
BEA TUXEDO

Reference Manual

B E A T UX E DO R e l e a s e 6 . 5
D o c um e n t E d i t i o n 6 . 5

F e b r u a r y 1 9 99

Section 3C - C Functions

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Connect, BEA Jolt, BEA Manager, and BEA MessageQ are trademarks of
BEA Systems, Inc. BEA ObjectBroker is a registered trademark of BEA Systems, Inc. TUXEDO is a registered
trademark in the United States and other countries.

All other company names may be trademarks of the respective companies with which they are associated.

BEA TUXEDO Reference Manual

Document Edition Date Software Version

6.5 February 1999 BEA TUXEDO Release 6.5

.....2

..29

...31

...34

..35

..37

..40

..41

...43

...44

....51

....52

....54

...55

...58

..60

...62

...64

...67

...68

..70

...71

...76

...78

...79
Contents

Section 3C - C Functions

intro(3c)..

AEMsetblockinghook(3)...

AEOaddtypesw(3)..

AEPisblocked(3) ..

AEPsetblockinghook(3) ..

AEWaddtypesw(3)..

AEWisblocked(3)..

AEWsetblockinghook(3) ..

AEWsetunsol(3)...

buffer(3c) ...

catgets(3) ...

catopen(3)..

change_atts(3) ...

decimal(3) ..

do_form(3) ...

formprint(3)...

frmmisc(3)..

gp_mktime(3)...

maskprt(3) ..

mods(3) ..

nl_langinfo(3)..

recomp(3) ...

rpc_sm_allocate(3)...

rpc_sm_client_free(3) ..

rpc_sm_disable_allocate(3) ...
BEA TUXEDO Reference Manual iii

... 80

... 81

.. 82

.. 83

... 85

.. 87

.. 88

.. 91

.. 93

.. 96

... 99

101

103

. 105

108

. 113

114

115

. 117

118

. 121

124

126

. 127

134

. 136

143

145

147

. 148

149

150

154

155

161
rpc_sm_enable_allocate(3)..

rpc_sm_free(3) ..

rpc_sm_set_client_alloc_free(3) ..

rpc_sm_swap_client_alloc_free(3) ..

setlocale(3) ..

strerror(3) ...

strftime(3)...

tpabort(3) ..

tpacall(3)...

tpadmcall(3) ...

tpadvertise(3)...

tpalloc(3) ..

tpbegin(3) ...

tpbroadcast(3)..

tpcall(3) ..

tpcancel(3) ...

tpchkauth(3c)..

tpchkunsol(3)..

tpclose(3) ...

tpcommit(3)..

tpconnect(3)...

tpconvert(3c) ..

tpcryptpw(3) ...

tpdequeue(3)..

tpdiscon(3)..

tpenqueue(3)..

tperrordetail(3c)..

tpforward(3) ...

tpfree(3) ..

tpgetadmkey(3)..

tpgetlev(3) ..

tpgetrply(3)...

tpgprio(3)..

tpinit(3)...

tpnotify(3)...
iv BEA TUXEDO Reference Manual

.164

.165

.169

.171

..176

.178

.182

..184

.187

..190

.192

.193

.194

..195

..201

.203

204

.205

.206

.207

.208

210

.218

.219

.220

.222

.224

226

228

.230

232

.234

.236

.238

.240
tpopen(3) ..

tppost(3) ...

tprealloc(3) ...

tprecv(3) ...

tpresume(3) ...

tpreturn(3c)...

tpscmt(3) ..

tpsend(3)..

tpservice(3)...

tpsetunsol(3)..

tpsprio(3) ..

tpstrerror(3) ..

tpstrerrordetail(3) ...

tpsubscribe(3c) ..

tpsuspend(3) ..

tpsvrdone(3c) ...

tpsvrinit(3)...

tpterm(3)...

tptypes(3) ...

tpunadvertise(3) ...

tpunsubscribe(3)...

TRY(3) ..

tuxgetenv(3) ...

tuxputenv(3) ...

tuxreadenv(3) ...

tx_begin(3) ...

tx_close(3)..

tx_commit(3)...

tx_info(3) ..

tx_open(3) ..

tx_rollback(3)..

tx_set_commit_return(3)..

tx_set_transaction_control(3)...

tx_set_transaction_timeout(3)..

userlog(3) ...
BEA TUXEDO Reference Manual v

243

246

247

249

250

253

254
Usignal(3)...

Uunix_err(3)...

xdr(3I)...

xdr_admin(3I)...

xdr_complex(3I)...

xdr_create(3I) ...

xdr_simple(3I) ..
vi BEA TUXEDO Reference Manual

Section 3C - C Functions
BEA TUXEDO Reference Manual 1

intro(3c)

e
tions,
 calls.

sses

tional.
ciated
 the

tine).
 along
lling
d the
vice
rn

rvice
eater

 that
ts nor
lies
. In

ice
rking

called
t, a
intro(3c)

Name intro (3c)-introduction to the application-transaction monitor interface.

Description The application-transaction monitor interface provides the interface between the
application and the transaction processing system. This interface is known as th
ATMI interface. It provides routines to open and close resources, manage transac
manage typed buffers, and invoke request/response and conversational service

Communication

Paradigms

The routines described in the ATMI reference pages imply a particular model of
communication. This model is expressed in terms of how client and server proce
can communicate using request and reply messages.

There are two basic communication paradigms: request/response and conversa
Request/response services are invoked by service requests along with their asso
data. Request/response services can receive exactly one request (upon entering
service routine) and send at most one reply (upon returning from the service rou
Conversational services, on the other hand, are invoked by connection requests
with a means of referring to the open connection (that is, a descriptor used in ca
subsequent connection routines). Once the connection has been established an
service routine invoked, either the connecting program or the conversational ser
can send and receive data as defined by the application until the connection is to
down.

Note that a process can initiate both request/response and conversational
communication, but cannot accept both request/response and conversational se
requests. The following sections describe the two communication paradigms in gr
detail.

BEA TUXEDO

system request

/response

client/server

model

With regard to request/response communication, a client is defined as a process
can send requests and receive replies. By definition, clients cannot receive reques
send replies. A client can send any number of requests, and can wait for the rep
synchronously or receive (some limited number of) the replies at its convenience
certain cases, a client can send a request that has no reply. tpinit and tpterm allow
a client to join and leave a BEA TUXEDO system application.

A request/response server is a process that can receive one (and only one) serv
request at a time and send at most one reply to that request. While a server is wo
on a particular request, it can act like a client by initiating request/response or
conversational requests and receiving their replies. In such a capacity, a server is
a requester. Note that both client and server processes can be requesters (in fac
client can be nothing but a requester).
2 BEA TUXEDO Reference Manual

intro(3c)

erver.
s not
ly to
ester

O
ork

ndled
ns
 can

er
equest

n the
ample,
 reply
ontext

 in the

ects
ne with
so

orities

 is

t can

 the
ecting
the
ture
A request/response server can forward a request to another request/response s
Here, the server passes along the request it received to another server and doe
expect a reply. It is the responsibility of the last server in the chain to send the rep
the original requester. Use of the forwarding routine ensures that the original requ
ultimately receives its reply.

Servers and service routines offer a structured approach to writing BEA TUXED
system applications. In a server, the application writer can concentrate on the w
performed by the service rather than communications details such as receiving
requests and sending replies. Because many of the communication details are ha
by BEA TUXEDO system's main , the application must adhere to certain conventio
when writing a service routine. At the time a server finishes its service routine, it
send a reply using tpreturn or forward the request using tpforward . A service is not
allowed to perform any other work nor is it allowed to communicate with any oth
process after this point. Thus, a service performed by a server is started when a r
is received and ended either when a reply is sent or the request is forwarded.

Concerning request and reply messages, there is an inherent difference betwee
two: a request has no associated context before it is sent, but a reply does. For ex
when sending a request, the caller must supply addressing information, whereas a
is always returned to the process that originated the request, that is, addressing c
is maintained for a reply and the sender of the reply can exert no control over its
destination. The differences between the two message types manifest themselves
parameters and descriptions of the routines described in tpcall(3c) .

When a request message is sent, it is sent at a particular priority. The priority aff
how a request is dequeued: when a server dequeues requests, it dequeues the o
the highest priority. To prevent starvation, the oldest request is dequeued every
often regardless of priority. By default, a request's priority is associated with the
service name to which the request is being sent. Service names can be given pri
at configuration time (see ubbconfig(5)). A default priority is used if none is defined.
In addition, the priority can be set at runtime using a routine, tpsprio(3c) . By doing
so, the caller can override the configuration or default priority when the message
sent.

Conversational

Client/server

Model

With regard to conversational communication, a client is defined as a process tha
initiate a conversation but cannot accept a connection request.

A conversational server is a process that can receive connection requests. Once
connection has been established and the service routine invoked, either the conn
program or the conversational service can send and receive data as defined by
application until the connection is torn down. The conversation is half-duplex in na
BEA TUXEDO Reference Manual 3

intro(3c)

 up
ved”

tiating
ver, a

d and

xt
sent
en the

onse
ority
ce that
ted by

nt is

is

akes
rk. This

ages
ntage
e can

eceived
r, the

e

such that one side of the connection has control and can send data until it gives
control to the other side. While the connection is established, the server is “reser
such that no other process can establish a connection with the server. As with a
request/response server, the conversational server can act as a requester by ini
other requests or connections with other servers. Unlike a request/response ser
conversational server can not forward a request to another server. Thus, a
conversational service performed by a server is started when a request is receive
ended when the final reply is sent via tpreturn .

Once the connection is established, the connection descriptor implies any conte
needed regarding addressing information for the participants. Messages can be
and received as needed by the application. There is no inherent difference betwe
request and reply messages and no notion of priority of messages.

Message

Delivery

Sending and receiving messages, whether in conversation mode or request/resp
mode, implies communication between two units of an application. The great maj
of messages lead to a reply or at least an acknowledgment, so that is an assuran
the message was received. There are, however, certain messages (some origina
the system, others originated by an application) where a reply or acknowledgme
not expected. For example, the system can send an unsolicited message using
tpnotify without the TPACK flag, or an application can send a message using
tpacall with the TPNOREPLY flag. If the message queue of the receiving program
full, the message is dropped.

If the sending and receiving side are on different machines, the communication t
place between bridge processes that send and receive messages across a netwo
raises the additional possibility of non-delivery due to a circuit failure. Even when
either of these conditions leads to the positing of an event or to a ULOG message, it is
not easy to associate the event or ULOG message with the non-arrival of a particular
message.

Because the BEA TUXEDO system is designed to handle large volumes of mess
across broad networks, it is not programmed to detect and correct the small perce
of failures-to-deliver described in the preceding paragraphs. For that reason, ther
be no guarantee that every message will be delivered.

Message

Sequencing

In the conversational model, for messages being exchanged using tpsend and
tprecv , a sequence number is added to the message header and messages are r
in the order in which they are sent. If a server or client gets a message out of orde
conversation is stopped, any transaction in progress is rolled back, and messag

LIBTUX 1572 “Bad Conversational Sequence Number,” is logged.
4 BEA TUXEDO Reference Manual

intro(3c)

f the

pport

about
d

uest

TMI

re
.

nd
ich

 TX
his

es

of
ws
n

d
of

ne is
ether
r the

 can
n the
In the Request/Response model, messages are not sequenced by the system. I
application logic implies a sequence, it is the responsibility of the application to
monitor and control it. The parallel message transmission made possible by the su
of multiple network addresses for bridge processes increases the possibility that
messages will not be received in the order sent. An application that is concerned
this may choose to specify a single network address for each bridge process, ad
sequence numbers to their messages or require periodic acknowledgments.

Queued

Message Model

The BEA TUXEDO system queued message model allows for enqueueing a req
message to stable storage for subsequent processing without waiting for its
completion, and optionally getting a reply via a queued response message. The A
verbs that queue messages and dequeue responses are tpenqueue(3c) and
tpdequeue(3c) . They can be called from any type of BEA TUXEDO system
application processes: client, server, or conversational.

The queued message facility is an XA-compliant resource manager. Messages a
enqueued and dequeued within transactions to ensure one-time-only processing

ATMI

Transactions

BEA TUXEDO system supports two sets of mutually exclusive verbs for defining a
managing transactions: BEA TUXEDO's ATMI transaction demarcation verbs (wh
are prefaced with tp) and X/Open's TX Interface (whose verbs are prefaced with tx_).
Because X/Open used ATMI's transaction demarcation verbs as the base for the
Interface, the syntax and semantics of the TX Interface are quite similar to ATMI. T
section is an overview of ATMI's transaction concepts. The next section introduc
additional concepts of the TX Interface.

A transaction in the BEA TUXEDO system is used to define a single logical unit
work that either wholly succeeds or has no effect whatsoever. A transaction allo
work performed in many processes, at possibly different sites, to be treated as a
atomic unit of work. The initiator of a transaction normally uses tpbegin and either
tpcommit or tpabort to delineate the operations within a transaction.

The initiator may also suspend its work on the current transaction by issuing
tpsuspend . Another process may take over the role of the initiator of a suspende
transaction by issuing tpresume . As a transaction initiator, a process must call one
tpsuspend , tpcommit , or tpabort . Thus, one process can start a transaction that
another may finish.

If a process calling a service is in transaction mode, then the called service routi
also placed in transaction mode on behalf of the same transaction. Otherwise, wh
the service is invoked in transaction mode or not depends on options specified fo
service in the configuration file. A service that is not invoked in transaction mode
define multiple transactions between the time it is invoked and the time it ends. O
BEA TUXEDO Reference Manual 5

intro(3c)

 one
rvice

ction

led a
 to do
(that

has

ed
g
all
 the
ess

rtable

ace
tine

 are

n. By
tive
other hand, a service routine invoked in transaction mode can participate in only
transaction, and work on that transaction is completed upon termination of the se
routine. Note that a connection cannot be upgraded to transaction mode: if tpbegin is
called while a conversation exists, the conversation remains outside of the transa
(that is, as if tpconnect had been called with the TPNOTRAN flag).

A service routine joining a transaction that was started by another process is cal
participant. A transaction can have several participants. A service can be invoked
work on the same transaction more than once. Only the initiator of a transaction
is, a process either calling tpbegin or tpresume) can call tpcommit or tpabort .
Participants influence the outcome of a transaction by using tpreturn or tpforward .
These two calls signify the end of a service routine and indicate that the routine
finished its part of the transaction.

TX Transactions Transactions defined by the TX Interface are practically identical with those defin
by the ATMI verbs. An application writer may use either set of verbs when writin
clients and service routines. In fact, the BEA TUXEDO system does not require
client and server processes within a single application to use one set of verbs or
other. However, the two verb sets may not be used together within a single proc
(that is, a process cannot call tpbegin and later call tx_commit).

The TX Interface has two calls for opening and closing resource managers in a po
manner, tx_open and tx_close , respectively. Transactions are started with
tx_begin and completed with either tx_commit or tx_rollback . tx_info is used
to retrieve transaction information, and there are three calls to set options for
transactions: tx_set_commit_return , tx_set_transaction_control, and
tx_set_transaction_timeout. The TX Interface has no equivalents to ATMI's
tpsuspend and tpresume .

In addition to the semantics and rules defined for ATMI transactions, the TX Interf
has some additional semantics that are worth introducing here. First, service rou
writers wanting to use the TX Interface must supply their own tpsvrinit routine that
calls tx_open . The default BEA TUXEDO system-supplied tpsvrinit calls tpopen .
The same rule applies for tpsvrdone : if the TX Interface is being used, then service
routine writers must supply their own tpsvrdone that calls tx_close .

Second, the TX Interface has two additional semantics not found in ATMI. These
chained and unchained transactions, and transaction characteristics.

Chained and

Unchained

Transactions

The TX Interface supports chained and unchained modes of transaction executio
default, clients and service routines execute in the unchained mode; when an ac
transaction is completed, a new transaction does not begin until tx_begin is called.
6 BEA TUXEDO Reference Manual

intro(3c)

tion

rrent

ction

The
e
rent

r 0
le

ional
t

e.

r

nt
In the chained mode, a new transaction starts implicitly when the current transac
completes. That is, when tx_commit or tx_rollback is called, the BEA TUXEDO
system coordinates the completion of the current transaction and initiates a new
transaction before returning control to the caller. (Certain failure conditions may
prevent a new transaction from starting.)

Clients and service routines enable or disable the chained mode by calling
tx_set_transaction_control . Transitions between the chained and unchained
mode affect the behavior of the next tx_commit or tx_rollback call. The call to
tx_set_transaction_control does not put the caller into or take it out of
transaction mode.

Since tx_close cannot be called when the caller is in transaction mode, a caller
executing in chained mode must switch to unchained mode and complete the cu
transaction before calling tx_close .

Transaction

Characteristics

A client or a service routine may call tx_info to obtain the current values of their
transaction characteristics and to determine whether they are executing in transa
mode.

The state of an application process includes several transaction characteristics.
caller specifies these by calling tx_set_* functions. When a client or a service routin
sets the value of a characteristic, it remains in effect until the caller specifies a diffe
value. When the caller obtains the value of a characteristic via tx_info , it does not
change the value.

Error Handling Most of the ATMI functions have one or more error returns. An error condition is
indicated by an otherwise impossible returned value. This is usually -1 or error, o
for a bad field identifier (BADFLDID) or address. The error type is also made availab
in the external integer tperrno . tperrno is not cleared on successful calls, so it
should be tested only after an error has been indicated.

tperrordetail can be used as the first step of a three step procedure to get addit
detail about an error in the most recent BEA TUXEDO system call on the curren
thread. tperrordetail returns an integer which is then used as an argument to
tpstrerrordetail to retrieve a pointer to a string that contains the error messag
The pointer can then be used as an argument to userlog or to fprint .

The tpstrerror function is provided to produce a message on the standard erro
output. It takes one argument, an integer (found in tperrno) and returns a pointer to
the text of an error message in LIBTUX_CAT. The pointer can be used as an argume
to userlog .
BEA TUXEDO Reference Manual 7

intro(3c)

h

ring;
rror
ne

an

 FML

 with

ins
er of

EA

 can
um

m

ode.
ith

e

eout
tion
ith the
The error codes that can be produced by an ATMI function are described on eac
ATMI reference page. The F_error and F_error32 functions are provided to
produce a message on the standard error output. They take one parameter, a st
print the argument string appended with a colon and a blank; and then print an e
message followed by a newline character. The error message displayed is the o
defined for the error number currently in F_error or F_error32 , which is set when
errors occur.

Fstrerror , and its counterpart, Fstrerror32 , can be used to retrieve the text of an
error message from a message catalog; it returns a pointer that can be used as
argument to userlog.

The error codes that can be produced by an FML function are described on each
reference page.

Timeouts There are three types of timeouts in the BEA TUXEDO system: one is associated
the duration of a transaction from start to finish. A second is associated with the
maximum length of time a blocking call will remain blocked before the caller rega
control. The third is a service timeout and occurs when a call exceeds the numb
seconds specified in the SVCTIMEOUT parameter in the SERVICES section of the
configuration file.

 The first kind of timeout is specified when a transaction is started with tpbegin (see
tpbegin (3c) for details). The second kind of timeout can occur when using the B
TUXEDO system communication routines defined in tpcall (3c). Callers of these
routines typically block when awaiting a reply that has yet to arrive, although they
also block trying to send data (for example, if request queues are full). The maxim
amount of time a caller remains blocked is determined by a BEA TUXEDO syste
configuration file parameter (see the BLOCKTIME parameter in ubbconfig (5) for
details).

Blocking timeouts are performed by default when the caller is not in transaction m
When a client or server is in transaction mode, it is subject to the timeout value w
which the transaction was started and is not subject to the blocking timeout valu
specified in the UBBCONFIG file.

When a transaction timeout occurs, replies to asynchronous requests made in
transaction mode become ``stale.'' That is, if a process is waiting for a particular
asynchronous reply for a request sent in transaction mode and a transaction tim
occurs, the descriptor for that reply becomes stale (invalid). Similarly, if a transac
timeout occurs, an event is generated on the connection descriptor associated w
8 BEA TUXEDO Reference Manual

intro(3c)

e call

that
eout

 when
ffers,

erver,
me set
he

cated
uffer

 can

e

 a

d for
 the
rs it

into.
eeded
ing
of the

transaction and that descriptor becomes invalid. On the other hand, if a blocking
timeout occurs, the descriptor is still valid and the waiting process can re-issue th
to await the reply.

The service timeout mechanism provides a way for the system to kill processes
may be frozen by some unknown or unexpected system error. When a service tim
occurs in a request/response service, the BEA TUXEDO system kills the server
process that is executing the frozen service and returns error code TPESVCERR. If a
service timeout occurs in a conversational service, the TP_EVSVCERR event is returned.

Beginning in Release 6.4, some additional detail is provided beyond the TPESVCERR
error code. If a service fails due to exceeding the timeout threshold, an event,

.SysServiecTimeout , is posted.

Dynamic

Service

Advertisements

By default, a server's services are advertised when it is booted and unadvertised
it is shut down. If a server needs to control at run time the set of services that it o
it can do so by calling tpadvertise and tpunadvertise . These routines affect only
the services offered by the calling server unless that server belongs to a multiple s
single queue (MSSQ) set. Because all servers in an MSSQ set must offer the sa
of services, these routines also affect the advertisements of all servers sharing t
caller's MSSQ set.

Buffer

Management

Initially, a process has no buffers. Before sending a message, a buffer must be allo
using tpalloc . The sender's data can then be placed in the buffer and sent. This b
has a specific structure. The particular structure is denoted by the type argument to the
tpalloc function. Since some structures can need further classification, a subtype
also be given (for example, a particular type of C structure).

When receiving a message, a buffer is required into which application data can b
received. This buffer must be one originally gotten from tpalloc . Note that a BEA
TUXEDO system server, in its main , allocates a buffer whose address is passed to
request/response or conversational service upon invoking the service (see
tpservice (3c) for details on how this buffer is treated).

Buffers used for receiving messages are treated slightly differently than those use
sending: the size and address usually change upon receipt of a message, since
system internally swaps the buffer passed into the receive call with internal buffe
used to process the buffer. A buffer may grow, or it may shrink when it is received
It depends on the amount of data sent by the sender, and the internal data flow n
to get it from sender to received. Many factors could affect the buffer size, includ
compression, receiving a message from a different machine type, and the action
buffer type’s postrecv function (see buffer (3c)). The buffer sizes in /WS clients are
usually different from those in native clients.
BEA TUXEDO Reference Manual 9

intro(3c)

tainer
 you

0K
ing

y

t,
at is
 The
f the

fer

ta in
ime a

a

ffer

tion

ames

rd
It is best to think of the receive buffer as a placeholder, rather than the actual con
that will receive the message. The system sometimes uses the size of the buffer
pass as a hint, so it does help if it is big enough to hold the expect reply.

On the sending side, buffer types that might be filled to less than their allocated
capacity (for example, FML or STRING buffers) send only the amount used. A 10
FML32 buffer with one integer field in it is sent as a much smaller buffer, contain
only that integer.

This means that the receiver will receive a buffer smaller than what was originall
allocated by the sender, yet larger than the data that was sent. For example, if a
STRING buffer of 10K bytes is allocated, and the string “HELLO” is copied into i
only the six bytes are sent, and the receiver will probably end up with a buffer th
around 1K or 4K bytes. (It may be larger or smaller, depending on other factors.)
BEA TUXEDO system guarantees only that a received message will contain all o
data that was sent, not that it will also contain all of the free space.

The process receiving the reply is responsible for noting size changes in the buf
(using tptypes) and reallocating it if necessary. All of the BEA TUXEDO system
routines that change a receiver’s buffer return information about the amount of da
the buffer, so it should become standard practice to check the buffer size every t
reply is received.

One can send and receive messages using the same data buffer. Alternatively,
different data buffer can be allocated for each message. It is usually the caller's
responsibility to free its buffers with tpfree . However, in limited cases, the BEA
TUXEDO system frees the caller's buffer. Further details about buffer usage are
explained in the descriptions of the communication routines.

Buffer Type

Switch

The tmtype_sw_t structure provides a description necessary when adding new bu
types to a process' buffer type switch, tm_typesw . The switch elements are defined in
typesw (5). The function names used in this entry are templates for the actual func
names defined by the BEA TUXEDO system or by applications adding their own
buffer types. These names map to the switch elements very simply: the template n
are made by taking each function pointer's element name and prepending _tm (for
example, the element initbuf has the function name _tminitbuf).

The element, type , must be non-NULL and at most 8 characters in length. If this
element is not unique in the switch, then subtype must be non-NULL.

The element, subtype , can be NULL, a string of at most 16 characters, or the wild ca
character, “*”. The combination of type and subtype must uniquely identify an
element in the switch.
10 BEA TUXEDO Reference Manual

intro(3c)

e for
n,
 to be
ated
gled

tch is
type

 of
the
the

or

ll
iew is

s.
g.

nce
are
type
he
he

st
A given type can have multiple subtypes. If all subtypes are to be treated the sam
a given type, then the wild card character, “*”, can be used. Note that the functio
tptypes , can be used to determine a buffer's type and subtype if subtypes need
distinguished. If some subset of the subtypes within a particular type are to be tre
individually, and the rest are to be treated identically, then those that are to be sin
out with specific subtype values should appear in the switch before the subtype
designated with the wild card. Thus, searching for types and subtypes in the swi
done from top to bottom, and the wild card subtype entry accepts any ``leftover''
matches.

The element dfltsize is used when allocating or re-allocating a buffer. The
semantics of tpalloc and tprealloc are such that the larger of dfltsize and the
routines' size parameter is used to create or re-allocate a buffer. For some types
structures, like a fixed sized C structure, the buffer size should equal the size of
structure. If dfltsize is set to this value, then the caller may not need to specify
buffer's length to routines in which a buffer is passed. dfltsize can be 0 or less;
however, if tpalloc or tprealloc is called and their size parameter is also less than
or equal to 0, then the routine will fail. It is not recommended to set dfltsize to a
value less than 0.

There are four basic buffer types that come with the BEA TUXEDO system: CARRAY
(character array possibly containing NULL characters which is neither encoded n
decoded during transmission), STRING (NULL-terminated character array), FML (and
FML32: Fielded Buffers), and VIEW (and VIEW32: simple C structures). Note that a
views are handled by the same set of routines and that the name of a particular v
its subtype name.

Two of these buffer types have synonyms: X_OCTET is a synonym for CARRAY, and
both X_C_TYPE and X_COMMON are synonyms for VIEW. X_C_TYPE supports all the
same elements as VIEW whereas X_COMMON supports only longs, shorts, and character
X_COMMON should be used when both C and COBOL programs are communicatin

An application wishing to supply its own buffer type can do so by adding an insta
to the tm_typesw array. Whenever a new buffer type is added or one is deleted, c
should be taken to leave a NULL entry at the end of the array. Note that a buffer
with a NULL name is not permitted. An application client or server is linked with t
new buffer type switch by explicitly specifying the source or object file name on t
buildserver (1) or buildclient (1) command line using a -f option argument.

Unsolicited

Notification

There are two methods for sending messages to application clients outside the
boundaries of the client/server interaction defined above. The first is the broadca
mechanism supported by tpbroadcast . This function allows application clients,
BEA TUXEDO Reference Manual 11

intro(3c)

ts
nts are
ed

the

rlier
r that

 an

.
servers, and administrators to broadcast typed buffer messages to a set of clien
selected on the basis of the names assigned to them. The names assigned to clie
determined in part by the application by the information passed in the TPINIT typ
buffer at tpinit time and in part by the system based on the processor at which
client accesses the application.

The second method is the notification of a particular client as identified from an ea
or current service request. Each service request contains a unique client identifie
identifies the originating client for the service request. tpcall 's and tpforward 's
from within a service routine do not change the originating client for that chain of
service requests. Client identifiers can be saved and passed between application
servers. The routine tpnotify is used to notify clients identified in this manner.

C Language

ATMI Return

Codes and

Other

Definitions

The following return code and flag definitions are used by the ATMI routines. For
application to work with different transaction monitors without change or
recompilation, each system must define its flags and return codes as stated here

 /*
 * The following definitions must be included in atmi.h
 */

 /* Flags to service routines */

 #define TPNOBLOCK 0x00000001 /* non-blocking send/rcv */
 #define TPSIGRSTRT 0x00000002 /* restart rcv on interrupt */
 #define TPNOREPLY 0x00000004 /* no reply expected */
 #define TPNOTRAN 0x00000008 /* not sent in transaction mode */
 #define TPTRAN 0x00000010 /* sent in transaction mode */
 #define TPNOTIME 0x00000020 /* no timeout */
 #define TPABSOLUTE 0x00000040 /* absolute value on tmsetprio */
 #define TPGETANY 0x00000080 /* get any valid reply */
 #define TPNOCHANGE 0x00000100 /* force incoming buffer to match */
 #define RESERVED_BIT1 0x00000200 /* reserved for future use */
 #define#define TPCONV 0x00000400 /* conversational service */
 #define TPSENDONLY 0x00000800 /* send-only mode */
 #define TPRECVONLY 0x00001000 /* recv-only mode */
 #define TPACK 0x00002000 /* */

 /* Flags to tpreturn - also defined in xa.h */
 #define TPFAIL 0x20000000 /* service FAILURE for tpreturn */
 #define TPEXIT 0x08000000 /* service FAILURE with server exit */
 #define TPSUCCESS 0x04000000 /* service SUCCESS for tpreturn */
12 BEA TUXEDO Reference Manual

intro(3c)

 /* Flags to tpscmt - Valid TP_COMMIT_CONTROL
 * characteristic values
 */
 #define TP_CMT_LOGGED 0x01 /* return after commit
 * decision is logged */
 #define TP_CMT_COMPLETE 0x02 /* return after commit has
 * completed */

 /* client identifier structure */
 struct clientid_t {
 long clientdata[4]; /* reserved for internal
 * use */
 }
 typedef struct clientid_t CLIENTID;

 /* interface to service routines */
 struct tpsvcinfo {
 name[32];
 long flags; /* describes service attributes */
 char *data; /* pointer to data */
 long len; /* request data length */
 int cd; /* connection descriptor
 * if (flags TPCONV) true */
 long appkey; /* application authentication client
 * key */
 CLIENTID cltid; /* client identifier for originating
 * client */
 };

 typedef struct tpsvcinfo TPSVCINFO;

 /* tpinit(3c) interface structure */
 #define MAXTIDENT 30

 struct tpinfo_t {
 char usrname[MAXTIDENT+2]; /* client user name */
 char cltname[MAXTIDENT+2]; /* app client name */
 char passwd[MAXTIDENT+2]; /* application password */
 long flags; /* initialization flags */
 long datalen; /* length of app specific
 * data */
 long data; /* placeholder for app
 * data */
 };
 typedef struct tpinfo_t TPINIT;

BEA TUXEDO Reference Manual 13

intro(3c)
 /* The transaction id structure passed to tpsuspend(3c) and tpresume(3c) */
 struct tp_tranid_t {
 long info[6]; /* Internally defined */
 };

 typedef struct tp_tranid_t TPTRANID;

 /* Flags for TPINIT */
 #define TPU_MASK 0x00000007 /* unsolicited notification
 * mask */
 #define TPU_SIG 0x00000001 /* signal based
 * notification */
 #define TPU_DIP 0x00000002 /* dip-in based
 * notification */
 #define TPU_IGN 0x00000004 /* ignore unsolicited
 * messages */
 #define TPSA_FASTPATH 0x00000008 /* System access ==
 * fastpath */
 #define TPSA_PROTECTED 0x00000010 /* System access ==
 * protected */

 /* /Q tpqctl_t data structure */
 #define TMQNAMELEN 15
 #define TMMSGIDLEN 32
 #define TMCORRIDLEN 32

 struct tpqctl_t { /* control parameters to queue */
 /* primitives */
 long flags; /* indicates which values are set */
 long deq_time; /* absolute/relative time for */
 /* dequeuing */
 long priority; /* enqueue priority */
 long diagnostic; /* indicates reason for failure */
 long appkey; /* application authentication */
 /* client key */
 long urcode; /* application user-return code */
 CLIENTID cltid; /* client identifier for */
 /* originating client */
 char msgid[TMMSGIDLEN]; /* id of message before which */
 /* to queue */
 char corrid[TMCORRIDLEN]; /* correlation id used */
 /* to identify message */
 char replyqueue[TMQNAMELEN+1]; /* queue name for reply */
 /* message */
 char failurequeue[TMQNAMELEN+1]; /* queue name for failure */
 /* message */
 };
 typedef struct tpqctl_t TPQCTL;

14 BEA TUXEDO Reference Manual

intro(3c)
 /* /Q structure elements that are valid - set in flags */
 #define TPNOFLAGS 0x00000 /* no flags set -- no get */
 #define TPQCORRID 0x00001 /* set/get correlation id */
 #define TPQFAILUREQ 0x00002 /* set/get failure queue */
 #define TPQBEFOREMSGID 0x00004 /* enqueue before message id */
 #define TPQGETBYMSGID 0x00008 /* dequeue by msgid */
 #define TPQMSGID 0x00010 /* get msgid of enq/deq message */
 #define TPQPRIORITY 0x00020 /* set/get message priority */
 #define TPQTOP 0x00040 /* enqueue at queue top */
 #define TPQWAIT 0x00080 /* wait for dequeuing */
 #define TPQREPLYQ 0x00100 /* set/get reply queue */
 #define TPQTIME_ABS 0x00200 /* set absolute time */
 #define TPQTIME_REL 0x00400 /* set relative time */
 #define TPQGETBYCORRID 0x00800 /* dequeue by corrid */

 /* error return codes */
 extern int tperrno;
 extern long tpurcode;

 /* tperrno values - error codes */
 * The man pages explain the context in which the following
 * error codes can return.
 */

 #define TPMINVAL 0 /* minimum error message */
 #define TPEABORT 1
 #define TPEBADDESC 2
 #define TPEBLOCK 3
 #define TPEINVAL 4
 #define TPELIMIT 5
 #define TPENOENT 6
 #define TPEOS 7
 #define TPEPERM 8
 #define TPEPROTO 9
 #define TPESVCERR 10
 #define TPESVCFAIL 11
 #define TPESYSTEM 12
 #define TPETIME 13
 #define TPETRAN 14
 #define TPGOTSIG 15
 #define TPERMERR 16
 #define TPEITYPE 17
 #define TPEOTYPE 18
 #define TPERELEASE 19
 #define TPEHAZARD 20
 #define TPEHEURISTIC 21
 #define TPEEVENT 22
 #define TPEMATCH 23
 #define TPEDIAGNOSTIC 24
BEA TUXEDO Reference Manual 15

intro(3c)

n

.
 #define TPEMIB 25
 #define TPMAXVAL 26 /* maximum error message */

 /* conversations - events */
 #define TPEV_DISCONIMM 0x0001
 #define TPEV_SVCERR 0x0002
 #define TPEV_SVCFAIL 0x0004
 #define TPEV_SVCSUCC 0x0008
 #define TPEV_SENDONLY 0x0020

 /* /Q diagnostic codes */
 #define QMEINVAL -1
 #define QMEBADRMID -2
 #define QMENOTOPEN -3
 #define QMETRAN -4
 #define QMEBADMSGID -5
 #define QMESYSTEM -6
 #define QMEOS -7
 #define QMENOTA -8
 #define QMEPROTO -9
 #define QMEBADQUEUE -10
 #define QMENOMSG -11
 #define QMEINUSE -12
 #define QMENOSPACE -13

 /* Event Broker Messages */
 #define TPEVSERVICE 0x00000001
 #define TPEVQUEUE 0x00000002
 #define TPEVTRAN 0x00000004
 #define TPEVPERSIST 0x00000008

 /* Subscription Control Structure */
 struct tpevctl_t {
 long flags;
 char name1[XATMI_SERVICE_NAME_LENGTH];
 char name2[XATMI_SERVICE_NAME_LENGTH];
 TPQCTL qctl;
 };
 typedef struct tpevctl_t TPEVCTL;

C Language TX

Return Codes

and Other

Definitions

The following return code and flag definitions are used by the TX routines. For a
application to work with different transaction monitors without change or
recompilation, each system must define its flags and return codes as stated here

#define TX_H_VERSION 0 /* current version of this
 * header file */

16 BEA TUXEDO Reference Manual

intro(3c)
 /*
 * Transaction identifier
 */
 #define XIDDATASIZE 128 /* size in bytes */
 struct xid_t {
 long formatID; /* format identifier */
 long gtrid_length; /* value not to exceed 64 */
 long bqual_length; /* value not to exceed 64 */
 char data[XIDDATASIZE];
 };
 typedef struct xid_t XID;
 /*
 * A value of -1 in formatID means that the XID is null.
 */

 /*
 * Definitions for tx_ routines
 */
 /* commit return values */
 typedef long COMMIT_RETURN;
 #define TX_COMMIT_COMPLETED 0
 #define TX_COMMIT_DECISION_LOGGED 1

 /* transaction control values */
 typedef long TRANSACTION_CONTROL;
 #define TX_UNCHAINED 0
 #define TX_CHAINED 1

 /* type of transaction timeouts */
 typedef long TRANSACTION_TIMEOUT;

 /* transaction state values */
 typedef long TRANSACTION_STATE;
 #define TX_ACTIVE 0
 #define TX_TIMEOUT_ROLLBACK_ONLY 1
 #define TX_ROLLBACK_ONLY 2

 /* structure populated by tx_info */
 struct tx_info_t {
 XID xid;
 COMMIT_RETURN when_return;
 TRANSACTION_CONTROL transaction_control;
 TRANSACTION_TIMEOUT transaction_timeout;
 TRANSACTION_STATE transaction_state;
 };
 typedef struct tx_info_t TXINFO;

 /*
 * tx_ return codes
BEA TUXEDO Reference Manual 17

intro(3c)

 that

erver,
ent
 * (transaction manager reports to application)
 */
 #define TX_NOT_SUPPORTED 1 /* option not supported */
 #define TX_OK 0 /* normal execution */
 #define TX_OUTSIDE -1 /* application is in an RM
 * local transaction */
 #define TX_ROLLBACK -2 /* transaction was rolled
 * back */
 #define TX_MIXED -3 /* transaction was
 * partially committed and
 * partially rolled back */
 #define TX_HAZARD -4 /* transaction may have been
 * partially committed and
 * partially rolled back */
 #define TX_PROTOCOL_ERROR -5 /* routine invoked in an
 * improper context */
 #define TX_ERROR -6 /* transient error */
 #define TX_FAIL -7 /* fatal error */
 #define TX_EINVAL -8 /* invalid arguments were
 * given */
 #define TX_COMMITTED -9 /* transaction has
 * heuristically committed */

 #define TX_NO_BEGIN -100 /* transaction committed plus
 * new transaction could not
 * be started */
 #define TX_ROLLBACK_NO_BEGIN (TX_ROLLBACK+TX_NO_BEGIN)
 /* transaction rollback plus
 * new transaction could not
 * be started */
 #define TX_MIXED_NO_BEGIN (TX_MIXED+TX_NO_BEGIN)
 /* mixed plus new transaction
 * could not be started */
 #define TX_HAZARD_NO_BEGIN (TX_HAZARD+TX_NO_BEGIN)
 /* hazard plus new transaction
 * could not be started */
 #define TX_COMMITTED_NO_BEGIN (TX_COMMITTED+TX_NO_BEGIN)
 /* heuristically committed plus
 * new transaction could not
 * be started */

ATMI State

Transitions

The BEA TUXEDO system keeps track of the state for each process and verifies
legal state transitions occur for the various function calls and options. The state
information includes the process type (request/response server, conversational s
or client), the initialization state (uninitialized or initialized), the resource managem
state (closed or open), the transaction state of the process, and the state of all
18 BEA TUXEDO Reference Manual

intro(3c)

n is

nal

asynchronous request and connection descriptors. When an illegal state transitio
attempted, the called function fails, setting tperrno to TPEPROTO. The legal states and
transitions for this information are described in the following tables.

The table below indicates which functions request/response servers, conversatio
servers, and clients are allowed to call. Note that tpsvrinit and tpsvrdone are not
in this table since these functions are not called by applications (that is, they are
application-supplied functions that are invoked by the BEA TUXEDO system).

Function Call Permissions

Function Process Type

Request/response
Server

Conversational
Server

Client
Server

tpabort Y Y Y

tpacall Y Y Y

tpadvertise Y Y N

tpalloc Y Y Y

tpbegin Y Y Y

tpbroadcast Y Y Y

tpcall Y Y Y

tpcancel Y Y Y

tpchkauth Y Y Y

tpchkunsol N N Y

tpclose Y Y Y

tpcommit Y Y Y

tpconnect Y Y Y

tpdequeue Y Y Y

tpdiscon Y Y Y

tpenqueue Y Y Y

tpforward Y N N

tpfree Y Y Y

tpgetlev Y Y Y
BEA TUXEDO Reference Manual 19

intro(3c)

ted.
ervers
for
he
The remaining state tables are for both clients and servers, unless otherwise no
Keep in mind that because some functions can not be called by both clients and s
(for example, tpinit), certain state transitions shown below may not be possible
both process types. The above table should be consulted to determine whether t
process in question is allowed to call a particular function.

tpgetrply Y Y Y

tpgprio Y Y Y

tpinit N N Y

tpnotify Y Y Y

tpopen Y Y Y

tppost Y Y Y

tprealloc Y Y Y

tprecv Y Y Y

tpresume Y Y Y

tpreturn Y Y N

tpscmt Y Y Y

tpsend Y Y Y

tpservice Y Y N

tpsetunsol N N Y

tpsprio Y Y Y

tpsubscribe Y Y Y

tpsuspend Y Y Y

tpterm N N Y

tptypes Y Y Y

tpunadvertise Y Y N

tpunsubscribe Y Y Y

Function Call Permissions

Function Process Type

Request/response
Server

Conversational
Server

Client
Server
20 BEA TUXEDO Reference Manual

intro(3c)

lized
se of

ocess

er a

r or
The following state table indicates whether or not a client process has been initia
and registered with the transaction manager. Note that this table assumes the u
tpinit , which is optional. That is, a client may implicitly join an application by
issuing one of many ATMI verbs (for example, tpconnect or tpcall). A client must
use tpinit when either application authentication is required (see tpinit (3c) and the
description of the SECURITY keyword in ubbconfig (5)) or the client wishes to
directly access an XA-compliant resource manager (see tpinit (3c)).

A server is placed in the initialized state by the BEA TUXEDO system's main before
its tpsvrinit function is invoked, and it is placed in the uninitialized state by the
BEA TUXEDO system's main after its tpsvrdone function has returned. Note that in
all of the state tables shown below, an error return from a function causes the pr
to remain in the same state, unless otherwise noted.

Note: all others” refers to the remaining ATMI calls

The remaining state tables assume a precondition of state I (regardless of wheth
process arrived in this state via tpinit or the BEA TUXEDO system's main).

The following table indicates the state of a client or server with respect to whethe
not a resource manager associated with the process has been initialized.

Initialization States

Function States

Uninitialized
I0

Initialized
I1

tpalloc I0 I1

tpchkauth I0 I1

tpfree I0 I1

tpinit I1 I1

tprealloc I0 I1

tpsetunsol I0 I1

tpterm I0 I0

tptypes I0 I1

all others (see the
following note)

I1 I1
BEA TUXEDO Reference Manual 21

intro(3c)

or not
and T
The following state table indicates the state of a process with respect to whether
the process is associated with a transaction. For servers, transitions to states T
assume a precondition of state R (for example, tpopen has been called with no
subsequent call to tpclose or tpterm).

Resource Management States

Function States

Closed
R0

Open
R1

tpopen R1 R1

tpclose R0 R0

tpbegin R1

tpcommit R1

tpabort R1

tpsuspend R1

tpresume R1

tpservice with flag TPTRAN R1

all others R0 R1
22 BEA TUXEDO Reference Manual

intro(3c)

d by

The following state table indicates the state of a single request descriptor returne
tpacall .

Transaction State of Process

Function State

Not in transaction
T0

Initiator
T1

Participant
T2

tpbegin

tpabort T0

tpcommit T0

tpsuspend T0

tpresume T1 T0

tpservice with flag
TPTRAN

T2

tpservice (not in
transaction mode)

T0

tpreturn T0 T0

tpforward T0 T0

tpclose R0

tpterm I0 T0

all others T0 T1 T2
BEA TUXEDO Reference Manual 23

intro(3c)

ller's

y

l

Note: * This state change occurs only if the descriptor is not associated with the
caller's transaction.

† This state change occurs only if the descriptor is associated with the ca
transaction.

‡ If the descriptor is associated with the caller's transaction, then tpsuspend
returns a protocol error.

The following state table indicates the state of a connection descriptor returned b
tpconnect or provided by a service invocation in the TPSVCINFO structure. For
primitives that do not take a connection descriptor, the state changes apply to al
connection descriptors, unless otherwise noted.

Asynchronous Request Descriptor States

Function States

No Descriptor
A0

Valid Descriptor
A1

tpacall A1

tpgetrply A0

tpcancel A0
 *

tpabort A0 A0
 †

tpcommit A0 A0
 †

tpsuspend A0 A1 ‡

tpreturn A0 A0

tpforward A0 A0

tpterm I0 I0

all others A0 A1
24 BEA TUXEDO Reference Manual

intro(3c)
The states are as follows:

� C0 - No descriptor

� C1 - tpconnect descriptor send-only

� C2 - tpconnect descriptor receive-only

� C3 - TPSVCINFO descriptor send-only

� C4 - TPSVCINFO descriptor receive-only

Connection Request Descriptor States

Function/Event States

C0 C1 C2 C3 C4

tpconnect with TPSENDONLY C1 *

tpconnect with TPRECVONLY C2 *

tpservice with flag TPSENDONLY C3 †

tpservice with flag TPRECVONLY C4 †

tprecv/no event C2 C4

tprecv/TPEV_SENDONLY C1 C3

tprecv/TPEV_DISCONIMM C0 C0

tprecv/TPEV_SVCERR C0

tprecv/TPEV_SVCFAIL C0

tprecv/TPEV_SVCSUCC C0

tpsend/no event C1 C3

tpsend with flag TPRECVONLY C2 C4

tpsend/TPEV_DISCONIMM C0 C0

tpsend/TPEV_SVCERR C0

tpsend/TPEV_SVCFAIL C0
BEA TUXEDO Reference Manual 25

intro(3c)

 with
he
alls
ific
he
Note: * If process is in transaction mode and TPNOTRAN not specified, the
connection is in transaction mode.

† If the TPTRAN flag is set, the connection is in transaction mode.

‡ If the connection is not in transaction mode, no state change.

†† If the connection is in transaction mode, then tpsuspend returns a protocol
error.

TX State

Transitions

The BEA TUXEDO system ensures that a process calls the TX verbs in a legal
sequence. When an illegal state transition is attempted (that is, a call from a state
a blank transition entry), the called function returns TX_PROTOCOL_ERROR. T
legal states and transitions for the TX primitives are shown in the table below. C
that return failure do not make state transitions, except where described by spec
state table entries. Any BEA TUXEDO system client or server is allowed to use t
TX verbs.

tpterm (client only) C0 C0

tpcommit (originator only) C0 C0 ‡ C0 ‡

tpsuspend (originator only) C0 C1 †† C2 ††

tpabort (originator only) C0 C0 ‡ C0 ‡

tpdiscon C0 C0

tpreturn (CONV server) C0 C0 C0 C0

tpforward (CONV server) C0 C0 C0 C0

all others C0 C1 C2 C3 C4

Connection Request Descriptor States

Function/Event States

C0 C1 C2 C3 C4
26 BEA TUXEDO Reference Manual

intro(3c)
The states are defined below:

� S1: No RMs have been opened or initialized. A process cannot start a global

transaction until it has successfully called tx_open.

� S2: A process has opened its RM but is not in a transaction. Its

transaction_control characteristic is TX_UNCHAINED.

� S3: A process has opened its RM but is not in a transaction. Its

transaction_control characteristic is TX_CHAINED.

� S4: A process has opened its RM and is in a transaction. Its
transaction_control characteristic is TX_UNCHAINED.

� S5: A process has opened its RM and is in a transaction. Its
transaction_control characteristic is TX_CHAINED.

Function States

S1 S2 S3 S4 S5

tx_begin S3 S4

tx_close S0 S0 S0

tx_commit -> TX_SET1 S1 S4

tx_commit -> TX_SET2 S2

tx_info S1 S2 S3 S4

tx_open S1 S1 S2 S3 S4

tx_rollback -> TX_SET1 S1 S4

tx_rollback -> TX_SET2 S2

tx_set_commit_return S1 S2 S3 S4

tx_set_transaction_control
control = TX_CHAINED

S2 S2 S4 S4

tx_set_transaction_control
control = TX_UNCHAINED

S1 S1 S3 S3

tx_set_transaction_timeout S1 S2 S3 S4
BEA TUXEDO Reference Manual 27

intro(3c)

,

ed

e
Note: TX_SET1 denotes any of TX_OK, TX_ROLLBACK, TX_MIXED,
TX_HAZARD, or TX_COMMITTED (TX_ROLLBACK is not returned by
tx_rollback and TX_COMMITTED is not returned by tx_commit).

TX_SET2 denotes any of TX_NO_BEGIN, TX_ROLLBACK_NO_BEGIN
TX_MIXED_NO_BEGIN, TX_HAZARD_NO_BEGIN, or
TX_COMMITTED_NO_BEGIN (TX_ROLLBACK_NO_BEGIN is not
returned by tx_rollback and TX_COMMITTED_NO_BEGIN is not
returned by tx_commit).

If TX_FAIL is returned on any call, the application process is in an undefin
state with respect to the above table.

When tx_info returns either TX_ROLLBACK_ONLY or
TX_TIMEOUT_ROLLBACK_ONLY in the transaction state information,
the transaction is marked rollback-only and will be rolled back whether th
application program calls tx_commit or tx_rollback .

See Also buffer (3c), tpservice (3c), tpadvertise (3c), tpalloc (3c), tpbegin (3c),
tpcall (3c), tpconnect (3c), tpinit (3c), tpopen (3c), tuxtypes (5), typesw (5)
28 BEA TUXEDO Reference Manual

AEMsetblockinghook(3)

king

n

and

sly

ard
AEMsetblockinghook(3)

Name AEMsetblockinghook (3)- establish an application-specific blocking hook function

Synopsis #include <atmi.h>
int AEMsetblockinghook(_TM_FARPROC)

Description AEMsetblockinghook () is an “ATMI Extension for Mac” that allows a Mac task to
install a new function which the ATMI networking software uses to implement
blocking ATMI calls. It taks a pointer to the procedure instance address of the bloc
function to be installed.

A default function, by which blocking ATMI calls are handled, is included. The
function AEMsetblockinghook () gives the application the ability to execute its ow
function at “blocking” time in place of the default function. If called with a NULL
pointer, the blocking hook function is reset to the default function.

When an application invokes a blocking ATMI operation, the operation is initiated
then a loop is entered which is equivalent to the following pseudocode:

for(;;) {
 execute operation in non-blocking mode
 if error
 break;
 if operation complete
 break;
 while(BlockingHook())
 ;
}

Return Values AEMsetblockinghook () returns a pointer to the procedure-instance of the previou
installed blocking function. The application or library that calls the
AEMsetblockinghook () function should save this return value so that it can be
restored if necessary. (If “nesting” is not important, the application may simply disc
the value returned by AEMsetblockinghook () and eventually use
AEMsetblockinghook (NULL) to restore the default mechanism.)
AEMsetblockinghook () returns NULL on error and sets tperrno to indicate the error
condition.

Errors Under the following condition, AEMsetblockinghook () fails and sets tperrno to:

[TPEPROTO]
AEMsetblockinghook () was called while a blocking operation is in
progress.

Portability This interface is supported only in Mac clients.
BEA TUXEDO Reference Manual 29

AEMsetblockinghook(3)
Notices The blocking function is reset after tpterm (3) is called by the application.
30 BEA TUXEDO Reference Manual

AEOaddtypesw(3)

he

ll
tch
es
 the
ing

nes.
d in

s.

r is

type
he
AEOaddtypesw(3)

Name AEOaddtypesw (3)-install or replace a user defined buffer type at execution time

Synopsis #include <atmi.h>
#include <tmtypes.h>

int FAR PASCAL AEOaddtypesw(TMTYPESW *newtype)

Description AEOaddtypesw() is an “ATMI Extension for OS/2” that allows an OS/2 client to
install a new, or replace an existing user defined buffer type at execution time. T
argument to this function is a pointer to a TMTYPESW structure that contains the
information for the buffer type to be installed.

If the type and the subtype match an existing buffer type already installed, then a
the information is replaced with the new buffer type. If the information does not ma
the type and the subtype fields, then the new buffer type is added to the existing typ
registered with the BEA TUXEDO system. For new buffer types, make sure that
WSH(1) and other BEA TUXEDO system processes involved in the call process
have been built with the new buffer type.

The function pointers in the TMTYPESW array should appear in the Module Definition
file of the application in the EXPORTS section.

The application can also use the BEA TUXEDO system’s defined buffer type routi
The application and the BEA TUXEDO system’s buffer routines can be intermixe
one user defined buffer type.

Return Values AEOaddtypesw () returns the number of user buffer types in the system on succes
AEOaddtypesw () returns -1 on error and sets tperrno to indicate the error condition.

Errors Under the following condition, AEOaddtypesw () fails and sets tperrno to:

[TPEINVAL]
AEOaddtypesw () was called and the type parameter was NULL.

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

Portability This interface is supported only in Windows clients. The preferred way to install a
switch is to add it to the BEA TUXEDO system typeswitch DLL. Please refer to t
BEA TUXEDO Administrator’s Guide for more information.

Notices FAR PASCAL is used only for the 16 bit OS/2 environment.
BEA TUXEDO Reference Manual 31

AEOaddtypesw(3)
Examples

 #include <os2.h>
 #include <atmi.h>
 #include <tmtypes.h>

 int FAR PASCAL Nfinit(char FAR *, long);
 int (FAR PASCAL * lpFinit)(char FAR *, long);
 int FAR PASCAL Nfreinit(char FAR *, long);
 int (FAR PASCAL * lpFreinit)(char FAR *, long);
 int FAR PASCAL Nfuninit(char FAR *, long);
 int (FAR PASCAL * lpFuninit)(char FAR *, long);

 TMTYPESW newtype =
 {
 “MYFML”, ““, 1024, NULL, NULL,
 NULL, _fpresend, _fpostsend, _fpostrecv, _fencdec,
 _froute
 };

 newtype.initbuf = Nfinit;
 newtype.reinitbuf = Nfreinit;
 newtype.uninitbuf = Nfuninit;

 if(AEOaddtypesw(newtype) == -1) {
 userlog(“AEOaddtypesw failed %s”, tpstrerror(tperrno));
 }
 int
 FAR PASCAL
 Nfinit(char FAR *ptr, long len)
 {

 return(1);
 }

 int
 FAR PASCAL
 Nfreinit(char FAR *ptr, long len)
 {

 return(1);
 }

 int
 FAR PASCAL
 Nfuninit(char FAR *ptr, long mdlen)
 {

 return(1);
 }
32 BEA TUXEDO Reference Manual

AEOaddtypesw(3)
The application Module Definition File:

 ; EXAMPLE.DEF file

 NAME EXAMPLE

 DESCRIPTION 'EXAMPLE for OS/2'

 EXETYPE OS/2

 EXPORTS
 Nfinit
 Nfreinit
 Nfuninit

See Also buffer (3), buildwsh (1), typesw (5)
BEA TUXEDO Reference Manual 33

AEPisblocked(3)

s
g

e
un.
 be

MI
AEPisblocked(3)

Name AEPisblocked- determine if a blocking call is in progress

Synopsis #include <atmi.h>
int far pascal AEPisblocked(void)

Description AEPisblocked () is an “ATMI Extension for OS/2 Presentation Manager” that allow
a OS/2 PM task to determine if it is executing while waiting for a previous blockin
call to complete.

Return Values AEPisblocked () returns 1 if there is an outstanding blocking function awaiting
completion. Otherwise, it returns 0.

Errors No errors are returned.

Portability This interface is supported only in OS/2 PM clients.

Comments Although a blocking ATMI call appears to an application as though it “blocks,” th
OS/2 PM ATMI DLL has to relinquish the processor to allow other applications to r
This means that it is possible for the application which issued the blocking call to
re-entered, depending on the message(s) it receives. In this instance, the
AEPisblocked () function can be used to ascertain whether the task has been
re-entered while waiting for an outstanding blocking call to complete. Note that AT
prohibits more than one outstanding call per thread.

See Also AEPsetblockinghook ()
34 BEA TUXEDO Reference Manual

AEPsetblockinghook(3)

t
re

 the

n

and
AEPsetblockinghook(3)

Name AEPsetblockinghook -establish an application-specific blocking hook function

Synopsis #include <atmi.h>
int _TM_FARPROC far pascal AEPsetblockinghook(_TM_FARPROC)

Description AEPsetblockinghook () is an “ATMI Extension for OS/2 Presentation Manager” tha
allows a OS/2 PM task to install a new function which the ATMI networking softwa
uses to implement blocking ATMI calls. It taks a pointer to the function address of
blocking function to be installed.

A default function, by which blocking ATMI calls are handled, is included. The
function AEPsetblockinghook () gives the application the ability to execute its ow
function at “blocking” time in place of the default function. If called with a NULL
pointer, the blocking hook function is reset to the default function.

When an application invokes a blocking ATMI operation, the operation is initiated
then a loop is entered which is equivalent to the following pseudocode:

for(;;) {
 execute operation in non-blocking mode
 if error
 break;
 if operation complete
 break;
 while(BlockingHook())
 ;
}

The default BlockingHook() function is equivalent to:

BOOL far pascal
win_default(void)
{
 QMSG qmsg;
 HAB hab;
 BOOL ret;

 /* get the next message if any */
 hab = WinQueryAnchorBlock(HWND_DESKTOP);
 if (ret = WinPeekMsg(hab, qmsg, NULL, 0, 0, PM_REMOVE)) {
 /* if we got one, process it */
 WinDispatchMsg(hab, qmsg);
 }
 /* TRUE if we got a message */
 return(ret);
}

BEA TUXEDO Reference Manual 35

AEPsetblockinghook(3)

h
DI
ing
 a

ard
The AEPsetblockinghook () function is provided to support those applications whic
require more complex message processing - for example, those employing the M
(multiple document interface) model. It is not intended as a mechanism for perform
general application functions. In particular, no ATMI functions may be issued from
custom blocking hook function.

Return Values AEPsetblockinghook () returns a pointer to the function address of the previously
installed blocking function. The application or library that calls the
AEPsetblockinghook () function should save this return value so that it can be
restored if necessary. (If “nesting” is not important, the application may simply disc
the value returned by AEPsetblockinghook () and eventually use
AEPsetblockinghook (NULL) to restore the default mechanism.)
AEPsetblockinghook () returns NULL on error and sets tperrno to indicate the error
condition.

Errors Under the following condition, AEPsetblockinghook () fails and sets tperrno to:

[TPEPROTO]
AEPsetblockinghook () was called while a blocking operation is in
progress.

Portability This interface is supported only in OS/2 PM clients.

Notices The blocking function is reset after tpterm (3) is called by the application.

See Also AEPisblocked ()
36 BEA TUXEDO Reference Manual

AEWaddtypesw(3)

o
he

ll
tch
es

ing

ines

s.

r is

type
he
AEWaddtypesw(3)

Name AEWaddtypesw -install or replace a user defined buffer type at execution time

Synopsis #include <atmi.h>
#include <tmtypes.h>

int FAR PASCAL AEWaddtypesw(TMTYPESW *newtype)

Description AEWaddtypesw () is an “ATMI Extension for Windows” that allows a Windows task t
install a new, or replace an existing user defined buffer type at execution time. T
argument to this function is a pointer to a TMTYPESW structure that contains the
information for the buffer type to be installed.

If the type and the subtype match an existing buffer type already installed, then a
the information is replaced with the new buffer type. If the information does not ma
the type and the subtype fields, then the new buffer type is added to the existing typ
registered with BEA TUXEDO system. For new buffer types, make sure that the
WSH(1) and other BEA TUXEDO system processes involved in the call process
have been built with the new buffer type.

The function pointers in the TMTYPESW array should be obtained by using the
MakeProcInstance() function, and these functions should appear in the Module
Definition file of the applications in the EXPORTS section.

The application can also use the BEA TUXEDO system’s defined buffer type rout
like _dfltinitbuf (), etc. The application and the BEA TUXEDO system’s buffer
routines can be intermixed in one user defined buffer type.

Return Values AEWaddtypesw () returns the number of user buffer types in the system on succes
AEWaddtypesw () returns -1 on error and sets tperrno to indicate the error condition.

Errors Under the following condition, AEWaddtypesw () fails and sets tperrno to:

[TPEINVAL]
AEWaddtypesw () was called and the type parameter was NULL.

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

Portability This interface is supported only in Windows clients. The preferred way to install a
switch is to add it to the BEA TUXEDO system typeswitch DLL. Please refer to t
BEA TUXEDO Administrators Guide for more information.
BEA TUXEDO Reference Manual 37

AEWaddtypesw(3)
Notices In the Windows 3.x 16 bit environment, the buffer type information is reset after
tpterm (3) is called by the application. FAR PASCAL is used only for the 16 bit
Windows 3.x environment.

Examples

#include <windows.h>
#include <atmi.h>
#include <tmtypes.h>

int FAR PASCAL Nfinit(char FAR *, long);
int (FAR PASCAL * lpFinit)(char FAR *, long);
int FAR PASCAL Nfreinit(char FAR *, long);
int (FAR PASCAL * lpFreinit)(char FAR *, long);
int FAR PASCAL Nfuninit(char FAR *, long);
int (FAR PASCAL * lpFuninit)(char FAR *, long);

TMTYPESW newtype =

{
"MYFML", "", 1024, NULL, NULL,
NULL, _fpresend, _fpostsend, _fpostrecv, _fencdec,
_froute
};
 lpFinit = MakeProcInstance(Nfinit, hInst);
 lpFreinit = MakeProcInstance(Nfreinit, hInst);
 lpFuninit = MakeProcInstance(Nfuninit, hInst);

 newtype.initbuf = lpFinit;
 newtype.reinitbuf = lpFreinit;
 newtype.uninitbuf = lpFuninit;

 if(AEWaddtypesw(newtype) == -1) {
 userlog("AEWaddtypesw failed %s", tpstrerror(tperrno));
 }
int
FAR PASCAL
Nfinit(char FAR *ptr, long len)
{

 return(1);
}

int
FAR PASCAL
Nfreinit(char FAR *ptr, long len)
{

38 BEA TUXEDO Reference Manual

AEWaddtypesw(3)
 return(1);
}

int
FAR PASCAL
Nfuninit(char FAR *ptr, long mdlen)
{

 return(1);
}

The application Module Definition File:

; EXAMPLE.DEF file

NAME EXAMPLE

DESCRIPTION 'EXAMPLE for Microsoft Windows'

EXETYPE WINDOWS

EXPORTS
 Nfinit
 Nfreinit
 Nfuninit

See Also buffer (3), buildwsh (1), typesw (5)
BEA TUXEDO Reference Manual 39

AEWisblocked(3)

o

e
un.
 be

ntered
its
AEWisblocked(3)

Name AEWisblocked -determine if a blocking call is in progress

Synopsis #include <atmi.h>
int far pascal AEWisblocked(void)

Description AEWisblocked () is an “ATMI Extension for Windows” that allows a Windows task t
determine if it is executing while waiting for a previous blocking call to complete.

Return Values AEWisblocked () returns 1 if there is an outstanding blocking function awaiting
completion. Otherwise, it returns 0.

Errors No errors are returned.

Portability This interface is supported only in DOS Windows clients.

Comments Although a blocking ATMI call appears to an application as though it “blocks,” th
Windows ATMI DLL has to relinquish the processor to allow other applications to r
This means that it is possible for the application which issued the blocking call to
re-entered, depending on the message(s) it receives. In this instance, the
AEWisblocked() function can be used to ascertain whether the task has been re-e
while waiting for an outstanding blocking call to complete. Note that ATMI prohib
more than one outstanding call per thread.

See Also AEWsetblockinghook ()
40 BEA TUXEDO Reference Manual

AEWsetblockinghook(3)

 to
ss of

n

and
AEWsetblockinghook(3)

Name AEWsetblockinghook- establish an application-specific blocking hook function

Synopsis #include <atmi.h>
int FARPROC far pascal AEWsetblockinghook(FARPROC)

Description AEWsetblockinghook () is an “ATMI Extension for Windows” that allows a
Windows task to install a new function which the ATMI networking software uses
implement blocking ATMI calls. It takes a pointer to the procedure instance addre
the blocking function to be installed.

A default function, by which blocking ATMI calls are handled, is included. The
function AEWsetblockinghook () gives the application the ability to execute its ow
function at “blocking” time in place of the default function. If called with a NULL
pointer, the blocking hook function is reset to the default function.

When an application invokes a blocking ATMI operation, the operation is initiated
then a loop is entered which is equivalent to the following pseudocode:

for(;;) {
 execute operation in non-blocking mode
 if error
 break;
 if operation complete
 break;
 while(BlockingHook())
 ;
}

The default BlockingHook() function is equivalent to:

BOOL far pascal
win_default(void)
{
 MSG msg;
 BOOL ret;
 /* get the next message if any */
 if (ret = PeekMessage(msg, NULL, 0, 0, PM_REMOVE)) {
 /* if we got one, process it */
 TranslateMessage(msg);
 DispatchMessage(msg);
 }
 /* TRUE if we got a message */
 return(ret);
}

BEA TUXEDO Reference Manual 41

AEWsetblockinghook(3)

h
DI

ing
 a

n 0

sly

ard
The AEWsetblockinghook () function is provided to support those applications whic
require more complex message processing-for example, those employing the M
(multiple document interface) model. It is not intended as a mechanism for perform
general application functions. In particular, no ATMI functions may be issued from
custom blocking hook function. Note that the blocking hook function should retur
to terminate the loop and non-zero to continue looping.

Return Values AEWsetblockinghook () returns a pointer to the procedure-instance of the previou
installed blocking function. The application or library that calls the
AEWsetblockinghook () function should save this return value so that it can be
restored if necessary. (If “nesting” is not important, the application may simply disc
the value returned by AEWsetblockinghook () and eventually use
AEWsetblockinghook (NULL) to restore the default mechanism.)
AEWsetblockinghook () returns NULL on error and sets tperrno to indicate the error
condition.

Errors Under the following condition, AEWsetblockinghook () fails and sets tperrno to:

[TPEPROTO]
AEWsetblockinghook () was called while a blocking operation is in
progress.

Portability This interface is supported only in DOS Windows clients.

Notices The blocking function is reset after tpterm (3) is called by the application.

See Also AEWisblocked ()
42 BEA TUXEDO Reference Manual

AEWsetunsol(3)

ient
ws

o

r is

sly
AEWsetunsol(3)

Name AEWsetunsol- post Windows message for TUXEDO unsolicited event

Synopsis #include <windows.h>
#include <atmi.h>
int far pascal AEWsetunsol(HWND hWnd, WORD wMsg)

Description In certain Microsoft Windows programming environments it is natural and conven
for the BEA TUXEDO system’s unsolicited messages to be posted to the Windo
event message queue.

AEWsetunsol () controls which window to notify, hWnd, and which Windows message
type to post, wMsg. When a TUXEDO unsolicited message arrives, a Windows
message is posted. lParam is set to the BEA TUXEDO system buffer pointer, or zer
if none. If lParam is non-zero, the application must call tpfree (3) to release the
buffer.

If wMsg is zero, any future unsolicted messages will be logged and ignored.

Return Values AEWsetunsol () returns \-1 on failure and sets tperrno to indicate the error condition.

Errors Under the following conditions, AEWsetunsol () fails and sets tperrno to:

[TPESYSTEM]
A BEA TUXEDO system error has occurred The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

Portability This interface is supported only in Microsoft Windows clients.

Notices AEWsetunsol () posting of Windows messages may not be activated simultaneou
with a tpsetunsol () callback routine. The most recent tpsetunsol () or
AEWsetunsol () request controls how unsolicited messages will be handled.

See Also tpsetunsol (3)
BEA TUXEDO Reference Manual 43

buffer(3c)

ypes

tion
eir

ate
g

nt
“*”.

ame
tion
 to be
eated

buffer(3c)

Name buffer(3c) -semantics of elements in tmtype_sw_t

Synopsis

int /* Initialize a new data buffer */
_tminitbuf(char *ptr, long len)
int /* Re-initialize a re-allocated data buffer */
_tmreinitbuf(char *ptr, long len)
int /* Un-initialize a data buffer to be freed */
_tmuninitbuf(char *ptr, long len)
long /* Process buffer before sending */
_tmpresend(char *ptr, long dlen, long mdlen)
void /* Process buffer after sending */
_tmpostsend(char *ptr, long dlen, long mdlen)
long /* Process buffer after receiving */
_tmpostrecv(char *ptr, long dlen, long mdlen)
long /* Encode/decode a buffer to/from a transmission format */
_tmencdec(int op, char *encobj, long elen, char *obj, long olen)
int /* Determine server group for routing based on data */ _tmroute(char
*routing_name, char *service, char *data, long \ len, char *group)
int /* Evaluate boolean expression on buffer’s data */ _tmfilter(char *ptr,
long dlen, char *expr, long exprlen)
int /* Extract buffer’s data based on format string */ _tmformat(char *ptr,
long dlen, char *fmt, char *result, long \ maxresult)

Description This page describes the semantics of the elements and routines defined in the
tmtype_sw_t structure. These descriptions are necessary for adding new buffer t
to a process' buffer type switch, tm_typesw . The switch elements are defined in
typesw(5) . The function names used in this entry are templates for the actual func
names defined by the BEA TUXEDO system as well as by applications adding th
own buffer types. The names map to the switch elements very simply: the templ
names are made by taking each function pointer's element name and prependin_tm
(for example, the element initbuf has the function name _tminitbuf).

The element type must be non-NULL and up to 8 characters in length. The eleme
subtype can be NULL, a string of up to 16 characters, or the wild card character,
If type is not unique in the switch, then subtype must be used; the combination of
type and subtype must uniquely identify an element in the switch.

A given type can have multiple sub-types. If all sub-types are to be treated the s
for a given type, then the wild card character, “*”, can be used. Note that the func
tptypes can be used to determine a buffer's type and sub-type if sub-types need
distinguished. If some subset of the sub-types within a particular type are to be tr
individually, and the rest are to be treated identically, then those which are to be
44 BEA TUXEDO Reference Manual

buffer(3c)

in the

e
 size
ify

 BEA
ust
r
he
type

er.
singled out with specific sub-type values should appear in the switch before the
sub-type designated with the wild card. Thus, searching for types and sub-types
switch is done from top to bottom, and the wild card sub-type entry accepts any
“leftover” type matches.

dfltsize is used when allocating or re-allocating a buffer. The larger of dfltsize
and the routines' size parameter is used to create or re-allocate a buffer. For som
types of structures, like a fixed sized C structure, the buffer size should equal the
of the structure. If dfltsize is set to this value, then the caller may not need to spec
the buffer's length to routines in which a buffer is passed. dfltsize can be 0 or less;
however, if tpalloc or tprealloc is called and its size parameter is also less than
or equal to 0, then the routine will fail. It is not recommended to set dfltsize to a
value less than 0.

Routine

Specifics

The names of the functions specified below are template names used within the
TUXEDO system. Any application adding new routines to the buffer type switch m
use names that correspond to real functions, either provided by the application o
library routines. If a NULL function pointer is stored in a buffer type switch entry, t
BEA TUXEDO system calls a default function that takes the correct number and
of arguments, and returns a default value.

_tminitbuf _tminitbuf is called from within tpalloc after a buffer has been allocated. It is
passed a pointer to the new buffer, ptr , along with its size so that the buffer can be
initialized appropriately. len is the larger of the length passed into tpalloc and the
default specified in dfltsize in that type's switch entry. Note that ptr will never be
NULL due to the semantics of tpalloc and tprealloc . Upon successful return, ptr
is returned to the caller of tpalloc .

If a single switch entry is used to manipulate many sub-types, then the writer of
_tminitbuf can use tptypes to determine the sub-type.

If no buffer initialization needs to be performed, specify a NULL function pointer.

Upon success, _tminitbuf returns 1. If the function fails, it returns -1 causing
tpalloc to also return failure setting tperrno to TPESYSTEM.

_tmreinitbuf _tmreinitbuf behaves the same as _tminitbuf except it is used to re-initialize a
re-allocated buffer. It is called from within tprealloc after the buffer has been
re-allocated.

If no buffer re-initialization needs to be performed, specify a NULL function point

Upon success, _tmreinitbuf returns 1. If the function fails, it returns -1 causing
tprealloc to also return failure setting tperrno to TPESYSTEM.
BEA TUXEDO Reference Manual 45

buffer(3c)

 can
r.

ion

to

 caller
n

ls,

uffer

tine
_tmuninitbuf _tmuninitbuf is called by tpfree before the data buffer is freed. _tmuninitbuf is
passed a pointer to the application portion of a data buffer, along with its size, and
be used to clean up any structures or state information associated with that buffeptr
will never be NULL due to tpfree 's semantics. Note that _tmuninitbuf should not
free the buffer itself.

If no processing needs to be performed before freeing a buffer, specify a NULL
function pointer.

Upon success, _tmuninitbuf returns 1. If the function fails, it returns -1 causing
tpfree to print a log message.

_tmpresend _tmpresend is called before a buffer is sent in tpcall , tpacall , tpconnect ,
tpsend , tpbroadcast , tpnotify , tpreturn , or tpforward . It is also called after
_tmroute but before _tmencdec . If ptr is non-NULL, pre-processing is performed
on a buffer before it is sent. _tmpresend 's first argument, ptr , is the application data
buffer passed into the send call. Its second argument, dlen , is the data's length as
passed into the send call. Its third argument, mdlen , is the actual size of the buffer in
which the data resides.

One important requirement on this function is that it ensures that when the funct
returns, the data pointed to by ptr can be sent “as is.” That is, since _tmencdec is
called only if the buffer is being sent to a dissimilar machine, _tmpresend must ensure
upon return that no element in ptr 's buffer is a pointer to data that is not contiguous
the buffer.

If no pre-processing needs to be performed on the data and the amount of data the
specified is the same as the amount that should be sent, specify a NULL functio
pointer. The default routine returns dlen and does nothing to the buffer.

Upon success, _tmpresend returns the amount of data to be sent. If the function fai
it returns -1 causing _tmpresend 's caller to also return failure setting tperrno to
TPESYSTEM.

_tmpostsend _tmpostsend is called after a buffer is sent in tpcall , tpbroadcast, tpnotify,

tpacall, tpconnect, or tpsend . This routine allows any post-processing to be
performed on a buffer after it is sent and before the function returns. Because the b
passed into the send call should not be different upon return, _tmpostsend is called to
repair a buffer changed by _tmpresend . This function's first argument, ptr , points to
the data sent as a result of _tmpresend . The data's length, as returned from
_tmpresend , is passed in as this function's second argument, dlen . The third
argument, mdlen , is the actual size of the buffer in which the data resides. This rou
is called only when ptr is non-NULL.

If no post-processing needs to be performed, specify a NULL function pointer.
46 BEA TUXEDO Reference Manual

buffer(3c)

,

en to
.

es.

ta's
ndent

or

ore

pecify

de

m a

used

n
_tmpostrecv _tmpostrecv is called after a buffer is received, and possibly decoded, in
tpgetrply, tpcall, tprecv, or in the BEA TUXEDO system's server abstraction
and before it is returned to the application. If ptr is non-NULL, _tmpostrecv allows
post-processing to be performed on a buffer after it is received and before it is giv
the application. Its first argument, ptr , points to the data portion of the buffer received
Its second argument, dlen , specifies the data's size coming in to _tmpostrecv . The
third argument, mdlen , specifies the actual size of the buffer in which the data resid

If _tmpostrecv changes the data length in post-processing, it must return the da
new length. The length returned is passed up to the application in a manner depe
on the call used (for example, tpcall sets the data length in one of its arguments f
the caller to check upon return).

The buffer's size might not be large enough for post-processing to succeed. If m
space is required, _tmpostrecv returns the negative absolute value of the desired
buffer size. The calling routine then resizes the buffer, and calls _tmpostrecv a
second time.

If no post-processing needs to be performed on the data and the amount of data
received is the same as the amount that should be returned to the application, s
a NULL function pointer. The default routine returns dlen and does nothing to the
buffer.

On success, _tmpostrecv returns the size of the data the application should be ma
aware of when the buffer is passed up from the corresponding receive call. If the
function fails, it returns -1 causing _tmpostrecv 's caller to return failure, setting
tperrno to TPESYSTEM.

_tmencdec _tmencdec is used to encode/decode a buffer sent/received over a network to/fro
machine having different data representations. The BEA TUXEDO system
recommends the use of XDR; however, any encoding/decoding scheme can be
that obeys the semantics of this routine.

This function is called by tpcall, tpacall, tpbroadcast, tpnotify,

tpconnect, tpsend, tpreturn, or tpforward to encode the caller's buffer only
when it is being sent to an “unlike” machine. In these calls, _tmencdec is called after
both _tmroute and _tmpresend , respectively. Recall from the description of
_tmpresend that the buffer passed into _tmencdec contains no pointers to data that is
not contiguous to the buffer.

On the receiving end, tprecv, tpgetrply , the receive half of tpcall and the server
abstraction all call _tmencdec to decode a buffer after they have received it from a
‘unlike” machine but before calling _tmpostrecv .
BEA TUXEDO Reference Manual 47

buffer(3c)

ata

 to

tion

,

.

ilar
ne

p that

as a

 server
_tmencdec 's first argument, op, specifies whether the function is encoding or
decoding data. op can be one of TMENCODE or TMDECODE.

When op is TMENCODE, encobj points to a buffer allocated by the BEA TUXEDO
system where the encoded version of the data will be copied. The un-encoded d
resides in obj . That is, when op is TMENCODE, _tmencdec transforms obj to its
encoded format and places the result in encobj . The size of the buffer pointed to by
encobj is specified by elen and is at least four times the size of the buffer pointed
by obj whose length is olen . olen is the length returned by _tmpresend.

_tmencdec returns the size of the encoded data in encobj (that is, the amount of data
to actually send). _tmencdec should not free either of the buffers passed into the
function.

When op is TMDECODE, encobj points to a buffer allocated by the BEA TUXEDO
system where the encoded version of the data resides as read off a communica
endpoint. The length of the buffer is elen . obj points to a buffer that is at least the
same size as the buffer pointed to by encobj into which the decoded data is copied.
The length of obj is olen . As obj is the buffer ultimately returned to the application
this buffer may be grown by the BEA TUXEDO system before calling _tmencdec to
ensure that it is large enough to hold the decoded data. _tmencdec returns the size of
the decoded data in obj . After _tmencdec returns, _tmpostrecv is called with obj
passed as its first argument, _tmencdec 's return value as its second, and olen as its
third. _tmencdec should not free either of the buffers passed into the function.

_tmencdec is called only when non-NULL data needs to be encoded or decoded

If no encoding or decoding needs to be performed on the data even when dissim
machines exist in the network, specify a NULL function pointer. The default routi
returns either olen (op equals TMENCODE) or elen (op equals TMDECODE).

On success, _tmencdec returns a non-negative length as described above. If the
function fails, it returns -1 causing _tmencdec 's caller to return failure, setting
tperrno to TPESYSTEM.

_tmroute The default for message routing is to route a message to any available server grou
offers the desired service. Each service entry in the UBBCONFIG file can specify the
logical name of some routing criteria for the service using the ROUTING parameter.
Multiple services can share the same routing criteria. In the case that a service h
routing criteria name specified, _tmroute is used to determine the server group to
which a message is sent based on data in the message. This mapping of data to
group is called “data-dependent routing.” _tmroute is called before a buffer is sent
(and before _tmpresend and _tmencdec are called) in tpcall, tpacall,

tpconnect, and tpforward .
48 BEA TUXEDO Reference Manual

buffer(3c)

The

to
up

vice,

ion

r

 a

ise

routing_name is the logical name of the routing criteria (as specified in the
UBBCONFIG file) and is associated with every service that needs data dependent
routing. service is the name of the service for which the request is being made.
parameter data points to the data that is being transmitted in the request and len is its
length. Unlike the other routines described in these pages, _tmroute is called even
when ptr is NULL. The group parameter is used to return the name of the group
which the request should be routed. This group name must match one of the gro
names listed in the UBBCONFIG file (and one that is active at the time the group is
chosen). If the request can go to any available server providing the specified ser
group should be set to the NULL string and the function should return 1.

If data dependent routing is not needed for the buffer type, specify a NULL funct
pointer. The default routine sets group to the NULL string and returns 1.

Upon success, _tmroute returns 1. If the function fails, it returns -1 causing
_tmroute 's caller to also return failure; as a result, tperrno is set to TPESYSTEM. If
_tmroute fails because a requested server or service is not available, tperrno is set
to TPENOENT.

If group is set to the name of an invalid server group, the function calling _tmroute
will return an error and set tperrno to TPESYSTEM.

_tmfilter _tmfilter is called by the Event Broker server to analyze the contents of a buffe
posted by tppost . An expression provided by the subscriber (tpsubscribe) is
evaluated with respect to the buffer's contents. If the expression is true, _tmfilter
returns 1 and the Event Broker performs the subscription's notification action.
Otherwise, if _tmfilter returns 0, the Event Broker does not consider this posting
“match” for the subscription.

If exprlen is -1, expr is interpreted as a null-terminated character string. Otherw
expr is interpreted as exprlen bytes of binary data. An exprlen of 0 indicates no
expression.

If filtering does not apply to this buffer type, specify a NULL function pointer. The
default routine returns 1 if there is no expression or if expr is an empty null-terminated
string. Otherwise the default routine returns 0.

_tmformat _tmformat is called by the Event Broker server to convert a buffer's data into a
printable string, based on a format specification named fmt . The Event Broker
converts posted buffers to strings as input for userlog or system notification actions.
BEA TUXEDO Reference Manual 49

buffer(3c)

s the
ring

he
The output is stored as a character string in the memory location pointed to by result .
Up to maxresult bytes are written in result , including a terminating null character.
If result is not large enough, _tmformat truncates its output. The output string is
always null terminated.

On success, _tmformat returns a non-negative integer. 1 means success, 2 mean
output string is truncated. If the function fails, it returns -1 and stores an empty st
in result .

If formatting does not apply to this buffer type, specify a NULL function pointer. T
default routine succeeds and returns an empty string in result .

See Also tpacall (3c), tpalloc (3c), tpcall (3c), tpconnect (3c), tpdiscon (3c),
tpfree (3c), tpgetrply (3c), tpgprio (3c), tprealloc (3c), tprecv (3c),
tpsend (3c), tpsprio (3c), tptypes (3c)
50 BEA TUXEDO Reference Manual

catgets(3)

r
catgets(3)

Name catgets -read a program message

Synopsis #include <nl_types.h>
char *catgets (nl_catd catd, int set_num, int msg_num, char *s)

Description catgets attempts to read message msg_num, in set set_num , from the message
catalogue identified by catd . catd is a catalogue descriptor returned from an earlie
call to catopen (3). s points to a default message string which will be returned by
catgets if the identified message catalogue is not currently available.

Diagnostics If the identified message is retrieved successfully, catgets returns a pointer to an
internal buffer area containing the null terminated message string. If the call is
unsuccessful because the message catalogue identified by catd is not currently
available, a pointer to s is returned.

See Also catopen (3).
BEA TUXEDO Reference Manual 51

catopen(3)

riable

m one
e
red to

rm
e files.

logues
catopen(3)

Name catopen , catclose -open/close a message catalogue

Synopsis #include <nl_types.h>
nl_catd catopen (char *name, int oflag)
int catclose (nl_catd catd)

Description catopen opens a message catalogue and returns a catalogue descriptor. name specifies
the name of the message catalogue to be opened. If name contains a “/ ” then name
specifies a pathname for the message catalogue. Otherwise, the environment va
NLSPATH is used. If NLSPATH does not exist in the environment, or if a message
catalogue cannot be opened in any of the paths specified by NLSPATH, then the default
path is used (see nl_types (5)).

The names of message catalogues, and their location in the filestore, can vary fro
system to another. Individual applications can choose to name or locate messag
catalogues according to their own special needs. A mechanism is therefore requi
specify where the catalogue resides.

The NLSPATH variable provides both the location of message catalogues, in the fo
of a search path, and the naming conventions associated with message catalogu
For example:

NLSPATH=/nlslib/%L/%N.cat:/nlslib/%N/%L

The metacharacter % introduces a substitution field, where %L substitutes the current
setting of the LANG environment variable (see following section), and %N substitutes the
value of the name parameter passed to catopen . Thus, in the above example, catopen
will search in /nlslib/$LANG/ name.cat , then in /nlslib /name/$LANG, for the
required message catalogue.

NLSPATH will normally be set up on a system wide basis (e.g., in /etc/profile) and
thus makes the location and naming conventions associated with message cata
transparent to both programs and users.

The full set of metacharacters is:
52 BEA TUXEDO Reference Manual

catopen(3)

nts
form

erates

ey

 field

uent
The LANG environment variable provides the ability to specify the user's requireme
for native languages, local customs and character set, as an ASCII string in the
LANG=language[_territory[.codeset]]

A user who speaks German as it is spoken in Austria and has a terminal that op
in ISO 8859/1 codeset, would want the setting of the LANG variable to be as follows:

LANG=De_A.88591

With this setting it should be possible for the user to find relevant catalogues if th
exist.

If the LANG variable is not set then the value of LC_MESSAGES as returned by
setlocale (3) is used. If this is NULL then the default path as defined in nl_types (5)
is used.

oflag is reserved for future use and should be set to 0. The results of setting this
to any other value are undefined.

catclose closes the message catalogue identified by catd .

Diagnostics If successful, catopen returns a message catalogue descriptor for use on subseq
calls to catgets (3) and catclose (3). Otherwise catopen () returns (nl_catd) -1 .
catclose returns 0 if successful, otherwise -1.

See Also catgets (3), setlocale (3), nl_types (5).

Metacharacters

%N The value of the name parameter passed to catopen .

%L The value of LANG.

%l The value of the language element of LANG.

%t The value of the territory element of LANG.

%c The value of the codeset element of LANG.

%% A single %.
BEA TUXEDO Reference Manual 53

change_atts(3)

n a

ds

 not
ch
 and
a

. It
change_atts(3)

Name change_atts- change field attributes on form

Synopsis #include <fml.h>
int change_atts(fbfr,fldid,occno,atts)
FBFR *fbfr;
FLDID fldid;
int occno;
char *atts;

Description change_atts is a function called by a server to alter dynamically field attributes o
form displayed by a data entry program. change_atts () adds a special field to fbfr ,
which is interpreted by a data entry program upon receiving the fielded buffer. fldid
and occno specify the field on the form whose attributes are to change. If two fiel
on the form have identical fldid and occno , both will change. atts should point to a
string of attributes. The available attributes are those allowed in the flags field of a
UFORM script, with the exception of the H and I attributes, which are not allowed.
Literal fields may not be altered to become protected or unprotected fields, and
protected and unprotected fields may not be altered to become literal fields. It is
necessary for atts to point to a complete list of attributes. Only those attributes whi
are to change need be included. For example, a field that is described as secret
unprotected on the UFORM script, can be changed to secret and protected with P as
its atts argument. atts may also point to the string RESTORE, in which case all of the
original attributes specified by the UFORM script are restored, and the dynamic
attributes are forgotten.

Servers in which change_atts () is called must link in libtfrm.a with the -f option
of buildserver(1).

Examples The following changes a field from secret and bold to non-secret and non-bold.
change_atts(fbfr, fldid, occno, “N0”);

Any code that uses change_atts () must link in libtfrm.a . The following example
shows how libtfrm.a should be specified on a buildserver (1) command line.

buildserver -s PRTFORM -f ${TUXDIR}/lib/formprint.o -f lib/libtfrm.a

Diagnostics change_atts () returns a 1 on success. It has two return codes to indicate failure
returns a zero on a failed fielded buffer operation. In this case, Ferror contains the
reason for failure. It returns a \-1 on all other failures.

See Also buildserver (1), compilation (5), TUXEDO Data Entry System Guide
54 BEA TUXEDO Reference Manual

decimal(3)
decimal(3)

Name decimal -decimal conversion and arithmetic routines

Synopsis

#include “decimal.h”

int
lddecimal(cp, len, np) /* load a decimal */
char*cp; /* input: location of compacted format */

int
len; /* input: length of compacted format */
dec_t*np; /* output: location of dec_t format */

void
stdecimal(np, cp, len) /* store a decimal */
dec_t*np; /* input: location of dec_t format */
char*cp; /* output: location of compacted format */
int len; /* input: length of compacted format */

int
deccmp(n1, n2) /* compare two decimal numbers */
dec_t*n1; /* input: number to be compared */
dec_t*n2; /* input: number to be compared */

int
dectoasc(np, cp, len, right) /* convert dec_t to ascii */
dec_t*np; /* input: number to be converted */
char*cp; /* output: number after conversion */
int len; /* input: length of output string */
int right; /* input: number of places to right of decimal point */

int
deccvasc(cp, len, np) /* convert ascii to dec_t */
char*cp; /* input: number to be converted */
int len; /* input: maximum length of number to be converted */
dec_t*np; /* output: number after conversion */

int
dectoint(np, ip) /* convert int to dec_t */
dec_t*np; /* input: number to be converted */
int *ip; /* output: number after conversion */

int
deccvint(in, np) /* convert dec_t to int */
int in; /* input: number to be converted */
dec_t*np; /* output: number after conversion */
BEA TUXEDO Reference Manual 55

decimal(3)
int
dectolong(np, lngp) /* convert dec_t to long */
dec_t*np; /* input: number to be converted */
long*lngp; /* output: number after conversion */

int
deccvlong(lng, np) /* convert long to dec_t */
longlng; /* input: number to be converted */
dec_t*np; /* output: number after conversion */

int
dectodbl(np, dblp) /* convert dec_t to double */
dec_t*np; /* input: number to be converted */
double *dblp; /* output: number after conversion */

int
deccvdbl(dbl, np) /* convert double to dec_t */
double *dbl; /* input: number to be converted */
dec_t*np; /* output: number after conversion */

int
dectoflt(np, fltp) /* convert dec_t to float */
dec_t*np; /* input: number to be converted */
float*fltp; /* output: number after conversion */

int
deccvflt(flt, np) /* convert float to dec_t */
double *flt; /* input: number to be converted */
dec_t*np; /* output: number after conversion */

int
decadd(*n1, *n2, *n3) /* add two decimal numbers */
dec_t*n1; /* input: addend */
dec_t*n2; /* input: addend */
dec_t*n3; /* output: sum */

int
decsub(*n1, *n2, *n3) /* subtract two decimal numbers */
dec_t*n1; /* input: minuend */
dec_t*n2; /* input: subtrahend */
dec_t*n3; /* output: difference */

int
decmul(*n1, *n2, *n3) /* multiply two decimal numbers */
dec_t*n1; /* input: multiplicand */
dec_t*n2; /* input: multiplicand */
dec_t*n3; /* output: product */

int
decdiv(*n1, *n2, *n3) /* divide two decimal numbers */
dec_t*n1; /* input: dividend */
dec_t*n2; /* input: divisor */
dec_t*n3; /* output: quotient */
56 BEA TUXEDO Reference Manual

decimal(3)

sion.
ta on

er

data

.
al

 is
e

ue on
Description These functions are provided as part of the CICS instantiation of the /Host Exten
The functions allow storage, conversion, and manipulation of packed decimal da
the BEA TUXEDO system. Note that the format in which the decimal data type is
represented on the BEA TUXEDO system is different from its representation und
CICS.

Native Decimal

Representation

Decimals are represented on native BEA TUXEDO system nodes using the dec_t
structure. This definition of this structure is as follows:

#define DECSIZE 16
struct decimal {
 short dec_exp; /* exponent base 100 */
 short dec_pos; /* sign: 1=pos, 0=neg, -1=null */
 short dec_ndgts; /* number of significant digits */
 char dec_dgts[DECSIZE]; /* actual digits base 100 */
};
typedef struct decimal dec_t;

It should never be necessary for programmers to directly access the dec_t structure,
but it is presented here nevertheless to give an understanding of the underlying
structure. If large amounts of decimal data need to be stored, the stdecimal () and
lddecimal () functions may be used to obtain a more compact format. dectoasc (),
dectoint (), dectolong (), dectodbl (), and dectoflt () allow the conversion of
decimals to other data types. deccvasc (), deccvint (), deccvlong (), deccvdbl (),
and deccvflt () allow the conversion of other data types to the decimal data type
deccmp() is the function which compares two decimals. It returns -1 if the first decim
is less than the second, 0 if the two decimals are equal, and 1 if the first decimal
greater than the second. A negative value other than -1 is returned if either of th
arguments is invalid. decadd (), decsub (), decmul (), and decdiv () perform arithmetic
operations on decimal numbers.

Return Value Unless otherwise stated, these functions return 0 on success and a negative val
error.
BEA TUXEDO Reference Manual 57

do_form(3)

ith

a

er

, the

 and
free

r.

t

 the
do_form(3)

Name do_form -form display subroutine

Synopsis #include “fml.h”

FBFR *
do_form(formname, fbfr)
char *formname;
FBFR **fbfr;

Description do_form () displays formname , collects input from a user, and returns a pointer to a
fielded buffer containing the information entered on a form. If the form was exited w
the abort function key, or by pressing the break key, then NULL is returned. On
system error, (FBFR *)-1 is returned. formname should be a file output by mc(1). If
formname begins with a slash (/) the given path is searched; otherwise, formname is
searched for in the directories listed in the MASKPATH environment variable. formname
should include the .M file extension. When do_form () is called, fbfr is either a pointer
to a pointer to a fielded buffer, a pointer to NULL, or a NULL pointer. If it is a point
to NULL or a NULL pointer, do_form () allocates the fielded buffer. If it is not NULL,
information contained in the fielded buffer is displayed on the screen. Upon return
value contained in fbfr , if it is not a NULL pointer, points to a fielded buffer
containing the screen content. If the value returned by the function is not a NULL
not a -1, then it points to the same fielded buffer. It is the caller's responsibility to
the fielded buffer pointed to by fbfr by calling tpfree (), regardless of the return
value of the function. do_form () calls formexit () on disastrous conditions. A default
version of formexit () exists in $TUXDIR/lib/libtfrm.a . do_form uses
tpalloc (3) to allocate a buffer and tpfree (3) must be used to free the fielded buffe

Application-defined function keys can be used (including re-mapping the default
command and control keys) by exporting the file name in the UDFK environmen
variable. The file format is described in udfk (5).

Examples This example displays the form supplied in a command line argument and writes
resulting fielded buffer on the standard output.

main(argc,argv)
int argc; char *argv[];
{
 FBFR *fbfr, *fbfr1;
 fbfr = (FBFR *)NULL;
 fbfr1 = do_form(argv[1],fbfr);
 if (fbfr1 == (FBFR *)NULL)
 fprintf(stderr, “user quit\en”);
 else if (fbfr1 == (FBFR *)-1)
58 BEA TUXEDO Reference Manual

do_form(3)

lled
ort

es

,
nu
 fprintf(stderr,\0”system error\en”);
 else
 Fprint(fbfr1);
 tpfree(fbfr);
}

Diagnostics If the form was exited with a transmit-form key (i.e., when a service would be ca
in mio (1)), a pointer to a fielded buffer is returned. If the form was exited with an ab
function key, or with the break key, NULL is returned and the fbfr argument contains
the pointer to the fielded buffer (if it is not a NULL pointer). On errors, such as
malloc (3) failures, or failure to read a file, a (FBFR *)-1 is returned.

Notices The form displayed allows full shell escapes.

When compiling, use

buildclient -o outputfile -f “appfiles” -l -ltfrm -l -lcurses -l -lm

where outputfile is the executable name, and appfiles are application files
needed.

CAVEAT do_form () is not designed to work with menu hierarchies, specifically calling servic
from within the hierarchy. When a transmit-form key is entered from a form,
do_form () returns the associated fielded buffer. If the form is not a top-level form
do_form () pops all levels of forms and returns. Data is not propagated up the me
hierarchy, and the current state (the position within the menu hierarchy) is lost.

See Also mio (1), malloc (3) in a UNIX System reference manual, TUXEDO Data Entry

System Guide , TUXEDO FML Guide
BEA TUXEDO Reference Manual 59

formprint(3)

The

er

he

ame

d in

is the
formprint(3)

Name formprint -print a form

Synopsis #include “fml.h”
extern int LINES;
extern int COLS;
formprint(frmname,fbfr,cmd)
char *frmname;
FBFR *fbfr;
char *cmd;
form1print(frmname,fbfr,file,formfeed, lines, pages)
char *frmname;
FBFR *fbfr;
FILE *file;
char *formfeed;
int *lines;
int *pages;
form2print(frmname,fbfr,buffer,formfeed, lines, pages)
char *frmname;
FBFR *fbfr;
char *buffer;
char *formfeed;
int *lines;
int *pages;

Description The formprint routines accept the name of a form, frmname , and a fielded buffer,
fbfr , and replace field areas on the form with the contents of the fielded buffer.
resulting form is output in a format suitable for printing. The default value for LINES
is 66; for COLS it is 132. The routines differ, in that each directs its output to anoth
medium. All three routines have frmname and fbfr as common parameters. frmname
should be the name of a standard UFORM form, without the .M suffix. If frmname is
null, the name of the form is assumed to be in the reserved FORMNAM field in t
fielded buffer.

formprint () places its output in a temporary file, and then executes cmd on that file.
%s should be substituted for the temporary file name wherever the temporary file n
would appear in the cmd string. If cmd is null, lp %s is assumed to be the command
string. If the USPOOLDIR environment variable is set, the temporary file is create
the $USPOOLDIR directory, otherwise the temporary file is created in /tmp .

form1print () places its output in file . The formfeed string is output at the end of
each page. Upon successful return, page is set to the number of pages output, and
lines is set to the number of lines on the last page. The number of pages output
same as the number of pages on the form.
60 BEA TUXEDO Reference Manual

formprint(3)

ed
form2print () is identical to form1print (), except instead of placing its output in
file , it places its output in buffer . buffer should be large enough to handle any
anticipated (and unanticipated) output.

Examples formprint(NULL,fbfr,”cat %s >/dev/tty”) is an acceptable invocation of
formprint . It sends the form named in the reserved FORMNAM field of the field
buffer to /dev/tty .

Diagnostics These routines return 1 on success and \-1 on failure.

Notices It is not possible to link these routines and the curses (3) library (libcurses.a) into
one program.

See Also FRMPRT(5), curses (3X) in a UNIX System reference manual
BEA TUXEDO Reference Manual 61

frmmisc(3)

ld
ould
. The

is

e
ot

the
frmmisc(3)

Name frmmisc -miscellaneous forms routines

Synopsis #include “fml.h”

extern char *extmskpath; /* maskpath */
extern char *extcache; /* mask cache */

int frmval(frmname,fbfr,fldid,oc,errmsg)
char *frmname; /* form name, without the .M suffix */
FBFR *fbfr; /* fielded buffer to be validated */
FLDID *fldid; /* field id of field in error */
int *oc; /* occurrence number of field in error */
char **errmsg; /* error message for incorrect field */

int frmflds(frmname,fldids,occs,max)
char *frmname; /* form name, without the .M suffix */
FLDID *fldids; /* points to array of field ids */
int *occs; /* points to array of occurrences */
int max; /* size of fldids and occs arrays */

Description frmval () validates a fielded buffer, fbfr , based on the validations present in the
compiled mask frmname . It returns 1 if fbfr passes the validation, \-1 if frmname is
non-existent or can't be read in for any reason, and 0 if fbfr fails the validations. In
the last case fldid and occno point to the field id and occurrence number of the fie
in error. errmsg points to a character array that contains the error message that w
appear on the form's status line if the form were actually displayed on the screen
value pointed to by errmsg is valid only until the next call of frmval ().

frmflds () returns the number of fields present in frmname and places the field ids and
occurrence numbers of those fields in arrays fldids and occs respectively. Only max
fields are placed in the arrays, however the actual number of fields on the mask
always returned. frmflds () returns a \-1 if it couldn't access frmname for any reason.

Prior to calling these routines extmskpath should be set to the mask path, and
extcache should be set to the mask cache address (see loadfiles(1)). When thes
routines are called from within a validation function that is linked into mio(1) it is n
necessary to initialize these variables because they are initialized by mio . For the
routines listed above, frmname should be passed as the form name without the .M
suffix.

Programs callling these functions should be linked with the following libraries in
given order:
62 BEA TUXEDO Reference Manual

frmmisc(3)
$TUXDIR/lib/libtfrm.a,
$TUXDIR/lib/libfml.a,
$TUXDIR/lib/libgp.a,
and the standard math library.

Notices The callers of these routines may want to supply their own version of formexit , a
routine that is called in fatal situations, such as malloc failures.

See Also loadfiles (1), mio (1)
BEA TUXEDO Reference Manual 63

gp_mktime(3)

70).

ricted
, the

er
s

e

one.
me,
zero,
 the
gp_mktime(3)

Name gp_mktime -converts a tm structure to a calendar time

Synopsis #include <time.h>
time_t gp_mktime (struct tm *timeptr);

Description gp_mktime () converts the time represented by the tm structure pointed to by timeptr
into a calendar time (the number of seconds since 00:00:00 UTC, January 1, 19

The tm structure has the following format.

struct tm {
 int tm_sec; /* seconds after the minute [0, 61] */
 int tm_min; /* minutes after the hour [0, 59] */
 int tm_hour; /* hour since midnight [0, 23] */
 int tm_mday; /* day of the month [1, 31] */
 int tm_mon; /* months since January [0, 11] */
 int tm_year; /* years since 1900 */
 int tm_wday; /* days since Sunday [0, 6] */
 int tm_yday; /* days since January 1 [0, 365] */
 int tm_isdst; /* flag for daylight savings time */
};

In addition to computing the calendar time, gp_mktime normalizes the supplied tm
structure. The original values of the tm_wday and tm_yday components of the
structure are ignored, and the original values of the other components are not rest
to the ranges indicated in the definition of the structure. On successful completion
values of the tm_wday and tm_yday components are set appropriately, and the oth
components are set to represent the specified calendar time, but with their value
forced to be within the appropriate ranges. The final value of tm_mday is not set until
tm_mon and tm_year are determined.

The original values of the components may be either greater than or less than th
specified range. For example, a tm_hour of -1 means 1 hour before midnight, tm_mday
of 0 means the day preceding the current month, and tm_mon of -2 means 2 months
before January of tm_year .

If tm_isdst is positive, the original values are assumed to be in the alternate timez
If it turns out that the alternate timezone is not valid for the computed calendar ti
then the components are adjusted to the main timezone. Likewise, if tm_isdst is
the original values are assumed to be in the main timezone and are converted to
alternate timezone if the main timezone is not valid. If tm_isdst is negative, the
correct timezone is determined and the components are not adjusted.
64 BEA TUXEDO Reference Manual

gp_mktime(3)

 be

fault
Local timezone information is used as if gp_mktime had called tzset .

gp_mktime returns the specified calendar time. If the calendar time cannot be
represented, the function returns the value (time_t)-1.

Example What day of the week is July 4, 2001?

 #include <stdio.h>
 #include <time.h>

 static char *const wday[] = {
 "Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday", "-unknown-"
 };

 struct tm time_str;
 /*...*/
 time_str.tm_year = 2001 - 1900;
 time_str.tm_mon = 7 - 1;
 time_str.tm_mday = 4;
 time_str.tm_hour = 0;
 time_str.tm_min = 0;
 time_str.tm_sec = 1;
 time_str.tm_isdst = -1;
 if (gp_mktime(time_str) == -1)
 time_str.tm_wday=7;
 printf("%s\en", wday[time_str.tm_wday]);

See Also ctime (3C), getenv (3C), timezone (4)

Notices tm_year of the tm structure must be for year 1970 or later. Calendar times before
00:00:00 UTC, January 1, 1970 or after 03:14:07 UTC, January 19, 2038 cannot
represented.

Portability On systems where the C compilation system already provides the ANSI C mktime
function, gp_mktime simply calls mktime to do the conversion. Otherwise, the
conversion is provided directly in gp_mktime .

In the later case, the TZ environment variable must be set. Note that in many
installations, TZ is set to the correct value by default when the user logs on. The de
value for TZ, if not set, is GMT0. The format for TZ is the following.
stdoffset[dst[offset],[start[time],end[time]]]
BEA TUXEDO Reference Manual 65

gp_mktime(3)

and
:),

ed

. One
l
onds)
table
n;
''

re

s.
e.

ll
ible

it

the
std and dst
Three or more bytes that are the designation for the standard (std) and
daylight savings time (dst) timezones. Only std is required, if dst is
missing, then daylight savings time does not apply in this locale. Upper-
lower-case letters are allowed. Any characters except a leading colon (
digits, a comma (,), a minus (-) or a plus (+) are allowed.

offset
Indicates the value one must add to the local time to arrive at Coordinat
Universal Time. The offset has the form: hh[:mm[:ss]] The minutes (mm)
and seconds (ss) are optional. The hour (hh) is required and may be a single
digit. The offset following std is required. If no offset follows dst ,
daylight savings time is assumed to be one hour ahead of standard time
or more digits may be used; the value is always interpreted as a decima
number. The hour must be between 0 and 24, and the minutes (and sec
if present between 0 and 59. Out of range values may cause unpredic
behavior. If preceded by a ``-'', the timezone is east of the Prime Meridia
otherwise it is west (which may be indicated by an optional preceding ``+
sign).

start /time ,end /time
Indicates when to change to and back from daylight savings time, whe
start /time describes when the change from standard time to daylight
savings time occurs, and end /time describes when the change back happen
Each time field describes when, in current local time, the change is mad
The formats of start and end are one of the following:

Jn
The Julian day n (1 n 365). Leap days are not counted. That is, in a
years, February 28 is day 59 and March 1 is day 60. It is imposs
to refer to the occasional February 29.

n
The zero-based Julian day (0 n 365). Leap days are counted, and
is possible to refer to February 29.

Mm.n.d
The dth day, (0 d 6) of week n of month m of the year (1 n 5, 1 m 12),
where week 5 means ``the last d-day in month m'' which may occur in
either the fourth or the fifth week). Week 1 is the first week in which
dth day occurs. Day zero is Sunday.

Implementation specific defaults are used for start and end if these optional fields
are not given.

The time has the same format as offset except that no leading sign (``-'' or
``+'') is allowed. The default, if time is not given is 02:00:00.
66 BEA TUXEDO Reference Manual

maskprt(3)

n.

the
maskprt(3)

Name maskprt- send mask to FRMPRT server

Synopsis maskprt(fbfr)
FBFR \(**fbfr;

Description The function maskprt () is used to print a fielded buffer according to a form definitio
It could be used, for example, to get a hard copy of the form. maskprt () sends the
formatted buffer to the BEA TUXEDO system supplied server called FRMPRT(5). The
buffer must be of type FML, and must be obtained by a call to tpalloc(3). FRMPRT()
accepts the buffer, prints it into a UNIX text file, then calls a command to output
file.

maskprt () calls tpacall (3) to send the message to FRMPRT(5). It fails [TPNOENT] if
FRMPRT(5) is not an active server.

Example maskprt(xxxbuf);

See Also FRMPRT(5), tpalloc (3), tpcall (3)
BEA TUXEDO Reference Manual 67

mods(3)

ied
he

r.
mods(3)

Name mods- modified mask field routines

Synopsis #include “fml.h”
#include “mods.h”

get_mods(fbfr,mod_array,size_mod_array)
FBFR *fbfr;
struct track_mods *mod_array;
int size_mod_array;

mods_needed(fbfr)
FBFR *fbfr;

set_mods(fbfr,fldid,occno,cmd)
FBFR *fbfr;
FLDID fldid;
int occno;
char *cmd;

int fld_mod(fbfr, fldid, occno)
FBFR *fbfr;
FLDID fldid;
int occno;

Description The mods routines are used by servers communicating with mio (1) to determine which
mask fields have been modified. All the routines described below, have fbfr as their
first argument. fbfr is the fielded buffer returned to a server by mio .

get_mods () places the fldid and occurrence numbers of fields that have been
modified on a mio mask into an array of structures, mod_array , supplied by the caller.
Only size_mod_array entries will be made in mod_array . mods_needed () should be
called to determine the actual size_mod_array needed to hold all modified field
entries. Once a field has been changed on a mask, it will exist in the list of modif
fields until one of the following three things happens: a new mask is displayed, t
modified field is reset with a call to set_mods (), or the user clears the entire screen
with the clear screen function key. get_mods () returns a -1 on an error, and a
non-negative number indicating the number of entries placed in mod_array on
success. When an error indication is returned, Ferror contains the reason for the erro
68 BEA TUXEDO Reference Manual

mods(3)

e
d

.

nal

d.
mods_needed () returns the number of entries needed in mod_array to hold all
modified field information returned by get_mods (). It returns a -1 on an internal
failure, in which case Ferror contains the reason for failure. The value returned by
mods_needed () may be passed directly to get_mods (). If get_mods () finds a -1 in its
size_mod_array parameter it will also return a 0.

set_mods () sets the modified status of all fields on an mio mask with field identifier
fldid and occurence number occno based on cmd. cmd may be either of the strings
“MOD_SET” or “MOD_RESET”, enclosed in quotation marks as shown. If cmd is
“MOD_RESET” the indicated fields are not returned in the modified list until they ar
changed again. If cmd is “MOD_SET” the indicated fields always appear in the modifie
list, until one of the three conditions listed under the get_mods () routine is met. If
fldid is zero then cmd applies to all protected and unprotected fields on the mask
set_mods () returns a 0 on an invalid cmd, a -1 on an FML error, in which case the
reason for the error is in Ferror , and a 1 on success. If the Ferror is FNOSPACE the
caller should Frealloc(3) the fielded buffer and try again.

fld_mod () returns a 1 if a field specified by fldid and occno was modified. It returns
a 0 if the specified field was not modified, and a -1 on an internal error. The inter
error is usually due to a failed malloc (3).

Servers in which mods routines are called must link in libtfrm.a with the -f option
of buildserver(1).

Notices Only modifications to fields done through the standard input are tracked.
Modifications from other sources, such as asynchronous updates, are not tracke

See Also buildserver (1), Frealloc (3), TUXEDO FML Guide
BEA TUXEDO Reference Manual 69

nl_langinfo(3)

 The

a
.

nl_langinfo(3)

Name nl_langinfo -language information

Synopsis #include <nl_types.h>
#include <langinfo.h>

char *nl_langinfo (nl_item item);

Description nl_langinfo returns a pointer to a null-terminated string containing information
relevant to a particular language or cultural area defined in the programs locale.
manifest constant names and values of item are defined by langinfo.h .

For example:

nl_langinfo (ABDAY_1);

would return a pointer to the string “Dim” if the identified language was French and
French locale was correctly installed; or “Sun” if the identified language was English

Diagnostics If setlocale (3) has not been called successfully, or if langinfo (5) data for a
supported language is either not available or item is not defined therein, then
nl_langinfo returns a pointer to the corresponding string in the C locale. In all
locales, nl_langinfo returns a pointer to an empty string if item contains an invalid
setting.

Notices The array pointed to by the return value should not be modified by the program.
Subsequent calls to nl_langinfo may overwrite the array.

See Also setlocale (3), strftime (3), langinfo (5), nl_types (5).
70 BEA TUXEDO Reference Manual

recomp(3)

g

ility

iate
ing

mand

luded

se

recomp(3)

Name recomp , rematch -regular expression compile/execute

Synopsis char *recomp(pattern-1, [pattern-2, ...], 0)
char *pattern-1, [*pattern-2, ...];

extern int _Cerrnbr;
extern char *_Cerrmsg[];

char *rematch(pat, text, [substr-0, ..., substr-9,] 0);
char *pat, *text, [*substr-0, ..., *substr-9];

extern char *_Mbegin;
extern int _Merrnbr;
extern char *_Merrmsg[];
extern char _Eol;

Description The routines, recomp () and rematch (), provide a regular expression pattern matchin
scheme for C. There are two parts: a pattern compiler, recomp (); and a pattern
interpreter, rematch (). They are, in effect and in spirit, extensions of the standard
routines, regcmp (3) and regex (3)

Significant features are the inclusion of regular expression alternation and portab
of the code.

recomp () compiles a pattern, in the form of a regular expression, into an intermed
code sequence. rematch () then searches user text for a pattern match by interpret
the codes.

The code sequence, an array of characters, can be computed off-line by the com
rex (1), which reads regular expressions from the standard input and writes the
corresponding character arrays to the standard output. The output can then be inc
in a regular C compile.

Regular

Expressions

The patterns for these routines are given with regular expressions, much like tho
used in the UNIX System editor, ed(1). The alternation operator, (|), has been added
along with some other practical things. In general, however, there should be few
surprises.

Regular expressions (REs) are constructed by applying any of the following
production rules one or more times.
BEA TUXEDO Reference Manual 71

recomp(3)

w).

. A

in
last
”

 set,

 is
Regular Expressions

Rule Matching Text

character itself (character is any ASCII character except the special ones mentioned belo

\ character itself except as follows:

� \\ -- newline

� \\t -- tab

� \\b -- backspace

� \\r -- carriage return

� \\f -- formfeed

\ special-character its unspecial self. The special characters are . * + ? | () [{ and \\ .

. -- any character except the end-of-line character (usually newline or null).

^ -- beginning of the line.

$ -- end-of-line character.

[class] any character in the class denoted by a sequence of characters and/or ranges
range is given by the construct character-character. For example, the character
class, [a-zA-Z0-9_], will match any alphameric character or “_”. To be included
the class, a hyphen, “-”, must be escaped (preceded by a “\\”) or appear first or
in the class. A literal “]” must be escaped or appear first in the class. A literal “^
must be escaped if it appears first in the class.

[^ class] any character in the complement of the class with respect to the ASCII character
excluding the end-of-line character.

RE RE the sequence. (catenation)

RE | RE either the left RE or the right RE. (left to right alternation)

RE * zero or more occurrences of RE.

RE + one or more occurrences of RE.

RE ? zero or one occurrences of RE.

RE { n } n occurrences of RE. n must be between 0 and 255, inclusive.

RE { m, n } m through n occurrences of RE, inclusive. A missing m is taken to be zero. A
missing n denotes m or more occurrences of RE.

(RE) explicit precedence/grouping.

(RE) $ n the text matching RE is copied into the nth user buffer. n may be 0 thru 9. User
buffers are cleared before matching begins and loaded only if the entire pattern
matched.
72 BEA TUXEDO Reference Manual

recomp(3)

y are:

sion.
 as the

ason

es,
There are three levels of precedence. In order of decreasing binding strength the

� catenation closure (*,+,?,{...})

� catenation

� alternation (|)

As indicated above, parentheses are used to give explicit precedence.

recomp -

Regular

Expression

Compiler

recomp () concatenates its arguments up to a terminating zero into a single expres
The expression is then compiled into a character array whose address is returned
function value.

Space for the array is obtained from the standard C routine, malloc (3), and may be
released (by the user) with a call to the standard free (3) routine.

recomp () returns a zero (NULL) value if the pattern cannot be processed. The re
is indicated by a global variable, _Cerrnbr , which is set to a non-zero value on any
failure. _Cerrnbr may be used directly or as an index into a table of error messag
_Cerrmsg . _Cerrnbr is reset on each call to recomp (). The possible values for
_Cerrnbr and the corresponding messages from _Cerrmsg are given below.

Regular Expression Compiler

_Cerrnbr _Cerrmsg[_Cerrnbr]

0 “Ok”

1 “Syntax error at col colnbr, char ‘char’”

(colnbr is the position where the error is discovered; char is the character at
that position)

2 “Out of node storage”

3 “Out of vector storage”

4 “Too many OR's”

5 “More than 255 repetitions”

(a number in the "rE{...}" construct is greater than 255)

6 “Negative range”

(a range for a character class or a closure is given backward)

7 “Out of heap storage”

(malloc failed)
BEA TUXEDO Reference Manual 73

recomp(3)

d the
gth,

e
ment

d

g.
s
Conditions that cause _Cerrnbr values of 2, 3, and 4 relate to the size of recomp ()'s
internal data structures and are unlikely to occur.

The first and second characters of the code array form the least significant byte an
most significant byte, respectively, of an unsigned 16 bit quantity that gives the len
in bytes, of the entire array. This value will prove useful for copying or otherwise
manipulating the array.

rematch --

Regular

Expression

Matcher

rematch () interprets the code sequence produced by recomp () to search a user string
for a match. When a match is found, rematch () returns as its value the address of th
first character beyond the matching text (which may then be used as the text argu
in a subsequent call to rematch ()). Also, the variable _Mbegin is set to the address of
the first character of the matching text.

Any text matching a specified sub-pattern (see “(rE) $ n ” above) is copied into
the corresponding user buffer, providing one was supplied on the call. All supplie
user buffers are reset on each rematch () call and filled only on a successful match.

Note: rematch (), unlike its role model, regex (3), requires a zero terminating
argument.

rematch () returns NULL if no match can be found or if something else goes wron
If no match is found the variable, _Merrnbr , is set to zero. If something worse happen
it is set to a non-zero value. As above, _Merrnbr serves as an index for a table of
diagnostic messages as indicated below.

_Merrnbr _Merrmsg[_Merrnbr]

0 “Ok”

(If rematch () returned NULL, no match was found)

1 “Too many closures”

2 “Line too long”

3 “Corrupt vector”

(check recomp () for failure)

4 “More than 10 substr args”

(User probably forgot to terminate rematch () arguments with a zero)

5 “Too many assignments”
74 BEA TUXEDO Reference Manual

recomp(3)

ta

rn

part,

art,

ase
_Merrnbr values of 1, 2, or 5 are not likely to occur. They relate to the size of da
structures used by rematch ().

The variable _Eol is the current end-of-line character. It is initialized to “\0 ” but may
be changed by the user to other reasonable values (e.g., “\n ”). The end-of-line
character determines what the special character, $, matches.

Example The following program scans its input for C identifiers and prints each one on a
separate line.

#include <stdio.h>
main()
{
 char *recomp(), *rematch();
 char *patVect, *cursor, line[100], usrBuf[100];

 patVect = recomp("([a-zA-Z_][a-zA-Z0-9_]*)$0", 0);

 while (gets(line)) {
 cursor = line;
 while (cursor=rematch(patVect,cursor,usrBuf,0))
 printf("%sn", usrBuf);
 }
}

Note the use of the variable, cursor , to indicate a successful match as well as to
provide (on success) the starting point for the next search. A less courageous
programmer would check recomp ()'s return value and restrict the length of the patte
match to the receiving buffer's size (e.g., "{0,98}" instead of "*").

Implementation recomp () and rematch () are written in portable C code. recomp () employs YACC,
which accounts for the fact that it is bigger and somewhat slower than its counter
regcmp (3). The intermediate code produced by recomp () is generally more compact
than that of regcmp (3).

rematch () is about the same size and has about the same speed as its counterp
regex (3).

Notices Support for the functions described in this manual page will be withdrawn in Rele
5.0 of the BEA TUXEDO system.

See Also rex (1), ed(1) in a UNIX System reference manual, regcmp (3), malloc (3), free (3),
regex (3) in a UNIX System reference manual
BEA TUXEDO Reference Manual 75

rpc_sm_allocate(3)

ment
server

ose

 set

f frees

t free

s
sible
rpc_sm_allocate(3)

Name rpc_sm_allocate , rpc_ss_allocate -allocates memory within the RPC stub
memory management scheme

Synopsis #include <rpc/rpc.h>
idl_void_p_t rpc_sm_allocate(unsigned32 size, unsigned32 *status)
idl_void_p_t rpc_ss_allocate(unsigned32 size)

Description Applications call rpc_sm_allocate (3) to allocate memory within the RPC stub
memory management scheme. The input parameter, size , specifies in bytes, the size
of memory to be allocated. Before a call to this routine, the stub memory manage
environment must have been established. For service code that is called from the
stub, the stub itself normally establishes the necessary environment. When
rpc_sm_allocate is used by code that is not called from the stub, the application
must establish the required memory management environment by calling
rpc_sm_enable_allocate (3).

Specifically, if the parameters of a server stub include any pointers other than th
used for passing parameters by reference or the [enable_allocate] attribute is
specified for the operation in the ACS file, then the environment is automatically
up. Otherwise, the environment must be set up by the application by calling
rpc_sm_enable_allocate .

When the stub establishes the memory management environment, the stub itsel
any memory allocated by rpc_sm_allocate . The application can free such memory
before returning to the calling stub by calling rpc_sm_free (3).

When the application establishes the memory management environment, it mus
any memory allocated, either by calling rpc_sm_free or by calling
rpc_sm_disable_allocate (3).

The output parameter, status , returns the status code from this routine. This statu
code indicates whether the routine completed successfully or, if not, why not. Pos
status codes and their meanings include:

rpc_s_ok
Always returned. The return value is used to determine failure.

rpc_ss_allocate is the exception-returning version of this function and has no
status output parameter. No exceptions are raised.
76 BEA TUXEDO Reference Manual

rpc_sm_allocate(3)

e ISO
Return Values On success, the routines return a pointer to the allocated memory. Note that in th
standard C environments, idl_void_p_t is defined as void * and in other
environments is defined as char * . Insufficient memory is reported by returing a
NULL pointer.

See Also rpc_sm_free (3), rpc_sm_enable_allocate (3), rpc_sm_disable_allocate (3) ,
BEA TUXEDO TxRPC Guide
BEA TUXEDO Reference Manual 77

rpc_sm_client_free(3)

a

d by
hich

s
sible

no
rpc_sm_client_free(3)

Name rpc_sm_client_free , rpc_ss_client_free -frees memory returned from a client
stub

Synopsis

#include <rpc/rpc.h>
void rpc_sm_client_free (idl_void_p_t node_to_free, unsigned32 *status)
void rpc_ss_client_free (idl_void_p_t node_to_free)

Description The rpc_sm_client_free routine releases memory allocated and returned from
client stub. The input parameter, node_to_free , specifies a pointer to memory
returned from a client stub. Note that in the ISO standard C environments,
idl_void_p_t is defined as void * and in other environments is defined as char * .

This routine enables a routine to deallocate dynamically allocated memory returne
an RPC call without knowledge of the memory management environment from w
it was called.

Note that this routine is always called from client code, even if the code can is
executing as part of a server.

The output parameter, status , returns the status code from this routine. This statu
code indicates whether the routine completed successfully or, if not, why not. Pos
status codes and their meanings include:

rpc_s_ok
Success.

rpc_ss_client_free is the exception-returning version of this function and has
status output parameter. No exceptions are raised.

Return Values None.

See Also rpc_sm_free (3), rpc_sm_set_client_alloc_free (3),
rpc_sm_swap_client_alloc_free (3), TUXEDO TxRPC Guide
78 BEA TUXEDO Reference Manual

rpc_sm_disable_allocate(3)

ated

to

s
sible

rpc_sm_disable_allocate(3)

Name rpc_sm_disable_allocate, rpc_sm_disable_allocate-releases resources and alloc
memory within the stub memory management scheme

Synopsis #include <rpc/rpc.h>
void rpc_sm_disable_allocate(unsigned32 *status);
void rpc_ss_disable_allocate(void);

Description The rpc_sm_disable_allocate routine releases all resources acquired by a call
rpc_sm_enable_allocate (3), and any memory allocated by calls to
rpc_sm_allocate (3) after the call to rpc_sm_enable_allocate was made.

The rpc_sm_enable_allocate and rpc_sm_disable_allocate routines must be
used in matching pairs. Calling this routine without a previous matching call to
rpc_sm_enable_allocate results in unpredictable behavior.

The output parameter, status , returns the status code from this routine. This statu
code indicates whether the routine completed successfully or, if not, why not. Pos
status codes and their meanings include:

rpc_s_ok
Success.

rpc_ss_disable_allocate is the exception-returning version of this function and
has no status output parameter. No exceptions are raised.

Return Values None.

See Also rpc_sm_allocate (3), rpc_sm_enable_allocate (3), BEA TUXEDO TxRPC Guide
BEA TUXEDO Reference Manual 79

rpc_sm_enable_allocate(3)

lf. A
 made

e that

b).

s
sible

as

rpc_sm_enable_allocate(3)

Name rpc_sm_enable_allocate , rpc_ss_enable_allocate -enables the stub memory
management environment

Synopsis #include <rpc/rpc.h>
void rpc_sm_enable_allocate(unsigned32 *status)
void rpc_ss_enable_allocate(void)

Description Applications can call rpc_sm_enable_allocate to establish a stub memory
management environment in cases where one is not established by the stub itse
stub memory management environment must be established before any calls are
to rpc_sm_allocate (3). For service code called from the server stub, the stub
memory management environment is normally established by the stub itself. Cod
is called from other contexts needs to call rpc_sm_enable_allocate before calling
rpc_sm_allocate (e.g., if the service code is called directly instead of from the stu

The output parameter, status , returns the status code from this routine. This statu
code indicates whether the routine completed successfully or, if not, why not. Pos
status codes and their meanings include:

rpc_s_ok
Success.

rpc_s_no_memory
Insufficient memory available to set up necessary data structures.

rpc_ss_enable_allocate is the exception-returning version of this function and h
no status output parameter. The following exceptions are raised by this routine.

rpc_x_no_memory
Insufficient memory available to set up necessary data structures.

Return Values None.

See Also rpc_sm_allocate (3), rpc_sm_disable_allocate (3), TUXEDO TxRPC Guide
80 BEA TUXEDO Reference Manual

rpc_sm_free(3)

).

ent,

s
sible
rpc_sm_free(3)

Name rpc_sm_free, rpc_ss_free -frees memory allocated by the rpc_sm_allocate
routine

Synopsis #include <rpc/rpc.h>
void rpc_sm_free(idl_void_p_t node_to_free, unsigned32 *status)
void rpc_ss_free(idl_void_p_t node_to_free)

Description Applications call rpc_sm_free to release memory allocated by rpc_sm_allocate(3
The input parameter, node_to_free , specifies a pointer to memory allocated by
rpc_sm_allocate . Note that in ISO standard C environments, idl_void_p_t is
defined as void * and in other environments is defined as char * .

When the stub allocates memory within the stub memory management environm
service code called from the stub can also use rpc_sm_free to release memory
allocated by the stub.

Unpredictable behavior results if rpc_ss_free is called with a pointer to memory not
allocated by rpc_sm_allocate or memory allocated by rpc_sm_allocate , but not
the first address of such an allocation.

The output parameter, status , returns the status code from this routine. This statu
code indicates whether the routine completed successfully or, if not, why not. Pos
status codes and their meanings include:

rpc_s_ok
Success.

rpc_ss_free is the exception-returning version of this function and has no status
output parameter. No exceptions are raised.

Return Values None.

See Also rpc_sm_allocate (3), TUXEDO TxRPC Guide
BEA TUXEDO Reference Manual 81

rpc_sm_set_client_alloc_free(3)

t be

us
sible

rpc_sm_set_client_alloc_free(3)

Name rpc_sm_set_client_alloc_free , rpc_ss_set_client_alloc_free -sets the
memory allocation and freeing mechanisms used by the client stubs

Synopsis #include <rpc/rpc.h>
void rpc_sm_set_client_alloc_free(
 idl_void_p_t (*p_allocate)(unsigned long size),
 void (*p_free) (idl_void_p_t ptr), unsigned32 *status)

void rpc_ss_set_client_alloc_free(
 idl_void_p_t (*p_allocate)(unsigned long size),
 void (*p_free) (idl_void_p_t ptr))

Description The rpc_sm_set_client_alloc_free routine overrides the default routines that
the client stub uses to manage memory. The input parameters, p_allocate and
p_free specify memory allocator and free routines. The default memory
management routines are ISO C malloc () and free () except when the remote call
occurs within server code in which case the memory management routines mus
rpc_ss_allocate (3) and rpc_ss_free (3).

The output parameter, status , returns the status code from this routine. This stat
code indicates whether the routine completed successfully or, if not, why not. Pos
status codes and their meanings include:

rpc_s_ok
Success.

rpc_s_no_memory
Insufficient memory available to set up necessary data structures.

rpc_ss_set_client_alloc_free is the exception-returning version of this function
and has no status output parameter. The following exceptions are raised by this
routine.

rpc_x_no_memory
Insufficient memory available to set up necessary data structures.

Return Values None.

See Also rpc_sm_allocate (3), rpc_sm_free (3), BEA TUXEDO TxRPC Guide
82 BEA TUXEDO Reference Manual

rpc_sm_swap_client_alloc_free(3)

d
 input

d free
llows

us
sible

by
rpc_sm_swap_client_alloc_free(3)

Name rpc_sm_swap_client_alloc_free ,
rpc_ss_swap_client_alloc_free -exchanges current memory allocation and
freeing mechanism used by client stubs with one supplied by client

Synopsis #include <rpc/rpc.h>
void rpc_sm_swap_client_alloc_free(
 idl_void_p_t (*p_allocate)(unsigned long size),
 void (*p_free) (idl_void_p_t ptr),
 idl_void_p_t (**p_p_old_allocate)(unsigned long size),
 void (**p_p_old_free)(idl_void_p_t ptr),
 unsigned32 *status)

void rpc_ss_swap_client_alloc_free(
 idl_void_p_t (*p_allocate)(unsigned long size),
 void (*p_free) (idl_void_p_t ptr),
 idl_void_p_t (**p_p_old_allocate)(unsigned long size),
 void (**p_p_old_free)(idl_void_p_t ptr))

Description The rpc_sm_swap_client_alloc_free routine exchanges the current allocate an
free mechanisms used by the client stubs for routines supplied by the caller. The
parameters, p_allocate and p_free , specify new memory allocation and free
routines. The output parameters, p_p_old_allocate and p_p_old_free return the
memory allocation and free routines in use before the call to this routine.

When a callable routine is an RPC client, it may need to ensure which allocate an
routines are used, despite the mechanism its caller had selected. This routine a
scoped replacement of the allocation/free mechanism to allow this.

The output parameter, status , returns the status code from this routine. This stat
code indicates whether the routine completed successfully or, if not, why not. Pos
status codes and their meanings include:

rpc_s_ok
Success.

rpc_s_no_memory
Insufficient memory available to set up necessary data structures.

rpc_ss_swap_client_alloc_free is the exception-returning version of this
function and has no status output parameter. The following exceptions are raised
this routine.
BEA TUXEDO Reference Manual 83

rpc_sm_swap_client_alloc_free(3)
rpc_x_no_memory
Insufficient memory available to set up necessary data structures.

Return Values None.

See Also rpc_sm_allocate (3), rpc_sm_free (3), rpc_sm_set_client_alloc_free (3),
BEA TUXEDO system Guide
84 BEA TUXEDO Reference Manual

setlocale(3)

the

ent

d by

e
ed
urned.

setlocale(3)

Name setlocale -modify and query a program's locale

Synopsis #include <locale.h>
char *setlocale (int category, const char *locale);

Description setlocale selects the appropriate piece of the program's locale as specified by
category and locale arguments. The category argument may have the following
values:

LC_CTYPE
LC_NUMERIC
LC_TIME
LC_COLLATE
LC_MONETARY
LC_MESSAGES
LC_ALL

These names are defined in the locale.h header file. For theBEA TUXEDO system
compatibility functions, setlocale allows only a single locale for all categories.
Setting any category is treated the same as LC_ALL, which names the program's entire
locale.

A value of “C” for locale specifies the default environment.

A value of "" for locale specifies that the locale should be taken from an environm
variable. The environment variable LANG is checked for a locale.

At program startup, the equivalent of

setlocale(LC_ALL, "C")

is executed. This has the effect of initializing each category to the locale describe
the environment “C”.

If a pointer to a string is given for locale , setlocale attempts to set the locale for all
the categories to locale . The locale must be a simple locale, consisting of a singl
locale. If setlocale fails to set the locale for any category, a null pointer is return
and the program's locale for all categories is not changed. Otherwise, locale is ret

A null pointer for locale causes setlocale to return the current locale associated
with the category . The program's locale is not changed.

Files $TUXDIR/locale/C/LANGINFO - time and money database for the C locale
$TUXDIR/locale/ locale /* - locale specific information for each
locale $TUXDIR/locale/C/*_CAT - text messages for the C locale
BEA TUXEDO Reference Manual 85

setlocale(3)

h a
Note A composite locale is not supported. A composite locale is a string beginning wit
“/”, followed by the locale of each category, separated by a “/”.

See Also ctime (3C), ctype (3C), getdate (3C), localeconv (3C), printf (3S),
strftime (3C), strtod (3C), environ (5), mklanginfo (1)
86 BEA TUXEDO Reference Manual

strerror(3)

 a
strerror(3)

Name strerror -get error message string

Synopsis #include <string.h>
char \(**strerror (int errnum);

Description strerror maps the error number in errnum to an error message string, and returns
pointer to that string. strerror uses the same set of error messages as perror . The
returned string should not be overwritten.

See Also perror (3)
BEA TUXEDO Reference Manual 87

strftime(3)

ter)

 is

 list.
strftime(3)

Name strftime -convert date and time to string

Synopsis #include <time.h>

size_t *strftime (char *s, size_t maxsize, const char *format, const
struct tm *timeptr);

Description strftime places characters into the array pointed to by s as controlled by the string
pointed to by format . The format string consists of zero or more directives and
ordinary characters. All ordinary characters (including the terminating null charac
are copied unchanged into the array. For strftime , no more than maxsize characters
are placed into the array.

If format is (char *)0, then the locale's default format is used. The default format
the same as "%c" .

Each directive is replaced by appropriate characters as described in the following
The appropriate characters are determined by the LC_TIME category of the program's
locale and by the values contained in the structure pointed to by timeptr .

Directives

%% same as %

%a locale's abbreviated weekday name

%A locale's full weekday name

%b locale's abbreviated month name

%B locale's full month name

%c locale's appropriate date and time representation

%C locale's date and time representation as produced by date(1)

%d day of month (01 - 31)

%D date as %m/%d/%y

%e day of month (1-31; single digits are preceded by a blank)

%h locale's abbreviated month name.
88 BEA TUXEDO Reference Manual

strftime(3)

k.

in
The difference between %U and %W lies in which day is counted as the first of the wee
Week number 01 is the first week in January starting with a Sunday for %U or a Monday
for %W. Week number 00 contains those days before the first Sunday or Monday
January for %U and %W, respectively.

%H hour (00 - 23)

%I hour (01 - 12)

%j day number of year (001 - 366)

%m month number (01 - 12)

%M minute (00 - 59)

%n same as \

%p locale's equivalent of either AM or PM

%r time as %I:%M:%S [AM|PM]

%R time as %H:%M

%S seconds (00 - 61), allows for leap seconds

%t insert a tab

%T time as %H:%M:%S

%U week number of year (00 - 53), Sunday is the first day of week 1

%w weekday number (0 - 6), Sunday = 0

%W week number of year (00 - 53), Monday is the first day of week 1

%x locale's appropriate date representation

%X locale's appropriate time representation

%y year within century (00 - 99)

%Y year as ccyy (e.g. 1986)

%Z time zone name or no characters if no time zone exists

Directives
BEA TUXEDO Reference Manual 89

strftime(3)

r is
e
is

at

If the total number of resulting characters including the terminating null characte
not more than maxsize , strftime , returns the number of characters placed into th
array pointed to by s not including the terminating null character. Otherwise, zero
returned and the contents of the array are indeterminate.

Selecting the

Output

Language

By default, the output of strftime , appears in US English. The user can request th
the output of strftime be in a specific language by setting the locale for category
LC_TIME in setlocale (3).

Timezone The timezone is taken from the environment variable TZ. See ctime (3C) for a
description of TZ.

Examples The example illustrates the use of strftime . It shows what the string in str would
look like if the structure pointed to by tmptr contains the values corresponding to
Thursday, August 28, 1986 at 12:44:36 in New Jersey.

strftime (str, strsize, "%A %b %d %j", tmptr)

This results in str containing "Thursday Aug 28 240".

Files $TUXDIR/locale/ locale /LANGINFO - file containing compiled locale-specific date
and time information

See Also mklanginfo (1), setlocale (3)
90 BEA TUXEDO Reference Manual

tpabort(3)

rvice

n
ted
h the

trol

e

as

been

nt).
tpabort(3)

Name tpabo rt-routine for aborting current transaction

Synopsis #include <atmi.h>

int tpabort(long flags)

Description tpabort () signifies the abnormal end of a transaction. When this call returns, all
changes made to resources during the transaction are undone. Like tpcommit (3), this
function can be called only by the initiator of a transaction. Participants (that is, se
routines) can express their desire to have a transaction aborted by calling tpreturn (3)
with TPFAIL .

If tpabort () is called while call descriptors exist for outstanding replies, then upo
return from the function, the transaction is aborted and those descriptors associa
with the caller's transaction are no longer valid. Call descriptors not associated wit
caller's transaction remain valid.

For each open connection to a conversational server in transaction mode, tpabort ()
will send a TPEV_DISCONIMM event to the server, whether or not the server has con
of a connection. Connections opened before tpbegin (3) or with the TPNOTRAN flag
(that is, not in transaction mode) are not affected.

Currently, tpabort ()'s sole argument, flags , is reserved for future use and should b
set to 0.

Return Values tpabort () returns \-1 on error and sets tperrno to indicate the error condition.

Errors Under the following conditions, tpabort () fails and sets tperrno to:

[TPEINVAL]
flags is not equal to 0. The caller's transaction is not affected.

[TPEHEURISTIC]
Due to a heuristic decision, the work done on behalf of the transaction w
partially committed and partially aborted.

[TPEHAZARD]
Due to some failure, the work done on behalf of the transaction can have
heuristically completed.

[TPEPROTO]
tpabort () was called in an improper context (for example, by a participa

[TPESYSTEM]
BEA TUXEDO Reference Manual 91

tpabort(3)

r is

urce
s
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

Notices When using tpbegin (3), tpcommit (3) and tpabort () to delineate a BEA TUXEDO
system transaction, it is important to remember that only the work done by a reso
manager that meets the XA interface (and is linked to the caller appropriately) ha
transactional properties. All other operations performed in a transaction are not
affected by either tpcommit (3) or tpabort ().

See Also tpbegin (3), tpcommit (3), tpgetlev (3)
92 BEA TUXEDO Reference Manual

tpacall(3)

t if
r

st be

e.
tion
he

e

rnal
tpacall(3)

Name tpacall -routine for sending a service request

Synopsis #include <atmi.h>
int tpacall(char *svc, char *data, long len, long flags)

Description tpacall () sends a request message to the service named by svc . The request is sent
out at the priority defined for svc unless overridden by a previous call to tpsprio (3).
If data is non-NULL, it must point to a buffer previously allocated by tpalloc (3) and
len should specify the amount of data in the buffer that should be sent. Note tha
data points to a buffer of a type that does not require a length to be specified, (fo
example, an FML fielded buffer), then len is ignored (and may be 0). If data is NULL,
len is ignored and a request is sent with no data portion. The type and sub-type ofdata
must match one of the types and sub-types recognized by svc . Note that for each
request sent while in transaction mode, a corresponding reply must ultimately be
received.

Following is a list of valid flags .

TPNOTRAN
If the caller is in transaction mode and this flag is set, then when svc is
invoked, it is not performed on behalf of the caller's transaction. If svc
belongs to a server that does not support transactions, then this flag mu
set when the caller is in transaction mode. Note that svc may still be invoked
in transaction mode but it will not be the same transaction: a svc may have as
a configuration attribute that it is automatically invoked in transaction mod
A caller in transaction mode that sets this flag is still subject to the transac
timeout (and no other). If a service fails that was invoked with this flag, t
caller's transaction is not affected.

TPNOREPLY
Informs tpacall() that a reply is not expected. When TPNOREPLY is set, the
function returns 0 on success, where 0 is an invalid descriptor. When th
caller is in transaction mode, this setting cannot be used unless TPNOTRAN is
also set.

TPNOBLOCK
The request is not sent if a blocking condition exists (for example, the inte
buffers into which the message is transferred are full). When TPNOBLOCK is
not specified and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking
timeout).
BEA TUXEDO Reference Manual 93

tpacall(3)

to

tem

ve

e.

s

n

h
est
ller's
TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is re-issued. tpacall() fails and

Return Values Upon successful completion, tpacall () returns a descriptor that can be used to recei
the reply of the request sent. Otherwise it returns a value of \-1 and sets tperrno to
indicate the error condition.

Errors Under the following conditions, tpacall () fails and sets tperrno to one of the
following values. (Unless otherwise noted, failure does not affect the caller's
transaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for example, svc is NULL, data does not
point to space allocated with tpalloc (3), or flags are invalid).

[TPENOENT]
Cannot send to svc because it does not exist or is a conversational servic

[TPEITYPE]
The type and sub-type of data is not one of the allowed types and sub-type
that svc accepts.

[TPELIMIT]
The caller's request was not sent because the maximum number of
outstanding asynchronous requests has been reached.

[TPETRAN]
svc belongs to a server that does not support transactions and TPNOTRAN was
not set.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transactio
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTIME was
specified. If a transaction timeout occurred, then with one exception, any
attempts to send new requests or receive outstanding replies will fail wit
TPETIME until the transaction has been aborted. The exception is a requ
that does not block, expects no reply, and is not sent on behalf of the ca
94 BEA TUXEDO Reference Manual

tpacall(3)

r is

te
transaction (that is, tpacall() with TPNOTRAN, TPNOBLOCK, and TPNOREPLY
set).

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpacall() was called in an improper context.

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred. If a message queue on a remo
location is filled, TPEOS may be returned even if tpacall returned
successfully.

See Also tpalloc (3), tpcall (3), tpcancel (3), tpgetrply (3), tpgprio (3), tpsprio (3)
BEA TUXEDO Reference Manual 95

tpadmcall(3)

may
f
ides
can

ults.

e

tive

y

rison
n
s in

asses
tpadmcall(3)

Name tpadmcall -administer unbooted application

Synopsis #include <atmi.h>
#include <fml32.h>
#include <tpadm.h>

int tpadmcall(FBFR32 *inbuf, FBFR32 **outbuf, long flags)

Description tpadmcall is used to retrieve and update attributes of an unbooted application. It
also be used in an active application to perform direct retrievals of a limited set o
attributes without requiring communication to an external process. This verb prov
sufficient capability such that complete system configuration and administration
take place through system provided interface routines.

inbuf is a pointer to an FML32 buffer previously allocated with tpalloc (3) that
contains the desired administrative operation and its parameters.

outbuf is the address of a pointer to the FML32 buffer that should contain the res
outbuf must point to an FML32 buffer originally allocated by tpalloc (3). If the
same buffer is to be used for both sending and receiving, outbuf should be set to the
address of inbuf .

Currently, tpadmcall ()'s last argument, flags , is reserved for future use and must b
set to 0.

MIB(5) should be consulted for generic information on construction of administra
requests. TM_MIB(5) and APPQ_MIB(5) should be consulted for information on the
classes that are accessible through tpadmcall ().

There are four modes in which calls to tpadmcall () can be made.

Mode 1: Unbooted, Unconfigured Application:
The caller is assumed to be the administrator of the application. The onl
operations permitted are to SET a NEW T_DOMAIN class object, thus
defining an initial configuration for the application, and to GET and SET
objects of the classes defined in APPQ_MIB(5).

Mode 2: Unbooted, Configured Application:
The caller is assigned administrator or other privileges based on a compa
of their uid/gid to that defined in the configuration for the administrator o
the local system. The caller may GET and SET any attributes for any clas
TM_MIB(5) and APPQ_MIB(5) for which they have the appropriate
permissions. Note that some classes contain only attributes that are
inaccessible in an unbooted application and attempts to access these cl
will fail.
96 BEA TUXEDO Reference Manual

tpadmcall(3)

rison
n

e

ll

and

iles

n

s
Mode 3: Booted Application, Unattached Process:
The caller is assigned administrator or other privileges based on a compa
of their uid/gid to that defined in the configuration for the administrator o
the local system. The caller may GET any attributes for any class in
TM_MIB(5) for which they have the appropriate permissions. Similarly, th
caller may GET and SET any attributes for any class in APPQ_MIB(5), subject
to class-specific restrictions. Attributes accessible only while ACTIVE wi
not be returned.

Mode 4: Booted Application, Attached Process:
Permissions are determined from the authentication key assigned at tpinit ()
time. The caller may GET any attributes for any class in TM_MIB(5) for which
they have the appropriate permissions. Additionally, the caller may GET
SET any attributes for any class in APPQ_MIB(5), subject to class-specific
restrictions.

Access to and update of binary BEA TUXEDO system application configuration f
through this interface routine is controlled through the use of UNIX System
permissions on directory and file names.

Environment

Variables

The following environment variables must be set prior to calling this routine.

TUXCONFIG
File or device name where the binary BEA TUXEDO system configuratio
file for this application is or should be stored.

Notices Use of the TA_OCCURS attribute on GET requests is not supported when using
tpadmcall (). GETNEXT requests are not supported when using tpadmcall ().

Return Values tpadmcall returns 0 on success and -1 on failure.

Errors Under the following conditions, tpadmcall () fails and sets tperrno to one of the
following values. Except for TPEINVAL, the caller's output buffer, outbuf , will be
modified to include TA_ERROR, TA_STATUS and possibly TA_BADFLD attribute
to further qualify the error condition. See MIB(5), TM_MIB(5), and APPQ_MIB(5) for an
explanation of possible error codes returned in this fashion.

[TPEINVAL]
Invalid arguments were specified. The flags value is invalid or inbuf or
outbuf are not pointers to typed buffers of type “FML32.”
BEA TUXEDO Reference Manual 97

tpadmcall(3)

 in

he

r is

etin

ase
[TPEMIB]
The administrative request failed. outbuf is updated and returned to the
caller with FML32 fields indicating the cause of the error as is discussed
MIB(5) and TM_MIB(5).

[TPEPROTO]
tpadmcall () was called in an improper context.

[TPERELEASE]
tpadmcall () was called with the TUXCONFIG environment variable
pointing to a different release version configuration file.

[TPEOS]
An operating system error has occurred. A numeric value representing t
system call that failed is available in Uunixerr .

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to userlog (3).

Interoperability This interface supports access and update to the local configuration file and bull
board only; therefore, there are no interoperability concerns.

Portability This interface is available only on UNIX System sites running BEA TUXEDO Rele
5.0 or later.

Files ${TUXDIR}/lib/libtmib.a, ${TUXDIR}/lib/libqm.a,
${TUXDIR}/lib/libtmib.so. rel> , ${TUXDIR}/lib/libqm.so.rel>

See Also MIB(5), TM_MIB(5), APPQ_MIB(5), EVENT_MIB(5), ACL_MIB(5), WS_MIB(5), BEA
TUXEDO Administrator's Guide
98 BEA TUXEDO Reference Manual

tpadvertise(3)

tdown.

e
ents

 or

er

s
ould

ady

rror
tpadvertise(3)

Name tpadvertise (3)-routine for advertising a service name

Synopsis #include <atmi.h>
int tpadvertise(char *svcname, void (*func)(TPSVCINFO *))

Description tpadvertise allows a server to advertise the services that it offers. By default, a
server's services are advertised when it is booted and unadvertised when it is shu

All servers belonging to a multiple server, single queue (MSSQ) set must offer th
same set of services. These routines enforce this rule by affecting the advertisem
of all servers sharing an MSSQ set.

tpadvertise advertises svcname for the server (or the set of servers sharing the
caller's MSSQ set). svcname should be 15 characters or less, but cannot be NULL
the NULL string (“”). (See *SERVICES section of ubbconfig (5).)func is the address
of a BEA TUXEDO system service function. This function will be invoked whenev
a request for svcname is received by the server. func cannot be NULL. Explicitly
specified function names (see servopts (5)) can be up to 128 characters long. Name
longer than 15 characters are accepted and truncated to 15 characters. Users sh
make sure that truncated names do not match other service names.

If svcname is already advertised for the server and func matches its current function,
then tpadvertise returns success (this includes truncated names that match alre
advertised names). However, if svcname is already advertised for the server but func
does not match its current function, then an error is returned (this can happen if
truncated names match already advertised names).

Service names starting with dot (.) are reserved for administrative services. An e
will be returned if an application attempts to advertise one of these services.

Return Values tpadvertise returns -1 on error and sets tperrno to indicate the error condition.

Errors Under the following conditions, tpadvertise fails and sets tperrno to:

[TPEINVAL]
svcname is NULL or the NULL string (“”),or begins with a “.” or func is
NULL.

[TPELIMIT]
svcname cannot be advertised because of space limitations. (See
MAXSERVICES in the *RESOURCES section of ubbconfig (5).)
BEA TUXEDO Reference Manual 99

tpadvertise(3)

n

).

r is
[TPEMATCH]
svcname is already advertised for the server but with a function other tha
func . Although the function fails, svcname remains advertised with its
current function (that is, func does not replace the current function).

[TPEPROTO]
tpadvertise was called in an improper context (for example, by a client

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also tpservice (3c), tpunadvertise (3c)
100 BEA TUXEDO Reference Manual

tpalloc(3)

y

d
Note
 to

e
tpalloc(3)

Name tpalloc (3)-routine for allocating typed buffers

Synopsis #include <atmi.h>
char * tpalloc(char *type, char *subtype, long size)

Description tpalloc () returns a pointer to a buffer of type type . Depending on the type of buffer,
both subtype and size are optional. The BEA TUXEDO system provides a variet
of typed buffers, and applications are free to add their own buffer types. Consult
tuxtypes (5) for more details.

If subtype is non-NULL in tmtype_sw for a particular buffer type, then subtype
must be specified when tpalloc () is called. The allocated buffer will be at least as
large as the larger of size and dfltsize , where dfltsize is the default buffer size
specified in tmtype_sw for the particular buffer type. For buffer type STRING the
minimum is 512 bytes; for buffer types FML and VIEW the minimum is 1024 bytes.

Note that only the first eight bytes of type and the first 16 bytes of subtype are
significant.

Because some buffer types require initialization before they can be used, tpalloc ()
initializes a buffer (in a BEA TUXEDO system-specific manner) after it is allocate
and before it is returned. Thus, the buffer returned to the caller is ready for use.
that unless the initialization routine cleared the buffer, the buffer is not initialized
zeros by tpalloc ().

Return Values Upon successful completion, tpalloc () returns a pointer to a buffer of the appropriat
type aligned on a long word; otherwise, it returns NULL and sets tperrno to indicate
the condition.

Errors Under the following conditions, tpalloc () fails and sets tperrno to:

[TPEINVAL]
Invalid arguments were given (for example, type is NULL).

[TPENOENT]
No entry in tmtype_sw matches type and, if non-NULL, subtype .

[TPEPROTO]
tpalloc () was called in an improper context.
BEA TUXEDO Reference Manual 101

tpalloc(3)

r is

[TPESYSTEM]

A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

Usage If buffer initialization fails, the allocated buffer is freed and tpalloc () fails returning
NULL.

This function should not be used in concert with malloc (3c), realloc (3c), or
free (3c) in the C library (for example, a buffer allocated with tpalloc () should not
be freed with free ()).

Two buffer types are supported by any compliant implementation of the BEA
TUXEDO system extension. Details are in intro (3c).

See Also tpfree (3c), tprealloc (3c), tptypes (3c)
102 BEA TUXEDO Reference Manual

tpbegin(3)

of
ws
 as an

of
rt of
ction

re

t it

d
be
er
uals

tpbegin(3)

Name tpbegin -routine for beginning a transaction

Synopsis #include <atmi.h>

int tpbegin(unsigned long timeout, long flags)

Description A transaction in the BEA TUXEDO system is used to define a single logical unit
work that either wholly succeeds or has no effect whatsoever. A transaction allo
work being performed in many processes, at possibly different sites, to be treated
atomic unit of work. The initiator of a transaction uses tpbegin () and either
tpcommit (3) or tpabort (3) to delineate the operations within a transaction. Once
tpbegin () is called, communication with any other program can place the latter (
necessity, a server) in “transaction mode” (that is, the server's work becomes pa
the transaction). Programs that join a transaction are called participants. A transa
always has one initiator and can have several participants. Only the initiator of a
transaction can call tpcommit (3) or tpabort (3). Participants can influence the
outcome of a transaction by the return values (rval s) they use when they call
tpreturn (3). Once in transaction mode, any service requests made to servers a
processed on behalf of the transaction (unless the requester explicitly specifies
otherwise).

Note that if a program starts a transaction while it has any open connections tha
initiated to conversational servers, these connections will not be upgraded to
transaction mode. It is as if the TPNOTRAN flag had been specified on the tpconnect (3)
call.

tpbegin ()'s first argument, timeout , specifies that the transaction should be allowe
at least timeout seconds before timing out. Once a transaction times out it must
marked abort-only. If timeout is 0, then the transaction is given the maximum numb
of seconds allowed by the system before timing out (that is, the time-out value eq
the maximum value for an unsigned long as defined by the system).

Currently, tpbegin ()'s second argument, flags , is reserved for future use and must
be set to 0.

Return Values tpbegin () returns \-1 on error and sets tperrno to indicate the error condition.
BEA TUXEDO Reference Manual 103

tpbegin(3)

red

r is

urce
s

tions
tion.
Errors Under the following conditions, tpbegin () fails and sets tperrno to:

[TPEINVAL]
flags is not equal to 0.

[TPETRAN]
The caller cannot be placed in transaction mode because an error occur
starting the transaction.

[TPEPROTO]
tpbegin () was called in an improper context (for example, the caller is
already in transaction mode).

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

Notices When using tpbegin (), tpcommit (3), and tpabort (3) to delineate a BEA TUXEDO
system transaction, it is important to remember that only the work done by a reso
manager that meets the XA interface (and is linked to the caller appropriately) ha
transactional properties. All other operations performed in a transaction are not
affected by either tpcommit (3) or tpabort (3). See buildserver (1) for details on
linking resource managers that meet the XA interface into a server such that opera
performed by that resource manager are part of a BEA TUXEDO system transac

See Also tpabort (3), tpcommit (3), tpgetlev (3), tpscmt (3)
104 BEA TUXEDO Reference Manual

tpbroadcast(3)

ed

.

et.
rd

size
must

 any

rnal

to

tem

cted
tpbroadcast(3)

Name tpbroadcast -routine to broadcast notification by name

Synopsis #include <atmi.h>

int tpbroadcast(char *lmid, char *usrname, char *cltname,
 char *data, long len, long flags)

Description tpbroadcast () allows a client or server to send unsolicited messages to register
clients within the system. The target client set consists of those clients matching
identifiers passed to tpbroadcast (). Wildcards can be used in specifying identifiers

lmid , usrname , and cltname are logical identifiers used to select the target client s
A NULL value for any argument constitutes a wildcard for that argument. A wildca
argument matches all client identifiers for that field. A 0-length string for any
argument matches only 0-length client identifiers. Each identifier must meet the
restrictions defined for the system to be considered valid, that is, each identifier
be between 0 and MAXTIDENT characters in length.

The data portion of the request is pointed to by data , a buffer previously allocated by
tpalloc (3). len specifies how much of data to send. Note that if data points to a
buffer type that does not require a length to be specified (for example, an FML fielded
buffer), then len is ignored (and may be 0). Also, data may be NULL, in which case
len is ignored. The buffer passes through the typed buffer switch routines just as
other outgoing or incoming message would; for example, encode/decode are
performed automatically.

Following is a list of valid flags .

TPNOBLOCK
The request is not sent if a blocking condition exists (for example, the inte
buffers into which the message is transferred are full).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is reissued. Upon successful return from tpbroadcast (), the message
has been delivered to the system for forwarding to the selected clients.
tpbroadcast () does not wait for the message to be delivered to each sele
client.
BEA TUXEDO Reference Manual 105

tpbroadcast(3)

 to

r is

rs.

 due
t it is

and
Return Values tpbroadcast () returns \-1 on failure and sets tperrno to indicate the error condition.

Errors Under the following conditions, tpbroadcast () fails, sends no broadcast messages
application clients, and sets tperrno to:

[TPEINVAL]
Invalid arguments were given (for example, identifiers too long or invalid
flags). Note that use of an illegal LMID will cause tpbroadcast() to fail and
return TPEINVAL. However, non-existent user or client names will simply
successfully broadcast to no one.

[TPETIME]
A blocking timeout occurred and neither TPNOBLOCK nor TPNOTIME was
specified.

[TPEBLOCK]
A blocking condition was found on the call and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpbroadcast () was called in an improper context.

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

Portability The interfaces described in tpnotify (3) are supported on native site UNIX-based
processors. In addition, the routines tpbroadcast () and tpchkunsol () as well as the
function tpsetunsol () are supported on UNIX and MS-DOS workstation processo

Usage Clients that select signal-based notification may not be signal-able by the system
to signal restrictions. When this occurs, the system generates a log message tha
switching notification for the selected client to dip-in and the client is notified then
thereafter via dip-in notification. (See the description of the *RESOURCES NOTIFY
parameter in ubbconfig (5) for a detailed discussion of notification methods.)
106 BEA TUXEDO Reference Manual

tpbroadcast(3)

f
de.

part

il,
Note that signaling of clients is always done by the system so that the behavior o
notification is consistent regardless of where the originating notification call is ma
Because of this, only clients running as the application administrator can use
signal-based notification. The id for the application administrator is identified as
of the configuration file for the application.

If signal-based notification is selected for a client, then certain ATMI calls can fa
returning TPGOTSIG due to receipt of an unsolicited message if TPSIGRSTRT is not
specified. See ubbconfig (5) and tpinit (3) for more information on notification
method selection.

See Also tpalloc (3), tpinit (3), tpnotify (3), tpterm (3), ubbconfig (5)
BEA TUXEDO Reference Manual 107

tpcall(3)

 is

s

o a

ocess

hen
ceiver
der,

and

t.
tpcall(3)

Name tpcall (3)-routine for sending service request and awaiting its reply

Synopsis int tpcall(char *svc, char *idata, long ilen, char **odata, long \
 *olen, long flags)

Description tpcall sends a request and synchronously awaits its reply. A call to this function
the same as calling tpacall (3c) immediately followed by tpgetrply (3c). tpcall
sends a request to the service named by svc . The request is sent out at the priority
defined for svc unless overridden by a previous call to tpsprio (3c). The data portion
of a request is pointed to by idata , a buffer previously allocated by tpalloc (3c).
ilen specifies how much of idata to send. Note that if idata points to a buffer of a
type that does not require a length to be specified, (for example, an FML fielded buffer),
then ilen is ignored (and may be 0). Also, idata may be NULL, in which case ilen
is ignored. The type and sub-type of idata must match one of the types and sub-type
recognized by svc .

odata is the address of a pointer to the buffer where a reply is read into, and olen
points to the length of that reply. *odata must point to a buffer originally allocated by
tpalloc . If the same buffer is to be used for both sending and receiving, odata should
be set to the address of idata . FML and FML32 buffers often assume a minimum size
of 4096 bytes; if the reply is larger than 4096, the size of the buffer is increased t
size large enough to accommodate the data being returned. Also, if idata and *odata
were equal when tpcall was invoked, and *odata is changed, then idata no longer
points to a valid address. Using the old address can lead to data corruption or pr
exceptions.

Buffers on the sending side that may be only partially filled (for example, FML or
STRING buffers) will have only the amount that is used send. The system may t
enlarge the received data size by some arbitrary amount. This means that the re
may receive a buffer that is smaller than what was originally allocated by the sen
yet larger than the data that was sent.

The receive buffer may grow, or it may shrink, and its address almost invariably
changes, as the system swaps buffers around internally. To determine whether (
how much) a reply buffer changed in size, compare its total size before tpgetrply
was issued with *len . See intro (3c) for more information about buffer managemen

If * olen is 0 upon return, then the reply has no data portion and neither *odata nor
the buffer it points to were modified. It is an error for *odata or olen to be NULL.
108 BEA TUXEDO Reference Manual

tpcall(3)

hat

t

d
e
g is

rnal

or
,

to

.

tem

t of
Following is a list of valid flags .

TPNOTRAN
If the caller is in transaction mode and this flag is set, then when svc is
invoked, it is not performed on behalf of the caller's transaction. Note that svc
may still be invoked in transaction mode but it will not be the same
transaction: a svc may have as a configuration attribute that it is
automatically invoked in transaction mode. A caller in transaction mode t
sets this flag is still subject to the transaction timeout (and no other). If a
service fails that was invoked with this flag, the caller's transaction is no
affected.

TPNOCHANGE
By default, if a buffer is received that differs in type from the buffer pointe
to by *odata , then *odata 's buffer type changes to the received buffer's typ
so long as the receiver recognizes the incoming buffer type. When this fla
set, the type of the buffer pointed to by *odata is not allowed to change. That
is, the type and sub-type of the received buffer must match the type and
sub-type of the buffer pointed to by *odata .

TPNOBLOCK
The request is not sent if a blocking condition exists (for example, the inte
buffers into which the message is transferred are full). Note that this flag
applies only to the send portion of tpcall: the function may block waiting f
the reply. When TPNOBLOCK is not specified and a blocking condition exists
the caller blocks until the condition subsides or a timeout occurs (either
transaction or blocking timeout).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants
be immune to blocking timeouts. However, if the caller is in transaction
mode, this flag has no effect; it is subject to the transaction timeout limit
Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is re-issued.

Return Values Upon successful return from tpcall or upon return where tperrno is set to
TPESVCFAIL, tpurcode contains an application defined value that was sent as par
tpreturn (3c). tpcall returns -1 on error and sets tperrno to indicate the error
condition. If a call fails with a particular tperrno value, a subsequent call to
BEA TUXEDO Reference Manual 109

tpcall(3)

f one

ce,

s

alf
nly

n

 to

ot
ion
tperrordetail (3c) with no intermediate ATMI calls, may provide more detailed
information about the generated error. Refer to the tperrordetail (3c) reference
page for more information.

Errors Under the following conditions, tpcall fails and sets tperrno to one of the following
values. (Unless otherwise noted, failure does not affect the caller's transaction, i
exists.)

[TPEINVAL]
Invalid arguments were given (for example, svc is NULL or flags are
invalid).

[TPENOENT]
Can not send to svc because it does not exist, or it is a conversational servi
or the name provided begins with a dot (.).

[TPEITYPE]
The type and sub-type of idata is not one of the allowed types and sub-type
that svc accepts.

[TPEOTYPE]
Either the type and sub-type of the reply are not known to the caller; or,
TPNOCHANGE was set in flags and the type and sub-type of *odata do not
match the type and sub-type of the reply sent by the service. Neither *odata ,
its contents, nor *olen is changed. If the service request was made on beh
of the caller's current transaction, then the transaction is marked abort-o
since the reply is discarded.

[TPETRAN]
svc belongs to a server that does not support transactions and TPNOTRAN was
not set.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transactio
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTIME was
specified. In either case, neither *odata , its contents, nor *olen is changed.
If a transaction timeout occurred, then with one exception, any attempts
send new requests or receive outstanding replies will fail with TPETIME until
the transaction has been aborted. The exception is a request that does n
block, expects no reply, and is not sent on behalf of the caller's transact
(that is, tpacall with TPNOTRAN, TPNOBLOCK, and TPNOREPLY set).
110 BEA TUXEDO Reference Manual

tpcall(3)

ne

on is
t,

 and
ted
ave

3c)
hen

t is,
hat
 be
on
tion
d be

r is

te
[TPESVCFAIL]
The service routine sending the caller's reply called tpreturn(3c) with TPFAIL .
This is an application-level failure. The contents of the service's reply, if o
was sent, is available in the buffer pointed to by *odata . If the service request
was made on behalf of the caller's current transaction, then the transacti
marked abort-only. Note that so long as the transaction has not timed ou
further communication may be performed before aborting the transaction
that any work performed on behalf of the caller's transaction will be abor
upon transaction completion (that is, for subsequent communication to h
any lasting effect, it should be done with TPNOTRAN set).

[TPESVCERR]
A service routine encountered an error either in tpreturn(3c) or tpforward(
(for example, bad arguments were passed). No reply data is returned w
this error occurs (that is, neither *odata , its contents, nor *olen is changed).
If the service request was made on behalf of the caller's transaction (tha
TPNOTRAN was not set), then the transaction is marked abort-only. Note t
so long as the transaction has not timed out, further communication may
performed before aborting the transaction and that any work performed
behalf of the caller's transaction will be aborted upon transaction comple
(that is, for subsequent communication to have any lasting effect, it shoul
done with TPNOTRAN set). If either SVCTIMEOUT in the ubbconfig file or
TA_SVCTIMEOUT in the TM_MIB is non-zero, TPESVCERR is returned when a
service timeout occurs.

[TPEBLOCK]
A blocking condition was found on the send call and TPNOBLOCK was
specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpcall was called in an improper context.

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred. If a message queue on a remo
location is filled, TPEOS may be returned even if tpcall returned
successfully.
BEA TUXEDO Reference Manual 111

tpcall(3)
See Also tpalloc (3c), tpacall (3c), tperrordetail (3c), tpforward (3c), tpfree (3c),
tpgprio (3c), tprealloc (3c), tpreturn (3c), tpsprio (3c),
tpstrerrordetail (3c), tptypes (3c)
112 BEA TUXEDO Reference Manual

tpcancel(3)

r is
tpcancel(3)

Name tpcancel -routine for canceling a call descriptor for outstanding reply

Synopsis #include <atmi.h>
int tpcancel(int cd)

Description tpcancel () cancels a call descriptor, cd , returned by tpacall (3). It is an error to
attempt to cancel a call descriptor associated with a transaction.

Upon success, cd is no longer valid and any reply received on behalf of cd will be
silently discarded.

Return Values tpcancel () returns \-1 on error and sets tperrno to indicate the error condition.

Errors Under the following conditions, tpcancel () fails and sets tperrno to:

[TPEBADDESC]
cd is an invalid descriptor.

[TPETRAN]
cd () is associated with the caller's transaction. cd remains valid and the
caller's current transaction is not affected.

[TPEPROTO]
tpcancel() was called in an improper context.

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also tpacall (3)
BEA TUXEDO Reference Manual 113

tpchkauth(3c)

r is

 on

.

tpchkauth(3c)

Name tpchkauth -routine for checking if authentication required to join an application

Synopsis #include <atmi.h>

int tpchkauth(void)

Description tpchkauth () checks if authentication is required by the application configuration.
This is typically used by application clients prior to calling tpinit (3c) to determine if
a password should be obtained from the user.

Return Values tpchkauth () returns one of the following non-negative values on success.

TPNOAUTH
indicates that no authentication is required.

TPSYSAUTH
indicates that system authentication only is required.

TPAPPAUTH
indicates that both system and application specific authentication are
required.

It returns -1 on error and sets tperrno to indicate the error condition.

Errors Under the following conditions, tpchkauth () fails and sets tperrno to:

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

Interoperability tpchkauth () is available only on sites running Release 4.2 or later.

Portability The interfaces described in tpchkauth (3c) are supported on UNIX, Windows, and
MS-DOS operating systems. However, signal-based notification is not supported
16-bit Windows or MS-DOS platforms. If it is selected at tpinit () time, then a
userlog (3c) message is generated and the method is automatically set to dip-in

See Also tpinit (3c)
114 BEA TUXEDO Reference Manual

tpchkunsol(3)

lls

o an

 a

r is

rs.

 due
t it is

and

de.

art
tpchkunsol(3)

Name tpchku nsol-routine for checking for unsolicited message

Synopsis #include <atmi.h>
int tpchkunsol(void)

Description tpchkunsol () is used by a client to trigger checking for unsolicited messages. Ca
to this routine in a client using signal-based notification do nothing and return
immediately. This call has no arguments. Calls to this routine can result in calls t
application-defined unsolicited message handling routine by the BEA TUXEDO
system libraries.

Return Values Upon successful completion, tpchkunsol () returns the number of unsolicited
messages dispatched; otherwise it returns \-1 on failure and sets tperrno to indicate
the error condition.

Errors Under the following conditions, tpchkunsol () fails and sets tperrno to:

[TPEPROTO]
tpchkunsol () was called in an improper context (for example, from within
server).

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

Portability The interfaces described in tpnotify (3) are supported on native site UNIX-based
processors. In addition, the routines tpbroadcast () and tpchkunsol () as well as the
function tpsetunsol () are supported on UNIX and MS-DOS workstation processo

Clients that select signal-based notification may not be signal-able by the system
to signal restrictions. When this occurs, the system generates a log message tha
switching notification for the selected client to dip-in and the client is notified then
thereafter via dip-in notification. (See the description of the *RESOURCES NOTIFY
parameter in ubbconfig (5) for a detailed discussion of notification methods.) Note
that signaling of clients is always done by the system so that the behavior of
notification is consistent regardless of where the originating notification call is ma
Because of this, only clients running as the application administrator can use
signal-based notification. The ID for the application administrator is identified as p
of the configuration file for the application.
BEA TUXEDO Reference Manual 115

tpchkunsol(3)

il,
If signal-based notification is selected for a client, then certain ATMI calls can fa
returning TPGOTSIG due to receipt of an unsolicited message if TPSIGRSTRT is not
specified. See ubbconfig (5) and tpinit (3) for more information on notification
method selection.

See Also tpbroadcast (3), tpinit (3), tpnotify (3), tpsetunsol (3)
116 BEA TUXEDO Reference Manual

tpclose(3)

ger to

 a

ing
ating

er

r is
tpclose(3)

namSe tpclose-routine for closing a resource manager

Synopsis #include <atmi.h>
int tpclose(void)

Description tpclose () tears down the association between the caller and the resource mana
which it is linked. Since resource managers differ in their close semantics, the
specific information needed to close a particular resource manager is placed in
configuration file.

If a resource manager is already closed (that is, tpclose () is called more than once),
no action is taken and success is returned.

Return Values tpclose () returns \-1 on error and sets tperrno to indicate the error condition.

Errors Under the following conditions, tpclose () fails and sets tperrno to:

[TPERMERR]
A resource manager failed to close correctly. More information concern
the reason a resource manager failed to close can be obtained by interrog
a resource manager in its own specific manner. Note that any calls to
determine the exact nature of the error hinder portability.

[TPEPROTO]
tpclose () was called in an improper context (for example, while the call
is in transaction mode).

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also tpopen (3)
BEA TUXEDO Reference Manual 117

tpcommit(3)

 to
.

ts
able

ged

n

stent

tically

her or

.

on
ted

h the
tpcommit(3)

Name tpcommit -routine for committing current transaction

Synopsis #include <atmi.h>

int tpcommit(long flags)

Description tpcommit () signifies the end of a transaction, using a two-phase commit protocol
coordinate participants. tpcommit () can be called only by the initiator of a transaction
If any of the participants cannot commit the transaction (for example, they call
tpreturn (3) with TPFAIL), then the entire transaction is aborted and tpcommit ()
fails. That is, all of the work involved in the transaction is undone. If all participan
agree to commit their portion of the transaction, then this decision is logged to st
storage and all participants are asked to commit their work.

Depending on the setting of the TP_COMMIT_CONTROL characteristic (see tpscmt (3)),
tpcommit () can return successfully either after the commit decision has been log
or after the two-phase commit protocol has completed. If tpcommit () returns after the
commit decision has been logged but before the second phase has completed
(TP_CMT_LOGGED), then all participants have agreed to commit the work they did o
behalf of the transaction and should fulfill their promise to commit the transaction
during the second phase. However, because tpcommit () is returning before the second
phase has completed, there is a hazard that one or more of the participants can
heuristically complete their portion of the transaction (in a manner that is not consi
with the commit decision) even though the function has returned success.

If the TP_COMMIT_CONTROL characteristic is set such that tpcommit () returns after the
two-phase commit protocol has completed (TP_CMT_COMPLETE), then its return value
reflects the exact status of the transaction (that is, whether the transaction heuris
completed or not).

Note that if only a single resource manager is involved in a transaction, then a
one-phase commit is performed (that is, the resource manager is not asked whet
not it can commit; it is simply told to commit). In this case, the TP_COMMIT_CONTROL
characteristic has no bearing and tpcommit () will return heuristic outcomes if present

If tpcommit () is called while call descriptors exist for outstanding replies, then up
return from the function, the transaction is aborted and those descriptors associa
with the caller's transaction are no longer valid. Call descriptors not associated wit
caller's transaction remain valid.
118 BEA TUXEDO Reference Manual

tpcommit(3)

ction

e

that
tion

 the
 is

as

been

t).

r is
tpcommit () must be called after all connections associated with the caller's transa
are closed (otherwise TPEABORT is returned, the transaction is aborted and these
connections are disconnected in a disorderly fashion with a TPEV_DISCONIMM event).
Connections opened before tpbegin (3) or with the TPNOTRAN flag (that is,
connections not in transaction mode) are not affected by calls to tpcommit () or
tpabort (3).

Currently, tpcommit ()'s sole argument, flags , is reserved for future use and must b
set to 0.

Return Values tpcommit () returns \-1 on error and sets tperrno to indicate the error condition.

Errors Under the following conditions, tpcommit () fails and sets tperrno to:

[TPEINVAL]
flags is not equal to 0. The caller's transaction is not affected.

[TPETIME]
The transaction timed out and the status of the transaction is unknown (
is, it can have been either committed or aborted). Note that if the transac
timed out and its status is known to be aborted, then TPEABORT is returned.

[TPEABORT]
The transaction could not commit because either the work performed by
initiator or by one or more of its participants could not commit. This error
also returned if tpcommit () is called with outstanding replies or open
conversational connections.

[TPEHEURISTIC]
Due to a heuristic decision, the work done on behalf of the transaction w
partially committed and partially aborted.

[TPEHAZARD]
Due to some failure, the work done on behalf of the transaction can have
heuristically completed.

[TPEPROTO]
tpcommit () was called in an improper context (for example, by a participan

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.
BEA TUXEDO Reference Manual 119

tpcommit(3)

urce
s

tions
tion.
[TPEOS]
An operating system error has occurred.

Notices When using tpbegin (), tpcommit () and tpabort () to delineate a BEA TUXEDO
system transaction, it is important to remember that only the work done by a reso
manager that meets the XA interface (and is linked to the caller appropriately) ha
transactional properties. All other operations performed in a transaction are not
affected by either tpcommit () or tpabort (). See buildserver (1) for details on
linking resource managers that meet the XA interface into a server such that opera
performed by that resource manager are part of a BEA TUXEDO system transac

See Also tpabort (3), tpbegin (3), tpconnect (3), tpgetlev (3), tpreturn (3), tpscmt (3)
120 BEA TUXEDO Reference Manual

tpconnect(3)

nal
 by a

 the

d

l
es

hat

t

end
lly
tpconnect(3)

Name tpconnect -routine for establishing a conversational service connection

Synopsis #include <atmi.h>

int tpconnect(char *svc, char *data, long len, long flags)

Description tpconnect () allows a program to set up a half-duplex connection to a conversatio
service, svc . The name must be one of the conversational service names posted
conversational server.

As part of setting up a connection, the caller can pass application defined data to
listening program. If the caller chooses to pass data, then data must point to a buffer
previously allocated by tpalloc (3). len specifies how much of the buffer to send.
Note that if data points to a buffer of a type that does not require a length to be
specified, (for example, an FML fielded buffer), then len is ignored (and may be 0).
Also, data can be NULL in which case len is ignored (no application data is passe
to the conversational service). The type and sub-type of data must match one of the
types and sub-types recognized by svc . data and len are passed to the conversationa
service via the TPSVCINFO structure with which the service is invoked; the service do
not have to call tprecv (3) to get the data.

Following is a list of valid flags .

TPNOTRAN
If the caller is in transaction mode and this flag is set, then when svc is
invoked, it is not performed on behalf of the caller's transaction. Note that svc
may still be invoked in transaction mode but it will not be the same
transaction: a svc may have as a configuration attribute that it is
automatically invoked in transaction mode. A caller in transaction mode t
sets this flag is still subject to the transaction timeout (and no other). If a
service fails that was invoked with this flag, the caller's transaction is no
affected.

TPSENDONLY
The caller wants the connection to be set up initially such that it can only s
data and the called service can only receive data (that is, the caller initia
has control of the connection). Either TPSENDONLY or TPRECVONLY must be
specified.
BEA TUXEDO Reference Manual 121

tpconnect(3)

ce

e is

,

to

ll is

o

on, if
TPRECVONLY
The caller wants the connection to be set up initially such that it can only
receive data and the called service can only send data (that is, the servi
being called initially has control of the connection). Either TPSENDONLY or
TPRECVONLY must be specified.

TPNOBLOCK
The connection is not established and the data is not sent if a blocking
condition exists (for example, the data buffers through which the messag
sent are full). Note that this flag applies only to the send portion of
tpconnect (); the function may block waiting for an acknowledgement from
the server. When TPNOBLOCK is not specified and a blocking condition exists
the caller blocks until the condition subsides or a blocking timeout or
transaction timeout occurs.

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants
be immune to blocking timeouts. Transaction timeouts will still affect the
program.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted ca
re-issued.

Return Values Upon successful completion, tpconnect () returns a descriptor that is used to refer t
the connection in subsequent calls. Otherwise it returns \-1 and sets tperrno to
indicate the error condition.

Errors Under the following conditions, tpconnect () fails and sets tperrno to an error code
listed below. (Unless otherwise noted, failure does not affect the caller's transacti
one exists)

[TPEINVAL]
Invalid arguments were given (for example, svc is NULL, data is
non-NULL and does not point to a buffer allocated by tpalloc (3),
TPSENDONLY or TPRECVONLY was not specified in flags , or flags are
otherwise invalid).

[TPENOENT]
Cannot initiate a connection to svc because it does not exist or is not a
conversational service.
122 BEA TUXEDO Reference Manual

tpconnect(3)

n

r
ail

r is
[TPEITYPE]
The type and subtype of data is not one of the allowed types and subtypes
that svc accepts.

[TPELIMIT]
The caller's request was not sent because the maximum number of
outstanding connections has been reached.

[TPETRAN]
svc belongs to a program that does not support transactions and TPNOTRAN
was not set.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transactio
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTIME were
specified. If a transaction timeout occurred, then any attempts to send o
receive messages on any connections or to start a new connection will f
with TPETIME until the transaction has been aborted.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpconnect () was called in an improper context.

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also tpalloc (3), tpdiscon (3), tprecv (3), tpsend (3), tpservice (3)
BEA TUXEDO Reference Manual 123

tpconvert(3c)

ed
ing

ags
y be

y

 by
tpconvert(3c)

Name tpconvert -convert structures to/from string representations

Synopsis #include <atmi.h>
#include <xa.h>

int tpconvert(char *strrep, char *binrep, long flags)

Description tpconvert () converts the string representation of interface structures (strrep) to or
from the binary representation (binrep).

Both the direction of the conversion and the interface structure type are determin
from the flags argument. To convert a structure from binary representation to str
representation, the programmer must set the TPTOSTRING bit in flags . To convert a
structure from string to binary the programmer must clear the bit. The following fl
are defined to indicate the particular structure type to be converted; only one ma
specified at a time:

TPCONVCLTID
Convert CLIENTID (see atmi.h).

TPCONVTRANID
Convert TPTRANID (see atmi.h).

TPCONVXID
Convert XID (see xa.h).

For conversions from binary to string representation, strrep should be at least
TPCONVMAXSTR characters in length.

Note that unequal string versions of TPTRANID and XID values may be considered
equal by the system when accessing TM_MIB(5) classes that allow these values as ke
fields (for example, T_TRANSACTION or T_ULOG). Therefore, string values for these
data types should not be fabricated or manipulated by application programs.
TM_MIB(5) guarantees that only objects matching the global transaction identified
the string are returned when one of these values is used as a key field.

Return Values tpconvert () returns -1 on failure and sets tperrno to indicate the error condition.
124 BEA TUXEDO Reference Manual

tpconvert(3c)

he

r is

ace
Errors Under the following conditions, tpconvert () fails and sets tperrno to one of the
following values.

[TPEINVAL]
Invalid arguments were specified. strrep or binrep is a NULL pointer, or
flags does not indicate exactly one structure type.

[TPEOS]
An operating system error has occurred. A numeric value representing t
system call that failed is available in Uunixerr .

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to userlog(3).

Portability This interface is available only on BEA TUXEDO Release 5.0 or later. This interf
is available on workstation platforms.

See Also tpservice (3), tpresume (3), tpsuspend (3), tx_info (3), TM_MIB(5)
BEA TUXEDO Reference Manual 125

tpcryptpw(3)

ive
re

s.
y be

ffer

 to

he

r is

ase
tpcryptpw(3)

Name tpcryptpw -encrypt application password in administrative request

Synopsis #include <atmi.h>
#include <fml32.h>

int tpcryptpw(FBFR32 *buf)

Description tpcryptpw () is used to encrypt the application password stored in an administrat
request buffer prior to sending the request for servicing. Application passwords a
stored as string values using the FML32 field identifier TA_PASSWORD. This encryption
is necessary to insure that clear text passwords are not compromised and that
appropriate propagation of the update can take place to all active application site
Additional system fields may be added to the callers buffer and existing fields ma
modified to satisfy the request.

Return Values tpcryptpw () returns -1 on failure and sets tperrno to indicate the error condition.

Errors Under the following conditions, tpcryptpw () fails and sets tperrno to one of the
following values:

[TPEINVAL]
Invalid arguments were specified. The buf value is NULL, does not point to
a FML32 typed buffer or appdir could not be determined from the input bu
or the environment.

[TPEPERM]
The calling process did not have the appropriate permissions necessary
perform the requested task.

[TPEOS]
An operating system error has occurred. A numeric value representing t
system call that failed is available in Uunixerr .

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to userlog(3).

Portability This interface is available only on UNIX System sites running BEA TUXEDO Rele
5.0 or later. This interface is not available to workstation clients.

Files ${TUXDIR}/lib/libtmib.a, ${TUXDIR}/lib/libtmib.so.< rel>

See Also MIB(5), TM_MIB(5), BEA TUXEDO Administrator's Guide
126 BEA TUXEDO Reference Manual

tpdequeue(3)

f
an
using
s to
 the

re its

e and

age is
r as
e will
rolled
he

the

ate
tpdequeue(3)

Name tpdequeue -routine to dequeue a message from a queue

Synopsis #include <atmi.h>
int tpdequeue(char *qspace, char *qname, TPQCTL *ctl, char **data,
long *len, long flags)

Description tpdequeue () dequeues a message for processing from the queue named by qname in
the qspace queue space.

By default, the message at the top of the queue is dequeued. The default order o
messages on the queue is defined when the queue is created. The application c
request a particular message for dequeuing by specifying its message identifier
the ctl parameter. ctl flags can also be used to indicate that the application want
wait for a message, in the case where a message is not currently available. See
section below describing this parameter.

data is the address of a pointer to the buffer into which a message is read, and len
points to the length of that message. *data must point to a buffer originally allocated
by tpalloc (3). To determine whether a message buffer changed in size, compa
(total) size before tpdequeue () was issued with *len . If * len is larger, then the buffer
has grown; otherwise, the buffer has not changed size. Note that *data may change
for reasons other than the buffer's size increased. If *len is 0 upon return, then the
message dequeued has no data portion and neither *data nor the buffer it points to
were modified. It is an error for *data or len to be NULL.

The message is dequeued in transaction mode if the caller is in transaction mod
the TPNOTRAN flag is not set. This has the effect that if tpdequeue () returns
successfully and the caller's transaction is committed successfully, then the mess
deleted from the queue. If the caller's transaction is rolled back either explicitly o
the result of a transaction timeout or some communication error, then the messag
be left on the queue (that is, the deletion of the message from the queue is also
back). This can be exploited to “peek” at a message on the queue, rolling back t
transaction to leave the message on the queue (note that this cannot be done in
TPNOTRAN mode as described below). It is not possible to enqueue and dequeue
same message within the same transaction.

The message is not dequeued in transaction mode if either the caller is not in
transaction mode, or the TPNOTRAN flag is set. The message is dequeued in a separ
transaction. If a communication error or a timeout occurs (either transaction or
blocking timeout), the application will not know whether or not the message was
successfully dequeued and the message may be lost.
BEA TUXEDO Reference Manual 127

tpdequeue(3)

s not
n

ther)

, the

ks
king

to

d
That
 and

tem

ould

, and
Following is a list of valid flags .

TPNOTRAN
If the caller is in transaction mode and this flag is set, then the message i
dequeued within the same transaction as the caller. A caller in transactio
mode that sets this flag is still subject to the transaction timeout (and no o
when dequeuing the message. If message dequeuing fails, the caller's
transaction is not affected.

TPNOBLOCK
The message is not dequeued if a blocking condition exists (for example
internal buffers into which the message is transferred are full). If such a
condition occurs, the call fails and tperrno is set to TPEBLOCK. When
TPNOBLOCK is not specified and a blocking condition exists, the caller bloc
until the condition subsides or a timeout occurs (either transaction or bloc
timeout). This blocking condition does not include blocking on the queue
itself if the TPQWAIT option is specified.

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants
be immune to blocking timeouts. Transaction timeouts may still occur.

TPNOCHANGE
When this flag is set, the type of the buffer pointed to by *data is not allowed
to change. By default, if a buffer is received that differs in type from the
buffer pointed to by *data , then *data 's buffer type changes to the receive
buffer's type so long as the receiver recognizes the incoming buffer type.
is, the type and sub-type of the dequeued message must match the type
sub-type of the buffer pointed to by *data .

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is re-issued. When TPSIGRSTRT is not specified and a signal interrupts a
system call, then tpdequeue () fails and tperrno is set to TPGOTSIG.

If tpdequeue () returns successfully, the application can retrieve additional
information about the message using ctl data structure. The information may include
the message identifier for the dequeued message, a correlation identifier that sh
accompany any reply or failure message so that the originator can correlate the
message with the original request, the name of a reply queue if a reply is desired
the name of the failure queue on which the application can queue information
regarding failure to dequeue the message. This is described below.
128 BEA TUXEDO Reference Manual

tpdequeue(3)

e:

has
ifier.

 by
he

pty.
Control

Parameter

The TPQCTL structure is used by the application program to pass and retrieve
parameters associated with dequeuing the message. The flags element of TPQCTL is
used to indicate what other elements in the structure are valid.

On input to tpdequeue (), the following elements may be set in the TPQCTL structur

long flags; /* indicates which of the values
 * are set */
char msgid[32]; /* id of message to dequeue */
char corrid[32]; /* correlation identifier of
 * message to dequeue */

Following is a list of valid bits for the flags parameter controlling input information
for tpdequeue ().

TPNOFLAGS
No flags are set. No information is taken from the control structure.

TPQGETBYMSGID
If set, it requests that the message identified by ctl->msgid be dequeued.
The message identifier would be one that was returned by a prior call to
tpenqueue (3). Note that the message identifier is not valid if the message
moved from one queue to another; in this case, use the correlation ident
This option cannot be used with the TPQWAIT option.

TPQGETBYCORRID
If set, it requests that the message with the correlation identifier specified
ctl->corrid be dequeued. The correlation identifier would be one that t
application specified when enqueuing the message with tpenqueue (). This
option cannot be used with the TPQWAIT option.

TPQWAIT
If set, it indicates that an error should not be returned if the queue is em
Instead, the process should block until a message is available.

On output from tpdequeue (), the following elements may be set in the TPQCTL
structure:

long flags; /* indicates which of the values
 * should be set */

long priority; /* enqueue priority */
char msgid[32]; /* id of message dequeued */
char corrid[32]; /* correlation identifier used to
 * identify the message */
char replyqueue[16]; /* queue name for reply */
char failurequeue[16]; /* queue name for failure */
BEA TUXEDO Reference Manual 129

tpdequeue(3)

set. If

eued
,
h a

ll

ed

e

ge.

be
d

 was
long diagnostic; /* reason for failure */
long appkey; /* application authentication client
 * key */
long urcode; /* user-return code */
CLIENTID cltid; /* client identifier for originating
 * client */

Following is a list of valid bits for the flags parameter controlling output information
from tpdequeue (). If the flag bit is turned on when tpdequeue () is called, then the
associated element in the structure is populated if available and the bit remains
the value is not available, the flag bit will be turned off after tpdequeue () completes.

TPQPRIORITY
If set and the value is available, the priority at which the message was qu
is stored in ctl->priority . The priority is in the range 1 to 100, inclusive
and the higher the number, the higher the priority (that is, a message wit
higher number is dequeued before a message with a lower number).

TPQMSGID
If set and the call to tpdequeue () was successful, the message identifier wi
be stored in ctl->msgid .

TPQCORRID
If set and the call to tpdequeue () was successful and the message was queu
with a correlation identifier, the value will be stored in ctl->corrid . Any
reply to a queue must have this correlation identifier.

TPQREPLYQ
If set and the message is associated with a reply queue, the value will b
stored in ctl->replyqueue . Any reply to the message should go to the
named reply queue within the same queue space as the request messa

TPQFAILUREQ
If set and the message is associated with a failure queue, the value will
stored in ctl->failurequeue . Any failure message should go to the name
failure queue within the same queue space as the request message.

If the call to tpdequeue () failed and tperrno is set to TPEDIAGNOSTIC, a value
indicating the reason for failure is returned in ctl->diagnostic . The possible values
are defined below in the DIAGNOSTICS section.

Additionally on output, ctl->appkey is set to application authentication key,
ctl->cltid is set to the identifier for the client originating the request, and
ctl->urcode is set to the user-return code value that was set when the message
enqueued.
130 BEA TUXEDO Reference Manual

tpdequeue(3)

and

 one

 the

ess,
e
eue.

n
ing

ill fail

r is

.

If the ctl parameter is NULL, the input flags are considered to be TPNOFLAGS
no output information is made available to the application program.

Return Values This function returns \-1 on error and sets tperrno to indicate the error condition.

Errors Under the following conditions, tpdequeue () fails and sets tperrno to one of the
following (unless otherwise noted, failure does not affect the caller's transaction, if
exists):

[TPEINVAL]
Invalid arguments were given (for example, qname is NULL, data does not
point to space allocated with tpalloc (3) or flags are invalid).

[TPENOENT]
Cannot access the qspace because it is not available (the associated
TMQUEUE(5) server is not available).

[TPEOTYPE]
Either the type and sub-type of the dequeued message are not known to
caller; or, TPNOCHANGE was set in flags and the type and sub-type of *data
do not match the type and sub-type of the dequeued message. Regardl
neither *data , its contents nor *len are changed. When this error occurs, th
transaction is marked abort-only and the message will remain on the qu

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transactio
timeout occurred and the transaction is to be aborted; otherwise, a block
timeout occurred and neither TPNOBLOCK nor TPNOTIME were specified. If a
transaction timeout occurred, any attempts to dequeue new messages w
with TPETIME until the transaction has been aborted.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpdequeue () was called in an improper context. There is no effect on the
queue or the transaction.

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file. There is no effect on the queue.

[TPEOS]
An operating system error has occurred. There is no effect on the queue
BEA TUXEDO Reference Manual 131

tpdequeue(3)

ilure

.

 to

cified
ently

 log

the

[TPEDIAGNOSTIC]
Dequeuing a message from the specified queue failed. The reason for fa
can be determined by the diagnostic value returned via ctl structure.

Diagnostic The following diagnostic values are returned during the dequeuing of a message

[QMEINVAL]
An invalid flag value was specified.

[QMEBADRMID]
An invalid resource manager identifier was specified.

[QMENOTOPEN]
The resource manager is not currently open.

[QMETRAN]
The call was made with the TPNOTRAN flag and an error occurred trying
start a transaction in which to dequeue the message.

[QMEBADMSGID]
An invalid message identifier was specified for dequeuing.

[QMEINUSE]
When dequeuing a message by correlation or message identifier, the spe
message is in-use by another transaction. Otherwise, all messages curr
on the queue are in-use by other transactions.

[QMESYSTEM]
A system error has occurred. The exact nature of the error is written to a
file.

[QMEOS]
An operating system error has occurred.

[QMEABORTED]
The operation was aborted. When executed within a global transaction,
global transaction has been marked rollback-only. Otherwise, the queue
manager aborted the operation.

[QMEPROTO]
A dequeue was done when the transaction state was not active.

[QMEBADQUEUE]
An invalid or deleted queue name was specified.
132 BEA TUXEDO Reference Manual

tpdequeue(3)
[QMENOMSG]
No message was available for dequeuing.

See Also TMQUEUE(5), tpalloc (3), tpenqueue (3)
BEA TUXEDO Reference Manual 133

tpdiscon(3)

ed.

h a
r

ther

pating
 caller

r is

d.
tpdiscon(3)

Name tpdiscon -routine for taking down a conversational service connection

Synopsis #include <atmi.h>
int tpdiscon(int cd)

Description tpdiscon () immediately tears down the connection specified by cd and generates a
TPEV_DISCONIMM event on the other end of the connection.

tpdiscon () can be called only by the initiator of the conversation. tpdiscon () cannot
be called within a conversational service on the descriptor with which it was invok
Rather, a conversational service must use tpreturn (3) to signify that it has completed
its part of the conversation. Similarly, even though a program communicating wit
conversational service can issue tpdiscon (), the preferred way is to let the service tea
down the connection in tpreturn (3); doing so ensures correct results.

tpdiscon () causes the connection to be torn down immediately (that is, abortive ra
than orderly). Any data that has not yet reached its destination may be lost. tpdiscon ()
can be issued even when the program on the other end of the connection is partici
in the caller's transaction. In this case, the transaction must be aborted. Also, the
does not need to have control of the connection when tpdiscon () is called.

Return Values tpdiscon () function returns \-1 on error and sets tperrno to indicate the error
condition.

Errors Under the following conditions, tpdiscon () fails and sets tperrno to:

[TPEBADDESC]
cd is invalid or is the descriptor with which a conversational service was
invoked.

[TPETIME]
A timeout occurred. The descriptor is no longer valid.

[TPEPROTO]
tpdiscon() was called in an improper context.

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file. The descriptor is no longer valid.

[TPEOS]
An operating system error has occurred. The descriptor is no longer vali
134 BEA TUXEDO Reference Manual

tpdiscon(3)
See Also tpabort (3), tpcommit (3), tpconnect (3), tprecv (3), tpreturn (3), tpsend (3)
BEA TUXEDO Reference Manual 135

tpenqueue(3)

name.
t is
ssage

r
 agreed

at if
r

age is
r's
 or
at is,

ction
the

tpenqueue(3)

Name tpenqueue -routine to enqueue a message

Synopsis #include <atmi.h>
int tpenqueue(char *qspace, char *qname, TPQCTL *ctl, char *data,
long len, long flags)

Description tpenqueue () stores a message on the queue named by qname in the qspace queue
space. A queue space is a collection of queues, one of which must be qname.

When the message is intended for a BEA TUXEDO system server, the qname matches
the name of a service provided by a server. The system provided server,
TMQFORWARD(5), provides a default mechanism for dequeuing messages from the
queue and forwarding them to servers that provide a service matching the queue
If the originator expected a reply, then the reply to the forwarded service reques
stored on the originator's (stable) queue. The originator will dequeue the reply me
at a subsequent time. Queues can also be used for a reliable message transfer
mechanism between any pair of BEA TUXEDO system processes (clients and/o
servers). In this case, the queue name does not match a service name but some
upon title for transferring the message.

If data is non-NULL, it must point to a buffer previously allocated by tpalloc (3) and
len should specify the amount of data in the buffer that should be queued. Note th
data points to a buffer of a type that does not require a length to be specified (fo
example, an FML fielded buffer), then len is ignored. If data is NULL, len is ignored
and a message is queued with no data portion.

The message is queued at the priority defined for qspace unless overridden by a
previous call to tpsprio (3).

If the caller is within a transaction and the TPNOTRAN flag is not set, the message is
queued in transaction mode. This has the effect that if tpenqueue () returns
successfully and the caller's transaction is committed successfully, then the mess
guaranteed to be available subsequent to the transaction completing. If the calle
transaction is rolled back either explicitly or as the result of a transaction timeout
some communication error, then the message will be deleted from the queue (th
the placing of the message on the queue is also rolled back). It is not possible to
enqueue then dequeue the same message within the same transaction.

The message is not queued in transaction mode if either the caller is not in transa
mode, or the TPNOTRAN flag is set. In this case, the queued message is stored on
queue in a separate transaction. Once tpenqueue () returns successfully, the submitted
136 BEA TUXEDO Reference Manual

tpenqueue(3)

curs
not

ation
n the

s not
ode
hen

is not

, the

ks
ing

to

tem
a

bsolute
tifier

name
h any
message is guaranteed to be available. If a communication error or a timeout oc
(either transaction or blocking timeout), the application will not know whether or
the message was successfully stored on the queue.

The order in which messages are placed on the queue is controlled by the applic
via ctl data structure as described below; the default queue ordering is set whe
queue is created.

Following is a list of valid flags .

TPNOTRAN
If the caller is in transaction mode and this flag is set, then the message i
queued within the same transaction as the caller. A caller in transaction m
that sets this flag is still subject to the transaction timeout (and no other) w
queuing the message. If message queuing fails, the caller's transaction
affected.

TPNOBLOCK
The message is not enqueued if a blocking condition exists (for example
internal buffers into which the message is transferred are full). If such a
condition occurs, the call fails and tperrno is set to TPEBLOCK. When
TPNOBLOCK is not specified and a blocking condition exists, the caller bloc
until the condition subsides or a timeout occurs (either transaction or block
timeout).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is re-issued. When TPSIGRSTRT is not specified and a signal interrupts
system call, then tpenqueue () fails and tperrno is set to TPGOTSIG.

Additional information about queuing the message can be specified via ctl data
structure. This information includes values to override the default queue ordering
placing the message at the top of the queue or before an enqueued message; an a
or relative time after which a queued message is made available; a correlation iden
that aids in correlating a reply or failure message with the queued message; the
of a queue to which a reply should be enqueued; and the name of a queue to whic
failure message should be enqueued.
BEA TUXEDO Reference Manual 137

tpenqueue(3)

re:

ure.

the
d
ng

the

 was

 1,
Control

Parameter

The TPQCTL structure is used by the application program to pass and retrieve
parameters associated with enqueuing the message. The flags element of TPQCTL is
used to indicate what other elements in the structure are valid.

On input to tpenqueue (), the following elements may be set in the TPQCTL structu

long flags; /* indicates which of the values
 * are set */
long deq_time; /* absolute/relative for dequeuing */
long priority; /* enqueue priority */
long urcode; /* user-return code */
char msgid[32]; /* id of message before which to queue
 * request */
char corrid[32]; /* correlation identifier used to
 * identify the msg */
char replyqueue[16]; /* queue name for reply message */
char failurequeue[16]; /* queue name for failure message */

The following is a list of valid bits for the flags parameter controlling input
information for tpenqueue ().

TPNOFLAGS
No flags or values are set. No information is taken from the control struct

TPQTOP
Setting this flag bit indicates that the queue ordering be overridden and
message placed at the top of the queue. This request may not be grante
depending on whether or not the queue was configured to allow overridi
the queue ordering. TPQTOP and TPQBEFOREMSGID are mutually exclusive
flags.

TPQBEFOREMSGID
Setting this flag bit indicates that the queue ordering be overridden and
message placed in the queue before the message identified by ctl->msgid .
This request may not be granted depending on whether or not the queue
configured to allow overriding the queue ordering. TPQTOP and
TPQBEFOREMSGID are mutually exclusive flags.

TPQTIME_ABS
If set, the message is made available after the time specified by
ctl->deq_time . The deq_time is an absolute time value as generated by
time () or mktime () (the number of seconds since 00:00:00 UTC, January
1970). TPQTIME_ABS and TPQTIME_REL are mutually exclusive flags.
138 BEA TUXEDO Reference Manual

tpenqueue(3)

n of

ld be

e
er

ue
 can

queue
be

ithin
t be

his
TPQTIME_REL
If set, the message is made available after a time relative to the completio
the queuing transaction. ctl->deq_time specifies the number of seconds to
delay after the transaction completes before the submitted message shou
available. TPQTIME_ABS and TPQTIME_REL are mutually exclusive flags.

TPQPRIORITY
If set, the priority at which the message should be enqueued is stored in
ctl->priority . The priority must be in the range 1 to 100, inclusive. Th
higher the number, the higher the priority (that is, a message with a high
number is dequeued before a message with a lower number).

TPQCORRID
If set, the correlation identifier value specified in \%ctl->corrid is
available when a message is dequeued with tpdequeue (3). This identifier
accompanies any reply or failure message that is queued such that an
application can correlate a reply with a particular request. The entire val
should be initialized (e.g., padded with null characters) such that the value
be matched at a later time.

TPQREPLYQ
If set, a reply queue named in ctl->replyqueue is associated with the
queued message. Any reply to the message will be queued to the named
within the same queue space as the request message. This string must
NULL terminated (maximum 15 characters in length).

TPQFAILUREQ
If set, a failure queue named in ctl->failurequeue is associated with the
queued message. If a failure occurs when the enqueued message is
subsequently dequeued, a failure message will go to the named queue w
the same queue space as the original request message. This string mus
NULL terminated (maximum 15 characters in length).

Additionally, the urcode element of TPQCTL can be set with a user-return code. T
value will be returned to the application that dequeues the message.

On output from tpenqueue (), the following elements may be set in the TPQCTL:

structure: long flags; /* indicates which of the values
 * are set */
char msgid[32]; /* id of enqueued message */
long diagnostic; /* indicates reason for failure */
BEA TUXEDO Reference Manual 139

tpenqueue(3)

set. If

ll

 no

one

n
ing

ill fail
Following is a list of valid bits for the flags parameter controlling output information
from tpenqueue (). If the flag bit is turned on when tpenqueue () is called, then the
associated element in the structure is populated if available and the bit remains
the value is not available, the flag bit will be turned off after tpenqueue () completes.

TPQMSGID
If set and the call to tpenqueue () was successful, the message identifier wi
be stored in ctl->msgid .

If the call to tpenqueue () failed and tperrno is set to TPEDIAGNOSTIC, a value
indicating the reason for failure is returned in ctl->diagnostic . The possible values
are defined below in the DIAGNOSTICS section.

If this parameter is NULL, the input flags are considered to be TPNOFLAGS and
output information is made available to the application program.

Return Values This function returns \-1 on error and sets tperrno to indicate the error condition.
Otherwise, the message has been successfully queued when tpenqueue () returns.

Errors Under the following conditions, tpenqueue () fails and sets tperrno to the following
values (unless otherwise noted, failure does not affect the caller's transaction, if
exists):

[TPEINVAL]
Invalid arguments were given (for example, qspace is NULL, data does not
point to space allocated with tpalloc (3), or flags are invalid).

[TPENOENT]
Cannot access the qspace because it is not available (the associated
TMQUEUE(5) server is not available).

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transactio
timeout occurred and the transaction is to be aborted; otherwise, a block
timeout occurred and neither TPNOBLOCK nor TPNOTIME was specified. If a
transaction timeout occurred, any attempts to enqueue new messages w
with TPETIME until the transaction has been aborted.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.
140 BEA TUXEDO Reference Manual

tpenqueue(3)

r is

e can

.

 to

 log

the

[TPEPROTO]
tpenqueue () was called in an improper context.

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

[TPEDIAGNOSTIC]
Enqueuing a message on the specified queue failed. The reason for failur
be determined by the diagnostic returned via ctl .

Diagnostic The following diagnostic values are returned during the enqueuing of a message

[QMEINVAL]
An invalid flag value was specified.

[QMEBADRMID]
An invalid resource manager identifier was specified.

[QMENOTOPEN]
The resource manager is not currently open.

[QMETRAN]
The call was made with the TPNOTRAN flag and an error occurred trying
start a transaction in which to enqueue the message.

[QMEBADMSGID]
An invalid message identifier was specified.

[QMESYSTEM]
A system error has occurred. The exact nature of the error is written to a
file.

[QMEOS]
An operating system error has occurred.

[QMEABORTED]
The operation was aborted. When executed within a global transaction,
global transaction has been marked rollback-only. Otherwise, the queue
manager aborted the operation.
BEA TUXEDO Reference Manual 141

tpenqueue(3)
[QMEPROTO]
An enqueue was done when the transaction state was not active.

[QMEBADQUEUE]
An invalid or deleted queue name was specified.

[QMENOSPACE]
There is no space on the queue for the message.

See Also TMQFORWARD(5), TMQUEUE(5), gp_mktime (3), tpalloc (3), tpacall (3), tpinit (3),
tpsprio (3)
142 BEA TUXEDO Reference Manual

tperrordetail(3c)

EA

EA

DO

nd

tperrordetail(3c)

Name tperrordetail (3c)-get additional detail about an error generated from the last B
TUXEDO system call

Synopsis #include <atmi.h>
int tperrordetail(long flags)

Description tperrordetail returns additional detail related to an error produced by the last B
TUXEDO system routine called in the current thread. tperrordetail returns a
numeric value that is also represented by a symbolic name. If the last BEA TUXE
system routine called in the current thread did not produce an error, then
tperrordetail will return zero. Therefore, tperrordetail should be called after
an error has been indicated; that is, when tperrno has been set.

Currently flags is reserved for future use and must be set to 0.

Return Values tperrordetail returns a -1 on error and sets tperrno to indicate the error condition.

These are the symbolic names and meaning for each numeric value that
tperrordetail may return. The order in which these are listed is not significant a
does not imply precedence.

TPED_SVCTIMEOUT
A server was terminated due to a service timeout. The service timeout is
controlled by the value of SVCTIMEOUT in the ubbconfig file or
TA_SVCTIMEOUT in T_SERVER and T_SERVICE classes in the TM_MIB.

TPED_TERM
A Workstation client has been disconnected from the application.

TPED_NOUNSOLHANDLER

A client does not have an unsolicited handler set. The TPACK flag is used in a
tpnotify (3c) call and the target of the tpnotify (3c) is in a BEA TUXEDO
session, but it has not set an unsolicited notification handler. When
tpnotify (3c) fails, tperrno is set to TPENOENT. A subsequent call to
tperrordetail (3c) with no intermediate ATMI calls returns
TPED_NOUNSOLHANDLER.

TPED_NOCLIENT

No client exists. The TPACK flag is used in a tpnotify call but there is no
target for tpnotify (3c). When tpnotify (3c) fails, tperrno is set to
TPENOENT. A subsequent call to tperrordetail (3c) with no intermediate
ATMI calls returns TPED_NOCLIENT.
BEA TUXEDO Reference Manual 143

tperrordetail(3c)

d to
hen

nect
TPED_CLIENTDISCONNECTED

A Jolt client is disconnected currently. The TPACK flag is used in a
tpnotify (3c) call and the target of tpnotify (3c) is a currently disconnected
Jolt client. When tpnotify (3c) fails, a call to tperrordetail (3c) with no
intermediate ATMI calls returns TPED_CLIENTDISCONNECTED.

TPED_DOMAINUNREACHABLE

A domain is unreachable. Specifically, a domain that has been configure
satisfy a request that a local domain cannot service, was not reachable w
a request was made. If, after the request failure, a call is made to
tperrordetail (3c) with no intermediate ATMI calls,

TPED_DOMAINUNREACHABLE is returned.
When calls to tpcall (3c), tpgetrply (3c), and tprecv (3c) fail because of
an unreachable domain, TPED_DOMAINUNREACHABLE is returned. The
following table indicates the corresponding values returned by tperrno .

Note: The TPED_DOMAINUNREACHABLE feature applies to BEA TUXEDO
Domains only. It does not apply to other domains products such as Con
OSI TP Domains and Connect SNA Domains.

Errors Under the following conditions tperrordetail fails and sets tperrno to the
following:

TPEINVAL

flags not set to zero

See Also intro (3c), tpstrerrordetail (3c), tperrno (5)

ATMI Call tperrno Error Detail

tpcall TPESVCERR TPED_DOMAINUNREACHABLE

tpgetrply TPESVCERR TPED_DOMAINUNREACHABLE

tprecv TPEEVENT
TPEV_SVCERR

TPED_DOMAINUNREACHABLE
144 BEA TUXEDO Reference Manual

tpforward(3)

e

A

rns to

ote

vice

ction

est

ests
ill
pt. In

bout
il.

e
tpforward(3)

Name tpforward (3)-routine for forwarding a service request to another service routine

Synopsis #include <atmi.h>
void tpforward(char *svc, char *data, long len, long flags)

Description tpforward allows a service routine to forward a client's request to another servic
routine for further processing. tpforward acts like tpreturn (3) in that it is the last
call made in a service routine. Like tpreturn (3), tpforward should be called from
within the service routine dispatched to ensure correct return of control to the BE
TUXEDO system dispatcher. tpforward cannot be called from within a
conversational service.

This function forwards a request to the service named by svc using data pointed to by
data . The service name must not begin with a dot. A service routine forwarding a
request receives no reply. After the request is forwarded, the service routine retu
the communication manager dispatcher and the server is free to do other work. N
that because no reply is expected from a forwarded request, the request may be
forwarded without error to any service routine in the same executable as the ser
that forwarded the request.

If the service routine is in transaction mode, tpforward puts the caller's portion of the
transaction in a state where it may be completed when the originator of the transa
issues either tpcommit (3) or tpabort (3). If a transaction was explicitly started with
tpbegin (3) while in a service routine, the transaction must be ended with either
tpcommit (3) or tpabort (3) before calling tpforward . Thus, all services in a
“forward chain” are either all started in transaction mode or none are.

The last server in a forward chain sends a reply back to the originator of the requ
using tpreturn (3). In essence, tpforward transfers to another server the
responsibility of sending a reply back to the awaiting requester.

tpforward should be called after receiving all replies expected from service requ
initiated by the service routine. Any outstanding replies which are not received w
automatically be dropped by the communication manager dispatcher upon recei
addition, the descriptors for those replies become invalid and the request is not
forwarded to svc .

data points to the data portion of a reply to be sent. If data is non-NULL, it must point
to a buffer previously obtained by a call to tpalloc (3). If this is the same buffer passed
to the service routine upon its invocation, then its disposition is up to the BEA
TUXEDO system dispatcher; the service routine writer does not have to worry a
whether it is freed or not. In fact, any attempt by the user to free this buffer will fa
However, if the buffer passed to tpforward is not the same one with which the servic
BEA TUXEDO Reference Manual 145

tpforward(3)

ager

 or in
 reply
r the
iled

he

ing

ta.

ing
at the
is invoked, then tpforward will free that buffer. len specifies the amount of the data
buffer to be sent. If data points to a buffer which does not require a length to be
specified, (for example, an FML fielded buffer), then len is ignored (and can be 0). If
data is NULL, then len is ignored and a request with zero length data is sent.

The flags argument is reserved for future use and should be set to 0 (zero).

Return Values A service routine does not return any value to its caller, the communication man
dispatcher. Thus, tpforward is declared as a void. See tpreturn (3c) for a more
extensive discussion.

Errors If any errors occur either in the handling of the parameters passed to the function
its processing, a “failed” message is sent back to the original requester (unless no
is to be sent). The existence of outstanding replies or subordinate connections, o
caller's transaction being marked abort-only, qualify as failures which generate fa
messages.

If either SVCTIMEOUT in the ubbconfig file or TA_SVCTIMEOUT in the TM_MIB is
non-zero, the event, TPEV_SVCERR is returned when a service timeout occurs.

Failed messages are detected by the requester with the TPESVCERR error indication.
When such an error occurs, the caller's data is not sent. Also, this error causes t
caller's current transaction to be marked abort-only.

If a transaction timeout occurs either while in the service routine or while forward
the request, the requester waiting for a reply with either tpcall (3), or tpgetrply (3)
will get a TPETIME error return. Also, the waiting requester will not receive any da
Service routines, however, are expected to terminate using either tpreturn (3) or
tpforward . A conversational service routine must use tpreturn (3), and cannot use
tpforward .

If a service routine returns without using either tpreturn (3) or tpforward (that is, it
uses the C language return statement or simply “falls out of the function”) or if
tpforward is called from a conversational server, the server will print a warning
message in a log file and return a service error to the original requester. All open
connections to subordinates will be disconnected immediately, and any outstand
asynchronous replies will be marked stale. If the server was in transaction mode
time of failure, the transaction is marked abort-only. Note also that if either
tpreturn (3) or tpforward are used outside of a service routine (for example, in
clients, or in tpsvrinit (3) or tpsvrdone (3)), then these routines simply return
having no effect.

See Also tpalloc (3), tpconnect (3), tpreturn (3), tpservice (3), tpstrerrordetail (3c)
146 BEA TUXEDO Reference Manual

tpfree(3)

s part
on
tpfree(3)

Name tpfree -routine for freeing a typed buffer

Synopsis #include <atmi.h>
void tpfree(char *ptr)

Description The argument to tpfree () is a pointer to a buffer previously obtained by either
tpalloc (3) or tprealloc (3). If ptr is NULL, no action occurs. Undefined results
will occur if ptr does not point to a typed buffer (or if it points to space previously
freed with tpfree ()). Inside service routines, tpfree () returns and does not free the
buffer if ptr points to the buffer passed into a service routine.

Some buffer types require state information or associated data to be removed a
of freeing a buffer. tpfree () removes any of these associations (in a communicati
manager-specific manner) before a buffer is freed.

Once tpfree () returns, ptr should not be passed as an argument to any BEA
TUXEDO system routine or used in any other manner.

Return Values tpfree () does not return any value to its caller. Thus, it is declared as a void.

Usage This function should not be used in concert with malloc (3C;), realloc (3C;) or
free (3C;) in the C library (for example, a buffer allocated with tpalloc (3) should not
be freed with free (3C)).

See Also intro (3), tpalloc (3), tprealloc (3)
BEA TUXEDO Reference Manual 147

tpgetadmkey(3)

ent
ine

ase
tpgetadmkey(3)

Name tpgetadmkey -get administrative authentication key.

Synopsis #include <atmi.h>
long tpgetadmkey(TPINIT *tpinfo)

Description tpgetadmkey () is available for application use by an application specific
authentication server. It returns an application security key suitable for assignm
to the indicated user for the purpose of administrative authentication. This rout
must be called with a client name (i.e., tpinfo->cltname) of either tpsysadm or
tpsysop ; otherwise, a valid administrative key will not be returned.

Return Values A non-0 value with the high-order bit (0x80000000) set is returned on success;
otherwise 0 is returned. Zero may be returned if tpinfo is NULL, tpinfo->cltname
is not tpsysadm or tpsysop , or lastly if the effective user id is not the configured
application administrator for this site.

Errors A zero return value is the only indication that a valid administrative key was not
assigned.

Portability This interface is available only on UNIX System sites running BEA TUXEDO Rele
5.0 or later.

See Also tpaddusr (1), tpinit (3), AUTHSVR(5), BEA TUXEDO Administrator's Guide
148 BEA TUXEDO Reference Manual

tpgetlev(3)

els

wise,

r is

urce
s

tions
tion.
tpgetlev(3)

Name tpgetlev -routine for checking if a transaction is in progress

Synopsis #include <atmi.h>
int tpgetlev()

Description tpgetlev () returns to the caller the current transaction level. Currently, the only lev
defined are 0 and 1.

Return Values Upon successful completion, tpgetlev () returns either a 0 to indicate that no
transaction is in progress, or 1 to indicate that a transaction is in progress; other
tpgetlev () returns \-1 on error and sets tperrno to indicate the error condition.

Errors Under the following conditions, tpgetlev () fails and sets tperrno to:

[TPEPROTO]
tpgetlev() was called in an improper context.

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

Notices When using tpbegin (3), tpcommit (3) and tpabort (3) to delineate a BEA TUXEDO
system transaction, it is important to remember that only the work done by a reso
manager that meets the XA interface (and is linked to the caller appropriately) ha
transactional properties. All other operations performed in a transaction are not
affected by either tpcommit (3) or tpabort (3). See buildserver (1) for details on
linking resource managers that meet the XA interface into a server such that opera
performed by that resource manager are part of a BEA TUXEDO system transac

See Also tpabort (3), tpbegin (3), tpcommit (3), tpscmt (3)
BEA TUXEDO Reference Manual 149

tpgetrply(3)

t

e a
r is

hen
ceiver
der,

and

t.

d
so
tpgetrply(3)

Name tpgetrply (3c)-routine for getting a reply from a previous request

Synopsis #include <atmi.h>
int tpgetrply(int * cd , char ** data , long * len , long flags)

Description tpgetrply (3c) returns a reply from a previously sent request. This function's firs
argument, cd , points to a call descriptor returned by tpacall (3c). By default, the
function waits until the reply matching *cd arrives or a timeout occurs.

data must be the address of a pointer to a buffer previously allocated by tpalloc (3c)
and len should point to a long that tpgetrply (3c) sets to the amount of data
successfully received. Upon successful return, *data points to a buffer containing the
reply and *len contains the size of the data. FML and FML32 buffers often assum
minimum size of 4096 bytes; if the reply is larger than 4096, the size of the buffe
increased to a size large enough to accommodate the data being returned.

Buffers on the sending side that may be only partially filled (for example, FML or
STRING buffers) will have only the amount that is used send. The system may t
enlarge the received data size by some arbitrary amount. This means that the re
may receive a buffer that is smaller than what was originally allocated by the sen
yet larger than the data that was sent.

The receive buffer may grow, or it may shrink, and its address almost invariably
changes, as the system swaps buffers around internally. To determine whether (
how much) a reply buffer changed in size, compare its total size before tpgetrply
was issued with *len . See intro (3c) for more information about buffer managemen

If * len is 0, then the reply has no data portion and neither *data nor the buffer it points
to were modified.

 It is an error for *data or len to be NULL.

Following is a list of valid flags .

TPGETANY
This flag signifies that tpgetrply should ignore the descriptor pointed to by
cd , return any reply available and set cd to point to the call descriptor for the
reply returned. If no replies exist, tpgetrply by default will wait for one to
arrive.

TPNOCHANGE
By default, if a buffer is received that differs in type from the buffer pointe
to by *data , then *data 's buffer type changes to the received buffer's type
150 BEA TUXEDO Reference Manual

tpgetrply(3)

 set,

-type

n
 a

 still

tem

t of

.

rwise
long as the receiver recognizes the incoming buffer type. When this flag is
the type of the buffer pointed to by *data is not allowed to change. That is,
the type and sub-type of the received buffer must match the type and sub
of the buffer pointed to by *data .

TPNOBLOCK
tpgetrply does not wait for the reply to arrive. If the reply is available, the
tpgetrply gets the reply and returns. When this flag is not specified and
reply is not available, the caller blocks until the reply arrives or a timeout
occurs (either transaction or blocking timeout).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely for its reply
and wants to be immune to blocking timeouts. Transaction timeouts may
occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is re-issued.

Except as noted below, *cd is no longer valid after its reply is received.

Return Values Upon successful return from tpgetrply or upon return where tperrno is set to
TPESVCFAIL, tpurcode contains an application defined value that was sent as par
tpreturn . tpgetrply returns -1 on error and sets tperrno to indicate the error
condition.

Errors Under the following conditions, tpgetrply (3c) fails and sets tperrno as indicated
below. Note that if TPGETANY is not set, then *cd is invalidated unless otherwise stated
If TPGETANY is set, then cd points to the descriptor for the reply on which the failure
occurred; if an error occurred before a reply could be retrieved, then cd points to 0.
Also, the failure does not affect the caller's transaction, if one exists, unless othe
stated. If a call fails with a particular tperrno value, a subsequent call to
tperrordetail (3c) with no intermediate ATMI calls, may provide more detailed
information about the generated error. Refer to the tperrordetail (3c) reference
page for more information.

[TPEINVAL]
Invalid arguments were given (for example, cd , data , *data or len is NULL
or flags are invalid). If cd is non-NULL, then it is still valid after this error
and the reply remains outstanding.
BEA TUXEDO Reference Manual 151

tpgetrply(3)

s,

n is

n

h
est
ler's

ne

rked
r
tion

tion

this

s not
[TPEOTYPE]
Either the type and sub-type of the reply are not known to the caller; or,
TPNOCHANGE was set in flags and the type and sub-type of *data do not
match the type and sub-type of the reply sent by the service. Regardles
neither *data , its contents nor *len are changed. If the reply was to be
received on behalf of the caller's current transaction, then the transactio
marked abort-only since the reply is discarded.

[TPEBADDESC]
cd points to an invalid descriptor.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transactio
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTIME were
specified. In either case, neither *data , its contents nor *len are changed.
*cd remains valid unless the caller is in transaction mode (and TPGETANY was
not set). If a transaction timeout occurred, then with one exception, any
attempts to send new requests or receive outstanding replies will fail wit
TPETIME until the transaction has been aborted. The exception is a requ
that does not block, expects no reply and is not sent on behalf of the cal
transaction (that is, tpacall (3c) with TPNOTRAN, TPNOBLOCK and
TPNOREPLY set).

[TPESVCFAIL]
The service routine sending the caller's reply called tpreturn with TPFAIL .
This is an application-level failure. The contents of the service's reply, if o
was sent, is available in the buffer pointed to by *data . If the service request
was made on behalf of the caller's transaction, then the transaction is ma
abort-only. Note that so long as the transaction has not timed out, furthe
communication may be performed before completely aborting the transac
and that any work performed on behalf of the caller's transaction will be
aborted upon transaction completion (that is, for subsequent communica
to have any lasting effect, it should be done with TPNOTRAN set).

[TPESVCERR]
A service routine encountered an error either in tpreturn or tpforward (for
example, bad arguments were passed). No reply data is returned when
error occurs (that is, neither *data , its contents nor *len are changed). If the
service request was made on behalf of the caller's transaction, then the
transaction is marked abort-only. Note that so long as the transaction ha
timed out, further communication may be performed before completely
152 BEA TUXEDO Reference Manual

tpgetrply(3)

ler's

with

r is

te
aborting the transaction and that any work performed on behalf of the cal
transaction will be aborted upon transaction completion (that is, for
subsequent communication to have any lasting effect, it should be done
TPNOTRAN set). If either SVCTIMEOUT in the ubbconfig file or
TA_SVCTIMEOUT in the TM_MIB is non-zero, TPESVCERR is returned when a
service timeout occurs.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified. *cd remains
valid.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpgetrply was called in an improper context.

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred. If a message queue on a remo
location is filled, TPEOS may possibly be returned.

See Also tpacall (3c), tpalloc (3c), tpcancel (3c), tperrordetail (3c), tprealloc (3c),
tpreturn (3c), tpstrerrordetail (3c), tptypes (3c)
BEA TUXEDO Reference Manual 153

tpgprio(3)

nge

est
ty
l

ests

r is
tpgprio(3)

Name tpgprio -routine for getting a service request priority

Synopsis #include <atmi.h>
int tpgprio(void)

Description tpgprio () returns the priority for the last request sent or received. Priorities can ra
from 1 to 100, inclusive, with 100 being the highest priority. tpgprio () may be called
after tpcall (3) or tpacall (3), (also tpenqueue (3), or tpdequeue (3), assuming the
queued management facility is installed), and the priority returned is for the requ
sent. Also, tpgprio () may be called within a service routine to find out at what priori
the invoked service was sent. tpgprio () may be called any number of times and wil
return the same value until the next request is sent.

Since the conversation primitives are not associated with priorities, issuing tpsend (3)
or tprecv (3) has no affect on the priority returned by tpgprio (). Also, there is no
priority associated with a conversational service routine unless a tpcall (3) or
tpacall (3) is done within that service.

Return Values Upon success, tpgprio () returns a request's priority; otherwise tpgprio () returns \-1
on error and sets tperrno to indicate the error condition.

Errors Under the following conditions, tpgprio () fails and sets tperrno to:

[TPENOENT]
tpgprio () was called and no requests (via tpcall (3) or tpacall (3)) have
been sent, or it is called within a conversational service for which no requ
have been sent.

[TPEPROTO]
tpgprio () was called in an improper context.

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also tpacall (3), tpcall (3), tpdequeue (3), tpenqueue (3), tpservice (3), tpsprio (3)
154 BEA TUXEDO Reference Manual

tpinit(3)

nt
, it

d
ed

e

They

t the
tpinit(3)

Name tpinit (3)-routine for joining an application

Synopsis #include <atmi.h>
int tpinit(TPINIT *tpinfo)

Description tpinit () allows a client to join a BEA TUXEDO system application. Before a clie
can use any of the BEA TUXEDO system communication or transaction routines
must first join a BEA TUXEDO system application. Because calling tpinit () is
optional, a client may also join an application by calling many ATMI routines (for
example, tpcall (3)) which transparently call tpinit () with tpinfo set to NULL. A
client may want to call tpinit () directly so that it can set the parameters describe
below. In addition, tpinit () must be used when application authentication is requir
(see the description of the SECURITY keyword in ubbconfig (5)), or when the
application wishes to supply its own buffer type switch (see typesw (5)). After
tpinit () successfully returns, the client can initiate service requests and define
transactions.

If tpinit () is called more than once (that is, after the client has already joined th
application), no action is taken and success is returned.

tpinit ()’s argument, tpinfo , is a pointer to a typed buffer of type TPINIT and a
NULL sub-type. TPINIT is a buffer type that is typedef ed in the atmi.h header file.
The buffer must be allocated via tpalloc () prior to calling tpinit (3). The buffer
should be freed using tpfree (3) after calling tpinit (). The TPINIT typed buffer
structure includes the following members:

char usrname[MAXTIDENT+2];
char cltname[MAXTIDENT+2];
char passwd[MAXTIDENT+2];
char grpname[MAXTIDENT+2];
long flags;
long datalen;
long data;

usrname , cltname , grpname and passwd are all NULL-terminated strings. usrname
is a name representing the caller. cltname is a client name whose semantics are
application defined. The value sysclient is reserved by the system for the cltname
field. The usrname and cltname fields are associated with the client at tpinit () time
and are used for both broadcast notification and administrative statistics retrieval.
should not have more characters than MAXTIDENT, which is defined as 30. passwd is
an application password in unencrypted format that is used for validation agains
application password. The passwd is limited to 30 characters. grpname is used to
BEA TUXEDO Reference Manual 155

tpinit(3)

in the

m
fault;

pon

 set

tion

ed
e

ure).

associate the client with a resource manager group name. If grpname is set to a
0-length string, then the client is not associated with a resource manager and is
default client group. The value of grpname must be the null string (0-length string) for
/WS clients. Note that grpname is not related to ACL GROUPS.

The setting of flags is used to indicate both the client-specific notification mechanis
and the mode of system access. These settings may override the application de
however, in the event that they cannot, tpinit () will print a warning in a log file,
ignore the setting and return the application default setting in the flags element u
return from tpinit (). For client notification, the possible values for flags are as
follows:

TPU_SIG-Select unsolicited notification by signals.

TPU_DIP-Select unsolicited notification by dip-in.

TPU_IGN-ignore unsolicited notification.

Only one of the above flags can be used at a time. If the client does not select a
notification method via the flags field, then the application default method will be
in the flags field upon return from tpinit ().

For setting the mode of system access, the possible values for flags are as follows:

TPSA_FASTPATH-Set system access to fastpath.

TPSA_PROTECTED-Set system access to protected.

Only one of the above flags can be used at a time. If the client does not select a
notification method or a system access mode via the flags field, then the applica
default method(s) will be set in the flags field upon return from tpinit (). See
ubbconfig (5) for details on both client notification methods and system access
modes.

datalen is the length of the application specific data that follows. The buffer type
switch entry for the TPINIT typed buffer sets this field based on the total size pass
in for the typed buffer (the application data size is the total size less the size of th
TPINIT structure itself plus the size of the data placeholder as defined in the struct
data is a place holder for variable length data that is forwarded to an application
defined authentication service. It is always the last element of this structure.
156 BEA TUXEDO Reference Manual

tpinit(3)

 if 8

ent

n to

ilure

r is
A macro, TPINITNEED, is available to determine the size TPINIT buffer necessary to
accommodate a particular desired application specific data length. For example,
bytes of application specific data are desired, TPINITNEED(8) will return the required
TPINIT buffer size.

A NULL value for tpinfo is allowed for applications not making use of the
authentication feature of the BEA TUXEDO system. Clients using a NULL argum
will get defaults of 0-length strings for usrname , cltname and passwd , no flags set,
and no application data.

Return Values tpinit () returns -1 on error and sets tperrno to indicate the error condition.

Errors Under the following conditions, tpinit () fails and sets tperrno to:

[TPEINVAL]
Invalid arguments were specified. tpinfo is non-NULL and does not point
to a typed buffer of type TPINIT .

[TPENOENT]
The client cannot join the application because of space limitations.

[TPEPERM]
The client cannot join the application because it does not have permissio
do so or because it has not supplied the correct application password.
Permission may be denied based on an invalid application password, fa
to pass application specific authentication, or use of restricted names.

[TPEPROTO]
tpinit () was called in an improper context (for example, the caller is a
server).

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

Interoperability tpchkauth (3c) and a non-NULL value for the TPINIT typed buffer argument of
tpinit () are available only on sites running Release 4.2 or later.
BEA TUXEDO Reference Manual 157

tpinit(3)

rted

.

s

s

ess to

l

mber

 or a

 same
Portability The interfaces described in tpinit (3c) are supported on UNIX System, Windows,
and MS-DOS operating systems. However, signal-based notification is not suppo
on 16-bit Windows or MS-DOS platforms. If it is selected at tpinit () time, then a
userlog (3c) message is generated and the method is automatically set to dip-in

Environment

Variables

WSENVFILE-is used within tpinit () when invoked by a workstation client. It indicate
a file containing environment variable settings that should be set in the caller’s
environment. See compilation (5) for more details on environment variable setting
necessary for workstation clients. Note that this file is processed only when tpinit ()
is called and not before.

WSNADDR-is used within tpinit () when invoked by a workstation client. It indicates
the network address(es) of the workstation listener that is to be contacted for acc
the application.

TCP/IP addresses may be specified in the following forms:

//host.name:port_number

//#.#.#.#:port_number

In the first format, the domain finds an address for hostname using the local name
resolution facilities (usually DNS). hostname must be the local machine, and the loca
name resolution facilities must unambiguously resolve hostname to the address of the
local machine.

In the second example, the string #.#.#.# is in dotted decimal format. In dotted
decimal format, each # should be a number from 0 to 255. This dotted decimal nu
represents the IP address of the local machine.

In both of the above formats, port_number is the TCP port number at which the
domain process will listen for incoming requests. port_number can either be a
number between 0 and 65535 or a name. If port_number is a name, then it must be
found in the network services database on your local machine.

The address can also be specified in hexadecimal format when preceded by the
characters “0x”. Each character after the initial “0x” is a number between 0 and 9
letter between A and F (case insensitive). The hexadecimal format is useful for
arbitrary binary network addresses such as IPX/SPX or TCP/IP.

The address can also be specified as an arbitrary string. The value should be the
as that specified for the NLSADDR parameter in the NETWORK section of the
configuration file.
158 BEA TUXEDO Reference Manual

tpinit(3)

ed list

. This
resses

e
ise,

tation

IOS.

he
c

st

not

he
More than one address can be specified if desired by specifying a comma-separat
of pathnames for WSNADDR Addresses are tried in order until a connection is
established. Any member of an address list can be specified as a parenthesized
grouping of pipe-separated network addresses. For example:

WSNADDR=(//m1.acme.com:3050|//m2.acme.com:3050),//m3.acme.com:3050

For users running under Windows, the address string would look like this:

set WSNADDR=(//m1.acme.com:3050^|//m2.acme.com:3050),//m3.acme.com:3050

The carat (^) is needed to escape the pipe (|).

The BEA TUXEDO system randomly selects one of the parenthesized addresses
strategy distributes the load randomly across a set of listener processes. Add
are tried in order until a connection is established. Use the value specified in the
application configuration file for the workstation listener to be called. If the valu
begins with the characters “0x”', it is interpreted as a string of hex-digits; otherw
it is interpreted as ASCII characters.

WSDEVICE-is used within tpinit () when invoked by a workstation client. It indicates
the device name to be used to access the network. This variable is used by works
clients and ignored for native clients. Note that certain supported transport level
network interfaces do not require a device name; for example, sockets and NetB
Workstation clients supported by such interfaces need not specify WSDEVICE.

WSTYPE-is used within tpinit () when invoked by a workstation client to negotiate
encode/decode responsibilities with the native site. This variable is optional for
workstation clients and ignored for native clients.

WSRPLYMAX-is used by tpinit () to set the maximum amount of core memory that
should be used for buffering application replies before they are dumped to file. T
default for this parameter varies with each instantiation. The instantiation specifi
Programmer’s Guide should be consulted for further information.

TMMINENCRYPTBITS-When connecting to the BEA TUXEDO system, require at lea
this minimum level of encryption. “0” means no encryption, while “40” and “128”
specify the encryption key length (in bits). If this minimum level of encryption can
be met, link establishment will fail. The default is “0”.

TMMAXENCRYPTBITS-When connecting to the BEA TUXEDO system, negotiate
encryption up to this level. “0” means no encryption, while “40” and “128” specify t
encryption length (in bits). The default is “128”
BEA TUXEDO Reference Manual 159

tpinit(3)

ough
essage

ied

)
f
de.

art

il,
Warning Signal restrictions may prevent the system using signal-based notification even th
it has been selected by a client. When this happens, the system generates a log m
that it is switching notification for the selected client to dip-in and the client is notif
then and thereafter via dip-in notification. (See ubbconfig (5) description of the
*RESOURCES NOTIFY parameter for a detailed discussion of notification methods.
Note that signaling of clients is always done by the system so that the behavior o
notification is consistent regardless of where the originating notification call is ma
Because of this, only clients running as the application administrator can use
signal-based notification. The ID for the application administrator is identified as p
of the configuration for the application.

If signal-based notification is selected for a client, then certain ATMI calls may fa
returning TPGOTSIG due to receipt of an unsolicited message if TPSIGRSTRT is not
specified.

See Also tpterm (3)
160 BEA TUXEDO Reference Manual

tpnotify(3)

ual

ce).

nt has

sage

to

tem
tpnotify(3)

Name tpnotify -routine for sending notification by client identifier

Synopsis #include <atmi.h>
int tpnotify(CLIENTID *clientid, char *data, long len, long flags)

Description tpnotify () allows a client or server to send an unsolicited message to an individ
client.

clientid is a pointer to a client identifier saved from the TPSVCINFO structure of a
previous or current service invocation, or passed to a client via some other
communications mechanism (for example, retrieved via the administration interfa

The data portion of the request is pointed to by data , a buffer previously allocated by
tpalloc (3). len specifies how much of data to send. Note that if data points to a
buffer type that does not require a length to be specified, (for example, an FML fielded
buffer) then len is ignored (and may be 0). Also, data may be NULL in which case
len is ignored.

Upon successful return from tpnotify (), the message has been delivered to the
system for forwarding to the identified client. If the TPACK flag was set, a successful
return means the message has been received by the client. Furthermore, if the clie
registered an unsolicited message handler, the handler will have been called.

Following is a list of valid flags .

TPACK
The request is sent and the caller blocks until an acknowledgement mes
is received from the target client.

TPNOBLOCK
The request is not sent if a blocking condition exists in sending the
notification (for example, the internal buffers into which the message is
transferred are full).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is reissued.
BEA TUXEDO Reference Manual 161

tpnotify(3)

e

e

t and

r is

A
Unless the TPACK flag is set, tpnotify () does not wait for the message to b
delivered to the client.

Return Values tpnotify () returns -1 on failure and sets tperrno to indicate the error condition. If a
call fails with a particular tperrno value, a subsequent call to tperrordetail (3c)
with no intermediate ATMI calls, may provide more detailed information about th
generated error. Refer to the tperrordetail (3c) reference page for more
information.

Errors Under the following conditions, tpnotify () fails and sets tperrno to:

[TPEINVAL]
Invalid arguments were given (for example, invalid flags).

[TPENOENT]
The target client does not exist or does not have an unsolicited handler se
the TPACK flag is set.

[TPETIME]
A blocking timeout occurred and neither TPNOBLOCK nor TPNOTIME were
specified, or TPACK was set but no acknowledgment was received and
TPNOTIME was not specified.

[TPEBLOCK]
A blocking condition was found on the call and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpnotify () was called in an improper context.

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

[TPERELEASE]
When the TPACK is set and the target is a client from a prior release of BE
TUXEDO that does not support the acknowledgment protocol.
162 BEA TUXEDO Reference Manual

tpnotify(3)
See Also intro (3), tpalloc (3), tpbroadcast (3), tpchkunsol (3),
tperrordetail (3c),tpinit (3), tpsetunsol (3), tpstrerrordetail (3c),
tpterm (3)
BEA TUXEDO Reference Manual 163

tpopen(3)

ource
y
 the

g
ating

as

r is
tpopen(3)

Name tpopen -routine for opening a resource manager

Synopsis #include <atmi.h>
int tpopen(void)

Description tpopen () opens the resource manager to which the caller is linked. At most one
resource manager can be linked to the caller. This function is used in place of res
manager-specific open calls and allows a service routine to be free of calls that ma
hinder portability. Since resource managers differ in their initialization semantics,
specific information needed to open a particular resource manager is placed in a
configuration file.

If a resource manager is already open (that is, tpopen () is called more than once), no
action is taken and success is returned.

Return Values tpopen () returns \-1 on error and sets tperrno to indicate the error condition.

Errors Under the following conditions, tpopen () fails and sets tperrno to:

[TPERMERR]
A resource manager failed to open correctly. More information concernin
the reason a resource manager failed to open can be obtained by interrog
a resource manager in its own specific manner. Note that any calls to
determine the exact nature of the error hinder portability.

[TPEPROTO]
tpopen () was called in an improper context (for example, by a client that h
not joined a BEA TUXEDO system server group).

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also tpclose (3)
164 BEA TUXEDO Reference Manual

tppost(3)

d
ers

ter for

e
 be

ded
vent
t
d

t
part of
nly to
TRAN

at did

ting

ting
ode
tppost(3)

Name tppost -post an event

Synopsis #include <atmi.h>
int tppost(char *eventname, char *data, long len, long flags)

Description The caller uses tppost to post an event and any accompanying data. The event is
named by eventname and data , if not NULL, points to the data. The posted event an
its data are dispatched by the BEA TUXEDO system event broker to all subscrib
whose subscriptions successfully evaluate against eventname and whose optional
filter rules successfully evaluate against data .

eventname is a NULL-terminated string of at most 31 characters. eventname 's first
character cannot be a dot (“.”) as this character is reserved as the starting charac
all events defined by the BEA TUXEDO system itself.

If data is non-NULL, it must point to a buffer previously allocated by tpalloc (3) and
len should specify the amount of data in the buffer that should be posted with th
event. Note that if data points to a buffer of a type that does not require a length to
specified (for example, an FML fielded buffer), then len is ignored. If data is NULL,
len is ignored and the event is posted with no data.

When tppost is used within a transaction, the transaction boundary can be exten
to include those servers and/or stable-storage message queues notified by the e
broker. When a transactional posting is made, some of the recipients of the even
posting are notified on behalf of the poster's transaction (for example, servers an
queues), while some are not (for example, clients).

If the poster is within a transaction and the TPNOTRAN flag is not set, the posted even
goes to the event broker in transaction mode such that it dispatches the event as
the poster's transaction. The broker dispatches transactional event notifications o
those service routine and stable-storage queue subscriptions that used the TPEV
bit setting in the ctl->flags parameter passed to tpsubscribe (3). Client
notifications, and those service routine and stable-storage queue subscriptions th
not use the TPEVTRAN bit setting in the ctl->flags parameter passed to
tpsubscribe (3), are also dispatched by the event broker but not as part of the pos
process’ transaction.

Following is a list of valid flags .

TPNOTRAN
If the caller is in transaction mode and this flag is set, then the event pos
is not made on behalf of the caller's transaction. A caller in transaction m
BEA TUXEDO Reference Manual 165

tppost(3)

hen

s

to

tem

f one
that sets this flag is still subject to the transaction timeout (and no other) w
posting events. If the event posting fails, the caller's transaction is not
affected.

TPNOREPLY
Informs tppost not to wait for the event broker to process all subscription
for eventname before returning. When TPNOREPLY is set, tpurcode is set to
zero regardless of whether tppost returns successfully or not. When the
caller is in transaction mode, this setting cannot be used unless TPNOTRAN is
also set.

TPNOBLOCK
The event is not posted if a blocking condition exists. If such a condition
occurs, the call fails and tperrno is set to TPEBLOCK. When TPNOBLOCK is
not specified and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking
timeout).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is re-issued. When TPSIGRSTRT is not specified and a signal interrupts a
system call, then tppost fails and tperrno is set to TPGOTSIG.

Return Values Upon successful return from tppost , tpurcode contains the number of event
notifications dispatched by the event broker on behalf of eventname (that is, postings
for those subscriptions whose event expression evaluated successfully against
eventname and whose filter rule evaluated successfully against data). Upon return
where tperrno is set to TPESVCFAIL, tpurcode contains the number of
non-transactional event notifications dispatched by the event broker on behalf of
eventname . This function returns -1 on error and sets tperrno to indicate the error
condition.

Errors Under the following conditions, tppost fails and sets tperrno to one of the following
values. (Unless otherwise noted, failure does not affect the caller's transaction, i
exists.)

[TPEINVAL]
Invalid arguments were given (for example, eventname is NULL).
166 BEA TUXEDO Reference Manual

tppost(3)

 (that

n
king

ither

 this
t

pon
ot

tion

r is
[TPENOENT]
Cannot access the BEA TUXEDO system Event Broker.

[TPETRAN]
The caller is in transaction mode, TPNOTRAN was not set and tppost
contacted an event broker that does not support transaction propagation
is, TMUSREVT(5) is not running in a BEA TUXEDO system group that
supports transactions).

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transactio
time-out occurred and the transaction is to be aborted; otherwise, a bloc
time-out occurred and neither TPNOBLOCK nor TPNOTIME were specified. If a
transaction timeout occurred, any attempts to do new work will fail with
TPETIME until the transaction has been aborted.

[TPESVCFAIL]
The event broker encountered an error posting a transactional event to e
a service routine or to a stable storage queue on behalf of the caller's
transaction. The caller's current transaction is marked abort-only. When
error is returned, tpurcode contains the number of non-transactional even
notifications dispatched by the event broker on behalf of eventname ;
transactional postings are not counted since their effects will be aborted u
completion of the transaction. Note that so long as the transaction has n
timed out, further communication may be performed before aborting the
transaction and that any work performed on behalf of the caller's transac
will be aborted upon transaction completion (that is, for subsequent
communication to have any lasting effect, it should be done with TPNOTRAN
set).

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tppost was called in an improper context.

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.
BEA TUXEDO Reference Manual 167

tppost(3)
[TPEOS]
An operating system error has occurred.

See Also tpsubscribe (3), tpunsubscribe (3), EVENTS(5), TMUSREVT(5), TMSYSEVT(5)
168 BEA TUXEDO Reference Manual

tprealloc(3)

w and

y for

r is
tprealloc(3)

Name tprealloc -routine to change the size of a typed buffer

Synopsis #include <atmi.h>
char * tprealloc(char *ptr, long size)

Description tprealloc () changes the size of the buffer pointed to by ptr to size bytes and
returns a pointer to the new (possibly moved) buffer. Similar to tpalloc (3), the size
of the buffer will be at least as large as the larger of size and dfltsize , where
dfltsize is the default buffer size specified in tmtype_sw . If the larger of the two is
less than or equal to zero, then the buffer is unchanged and NULL is returned. A
buffer's type remains the same after it is re-allocated. After this function returns
successfully, the returned pointer should be used to reference the buffer; ptr should
no longer be used. The buffer's contents will not change up to the lesser of the ne
old sizes.

Some buffer types require initialization before they can be used. tprealloc ()
re-initializes a buffer (in a communication manager-specific manner) after it is
re-allocated and before it is returned. Thus, the buffer returned to the caller is read
use.

Return Values Upon successful completion, tprealloc () returns a pointer to a buffer of the
appropriate type aligned on a long word; otherwise it returns NULL and sets tperrno
to indicate the error condition.

Errors If the re-initialization function fails, tprealloc () fails returning NULL and the
contents of the buffer pointed to by ptr may not be valid. Under the following
conditions, tprealloc () fails and sets tperrno to:

[TPEINVAL]
Invalid arguments were given (for example, ptr does not point to a buffer
originally allocated by tpalloc (3)).

[TPEPROTO]
tprealloc () was called in an improper context.

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.
BEA TUXEDO Reference Manual 169

tprealloc(3)

Usage If buffer re-initialization fails, tprealloc () fails returning NULL and the contents of
the buffer pointed to by ptr may not be valid. This function should not be used in
concert with malloc (3C), realloc (3C) or free (3C) in the C library (for example, a
buffer allocated with tprealloc () should not be freed with free ()).

See Also tpalloc (3), tpfree (3), tptypes (3)
170 BEA TUXEDO Reference Manual

tprecv(3)

gram.

ly

en
ceiver
der,

and
tprecv(3)

Name tprecv(3) -routine for receiving a message in a conversational connection

Synopsis #include <atmi.h>
int tprecv(int cd, char **data, long *len, long flags, long \
 *revent)

Description tprecv () is used to receive data sent across an open connection from another pro
tprecv ()’s first argument, cd , specifies on which open connection to receive data. cd
is a descriptor returned from either tpconnect (3) or the TPSVCINFO parameter to the
service. The second argument, data , is the address of a pointer to a buffer previous
allocated by tpalloc (3c).

data must be the address of a pointer to a buffer previously allocated by tpalloc (3c)
and len should point to a long that tprecv () sets to the amount of data successfully
received. Upon successful return, *data points to a buffer containing the reply and
*len contains the size of the buffer. FML and FML32 buffers often assume a minimum
size of 4096 bytes; if the reply is larger than 4096 bytes, the size of the buffer is
increased to a size large enough to accommodate the data being returned.

Buffers on the sending side that may be only partially filled (for example, FML or
STRING buffers) will have only the amount that is used sent. The system may th
enlarge the received data size by some arbitrary amount. This means that the re
may receive a buffer that is smaller than what was originally allocated by the sen
yet larger than the data that was sent.

The receive buffer may grow, or it may shrink, and its address almost invariably
changes, as the system swaps buffers around internally. To determine whether (
how much) a reply buffer changed in size, compare its total size before tprecv was
issued with *len . See intro (3) for more information about buffer management.

If *len is 0, then no data was received and neither *data nor the buffer it points to
were modified. It is an error for data , *data or len to be NULL.

tprecv () can be issued only by the program that does not have control of the
connection.
BEA TUXEDO Reference Manual 171

tprecv(3)

d
e
g is

to

 the
t on

he

e).

Following is a list of valid flags .

TPNOCHANGE
By default, if a buffer is received that differs in type from the buffer pointe
to by *data , then *data ’s buffer type changes to the received buffer’s typ
so long as the receiver recognizes the incoming buffer type. When this fla
set, the type of the buffer pointed to by *data is not allowed to change. That
is, the type and sub-type of the received buffer must match the type and
subtype of the buffer pointed to by *data .

TPNOBLOCK
tprecv () does not wait for data to arrive. If data is already available to
receive, then tprecv () gets the data and returns. When this flag is not
specified and no data is available to receive, the caller blocks until data
arrives.

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants
be immune to blocking timeouts. Transaction timeouts will still affect the
program.

TPSIGRSTRT
If a signal interrupts the underlying receive system call, then the call is
reissued.

If an event exists for the descriptor, cd , then tprecv () will return setting tperrno to
TPEEVENT. The event type is returned in revent . Data can be received along with the
TPEV_SVCSUCC, TPEV_SVCFAIL, and TPEV_SENDONLY events. Valid events for
tprecv () are as follows.

TPEV_DISCONIMM
Received by the subordinate of a conversation, this event indicates that
originator of the conversation has either issued an immediate disconnec
the connection via tpdiscon (3c), or it issued tpreturn (3c), tpcommit (3c)
or tpabort () with the connection still open. This event is also returned to t
originator or subordinate when a connection is broken due to a
communications error (for example, a server, machine, or network failur
Because this is an immediate disconnection notification (that is, abortive
rather than orderly), data in transit may be lost. If the two programs were
participating in the same transaction, then the transaction is marked
abort-only. The descriptor used for the connection is no longer valid.
172 BEA TUXEDO Reference Manual

tprecv(3)

l of
nnot

e

ully.

ons
ined
 and

e

n the
s
nly.

e

rn
t
 or

s

TPEV_SENDONLY
The program on the other end of the connection has relinquished contro
the connection. The recipient of this event is allowed to send data but ca
receive any data until it relinquishes control.

TPEV_SVCERR
Received by the originator of a conversation, this event indicates that th
subordinate of the conversation has issued tpreturn (3c). tpreturn (3c)
encountered an error that precluded the service from returning successf
For example, bad arguments may have been passed to tpreturn (3c) or
tpreturn (3c) may have been called while the service had open connecti
to other subordinates. Due to the nature of this event, any application def
data or return code are not available. The connection has been torn down
is no longer a valid descriptor. If this event occurred as part of the cd
recipient’s transaction, then the transaction is marked abort-only.

TPEV_SVCFAIL
Received by the originator of a conversation, this event indicates that th
subordinate service on the other end of the conversation has finished
unsuccessfully as defined by the application (that is, it called tpreturn (3c)
with TPFAIL or TPEXIT). If the subordinate service was in control of this
connection when tpreturn (3c) was called, then it can pass an application
defined return value and a typed buffer back to the originator of the
connection. As part of ending the service routine, the server has torn dow
connection. Thus, cd is no longer a valid descriptor. If this event occurred a
part of the recipient’s transaction, then the transaction is marked abort-o

TPEV_SVCSUCC
Received by the originator of a conversation, this event indicates that th
subordinate service on the other end of the conversation has finished
successfully as defined by the application (that is, it called tpreturn (3c)
with TPSUCCESS). As part of ending the service routine, the server has to
down the connection. Thus, cd is no longer a valid descriptor. If the recipien
is in transaction mode, then it can either commit (if it is also the initiator)
abort the transaction causing the work done by the server (if also in
transaction mode) to either commit or abort.

Return Values Upon return from tprecv () where revent is set to either TPEV_SVCSUCC or
TPEV_SVCFAIL, the tpurcode global contains an application defined value that wa
sent as part of tpreturn (3). tprecv () returns -1 on error and sets tperrno to indicate
the error condition. If a call fails with a particular tperrno value, a subsequent call to
BEA TUXEDO Reference Manual 173

tprecv(3)

ller,

ause

n

ages

hip

e

s
tperrordetail (3c) with no intermediate ATMI calls, may provide more detailed
information about the generated error. Refer to the tperrordetail (3c) reference
page for more information.

Errors Under the following conditions, tprecv () fails and sets tperrno to:

[TPEINVAL]
Invalid arguments were given (for example, data is not the address of a
pointer to a buffer allocated by tpalloc (3c) or flags are invalid).

[TPEOTYPE]
Either the type and subtype of the incoming buffer are not known to the ca
or TPNOCHANGE was set in flags and the type and subtype of *data do not
match the type and subtype of the incoming buffer. Regardless, neither
*data , its contents nor *len are changed. If the conversation is part of the
caller's current transaction, then the transaction is marked abort-only bec
the incoming buffer is discarded.

[TPEBADDESC]
cd is invalid.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transactio
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTIME were
specified. In either case, neither *data nor its contents are changed. If a
transaction timeout occurred, then any attempts to send or receive mess
on any connections or to start a new connection will fail with TPETIME until
the transaction has been aborted.

[TPEEVENT]
An event occurred and its type is available in revent. There is a relations
between the [TPETIME] and the [TPEEVENT] return codes. While in
transaction mode, if the receiving side of a conversation is blocked on tprecv
and the sending side calls tpabort , then the receiving side gets a return cod
of [TPEVENT] with an event of TPEV_DISCONIMM. However, if the sending
side calls tpabort before the receiving side calls tprecv , then the
transaction may have already been removed from the GTT, which cause
tprecv to fail with the [TPETIME] code.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.
174 BEA TUXEDO Reference Manual

tprecv(3)

as

r is

ling
[TPEPROTO]
tprecv () was called in an improper context (for example, the connection w
established such that the calling program can only send data).

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

Usage A server can pass an application defined return value and typed buffer when cal
tpreturn (3c). The return value is available in the global variable tpurcode and the
buffer is available in data .

See Also tpalloc (3), tpconnect (3), tpdiscon (3), tperrordetail (3c), tpsend (3),
tpservice (3), tpstrerrordetail (3c)
BEA TUXEDO Reference Manual 175

tpresume(3)

tion.

ion

The

d.

 with

ction
tpresume(3)

Name tpresume -resume a global transaction

Synopsis #include <atmi.h>

int tpresume(TPTRANID *tranid, long flags)

Description tpresume () is used to resume work on behalf of a previously suspended transac
Once the caller resumes work on a transaction, it must either suspend it with
tpsuspend (3), or complete it with one of tpcommit (3) or tpabort (3) at a later time.

The caller must ensure that its linked resource managers have been opened (via
tpopen (3)) before it can resume work on any transaction.

tpresume () places the caller in transaction mode on behalf of the global transact
identifier pointed to by tranid . It is an error for tranid to be NULL.

Currently, flags are reserved for future use and must be set to 0.

Return Value tpresume () returns \-1 on error and sets tperrno to indicate the error condition.

Errors Under the following conditions, tpresume () fails and sets tperrno to:

[TPEINVAL]
Either tranid is a NULL pointer, it points to a non-existent transaction
identifier (including previously completed or timed-out transactions), or it
points to a transaction identifier that the caller is not allowed to resume.
caller's state with respect to the transaction is not changed.

[TPEMATCH]
tranid points to a transaction identifier that another process has already
resumed. The caller's state with respect to the transaction is not change

[TPETRAN]
The BEA TUXEDO system is unable to resume the global transaction
because the caller is currently participating in work outside any global
transaction with one or more resource managers. All such work must be
completed before a global transaction can be resumed. The caller's state
respect to the local transaction is unchanged.

[TPEPROTO]
tpresume () was called in an improper context (for example, the caller is
already in transaction mode). The caller's state with respect to the transa
is not changed.
176 BEA TUXEDO Reference Manual

tpresume(3)

r is

 the

achine
the
ical
.

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

Notes XA-compliant resource managers must be successfully opened to be included in
global transaction. (See tpopen (3) for details.)

A process resuming a suspended transaction must reside on the same logical m
(LMID) as the process that suspended the transaction. For a workstation client,
workstation handler (WSH) to which it is connected must reside on the same log
machine as the handler for the workstation client that suspended the transaction

See Also tpabort (3), tpcommit (3), tpopen (3), tpsuspend (3)
BEA TUXEDO Reference Manual 177

tpreturn(3c)

ntrol

reply
l

d

n the
ame

sts
e,
t
 not
on,

ith
tpreturn(3c)

Name tpreturn (3c)-routine for returning from a service routine

Synopsis void tpreturn(int rval , long rcode , char * data , long len , long \

 flags)

Description tpreturn indicates that a service routine has completed. tpreturn acts like a return
statement in the C language (that is, when tpreturn is called, the service routine
returns to the BEA TUXEDO system dispatcher). It is recommended that tpreturn
be called from within the service routine dispatched to ensure correct return of co
to the BEA TUXEDO system dispatcher.

tpreturn is used to send a service's reply message. If the program receiving the
is waiting in either tpcall (3c), tpgetrply (3c), or tprecv (3c), then after a successfu
call to tpreturn , the reply is available in the receiver's buffer.

For conversational services, tpreturn also tears down the connection. That is, the
service routine cannot call tpdiscon (3c) directly. To ensure correct results, the
program that connected to the conversational service should not call tpdiscon (3c);
rather, it should wait for notification that the conversational service has complete
(that is, it should wait for one of the events, like TPEV_SVCSUCC or TPEV_SVCFAIL,
sent by tpreturn).

If the service routine was in transaction mode, tpreturn places the service's portion
of the transaction in a state where it may be either committed or rolled back whe
transaction is completed. A service may be invoked multiple times as part of the s
transaction so it is not necessarily fully committed nor rolled back until either
tpcommit (3c) or tpabort (3c) is called by the originator of the transaction.

tpreturn should be called after receiving all replies expected from service reque
initiated by the service routine. Otherwise, depending on the nature of the servic
either a TPESVCERR status or a TPEV_SVCERR event will be returned to the program tha
initiated communication with the service routine. Any outstanding replies that are
received will automatically be dropped by the communication manager. In additi
the descriptors for those replies become invalid.

tpreturn should be called after closing all connections initiated by the service.
Otherwise, depending on the nature of the service, either a TPESVCERR or a
TPEV_SVCERR event will be returned to the program that initiated communication w
the service routine. Also, an immediate disconnect event (that is, TPEV_DISCONIMM) is
sent over all open connections to subordinates.
178 BEA TUXEDO Reference Manual

tpreturn(3c)

tiate,
hould

sent

te
ote

ing
its
at is,

ice

. An
 to

ady
he
ata is
 for

t
nt

Since a conversational service has only one open connection which it did not ini
the communication manager knows over which descriptor data (and any event) s
be sent. For this reason, a descriptor is not passed to tpreturn .

The following is a description of tpreturn 's arguments. rval can be set to one of the
following.

TPSUCCESS
The service has terminated successfully. If data is present, then it will be
(barring any failures processing the return). If the caller is in transaction
mode, then tpreturn places the caller's portion of the transaction in a sta
such that it can be committed when the transaction ultimately commits. N
that a call to tpreturn does not necessarily finalize an entire transaction.
Also, even though the caller indicates success, if there are any outstand
replies or open connections, if any work done within the service caused
transaction to be marked rollback-only, then a failed message is sent (th
the recipient of the reply receives a TPESVCERR indication or a TPEV_SVCERR
event). Note that if a transaction becomes rollback-only while in the serv
routine for any reason, then rval should be set to TPFAIL . If TPSUCCESS is
specified for a conversational service, a TPEV_SVCSUCC event is generated.

TPFAIL
The service has terminated unsuccessfully from an application standpoint
error will be reported to the program receiving the reply. That is, the call
get the reply will fail and the recipient receives a TPSVCFAIL indication or a
TPEV_SVCFAIL event. If the caller is in transaction mode, then tpreturn
marks the transaction as rollback-only (note that the transaction may alre
be marked rollback-only). Barring any failures in processing the return, t
caller's data is sent, if present. One reason for not sending the caller's d
that a transaction timeout has occurred. In this case, the program waiting
the reply will receive an error of TPETIME. If TPFAIL is specified for a
conversational service, a TPEV_SVCFAIL event is generated.

TPEXIT
This value is the same as TPFAIL , with respect to completing the service, bu
the server will exit after the transaction is rolled back and the reply is se
back to the requester. If the server is restartable, then the server will
automatically be restarted.

If rval is not set to one of these three values, then it defaults to TPFAIL .

An application defined return code, rcode, may be sent to the program receiving the
service reply. This code is sent regardless of the setting of rval as long as a reply can
be successfully sent (that is, as long as the receiving call returns success or
BEA TUXEDO Reference Manual 179

tpreturn(3c)

 the

BEA
bout
il.

e

m
 then

o

e and

he

m

nd
o
TPESVCFAIL). In addition, for conversational services, this code can be sent only if
service routine has control of the connection when it issues tpreturn . The value of
rcode is available in the receiver in the variable, tpurcode .

data points to the data portion of a reply to be sent. If data is non-NULL, it must point
to a buffer previously obtained by a call to tpalloc (3c). If this is the same buffer
passed to the service routine upon its invocation, then its disposition is up to the
TUXEDO system dispatcher; the service routine writer does not have to worry a
whether it is freed or not. In fact, any attempt by the user to free this buffer will fa
However, if the buffer passed to tpreturn is not the same one with which the servic
is invoked, then tpreturn will free that buffer. len specifies the amount of the data
buffer to be sent. If data points to a buffer which does not require a length to be
specified, (for example, an FML fielded buffer), then len is ignored (and can be 0).

If data is NULL, then len is ignored. In this case, if a reply is expected by the progra
that invoked the service, then a reply is sent with no data. If no reply is expected,
tpreturn frees data as necessary and returns sending no reply.

Currently, flags is reserved for future use and must be set to 0 (if set to a non-zer
value, the recipient of the reply receives a TPESVCERR indication or a TPEV_SVCERR
event).

If the service is conversational, there are two cases where the caller's return cod
the data portion are not transmitted:

� if the connection has already been torn down when the call is made (that is, t
caller has received TPEV_DISCONIMM on the connection), then this call simply
ends the service routine and rolls back the current transaction, if one exists.

� if the caller does not have control of the connection, either TPEV_SVCFAIL or
TPEV_SVCERR is sent to the originator of the connection as described above.
Regardless of which event the originator receives, no data is transmitted;
however, if the originator receives the TPEV_SVCFAIL event, the return code is
available in the originator's tpurcode variable.

Return Values A service routine does not return any value to its caller, the BEA TUXEDO syste
dispatcher; thus, it is declared as a void . Service routines, however, are expected to
terminate using either tpreturn or tpforward (3c). A conversational service routine
must use tpreturn , and cannot use tpforward (3c). If a service routine returns
without using either tpreturn or tpforward (3c) (that is, it uses the C language
return statement or just simply “falls out of the function”) or tpforward (3c) is called
from a conversational server, the server will print a warning message in the log a
return a service error to the service requester. In addition, all open connections t
180 BEA TUXEDO Reference Manual

tpreturn(3c)

us
, the

ct.

g
ors
e

lled

subordinates will be disconnected immediately, and any outstanding asynchrono
replies will be dropped. If the server was in transaction mode at the time of failure
transaction is marked rollback-only. Note also that if either tpreturn or
tpforward (3c) are used outside of a service routine (for example, in clients, or in
tpsvrinit (3c) or tpsvrdone (3c)), then these routines simply return having no effe

Errors Since tpreturn ends the service routine, any errors encountered either in handlin
arguments or in processing cannot be indicated to the function's caller. Such err
cause tperrno to be set to TPESVCERR for a program receiving the service's outcom
via either tpcall (3c) or tpgetrply (3c), and cause the event, TPEV_SVCERR, to be
sent over the conversation to a program using tpsend (3c) or tprecv (3c).

If either SVCTIMEOUT in the ubbconfig file or TA_SVCTIMEOUT in the TM_MIB is
non-zero, the event TPEV_SVCERR is returned when a service timeout occurs.

tperrordetail (3c) and tpstrerrordetail (3c) can be used to get additional
information about an error produced by the last BEA TUXEDO system routine ca
in the current thread. If an error occurred, tperrordetail returns a numeric value
that can be used as an argument to trstrerrordetail to retrieve the text of the error
detail.

See Also tpalloc (3c), tpcall (3c), tpconnect (3c), tpforward (3c) tprecv (3c), tpsend (3c),
tpservice (3c)
BEA TUXEDO Reference Manual 181

tpscmt(3)

mit.

read
 in

e

r

t
ponse

ue
ere

 file

do
ite
tpscmt(3)

Name tpscmt -routine for setting when tpcommit () should return

Synopsis #include <atmi.h>
int tpscmt(long flags)

Description tpscmt () sets the TP_COMMIT_CONTROL characteristic to the value specified in flags .
The TP_COMMIT_CONTROL characteristic affects the way tpcommit (3) behaves with
respect to returning control to its caller. A program can call tpscmt () regardless of
whether it is in transaction mode or not. Note that if the caller is participating in a
transaction that another program must commit, then its call to tpscmt () does not affect
that transaction. Rather, it affects subsequent transactions that the caller will com

In most cases, a transaction is committed only when a BEA TUXEDO system th
of control calls tpcommit (3). There is one exception: when a service is dispatched
transaction mode because the AUTOTRAN variable in the *SERVICES section of the
UBBCONFIG file is enabled, then the transaction completes upon calling
tpreturn (3). If tpforward (3) is called, then the transaction will be completed by th
server ultimately calling tpreturn (3). Thus, the setting of the TP_COMMIT_CONTROL
characteristic in the service that calls tpreturn (3) determines when tpcommit (3)
returns control within a server. If tpcommit (3) returns a heuristic error code, the serve
will write a message to a log file.

When a client joins a BEA TUXEDO system application, the initial setting for this
characteristic comes from a configuration file. (See the CMTRET variable in the
*RESOURCES section of ubbconfig (5))

Following are the valid settings for flags .

TP_CMT_LOGGED
This flag indicates that tpcommit (3) should return after the commit decision
has been logged by the first phase of the two-phase commit protocol bu
before the second phase has completed. This setting allows for faster res
to the caller of tpcommit (3) although there is a risk that a transaction
participant might decide to heuristically complete (that is, abort) its work d
to timing delays waiting for the second phase to complete. If this occurs, th
is no way to indicate this situation to the caller since tpcommit (3) has already
returned (although the BEA TUXEDO system writes a message to a log
when a resource manager takes a heuristic decision). Under normal
conditions, participants that promise to commit during the first phase will
so during the second phase. Typically, problems caused by network or s
182 BEA TUXEDO Reference Manual

tpscmt(3)

cond

ing

r is

urce
s

tions
tion.
failures are the sources for heuristic decisions being made during the se
phase.

TP_CMT_COMPLETE
This flag indicates that tpcommit (3) should return after the two-phase
commit protocol has finished completely. This setting allows for
tpcommit (3) to return an indication that a heuristic decision occurred dur
the second phase of commit.

Return Values Upon success, tpscmt () returns the previous value of the TP_COMMIT_CONTROL
characteristic; otherwise it returns -1 on error and sets tperrno to indicate the error
condition.

Errors Under the following conditions, tpscmt () fails and sets tperrno to:

[TPEINVAL]
flags is not one of TP_CMT_LOGGED or TP_CMT_COMPLETE.

[TPEPROTO]
tpscmt () was called in an improper context.

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

Notices When using tpbegin (3), tpcommit (3) and tpabort (3) to delineate a BEA TUXEDO
system transaction, it is important to remember that only the work done by a reso
manager that meets the XA interface (and is linked to the caller appropriately) ha
transactional properties. All other operations performed in a transaction are not
affected by either tpcommit () or tpabort (). See buildserver (1) for details on
linking resource managers that meet the XA interface into a server such that opera
performed by that resource manager are part of a BEA TUXEDO system transac

See Also tpabort (3), tpbegin (3), tpcommit (3), tpgetlev (3)
BEA TUXEDO Reference Manual 183

tpsend(3)

 caller

 to
type
f the

ntrol

sent

ull).
er
n or

to

tem
tpsend(3)

Name tpsend (3)-routine for sending a message in a conversational connection

Synopsis #include <atmi.h>
int tpsend(int cd , char * data , long len , long flags , long * revent)

Description tpsend is used to send data across an open connection to another program. The
must have control of the connection. tpsend 's first argument, cd , specifies the open
connection over which data is sent. cd is a descriptor returned from either
tpconnect (3c) or the TPSVCINFO parameter passed to a conversational service.

The second argument, data , must point to a buffer previously allocated by
tpalloc (3c). len specifies how much of the buffer to send. Note that if data points
to a buffer of a type that does not require a length to be specified (for example, anFML
fielded buffer), then len is ignored (and may be 0). Also, data can be NULL in which
case len is ignored (no application data is sent - this might be done, for instance,
grant control of the connection without transmitting any data). The type and sub-
of data must match one of the types and sub-types recognized by the other end o
connection.

Following is a list of valid flags .

TPRECVONLY
This flag signifies that, after the caller's data is sent, the caller gives up co
of the connection (that is, the caller can not issue any more tpsend calls).
When the receiver on the other end of the connection receives the data
by tpsend , it will also receive an event (TPEV_SENDONLY) indicating that it
has control of the connection (and can not issue more any tprecv (3c) calls).

TPNOBLOCK
The data and any events are not sent if a blocking condition exists (for
example, the internal buffers into which the message is transferred are f
When TPNOBLOCK is not specified and a blocking condition exists, the call
blocks until the condition subsides or a timeout occurs (either transactio
blocking timeout).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is re-issued.
184 BEA TUXEDO Reference Manual

tpsend(3)

 the
e

the

e).

e

es
ot

e

 (that
r the

s

ered,
If an event exists for the descriptor, cd , then tpsend will fail without sending the
caller's data. The event type is returned in revent . Valid events for tpsend are as
follows:

TPEV_DISCONIMM
Received by the subordinate of a conversation, this event indicates that
originator of the conversation has issued an immediate disconnect on th
connection via tpdiscon (3c), or it issued tpreturn (3c), tpcommit (3c) or
tpabort (3c) with the connection still open. This event is also returned to
originator or subordinate when a connection is broken due to a
communications error (for example, a server, machine, or network failur

TPEV_SVCERR
Received by the originator of a conversation, this event indicates that th
subordinate of the conversation has issued tpreturn (3c) without having
control of the conversation. In addition, tpreturn (3c) has been issued in a
manner different from that described for TPEV_SVCFAIL below. This event
can be caused by an ACL permissions violation; that is, the originator do
not have permission to connect to the receiving process. This event is n
returned at the time the tpconnect is issued, but is returned with the first
tpsend (following a tpconnect with flag TPSENDONLY) or tprecv
(following a tpconnect with flag TPRECVONLY). A system event and a log
message are also generated.

TPEV_SVCFAIL
Received by the originator of a conversation, this event indicates that th
subordinate of the conversation has issued tpreturn (3c) without having
control of the conversation. In addition, tpreturn (3c) was issued with the
rval set to TPFAIL or TPEXIT and data to NULL.

Because each of these events indicates an immediate disconnection notification
is, abortive rather than orderly), data in transit may be lost. The descriptor used fo
connection is no longer valid. If the two programs were participating in the same
transaction, then the transaction has been marked abort-only.

If the value of either SVCTIMEOUT in the ubbconfig file or TA_SVCTIMEOUT in the
TM_MIB is non-zero, TPESVCERR is returned when a service timeout occurs.

Return Values Upon return from tpsend where revent is set to either TPEV_SVCSUCC or
TPEV_SVCFAIL, the tpurcode global contains an application-defined value that wa
sent as part of tpreturn . The function tpsend returns -1 on error and sets tperrno
to indicate the error condition. Also, if an event exists and no errors were encount
tpsend returns -1 and tperrno is set to [TPEEVENT] .
BEA TUXEDO Reference Manual 185

tpsend(3)

n

 is

as

r is
Errors Under the following conditions, tpsend (3c) fails and sets tperrno to:

[TPEINVAL]
Invalid arguments were given (for example, data does not point to a buffer
allocated by tpalloc (3c) or flags are invalid).

[TPEBADDESC]
cd is invalid.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transactio
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neither TPNOBLOCK nor TPNOTIME was
specified. In either case, no changes are made to *data , its contents nor *len .
If a transaction timeout occurred, then any attempts to send or receive
messages on any connections or to start a new connection will fail with
TPETIME until the transaction has been aborted.

[TPEEVENT]
An event occurred. data is not sent when this error occurs. The event type
returned in revent .

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpsend was called in an improper context (for example, the connection w
established such that the calling program can only receive data).

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also tpalloc (3c), tpconnect (3c), tpdiscon (3c), tprecv (3c), tpservice (3c)
186 BEA TUXEDO Reference Manual

tpservice(3)

ith at
tion.
r the
 The
ion
tion.

tion if
e
 not

ine.

ervice.
tpservice(3)

Name tpservice -template for service routines

Synopsis #include <atmi.h> /* C interface */
void tpservice(TPSVCINFO *svcinfo) /* C++ interface - must have
 * C linkage */
extern “C” void tpservice(TPSVCINFO *svcinfo)

Description tpservice () is the template for writing service routines. This template is used for
services that receive requests via tpcall (3), tpacall (3) or tpforward (3) routines as
well as by services that communicate via tpconnect (3), tpsend (3) and tprecv (3)
routines.

Service routines processing requests made via either tpcall (3) or tpacall (3) receive
at most one incoming message (in the data element of svcinfo) and send at most one
reply (upon exiting the service routine with tpreturn (3)).

Conversational services, on the other hand, are invoked by connection requests w
most one incoming message along with a means of referring to the open connec
When a conversational service routine is invoked, either the connecting program o
conversational service may send and receive data as defined by the application.
connection is half-duplex in nature meaning that one side controls the conversat
(i.e., it sends data) until it explicitly gives up control to the other side of the connec

Concerning transactions, service routines can participate in at most one transac
invoked in transaction mode. As far as the service routine writer is concerned, th
transaction ends upon returning from the service routine. If the service routine is
invoked in transaction mode, then the service routine may originate as many
transactions as it wants using tpbegin (3), tpcommit (3), and tpabort (3). Note that
tpreturn (3) is not used to complete a transaction. Thus, it is an error to call
tpreturn (3) with an outstanding transaction that originated within the service rout

Service routines are invoked with one argument: svcinfo , a pointer to a service
information structure. This structure includes the following members:

char name[32];
char *data;
long len;
long flags;
int cd;
long appkey;
CLIENTID cltid;

name is populated with the service name that the requester used to invoke the s
BEA TUXEDO Reference Manual 187

tpservice(3)

the

riptor

tion
. This

tion
 This

d to

inted

The setting of flags upon entrance to a service routine indicates attributes which
service routine may want to note. Following are the possible values for flags .

TPCONV
A connection request for a conversation has been accepted and the desc
for the conversation is available in cd . If not set, then this is a
request/response service and cd is not valid.

TPTRAN
The service routine is in transaction mode.

TPNOREPLY
The caller is not expecting a reply. This option will not be set if TPCONV is set.

TPSENDONLY
The service is invoked such that it can only send data across the connec
and the program on the other end of the connection can only receive data
flag is mutually exclusive with TPRECVONLY and may be set only when
TPCONV is also set.

TPRECVONLY
The service is invoked such that it can only receive data from the connec
and the program on the other end of the connection can only send data.
flag is mutually exclusive with TPSENDONLY and may be set only when
TPCONV is also set.

data points to the data portion of a request message and len is the length of the data.
The buffer pointed to by data was allocated by tpalloc (3) in the communication
manager. This buffer may be grown by the user with tprealloc (3); however, it
cannot be freed by the user. It is recommended that this buffer be the one passe
either tpreturn (3) or tpforward (3) when the service ends. If a different buffer is
passed to those routines, then that buffer is freed by them. Note that the buffer po
to by data will be overwritten by the next service request even if this buffer is not
passed to tpreturn (3) or tpforward (3). data may be NULL if no data accompanied
the request. In this case, len will be 0.

When TPCONV is set in flags , cd is the connection descriptor that can be used with
tpsend (3) and tprecv (3) to communicate with the program that initiated the
conversation.
188 BEA TUXEDO Reference Manual

tpservice(3)

ation
rvice

n in
rs if
ted

ing

ring

ager
d to

 and

us
lure,

t.

ling
ors
e
appkey is set to the application key assigned to the requesting client by the applic
defined authentication service. This key value is passed along with any and all se
requests made while within this invocation of the service routine. appkey will have a
value of -1 for originating clients that do not pass through the application
authentication service.

cltid is the unique client identifier for the originating client associated with this
service request. The definition of this structure is made available to the applicatio
atmi.h solely so that client identifiers may be passed between application serve
necessary. Therefore, the semantics of the fields defined below are not documen
and applications should not manipulate the contents of CLIENTID structures. Do
so will invalidate the structures. The CLIENTID structure includes the following
member:

long clientdata[4];

Note that for C++, the service function must have C linkage. This is done by decla
the function as ‘extern “C.”’

Return Values A service routine does not return any value to its caller, the communication man
dispatcher; thus, it is declared as a void. Service routines, however, are expecte
terminate using either tpreturn (3) or tpforward (3). A conversational service
routine must use tpreturn (3), and cannot use tpforward (3). If a service routine
returns without using either tpreturn (3) or tpforward (3) (i.e., it uses the C language
return statement or just simply “falls out of the function”) or tpforward (3) is called
from a conversational server, the server will print a warning message in a log file
return a service error to the originator or requester. All open connections to
subordinates will be disconnected immediately, and any outstanding asynchrono
replies will be marked stale. If the server was in transaction mode at the time of fai
the transaction is marked abort-only. Note also that if either tpreturn (3) or
tpforward (3) are used outside of a service routine (e.g., in clients, or in
tpsvrinit (3) or tpsvrdone (3)), then these routines simply return having no effec

Errors Since tpreturn (3) ends the service routine, any errors encountered either in hand
arguments or in processing cannot be indicated to the function's caller. Such err
cause tperrno to be set to TPESVCERR for a program receiving the service's outcom
via either tpcall (3) or tpgetrply (3), and cause the event, TPEV_SVCERR, to be sent
over the conversation to a program using tpsend (3) or tprecv (3).

See Also servopts (5), tpalloc (3), tpbegin (3), tpcall (3), tpconnect (3), tpforward (3),
tpreturn (3)
BEA TUXEDO Reference Manual 189

tpsetunsol(3)

n
e

O

 for

n

ates

ed to

ge
g

r).

r is
tpsetunsol(3)

Name tpsetunsol -routine for setting the method of handling unsolicited messages

Synopsis #include <atmi.h>
void (*tpsetunsol (void (_TMDLLENTRY *)(*disp) (char *data, long
len, long flags))) \
(char *data, long len, long flags)

Description tpsetunsol () allows a client to identify the routine that should be invoked when a
unsolicited message is received by the BEA TUXEDO system libraries. Before th
first call to tpsetunsol (), any unsolicited messages received by the BEA TUXED
system libraries on behalf of the client are logged and ignored. A call to tpsetunsol ()
with a NULL function pointer has the same effect. The method used by the system
notification and detection is determined by the application default, which can be
overridden on a per-client basis (see tpinit (3)).

The function pointer passed on the call to tpsetunsol () must conform to the
parameter definition given. data points to the typed buffer received and len is the
length of the data. flags are currently unused. data can be NULL if no data
accompanied the notification. data may be of a buffer type/subtype that is not know
by the client, in which case the message data is unintelligible.

data can not be freed by application code. However, the system frees it and invalid
the data area following return.

Processing within the application unsolicited message handling routine is restrict
the following BEA TUXEDO system calls: tpalloc (3), tpgetlev (3), tprealloc (3)
tptypes (3), tpfree (3).

Return Values Upon success, tpsetunsol () returns the previous setting for the unsolicited messa
handling routine (NULL is a successful return indicating that no message handlin
function had been set previously); otherwise, it returns TPUNSOLERR and sets tperrno
to indicate the error condition.

Errors Under the following conditions, tpsetunsol () fails and sets tperrno to:

[TPEPROTO]
tpsetunsol () was called in an improper context (e.g., from within a serve

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.
190 BEA TUXEDO Reference Manual

tpsetunsol(3)

d
[TPEOS]
An operating system error has occurred.

Portability The interfaces described in tpnotify (3) are supported on native site UNIX-based an
Windows NT processors. In addition, the routines tpbroadcast () and tpchkunsol ()
as well as the function tpsetunsol () are supported on UNIX and MS-DOS
workstation processors.

See Also tpinit (3), tpterm (3)
BEA TUXEDO Reference Manual 191

tpsprio(3)

t
ed or

ult
n,
 the

of

ge

r is
tpsprio(3)

Name tpsprio -routine for setting service request priority

Synopsis #include <atmi.h>
int tpsprio(prio, flags)

Description tpsprio () sets the priority for the next request sent or forwarded. The priority se
affects only the next request sent. (Priority can also be set for messages enqueu
dequeued by tpenqueue (3) or tpdequeue (3) if the queued message facility is
installed.) By default, the setting of prio increments or decrements a service's defa
priority up to a maximum of 100 or down to a minimum of 1 depending on its sig
where 100 is the highest priority. The default priority for a request is determined by
service to which the request is being sent. This default may be specified
administratively (see ubbconfig (5)), or take the system default of 50. tpsprio () has
no effect on messages sent via tpconnect (3) or tpsend (3).

Following is a list of valid flags.

TPABSOLUTE
The priority of the next request should be sent out at the absolute value
prio . The absolute value of prio must be within the range 1 and 100,
inclusive, with 100 being the highest priority. Any value outside of this ran
causes a default value to be used.

Return Values tpsprio () returns \-1 on error and sets tperrno to indicate the error condition.

Errors Under the following conditions, tpsprio () fails and sets tperrno to:

[TPEINVAL]
flags are invalid.

[TPEPROTO]
tpsprio () was called in an improper context.

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also tpacall (3), tpcall (3), tpdequeue (3), tpenqueue (3), tpgprio (3)
192 BEA TUXEDO Reference Manual

tpstrerror(3)

n
tpstrerror(3)

Name tpstrerror (3)-get error message string for a BEA TUXEDO system error

Synopsis #include <atmi.h>
char *
tpstrerror(int err)

Description tpstrerror () is used to retrieve the text of an error message from LIBTUX_CAT. err
is the error code set in tperrno when a BEA TUXEDO system function call returns a
-1 or other failure value.

You can use the pointer returned by tpstrerror () as an argument to userlog (3c) or
the UNIX function fprintf (3).

Return Values If err is an invalid error code, tpstrerror () returns a NULL. On success, the functio
returns a pointer to a string that contains the error message text.

Errors tpstrerror () returns a NULL on error, but does not set tperrno .

Example #include <atmi.h>
.
.
.
 char *p;
 if (tpbegin(10,0) == -1) {
 p = tpstrerror(tperrno);
 userlog(“%s”, p);
 (void)tpabort(0);
 (void)tpterm();
 exit(1);
 }

See Also Fstrerror (3), userlog (3c)
BEA TUXEDO Reference Manual 193

tpstrerrordetail(3)

ror

O

tpstrerrordetail(3)

Name tpstrerrordetail -get error detail message string for a BEA TUXEDO system er

Synopsis #include <atmi.h>
char * tpstrerrordetail(int err , long flags)

Description tpstrerrordetail () is used to retrieve the text of an error detail of a BEA TUXED
system error. err is the value returned by tperrordetail (3).

The user can use the pointer returned by tpstrerrordetail as an argument to
userlog (3c) or the UNIX function fprintf (3).

Currently flags is reserved for future use and must be set to 0.

Return Values If err is an invalid error code, tpstrerrordetail returns a NULL. On success, the
function returns a pointer to a string that contains the error detail message text.

Errors tpstrerrordetail returns a NULL on error, but does not set tperrno .

Example #include <atmi.h> . . .
int ret;
char *p;
if (tpbegin(10,0) == -1) {
 ret=tperrordetail(0);
 if (ret == -1) {
 (void) fprintf(stderr, “tperrordetail() failed!\n”);
 (void) fprintf(stderr, “tperrno = %d, %s\n”,
 tperrno, tpstrerror(tperrno));
 }
 else if (ret != 0) {
 (void) fprintf(stderr, “errordetail:%s\n”,
 tpstrerrordetail(ret, 0);
 }}
}

See Also intro (3c), tperrordetail (3c), tpstrerror (3c), userlog (3c), tperrno (5)
194 BEA TUXEDO Reference Manual

tpsubscribe(3c)

via
 of
rage
d the

. For
d

r the
d

le, if
broker

the

nd
ssion

ter
tpsubscribe(3c)

Name tpsubscribe -subscribe to an event

Synopsis #include <atmi.h>
long tpsubscribe(char *eventexpr, char *filter, TPEVCTL *ctl, long
flags)

Description The caller uses tpsubscribe to subscribe to an event or set of events named by
eventexpr . Subscriptions are maintained by the BEA TUXEDO system Event
Broker, TMUSREVT(5), and are used to notify subscribers when events are posted
tppost (3). Each subscription specifies a notification method which can take one
three forms: client notification, service calls, or message enqueuing to stable-sto
queues. Notification methods are determined by the subscriber's process type an
arguments passed to tpsubscribe .

The event or set of events being subscribed to is named by eventexpr , a
NULL-terminated string of at most 255 characters containing a regular expression
example, if eventexpr is “\e\e..* ”, the caller is subscribing to all system-generate
events; if eventexpr is “\e\e.SysServer.* ”, the caller is subscribing to all
system-generated events related to servers. If eventexpr is “[A-Z].* ”, the caller is
subscribing to all user events starting with A-Z; if eventexpr is “.*(ERR|err).* ”,
the caller is subscribing to all user events containing either the substring “ERR” o
substring “err” (for example, “account_error” and “ERROR_STATE” events woul
both qualify).

If present, filter is a string containing a boolean filter rule associated with
eventexpr that must be evaluated successfully before the event broker posts the
event. Upon receiving an event to be posted, the event broker applies the filter ru
one exists, to the posted event's data. If the data passes the filter rule, the event
invokes the notification method associated with eventexpr ; otherwise, the broker
does not invoke the associated notification method. The caller can subscribe to
same event multiple times with different filter rules.

Filter rules are specific to the typed buffers to which they are applied. For FML a
view buffers, the filter rule is a string that can be passed to each's boolean expre
complier (see Fboolco (3) and Fvboolco (3), respectively) and evaluated against the
posted buffer (see Fboolev (3) and Fvboolev (3), respectively). For STRING buffers,
the filter rule is a regular expression. All other buffer types require customized fil
evaluators (see buffer (3) and typesw (5) for details on adding customized filter
evaluators). filter is a NULL-terminated string of at most 255 characters.
BEA TUXEDO Reference Manual 195

tpsubscribe(3c)

which

lter
r
ith

lient
A

r
ee

 that

nt is

rvice

s to

st

o

the
If the subscriber is a BEA TUXEDO system client process and ctl is NULL, then the
event broker sends an unsolicited message to the subscriber when the event to
it subscribed is posted. That is, when an event name is posted that evaluates
successfully against eventexpr , the event broker tests the posted data against the fi
rule associated with eventexpr . If the data passes the filter rule or if there is no filte
rule for the event, then the subscriber receives an unsolicited notification along w
any data posted with the event. In order to receive unsolicited notifications, the c
must register (via tpsetunsol (3)) an unsolicited message handling routine. If a BE
TUXEDO system server process calls tpsubscribe with a NULL ctl parameter,
then tpsubscribe fails setting tperrno to TPEPROTO.

Clients receiving event notification via unsolicited messages should remove thei
subscriptions from the event broker's list of active subscriptions before exiting (s
tpunsubscribe (3) for details). Using tpunsubscribe 's wild-card handle, -1, clients
can conveniently remove all of their “non-persistent” subscriptions which include
those associated with the unsolicited notification method (see the description of
TPEVPERSIST below for subscriptions and their associated notification methods
persist after a process exits). If a client exits without removing its non-persistent
subscriptions, then the event broker will remove them when it detects that the clie
no longer accessible.

If the subscriber (regardless of process type) wants event notifications to go to se
routines or to stable-storage queues, then the ctl parameter must point to a valid
TPEVCTL structure. This structure contains the following elements:

long flags;
char name1[32];
char name2[32];
TPQCTL qctl;

The following is a list of valid bits for the ctl->flags element controlling options for
event subscriptions.

TPEVSERVICE
Setting this flag bit indicates that the subscriber wants event notification
be sent to the BEA TUXEDO system service routine named in ctl->name1 .
That is, when an event name is posted that evaluates successfully again
eventexpr , the event broker tests the posted data against the filter rule
associated with eventexpr . If the data passes the filter rule or if there is n
filter rule for the event, then a service request is sent to ctl->name1 along
with any data posted with the event. The service name in ctl->name1 can be
any valid BEA TUXEDO system service name and it may or may not be
active at the time the subscription is made. Service routines invoked by
196 BEA TUXEDO Reference Manual

tpsubscribe(3c)

ve

he
g

s to

es a

 and
ueue
s

n

lid

vent
t

ta
event broker should return with no reply data. That is, they should call
tpreturn (3) with a NULL data argument. Any data passed to tpreturn (3)
will be dropped. TPEVSERVICE and TPEVQUEUE are mutually exclusi
flags.

If TPEVTRAN is also set in ctl->flags , then if the process calling
tppost (3) is in transaction mode, the event broker calls the subscribed
service routine such that it will be part of the poster's transaction. Both t
event broker, TMUSREVT(5), and the subscribed service routine must belon
to server groups that support transactions (see ubbconfig (5) for details). If
TPEVTRAN is not set in ctl->flags , then the event broker calls the
subscribed service routine such that it will not be part of the poster's
transaction.

TPEVQUEUE
Setting this flag bit indicates that the subscriber wants event notification
be enqueued to the queue space named in ctl->name1 and the queue named
in ctl->name2 . That is, when an event name is posted that evaluates
successfully against eventexpr , the event broker tests the posted data
against the filter rule associated with eventexpr . If the data passes the filter
rule or if there is no filter rule for the event, then the event broker enqueu
message to the queue space named in ctl->name1 and the queue named in
ctl->name2 along with any data posted with the event. The queue space
queue name can be any valid BEA TUXEDO system queue space and q
name, either of which may or may not exist at the time the subscription i
made.

ctl->qctl can contain options further directing the event broker's
enqueuing of the posted event. If no options are specified, then
ctl->qctl.flags should be set to TPNOFLAGS. Otherwise, options ca
be set as described in the “Control Parameter” subsection of the
tpenqueue (3) manual page (specifically, see the section describing the va
list of flags controlling input information for tpenqueue (3)).
TPEVSERVICE and TPEVQUEUE are mutually exclusive flags.

If TPEVTRAN is also set in ctl->flags , then if the process calling
tppost (3) is in transaction mode, the event broker enqueues the posted e
and its data such that it will be part of the poster's transaction. The even
broker, TMUSREVT(5), must belong to a server group that supports
transactions (see ubbconfig (5) for details). If TPEVTRAN is not set in
ctl->flags , then the event broker enqueues the posted event and its da
such that it will not be part of the poster's transaction.
BEA TUXEDO Reference Manual 197

tpsubscribe(3c)

tion
s. If
t be
is

s
e
 name

 the

his

queue

at
ter
iption
ction

at

od,
TPEVTRAN
Setting this flag bit indicates that the subscriber wants the event notifica
for this subscription to be included in the poster's transaction, if one exist
this flag bit is not set, then any events posted for this subscription will no
done on behalf of any transaction in which the poster is participating. Th
flag can be used with either TPEVSERVICE or TPEVQUEUE.

TPEVPERSIST
By default, the BEA TUXEDO system Event Broker deletes subscription
when the resource to which it is posting is not available (for example, th
event broker cannot access a service routine and/or a queue space/queue
associated with an event subscription). Setting this flag bit indicates that
subscriber wants this subscription to persist across such errors (usually
because the resource will become available again in the future). When t
flag bit is not used, the event broker will remove this subscription if it
encounters an error accessing either the service name or queue space/
name designated in this subscription.

If this flag bit is used with TPEVTRAN and the resource is not available
the time of event notification, then the event broker will return to the pos
such that its transaction must be aborted. That is, even though the subscr
remains intact, the resource's unavailability will cause the poster's transa
to fail.

If the event broker's list of active subscriptions already contains a subscription th
matches the one being requested by tpsubscribe , then the function fails setting
tperrno to TPEMATCH. For a subscription to match an existing one, both
eventexpr and filter must match those of a subscription already in the event
broker's active list of subscriptions. In addition, depending on the notification meth
other criteria are used to determine matches.

If the subscriber is a BEA TUXEDO system client process and ctl is NULL (such that
the caller receives unsolicited notifications when events are posted), then its
system-defined client identifier (known as a CLIENTID) is also used to detect
matches. That is, tpsubscribe fails if eventexpr , filter , and the caller's
CLIENTID match those of a subscription already known to the event broker.

If the caller has set ctl->flags to TPEVSERVICE, then tpsubscribe fails if
eventexpr , filter , and the service name set in ctl->name1 match those of a
subscription already known to the event broker.
198 BEA TUXEDO Reference Manual

tpsubscribe(3c)

g
he

n
 set

ion

to

tem
a

wise

his
For subscriptions to stable-storage queues, the queue space, queue name, and
correlation identifier are used, in addition to eventexpr and filter , when
determining matches. The correlation identifier can be used to differentiate amon
several subscriptions for the same event expression and filter rule, destined for t
same queue. Thus, if the caller has set ctl->flags to TPEVQUEUE, and
TPQCOORID is not set in ctl->qctl.flags , then tpsubscribe fails if eventexpr ,
filter , the queue space name set in ctl->name1 , and the queue name set in
ctl->name2 match those of a subscription (which also does not have a correlatio
identifier specified) already known to the event broker. Further, if TPQCOORID is
in ctl->qctl.flags , then tpsubscribe fails if eventexpr , filter , ctl->name1 ,
ctl->name2 , and ctl->qctl.corrid match those of a subscription (which has the
same correlation identifier specified) already known to the event broker.

Following is a list of valid flags for tpsubscribe :

TPNOBLOCK
The subscription is not made if a blocking condition exists. If such a condit
occurs, the call fails and tperrno is set to TPEBLOCK. When TPNOBLOCK is
not specified and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking
timeout).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is re-issued. When TPSIGRSTRT is not specified and a signal interrupts
system call, then tpsubscribe fails and tperrno is set to TPGOTSIG.

Return Values Upon successful completion, tpsubscribe returns a handle that can be used to
remove this subscription from the event broker's list of active subscriptions. Other
the function returns -1 and sets tperrno to indicate the error condition. Either the
subscriber or any other process is allowed to use the returned handle to delete t
subscription.
BEA TUXEDO Reference Manual 199

tpsubscribe(3c)

vent

n
ing

r is
Errors Under the following conditions, tpsubscribe fails and sets tperrno to one of the
following values. (Unless otherwise noted, failure does not affect the caller's
transaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for example, eventexpr is NULL).

[TPENOENT]
Cannot access the BEA TUXEDO system Event Broker.

[TPELIMIT]
The subscription failed because the event broker's maximum number of
subscriptions has been reached.

[TPEMATCH]
The subscription failed because it matched one already listed with the e
broker.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transactio
timeout occurred and the transaction is to be aborted; otherwise, a block
timeout occurred and neither TPNOBLOCK nor TPNOTIME were specified. If a
transaction timeout occurred, any attempts to do new work will fail with
TPETIME until the transaction has been aborted.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpsubscribe was called in an improper context.

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also buffer (3), EVENTS(5), EVENT_MIB(5), Fboolco (3), Fboolev (3), Fvboolco (3),
Fvboolev (3), recomp (3), TMSYSEVT(5), TMUSREVT(5), tpenqueue (3), tppost (3),
tpsetunsol (3), tpunsubscribe (3), tuxtypes (5), typesw (5), ubbconfig (5)
200 BEA TUXEDO Reference Manual

tpsuspend(3)

ciated
ction,

, only
e
 some

e, to

l

 not
f
tpsuspend(3)

Name tpsuspend -suspend a global transaction

Synopsis #include <atmi.h>
int tpsuspend(TPTRANID *tranid, long flags)

Description tpsuspend () is used to suspend the transaction active in the caller's process. A
transaction begun with tpbegin (3) may be suspended with tpsuspend (). Either the
suspending process or another process may use tpresume (3) to resume work on a
suspended transaction. When tpsuspend () returns, the caller is no longer in
transaction mode. However, while a transaction is suspended, all resources asso
with that transaction (such as database locks) remain active. Like an active transa
a suspended transaction is susceptible to the transaction timeout value that was
assigned when the transaction first began.

For the transaction to be resumed in another process, the caller of tpsuspend () must
have been the initiator of the transaction by explicitly calling tpbegin (). tpsuspend ()
may also be called by a process other than the originator of the transaction (for
example, a server that receives a request in transaction mode). In the latter case
the caller of tpsuspend () may call tpresume () to resume that transaction. This cas
is allowed so that a process can temporarily suspend a transaction to begin and do
work in another transaction before completing the original transaction (for exampl
run a transaction to log a failure before rolling back the original transaction).

tpsuspend () returns in the space pointed to by tranid the transaction identifier being
suspended. The caller is responsible for allocating the space to which tranid points.
It is an error for tranid to be NULL.

To ensure success, the caller must have completed all outstanding transactiona
communication with servers before issuing tpsuspend (). That is, the caller must have
received all replies for requests sent with tpacall (3) that were associated with the
caller's transaction. Also, the caller must have closed all connections with
conversational services associated with the caller's transaction (i.e., tprecv (3) must
have returned the TPEV_SVCSUCC event). If either rule is not followed, then
tpsuspend () fails, the caller's current transaction is not suspended and all
transactional communication descriptors remain valid. Communication descriptors
associated with the caller's transaction remain valid regardless of the outcome o
tpsuspend ().

Currently, flags are reserved for future use and must be set to 0.

Return Value tpsuspend () returns \-1 on error and sets tperrno to indicate the error condition.
BEA TUXEDO Reference Manual 201

tpsuspend(3)

t

 not
 not

r is
Errors Under the following conditions, tpsuspend () fails and sets tperrno to:

[TPEINVAL]
tranid is a NULL pointer or flags is not 0. The caller's state with respec
to the transaction is not changed.

[TPEABORT]
The caller's active transaction has been aborted. All communication
descriptors associated with the transaction are no longer valid.

[TPEPROTO]
tpsuspend() was called in an improper context (for example, the caller is
in transaction mode). The caller's state with respect to the transaction is
changed.

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also tpacall (3), tpbegin (3), tprecv (3), tpresume (3)
202 BEA TUXEDO Reference Manual

tpsvrdone(3c)

erver
A
ed in

e the

n
tpsvrdone(3c)

tpsvrdone (3c)-BEA TUXEDO system server termination routine

Synopsis #include <atmi.h>
void tpsvrdone(void)

Description The BEA TUXEDO system server abstraction calls tpsvrdone after it has finished
processing service requests but before it exits. When this routine is invoked, the s
is still part of the system but its own services have been unadvertised. Thus, BE
TUXEDO system communication can be performed and transactions can be defin
this routine. However, if tpsvrdone returns with open connections, asynchronous
replies pending or while still in transaction mode, the BEA TUXEDO system will
close its connections, ignore any pending replies and abort the transaction befor
server exits.

If a server is shut down by the invocation of tmshutdown -y , services are suspended
and the ability to perform communication or to begin transactions in tpsvrdone is
limited.

If an application does not provide this routine in a server, then the default versio
provided by the BEA TUXEDO system is called instead. The default tpsvrdone calls
tpclose and userlog to announce that the server is about to exit.

Usage If either tpreturn (3c) or tpforward (3c) is called in tpsvrdone , it simply returns
having no effect.

See Also servopts (5), tpclose (3c), tpsvrinit (3c)
BEA TUXEDO Reference Manual 203

tpsvrinit(3)

r but
ion

ile
ore

n

.

ould

tpsvrinit(3)

Name tpsvrinit (3)-the BEA TUXEDO system server initialization routine

Synopsis #include <atmi.h>
int tpsvrinit(int argc, char **argv)

Description The BEA TUXEDO system server abstraction calls tpsvrinit () during its
initialization. This routine is called after the thread of control has become a serve
before it handles any service requests; thus, BEA TUXEDO system communicat
may be performed and transactions may be defined in this routine. However, if
tpsvrinit () returns with open connections, asynchronous replies pending or wh
still in transaction mode, the BEA TUXEDO system will close the connections, ign
replies pending, abort the transaction, and the server will exit gracefully.

If an application does not provide this routine in a server, then the default versio
provided by the BEA TUXEDO system is called instead. The default tpsvrinit ()
calls tpopen () and userlog () to announce that the server has successfully started

Application-specific options can be passed into a server and processed in tpsvrinit ()
(see servopts (5)). The options are passed through argc and argv. Since getopt (3C)
is used in a BEA TUXEDO system server abstraction, optarg , optind and opterr
may be used to control option parsing and error detection in tpsvrinit ().

If an error occurs in tpsvrinit (), the application can cause the server to exit
gracefully (and not take any service requests) by returning -1. The application sh
not call exit (2) itself.

Return Values A negative return value will cause the server to exit gracefully.

Usage If either tpreturn () or tpforward () are used outside of a service routine (e.g., in
clients, or in tpsvrinit () or tpsvrdone ()), then these routines simply return having
no effect.

See Also getopt (3C), servopts (5), tpopen (3), tpsvrdone (3)
204 BEA TUXEDO Reference Manual

tpterm(3)

is

an it

r is
tpterm(3)

Name tpterm -routine for leaving an application

Synopsis #include <atmi.h>
int tpterm(void)

Description tpterm () removes a client from a BEA TUXEDO system application. If the client
in transaction mode, then the transaction is rolled back. When tpterm () returns
successfully, the caller can no longer communicate with any other program nor c
participate in any transactions. Any outstanding conversations are immediately
disconnected.

If tpterm () is called more than once (that is, after the caller has already left the
application), no action is taken and success is returned.

Return Values tpterm () returns \-1 on error and sets tperrno to indicate the error condition.

Errors Under the following conditions, tpterm () fails and sets tperrno to:

[TPEPROTO]
tpterm () was called in an improper context (for example, the caller is a
server).

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also tpinit (3)
BEA TUXEDO Reference Manual 205

tptypes(3)

 and

h (8

n

r is
tptypes(3)

Name tptypes -routine to determine information about a typed buffer

Synopsis #include <atmi.h>

long tptypes(char *ptr, char *type, char *subtype)

Description tptypes () takes as its first argument a pointer to a data buffer and returns the type
subtype of that buffer in its second and third arguments, respectively. ptr must point
to a buffer gotten from tpalloc (3). If type and subtype are non-NULL, then the
function populates the character arrays to which they point with the names of the
buffer's type and subtype, respectively. If the names are of their maximum lengt
for type , 16 for subtype), the character array is not null-terminated. If no subtype
exists, then the array pointed to by subtype will contain a NULL string.

Note that only the first eight bytes of type and the first 16 bytes of subtype are
populated.

Return Values Upon success, tptypes () returns the size of the buffer; otherwise it returns \-1 upo
failure and sets tperrno to indicate the error condition.

Errors Under the following conditions, tptypes () fails and sets tperrno to:

[TPEINVAL]
Invalid arguments were given (for example, ptr does not point to a buffer
gotten from \% tpalloc(3)).

[TPEPROTO]
tptypes () was called in an improper context.

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also tpalloc (3), tpfree (3), tprealloc (3)
206 BEA TUXEDO Reference Manual

tpunadvertise(3)

t, a
n it is

e
ents

et

ion
Care

r is
tpunadvertise(3)

Name tpunadvertise -routine for unadvertising a service name

Synopsis #include <atmi.h>
int tpunadvertise(char *svcname)

Description tpunadvertise () allows a server to unadvertise a service that it offers. By defaul
server's services are advertised when it is booted and they are unadvertised whe
shutdown.

All servers belonging to a multiple server, single queue (MSSQ) set must offer th
same set of services. These routines enforce this rule by affecting the advertisem
of all servers sharing an MSSQ set.

tpunadvertise () removes svcname as an advertised service for the server (or the s
of servers sharing the caller's MSSQ set). svcname cannot be NULL or the NULL
string (““). Also, svcname should be 15 characters or less. (See *SERVICES sect
of ubbconfig (5)). Longer names will be accepted and truncated to 15 characters.
should be taken such that truncated names do not match other service names.

Return Values tpunadvertise () returns \-1 on error and sets tperrno to indicate the error condition.

Errors Under the following conditions, tpunadvertise () fails and sets tperrno to:

[TPEINVAL]
svcname is NULL or the NULL string (““).

[TPENOENT]
svcname is not currently advertised by the server.

[TPEPROTO]
tpunadvertise () was called in an improper context (for example, by a
client).

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also tpadvertise (3)
BEA TUXEDO Reference Manual 207

tpunsubscribe(3)

s.

istent

ocess
that
de by

ks
king

to

tem

tpunsubscribe(3)

Name tpunsubscribe -unsubscribe to an event

Synopsis #include <atmi.h>
int tpunsubscribe(long subscription, long flags)

Description The caller uses tpunsubscribe to remove an event subscription or a set of event
subscriptions from the TUXEDO System Event Broker's list of active subscription
subscription is an event subscription handle returned by tpsubscribe (3). Setting
subscription to the wild-card value, -1, directs tpunsubscribe to unsubscribe to
all non-persistent subscriptions previously made by the calling process. Non-pers
subscriptions are those made without the TPEVPERSIST bit setting in the
ctl->flags parameter of tpsubscribe (3). Persistent subscriptions can be deleted
only by using the handle returned by tpsubscribe (3).

Note that the -1 handle removes only those subscriptions made by the calling pr
and not any made by previous instantiations of the caller (for example, a server
dies and restarts cannot use the wild-card to unsubscribe to any subscriptions ma
the original server).

Following is a list of valid flags .

TPNOBLOCK
The subscription is not removed if a blocking condition exists. If such a
condition occurs, the call fails and tperrno is set to TPEBLOCK. When
TPNOBLOCK is not specified and a blocking condition exists, the caller bloc
until the condition subsides or a timeout occurs (either transaction or bloc
timeout).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted sys
call is re-issued. When TPSIGRSTRT is not specified and a signal interrupts a
system call, then tpunsubscribe fails and tperrno is set to TPGOTSIG.
208 BEA TUXEDO Reference Manual

tpunsubscribe(3)

rd
n
ed,

n
ing

r is
Return Values Upon completion of tpunsubscribe , tpurcode () contains the number of
subscriptions deleted (zero or greater) from the event broker's list of active
subscriptions. tpurcode may contain a number greater than 1 only when the wild-ca
handle, -1, is used. Also, tpurcode may contain a number greater than 0 even whe
tpunsubscribe completes unsuccessfully (that is, when the wild-card handle is us
the event broker may have successfully removed some subscriptions before it
encountered an error deleting others). tpunsubscribe returns -1 on error and sets
tperrno to indicate the error condition.

Errors Under the following conditions, tpunsubscribe fails and sets tperrno to one of the
following values. (Unless otherwise noted, failure does not affect the caller's
transaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for example, subscription is an invalid
subscription handle).

[TPENOENT]
Cannot access the BEA TUXEDO system event broker.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transactio
timeout occurred and the transaction is to be aborted; otherwise, a block
timeout occurred and neither TPNOBLOCK nor TPNOTIME were specified. If a
transaction timeout occurred, any attempts to do new work will fail with
TPETIME until the transaction has been aborted.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpunsubscribe was called in an improper context.

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the erro
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also EVENTS(5), EVENT_MIB(5), TMSYSEVT(5), TMUSREVT(5), tppost (3), tpsubscribe (3)
BEA TUXEDO Reference Manual 209

TRY(3)

the

n
hould
TRY(3)

Name TRY-exception-returning interface

Synopsis #include <texc.h>

TRY
try_block
[CATCH(exception_name) handler_block] ...
[CATCH_ALL handler_block]
ENDTRY

TRY
try_block
FINALLY
finally_block
ENDTRY

RAISE(exception_name)
RERAISE

/* declare exception */
EXCEPTION exception_name ;

/* initialize address (application) exception */
EXCEPTION_INIT(EXCEPTION exception_name)

/* intialize status exception (map status to exception */
exc_set_status(EXCEPTION * exception_name , long status)

/* map status exception to status */
exc_get_status(EXCEPTION * exception_name , long * status)

/* compare exceptions */
exc_matches(EXCEPTION * e1, EXCEPTION * e2)

/* print error to stderr */
void exc_report(EXCEPTION * exception)

Description The TRY/CATCH interface provides a mechanism to handle exceptions without
use of status variables (e.g., errno or status variables passed back from an RPC
operation). These macros are defined in texc.h and this header is automatically
included in any header files generated by tidl(1).

The TRY try_block is a block of C or C++ declarations and statements in which a
exception may be raised (code that is not associated with raising an exception s
be placed before or after the try_block). Each TRY/ENDTRY pair constitutes a “scope”,
210 BEA TUXEDO Reference Manual

TRY(3)

n is
ctions

 torn

dled;
 not

g via

 in

n

 by a

the

eption

, a
n to
ption
ctions
, the
with respect to exceptions (not unlike C scoping), or a region of code over which
exceptions are caught. These scopes can be properly nested. When an exceptio
raised, an error is reported to the application by searching the active scopes for a
written to handle (“absorb”) an exception (CATCH or CATCH_ALL clauses) or complete
the scopes (FINALLY clauses). If a scope does not handle an exception, the scope is
down with the exception raised at the next higher level (unwinding the stack of
exception scopes). Execution resumes at the point after which the exception is han
there is no provision for resuming execution at the point of error. If the exception is
handled by any scope, the program is terminated (a message is written to the lo
userlog(3) and abort(3) is called).

Zero or more occurrences of CATCH (exception_name) handler_block may be
provided. Each handler_block is a block of C or C++ declarations and statements
which the associated exception (exception_name) is processed (normally, actions are
specified for recovery from the failure). If an exception is raised by a statement i
try_block , then the first CATCH clause that matches the exception is executed.

Within a CATCH or CATCH_ALL handler_block , the current exception can be
referenced by the EXCEPTION pointer THIS_CATCH (e.g., for logic based on or
printing the exception value).

If the exception is not handled by one of the CATCH clauses, then the CATCH_ALL clause
is executed. By default, no further action is taken for an exception that is handled
CATCH or CATCH_ALL clause. If no CATCH_ALL clause exists, then the exception is
raised at the try_block at the next higher level, assuming that the try_block is
nested within another try_block . If an ANSI C compiler is used, register and
automatic variables that are used in the handler blocks should be declared with
volatile attribute (as is true of any blocks that use setjmp/longjmp). Also note that
output parameters and return values from the functions that can generate an exc
are indeterminate.

Within a CATCH or CATCH_ALL handler_block , the current exception can be
propagated to the next higher level (the exception is “reraised”) using the RERAISE
statement. The RERAISE statement must appear lexically within the scope of a
handler_block (that is, not within a function called by the handler_block). Any
exception that is caught but not fully handled should be reraised. In many cases
CATCH_ALL handler should reraise the exception because the handler is not writte
handle every exception. The application should also be written such that an exce
is raised to the proper scope such that the handler blocks take the appropriate a
and modify the appropriate state (e.g., if an exception occurs while opening a file
handler function for that level should not try to close the unopened file).
BEA TUXEDO Reference Manual 211

TRY(3)

nt

uted
 in

nts
 are

t is

is is
 to be

er but

ing
tatus

le.
ption

The

he
t is a

ized
 as

r this
not
An exception can be raised from anywhere by using the RAISE(exception_name)
statement. This statement causes the exception to start propagating at the curre
try_block and will be reraised until it is handled.

The FINALLY clause can be used to specify an epilogue block of code that is exec
after the try_block , whether or not an exception is raised. If an exception is raised
the try_block , it is reraised after the finally_block is executed. This clause can be
used to avoid replicating epilogue code twice, once in a CATCH_ALL clause, and again
after the ENDTRY. It is normally used to execute cleanup activities, restoring invaria
(e.g., shared data, locks) as the scopes are unwound, whether or not exceptions
raised (that is, on both normal and abnormal exits from the block). Note (in the
SYNOPSIS) that a FINALLY clause cannot be used with a CATCH or CATCH_ALL clause
for the same try_block ; use nested try_block s.

The ENDTRY statement must be used to complete the TRY block, since it contains code
that must be executed to make sure that exceptions are handled and the contex
cleaned up. A try_block , handler_block , or finally_block must not contain a
return , non-local jump, or any other means of leaving the block such that the ENDTRY
is not reached (e.g. goto, break, continue, longjmp (3)).

This interface is provided to handle exceptions from RPC operations. However, th
a generic interface that can be used for any application. An exception is declared
of type EXCEPTION. (This is a complex data type; don't try to use it like a long
integer.) There are two types of exceptions. They are declared in the same mann
initialized differently.

One type of exception is used to propagate status values associated with operat
system signals and exceptions raised by the RPC run-time primitives. For each s
value, an exception has been pre-defined (for example, exception rpc_x_no_memory
is defined for status rpc_s_no_memory); these are declared in the trpcsts.h header fi
While not necessary (since the status exceptions are pre-defined), a status exce
can be declared by the application and initialized with the exc_set_status () macro
which takes a pointer to the EXCEPTION to be initialized, and the status value.
status value associated with a status exception can be retrieved using the
exc_get_status () macro. It takes a pointer to the EXCEPTION and a pointer to t
variable in which the status value is to be returned; the value of the macro is 0 if i
status exception, and -1 otherwise.

The second type of exception is used to define application exceptions. It is initial
by calling the EXCEPTION_INIT() macro. The address of the exception is stored
the value within the address exception. Note that this value is valid only within a
single address space and will change if the exception is an automatic variable. Fo
reason, an address exception should be declared as a static or external variable,
212 BEA TUXEDO Reference Manual

TRY(3)

ual,
ame

ht be
rred.

og),
t

atus

ables
 the

at
ource
rn
an automatic or register variable. The exc_get_status () macro will evaluate to -1 for
an address exception. Using the exc_set_status () macro on this exception will
make it a status exception.

The exc_matches macro can be used to compare two exceptions. To compare eq
the exceptions must both be the same type and have the same value (e.g., the s
status value for status exceptions, or the same addresses for address exceptions).
This comparison is used for the CATCH clause, described above.

When status exceptions are raised, a common part of handling the exception mig
to print out the status value, or better yet, a string indicating what status value occu
If the string is to be printed to the standard error output, then the function
exc_report () can be called with a pointer to the status exception to print the string
in one operation.

CATCH_ALL
{
 exc_report(THIS_CATCH);
}
ENDTRY

If something else is to be done with the string (e.g., printing the error to the userl
exc_get_status () can be used on THIS_CATCH to get the status value (remember tha
THIS_CATCH is already a pointer to an EXCEPTION, not an EXCEPTION), and
dce_error_inq_text () can be used to get the string value associated with the st
value.

CATCH_ALL
{
 unsigned long status_to_convert;
 unsigned char error_text[200];
 int status;

 exc_get_status(THIS_CATCH,status_to_convert);
 dce_error_inq_text(status_to_convert, error_text, status);
 userlog(“%s”, (char *)error_text);
}
ENDTRY

When To Use

Exception and

Status Returns

The status of RPC operations can be determined portably by defining status vari
for each operation ([comm_status] and [fault_status] parameters are defined via
Attribute Configuration File). The status-returning interface is the only interface
provided in the X/OPEN RPC specification. The fault_status attribute indicates th
errors occurring on the server due to incorrectly specified parameter values, res
constraints, or coding errors be reported by an additional status argument or retu
value. Similarly, the comm_status attribute indicates that RPC communications
BEA TUXEDO Reference Manual 213

TRY(3)

s
ry

from
 call

return

d in
d not

The
e
 then
d can

irst

am
failures be reported by an additional status argument or return value. Using statu
values works well for fine-grained error handling (on a per-call basis) with recove
specified for each possible error on each call, and where it is necessary to retry
the point of failure. The disadvantage is that it is not transparent whether or not the
is local or remote. The remote call has additional status parameters, or a status
value instead of being a void return. Thus, the application must have procedure
declarations adjusted between local and distributed code.

For application portability from an OSF/DCE environment, the TRY/CATCH
exception-returning interface is also provided. This interface may not be provide
all environments. However, it has the advantage that procedure declarations nee
be adjusted between local and distributed code, maintaining existing interfaces.
checking for errors can be simplified such that each procedure call does not hav
specific failure checking or recovery code. If an error is not handled at some level,
the program exits with a system error message such that the error is detected an
be corrected (omissions become more obvious). Exceptions work better for
coarse-grained exception handling.

Built-in

Exceptions

The following exceptions are “built-in” to the use of this exception interface. The f
TRY clause sets up a signal handler to catch the signals list below if they are not
currently ignored or caught; the other exceptions are defined only for DCE progr
portability.

Built-In Exceptions

Exception Description

exc_e_SIGBUS An unhandled SIGBUS signal occurred.

exc_e_SIGEMT An unhandled SIGEMT signal occurred.

exc_e_SIGFPE An unhandled SIGFPE signal occurred.

exc_e_SIGILL An unhandled SIGILL signal occurred.

exc_e_SIGIOT An unhandled SIGIOT signal occurred.

exc_e_SIGPIPE An unhandled SIGPIPE signal occurred.

exc_e_SIGSEGV An unhandled SIGSEGV signal occurred.

exc_e_SIGSYS An unhandled SIGSYS signal occurred.

exc_e_SIGTRAP An unhandled SIGTRAP signal occurred.

exc_e_SIGXCPU An unhandled SIGXCPU signal occurred.
214 BEA TUXEDO Reference Manual

TRY(3)
exc_e_SIGXFSZ An unhandled SIGXFSZ signal occurred.

pthread_e_badparam

pthread_e_defer_q_full

pthread_e_existence

pthread_e_in_use

pthread_e_nostackmem

pthread_e_nostack

pthread_e_signal_q_full

pthread_e_stackovf

pthread_e_unimp

pthread_e_use_error

exc_e_decovf

exc_e_exquota

exc_e_fltdiv

exc_e_fltovf

exc_e_fltund

exc_e_illaddr

exc_e_insfmem

exc_e_intdiv

exc_e_intovf

exc_e_nopriv

exc_e_privinst

exc_e_resaddr

exc_e_resoper

exc_e_subrng

exc_e_uninitexc

Built-In Exceptions

Exception Description
BEA TUXEDO Reference Manual 215

TRY(3)

 (e.g.,

S is

nd
 of

 not
These same exception codes are also defined with the “_e” at the end of the name
exc_e_SIGBUS is also defined as exc_SIGBUS_e). Equivalent status codes are
defined with similar names but the “_e_” is changed to “_s_” (e.g., exc_e_SIGBU
equivalent to the exc_s_SIGBUS status code).

Caveats In OSF/DCE, the header file is named exc_handling.h; the BEA TUXEDO system
header file is texc.h. It is not possible for the same source file to use both DCE a
BEA TUXEDO system exception handling. Further, within a program, the handling
signal exceptions can only be done by either DCE or the BEA TUXEDO system,
both. See the TxRPC Guide for a discussion of integrating BEA TUXEDO
system/TxRPC stubs and OSF/DCE stubs in a single program.

When linking a program using this interface, $TUXDIR/lib/libtrpc.a must be
included.

Examples Here is an example C source file that uses exceptions.

#include <texc.h>

EXCEPTION badopen_e; /* declare exception for bad open() */

doit(char *filename)
{
 EXCEPTION_INIT(badopen_e); /* initialize exception */
 TRY get_and_update_data(filename); /* do the operation */
 CATCH(badopen_e) /* exception - open() failed */
 fprintf(stderr, “Cannot open %s\en”, filename);
 CATCH_ALL /* handle other errors */
 /* handle rpc service not available, ... */
 exc_report(THIS_CATCH)
 ENDTRY
}
/*
 * Open output file
 * Get the remote data item
 * Write out to file
 */
get_and_update_data(char *filename)
{
 FILE *fp;
 if ((fp == fopen(filename)) == NULL) /* open output file */
 RAISE(badopen_e); /* raise exception */
 TRY
 /* in this block, file is opened successfully -
 * use associated FINALLY to close file
 */
 long data;
216 BEA TUXEDO Reference Manual

TRY(3)
 /*
 * Execute RPC call - exceptions are raised to the calling
 * function, doit()
 */
 data = remote_get_data();
 fprintf(fp, “%ld\en”, data);
 FINALLY
 /* Whether or not exceptions are raised, close the file */
 fclose(fp);
 ENDTRY
}

See Also tidl (1), abort (2), userlog (3), TUXEDO TxRPC Guide
BEA TUXEDO Reference Manual 217

tuxgetenv(3)

se

.

bles

e

ws,
tuxgetenv(3)

Name tuxgetenv -return value for environment name

Synopsis #include <atmi.h>
char *tuxgetenv(char *name)

Description tuxgetenv () searches the environment list for a string of the form name=value and,
if the string is present, returns a pointer to the value in the current environment.
Otherwise, it returns a null pointer.

This function provides a portable interface to environment variables across the
different platforms on which the BEA TUXEDO system is supported, including tho
platforms that don't normally have environment variables.

Note that tuxgetenv is case-sensitive.

Return Values tuxgetenv () returns a pointer to the string if present and a null pointer otherwise

Portability On MS Windows, this function overcomes the inability to share environment varia
between an application and a Dynamic Link Library. The TUXEDO /WS DLL
maintains an environment copy for each application that is attached to it. This
associated environment and context information is destroyed when tpterm (3c) is
called from a Windows application. The value of an environment variable could b
changed after the application program calls tpterm (3c).

It is recommended that upper case variable names be used for the DOS, Windo
OS/2, and NetWare environments. (tuxreadenv (3c) converts all environment
variable names to upper case.)

See Also tuxputenv (3), tuxreadenv (3)
218 BEA TUXEDO Reference Manual

tuxputenv(3)

se

ia

bles
S

is

e

S/2,

tuxputenv(3)

Name tuxputenv (3)-change or add value to environment

Synopsis #include <atmi.h>
int tuxputenv(char *string)

Description string points to a string of the form “name=value.” tuxputenv makes the value of
the environment variable name equal to value by altering an existing variable or
creating a new one. In either case, the string pointed to by string becomes part of the
environment.

This function provides a portable interface to environment variables across the
different platforms on which the BEA TUXEDO system is supported, including tho
platforms that don't normally have environment variables.

Note that tuxputenv is case-sensitive.

Return Values tuxputenv () returns a non-zero integer if it was unable to obtain enough space v
malloc for an expanded environment, otherwise zero.

Portability On MS Windows, this function overcomes the inability to share environment varia
between an application and a Dynamic Link Library. The BEA TUXEDO system /W
DLL maintains an environment copy for each application that is attached to it. Th
associated environment and context information is destroyed when tpterm (3c) is
called from a Windows application. The value of an environment variable could b
changed after the application program calls tpterm (3c).

We recommend using upper case variable names for the DOS, Windows, and O
environments. (tuxreadenv (3c) converts all environment variable names to upper
case.)

See Also tuxgetenv (3), tuxreadenv (3)
BEA TUXEDO Reference Manual 219

tuxreadenv(3)

ain

e
e

tuxreadenv(3)

Name tuxreadenv -add variables to the environment from a file

Synopsis #include <atmi.h>
int tuxreadenv(char *file, char *label)

Description tuxreadenv reads a file containing environment variables and adds them to the
environment, independent of platform. These variables are available using
tuxgetenv (3) and can be reset using tuxputenv (3).

The format of the environment file is as follows.

� Any leading space or tab characters on each line are ignored and are not
considered in the following points.

� Lines containing variables to be put into the environment are of the form

variable =value

or

set variable =value

where variable must begin with an alphabetic or underscore character and cont
only alphanumeric or underscore characters, and value may contain any character
except newline.

� Within the value , strings of the form ${env } are expanded using variables
already in the environment (forward referencing is not supported and if a valu
is not set, the variable is replaced with the empty string). Backslash (\) may b
used to escape the dollar sign and itself. All other shell quoting and escape
mechanisms are ignored and the expanded value is placed into the environment.

� Lines beginning with slash (/), pound sign (#), semicolon (;), or exclamation
point (!) are treated as comments and ignored. Lines beginning with other
characters besides these comment characters, a left square bracket, or an
alphabetic or underscore character are reserved for future use; their use is
undefined.

� The file is partitioned into sections by lines beginning with left square bracket
([), which acts as a label. The label will be silently truncated if longer than 31
characters. The format of a label is

[label]
220 BEA TUXEDO Reference Manual

tuxreadenv(3)

nto
n.

ws:

s

,
where label follows the same rules for variable above (lines with invalid
label values are ignored).

� Variable lines between the top of the file and the first label are put into the
environment for all labels (this is the global section). Other variables are put i
the environment only if the label matches the label specified for the applicatio
A label of [] will indicate the global section.

If file is NULL, then a default file name is used. The fixed file names are as follo

DOS, Windows, OS2, NT: C:\TUXEDO\TUXEDO.ENV
MAC: TUXEDO.ENV in the system preferences directory
NETWARE: SYS:SYSTEM\TUXEDO.ENV

POSIX: /usr/tuxedo/TUXEDO.ENV or /var/opt/tuxedo/TUXEDO.ENV

If label is NULL, then only variables in the global section are put into the
environment. For other values of label , the global section variables plus any variable
in a section matching the label are put into the environment.

An error message is printed to the userlog () if there is a memory failure, if a non-null
file name does not exist, or if a non-null label does not exist.

Example Here is an example environment file.

TUXDIR=/usr/tuxedo
[application1]
;this is a comment
/* this is a comment */
#this is a comment
//this is a comment
FIELDTBLS=app1_flds
FLDTBLDIR=/usr/app1/udataobj
[application2]
FIELDTBLS=app2_flds
FLDTBLDIR=/usr/app2/udataobj

Return Values tuxreadenv () returns non-zero if it was unable to obtain enough space via malloc for
an expanded environment or was unable to open and read a non-NULL filename
otherwise zero.

Portability In the DOS, Windows, OS/2, and NetWare environments, tuxreadenv () converts all
environment variable names to upper case.

See Also tuxgetenv (3), tuxputenv (3)
BEA TUXEDO Reference Manual 221

tx_begin(3)

ed (via

ed to
a

.

 the
al

with

s
n
tx_begin(3)

Name tx_begin -begin a global transaction

Synopsis #include <tx.h>
int tx_begin(void)

Description tx_begin () is used to place the calling thread of control in transaction mode. The
calling thread must first ensure that its linked resource managers have been open
tx_open (3)) before it can start transactions. tx_begin () fails (returning
[TX_PROTOCOL_ERROR]) if the caller is already in transaction mode or tx_open ()
has not been called.

Once in transaction mode, the calling thread must call tx_commit (3) or
tx_rollback (3) to complete its current transaction. There are certain cases relat
transaction chaining where tx_begin () does not need to be called explicitly to start
transaction. See tx_commit () and tx_rollback () for details.

Optional Set-up tx_set_transaction_timeout (3)

Return Value Upon successful completion, tx_begin () returns TX_OK, a non-negative return value

Errors Under the following conditions, tx_begin () fails and returns one of these negative
values:

[TX_OUTSIDE]
The transaction manager is unable to start a global transaction because
calling thread of control is currently participating in work outside any glob
transaction with one or more resource managers. All such work must be
completed before a global transaction can be started. The caller's state
respect to the local transaction is unchanged.

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller i
already in transaction mode). The caller's state with respect to transactio
mode is unchanged.
222 BEA TUXEDO Reference Manual

tx_begin(3)

s
error
error

s
ction
rform
 not

 the
e
s
[TX_ERROR]
Either the transaction manager or one or more of the resource manager
encountered a transient error trying to start a new transaction. When this
is returned, the caller is not in transaction mode. The exact nature of the
is written to a log file.

[TX_FAIL]
Either the transaction manager or one or more of the resource manager
encountered a fatal error. The nature of the error is such that the transa
manager and/or one or more of the resource managers can no longer pe
work on behalf of the application. When this error is returned, the caller is
in transaction mode. The exact nature of the error is written to a log file.

See Also tx_commit (3), tx_open (3), tx_rollback (3), tx_set_transaction_timeout (3)

Warnings XA-compliant resource managers must be successfully opened to be included in
global transaction. (See tx_open (3) for details.) Both the X/Open TX interface and th
X-Windows system defines the type XID. It is not possible to use both X-Window
calls and TX calls in the same file.
BEA TUXEDO Reference Manual 223

tx_close(3)

n is
n
rs

es

rce

.

 in

s
 log

s
ction
rform
o a
tx_close(3)

Name tx_close -close a set of resource managers

Synopsis #include <tx.h>
int tx_close(void)

Description tx_close () closes a set of resource managers in a portable manner. It invokes a
transaction manager to read resource-manager-specific information in a
transaction-manager-specific manner and pass this information to the resource
managers linked to the caller.

tx_close () closes all resource managers to which the caller is linked. This functio
used in place of resource-manager-specific “close” calls and allows an applicatio
program to be free of calls which may hinder portability. Since resource manage
differ in their termination semantics, the specific information needed to “close” a
particular resource manager must be published by each resource manager.

tx_close () should be called when an application thread of control no longer wish
to participate in global transactions. tx_close () fails (returning
[TX_PROTOCOL_ERROR]) if the caller is in transaction mode. That is, no resou
managers are closed even though some may not be participating in the current
transaction.

When tx_close () returns success (TX_OK), all resource managers linked to the
calling thread are closed.

Return Value Upon successful completion, tx_close () returns TX_OK, a non-negative return value

Errors Under the following conditions, tx_close () fails and returns one of these negative
values:

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller is
transaction mode). No resource managers are closed.

[TX_ERROR]
Either the transaction manager or one or more of the resource manager
encountered a transient error. The exact nature of the error is written to a
file. All resource managers that could be closed are closed.

[TX_FAIL]
Either the transaction manager or one or more of the resource manager
encountered a fatal error. The nature of the error is such that the transa
manager and/or one or more of the resource managers can no longer pe
work on behalf of the application. The exact nature of the error is written t
224 BEA TUXEDO Reference Manual

tx_close(3)

It is
log file.

See Also tx_open (3)

Warnings Both the X/Open TX interface and the X-Windows system defines the type XID.
not possible to use both X-Windows calls and TX calls in the same file.
BEA TUXEDO Reference Manual 225

tx_commit(3)

ead

e the

.

tion

 new

tx_commit(3)

Name tx_commit -commit a global transaction

Synopsis #include <tx.h>
int tx_commit(void)

Description tx_commit () is used to commit the work of the transaction active in the caller's thr
of control.

If the transaction_control characteristic (see
tx_set_transaction_control (3)) is TX_UNCHAINED, then when tx_commit ()
returns, the caller is no longer in transaction mode. However, if the
transaction_control characteristic is TX_CHAINED, then when tx_commit ()
returns, the caller remains in transaction mode on behalf of a new transaction (se
RETURN VALUE and ERRORS sections below).

OPTIONAL

SET-UP

� tx_set_commit_return (3)

� tx_set_transaction_control (3)

� tx_set_transaction_timeout (3)

Return Value Upon successful completion, tx_commit () returns TX_OK, a non-negative return value

Errors Under the following conditions, tx_commit () fails and returns one of these negative
values:

[TX_NO_BEGIN]
The current transaction committed successfully; however, a new transac
could not be started and the caller is no longer in transaction mode. This
return value may occur only when the transaction_control characteristic
is TX_CHAINED.

[TX_ROLLBACK]
The current transaction could not commit and has been rolled back. In
addition, if the transaction_control characteristic is TX_CHAINED, a new
transaction is started.

[TX_ROLLBACK_NO_BEGIN]
The transaction could not commit and has been rolled back. In addition, a
transaction could not be started and the caller is no longer in transaction
mode. This return value can occur only when the transaction_control
characteristic is TX_CHAINED.
226 BEA TUXEDO Reference Manual

tx_commit(3)

nd
nly

ave
 the

ave
 new

 not
s not

s
ction
rform
to a

It is
[TX_MIXED]
The work done on behalf of the transaction was partially committed and
partially rolled back. In addition, if the transaction_control
characteristic is TX_CHAINED, a new transaction is started.

[TX_MIXED_NO_BEGIN]
The work done on behalf of the transaction was partially committed and
partially rolled back. In addition, a new transaction could not be started a
the caller is no longer in transaction mode. This return value can occur o
when the transaction_control characteristic is TX_CHAINED.

[TX_HAZARD]
Due to a failure, some of the work done on behalf of the transaction may h
been committed and some of it may have been rolled back. In addition, if
transaction_control characteristic is TX_CHAINED, a new transaction is
started.

[TX_HAZARD_NO_BEGIN]
Due to a failure, some of the work done on behalf of the transaction may h
been committed and some of it may have been rolled back. In addition, a
transaction could not be started and the caller is no longer in transaction
mode. This return value can occur only when the transaction_control
characteristic is TX_CHAINED.

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller is
in transaction mode). The caller's state with respect to transaction mode i
changed.

[TX_FAIL]
Either the transaction manager or one or more of the resource manager
encountered a fatal error. The nature of the error is such that the transa
manager and/or one or more of the resource managers can no longer pe
work on behalf of the application. The exact nature of the error is written
log file. The caller's state with respect to the transaction is unknown.

See Also tx_begin (3), tx_set_commit_return (3), tx_set_transaction_control (3),
tx_set_transaction_timeout (3)

Warnings Both the X/Open TX interface and the X-Windows system defines the type XID.
not possible to use both X-Windows calls and TX calls in the same file.
BEA TUXEDO Reference Manual 227

tx_info(3)

 in

s in

nds.

 the
r's

tion
tx_info(3)

Name tx_info -return global transaction information

Synopsis #include <tx.h>
int tx_info(TXINFO *info)

Description tx_info () returns global transaction information in the structure pointed to by info .
In addition, this function returns a value indicating whether the caller is currently
transaction mode or not. If info is non-null, then tx_info () populates a TXINFO
structure pointed to by info with global transaction information. The TXINFO
structure contains the following elements:

XID xid;
COMMIT_RETURN when_return;
TRANSACTION_CONTROL transaction_control;
TRANSACTION_TIMEOUT transaction_timeout;
TRANSACTION_STATE transaction_state;

If tx_info () is called in transaction mode, then xid will be populated with a current
transaction branch identifier and transaction_state will contain the state of the
current transaction. If the caller is not in transaction mode, xid will be populated with
the null XID (see <tx.h> for details). In addition, regardless of whether the caller i
transaction mode, when_return , transaction_control , and
transaction_timeout contain the current settings of the commit_return and
transaction_control characteristics, and the transaction timeout value in seco

The transaction timeout value returned reflects the setting that will be used when
next transaction is started. Thus, it may not reflect the timeout value for the calle
current global transaction since calls made to tx_set_transaction_timeout (3)
after the current transaction was begun may have changed its value.

If info is null, no TXINFO structure is returned.

Return Value If the caller is in transaction mode, then 1 is returned. If the caller is not in transac
mode, then 0 is returned.
228 BEA TUXEDO Reference Manual

tx_info(3)

as

ror is
f of

e
 file.
Errors Under the following conditions, tx_info () fails and returns one of these negative
values:

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller h
not yet called tx_open (3)).

[TX_FAIL]
The transaction manager encountered a fatal error. The nature of the er
such that the transaction manager can no longer perform work on behal
the application. The exact nature of the error is written to a log file.

See Also tx_open (3), tx_set_commit_return (3), tx_set_transaction_control (3),
tx_set_transaction_timeout (3)

Warnings Within the same global transaction, subsequent calls to tx_info () are guaranteed to
provide an XID with the same gtrid component, but not necessarily the same bqual
component. Both the X/Open TX interface and the X-Windows system defines th
type XID. It is not possible to use both X-Windows calls and TX calls in the same
BEA TUXEDO Reference Manual 229

tx_open(3)

alls
.

 each

e
essed

ss,

s
ct

s

or
tx_open(3)

Name tx_open -open a set of resource managers

Synopsis #include <tx.h>
int tx_open(void)

Description tx_open () opens a set of resource managers in a portable manner. It invokes a
transaction manager to read resource-manager-specific information in a
transaction-manager-specific manner and pass this information to the resource
managers linked to the caller.

tx_open () attempts to open all resource managers that have been linked with the
application. This function is used in place of resource-manager-specific “open” c
and allows an application program to be free of calls which may hinder portability
Since resource managers differ in their initialization semantics, the specific
information needed to “open” a particular resource manager must be published by
resource manager.

If tx_open () returns TX_ERROR, then no resource managers are open. If tx_open ()
returns TX_OK, some or all of the resource managers have been opened. Resourc
managers that are not open will return resource-manager-specific errors when acc
by the application. tx_open () must successfully return before a thread of control
participates in global transactions.

Once tx_open () returns success, subsequent calls to tx_open () (before an intervening
call to tx_close (3)) are allowed. However, such subsequent calls will return succe
and the TM will not attempt to re-open any RMs.

Return Value Upon successful completion, tx_open () returns TX_OK, a non-negative return value.

Errors Under the following conditions, tx_open () fails and returns one of these negative
values:

[TX_ERROR]
Either the transaction manager or one or more of the resource manager
encountered a transient error. No resource managers are open. The exa
nature of the error is written to a log file.

[TX_FAIL]
Either the transaction manager or one or more of the resource manager
encountered a fatal error. TX_FAIL is returned if tpinit (3) is not called
before the call to tx_open in a secure application (SECURITY APP_PW).
The nature of the error is such that the transaction manager and/or one
230 BEA TUXEDO Reference Manual

tx_open(3)

f the

It is
more of the resource managers can no longer perform work on behalf o
application. The exact nature of the error is written to a log file.

See Also tx_close (3)

Warnings Both the X/Open TX interface and the X-Windows system defines the type XID.
not possible to use both X-Windows calls and TX calls in the same file.
BEA TUXEDO Reference Manual 231

tx_rollback(3)

's

e the

e

t be
may

nd
nly
tx_rollback(3)

Name tx_rollback -roll back a global transaction

Synopsis #include <tx.h>
int tx_rollback(void)

Description tx_rollback () is used to roll back the work of the transaction active in the caller
thread of control.

If the transaction_control characteristic (see
tx_set_transaction_control (3)) is TX_UNCHAINED, then when tx_rollback ()
returns, the caller is no longer in transaction mode. However, if the
transaction_control characteristic is TX_CHAINED, then when tx_rollback ()
returns, the caller remains in transaction mode on behalf of a new transaction (se
RETURN VALUE and ERRORS sections below).

OPTIONAL

SET-UP

� tx_set_transaction_control (3)

� tx_set_transaction_timeout (3)

Return Value Upon successful completion, tx_rollback () returns TX_OK, a non-negative return
value.

Errors Under the following conditions, tx_rollback () fails and returns one of these negativ
values:

[TX_NO_BEGIN]
The current transaction rolled back; however, a new transaction could no
started and the caller is no longer in transaction mode. This return value
occur only when the transaction_control characteristic is TX_CHAINED.

[TX_MIXED]
The work done on behalf of the transaction was partially committed and
partially rolled back. In addition, if the transaction_control
characteristic is TX_CHAINED, a new transaction is started.

[TX_MIXED_NO_BEGIN]
The work done on behalf of the transaction was partially committed and
partially rolled back. In addition, a new transaction could not be started a
the caller is no longer in transaction mode. This return value can occur o
when the transaction_control characteristic is TX_CHAINED.
232 BEA TUXEDO Reference Manual

tx_rollback(3)

ave
 the

ave
 new

 In

 In
er in

 not

s
ction
rform
to a

It is
[TX_HAZARD]
Due to a failure, some of the work done on behalf of the transaction may h
been committed and some of it may have been rolled back. In addition, if
transaction_control characteristic is TX_CHAINED, a new transaction is
started.

[TX_HAZARD_NO_BEGIN]
Due to a failure, some of the work done on behalf of the transaction may h
been committed and some of it may have been rolled back. In addition, a
transaction could not be started and the caller is no longer in transaction
mode. This return value can occur only when the transaction_control
characteristic is TX_CHAINED.

[TX_COMMITTED]
The work done on behalf of the transaction was heuristically committed.
addition, if the transaction_control characteristic is TX_CHAINED, a new
transaction is started.

[TX_COMMITTED_NO_BEGIN]
The work done on behalf of the transaction was heuristically committed.
addition, a new transaction could not be started and the caller is no long
transaction mode. This return value can occur only when the
transaction_control characteristic is TX_CHAINED.

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller is
in transaction mode).

[TX_FAIL]
Either the transaction manager or one or more of the resource manager
encountered a fatal error. The nature of the error is such that the transa
manager and/or one or more of the resource managers can no longer pe
work on behalf of the application. The exact nature of the error is written
log file. The caller's state with respect to the transaction is unknown.

See Also tx_begin (3), tx_set_transaction_control (3),
tx_set_transaction_timeout (3)

Warnings Both the X/Open TX interface and the X-Windows system defines the type XID.
not possible to use both X-Windows calls and TX calls in the same file.
BEA TUXEDO Reference Manual 233

tx_set_commit_return(3)

s in

t
ponse
ll
this

g
le,

f
ay
tx_set_commit_return(3)

Name tx_set_commit_return -set commit_return characteristic

Synopsis #include <tx.h>
int tx_set_commit_return(COMMIT_RETURN when_return)

Description tx_set_commit_return () sets the commit_return characteristic to the value
specified in when_return . This characteristic affects the way tx_commit (3) behaves
with respect to returning control to its caller. tx_set_commit_return () may be
called regardless of whether its caller is in transaction mode. This setting remain
effect until changed by a subsequent call to tx_set_commit_return ().

The initial setting for this characteristic is TX_COMMIT_COMPLETED.

Following are the valid settings for when_return .

TX_COMMIT_DECISION_LOGGED
This flag indicates that tx_commit (3) should return after the commit decision
has been logged by the first phase of the two-phase commit protocol bu
before the second phase has completed. This setting allows for faster res
to the caller of tx_commit (3). However, there is a risk that a transaction wi
have a heuristic outcome, in which case the caller will not find out about
situation via return codes from tx_commit (3). Under normal conditions,
participants that promise to commit during the first phase will do so durin
the second phase. In certain unusual circumstances however (for examp
long-lasting network or node failures) phase 2 completion may not be
possible and heuristic results may occur.

TX_COMMIT_COMPLETED
This flag indicates that tx_commit (3) should return after the two-phase
commit protocol has finished completely. This setting allows the caller o
tx_commit (3) to see return codes that indicate that a transaction had or m
have had heuristic results.

Return Value Upon successful completion, tx_set_commit_return () returns TX_OK, a
non-negative return value.
234 BEA TUXEDO Reference Manual

tx_set_commit_return(3)

g of

as

ror is
f of

It is
Errors Under the following conditions, tx_set_commit_return() does not change the settin
the commit_return characteristic and returns one of these negative values:

[TX_EINVAL]
when_return is not one of TX_COMMIT_DECISION_LOGGED or
TX_COMMIT_COMPLETED.

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller h
not yet called tx_open (3)).

[TX_FAIL]
The transaction manager encountered a fatal error. The nature of the er
such that the transaction manager can no longer perform work on behal
the application. The exact nature of the error is written to a log file.

See Also tx_commit (3), tx_open (3), tx_info (3)

Warnings Both the X/Open TX interface and the X-Windows system defines the type XID.
not possible to use both X-Windows calls and TX calls in the same file.
BEA TUXEDO Reference Manual 235

tx_set_transaction_control(3)

ged

as

ror is
f of
tx_set_transaction_control(3)

Name tx_set_transaction_control -set transaction_control characteristic

Synopsis #include <tx.h>
int tx_set_transaction_control(TRANSACTION_CONTROL control)

Description tx_set_transaction_control () sets the transaction_control characteristic to
the value specified in control . This characteristic determines whether tx_commit (3)
and tx_rollback (3) start a new transaction before returning to their caller.
tx_set_transaction_control () may be called regardless of whether the
application program is in transaction mode. This setting remains in effect until chan
by a subsequent call to tx_set_transaction_control ().

The initial setting for this characteristic is TX_UNCHAINED.

Following are the valid settings for control .

TX_UNCHAINED
This flag indicates that tx_commit (3) and tx_rollback (3) should not start
a new transaction before returning to their caller. The caller must issue
tx_begin (3) to start a new transaction.

TX_CHAINED
This flag indicates that tx_commit (3) and tx_rollback (3) should start a
new transaction before returning to their caller.

Return Value Upon successful completion, tx_set_transaction_control () returns TX_OK, a
non-negative return value.

Errors Under the following conditions, tx_set_transaction_control () does not change
the setting of the transaction_control characteristic and returns one of these
negative values:

[TX_EINVAL]
control is not one of TX_UNCHAINED or TX_CHAINED.

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller h
not yet called tx_open (3)).

[TX_FAIL]
The transaction manager encountered a fatal error. The nature of the er
such that the transaction manager can no longer perform work on behal
the application. The exact nature of the error is written to a log file.
236 BEA TUXEDO Reference Manual

tx_set_transaction_control(3)

It is
See Also tx_begin (3), tx_commit (3), tx_open (3), tx_rollback (3), tx_info (3)

Warnings Both the X/Open TX interface and the X-Windows system defines the type XID.
not possible to use both X-Windows calls and TX calls in the same file.
BEA TUXEDO Reference Manual 237

tx_set_transaction_timeout(3)

at is,

t

s
value

has

 such
e
tx_set_transaction_timeout(3)

Name tx_set_transaction_timeout -set transaction_timeout characteristic

Synopsis #include <tx.h>

int tx_set_transaction_timeout(TRANSACTION_TIMEOUT timeout)

Description tx_set_transaction_timeout () sets the transaction_timeout characteristic to
the value specified in timeout . This value specifies the time period in which the
transaction must complete before becoming susceptible to transaction timeout; th
the interval between the AP calling tx_begin (3) and tx_commit (3) or
tx_rollback (3). tx_set_transaction_timeout () may be called regardless of
whether its caller is in transaction mode or not. If tx_set_transaction_timeout ()
is called in transaction mode, the new timeout value does not take effect until the nex
transaction.

The initial transaction_timeout value is 0 (no timeout).

timeout specifies the number of seconds allowed before the transaction become
susceptible to transaction timeout. It may be set to any value up to the maximum
for a long as defined by the system. A timeout value of zero disables the timeout
feature.

Return Value Upon successful completion, tx_set_transaction_timeout () returns TX_OK, a
non-negative return value.

Errors Under the following conditions, tx_set_transaction_timeout () does not change
the setting of the transaction_timeout characteristic and returns one of these
negative values:

[TX_EINVAL]
The timeout value specified is invalid.

[TX_PROTOCOL_ERROR]
The function was called in an improper context. For example, the caller
not yet called tx_open (3).

[TX_FAIL]
The transaction manager encountered an error. The nature of the error is
that the transaction manager can no longer perform work on behalf of th
application. The exact nature of the error is written to a log file.

See Also tx_begin (3), tx_commit (3), tx_open (3), tx_rollback (3), tx_info (3)
238 BEA TUXEDO Reference Manual

tx_set_transaction_timeout(3)

It is
Warnings Both the X/Open TX interface and the X-Windows system defines the type XID.
not possible to use both X-Windows calls and TX calls in the same file.
BEA TUXEDO Reference Manual 239

userlog(3)

e

age

d with

ge
ted
 the
userlog(3)

Name userlog -write a message to the BEA TUXEDO system central event log

Synopsis #include “userlog.h”
extern char *proc_name;

int userlog (format [,arg] . . .)
char *format;

Description userlog () accepts a printf (3S) style format specification, with a fixed output file-th
BEA TUXEDO system central event log.

The central event log is an ordinary UNIX file whose pathname is composed as
follows: If the shell variable ULOGPFX is set, its value is used as the prefix for the
filename. If ULOGPFX is not set, ULOG is used. The prefix is determined the first time
userlog () is called. Each time userlog () is called the date is determined, and the
month, day, and year are concatenated to the prefix as mmddyy to set the name for the
file. The first time a process writes to the userlog, it first writes an additional mess
indicating the associated BEA TUXEDO system version.

The message is then appended to the file. With this scheme, processes that call
userlog () on successive days will write into different files.

Messages are appended to the log file with a tag made up of the time (hhmmss), system
name, process name, and process-id of the calling process. The tag is terminate
a colon (:). The name of the process is taken from the pathname of the external
variable proc_name . If proc_name has value NULL, the printed name is set to ?proc .

BEA TUXEDO system-generated error messages in the log file are prefixed by a
unique identification string of the form:

<catalog>:number>:

This string gives the name of the internationalized catalog containing the messa
string, plus the message number. By convention, BEA TUXEDO system-genera
error messages are used only once, so the string uniquely identifies a location in
source code.

If the last character of the format specification is not a newline character, userlog ()
appends one.

If the first character of the shell variable ULOGDEBUG is 1 or y , the message sent to
userlog () is also written to the standard error of the calling process, using the
fprintf (3S) function.
240 BEA TUXEDO Reference Manual

userlog(3)

ging

he
stems;

mode,
sist of
ly
ction
ake
he
ulting

e

ut

userlog () is used by the BEA TUXEDO system to record a variety of events.

The userlog mechanism is entirely independent of any database transaction log
mechanism.

Portability The userlog () interface is supported on UNIX and MS-DOS operating systems. T
system name produced as part of the log message is not available on MS-DOS sy
therefore, the value PC is used as the system name for MS-DOS systems.

Examples If the variable ULOGPFX is set to /application/logs/log and if the first call to
userlog () occurred on 9/7/90, the log file created is named
/application/logs/log.090790 . If the call:

userlog(“UNKNOWN USER '%s' (uid=%d)”, usrname, uid);

is made at 4:22:14pm on the UNIX System file named m1 by the sec program, whose
process-id is 23431, and the variable usrname contains the string “sxx”, and the
variable uid contains the integer 123, the following line appears in the log file:

162214.m1!sec.23431: UNKNOWN USER 'sxx' (uid=123)

If the message is sent to the central event log while the process is in transaction
the user log entry has additional components in the tag. These components con
the literal gtrid followed by three long hexadecimal integers. The integers unique
identify the global transaction and make up what is referred to as the global transa
identifier. This identifier is used mainly for administrative purposes, but it does m
an appearance in the tag that prefixes the messages in the central event log. If t
foregoing message is written to the central event log in transaction mode, the res
log entry will look like this:

162214.logsys!security.23431: gtrid x2 x24e1b803 x239: UNKNOWN USER
'sxx' (uid=123)

If the shell variable ULOGDEBUG has a value of y , the log message is also written to th
standard error of the program named security .

Errors userlog hangs if the message sent to it is larger than BUFSIZ as defined in stdio.h

Diagnostics userlog () returns the number of characters output, or a negative value if an outp
error was encountered. Output errors include the inability to open, or write to the
current log file. Inability to write to the standard error, when ULOGDEBUG is set, is not
considered an error.
BEA TUXEDO Reference Manual 241

userlog(3)

s
l
Notices It is recommended that applications' use of userlog messages be limited to message
that can be used to help debug application errors; flooding the log with incidenta
information can make it hard to spot actual errors.

See Also printf (3S) in a UNIX reference manual
242 BEA TUXEDO Reference Manual

Usignal(3)

 shared
em. In
 the

st
ode.

ls

 first
the
oted,
ode

ne

 defer
tem
Usignal(3)

Name Usignal -signal handling in a BEA TUXEDO system environment

Synopsis #include “Usignal.h”

UDEFERSIGS()
UENSURESIGS()
UGDEFERLEVEL()
URESUMESIGS()
USDEFERLEVEL(level)

int (*Usignal(sig,func)()
int sig;
int (*func)();

void Usiginit()

Description Many of the facilities provided by the BEA TUXEDO system software require
concurrent access to data structures in shared memory. Processes accessing the
data structures run in user mode, and are thus interruptable by signals sent to th
order to ensure the consistency of the shared data structures, it is important that
operations which access them not be interrupted by the receipt of certain UNIX
signals. The functions described in this section provide protection against the mo
common signals, and are used internally by much of the BEA TUXEDO system c
Additionally, they are available to applications to prevent the untimely arrival of a
signal.

The idea behind the BEA TUXEDO system signal handling package is that signa
should be deferrable while in critical code sections. To this end, signals are not
immediately processed when received. Instead, a BEA TUXEDO system routine
catches the sent signal. If it is safe to process the signal, the specified action for
signal is taken. If it is not safe to process the signal when it arrives, the arrival is n
but the processing is deferred until the user indicates that the critical section of c
has been terminated.

Catching

Signals

User code that uses calls rmopen () or tpinit () should catch signals through the use
of the Usignal () function. Usignal () behaves like the UNIX signal (2) system call,
except that Usignal () first arranges for the signal to be caught by an internal routi
before dispatching the user routine.

Deferring and

Restoring

Signals

The calls described in this section need only be used if application code wishes to
signals. In general, these routines are called automatically by BEA TUXEDO sys
routines to protect themselves from untimely signal arrival.
BEA TUXEDO Reference Manual 243

Usignal(3)

one

.

rrals

ed. If
 If
tion it
n

rior

se the

he

idea

 are
he
al.
ndle
 safe
Before deferring or restoring signals, the mechanism must be initialized. This is d
automatically for BEA TUXEDO system clients when they call tpinit () and for BEA
TUXEDO system servers. It is also done the first time that the application calls
Usignal (). It can be done explicitly by calling Usiginit ().

The UDEFERSIGS() macro should be used when entering a section of critical code
After UDEFERSIGS() is called, signals are held in a pending state. The URESUMESIGS()
macro should be invoked when the critical section is exited. Note that signal defe
stack. The stack is implemented via a counter which is initially set to zero. When
signals are deferred by a call to UDEFERSIGS(), the counter is incremented. When
signals are resumed, by a call to URESUMESIGS(), the counter is decremented. If a
signal arrives while the counter is non-zero, the processing of the signal is deferr
the counter is zero when the signal arrives, the signal is processed immediately.
signal resumption causes the counter to be become zero (i.e. prior to the resump
had value 1), any signals that arrived during the deferral period are processed. I
general, each call to UDEFERSIGS() should have a counterpart call to URESUMESIGS().

UDEFERSIGS increments the deferral counter, but returns the value of the counter p
to its incrementation. The macro UENSURESIGS() may be used to explicitly set the
deferral counter to zero (and thus force the processing of deferred signals), in ca
user wishes to protect against unmatching UDEFERSIGS() and URESUMESIGS().

The function UGDEFERLEVEL() returns the current setting of the deferral counter. T
macro USDEFERLEVEL(level) allows the setting of a specific deferral level.
UGDEFERLEVEL() and USDEFERLEVEL() are useful to set the counter appropriately in
setjmp/longjmp situations where a set of deferrals/resumes are bypassed. The
is to save the value of the counter when setjmp is called, via a call to
UGDEFERLEVEL(), and to restore it via a call to USDEFERLEVEL() when the longjmp is
performed.

Notices Usignal provides signal deferral for the following signals: SIGHUP,SIGINT , SIGQUIT ,
SIGALRM, SIGTERM, SIGUSR1, and SIGUSR2. Handling requests for all other signal
numbers are passed directly to signal () by Usignal . Signals may be deferred for a
considerable time. For this reason, during signal deferral, individual signal arrivals
counted. When it is safe to process a signal that may have arrived many times, t
signal's processing routine is iteratively called to process each arrival of the sign
Before each call the default action for the signal is instantiated. The idea is to ha
the deferred occurrences of the signal as if they happened in quick succession in
code.
244 BEA TUXEDO Reference Manual

Usignal(3)

ation

e

In general, users should not mix calls to signal (2) and Usignal () for the same signal.
The recommended procedure is to go through Usignal , so that it is always aware of
the state of the signal. Sometimes it may be necessary, such as when an applic
wants to use alarms within BEA TUXEDO system services. To do this, Usiginit ()
should be called to initialize the signal deferring mechanism. Then signal () can be
called to override the mechanism for the desired signal. To restore the deferring
mechanism for the signal, it is necessary to call Usignal () for the signal with
SIG_IGN, and then again with the desired signal-handling function.

The shell variable UIMMEDSIGS can be used to override the deferral of signals. If th
value of this variable begins with the letter y as in:

UIMMEDSIGS=y

signals are not intercepted (and thus not deferred) by the Usignal code. In such a case,
a call to Usignal is passed immediately to signal (2).

Usignal is not available under DOS operating systems.

Files Usignal.h

See Also signal (2) in a UNIX System reference manual
BEA TUXEDO Reference Manual 245

Uunix_err(3)

ror,

tem
.

r

e
ll that
ing
error

ous

he
Uunix_err(3)

Name Uunix_err -print UNIX system call error

Synopsis #include Uunix.h

void Uunix_err(s)
char *s;

Description When a BEA TUXEDO system function calls a UNIX system call that detects an er
an error is returned. The external integer Uunixerr is set to a value (as defined in
Uunix.h) that identifies the system call that returned the error. In addition, the sys
call sets errno to a value (as defined in errno.h) that tells why the system call failed

The Uunix_err () function is provided to produce a message on the standard erro
output, describing the last system call error encountered during a call to a BEA
TUXEDO system function. It takes one argument, a string. The function prints th
argument string, then a colon and a blank, followed by the name of the system ca
failed, the reason for failure, and a newline. To be of most use, the argument str
should include the name of the program that incurred the error. The system call
number is taken from the external variable Uunixerr , the reason is taken from errno .
Both variables are set when errors occur. They are not cleared when non-errone
calls are made.

To simplify variant formatting of messages, the array of message strings

extern char *Uunixmsg[];

is provided; Uunixerr can be used as an index into this table to get the name of t
system call that failed (without the newline).

Examples #include Uunix.h
extern int Uunixerr, errno;

 if((fd=open(“myfile”, 3, 0660)) == -1)
 {
 Uunixerr = UOPEN;
 Uunix_err(“myprog”);
 exit(1);
 }
246 BEA TUXEDO Reference Manual

xdr(3I)

ing

ey
xdr(3I)

Name xdr -library routines for external data representation

Description XDR routines allow C programmers to describe arbitrary data structures in a
machine-independent fashion. Data for communications calls are transmitted us
these routines.

Index to

Routines

The following table lists XDR routines and the manual reference pages on which th
are described:

XDR Routines

XDR Routine Manual Reference Page

xdr_array xdr_complex(3I)

xdr_bool xdr_simple(3I)

xdr_bytes xdr_complex(3I)

xdr_char xdr_simple(3I)

xdr_destroy xdr_create(3I)

xdr_double xdr_simple(3I)

xdr_enum xdr_simple(3I)

xdr_float xdr_simple(3I)

xdr_free xdr_simple(3I)

xdr_getpos xdr_admin(3I)

xdr_inline xdr_admin(3I)

xdr_int xdr_simple(3I)

xdr_long xdr_simple(3I)

xdr_opaque xdr_complex(3I)

xdr_pointer xdr_complex(3I)

xdr_reference xdr_complex(3I)

xdr_setpos xdr_admin(3I)

xdr_short xdr_simple(3I)

xdr_string xdr_complex(3I)
BEA TUXEDO Reference Manual 247

xdr(3I)
See Also xdr_admin (3I), xdr_complex (3I), xdr_create (3I), xdr_simple (3I)

xdr_u_char xdr_simple(3I)

xdr_u_long xdr_simple(3I)

xdr_u_short xdr_simple(3I)

xdr_union xdr_complex(3I)

xdr_vector xdr_complex(3I)

xdr_void xdr_simple(3I)

xdr_wrapstring xdr_complex(3I)

xdrmem_create xdr_create(3I)

xdrstdio_create xdr_create(3I)

XDR Routines

XDR Routine Manual Reference Page
248 BEA TUXEDO Reference Manual

xdr_admin(3I)

 a
e

n of

ot

eam

xdr_admin(3I)

Name xdr_admin , xdr_getpos , xdr_inline , xdr_setpos -library routines for external
data representation

Description XDR library routines allow C programmers to describe arbitrary data structures in
machine-independent fashion. Protocols such as communications calls use thes
routines to describe the format of the data.

These routines deal specifically with the management of the XDR stream.

Routines #include <rpc/xdr.h>

u_int xdr_getpos(const XDR *xdrs)
A macro that invokes the get-position routine associated with the XDR stream,
xdrs . The routine returns an unsigned integer, which indicates the positio
the XDR byte stream. A desirable feature of XDR streams is that simple
arithmetic works with this number, although the XDR stream instances need
not guarantee this. Therefore, applications written for portability should n
depend on this feature.

long * xdr_inline(XDR *xdrs, const int len)
A macro that invokes the in-line routine associated with the XDR stream,
xdrs . The routine returns a pointer to a contiguous piece of the stream's
buffer; len is the byte length of the desired buffer. Note: pointer is cast to
long * . Warning: xdr_inline may return NULL (0) if it cannot allocate a
contiguous piece of a buffer. Therefore the behavior may vary among str
instances; it exists for the sake of efficiency, and applications written for
portability should not depend on this feature.

bool_t xdr_setpos(XDR *xdrs, const u_int pos)
A macro that invokes the set position routine associated with the XDR stream
xdrs . The parameter pos is a position value obtained from xdr_getpos . This
routine returns 1 if the XDR stream was repositioned, and 0 otherwise.
Warning: it is difficult to reposition some types of XDR streams, so this routine
may fail with one type of stream and succeed with another. Therefore,
applications written for portability should not depend on this feature.

See Also xdr_complex (3I), xdr_create (3I), xdr_simple (3I).
BEA TUXEDO Reference Manual 249

xdr_complex(3I)

 a
e

ing

is

his

xdr_complex(3I)

Name xdr_complex : xdr_array , xdr_bytes , xdr_opaque , xdr_pointer ,
xdr_reference , xdr_string , xdr_union , xdr_vector , xdr_wrapstring -library
routines for external data representation

Description XDR library routines allow C programmers to describe complex data structures in
machine-independent fashion. Protocols such as communications calls use thes
routines to describe the format of the data. These routines are the XDR library routines
for complex data structures. They require the creation of XDR stream [see
xdr_create(3I)].

Routines #include <rpc/xdr.h>

bool_t xdr_array(XDR *xdrs, caddr_t *arrp, u_int *sizep, const

u_int maxsize, const u_int elsize, const xdrproc_t elproc)
xdr_array translates between variable-length arrays and their correspond
external representations. The parameter arrp is the address of the pointer to
the array, while sizep is the address of the element count of the array; th
element count cannot exceed maxsize . The parameter elsize is the sizeof
each of the array's elements, and elproc is an XDR routine that translates
between the array elements' C form and their external representation. T
routine returns 1 if it succeeds, 0 otherwise.

bool_t xdr_bytes(XDR *xdrs, char **sp, u_int *sizep, const

u_int maxsize)
xdr_bytes translates between counted byte strings and their external
representations. The parameter sp is the address of the string pointer. The
length of the string is located at address sizep ; strings cannot be longer than
maxsize . This routine returns 1 if it succeeds, 0 otherwise.

bool_t xdr_opaque(XDR *xdrs, caddr_t cp, const u_int cnt)
xdr_opaque translates between fixed size opaque data and its external
representation. The parameter cp is the address of the opaque object, and cnt
is its size in bytes. This routine returns 1 if it succeeds, 0 otherwise.

bool_t xdr_pointer(XDR *xdrs, char **objpp, u_int objsize,

const xdrproc_t xdrobj)
Like xdr_reference except that it serializes NULL pointers, whereas
xdr_reference does not. Thus, xdr_pointer can represent recursive data
structures, such as binary trees or linked lists.
250 BEA TUXEDO Reference Manual

xdr_complex(3I)

er

en

al

 of

 of

ing

rnal
bool_t xdr_reference(XDR *xdrs, caddr_t *pp, u_int size,
const xdrproc_t proc)

xdr_reference provides pointer chasing within structures. The paramet
pp is the address of the pointer; size is the sizeof the structure that *pp
points to; and proc is an XDR procedure that translates the structure betwe
its C form and its external representation. This routine returns 1 if it succeeds,
0 otherwise. Warning: this routine does not understand NULL pointers. Use
xdr_pointer instead.

bool_t xdr_string(XDR *xdrs, char **sp, const u_int maxsize)
xdr_string translates between C strings and their corresponding extern
representations. Strings cannot be longer than maxsize . Note: sp is the
address of the string's pointer. This routine returns 1 if it succeeds, 0
otherwise.

bool_t xdr_union(XDR *xdrs, enum_t *dscmp, char *unp,
const struct xdr_discrim *choices, const bool_t (*defaultarm)(const
XDR *, const char *, const int))

xdr_union translates between a discriminated C union and its
corresponding external representation. It first translates the discriminant
the union located at dscmp. This discriminant is always an enum_t . Next the
union located at unp is translated. The parameter choices is a pointer to an
array of xdr_discrim structures. Each structure contains an ordered pair
[value, proc]. If the union's discriminant is equal to the associated value ,
then the proc is called to translate the union. The end of the xdr_discrim
structure array is denoted by a routine of value NULL. If the discriminant is not
found in the choices array, then the defaultarm procedure is called (if it is
not NULL). Returns 1 if it succeeds, 0 otherwise.

bool_t xdr_vector(XDR *xdrs, char *arrp, const u_int size,
const u_int elsize, const xdrproc_t elproc)

xdr_vector translates between fixed-length arrays and their correspond
external representations. The parameter arrp is the address of the pointer to
the array, while size is is the element count of the array. The parameter
elsize is the sizeof each of the array's elements, and elproc is an XDR
routine that translates between the array elements' C form and their exte
representation. This routine returns 1 if it succeeds, 0 otherwise.

bool_t xdr_wrapstring(XDR *xdrs, char **sp)
A routine that calls xdr_string(xdrs , sp , maxuint); where maxuint is the
maximum value of an unsigned integer. Many routines, such as xdr_array ,
xdr_pointer and xdr_vector take a function pointer of type xdrproc_t ,
which takes two arguments. xdr_string , one of the most frequently used
routines, requires three arguments, while xdr_wrapstring only requires
two. For these routines, xdr_wrapstring is desirable. This routine returns 1
if it succeeds, 0 otherwise.
BEA TUXEDO Reference Manual 251

xdr_complex(3I)
See Also xdr_admin (3I), xdr_create (3I), xdr_simple (3I).
252 BEA TUXEDO Reference Manual

xdr_create(3I)

 a
e

ted
xdr_create(3I)

Name xdr_create : xdr_destroy , xdrmem_create , xdrstdio_create -library routines
for external data representation stream creation

Description XDR library routines allow C programmers to describe arbitrary data structures in
machine-independent fashion. Protocols such as communications calls use thes
routines to describe the format of the data.

These routines deal with the creation of XDR streams. XDR streams have to be created
before any data can be translated into XDR format.

Routines #include <rpc/xdr.h>

void xdr_destroy(XDR *xdrs)
A macro that invokes the destroy routine associated with the XDR stream,
xdrs . Destruction usually involves freeing private data structures associa
with the stream. Using xdrs after invoking xdr_destroy is undefined.

void xdrmem_create(XDR *xdrs, const caddr_t addr, const u_int size,

 const enum xdr_op op)
This routine initializes the XDR stream object pointed to by xdrs . The stream's
data is written to, or read from, a chunk of memory at location addr whose
length is no more than size bytes long. The op determines the direction of
the XDR stream (either XDR_ENCODE, XDR_DECODE, or XDR_FREE).

void xdrstdio_create(XDR *xdrs, FILE *file, const enum xdr_op op)
This routine initializes the XDR stream object pointed to by xdrs . The XDR
stream data is written to, or read from, the standard I/O stream file . The
parameter op determines the direction of the XDR stream (either XDR_ENCODE,
XDR_DECODE, or XDR_FREE). Warning: the destroy routine associated with
such XDR streams calls fflush on the file stream, but never fclose [see
fclose (3S)].

See Also fclose (3S), read (2), rpc (3I), write (2), xdr_admin (3I), xdr_complex (3I),
xdr_simple (3I).
BEA TUXEDO Reference Manual 253

xdr_simple(3I)

e

ions.
re
while

.

the
xdr_simple(3I)

Name xdr_simple : xdr_bool , xdr_char , xdr_double , xdr_enum , xdr_float ,
xdr_free , xdr_int , xdr_long , xdr_short , xdr_u_char , xdr_u_long ,
xdr_u_short , xdr_void -library routines for external data representation

Description XDR library routines allow C programmers to describe simple data structures in a
machine-independent fashion. Protocols such as communications calls use thes
routines to describe the format of the data.

These routines require the creation of XDR streams [see xdr_create(3I)].

Routines #include <rpc/xdr.h>

bool_t xdr_bool(XDR *xdrs, bool_t *bp)
xdr_bool translates between booleans (C integers) and their external
representations. When encoding data, this filter produces values of either1 or
0. This routine returns 1 if it succeeds, 0 otherwise.

bool_t xdr_char(XDR *xdrs, char *cp)
xdr_char translates between C characters and their external representat
This routine returns 1 if it succeeds, 0 otherwise. Note: encoded characters a
not packed, and occupy 4 bytes each. For arrays of characters, it is worth
to consider xdr_bytes , xdr_opaque or xdr_string [see xdr_bytes ,
xdr_opaque and xdr_string in xdr_complex (3I)].

bool_t xdr_double(XDR *xdrs, double *dp)
xdr_double translates between C double precision numbers and their
external representations. This routine returns 1 if it succeeds, 0 otherwise.

bool_t xdr_enum(XDR *xdrs, enum_t *ep)
xdr_enum translates between C enums (actually integers) and their external
representations. This routine returns 1 if it succeeds, 0 otherwise.

bool_t xdr_float(XDR *xdrs, float *fp)
xdr_float translates between C float s and their external representations
This routine returns 1 if it succeeds, 0 otherwise.

void xdr_free(xdrproc_t proc, char *objp)
Generic freeing routine. The first argument is the XDR routine for the object
being freed. The second argument is a pointer to the object itself. Note:
pointer passed to this routine is not freed, but what it points to is freed
(recursively).
254 BEA TUXEDO Reference Manual

xdr_simple(3I)

s.

re
bool_t xdr_int(XDR *xdrs, int *ip)
xdr_int translates between C integers and their external representation
This routine returns 1 if it succeeds, 0 otherwise.

bool_t xdr_long(XDR *xdrs, long *lp)
xdr_long translates between C long integers and their external
representations. This routine returns 1 if it succeeds, 0 otherwise.

bool_t xdr_short(XDR *xdrs, short *sp)
xdr_short translates between C short integers and their external
representations. This routine returns 1 if it succeeds, 0 otherwise.

bool_t xdr_u_char(XDR *xdrs, char *ucp)
xdr_u_char translates between unsigned C characters and their external
representations. This routine returns 1 if it succeeds, 0 otherwise.

bool_t xdr_u_long(XDR *xdrs, unsigned long *ulp)
xdr_u_long translates between C unsigned long integers and their
external representations. This routine returns 1 if it succeeds, 0 otherwise.

bool_t xdr_u_short(XDR *xdrs, unsigned short *usp)
xdr_u_short translates between C unsigned short integers and their
external representations. This routine returns 1 if it succeeds, 0 otherwise.

bool_t xdr_void(void)
This routine always returns 1. It may be passed to RPC routines that requi
a function parameter, where nothing is to be done.

See Also rpc (3I), xdr_admin (3I), xdr_complex (3I), xdr_create (3I).
BEA TUXEDO Reference Manual 255

xdr_simple(3I)
256 BEA TUXEDO Reference Manual

	Copyright
	Section 3C - C Functions
	intro(3c)
	AEMsetblockinghook(3)
	AEOaddtypesw(3)
	AEPisblocked(3)
	AEPsetblockinghook(3)
	AEWaddtypesw(3)
	AEWisblocked(3)
	AEWsetblockinghook(3)
	AEWsetunsol(3)
	buffer(3c)
	catgets(3)
	catopen(3)
	change_atts(3)
	decimal(3)
	do_form(3)
	formprint(3)
	frmmisc(3)
	gp_mktime(3)
	maskprt(3)
	mods(3)
	nl_langinfo(3)
	recomp(3)
	rpc_sm_allocate(3)
	rpc_sm_client_free(3)
	rpc_sm_disable_allocate(3)
	rpc_sm_enable_allocate(3)
	rpc_sm_free(3)
	rpc_sm_set_client_alloc_free(3)
	rpc_sm_swap_client_alloc_free(3)
	setlocale(3)
	strerror(3)
	strftime(3)
	tpabort(3)
	tpacall(3)
	tpadmcall(3)
	tpadvertise(3)
	tpalloc(3)
	tpbegin(3)
	tpbroadcast(3)
	tpcall(3)
	tpcancel(3)
	tpchkauth(3c)
	tpchkunsol(3)
	tpclose(3)
	tpcommit(3)
	tpconnect(3)
	tpconvert(3c)
	tpcryptpw(3)
	tpdequeue(3)
	tpdiscon(3)
	tpenqueue(3)
	tperrordetail(3c)
	tpforward(3)
	tpfree(3)
	tpgetadmkey(3)
	tpgetlev(3)
	tpgetrply(3)
	tpgprio(3)
	tpinit(3)
	tpnotify(3)
	tpopen(3)
	tppost(3)
	tprealloc(3)
	tprecv(3)
	tpresume(3)
	tpreturn(3c)
	tpscmt(3)
	tpsend(3)
	tpservice(3)
	tpsetunsol(3)
	tpsprio(3)
	tpstrerror(3)
	tpstrerrordetail(3)
	tpsubscribe(3c)
	tpsuspend(3)
	tpsvrdone(3c)
	tpsvrinit(3)
	tpterm(3)
	tptypes(3)
	tpunadvertise(3)
	tpunsubscribe(3)
	TRY(3)
	tuxgetenv(3)
	tuxputenv(3)
	tuxreadenv(3)
	tx_begin(3)
	tx_close(3)
	tx_commit(3)
	tx_info(3)
	tx_open(3)
	tx_rollback(3)
	tx_set_commit_return(3)
	tx_set_transaction_control(3)
	tx_set_transaction_timeout(3)
	userlog(3)
	Usignal(3)
	Uunix_err(3)
	xdr(3I)
	xdr_admin(3I)
	xdr_complex(3I)
	xdr_create(3I)
	xdr_simple(3I)

