communication call with flags set
to TPNOTRAN, it prohibits the called service from becoming a participant of that
transaction and as such the service’s success or failure cannot influence the out
of that transaction. This will be discussed in greater detail in the next section, “R
of tpreturn() and tpforward().” However, if the caller is expecting a reply, its
transaction clock is still ticking away while the services that generate the reply a
being performed. As a result, the transaction can time out while waiting for a reply
is due from a service that is not part of that transaction.
7-16 BEA TUXEDO Programmer’s Guide

Roles of tpreturn() and tpforward()

d
ed

ved.

nt
tion

ers or

 have

s, but
Roles of tpreturn() and tpforward()

If a process is called in transaction mode, tpreturn() and tpforward() place the
service’s portion of the transaction in a state where it can be either committed or
aborted when the transaction is completed by its initiator. A service may be calle
several times on behalf of the same transaction. It is not fully committed or abort
until the initiator of the transaction calls tpcommit() or tpabort() .

Neither tpreturn() nor tpforward() should be called until all outstanding
descriptors for the communication calls made within the service have been retrie
If tpreturn() is called with outstanding descriptors with rval set to TPSUCCESS, this
constitutes a protocol error and is returned as TPESVCERR to the process waiting on
tpgetrply() . If the process is in transaction mode, it will cause the caller’s curre
transaction to be marked internally as abort-only. Even if the initiator of the transac
should call tpcommit() , the transaction is aborted implicitly. If tpreturn() is called
with outstanding descriptors with rval set to TPFAIL , TPESVCFAIL is returned to the
process waiting on tpgetrply() . The effect on the transaction is the same.

It is always the case that when tpreturn() is called in transaction mode, it can
determine the fate of that transaction either from the processing errors it encount
from the value the application places in rval. Calling tpforward() can be used to
indicate success up to that point in processing the request. If no application errors
been detected, tpforward() is invoked, otherwise tpreturn() with TPFAIL . If
tpforward() is called improperly, it is considered a processing error and a failed
message is returned to the requester.

Many of the ideas presented here have already been discussed in earlier section
they bear repeating. The following sections highlight various possible scenarios
involving the transaction role of tpreturn() as well as the communication rules.
BEA TUXEDO Programmer’s Guide 7-17

7 Error Management

er

ed

 any
t,

n

e

ese
ns.

he

tion

t
Service in Same Transaction as Caller

This is the straightforward case of the caller in transaction mode that calls anoth
service to participate in the current transaction. What are the implications?

� tpreturn() and tpforward() , when called by the participating service, place
that service’s portion of the transaction in a state where it can be either abort
or committed by the initiator.

� The success or failure of the called process affects the current transaction. If
of the errors that prove fatal to transactions are encountered by the participan
the current transaction is marked abort-only.

� The lasting effect of the work done by a successful participant is dependent o
the fate of the transaction; that is, if the transaction is aborted, the work of all
participants is undone.

� The TPNOREPLY flag cannot be used when calling another service to participat
in the current transaction.

Service in Different Transaction with AUTOTRAN Set

If a communication call is made with the TPNOTRAN flag set and the called service is
configured so that a transaction will automatically get started when it is called, th
processes will both be in transaction mode but they will be in different transactio
What are the implications?

� tpreturn() plays the initiator’s transaction role to terminate the transaction in
the service where the transaction was automatically started. Alternatively, if t
transaction is automatically started in a service that terminates with
tpforward() , the tpreturn() in the last service in the forward chain plays the
initiator’s transaction role to terminate the transaction. Refer to Figure 7-1.

� Because it is in transaction mode, tpreturn() is also vulnerable to failure and
is subject to the failure of any participant in the transaction as well as transac
time-out and as a result is more likely to send a failed message to the caller.

� Any failed messages or application failures returned to the caller do not affec
the state of the caller’s transaction.
7-18 BEA TUXEDO Programmer’s Guide

Roles of tpreturn() and tpforward()

y.

by

an

o

ce

ct

y.

by
� The caller is vulnerable to its own transaction timing out as it waits for its repl

� If no reply is expected, the caller’s transaction cannot be affected in any way
the communication call.

Figure 7-1 Transaction Roles of tpforward() and tpreturn() with AUTOTRAN

Service Starts New Explicit Transaction

If a communication call is made with TPNOTRAN, and the called service is not
automatically placed in transaction mode by a configuration option, the service c
define as many transactions as it wants with explicit calls to tpbegin() , tpcommit() ,
and tpabort() . As a result, the transaction is already completed before the call t
tpreturn() . What are the implications?

� tpreturn() plays no transaction role; that is, the role of tpreturn() would be
exactly the same whether transactions were explicitly defined within the servi
routine or not.

� tpreturn() can send any value back in rval regardless of the outcome of the
transaction.

� Typically, the errors returned will be processing errors, buffer type errors, or
application failure, and the normal rules for TPESVCFAIL, TPEITYPE/TPEOTYPE,
and TPESVCERR are followed.

� Any failed messages or application failures returned to the caller do not affe
the state of the caller’s transaction.

� The caller is vulnerable to its own transaction timing out as it waits for its repl

� If no reply is expected, the caller’s transaction cannot be affected in any way
the communication call.
BEA TUXEDO Programmer’s Guide 7-19

7 Error Management

them

de is

or

t

ted

 is

ce
Transaction Rules

Certain rules are in effect when processes perform in transaction mode. Many of
have been touched upon already; but now, by way of summary, let’s bring them
together and discuss them in one place.

Communication Etiquette

The basic communication etiquette that must be observed while in transaction mo
as follows:

� Processes that are participants in the same transaction must require replies f
their requests.

� Requests requiring no reply can be made only if the flags parameter of tpacall
is set to TPNOTRAN|TPNOREPLY.

� A service must retrieve all asynchronous transaction replies before calling
tpreturn() or tpforward (this applies regardless of transaction mode).

� The initiator must retrieve all asynchronous transaction replies (made withou
the TPNOTRAN flag) before calling tpcommit() .

� The asynchronous replies that must be retrieved include those that are expec
from non-participants of the transaction, that is, replies expected for requests
made with tpacall suppressing the transaction but not the reply.

� If a transaction has not timed out but is marked abort-only, further
communication should be performed with the TPNOTRAN flag set so that the work
done as a result of the communication has lasting effect after the transaction
rolled back.

� If a transaction has timed out,

� the descriptor for the timed out call becomes stale and any further referen
to it will return TPEBADDESC

� further calls to tpgetrply() or tprecv() for any outstanding descriptors
will return the global state of transaction time-out by setting tperrno to
TPETIME

� asynchronous calls can be made with the flags parameter of tpacall() set
to TPNOREPLY|TPNOBLOCK|TPNOTRAN
7-20 BEA TUXEDO Programmer’s Guide

Transaction Rules

ut, a

de

must

ore it

ill

ore

d, but

red
� Once a transaction has been marked abort-only for reasons other than time-o
call to tpgetrply() will return whatever represents the local state of the call,
that is, it can either return success or an error code that represents the local
condition.

� Once a descriptor is used with tpgetrply() to retrieve a reply or with
tpsend() or tprecv() to report an error condition, it becomes invalid and any
further reference to it will return TPEBADDESC (this applies regardless of
transaction mode).

� Once a transaction is aborted, all outstanding transaction call descriptors (ma
without the TPNOTRAN flag) become stale, and any further reference to them
will return TPEBADDESC.

BEA TUXEDO System-Supplied Subroutines

In both the standard subroutines, namely tpsvrinit() and tpsvrdone() ,
transactions may be defined and communication may be performed. What rules
they follow?

tpsvrinit()

The BEA TUXEDO system server abstraction calls tpsvrinit() during
initialization. This routine is called after the process has become a server but bef
handles service requests. If tpsvrinit() performs any asynchronous
communication, all replies must be retrieved before returning, or BEA TUXEDO w
ignore all pending replies and the server exits. If tpsvrinit() defines any
transactions, they must be completed with all asynchronous replies retrieved bef
returning, or BEA TUXEDO will abort the transaction and ignore the outstanding
replies. The server exits gracefully.

tpsvrdone()

The BEA TUXEDO system server abstraction calls tpsvrdone() after it has finished
processing service requests but before it exits. Its services are no longer advertise
it has not yet left the application. If tpsvrdone() initiates communication, it must
retrieve all outstanding replies before it returns, or the pending replies will be igno
BEA TUXEDO Programmer’s Guide 7-21

7 Error Management

ted

ust

hen

ller’s
eed
rt

n

ce

a
ome

other
n
urce
ct.
by the BEA TUXEDO system and the server exits. If a transaction has been star
within this subroutine, it must be completed with all replies retrieved, or BEA
TUXEDO will abort the transaction and ignore the replies. The server exits.

Leaving the Application

tpterm() is used to remove a client from an application. What transaction rules m
it obey? If the client is in transaction mode, the call fails with TPEPROTO returned in
tperrno , and the client is still part of the application and in transaction mode. W
the call is successful, no further communication or participation in transactions is
allowed because the process is no longer part of the application.

Global Transactions and Resource Managers

An interesting point arises when using the ATMI transaction primitives to define
transactions. BEA TUXEDO makes an internal call to pass the global transaction
information to each resource manager participating in the transaction. When
tpcommit() or tpabort() is called, BEA TUXEDO makes internal calls to direct
each resource manager to commit or abort the work they did on behalf of the ca
global transaction. When you write service routines in a DTP environment, you n
not and should not make resource manager-specific calls to start, commit, or abo
transactions. When a global transaction has been initiated either explicitly or
implicitly, you should not make explicit calls to the resource manager’s transactio
primitives in your application code. Failure to follow this transaction rule will give
indeterminate results.

This represents a good occasion to use the transaction primitive, tpgetlev() , to
determine if a process is already in a global transaction before calling the resour
manager’s transaction primitive.

Some resource managers offer specific options in their interface. (For example,
resource manager might offer various transaction consistency levels or flags.) S
resource manager providers offer programmers of distributed applications the
opportunity to negotiate these options using resource manager-specific calls; in
resource managers these options are hard-coded in the version of the transactio
interface supplied by the resource manager provider. Documentation for the reso
managers you are using should be consulted for further information on this subje
7-22 BEA TUXEDO Programmer’s Guide

Comprehensive Example

de) for
ethod

the

n
ger.
 and

s

o be

fer

 (line

ssful
d if
In the BEA TUXEDO system SQL resource manager, the set transaction
statement is used to negotiate specific options (consistency level and access mo
a transaction that has already been started by the BEA TUXEDO system. The m
of setting such options will vary for other resource managers.

Comprehensive Example

Transaction integrity, message communication, and resource access represent
major needs of an On-line-Transaction-Processing (OLTP) application.

Listing 7-2 shows the ATMI transaction, buffer management, and communicatio
routines working together with the SQL statements that access a resource mana
The example is taken from the ACCT server that is part of the banking application
illustrates the CLOSE_ACCT service.

The example illustrates the use of the set transaction statement (line 49) to set the
consistency level and access mode of the transaction (when read/write access i
specified the consistency level defaults to high consistency) before the first SQL
statement that accesses the database. The SQL query determines the amount t
withdrawn in order to close the account based on the value of the ACCOUNT_ID (lines
50-58).

tpalloc() is invoked to allocate a buffer for the request message to the WITHDRAWAL
service, and the ACCOUNT_ID and the amount to be withdrawn are placed in the buf
(lines 62-74). This is followed by a tpcall() to the WITHDRAWAL service (line 79). An
SQL delete statement updates the database by removing the account in question
86).

If all is successful, the buffer allocated within the service is freed (line 98), the
TPSVCINFO data buffer that was sent to the service is updated to indicate the succe
completion of the transaction (line 99); the transaction is automatically committe
the service was the initiator. tpreturn() returns TPSUCCESS and the updated buffer
to the client process making the request to close the account. The successful
completion is reported to the status line of the form.
BEA TUXEDO Programmer’s Guide 7-23

7 Error Management

e
 the

ed

ice

After each function call, success or failure is determined. In the case of failure, th
buffer allocated within the service is freed, the transaction is aborted if started in
service, and the TPSVCINFO buffer is updated to show the cause of failure (lines
80-83). tpreturn() returns TPFAIL and the message in the updated buffer is report
to the status line of the form.

Note: When specifying the consistency level of a global transaction within a serv
routine, take care to define the level in the same way for all those service
routines that may participate in the same transaction.

Listing 7-2 ACCT Server

001 #include <stdio.h> /* UNIX */
002 #include <string.h> /* UNIX */
003 #include <fml.h> /* TUXEDO */
004 #include <atmi.h> /* TUXEDO */
005 #include <Usysflds.h> /* TUXEDO */
006 #include <sqlcode.h> /* TUXEDO */
007 #include <userlog.h> /* TUXEDO */
008 #include "bank.h" /* BANKING #defines */
009 #include "bank.flds.h" /* bankdb fields */
010 #include "event.flds.h" /* event fields */
011
012
013 EXEC SQL begin declare section;
014 static long account_id; /* account id */
015 static long branch_id; /* branch id */
016 static float bal, tlr_bal; /* BALANCE */
017 static char acct_type; /* account type*/
018 static char last_name[20], first_name[20]; /* last name, first name */
019 static char mid_init; /* middle initial */
020 static char address[60]; /* address */
021 static char phone[14]; /* telephone */
022 static long last_acct; /* last account branch gave */
023 EXEC SQL end declare section;

024 static FBFR *reqfb; /* fielded buffer for request message */
025 static long reqlen; /* length of request buffer */
026 static char amts[BALSTR]; /* string representation of float */

027 code for OPEN_ACCT service

028 /*
029 * Service to close an account
030 */
7-24 BEA TUXEDO Programmer’s Guide

Comprehensive Example

031 void
032 #ifdef __STDC__
033 LOSE_ACCT(TPSVCINFO *transb)

034 #else

035 CLOSE_ACCT(transb)
036 TPSVCINFO *transb;
037 #endif

038 {
039 FBFR *transf; /* fielded buffer of decoded message */

040 /* set pointer to TPSVCINFO data buffer */
041 transf = (FBFR *)transb->data;

042 /* must have valid account number */
043 if (((account_id = Fvall(transf, ACCOUNT_ID, 0)) < MINACCT) ||
044 (account_id > MAXACCT)) {
045 (void)Fchg(transf, STATLIN, 0, "Invalid account number", (FLDLEN)0);
046 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
047 }

048 /* Set transaction level */
049 EXEC SQL set transaction read write;

050 /* Retrieve AMOUNT to be deleted */
051 EXEC SQL declare ccur cursor for
052 select BALANCE from ACCOUNT where ACCOUNT_ID = :account_id;
053 EXEC SQL open ccur;
054 EXEC SQL fetch ccur into :bal;
055 if (SQLCODE != SQL_OK) { /* nothing found */
056 (void)Fchg(transf, STATLIN, 0, getstr("account",SQLCODE), (FLDLEN)0);
057 EXEC SQL close ccur;
058 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
059 }

060 /* Do final withdrawal */

061 /* make withdraw request buffer */
062 if ((reqfb = (FBFR *)tpalloc("FML",NULL,transb->len)) == (FBFR *)NULL) {
063 (void)userlog("tpalloc failed in close_acct\n");
064 (void)Fchg(transf, STATLIN, 0,
065 "Unable to allocate request buffer", (FLDLEN)0);
066 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
067 }
068 reqlen = Fsizeof(reqfb);
069 (void)Finit(reqfb,reqlen);
BEA TUXEDO Programmer’s Guide 7-25

7 Error Management

070 /* put ID in request buffer */
071 (void)Fchg(reqfb,ACCOUNT_ID,0,(char *)&account_id, (FLDLEN)0);

072 /* put amount into request buffer */
073 (void)sprintf(amts,"%.2f",bal);
074 (void)Fchg(reqfb,SAMOUNT,0,amts, (FLDLEN)0);

075 /* increase the priority of this withdraw */
076 if (tpsprio(PRIORITY, 0L) == -1)
077 (void)userlog("Unable to increase priority of withdraw");

078 /* tpcall to withdraw service to remove remaining balance */
079 if (tpcall("WITHDRAWAL", (char *)reqfb, 0L, (char **)&reqfb,
080 (long *)&reqlen,TPSIGRSTRT) == -1) {
081 (void)Fchg(transf, STATLIN, 0,"Cannot make withdrawal", (FLDLEN)0);
082 tpfree((char *)reqfb);
083 tpreturn(TPFAIL, 0,transb->data, 0L, 0);
084 }

085 /* Delete account record */

086 EXEC SQL delete from ACCOUNT where current of ccur;
087 if (SQLCODE != SQL_OK) { /* Failure to delete */
088 (void)Fchg(transf, STATLIN, 0,"Cannot close account", (FLDLEN)0);
089 EXEC SQL close ccur;
090 tpfree((char *)reqfb);
091 tpreturn(TPFAIL, 0, transb->data, 0L, 0);
092 }
093 EXEC SQL close ccur;

094 /* prepare buffer for successful return */
095 (void)Fchg(transf, SBALANCE, 0, Fvals(reqfb,SAMOUNT,0), (FLDLEN)0);
096 (void)Fchg(transf, FORMNAM, 0, "CCLOSE", (FLDLEN)0);
097 (void)Fchg(transf, STATLIN, 0, " ", (FLDLEN)0);
098 tpfree((char *)reqfb);
099 tpreturn(TPSUCCESS, 0, transb->data, 0L, 0);
100 }
7-26 BEA TUXEDO Programmer’s Guide

The Central Event Log

BEA
hed

of
og

es.

te

s a
o

 the
The Central Event Log

The central event log is a UNIX system file to which you can send messages from
TUXEDO system clients and services. Writing to the central event log is accomplis
through the userlog (3c) function. The central event log simply provides a record
events considered worth recording. Any organized analysis of the central event l
must be provided by the application. Application developers are encouraged to
establish fairly strict guidelines for events to be recorded in the userlog (3c).
Application debugging is made easier if the log is not flooded with trivial messag

How the Log Is Named

One of the system parameters set up by the administrator determines the absolu
pathname prefix of the userlog error message file on each machine. The userlog()
function concatenates the month, day, and year in the form mmddyy to the prefix to
form the full file name of the central event log. That means that if a process send
message to the central event log on succeeding days, the message is written int
different files.

What Log Entries Look Like

Entries on the log consist of:

� a tag made up of the

� time of day (hhmmss)

� the name of the machine (the name that is returned by uname)

� the name and process-ID of the process calling userlog()

� the message text—For BEA TUXEDO system messages, text is preceded by
message catalog name and message number.

� optional arguments in printf (3S) format
BEA TUXEDO Programmer’s Guide 7-27

7 Error Management

tion),

ber.

on
nents
s
obal
ut it
ent log.
the
For example, if the call:

userlog("Unknown User ‘%s’ \n", usrnm);

is made at 4:22:14pm by the security program, on a machine where uname returns
the value mach1, the resulting log entry will look like this:

162214.mach1!security.23451: Unknown User 'abc'

assuming 23451 is the process ID for security , and that the variable usrnm contains
the value abc .

If the above message was generated by BEA TUXEDO (as opposed to the applica
it might look like this:

162214.mach1!security.23451: LIBSEC_CAT: 999: Unknown User 'abc'

where LIBSEC_CAT: 999: represents a message catalog name and message num

If the message was sent to the central event log while the process is in transacti
mode, the user log entry will have additional components in the tag. These compo
consist of the literal gtrid followed by three long hexadecimal integers. The integer
uniquely identify the global transaction and make up what is referred to as the gl
transaction identifier. This identifier is used mainly for administrative purposes, b
does make an appearance in the tag that prefixes the messages in the central ev
If the foregoing message is written to the central event log in transaction mode,
resulting log entry will look like this:

162214.mach1!security.23451: gtrid x2 x24e1b803 x239:
Unknown User 'abc'
7-28 BEA TUXEDO Programmer’s Guide

The Central Event Log

 type
ssage
mple

r of
How to Write to the Event Log

You can either have the error message you wish to write to the log in a variable of
char * and use the variable name as the argument to the call, or include the me
as a literal within quotation marks as the argument to the call, as shown in the exa
below.

.

.

.
/* Open the database to be accessed by the transactions.*/
if(tpopen() == -1) {
 userlog("tpsvrinit: Cannot open database");
 return(-1);
}
.
.
.

In this example, the message is sent to the central event log if tpopen() returns a
negative number.

userlog() is similar to the UNIX System command printf (3S). That is, the format
portion can contain literals and/or conversion specifications for a variable numbe
arguments.
BEA TUXEDO Programmer’s Guide 7-29

7 Error Management

e,
ging.

nt

arted
he
n

tain

ther
an
Debugging Application Processes

While it is possible to use userlog() statements to help debug application softwar
it is sometimes necessary to use a debugger command for more complex debug

The standard UNIX system debugging command is sdb (1). Refer to a UNIX System
programmer’s reference manual. Client processes compiled with the -g option are
debugged in the conventional manner explained on the sdb reference page. The syntax
of the sdb command can take the following form:

sdb -W client - directory_list

For complete syntactical information, refer to the reference page. To run the clie
process:

1. Set any desired breakpoints in the code.

2. Enter the sdb command.

3. At the sdb prompt (*), type the run subcommand (r) and the options you want to
pass to the client program’s main() .

The debugging of server programs is more complicated. Normally, servers are st
using the tmboot command, which starts the server on the correct machine with t
correct options. When using sdb , it is necessary to run the server directly rather tha
through the tmboot command. The BEA TUXEDO system tmboot(1) command
passes undocumented command line options to the server’s predefined main(). When
you want to run your server, you will need to pass it these options as well. To ob
these options, run tmboot with the -n and -d 1 options. Refer to Section 1 of the BEA
TUXEDO Reference Manual. The -n option tells tmboot not to perform the actual
execution; -d 1 tells it to print out debugging level one statements. You can pass o
options as well to tmboot in order to get information on a particular process rather th
all of them. The output from tmboot will look something like the following, revealing
the command line options it passes to the server’s main() :

exec server -g 1 -i 1 -u sfmax -U /tuxdir/appdir/ULOG -m 0 -A

When you want to run your server program using sdb , you must pass the options
following the word server to its run (r) subcommand. As a result, the run command
will look like the following:

*r -g 1 -i 1 -u sfmax -U /tuxdir/appdir/ULOG -m 0 -A
7-30 BEA TUXEDO Programmer’s Guide

Debugging Application Processes
Also note that the server you are attempting to run from sdb must not already be
running as part of the configuration, or the server will exit gracefully indicating a
duplicate server in the central event log.
BEA TUXEDO Programmer’s Guide 7-31

	1 Introduction and Overview
	The BEA TUXEDO System Development Environment
	Client Processes
	Basic Client Operation
	Client Sending Repeated Service Requests

	Server Processes and Service Subroutines
	Basic Server Operation
	Servers as Requesters
	The ATMI Primitives
	An Overview of X/Open's TX Interface

	Typed Buffers
	Using VIEW and FML Buffers
	Relationship Between Some VIEW Buffers and FML
	Corresponding Data Type Definitions
	Creating Header Files from View Descriptions
	Header Files from Field Tables

	Other Header Files
	Environment Variables
	Configuration File
	Making the Configuration Usable

	The Bulletin Board
	Starting and Stopping an Application

	Service Gateway
	Programming Paradigms
	Buffer Types
	Configuration
	Examples

	2 Writing Client Programs
	About This Chapter
	Examples Taken from the Sample Application

	Preliminaries
	Client Naming
	Unsolicited Notification
	Security and Client Authentication
	Writing Client Programs with SECURITY Set
	Getting the Security Data
	Joining the Application
	Allocating the TPINIT Buffer
	The Application Key

	Joining and Leaving an Application
	Buffer Management
	Typed Buffers for Messages
	Buffer Types: STRING
	Buffer Types: CARRAY
	Buffer Types: FML and FML32
	Buffer Types: VIEW, VIEW32, X_C_TYPE, and X_COMMON
	Buffer Types: Summary

	ATMI Buffer Primitives
	Allocating a Typed Buffer
	tpalloc Examples
	What About FML Buffer Management Functions?
	Putting Data in the Buffer
	Resizing a Typed Buffer
	Checking for Buffer Type
	Freeing a Typed Buffer

	Service Calls
	Sending Synchronous Messages: tpcall()
	Values for the flags Argument: tpcall()
	Examples of the Use of flags Arguments

	Sending Asynchronous Messages: tpacall()
	Values for the flags Argument: tpacall()
	Getting an Asynchronous Reply: tpgetrply()
	Getting and Setting Priority

	Initiating a Conversational Connection
	Sending a Broadcast Message

	Compiling Client Programs
	The buildclient Command
	The buildclient -o Option
	The buildclient -f and -l Options

	3 Writing Service Routines
	Writing Request/Response Services
	Examples Taken from the Sample Application
	Application Service Template
	The TPSVCINFO Structure

	The tpreturn() and tpforward() Functions
	Sending Replies
	Forwarding Requests
	Sending Unsolicited Messages
	Advertising, Unadvertising Services

	System-Supplied Servers and Subroutines
	System-Supplied Servers
	AUTHSVR

	The BEA TUXEDO System main()
	BEA TUXEDO System-Supplied Subroutines
	tpsvrinit()
	tpsvrdone()

	Compiling Subroutines to Build Servers
	The buildserver Command
	The buildserver -o Option
	The buildserver -f and -l Options
	The buildserver -r Option
	The buildserver -s Option

	Using C++

	4 Conversational Clients and Services
	Writing Conversational Clients and Services
	Conversational Mode
	The Connection Descriptor
	Buffer Management
	Joining an Application
	Establishing a Connection
	Values for the flags Argument: tpconnect()

	Sending
	Values for the flags Argument: tpsend()

	Receiving
	Values for the flags Argument: tprecv()
	Ending a Conversation
	Subordinate Calls tpreturn()
	Hierarchy of Connections and tpreturn()
	Ending a Conversation: Summary

	Events and Their Significance
	Disorderly Disconnection
	Request/Response Calls and Conversations
	Configuration Parameters
	Building Conversational Clients and Servers

	5 Global Transactions in BEA TUXEDO System
	Introduction
	What Is a Global Transaction?
	ATMI Transaction Primitives
	Explicitly Defining a Global Transaction
	Starting the Transaction
	Terminating the Transaction

	Implicitly Defining a Global Transaction
	In a Client Process
	In a Service Routine

	6 Using the Event Broker
	Introduction
	Notification Actions
	User-Defined and System-Defined Events
	Event Broker/Event Monitor Servers
	Programming Interface

	Posting Events
	tppost() Arguments: eventname
	tppost() Arguments: data and len
	tppost() Arguments: flags
	Example of Event Posting

	Subscribing to Events
	tpsubscribe() Arguments: eventexpr
	tpsubscribe() Arguments: filter
	tpsubscribe() Arguments: ctl
	Notification Via Unsolicited Message
	Notification Via Service Call or Reliable Queue

	tpsubscribe() Arguments: flags
	Example of Event Subscription

	7 Error Management
	Introduction
	Communicating Errors
	Values of tperrno
	Protocol Errors
	BEA TUXEDO System Errors
	Operating System Errors
	Errors from Invalid Arguments
	Other Possible Error Categories
	No Entry Errors
	Permission Errors
	Resource Manager Errors
	Transaction-Related Errors
	Typed Buffer Errors
	Call Descriptor Errors
	General Communication Call Errors
	Conversational Errors
	Time-Out Errors
	Errors Leading to Abort
	Errors Signaling Heuristic Decisions
	Application-Specific Errors

	How to Deal with Errors
	Fatal Transaction Errors

	Time-Out
	Blocking vs. Transaction Time-Out
	Effect on tpcommit()
	Effect of the TPNOTRAN Flag

	Roles of tpreturn() and tpforward()
	Service in Same Transaction as Caller
	Service in Different Transaction with AUTOTRAN Set
	Service Starts New Explicit Transaction

	Transaction Rules
	Communication Etiquette
	BEA TUXEDO System-Supplied Subroutines
	tpsvrinit()
	tpsvrdone()

	Leaving the Application
	Global Transactions and Resource Managers

	Comprehensive Example
	The Central Event Log
	How the Log Is Named
	What Log Entries Look Like
	How to Write to the Event Log

	Debugging Application Processes

