3=

THE ENTERPRISE MIDDLEWARE SOLUTION

BEA TUXEDO

/Q Guide

BEA TUXEDO Release 6.5
Document Edition 6.5
February 1999

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, TUXEDO, and WebLogic are registered trademarks of BEA Systems, Inc. BEA
Builder, BEA Connect, BEA Manager, BEA MessageQ, Jolt and M3 are trademarks of BEA Systems, Inc.
All other company names may be trademarks of the respective companies with which they are associated.

BEA TUXEDO /Q Guide

Document Edition Date Software Version

6.5 February 1999 BEA TUXEDO Release 6.5

Contents

1.

Introduction and Overview of BEA TUXEDO System/Q

GENEral DESCIIPHION.. ettt et e e e enesneeae e 1-1
A Picture that Explains Everything . . . AIMOStcccooiiiiin e 1-2
AdMINISIFALIVE TASKS....ceveveiviieeree et s s 1-2
Programmer’s TasKSco.eiiie et 1-5
Transaction ManagemeENtcciereie et e 1-6
Handling REPlY MESSA0ES.......c.cvueiiieieirieieie ettt e 1-7
Error Hanaling.......coeoeiee et e e 1-8
SUMIMIBIY ittt ettt ettt et re e se e se e ebe e seesheenbe b eenbeeaeanbeneanee 1-9
BEA TUXEDO System /Q Administration
F g0 o (17 1o o OSSR 2-1
Sample Program in APPENdiX A ..ot 2-1
CONFIGUIBLION. ...ttt et e et ee e e e e see e aneeneenenneas 2-2
Specifying the QM Server GrOUP.c.coereereeuerereeeeeereeseeeseereeaeneeseeeenes 2-2
Specifying the Message QUELE SEIVENoocoeeerrereeeeeereee e seeeeeeeeeeas 2-3
TransaCtion TIMEOULcveerererieeirieeisieeesie s seeees 2-3
Queue Space Names, Queue Names, and Service Names...........ccccccveeee 2-4
Data-Dependent ROULING..........coueiereeirirere e 2-5
Customized BUFfer TYPES ...c.eiuee et s 2-5
Specifying the Message Forwarding Server...........ccoco e seseeneeeennas 2-6
Queue Names and Service Names: the -q option...........cccccevereeeeenn 2-6
Controlling Transaction Timeout: the -t optioncccveeveieirennene 2-7
Controlling ldle Time: the -i Option ..o 2-7
Controlling Server EXit: the - Option..........ccoeee e veeneee e 2-7
Delete Message after Service Failure: the -d option...........ccccceeenee. 2-7
Customized BUFfer TYPES ...c.eoee e e 2-7
Dynamic CONfigUIatiON........ccoiuereirieie e 2-8

BEA TUXEDO /Q Guide iii

iv

Creating Queue Space and QUEUES............coueuereereereeeereeieeneriesesie e seeseeneeseeseens 2-8

Working with gmadmin ComMmMandScccceverereeirnneee e e 2-8
Creating an Entry in the Universal Device List: crdlcccoovviiveinnnnnne 2-8
Creating a Queue SPace: gSPACECIEALE.evvereeueueereeeerereeeesie e seeienee s 2-9
Creating 8 QUEUE: (CrEALEooveeeueeeieeee ettt et ee e e 2-11
Specifying QUEUE OFUEYoeeeeeireie et 2-11
Enabling Out-of-order ENQUEUING.........cccoeerireere e 2-12
Specifying Retry Parameters...........cooeeeveereereieneeneeees e 2-12
Using Queue Capacity LimitS........couiiioiiieiireie e 2-13
Reply and Faillure QUEUES...........ccoeiiuirie e 2-14
Error QUEUEScocuiieciieeie sttt stte ettt et et s st n s 2-14
Maintenance of the BEA TUXEDO System/Q Feature.........cccoceeveevvveveeevenee. 2-15
Adding EXtentSto @ QUEUE SPACE.......cceruerierieriereereeie et eeeseeseens 2-15
Backing Up or Moving QUEUE SPACE........ccccerereereiereereeieiee e 2-15
Moving the Queue Space to a Different Type of Machine....................... 2-16
TMQFORWARD and Non-Global Transactions...........ccccceevevvveniesvennee. 2-16
TMQFORWARD and Commit Controlcccceveeveeiienveeniere e, 2-16
Handling Transaction TIMEOUL.........cccccovviirvevie et 2-17
TMQFORWARD and Retries for an Unavailable Service....................... 2-17

3. BEA TUXEDO System/Q C Language Programming

Prerequisite KNOWIEAGE........coo ittt 31
Where Requests Can OFigiNGaLe.cocooeeeererieee e e eeese e s 32
Emphasis on the Default Case..........oooeiiireie e s 32
ENQUEUING IMESSAOEScueeuee e eeeeuie et etesee e eee e e e teses e eneese s e e e eness e seneeeen 33
Command Line Arguments, tPeNQUEUE(3)coeoueueereereeerierene e s 3-3
tpenqueue(): the qspace ArgUMENt........ ..o vereereeesee e 33
tpenqueue(): the gname ArgumMENtccoeeevereiese e 3-4
tpenqueue(): the dataand len Arguments..........ccoeeveceeescnene e 34
tpenqueue(): the flags Arguments..........coceeerereieese e 34

The TPQCTL StIUCIUIE ...ttt sttt et 35
Overriding the QUEUE Orderccvcieiieieeeeceece et 3-9
Overriding the QUEUE PriOritycceiiiieevieeceece e e 39

Setting aDeqUEUING TIME.......oc i et e s e 3-10
tpenqueue() and TranSaCtIONS.ooieeereriere e 311

BEA TUXEDO /Q Guide

DeqUEUING REPIES.....ccui ittt ettt e e e e enes 311

Command Line Arguments, tpdeqUEUE...........ccooerrrereieereee e 312
tpdequeue(): the gspace Argumentcccoveeeeeeenenieeerees e 3-12
tpdequeue(): the gname Argument............cceveeeeieeeience e 3-12
tpdequeue(): the data and len Argumentscccoeeveeeenenienc e 3-13
tpdequeue(): the flags ArguUMENS..........coeeuereneeieie e 3-13

USING TPQWAIT L.ttt ettt st st s 3-16

Error Handling.......cc.eoeoee et e e 3-16

A Procedurefor Dequeuing REPIIES........coeoeirernieieeirienee e 3-18

Sequential Processing Of MESSAgES........cvverueuererreee e 3-19

Using Queues to Transfer ANything..........ccooeveiinenenie e 3-19

BEA TUXEDO System/Q COBOL Language Programming

Prerequisite KNOWIBAGE.ooviiee ettt e e 4-1
Where Requests Can OFgINGLEcoueiereerieierieie et s seeeeseseeeneas 4-2
Emphasis on the Default Case.........occoe e 4-2
ENQUEUING IMESSAOES ... v eeeneiie et ettt ettt s et e sesse e eneese e anesbeseesne s 4-3

Command Line Arguments, TPENQUEUE(3)cccvoeieneininieee e 4-3

TPENQUEUE: the QSPACE-NAME in TPQUEDEF-REC

ATGUMENT ... e s 4-3
TPENQUEUE: the QNAME in TPQUEDEF-REC Argument........... 4-4
TPENQUEUE: the DATA-REC and LEN in TPTYPE-REC

ATQUMENES.....oi e 4-5
TPENQUEUE: the Settings in TPQUEDEF-REC...........cccocooveiuenne. 4-5

The TPQUEDEF-REC StIUCIUIEeeieeeectee ettt 4-6
Overriding the QUEUE OFdErcocecveieceeeeeer s 4-11
Overriding the QUEUE Priority........cccceeieveviecee s 4-11

Setting aDequeUING TIME.......cociii et 4-11

TPENQUEUE and TranSaCtionsS..........ccccueiecvieiesieie e eese e esee e 4-12

DeqUEUING REPIIES.....ccui ittt sttt st e e e 4-13

Command Line Arguments, TPDEQUEUE(3)cccccovevvvvecceneeceeeeee, 4-13

TPDEQUEUE: the QSPACE-NAME in TPQUEDEF-REC Argument .. 4-13
TPDEQUEUE: the QNAME in TPQUEDEF-REC Argument......... 4-15
TPDEQUEUE: the DATA-REC and LEN in TPTYPE-REC

ATGUMENES.....oi 4-15
TPDEQUEUE: the Settings in TPQUEDEF-REC...........cccocvurunee. 4-15

BEA TUXEDO /Q Guide v

Vi

USING TPQWAIT c..cvit ettt s e e e 4-19

Error Handling.......coeeeeee et 4-20
A Procedure for Dequeuing RePIES..........cooeieiereie e 4-22
Sequential Processing Of MESSAgESoeiirererieree e 4-23
Using Queuesto Transfer ANYthing.........c.oocooeee e 4-23

. A Sample Application

What This AppendiX IS ADOUL.........ccoiiieeee e A-1
SOME PrelimMiNariES.coui ittt et s eee s A-1
The gsample APPIICALTONoueiie e e A-2
Suggestions for Further EXploration.............coooeeienenene e A-5
setenv: Setting the ENVIronmeNt............coe et A-5
makefile: Make Y our AppliCation...........ccoeveieee e A-5
ubb.sample: The ASCII Configuration File ..o A-6
crlog: Createthe Transaction LOQ.........coeeueieiieeiieeieeccee et A-6
crque: Create the Queue Space and QUEUES..........ccoueevereereiereereeieiee e A-6
Boot, Run, and Shut Down the Application...........ccccoeoenininie e A-7
ClEAN UP ettt st e et st eaes A-7

BEA TUXEDO /Q Guide

CHAPTER

1 Introduction and

Overview of BEA
TUXEDO System/Q

General Description

BEA TUXEDO System/Q allows messages to be queued to stable storage for later
processing. Primitives are added to the BEA TUXEDO application-transaction
manager interface, (ATMI), that provide for messages to be added to or read from
stable-storage queues. Reply messages and error messages can be queued for later
return to client programs. An administrative command interpreter is provided for
creating, listing and modifying the queues. Prewritten servers are included to accept
requests to enqueue and dequeue messages, to forward messages from the queue for
processing and to manage the transactions that involve the queues.

This chapter describes the el ements that make up the BEA TUXEDO System/Q
feature.

BEA TUXEDO /Q Guide 1-1

1 Introduction and Overview of BEA TUXEDO System/Q

A Picture that Explains Everything ... Almost

Figure 1-1 is adiagram that shows the components of the queued message facility.
WEell use the figure to explain how administrators and programmers work with the
feature to define it and use it to queue a message for processing and get back areply.

A gqueue space is aresource. Access to the resourceis provided by an X/OPEN
XA-compliant resource manager interface. Thisinterface is necessary so that
engueuing and dequeuing can be done as part of a 2-phase committed transaction in
coordination with other X A-compliant resource managers.

Administrative Tasks

The BEA TUXEDO administrator is responsible for defining servers and creating
gueue space and queues like those shown between the vertical dashed linesin
Figure 1-1.

The administrator must define at least one queue server group with TMS_QMWas the
transaction manager server for the group.

Two additional system-provided servers need to be defined in the configuration file.
These servers perform the following functions:

4 Themessage queue server, TMQUEUE(S), is used to enqueue and dequeue
messages. This provides a surrogate server for doing message operations for
clients and servers, whether or not they arelocal to the queue.

4 Themessage forwarding server, TMOFORWARD(5), is used to dequeue and forward
messages to application servers. The BEA TUXEDO system provides a nai n()
for servers that handles server initialization and termination, allocates buffersto
receive and dispatch incoming requests to service routines, and routes replies to
the correct destination. All of this processing is transparent to the application.
Existing servers do not degqueue their own messages or enqueue replies. One
goal of BEA TUXEDO System/Q isto be able to use existing serversto service
gueued messages, without change. The TMQFORWARD server dequeues a message
from one or more queues in the queue space, forwards the message to a server
with a service that is named the same as the queue, waits for the reply, and
gueues the success reply or failure reply on the associated reply or failure
queues, respectively, as specified by the originator of the message (if the
originator specified areply or failure queue).

1-2 BEA TUXEDO /Q Guide

A Picture that Explains Everything . . . Almost

An administrator also must create a queue space using the queue administration
program, gmadni n(1). The queue space contains a collection of queues. In Figure 1-1,
for example, four queues are present within the APP queue space. Thereisa
one-to-one mapping of queue space to queue server group since each queue spaceisa
resource manager instance and only asingle RM can exist in a group.

The notion of queue space allows for reducing the administrative overhead associated
with a queue by sharing the overhead among a collection of queues in the following

ways:
4 The queuesin a queue space share the stable storage area for messages.

4+ A single message queue server, TMQUEUE in Figure 1-1, can be used to enqueue
and dequeue messages for multiple queues within a single queue space.

4+ A single message forwarding server, TMQFORWARD in Figure 1-1, can be used to
dequeue and forward messages for multiple queues within a single queue space.

4 A single transaction manager server, TM5_QMin Figure 1-1, can be used to
compl ete transactions for multiple queues within a single queue space.

4 The administrator can define a single server group in the application
configuration for the queue space by specifying the group in UBBCONFI G or by
using t mconf i g(1) to add the group dynamically.

4 Finally, when the administrator moves messages between queues within a queue
space the overhead isless than if the messages were in different stable storage
areas, because a one-phase commit can be done.

Part of the task of defining a queue is specifying the order for messages on the queue.
Queue ordering can be time-based, priority based, FI FOor LI FO, or a combination of
those criteria.

The administrator specifies one or more of these sort criteriafor the queue; the most
significant criteriafirst. TheFI FOand LI FOvaluescan only betheleast significant sort
criteria. Messages are put on the queue according to the specified sort criteriaand
dequeued from thetop of the queue. The administrator can configure as many message
gueuing servers as are needed to keep up with the requests generated by clientsfor the
stable queues.

Data-dependent routing can be used to route between multiple server groups with
servers offering the same service.

BEA TUXEDO /Q Guide 1-3

1

Introduction and Overview of BEA TUXEDO System/Q

1-4

For housekeeping purposes, the administrator can set up acommand to be executed
when athreshold is reached for a queue that does not routinely get drained. This can
be based on the bytes, blocks or percentage of the queue space used by the queue or
the number of messages on the queue. The command might boot a TMQFORWARD server
to drain the queue or send mail to the administrator for manual handling.

Figure1-1 Queued Message Facility

CLIENT

tpenguenes

tpdequeus

SYSTEM/T
CLIENTS

USING /Q

BEA TUXEDO /Q Guide

TMQUEUE TMQFORWARD SERVER
local engueue cal enqueue | 5 i+ SERVICE]
{
tpeall é
I tpreturn
local dequeus local dequeue
i }
Y tms om W SERVER
[s
5 7 {
APP QUEUE SPACE
Jl tpreturn
‘ SERVICEL }
‘ SERVICEZ ‘
SYSTEM/T
‘ CLIENT REPLY1 SERVERS
‘ FAILURE_Q ‘
QUEUE SERVER GROUP ',

A Picture that Explains Everything . . . Almost

Programmer’s Tasks

InFigure 1-1 (steps 1, 2, 3), aclient enqueues amessage to the SERVI CE1 queueinthe
APP queue space using t penqueue(3c). Optionally, the name of areply queue and a
failure queue can be included in the call to t penqueue(). In the example they are the
gueues CLI ENT_REPLY1 and FAI LURE_Q The client can specify a correlation
identifier value to accompany the message. This value is persistent across queues so
that any reply or failure message associated with the queued message can beidentified
when it isread from the reply or failure queue.

The client can use the default queue ordering (for example, atime after which the
message should be dequeued), or can specify an override of the default queue ordering
(asking, for example, that this message be put at the top of the queue or ahead of
another message on the queue). t penqueue() sends the message to the TMQUEUE
server, the message is queued to stable storage, and an acknowledgment (step 3) issent
to the client; the acknowledgment is not seen directly by the client but can be assumed
when the client gets a successful return. (A failure return includes information about
the nature of the failure.)

A message identifier assigned by the queue manager isreturned to the application. The
identifier can be used to dequeue a specific message. It can also be used in another

t penqueue() to identify a message already on the queue that the subsequent message
should be enqueued ahead of .

Before an enqueued message is made avail ablefor dequeuing, thetransaction in which
the message is enqueued must be committed successfully.

When the message reaches the top of the queue, the TMQFORWARD server dequeues the
message and forwardsit, viat pcal | (3c), to aservicewith the samename asthe queue
name. In Figure 1-1 the queue and the service are named SERVI CE1 and steps 4, 5, and
6 in the figure show this. The client identifier and the application authentication key
are set to the client that caused the message to be enqueued; they accompany the
dequeued message asit is sent to the service.

When the service returns a reply, TMQFORWARD engueues the reply (with an optional
user-return code) to the reply queue (step 7 in the figure).

Sometime later, the client usest pdequeue(3c) to read from the reply queue,

CLI ENT_REPLY1, to get the reply message (steps 8, 9 and 10 in Figure 1-1). Messages
on the reply queue are not automatically cleaned up; they must be dequeued, either by
an application client or server, or by a TMQFORWARD server.

BEA TUXEDO /Q Guide 1-5

1

Introduction and Overview of BEA TUXEDO System/Q

Transaction Management

1-6

With regard to transaction management, one goal isto ensure reliability by enqueuing
and dequeuing messages within global transactions. However, a conflicting goal isto
reduce the execution overhead by minimizing the number of transactionsthat are
involved.

An optionisprovided for the caller to enqueue amessagein atransaction separate from
any transaction in which the caller isinvolved (decoupling the queuing from the
caller's transaction). However, atimeout in this situation leaves it unknown asto
whether or not the message is enqueued.

Figure1-2 Transaction Demarcation

CLIENT:
TRANI tpbegin()
Put Request Message on Queue tpengueus ()
tpoommit ()
TMOFORWARD:
TRANZ tpbegin()
Get Request Message and Delete from Quene tpdequeue ()
Process Message tpzall()
Put Eeply Message on Quene tpengueue ()
tpoommit ()
CLIENT:
TRAN3 tpbegin()
Get Beply Message and Delete from Cueue tpdequeue ()
Put Mext Regquest Message on Queue tpengueue ()

tpoommit ()

A better approach isto enqueue the message within the caller’stransaction, asis shown
in Figure 1-2. In this exampl e, the client starts a transaction, queues the message and
commits the transaction. The message is dequeued within a second transaction started
by TMQFORWARD; the serviceis called with t pcal | (), is executed and the reply is
engueued within the same transaction. A third transaction, started by the client, is used
to dequeue the reply (and possibly enqueue another request message). |n ongoing
processing the third and first transactions can meld into one since engqueuing the next
reguest can be done in the same transaction as dequeuing the response from the
previous request.

BEA TUXEDO /Q Guide

A Picture that Explains Everything . . . Almost

Note: The system allowsyou to dequeue a response from one message and enqueue

the next request within the sametransaction, but does not allow you to enqueue
arequest and dequeue the response within the same transaction. The
transaction in which the request is enqueued must be successfully committed
before the message is available for dequeuing.

Handling Reply Messages

A reply queue can be either specified or not by the application when calling
t penqueue(). The effect isasfollows:

L4

If areply queue is not specified for a queued message, then no further work is
required beyond processing the message.

If amessage is dequeued that does specify areply queue, then the originator of
the message expects areply to be enqueued upon successful completion of the
execution of the request.

L4

In the case where the application explicitly dequeues the message using

t pdequeue(), it isthe responsibility of the application to call t penqueue() to
enqueue the reply. Normally, thiswould be done in the same transaction in
which the request message is dequeued and executed so the entire operation
is handled atomically (that is, the reply is enqueued only if the transaction
succeeds).

In the case where the message is processed (dequeued and passed to the
application viaat pcal | ()) by TMQFORWARD, then TMQFORWARD will enqueue
areply if the application service returns successfully (that is, the service
routine called t pr et ur n(3c) with TPSUCCESS and t pcal | () did not return
1). If t pcal I () receives data, then the typed buffer used is enqueued to the
reply queue. If no dataisreceived int pcal | (), then a message with no data
(that is, a NULL message) is enqueued; the fact that a message is enqueued
(even if NULL) is sufficient to signify that the operation has been completed.

BEA TUXEDO /Q Guide 1-7

1

Introduction and Overview of BEA TUXEDO System/Q

Error Handling

1-8

Handling of errors requires both an understanding of the nature of the errorsthe
application may encounter and careful planning and coordination between the BEA
TUXEDO administrator and the application program developers. The way BEA
TUXEDO System/Q works, if amessageis dequeued within atransaction and the
transaction is rolled back, then (if the retry parameter is greater than 0) the message
ends up back on the queue where it can be dequeued and executed again.

For atransient problem, it may be desirable to delay for ashort period before retrying
to dequeue and execute the message, alowing the transient problem to clear. For
example, if thereisalot of activity against the application database, there may be
occasions when all you need is alittle time to allow locks in adatabase to be rel eased
by another transaction. Normally, alimit on the number of retriesis also useful to
ensure that some application flaw doesn't cause significant waste of resources. When
aqueueis configured by the administrator, both aretry count and adelay period (in
seconds) can be specified. A retry count of 0 impliesthat no retries are done. After the
retry count is reached, the message is moved to an error queue that can be configured
by the administrator for the queue space.

There are cases where the problem is not transient. For example, the queued message
may request operations on an account that does not exist. Inthis case, it is desirable not
to waste any resourcesby trying again. If the application programmer or administrator
determines that failures for a particular operation are never transient, then itis simply
amatter of setting the retry count to zero. It ismore likely the case that for the same
service some problemswill be transient and some problems will be permanent; the
administrator and application developers need to have more than a single approach to
handle errors.

Other variations come about because the application may either dequeue messages
directly or use the TMQFORWARD server and because an error may cause atransaction to
be rolled back and the message requeued while logic dictates that the transaction
should be committed. These variations and waysto deal with them are discussed in the
chapters on BEA TUXEDO System/Q Programming and BEA TUXEDO System/Q
Administration.

BEA TUXEDO /Q Guide

A Picture that Explains Everything . . . Almost

Summary

To summarize, BEA TUXEDO System/Q provides the following features to BEA
TUXEDO application programmers and administrators:

L4

An application programming interface that lets you enqueue a request for
subsequent processing. The system guarantees to execute the request
successfully exactly once (by default, failure causes the message to be put back
on the queue). An application programming interface is also provided to dequeue
messages either from the top of a queue or by message identifier.

The application program and/or the administrator can control the ordering of
messages on the queue. Control is viathe sort criteria, which area{LI FO|

Fl FO}, time-based criteria, and priority-based criteria. The application can
override the ordering to place the message at the queue top or ahead of a specific
message that is already queued.

A BEA TUXEDO server is provided to enqueue and dequeue messages on
behalf of, possibly remote, clients and servers. The administrator decides how
many copies of the server should be configured.

A BEA TUXEDO server is provided to dequeue queued messages and forward
them for execution. This server alows for existing servers to handle queued
requests without modification. Each forwarding server can be configured to
handle one or more queues. Transactions are used to guarantee exactly-once
processing. The administrator controls how many forwarding servers are
configured.

The administrator can control messages stored on the queues for processing.
Thisincludes the number of times requests are retried on failure and how much
time elapses between retries, reordering messages on queues, managing queue
capacity and so on.

There are many application paradigms in which queued messages can be used. This
feature can be used to queue requests when a machine, server, or resource is
unavailable or unreliable (for example, in the case of awide-area network). This
feature can also be used for work flow provisioning where each step generates a
queued request to do the next step in the process. Y et another use is for batch
processing of potentially long running transactions, such that the initiator does not
have to wait for completion but is assured that the message will eventually be
processed.

BEA TUXEDO /Q Guide 1-9

1 Introduction and Overview of BEA TUXEDO System/Q

1-10 BEA TUXEDO /Q Guide

CHAPTER

2 BEA TUXEDO System
/Q Administration

Introduction

The BEA TUXEDO System/Q administrator has three primary areas of responsibility
that are discussed in the three main sections of this chapter:

4 Configuration of resources
4 Creation of the queue space and queues
4 Monitoring and maintenance of the facility

Close cooperation with the application developers and programmersis a must; the
configuration and the queue attributes must reflect the requirements of the application.

Sample Program in Appendix A

A brief example of the use of the queued message facility is distributed with the
software and is described in Appendix A, “A Sample Application.”

BEA TUXEDO /Q Guide 2-1

2 BEATUXEDO System /Q Administration

Configuration

Threeserversare provided with the BEA TUXEDO System/Q. Oneisthe TM S server,
TVB_QM that is the transaction manager server for the BEA TUXEDO System/Q
resource manager. That is, it manages global transactions for the queued message
facility. It must be defined in the GROUPS section of the configuration file.

The other two, TMQUEUE(5) and TMQFORWARD(5), provide servicesto users. They must
be defined in the SERVERS section of the configuration file.

The application can also create its own queue servers, if the functionality of
TMQFORWARD does not fully meet the needs of the application. For example, the
administrator might want to have a special server to dequeue messages moved to the
error queue.

Specifying the QM Server Group

2-2

There must be a server group defined for each queue space the application will use. In
addition to the standard requirements of a group name tag and a value for GRPNO (see
ubbconfi g(5) for details). The TMSNAME and OPENI NFO parameters need to be set.
Here are examples:

TVSNAVE=TMS_QM
and
OPENI NFO="TUXEDQOI QMt <devi ce_nane: <queue_space_nane>"

TVB_QMisthe namefor the transaction manager server for TUXEDO System/Q. Inthe
OPENI NFO parameter, TUXEDQ' QMis the literal name for the resource manager as it
appears in $TUXDI R/ udat aobj / RM The values for <devi ce_nanme> and
<queue_space_nane> are instance-specific and must be set to the pathname for the
universal devicelist and the name associ ated with the queue space, respectively. These
values are specified by the BEA TUXEDO administrator using gmadni n(1).

Note: The chronological order of these specificationsis not critical. The
configuration file can be created either before or after the queue spaceis
defined. The important thing is that the configuration must be defined and
gueue space and queues created before the facility can be used.

BEA TUXEDO /Q Guide

Configuration

There can be only one queue space per GROUPS section entry. The CLOSElI NFO
parameter is not used.

The following example is taken from the manual page for TMQUEUE(5).

* GROUPS
TMQUEUEGRP1 GRPNO=1 TMSNAME=TMS_QM

OPENI NFO="TUXEDO' Qvt / dev/ devi cel: nyqueuespace"
TMQUEUEGRP2 GRPNO=2 TMSNAME=TMS_QM

OPENI NFO="TUXEDO' Qvt / dev/ devi ce2: nyqueuespace"

Specifying the Message Queue Server

The TMQUEUE(5) manual page gives afull description of the SERVERS section of the
configuration file, but there are some points worth additional emphasis here.

Transaction Timeout

TMQUEUE recognizesa-t trant i me option when specified after the double dash (- -)
in the CLOPT parameter. Thistimeout value affects only transactions begun within the
server, which callst pbegi n(3c) only if it finds that a transaction is not already in
effect, in other words, either the client called t penqueue(3c) or t pdequeue(3c)
without first calling t pbegi n(3c) or it began atransaction and called t penqueue(3c)
or t pdequeue(3c) with the TPNOTRAN flag set to exclude the queue reguest from the
client'stransaction. The default for ¢ rant i me is 30 seconds. If at pdequeue request
isreceived withthe f/ ags setto TPQMI T, aTPETI ME error will bereturned if the wait
exceeds -t nunber seconds.

Note: ctl isastructureof type TPQCTL used by t penqueue(3c) andt pdequeue(3c)
to pass parameters between the calling process and the system. TPQMI T isa
flag setting availableint pdequeue to indicate that the process wishes to wait
for areply message. The structure is explained in detail in the chapters on
programming.

BEA TUXEDO /Q Guide 2-3

2 BEATUXEDO System /Q Administration

Queue Space Names, Queue Names, and Service Names

Thereis potential confusion among queue space names, queue names, and service
names. Thefirst place you are apt to encounter the confusion isin the specification of
the message queue server: TMQUEUE. When specifying this server in the configuration
file you can use the -s flag of the CLOPT parameter to nhame the queue space served by
agiven instance of the server, which isthe same assaying it isa service advertised by
the function: TMQUEUE. In an application that uses only one queue space, it is not
necessary to specify the CLOPT - s option; it will default to -s TMQUEUE: TMQUEUE. If
the application reguires more than a single queue space, the names of the queue spaces
areincluded as argumentsto the -s option in the SERVERS section entry for the queued
message server.

An aternativeway of making this specification isto rebuild the message queue server,
using bui | dser ver (1), and name the queue spaces with the similar sounding - s
option. This has the result of fixing, or hardcoding, the service names in the server
executable.

The followi ng two specifications are equival ent:

* SERVERS

TMQUEUE SRVGRP="TMQUEUEGRP1" SRVI D=1000 RESTART=Y GRACE=0 \
CLOPT="-s nyqueuespace: TMQUEUE"

and

bui | dserver -o TMQUEUE -s nyqueuespace: TMQUEUE -r TUXEDQ QM \

-f ${TUXDI R}/ |i b/ TMQUEUE. o
fol |l oned by

TMQUEUE SRVGRP="TMQUEUEGRP1" SRVI D=1000 RESTART=Y GRACE=0 \
CLOPT="- A"

2-4 BEA TUXEDO /Q Guide

Configuration

Data-Dependent Routing

The section above described the specification of services (that is, queue space names)
in the message queue server. This capability can be used to bring about data-dependent
routing of queued messages such that the message is queued for processing by a
service within a specific group depending on avalue in afield of the message buffer.
To do thisthe same queue space nameis specified in two different groups and arouting
specification is made part of the configuration file to govern the group where the
message is queued. Here is an example taken from the TMQUEUE(5) manual page (the
gueue space name has been changed):

* GROUPS
TMQUEUEGRP1 GRPNO=1 TMSNAME=TMS_QM
OPENI NFO="TUXEDO Qvt / dev/ devi cel: nyqueuespace"
TMQUEUEGRP2 GRPNO=2 TMSNAME=TMS_QM
OPENI NFO="TUXEDO Qvt / dev/ devi ce2: nyqueuespace"
* SERVERS
TMQUEUE SRVGRP="TMQUEUEGRP1" SRVI D=1000 RESTART=Y GRACE=0 \
CLOPT="-s ACCOUNTI NG TMQUEUE"
TMQUEUE SRVGRP="TMQUEUEGRP2" SRVI D=1000 RESTART=Y GRACE=0 \
CLOPT="-s ACCOUNTI NG TMQUEUE"
* SERVI CES
ACCOUNTI NG ROUTI NG=" MYROUTI NG'
* ROUTI NG
MYRQUTI NG FI ELD=ACCOUNT BUFTYPE="FM." \
RANGES="M N- 60000: TMQUEUEGRP1, 60001- MAX: TMQUEUEGRP2"

Customized Buffer Types

TMQUEUE supports all of the standard BEA TUXEDO buffer types. If your application
needs to add other types, it can be done by copying

$TUXDI R/ t uxedo/ t uxl i b/ t ypes/t msypesw. ¢, adding an entry for your special
buffer types, making sureto leave thefinal line null, and using the revised file asinput
toabui | dser ver (1) command. An exampleof thebui | dser ver command isshown
on the TMQUEUE(5) reference page.

Y ou can aso use the - s option of thebui | dser ver command to associate additional
service names with TMQUEUE as an dternative to specifying them in the server CLOPT
parameter (see above).

BEA TUXEDO /Q Guide 2-5

2 BEATUXEDO System /Q Administration

Specifying the Message Forwarding Server

Thethird system-supplied server included with the BEA TUXEDO System/Q is
TMQFORWARD(5). Thisisthe server that takes messages from specified queues, passes
them along to BEA TUXEDO serversviat pcal | (3c), and handles associated reply
messages. Thefull description of how the server isdefined in the configuration file can
be found on the manual page, but the sections that follow bring out some points that
are worth additional emphasis.

TMQFORWARD is referred to as a server and each instance used by an application must
be defined in the SERVERS section of the configuration file, but it has characteristics
that set it apart from ordinary servers. For example:

4 Itiswrong to specify services for TMQFORWARD.

4 A client process cannot post a message for TMQFORWARD as you would expect in
anormal request/response relationship.

4 TMQFORWARD should not be defined as a member of an M5SQset.
4 TMQFORWARD should never have areply queue.

An instance of TMQFORWARD is tied to a queue space through the server group with
which it isassociated, specifically through the third field in the OPENI NFO statement
for the group. In the sections that follow we will examine other key parameters,
especially CLOPT parameters that come after the double dash.

Queue Names and Service Names: the -q option

2-6

A required parameter is- q queuenane, queuenane. . . This parameter specifies the
gueue(s) to be checked by this instance of the server. queuenane isa
NULL-terminated string of up to 15 characters; it is the same as the name of the
application service that will process the message once it has been taken off the queue
by TMQFORWARD. It is also the name that a programmer specifies as the second
argument of t penqueue(3c) or t pdequeue(3c) when preparing to call the message
queue server, TMQUEUE.

BEA TUXEDO /Q Guide

Configuration

Controlling Transaction Timeout: the -t option

TMQFORWARD does its work within atransaction that it begins and ends. The

-t trantine option is available to specify the length of time in seconds before the
transaction istimed out. The transaction is begun when TMQFORWARD finds a message
on the queue it is checking; it is committed after a reply has been enqueued either to
thereply queue or thefailure queue, so the transaction encompasses calling the service
that processes the message and receiving areply. The default is 60 seconds.

Controlling Idle Time: the -i option

Once TMQFORWARD is booted it constantly checks the queue to which it is assigned. If
it finds the queue empty, it pausesfor -i i dl et i me seconds before checking again. If
avalueisnot specified, the default is 30 seconds; a value of 0 says to keep checking
the queue constantly, which can be wasteful if the queue is frequently empty.

Controlling Server Exit: the -e option

If the - e option isspecified, the server will shut itself down gracefully (sending a
message to the userlog) when it finds the queue empty. This behavior may be used to
your advantage in connection with the threshold command that you can specify for a
gueue. There is a more complete discussion of thisin the section on gmadmni n(1).

Delete Message after Service Failure: the -d option

When aservicerequest fail s after being called by TMQFORWARD the transactionisrolled
back and the message is put back on the queue for alater retry (up to alimit of retries
specified for the queue). The - d option adds the following refinement: if the failed
servicereturnsanon-NULL reply, the reply (and its associated t pur code) are put on
afailure queue (if oneis associated with the message and the queue exists) and the
original request is deleted. The rationale behind this option is that rather than blindly
retrying, the originating client can be coded to examine the failure message and
determine whether further attempts are reasonable. It provides away of handling a
failurethat isdueto someinherently reasonable condition (for example, arecord is not
found because the account does not exist).

Customized Buffer Types

Customized application buffer types can be added to the type switch and incorporated
into TMQFORWARD with the bui | dser ver (1) command. It should be noted, however,
that when you customize TMQFORWARD it is an error to specify servicenameswitha- s
option.

BEA TUXEDO /Q Guide 2-7

2 BEATUXEDO System /Q Administration

Dynamic Configuration

We have described configuration parameters in terms of UBBCONFI G parameters.
However, it should be noted that the specifications in the GROUPS and SERVERS
sections can also be added to the TUXCONFI Gfile of arunning application by using
t nconf i g(1). Of course, the group and the serverswill have to be booted once they
have been defined.

Creating Queue Space and Queues

This section covers three of the gmadni n(1) commands that are used to establish the
resources of the BEA TUXEDO System/Q facility.

Working with qmadmin Commands

Several of the key commands of gmadni n have positional parameters; werefer to
gspacecr eat e, qcr eat e, gspacechange, and cr dl . The program prompts for
values for parameters, so it probably makes life easier to just enter the command and
let the program take over.

Creating an Entry in the Universal Device List: crdl

The universal devicelist (UDL) isaVTOC file under the control of the BEA
TUXEDO system. It maps the physical storage space on a machine where the BEA
TUXEDO system isrun. An entry in the UDL points to the disk space where the
gueues and messages of a queue space are stored; the BEA TUXEDO system manages
theinput and output for that space. If you have an existing BEA TUXEDO application,
you are probably aready familiar with the UDL and how it is created. If the creation
of the queued message facility is part of anew BEA TUXEDO installation, then be
informed that the UDL is created by t nl oadcf (1) when the configuration file is first
loaded.

2-8 BEA TUXEDO /Q Guide

Creating Queue Space and Queues

Before you create a queue space, you must create an entry for it inthe UDL. Hereis
an example of the commands:

First invoke the /Qadministrative interface, qmadmn

The QMCONFI G variable points to an existing device where the UDL

either resides or will reside.

QVCONFI G=/ dev/ rawf s qnmadni n

Next create the device list entry

crdl /dev/rawfs 50 500

The above command sets aside 500 physical pages begi nning at bl ock 50

|f the UDL has no previous entries, offset (block nunber) O nust be used

If you are going to add an entry to an existing BEA TUXEDO UDL, the value for the
QVICONFI Gvariablewill be the same pathname specified in TUXCONFI G. Onceyou have
invoked gnadni n, we recommend you run al i dl command to see where spaceis
available before creating your new entry.

Creating a Queue Space: gspacecreate

A queue space makes use of | PC resources; when you define a queue space you are
allocating ashared memory segment and a semaphore. As noted above, the easiest way
to use the command is to let it prompt you. The sequence looks like this:

> (spacecreate

Queue space name: nyqueuespace

| PC Key for queue space: 230458

Si ze of queue space in disk pages: 200

Nurmber of queues in queue space: 3

Number of concurrent transactions in queue space: 3
Nurmber of concurrent processes in queue space: 3
Nurmber of messages in queue space: 12

Error queue name: errq

Initialize extents (y or n - default no):

Bl ocking factor (default 16): 16

The program insists that you provide values for all prompts except the final three. As
you can see, there are defaults for the last two; while you will almost certainly want to
name an error queue, you are not required to. If you provide aname here, you still must
create the error queue with the gcr eat e command. If you choose not to name an error
gueue, bear in mind that messages that normally would be moved to the error queue
(for example, when aretry limit is reached), are dropped.

BEA TUXEDO /Q Guide 2-9

2 BEATUXEDO System /Q Administration

2-10

Thevalue for the IPC key should be picked so as not to conflict with your other
reguirements for | PC resources. It should be avalue greater than 32,768 and less than
262,143.

The size of the queue space, the number of queues, and the number of messages that
can be queued at onetime all depend on the needs of your application. Of course, you
cannot specify asize greater than the number of pages specified in your UDL entry. In
connection with these parameters, you also need to look ahead to the queue capacity
parameters for an individual queue within the queue space. Those parameters allow
you to (@) set alimit on the number of messages that can be put on a queue, and (b)
name acommand to be executed when the number of enqueued messages on the queue
reaches the threshold. If you specify alow number of concurrent messages for the
gueue space, you may create a situation where your threshold on aqueue will never be
reached.

For the number of concurrent transactions count one for each TMS_QMserver in the
group that uses this queue space, one for each TMQUEUE or TMQFORWARD server in the
group that uses this queue space and one for gmadmi n. If your client programs begin
transactions before they call t penqueue, increase the count by the number of clients
that might access the queue space concurrently; worst caseisall of them.

For the number of concurrent processes count one for each TMS_QwV TMQUEUE or
TMQFORWARD server in the group that uses this queue space and one for afudge factor.

Y ou can chooseto initialize the queue space asyou use the gspacecr eat e command,
or you can let it be done by the gopen command when you first open the queue space.

BEA TUXEDO /Q Guide

Creating Queue Space and Queues

Creating a Queue: qcreate

Each queue that you intend to use must be created with the gmadmni n gcreat e
command. Y ou first have to open the queue space with the gopen command. If you do
not provide a queue space name, gopen will prompt for it.

The prompt sequence for qcr eat e looks like this:

> (create

Queue nane: servicel

Queue order (fifo, lifo, priority, time): fifo

Qut - of - ordering enqueui ng (none, top, negid): none
Retries: 2

Retry delay in seconds: 30

Hgh limt for queue capacity warning (b for bytes used,
B for bl ocks used, % for percent used, mfor nessages): 80%
Reset (low) limt for queue capacity warning: 0%

Queue capacity command:

No default queue capacity comrand

Queue 'servicel' created

You can skip al of these prompts (except the prompt for the queue name); if you do
not provide a name for the queue, the program displays a warning message and
prompts again. For the other parameters the program provides a default and displays a
message that specifies the default.

Specifying Queue Order

M essages are enqueued inthe order specified by this parameter and dequeued from the
top of the queue. The queue order parameter defines how the application wants queue
order to be determined. If pri ority and/or ti me are chosen, messages are inserted
into the queue according to valuesin the TPQCTL structure or, inthecaseof priori ty,
tothevalue set by the/Q administrator. If specified, fi f o or | i f o (whichare mutually
exclusive), must be the last parameter sel ected. The sequence in which parameters are
selected determines the sort criteria for the queue. In other words, a specification of
priority, fifowouldsay thatthe queue should be arranged by message priority
and that within messages of equal priority they should be dequeued on afirst in, first
out basis.

BEA TUXEDO/Q Guide 2-11

2 BEATUXEDO System /Q Administration

Enabling Out-of-order Enqueuing

If the administrator enables out-of-order enqueues, that is, if t op and/or nsgi d are
sel ected at the prompt, programmers can specify (viavaluesin the TPQCTL structure of
at penqueue call) that a messageis to be put at the top of the queue or ahead of the
message identified by nsgi d. Give this option some thought; once the choice is made
you have to destroy and recreate the queue to change it.

Specifying Retry Parameters

2-12

Normal behavior for a queued message facility isto put a message back on the queue
if the transaction that dequeuesit is rolled back. It will be dequeued again when it
reaches the top of the queue. Y ou can specify the number of retries that should be
attempted and also atime delay between retries. Note that when a dequeued message
is put back on the queue for retry, queue order specifications are, in effect, suspended
for Ret ry del ay seconds.

The default for the number of retriesis 0, which means that no retries are attempted.
When theretry limit is reached (zero or whatever), the system moves the message to
the error queue for this queue space, assuming an error queue has been named and
created. If the error queue does not exist the message is discarded.

Thedelay timeisexpressed in seconds. When message queues arelightly popul ated so
that amessage restored to the queue reaches the top almost immediately, you can save
cycles by building in a delay factor. Y our general policy on retries should be based on
the experience of your particular application. If you have afair amount of contention
for the service associated with a given queue, you may get alot of transient problems.
One way to deal with them is to specify alarge number of retries. (The number is
strictly subjective, asisthe time between retries.) If the nature of your application is
such that any rolled back transaction signals afailure that is never going to go away,
you might want to specify O retries and move the message immediately to the error
gueue. (Thisis very much like what happens when you specify the -d option for
TMQFORWARD; the only difference isthat a non-zero length failure message must be
received for TMQFORWARD automatically to drop the message from the queue.)

BEA TUXEDO /Q Guide

Creating Queue Space and Queues

Using Queue Capacity Limits

There are three parameters of the qcr eat e command that can be used to partialy
automate the management of a queue. The parameters set a high and low threshold
figure (it can be expressed as blocks, messagesor per cent of queue capacity) and alow
you to name acommand that is executed when the high threshold isreached. (Actually,
the command is executed once when the high threshold is reached, but not again unless
the low threshold is reached first.)

Here are two examples of ways the parameters can be used:

Hgh limt for queue capacity warning (b for bytes used,

B for bl ocks used, % for percent used, mfor nessages): 80%
Reset (low) limt for queue capacity warning: 10%

Queue capacity command: /usr/app/bin/ mil me nmyqueuespace servicel

This sequence sets the upper threshold at 80% of queue capacity and specifies a
command to be executed when the queue is 80% full. The command is a script you
have created that sends you a mail message when the threshold is reached
(myqueuespace and ser vi cel are hypothetical argumentsto your command).
Presumably, once you have been informed that the queue is filling up you can take
action to ease the situation. Y ou will not get the warning message again unless the
gueue load drops to 10% of capacity or below, and then rises again to 80%.

The second exampl eissomewhat more automated and takes advantage of the -e option
of the TMQFORWARD server.

Hgh limt for queue capacity warning (b for bytes used,

B for bl ocks used, % for percent used, mfor nessages): 90%
Reset (low) limt for queue capacity warning: 0%

Queue capacity command: tnboot -i 1002

This sequence assumes that you have configured areserve TMQFORWARD server for the
gueue in question with a SRVI D=1002 number and have included the -e option in its
CLOPT parameter. (It also assumes that the server is not booted or, if booted, has shut
itself down as aresult of finding the queue empty.) When the queue reaches 90%
capacity the tmboot command is executed to boot the reserve server. The -e option
causes the server to shut itself down when the queueis empty. Y ou have set the low
threshold to 0% so as not to kick off unnecessary t mhoot commands for a server that
is aready booted.

The default values for the three options are 100%, 0%, and no command.

BEA TUXEDO/Q Guide 2-13

2 BEATUXEDO System /Q Administration

Reply and Failure Queues

The discussion above about creating a queue and providing parameters for its
operation was written from the viewpoint of creating a queue for messages waiting to
be processed by a service of the same name, although the parameters for creating a
gueue are the same regardless of its use. Other queues are possible and indeed highly
useful. Included in the TPQCTL structure when a message is enqueued to a service
gueue are fieldsthat can name areply queue and afailure queue. TMQFORWARD detects
the success or failure of thet pcal | (3c) it makes to the requested service and, if these
gueues have been created by the administrator, queues the reply accordingly. If no
reply or failure queue exists, the success or failure response message from the service
isdropped leaving the originating client with no information about the outcome of the
gueued request. Even if there is no reply message from the service, if areply queue
exists, a zero-length message is enqueued there by TMQFORWARD to inform the
originating client.

When creating areply or afailure queue, bear in mind that in most cases messages are
degueued from these queues by a client process looking for information about an

earlier enqueued request. Since the most common way of dequeuing such messagesis

by the msgi d (message identifier) or corri d (correlation identifier) associated with

the message—as opposed to taking a message off the top of the queue—the queue
ordering criteria are less significant; you might just as well settli fios. However,
theout - of - or der parameter must be configured to permit accessshyd. The

retries andretry del ay parameters have no significance for reply queues; just take
the defaults. Thqueue capacity thresholds and commands are likely to be useful
on reply queues, but we recommend using them to alert the administrator so that he
she can intervene.

Error Queues

An error queue is a system queue. If you remember, one of the prompts when you u:
gspacecr eat e asks for the name of the error queue for this queue space. When you
have actually created an error queue of that name, the system uses it as a place to m
messages from the service queue that have reached their retry limit. The manageme
of the error queue is up to the administrator who can either deal with the messages
manually through commands @fadni n or can set up an automated way of handling
them. Thequeue capaci ty parameters can be used, but all of the otheeat e
parameters, with the exceptiongfane, do not apply.

Note: We recommend against using the same queue as both an error queue and &

service failure queue; doing so would make it more difficult to manage cleanly
and could lead to clients trying to access the administrator's area.

2-14 BEA TUXEDO/Q Guide

Maintenance of the BEA TUXEDO System/Q Feature

Maintenance of the BEA TUXEDO System/Q
Feature

This section covers some things the queue administrator may have to do from timeto
time to keep a queue space operating efficiently.

Adding Extents to a Queue Space

If you find you need more disk storage for a queue space, you can add it with the
gaddext command of gmadni n(1). The command takes the queue space name and a
number of pages as arguments. The pages come from extents defined in the UDL for
the device in your QUCONFI G variable. The queue space must beinactive; you can use
the exclamation point to execute a command outside of gmadni n to shut down the
associated server group. For example:

> I'tmshut down -g TMQUEUEGRP1
followed by

> qcl ose
> gaddext myqueue 100

The queue space must be closed; gmadni n will closeit for you if you try to add extents
to an open queue space.

Backing Up or Moving Queue Space

A convenient command to use to back up a queue space is the UNIX command dd.
Shut down the associated server group first. The command lines would look like this:

t nshut down -g TMQUEUEGRP1
dd if=<qspace_device fil e> of =<out put _devi ce_fil ename>

For other options, see dd(1) in a UNIX system reference manual.

BEA TUXEDO/Q Guide 2-15

2 BEATUXEDO System /Q Administration

This same command can be used to migrate the queue space to a machine of the same
architecture, although you may need to start the command sequence with a gmadmni n
chdl command to provide anew device nameif the present name does not exist onthe
target machine.

Moving the Queue Space to a Different Type of Machine

If you need to move aqueue space to amachinewith a different architecture (primarily
byte order), the procedure is more complex. Create and run an application program to
dequeue all messages from al queues in the queue space and write them out in
machine-independent format. Then engqueue the messages in the new queue space.

TMQFORWARD and Non-Global Transactions

M essages dequeued and forwarded using TMQFORWARD are executed within a global
transaction because the operation crosses group boundaries. If the messages are
executed by servers that are not associated with an RM or that do not run within a
global transaction, they should have a server group with TMSNAMVE=TMS (for the NULL
XA interface).

TMQFORWARD and Commit Control

2-16

The global transaction begun by TMQFORWARD when it dequeues a message for
execution isterminated by at pcommi t (). The administrator can set the CMTRET
parameter in the configuration fileto control whether the transaction commits when it
islogged or when it is complete. (See the discussion of CMIRET in the RESOURCES
section of the ubbconfi g(5) reference page.)

BEA TUXEDO /Q Guide

Maintenance of the BEA TUXEDO System/Q Feature

Handling Transaction Timeout

Handling transaction timeout requires cooperation between the queue administrator
and the programmer developing client programs that dequeue messages. When

t pdequeue(3c) iscalled withthe f | ags argument set to TPQWAI T, the TMQUEUE server
may be blocked waiting for a message to come onto a queue. The number of seconds
before it times out is up to:

4 Thetinmeout flaginthet pdequeue call (if the transaction is started in the
client)

¢ The-t nunber flag of the TMQUEUE server (if the client has not started the
transaction)

To get around blocking operations using the TMQUEUE server it might help to configure
two TMQUEUE servers (or M5SQ sets of multiple TMQUEUE servers) that offer different
service names for the same queue space. t penqueue and non-waiting t pdequeue
operations can go to one set of servers; waiting t pdequeue operations, to asecond set.

TMQFORWARD and Retries for an Unavailable Service

When a TMQFORWARD server attempts to forward messages to a service that is not
available the situation can develop where the retry limit for the queue may be reached.
The message is then moved to the error queue (if one exists). To avoid this situation
the administrator should either shut the TMQFORWARD server down or set the retry count
higher.

When amessage is moved to theerror queue it isno longer associated with the origina
queue. If errors are going to be dealt with by the administrator moving the message
back to the service queue when the service is known to be available, then the queue
name should be stored aspart of thecor r i d inthe TPQCTL structure so the queue name
is associated with the message.

BEA TUXEDO/Q Guide 2-17

2 BEATUXEDO System /Q Administration

2-18 BEA TUXEDO/Q Guide

CHAPTER

3 BEA TUXEDO System/Q
C Language
Programming

This chapter deals with the use of the ATMI C language functions for enqueuing and
dequeuing messages: t penqueue(3c) and t pdequeue(3c), plus some ancillary
functions.

Prerequisite Knowledge

The BEA TUXEDO programmer coding client or server programs for the queued
message facility should befamiliar with the C language binding to the BEA TUXEDO
ATMI. General guidance on BEA TUXEDO programming is available in the BEA
TUXEDO Programmer’s Guid®etailed pageson all the ATMI functions arein
Section 3c of the BEA TUXEDO Reference Manual

BEA TUXEDO /Q Guide 3-1

3 BEATUXEDO System/Q C Language Programming

Where Requests Can Originate

The calls used to place amessage on a BEA TUXEDO System/Q queue can originate
inany client or server process associated with the application. The list includes:

4 Clients or servers on the same machine as the queue space or on another
machine on the network.

4 Conversational programs, although you cannot have a conversational connection
with a queue (or with the TMQUEUE(5) server).

4 Workstation clients via a surrogate process on the server side; the administrative
interface is also entirely on the server side.

Emphasis on the Default Case

3-2

The coverage of BEA TUXEDO System/Q programming in this chapter reflects the
illustration in Chapter 1, or at least the left-hand portion of it. In that figure aclient (or
aprocess acting in the role of a client) queues a message by calling t penqueue(3c)
and specifying a queue space available through the TMQUEUE server. The client later
retrieves areply viaat pdequeue call to TMQUEUE.

Theillustration in Chapter 1 goes on to show the queued message being dequeued by
the server TMQFORWARD and sent to an application server for processing (viat pcal |).
When areply tothet pcal | isreceived, TMQFCRWARD enqueues the reply message.
Since amajor goal of TMFORWARD isto provide an interface between the queue space
and existing application services, it does not require further application coding. For
that reason, this chapter concentrates on the client-to-gspace side.

A brief example of the use of the queued message facility is distributed with the
software and is described in Appendix A, “A Sample Application.”

BEA TUXEDO /Q Guide

Enqueuing Messages

Enqueuing Messages

The syntax for t penqueue is as follows.

#i ncl ude <atni. h>
int tpenqueue(char *gspace, char *gnanme, TPQCTL *ct/,
char *data, long /en, long flags)

When at penqueue call isissued it tells the system to store a message on the queue
identified in gnane in the space identified in gspace. The message isin the buffer
pointed to by dat a and has a length of / en. By the use of bit settingsin f/ ags the
system isinformed how the call to t penqueue isto be handled. Further information
about the handling of the enqueued message and replies is provided in the TMQCTL
structure pointed to by ct /.

Command Line Arguments, tpenqueue(3)

There are some important arguments to control the operation of t penqueue(3c). Let's
look at some of them.

tpenqueue(): the gspace Argument

gspace identifies a queue space previously created by the administrator. When a
server isdefined in the SERVERS section of the configuration file, the service names it
offers are aliases for the actual queue space name (which is specified as part of the
COPENI NFO parameter in the GROUPS section). For example, when your application uses
the server TMQUEUE, the value pointed at by the gspace argument isthe name of a
service advertised by TMQUEUE. If no service aliases are defined, the default serviceis
the same as the server name, TMQUEUE. In this case the configuration file can include:

TMQUEUE
SRVGRP = QUE1 SRVID = 1

GRACE = 0 RESTART = Y CONV = N
CLCOPT = "-A"

or
CLCOPT = "-s TMQUEUE"

BEA TUXEDO /Q Guide 3-3

3 BEATUXEDO System/Q C Language Programming

Theentry for server group QUEL hasan OPENI NFOparameter that specifiestheresource
manager, the pathname of the device and the queue space name. The gspace argument
in aclient program can then look like this:

if (tpenqueue("TMQUEUE', "STRING', (TPQCTL *)&qctl,
(char *)reqgstr, 0,0) == -1) {
Error checking

}

Theexampl e shown on the manual page for TMQUEUE(5) shows how an aliasfor service
names can be included when the server is built and specified in the configuration file.

The sample program in Appendix A, “A Sample Application,” also specifies an alias
service name.

tpenqueue(): the gname Argument

Within a queue space, message queues are named according to application service
that process the requesdgane is a pointer to such a value; an exception in which
gnane is not an application service is described later in the chapter.

tpenqueue(): the data and len Arguments

dat a points to a buffer that contains the message to be processed. The buffer must |
one that was allocated with a calktgal | oc(3c)./ en gives the length of the message.
Some BEA TUXEDO buffer types (such as FML) do not requére to be specified,;

in such cases, the argument is ignord.a can beNULL; when it is,/ en is ignored

and the message is enqueued with no data portion.

tpenqueue(): the flags Arguments

34

fl ags values are used to tell the BEA TUXEDO system howt flemqueue call is
handled; the following are valid flags:

TPNOTRAN
If the caller is in transaction mode, this flag specifies that the enqueuing of
the message is to be done in a separate transaction.

TPNOBLOCK
If this flag is set and a blocking condition exists, the call fails immediately
with t per r no set toTPEBLOCK. When the flag is not set the call blocks until
the condition subsides; it fails if a blocking or transaction timeout occurs
(TPETI ME).

BEA TUXEDO /Q Guide

Enqueuing Messages

TPNOTI ME
Thisflag asks that the call be immune to blocking timeouts; transaction
timeouts may still occur.

TPSI GRSTRT
Thisflag saysthat any underlying system callsthat are interrupted by asignal
should be reissued. When not specified and asignal isreceived, the call fails
and setst per rno to TPGOTSI G.

The TPQCTL Structure

The third argument to t penqueue() is a pointer to a structure of type TPQCTL. The
TPQCTL structure has members that are used by the application and by the BEA
TUXEDO system to pass parameters in both directions between application programs
and the queued message facility. The client that callst penqueue sets flagsto mark
members the application wants the system to fill in. The structure is also used by

t pdequeue; some of the membersdo not comeinto play until the application callsthat
function. The complete structure is shown in Listing 3-1.

Listing 3-1 Thetpqctl_t Structure

#defi ne TMONAMELEN 15

#defi ne TMVBA DLEN 32

#defi ne TMCORRI DLEN 32

struct tpgctl_t { /* control paranmeters to queue primtives */
long fl ags; /* indicates which of the values are set */

| ong deq_tine; /* absolute/relative time for dequeuing */
long priority; /* enqueue priority */

| ong di agnosti c; /* indicates reason for failure */

char nsgi d[TMVSAE DLEN ; /* id of nessage before which to queue */
char corri d[TMCORRI DLEN] ; /* correlation id used to identify nessage */
char repl yqueue[TMONAVELEN+1] ; /* queue nane for reply nessage */

char fail urequeue[TMONAVELEN+1]; /* queue nane for failure message */
CLIENTID cltid; /* client identifier for originating client */
| ong urcode; /* application user-return code */

| ong appkey; /* application authentication client key */

};
typedef struct tpqctl_t TPQCTL;

BEA TUXEDO /Q Guide 3-5

3 BEATUXEDO System/Q C Language Programming

3-6

Thefollowing isalist of valid bits for the f I ags parameter controlling input
information for t penqueue.

TPNOFLAGS
No flagsor values are set. No information istaken fromthe structure. L eaving
fields of the structure not set is equivalent to a setting of TPNOFLAGS.

TPQTCOP
Setting this flag bit indicates that the queue ordering be overridden and the
message placed at the top of the queue. This request may not be granted
depending on whether or not the queue was configured to allow overriding
the queue ordering to put a message at the top of the queue.

TPQBEFOREMSG D
Setting this flag bit indicates that the queue ordering be overridden and the
message placed in the queue before the messageidentified by thensgi d field.
This request may not be granted depending on whether or not the queue was
configured to allow overriding the queue ordering to put a message ahead of
another by msgid. TPQTOP and TPQBEFOREMSG D are mutually exclusive
flags. Assumes a prior (successful) call with TPQVSG D set.

TPQTI ME_ABS
If set, the request isto be processed after the time specified by the deq_ti ne
field. The deq_t i ne is an absolute time value as generated by t i ne(2) or
nkt i me(3C), if they are available in your UNIX operating system, or
gp_nkt i me(3c), provided with the BEA TUXEDO system. The value set in
the deq_t i ne field is the number of seconds since 00:00:00 UTC, January
1,1970. TPQTI ME- ABS can be overridden and the message dequeued
immediately by MSG D or CORRI D.

TPQTI ME_REL
If set, the request isto be processed relative to the completion of the queuing
transaction. deq_t i me specifies the number of secondsto delay after the
transaction compl etes before the submitted request should be processed.
TPQTI ME_REL can be overridden and the message dequeued immediately by
MSG D or CORRI D. TPQTI ME_ABS and TPQTI ME_REL are mutually exclusive

flags.

TPQPRI ORI TY
If set, the priority at which the request should be enqueued is stored in
priority.Thepriority must bein the range 1 to 100, inclusive.

BEA TUXEDO /Q Guide

Enqueuing Messages

TPQCORRI D
If set, the correlation identifier value specified in corri disavailablewhen a

request is dequeued with t pdequeue(3c). Thisidentifier accompanies any
reply or failure message that is queued so an application can correlate areply
with a particular request. The entire value should beinitialized such that the
value can be matched at alater time. This can be done, for example, by
padding with null charactersto the full 32-character size.

TPQREPLYQ
If set, areply queue named in r epl yqueue is associated with the queued

message. Any reply to the message will be queued to the named queue within
the same queue space as the request message. This string must be
NULL-terminated (maximum 15 charactersin length). If areply isgenerated
for the service and areply queueis not specified or the reply queue does not
exist, the reply is dropped.

TPQFAI LUREQ
If set, afailure queuenamed inthef ai | ur equeue fieldisassociated with the
gueued message. If afailure occurs when executing the enqueued message, a
failure message will go to the named queue within the same queue space as
the original request message. This string must be NULL -terminated
(maximum 15 charactersin length).

Additionally, the ur code element of TPQCTL can be set with a user-return
code. Thisvalue will be returned to the application that callst pdequeue(3c)

to dequeue the message.
Onoutput fromt penqueue, the following elements may be set in the TPQCTL
structure:
long fl ags; /* indicates which of the values are set */
char nsgid[32]; /* id of enqueued nessage */
| ong di agnosti c; /* indicates reason for failure */

An additional setting of the f I ags parameter requests output information
fromt penqueue. If thisflag bit isturned on whent penqueue iscalled, then
the associated element in the structure is populated if available and the bit
remains set. If the valueis not available, t penqueue completes with the flag
bit turned off.

TPQVEG D
If set and the call to t penqueue was successful, the message identifier will
be stored in nsgi d.

BEA TUXEDO /Q Guide 3-7

3 BEATUXEDO System/Q C Language Programming

3-8

If the call tot penqueue failsand t perr no isset to TPEDI AGNOSTI C, avaue
indicating the reason for failureis returned in di agnost i c. The possible values are:

[QVEI NVAL]
Aninvalid flag value was specified.

[QVEBADRM D]
An invalid resource manager identifier was specified.

[QVENOTOPEN]
The resource manager is not currently open.

[QVETRAN]
The call was made with the TPNOTRAN flag and an error occurred trying to
start atransaction in which to enqueue the message.

[QVEBADMSG D)
An invalid message identifier was specified.

[QVESYSTEM
A system error has occurred. The exact nature of the error iswritten to alog
file.

[QVECE]
An operating system error has occurred.

[QVENCTA]
The transaction in which the message was enqueued was aborted.

[QVEPROTC)|
An engueue was done when the transaction state was not active.

[QVEBADQUEUE]
Aninvalid or deleted queue name was specified.

[QVENOSPACE]
There is no space on the queue for the message.

The remaining members of the control structure are not used on input to t penqueue.

BEA TUXEDO /Q Guide

Enqueuing Messages

Overriding the Queue Order

If the administrator in creating a queue alowst penqueue callsto override the order
of messages on the queue, you have two mutually exclusive waysto usethat capability.
Y ou can specify that the messageis to be placed at the top of the queue by setting

f1 ags to TPQTOP or you can specify that it be placed ahead of a specific message by
setting f 1 ags to TPQBEFORENMSG D and setting nsgi d to the ID of the message you
wish to precede. This assumes that you saved the message-ID from a previouscall in
order to be able to use it here. Y our administrator must tell you what the queue
supports; it can be created to allow either or both of these overrides, or to allow neither.

Overriding the Queue Priority

If the queue was created with pri ori t y asaqueue ordering parameter, you can set a
valuein priority to specify the dequeuing priority for the message. The value must
bein the range 1 to 100; the higher the number the higher the priority. If priority
was not one of the queue ordering parameters, setting a priority here has no effect.

BEA TUXEDO /Q Guide 3-9

3 BEATUXEDO System/Q C Language Programming

Setting a Dequeuing Time

A gueue can be created witht i me asaqueue ordering parameter. When thisisthe case,
you can specify in deq_t i me either an absolute time for the message to be dequeued
or atimerelative to the enqueuing transaction. Y ou set f/ ags to either TPQTI VE_ABS
or TPQTI ME_REL to say how the value should be treated.

BEA TUXEDO System/Q provides afunction, gp_nkt i me(3c), that isused to convert
adate and time provided in at mstructure to the number of seconds since January 1,
1970. Thevalueisreturnedinti me_t , at ypedef’ d long. To set an absolute time for
the message to be dequeued (we are using 12:00 noon, December 9, 1992), do the
following.

1. Placethe valuesfor the date you want to use in the t mstructure.

#i ncl ude <stdio. h>
#include <tine.h>
static char *const wday[] = {
"Sunday", "Monday", "Tuesday", "Wdnesday",

"Thursday", "Friday", "Saturday", "-unknown-"
s
struct tmtime_str;
[* 00*

time_str.tmyear = 1992 - 1900;
time_str.tmnmon = 12 - 1;

time_str.tmnday = 9
time_str.tmhour =1
time_str.tmmn =
time_str.tmsec =
time_str.tm.i sdst

2;

0;

1;

= -1;

2. Call gp_nkti ne to produce avalue for deq_t i me and set the f/ ags to indicate
an absolute timeis being provided.

#include <atm . h>

TPQCTL qctl;

if ((qctl->deq_time = (long)gp_nktime(&ime_str)) == -1) {
/* check for errors */

}
qctl ->fl ags = TPQTlI ME_ABS
3. Cadll t penqueue.

if (tpenqueue(qgspace, gnanme, qctl, *data,*len,*flags) == -1) {
/* check for errors */
}

If youwant to specify arelativetimefor dequeuing, for example, nnn seconds after the
completion of the enqueuing transaction, place the number of secondsin deq_ti me
and set f | ags to TPQTI ME_REL.

3-10 BEA TUXEDO/Q Guide

Dequeuing Replies

tpenqueue() and Transactions

M essages are always enqueued within atransaction; the only question is, within whose
transaction? There are two choices. If caller of t penqueue isin transaction mode and
TPNOTRAN is not set, then the enqueuing is done within the caller's transaction. The
caller knowsfor certain from the successor failure of t penqueue whether the message
was enqueued or not. If the call succeeds, the messageis guaranteed to be on the queue.
If thecall fails, thetransactionisrolled back, including the part where the message was
placed on the queue.

If caller of t penqueue isnotintransaction mode or if TPNOTRAN S set, the messageis
enqueued in a separate transaction. If the call to t penqueue returns success, the
message is guaranteed to be on the queue. If the call to t penqueue failswith a
communication error or with atransaction or blocking timeout, the caller isleft in
doubt about whether the failure occurred before or after the message was enqueued.

Note that specifying TPNOTRAN while the caller is not in transaction mode has no
meaning.

Dequeuing Replies

The syntax for t pdequeue is as follows:

#i ncl ude <atni. h>
int tpdequeue(char *qspace, char *gnane, TPQCTL *ctl, \
char **data, long *len, long flags)

When thiscall isissued it tell sthe system to dequeue a message from the gnane queue
in space named gspace. The message is placed in a buffer (originally allocated by

t pal I oc(3c)) at the address pointed to by * dat a. I en pointsto the length of the data.
If / enisOon return from t pdequeue, the message had no data portion. By the use of
bit settingsin f/ ags the system isinformed how the call to t pdequeue isto be
handled. The TPQCTL structure pointedto by ct / carriesfurther information about how
the call should be handled.

BEA TUXEDO/Q Guide 3-11

3 BEATUXEDO System/Q C Language Programming

Command Line Arguments, tpdequeue

There are some important argumentsto control the operation of t pdequeue(3c). Let’s
look at some of them.

tpdequeue(): the gspace Argument

gspace identifies a queue space previously created by the administrator. When a
server is defined in the SERVERS section of the configuration file, the service namesit
offers are aliases for the actual queue space name (which is specified as part of the
OPENI NFO parameter in the GROUPS section). For example, when your application uses
the server TMQUEUE, the value pointed at by the gspace argument is the name of a
service advertised by TMQUEUE. If no service aliases are defined, the default serviceis
the same as the server name, TMQUEUE. I n this case the configuration file can include:

TMQUEUE
SRVGRP = QUEL SRVID = 1

GRACE = 0 RESTART = Y CONV = N
CLOPT = "-A"

or
CLOPT = "-s TMQUEUE'

Theentry for server group QUEL hasan OPENI NFOparameter that specifiestheresource
manager, the pathname of the device and the queue space name. The gspace argument
in aclient program can then look like this:

i f (tpdequeue("TMQUEUE"', "REPLYQ', (TPQCTL *)&qctl,
(char **)&reqstr, & en, TPNOTIME) == -1) {
Error checking

}

The example shown on the manual page for TMQUEUE(5) shows how alias service

names can be included when the server is built and specified in the configuration file.

The example in Appendix A, “A Sample Application,” also specifies an alias service
name.

tpdequeue(): the gname Argument

3-12

Replyqueue names in a queue space need to be agreed upon within the application.
The administrator creates a reply queue (and often an error queue) in the same mani
a message queue is creatgehne is a pointer to the name.

BEA TUXEDO /Q Guide

Dequeuing Replies

tpdequeue(): the data and len Arguments

The arguments have a different flavor than they do ont penqueue. * dat a pointsto the
address of a buffer where the system is to place the message being dequeued. When
t pdequeue iscalled, it isan error for its value to be NULL.

When t pdequeue returns, / en pointsto along that carries information about the
length of the dataretrieved. If itis 0, it means that the reply had no data portion. This
can bealegitimate and successful reply in some applications; receiving even a0 length
reply can be used to show successful processing of the enqueued request. If you wish
to know whether the buffer has changed from before the call tot pdequeue, save the
prior length and compareitto / en.

tpdequeue(): the flags Arguments

f1 ags values are used to tell the BEA TUXEDO system how thet pdequeue cal is
handled; the following are valid flags:

TPNOTRAN
If the caller isin transaction mode, this flag specifies that the messageisto be
dequeued in a separate transaction.

TPNOBLOCK
If thisflag is set and a blocking condition exists, the call failsimmediately
with t per r no set to TPEBLOCK. When the flag is not set the call blocks until
the condition subsides; it fails if a blocking or transaction timeout occurs
(TPETI ME). This blocking condition does not include blocking on the queue
itself if the TPQWAI T optionin f/ ags is specified.

TPNOTI ME
Thisflag asks that the call be immune to blocking timeouts; transaction
timeouts may still occur.

TPNOCHANGE
When thisflag isset, the type of the buffer pointed to by * dat ais not alowed
to change. By default, if abuffer isreceived that differsin type from the
buffer pointed to by * dat a, then * dat a's buffer type changesto the received
buffer'stype solong asthe receiver recognizestheincoming buffer type. That
is, the type and subtype of the received buffer must match the type and
subtype of the buffer pointed to by *dat a.

BEA TUXEDO/Q Guide 3-13

3 BEATUXEDO System/Q C Language Programming

3-14

TPSI GRSTRT
Thisflag saysthat any underlying system callsthat areinterrupted by asignal
should be reissued. When not specified and asignal isreceived, the call fails
and setst per r no to TPGOTSI G.

Thethird argument to t pdequeue() is apointer to a structure of type TPQCTL. The
TPQCTL structure has membersthat are used by the application and by the BEA
TUXEDO system to pass parametersin both directions between application programs
and the queued message facility. The client that callst pdequeue setsflags to mark
membersthe application wantsthe system to fill in. Asdescribed earlier, the structure
isalso used by t penqueue; some of the members only apply to that function. The
entire structure is shown in Listing 3-1.

On input to t pdequeue, the following elements may be set in the TPQCTL structure:

I ong flags; /* indicates which of the values are set */
char nsgi d[32] ; /* id of message to dequeue */
char corrid[32]; /* correlation identifier of nessage to dequeue */

Thevalid flags on input to t pdequeue are:

TPNOFLAGS
No flags are set. No information is taken from the control structure.

TPQGETBYMSG D
If set, it requests that the message identified by nsgi d be dequeued. The
message identifier would be one that was returned by a prior call to
t penqueue. This option cannot be used with the TPQAAI T option.

TPQGETBYCCORRI D
If set, it requests that the message with the correlation identifier specified by
corri d be dequeued. The correlation identifier would be one that the
application specified when enqueuing the message with t penqueue. This
option cannot be used with the TPQWAAI T option.

TPQWAI T
If set, it indicates that an error should not be returned if the queue is empty.
Instead, the process should block until a message is available.

BEA TUXEDO /Q Guide

Dequeuing Replies

Followingisalist of valid bitsfor the f I ags parameter controlling output information
from t pdequeue. If the flag bit isturned on whent pdequeue is called, then the
associated element (see Listing 3-1) in the structure is popul ated if available and the
bit remains set. If the value is not avail able, the flag bit isturned off after t pdequeue
compl etes.

TPQPRI ORI TY
If set and the valueisavailable, the priority at which the message was queued
isstoredinpriority.

TPQVBG D
If set and the call to t pdequeue was successful, the message identifier will
be stored in nsgi d.

TPQCORRI D
If set and the call tot pdequeue was successful and the message was queued
with acorrelation identifier, the value will bestoredin cor ri d. Any reply to
aqueue must have this correlation identifier.

TPQREPLYQ
If set and the message is associated with areply queue, the value will be
stored in repl yqueue. Any reply to the message should go to the named
reply queue within the same queue space as the request message.

TPQFAI LUREQ
If set and the message is associated with a failure queue, the value will be
storedin f ai | ur equeue. Any failure message should go to the named failure
gueue within the same queue space as the request message.

If the call to t pdequeue failed and t per r no is set to TPEDI AGNOSTI C, avalue
indicating the reason for failure isreturned in di agnost i c. The valid codes for

di agnost i c¢ include those shown above for t penqueue and the following additional
codes:

[QVENOVBG]
No message was avail able for dequeuing.

[QVEI NUSE]
When dequeuing amessage by correlation or messageidentifier, the specified
message isin use by another transaction. Otherwise, all messages currently
on the queue are in use by other transactions.

BEA TUXEDO/Q Guide 3-15

3 BEATUXEDO System/Q C Language Programming

Using TPQWAIT

When t pdequeue iscaled with f/ ags set to TPQMAI T, the TMQUEUE server may be
blocked waiting for a message to come onto the queue. The amount of timeitis
blocked can be controlled by the transaction timeout value set by the caller in

t pbegi n(3c) or by the-t option inthe CLOPT parameter of the TMQUEUE server (if the
transaction is started in the server). To avoid blocking t penqueue calls that also use
the TMQUEUE server, it may be desirable to configure two or more TMQUEUE servers (or
MsSQ sets) offering different service names for the same queue space. It could be set
up so that all enqueue and nonwaiting dequeue operations use one set of TMQUEUE
servers and all waiting dequeue operations use the second set.

Error Handling

3-16

In considering how best to handle errors in dequeuing it is helpful to differentiate
between errors encountered by TMQFORWARD as it attempts to dequeue a message to
forward to the requested service and errors that occur in the service that processes the
reguest. This subject was discussed in Chapter 1, but isrepeated here in the context of
writing application programs.

By default, if amessage is dequeued within atransaction and the transaction isrolled
back, then (if ther et ry parameter is greater than 0) the message ends up back on the
gueue and can be dequeued and executed again. It may be desirable to delay for ashort
period before retrying to dequeue and execute the message, allowing the transient
problem to clear (for example, allowing for locks in a database to be released by
another transaction). Normally, alimit on the number of retriesis a so useful to ensure
that an application flaw doesn't cause significant waste of resources. When aqueueis
configured by the administrator, both a retry count and a delay period (in seconds) can
be specified. A retry count of 0 implies that no retries are done. After the retry count
isreached, the message is moved to an error queue that is configured by the
administrator for the queue space. If the error queue is not configured, then messages
that have reached theretry count are ssimply deleted. M essages on the error queue must
be handled by the administrator who must work out away of notifying the originator
that meets the requirements of the application. Thiskind of handling is amost
transparent to the originating program that put the message on the queue. Thereisa
virtual guarantee that once a message is successfully enqueued it will be processed
according to the parametersof t penqueue and the attributes of the queue. Notification
that a message has been moved to the error queue should be arare occurrencein a
system that has properly tuned its queue parameters.

BEA TUXEDO /Q Guide

Dequeuing Replies

A failure queue (normally, different from the queue space error queue) may be
associ ated with each queued message. Thisqueue is specified on the enqueuing call as
the place to put any failure messages. The failure message for a particular request can
beidentified by an application-generated correlation identifier that is associated with
the message when it is enqueued.

The default behavior of retrying until success (or apredefined limit) is quite
appropriate when the failure is caused by atransient problem that is later resolved,
allowing the message to be handled appropriately.

There are cases where the problem is not transient. For example, the queued message
may request operating on an account that does not exist (and the application is such
that it won't come into existence within areasonable time period if at all). In this case,
it isdesirable not to waste any resources by trying again. If the application programmer
or administrator determines that failures for a particular operation are never transient,
thenitissimply amatter of setting the retry count to zero, although thiswill require a
mechanism to constantly clear the queue space error queue of these messages (for
example, abackground client that reads the queue periodically). More likely, it is the
case that some problemswill be transient (for example, database lock contention) and
some problemswill be permanent (for exampl e, the account doesn't exist) for the same
service.

In the case that the message is processed (dequeued and passed to the application via
atpcal |) by TMQFORWARD, there is no mechanism in the information returned by
tpcal | toindicate whether aTPESVCFAI L error is caused by atransient or permanent
problem.

Asin the case where the application is handling the dequeuing, a simple solution isto
return success for the service, that is, t pr et ur n with TPSUCCESS, even though the
operation failed. Thisallowsthetransaction to be committed and the message removed
fromthequeue. If reply messages are being used, theinformationin the buffer returned
from the service can indicate that the operation failed and the message will be
enqueued on the reply queue. The r code argument of t pr et ur n can also be used to
return application specific information.

Inthe case wherethe servicefail sand the transaction must berolled back, it isnot clear
whether or not TMQFORWARD should execute a second transaction to remove the
message from the queue without further processing. By default, TMQFORWARD will not
delete amessage for a service that fails. TMOQFORWARD' s transaction isrolled back and
the message is restored to the queue. A command line option may be specified for
TMQFORWARD that indicates that a message should be deleted from the queue if the
service fails and a reply message is sent back with length greater than 0. The message
isdeleted in a second transaction. The queue must be configured with adelay time and
retry count for thisto work. If the messageis associated with afailure queue, thereply
datawill be enqueued to the failure queue in the same transaction as the one in which
the message is deleted from the queue.

BEA TUXEDO/Q Guide 3-17

3 BEATUXEDO System/Q C Language Programming

A Procedure for Dequeuing Replies

3-18

If your application expectsto receive replies to queued messages, here is a procedure
you may want to follow.

1. Asapreliminary step, the queue space must include areply queue and afailure
gueue. The application must also agree on the content of the correlation identifier.
The service should be coded to return TPSUCCESS on alogical failureand return an
explanatory code in the r code argument of t pr et ur n.

2. Whenyou call t penqueue to put the message on the queue, set f | ags to turn on
the bits for the following flags.

TPQCORRI D TPQREPLYQ
TPQFAI LUREQ TPQVSG D

Fill inthevauesfor corrid, repl yqueue and f ai | ur equeue before issuing
the call. Onreturn from the call, savecorri d.

3. Whenyou call t pdequeue to check for areply, specify the reply queue in the
gnane argument and set f | ags to turn on the bits for the following flags:

TPQCORRI D TPQREPLYQ
TPQFAI LUREQ TPQVBG D

TPQGETCORR D

Use the saved correlation identifier to populate cor ri d beforeissuing the call. If
the call tot pdequeue fails and setst per r no to TPEDI AGNOSTI C, then further
information is availablein di agnost i c. If you receive the error code QVENOVEG
it means that no message was available for dequeuing.

4. Set up another call to t pdequeue. Thistime have gnane point to the name of the
failure queue and set f | ags to turn on the bits for the following flags:

TPQCORRI D TPQREPLYQ
TPQFAI LUREQ TPQVBG D

TPQGETBYCORR D

Populate cor ri d with the correlation identifier. When the call returns, check
| en to seeif data has been received and check ur code to seeif the service has
returned a user return code.

BEA TUXEDO /Q Guide

Sequential Processing of Messages

Sequential Processing of Messages

Sequential processing of messages can be achieved by having one service enqueue a
message for the next service in the chain before its transaction is committed. The
originating process can track the progress of the sequence with aseries of t pdequeue
callstother epl y_queue, if each member uses the same correation-1D and returns a
0 length reply.

Alternatively, word of the successful completion of the entire sequence can bereturned
to the originator by using unsolicited notification. To make sure that the last
transaction in the sequence ended with at pconmi t , ajob step can be added that calls
t pnot i f y using theclient identifier that iscarried in the TPCTL structurereturned from
t pdequeue or in the TPSVCI NFOstructure passed to the service. The originating client
must have called t pset unsol to name the unsolicited message handler being used.

Using Queues to Transfer Anything

Inall of the foregoing discussion of enqueuing and degueuing messages there has been
an implicit assumption that the queues were being used as an aternative form of
request/response processing. It may have occurred to you that the message itself does
not have to be a service request and you would be correct. The queued message facility
can be used equally as effectively to transfer data from one process to another.

If it suits your application to use BEA TUXEDO System/Q for this purpose, have the
administrator create a separate queue and code your own receiving program for
dequeuing messages from that queue.

BEA TUXEDO/Q Guide 3-19

3 BEATUXEDO System/Q C Language Programming

3-20 BEA TUXEDO/Q Guide

CHAPTER

4 BEATUXEDO System/Q

COBOL Language
Programming

Thischapter dealswith theuse of the ATMI COBOL |language functionsfor enqueuing
and degueuing messages: TPENQUEUE and TPDEQUEUE, plus some ancillary functions.

Prerequisite Knowledge

The BEA TUXEDO programmer coding client or server programs for the queued
message facility should be familiar with the COBOL language binding to the BEA
TUXEDO ATMI. General guidance on BEA TUXEDO programming is availablein
the BEA TUXEDO COBOL Guide. Detailed pages on all the ATMI functionsare in
Section 3chl of the BEA TUXEDO Reference Manual.

BEA TUXEDO /Q Guide 4-1

4 BEA TUXEDO System/Q COBOL Language Programming

Where Requests Can Originate

The calls used to place amessage on a BEA TUXEDO System/Q queue can originate
in any client or server process associated with the application. The list includes:

4 Clients or servers on the same machine as the queue space or on another
machine on the network.

4 Conversational programs, although you cannot have a conversational connection
with a queue (or with the TMQUEUE(5) server).

4 Workstation clients via a surrogate process on the native side; the administrative
interface is also entirely on the native side.

Emphasis on the Default Case

4-2

The coverage of BEA TUXEDO System/Q programming in this chapter reflects the
illustration in Chapter 1, or at least the left-hand portion of it. In that figure aclient (or
aprocess acting in the role of a client) queues a message by calling TPENQUEUE and
specifying a queue space available through the TMQUEUE server. The client later
retrieves areply via a TPDEQUEUE call to TMQUEUE.

Theillustration in Chapter 1 goes on to show the queued message being dequeued by
the server TMQFORWARD and sent to an application server for processing (via TPCALL).
When areply to the TPCALL isreceived, TMQFCRWARD enqueues the reply message.
Since amajor goal of TMFORWARD isto provide an interface between the queue space
and existing application services, it does not require further application coding. For
that reason, this chapter concentrates on the client-to-qspace side.

Some examples of customization are given after the discussion of the basic model.

BEA TUXEDO /Q Guide

Enqueuing Messages

Enqueuing Messages

01

01

01

01

The syntax for TPENQUEUE is as follows.

TPQUEDEF- REC.
COPY TPQUEDEF.
TPTYPE- REC.
COPY TPTYPE.

COPY User Dat a.
TPSTATUS- REC.
COPY TPSTATUS.

CALL "TPENQUEUE" USI NG TPQUEDEF- REC TPTYPE- REC DATA- REC TPSTATUS- REC.

When a TPENQUEUE call isissued it tells the system to store a message on the queue
identified in QNAVE in TPQUEDEF- RECin the space identified in QSPACE- NAME in
TPQUEDEF- REC. The messageisin DATA- REG and LEN in TPTYPE- REChas the length
of the message. By the use of settings in TPQUEDEF- REC, the system isinformed how
the call to TPENQUEUE isto be handled. Further information about the handling of the
enqueued message and repliesis provided in the TPQUEDEF- REC structure.

Command Line Arguments, TPENQUEUE(3)

There are some important arguments to control the operation of TPENQUEUE(3chl).
Let'slook at some of them.

TPENQUEUE: the QSPACE-NAME in TPQUEDEF-REC Argument

QSPACE- NAME identifies aqueue space previoudly created by the administrator. When
aserver isdefined in the SERVERS section of the configuration file, the service names
it offers are aliases for the actual queue space name (which is specified as part of the
CPENI NFO parameter in the GROUPS section). For example, when your application uses
the server TMQUEUE, the value pointed at by QSPACE- NAME is the name of a service
advertised by TMQUEUE. If no service aliases aredefined, the default serviceisthe same
as the server name, TMQUEUE. | n this case the configuration file can include the
following.

TMQUEUE
SRVGRP = QUE1 SRVID = 1

BEA TUXEDO /Q Guide 4-3

4 BEA TUXEDO System/Q COBOL Language Programming

TPENQUEUE:

GRACE = 0 RESTART = Y CON\V = N
CLOPT = "-A"

or
CLOPT = "-s TMQUEUE"

Theentry for server group QUEL hasan OPENI NFOparameter that specifiestheresource
manager, the pathname of the device and the queue space name. The QSPACE- NANVE
argument in a client program can then look like this.

01 TPQUEDEF- REC.
CCPY TPQUEDEF.
01 TPTYPE- REC.
CCOPY TPTYPE.
01 TPSTATUS- REC.
CCOPY TPSTATUS.
01 USER-DATA-REC PIC X(100).

*
*
*

MOVE LOW VALUES TO TPQUEDEF- REC.
MOVE " TMQUEUE" TO QSPACE- NAME | N TPQUEDEF- REC.
MOVE "STRI NG' TO ONAME | N TPQUEDEF- REC.
SET TPTRAN | N TPQUEDEF- REC TO TRUE.
SET TPBLOCK | N TPQUEDEF- REC TO TRUE.
SET TPTI ME | N TPQUEDEF- REC TO TRUE.
SET TPSI GRSTRT I N TPQUEDEF- REC TO TRUE.
MOVE LOW VALUES TO TPTYPE- REC.
MOVE "STRI NG' TO REC-TYPE I N TPTYPE- REC.
MOVE LENGIH OF USER- DATA- REC TO LEN I N TPTYPE- REC.
CALL "TPENQUEUE" USI NG
TPQUEDEF- REC
TPTYPE- REC
USER- DATA- REC
TPSTATUS- REC.

The example shown on the reference page for TMQUEUE(5) shows how alias service

names can be included when the server is built and specified in the configuration file.

The example in Appendix A, “A Sample Application,” also specifies an alias service
name.

the QNAME in TPQUEDEF-REC Argument

Within a queue space, message queues are named according to application service
that process the requestBIAME contains such a value; an exception in wigsAVE
is not an application service is described later in the chapter.

4-4 BEA TUXEDO /Q Guide

Enqueuing Messages

TPENQUEUE:

TPENQUEUE:

the DATA-REC and LEN in TPTYPE-REC Arguments

DATA- REC contains the message to be processed. LENin TPTYPE- RECgivesthe length
of the message. Some BEA TUXEDO record types (VI EW for example) do not require
LENto be specified; in such cases, theargument isignored. If RECTYPE in TPTYPE- REC
iS SPACES, DATA- ReECand LEN areignored and the message is enqueued with no data
portion.

the Settings in TPQUEDEF-REC

Settings in TPQUEDEF- REC are used to tell the BEA TUXEDO system how the
TPENQUEUE call is handled; the following are valid settings:

TPNOTRAN
If the caller isin transaction mode, this setting specifies that the enqueuing of
the message is to be done in a separate transaction. Either TPNOTRAN or
TPTRAN must be set.

TPTRAN
If the caller isin transaction mode, this setting specifies that the enqueuing of
the message is to be done within the same transaction. Either TPNOTRAN or
TPTRAN must be set.

TPNOBLOCK
If this setting is set and ablocking condition exists, the call failsimmediately
with TP- STATUS set to TPEBLOCK. Either TPNOBLOCK or TPBLOCK must be
set.

TPBLOCK
If this setting is set and a blocking condition exists, the call blocks until the
condition subsides or transaction timeout occurs. Either TPNOBLOCK or
TPBLOCK must be set.

TPNOTI ME
This setting asks that the call be immune to blocking timeouts; transaction
timeouts may still occur. Either TPNOTI ME or TPTI ME must be set.

TPTI ME
This setting asks that the call will receive blocking timeouts. Either
TPNOTI ME or TPTI ME must be set.

BEA TUXEDO /Q Guide 4-5

4 BEA TUXEDO System/Q COBOL Language Programming

TPSI GRSTRT
This setting saysthat any underlying system callsthat are interrupted by a
signal should bereissued. Either TPSI GRSTRT or TPNOSI GRSTRT must be set.

TPNOSI GRSTRT
This setting saysthat any underlying system callsthat are interrupted by a
signal should not be reissued. The call failsand sets TP- STATUS to
TPEGOTSI G. Either TPSI GRSTRT or TPNOSI GRSTRT must be set.

The TPQUEDEF-REC Structure

The TPQUEDEF- RECStructure has members that are used by the application and by the
BEA TUXEDO system to pass parameters in both directions between application
programs and the queued message facility. It is defined in the COBOL COPY file. The
client that calls TPQUEDEF- REC uses settings to mark members the application wants
the system tofill in. The structure is also used by TPDEQUEUE; some of the members
do not come into play until the application calls that function. The complete structure
isshown in Listing 4-1.

Listing4-1 The TPQUEDEF-REC Structure

05 TPBLOCK- FLAG PI C S9(9) COWP-5.
88 TPNOBLOCK VALUE 0.
88 TPBLOCK VALUE 1.
05 TPTRAN- FLAG PIC S9(9) COWP-5.
88 TPNOTRAN VALUE 0.
88 TPTRAN VALUE 1.
05 TPTI ME- FLAG PIC S9(9) COW-5.
88 TPNOTI ME VALUE 0.
88 TPTI ME VALUE 1.
05 TPSI GRSTRT- FLAG PIC S9(9) COW-5.
88 TPNOSI GRSTRT VALUE 0.
88 TPSI GRSTRT VALUE 1.
05 TPNOCHANGE- FLAG PIC S9(9) COwW-5.
88 TPNOCHANGE VALUE 0.
88 TPCHANGE VALUE 1.
05 TPQUE- ORDER- FLAG PIC S9(9) COWP-5.
88 TPQDEFAULT VALUE 0.
88 TPQIOP VALUE 1.
88 TPQBEFOREMSG D VALUE 2.
05 TPQUE- Tl ME- FLAG PIC S9(9) COwW-5.
88 TPQNOTI ME VALUE 0.

4-6 BEA TUXEDO /Q Guide

Enqueuing Messages

05

05

05

05

05

05

05

05

88 TPQTI ME- ABS
88 TPQTI ME- REL
TPQUE- PRI ORI TY- FLAG
88 TPQNCPRI ORI TY
88 TPQPRI ORI TY
TPQUE- CORRI D- FLAG
88 TPQNOCORRI D
88 TPQCORRI D
TPQUE- REPLYQ FLAG
88 TPQNOREPLYQ
88 TPQREPLYQ
TPQUE- FAI LQ FLAG

PIC

PIC

PIC

PIC

88 TPQONCFAI LUREQ

88 TPQFAl LUREQ
TPQUE- MSG D- FLAG
88 TPQNOVBG D
88 TPQVSG D
TPQUE- GETBY- FLAG
88 TPQGETNEXT
88 TPQGETBYMSG D
88 TPQGETBYCORRI
TPQUE- WAl T- FLAG
88 TPONOWAI T
88 TPQWAI T
DI AGNGSTI C
88 QVEI NVAL
88 QVEBADRM D
88 QVENOTOPEN
88 QVETRAN
88 QVEBADMSG D
88 QVESYSTEM
88 QVEQS
88 QVENOTA
88 QVEPROTO
88 QVEBADQUEUE
88 QVENOVEG
88 QVEI NUSE
88 QVENCSPACE
DEQ TI ME
PRI ORI TY
MG D
CORRI D
QNAMVE
QSPACE- NAME
REPL YQUEUE
FAI LUREQUEUE

CLI ENTI D OCCURS 4 TIMES Pl C S9(9) COMVP- 5.
Pl C S9(9) COMP-5.
Pl C S9(9) COMP-5.

APPL- RETURN- CODE
APPKEY

PIC

PIC

D
PIC

PIC

VALUE 1.
VALUE 2.
S9(9) COVP- 5.
VALUE 0.
VALUE 1.
S9(9) COVP- 5.
VALUE 0.
VALUE 1.
S9(9) COVP- 5.
VALUE 0.
VALUE 1.
S9(9) COVP- 5.
VALUE 0.
VALUE 1.
S9(9) COVP- 5.
VALUE 0.
VALUE 1.
S9(9) COVP- 5.
VALUE 0.
VALUE 1.
VALUE 2.
S9(9) COVP- 5.
VALUE 0.
VALUE 1.
S9(9) COVP- 5.
VALUE - 1.
VALUE - 2.
VALUE - 3.
VALUE - 4.
VALUE - 5.
VALUE - 6.
VALUE - 7.
VALUE - 8.
VALUE -9

VALUE - 10.
VALUE -11.
VALUE -12.
VALUE - 13.

PI C 9(9) COMP-5.

Pl C S9(9) COMP-5.

Pl C X(32).
Pl C X(32).
Pl C X(15).
Pl C X(15).
Pl C X(15).
Pl C X(15).

BEA TUXEDO /Q Guide

4-7

4 BEA TUXEDO System/Q COBOL Language Programming

4-8

Thefollowingisalist of valid settingsfor the parameters controlling input information
for TPENQUEUE.

TPQTCOP
Setting thisindicates that the queue ordering be overridden and the message
placed at the top of the queue. Thisrequest may not be granted depending on
whether or not the queue was configured to allow overriding the queue
ordering to put a message at the top of the queue.

TPQBEFCREMSG D
Setting thisindicates that the queue ordering be overridden and the message
placed in the queue before the message identified by MSG D. Thisrequest may
not be granted depending on whether or not the queue was configured to
allow overriding the queue ordering to put a message ahead of another by
MSG D. TPQTOP and TPQBEFOREMSG D are mutually exclusive settings.
Assumes a prior (successful) call with TPQVSG D set.

TPQTI ME- ABS
If set, the request isto be processed after thetime specified by DEQ- TI ME. The
DEQ TI ME isan absolutetime value as generated by t i me(2) or nkt i me(3C),
if they are available in your UNIX operating system, or gp_nkt i me(3c),
provided with the BEA TUXEDO system. The value set in DEQ TI ME isthe
number of seconds since 00:00:00 UTC, January 1, 1970. TPQTI ME- ABS can
be overridden and the message dequeued immediately by M5@ D or CORRI D.

TPQTI ME- REL
If set, the request isto be processed relative to the completion of the queuing
transaction. DEQ- TI ME specifies the number of secondsto delay after the
transaction compl etes before the submitted request should be processed.
TPQTI ME- REL can be overridden and the message dequeued immediately by
MSG D or CORRI D. TPQTI ME- ABS and TPQTI ME- REL are mutually exclusive
settings.

TPQPRI ORI TY
If set, the priority at which the request should be enqueued is stored in
PRI ORI TY. PRI ORI TY must be in the range 1 to 100, inclusive.

TPQCORRI D
If set, the correlation identifier value specified in CORRI Disavailable when a

reguest is dequeued with TPDEQUEUE. This identifier accompanies any reply
or failure message that is queued so an application can correlate areply with
aparticular request. The entire value should be initialized such that the value
can be matched at alater time.

BEA TUXEDO /Q Guide

Enqueuing Messages

TPQREPLYQ
If set, areply queue named in REPLYQUEUE is associated with the queued
message. Any reply to the message will be queued to the named queue within
the same queue space as the request message. If areply is generated for the
service and areply queueis not specified or the reply queue does not exist,
the reply is dropped.

TPQFAI LUREQ
If set, afailure queue named in FAI LUREQUEUE is associated with the queued
message. If afailure occurs when executing the enqueued message, afailure
message will go to the named queue within the same queue space as the
original request message.

Additionally, the APPL- RETURN- CODE member of TPQUEDEF- REC can be set with a
user-return code. This value will be returned to the application that calls TPDEQUEUE
to dequeue the message.

On output from TPENQUEUE, the following elements may be set in the TPQUEDEF- REC
structure.

05 TPQUE- MBG D- FLAG PI C S9(9) COMP-5.
88 TPQNOVBG D VALUE 0.
88 TPQVSG D VALUE 1.

05 DI AGNCSTI C PI C S9(9) COMP-5.
88 QVEI NVAL VALUE - 1.
88 QVEBADRM D VALUE - 2.
88 QVENOTOPEN VALUE - 3.
88 QVETRAN VALUE - 4.
88 QVEBADMSG D VALUE - 5.
88 QVESYSTEM VALUE - 6.
88 QVEOS VALUE - 7.
88 QVENOTA VALUE - 8.
88 QVEPROTO VALUE - 9.
88 QVEBADQUEUE VALUE - 10.
88 QVENOVEG VALUE -11.
88 QVEI NUSE VALUE -12.
88 QVENCSPACE VALUE -13.

05 MG D PI C X(32).

Setting of TPQUE- MBG D- FLAG requests output information from TPENQUEUE. If this
setting bit is turned on when TPENQUEUE is called, then the associated element in the
structure is populated if available and the bit remains set. If the value is not available,
TPENQUEUE completes with the setting bit turned off.

BEA TUXEDO /Q Guide 4-9

4 BEA TUXEDO System/Q COBOL Language Programming

TPQVSG D
If set and the call to TPENQUEUE was successful, the message identifier will
be stored in M@ D. If the call to TPENQUEUE fails and TP- STATUS is set to
TPEDI AGNOSTI C, avalue indicating the reason for failure is returned in
DI AGNOSTI C. Following are the possible values.

[QVEI NVAL]
Aninvalid setting value was specified.

[QVEBADRM D]
An invalid resource manager identifier was specified.

[QVENOTOPEN]
The resource manager is not currently open.

[QVETRAN]
The call was made with TPNOTRAN set and an error occurred trying to start a
transaction in which to enqueue the message.

[QVEBADMSG D)
An invalid message identifier was specified.

[QVESYSTEM
A system error has occurred. The exact nature of the error iswritten to alog
file.

[QVECE]
An operating system error has occurred.

[QVENCTA]
The transaction in which the message was enqueued was aborted.

[QVEPROTC)|
An engueue was done when the transaction state was not active.

[QVEBADQUEUE]
Aninvalid or deleted queue name was specified.

[QVENOSPACE]
There is no space on the queue for the message.

The remaining members of the control structure are not used on input to TPENQUEUE.

4-10 BEA TUXEDO /Q Guide

Enqueuing Messages

Overriding the Queue Order

If the administrator in creating a queue allows TPENQUEUE callsto override the order
of messages on the queue, you have two mutually exclusive waysto usethat capability.
Y ou can specify that the messageis to be placed at the top of the queue by setting
TPQTOP or you can specify that it be placed ahead of a specific message by setting
TPQBEFOREMSG D and setting MSA D to the ID of the message you wish to precede.
Thisassumesthat you saved the message-1D from apreviouscall in order to be ableto
useit here. Y our administrator must tell you what the queue supports; it can be created
to allow either or both of these overrides, or to allow neither.

Overriding the Queue Priority

If the queue was created with PRI ORI TY as a queue ordering parameter, you can set a
valuein PRI ORI TY to specify the dequeuing priority for the message. The value must
beintherange 1 to 100; the higher the number the higher the priority, unlike the UNIX
ni ce command. If PRI ORI TY was not one of the queue ordering parameters, setting a
priority here has no effect.

Setting a Dequeuing Time

A gueue can becreated witht i me asaqueue ordering parameter. Whenthisisthe case,
you can specify in DEQ TI ME either an absolute time for the message to be dequeued
or atime relative to the enqueuing transaction. Y ou set either TPQTI ME- ABS or
TPQTI ME- REL to say how the value should be treated.

The following example shows how to enqueue a message with a relative time. It will
become eligible for processing sixty secondsin the future.

01 TPQUEDEF- REC.
COPY TPQUEDEF.
01 TPTYPE-REC
COPY TPTYPE.
01 TPSTATUS- REC.
COPY TPSTATUS.
01 USER-DATA-REC PIC X(100).

*
*

*

MOVE LOW VALUES TO TPQUEDEF- REC.
MOVE " QBPACEL" TO QBPACE- NAME | N TPQUEDEF- REC.

BEA TUXEDO/Q Guide 4-11

4 BEA TUXEDO System/Q COBOL Language Programming

MOVE " Q1" TO QNAME | N TPQUEDEF- REC.
SET TPTRAN I N TPQUEDEF- REC TO TRUE.
SET TPBLOCK | N TPQUEDEF- REC TO TRUE.
SET TPTI ME | N TPQUEDEF- REC TO TRUE.
SET TPSI GRSTRT | N TPQUEDEF- REC TO TRUE.
SET TPQDEFAULT | N TPQUEDEF- REC TO TRUE.
SET TPQTI ME- REL | N TPQUEDEF- REC TO TRUE.
MOVE 60 TO DEQ TI ME | N TPQUEDEF- REC.
SET TPONOPRI CRITY | N TPQUEDEF- REC TO TRUE.
SET TPONOCORRI D I N TPQUEDEF- REC TO TRUE.
SET TPONOREPLYQ I N TPQUEDEF- REC TO TRUE.
SET TPONOFAI LUREQ | N TPQUEDEF- REC TO TRUE.
SET TPQVSG D | N TPQUEDEF- REC TO TRUE.
MOVE LOW VALUES TO TPTYPE- REC.
MOVE " STRING' TO REC- TYPE I N TPTYPE- REC.
MOVE LENGTH OF USER- DATA-REC TO LEN I N TPTYPE- REC.
CALL " TPENQUEUE" USI NG

TPQUEDEF- REC

TPTYPE- REC

USER- DATA- REC

TPSTATUS- REC.

TPENQUEUE and Transactions

M essages are always enqueued within atransaction; the only question is, within whose
transaction? There are two choices. If caller of TPENQUEUE isin transaction mode and
TPTRAN is set, then the enqueuing is done within the caller's transaction. The caller
knows for certain from the success or failure of TPENQUEUE whether the message was
engueued or not. If the call succeeds, the message is guaranteed to be on the queue. If
the call fails, the transaction is rolled back, including the part where the message was
placed on the queue.

If the caller of TPENQUEUE is not in transaction mode or if TPNOTRAN I s set, the message
is enqueued in a separate transaction. If the call to TPENQUEUE returns success, the
message is guaranteed to be on the queue. If the call to TPENQUEUE fails with a
communication error or with atransaction or blocking timeout, the caller isleft in
doubt about whether the failure occurred before or after the message was enqueued.

Note that specifying TPNOTRAN while the caller is not in transaction mode has no
meaning.

4-12 BEA TUXEDO /Q Guide

Dequeuing Replies

Dequeuing Replies

01

01

01

01

The syntax for TPDEQUEUE is as follows.

TPQUEDEF- REC.
COPY TPQUEDEF.
TPTYPE- REC.
COPY TPTYPE.

COPY User Dat a.
TPSTATUS- REC.
COPY TPSTATUS.

CALL "TPDEQUEUE" USI NG TPQUEDEF- REC TPTYPE- REC DATA- REC TPSTATUS- REC.

When thiscall isissued it tells the system to dequeue a message from the QNAME in
TPQUEDEF- REC queue, in the space named QSPACE- NAMVE in TPQUEDEF- REC. The
message isplaced in DATA- REC. LENin TPTYPE- RECis set to thelength of the data. If
LENis 0 on return from TPDEQUEUE, the message had no data portion. By the use of
settings in TPQUEDEF- RECthe system isinformed how the call to TPDEQUEUE isto be
handled.

Command Line Arguments, TPDEQUEUE(3)

There are some important arguments to control the operation of TPDEQUEUE(3chl).
Let'slook at some of them.

TPDEQUEUE: the QSPACE-NAME in TPQUEDEF-REC
Argument

QSPACE- NAME identifies aqueue space previoudly created by the administrator. When
aserver isdefined in the SERVERS section of the configuration file, the service names
it offers are aliases for the actual queue space name (which is specified as part of the
CPENI NFO parameter in the GROUPS section). For example, when your application uses
the server TMQUEUE, the value pointed at by QSPACE- NAME is the name of a service

BEA TUXEDO/Q Guide 4-13

4 BEA TUXEDO System/Q COBOL Language Programming

advertised by TMQUEUE. If no service aliases are defined, the default serviceisthe same
asthe server name, TMQUEUE. In this case the configuration file can include the
following.

TMQUEUE
SRVGRP = QUEL SRVID = 1

GRACE = 0 RESTART = Y CONV = N
CLOPT = "-A"

or
CLOPT = "-s TMQUEUE"

Theentry for server group QUEL hasan OPENI NFOparameter that specifiestheresource
manager, the pathname of the device and the queue space name. The QSPACE- NAMVE
argument in a client program can then look like this:

01 TPQUEDEF- REC.
CCOPY TPQUEDEF.
01 TPTYPE- REC.
CCOPY TPTYPE.
01 TPSTATUS- REC.
CCOPY TPSTATUS.
01 USER- DATA-REC PIC X(100).

MOVE LOW VALUES TO TPQUEDEF- REC.
MOVE " TMQUEUE" TO QSPACE- NAME | N TPQUEDEF- REC.
MOVE " REPLYQ' TO QNAME | N TPQUEDEF- REC.
SET TPTRAN I N TPQUEDEF- REC TO TRUE.
SET TPBLOCK | N TPQUEDEF- REC TO TRUE.
SET TPTI ME | N TPQUEDEF- REC TO TRUE.
SET TPSI GRSTRT | N TPQUEDEF- REC TO TRUE.
MOVE LOW VALUES TO TPTYPE- REC.
MOVE " STRING' TO REC- TYPE I N TPTYPE- REC.
MOVE LENGTH OF USER- DATA-REC TO LEN I N TPTYPE- REC.
CALL " TPDEQUEUE" USI NG
TPQUEDEF- REC
TPTYPE- REC
USER- DATA- REC
TPSTATUS- REC.

The example shown on the reference page for TMQUEUE(5) shows how alias service

names can be included when the server is built and specified in the configuration file.

The example in Appendix A, “A Sample Application,” also specifies an alias service
name.

4-14 BEA TUXEDO /Q Guide

Dequeuing Replies

TPDEQUEUE:

TPDEQUEUE:

TPDEQUEUE:

the QNAME in TPQUEDEF-REC Argument

Reply queue namesin a queue space need to be agreed upon within the application.
The administrator creates areply queue (and often an error queue) in the same manner
amessage queue is created. QNAME contains the name.

the DATA-REC and LEN in TPTYPE-REC Arguments

The arguments have adifferent flavor than they do on TPENQUEUE. DATA- RECiswhere
the system isto place the message being dequeued.

Itisan error for LENto be 0 on input. When TPDEQUEUE returns, LEN contains the
length of the data retrieved. If itis0, it means that the reply had no data portion. This
can bealegitimate and successful reply in some applications; receiving even a0 length
reply can be used to show successful processing of the enqueued request. If you wish
to know whether the record has changed from before the call to TPDEQUEUE, save the
prior length and compareit to LEN. If thereply islarger than LEN, then DATA- RECwill
contain only as many bytes as will fit. The remainder are discarded and TPDEQUEUE
fails with TPTRUNCATE.

the Settings in TPQUEDEF-REC

Settings in TPQUEDEF- REC are used to tell the BEA TUXEDO system how the
TPDEQUEUE call is handled; the following are valid settings:

TPNOTRAN
If the caller isin transaction mode, this setting specifiesthat the messageisto
be dequeued in a separate transaction. Either TPNOTRAN or TPTRAN must be
set.

TPTRAN
If the caller isin transaction mode, this setting specifiesthat the messageisto
be dequeued within the same transaction. Either TPNOTRAN or TPTRAN must
be set.

TPNOBLOCK
If this setting is set and ablocking condition exists, the call failsimmediately
with TP- STATUS set to TPEBLOCK. This blocking condition does not include
blocking on the queue itself if the TPQWAI T setting is specified. Either
TPNOBLOCK or TPBLOCK must be set.

BEA TUXEDO/Q Guide 4-15

4 BEA TUXEDO System/Q COBOL Language Programming

4-16

TPBLOCK
If this setting is set and a blocking condition exists, the call blocks until the
condition subsides or timeout occurs (TPETI ME). This blocking condition
does not include blocking on the queue itself if the TPQWAI T setting is
specified. Either TPNOBLOCK or TPBLOCK must be set.

TPNOTI ME
This setting asks that the call be immune to blocking timeouts; transaction
timeouts may still occur. Either TPNOTI ME or TPTI ME must be set.

TPTI MVE
This setting asks that the call receive blocking timeouts. Either TPNOTI ME or
TPTI ME must be set.

TPNOCHANGE
When this setting is set, the record type of DATA- RECisnot allowed to change.
That is, the type and sub-type of the received record must match the type and
subtype of the record DATA- REC Either TPNOCHANGE or TPCHANGE must be
set.

TPCHANCE
By default, if arecord isreceived that differsin type from the record
DATA- REC, then DATA- REC'srecord type changesto thereceived record'stype
so long asthe receiver recognizes the incoming record type. That is, the type
and sub-type of the received record must match the type and sub-type of the
record DATA- REC. Either TPNOCHANGE or TPCHANGE must be set.

TPSI GRSTRT
This setting saysthat any underlying system callsthat are interrupted by a
signal should bereissued. Either TPSI GRSTRT or TPNOSI GRSTRT must be set.

TPNOSI GRSTRT
When this setting is specified and asignal is received, the call fails and sets
TP- STATUS to TPEGOTSI G. Either TPSI GRSTRT or TPNOSI GRSTRT must be
set.

Thefirst argument to TPDEQUEUE is a structure TPQUEDEF- REC. The TPQUEDEF- REC
structure has members that are used by the application and by the BEA TUXEDO
system to pass parametersin both directions between application programs and the
gueued message facility. The client that calls TPDEQUEUE uses settings to mark
members the application wantsthe systemto fill in. Asdescribed earlier, the structure
isalso used by TPENQUEUE; some of the members only apply to that function. The
entire structure is shown in Listing 4-1.

BEA TUXEDO /Q Guide

Dequeuing Replies

On input to TPDEQUEUE, the foll owing elements may be set in the TPQUEDEF structure.

05 TPBLOCK- FLAG PIC S9(9) COWP-5.
88 TPNOBLOCK VALUE 0.
88 TPBLOCK VALUE 1.
05 TPTRAN- FLAG PIC S9(9) COWP-5.
88 TPNOTRAN VALUE 0.
88 TPTRAN VALUE 1.
05 TPTI ME- FLAG PIC S9(9) COWP-5.
88 TPNOTI ME VALUE 0.
88 TPTI ME VALUE 1.
05 TPSI GRSTRT- FLAG PIC S9(9) COWP-5.
88 TPNOSI GRSTRT VALUE 0.
88 TPSI GRSTRT VALUE 1.
05 TPNOCHANGE- FLAG PIC S9(9) COWP-5.
88 TPNOCHANGE VALUE 0.
88 TPCHANGE VALUE 1.
05 TPQUE- ORDER- FLAG PIC S9(9) COWP-5.
88 TPQDEFAULT VALUE 0.
88 TPQTCP VALUE 1.
88 TPQBEFOREMSG D VALUE 2.
05 TPQUE-TI ME- FLAG PIC S9(9) COWP-5.
88 TPQNOTI ME VALUE 0.

88 TPQII ME- ABS VALUE 1.
88 TPQII ME- REL VALUE 2.

05 TPQUE- PRI ORI TY- FLAG PI C S9(9) COWP-5.
88 TPQNCPRI ORI TY VALUE 0.
88 TPQPRI ORI TY VALUE 1.

05 TPQUE- CORRI D-FLAG ~ PIC S9(9) COWP-5.
88 TPQNOCORRI D VALUE 0.
88 TPQCORRI D VALUE 1.

05 TPQUE- REPLYQ FLAG PIC S9(9) COWP-5.
88 TPONCREPLYQ VALUE 0.

88 TPQREPLYQ VALUE 1.

05 TPQUE- FAI LQ FLAG PI C S9(9) COMP-5.
88 TPQNCFAI LUREQ VALUE 0.
88 TPQFAI LUREQ VALUE 1.

05 TPQUE- MSG D- FLAG Pl C S9(9) COMP-5.
88 TPQONOVBG D VALUE 0.
88 TPQVSG D VALUE 1.

05 TPQUE- GETBY- FLAG PI C S9(9) COMP-5.
88 TPQGETNEXT VALUE 0.
88 TPQGETBYMSG D VALUE 1.
88 TPQGETBYCORRI D VALUE 2.

05 TPQUE- WAl T- FLAG PI C S9(9) COMP-5.
88 TPONOWAI T VALUE 0.
88 TPQWAI T VALUE 1.

05 M@ D PI C X(32).

05 CORRI D PI C X(32).

05 QNAME PI C X(15).

05 QSPACE-NAME PIC X(15).

BEA TUXEDO/Q Guide 4-17

4 BEA TUXEDO System/Q COBOL Language Programming

4-18

Following are valid settings on input to TPDEQUEUE.

TPNOst ri ng
No settings are set. No information is taken from the control structure.

TPQGETBYMSG D
If set, it requests that the message identified by MSG D be dequeued. The
message identifier would be one that was returned by a prior call to
TPENQUEUE. This option cannot be used with the TPQAAI T setting.

TPQGETBYCCORRI D
If set, it requests that the message with the correlation identifier specified by
CORRI D be dequeued. The correlation identifier would be one that the
application specified when enqueuing the message with TPENQUEUE. This
option cannot be used with the TPQWAI T setting.

TPQWAI T
If set, it indicates that an error should not be returned if the queue is empty.
Instead, the process should block until a message is available.

Following isalist of valid settings for the parameters controlling output information
from TPDEQUEUE. If the setting is true when TPDEQUEUE is called, then the associated
element (see Listing 4-1) in the structure is popul ated if available and the setting
remainstrue. If the value is not available, the setting will not be true after TPDEQUEUE
completes.

TPQPRI ORI TY
If set and thevalueis available, the priority at which the message was queued
isstored in PRI ORI TY.

TPQVSG D
If set and the call to TPDEQUEUE was successful, the message identifier will
be stored in MG D.

TPQCORR! D
If set and the call to TPDEQUEUE was successful and the message was queued
with acorrelation identifier, the value will be stored in CORRI D. Any reply to
a queue must have this correlation identifier.

BEA TUXEDO /Q Guide

Dequeuing Replies

TPQREPLYQ
If set and the message is associated with areply queue, the value will be
stored in REPLYQUEUE. Any reply to the message should go to the named
reply queue within the same queue space as the request message.

TPQFAI LUREQ
If set and the message is associated with a failure queue, the value will be
stored in FAI LUREQUEUE. Any failure message should go to the named failure
gueue within the same queue space as the request message.

If the call to TPDEQUEUE failed and TP- STATUS is set to TPEDI AGNOSTI C, avaue
indicating the reason for failure isreturned in DI AGNOSTI C. The valid settings for

DI AGNOSTI C include those shown above for TPENQUEUE and the following additional
codes.

[QVENOVBG]
No message was avail able for dequeuing.

[QVEI NUSE]
When dequeuing amessage by correlation or messageidentifier, the specified
message isin use by another transaction. Otherwise, all messages currently
on the queue are in use by other transactions.

Using TPQWAIT

When TPDEQUEUE is called with TPQWAI T set, the TMQUEUE server may be blocked
waiting for a message to come onto the queue. The amount of time it isblocked can be
controlled by the transaction timeout value set by the caller in TPBEG Nor by the - t
optioninthe CLOPT parameter of the TMQUEUE server (if thetransaction is started in the
server). To avoid blocking TPENQUEUE calls that also use the TMQUEUE server, it may
bedesirableto configure two or more TMQUEUE servers (or MsSQsets) offering different
service names for the same queue space. It could be set up so that all enqueue and
non-waiting dequeue operations use one set of TMQUEUE servers and all waiting
dequeue operations use the second set.

BEA TUXEDO/Q Guide 4-19

4 BEA TUXEDO System/Q COBOL Language Programming

Error Handling

4-20

In considering how best to handle errors in dequeuing it is helpful to differentiate

between errors encountered by TMQFORWARD as it attempts to dequeue a message to

forward to the requested service and errors that occur in the service that processes the
request. This subject was discussed in Chapter 1, “Introduction and Overview of BE/
TUXEDO System/Q,” but is repeated here in the context of writing application
programs.

By default, if a message is dequeued within a transaction and the transaction is rolle
back, then the message ends up back on the queue and can be dequeued and exec
again. It may be desirable to delay for a short period before retrying to dequeue and
execute the message, allowing the transient problem to clear (for example, allowing fc
locks in a database to be released by another transaction). Normally, a limit on the
number of retries is also useful to ensure that an application flaw doesn't cause
significant waste of resources. When a queue is configured by the administrator, bot
a retry count and a delay period (in seconds) can be specified. A retry count of O
implies that no retries are done. After the retry count is reached, the message is mov
to an error queue that is configured by the administrator for the queue space. If the err
gueue is not configured, then messages that have reached the retry count are simpl
deleted. Messages on the error queue must be handled by the administrator who mu
work out a way of notifying the originator that meets the requirements of the
application. This kind of handling is almost transparent to the originating program that
put the message on the queue. There is a virtual guarantee that once a message is
successfully enqueued it will be processed according to the parameteENQIEUE

and the attributes of the queue. Notification that a message has been moved to the er
gueue should be a rare occurrence in a system that has properly tuned its queue
parameters.

A failure queue (normally, different from the queue space error queue) may be
associated with each queued message. This queue is specified on the enqueuing cal
the place to put any failure messages. The failure message for a particular request c
be identified by an application-generated correlation identifier that is associated witt
the message when it is enqueued.

The default behavior of retrying until success (or a predefined limit) is quite
appropriate when the failure is caused by a transient problem that is later resolved,
allowing the message to be handled appropriately.

BEA TUXEDO /Q Guide

Dequeuing Replies

There are cases where the problem is not transient. For example, the queued message
may request operating on an account that does not exist (and the application is such
that it won't come into existence within areasonable time period if at all). In this case,
it isdesirable not to waste any resources by trying again. If the application programmer
or administrator determines that failures for a particular operation are never transient,
thenitissimply amatter of setting the retry count to zero, although thiswill require a
mechanism to constantly clear the queue space error queue of these messages (for
example, abackground client that reads the queue periodically). More likely, it is the
case that some problemswill be transient (for example, database lock contention) and
some problemswill be permanent (for exampl e, the account doesn't exist) for the same
service.

In the case that the message is processed (dequeued and passed to the application via
aTPCALL) by TMQFORWARD, there is no mechanism in the information returned by
TPCALL to indicate whether aTPESVCFAI L error iscaused by atransient or permanent
problem.

Asin the case where the application is handling the dequeuing, a simple solution isto
return success for the service, that is, TPRETURN with TPSUCCESS, even though the
operation failed. Thisallowsthetransaction to be committed and the message removed
fromthequeue. If reply messages are being used, theinformation in the buffer returned
from the service can indicate that the operation failed and the message will be
enqueued on the reply queue. The APPL- CODE in the TPSVCRET- REC argument of
TPRETURN can also be used to return application specific information.

Inthe case wherethe servicefail sand the transaction must berolled back, it isnot clear
whether or not TMQFORWARD should execute a second transaction to remove the
message from the queue without further processing. By default, TMQFORWARD will not
delete a message for a service that fails. TMQFORWARD's transaction is rolled back and
the message is restored to the queue. A command line option may be specified for
TMQFORWARD that indicates that a message should be deleted from the queue if the
service fails and a reply message is sent back with length greater than 0. The message
isdeleted in a second transaction. The queue must be configured with adelay time and
retry count for thisto work. If the messageis associated with afailure queue, thereply
datawill be enqueued to the failure queue in the same transaction as the one in which
the message is deleted from the queue.

BEA TUXEDO/Q Guide 4-21

4 BEA TUXEDO System/Q COBOL Language Programming

A Procedure for Dequeuing Replies

4-22

If your application expectsto receive replies to queued messages, here is a procedure
you may want to follow:

1. Asapreliminary step, the queue space must include areply queue and afailure

gueue. The application must also agree on the content of the correlation identifier.
The service should be coded to return TPSUCCESS on alogical failureand return an
explanatory code in the APPL- CODE in the TPSVCRET- RECargument of TPRETURN.

. When you call TPENQUEUE to put the message on the queue, set the following:

TPQCORRI D TPQREPLYQ
TPQFAI LUREQ TPQVSG D

(Fill in the values for CORRI D, REPL YQUEUE and FAI LUREQUEUE before issuing
the call. On return from the call, save CORRI D.)

. When you call TPDEQUEUE to check for areply, specify the reply queue in QNAVE

and set the following:

TPQCORRI D TPQREPLYQ
TPQFAI LUREQ TPQVBG D

TPQGETBYCORR D

(Use the saved correlation identifier to populate CORRI D before issuing the call.
If the call to TPDEQUEUE fails and sets TP- STATUS to TPEDI AGNOSTI C, then
further information is available in the DI AGNOSTI C settings. If you receive the
error code QVENOVSG it means that no message was available for dequeuing.)

. Set up another call to TPDEQUEUE. Thistime have QNAME point to the name of the

failure queue and set the following:

TPQCORRI D TPQREPLYQ
TPQFAI LUREQ TPQVSG D

TPQGETBYCORRI D

Populate TPQCORRI D with the correlation identifier. When the call returns, check
LENto seeif data has been received and check APPL- RETURN- CODE to seeif the
service has returned a user return code.

BEA TUXEDO /Q Guide

Sequential Processing of Messages

Sequential Processing of Messages

Sequential processing of messages can be achieved by having one service enqueue a
message for the next service in the chain before its transaction is committed. The
originating process can track the progress of the sequence with a series of TPDEQUEUE
callstother epl y_queue, if each member uses the same correation-1D and returns a
0 length reply.

Alternatively, word of the successful completion of the entire sequence can bereturned
to the originator by using unsolicited notification. To make sure that the last
transaction in the sequence ended with a TPCOWM T, ajob step can be added that calls
TPNOTI FY using theclient identifier that iscarried inthe TPQUEDEF- RECstructure. The
originating client must have called TPSETUNSOL to name the unsolicited message
handler being used.

Using Queues to Transfer Anything

Inall of the foregoing discussion of enqueuing and degueuing messages there has been
an implicit assumption that the queues were being used as an aternative form of
request/response processing. It may have occurred to you that the message itself does
not have to be a service request and you would be correct. The queued message facility
can be used equally as effectively to transfer data from one process to another.

If it suits your application to use BEA TUXEDO System/Q for this purpose, have the
administrator create a separate queue and code your own receiving program for
dequeuing messages from that queue.

BEA TUXEDO/Q Guide 4-23

4 BEATUXEDOS ystem/Q COBOL Language Programming

4-24 BEA TUXEDO /Q Guide

APPENDIX

A A Sample Application

What This Appendix Is About

Thisappendix contains adescription of aone-client, one-server application using BEA
TUXEDO System/Q called gsanpl e. Aninteractive form of this software is
distributed with the BEA TUXEDO software.

Some Preliminaries

Before you can run this example the BEA TUXEDO software must be installed and
built so that the files and commandsreferred to in this chapter are available. If you are
personally responsible for installing the BEA TUXEDO software, consult the BEA
TUXEDO Installation Guide for information about how to install the BEA TUXEDO
system.

If the installation has aready been done by someone else, you need to know the
pathname of the root directory of the installed software. Y ou also need to have read
and execute permissions on the directories and filesin the BEA TUXEDO directory
structure so you can copy gsanpl e files and execute BEA TUXEDO commands.

BEA TUXEDO /Q Guide A-1

A A Sample Application

The gsample Application

gsanpl e isavery basic BEA TUXEDO application that uses BEA TUXEDO
System/Q. It has one application client and server, and uses two system servers.
TMQUEUE and TMQFORWARD. The client calls TMQUEUE to enqueue amessage in aqueue
space created for gsanpl e. The message is dequeued by TMQFORWARD and passed to
the application server. The server converts a string from lower case to upper case and
returns to TMQFCRWARD. TMQFORWARD engueues the reply message. The client
meanwhile has called TMQUEUE to dequeue the reply. When the reply is received, the
client displaysit on the user’s screen.

What followsis a procedure to build and run the example.

1. Makeadirectory for gsanpl e and cd toit:

nkdi r gsanpdir
cd gsanpdir

Thisis suggested so you will be able to see clearly the gsanpl e files you have
at the start and the additional files you create along the way. Use the standard
shell (/ bi n/ sh) or the Korn shell; not the C shell (/ bi n/ csh).

2. Copy thegsanpl e files.
cp $TUXDI R apps/ gsanpl e/ * .

You will be editing some of the files and making them executable, so it is best to
begin with a copy of the files rather than the originals delivered with the
software.

3. Listthefiles.

$1s
READNME
client.c
crlog
crque
makefile
rmpc
runsanpl e
server.c
set env
ubb. sanpl e
$

A-2 BEA TUXEDO /Q Guide

The gsample Application

The files that make up the application are:

READVE
A file that describes the application

set env
A script that sets environment variables

crlog
A script that creates a TLOGfile
crque
A script that defines the queue space and queues for the application
makefil e
A makefile that creates the executables for the application
client.c
The source code for the client program
server.c
The source code for the server program
ubb. sanpl e
The ASCII form of the configuration file for the application
runsanpl e
A script that calls al the necessary commands to build and run the
sample application
rm pc
A script that removes the | PC resources for the queue space
4. Edit thefiles.

Five of the files have location-specific entries that you must edit to provide your
own directory pathnames and machine name.

The text to be replaced is enclosed in angle brackets. You need to substitute the
absolute path for TUXDI R and APPDI R, and the machine name of the machine
you are running on.

Here isasummary of the required values:

TUXDI R
The absolute path of the root directory of the BEA TUXEDO
software

APPDI R
The absol ute path of the directory in which your application will run

BEA TUXEDO /Q Guide A-3

A A Sample Application

A-4

machi ne
The machine name of the machine on which your application will
run. This nameis the output of the uname - n command (where
unane is supported on the target platform).

The six files that must be edited (and the value that you must put in) are:

crlog APPDI R pat hnanme
crque APPDI R pat hnanme
mekefile TUXDI R pat hnane
rm pc APPDI R pat hnanme

ubb. sanpl e TUXDI R pat hname, APPDI R pat hname, nmachi ne name
set env TUXDI R pat hnane

Runr unsanpl e.

Ther unsanpl e script contains 11 commands; each command is preceded by a
comment line that says what the command does.

#set the environnent

./ setenv
#build the client and server
make client server
#create the tuxconfig file
tm oadcf -y ubb. sanple
#create the TLGOG
#create the QUE
#boot the application
tmboot -y
#run the client
client
#shut down t he application
t nshut down -y
#renmove the client and server
make cl ean
#remove the QUE ipc resources
#remove all files created
rmtuxconfig QUE stdout stderr TLOG ULOG

When you run this script you will see a series of messages on your screen that
are output by the various commands. Included among them are the following
lines.

before: this is a g exanple
after: THHS IS A Q EXAWPLE

Thebefore: lineisacopy of the string that cl i ent enqueues for processing by
server.Theafter: lineiswhat ser ver sends back. These two lines prove that
the program worked successfully.

BEA TUXEDO /Q Guide

Suggestions for Further Exploration

Suggestions for Further Exploration

While it might prove interesting to build and run the sample application using
runser ver , youwill probably find it moreinstructive to examinetheindividua pieces
of the application. In this section we suggest some things we recommend you look at
and try; you will undoubtedly be able to think of others as you explore the application
more closely.

setenv: Setting the Environment

makefile:

The script set env isan example of afile often used in BEA TUXEDO devel opment.
Three of the variablesthat are set (TUXDI R, APPDI R, and PATH) are needed whenever
you are working with the BEA TUXEDO system. Notice that if you are running on a
SUN machine, there is another bi n you must have at the beginning of your PATH
variable. LD LI BRARY_PATHisimportant if you are building the system with shared
libraries. TUXCONFI Gmust be set before you can boot the system. QvADM N can be set
in avariable or provided on the gnmadni n(1) command line.

Points to consider: should you plan to have such afile where you will be doing your
BEA TUXEDO System/Q work? Should you have acommand in your . profil e so
that you set your environment as you log in?

Make Your Application

Notice that the makef i | e usesbui | dser ver (1) and bui | dcl i ent (1) to build the
server and client, respectively. Y ou can, of course, execute these commands
individually or use the capability of make to keep the application current.

Whilewe are on the subject of the makef i | e, thismight beagood timeto ook through
the. c filesfor the client and server programs. Of particular interest in connection with
BEA TUXEDO System/Q arethe t penqueue and t pdequeue calls. Notice
particularly the valuesfor the gspace and the gnane arguments. When we look at the
configuration file, we will see where those vaues come from.

BEA TUXEDO /Q Guide A-5

A A Sample Application

ubb.sample: The ASCII Configuration File

The three most pertinent entries in the configuration file are the CLOPT parametersfor
the TMQUEUE and TMQFORWARD servers and the OPENI NFO parameter in the * GROUPS
entry. We will extract those items to call them to your attention here:

First the CLOPT paraneter from TMQUEUE:

CLOPT = "-s QSPACENAME: TMQUEUE - -
Then the CLOPT paraneter from TMOFORWARD:
CLOPT="-- -i 2 -gq STRING'

Finally, the OPENI NFO paraneter fromthe QUELl group:
OPENI NFO = " TUXEDO' QM <APPDI R pat hnanme>/ QUE: QSPACE"

The CLOPT parameter from TMQUEUE specifies a service alias of QGSPACENAME. Look
back again at cl i ent . ¢c and check the gspace argument of t penqueue and

t pdequeue. The CLOPT parameter for TMQFORWARD specifies a service STRI NG by
means of the - g option. Thisis also the name given to the queue where messages are
engueued for that service and is specified as the gnane argument of t penqueue in
client.c.

Thet nl oadcf (1) command is used to compile the ASCII configuration fileinto a
TUXCONFI Gfile.

crlog: Create the Transaction Log

Thescriptincrl og invokest madni n(1) to create a devicelist entry for the TLOGand
then create thelog for the site specified in our configuration. Because all messages for
the queued message facility are enqueued and dequeued within transactions, you must
have alog in which to keep track of transactions managed by the TM5_QM server.

crque: Create the Queue Space and Queues

A-6

The scriptin cr que invokes gnadni n(1) to create the queue space and queues for the
sample application. Notice that the queue space is named QSPACE (that isalso thename
specified asthelast argument of the OPENI NFO parameter in the configuration file).
Queues named STRI NG and RPLYQ are created. In the gspacecr eat e portion of the
script an error queue is named, but the script does not include any qgcr eat e command
to create that queue. That is a modification you might want to make later.

BEA TUXEDO /Q Guide

Suggestions for Further Exploration

Boot, Run, and Shut Down the Application

Clean Up

After making the application programs, loading TUXCONFI G, and creating the queue
space and queues, the next step isto boot the application and run it. The command to
boot is

tnboot -y

The - y option keepst nboot from prompting for an okay before booting.
The sample application is run simply by entering the command:

client

Thet mshut down command is used to bring the application down.

Ther unsanpl e script includes three commands that restore the environment to the
state it wasin before the script wasrun. The make cl ean command uses make to
remove the object and executable files for the client and server.

Ther m pc command isincluded becausethe | PC resourcesfor the queue space are not
automatically removed by t mshut down (which does remove the BEA TUXEDO IPC
resources used by the application). If you look at r m pc you will find that it invokes
gmadmi n and usesits version of thei pcr mcommand, naming QSPACE to identify
resources to be removed.

Thefinal command in the script isthe r mcommand, which removes a number of files
that are generated by the application. Thereisno harmin leaving thesefiles; infact, as
you work more with the sample application you will probably want to keep
tuxconfi g, QUE, and TLOG to save having to recreate them.

BEA TUXEDO /Q Guide A-7

A A Sample Application

A-8 BEA TUXEDO /Q Guide

	Copyright
	Contents
	1 Introduction and Overview of BEA TUXEDO System/Q
	General Description
	A Picture that Explains Everything . . . Almost
	Administrative Tasks
	Programmer's Tasks
	Transaction Management
	Handling Reply Messages
	Error Handling
	Summary

	2 BEA TUXEDO System /Q Administration
	Introduction
	Sample Program in Appendix A

	Configuration
	Specifying the QM Server Group
	Specifying the Message Queue Server
	Transaction Timeout

	Queue Space Names, Queue Names, and Service Names
	Data-Dependent Routing
	Customized Buffer Types

	Specifying the Message Forwarding Server
	Queue Names and Service Names: the -q option
	Controlling Transaction Timeout: the -t option
	Controlling Idle Time: the -i option
	Controlling Server Exit: the -e option
	Delete Message after Service Failure: the -d option
	Customized Buffer Types

	Dynamic Configuration

	Creating Queue Space and Queues
	Working with qmadmin Commands
	Creating an Entry in the Universal Device List: crdl
	Creating a Queue Space: qspacecreate
	Creating a Queue: qcreate
	Specifying Queue Order
	Enabling Out-of-order Enqueuing
	Specifying Retry Parameters
	Using Queue Capacity Limits
	Reply and Failure Queues
	Error Queues

	Maintenance of the BEA TUXEDO System/Q Feature
	Adding Extents to a Queue Space
	Backing Up or Moving Queue Space
	Moving the Queue Space to a Different Type of Machine
	TMQFORWARD and Non-Global Transactions
	TMQFORWARD and Commit Control
	Handling Transaction Timeout
	TMQFORWARD and Retries for an Unavailable Service

	3 BEA TUXEDO System/Q C Language Programming
	Prerequisite Knowledge
	Where Requests Can Originate
	Emphasis on the Default Case
	Enqueuing Messages
	Command Line Arguments, tpenqueue(3)
	tpenqueue(): the qspace Argument
	tpenqueue(): the qname Argument
	tpenqueue(): the data and len Arguments
	tpenqueue(): the flags Arguments

	The TPQCTL Structure
	Overriding the Queue Order
	Overriding the Queue Priority

	Setting a Dequeuing Time
	tpenqueue() and Transactions

	Dequeuing Replies
	Command Line Arguments, tpdequeue
	tpdequeue(): the qspace Argument
	tpdequeue(): the qname Argument
	tpdequeue(): the data and len Arguments
	tpdequeue(): the flags Arguments

	Using TPQWAIT
	Error Handling
	A Procedure for Dequeuing Replies

	Sequential Processing of Messages
	Using Queues to Transfer Anything

	4 BEA TUXEDO System/Q COBOL Language Programming
	Prerequisite Knowledge
	Where Requests Can Originate
	Emphasis on the Default Case
	Enqueuing Messages
	Command Line Arguments, TPENQUEUE(3)
	TPENQUEUE: the QSPACE-NAME in TPQUEDEF-REC Argument
	TPENQUEUE: the QNAME in TPQUEDEF-REC Argument
	TPENQUEUE: the DATA-REC and LEN in TPTYPE-REC Arguments
	TPENQUEUE: the Settings in TPQUEDEF-REC

	The TPQUEDEF-REC Structure
	Overriding the Queue Order
	Overriding the Queue Priority

	Setting a Dequeuing Time
	TPENQUEUE and Transactions

	Dequeuing Replies
	Command Line Arguments, TPDEQUEUE(3)
	TPDEQUEUE: the QSPACE-NAME in TPQUEDEF-REC Argument
	TPDEQUEUE: the QNAME in TPQUEDEF-REC Argument
	TPDEQUEUE: the DATA-REC and LEN in TPTYPE-REC Arguments
	TPDEQUEUE: the Settings in TPQUEDEF-REC

	Using TPQWAIT
	Error Handling
	A Procedure for Dequeuing Replies

	Sequential Processing of Messages
	Using Queues to Transfer Anything

	A A Sample Application
	What This Appendix Is About
	Some Preliminaries
	The qsample Application
	Suggestions for Further Exploration
	setenv: Setting the Environment
	makefile: Make Your Application
	ubb.sample: The ASCII Configuration File
	crlog: Create the Transaction Log
	crque: Create the Queue Space and Queues
	Boot, Run, and Shut Down the Application
	Clean Up

