EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

BEA TUXEDO

Reference Manual
Section 3C - C Functions

Copyright
Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Connect, BEA Jolt, BEA Manager, and BEA MessageQ are trademarks of
BEA Systems, Inc. BEA ObjectBroker is a registered trademark of BEA Systems, Inc. TUXEDO is a registered
trademark in the United States and other countries.

All other company names may be trademarks of the respective companies with which they are associated.
BEA TUXEDO Reference Manual

Document Edition Date Software Version

6.5 February 1999 BEA TUXEDO Release 6.5

Contents

Section 3C - C Functions

INEO(BC) ettt ettt b e e et e e ee e 2
AEMSetblockinghOOK(3)ciiviiiieeiiiiie e 29
AEOAALYPESW(B) ...ttt ettt 31
AEPISDIOCKEA(3) .ttt 34
AEPSetblockiNgNOOK(3)ccoieiiiiiieeiiiiiie et 35
AEWAAALYPESW(B) ...ttt et 37
AEWISDIOCKEU(3) ettt ettt 40
AEWSetblockinghOOK(3)vevviiiiiiiiie et 41
ABEWSELUNSOI(3) ..ottt ettt 43
DUFFEI(BC) ettt 44
(o= 1[0 [] () PO P PSS PP PP 51
(o= 1 (0] 01T o1 (<) F PP P PP 52
ChaNGE_AIS(3) coecveeeeeeiiiiie ettt 54
AECIMAI(3) ettt e e e e e 55
AO_FOMMI(B) i 58
FOrMPIINT(3) e 60
FIMIMISC(3) .ttt e e 62
OP_MKEME(B) ettt 64
MASKPIE(B) 1. ettt et e e e e 67
00100 £ 6) IR TP PPR R TPPPPR 68
NI_IANGINTO(B) ..t 70
[g=Telel00] o] (<) IR P PP TPPPR 71
FPC_SM_@AlOCALE(3) ..eeeeeeeiieiiiie ittt e 76
FPC_SM_ClENt_fre@(3) ..ooieeeiiiie it 78
rpc_sm_disable_allocate(3)ccuveiriiiiiiieiiiiee e 79

BEA TUXEDO Reference Manual iii

iv

rpc_sm_enable_allocate(3).......ccuuveeriurieiiiiiiie e 8

FPC_SM_fIEE(3) .eeeei it 8
rpc_sm_set_client_alloc_free(3)cooveviiieiiiiee e 82
rpc_sm_swap_client_alloc_free(3)cooveviiiiiiiiieieeeee e 8:
SELIOCAIE(B) .t 8!
SEFEITOI(3) ettt ettt ettt e e et e e e b e e e e e sban e e e e eaes 8
SETHME(B) ettt 8¢
EPADOINL(B) e 9!
EPACAII(S) . ettt e 9!
tPAAMCAII(B) . 9¢
EPAAVEITISE(3) ettt 9
EPAIOC(3) +e ettt e 101
EPDEGIN(3) 1.ttt 10:
TPDIOAACAST(3) .. eeeeieiee ettt 10
EPCAUI(B) ettt e 10¢
EPCANCEI(B) .ttt 11:
TPCNKAUTN(BC) et 11
tPCHKUNSOI(B) .. 11¢
EPCIOSE(B) ettt e 11
EPCOMMIL(3) ettt et ee e 11¢€
EPCONNECT(3) ettt e e 12.
EPCONVEIT(BC) ottt 12/
EPCIYPIIW(B) ettt 12¢€
EPAEQUEUE(B) ettt ettt e e e e 12
EPAISCON(B) .ttt e e 13
EPENQUEUE(B) .ttt ettt et b e e 13
tPErrordetail(3C)...c.vueiee i 14:
EPFOWAIA(3) vt 14EF
EPFTEE(B) ettt 14
tPIEtAdMKEY (). e 14
EPGEUEV(B) e s 14¢
EPGEIIPIY(B) et 15(
1o o o1 gT] (2) F PP PP PPTPPPRN 15¢
EPINIE(3) ettt 15E
EPNOLITY(B) e 161

BEA TUXEDO Reference Manual

EPOPEN(B) ettt 164

EPPOSE(B) w ettt ettt 165
EPIEAIIOC(3) ettt e 169
10T oY () PP TP PP PPPPRTOPN 171
EPIESUIME(3) .eteeiiitie ekttt et e et e e naireee e 176
EPIEEUIN(BEC) ittt 178
EPSCIME(B) ettt et 182
1101=T L0 () TP PP PP UPPPRTON 184
EPSEIVICE(B) ettt ettt 187
EPSELUNSOI(B) ettt e 190
EPSPIIO(B) 1ttt ettt 192
EPSEIEITOI(3) .ttt 193
tPSLrerrordetail(3) ..oc.eeve e 194

tPSUDSCIIDE(BC) vt 195
EPSUSPENA(B) .ttt et 201
EPSVIAONE(BEC) .ottt 203
EPSVIINIE(B) ettt 204

1101 =T 00 0TS TP PP U PPUPRTOPN 205
EPEYPES(B) ceiitieeee ettt e 206
TPUNAAVEITISE(3) .ttt 207
tPUNSUDSCHDE(B) . 208
TR (B) ettt ettt 210

TUXGEIENV(B) ettt 218
EUXPULENV(B) .ottt e e e e 219

TUXFEAAENV(B) ettt e 220
EX_DEGIN(B) ettt s 222

(ool (011 () T PP P PP TPPPPU 224
EX_COMMIL(B) ettt 226

EX_INFO(B) coeie it 228

EX OPEN(B) ettt ettt ettt 230
EX_TOIDACK(B) ..ot 232

tX_Set_COMMIL_FEIUMN(3)...ccc e e et e e e 234

tx_set_transaction_CoNtrol(3)........cccueviimiimiiiiie e 236
tx_set_transaction_timMeOUL(3).......euurerieieriiiiiiiiiiee e 238
(UET=Tg [o o) PP P PP PPRTTPPPPR 240

BEA TUXEDO Reference Manual v

Vi

USIGNAI(B) ettt ettt et e 24

UUNIX_EIT(3) ettt ettt ettt ettt et et e st ee e et bne e e e s sanaeee s e 246
XAT(B1) ettt 247
XAT_AAMIN(B1) 1ttt 24¢
XAr_COMPIEX(BI) .ot 250
XAT_CrEALE(B1) i ettt e 25
XAT_SIMPIE(BI) ettt e 254

BEA TUXEDO Reference Manual

Section 3C - C Functions

BEA TUXEDO Reference Manual 1

intro(3c¢)

intro(3¢)

Name

Description

Communication

2

Paradigms

BEA TUXEDO
system request
/response
dlient/server
model

intro (3c)-introduction to the application-transaction monitor interface.

The application-transaction monitor interface provides the interface between the
application and the transaction processing system. This interface is known as the
ATMI interface. It provides routines to open and close resources, manage transaction
manage typed buffers, and invoke request/response and conversational service call

The routines described in the ATMI reference pages imply a particular model of
communication. This model is expressed in terms of how client and server processe
can communicate using request and reply messages.

There are two basic communication paradigms: request/response and conversation
Request/response services are invoked by service requests along with their associa
data. Request/response services can receive exactly one request (upon entering the
service routine) and send at most one reply (upon returning from the service routine
Conversational services, on the other hand, are invoked by connection requests alol
with a means of referring to the open connection (that is, a descriptor used in calling
subsequent connection routines). Once the connection has been established and th
service routine invoked, either the connecting program or the conversational service
can send and receive data as defined by the application until the connection is torn
down.

Note that a process can initiate both request/response and conversational
communication, but cannot accept both request/response and conversational servic
requests. The following sections describe the two communication paradigms in greate
detail.

With regard to request/response communication, a client is defined as a process the
can send requests and receive replies. By definition, clients cannot receive requests r
send replies. A client can send any humber of requests, and can wait for the replies
synchronously or receive (some limited number of) the replies at its convenience. In
certain cases, a client can send a request that has napgeply. andtpterm allow

a client to join and leave a BEA TUXEDO system application.

A request/response server is a process that can receive one (and only one) service
request at a time and send at most one reply to that request. While a server is workir
on a particular request, it can act like a client by initiating request/response or
conversational requests and receiving their replies. In such a capacity, a server is call
a requester. Note that both client and server processes can be requesters (in fact, a
client can be nothing but a requester).

BEA TUXEDO Reference Manual

intro(3¢)

Conversational
(lient/server
Model

A request/response server can forward a request to another request/response server.
Here, the server passes along the request it received to another server and does not

expect a reply. It is the responsibility of the last server in the chain to send the reply to

the original requester. Use of the forwarding routine ensures that the original requester
ultimately receives its reply.

Servers and service routines offer a structured approach to writing BEA TUXEDO
system applications. In a server, the application writer can concentrate on the work
performed by the service rather than communications details such as receiving
requests and sending replies. Because many of the communication details are handled
by BEA TUXEDO system'sain , the application must adhere to certain conventions
when writing a service routine. At the time a server finishes its service routine, it can
send a reply usingreturn or forward the request usingiorward . A service is not
allowed to perform any other work nor is it allowed to communicate with any other
process after this point. Thus, a service performed by a server is started when a request
is received and ended either when a reply is sent or the request is forwarded.

Concerning request and reply messages, there is an inherent difference between the
two: a request has no associated context before it is sent, but a reply does. For example,
when sending a request, the caller must supply addressing information, whereas a reply
is always returned to the process that originated the request, that is, addressing context
is maintained for a reply and the sender of the reply can exert no control over its
destination. The differences between the two message types manifest themselves in the
parameters and descriptions of the routines describgdaif{3c)

When a request message is sent, it is sent at a particular priority. The priority affects
how a request is dequeued: when a server dequeues requests, it dequeues the one with
the highest priority. To prevent starvation, the oldest request is dequeued every so
often regardless of priority. By default, a request's priority is associated with the

service name to which the request is being sent. Service names can be given priorities
at configuration time (saébconfig(5)). A default priority is used if none is defined.

In addition, the priority can be set at runtime using a routingrio(3c) . By doing

s0, the caller can override the configuration or default priority when the message is
sent.

With regard to conversational communication, a client is defined as a process that can
initiate a conversation but cannot accept a connection request.

A conversational server is a process that can receive connection requests. Once the
connection has been established and the service routine invoked, either the connecting
program or the conversational service can send and receive data as defined by the
application until the connection is torn down. The conversation is half-duplex in nature

BEA TUXEDO Reference Manual 3

intro(3c¢)

4

Message
Delivery

Message
Sequendng

such that one side of the connection has control and can send data until it gives up
control to the other side. While the connection is established, the server is “reserved
such that no other process can establish a connection with the server. As with a
request/response server, the conversational server can act as a requester by initiati
other requests or connections with other servers. Unlike a request/response server,
conversational server can not forward a request to another server. Thus, a
conversational service performed by a server is started when a request is received a
ended when the final reply is sent yeeturn

Once the connection is established, the connection descriptor implies any context
needed regarding addressing information for the participants. Messages can be sen
and received as needed by the application. There is no inherent difference between t
request and reply messages and no notion of priority of messages.

Sending and receiving messages, whether in conversation mode or request/respon:
mode, implies communication between two units of an application. The great majority
of messages lead to a reply or at least an acknowledgment, so that is an assurance 1
the message was received. There are, however, certain messages (some originatec
the system, others originated by an application) where a reply or acknowledgment is
not expected. For example, the system can send an unsolicited message using
tpnotify without theTPACKflag, or an application can send a message using

tpacall with theTPNOREPLYlag. If the message queue of the receiving program is
full, the message is dropped.

If the sending and receiving side are on different machines, the communication take
place between bridge processes that send and receive messages across a network. |
raises the additional possibility of non-delivery due to a circuit failure. Even when
either of these conditions leads to the positing of an event dvsito@message, it is

not easy to associate the eventboGmessage with the non-arrival of a particular
message.

Because the BEA TUXEDO system is designed to handle large volumes of message
across broad networks, it is not programmed to detect and correct the small percenta
of failures-to-deliver described in the preceding paragraphs. For that reason, there c:
be no guarantee that every message will be delivered.

In the conversational model, for messages being exchangedmussing and

tprecv , a sequence number is added to the message header and messages are rece
in the order in which they are sent. If a server or client gets a message out of order, tt
conversation is stopped, any transaction in progress is rolled back, and message
LIBTUX 1572 “Bad Conversational Sequence Number,” is logged.

BEA TUXEDO Reference Manual

intro(3¢)

Queued
Message Model

ATMI
Transactions

In the Request/Response model, messages are not sequenced by the system. If the
application logic implies a sequence, it is the responsibility of the application to
monitor and control it. The parallel message transmission made possible by the support
of multiple network addresses for bridge processes increases the possibility that
messages will not be received in the order sent. An application that is concerned about
this may choose to specify a single network address for each bridge process, add
sequence numbers to their messages or require periodic acknowledgments.

The BEA TUXEDO system queued message model allows for enqueueing a request
message to stable storage for subsequent processing without waiting for its
completion, and optionally getting a reply via a queued response message. The ATMI
verbs that queue messages and dequeue respongesigreue(3c) and

tpdequeue(3c) . They can be called from any type of BEA TUXEDO system
application processes: client, server, or conversational.

The queued message facility is an XA-compliant resource manager. Messages are
enqueued and dequeued within transactions to ensure one-time-only processing.

BEA TUXEDO system supports two sets of mutually exclusive verbs for defining and
managing transactions: BEA TUXEDO's ATMI transaction demarcation verbs (which
are prefaced wittp) and X/Open's TX Interface (whose verbs are prefacedwith
Because X/Open used ATMI's transaction demarcation verbs as the base for the TX
Interface, the syntax and semantics of the TX Interface are quite similarto ATMI. This
section is an overview of ATMI's transaction concepts. The next section introduces
additional concepts of the TX Interface.

A transaction in the BEA TUXEDO system is used to define a single logical unit of
work that either wholly succeeds or has no effect whatsoever. A transaction allows
work performed in many processes, at possibly different sites, to be treated as an
atomic unit of work. The initiator of a transaction normally ugbsgin and either
tpcommit Ortpabort to delineate the operations within a transaction.

The initiator may also suspend its work on the current transaction by issuing
tpsuspend . Another process may take over the role of the initiator of a suspended
transaction by issuingresume . As a transaction initiator, a process must call one of
tpsuspend , tpcommit , Ortpabort . Thus, one process can start a transaction that
another may finish.

If a process calling a service is in transaction mode, then the called service routine is
also placed in transaction mode on behalf of the same transaction. Otherwise, whether
the service is invoked in transaction mode or not depends on options specified for the
service in the configuration file. A service that is not invoked in transaction mode can
define multiple transactions between the time it is invoked and the time it ends. On the

BEA TUXEDO Reference Manual 5

intro(3c¢)

TX Transactions

6

Chained and
Unchained
Transactions

other hand, a service routine invoked in transaction mode can participate in only one
transaction, and work on that transaction is completed upon termination of the servic
routine. Note that a connection cannot be upgraded to transaction mplokegiif is
called while a conversation exists, the conversation remains outside of the transactic
(that is, as itpconnect had been called with thePNOTRANIag).

A service routine joining a transaction that was started by another process is called
participant. A transaction can have several participants. A service can be invoked to ¢
work on the same transaction more than once. Only the initiator of a transaction (the
is, a process either callingbegin or tpresume) can caltpcommit or tpabort
Participants influence the outcome of a transaction by wsieigrn or tpforward

These two calls signify the end of a service routine and indicate that the routine has
finished its part of the transaction.

Transactions defined by the TX Interface are practically identical with those defined
by the ATMI verbs. An application writer may use either set of verbs when writing
clients and service routines. In fact, the BEA TUXEDO system does not require all
client and server processes within a single application to use one set of verbs or the
other. However, the two verb sets may not be used together within a single process
(that is, a process cannot cabegin and later calix_commit).

The TX Interface has two calls for opening and closing resource managers in a portab
mannerix_open andtx_close , respectively. Transactions are started with

tx_begin and completed with eithex_commit ortx_rollback .tx_info is used

to retrieve transaction information, and there are three calls to set options for
transactionstx_set_commit_return , tX_set_transaction_control, and
tx_set_transaction_timeout. The TX Interface has no equivalents to ATMI's
tpsuspend andtpresume .

In addition to the semantics and rules defined for ATMI transactions, the TX Interface
has some additional semantics that are worth introducing here. First, service routine
writers wanting to use the TX Interface must supply their awninit routine that
callstx_open . The default BEA TUXEDO system-suppligdvrinit ~ callstpopen .

The same rule applies fgrsvrdone : if the TX Interface is being used, then service
routine writers must supply their own tpsvrdone that e¢alldose

Second, the TX Interface has two additional semantics not found in ATMI. These are
chained and unchained transactions, and transaction characteristics.

The TX Interface supports chained and unchained modes of transaction execution. E
default, clients and service routines execute in the unchained mode; when an active
transaction is completed, a new transaction does not beginxubdigin is called.

BEA TUXEDO Reference Manual

intro(3¢)

Transaction
Characteristics

Error Handling

In the chained mode, a new transaction starts implicitly when the current transaction
completes. That is, whar commit ortx_rollback is called, the BEA TUXEDO
system coordinates the completion of the current transaction and initiates a new
transaction before returning control to the caller. (Certain failure conditions may
prevent a new transaction from starting.)

Clients and service routines enable or disable the chained mode by calling

tx_set_transaction_control . Transitions between the chained and unchained
mode affect the behavior of the nextcommit or tx_rollback call. The call to
tx_set_transaction_control does not put the caller into or take it out of

transaction mode.

Sincetx_close cannot be called when the caller is in transaction mode, a caller
executing in chained mode must switch to unchained mode and complete the current
transaction before calling_close

A client or a service routine may callinfo to obtain the current values of their
transaction characteristics and to determine whether they are executing in transaction
mode.

The state of an application process includes several transaction characteristics. The
caller specifies these by callingset * functions. When a client or a service routine
sets the value of a characteristic, it remains in effect until the caller specifies a different
value. When the caller obtains the value of a characteristig wido , it does not
change the value.

Most of the ATMI functions have one or more error returns. An error condition is
indicated by an otherwise impossible returned value. This is usually -1 or error, or O
for a bad field identifier§ADFLDID) or address. The error type is also made available
in the external integeperro . tperrno is not cleared on successful calls, so it
should be tested only after an error has been indicated.

tperrordetail can be used as the first step of a three step procedure to get additional
detail about an error in the most recent BEA TUXEDO system call on the current
thread tperrordetail returns an integer which is then used as an argument to
tpstrerrordetail to retrieve a pointer to a string that contains the error message.
The pointer can then be used as an argumardettog or tofprint

Thetpstrerror function is provided to produce a message on the standard error
output. It takes one argument, an integer (foungdénno) and returns a pointer to
the text of an error messageLiBTUX_CAT. The pointer can be used as an argument
to userlog

BEA TUXEDO Reference Manual 7

intro(3c¢)

8

Timeouts

The error codes that can be produced by an ATMI function are described on each
ATMI reference page. Thie error andF_error32 functions are provided to

produce a message on the standard error output. They take one parameter, a string
print the argument string appended with a colon and a blank; and then print an error
message followed by a newline character. The error message displayed is the one
defined for the error number currentlyRnerror orF_error32 , which is set when
errors occur.

Fstrerror , and its counterpargstrerror32 , can be used to retrieve the text of an
error message from a message catalog; it returns a pointer that can be used as an
argument to userlog.

The error codes that can be produced by an FML function are described on each FM
reference page.

There are three types of timeouts in the BEA TUXEDO system: one is associated wit|
the duration of a transaction from start to finish. A second is associated with the
maximum length of time a blocking call will remain blocked before the caller regains
control. The third is a service timeout and occurs when a call exceeds the number o
seconds specified in tl®/CTIMEOUTparameter in thBERVICESsection of the
configuration file.

The first kind of timeout is specified when a transaction is startedpiithin (see
tpbegin (3c) for details). The second kind of timeout can occur when using the BEA
TUXEDO system communication routines definedpeall (3c). Callers of these
routines typically block when awaiting a reply that has yet to arrive, although they car
also block trying to send data (for example, if request queues are full). The maximun
amount of time a caller remains blocked is determined by a BEA TUXEDO system
configuration file parameter (see tReEOCKTIMEparameter imbbconfig (5) for

details).

Blocking timeouts are performed by default when the caller is not in transaction mode
When a client or server is in transaction mode, it is subject to the timeout value with
which the transaction was started and is not subject to the blocking timeout value
specified in theJBBCONFIdile.

When a transaction timeout occurs, replies to asynchronous requests made in
transaction mode become “stale."” That is, if a process is waiting for a particular
asynchronous reply for a request sent in transaction mode and a transaction timeou
occurs, the descriptor for that reply becomes stale (invalid). Similarly, if a transactior
timeout occurs, an event is generated on the connection descriptor associated with t

BEA TUXEDO Reference Manual

intro(3¢)

Dynamic
Service
Advertisements

Buffer
Management

transaction and that descriptor becomes invalid. On the other hand, if a blocking
timeout occurs, the descriptor is still valid and the waiting process can re-issue the call
to await the reply.

The service timeout mechanism provides a way for the system to kill processes that
may be frozen by some unknown or unexpected system error. When a service timeout
occurs in a request/response service, the BEA TUXEDO system Kkills the server
process that is executing the frozen service and returns errofeB8¥CERRIf a

service timeout occurs in a conversational servicel[RhEVSVCERRvent is returned.

Beginning in Release 6.4, some additional detail is provided beyorn®E8¥CERR
error code. If a service fails due to exceeding the timeout threshold, an event,
.SysServiecTimeout , is posted.

By default, a server's services are advertised when it is booted and unadvertised when
it is shut down. If a server needs to control at run time the set of services that it offers,

it can do so by callingpadvertise ~ andtpunadvertise . These routines affect only

the services offered by the calling server unless that server belongs to a multiple server,
single queue (MSSQ) set. Because all servers in an MSSQ set must offer the same set
of services, these routines also affect the advertisements of all servers sharing the
caller's MSSQ set.

Initially, a process has no buffers. Before sending a message, a buffer must be allocated
usingtpalloc . The sender's data can then be placed in the buffer and sent. This buffer
has a specific structure. The particular structure is denoted yptheargument to the

tpalloc function. Since some structures can need further classification, a subtype can
also be given (for example, a particular type of C structure).

When receiving a message, a buffer is required into which application data can be
received. This buffer must be one originally gotten ftpatioc . Note that a BEA
TUXEDO system server, in itsain , allocates a buffer whose address is passed to a
request/response or conversational service upon invoking the service (see
tpservice (3c) for details on how this buffer is treated).

Buffers used for receiving messages are treated slightly differently than those used for
sending: the size and address usually change upon receipt of a message, since the
system internally swaps the buffer passed into the receive call with internal buffers it
used to process the buffer. A buffer may grow, or it may shrink when it is received into.

It depends on the amount of data sent by the sender, and the internal data flow needed
to get it from sender to received. Many factors could affect the buffer size, including
compression, receiving a message from a different machine type, and the action of the
buffer type’spostrecv function (seeuffer (3c)). The buffer sizes in /WS clients are
usually different from those in native clients.

BEA TUXEDO Reference Manual 9

intro(3c¢)

10

Buffer Type
Switch

Itis best to think of the receive buffer as a placeholder, rather than the actual contain
that will receive the message. The system sometimes uses the size of the buffer yol
pass as a hint, so it does help if it is big enough to hold the expect reply.

On the sending side, buffer types that might be filled to less than their allocated
capacity (for example, FML or STRING buffers) send only the amount used. A 100K
FML32 buffer with one integer field in it is sent as a much smaller buffer, containing
only that integer.

This means that the receiver will receive a buffer smaller than what was originally
allocated by the sender, yet larger than the data that was sent. For example, if a
STRING buffer of 10K bytes is allocated, and the string “HELLO” is copied into it,
only the six bytes are sent, and the receiver will probably end up with a buffer that is
around 1K or 4K bytes. (It may be larger or smaller, depending on other factors.) The
BEA TUXEDO system guarantees only that a received message will contain all of the
data that was sent, not that it will also contain all of the free space.

The process receiving the reply is responsible for noting size changes in the buffer
(usingtptypes) and reallocating it if necessary. All of the BEA TUXEDO system
routines that change a receiver’s buffer return information about the amount of data i
the buffer, so it should become standard practice to check the buffer size every time
reply is received.

One can send and receive messages using the same data buffer. Alternatively, a
different data buffer can be allocated for each message. It is usually the caller's
responsibility to free its buffers withfree . However, in limited cases, the BEA
TUXEDO system frees the caller's buffer. Further details about buffer usage are
explained in the descriptions of the communication routines.

Thetmtype_sw_t structure provides a description necessary when adding new buffer
types to a process' buffer type switgh, typesw . The switch elements are defined in
typesw (5). The function names used in this entry are templates for the actual functior
names defined by the BEA TUXEDO system or by applications adding their own
buffer types. These names map to the switch elements very simply: the template nam
are made by taking each function pointer's element name and prependifigr
example, the elementitbuf has the function nameminitouf).

The elementyype , must be non-NULL and at most 8 characters in length. If this
element is not unique in the switch, threeibtype must be non-NULL.

The elementubtype , can be NULL, a string of at most 16 characters, or the wild card
character, “*". The combination efpe andsubtype must uniquely identify an
element in the switch.

BEA TUXEDO Reference Manual

intro(3¢)

Unsolicited
Notification

A given type can have multiple subtypes. If all subtypes are to be treated the same for
a given type, then the wild card character, “*”, can be used. Note that the function,
tptypes , can be used to determine a buffer's type and subtype if subtypes need to be
distinguished. If some subset of the subtypes within a particular type are to be treated
individually, and the rest are to be treated identically, then those that are to be singled
out with specific subtype values should appear in the switch before the subtype
designated with the wild card. Thus, searching for types and subtypes in the switch is
done from top to bottom, and the wild card subtype entry accepts any "leftover" type
matches.

The elementifitsize is used when allocating or re-allocating a buffer. The
semantics ofpalloc andtprealloc are such that the larger dfftsize ~ and the
routines'size parameter is used to create or re-allocate a buffer. For some types of
structures, like a fixed sized C structure, the buffer size should equal the size of the
structure. Ifdfitsize is set to this value, then the caller may not need to specify the
buffer's length to routines in which a buffer is passiédize ~ can be 0 or less;
however, iftpalloc ortprealloc is called and theisize parameter is also less than
or equal to 0, then the routine will fail. It is not recommended tdfsgte to a

value less than 0.

There are four basic buffer types that come with the BEA TUXEDO systeRRAY
(character array possibly containing NULL characters which is neither encoded nor
decoded during transmissiorgTRING (NULL-terminated character arrayML (and
FML32: Fielded Buffers), andiEw (and VIEW32: simple C structures). Note that all
views are handled by the same set of routines and that the name of a particular view is
its subtype name.

Two of these buffer types have synonymsOCTETis a synonym foCARRAY and
bothX_C_TYPEandX_CcoMMOare synonyms foviEW. X_C_TYPEsupports all the
same elements &&EWwhereak_COMMOsUpports only longs, shorts, and characters.
X_CcomMMoshould be used when both C and COBOL programs are communicating.

An application wishing to supply its own buffer type can do so by adding an instance
to thetm_typesw array. Whenever a new buffer type is added or one is deleted, care
should be taken to leave a NULL entry at the end of the array. Note that a buffer type
with a NULL name is not permitted. An application client or server is linked with the
new buffer type switch by explicitly specifying the source or object file name on the
buildserver (1) or buildclient (1) command line using-& option argument.

There are two methods for sending messages to application clients outside the
boundaries of the client/server interaction defined above. The first is the broadcast
mechanism supported Igybroadcast . This function allows application clients,

BEA TUXEDO Reference Manual 11

intro(3c¢)

servers, and administrators to broadcast typed buffer messages to a set of clients
selected on the basis of the names assigned to them. The names assigned to clients
determined in part by the application by the information passed in the TPINIT typed
buffer attpinit time and in part by the system based on the processor at which the
client accesses the application.

The second method is the natification of a particular client as identified from an earliet
or current service request. Each service request contains a unique client identifier th
identifies the originating client for the service requeshll 's andpforward 's

from within a service routine do not change the originating client for that chain of
service requests. Client identifiers can be saved and passed between application
servers. The routingpnotify is used to notify clients identified in this manner.

Clanguage The following return code and flag definitions are used by the ATMI routines. For an
ATMIReturn application to work with different transaction monitors without change or
Codesand recompilation, each system must define its flags and return codes as stated here.
Other
Definitions

/*
* The following definitions must be included in atmi.h
*/

/* Flags to service routines */

#define TPNOBLOCK 0x00000001 /* non-blocking send/rcv */
#define TPSIGRSTRT 0x00000002 /* restart rcv on interrupt */
#define TPNOREPLY 0x00000004 /* no reply expected */

#define TPNOTRAN 0x00000008 /* not sent in transaction mode */
#define TPTRAN 0x00000010 /* sent in transaction mode */
#define TPNOTIME 0x00000020 /* no timeout */

#define TPABSOLUTE 0x00000040 /* absolute value on tmsetprio */
#define TPGETANY 0x00000080 /* get any valid reply */

#define TPNOCHANGE 0x00000100 /* force incoming buffer to match */
#define RESERVED_BIT1 0x00000200 /* reserved for future use */
#define#define TPCONV 0x00000400 /* conversational service */
#define TPSENDONLY 0x00000800 /* send-only mode */

#define TPRECVONLY 0x00001000 /* recv-only mode */

#define TPACK 0x00002000 /* */

/* Flags to tpreturn - also defined in xa.h */

#define TPFAIL 0x20000000 /* service FAILURE for tpreturn */
#define TPEXIT 0x08000000 /* service FAILURE with server exit */
#define TPSUCCESS 0x04000000 /* service SUCCESS for tpreturn */

12 BEA TUXEDO Reference Manual

intro(3¢)

/* Flags to tpscmt - Valid TP_COMMIT_CONTROL

* characteristic values
*/
#define TP_CMT_LOGGED 0x01
* decision is logged */

/* return after commit

#define TP_CMT_COMPLETE 0x02 /* return after commit has

* completed */

/* client identifier structure */
struct clientid_t {
long clientdata[4];

}
typedef struct clientid_t CLIENTID;

/* reserved for internal
* use */

/* interface to service routines */
struct tpsvcinfo {

name[32];

long flags; [* describes service attributes */
char *data; [* pointer to data */

long len; [* request data length */

int cd; [* connection descriptor

*if (flags TPCONV) true */

long appkey; [* application authentication client
* key */

CLIENTID cltid; [* client identifier for originating
* client */

h

typedef struct tpsvcinfo TPSVCINFO;

/* tpinit(3c) interface structure */
#define MAXTIDENT 30

struct tpinfo_t {

char usrname[MAXTIDENT+2];
char clthame[MAXTIDENT+2];
char passwd[MAXTIDENT+2];

long flags; [* initialization flags */
long datalen; /* length of app specific
* data */
long data; [* placeholder for app

* data */
b

typedef struct tpinfo_t TPINIT;

/* client user name */
/* app client name */
/* application password */

BEA TUXEDO Reference Manual

13

intro(3c¢)

/* The transaction id structure passed to tpsuspend(3c) and tpresume(3c) */
struct tp_tranid_t {
long infol[6]; /* Internally defined */

)

typedef struct tp_tranid_t TPTRANID;

/* Flags for TPINIT */

#define TPU_MASK 0x00000007 /* unsolicited notification
*mask */
#define TPU_SIG 0x00000001 /* signal based
* notification */
#define TPU_DIP 0x00000002 /* dip-in based
* notification */
#define TPU_IGN 0x00000004 /* ignore unsolicited
* messages */
#define TPSA_FASTPATH 0x00000008 /* System access ==
* fastpath */
#define TPSA_PROTECTED 0x00000010 /* System access ==
* protected */
/* 1Q tpqctl_t data structure */
#define TMQNAMELEN 15
#define TMMSGIDLEN 32
#define TMCORRIDLEN 32
struct tpqctl_t { [* control parameters to queue */
[* primitives */
long flags; /* indicates which values are set */
long deq_time; [* absolute/relative time for */
[* dequeuing */
long priority; [* enqueue priority */
long diagnostic; /* indicates reason for failure */
long appkey; [* application authentication */
[* client key */
long urcode; [* application user-return code */
CLIENTID cltid; [* client identifier for */
[* originating client */
char msgid[TMMSGIDLEN]; /* id of message before which */

[* to queue */

char corrid[TMCORRIDLEN]; [* correlation id used */
[* to identify message */

char replyqgueue[TMQNAMELEN+1]; /* queue name for reply */
/* message */

char failurequeue[TMQNAMELEN+1]; /* queue name for failure */
/* message */

3

typedef struct tpqctl_t TPQCTL;

14 BEA TUXEDO Reference Manual

intro(3¢)

/* /Q structure elements that are valid - set in flags */

#define TPNOFLAGS 0x00000 /* no flags set -- no get */

#define TPQCORRID 0x00001 /* set/get correlation id */

#define TPQFAILUREQ 0x00002 /* set/get failure queue */

#define TPQBEFOREMSGID 0x00004 /* enqueue before message id */
#define TPQGETBYMSGID 0x00008 /* dequeue by msgid */
#define TPQMSGID 0x00010 /* get msgid of eng/deq message */
#define TPQPRIORITY 0x00020 /* set/get message priority */
#define TPQTOP 0x00040 /* enqueue at queue top */

#define TPQWAIT 0x00080 /* wait for dequeuing */

#define TPQREPLYQ 0x00100 /* set/get reply queue */

#define TPQTIME_ABS 0x00200 /* set absolute time */

#define TPQTIME_REL 0x00400 /* set relative time */

#define TPQGETBYCORRID 0x00800 /* dequeue by corrid */

/* error return codes */
extern int tperrno;
extern long tpurcode;

/* tperrno values - error codes */

* The man pages explain the context in which the following
* error codes can return.

*/

#define TPMINVAL 0 /* minimum error message */
#define TPEABORT 1
#define TPEBADDESC 2
#define TPEBLOCK 3
#define TPEINVAL 4
#define TPELIMIT 5
#define TPENOENT 6
#define TPEOS 7
#define TPEPERM 8
#define TPEPROTO 9
#define TPESVCERR 10
#define TPESVCFAIL 11
#define TPESYSTEM 12
#define TPETIME 13
#define TPETRAN 14
#define TPGOTSIG 15
#define TPERMERR 16
#define TPEITYPE 17
#define TPEOTYPE 18
#define TPERELEASE 19
#define TPEHAZARD 20
#define TPEHEURISTIC 21
#define TPEEVENT 22
#define TPEMATCH 23
#define TPEDIAGNOSTIC 24

BEA TUXEDO Reference Manual 15

intro(3c¢)

#define TPEMIB 25

#define TPMAXVAL 26 /* maximum error message */
/* conversations - events */

#define TPEV_DISCONIMM 0x0001
#define TPEV_SVCERR 0x0002
#define TPEV_SVCFAIL 0x0004
#define TPEV_SVCSUCC 0x0008
#define TPEV_SENDONLY 0x0020

/* /Q diagnostic codes */

#define QMEINVAL -1

#define QMEBADRMID -2

#define QMENOTOPEN -3

#define QMETRAN -4

#define QMEBADMSGID -5

#define QMESYSTEM -6

#define QMEOS -7

#define QMENOTA -8

#define QMEPROTO -9

#define QMEBADQUEUE -10
#define QMENOMSG -11

#define QMEINUSE -12

#define QMENOSPACE -13

/* Event Broker Messages */

#define TPEVSERVICE 0x00000001
#define TPEVQUEUE 0x00000002
#define TPEVTRAN 0x00000004
#define TPEVPERSIST 0x00000008

/* Subscription Control Structure */

struct tpevctl_t {
long flags;
char namel[XATMI_SERVICE_NAME_LENGTH];
char name2[XATMI_SERVICE_NAME_LENGTH];
TPQCTL qctl;

3

typedef struct tpevctl_t TPEVCTL;

Clanguage TX The following return code and flag definitions are used by the TX routines. For an
Return Codes application to work with different transaction monitors without change or
and Other recompilation, each system must define its flags and return codes as stated here.
Definitions

#define TX_H_VERSION 0 /* current version of this
* header file */

16 BEA TUXEDO Reference Manual

intro(3¢)

/*

* Transaction identifier

*

#define XIDDATASIZE 128 [* size in bytes */

struct xid_t {
long formatlD; [* format identifier */
long gtrid_length; /* value not to exceed 64 */
long bqual_length; /* value not to exceed 64 */
char data[XIDDATASIZE];

h

typedef struct xid_t XID;

/*

* A value of -1 in formatID means that the XID is null.
*/

/*

* Definitions for tx_ routines

*/

[* commit return values */

typedef long COMMIT_RETURN;

#define TX_COMMIT_COMPLETED 0
#define TX_COMMIT_DECISION_LOGGED 1

/* transaction control values */

typedef long TRANSACTION_CONTROL;
#define TX_UNCHAINED 0

#define TX_CHAINED 1

/* type of transaction timeouts */
typedef long TRANSACTION_TIMEOUT;

/* transaction state values */

typedef long TRANSACTION_STATE;
#define TX_ACTIVE O

#define TX_TIMEOUT_ROLLBACK_ONLY 1
#define TX_ROLLBACK_ONLY 2

/* structure populated by tx_info */

struct tx_info_t {
XID xid;
COMMIT_RETURN when_return;
TRANSACTION_CONTROL transaction_control;
TRANSACTION_TIMEOUT transaction_timeout;
TRANSACTION_STATE transaction_state;

b

typedef struct tx_info_t TXINFO;

/*
* tx_ return codes

BEA TUXEDO Reference Manual

17

intro(3c¢)

* (transaction manager reports to application)
*/
#define TX_NOT_SUPPORTED 1 /* option not supported */
#define TX_OK 0 /* normal execution */
#define TX_OUTSIDE -1 /* application is in an RM
* local transaction */
#define TX_ROLLBACK -2 [* transaction was rolled
* back */
#define TX_MIXED -3 /* transaction was
* partially committed and
* partially rolled back */
#define TX_HAZARD -4 [* transaction may have been
* partially committed and
* partially rolled back */

#define TX_PROTOCOL_ERROR -5 /* routine invoked in an
* improper context */

#define TX_ERROR -6 /* transient error */

#define TX_FAIL -7 [* fatal error */

#define TX_EINVAL -8 /* invalid arguments were

* given */

#define TX_COMMITTED -9 /* transaction has

* heuristically committed */

#define TX_NO_BEGIN -100 /* transaction committed plus
* new transaction could not
* be started */
#define TX_ROLLBACK_NO_ BEGIN (TX_ROLLBACK+TX_NO_BEGIN)
/* transaction rollback plus
* new transaction could not
* be started */
#define TX_MIXED_NO_BEGIN (TX_MIXED+TX_NO_BEGIN)
/* mixed plus new transaction
* could not be started */
#define TX_HAZARD_NO_BEGIN (TX_HAZARD+TX_NO_BEGIN)
/* hazard plus new transaction
* could not be started */
#define TX_COMMITTED_NO_BEGIN (TX_COMMITTED+TX_NO_BEGIN)
/* heuristically committed plus
* new transaction could not
* be started */

ATMI State The BEA TUXEDO system keeps track of the state for each process and verifies the
Transitions legal state transitions occur for the various function calls and options. The state

information includes the process type (request/response server, conversational servi
or client), the initialization state (uninitialized or initialized), the resource management
state (closed or open), the transaction state of the process, and the state of all

18 BEA TUXEDO Reference Manual

intro(3¢)

asynchronous request and connection descriptors. When an illegal state transition is
attempted, the called function fails, settipgrrno toTPEPROTOThe legal states and
transitions for this information are described in the following tables.

The table below indicates which functions request/response servers, conversational
servers, and clients are allowed to call. Note tfatinit andtpsvrdone are not

in this table since these functions are not called by applications (that is, they are
application-supplied functions that are invoked by the BEA TUXEDO system).

Function Call Permissions

Function Process Type

Request/response Conversational Client
Server Server Server

tpabort

tpacall

tpadvertise

tpalloc

tpbegin

tpbroadcast

tpcall

tpcancel

tpchkauth

tpchkunsol

tpclose

tpcommit

tpconnect

tpdequeue

tpdiscon

tpenqueue

tpforward

tpfree

<|=<|=<|=<|=<|=<|=<|=<|=<|z|<|=<|=<|=<|=<|=<|=<]|=<]|=<
<|=<|z|<|<|<|=<|<|<|z|<|=<|=<|=<|<|=<|<]|=<]|=x<
<|=<|z|=<|=<|=<|=<|=<|=<|<|=<|=<|=<|=<|=<|=<]|=z]|=<

tpgetlev

BEA TUXEDO Reference Manual 19

intro(3c¢)

20

Function Call Permissions

Function

Process Type

Request/response Conversational

Server

Server

Client
Server

tpgetrply

tpgprio

tpinit

tpnotify

tpopen

tppost

tprealloc

tprecv

tpresume

tpreturn

tpscmt

tpsend

tpservice

tpsetunsol

tpsprio

tpsubscribe

tpsuspend

tpterm

tptypes

tpunadvertise

tpunsubscribe

<|=<|=<|z|=<|<|=<|z|=<|=<|=<|=<|=<|=<|=<|=<|=<|=<|z|=<]|=<

<|=<|=<|z|=<|<|<|z|=<|=<|=<|=<|=<|=<|=<|=<|=<|=<|z|=<]|=<

<lz|l=<|<|=<|<|=<|<|z|<|=<|z|<|=<|=<|=<|=<|=<|=<|=<

The remaining state tables are for both clients and servers, unless otherwise noted.
Keep in mind that because some functions can not be called by both clients and serve
), certain state transitions shown below may not be possible for
both process types. The above table should be consulted to determine whether the

(for exampletpinit

process in question is allowed to call a particular function.

BEA TUXEDO Reference Manual

intro(3¢)

The following state table indicates whether or not a client process has been initialized
and registered with the transaction manager. Note that this table assumes the use of
tpinit , which is optional. That is, a client may implicitly join an application by
issuing one of many ATMI verbs (for exampigonnect ortpcall). A client must
usetpinit when either application authentication is required(geie (3c) and the
description of the SECURITY keyword ibbconfig (5)) or the client wishes to

directly access an XA-compliant resource managertfgeée (3c)).

A server is placed in the initialized state by the BEA TUXEDO systenits before

its tpsvrinit function is invoked, and it is placed in the uninitialized state by the

BEA TUXEDO system'snain after itstpsvrdone function has returned. Note that in

all of the state tables shown below, an error return from a function causes the process
to remain in the same state, unless otherwise noted.

Initialization States

Function States
Uninitialized Initialized
lo Iy

tpalloc lo I1
tpchkauth lo I
tpfree lo I
tpinit I I
tprealloc lo I
tpsetunsol) I1
tpterm lo lo
tptypes) I1
all others (see the 14 1
following note)

Note: all others” refers to the remaining ATMI calls

The remaining state tables assume a precondition of state | (regardless of whether a
process arrived in this state wpnit or the BEA TUXEDO systemisain).

The following table indicates the state of a client or server with respect to whether or
not a resource manager associated with the process has been initialized.

BEA TUXEDO Reference Manual 21

intro(3c¢)

Resource Management States

Function States
Closed Open
Ro R1

tpopen Ry Ry
tpclose Ro Ro
tpbegin Ry
tpcommit Ry
tpabort Ry
tpsuspend Ry
tpresume Ry
tpservice with flag TPTRAN Ry
all others R Ry

The following state table indicates the state of a process with respect to whether or ni
the process is associated with a transaction. For servers, transitions to states T and
assume a precondition of state R (for examptgen has been called with no
subsequent call tpclose or tpterm).

22 BEA TUXEDO Reference Manual

intro(3¢)

Transaction State of Process

Function State
Not in transaction Initiator Participant
To T1 T2
tpbegin
tpabort To
tpcommit To
tpsuspend To
tpresume T, To
tpservicewithflag Ty
TPTRAN
tpservice (not in To
transaction mode)
tpreturn To To
tpforward To To
tpclose Ro
tpterm lo To
all others B T, T

The following state table indicates the state of a single request descriptor returned by
tpacall

BEA TUXEDO Reference Manual 23

intro(3c¢)

24

Asynchronous Request Descriptor States

Function States
No Descriptor | Valid Descriptor
Ao Aq

tpacall Aq
tpgetrply Ao
tpcancel Ao
tpabort Ag Aot
tpcommit Ag Ag f
tpsuspend Ao At
tpreturn Ao Ag
tpforward Ag Ag
tpterm lo lo
all others A Ay

Note: * This state change occurs only if the descriptor is not associated with the
caller's transaction.

T This state change occurs only if the descriptor is associated with the caller"
transaction.

1t If the descriptor is associated with the caller's transactiongtespend
returns a protocol error.

The following state table indicates the state of a connection descriptor returned by
tpconnect or provided by a service invocation in theSVCINFOstructure. For
primitives that do not take a connection descriptor, the state changes apply to all
connection descriptors, unless otherwise noted.

BEA TUXEDO Reference Manual

intro(3¢)

The states are as follows:

4 C; - No descriptor

C, -tpconnect descriptor send-only
C, - tpconnect descriptor receive-only

C; - TPSVCINFOdescriptor send-only

* & & o

C, - TPSVCINFOdescriptor receive-only

Connection Request Descriptor States

Function/Event

States

C

Cs

Cy

tpconnect with TPSENDONLY C*

tpconnect with TPRECVONLY C,*

tpservice with flag TPSENDONLY Cst

tpservice with flag TPRECVONLY Cyt

tprecv/no event

Y

tprecv/TPEV_SENDONLY

O
A

tprecv/TPEV_DISCONIMM

tprecv/TPEV_SVCERR

tprecv/TPEV_SVCFAIL

tprecv/TPEV_SVCSUCC

LIeLL

tpsend/no event

tpsend with flag TPRECVONLY

tpsend/TPEV_DISCONIMM

tpsend/TPEV_SVCERR

tpsend/TPEV_SVCFAIL

BEA TUXEDO Reference Manual 25

intro(3c¢)

Connection Request Descriptor States

Function/Event States
Co C1 Cp C3 Cy

tpterm (client only) G G
tpcommit (originator only) C GCot G
tpsuspend (originator only) C Cift Gttt
tpabort (originator only) Co GCot Gt
tpdiscon Co Co
tpreturn (CONV server) Co Co C G
tpforward (CONV server) Co Co C G
all others G C C, C; C

Note: * If process is in transaction mode and TPNOTRAN not specified, the
connection is in transaction mode.

T If the TPTRANflag is set, the connection is in transaction mode.
1 If the connection is not in transaction mode, no state change.

T1 If the connection is in transaction mode, tipgnspend returns a protocol
error.

TXState The BEA TUXEDO system ensures that a process calls the TX verbs in a legal
Transitions sequence. When an illegal state transition is attempted (that is, a call from a state wi
a blank transition entry), the called function returns TX_PROTOCOL_ERROR. The
legal states and transitions for the TX primitives are shown in the table below. Calls
that return failure do not make state transitions, except where described by specific
state table entries. Any BEA TUXEDO system client or server is allowed to use the
TX verbs.

26 BEA TUXEDO Reference Manual

intro(3¢)

The states are defined below:

4 S;: No RMs have been opened or initialized. A process cannot start a global
transaction until it has successfully called tx_open.
4 S, A process has opened its RM but is not in a transaction. Its
transaction_control characteristic is TX_UNCHAINED.
4 S3: A process has opened its RM but is not in a transaction. Its
transaction_control characteristic is TX_CHAINED.
¢ S4: A process has opened its RM and is in a transaction. Its
transaction_control characteristic is TX_UNCHAINED.
4 S5: A process has opened its RM and is in a transaction. Its
transaction_control characteristic is TX_CHAINED.
Function States
SS S S % S
tx_begin S 9
tx_close S S S
tx_commit -> TX_SET1 S, &
tx_commit -> TX_SET2 S
tx_info S S S 9
tx_open S S S S 9
tx_rollback -> TX_SET1 S5 &
tx_rollback -> TX_SET2 S
tx_set_commit_return S5 S S &
tx_set_transaction_control S S S &
control = TX_CHAINED
tx_set_transaction_control SS 5 S S
control = TX_UNCHAINED
tx_set_transaction_timeout SS S S &

BEA TUXEDO Reference Manual 27

intro(3c¢)

28

See Also

Note:

buffer
tpcall

TX_SET1 denotes any of TX_OK, TX_ROLLBACK, TX_MIXED,
TX_HAZARD, or TX_COMMITTED (TX_ROLLBACK is not returned by
tx_rollback and TX_COMMITTED is not returned hy_commit).

TX_SET2 denotes any of TX_NO_BEGIN, TX_ROLLBACK_NO_BEGIN,
TX_MIXED_NO_BEGIN, TX_HAZARD_NO_BEGIN, or
TX_COMMITTED_NO_BEGIN (TX_ROLLBACK_NO_BEGIN is not
returned bytx_rollback and TX_COMMITTED_NO_BEGIN is not
returned bytx_commit).

If TX_FAIL is returned on any call, the application process is in an undefined
state with respect to the above table.

Whentx_info returns either TX_ROLLBACK_ONLY or
TX_TIMEOUT_ROLLBACK_ONLY in the transaction state information,
the transaction is marked rollback-only and will be rolled back whether the
application program calls_commit ortx_rollback

(3c),tpservice (3c),tpadvertise (3c),tpalloc (3c), tpbegin (3c),
(3c),tpconnect (3c),tpinit (3c),tpopen (3c),tuxtypes (5), typesw (5)

BEA TUXEDO Reference Manual

AEMsetblockinghook(3)

AEMsetblockinghook(3)

Name

Synopsis

Description

Return Values

Errors

Portability

AEMsetblockinghook (3)- establish an application-specific blocking hook function

#include <atmi.h>
int AEMsetblockinghook(_TM_FARPROC)

AEMsetblockinghook () is an “ATMI Extension for Mac” that allows a Mac task to
install a new function which the ATMI networking software uses to implement
blocking ATMI calls. It taks a pointer to the procedure instance address of the blocking
function to be installed.

A default function, by which blocking ATMI calls are handled, is included. The
function AEMsetblockinghook () gives the application the ability to execute its own
function at “blocking” time in place of the default function. If called with a NULL
pointer, the blocking hook function is reset to the default function.

When an application invokes a blocking ATMI operation, the operation is initiated and
then a loop is entered which is equivalent to the following pseudocode:

for(:;) {
execute operation in non-blocking mode
if error
break;
if operation complete
break;
while(BlockingHook())

)

}

AEMsetblockinghook () returns a pointer to the procedure-instance of the previously
installed blocking function. The application or library that calls the
AEMsetblockinghook () function should save this return value so that it can be
restored if necessary. (If “nesting” is not important, the application may simply discard
the value returned b&EMsetblockinghook () and eventually use

AEMsetblockinghook (NULL) to restore the default mechanism.)

AEMsetblockinghook () returns NULL on error and sefermo to indicate the error
condition.

Under the following conditionaAEMsetblockinghook () fails and setgpermo to:

[TPEPROTD
AEMsetblockinghook () was called while a blocking operation is in
progress.

This interface is supported only in Mac clients.

BEA TUXEDO Reference Manual 29

AEMsetblockinghook(3)

Notices The blocking function is reset aftgterm (3) is called by the application.

30 BEA TUXEDO Reference Manual

AEOaddtypesw(3)

AEOaddtypesw(3)
Name AEOaddtypesw (3)-install or replace a user defined buffer type at execution time
Synopsis #include <atmi.h>
#include <tmtypes.h>
int FAR PASCAL AEOaddtypesw(TMTYPESW *newtype)

Description AEOaddtypesw() is an “ATMI Extension for OS/2” that allows an OS/2 client to
install a new, or replace an existing user defined buffer type at execution time. The
argument to this function is a pointer toMTYPESWtructure that contains the
information for the buffer type to be installed.

If the type and thesubtype match an existing buffer type already installed, then all
the information is replaced with the new buffer type. If the information does not match
thetype and thesubtype fields, then the new buffer type is added to the existing types
registered with the BEA TUXEDO system. For new buffer types, make sure that the
WSH(1) and other BEA TUXEDO system processes involved in the call processing
have been built with the new buffer type.
The function pointers in theMTYPESVarray should appear in the Module Definition
file of the application in thEXPORTSsection.
The application can also use the BEA TUXEDO system’s defined buffer type routines.
The application and the BEA TUXEDO system’s buffer routines can be intermixed in
one user defined buffer type.
Return Values AEOaddtypesw () returns the number of user buffer types in the system on success.
AEOaddtypesw () returns -1 on error and seperrno to indicate the error condition.
Errors Under the following conditionpAEOaddtypesw () fails and setgperrno to:
[TPEINVAL]
AEOaddtypesw () was called and thgpe parameter was NULL.
[TPESYSTEW
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.
Portability =~ This interface is supported only in Windows clients. The preferred way to install a type
switch is to add it to the BEA TUXEDO system typeswitch DLL. Please refer to the
BEA TUXEDO Administrator's Guider more information.
Notices FAR PASCAL is used only for the 16 bit OS/2 environment.

BEA TUXEDO Reference Manual 31

AEOaddtypesw(3)

Examples

#include <o0s2.h>
#include <atmi.h>
#include <tmtypes.h>

int FAR PASCAL Nfinit(char FAR *, long);

int (FAR PASCAL * IpFinit)(char FAR *, long);
int FAR PASCAL Nfreinit(char FAR *, long);

int (FAR PASCAL * IpFreinit)(char FAR *, long);
int FAR PASCAL Nfuninit(char FAR *, long);

int (FAR PASCAL * IpFuninit)(char FAR *, long);

TMTYPESW newtype =

{

“MYFML", 1024, NULL, NULL,
NULL, _fpresend, _fpostsend, _fpostrecv, _fencdec,
_froute

3

newtype.initbuf = Nfinit;
newtype.reinitbuf = Nfreinit;
newtype.uninitbuf = Nfuninit;

if(AEOaddtypesw(newtype) == -1) {
userlog(“AEOaddtypesw failed %s”, tpstrerror(tperrno));
}

int
FAR PASCAL
Nfinit(char FAR *ptr, long len)

return(l);

int
FAR PASCAL
Nfreinit(char FAR *ptr, long len)

return(l);
}
int
FAR PASCAL
Nfuninit(char FAR *ptr, long mdlen)

return(1);

32 BEA TUXEDO Reference Manual

AEOaddtypesw(3)

The application Module Definition File:
; EXAMPLE.DEF file
NAME EXAMPLE
DESCRIPTION 'EXAMPLE for OS/2'
EXETYPE OS2
EXPORTS
Nfinit

Nfreinit
Nfuninit

See Also buffer (3), buildwsh (1), typesw (5)

BEA TUXEDO Reference Manual 33

AEPisblocked(3)

AEPisblocked(3)
Name AEPisblocked- determine if a blocking call is in progress
Synopsis #include <atmi.h>
int far pascal AEPisblocked(void)

Description AEPisblocked () is an “ATMI Extension for OS/2 Presentation Manager” that allows
a 0S/2 PM task to determine if it is executing while waiting for a previous blocking
call to complete.

Return Values AEPisblocked () returns 1 if there is an outstanding blocking function awaiting
completion. Otherwise, it returns 0.
Errors No errors are returned.
Portability ~ This interface is supported only in OS/2 PM clients.

Comments Although a blocking ATMI call appears to an application as though it “blocks,” the
OS/2 PM ATMI DLL has to relinquish the processor to allow other applications to run.
This means that it is possible for the application which issued the blocking call to be
re-entered, depending on the message(s) it receives. In this instance, the
AEPisblocked () function can be used to ascertain whether the task has been
re-entered while waiting for an outstanding blocking call to complete. Note that ATMI
prohibits more than one outstanding call per thread.

See Also AEPsetblockinghook ()

34 BEA TUXEDO Reference Manual

AEPsetblockinghook(3)

AEPsetblockinghook(3)

Name

Synopsis

Description

AEPsetblockinghook -establish an application-specific blocking hook function

#include <atmi.h>
int_TM_FARPROC far pascal AEPsetblockinghook(_TM_FARPROC)

AEPsetblockinghook () is an “ATMI Extension for OS/2 Presentation Manager” that
allows a OS/2 PM task to install a new function which the ATMI networking software
uses to implement blocking ATMI calls. It taks a pointer to the function address of the
blocking function to be installed.

A default function, by which blocking ATMI calls are handled, is included. The
function AEPsetblockinghook () gives the application the ability to execute its own
function at “blocking” time in place of the default function. If called with a NULL
pointer, the blocking hook function is reset to the default function.

When an application invokes a blocking ATMI operation, the operation is initiated and
then a loop is entered which is equivalent to the following pseudocode:

for(;:) {
execute operation in non-blocking mode
if error
break;
if operation complete
break;
while(BlockingHook())

}
The default BlockingHook() function is equivalent to:

BOOL far pascal
win_default(void)

QMSG gmsg;
HAB hab;
BOOL ret;

/* get the next message if any */

hab = WinQueryAnchorBlock(HWND_DESKTOP);

if (ret = WinPeekMsg(hab, gmsg, NULL, 0, 0, PM_REMOVE)) {
/* if we got one, process it */
WinDispatchMsg(hab, gmsg);

/* TRUE if we got a message */
return(ret);

BEA TUXEDO Reference Manual 35

AEPsetblockinghook(3)

Return Values

36

Errors

Portability
Notices

See Also

TheAEPsetblockinghook () function is provided to support those applications which
require more complex message processing - for example, those employing the MDI
(multiple document interface) model. Itis notintended as a mechanism for performing
general application functions. In particular, no ATMI functions may be issued from a
custom blocking hook function.

AEPsetblockinghook () returns a pointer to the function address of the previously
installed blocking function. The application or library that calls the
AEPsetblockinghook () function should save this return value so that it can be
restored if necessary. (If “nesting” is not important, the application may simply discard
the value returned b&EPsetblockinghook () and eventually use

AEPsetblockinghook (NULL) to restore the default mechanism.)

AEPsetblockinghook () returns NULL on error and setrmo to indicate the error
condition.

Under the following conditiomAEPsetblockinghook () fails and setgperrno to:

[TPEPROTD
AEPsetblockinghook () was called while a blocking operation is in
progress.

This interface is supported only in OS/2 PM clients.
The blocking function is reset afteterm (3) is called by the application.

AEPisblocked ()

BEA TUXEDO Reference Manual

AEWaddtypesw(3)

AEWaddtypesw(3)

Name

Synopsis

Description

Return Values

Errors

Portability

AEWaddtypesw -install or replace a user defined buffer type at execution time

#include <atmi.h>
#include <tmtypes.h>

int FAR PASCAL AEWaddtypesw(TMTYPESW *newtype)

AEWaddtypesw () is an “ATMI Extension for Windows” that allows a Windows task to
install a new, or replace an existing user defined buffer type at execution time. The
argument to this function is a pointer toMTYPESWtructure that contains the
information for the buffer type to be installed.

If the type and thesubtype match an existing buffer type already installed, then all
the information is replaced with the new buffer type. If the information does not match
thetype and thesubtype fields, then the new buffer type is added to the existing types
registered with BEA TUXEDO system. For new buffer types, make sure that the
WSH(1) and other BEA TUXEDO system processes involved in the call processing
have been built with the new buffer type.

The function pointers in theMTYPESwarray should be obtained by using the
MakeProclnstance() function, and these functions should appear in the Module
Definition file of the applications in thEXPORTSsection.

The application can also use the BEA TUXEDO system’s defined buffer type routines
like _dfitinitbuf (), etc. The application and the BEA TUXEDO system’s buffer
routines can be intermixed in one user defined buffer type.

AEWaddtypesw () returns the number of user buffer types in the system on success.
AEWaddtypesw () returns -1 on error and seperrno to indicate the error condition.

Under the following conditiorAEWaddtypesw () fails and setgperro to:

[TPEINVAL]
AEWaddtypesw () was called and thigpe parameter was NULL.

[TPESYSTEW
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

This interface is supported only in Windows clients. The preferred way to install a type
switch is to add it to the BEA TUXEDO system typeswitch DLL. Please refer to the
BEA TUXEDO Administrators Guider more information.

BEA TUXEDO Reference Manual 37

AEWaddtypesw(3)

Notices In the Windows 3.x 16 bit environment, the buffer type information is reset after
tpterm (3) is called by the application. FAR PASCAL is used only for the 16 bit
Windows 3.x environment.

Examples

#include <windows.h>
#include <atmi.h>
#include <tmtypes.h>

int FAR PASCAL Nfinit(char FAR *, long);

int (FAR PASCAL * IpFinit)(char FAR *, long);
int FAR PASCAL Nfreinit(char FAR *, long);

int (FAR PASCAL * IpFreinit)(char FAR *, long);
int FAR PASCAL Nfuninit(char FAR *, long);

int (FAR PASCAL * IpFuninit)(char FAR *, long);

TMTYPESW newtype =

{

"MYFML", 1024, NULL, NULL,
NULL, _fpresend, _fpostsend, _fpostrecv, _fencdec,
_froute

h

IpFinit = MakeProcInstance(Nfinit, hinst);
IpFreinit = MakeProcInstance(Nfreinit, hinst);
IpFuninit = MakeProcInstance(Nfuninit, hinst);

newtype.initbuf = IpFinit;
newtype.reinitbuf = IpFreinit;
newtype.uninitbuf = IpFuninit;

if(AEWaddtypesw(newtype) == -1) {
userlog("AEWaddtypesw failed %s", tpstrerror(tperrno));
}
int
FAR PASCAL
Nfinit(char FAR *ptr, long len)

return();

}

int
FAR PASCAL
Nfreinit(char FAR *ptr, long len)

38 BEA TUXEDO Reference Manual

AEWaddtypesw(3)

return(1);

}

int

FAR PASCAL

Nfuninit(char FAR *ptr, long mdlen)

return(1);

}
The application Module Definition File:
; EXAMPLE.DEF file
NAME EXAMPLE
DESCRIPTION 'EXAMPLE for Microsoft Windows'
EXETYPE WINDOWS
EXPORTS
Nfinit

Nfreinit
Nfuninit

See Also buffer (3), buildwsh (1), typesw (5)

BEA TUXEDO Reference Manual 39

AEWisblocked(3)

AEWisblocked(3)
Name AEWisblocked -determine if a blocking call is in progress
Synopsis #include <atmi.h>
int far pascal AEWisblocked(void)
Description AEWisblocked () is an “ATMI Extension for Windows” that allows a Windows task to
determine if it is executing while waiting for a previous blocking call to complete.
Return Values AEWisblocked () returns 1 if there is an outstanding blocking function awaiting
completion. Otherwise, it returns 0.
Errors No errors are returned.
Portability =~ This interface is supported only in DOS Windows clients.
Comments Although a blocking ATMI call appears to an application as though it “blocks,” the
Windows ATMI DLL has to relinquish the processor to allow other applications to run.
This means that it is possible for the application which issued the blocking call to be
re-entered, depending on the message(s) it receives. In this instance, the
AEWisblocked() function can be used to ascertain whether the task has been re-enter
while waiting for an outstanding blocking call to complete. Note that ATMI prohibits
more than one outstanding call per thread.
See Also AEWsetblockinghook ()

40 BEA TUXEDO Reference Manual

AEWsetblockinghook(3)

AEWSsetblockinghook(3)

Name

Synopsis

Description

AEWsetblockinghook- establish an application-specific blocking hook function

#include <atmi.h>
int FARPROC far pascal AEWSsetblockinghook(FARPROC)

AEWSsethlockinghook () is an “ATMI Extension for Windows” that allows a

Windows task to install a new function which the ATMI networking software uses to
implement blocking ATMI calls. It takes a pointer to the procedure instance address of
the blocking function to be installed.

A default function, by which blocking ATMI calls are handled, is included. The
function AEWsetblockinghook () gives the application the ability to execute its own
function at “blocking” time in place of the default function. If called with a NULL
pointer, the blocking hook function is reset to the default function.

When an application invokes a blocking ATMI operation, the operation is initiated and
then a loop is entered which is equivalent to the following pseudocode:

for(:;) {
execute operation in non-blocking mode
if error
break;
if operation complete
break;
while(BlockingHook())

}
The default BlockingHook() function is equivalent to:

BOOL far pascal
win_default(void)
{
MSG msg;
BOOL ret;
/* get the next message if any */
if (ret = PeekMessage(msg, NULL, 0, 0, PM_REMOVE)) {
/* if we got one, process it */
TranslateMessage(msg);
DispatchMessage(msg);

/* TRUE if we got a message */
return(ret);

BEA TUXEDO Reference Manual 41

AEWsetblockinghook(3)

Return Values
Errors
Portability
Notices
See Also

42

TheAEWsetblockinghook () function is provided to support those applications which
require more complex message processing-for example, those employing the MDI
(multiple document interface) model. Itis notintended as a mechanism for performing
general application functions. In particular, no ATMI functions may be issued from a
custom blocking hook function. Note that the blocking hook function should return O
to terminate the loop and non-zero to continue looping.

AEWsetblockinghook () returns a pointer to the procedure-instance of the previously
installed blocking function. The application or library that calls the
AEWsetblockinghook () function should save this return value so that it can be
restored if necessary. (If “nesting” is not important, the application may simply discard
the value returned b&EWsetblockinghook () and eventually use

AEWsetblockinghook (NULL) to restore the default mechanism.)

AEWsetblockinghook () returns NULL on error and setrmo to indicate the error
condition.

Under the following conditiomAEWsetblockinghook () fails and setgperrno to:

[TPEPROTD
AEWsetblockinghook () was called while a blocking operation is in
progress.

This interface is supported only in DOS Windows clients.
The blocking function is reset afteterm (3) is called by the application.

AEWisblocked ()

BEA TUXEDO Reference Manual

AEWsetunsol(3)

AEWSsetunsol(3)

Name

Synopsis

Description

Return Values

Errors

Portability

Notices

See Also

AEWSsetunsol- post Windows message for TUXEDO unsolicited event

#include <windows.h>
#include <atmi.h>
int far pascal AEWsetunsol(HWND hwnd, WORD wMsg)

In certain Microsoft Windows programming environments it is natural and convenient
for the BEA TUXEDO system’s unsolicited messages to be posted to the Windows
event message queue.

AEWSsetunsol () controls which window to notifyhWnd and which Windows message
type to postwMsg When a TUXEDO unsolicited message arrives, a Windows
message is postelaram is set to the BEA TUXEDO system buffer pointer, or zero
if none. IflParam is non-zero, the application must aaftee (3) to release the
buffer.

If wMsgis zero, any future unsolicted messages will be logged and ignored.
AEWSsetunsol () returns \-1 on failure and seperrno to indicate the error condition.

Under the following conditiongyEwsetunsol () fails and setgpermo to:

[TPESYSTEM]
A BEA TUXEDO system error has occurred The exact nature of the error is
written to a log file.

[TPEOS]
An operating system error has occurred.

This interface is supported only in Microsoft Windows clients.

AEWSsetunsol () posting of Windows messages may not be activated simultaneously
with atpsetunsol () callback routine. The most recepdetunsol () or
AEWSsetunsol () request controls how unsolicited messages will be handled.

tpsetunsol (3)

BEA TUXEDO Reference Manual 43

buffer(3¢)

buffer(3¢)

Name

Synopsis

buffer(3c) -semantics of elements imtype_sw_t

int /* Initialize a new data buffer */

_tminitbuf(char *ptr, long len)

int /* Re-initialize a re-allocated data buffer */

_tmreinitbuf(char *ptr, long len)

int /* Un-initialize a data buffer to be freed */

_tmuninitbuf(char *ptr, long len)

long /* Process buffer before sending */

_tmpresend(char *ptr, long dlen, long mdlen)

void /* Process buffer after sending */

_tmpostsend(char *ptr, long dlen, long mdlen)

long /* Process buffer after receiving */

_tmpostrecv(char *ptr, long dlen, long mdlen)

long /* Encode/decode a buffer to/from a transmission format */
_tmencdec(int op, char *encobj, long elen, char *obj, long olen)

int /* Determine server group for routing based on data */ _tmroute(char
*routing_name, char *service, char *data, long \ len, char *group)

int /* Evaluate boolean expression on buffer’s data */ _tmfilter(char *ptr,
long dlen, char *expr, long exprlen)

int /* Extract buffer's data based on format string */ _tmformat(char *ptr,
long dlen, char *fmt, char *result, long \ maxresult)

Description

This page describes the semantics of the elements and routines defined in the
tmtype_sw_t structure. These descriptions are necessary for adding new buffer type
to a process' buffer type switam_typesw . The switch elements are defined in
typesw(5) . The function names used in this entry are templates for the actual functior
names defined by the BEA TUXEDO system as well as by applications adding their
own buffer types. The names map to the switch elements very simply: the template
names are made by taking each function pointer's element name and prepgnding
(for example, the elemeititbuf has the function nameminitouf).

The elementype must be non-NULL and up to 8 characters in length. The element
subtype can be NULL, a string of up to 16 characters, or the wild card character, “*".
If type is not unique in the switch, thenbtype must be used; the combination of
type andsubtype must uniquely identify an element in the switch.

A given type can have multiple sub-types. If all sub-types are to be treated the same
for a given type, then the wild card character, “*”, can be used. Note that the functior
tptypes can be used to determine a buffer's type and sub-type if sub-types need to t
distinguished. If some subset of the sub-types within a particular type are to be treate
individually, and the rest are to be treated identically, then those which are to be

44 BEA TUXEDO Reference Manual

buffer(3c)

Routine
Spedifics

_tminitbuf

_tmreinitbuf

singled out with specific sub-type values should appear in the switch before the
sub-type designated with the wild card. Thus, searching for types and sub-types in the
switch is done from top to bottom, and the wild card sub-type entry accepts any
“leftover” type matches.

dfitsize is used when allocating or re-allocating a buffer. The largefitsite

and the routinesize parameter is used to create or re-allocate a buffer. For some
types of structures, like a fixed sized C structure, the buffer size should equal the size
of the structure. Ififitsize is set to this value, then the caller may not need to specify
the buffer's length to routines in which a buffer is pasdi#gize ~ can be 0 or less;
however, iftpalloc ortprealloc is called and itsize parameter is also less than

or equal to 0, then the routine will fail. It is not recommended tdfsgte toa

value less than 0.

The names of the functions specified below are template names used within the BEA
TUXEDO system. Any application adding new routines to the buffer type switch must
use names that correspond to real functions, either provided by the application or
library routines. If a NULL function pointer is stored in a buffer type switch entry, the
BEA TUXEDO system calls a default function that takes the correct number and type
of arguments, and returns a default value.

_tminitbuf is called from withinpalloc after a buffer has been allocated. It is
passed a pointer to the new buffer, , along with its size so that the buffer can be
initialized appropriatelylen is the larger of the length passed ipigloc and the
default specified inifitsize in that type's switch entry. Note that will never be
NULL due to the semantics gfalloc andtprealloc . Upon successful returpyr

is returned to the caller gfalloc

If a single switch entry is used to manipulate many sub-types, then the writer of
_tminitbuf can useptypes to determine the sub-type.

If no buffer initialization needs to be performed, specify a NULL function pointer.

Upon success tminitbuf returns 1. If the function fails, it returns -1 causing
tpalloc to also return failure settingerrno to TPESYSTEM

_tmreinitbuf behaves the same aminitbouf ~ except it is used to re-initialize a
re-allocated buffer. It is called from withiprealloc ~ after the buffer has been
re-allocated.

If no buffer re-initialization needs to be performed, specify a NULL function pointer.
Upon success tmreinitbuf returns 1. If the function fails, it returns -1 causing

tprealloc to also return failure settingerrno to TPESYSTEM

BEA TUXEDO Reference Manual 45

buffer(3¢)

46

_tmuninitbuf

_tmpresend

_tmpostsend

_tmuninitbuf is called bytpfree before the data buffer is freedmuninitbuf is
passed a pointer to the application portion of a data buffer, along with its size, and ca
be used to clean up any structures or state information associated with thapbuffer.
will never be NULL due tapfree 's semantics. Note thatmuninitouf should not

free the buffer itself.

If no processing needs to be performed before freeing a buffer, specify a NULL
function pointer.

Upon success,tmuninitbuf returns 1. If the function fails, it returns -1 causing
tpfree to print a log message.

_tmpresend is called before a buffer is senttpreall |, tpacall |, tpconnect

tpsend , tpbroadcast |, tpnotify , tpreturn , ortpforward . It is also called after
_tmroute but before tmencdec . If ptr is non-NULL, pre-processing is performed
on a buffer before it is senttmpresend 's first argumentptr , is the application data
buffer passed into the send call. Its second argurdnt, is the data's length as
passed into the send call. Its third argumemnfen , is the actual size of the buffer in
which the data resides.

One important requirement on this function is that it ensures that when the function
returns, the data pointed to py can be sent “as is.” That is, sindenencdec is

called only if the buffer is being sent to a dissimilar machitegresend must ensure
upon return that no elementprr 's buffer is a pointer to data that is not contiguous to
the buffer.

If no pre-processing needs to be performed on the data and the amount of data the ca
specified is the same as the amount that should be sent, specify a NULL function
pointer. The default routine returden and does nothing to the buffer.

Upon successtmpresend returns the amount of data to be sent. If the function fails,
it returns -1 causingtmpresend 's caller to also return failure settifggrmo to
TPESYSTEM

_tmpostsend is called after a buffer is senttigtall , tpbroadcast, tpnotify,

tpacall, tpconnect, ortpsend . This routine allows any post-processing to be
performed on a buffer after it is sent and before the function returns. Because the buffe
passed into the send call should not be different upon retunpgstsend is called to
repair a buffer changed bympresend . This function's first argumengtr , points to

the data sent as a result afipresend . The data's length, as returned from

_tmpresend , is passed in as this function's second argunamt,. The third
argumentmadlen , is the actual size of the buffer in which the data resides. This routine
is called only whemtr is non-NULL.

If no post-processing needs to be performed, specify a NULL function pointer.

BEA TUXEDO Reference Manual

buffer(3c)

_tmpostrecv

_tmencdec

_tmpostrecv is called after a buffer is received, and possibly decoded, in

tpgetrply, tpcall, tprecv, orin the BEA TUXEDO system's server abstraction,
and before it is returned to the applicatiomptf is non-NULL,_tmpostrecv ~ allows
post-processing to be performed on a buffer after it is received and before it is given to
the application. Its first argumenmty , points to the data portion of the buffer received.

Its second argumendfen , specifies the data's size coming in tepostrecv . The

third argumentmdien , specifies the actual size of the buffer in which the data resides.

If _tmpostrecv changes the data length in post-processing, it must return the data's
new length. The length returned is passed up to the application in a manner dependent
on the call used (for examplpcall sets the data length in one of its arguments for

the caller to check upon return).

The buffer's size might not be large enough for post-processing to succeed. If more
space is requiredtmpostrecv returns the negative absolute value of the desired
buffer size. The calling routine then resizes the buffer, and ¢alf@strecv a

second time.

If no post-processing needs to be performed on the data and the amount of data
received is the same as the amount that should be returned to the application, specify
a NULL function pointer. The default routine returfisn and does nothing to the

buffer.

On success,tmpostrecv returns the size of the data the application should be made
aware of when the buffer is passed up from the corresponding receive call. If the
function fails, it returns -1 causingmpostrecv 's caller to return failure, setting

tperrno t0O TPESYSTEM

_tmencdec is used to encode/decode a buffer sent/received over a network to/from a
machine having different data representations. The BEA TUXEDO system
recommends the use of XDR; however, any encoding/decoding scheme can be used
that obeys the semantics of this routine.

This function is called bypcall, tpacall, tpbroadcast, tpnotify,

tpconnect, tpsend, tpreturn, ortpforward to encode the caller's buffer only
when it is being sent to an “unlike” machine. In these callgncdec is called after
both_tmroute and_tmpresend , respectively. Recall from the description of
_tmpresend that the buffer passed intonencdec contains no pointers to data that is
not contiguous to the buffer.

On the receiving endygrecv, tpgetrply ,the receive half apcall and the server
abstraction all calltmencdec to decode a buffer after they have received it from an
‘unlike” machine but before callingtmpostrecv

BEA TUXEDO Reference Manual 47

buffer(3¢)

48

_tmroute

_tmencdec 's first argumentpp, specifies whether the function is encoding or
decoding dataop can be one ofMENCODBr TMDECODE

Whenop is TMENCODEencobj points to a buffer allocated by the BEA TUXEDO
system where the encoded version of the data will be copied. The un-encoded data
resides imbj . That is, wherop is TMENCODQE tmencdec transformsobj to its

encoded format and places the resultribobj . The size of the buffer pointed to by
encobj is specified byelen and is at least four times the size of the buffer pointed to
by obj whose length islen . olen is the length returned bympresend.

_tmencdec returns the size of the encoded dataritobj (that is, the amount of data

to actually send).tmencdec should not free either of the buffers passed into the
function.

Whenop is TMDECODEencobj points to a buffer allocated by the BEA TUXEDO
system where the encoded version of the data resides as read off a communication
endpoint. The length of the bufferégen . obj points to a buffer that is at least the
same size as the buffer pointed todagobj into which the decoded data is copied.
The length obbj isolen . Asobj is the buffer ultimately returned to the application,
this buffer may be grown by the BEA TUXEDO system before callimgncdec to
ensure that it is large enough to hold the decoded datencdec returns the size of

the decoded data wbj . After _tmencdec returns, tmpostrecv is called withobj
passed as its first argumentmnencdec 's return value as its second, ameh as its

third. _tmencdec should not free either of the buffers passed into the function.

_tmencdec is called only when non-NULL data needs to be encoded or decoded.

If no encoding or decoding needs to be performed on the data even when dissimilar
machines exist in the network, specify a NULL function pointer. The default routine
returns eithevlen (op equalSTMENCODEor elen (op equalSTMDECODE

On success,tmencdec returns a non-negative length as described above. If the
function fails, it returns -1 causingmencdec 's caller to return failure, setting
tperrno to TPESYSTEM

The default for message routing is to route a message to any available server group tt
offers the desired service. Each service entry iiBBCONFIJile can specify the

logical name of some routing criteria for the service usinRi@TINGparameter.
Multiple services can share the same routing criteria. In the case that a service has
routing criteria name specifiedtmroute is used to determine the server group to
which a message is sent based on data in the message. This mapping of data to sel
group is called “data-dependent routinguhroute is called before a buffer is sent
(and before tmpresend and_tmencdec are called) inpcall, tpacall,

tpconnect, andtpforward

BEA TUXEDO Reference Manual

buffer(3c)

_tmfilter

_tmformat

routing_name is the logical name of the routing criteria (as specified in the
UBBCONFIdile) and is associated with every service that needs data dependent
routing.service is the name of the service for which the request is being made. The
parametetiata points to the data that is being transmitted in the requegéand its
length. Unlike the other routines described in these pagesute is called even
whenptr is NULL. Thegroup parameter is used to return the name of the group to
which the request should be routed. This group name must match one of the group
names listed in theBBCONFIdile (and one that is active at the time the group is
chosen). If the request can go to any available server providing the specified service,
group should be set to the NULL string and the function should return 1.

If data dependent routing is not needed for the buffer type, specify a NULL function
pointer. The default routine segsup to the NULL string and returns 1.

Upon successtmroute returns 1. If the function fails, it returns -1 causing
_tmroute 's caller to also return failure; as a resiplyrno is set toTPESYSTEMIf
_tmroute fails because a requested server or service is not availabtep is set
to TPENOENT

If group is set to the name of an invalid server group, the function caliimgute
will return an error and sgferrno to TPESYSTEM

_tmfilter is called by the Event Broker server to analyze the contents of a buffer
posted bytppost . An expression provided by the subscribgs(bscribe) is
evaluated with respect to the buffer's contents. If the expression isttnéiger

returns 1 and the Event Broker performs the subscription's notification action.
Otherwise, if_tmfiter ~ returns 0, the Event Broker does not consider this posting a
“match” for the subscription.

If exprien is -1,expr is interpreted as a null-terminated character string. Otherwise
expr is interpreted asxprlen bytes of binary data. Aaxprlen of 0 indicates no
expression.

If filtering does not apply to this buffer type, specify a NULL function pointer. The
default routine returns 1 if there is no expression expf is an empty null-terminated
string. Otherwise the default routine returns 0.

_tmformat is called by the Event Broker server to convert a buffer's data into a
printable string, based on a format specification nafmed The Event Broker
converts posted buffers to strings as inputeriog or system notification actions.

BEA TUXEDO Reference Manual 49

buffer(3¢)

50

See Also

The output is stored as a character string in the memory location pointecta/by .
Up tomaxresult bytes are written inesult , including a terminating null character.
If result is not large enoughtmformat truncates its output. The output string is
always null terminated.

On successtmformat returns a non-negative integer. 1 means success, 2 means th
output string is truncated. If the function fails, it returns -1 and stores an empty string
in result

If formatting does not apply to this buffer type, specify a NULL function pointer. The
default routine succeeds and returns an empty stringgit

tpacall (3c),tpalloc (3c),tpcall (3c),tpconnect (3c),tpdiscon (3c),
tpfree (3c),tpgetrply (3c),tpgprio (3c),tprealloc (3c),tprecv (3c),
tpsend (3c),tpsprio (3c),tptypes (3c¢)

BEA TUXEDO Reference Manual

catgets(3)

catgets(3)
Name

Synopsis

Description

Diagnostics

See Also

catgets -read a program message

#include <nl_types.h>
char *catgets (nl_catd catd, int set_num, int msg_num, char *s)

catgets attempts to read messageg_num in setset num , from the message
catalogue identified byatd . catd is a catalogue descriptor returned from an earlier
call tocatopen (3). s points to a default message string which will be returned by
catgets if the identified message catalogue is not currently available.

If the identified message is retrieved successfalligets returns a pointer to an
internal buffer area containing the null terminated message string. If the call is
unsuccessful because the message catalogue identifeattibys not currently
available, a pointer te is returned.

catopen (3).

BEA TUXEDO Reference Manual 51

catopen(3)

catopen(3)

52

Name

Synopsis

Description

catopen , catclose -open/close a message catalogue

#include <nl_types.h>
nl_catd catopen (char *name, int oflag)
int catclose (nl_catd catd)

catopen oOpens a message catalogue and returns a catalogue desaipt@pecifies

the name of the message catalogue to be openetnéfcontains a/*” then name
specifies a pathname for the message catalogue. Otherwise, the environment variat
NLSPATHis used. INLSPATHdoes not exist in the environment, or if a message
catalogue cannot be opened in any of the paths specifiedIRATH then the default
path is used (se®_types (5)).

The names of message catalogues, and their location in the filestore, can vary from ol
system to another. Individual applications can choose to name or locate message
catalogues according to their own special needs. A mechanism is therefore required
specify where the catalogue resides.

TheNLSPATHvariable provides both the location of message catalogues, in the form
of a search path, and the naming conventions associated with message catalogue fil
For example:

NLSPATH=/nlslib/%L/%N.cat:/nislib/%N/%L

The metacharactesintroduces a substitution field, whexg substitutes the current
setting of the. ANGenvironment variable (see following section), asibubstitutes the
value of thename parameter passeddatopen . Thus, in the above examptatopen
will search in/nislib/$LANG/ namecat , then innislib /name/$LANG for the
required message catalogue.

NLSPATHwiIll normally be set up on a system wide basis (e.getarprofile) and
thus makes the location and naming conventions associated with message catalogt
transparent to both programs and users.

The full set of metacharacters is:

BEA TUXEDO Reference Manual

catopen(3)

Diagnostics

See Also

Metacharacters

%N The value of the name parameter passextapen .

%L The value oLANG

%l The value of the language elementaiNG

%t The value of the territory element bANG

%c The value of the codeset element&NG

%% A single %.

TheLANGenvironment variable provides the ability to specify the user's requirements
for native languages, local customs and character set, as an ASCII string in the form
LANG=language[_territory[.codeset]]

A user who speaks German as it is spoken in Austria and has a terminal that operates
in ISO 8859/1 codeset, would want the setting ofLtheGvariable to be as follows:

LANG=De_A.88591

With this setting it should be possible for the user to find relevant catalogues if they
exist.

If the LANGvariable is not set then the valueLaf MESSAGES®&s returned by
setlocale (3) is used. If this islULL then the default path as definedhinypes (5)
is used.

oflag is reserved for future use and should be set to 0. The results of setting this field
to any other value are undefined.

catclose closes the message catalogue identifiedduny .

If successfulgatopen returns a message catalogue descriptor for use on subsequent
calls tocatgets (3) andcatclose (3). Otherwisecatopen () returng(nl_catd) -1
catclose returns 0 if successful, otherwise -1.

catgets (3), setlocale (3), nl_types (5).

BEA TUXEDO Reference Manual 53

change_atts(3)

change_atts(3)

Name

Synopsis

Description

Examples

change_atts- change field attributes on form

#include <fml.h>

int change_atts(fbfr,fldid,occno,atts)
FBFR *fbfr;

FLDID fldid;

int occno;

char *atts;

change_atts is a function called by a server to alter dynamically field attributes on a
form displayed by a data entry progratmange_atts () adds a special field tofr |,

which is interpreted by a data entry program upon receiving the fielded tidféer.
andoccno specify the field on the form whose attributes are to change. If two fields
on the form have identicéblid andoccno , both will changeatts should point to a
string of attributes. The available attributes are those allowed ftagke field of a
UFORM script, with the exception of theandl attributes, which are not allowed.
Literal fields may not be altered to become protected or unprotected fields, and
protected and unprotected fields may not be altered to become literal fields. It is not
necessary foatts to point to a complete list of attributes. Only those attributes which
are to change need be included. For example, a field that is described as secret anc
unprotected on the UFORM script, can be changed to secret and protecte@ asth a
its atts argumentatts may also point to the strirRESTOREIN which case all of the
original attributes specified by the UFORM script are restored, and the dynamic
attributes are forgotten.

Servers in whiclehange_atts () is called must link iibtfrm.a ~ with the-f option
of buildserver(1).

The following changes a field from secret and bold to non-secret and non-bold.
change_atts(fbfr, fldid, occno, “NQ”);

Any code that useshange_atts () must link inlibtfrm.a . The following example
shows howibtfrm.a should be specified onbaildserver (1) command line.

buildserver -s PRTFORM -f ${TUXDIR}/lib/formprint.o -f lib/libtfrm.a

Diagnostics

See Also

change_atts () returns a 1 on success. It has two return codes to indicate failure. It
returns a zero on a failed fielded buffer operation. In this €asey contains the
reason for failure. It returns a \-1 on all other failures.

buildserver (1), compilation (5), TUXEDO Data Entry System Guide

54 BEA TUXEDO Reference Manual

decimal(3)

decimal(3)
Name decimal -decimal conversion and arithmetic routines
Synopsis

#include “decimal.h”

int

Iddecimal(cp, len, np) /* load a decimal */
char*cp; [* input: location of compacted format */
int

len; /* input: length of compacted format */
dec_t*np; /* output: location of dec_t format */
void

stdecimal(np, cp, len) /* store a decimal */
dec_t*np; /* input: location of dec_t format */
char*cp; * output: location of compacted format */
int len; * input: length of compacted format */

int

deccmp(nl, n2) /* compare two decimal numbers */
dec_t*n1; /* input: number to be compared */
dec_t*n2; /* input: number to be compared */

int

dectoasc(np, cp, len, right) /* convert dec_t to ascii */
dec_t*np; [* input: number to be converted */
char*cp; [* output: number after conversion */

int len; * input: length of output string */

int right; * input: number of places to right of decimal point */
int

deccvasc(cp, len, np) /* convert ascii to dec_t */
char*cp; /* input: number to be converted */

int len; /* input: maximum length of number to be converted */
dec_t*np; [* output: number after conversion */
int

dectoint(np, ip) /* convert int to dec_t */
dec_t*np; [* input: number to be converted */

int *ip; [* output: number after conversion */

int

deccvint(in, np) /* convert dec_t to int */

intin; [* input: number to be converted */
dec_t*np; [* output: number after conversion */

BEA TUXEDO Reference Manual

55

decimal(3)

int

dectolong(np, Ingp) /* convert dec_t to long */
dec_t*np; [* input: number to be converted */
long*Ingp; [* output: number after conversion */
int

deccvlong(ing, np) /* convert long to dec_t */
longling; /* input: number to be converted */

dec_t*np; /* output: number after conversion */

int

dectodbl(np, dblp) /* convert dec_t to double */
dec_t*np; /* input: number to be converted */
double *dblp; /* output: number after conversion */

int

deccvdbl(dbl, np) /* convert double to dec_t */
double *dbl; /* input: number to be converted */
dec_t*np; /* output: number after conversion */

int

dectoflt(np, fltp) /* convert dec_t to float */
dec_t*np; /* input: number to be converted */
float*fltp; /* output: number after conversion */

int

deccvflt(flt, np) /* convert float to dec_t */
double *flt; /* input: number to be converted */
dec_t*np; /* output: number after conversion */

int

decadd(*nl, *n2, *n3) /* add two decimal numbers */
dec_t*n1,; /* input: addend */

dec_t*n2; /* input: addend */

dec_t*n3; [* output: sum */

int

decsub(*nl, *n2, *n3) /* subtract two decimal nhumbers */
dec_t*ni; [* input: minuend */

dec_t*n2; /* input: subtrahend */

dec_t*n3; /* output: difference */

int

decmul(*nl, *n2, *n3) /* multiply two decimal humbers */
dec_t*n1; /* input: multiplicand */

dec_t*n2; /* input: multiplicand */

dec_t*n3; [* output: product */

int

decdiv(*nl, *n2, *n3) /* divide two decimal numbers */
dec_t*ni; /* input: dividend */

dec_t*n2; [* input: divisor */

dec_t*n3; [* output: quotient */

56 BEA TUXEDO Reference Manual

decimal(3)

Description

Native Decimal
Representation

Return Value

These functions are provided as part of the CICS instantiation of the /Host Extension.
The functions allow storage, conversion, and manipulation of packed decimal data on
the BEA TUXEDO system. Note that the format in which the decimal data type is
represented on the BEA TUXEDO system is different from its representation under
CICs.

Decimals are represented on native BEA TUXEDO system nodes usitrthe
structure. This definition of this structure is as follows:

#define DECSIZE 16

struct decimal {
short dec_exp; [* exponent base 100 */
short dec_pos; [* sign: 1=pos, 0=neg, -1=null */
short dec_ndgts; /* number of significant digits */

char dec_dgts|[DECSIZE]; /* actual digits base 100 */
%/pedef struct decimal dec_t;
It should never be necessary for programmers to directly accegsthestructure,
but it is presented here nevertheless to give an understanding of the underlying data
structure. If large amounts of decimal data need to be storestdélegnal () and
Iddecimal () functions may be used to obtain a more compact fodaatasc (),
dectoint (), dectolong (), dectodbl (), anddectofit () allow the conversion of
decimals to other data typeateccvasc (), deccvint (), deccviong (), deccvdbl (),
anddeccvflt () allow the conversion of other data types to the decimal data type.
deccmp() is the function which compares two decimals. It returns -1 if the first decimal
is less than the second, 0 if the two decimals are equal, and 1 if the first decimal is
greater than the second. A negative value other than -1 is returned if either of the
arguments is invalidiecadd (), decsub (), decmul (), anddecdiv () perform arithmetic
operations on decimal numbers.

Unless otherwise stated, these functions return 0 on success and a negative value on
error.

BEA TUXEDO Reference Manual 57

do_form(3)

do_form(3)

58

Name

Synopsis

Description

Examples

do_form -form display subroutine
#include “fml.h”

FBFR *
do_form(formname, fbfr)
char *formname;

FBFR **fbfr;

do_form () displaysformname , collects input from a user, and returns a pointer to a
fielded buffer containing the information entered on a form. If the form was exited with
the abort function key, or by pressing the break key, then NULL is returned. On a
system error,ABFR*)-1 is returnedformname should be a file output byi(1). If
formname begins with a slash) the given path is searched; otherwisenname is
searched for in the directories listed in theSKPATHNvironment variabl€ormname
should include thev file extension. Wherdo_form () is called/fbfr is either a pointer

to a pointer to a fielded buffer, a pointer to NULL, or a NULL pointer. If itis a pointer
to NULL or a NULL pointerdo_form () allocates the fielded buffer. If it is not NULL,
information contained in the fielded buffer is displayed on the screen. Upon return, the
value contained ibfr , if it is not a NULL pointer, points to a fielded buffer
containing the screen content. If the value returned by the function is not a NULL anc
not a -1, then it points to the same fielded buffer. It is the caller's responsibility to free
the fielded buffer pointed to byfr by callingtpfree (), regardless of the return

value of the functiondo_form () callsformexit () on disastrous conditions. A default
version offormexit () exists iN$TUXDIR/lib/libtfrm.a . do_form uses

tpalloc (3) to allocate a buffer angfree (3) must be used to free the fielded buffer.

Application-defined function keys can be used (including re-mapping the default
command and control keys) by exporting the file name in the UDFK environment
variable. The file format is describedudfk (5).

This example displays the form supplied in a command line argument and writes the
resulting fielded buffer on the standard output.

main(argc,argv)
int argc; char *argv([];
{
FBFR *tbfr, *fbfrl;
fofr = (FBFR *)NULL;
fofrl = do_form(argv[1],fbfr);
if (fbfrl == (FBFR *)NULL)
fprintf(stderr, “user quit\en”);
else if (fbfrl == (FBFR *)-1)

BEA TUXEDO Reference Manual

do_form(3)

Diagnostics

Notices

CAVEAT

See Also

fprintf(stderr,\0"system error\en”);
else

Fprint(fbfrl);
tpfree(fbfr);

If the form was exited with a transmit-form key (i.e., when a service would be called
in mio (1)), a pointer to a fielded buffer is returned. If the form was exited with an abort
function key, or with the break key, NULL is returned andftfie argument contains

the pointer to the fielded buffer (if it is not a NULL pointer). On errors, such as
malloc (3) failures, or failure to read a file, BRFR*)-1 is returned.

The form displayed allows full shell escapes.
When compiling, use
buildclient -o outputfile -f “appfiles” -l -Itfrm - -lcurses - -Im

whereoutputfile is the executable name, asgpfiles are application files
needed.

do_form () is not designed to work with menu hierarchies, specifically calling services
from within the hierarchy. When a transmit-form key is entered from a form,

do_form () returns the associated fielded buffer. If the form is not a top-level form,
do_form () pops all levels of forms and returns. Data is not propagated up the menu
hierarchy, and the current state (the position within the menu hierarchy) is lost.

mio (1), malloc (3) in a UNIX System reference manual/XEDO Data Entry
System Guide , TUXEDO FML Guide

BEA TUXEDO Reference Manual 59

formprint(3)

formprint(3)

60

Name

Synopsis

Description

formprint -print a form

#include “fml.h”

extern int LINES;

extern int COLS;
formprint(frmname,fbfr,cmd)
char *frmname;

FBFR *fbfr;

char *cmd;
form1print(frmname,fbfr file,formfeed, lines, pages)
char *frmname;

FBFR *fbfr;

FILE *file;

char *formfeed;

int *lines;

int *pages;
form2print(frmname,fbfr,buffer,formfeed, lines, pages)
char *frmname;

FBFR *fbfr;

char *buffer;

char *formfeed;

int *lines;

int *pages;

Theformprint routines accept the name of a foffmname , and a fielded buffer,

fofr , and replace field areas on the form with the contents of the fielded buffer. The
resulting form is output in a format suitable for printing. The default valuelf&s

is 66; forcOLSit is 132. The routines differ, in that each directs its output to another
medium. All three routines havenname andfbfr as common parametefsnname
should be the name of a standard UFORM form, withoutheuffix. If frmname is

null, the name of the form is assumed to be in the reserved FORMNAM field in the
fielded buffer.

formprint () places its output in a temporary file, and then exeauteion that file.
%sshould be substituted for the temporary file name wherever the temporary file name
would appear in themdstring. If cmdis null,lp %s is assumed to be the command
string. If the USPOOLDIR environment variable is set, the temporary file is created in
the SUSPOOLDIR directory, otherwise the temporary file is creatédyn.

formlprint () places its output ifile . Theformfeed string is output at the end of
each page. Upon successful retyage is set to the number of pages output, and

lines is set to the number of lines on the last page. The number of pages output is th
same as the number of pages on the form.

BEA TUXEDO Reference Manual

formprint(3)

Examples

Diagnostics

Notices

See Also

form2print () is identical toform1print (), except instead of placing its output in
file it places its output ibuffer . buffer should be large enough to handle any
anticipated (and unanticipated) output.

formprint(NULL,fbfr,"cat %s >/dev/ity”) is an acceptable invocation of
formprint . It sends the form named in the reserved FORMNAM field of the fielded
buffer to/devitty

These routines return 1 on success and \-1 on failure.

It is not possible to link these routines anddlmes (3) library (ibcurses.a) into
one program.

FRMPRT5), curses (3X) in a UNIX System reference manual

BEA TUXEDO Reference Manual 61

frmmisc(3)

frmmisc(3)

62

Name

Synopsis

Description

frmmisc -miscellaneous forms routines
#include “fml.h”

extern char *extmskpath; /* maskpath */
extern char *extcache; /* mask cache */

int frmval(frmname,fbfr,fldid,oc,errmsg)

char *frmname; /* form name, without the .M suffix */
FBFR *fbfr; /* fielded buffer to be validated */
FLDID *fldid; /* field id of field in error */

int *oc; /* occurrence number of field in error */
char **errmsg; [* error message for incorrect field */

int frmflds(frmname,fldids,occs,max)

char *frmname; [* form name, without the .M suffix */
FLDID *fldids; /[* points to array of field ids */

int *occs; [* points to array of occurrences */

int max; [* size of fldids and occs arrays */

frmval () validates a fielded buffefofr , based on the validations present in the
compiled maskrmname . It returns 1 iffofr passes the validation, \-1fifmname is
non-existent or can't be read in for any reason, andbf if fails the validations. In

the last casédid andoccno point to the field id and occurrence number of the field

in error.errmsg points to a character array that contains the error message that woulc
appear on the form's status line if the form were actually displayed on the screen. Tt
value pointed to byrrmsg is valid only until the next call dfmval ().

frmflds () returns the number of fields presenfrinname and places the field ids and
occurrence numbers of those fields in arnygs andoccs respectively. Onlynax
fields are placed in the arrays, however the actual number of fields on the mask is
always returnedrmfids () returns a \-1 if it couldn't accessname for any reason.

Prior to calling these routinestmskpath should be set to the mask path, and
extcache should be set to the mask cache address (see loadfiles(1)). When these
routines are called from within a validation function that is linked into mio(1) it is not
necessary to initialize these variables because they are initializeid bifor the
routines listed abovermname should be passed as the form name withoutMhe
suffix.

Programs callling these functions should be linked with the following libraries in the
given order:

BEA TUXEDO Reference Manual

frmmisc(3)

$TUXDIR/lib/libtfrm.a,
$TUXDIR/lib/libfml.a,
$TUXDIR/lib/libgp.a,

and the standard math library.

Notices The callers of these routines may want to supply their own versiomadkit , a
routine that is called in fatal situations, suchnasioc failures.

See Also loadfiles (1), mio(1)

BEA TUXEDO Reference Manual 63

gp_mktime(3)

gp_mktime(3)

64

Name

Synopsis

Description

gp_mktime -converts a tm structure to a calendar time

#include <time.h>
time_t gp_mktime (struct tm *timeptr);

gp_mktime () converts the time represented by the tm structure pointedttadyyr
into a calendar time (the number of seconds since 00:00:00 UTC, January 1, 1970).

The tm structure has the following format.

struct tm {
inttm_sec; /* seconds after the minute [0, 61] */
inttm_min; /* minutes after the hour [0, 59] */
int tm_hour; /* hour since midnight [0, 23] */
inttm_mday; /* day of the month [1, 31] */
inttm_mon; /* months since January [0, 11] */
inttm_year; /*years since 1900 */
inttm_wday; /* days since Sunday [0, 6] */
inttm_yday; /* days since January 1 [0, 365] */
inttm_isdst; /* flag for daylight savings time */

kh

In addition to computing the calendar tingp, mktime normalizes the supplied tm
structure. The original values of the_wday andtm_yday components of the

structure are ignored, and the original values of the other components are not restricte
to the ranges indicated in the definition of the structure. On successful completion, th
values of them_wday andtm_yday components are set appropriately, and the other
components are set to represent the specified calendar time, but with their values
forced to be within the appropriate ranges. The final value ofiday is not set until
tm_mon andtm_year are determined.

The original values of the components may be either greater than or less than the
specified range. For examplepa hour of -1 means 1 hour before midnigiw, mday

of 0 means the day preceding the current month anaon of -2 means 2 months
before January afn_year .

If tm_isdst is positive, the original values are assumed to be in the alternate timezone
If it turns out that the alternate timezone is not valid for the computed calendar time,
then the components are adjusted to the main timezone. Likewise, if tm_isdst is zer
the original values are assumed to be in the main timezone and are converted to the
alternate timezone if the main timezone is not validnlfisdst is negative, the

correct timezone is determined and the components are not adjusted.

BEA TUXEDO Reference Manual

gp_mktime(3)

Example

See Also

Notices

Portability

Local timezone information is used agjpf mktime had calledzset

gp_mktime returns the specified calendar time. If the calendar time cannot be
represented, the function returns the value (time_t)-1.

What day of the week is July 4, 2001?

#include <stdio.h>
#include <time.h>

static char *const wday[] = {
"Sunday”, "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "-unknown-"

h

struct tm time_str;

[*..*

time_str.tm_year = 2001 - 1900;
time_str.tm_mon =7-1;
time_str.tm_mday =4;
time_str.tm_hour =0;
time_str.tm_min =0;
time_str.tm_sec =1,
time_str.tm_isdst =-1;

if (gp_mktime(time_str) == -1)
time_str.tm_wday=7;
printf("%s\en", wday[time_str.tm_wday]);

ctime (3C),getenv (3C),timezone (4)

tm_year of the tm structure must be for year 1970 or later. Calendar times before
00:00:00 UTC, January 1, 1970 or after 03:14:07 UTC, January 19, 2038 cannot be
represented.

On systems where the C compilation system already provides the ANEInG
function,gp_mktime simply callsmktime to do the conversion. Otherwise, the
conversion is provided directly tp_mktime .

In the later case, the TZ environment variable must be set. Note that in many
installations, TZ is set to the correct value by default when the user logs on. The default
value for TZ, if not set, is GMTO. The format for TZ is the following.
stdoffset[dst[offset],[start[time],end[time]]]

BEA TUXEDO Reference Manual 65

gp_mktime(3)

66

std anddst

offset

Three or more bytes that are the designation for the stangergand

daylight savings timedst) timezones. Onlytd is required, ifdst is

missing, then daylight savings time does not apply in this locale. Upper- and
lower-case letters are allowed. Any characters except a leading colon (3),
digits, a comma (,), a minus (-) or a plus (+) are allowed.

Indicates the value one must add to the local time to arrive at Coordinated
Universal Time. Theffset has the form:hh[: mrii ss]] The minutes iy

and secondss§) are optional. The hounf) is required and may be a single
digit. Theoffset following std is required. If nooffset follows dst

daylight savings time is assumed to be one hour ahead of standard time. On
or more digits may be used; the value is always interpreted as a decimal
number. The hour must be between 0 and 24, and the minutes (and second
if present between 0 and 59. Out of range values may cause unpredictab
behavior. If preceded by a -", the timezone is east of the Prime Meridian;
otherwise it is west (which may be indicated by an optional preceding ~+"

sign).

start [time ,end/time

Mm.n.d

Indicates when to change to and back from daylight savings time, where
start /time describes when the change from standard time to daylight
savings time occurs, arad/time describes when the change back happens.
Eachtime field describes when, in current local time, the change is made.
The formats oktart andend are one of the following:

Jn
The Julian day (1 n 365). Leap days are not counted. That is, in all
years, February 28 is day 59 and March 1 is day 60. Itis impossible
to refer to the occasional February 29.

n

The zero-based Julian day (0365). Leap days are counted, and it
is possible to refer to February 29.

Thedth day, (0d 6) of weekn of monthm of the year (1n 5,1 m 12),
where week 5 means “‘the lasday in monthni which may occurin
either the fourth or the fifth week). Week 1 is the first week in which the
dth day occurs. Day zero is Sunday.

Implementation specific defaults are usedsfart and end if these optional fields
are not given.

Thetime has the same format agfset except that no leading sign (-" or
“+") is allowed. The default, ifme is not given is 02:00:00.

BEA TUXEDO Reference Manual

maskprt(3)

maskprt(3)
Name

Synopsis

Description

Example

See Also

maskprt- send mask to FRMPRT server

maskprt(fbfr)
FBFR \(**fbfr;

The functiommaskprt () is used to print a fielded buffer according to a form definition.
It could be used, for example, to get a hard copy of the feeskprt () sends the
formatted buffer to the BEA TUXEDO system supplied server c&fddPR(5). The
buffer must be of typeML, and must be obtained by a call to tpallocERMPRY)

accepts the buffer, prints it into a UNIX text file, then calls a command to output the
file.

maskprt () callstpacall (3) to send the messageRRMPRT5). It fails [TPNOENT if
FRMPRT5) is not an active server.

maskprt(xxxbuf);

FRMPRT5), tpalloc (3), tpcall (3)

BEA TUXEDO Reference Manual 67

mods(3)

mods(3)

68

Name mods- modified mask field routines

Synopsis #include “fml.h”
#include “mods.h”

get_mods(fbfr,mod_array,size_mod_array)
FBFR *fbfr;

struct track_mods *mod_array;

int size_mod_array;

mods_needed(fbfr)
FBFR *fbfr;

set_mods(fbfr,fldid,occno,cmd)
FBFR *fbfr;

FLDID fldid;

int occno;

char *cmd;

int fld_mod(fbfr, fldid, occno)
FBFR *fbfr;

FLDID fldid;

int occno;

Description Themods routines are used by servers communicating with{1) to determine which
mask fields have been modified. All the routines described below,fvaveas their
first argumentsfbfr s the fielded buffer returned to a servemiiy.

get_mods () places theéldid and occurrence numbers of fields that have been
modified on amio mask into an array of structuresd_array , supplied by the caller.
Onlysize_mod_array entries will be made imod_array . mods_needed () should be
called to determine the actuste mod_array needed to hold all modified field
entries. Once a field has been changed on a mask, it will exist in the list of modified
fields until one of the following three things happens: a new mask is displayed, the
modified field is reset with a call &&t_mods (), or the user clears the entire screen
with the clear screen function keget_mods () returns a -1 on an error, and a
non-negative number indicating the number of entries place@dnarray on

success. When an error indication is returffedpr contains the reason for the error.

BEA TUXEDO Reference Manual

mods(3)

mods_needed () returns the number of entries needechial_array to hold all
modified field information returned hyet_mods (). It returns a -1 on an internal
failure, in which cas€error contains the reason for failure. The value returned by
mods_needed () may be passed directly get_mods (). If get_mods () finds a -1 in its
size_mod_array parameter it will also return a 0.

set_mods () sets the modified status of all fields onraio mask with field identifier
fidid and occurence numbetcno based ormd cmdmay be either of the strings
“MOD_SET” or “MOD_RESET; enclosed in quotation marks as showretl is
“MOD_RESET"the indicated fields are not returned in the modified list until they are
changed again. fmdis“MOD_SET”the indicated fields always appear in the modified
list, until one of the three conditions listed under dhe mods () routine is met. If

fidid is zero theremd applies to all protected and unprotected fields on the mask.
set_mods () returns a 0 on an invaliclnd, a -1 on an FML error, in which case the
reason for the error is iPerror , and a 1 on success. If therror is FNOSPACEhe
caller should Frealloc(3) the fielded buffer and try again.

fid_mod () returns a 1 if a field specified ligid andoccno was modified. It returns
a 0 if the specified field was not modified, and a -1 on an internal error. The internal
error is usually due to a failedalloc (3).

Servers in whichnods routines are called must linkiibtfrm.a ~ with the-f option
of buildserver(1).

Notices Only modifications to fields done through the standard input are tracked.
Modifications from other sources, such as asynchronous updates, are not tracked.

See Also buildserver (1), Frealloc (3), TUXEDO FML Guide

BEA TUXEDO Reference Manual 69

nl_langinfo(3)

nl_langinfo(3)

70

Name

Synopsis

Description

Diagnostics

Notices

See Also

nl_langinfo -language information

#include <nl_types.h>
#include <langinfo.h>

char *nl_langinfo (nl_item item);

nl_langinfo returns a pointer to a null-terminated string containing information
relevant to a particular language or cultural area defined in the programs locale. Th
manifest constant names and valuegeaf are defined byanginfo.h

For example:
nl_langinfo (ABDAY_1);

would return a pointer to the strin@itn” if the identified language was French and a
French locale was correctly installed; aulh” if the identified language was English.

If setlocale (3) has not been called successfully, daiifjinfo (5) data for a
supported language is either not availabléeaw is not defined therein, then
nl_langinfo returns a pointer to the corresponding string in the C locale. In all
localesl_langinfo returns a pointer to an empty stringtéfn contains an invalid
setting.

The array pointed to by the return value should not be modified by the program.
Subsequent calls t@_langinfo may overwrite the array.

setlocale (3), strftime (3), langinfo (5), nl_types (5).

BEA TUXEDO Reference Manual

recomp(3)

recomp(3)

Name

Synopsis

Description

Regular
Expressions

recomp , rematch -regular expression compile/execute

char *recomp(pattern-1, [pattern-2, ...], 0)
char *pattern-1, [*pattern-2, ...];

externint _Cerrnbr;
extern char *_Cerrmsg([];

char *rematch(pat, text, [substr-0, ..., substr-9,] 0);
char *pat, *text, [*substr-0, ..., *substr-9];

extern char *_Mbegin;
externint _Merrnbr;
extern char *_Merrmsg[];
extern char _Eol;

The routinesgecomp () andrematch (), provide a regular expression pattern matching
scheme for C. There are two parts: a pattern compelemmp (); and a pattern
interpreterrematch (). They are, in effect and in spirit, extensions of the standard
routines,regcmp (3) andregex (3)

Significant features are the inclusion of regular expression alternation and portability
of the code.

recomp () compiles a pattern, in the form of a regular expression, into an intermediate
code sequencesmatch () then searches user text for a pattern match by interpreting
the codes.

The code sequence, an array of characters, can be computed off-line by the command
rex (1), which reads regular expressions from the standard input and writes the
corresponding character arrays to the standard output. The output can then be included
in a regular C compile.

The patterns for these routines are given with regular expressions, much like those
used in the UNIX System editard (1). The alternation operatot,)(has been added
along with some other practical things. In general, however, there should be few
surprises.

Regular expressions (REs) are constructed by applying any of the following
production rules one or more times.

BEA TUXEDO Reference Manual 71

recomp(3)

Regular Expressions

Rule

Matching Text

character

itself¢haracteris any ASCII character except the special ones mentioned below).

\ character

itself except as follows:
4 \\-- newline

¢ \\t--tab

4 \\b -- backspace

4 \\r -- carriage return
¢ \\f-- formfeed

\ special-character

its unspecial self. The special characters a@re ? | () [{ and\\

. -- any character except the end-of-line character (usually newline or null).
A -- beginning of the line.

$ -- end-of-line character.

[class] any character in the class denoted by a sequence of characters and/or ranges. A
range is given by the construgtaractercharacter For example, the character
class, [a-zA-Z0-9_], will match any alphameric character or“_". To be included in
the class, a hyphen, “-”, must be escaped (preceded by a “\\) or appear first or last
in the class. A literal “]” must be escaped or appear first in the class. A literal “*”
must be escaped if it appears first in the class.

[~class] any character in the complement of the class with respect to the ASCII character set,
excluding the end-of-line character.

RE RE the sequence. (catenation)

RE | RE either the lefREor the rightRE (left to right alternation)

RE * zero or more occurrencesRE

RE + one or more occurrences RE

RE ? zero or one occurrencesRE

RE{n} n occurrences dRE n must be between 0 and 255, inclusive.

RE{m,n} m throughn occurrences dRE inclusive. A missingnis taken to be zero. A
missingn denotesnor more occurrences &E

(RE) explicit precedence/grouping.

(RE)$n the text matchindrEis copied into theith user buffern may be 0 thru 9. User

buffers are cleared before matching begins and loaded only if the entire pattern is
matched.

72 BEA TUXEDO Reference Manual

recomp(3)

recomp -
Regular
Expression
Compiler

There are three levels of precedence. In order of decreasing binding strength they are:
4 catenation closure (*,+,?,{...})

4 catenation

4 alternation (|)

As indicated above, parentheses are used to give explicit precedence.

recomp () concatenates its arguments up to a terminating zero into a single expression.
The expression is then compiled into a character array whose address is returned as the
function value.

Space for the array is obtained from the standard C routtiec (3), and may be
released (by the user) with a call to the stanffaed (3) routine.

recomp () returns a zero (NULL) value if the pattern cannot be processed. The reason
is indicated by a global variableCerrnbr , which is set to a non-zero value on any
failure._Cermbr may be used directly or as an index into a table of error messages,
_Cerrmsg . _Cermbr is reset on each call tecomp (). The possible values for

_Cerrnbr and the corresponding messages fr@arrmsg are given below.

Regular Expression Compiler

_Cerrnbr _Cerrmsg[_Cerrnbr]

0 “Ok”

1 “Syntax error at catolnbr, char thar”

(colnbr is the position where the error is discoverdtr is the character at
that position)

“Out of node storage”

“Out of vector storage”

“Too many OR's”

a|l bl WO DN

“More than 255 repetitions”
(a number in therg{...}" construct is greater than 255)

6 “Negative range”
(arange for a character class or a closure is given backward)

7 “Out of heap storage”
(malloc failed)

BEA TUXEDO Reference Manual 73

recomp(3)

74

rematch --
Regular
Expression
Matcher

BEA TU

Conditions that causecermbr values of 2, 3, and 4 relate to the sizeeobmp ()'s
internal data structures and are unlikely to occur.

The first and second characters of the code array form the least significant byte and tl
most significant byte, respectively, of an unsigned 16 bit quantity that gives the length
in bytes, of the entire array. This value will prove useful for copying or otherwise
manipulating the array.

rematch () interprets the code sequence producecttnymp () to search a user string

for a match. When a match is foumeinatch () returns as its value the address of the
first character beyond the matching text (which may then be used as the text argume
in a subsequent call tematch ()). Also, the variable Mbegin is set to the address of
the first character of the matching text.

Any text matching a specified sub-pattern (Se&‘ $n " above) is copied into
the corresponding user buffer, providing one was supplied on the call. All supplied
user buffers are reset on eaehatch () call and filled only on a successful match.

Note:rematch (), unlike its role modekegex (3), requires a zero terminating
argument.

rematch () returns NULL if no match can be found or if something else goes wrong.
If no match is found the variableyiermbr , is setto zero. If something worse happens
it is set to a non-zero value. As abovierrbr serves as an index for a table of
diagnostic messages as indicated below.

_Merrnbr _Merrmsg[_Merrnbr]
0 “Ok”
(If rematch () returned NULL, no match was found)
1 “Too many closures”
2 “Line too long”
3 “Corrupt vector”

(checkrecomp () for failure)

4 “More than 10 substr args”
(User probably forgot to terminatematch () arguments with a zero)

5 “Too many assignments”

XEDO Reference Manual

recomp(3)

Example

Implementation

Notices

See Also

_Merrnbr values of 1, 2, or 5 are not likely to occur. They relate to the size of data
structures used bgmatch ().

The variable Eol is the current end-of-line character. It is initialized\too™but may
be changed by the user to other reasonable values {e.9., The end-of-line
character determines what the special charagtenatches.

The following program scans its input for C identifiers and prints each one on a
separate line.

#include <stdio.h>
main()

char *recomp(), *rematch();
char *patVect, *cursor, line[100], usrBuf[100];

patVect = recomp("([a-zA-Z_][a-zA-Z0-9_]*)$0", 0);

while (gets(line)) {
cursor = line;
while (cursor=rematch(patVect,cursor,usrBuf,0))
printf("%sn", usrBuf);

}
}
Note the use of the variableyrsor , to indicate a successful match as well as to
provide (on success) the starting point for the next search. A less courageous

programmer would cheakcomp ()'s return value and restrict the length of the pattern
match to the receiving buffer's size (e.g., "{0,98}" instead of "*").

recomp () andrematch () are written in portable C codecomp () employs YACC,

which accounts for the fact that it is bigger and somewhat slower than its counterpart,
regcmp (3). The intermediate code producedrégomp () is generally more compact
than that ofegcmp (3).

rematch () is about the same size and has about the same speed as its counterpart,
regex (3).

Support for the functions described in this manual page will be withdrawn in Release
5.0 of the BEA TUXEDO system.

rex (1), ed(1) in a UNIX System reference manualcmp (3), malloc (3), free (3),
regex (3) in a UNIX System reference manual

BEA TUXEDO Reference Manual 75

rpc_sm_allocate(3)

rpc_sm_allocate(3)

76

Name

Synopsis

Description

rpc_sm_allocate , rpc_ss_allocate -allocates memory within the RPC stub
memory management scheme

#include <rpc/rpc.h>
idl_void_p_t rpc_sm_allocate(unsigned32 size, unsigned32 *status)
idl_void_p_t rpc_ss_allocate(unsigned32 size)

Applications callrpc_sm_allocate (3) to allocate memory within the RPC stub
memory management scheme. The input paramster, specifies in bytes, the size

of memory to be allocated. Before a call to this routine, the stub memory managemer
environment must have been established. For service code that is called from the sen
stub, the stub itself normally establishes the necessary environment. When
rpc_sm_allocate is used by code that is not called from the stub, the application
must establish the required memory management environment by calling
rpc_sm_enable_allocate (3).

Specifically, if the parameters of a server stub include any pointers other than those
used for passing parameters by reference dettadle_allocate] attribute is
specified for the operation in the ACS file, then the environment is automatically set
up. Otherwise, the environment must be set up by the application by calling
rpc_sm_enable_allocate

When the stub establishes the memory management environment, the stub itself fre
any memory allocated byc_sm_allocate . The application can free such memory
before returning to the calling stub by callipg_sm_free (3).

When the application establishes the memory management environment, it must fre
any memory allocated, either by calling_sm_free or by calling
rpc_sm_disable_allocate 3).

The output parametestatus , returns the status code from this routine. This status
code indicates whether the routine completed successfully or, if not, why not. Possibl
status codes and their meanings include:

rpc_s_ok
Always returned. The return value is used to determine failure.

rpc_ss_allocate is the exception-returning version of this function and has no
status output parameter. No exceptions are raised.

BEA TUXEDO Reference Manual

rpc_sm_allocate(3)

Return Values On success, the routines return a pointer to the allocated memory. Note that in the ISO
standard C environmentsl|_void_p_t is defined asoid * and in other
environments is defined abar * . Insufficient memory is reported by returing a
NULL pointer.

See Also rpc_sm_free (3),rpc_sm_enable_allocate (3), rpc_sm_disable_allocate 3),
BEA TUXEDO TxRPC Guide

BEA TUXEDO Reference Manual 77

rpc_sm_dlient_free(3)

rpc_sm_dlient_free(3)

Name rpc_sm_client_free , pc_ss_client_free -frees memory returned from a client
stub

Synopsis

#include <rpc/rpc.h>
void rpc_sm_client_free (idl_void_p_t node_to_free, unsigned32 *status)
void rpc_ss_client_free (idl_void_p_t node_to_free)

Description Therpc_sm_client_free routine releases memory allocated and returned from a
client stub. The input parametende to free , specifies a pointer to memory
returned from a client stub. Note that in the ISO standard C environments,
idl_void_p_t is defined asoid* and in other environments is definedcaar *

This routine enables a routine to deallocate dynamically allocated memory returned b
an RPC call without knowledge of the memory management environment from which
it was called.

Note that this routine is always called from client code, even if the code can is
executing as part of a server.

The output parametestatus , returns the status code from this routine. This status
code indicates whether the routine completed successfully or, if not, why not. Possibl
status codes and their meanings include:

rpc_s_ok
Success.

rpc_ss_client_free is the exception-returning version of this function and has no
status output parameter. No exceptions are raised.

Return Values None.

See Also rpc_sm_free (3),rpc_sm_set_client_alloc_free),
rpc_sm_swap_client_alloc_free (3), TUXEDO TxRPC Guide

78 BEA TUXEDO Reference Manual

rpc_sm_disable_allocate(3)

rpc_sm_disable_allocate(3)

Name

Synopsis

Description

Return Values

See Also

rpc_sm_disable_allocate, rpc_sm_disable_allocate-releases resources and allocated
memory within the stub memory management scheme

#include <rpc/rpc.h>
void rpc_sm_disable_allocate(unsigned32 *status);
void rpc_ss_disable_allocate(void);

Therpc_sm_disable_allocate routine releases all resources acquired by a call to
rpc_sm_enable_allocate (3), and any memory allocated by calls to
rpc_sm_allocate (3) after the call topc_sm_enable_allocate was made.
Therpc_sm_enable_allocate andrpc_sm_disable_allocate routines must be
used in matching pairs. Calling this routine without a previous matching call to
rpc_sm_enable_allocate results in unpredictable behavior.

The output parametestatus , returns the status code from this routine. This status
code indicates whether the routine completed successfully or, if not, why not. Possible
status codes and their meanings include:

rpc_s_ok
Success.

rpc_ss_disable_allocate is the exception-returning version of this function and
has nostatus output parameter. No exceptions are raised.

None.

rpc_sm_allocate (3), rpc_sm_enable_allocate (3), BEA TUXEDO TxXRPC Guide

BEA TUXEDO Reference Manual 79

rpc_sm_enable_allocate(3)

rpc_sm_enable_allocate(3)

Name

Synopsis

Description

Return Values

80

See Also

rpc_sm_enable_allocate , rpc_ss_enable_allocate -enables the stub memory
management environment

#include <rpc/rpc.h>
void rpc_sm_enable_allocate(unsigned32 *status)
void rpc_ss_enable_allocate(void)

Applications can callpc_sm_enable_allocate to establish a stub memory
management environment in cases where one is not established by the stub itself. £
stub memory management environment must be established before any calls are ma
torpc_sm_allocate (3). For service code called from the server stub, the stub
memory management environment is normally established by the stub itself. Code th:
is called from other contexts needs to gatl sm_enable_allocate before calling
rpc_sm_allocate (e.g., if the service code is called directly instead of from the stub).

The output parametestatus , returns the status code from this routine. This status
code indicates whether the routine completed successfully or, if not, why not. Possibl
status codes and their meanings include:

rpc_s_ok
Success.

rpc_s_no_memory
Insufficient memory available to set up necessary data structures.

rpc_ss_enable_allocate is the exception-returning version of this function and has
no status output parameter. The following exceptions are raised by this routine.

rpc_x_no_memory
Insufficient memory available to set up necessary data structures.

None.

rpc_sm_allocate (3), rpc_sm_disable_allocate (3), TUXEDO TxRPC Guide

BEA TUXEDO Reference Manual

rpc_sm_free(3)

rpc_sm_free(3)

Name

Synopsis

Description

Return Values

See Also

rpc_sm_free, rpc_ss_free -frees memory allocated by the rpc_sm_allocate
routine

#include <rpc/rpc.h>
void rpc_sm_free(idl_void_p_t node_to_free, unsigned32 *status)
void rpc_ss_free(idl_void_p_t node_to_free)

Applications calpc_sm_free to release memory allocated by rpc_sm_allocate(3).
The input parametenode_to_free , specifies a pointer to memory allocated by
rpc_sm_allocate . Note that in ISO standard C environmeitsvoid_p_t is
defined awoid * and in other environments is definedcasr *

When the stub allocates memory within the stub memory management environment,
service code called from the stub can alsorpsesm_free to release memory
allocated by the stub.

Unpredictable behavior resultajfc_ss_free is called with a pointer to memory not
allocated byrpc_sm_allocate ~ or memory allocated byc_sm_allocate , but not
the first address of such an allocation.

The output parametestatus , returns the status code from this routine. This status
code indicates whether the routine completed successfully or, if not, why not. Possible
status codes and their meanings include:

rpc_s_ok
Success.

rpc_ss_free is the exception-returning version of this function and hastatas
output parameter. No exceptions are raised.

None.

rpc_sm_allocate (3), TUXEDO TxRPC Guide

BEA TUXEDO Reference Manual 81

rpc_sm_set_client_alloc_free(3)

rpc_sm_set_client_alloc_free(3)

Name

Synopsis

Description

Return Values

82

See Also

rpc_sm_set_client_alloc_free , rpc_ss_set_client_alloc_free -sets the
memory allocation and freeing mechanisms used by the client stubs

#include <rpc/rpc.h>
void rpc_sm_set_client_alloc_free(
idl_void_p_t (*p_allocate)(unsigned long size),
void (*p_free) (idl_void_p_t ptr), unsigned32 *status)

void rpc_ss_set_client_alloc_free(
idl_void_p_t (*p_allocate)(unsigned long size),
void (*p_free) (idl_void_p_t ptr))

Therpc_sm_set_client_alloc_free routine overrides the default routines that

the client stub uses to manage memory. The input parametetscate and

p_free specify memory allocator and free routines. The default memory
management routines are 1SOn@lloc () andfree () except when the remote call
occurs within server code in which case the memory management routines must be
rpc_ss_allocate (3) and rpc_ss_free (3).

The output parametestatus , returns the status code from this routine. This status
code indicates whether the routine completed successfully or, if not, why not. Possibl
status codes and their meanings include:

rpc_s_ok
Success.

rpc_s_no_memory
Insufficient memory available to set up necessary data structures.

rpc_ss_set client_alloc_free is the exception-returning version of this function
and has natatus output parameter. The following exceptions are raised by this
routine.

rpc_x_no_memory
Insufficient memory available to set up necessary data structures.

None.

rpc_sm_allocate (3),rpc_sm_free (3), BEA TUXEDO TxRPC Guide

BEA TUXEDO Reference Manual

rpc_sm_swap_client_alloc_free(3)

rpc_sm_swap_client_alloc_free(3)

Name

Synopsis

Description

rpc_sm_swap_client_alloc_free ,
rpc_ss_swap_client_alloc_free -exchanges current memory allocation and
freeing mechanism used by client stubs with one supplied by client

#include <rpc/rpc.h>
void rpc_sm_swap_client_alloc_free(
idl_void_p_t (*p_allocate)(unsigned long size),
void (*p_free) (idl_void_p_t ptr),
idl_void_p_t (**p_p_old_allocate)(unsigned long size),
void (**p_p_old_free)(idl_void_p_t ptr),
unsigned32 *status)

void rpc_ss_swap_client_alloc_free(
idl_void_p_t (*p_allocate)(unsigned long size),
void (*p_free) (idl_void_p_t ptr),
idl_void_p_t (**p_p_old_allocate)(unsigned long size),
void (**p_p_old_free)(idl_void_p_t ptr))

Therpc_sm_swap_client_alloc_free routine exchanges the current allocate and
free mechanisms used by the client stubs for routines supplied by the caller. The input
parametersp_allocate andp_free , specify new memory allocation and free

routines. The output parametegsp old_allocate andp_p old free return the
memory allocation and free routines in use before the call to this routine.

When a callable routine is an RPC client, it may need to ensure which allocate and free
routines are used, despite the mechanism its caller had selected. This routine allows
scoped replacement of the allocation/free mechanism to allow this.

The output parametestatus , returns the status code from this routine. This status
code indicates whether the routine completed successfully or, if not, why not. Possible
status codes and their meanings include:

rpc_s_ok
Success.

rpc_s_no_memory
Insufficient memory available to set up necessary data structures.

rpc_ss_swap_client_alloc_free is the exception-returning version of this
function and has neratus output parameter. The following exceptions are raised by
this routine.

BEA TUXEDO Reference Manual 83

rpc_sm_swap _client_alloc_free(3)

rpc_x_no_memory
Insufficient memory available to set up necessary data structures.

Return Values None.

See Also rpc_sm_allocate (3), rpc_sm_free (3), rpc_sm_set_client_alloc_free (3),
BEA TUXEDO system Guide

84 BEA TUXEDO Reference Manual

setlocale(3)

setlocale(3)

Name

Synopsis

Description

Files

setlocale -modify and query a program's locale

#include <locale.h>
char *setlocale (int category, const char *locale);

setlocale selects the appropriate piece of the program's locale as specified by the
category andlocale arguments. Theategory argument may have the following
values:

LC_CTYPE
LC_NUMERIC
LC_TIME
LC_COLLATE
LC_MONETARY
LC_MESSAGES
LC_ALL

These names are defined in theale.h header file. For theBEA TUXEDO system
compatibility functionssetlocale allows only a singldocale for all categories.
Setting any category is treated the samecagLL, which names the program's entire
locale.

A value of “C” forlocale specifies the default environment.

A value of " forlocale specifies that the locale should be taken from an environment
variable. The environment varialleNGis checked for a locale.

At program startup, the equivalent of
setlocale(LC_ALL, "C")

is executed. This has the effect of initializing each category to the locale described by
the environment “C”.

If a pointer to a string is given fascale , setlocale attempts to set the locale for all

the categories ttocale . Thelocale must be a simple locale, consisting of a single
locale. Ifsetlocale fails to set the locale for any category, a null pointer is returned
and the program's locale for all categories is not changed. Otherwise, locale is returned.

A null pointer forlocale causesetlocale to return the current locale associated
with the category . The program's locale is not changed.

$TUXDIR/locale/C/LANGINFO - time and money database forthe Clocale

$TUXDIR/locale/ locale I* - locale specific information for each
locale $TUXDIR/locale/C/*_CAT - text messages for the C locale

BEA TUXEDO Reference Manual 85

setlocale(3)

Note A composite locale is not supported. A composite locale is a string beginning with a
“/", followed by the locale of each category, separated by a “/".

See Also ctime (3C),ctype (3C),getdate (3C),localeconv (3C),printf (3S),
strfime (3C), strtod (3C), environ (5), mklanginfo (1)

86 BEA TUXEDO Reference Manual

strerror(3)

strerror(3)

Name strerror -get error message string

Synopsis #include <string.h>
char \(**strerror (int errnumy);

Description strerror maps the error number émrnum to an error message string, and returns a
pointer to that stringstrerror ~ uses the same set of error messagesras . The
returned string should not be overwritten.

See Also perror (3)

BEA TUXEDO Reference Manual 87

strftime(3)

strftime(3)

88

Name

Synopsis

Description

strfime -convert date and time to string
#include <time.h>

size_t*strftime(char*s,size_tmaxsize, constchar*format, const
struct tm *timeptr);

strfime places characters into the array pointed ta lag controlled by the string
pointed to byformat . Theformat string consists of zero or more directives and
ordinary characters. All ordinary characters (including the terminating null character)
are copied unchanged into the array.dtdtime , no more thamaxsize characters

are placed into the array.

If format is (char *)0, then the locale's default format is used. The default format is
the same a%oc" .

Each directive is replaced by appropriate characters as described in the following lis
The appropriate characters are determined bych&IME category of the program's
locale and by the values contained in the structure pointed tiaidpyr

Directives

%% same as %

%a locale's abbreviated weekday name

%A locale's full weekday name

%Db locale's abbreviated month name

%B locale's full month name

%c locale's appropriate date and time representation

%C locale's date and time representation as produced by date(1)

%d day of month (01 -31)

%D date as %m/%d/%y

%e day of month (1-31; single digits are preceded by a blank)

%h locale's abbreviated month name.

BEA TUXEDO Reference Manual

strftime(3)

Directives

%H hour (00 - 23)

%Il hour (01-12)

%j day number of year (001 - 366)

%m month number (01 -12)

%M minute (00 - 59)

%n same as\

%p locale's equivalent of either AM or PM

%r time as %I1:%M:%S [AM|PM]

%R time as %H:%M

%S seconds (00 - 61), allows for leap seconds

%t insert a tab

%T time as %H:%M:%S

%U week number of year (00 - 53), Sunday is the first day of week 1

%w weekday number (0 -6), Sunday =0

%W week number of year (00 - 53), Monday is the first day of week 1

%x locale's appropriate date representation

%X locale's appropriate time representation

%y year within century (00 - 99)

%Y vyear as ccyy (e.g. 1986)

%Z time zone name or no characters if no time zone exists

The difference betweenuandvWwies in which day is counted as the first of the week.
Week number 01 is the first week in January starting with a Sundeyuéora Monday

for %ewWeek number 00 contains those days before the first Sunday or Monday in
January foreUand%\Wrespectively.

BEA TUXEDO Reference Manual 89

strftime(3)

90

Selecting the
Output
Language
Timezone

Examples

Files

See Also

If the total number of resulting characters including the terminating null character is
not more thamnaxsize , strftime , returns the number of characters placed into the
array pointed to by not including the terminating null character. Otherwise, zero is
returned and the contents of the array are indeterminate.

By default, the output oftrftime , appears in US English. The user can request that
the output obtrftime be in a specific language by setting tbeale for category
LC_TIME in setlocale (3).

The timezone is taken from the environment variatzleSeectime (3C) for a
description ofrz.

The example illustrates the usesoftime . It shows what the string srr would
look like if the structure pointed to lanptr contains the values corresponding to
Thursday, August 28, 1986 at 12:44:36 in New Jersey.

strftime (str, strsize, "%A %b %d %j", tmptr)
This results irstr containing "Thursday Aug 28 240"

$TUXDIR/locale/ locale /LANGINFO - file containing compiled locale-specific date
and time information

mklanginfo (1), setlocale (3)

BEA TUXEDO Reference Manual

tpabort(3)

tpabort(3)
Name

Synopsis

Description

Return Values

Errors

tpabo rt-routine for aborting current transaction

#include <atmi.h>
int tpabort(long flags)

tpabort () signifies the abnormal end of a transaction. When this call returns, all
changes made to resources during the transaction are undongpchikmit (3), this
function can be called only by the initiator of a transaction. Participants (that is, service
routines) can express their desire to have a transaction aborted bytpadting (3)

with TPFAIL .

If tpabort () is called while call descriptors exist for outstanding replies, then upon
return from the function, the transaction is aborted and those descriptors associated
with the caller's transaction are no longer valid. Call descriptors not associated with the
caller's transaction remain valid.

For each open connection to a conversational server in transactiontpabde, ()

will send aTPEV_DISCONIMMevent to the server, whether or not the server has control
of a connection. Connections opened befpbegin (3) or with theTPNOTRANIag

(that is, not in transaction mode) are not affected.

Currently,tpabort ()'s sole argumentiags , is reserved for future use and should be
set to O.

tpabort () returns \-1 on error and seperrno to indicate the error condition.
Under the following conditiongpabort () fails and setgperrno to:

[TPEINVAL]
flags is not equal to 0. The caller's transaction is not affected.

[TPEHEURISTIC]
Due to a heuristic decision, the work done on behalf of the transaction was
partially committed and partially aborted.

[TPEHAZARD
Due to some failure, the work done on behalf of the transaction can have been
heuristically completed.

[TPEPROTD
tpabort () was called in an improper context (for example, by a participant).

[TPESYSTEW

BEA TUXEDO Reference Manual 91

tpabort(3)

92

A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

Notices ~ When usingpbegin (3), tpcommit (3) andtpabort () to delineate a BEA TUXEDO
system transaction, it is important to remember that only the work done by a resourc
manager that meets the XA interface (and is linked to the caller appropriately) has
transactional properties. All other operations performed in a transaction are not
affected by eithetpcommit (3) ortpabort ().

See Also tpbegin (3), tpcommit (3), tpgetlev (3)

BEA TUXEDO Reference Manual

tpacall(3)

tpacali(3)
Name

Synopsis

Description

tpacall -routine for sending a service request

#include <atmi.h>
int tpacall(char *svc, char *data, long len, long flags)

tpacall () sends a request message to the service namead byhe request is sent
out at the priority defined fasve unless overridden by a previous caltgsprio (3).

If data is non-NULL, it must point to a buffer previously allocatedgmfioc (3) and

len should specify the amount of data in the buffer that should be sent. Note that if
data points to a buffer of a type that does not require a length to be specified, (for
example, arMLfielded buffer), theren is ignored (and may be 0).dta is NULL,

len isignored and a request is sent with no data portion. The type and subdse of
must match one of the types and sub-types recognizedchyNote that for each
request sent while in transaction mode, a corresponding reply must ultimately be
received.

Following is a list of validfags .

TPNOTRAN
If the caller is in transaction mode and this flag is set, then wieis
invoked, it is not performed on behalf of the caller's transactiame|f
belongs to a server that does not support transactions, then this flag must be
set when the caller is in transaction mode. Notesdhatmay still be invoked
in transaction mode but it will not be the same transactiev: anay have as
a configuration attribute that it is automatically invoked in transaction mode.
A caller in transaction mode that sets this flag is still subject to the transaction
timeout (and no other). If a service fails that was invoked with this flag, the
caller's transaction is not affected.

TPNOREPLY
Informs tpacall() that a reply is not expected. WMENOREPLYS set, the
function returns 0 on success, where 0 is an invalid descriptor. When the
caller is in transaction mode, this setting cannot be used UMH&SSTRANS
also set.

TPNOBLOCK
The requestis not sent if a blocking condition exists (for example, the internal
buffers into which the message is transferred are full). WPIOBLOCHKS
not specified and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking
timeout).

BEA TUXEDO Reference Manual 93

tpacall(3)

Return Values

94

Errors

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is re-issued. tpacall() fails and

Upon successful completiopacall () returns a descriptor that can be used to receive
the reply of the request sent. Otherwise it returns a value of \-1 andesets to
indicate the error condition.

Under the following conditionspacall () fails and setgperrno to one of the
following values. (Unless otherwise noted, failure does not affect the caller's
transaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for exampdes is NULL, data does not
point to space allocated witpalloc (3), orflags are invalid).

[TPENOENT
Cannot send teve because it does not exist or is a conversational service.

[TPEITYPE]
The type and sub-type dfta is not one of the allowed types and sub-types
thatsvc accepts.

[TPELIMIT]
The caller's request was not sent because the maximum number of
outstanding asynchronous requests has been reached.

[TPETRAN
svc belongs to a server that does not support transaction®aiaiRANvas
not set.

[TPETIME
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neitliEBRNOBLOCHKIOr TPNOTIMEWAS
specified. If a transaction timeout occurred, then with one exception, any
attempts to send new requests or receive outstanding replies will fail with
TPETIME until the transaction has been aborted. The exception is a request
that does not block, expects no reply, and is not sent on behalf of the caller"

BEA TUXEDO Reference Manual

tpacall(3)

transaction (that is, tpacall() wittPNOTRANTPNOBLOCKandTPNOREPLY
set).

[TPEBLOCK
A blocking condition exists antPNOBLOCHKvas specified.

[TPGOTSI]
A signal was received amPSIGRSTRTwas not specified.

[TPEPROTD
tpacall() was called in an improper context.

[TPESYSTEW
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred. If a message queue on a remote
location is filled,TPEOSmay be returned eventifacall returned
successfully.

See Also tpalloc (3),tpcall (3),tpcancel (3),tpgetrply (3), tpgprio (3), tpsprio (3)

BEA TUXEDO Reference Manual 95

tpadmcall(3)

tpadmcall(3)

96

Name

Synopsis

Description

tpadmcall -administer unbooted application

#include <atmi.h>
#include <fmli32.h>
#include <tpadm.h>

int tpadmcall(FBFR32 *inbuf, FBFR32 **outbuf, long flags)

tpadmcall is used to retrieve and update attributes of an unbooted application. It may
also be used in an active application to perform direct retrievals of a limited set of
attributes without requiring communication to an external process. This verb provides
sufficient capability such that complete system configuration and administration can
take place through system provided interface routines.

inbuf is a pointer to an FML32 buffer previously allocated wgitilloc (3) that
contains the desired administrative operation and its parameters.

outbuf is the address of a pointer to the FML32 buffer that should contain the results
outbuf must point to an FML32 buffer originally allocatedtpglloc (3). If the

same buffer is to be used for both sending and receivingyf should be set to the
address ofnbuf .

Currently,tpadmcall ()'s last argumentiags , is reserved for future use and must be
set to O.

MIB(5) should be consulted for generic information on construction of administrative
requestsTM_MIB(5) andAPPQ_MIK5) should be consulted for information on the
classes that are accessible throtpgldmcall ().

There are four modes in which callsggadmcall () can be made.

Mode 1: Unbooted, Unconfigured Application:
The caller is assumed to be the administrator of the application. The only
operations permitted are to SET a NEW T_DOMAIN class object, thus
defining an initial configuration for the application, and to GET and SET
objects of the classes defineddRPQ_MIK5).

Mode 2: Unbooted, Configured Application:
The caller is assigned administrator or other privileges based on a compariso
of their uid/gid to that defined in the configuration for the administrator on
the local system. The caller may GET and SET any attributes for any class ir
TM_MIB(5) andAPPQ_MIK5) for which they have the appropriate
permissions. Note that some classes contain only attributes that are
inaccessible in an unbooted application and attempts to access these class
will fail.

BEA TUXEDO Reference Manual

tpadmcall(3)

Environment

Variables

Notices

Return Values

Errors

Mode 3: Booted Application, Unattached Process:
The caller is assigned administrator or other privileges based on a comparison
of their uid/gid to that defined in the configuration for the administrator on
the local system. The caller may GET any attributes for any class in
TM_MIB(5) for which they have the appropriate permissions. Similarly, the
caller may GET and SET any attributes for any clagsiPQ_MIR5), subject
to class-specific restrictions. Attributes accessible only while ACTIVE will
not be returned.

Mode 4: Booted Application, Attached Process:
Permissions are determined from the authentication key assigpé at ()
time. The caller may GET any attributes for any clagainvig(5) for which
they have the appropriate permissions. Additionally, the caller may GET and
SET any attributes for any classARPQ_MIE5), subject to class-specific
restrictions.

Access to and update of binary BEA TUXEDO system application configuration files
through this interface routine is controlled through the use of UNIX System
permissions on directory and file names.

The following environment variables must be set prior to calling this routine.

TUXCONFIG
File or device name where the binary BEA TUXEDO system configuration
file for this application is or should be stored.

Use of theTA_OCCURSttribute onGETrequests is not supported when using
tpadmcall (). GETNEXTrequests are not supported when ugpagmcall ().

tpadmcall returns 0 on success and -1 on failure.

Under the following conditiongpadmcall () fails and setgpermo to one of the
following values. Except foTPEINVAL, the caller's output buffeoutbuf , will be
modified to include TA_ERROR, TA_STATUS and possibly TA_BADFLD attributes
to further qualify the error condition. Se#8(5), TM_MIB(5), andAPPQ_MIK5) for an
explanation of possible error codes returned in this fashion.

[TPEINVAL]
Invalid arguments were specified. Tiags Vvalue is invalid otnbuf or
outbuf are not pointers to typed buffers of type “FML32.”

BEA TUXEDO Reference Manual 97

tpadmcall(3)

Interoperability

Portability

Files

See Also

[TPEMIB]
The administrative request faileeitbuf is updated and returned to the
caller with FML32 fields indicating the cause of the error as is discussed in
MIB(5) andTM_MIB(5).

[TPEPROTD
tpadmcall () was called in an improper context.

[TPERELEASE
tpadmcall () was called with the TUXCONFIG environment variable
pointing to a different release version configuration file.

[TPEOS
An operating system error has occurred. A numeric value representing the
system call that failed is available ixnixerr

[TPESYSTEWM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written touserlog (3).

This interface supports access and update to the local configuration file and bulletin
board only; therefore, there are no interoperability concerns.

This interface is available only on UNIX System sites running BEA TUXEDO Release
5.0 or later.

${TUXDIR}/lib/libtmib.a, ${TUXDIR}/lib/libqm.a,
${TUXDIRYlib/libtmib.so. rel> , ${TUXDIR}/lib/libgm.so.rel>

MIB(5), TM_MIB(5), APPQ_MIE5), EVENT_MIE5), ACL_MIB(5), WS_MIK5), BEA
TUXEDO Administrator's Guide

98 BEA TUXEDO Reference Manual

tpadvertise(3)

tpadvertise(3)

Name

Synopsis

Description

Return Values

Errors

tpadvertise (3)-routine for advertising a service name

#include <atmi.h>
int tpadvertise(char *svcname, void (*func)(TPSVCINFO *))

tpadvertise allows a server to advertise the services that it offers. By default, a
server's services are advertised when it is booted and unadvertised when it is shutdown.

All servers belonging to a multiple server, single queue (MSSQ) set must offer the
same set of services. These routines enforce this rule by affecting the advertisements
of all servers sharing an MSSQ set.

tpadvertise advertisesvename for the server (or the set of servers sharing the
caller's MSSQ setkvecname should be 15 characters or less, but cannot be NULL or
the NULL string (). (See *SERVICES section @fbconfig (5).)func is the address

of a BEA TUXEDO system service function. This function will be invoked whenever

a request fosvcname is received by the serveinc cannot be NULL. Explicitly
specified function names (se&vopts (5)) can be up to 128 characters long. Names
longer than 15 characters are accepted and truncated to 15 characters. Users should
make sure that truncated names do not match other service names.

If svename is already advertised for the server @an@t matches its current function,
thentpadvertise returns success (this includes truncated names that match already
advertised names). Howeversifcname is already advertised for the server hut

does not match its current function, then an error is returned (this can happen if
truncated names match already advertised names).

Service names starting with dot (.) are reserved for administrative services. An error
will be returned if an application attempts to advertise one of these services.

tpadvertise returns -1 on error and seperrno to indicate the error condition.
Under the following conditionspadvertise ~ fails and setgperrno to:

[TPEINVAL]
svcname is NULL or the NULL string (*”),or begins with a “.” ofunc is
NULL.

[TPELIMIT]
svcname cannot be advertised because of space limitations. (See
MAXSERVICES in the *RESOURCES section aifoconfig (5).)

BEA TUXEDO Reference Manual 99

tpadvertise(3)

[TPEMATCH
svcname is already advertised for the server but with a function other than
func . Although the function failssvcname remains advertised with its
current function (that isunc does not replace the current function).

[TPEPROTD
tpadvertise ~ was called in an improper context (for example, by a client).

[TPESYSTEWM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

See Also tpservice (3c),tpunadvertise (3c)

100 BEA TUXEDO Reference Manual

tpalloc(3)

tpalloc(3)
Name

Synopsis

Description

Return Values

Errors

tpalloc (3)-routine for allocating typed buffers

#include <atmi.h>
char * tpalloc(char *type, char *subtype, long size)

tpalloc () returns a pointer to a buffer of typ@e . Depending on the type of buffer,
bothsubtype andsize are optional. The BEA TUXEDO system provides a variety
of typed buffers, and applications are free to add their own buffer types. Consult
tuxtypes (5) for more details.

If subtype is non-NULL intmtype_sw for a particular buffer type, thesubtype

must be specified whapalloc () is called. The allocated buffer will be at least as
large as the larger afze anddfitsize , wheredfitsize is the default buffer size
specified intmtype_sw for the particular buffer type. For buffer typgRING the
minimum is 512 bytes; for buffer typ&ML andvIEWthe minimum is 1024 bytes.

Note that only the first eight bytes e and the first 16 bytes alibtype are
significant.

Because some buffer types require initialization before they can betpsied, ()
initializes a buffer (in a BEA TUXEDO system-specific manner) after it is allocated
and before it is returned. Thus, the buffer returned to the caller is ready for use. Note
that unless the initialization routine cleared the buffer, the buffer is not initialized to
zeros bytpalloc ().

Upon successful completiotpalloc () returns a pointer to a buffer of the appropriate
type aligned on a long word; otherwise, it returns NULL andtsetsio to indicate
the condition.

Under the following conditiongpalloc () fails and setgperrno to:

[TPEINVAL]
Invalid arguments were given (for exampige is NULL).

[TPENOENT
No entry intmtype_sw matchesype and, if non-NULL,subtype .

[TPEPROTD
tpalloc () was called in an improper context.

BEA TUXEDO Reference Manual 101

tpalloc(3)

102

Usage

See Also

[TPESYSTEWM
A BEA TUXEDO system error has occurred. The exact nature of the error is

written to a log file.

[TPEOS
An operating system error has occurred.

If buffer initialization fails, the allocated buffer is freed apalloc () fails returning
NULL.

This function should not be used in concert wiithloc (3c),realloc (3c), or
free (3c) in the C library (for example, a buffer allocated withiloc () should not
be freed withfree ().

Two buffer types are supported by any compliant implementation of the BEA
TUXEDO system extension. Details ardritio (3c).

tpfree (3c),tprealloc (3c),tptypes (3cC)

BEA TUXEDO Reference Manual

tpbegin(3)

tpbegin(3)
Name

Synopsis

Description

Return Values

tpbegin -routine for beginning a transaction

#include <atmi.h>
int tpbegin(unsigned long timeout, long flags)

A transaction in the BEA TUXEDO system is used to define a single logical unit of
work that either wholly succeeds or has no effect whatsoever. A transaction allows
work being performed in many processes, at possibly different sites, to be treated as an
atomic unit of work. The initiator of a transaction ugsegin () and either

tpcommit (3) ortpabort (3) to delineate the operations within a transaction. Once
tpbegin () is called, communication with any other program can place the latter (of
necessity, a server) in “transaction mode” (that is, the server's work becomes part of
the transaction). Programs that join a transaction are called participants. A transaction
always has one initiator and can have several participants. Only the initiator of a
transaction can catpcommit (3) ortpabort (3). Participants can influence the

outcome of a transaction by the return values (s) they use when they call

tpreturn (3). Once in transaction mode, any service requests made to servers are
processed on behalf of the transaction (unless the requester explicitly specifies
otherwise).

Note that if a program starts a transaction while it has any open connections that it
initiated to conversational servers, these connections will not be upgraded to
transaction mode. ltis as if tMeNOTRANag had been specified on tipeonnect (3)

call.

tpbegin ()'s first argumentimeout , specifies that the transaction should be allowed

at leasttimeout seconds before timing out. Once a transaction times out it must be
marked abort-only. lfimeout is 0, then the transaction is given the maximum number
of seconds allowed by the system before timing out (that is, the time-out value equals
the maximum value for an unsigned long as defined by the system).

Currently,tpbegin ()'s second argumentags , is reserved for future use and must
be set to 0.

tpbegin () returns \-1 on error and seperrno to indicate the error condition.

BEA TUXEDO Reference Manual 103

tpbegin(3)

104

Errors

Notices

See Also

BEA TU

Under the following conditionspbegin () fails and setgperrno to:

[TPEINVAL]
flags is not equal to O.

[TPETRAHN
The caller cannot be placed in transaction mode because an error occurred
starting the transaction.

[TPEPROTD
tpbegin () was called in an improper context (for example, the caller is
already in transaction mode).

[TPESYSTEWM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

When usingpbegin (), tpcommit (3), andtpabort (3) to delineate a BEA TUXEDO
system transaction, it is important to remember that only the work done by a resourc
manager that meets the XA interface (and is linked to the caller appropriately) has
transactional properties. All other operations performed in a transaction are not
affected by eithetpcommit (3) ortpabort (3). Seevuildserver (1) for details on
linking resource managers that meet the XA interface into a server such that operatiol
performed by that resource manager are part of a BEA TUXEDO system transactior

tpabort (3), tpcommit (3), tpgetlev (3), tpscmt (3)

XEDO Reference Manual

tpbroadcast(3)

tpbroadcast(3)
Name tpbroadcast -routine to broadcast notification by name
Synopsis #include <atmi.h>
int tpbroadcast(char *Imid, char *usrname, char *cltname,
char *data, long len, long flags)
Description tpbroadcast () allows a client or server to send unsolicited messages to registered

clients within the system. The target client set consists of those clients matching
identifiers passed tpbroadcast (). Wildcards can be used in specifying identifiers.

Imid , usrname , andcltname are logical identifiers used to select the target client set.
A NULL value for any argument constitutes a wildcard for that argument. A wildcard
argument matches all client identifiers for that field. A 0-length string for any
argument matches only O-length client identifiers. Each identifier must meet the size
restrictions defined for the system to be considered valid, that is, each identifier must
be between 0 andAXTIDENTcharacters in length.

The data portion of the request is pointed taifay , a buffer previously allocated by
tpalloc (3).len specifies how much afata to send. Note that data points to a

buffer type that does not require a length to be specified (for exampi®iLdielded
buffer), thenlen is ignored (and may be 0). Alsggta may be NULL, in which case

len is ignored. The buffer passes through the typed buffer switch routines just as any
other outgoing or incoming message would; for example, encode/decode are
performed automatically.

Following is a list of validfags .

TPNOBLOCK
The requestis not sent if a blocking condition exists (for example, the internal
buffers into which the message is transferred are full).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is reissued. Upon successful return fphmoadcast (), the message
has been delivered to the system for forwarding to the selected clients.
tpbroadcast () does not wait for the message to be delivered to each selected
client.

BEA TUXEDO Reference Manual 105

tpbroadcast(3)

Return Values

106

Errors

Portability

Usage

tpbroadcast () returns \-1 on failure and seperrno to indicate the error condition.

Under the following conditionspbroadcast () fails, sends no broadcast messages to
application clients, and setterrmo to:

[TPEINVAL]
Invalid arguments were given (for example, identifiers too long or invalid
flags). Note that use of an illegalliD will cause tpbroadcast() to fail and
returnTPEINVAL. However, non-existent user or client names will simply
successfully broadcast to no one.

[TPETIME]
A blocking timeout occurred and neithEPNOBLOCKoOr TPNOTIMEWaS
specified.

[TPEBLOCK
A blocking condition was found on the call aneINOBLOCKvas specified.

[TPGOTSI]
A signal was received anmdPSIGRSTRTwas not specified.

[TPEPROTD
tpbroadcast () was called in an improper context.

[TPESYSTEWM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

The interfaces described tmotify (3) are supported on native site UNIX-based
processors. In addition, the routingroadcast () andtpchkunsol () as well as the
functiontpsetunsol () are supported on UNIX and MS-DOS workstation processors.

Clients that select signal-based notification may not be signal-able by the system du
to signal restrictions. When this occurs, the system generates a log message that it
switching notification for the selected client to dip-in and the client is notified then and
thereafter via dip-in notification. (See the description ofHESOURCESIOTIFY
parameter inibbconfig (5) for a detailed discussion of notification methods.)

BEA TUXEDO Reference Manual

tpbroadcast(3)

See Also

Note that signaling of clients is always done by the system so that the behavior of
notification is consistent regardless of where the originating notification call is made.
Because of this, only clients running as the application administrator can use
signal-based notification. The id for the application administrator is identified as part
of the configuration file for the application.

If signal-based natification is selected for a client, then certain ATMI calls can falil,
returningTPGOTSIGdue to receipt of an unsolicited messagePiSIGRSTRTIis not
specified. Seabbconfig (5) andtpinit (3) for more information on notification
method selection.

tpalloc (3), tpinit (3), tpnotify (3), tpterm (3), ubbconfig (5)

BEA TUXEDO Reference Manual 107

tpcall(3)

tpcall(3)

108

Name

Synopsis

Description

tpcall (3)-routine for sending service request and awaiting its reply

int tpcall(char *svc, char *idata, long ilen, char **odata, long \
*olen, long flags)

tpcall sends a request and synchronously awaits its reply. A call to this function is
the same as callingacall (3c) immediately followed bypgetrply (3c).tpcall

sends a request to the service namesgvby The request is sent out at the priority
defined forsve unless overridden by a previous caligsprio (3c). The data portion

of a request is pointed to iyata , a buffer previously allocated Iyyalloc (3c).

ilen specifies how much dflata to send. Note that iflata points to a buffer of a
type that does not require a length to be specified, (for exampisiLdielded buffer),
thenilen isignored (and may be 0). Alsidata may be NULL, in which casien

is ignored. The type and sub-typeidfta must match one of the types and sub-types
recognized byve.

odata is the address of a pointer to the buffer where a reply is read intojeand

points to the length of that replyodata must point to a buffer originally allocated by
tpalloc . If the same buffer is to be used for both sending and recedekig, should

be set to the addressiohta . FMLandFML32 buffers often assume a minimum size

of 4096 bytes; if the reply is larger than 4096, the size of the buffer is increased to a
size large enough to accommodate the data being returned. Adtaeg if and *odata

were equal whetpcall was invoked, andddata is changed, theidata no longer
points to a valid address. Using the old address can lead to data corruption or proce
exceptions.

Buffers on the sending side that may be only partially filled (for example, FML or
STRING buffers) will have only the amount that is used send. The system may then
enlarge the received data size by some arbitrary amount. This means that the receiv
may receive a buffer that is smaller than what was originally allocated by the sender
yet larger than the data that was sent.

The receive buffer may grow, or it may shrink, and its address almost invariably
changes, as the system swaps buffers around internally. To determine whether (anc
how much) a reply buffer changed in size, compare its total size hefetely

was issued withfen . Seentro (3c) for more information about buffer management.

If * olen is O upon return, then the reply has no data portion and neithes* nor
the buffer it points to were modified. It is an error fetista or olen to be NULL.

BEA TUXEDO Reference Manual

tpcall(3)

Return Values

Following is a list of validfags .

TPNOTRAN
If the caller is in transaction mode and this flag is set, then wieis

invoked, it is not performed on behalf of the caller's transaction. Notevthat
may still be invoked in transaction mode but it will not be the same
transaction: avc may have as a configuration attribute that it is
automatically invoked in transaction mode. A caller in transaction mode that
sets this flag is still subject to the transaction timeout (and no other). If a
service fails that was invoked with this flag, the caller's transaction is not
affected.

TPNOCHANGE
By default, if a buffer is received that differs in type from the buffer pointed

to by *odata , then *odata 's buffer type changes to the received buffer's type
so long as the receiver recognizes the incoming buffer type. When this flag is
set, the type of the buffer pointed to lyo&ita is not allowed to change. That

is, the type and sub-type of the received buffer must match the type and
sub-type of the buffer pointed to bydata .

TPNOBLOCK
The requestis not sent if a blocking condition exists (for example, the internal

buffers into which the message is transferred are full). Note that this flag
applies only to the send portion of tpcall: the function may block waiting for
the reply. WherrPNOBLOCHKs not specified and a blocking condition exists,
the caller blocks until the condition subsides or a timeout occurs (either
transaction or blocking timeout).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to

be immune to blocking timeouts. However, if the caller is in transaction
mode, this flag has no effect; it is subject to the transaction timeout limit.
Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system

call is re-issued.

Upon successful return frotpcall — or upon return whemperrno is set to
TPESVCFAIL, tpurcode contains an application defined value that was sent as part of
tpreturn (3c).tpcall returns -1 on error and seperrmo to indicate the error
condition. If a call fails with a particulagerrno value, a subsequent call to

BEA TUXEDO Reference Manual 109

tpcall(3)

110

Errors

tperrordetail (3c) with no intermediate ATMI calls, may provide more detailed
information about the generated error. Refer tayibeordetail (3c) reference
page for more information.

Under the following conditionspcall fails and setgpermo to one of the following
values. (Unless otherwise noted, failure does not affect the caller's transaction, if on
exists.)

[TPEINVAL]
Invalid arguments were given (for exampdes is NULL or flags are
invalid).

[TPENOENT
Can not send tevc because it does not exist, or it is a conversational service,
or the name provided begins with a dot (.).

[TPEITYPE]
The type and sub-type @fata is not one of the allowed types and sub-types
thatsvc accepts.

[TPEOTYPE
Either the type and sub-type of the reply are not known to the caller; or,
TPNOCHANGW®as set inflags and the type and sub-type afdata do not
match the type and sub-type of the reply sent by the service. Neithz4 *
its contents, nordlen is changed. If the service request was made on behalf
of the caller's current transaction, then the transaction is marked abort-only
since the reply is discarded.

[TPETRAN
svc belongs to a server that does not support transactionaiaiRANvas
not set.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neithBTNOBLOCHKOr TPNOTIMEWAS
specified. In either case, neitherdata , its contents, nordlen is changed.
If a transaction timeout occurred, then with one exception, any attempts to
send new requests or receive outstanding replies will fail VAETIME until
the transaction has been aborted. The exception is a request that does not
block, expects no reply, and is not sent on behalf of the caller's transaction
(that is, tpacall withrPNOTRANTPNOBLOCKandTPNOREPLset).

BEA TUXEDO Reference Manual

tpcall(3)

[TPESVCFAIL]
The service routine sending the caller's reply called tpreturn(3cyRitiL .
This is an application-level failure. The contents of the service's reply, if one
was sent, is available in the buffer pointed to byta . If the service request
was made on behalf of the caller's current transaction, then the transaction is
marked abort-only. Note that so long as the transaction has not timed out,
further communication may be performed before aborting the transaction and
that any work performed on behalf of the caller's transaction will be aborted
upon transaction completion (that is, for subsequent communication to have
any lasting effect, it should be done withNOTRANet).

[TPESVCERR
A service routine encountered an error either in tpreturn(3c) or tpforward(3c)
(for example, bad arguments were passed). No reply data is returned when
this error occurs (that is, neithesdata , its contents, nordlen is changed).
If the service request was made on behalf of the caller's transaction (that is,
TPNOTRANvas not set), then the transaction is marked abort-only. Note that
so long as the transaction has not timed out, further communication may be
performed before aborting the transaction and that any work performed on
behalf of the caller's transaction will be aborted upon transaction completion
(thatis, for subsequent communication to have any lasting effect, it should be
done withTPNOTRANet). If eitheiSVCTIMEOUTIN theubbconfig file or
TA_SVCTIMEOUTIn theTM_MIBis non-zeroTPESVCERRs returned when a
service timeout occurs.

[TPEBLOCK
A blocking condition was found on the send call ZRIOBLOCKvas
specified.

[TPGOTSI]
A signal was received amPSIGRSTRTwas not specified.

[TPEPROTD
tpcall was called in an improper context.

[TPESYSTEW
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred. If a message queue on a remote
location is filled,TPEOSmay be returned eventifcall returned
successfully.

BEA TUXEDO Reference Manual 111

tpcall(3)

See Also tpalloc (3c),tpacall (3c), tperrordetail (3c),tpforward (3c), tpfree (3c),
tpgprio (3c),tprealloc (3c),tpreturn (3c),tpsprio (3c¢),
tpstrerrordetail (3c), tptypes (3c¢)

112 BEA TUXEDO Reference Manual

tpcancel(3)

tpcancel(3)

Name tpcancel -routine for canceling a call descriptor for outstanding reply

Synopsis #include <atmi.h>
int tpcancel(int cd)

Description tpcancel () cancels a call descriptarg, returned bypacall (3). It is an error to
attempt to cancel a call descriptor associated with a transaction.

Upon successid is no longer valid and any reply received on behatfcofvill be
silently discarded.

Return Values tpcancel () returns \-1 on error and sepsrmo to indicate the error condition.
Errors Under the following conditionspcancel () fails and setgperrno to:

[TPEBADDESE
cd is an invalid descriptor.

[TPETRAN
cd() is associated with the caller's transacti@hremains valid and the
caller's current transaction is not affected.

[TPEPROTD
tpcancel() was called in an improper context.

[TPESYSTEW
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

See Also tpacall (3)

BEA TUXEDO Reference Manual 113

tpchkauth(3¢)

tpchkauth(3¢)

Name tpchkauth -routine for checking if authentication required to join an application
Synopsis #include <atmi.h>
int tpchkauth(void)

Description tpchkauth () checks if authentication is required by the application configuration.
This is typically used by application clients prior to callipigit (3c) to determine if
a password should be obtained from the user.

Return Values tpchkauth () returns one of the following non-negative values on success.

TPNOAUTH
indicates that no authentication is required.

TPSYSAUTH
indicates that system authentication only is required.

TPAPPAUTH
indicates that both system and application specific authentication are
required.

It returns -1 on error and seterrno to indicate the error condition.
Errors Under the following conditionspchkauth () fails and setgperrno to:

[TPESYSTEWM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

Interoperability tpchkauth () is available only on sites running Release 4.2 or later.

Portability =~ The interfaces described fschkauth (3c) are supported on UNIX, Windows, and
MS-DOS operating systems. However, signal-based notification is not supported on
16-bit Windows or MS-DOS platforms. If it is selectedmit () time, then a
userlog (3c) message is generated and the method is automatically set to dip-in.

See Also tpinit (3c)

114 BEA TUXEDO Reference Manual

tpchkunsol(3)

tpchkunsol(3)

Name

Synopsis

Description

Return Values

Errors

Portability

tpchku nsol-routine for checking for unsolicited message

#include <atmi.h>
int tpchkunsol(void)

tpchkunsol () is used by a client to trigger checking for unsolicited messages. Calls
to this routine in a client using signal-based notification do nothing and return
immediately. This call has no arguments. Calls to this routine can result in calls to an
application-defined unsolicited message handling routine by the BEA TUXEDO
system libraries.

Upon successful completiotpchkunsol () returns the number of unsolicited
messages dispatched; otherwise it returns \-1 on failure angesets to indicate
the error condition.

Under the following conditiongpchkunsol () fails and setgperrno to:

[TPEPROTD
tpchkunsol () was called in an improper context (for example, from within a
server).

[TPESYSTEW
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

The interfaces describedtignotify ~ (3) are supported on native site UNIX-based
processors. In addition, the routingisroadcast () andtpchkunsol () as well as the
functiontpsetunsol () are supported on UNIX and MS-DOS workstation processors.

Clients that select signal-based naotification may not be signal-able by the system due
to signal restrictions. When this occurs, the system generates a log message that it is
switching notification for the selected client to dip-in and the client is notified then and
thereafter via dip-in notification. (See the description ofHESOURCESIOTIFY

parameter inubbconfig (5) for a detailed discussion of notification methods.) Note

that signaling of clients is always done by the system so that the behavior of
notification is consistent regardless of where the originating notification call is made.
Because of this, only clients running as the application administrator can use
signal-based natification. The ID for the application administrator is identified as part
of the configuration file for the application.

BEA TUXEDO Reference Manual 115

tpchkunsol(3)

If signal-based notification is selected for a client, then certain ATMI calls can fall,
returningTPGOTSIGdue to receipt of an unsolicited messageP$IGRSTRTIs not
specified. Seabbconfig (5) andtpinit (3) for more information on notification

method selection.

See Also tpbroadcast (3), tpinit (3), tpnotify (3), tpsetunsol (3)

116 BEA TUXEDO Reference Manual

tpclose(3)

tpclose(3)
namsSe

Synopsis

Description

Return Values

Errors

See Also

tpclose-routine for closing a resource manager

#include <atmi.h>
int tpclose(void)

tpclose () tears down the association between the caller and the resource manager to
which it is linked. Since resource managers differ in ttlese semantics, the

specific information needed to close a particular resource manager is placed in a
configuration file.

If a resource manager is already closed (thapésgse () is called more than once),
no action is taken and success is returned.

tpclose () returns\-1 on error and seperro to indicate the error condition.
Under the following conditionstpclose () fails and setgperrmo to:

[TPERMERR
A resource manager failed to close correctly. More information concerning
the reason a resource manager failed to close can be obtained by interrogating
a resource manager in its own specific manner. Note that any calls to
determine the exact nature of the error hinder portability.

[TPEPROTD
tpclose () was called in an improper context (for example, while the caller
is in transaction mode).

[TPESYSTEW
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

tpopen (3)

BEA TUXEDO Reference Manual 117

tpcommit(3)

tpcommit(3)

118

Name

Synopsis

Description

tpcommit -routine for committing current transaction

#include <atmi.h>
int tpcommit(long flags)

tpcommit () signifies the end of a transaction, using a two-phase commit protocol to
coordinate participantgocommit () can be called only by the initiator of a transaction.

If any of the participants cannot commit the transaction (for example, they call
tpreturn (3) with TPFAIL), then the entire transaction is aborted gedmmit ()

fails. That is, all of the work involved in the transaction is undone. If all participants
agree to commit their portion of the transaction, then this decision is logged to stable
storage and all participants are asked to commit their work.

Depending on the setting of the_COMMIT_CONTRGtharacteristic (se@scmt (3)),
tpcommit () can return successfully either after the commit decision has been loggec
or after the two-phase commit protocol has completegdcdfnmit () returns after the
commit decision has been logged but before the second phase has completed
(TP_CMT_LOGGHDthen all participants have agreed to commit the work they did on
behalf of the transaction and should fulfill their promise to commit the transaction
during the second phase. However, becgusenmit () is returning before the second
phase has completed, there is a hazard that one or more of the participants can
heuristically complete their portion of the transaction (in a manner that is not consister
with the commit decision) even though the function has returned success.

If the TP_COMMIT_CONTRG@tharacteristic is set such tlatommit () returns after the
two-phase commit protocol has completed (CMT_COMPLEJEthen its return value
reflects the exact status of the transaction (that is, whether the transaction heuristical
completed or not).

Note that if only a single resource manager is involved in a transaction, then a
one-phase commit is performed (that is, the resource manager is not asked whether
not it can commit; it is simply told to commit). In this case, ThReCOMMIT_CONTROL
characteristic has no bearing apecbmmit () will return heuristic outcomes if present.

If tpcommit () is called while call descriptors exist for outstanding replies, then upon
return from the function, the transaction is aborted and those descriptors associated
with the caller's transaction are no longer valid. Call descriptors not associated with th
caller's transaction remain valid.

BEA TUXEDO Reference Manual

tpcommit(3)

Return Values

Errors

tpcommit () must be called after all connections associated with the caller's transaction
are closed (otherwiSEPEABORTS returned, the transaction is aborted and these
connections are disconnected in a disorderly fashion WiEE®_DISCONIMMevent).
Connections opened befapbegin (3) or with theTPNOTRANIag (that is,

connections not in transaction mode) are not affected by cafisotamit () or

tpabort (3).

Currently,tpcommit ()'s sole argumentiags , is reserved for future use and must be
set to O.

tpcommit () returns \-1 on error and sepermo to indicate the error condition.
Under the following conditiongpcommit () fails and setgperrno to:

[TPEINVAL]
flags is not equal to 0. The caller's transaction is not affected.

[TPETIME]
The transaction timed out and the status of the transaction is unknown (that
is, it can have been either committed or aborted). Note that if the transaction
timed out and its status is known to be aborted, IR&EABORTiS returned.

[TPEABORT
The transaction could not commit because either the work performed by the
initiator or by one or more of its participants could not commit. This error is
also returned ifpcommit () is called with outstanding replies or open
conversational connections.

[TPEHEURISTIC]
Due to a heuristic decision, the work done on behalf of the transaction was
partially committed and partially aborted.

[TPEHAZARD
Due to some failure, the work done on behalf of the transaction can have been
heuristically completed.

[TPEPROTD
tpcommit () was called in an improper context (for example, by a participant).

[TPESYSTEW
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

BEA TUXEDO Reference Manual 119

tpcommit(3)

120

Notices

See Also

[TPEOS
An operating system error has occurred.

When usingpbegin (), tpcommit () andtpabort () to delineate a BEA TUXEDO
system transaction, it is important to remember that only the work done by a resourc
manager that meets the XA interface (and is linked to the caller appropriately) has
transactional properties. All other operations performed in a transaction are not
affected by eithetpcommit () ortpabort (). Seebuildserver (1) for details on

linking resource managers that meet the XA interface into a server such that operatiol
performed by that resource manager are part of a BEA TUXEDO system transactior

tpabort (3),tpbegin (3), tpconnect (3), tpgetlev (3), tpreturn (3), tpscmt (3)

BEA TUXEDO Reference Manual

tpconnect(3)

tpconnect(3)
Name

Synopsis

Description

tpconnect -routine for establishing a conversational service connection
#include <atmi.h>
int tpconnect(char *svc, char *data, long len, long flags)

tpconnect () allows a program to set up a half-duplex connection to a conversational
service,svc . The name must be one of the conversational service names posted by a
conversational server.

As part of setting up a connection, the caller can pass application defined data to the
listening program. If the caller chooses to pass data,ddxenmust point to a buffer
previously allocated bgpalloc (3)./en specifies how much of the buffer to send.

Note that ifdata points to a buffer of a type that does not require a length to be
specified, (for example, a#MLfielded buffer), therien is ignored (and may be 0).

Also, data can be NULL in which casken is ignored (no application data is passed

to the conversational service). The type and sub-typataf must match one of the
types and sub-types recognizedsby . data andlen are passed to the conversational
service via th@PSVCINFOstructure with which the service is invoked; the service does
not have to caliprecv (3) to get the data.

Following is a list of validfags .

TPNOTRAN
If the caller is in transaction mode and this flag is set, then wieis
invoked, it is not performed on behalf of the caller's transaction. Notevthat
may still be invoked in transaction mode but it will not be the same
transaction: &vc may have as a configuration attribute that it is
automatically invoked in transaction mode. A caller in transaction mode that
sets this flag is still subject to the transaction timeout (and no other). If a
service fails that was invoked with this flag, the caller's transaction is not
affected.

TPSENDONLY
The caller wants the connection to be set up initially such that it can only send
data and the called service can only receive data (that is, the caller initially
has control of the connection). EitHEFSENDONLYr TPRECVONLYNUSt be
specified.

BEA TUXEDO Reference Manual 121

tpconnect(3)

Return Values

122

Errors

TPRECVONLY
The caller wants the connection to be set up initially such that it can only
receive data and the called service can only send data (that is, the service
being called initially has control of the connection). EitheBENDONLYor
TPRECVONLYNust be specified.

TPNOBLOCK
The connection is not established and the data is not sent if a blocking
condition exists (for example, the data buffers through which the message is
sent are full). Note that this flag applies only to the send portion of
tpconnect (); the function may block waiting for an acknowledgement from
the server. WhemPNOBLOCIHKS not specified and a blocking condition exists,
the caller blocks until the condition subsides or a blocking timeout or
transaction timeout occurs.

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts will still affect the
program.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted call is
re-issued.

Upon successful completiompconnect () returns a descriptor that is used to refer to
the connection in subsequent calls. Otherwise it returns \-1 angeets to
indicate the error condition.

Under the following conditionspconnect () fails and setgperrno to an error code
listed below. (Unless otherwise noted, failure does not affect the caller's transaction, |
one exists)

[TPEINVAL]
Invalid arguments were given (for exampdee is NULL, data is
non-NULL and does not point to a buffer allocateddajloc (3),
TPSENDONLYr TPRECVONLWas not specified iflags , orflags are
otherwise invalid).

[TPENOENT
Cannot initiate a connection toc because it does not exist or is not a
conversational service.

BEA TUXEDO Reference Manual

tpconnect(3)

See Also

[TPEITYPE]
The type and subtype dhta is not one of the allowed types and subtypes
thatsvc accepts.

[TPELIMIT]
The caller's request was not sent because the maximum number of
outstanding connections has been reached.

[TPETRAN
svc belongs to a program that does not support transactiongPal@irRAN
was not set.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neitiePNOBLOCK oOr TPNOTIMEWere
specified. If a transaction timeout occurred, then any attempts to send or
receive messages on any connections or to start a new connection will fail
with TPETIME until the transaction has been aborted.

[TPEBLOCK
A blocking condition exists antPNOBLOCHKvas specified.

[TPGOTSI]
A signal was received amPSIGRSTRTwas not specified.

[TPEPROTD
tpconnect () was called in an improper context.

[TPESYSTEW
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

tpalloc (3), tpdiscon (3), tprecv (3), tpsend (3), tpservice (3)

BEA TUXEDO Reference Manual 123

tpconvert(3¢)

tpconvert(3¢)

Name

Synopsis

Description

Return Values

tpconvert -convert structures to/from string representations

#include <atmi.h>
#include <xa.h>

int tpconvert(char *strrep, char *binrep, long flags)

tpconvert () converts the string representation of interface structsresp() to or
from the binary representationifrep).

Both the direction of the conversion and the interface structure type are determined
from theflags argument. To convert a structure from binary representation to string
representation, the programmer must sefftMBOSTRINGDIt in flags . To convert a
structure from string to binary the programmer must clear the bit. The following flags
are defined to indicate the particular structure type to be converted; only one may be
specified at a time:

TPCONVCLTID
Convert CLIENTID (see atmi.h).

TPCONVTRANID
Convert TPTRANID (see atmi.h).

TPCONVXID
Convert XID (see xa.h).

For conversions from binary to string representatsergp should be at least
TPCONVMAXSTeharacters in length.

Note that unequal string versionsTHTRANIDandXID values may be considered

equal by the system when accessifg MIB(5) classes that allow these values as key
fields (for exampleT_TRANSACTIONor T_ULOQ. Therefore, string values for these
data types should not be fabricated or manipulated by application programs.
TM_MIB(5) guarantees that only objects matching the global transaction identified by
the string are returned when one of these values is used as a key field.

tpconvert () returns -1 on failure and sepermo to indicate the error condition.

124 BEA TUXEDO Reference Manual

tpconvert(3c)

Errors

Portability

See Also

Under the following conditionspconvert () fails and setgpermo to one of the
following values.

[TPEINVAL]
Invalid arguments were specifieshrep or binrep is a NULL pointer, or
flags does not indicate exactly one structure type.

[TPEOS
An operating system error has occurred. A numeric value representing the
system call that failed is availablelinnixerr

[TPESYSTEW
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to userlog(3).

This interface is available only on BEA TUXEDO Release 5.0 or later. This interface
is available on workstation platforms.

tpservice (3), tpresume (3), tpsuspend (3), tx_info (3), TM_MIB(5)

BEA TUXEDO Reference Manual 125

tparyptpw(3)

tpcryptpw(3)
Name

Synopsis

Description

Return Values

Errors

Portability

Files

See Also

tpcryptpw -encrypt application password in administrative request

#include <atmi.h>
#include <fmli32.h>

int tpcryptpw(FBFR32 *buf)

tpcryptpw () is used to encrypt the application password stored in an administrative
request buffer prior to sending the request for servicing. Application passwords are
stored as string values using the FML32 field identifierPASSWORIT his encryption

is necessary to insure that clear text passwords are not compromised and that
appropriate propagation of the update can take place to all active application sites.
Additional system fields may be added to the callers buffer and existing fields may be
modified to satisfy the request.

tpcryptpw () returns -1 on failure and seapermo to indicate the error condition.

Under the following conditionspcryptpw () fails and setgperrno to one of the
following values:

[TPEINVAL]
Invalid arguments were specified. Thef value is NULL, does not point to
a FML32 typed buffer or appdir could not be determined from the input buffer
or the environment.

[TPEPERW
The calling process did not have the appropriate permissions necessary to
perform the requested task.

[TPEOS
An operating system error has occurred. A numeric value representing the
system call that failed is available ixnixerr

[TPESYSTEWM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to userlog(3).

This interface is available only on UNIX System sites running BEA TUXEDO Release
5.0 or later. This interface is not available to workstation clients.

${TUXDIRY/Iib/libtmib.a, ${TUXDIR}/Iib/libtmib.so.< rel>
MIB(5), TM_MIB(5), BEA TUXEDO Administrator's Guide

126 BEA TUXEDO Reference Manual

tpdequeue(3)

tpdequeue(3)

Name

Synopsis

Description

tpdequeue -routine to dequeue a message from a queue

#include <atmi.h>
int tpdequeue(char *gspace, char *qname, TPQCTL *ctl, char **data,
long *len, long flags)

tpdequeue () dequeues a message for processing from the queue nameahiayin
the gspace queue space.

By default, the message at the top of the queue is dequeued. The default order of
messages on the queue is defined when the queue is created. The application can
request a particular message for dequeuing by specifying its message identifier using
thectl parameterct/ flags can also be used to indicate that the application wants to
wait for a message, in the case where a message is not currently available. See the
section below describing this parameter.

data is the address of a pointer to the buffer into which a message is redeh and
points to the length of that messageats must point to a buffer originally allocated

by tpalloc (3). To determine whether a message buffer changed in size, compare its
(total) size beforgpdequeue () was issued with/en . If *len is larger, then the buffer

has grown; otherwise, the buffer has not changed size. Notegthat fhay change

for reasons other than the buffer's size increasedenf ts O upon return, then the
message dequeued has no data portion and neitivar hor the buffer it points to

were modified. It is an error fordfata or len to be NULL.

The message is dequeued in transaction mode if the caller is in transaction mode and
the TPNOTRANIag is not set. This has the effect thapifequeue () returns

successfully and the caller's transaction is committed successfully, then the message is
deleted from the queue. If the caller's transaction is rolled back either explicitly or as
the result of a transaction timeout or some communication error, then the message will
be left on the queue (that is, the deletion of the message from the queue is also rolled
back). This can be exploited to “peek” at a message on the queue, rolling back the
transaction to leave the message on the queue (note that this cannot be done in
TPNOTRANNOde as described below). It is not possible to enqueue and dequeue the
same message within the same transaction.

The message is not dequeued in transaction mode if either the caller is not in
transaction mode, or thiePNOTRANIag is set. The message is dequeued in a separate
transaction. If a communication error or a timeout occurs (either transaction or
blocking timeout), the application will not know whether or not the message was
successfully dequeued and the message may be lost.

BEA TUXEDO Reference Manual 127

tpdequeue(3)

128

Following is a list of validflags .

TPNOTRAN
If the caller is in transaction mode and this flag is set, then the message is nc
dequeued within the same transaction as the caller. A caller in transaction
mode that sets this flag is still subject to the transaction timeout (and no other
when dequeuing the message. If message dequeuing fails, the caller's
transaction is not affected.

TPNOBLOCK
The message is not dequeued if a blocking condition exists (for example, the
internal buffers into which the message is transferred are full). If such a
condition occurs, the call fails amgbrrno is set toTPEBLOCKWhen
TPNOBLOCHs not specified and a blocking condition exists, the caller blocks
until the condition subsides or a timeout occurs (either transaction or blocking
timeout). This blocking condition does not include blocking on the queue
itself if the TPQWAIT option is specified.

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPNOCHANGE
When this flag is set, the type of the buffer pointed todzyd" is not allowed
to change. By default, if a buffer is received that differs in type from the
buffer pointed to by #ata , then *data 's buffer type changes to the received
buffer's type so long as the receiver recognizes the incoming buffer type. Tha
is, the type and sub-type of the dequeued message must match the type an
sub-type of the buffer pointed to byita .

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is re-issued. WhenPSIGRSTRTIs not specified and a signal interrupts a
system call, therpdequeue () fails andtperrno is set toTPGOTSIG

If tpdequeue () returns successfully, the application can retrieve additional
information about the message usimg data structure. The information may include
the message identifier for the dequeued message, a correlation identifier that shoulc
accompany any reply or failure message so that the originator can correlate the
message with the original request, the name of a reply queue if a reply is desired, ar
the name of the failure queue on which the application can queue information
regarding failure to dequeue the message. This is described below.

BEA TUXEDO Reference Manual

tpdequeue(3)

Control
Parameter

The TPQCTL structure is used by the application program to pass and retrieve
parameters associated with dequeuing the messagéaghheelement of TPQCTL is
used to indicate what other elements in the structure are valid.

Oninput torpdequeue (), the following elements may be setin the TPQCTL structure:

long flags; [* indicates which of the values
* are set */
char msgid[32]; /* id of message to dequeue */

char corrid[32]; [* correlation identifier of
* message to dequeue */

Following is a list of valid bits for théags parameter controlling input information
for tpdequeue ().

TPNOFLAGS
No flags are set. No information is taken from the control structure.

TPQGETBYMSGID
If set, it requests that the message identifiedtbymsgid be dequeued.
The message identifier would be one that was returned by a prior call to
tpenqueue (3). Note that the message identifier is not valid if the message has
moved from one queue to another; in this case, use the correlation identifier.
This option cannot be used with theQwAIToption.

TPQGETBYCORRID
If set, it requests that the message with the correlation identifier specified by
ctl->corrid be dequeued. The correlation identifier would be one that the
application specified when enqueuing the messagetpétiqueue (). This
option cannot be used with ti@QwAIToption.

TPQWAIT
If set, it indicates that an error should not be returned if the queue is empty.
Instead, the process should block until a message is available.

On output frompdequeue (), the following elements may be set in the TPQCTL
structure:

long flags; [* indicates which of the values
* should be set */

long priority; [* enqueue priority */

char msgid[32]; /* id of message dequeued */

char corrid[32]; [* correlation identifier used to
* identify the message */

char replyqueue[16]; /* queue name for reply */

char failurequeue[16]; /* queue name for failure */

BEA TUXEDO Reference Manual 129

tpdequeue(3)

130

long diagnostic; [* reason for failure */

long appkey; [* application authentication client
* key */

long urcode; /* user-return code */

CLIENTID cltid; [* client identifier for originating
* client */

Following is a list of valid bits for th#gags parameter controlling output information
from tpdequeue (). If the flag bit is turned on whepdequeue () is called, then the
associated element in the structure is populated if available and the bit remains set.
the value is not available, the flag bit will be turned off afidequeue () completes.

TPQPRIORITY
If set and the value is available, the priority at which the message was queue
is stored inctl->priority . The priority is in the range 1 to 100, inclusive,

and the higher the number, the higher the priority (that is, a message with a
higher number is dequeued before a message with a lower number).

TPQMSGID
If set and the call ttpdequeue () was successful, the message identifier will
be stored irctl->msgid

TPQCORRID
If set and the call tpdequeue () was successful and the message was queued
with a correlation identifier, the value will be storectif>corrid . Any

reply to a queue must have this correlation identifier.

TPQREPLYQ
If set and the message is associated with a reply queue, the value will be
stored inctl->replyqueue . Any reply to the message should go to the

named reply queue within the same queue space as the request message.

TPQFAILUREQ
If set and the message is associated with a failure queue, the value will be
stored inctl->failurequeue . Any failure message should go to the named
failure queue within the same queue space as the request message.

If the call totpdequeue () failed andtpermo is set to TPEDIAGNOSTIC, a value
indicating the reason for failure is returnedir>diagnostic . The possible values
are defined below in the DIAGNOSTICS section.

Additionally on outputctl->appkey is set to application authentication key,

ctl->cltid is set to the identifier for the client originating the request, and
ctl->urcode is set to the user-return code value that was set when the message wze
enqueued.

BEA TUXEDO Reference Manual

tpdequeue(3)

Return Values

Errors

Ifthectl parameter is NULL, the input flags are considered to be TPNOFLAGS and
no output information is made available to the application program.

This function returns \-1 on error and sgtsrno to indicate the error condition.

Under the following conditionspdequeue () fails and setgpermo to one of the
following (unless otherwise noted, failure does not affect the caller's transaction, if one
exists):

[TPEINVAL]
Invalid arguments were given (for exampjeame is NULL, data does not
point to space allocated witpalloc (3) orflags are invalid).

[TPENOENT
Cannot access thgpace because it is not available (the associated
TMQUEUE) server is not available).

[TPEOTYPE
Either the type and sub-type of the dequeued message are not known to the
caller; or, TPNOCHANG®as set irflags and the type and sub-type afdta
do not match the type and sub-type of the dequeued message. Regardless,
neither *data , its contents nor/gn are changed. When this error occurs, the
transaction is marked abort-only and the message will remain on the queue.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is to be aborted; otherwise, a blocking
timeout occurred and neithEPNOBLOCKiOr TPNOTIMEwere specified. If a
transaction timeout occurred, any attempts to dequeue new messages will fail
with TPETIME until the transaction has been aborted.

[TPEBLOCK
A blocking condition exists antPNOBLOCHKvas specified.

[TPGOTSI]
A signal was received amPSIGRSTRTwas not specified.

[TPEPROTD
tpdequeue () was called in an improper context. There is no effect on the
queue or the transaction.

[TPESYSTEW
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file. There is no effect on the queue.

[TPEOS
An operating system error has occurred. There is no effect on the queue.

BEA TUXEDO Reference Manual 131

tpdequeue(3)

132

Diagnostic

[TPEDIAGNOSTIG
Dequeuing a message from the specified queue failed. The reason for failur
can be determined by the diagnostic value returnedtviatructure.

The following diagnostic values are returned during the dequeuing of a message.

[QMEINVAL
An invalid flag value was specified.

[QMEBADRMID
An invalid resource manager identifier was specified.

[QMENOTOPEN
The resource manager is not currently open.

[QMETRAN
The call was made with the TPNOTRAN flag and an error occurred trying to
start a transaction in which to dequeue the message.

[QMEBADMSGID
An invalid message identifier was specified for dequeuing.

[QMEINUSE
When dequeuing a message by correlation or message identifier, the specifie
message is in-use by another transaction. Otherwise, all messages currentl
on the queue are in-use by other transactions.

[QMESYSTEM
A system error has occurred. The exact nature of the error is written to a loc
file.

[QMECE
An operating system error has occurred.

[QMEABORTED
The operation was aborted. When executed within a global transaction, the
global transaction has been marked rollback-only. Otherwise, the queue
manager aborted the operation.

[QMEPROTO
A dequeue was done when the transaction state was not active.

[QMEBADQUEUE
An invalid or deleted queue name was specified.

BEA TUXEDO Reference Manual

tpdequeue(3)

[QMENOMS$G
No message was available for dequeuing.

See Also0 TMQUEUE), tpalloc (3), tpenqueue (3)

BEA TUXEDO Reference Manual 133

tpdiscon(3)

tpdiscon(3)

Name

Synopsis

Description

Return Values

134

Errors

tpdiscon -routine for taking down a conversational service connection

#include <atmi.h>
int tpdiscon(int cd)

tpdiscon () immediately tears down the connection specifie@¢dwnd generates a
TPEV_DISCONIMMevent on the other end of the connection.

tpdiscon () can be called only by the initiator of the conversatipgiscon () cannot

be called within a conversational service on the descriptor with which it was invoked.
Rather, a conversational service musttpsgurn (3) to signify that it has completed

its part of the conversation. Similarly, even though a program communicating with a
conversational service can isspdiscon (), the preferred way is to let the service tear
down the connection itpreturn (3); doing so ensures correct results.

tpdiscon () causes the connection to be torn down immediately (that is, abortive rathel
than orderly). Any data that has not yet reached its destination may hpdiestn ()

can be issued even when the program on the other end of the connection is participati
in the caller's transaction. In this case, the transaction must be aborted. Also, the call
does not need to have control of the connection witiston () is called.

tpdiscon () function returns \-1 on error and setsrrno to indicate the error
condition.

Under the following conditionspdiscon () fails and setgermo to:

[TPEBADDESE
cd is invalid or is the descriptor with which a conversational service was
invoked.

[TPETIME]
A timeout occurred. The descriptor is no longer valid.

[TPEPROTD
tpdiscon() was called in an improper context.

[TPESYSTEWM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file. The descriptor is no longer valid.

[TPEOS
An operating system error has occurred. The descriptor is no longer valid.

BEA TUXEDO Reference Manual

tpdiscon(3)

See Also tpabort (3), tpcommit (3), tpconnect (3), tprecv (3), tpreturn (3), tpsend (3)

BEA TUXEDO Reference Manual 135

tpenqueue(3)

tpenqueue(3)

136

Name

Synopsis

Description

tpenqueue -routine to enqueue a message

#include <atmi.h>
int tpenqueue(char *gspace, char *qname, TPQCTL *ctl, char *data,
long len, long flags)

tpenqueue () stores a message on the queue nameghéye in thegspace queue
space. A queue space is a collection of queues, one of which mgrstrhe

When the message is intended for a BEA TUXEDO system servendime matches

the name of a service provided by a server. The system provided server,
TMQFORWARS), provides a default mechanism for dequeuing messages from the
queue and forwarding them to servers that provide a service matching the queue nan
If the originator expected a reply, then the reply to the forwarded service request is
stored on the originator's (stable) queue. The originator will dequeue the reply messag
at a subsequent time. Queues can also be used for a reliable message transfer
mechanism between any pair of BEA TUXEDO system processes (clients and/or
servers). In this case, the queue name does not match a service name but some agr
upon title for transferring the message.

If data is non-NULL, it must point to a buffer previously allocatedgajloc (3) and

len should specify the amount of data in the buffer that should be queued. Note that i
data points to a buffer of a type that does not require a length to be specified (for
example, arMLfielded buffer), theren is ignored. Ifdata is NULL, len is ignored

and a message is queued with no data portion.

The message is queued at the priority definedd§pace unless overridden by a
previous call tapsprio (3).

If the caller is within a transaction and theNOTRANIag is not set, the message is
gqueued in transaction mode. This has the effect thadriflueue () returns

successfully and the caller's transaction is committed successfully, then the message
guaranteed to be available subsequent to the transaction completing. If the caller's
transaction is rolled back either explicitly or as the result of a transaction timeout or
some communication error, then the message will be deleted from the queue (that i
the placing of the message on the queue is also rolled back). It is not possible to
engueue then dequeue the same message within the same transaction.

The message is not queued in transaction mode if either the caller is not in transactic
mode, or th&PNOTRANIag is set. In this case, the queued message is stored on the
gueue in a separate transaction. Qpeequeue () returns successfully, the submitted

BEA TUXEDO Reference Manual

tpenqueue(3)

message is guaranteed to be available. If a communication error or a timeout occurs
(either transaction or blocking timeout), the application will not know whether or not
the message was successfully stored on the queue.

The order in which messages are placed on the queue is controlled by the application
via ctl data structure as described below; the default queue ordering is set when the
queue is created.

Following is a list of validfags

TPNOTRAN
If the caller is in transaction mode and this flag is set, then the message is not
gueued within the same transaction as the caller. A caller in transaction mode
that sets this flag is still subject to the transaction timeout (and no other) when
gueuing the message. If message queuing fails, the caller's transaction is not
affected.

TPNOBLOCK
The message is not enqueued if a blocking condition exists (for example, the
internal buffers into which the message is transferred are full). If such a
condition occurs, the call fails amgerrno is set toTPEBLOCKWhen
TPNOBLOCHKS not specified and a blocking condition exists, the caller blocks
until the condition subsides or a timeout occurs (either transaction or blocking
timeout).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is re-issued. WheTrPSIGRSTRTIs not specified and a signal interrupts a
system call, therpenqueue () fails andtperrno is set toTPGOTSIG

Additional information about queuing the message can be specified vidata

structure. This information includes values to override the default queue ordering
placing the message at the top of the queue or before an enqueued message; an absolute
or relative time after which a queued message is made available; a correlation identifier
that aids in correlating a reply or failure message with the queued message; the name
of a queue to which a reply should be enqueued; and the name of a queue to which any
failure message should be enqueued.

BEA TUXEDO Reference Manual 137

tpenqueue(3)

138

Control
Parameter

The TPQCTL structure is used by the application program to pass and retrieve
parameters associated with enqueuing the messagéagheelement of TPQCTL is
used to indicate what other elements in the structure are valid.

On input tapenqueue (), the following elements may be set in the TPQCTL structure:

long flags; [* indicates which of the values
* are set */

long deq_time; /* absolute/relative for dequeuing */

long priority; /* enqueue priority */

long urcode; /* user-return code */

char msgid[32]; * id of message before which to queue
* request */

char corrid[32]; [* correlation identifier used to

* identify the msg */
char replyqueue[16]; /* queue name for reply message */
char failurequeue[16]; /* queue name for failure message */

The following is a list of valid bits for thags parameter controlling input
information fortpenqueue ().

TPNOFLAGS
No flags or values are set. No information is taken from the control structure

TPQTOP
Setting this flag bit indicates that the queue ordering be overridden and the
message placed at the top of the queue. This request may not be granted
depending on whether or not the queue was configured to allow overriding
the queue orderingPQTOPANdTPQBEFOREMSGIBre mutually exclusive
flags.

TPQBEFOREMSGID
Setting this flag bit indicates that the queue ordering be overridden and the
message placed in the queue before the message identifsge-lwggid
This request may not be granted depending on whether or not the queue we
configured to allow overriding the queue orderingQTOPand
TPQBEFOREMSGIare mutually exclusive flags.

TPQTIME_ABS
If set, the message is made available after the time specified by
ctl->deq_time . Thedeq_time is an absolute time value as generated by
time () or mktime () (the number of seconds since 00:00:00 UTC, January 1,
1970).TPQTIME_ABSandTPQTIME_RELare mutually exclusive flags.

BEA TUXEDO Reference Manual

tpenqueue(3)

TPQTIME_REL
If set, the message is made available after a time relative to the completion of
the queuing transactiont->deq_time specifies the number of seconds to
delay after the transaction completes before the submitted message should be
available TPQTIME_ABSandTPQTIME_RELare mutually exclusive flags.

TPQPRIORITY
If set, the priority at which the message should be enqueued is stored in
ctl->priority . The priority must be in the range 1 to 100, inclusive. The

higher the number, the higher the priority (that is, a message with a higher
number is dequeued before a message with a lower number).

TPQCORRID
If set, the correlation identifier value specified inctcorrid is
available when a message is dequeued wyitdgueue (3). This identifier
accompanies any reply or failure message that is queued such that an
application can correlate a reply with a particular request. The entire value
should be initialized (e.g., padded with null characters) such that the value can
be matched at a later time.

TPQREPLYQ
If set, a reply queue namedadtt->replyqueue is associated with the
gqueued message. Any reply to the message will be queued to the named queue
within the same queue space as the request message. This string must be
NULL terminated (maximum 15 characters in length).

TPQFAILUREQ
If set, a failure queue nameddtt+->failurequeue is associated with the
queued message. If a failure occurs when the enqueued message is
subsequently dequeued, a failure message will go to the named queue within
the same queue space as the original request message. This string must be
NULL terminated (maximum 15 characters in length).

Additionally, theurcode element of TPQCTL can be set with a user-return code. This
value will be returned to the application that dequeues the message.

On output frompenqueue (), the following elements may be set in the TPQCTL:

structure: long flags; /* indicates which of the values
* are set */

char msgid[32]; /*id of enqueued message */

long diagnostic; /* indicates reason for failure */

BEA TUXEDO Reference Manual 139

tpenqueue(3)

Return Values

140

Errors

Following is a list of valid bits for th#gags parameter controlling output information
from tpenqueue (). If the flag bit is turned on whepenqueue () is called, then the
associated element in the structure is populated if available and the bit remains set.
the value is not available, the flag bit will be turned off afienqueue () completes.

TPQMSGID
If set and the call ttpenqueue () was successful, the message identifier will
be stored irctl->msgid

If the call totpenqueue () failed andipermo is setto TPEDIAGNOSTIC, a value
indicating the reason for failure is returnedir>diagnostic . The possible values
are defined below in the DIAGNOSTICS section.

If this parameter is NULL, the input flags are considered to be TPNOFLAGS and no
output information is made available to the application program.

This function returns \-1 on error and sgtsmo to indicate the error condition.
Otherwise, the message has been successfully queuedpsheueue () returns.

Under the following conditionspenqueue () fails and setgperrno to the following
values (unless otherwise noted, failure does not affect the caller's transaction, if one
exists):

[TPEINVAL]
Invalid arguments were given (for exampjepace is NULL, data does not
point to space allocated witpalloc (3), orflags are invalid).

[TPENOENT
Cannot access thgpace because it is not available (the associated
TMQUEUES) server is not available).

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is to be aborted; otherwise, a blocking
timeout occurred and neithEPNOBLOCK Or TPNOTIMEWas specified. If a
transaction timeout occurred, any attempts to enqueue new messages will fa
with TPETIME until the transaction has been aborted.

[TPEBLOCK
A blocking condition exists antPNOBLOCKvas specified.

[TPGOTSI]
A signal was received andPSIGRSTRTwas not specified.

BEA TUXEDO Reference Manual

tpenqueue(3)

[TPEPROTD
tpenqueue () was called in an improper context.

[TPESYSTEW
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

[TPEDIAGNOSTIG
Enqueuing a message on the specified queue failed. The reason for failure can
be determined by the diagnostic returnedoria.

Diagnostic The following diagnostic values are returned during the enqueuing of a message.

[QMEINVAL
An invalid flag value was specified.

[QMEBADRMID
An invalid resource manager identifier was specified.

[QMENOTOPEN
The resource manager is not currently open.

[QMETRAN
The call was made with the TPNOTRAN flag and an error occurred trying to
start a transaction in which to enqueue the message.

[QMEBADMSGI]D
An invalid message identifier was specified.

[QMESYSTEM
A system error has occurred. The exact nature of the error is written to a log
file.

[QMEOB
An operating system error has occurred.

[QMEABORTED
The operation was aborted. When executed within a global transaction, the
global transaction has been marked rollback-only. Otherwise, the queue
manager aborted the operation.

BEA TUXEDO Reference Manual 141

tpenqueue(3)

[QMEPROTO
An enqueue was done when the transaction state was not active.

[QMEBADQUEUE
An invalid or deleted queue name was specified.

[QMENOSPAGE
There is no space on the queue for the message.

See Also TMQFORWARR), TMQUEUES), gp_mktime (3),tpalloc (3), tpacall (3), tpinit (3),
tpsprio (3)

142 BEA TUXEDO Reference Manual

tperrordetail(3c)

tperrordetail(3¢)

Name

Synopsis

Description

Return Values

tperrordetail (3c)-get additional detail about an error generated from the last BEA
TUXEDO system call

#include <atmi.h>
int tperrordetail(long flags)

tperrordetail returns additional detail related to an error produced by the last BEA
TUXEDO system routine called in the current thrapekrordetail returns a

numeric value that is also represented by a symbolic name. If the last BEA TUXEDO
system routine called in the current thread did not produce an error, then

tperrordetail will return zero. Thereforeperrordetail should be called after

an error has been indicated; that is, wipenno has been set.

Currentlyflags is reserved for future use and must be set to 0.
tperrordetail returns a -1 on error and sefsrrno to indicate the error condition.

These are the symbolic names and meaning for each numeric value that
tperrordetail may return. The order in which these are listed is not significant and
does not imply precedence.

TPED_SVCTIMEOUT
A server was terminated due to a service timeout. The service timeout is

controlled by the value &VCTIMEOUTIN theubbconfig file or
TA_SVCTIMEOUTIN T_SERVERandT_SERVICE classes in theM_MIB

TPED_TERM
A Workstation client has been disconnected from the application.

TPED_NOUNSOLHANDLER
A client does not have an unsolicited handler set. TH#eCKflag is used in a
tpnotify (3c) call and the target of thyotify (3c)isina BEA TUXEDO
session, but it has not set an unsolicited notification handler. When
tpnotify (3c) fails,tperro is set toTPENOENTA subsequent call to
tperrordetail (3c) with no intermediate ATMI calls returns
TPED_NOUNSOLHANDLER

TPED_NOCLIENT
No client exists. Th@PACKflag is used in gnotify call but there is no
target fortpnotify (3c). Whentpnotify (3c¢) fails,tpermo is set to
TPENOENTA subsequent call tperrordetail (3c) with no intermediate
ATMI calls returnSTPED_NOCLIENT

BEA TUXEDO Reference Manual 143

tperrordetail(3¢)

144

TPED_CLIENTDISCONNECTED
A Jolt client is disconnected currently. TheACKflag is used in a
tpnotify (3c) call and the target gfnotify (3c) is a currently disconnected
Jolt client. Whenpnotify (3c) fails, a call taperrordetail (3c) with no
intermediate ATMI calls returnBPED_CLIENTDISCONNECTED

TPED_DOMAINUNREACHABLE
A domain is unreachable. Specifically, a domain that has been configured to
satisfy a request that a local domain cannot service, was not reachable whe
a request was made. If, after the request failure, a call is made to
tperrordetail (3c) with no intermediate ATMI calls,
TPED_DOMAINUNREACHABIEreturned.
When calls tapcall (3c),tpgetrply (3c), andprecv (3c) fail because of
an unreachable domaimPED_DOMAINUNREACHABIsEreturned. The
following table indicates the corresponding values returnegdoo

ATMI Call tperrno Error Detail

tpcall TPESVCERR TPED_DOMAINUNREACHABLE
tpgetrply TPESVCERR TPED_DOMAINUNREACHABLE
tprecv TPEEVENT TPED_DOMAINUNREACHABLE

TPEV_SVCERR

Note: TheTPED_DOMAINUNREACHABf@Eature applies to BEA TUXEDO
Domains only. It does not apply to other domains products such as Connec
OSI TP Domains and Connect SNA Domains.

Errors Under the following conditiongperrordetail fails and setgperrno to the
following:

TPEINVAL
flags not set to zero

See Also intro (3c), tpstrerrordetail (3c),tpermo (5)

BEA TUXEDO Reference Manual

tpforward(3)

tpforward(3)
Name

Synopsis

Description

tpforward (3)-routine for forwarding a service request to another service routine

#include <atmi.h>
void tpforward(char *svc, char *data, long len, long flags)

tpforward allows a service routine to forward a client's request to another service
routine for further processingforward — acts liketpreturn (3) in that it is the last
call made in a service routine. Likgeturn (3), tpforward ~ should be called from
within the service routine dispatched to ensure correct return of control to the BEA
TUXEDO system dispatchempforward ~ cannot be called from within a
conversational service.

This function forwards a request to the service namesydysing data pointed to by

data . The service name must not begin with a dot. A service routine forwarding a
request receives no reply. After the request is forwarded, the service routine returns to
the communication manager dispatcher and the server is free to do other work. Note
that because no reply is expected from a forwarded request, the request may be
forwarded without error to any service routine in the same executable as the service
that forwarded the request.

If the service routine is in transaction moghkégrward puts the caller's portion of the
transaction in a state where it may be completed when the originator of the transaction
issues eithetpcommit (3) ortpabort (3). If a transaction was explicitly started with
tpbegin (3) while in a service routine, the transaction must be ended with either
tpcommit (3) ortpabort (3) before callingpforward . Thus, all services in a

“forward chain” are either all started in transaction mode or none are.

The last server in a forward chain sends a reply back to the originator of the request
usingtpreturn (3). In essencapforward transfers to another server the
responsibility of sending a reply back to the awaiting requester.

tpforward should be called after receiving all replies expected from service requests
initiated by the service routine. Any outstanding replies which are not received will
automatically be dropped by the communication manager dispatcher upon receipt. In
addition, the descriptors for those replies become invalid and the request is not
forwarded tasvc .

data points to the data portion of a reply to be sentatf is non-NULL, it must point

to a buffer previously obtained by a caltalloc (3). If this is the same buffer passed

to the service routine upon its invocation, then its disposition is up to the BEA
TUXEDO system dispatcher; the service routine writer does not have to worry about
whether it is freed or not. In fact, any attempt by the user to free this buffer will fail.
However, if the buffer passedttdorward is not the same one with which the service

BEA TUXEDO Reference Manual 145

tpforward(3)

Return Values

146

Errors

See Also

is invoked, thempforward ~ will free that bufferien specifies the amount of the data
buffer to be sent. Iflata points to a buffer which does not require a length to be
specified, (for example, an FML fielded buffer), them is ignored (and can be 0). If
data is NULL, then/en is ignored and a request with zero length data is sent.

Theflags argument is reserved for future use and should be set to 0 (zero).

A service routine does not return any value to its caller, the communication manage
dispatcher. Thugpforward is declared as a void. Sgeeturn (3c) for a more
extensive discussion.

If any errors occur either in the handling of the parameters passed to the function or i
its processing, a “failed” message is sent back to the original requester (unless no rep
is to be sent). The existence of outstanding replies or subordinate connections, or th
caller's transaction being marked abort-only, qualify as failures which generate failec
messages.

If either SVCTIMEOUTIN the ubbconfig file oTA_SVCTIMEOUTIN theTM_MIBis
non-zero, the eventPEV_SVCERRs returned when a service timeout occurs.

Failed messages are detected by the requester wittPE8YCERFerror indication.
When such an error occurs, the caller's data is not sent. Also, this error causes the
caller's current transaction to be marked abort-only.

If a transaction timeout occurs either while in the service routine or while forwarding
the request, the requester waiting for a reply with eiffval (3), ortpgetrply (3)

will get aTPETIME error return. Also, the waiting requester will not receive any data.
Service routines, however, are expected to terminate using gititem (3) or
tpforward . A conversational service routine must yseturn (3), and cannot use
tpforward

If a service routine returns without using eittpeeturn (3) ortpforward ~ (that is, it

uses the C languageturn statement or simply “falls out of the function”) or if
tpforward is called from a conversational server, the server will print a warning
message in a log file and return a service error to the original requester. All open
connections to subordinates will be disconnected immediately, and any outstanding
asynchronous replies will be marked stale. If the server was in transaction mode at tt
time of failure, the transaction is marked abort-only. Note also that if either

tpreturn (3) ortpforward are used outside of a service routine (for example, in
clients, or intpsvrinit ~ (3) ortpsvrdone (3)), then these routines simply return

having no effect.

tpalloc (3),tpconnect (3), tpreturn (3), tpservice (3), tpstrerrordetail (3c)

BEA TUXEDO Reference Manual

tpfree(3)

tpfree(3)
Name

Synopsis

Description

Return Values

Usage

See Also

tpfree -routine for freeing a typed buffer

#include <atmi.h>
void tpfree(char *ptr)

The argument tepfree () is a pointer to a buffer previously obtained by either
tpalloc (3) ortprealloc (3). If ptr is NULL, no action occurs. Undefined results
will occur if ptr does not point to a typed buffer (or if it points to space previously
freed withtpfree (). Inside service routinegfree () returns and does not free the
buffer if ptr points to the buffer passed into a service routine.

Some buffer types require state information or associated data to be removed as part
of freeing a buffertpfree () removes any of these associations (in a communication
manager-specific manner) before a buffer is freed.

Oncetpfree () returnsptr should not be passed as an argument to any BEA
TUXEDO system routine or used in any other manner.

tpfree () does not return any value to its caller. Thus, it is declared as a void.

This function should not be used in concert withloc (3C;),realloc (3C;) or
free (3C;) in the C library (for example, a buffer allocated witiloc (3) should not
be freed withiree (3C)).

intro (3),tpalloc (3), tprealloc (3)

BEA TUXEDO Reference Manual 147

tpgetadmkey(3)

tpgetadmkey(3)
Name tpgetadmkey -getadministrative authentication key.
Synopsis #include <atmi.h>
long tpgetadmkey(TPINIT *tpinfo)

Description tpgetadmkey () is available for application use by an application specific
authentication server. It returns an application security key suitable for assignmen
to the indicated user for the purpose of administrative authentication. This routine
must be called with a client name (igipfo->citname) of eithentpsysadm or
tpsysop ; otherwise, a valid administrative key will not be returned.

Return Values A non-0 value with the high-order bit (0x80000000) set is returned on success;
otherwise 0 is returned. Zero may be returnegdifo is NULL, tpinfo->cltname
is nottpsysadm or tpsysop , or lastly if the effective user id is not the configured
application administrator for this site.
Errors A zero return value is the only indication that a valid administrative key was not
assigned.
Portability =~ This interface is available only on UNIX System sites running BEA TUXEDO Release

5.0 or later.

See Also tpaddusr (1), tpinit (3), AUTHSVES), BEA TUXEDO Administrator's Guide

148

BEA TUXEDO Reference Manual

tpgetlev(3)

tpgetlev(3)
Name

Synopsis
Description

Return Values

Errors

Notices

See Also

tpgetlev -routine for checking if a transaction is in progress

#include <atmi.h>
int tpgetlev()

tpgetlev () returns to the caller the current transaction level. Currently, the only levels
defined are 0 and 1.

Upon successful completiotpgetlev () returns either a 0 to indicate that no
transaction is in progress, or 1 to indicate that a transaction is in progress; otherwise,
tpgetlev () returns \-1 on error and sepermo to indicate the error condition.

Under the following conditionspgetiev () fails and setgerrno to:

[TPEPROTD
tpgetlev() was called in an improper context.

[TPESYSTEW
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

When usingpbegin (3), tpcommit (3) andtpabort (3) to delineate a BEA TUXEDO
system transaction, it is important to remember that only the work done by a resource
manager that meets the XA interface (and is linked to the caller appropriately) has
transactional properties. All other operations performed in a transaction are not
affected by eithetpcommit (3) ortpabort (3). Seevuildserver (1) for details on

linking resource managers that meet the XA interface into a server such that operations
performed by that resource manager are part of a BEA TUXEDO system transaction.

tpabort (3), tpbegin (3), tpcommit (3), tpscmt (3)

BEA TUXEDO Reference Manual 149

tpgetrply(3)

tpgetrply(3)

150

Name

Synopsis

Description

tpgetrply (3c)-routine for getting a reply from a previous request

#include <atmi.h>
int tpgetrply(int * cd, char ** data ,long* len ,long flags)

tpgetrply ~ (3c) returns a reply from a previously sent request. This function's first
argumentgcd, points to a call descriptor returnedtpygicall (3c). By default, the
function waits until the reply matching:d arrives or a timeout occurs.

data must be the address of a pointer to a buffer previously allocatediby (3c)
andl/en should point to a long thaigetrply ~ (3c) sets to the amount of data
successfully received. Upon successful retudatd points to a buffer containing the
reply and ¥en contains the size of the data. FML and FML32 buffers often assume a
minimum size of 4096 bytes; if the reply is larger than 4096, the size of the buffer is
increased to a size large enough to accommodate the data being returned.

Buffers on the sending side that may be only partially filled (for example, FML or
STRING buffers) will have only the amount that is used send. The system may then
enlarge the received data size by some arbitrary amount. This means that the receiv
may receive a buffer that is smaller than what was originally allocated by the sender
yet larger than the data that was sent.

The receive buffer may grow, or it may shrink, and its address almost invariably
changes, as the system swaps buffers around internally. To determine whether (anc
how much) a reply buffer changed in size, compare its total size hefetely

was issued withfen . Seentro (3c) for more information about buffer management.

If * len is 0, then the reply has no data portion and neithige* nor the buffer it points
to were modified.

It is an error for Hata orlen to be NULL.

Following is a list of validflags .

TPGETANY
This flag signifies thaipgetrply ~ should ignore the descriptor pointed to by
cd, return any reply available and setto point to the call descriptor for the
reply returned. If no replies exispgetrply by default will wait for one to
arrive.

TPNOCHANGE
By default, if a buffer is received that differs in type from the buffer pointed
to by *data , then *data 's buffer type changes to the received buffer's type so

BEA TUXEDO Reference Manual

tpgetrply(3)

Return Values

Errors

long as the receiver recognizes the incoming buffer type. When this flag is set,
the type of the buffer pointed to byidta is not allowed to change. That is,

the type and sub-type of the received buffer must match the type and sub-type
of the buffer pointed to bydata .

TPNOBLOCK
tpgetrply does not wait for the reply to arrive. If the reply is available, then
tpgetrply gets the reply and returns. When this flag is not specified and a
reply is not available, the caller blocks until the reply arrives or a timeout
occurs (either transaction or blocking timeout).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely for its reply
and wants to be immune to blocking timeouts. Transaction timeouts may still
occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is re-issued.

Except as noted belowcd is no longer valid after its reply is received.

Upon successful return frotpgetrply ~ or upon return whergerrno is set to
TPESVCFAIL, tpurcode contains an application defined value that was sent as part of
tpreturn . tpgetrply returns -1 on error and segerrno to indicate the error
condition.

Under the following conditionspgetrply (3c) fails and setwerrno as indicated

below. Note that ifPGETANYs not set, thendd is invalidated unless otherwise stated.

If TPGETANYS set, therrd points to the descriptor for the reply on which the failure
occurred; if an error occurred before a reply could be retrievedcthpaints to 0.

Also, the failure does not affect the caller's transaction, if one exists, unless otherwise
stated. If a call fails with a particulgrerrmo value, a subsequent call to

tperrordetail (3c) with no intermediate ATMI calls, may provide more detailed
information about the generated error. Refer tajbeordetail (3c) reference

page for more information.

[TPEINVAL]
Invalid arguments were given (for examplé, data , *data orlen is NULL
or flags are invalid). Ifcd is non-NULL, then it is still valid after this error
and the reply remains outstanding.

BEA TUXEDO Reference Manual 151

tpgetrply(3)

152

[TPEOTYPE

Either the type and sub-type of the reply are not known to the caller; or,
TPNOCHANGW®as set inflags and the type and sub-type afdta do not

match the type and sub-type of the reply sent by the service. Regardless,
neither *ata , its contents nor/gn are changed. If the reply was to be
received on behalf of the caller's current transaction, then the transaction is
marked abort-only since the reply is discarded.

[TPEBADDESE

cd points to an invalid descriptor.

[TPETIME]

A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neithBTNOBLOCHKOr TPNOTIMEWere
specified. In either case, neithetsta , its contents nor/en are changed.

* cd remains valid unless the caller is in transaction modeTB@E8TANYvas

not set). If a transaction timeout occurred, then with one exception, any
attempts to send new requests or receive outstanding replies will fail with
TPETIME until the transaction has been aborted. The exception is a request
that does not block, expects no reply and is not sent on behalf of the caller's
transaction (that ispacall (3c) with TPNOTRANTPNOBLOCIHNd
TPNOREPLs€t).

[TPESVCFAIL]

The service routine sending the caller's reply caledurn with TPFAIL .

This is an application-level failure. The contents of the service's reply, if one
was sent, is available in the buffer pointed to byt . If the service request
was made on behalf of the caller's transaction, then the transaction is marke
abort-only. Note that so long as the transaction has not timed out, further
communication may be performed before completely aborting the transaction
and that any work performed on behalf of the caller's transaction will be
aborted upon transaction completion (that is, for subsequent communicatior
to have any lasting effect, it should be done WINOTRAN€t).

[TPESVCERR

A service routine encountered an error eithegrigturn ~ ortpforward ~ (for
example, bad arguments were passed). No reply data is returned when this
error occurs (that is, neitheddta , its contents norfen are changed). If the
service request was made on behalf of the caller's transaction, then the
transaction is marked abort-only. Note that so long as the transaction has nc
timed out, further communication may be performed before completely

BEA TUXEDO Reference Manual

tpgetrply(3)

See Also

aborting the transaction and that any work performed on behalf of the caller's
transaction will be aborted upon transaction completion (that is, for
subsequent communication to have any lasting effect, it should be done with
TPNOTRANE). If eithelSVCTIMEOUTIN theubbconfig ~ file or

TA_SVCTIMEOUTIn theTM_MIBis non-zeroTPESVCERRs returned when a
service timeout occurs.

[TPEBLOCK
A blocking condition exists antPNOBLOCHKvas specified. & remains
valid.

[TPGOTSI]
A signal was received amPSIGRSTRTwas not specified.

[TPEPROTD
tpgetrply was called in an improper context.

[TPESYSTEW
A BEA TUXEDO system error has occurred. The exact nature of the error is

written to a log file.

[TPEOS
An operating system error has occurred. If a message queue on a remote
location is filled, TPEOSmMay possibly be returned.

tpacall (3c),tpalloc (3c),tpcancel (3c), tperrordetail (3c),tprealloc (3c),
tpreturn (3c), tpstrerrordetail (3c), tptypes (3c)

BEA TUXEDO Reference Manual 153

togprio(3)

tpgprio(3)

Name

Synopsis

Description

Return Values

154

Errors

See Also

BEA TU

tpgprio -routine for getting a service request priority

#include <atmi.h>
int tpgprio(void)

tpgprio () returns the priority for the last request sent or received. Priorities can range
from 1 to 100, inclusive, with 100 being the highest priotityprio () may be called
aftertpcall (3) ortpacall (3), (alsotpenqueue (3), ortpdequeue (3), assuming the
gqueued management facility is installed), and the priority returned is for the request
sent. Alsotpgprio () may be called within a service routine to find out at what priority
the invoked service was sengprio () may be called any number of times and will
return the same value until the next request is sent.

Since the conversation primitives are not associated with priorities, ispsgend (3)
ortprecv (3) has no affect on the priority returnedtpgprio (). Also, there is no
priority associated with a conversational service routine unlggala (3) or
tpacall (3) is done within that service.

Upon successpgprio () returns a request's priority; otherwiggprio () returns \-1
on error and setperrno to indicate the error condition.

Under the following conditionspgprio () fails and setgperrno to:

[TPENOEN]
tpgprio () was called and no requests (yieall (3) ortpacall (3)) have
been sent, or itis called within a conversational service for which no requests
have been sent.

[TPEPROTD
tpgprio () was called in an improper context.

[TPESYSTEWM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

tpacall (3),tpcall (3), tpdequeue (3), tpenqueue (3),tpservice (3),tpsprio (3)

XEDO Reference Manual

tpinit(3)

tpinit(3)
Name

Synopsis

Description

tpinit (3)-routine for joining an application

#include <atmi.h>
int tpinit(TPINIT *tpinfo)

tpinit () allows a client to join a BEA TUXEDO system application. Before a client
can use any of the BEA TUXEDO system communication or transaction routines, it
must first join a BEA TUXEDO system application. Because catpimg () is
optional, a client may also join an application by calling many ATMI routines (for
exampletpcall (3)) which transparently catinit () with tpinfo setto NULL. A
client may want to calpinit () directly so that it can set the parameters described
below. In additiontpinit () must be used when application authentication is required
(see the description of the SECURITY keywordiiibconfig (5)), or when the
application wishes to supply its own buffer type switch (geesw (5)). After

tpinit () successfully returns, the client can initiate service requests and define
transactions.

If tpinit () is called more than once (that is, after the client has already joined the
application), no action is taken and success is returned.

tpinit ()’s argumentipinfo , is a pointer to a typed buffer of typBINIT and a
NULL sub-typeTPINIT is a buffer type that iypedef ed in theatmi.h header file.
The buffer must be allocated wjglloc () prior to callingtpinit (3). The buffer
should be freed usingfree (3) after callingpinit (). TheTPINIT typed buffer
structure includes the following members:

char usrname[MAXTIDENT+2];
char cltname[MAXTIDENT+2];
char passwd[MAXTIDENT+2];
char grpname[MAXTIDENT+2];

long flags;
long datalen;
long data;

usrname , cltname , grpname andpasswd are all NULL-terminated stringasrname

is a name representing the callgthame is a client name whose semantics are
application defined. The valugsclient is reserved by the system for tigame

field. Theusrname andcltname fields are associated with the clientadit () time

and are used for both broadcast notification and administrative statistics retrieval. They
should not have more characters tWetXXTIDENT which is defined as 3@asswd is

an application password in unencrypted format that is used for validation against the
application password. Thesswd is limited to 30 charactergtpname is used to

BEA TUXEDO Reference Manual 155

tpinit(3)

156

associate the client with a resource manager group nagipndfne is setto a

0-length string, then the client is not associated with a resource manager and is in tt
default client group. The value gfoname must be the null string (0-length string) for
/WS clients. Note thajrpname is not related to ACL GROUPS.

The setting oflags is used to indicate both the client-specific notification mechanism
and the mode of system access. These settings may override the application defaul
however, in the event that they cannpibit () will print a warning in a log file,

ignore the setting and return the application default setting in the flags element upor
return fromtpinit (). For client notification, the possible values flags are as

follows:

TPU_SIG-Select unsolicited notification by signals.
TPU_DIP-Select unsolicited notification by dip-in.
TPU_IGN-ignore unsolicited natification.

Only one of the above flags can be used at a time. If the client does not select a
notification method via the flags field, then the application default method will be set
in the flags field upon return frominit ().

For setting the mode of system access, the possible valuegdor are as follows:
TPSA_FASTPATHSet system access to fastpath.
TPSA_PROTECTEISet system access to protected.

Only one of the above flags can be used at a time. If the client does not select a
notification method or a system access mode via the flags field, then the application
default method(s) will be set in the flags field upon return fogint (). See

ubbconfig (5) for details on both client notification methods and system access
modes.

datalen is the length of the application specific data that follows. The buffer type
switch entry for th@PINIT typed buffer sets this field based on the total size passed
in for the typed buffer (the application data size is the total size less the size of the
TPINIT structure itself plus the size of the data placeholder as defined in the structure)
data is a place holder for variable length data that is forwarded to an application
defined authentication service. It is always the last element of this structure.

BEA TUXEDO Reference Manual

tpinit(3)

Return Values

Errors

Interoperability

A macro,TPINITNEED, is available to determine the sizeINIT buffer necessary to
accommodate a particular desired application specific data length. For example, if 8
bytes of application specific data are desimINITNEED(8) will return the required
TPINIT buffer size.

A NULL value fortpinfo is allowed for applications not making use of the
authentication feature of the BEA TUXEDO system. Clients using a NULL argument
will get defaults of 0-length strings fesrname , citname andpasswd, no flags set,

and no application data.

tpinit () returns -1 on error and seperrmo to indicate the error condition.
Under the following conditiongpinit () fails and setgpermo to:

[TPEINVAL]
Invalid arguments were specifieghinfo is non-NULL and does not point
to a typed buffer of typePINIT .

[TPENOENT
The client cannot join the application because of space limitations.

[TPEPERW
The client cannot join the application because it does not have permission to
do so or because it has not supplied the correct application password.
Permission may be denied based on an invalid application password, failure
to pass application specific authentication, or use of restricted names.

[TPEPROTD
tpinit () was called in an improper context (for example, the caller is a
server).

[TPESYSTEW
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

tpchkauth (3c) and a non-NULL value for thePINIT typed buffer argument of
tpinit () are available only on sites running Release 4.2 or later.

BEA TUXEDO Reference Manual 157

tpinit(3)

Portability

Environment

158

Variables

The interfaces describedtinit (3c) are supported on UNIX System, Windows,

and MS-DOS operating systems. However, signal-based notification is not supporte
on 16-bit Windows or MS-DOS platforms. If it is selectedpatit () time, then a
userlog (3c) message is generated and the method is automatically set to dip-in.

WSENVFILEis used withinpinit () when invoked by a workstation client. It indicates
a file containing environment variable settings that should be set in the caller’s
environment. Seeompilation (5) for more details on environment variable settings
necessary for workstation clients. Note that this file is processed onlytpihien ()

is called and not before.

WSNADD#S used withirpinit () when invoked by a workstation client. It indicates
the network address(es) of the workstation listener that is to be contacted for access
the application.

TCP/IP addresses may be specified in the following forms:
//host.name:port_number

/A # A port_number

In the first format, the domain finds an addressHimtname using the local name
resolution facilities (usually DNShostname must be the local machine, and the local
name resolution facilities must unambiguously resabagname to the address of the
local machine.

In the second example, the string.## is in dotted decimal format. In dotted
decimal format, each # should be a number from 0 to 255. This dotted decimal numbe
represents the IP address of the local machine.

In both of the above formatgort_number is the TCP port number at which the
domain process will listen for incoming requegtst number can either be a
number between 0 and 65535 or a namgoif number is a name, then it must be
found in the network services database on your local machine.

The address can also be specified in hexadecimal format when preceded by the
characters “0x”. Each character after the initial “Ox” is a number between 0 and 9 or ¢
letter between A and F (case insensitive). The hexadecimal format is useful for
arbitrary binary network addresses such as IPX/SPX or TCP/IP.

The address can also be specified as an arbitrary string. The value should be the sa
as that specified for the NLSADDR parameter in the NETWORK section of the
configuration file.

BEA TUXEDO Reference Manual

tpinit(3)

More than one address can be specified if desired by specifying a comma-separated list
of pathnames for WSNADDR Addresses are tried in order until a connection is
established. Any member of an address list can be specified as a parenthesized
grouping of pipe-separated network addresses. For example:

WSNADDR=(//m1.acme.com:3050|//m2.acme.com:3050),//m3.acme.com:3050

For users running under Windows, the address string would look like this:
set WSNADDR=(//m1.acme.com:3050"|//m2.acme.com:3050),//m3.acme.com:3050

The carat (*) is needed to escape the pipe ().

The BEA TUXEDO system randomly selects one of the parenthesized addresses. This
strategy distributes the load randomly across a set of listener processes. Addresses
are tried in order until a connection is established. Use the value specified in the
application configuration file for the workstation listener to be called. If the value
begins withthe characters “Ox™, it is interpreted as a string of hex-digits; otherwise,

it is interpreted as ASCII characters.

WSDEVICHSs used withintpinit () when invoked by a workstation client. It indicates

the device name to be used to access the network. This variable is used by workstation
clients and ignored for native clients. Note that certain supported transport level
network interfaces do not require a device name; for example, sockets and NetBIOS.
Workstation clients supported by such interfaces need not spesiHEVICE

WSTYPHS used withirtpinit () when invoked by a workstation client to negotiate
encode/decode responsibilities with the native site. This variable is optional for
workstation clients and ignored for native clients.

WSRPLYMAIRS used bypinit () to set the maximum amount of core memory that
should be used for buffering application replies before they are dumped to file. The
default for this parameter varies with each instantiation. The instantiation specific
Programmer’s Guide should be consulted for further information.

TMMINENCRYPTBITSNVhen connecting to the BEA TUXEDO system, require at least
this minimum level of encryption. “0” means no encryption, while “40” and “128”
specify the encryption key length (in bits). If this minimum level of encryption cannot
be met, link establishment will fail. The default is “0”.

TMMAXENCRYPTBIF®/hen connecting to the BEA TUXEDO system, negotiate
encryption up to this level. “0” means no encryption, while “40” and “128” specify the
encryption length (in bits). The default is “128”

BEA TUXEDO Reference Manual 159

tpinit(3)

160

Warning

See Also

Signal restrictions may prevent the system using signal-based notification even thoug
it has been selected by a client. When this happens, the system generates a log mess
that it is switching notification for the selected client to dip-in and the client is notified
then and thereafter via dip-in notification. (S##config (5) description of the
*RESOURCES NOTIFYparameter for a detailed discussion of notification methods.)
Note that signaling of clients is always done by the system so that the behavior of
notification is consistent regardless of where the originating notification call is made.
Because of this, only clients running as the application administrator can use
signal-based notification. The ID for the application administrator is identified as part
of the configuration for the application.

If signal-based notification is selected for a client, then certain ATMI calls may fail,
returningTPGOTSIGdue to receipt of an unsolicited messageP$IGRSTRTIs not
specified.

tpterm (3)

BEA TUXEDO Reference Manual

tpnotify(3)

tpnotify(3)
Name

Synopsis

Description

tpnotify -routine for sending notification by client identifier

#include <atmi.h>
int tpnotify(CLIENTID *clientid, char *data, long len, long flags)

tpnotify () allows a client or server to send an unsolicited message to an individual
client.

clientid is a pointer to a client identifier saved from RSVCINFOstructure of a
previous or current service invocation, or passed to a client via some other
communications mechanism (for example, retrieved via the administration interface).

The data portion of the request is pointed taifay , a buffer previously allocated by
tpalloc (3).len specifies how much afata to send. Note that data points to a
buffer type that does not require a length to be specified, (for exampig|Ldielded
buffer) then/en is ignored (and may be 0). Alsggta may be NULL in which case
len is ignored.

Upon successful return frotpnotify (), the message has been delivered to the

system for forwarding to the identified client. If theACKflag was set, a successful

return means the message has been received by the client. Furthermore, if the client has
registered an unsolicited message handler, the handler will have been called.

Following is a list of validfags .

TPACK
The request is sent and the caller blocks until an acknowledgement message
is received from the target client.

TPNOBLOCK
The request is not sent if a blocking condition exists in sending the
notification (for example, the internal buffers into which the message is
transferred are full).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is reissued.

BEA TUXEDO Reference Manual 161

tpnotify(3)

Unless therPACKflag is setfpnotify () does not wait for the message to be
delivered to the client.

Return Values tpnotify () returns -1 on failure and seperro to indicate the error condition. If a
call fails with a particulatperrno value, a subsequent calltp@rrordetail (3¢)
with no intermediate ATMI calls, may provide more detailed information about the
generated error. Refer to therrordetail (3c¢) reference page for more
information.

Errors Under the following conditionspnotify () fails and setgpermo to:

[TPEINVAL]
Invalid arguments were given (for example, invalid flags).

[TPENOEN]
The target client does not exist or does not have an unsolicited handler set ar
the TPACKflag is set.

[TPETIME]
A blocking timeout occurred and neitHEPNOBLOCK Or TPNOTIMEWere
specified, oITPACKwas set but no acknowledgment was received and
TPNOTIMEwas not specified.

[TPEBLOCK
A blocking condition was found on the call aneINOBLOCKvas specified.

[TPGOTSI]
A signal was received anmdPSIGRSTRTwas not specified.

[TPEPROTD
tpnotify () was called in an improper context.

[TPESYSTEWM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

[TPERELEASE
When theTPACKis set and the target is a client from a prior release of BEA
TUXEDO that does not support the acknowledgment protocol.

162 BEA TUXEDO Reference Manual

tpnotify(3)

See Also intro (3),tpalloc (3), tpbroadcast (3), tpchkunsol (3),
tperrordetail (3¢)tpinit (3),tpsetunsol (3), tpstrerrordetail (3¢),
tpterm (3)

BEA TUXEDO Reference Manual 163

tpopen(3)

tpopen(3)

Name

Synopsis

Description

Return Values

164

Errors

See Also

tpopen -routine for opening a resource manager

#include <atmi.h>
int tpopen(void)

tpopen () opens the resource manager to which the caller is linked. At most one
resource manager can be linked to the caller. This function is used in place of resourc
manager-specifiopen calls and allows a service routine to be free of calls that may
hinder portability. Since resource managers differ in their initialization semantics, the
specific information needed to open a particular resource manager is placed in a
configuration file.

If a resource manager is already open (thapipen () is called more than once), no
action is taken and success is returned.

tpopen () returns \-1 on error and sepermo to indicate the error condition.
Under the following conditionspopen () fails and setgperrno to:

[TPERMERR
A resource manager failed to open correctly. More information concerning
the reason a resource manager failed to open can be obtained by interrogatir
a resource manager in its own specific manner. Note that any calls to
determine the exact nature of the error hinder portability.

[TPEPROTD
tpopen () was called in an improper context (for example, by a client that has
not joined a BEA TUXEDO system server group).

[TPESYSTEWM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

tpclose (3)

BEA TUXEDO Reference Manual

tppost(3)

tppost(3)
Name

Synopsis

Description

tppost -post an event

#include <atmi.h>
int tppost(char *eventname, char *data, long len, long flags)

The caller usegppost to post an event and any accompanying data. The event is
named byeventname anddata , if not NULL, points to the data. The posted event and
its data are dispatched by the BEA TUXEDO system event broker to all subscribers
whose subscriptions successfully evaluate agairsttname and whose optional

filter rules successfully evaluate againsta .

eventname is a NULL-terminated string of at most 31 characteventname 's first
character cannot be a dot (“.”) as this character is reserved as the starting character for
all events defined by the BEA TUXEDO system itself.

If data is non-NULL, it must point to a buffer previously allocatedgmfioc (3) and

len should specify the amount of data in the buffer that should be posted with the
event. Note that iflata points to a buffer of a type that does not require a length to be
specified (for example, an FML fielded buffer), them is ignored. Ifdata is NULL,

len is ignored and the event is posted with no data.

Whentppost is used within a transaction, the transaction boundary can be extended
to include those servers and/or stable-storage message queues notified by the event
broker. When a transactional posting is made, some of the recipients of the event
posting are notified on behalf of the poster's transaction (for example, servers and
queues), while some are not (for example, clients).

If the poster is within a transaction and rRNOTRANIag is not set, the posted event

goes to the event broker in transaction mode such that it dispatches the event as part of
the poster's transaction. The broker dispatches transactional event notifications only to
those service routine and stable-storage queue subscriptions that used the TPEVTRAN
bit setting in thect/->flags parameter passed tigsubscribe (3). Client

notifications, and those service routine and stable-storage queue subscriptions that did
not use the TPEVTRAN bit setting in the->flags parameter passed to

tpsubscribe (3), are also dispatched by the event broker but not as part of the posting
process’ transaction.

Following is a list of validfags .

TPNOTRAN
If the caller is in transaction mode and this flag is set, then the event posting
is not made on behalf of the caller's transaction. A caller in transaction mode

BEA TUXEDO Reference Manual 165

tppost(3)

Return Values

166

Errors

that sets this flag is still subject to the transaction timeout (and no other) wher
posting events. If the event posting fails, the caller's transaction is not
affected.

TPNOREPLY
Informstppost not to wait for the event broker to process all subscriptions
for eventname before returning. WhenPNOREPLYS settpurcode is setto
zero regardless of whethgpost returns successfully or not. When the
caller is in transaction mode, this setting cannot be used UHSESTRANS
also set.

TPNOBLOCK
The event is not posted if a blocking condition exists. If such a condition
occurs, the call fails angerrno is set torTPEBLOCKWhenTPNOBLOCHKs
not specified and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking
timeout).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is re-issued. WhenPSIGRSTRTIs not specified and a signal interrupts a
system call, therppost fails andtperrno is set toTPGOTSIG

Upon successful return frotppost , tpurcode contains the number of event
notifications dispatched by the event broker on behadfefitname (that is, postings
for those subscriptions whose event expression evaluated successfully against
eventname and whose filter rule evaluated successfully agalat). Upon return
wheretpermo is set toTPESVCFAIL, tpurcode contains the number of
non-transactional event notifications dispatched by the event broker on behalf of
eventname . This function returns -1 on error and sgtsrmo to indicate the error
condition.

Under the following conditionsppost fails and setgpermo to one of the following
values. (Unless otherwise noted, failure does not affect the caller's transaction, if on
exists.)

[TPEINVAL]
Invalid arguments were given (for exampdeentname is NULL).

BEA TUXEDO Reference Manual

tppost(3)

[TPENOENT

Cannot access the BEA TUXEDO system Event Broker.

[TPETRAN

The caller is in transaction modeRNOTRANvas not set angbpost

contacted an event broker that does not support transaction propagation (that
is, TMUSREV(B) is not running in a BEA TUXEDO system group that

supports transactions).

[TPETIME]

A timeout occurred. If the caller is in transaction mode, then a transaction
time-out occurred and the transaction is to be aborted; otherwise, a blocking
time-out occurred and neithEPNOBLOCHKOr TPNOTIMEwere specified. If a
transaction timeout occurred, any attempts to do new work will fail with
TPETIME until the transaction has been aborted.

[TPESVCFAIL]

The event broker encountered an error posting a transactional event to either
a service routine or to a stable storage queue on behalf of the caller's
transaction. The caller's current transaction is marked abort-only. When this
error is returnedpurcode contains the number of non-transactional event
notifications dispatched by the event broker on behadiveftname ;
transactional postings are not counted since their effects will be aborted upon
completion of the transaction. Note that so long as the transaction has not
timed out, further communication may be performed before aborting the
transaction and that any work performed on behalf of the caller's transaction
will be aborted upon transaction completion (that is, for subsequent
communication to have any lasting effect, it should be doneTifOTRAN

set).

[TPEBLOCK

A blocking condition exists antPNOBLOCHKvas specified.

[TPGOTSIG

A signal was received amPSIGRSTRTwas not specified.

[TPEPROTD

tppost was called in an improper context.

[TPESYSTEW

A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

BEA TUXEDO Reference Manual 167

tppost(3)

[TPEOS
An operating system error has occurred.

See Also tpsubscribe (3), tpunsubscribe (3), EVENT5), TMUSREV(5), TMSYSEV{5)

168 BEA TUXEDO Reference Manual

tprealloc(3)

tprealloc(3)

Name

Synopsis

Description

Return Values

Errors

tprealloc -routine to change the size of a typed buffer

#include <atmi.h>
char * tprealloc(char *ptr, long size)

tprealloc () changes the size of the buffer pointed tgpby tosize bytes and

returns a pointer to the new (possibly moved) buffer. Similgraimc (3), the size

of the buffer will be at least as large as the largesizef anddfitsize , where

dfitsize is the default buffer size specifiedtintype_sw . If the larger of the two is

less than or equal to zero, then the buffer is unchanged and NULL is returned. A
buffer's type remains the same after it is re-allocated. After this function returns
successfully, the returned pointer should be used to reference the puffeshould

no longer be used. The buffer's contents will not change up to the lesser of the new and
old sizes.

Some buffer types require initialization before they can be gsedloc ()

re-initializes a buffer (in a communication manager-specific manner) after it is
re-allocated and before it is returned. Thus, the buffer returned to the caller is ready for
use.

Upon successful completiotprealloc () returns a pointer to a buffer of the
appropriate type aligned on a long word; otherwise it returns NULL anthbsst®
to indicate the error condition.

If the re-initialization function failstprealloc () fails returning NULL and the
contents of the buffer pointed to py may not be valid. Under the following
conditionstprealloc () fails and setgermo to:

[TPEINVAL]
Invalid arguments were given (for exampbe, does not point to a buffer
originally allocated bypalloc (3)).

[TPEPROTD
tprealloc () was called in an improper context.

[TPESYSTEW
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

BEA TUXEDO Reference Manual 169

tprealloc(3)

Usage If buffer re-initialization failstprealloc () fails returning NULL and the contents of
the buffer pointed to bytr may not be valid. This function should not be used in
concert withmalloc (3C),realloc (3C) orfree (3C) in the C library (for example, a
buffer allocated withprealloc () should not be freed witthee ()).

See Also tpalloc (3),tpfree (3),tptypes (3)

170 BEA TUXEDO Reference Manual

tprecv(3)

tprecv(3)
Name

Synopsis

Description

tprecv(3) -routine for receiving a message in a conversational connection

#include <atmi.h>
int tprecv(int cd, char **data, long *len, long flags, long \
*revent)

tprecv () is used to receive data sent across an open connection from another program.
tprecv ()'s first argumented, specifies on which open connection to receive data.

is a descriptor returned from eithpeonnect (3) or theTPSVCINFOparameter to the
service. The second argumetta , is the address of a pointer to a buffer previously
allocated bypalloc (3c).

data must be the address of a pointer to a buffer previously allocatgdiloy (3c)
and/en should point to a long thgirecv () sets to the amount of data successfully
received. Upon successful returdata points to a buffer containing the reply and
*len contains the size of the buff@MLandFML32 buffers often assume a minimum
size of 4096 bytes; if the reply is larger than 4096 bytes, the size of the buffer is
increased to a size large enough to accommodate the data being returned.

Buffers on the sending side that may be only partially filled (for example, FML or
STRING buffers) will have only the amount that is used sent. The system may then
enlarge the received data size by some arbitrary amount. This means that the receiver
may receive a buffer that is smaller than what was originally allocated by the sender,
yet larger than the data that was sent.

The receive buffer may grow, or it may shrink, and its address almost invariably
changes, as the system swaps buffers around internally. To determine whether (and
how much) a reply buffer changed in size, compare its total size hpfece was

issued with#len . Seeintro (3) for more information about buffer management.

If #en is 0, then no data was received and neithleta nor the buffer it points to
were modified. It is an error fafata , *data orlen to be NULL.

tprecv () can be issued only by the program that does not have control of the
connection.

BEA TUXEDO Reference Manual 171

tprecv(3)

172

Following is a list of validflags .

TPNOCHANGE
By default, if a buffer is received that differs in type from the buffer pointed

to by *data , then *data 's buffer type changes to the received buffer’s type
so long as the receiver recognizes the incoming buffer type. When this flag is
set, the type of the buffer pointed to hyata is not allowed to change. That

is, the type and sub-type of the received buffer must match the type and
subtype of the buffer pointed to bydta .

TPNOBLOCK
tprecv () does not wait for data to arrive. If data is already available to

receive, thenprecv () gets the data and returns. When this flag is not
specified and no data is available to receive, the caller blocks until data
arrives.

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to

be immune to blocking timeouts. Transaction timeouts will still affect the
program.

TPSIGRSTRT
If a signal interrupts the underlying receive system call, then the call is

reissued.

If an event exists for the descriptod, thentprecv () will return settingperrno to
TPEEVENT The event type is returnedigvent . Data can be received along with the
TPEV_SVCSUCCIPEV_SVCFAIL, andTPEV_SENDONL¢vents. Valid events for

tprecv () are as follows.

TPEV_DISCONIMM
Received by the subordinate of a conversation, this event indicates that the

originator of the conversation has either issued an immediate disconnect or
the connection vigudiscon (3c¢), or it issuedpreturn (3c), tpcommit (3c)
ortpabort () with the connection still open. This event is also returned to the
originator or subordinate when a connection is broken due to a
communications error (for example, a server, machine, or network failure).
Because this is an immediate disconnection notification (that is, abortive
rather than orderly), data in transit may be lost. If the two programs were
participating in the same transaction, then the transaction is marked
abort-only. The descriptor used for the connection is no longer valid.

BEA TUXEDO Reference Manual

tprecv(3)

Return Values

TPEV_SENDONLY

The program on the other end of the connection has relinquished control of
the connection. The recipient of this event is allowed to send data but cannot
receive any data until it relinquishes control.

TPEV_SVCERR

Received by the originator of a conversation, this event indicates that the
subordinate of the conversation has isspedlurn (3c).tpreturn (3c)
encountered an error that precluded the service from returning successfully.
For example, bad arguments may have been pasgedtton (3c) or

tpreturn (3c) may have been called while the service had open connections
to other subordinates. Due to the nature of this event, any application defined
data or return code are not available. The connection has been torn down and
is no longer a valid descriptor. If this event occurred as part afcthe

recipient’s transaction, then the transaction is marked abort-only.

TPEV_SVCFAIL

Received by the originator of a conversation, this event indicates that the
subordinate service on the other end of the conversation has finished
unsuccessfully as defined by the application (that is, it cglledirn (3c)

with TPFAIL or TPEXIT). If the subordinate service was in control of this
connection whempreturn (3c) was called, then it can pass an application
defined return value and a typed buffer back to the originator of the
connection. As part of ending the service routine, the server has torn down the
connection. Thuszd is no longer a valid descriptor. If this event occurred as
part of the recipient’s transaction, then the transaction is marked abort-only.

TPEV_SVCSUCC

Received by the originator of a conversation, this event indicates that the
subordinate service on the other end of the conversation has finished
successfully as defined by the application (that is, it cafietirn (3¢)

with TPSUCCESP As part of ending the service routine, the server has torn
down the connection. Thusy is no longer a valid descriptor. If the recipient
is in transaction mode, then it can either commit (if it is also the initiator) or
abort the transaction causing the work done by the server (if also in
transaction mode) to either commit or abort.

Upon return fromprecv () whererevent is set to eitheTPEV_SvVCSUCOTr
TPEV_SVCFAIL, thetpurcode global contains an application defined value that was
sent as part apreturn (3).tprecv () returns -1 on error and segerrno to indicate
the error condition. If a call fails with a particutperrno value, a subsequent call to

BEA TUXEDO Reference Manual 173

tprecv(3)

tperrordetail (3c) with no intermediate ATMI calls, may provide more detailed
information about the generated error. Refer tayibeordetail (3c) reference
page for more information.

Errors Under the following conditionsprecv () fails and sets tperrno to:

[TPEINVAL]
Invalid arguments were given (for example, data is not the address of a
pointer to a buffer allocated hyalloc (3c) orflags are invalid).

[TPEOTYPE]
Either the type and subtype of the incoming buffer are not known to the caller,

or TPNOCHANGW®as set inflags and the type and subtype ofita do not
match the type and subtype of the incoming buffer. Regardless, neither
*data , its contents notlen are changed. If the conversation is part of the
caller's current transaction, then the transaction is marked abort-only becaus
the incoming buffer is discarded.

[TPEBADDESC]
cd is invalid.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transaction

timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neithBTNOBLOCHKOr TPNOTIMEWere

specified. In either case, neithretata nor its contents are changed. If a
transaction timeout occurred, then any attempts to send or receive message
on any connections or to start a new connection will fail WRETIME until

the transaction has been aborted.

[TPEEVENT]
An event occurred and its type is available in revent. There is a relationship

between th¢TPETIME] and thdTPEEVENT] return codes. While in
transaction mode, if the receiving side of a conversation is blockpdon

and the sending side catimbort , then the receiving side gets a return code
of [TPEVENT] with an event of PEV_DISCONIMMHowever, if the sending
side callapabort before the receiving side cat{gecv , then the
transaction may have already been removed from the GTT, which causes
tprecv to fail with the[TPETIME] code.

[TPEBLOCK]
A blocking condition exists antPNOBLOCKvas specified.

[TPGOTSIG]
A signal was received andPSIGRSTRTwas not specified.

174 BEA TUXEDO Reference Manual

tprecv(3)

Usage

See Also

[TPEPROTO]
tprecv () was called in an improper context (for example, the connection was

established such that the calling program can only send data).

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the error is

written to a log file.

[TPEOS]
An operating system error has occurred.

A server can pass an application defined return value and typed buffer when calling
tpreturn (3c). The return value is available in the global variatalecode and the
buffer is available irvata .

tpalloc (3), tpconnect (3), tpdiscon (3), tperrordetail (3c),tpsend (3),
tpservice (3), tpstrerrordetail (3c)

BEA TUXEDO Reference Manual 175

tpresume(3)

tpresume(3)

Name

Synopsis

Description

Return Value

176

Errors

tpresume -resume a global transaction

#include <atmi.h>
int tpresume(TPTRANID *tranid, long flags)

tpresume () is used to resume work on behalf of a previously suspended transaction.
Once the caller resumes work on a transaction, it must either suspend it with
tpsuspend (3), or complete it with one afcommit (3) ortpabort (3) at a later time.

The caller must ensure that its linked resource managers have been opened (via
tpopen (3)) before it can resume work on any transaction.

tpresume () places the caller in transaction mode on behalf of the global transaction
identifier pointed to byranid . Itis an error fotranid to be NULL.

Currently,flags are reserved for future use and must be set to 0.
tpresume () returns \-1 on error and seperrno to indicate the error condition.
Under the following conditionspresume () fails and setgermo to:

[TPEINVAL]
Eithertranid is a NULL pointer, it points to a non-existent transaction
identifier (including previously completed or timed-out transactions), or it
points to a transaction identifier that the caller is not allowed to resume. The
caller's state with respect to the transaction is not changed.

[TPEMATCH
tranid points to a transaction identifier that another process has already
resumed. The caller's state with respect to the transaction is not changed.

[TPETRAN
The BEA TUXEDO system is unable to resume the global transaction
because the caller is currently participating in work outside any global
transaction with one or more resource managers. All such work must be
completed before a global transaction can be resumed. The caller's state wit
respect to the local transaction is unchanged.

[TPEPROTD
tpresume () was called in an improper context (for example, the caller is
already in transaction mode). The caller's state with respect to the transactio
is not changed.

BEA TUXEDO Reference Manual

tpresume(3)

Notes

See Also

[TPESYSTEW
A BEA TUXEDO system error has occurred. The exact nature of the error is

written to a log file.

[TPEOS
An operating system error has occurred.

XA-compliant resource managers must be successfully opened to be included in the
global transaction. (Sepopen (3) for details.)

A process resuming a suspended transaction must reside on the same logical machine
(LMID) as the process that suspended the transaction. For a workstation client, the
workstation handler (WSH) to which it is connected must reside on the same logical
machine as the handler for the workstation client that suspended the transaction.

tpabort (3), tpcommit (3), tpopen (3), tpsuspend (3)

BEA TUXEDO Reference Manual 177

tpreturn(3c)

tpreturn(3¢)

178

Name

Synopsis

Description

tpreturn (3c)-routine for returning from a service routine

void tpreturn(int rval ,long rcode ,char* data,long len ,long\
flags)

tpreturn indicates that a service routine has complateeturn acts like aeturn
statement in the C language (that is, wipesturn is called, the service routine
returns to the BEA TUXEDO system dispatcher). It is recommendetptbatn

be called from within the service routine dispatched to ensure correct return of contro
to the BEA TUXEDO system dispatcher.

tpreturn is used to send a service's reply message. If the program receiving the repl
is waiting in eithetpcall (3c),tpgetrply (3c), ortprecv (3c), then after a successful
call totpreturn , the reply is available in the receiver's buffer.

For conversational servicapreturn also tears down the connection. That is, the
service routine cannot cafidiscon (3c) directly. To ensure correct results, the
program that connected to the conversational service should ntdéeaibn (3c¢);
rather, it should wait for notification that the conversational service has completed
(that is, it should wait for one of the events, [i#&EV_SVCSUCOr TPEV_SVCFAIL,

sent bytpreturn).

If the service routine was in transaction magesturn ~ places the service's portion

of the transaction in a state where it may be either committed or rolled back when th
transaction is completed. A service may be invoked multiple times as part of the sam
transaction so it is not necessarily fully committed nor rolled back until either
tpcommit (3c) ortpabort (3c) is called by the originator of the transaction.

tpreturn should be called after receiving all replies expected from service requests
initiated by the service routine. Otherwise, depending on the nature of the service,
either aTPESVCERRtatus or aPEV_SVCERRvent will be returned to the program that
initiated communication with the service routine. Any outstanding replies that are not
received will automatically be dropped by the communication manager. In addition,
the descriptors for those replies become invalid.

tpreturn should be called after closing all connections initiated by the service.
Otherwise, depending on the nature of the service, eitheEQVCERRY a
TPEV_SVCERPRvent will be returned to the program that initiated communication with
the service routine. Also, an immediate disconnect event (tT&@HY, DISCONIMNIS
sent over all open connections to subordinates.

BEA TUXEDO Reference Manual

tpreturn(3c)

Since a conversational service has only one open connection which it did not initiate,
the communication manager knows over which descriptor data (and any event) should
be sent. For this reason, a descriptor is not passpetian

The following is a description aofreturn 's argumentgyval can be set to one of the
following.

TPSUCCESS
The service has terminated successfully. If data is present, then it will be sent

(barring any failures processing the return). If the caller is in transaction
mode, thenpreturn places the caller's portion of the transaction in a state
such that it can be committed when the transaction ultimately commits. Note
that a call tapreturn does not necessarily finalize an entire transaction.
Also, even though the caller indicates success, if there are any outstanding
replies or open connections, if any work done within the service caused its
transaction to be marked rollback-only, then a failed message is sent (that is,
the recipient of the reply receive3SRESVCERRdication or IPEV_SVCERR
event). Note that if a transaction becomes rollback-only while in the service
routine for any reason, themal should be set toPFAIL . If TPSUCCESSs
specified for a conversational servicelREV_SVCSUC@vent is generated.

TPFAIL
The service has terminated unsuccessfully from an application standpoint. An

error will be reported to the program receiving the reply. That is, the call to
get the reply will fail and the recipient receiveSRsVCFAIL indication or a
TPEV_SVCFAIL event. If the caller is in transaction mode, theaturn

marks the transaction as rollback-only (note that the transaction may already
be marked rollback-only). Barring any failures in processing the return, the
caller's data is sent, if present. One reason for not sending the caller's data is
that a transaction timeout has occurred. In this case, the program waiting for
the reply will receive an error GPETIME. If TPFAIL is specified for a
conversational service,T®EV_SVCFAIL event is generated.

TPEXIT
This value is the same @BFAIL, with respect to completing the service, but

the server will exit after the transaction is rolled back and the reply is sent
back to the requester. If the server is restartable, then the server will
automatically be restarted.

If rval is not set to one of these three values, then it defaufRIL .

An application defined return codeode may be sent to the program receiving the
service reply. This code is sent regardless of the settingabés long as a reply can
be successfully sent (that is, as long as the receiving call returns success or

BEA TUXEDO Reference Manual 179

tpreturn(3c)

TPESVCFAIL). In addition, for conversational services, this code can be sent only if the
service routine has control of the connection when it isguesrn . The value of
rcodeis available in the receiver in the variahjgycode

datapoints to the data portion of a reply to be sertathis non-NULL, it must point

to a buffer previously obtained by a callypalloc (3c). If this is the same buffer
passed to the service routine upon its invocation, then its disposition is up to the BE/
TUXEDO system dispatcher; the service routine writer does not have to worry abou
whether it is freed or not. In fact, any attempt by the user to free this buffer will fail.
However, if the buffer passedtiweturn is not the same one with which the service

is invoked, thenpreturn will free that bufferlen specifies the amount of the data
buffer to be sent. Iflatapoints to a buffer which does not require a length to be
specified, (for example, an FML fielded buffer), tHenis ignored (and can be 0).

If datais NULL, thenlenis ignored. In this case, if a reply is expected by the program
that invoked the service, then a reply is sent with no data. If no reply is expected, the
tpreturn freesdataas necessary and returns sending no reply.

Currently,flagsis reserved for future use and must be set to O (if set to a non-zero
value, the recipient of the reply receivesPESVCERRNdication or arlPEV_SVCERR
event).

If the service is conversational, there are two cases where the caller's return code al
the data portion are not transmitted:

4 if the connection has already been torn down when the call is made (that is, the
caller has receivedPEV_DISCONIMMN the connection), then this call simply
ends the service routine and rolls back the current transaction, if one exists.

¢ if the caller does not have control of the connection, eitReV_SVCFAIL or
TPEV_SVCERRs sent to the originator of the connection as described above.
Regardless of which event the originator receives, no data is transmitted,;
however, if the originator receives tlBEV_SVCFAIL event, the return code is
available in the originatortpurcode variable.

Return Values A service routine does not return any value to its caller, the BEA TUXEDO system
dispatcher; thus, it is declared ago@l . Service routines, however, are expected to
terminate using eithepreturn ortpforward (3c). A conversational service routine
must usapreturn , and cannot usgforward (3c). If a service routine returns
without using eithetpreturn ~ ortpforward (3c) (that is, it uses the C language
return statement or just simply “falls out of the function”gforward (3c) is called
from a conversational server, the server will print a warning message in the log and
return a service error to the service requester. In addition, all open connections to

180 BEA TUXEDO Reference Manual

tpreturn(3c)

Errors

See Also

subordinates will be disconnected immediately, and any outstanding asynchronous
replies will be dropped. If the server was in transaction mode at the time of failure, the
transaction is marked rollback-only. Note also that if eitheturn or

tpforward (3c) are used outside of a service routine (for example, in clients, or in
tpsvrinit (3c) ortpsvrdone (3c)), then these routines simply return having no effect.

Sincetpreturn ends the service routine, any errors encountered either in handling
arguments or in processing cannot be indicated to the function's caller. Such errors
causeaperrno to be set tdPESVCERHor a program receiving the service's outcome
via eithertpcall (3c) ortpgetrply (3c), and cause the evemBEV_SVCERRto be

sent over the conversation to a program ugisend (3c) ortprecv (3c).

If either SVCTIMEOUTiIn theubbconfig file or TA_SVCTIMEOUTNn theTM_MIBis
non-zero, the evemPEV_SVCERRs returned when a service timeout occurs.

tperrordetail (3c) andtpstrerrordetail (3c) can be used to get additional
information about an error produced by the last BEA TUXEDO system routine called
in the current thread. If an error occurrggyrordetail returns a numeric value

that can be used as an argumentsteerrordetail to retrieve the text of the error
detail.

tpalloc (3c),tpcall (3c),tpconnect (3c),tpforward (3¢)tprecv (3c),tpsend (3c),
tpservice (3c)

BEA TUXEDO Reference Manual 181

tpscmt(3)

tpscmt(3)

182

Name

Synopsis

Description

tpscmt -routine for setting whetpcommit () should return

#include <atmi.h>
int tpscmt(long flags)

tpscmt () sets th@P_COMMIT_CONTRGatharacteristic to the value specifiediiys .
TheTP_COMMIT_CONTRGtharacteristic affects the wgecommit (3) behaves with
respect to returning control to its caller. A program cantgsdimt () regardless of
whether it is in transaction mode or not. Note that if the caller is participating in a
transaction that another program must commit, then its aptidat () does not affect

that transaction. Rather, it affects subsequent transactions that the caller will commi

In most cases, a transaction is committed only when a BEA TUXEDO system threac
of control callsspcommit (3). There is one exception: when a service is dispatched in
transaction mode because #gTOTRANariable in theSERVICES section of the
UBBCONFIG file is enabled, then the transaction completes upon calling

tpreturn (3). If tpforward (3) is called, then the transaction will be completed by the
server ultimately callingpreturn ~ (3). Thus, the setting of th®_COMMIT_CONTROL
characteristic in the service that cafleeturn (3) determines whetpcommit (3)

returns control within a server.tifcommit (3) returns a heuristic error code, the server
will write a message to a log file.

When a client joins a BEA TUXEDO system application, the initial setting for this
characteristic comes from a configuration file. (Seeat@REvariable in the
*RESOURCESection ofubbconfig (5))

Following are the valid settings fdags .

TP_CMT_LOGGED
This flag indicates thapcommit (3) should return after the commit decision
has been logged by the first phase of the two-phase commit protocol but
before the second phase has completed. This setting allows for faster respon:
to the caller ofpcommit (3) although there is a risk that a transaction
participant might decide to heuristically complete (that is, abort) its work due
to timing delays waiting for the second phase to complete. If this occurs, there
is no way to indicate this situation to the caller stpcemmit (3) has already
returned (although the BEA TUXEDO system writes a message to a log file
when a resource manager takes a heuristic decision). Under normal
conditions, participants that promise to commit during the first phase will do
so during the second phase. Typically, problems caused by network or site

BEA TUXEDO Reference Manual

tpscmt(3)

Return Values

Errors

Notices

See Also

failures are the sources for heuristic decisions being made during the second
phase.

TP_CMT_COMPLETE
This flag indicates thapcommit (3) should return after the two-phase
commit protocol has finished completely. This setting allows for
tpcommit (3) to return an indication that a heuristic decision occurred during
the second phase of commit.

Upon successpscmt () returns the previous value of thie_COMMIT_CONTROL
characteristic; otherwise it returns -1 on error andtgetsio to indicate the error
condition.

Under the following conditiongpscmt () fails and setgpermo to:

[TPEINVAL]
flags is not one offP_CMT_LOGGEDr TP_CMT_COMPLETE

[TPEPROTD
tpscmt () was called in an improper context.

[TPESYSTEW
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

When usingpbegin (3), tpcommit (3) andtpabort (3) to delineate a BEA TUXEDO
system transaction, it is important to remember that only the work done by a resource
manager that meets the XA interface (and is linked to the caller appropriately) has
transactional properties. All other operations performed in a transaction are not
affected by eithetpcommit () ortpabort (). Seebuildserver (1) for details on

linking resource managers that meet the XA interface into a server such that operations
performed by that resource manager are part of a BEA TUXEDO system transaction.

tpabort (3), tpbegin (3), tpcommit (3), tpgetlev (3)

BEA TUXEDO Reference Manual 183

tpsend(3)

tpsend(3)

184

Name

Synopsis

Description

tpsend (3)-routine for sending a message in a conversational connection

#include <atmi.h>
int tpsend(int cd, char* data , long len , long flags ,long* revent)

tpsend is used to send data across an open connection to another program. The call
must have control of the connectiapsend 's first argumentgd, specifies the open
connection over which data is setd.is a descriptor returned from either

tpconnect (3c) or theTPSVCINFOparameter passed to a conversational service.

The second argumentata , must point to a buffer previously allocated by

tpalloc (3c).len specifies how much of the buffer to send. Note thaaid points

to a buffer of a type that does not require a length to be specified (for examplid, an
fielded buffer), theren is ignored (and may be 0). Alsagta can be NULL in which
caselen is ignored (no application data is sent - this might be done, for instance, to
grant control of the connection without transmitting any data). The type and sub-type
of data must match one of the types and sub-types recognized by the other end of th
connection.

Following is a list of validflags .

TPRECVONLY
This flag signifies that, after the caller's data is sent, the caller gives up contro
of the connection (that is, the caller can not issue any mered calls).
When the receiver on the other end of the connection receives the data sen
by tpsend , it will also receive an eventREV_SENDONL)Yindicating that it
has control of the connection (and can not issue morgesay (3c) calls).

TPNOBLOCK
The data and any events are not sent if a blocking condition exists (for
example, the internal buffers into which the message is transferred are full).
WhenTPNOBLOCHKS not specified and a blocking condition exists, the caller
blocks until the condition subsides or a timeout occurs (either transaction or
blocking timeout).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is re-issued.

BEA TUXEDO Reference Manual

tpsend(3)

Return Values

If an event exists for the descripteti, thentpsend will fail without sending the
caller's data. The event type is returneeeirent . Valid events fotpsend are as
follows:

TPEV_DISCONIMM
Received by the subordinate of a conversation, this event indicates that the

originator of the conversation has issued an immediate disconnect on the
connection viapdiscon (3c), or it issuedpreturn (3c), tpcommit (3c) or
tpabort (3c) with the connection still open. This event is also returned to the
originator or subordinate when a connection is broken due to a
communications error (for example, a server, machine, or network failure).

TPEV_SVCERR
Received by the originator of a conversation, this event indicates that the

subordinate of the conversation has isspedlurn (3c) without having

control of the conversation. In additiapreturn (3c) has been issued in a
manner different from that described ft?EV_SVCFAIL below. This event

can be caused by an ACL permissions violation; that is, the originator does
not have permission to connect to the receiving process. This event is not
returned at the time thpconnect is issued, but is returned with the first
tpsend (following atpconnect with flag TPSENDONL)YOr tprecv

(following atpconnect with flag TPRECVONL) A system event and a log
message are also generated.

TPEV_SVCFAIL
Received by the originator of a conversation, this event indicates that the

subordinate of the conversation has isspedlurn (3c) without having
control of the conversation. In additiapreturn ~ (3c) was issued with the
rval set toTPFAIL or TPEXIT anddata to NULL.

Because each of these events indicates an immediate disconnection notification (that
is, abortive rather than orderly), data in transit may be lost. The descriptor used for the
connection is no longer valid. If the two programs were participating in the same
transaction, then the transaction has been marked abort-only.

If the value of eithesVCTIMEOUTIN theubbconfig file or TA_SVCTIMEOUTIn the
TM_MIBis non-zeroTPESVCERRs returned when a service timeout occurs.

Upon return frompsend whererevent is set to eitheTPEV_SVCSUCOTr

TPEV_SVCFAIL, thetpurcode global contains an application-defined value that was
sent as part apreturn . The functionpsend returns -1 on error and sepgrmo

to indicate the error condition. Also, if an event exists and no errors were encountered,
tpsend returns -1 andpberrno is set tdTPEEVENT].

BEA TUXEDO Reference Manual 185

tpsend(3)

186

Errors

See Also

Under the following conditionspsend (3c) fails and setpermo to:

[TPEINVAL]
Invalid arguments were given (for examplata does not point to a buffer
allocated bytpalloc (3c) orflags are invalid).

[TPEBADDESE
cd is invalid.

[TPETIME
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is marked abort-only; otherwise, a
blocking timeout occurred and neithBTNOBLOCHKOr TPNOTIMEWAS
specified. In either case, no changes are madgata * its contents nor/&n .
If a transaction timeout occurred, then any attempts to send or receive
messages on any connections or to start a new connection will fail with
TPETIME until the transaction has been aborted.

[TPEEVENT
An event occurreddata is not sent when this error occurs. The event type is
returned irvevent .

[TPEBLOCK
A blocking condition exists antPNOBLOCKvas specified.

[TPGOTSI]
A signal was received anmdPSIGRSTRTwas not specified.

[TPEPROTD
tpsend was called in an improper context (for example, the connection was
established such that the calling program can only receive data).

[TPESYSTEWM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

tpalloc (3c),tpconnect (3c), tpdiscon (3c),tprecv (3c),tpservice (3c)

BEA TUXEDO Reference Manual

tpservice(3)

tpservice(3)
Name

Synopsis

Description

tpservice -template for service routines

#include <atmi.h> /* C interface */
void tpservice(TPSVCINFO *svcinfo) /* C++ interface - must have
* C linkage */

extern “C” void tpservice(TPSVCINFO *svcinfo)

tpservice () is the template for writing service routines. This template is used for
services that receive requeststpizll (3),tpacall (3) ortpforward (3) routines as
well as by services that communicate wi@nnect (3), tpsend (3) andtprecv (3)
routines.

Service routines processing requests made via gitair (3) ortpacall (3) receive
at most one incoming message (in¢h& element obvcinfo) and send at most one
reply (upon exiting the service routine wigiteturn (3)).

Conversational services, on the other hand, are invoked by connection requests with at
most one incoming message along with a means of referring to the open connection.
When a conversational service routine is invoked, either the connecting program or the
conversational service may send and receive data as defined by the application. The
connection is half-duplex in nature meaning that one side controls the conversation
(i.e., it sends data) until it explicitly gives up control to the other side of the connection.

Concerning transactions, service routines can participate in at most one transaction if
invoked in transaction mode. As far as the service routine writer is concerned, the
transaction ends upon returning from the service routine. If the service routine is not
invoked in transaction mode, then the service routine may originate as many
transactions as it wants usitppegin (3), tpcommit (3), andtpabort (3). Note that

tpreturn (3) is not used to complete a transaction. Thus, it is an error to call

tpreturn (3) with an outstanding transaction that originated within the service routine.

Service routines are invoked with one argumentinfo , a pointer to a service
information structure. This structure includes the following members:

char name[32];
char *data;

long len;
long flags;
int cd;

long appkey;

CLIENTID cltid;

name is populated with the service name that the requester used to invoke the service.

BEA TUXEDO Reference Manual 187

tpservice(3)

188

The setting oflags upon entrance to a service routine indicates attributes which the
service routine may want to note. Following are the possible valuéador .

TPCONV
A connection request for a conversation has been accepted and the descript
for the conversation is available éa. If not set, then this is a
request/response service amtis not valid.

TPTRAN
The service routine is in transaction mode.

TPNOREPLY
The caller is not expecting a reply. This option will not be SEREIfONVS set.

TPSENDONLY
The service is invoked such that it can only send data across the connectior
and the program on the other end of the connection can only receive data. Thi
flag is mutually exclusive witftPRECVONL&Nd may be set only when
TPCONVS also set.

TPRECVONLY
The service is invoked such that it can only receive data from the connection
and the program on the other end of the connection can only send data. Thi
flag is mutually exclusive withtPSENDONL&Nnd may be set only when
TPCONVS also set.

data points to the data portion of a request messagéeand the length of the data.
The buffer pointed to byata was allocated bypalloc (3) in the communication
manager. This buffer may be grown by the user witkalloc (3); however, it

cannot be freed by the user. It is recommended that this buffer be the one passed tc
eithertpreturn (3) ortpforward (3) when the service ends. If a different buffer is
passed to those routines, then that buffer is freed by them. Note that the buffer pointe
to by data will be overwritten by the next service request even if this buffer is not
passed tepreturn (3) ortpforward (3). data may be NULL if no data accompanied
the request. In this casep will be 0.

WhenTPCONVS set inflags , cd is the connection descriptor that can be used with
tpsend (3) andtprecv (3) to communicate with the program that initiated the
conversation.

BEA TUXEDO Reference Manual

tpservice(3)

Return Values

Errors

See Also

appkey is setto the application key assigned to the requesting client by the application
defined authentication service. This key value is passed along with any and all service
requests made while within this invocation of the service routimkey will have a

value of -1 for originating clients that do not pass through the application
authentication service.

cltid is the unique client identifier for the originating client associated with this
service request. The definition of this structure is made available to the application in
atmi.h solely so that client identifiers may be passed between application servers if
necessary. Therefore, the semantics of the fields defined below are not documented
and applications should not manipulate the contents of CLIENTID structures. Doing
so will invalidate the structures. The CLIENTID structure includes the following
member:

long clientdata[4];

Note that for C++, the service function must have C linkage. This is done by declaring
the function as ‘extern “C.”

A service routine does not return any value to its caller, the communication manager
dispatcher; thus, it is declared as a void. Service routines, however, are expected to
terminate using eithepreturn (3) ortpforward (3). A conversational service

routine must usereturn (3), and cannot uspforward (3). If a service routine

returns without using eithegreturn (3) ortpforward (3) (i.e., it uses the C language
return statement or just simply “falls out of the function”)tpiorward (3) is called

from a conversational server, the server will print a warning message in a log file and
return a service error to the originator or requester. All open connections to
subordinates will be disconnected immediately, and any outstanding asynchronous
replies will be marked stale. If the server was in transaction mode at the time of failure,
the transaction is marked abort-only. Note also that if eipieturn (3) or

tpforward (3) are used outside of a service routine (e.g., in clients, or in

tpsvrinit (3) ortpsvrdone (3)), then these routines simply return having no effect.

Sincetpreturn (3) ends the service routine, any errors encountered either in handling
arguments or in processing cannot be indicated to the function's caller. Such errors
causeaperrno to be set tdPESVCERHor a program receiving the service's outcome
via eithentpcall (3) ortpgetrply (3), and cause the evemBEV_SVCERRto be sent
over the conversation to a program usigggnd (3) ortprecv (3).

servopts (5),tpalloc (3), tpbegin (3), tpcall (3), tpconnect (3), tpforward (3),
tpreturn (3)

BEA TUXEDO Reference Manual 189

tpsetunsol(3)

tpsetunsol(3)

Name

Synopsis

Description

Return Values

190

Errors

tpsetunsol -routine for setting the method of handling unsolicited messages

#include <atmi.h>

void (*tpsetunsol (void (_ TMDLLENTRY *)(*disp) (char *data, long
len, long flags))) \

(char *data, long len, long flags)

tpsetunsol () allows a client to identify the routine that should be invoked when an
unsolicited message is received by the BEA TUXEDO system libraries. Before the
first call totpsetunsol (), any unsolicited messages received by the BEA TUXEDO
system libraries on behalf of the client are logged and ignored. A epdktansol ()

with a NULL function pointer has the same effect. The method used by the system fo
notification and detection is determined by the application default, which can be
overridden on a per-client basis (sgieit (3)).

The function pointer passed on the caligsetunsol () must conform to the
parameter definition givenlata points to the typed buffer received aed is the
length of the dataflags are currently unusedata can be NULL if no data
accompanied the notificatiodata may be of a buffer type/subtype that is not known
by the client, in which case the message data is unintelligible.

data can not be freed by application code. However, the system frees it and invalidate
the data area following return.

Processing within the application unsolicited message handling routine is restricted t
the following BEA TUXEDO system callgalloc (3),tpgetlev (3),tprealloc (3)
tptypes (3), tpfree (3).

Upon successpsetunsol () returns the previous setting for the unsolicited message
handling routine (NULL is a successful return indicating that no message handling
function had been set previously); otherwise, it retiAUWNSOLERRN setsperrno

to indicate the error condition.

Under the following conditionspsetunsol () fails and setgpermo to:

[TPEPROTD
tpsetunsol () was called in an improper context (e.g., from within a server).

[TPESYSTEWM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

BEA TUXEDO Reference Manual

tpsetunsol(3)

Portability

See Also

[TPEOS
An operating system error has occurred.

The interfaces describedtpmotify (3) are supported on native site UNIX-based and
Windows NT processors. In addition, the routitggoadcast () andtpchkunsol ()

as well as the functiopsetunsol () are supported on UNIX and MS-DOS
workstation processors.

tpinit (3), tpterm (3)

BEA TUXEDO Reference Manual 191

tpsprio(3)

tpsprio(3)

Name

Synopsis

Description

Return Values

192

Errors

See Also

tpsprio -routine for setting service request priority

#include <atmi.h>
int tpsprio(prio, flags)

tpsprio () sets the priority for the next request sent or forwarded. The priority set
affects only the next request sent. (Priority can also be set for messages enqueued
dequeued bypenqueue (3) ortpdequeue (3) if the queued message facility is
installed.) By default, the setting pfio increments or decrements a service's default
priority up to a maximum of 100 or down to a minimum of 1 depending on its sign,
where 100 is the highest priority. The default priority for a request is determined by the
service to which the request is being sent. This default may be specified
administratively (seabbconfig (5)), or take the system default of &prio () has

no effect on messages sentwyiennect (3) ortpsend (3).

Following is a list of valid flags.

TPABSOLUTE
The priority of the next request should be sent out at the absolute value of
prio . The absolute value @fio must be within the range 1 and 100,
inclusive, with 100 being the highest priority. Any value outside of this range
causes a default value to be used.

tpsprio () returns \-1 on error and sepsrrno to indicate the error condition.
Under the following conditionspsprio () fails and setgperrno to:

[TPEINVAL]
flags are invalid.

[TPEPROTD
tpsprio () was called in an improper context.

[TPESYSTEWM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

tpacall (3),tpcall (3), tpdequeue (3), tpenqueue (3), tpgprio (3)

BEA TUXEDO Reference Manual

tpstrerror(3)

tpstrerror(3)

Name

Synopsis

Description

Return Values

Errors

Example

See Also

tpstrerror (3)-get error message string for a BEA TUXEDO system error

#include <atmi.h>
char *
tpstrerror(int err)

tpstrerror () is used to retrieve the text of an error message f8WUX_CAT. err
is the error code set tperrno when a BEA TUXEDO system function call returns a
-1 or other failure value.

You can use the pointer returnedtpstrerror () as an argument tserlog (3c) or
the UNIX functionfprintt (3).

If erris an invalid error codegstrerror () returns a NULL. On success, the function
returns a pointer to a string that contains the error message text.

tpstrerror () returns a NULL on error, but does not getrno

#include <atmi.h>

char *p;

if (tpbegin(10,0) == -1) {
p = tpstrerror(tperrno);
userlog(“%s”, p);
(void)tpabort(0);
(void)tpterm();
exit(1);

}

Fstrerror (3),userlog (3c)

BEA TUXEDO Reference Manual 193

tpstrerrordetail(3)

tpstrerrordetail(3)
Name tpstrerrordetail -get error detail message string for a BEA TUXEDO system error
Synopsis #include <atmi.h>
char * tpstrerrordetail(int err ,long flags)
Description tpstrerrordetail () is used to retrieve the text of an error detail of a BEA TUXEDO
system errorerr is the value returned hyerrordetail 3).
The user can use the pointer returnedpbyerrordetail as an argument to

userlog (3c) or the UNIX functiorprintf (3).

Currentlyflags is reserved for future use and must be set to 0.

Return Values If err is an invalid error codepstrerrordetail returns a NULL. On success, the
function returns a pointer to a string that contains the error detail message text.
Errors tpstrerrordetail returns a NULL on error, but does not getrno
Example #include <atmi.h>. . .
int ret;
char *p;

if (tpbegin(10,0) == -1) {
ret=tperrordetail(0);
if (ret ==-1) {
(void) fprintf(stderr, “tperrordetail() failed\n");
(void) fprintf(stderr, “tperrno = %d, %s\n”,
tperrno, tpstrerror(tperrno));

}
else if (ret 1= 0) {

(void) fprintf(stderr, “errordetail:%s\n”,
tpstrerrordetail(ret, 0);
1

}

See Also intro (3c), tperrordetail (3c),tpstrerror (3c),userlog (3c),tpermo (5)

194 BEA TUXEDO Reference Manual

tpsubscribe(3¢)

tpsubscribe(3¢)
Name tpsubscribe -subscribe to an event
Synopsis #include <atmi.h>
long tpsubscribe(char *eventexpr, char *filter, TPEVCTL *ctl, long
flags)
Description The caller usespsubscribe to subscribe to an event or set of events named by

eventexpr . Subscriptions are maintained by the BEA TUXEDO system Event

Broker, TMUSREV(5), and are used to notify subscribers when events are posted via
tppost (3). Each subscription specifies a notification method which can take one of
three forms: client notification, service calls, or message enqueuing to stable-storage
queues. Notification methods are determined by the subscriber's process type and the
arguments passed tigubscribe

The event or set of events being subscribed to is namedebiexpr |, a
NULL-terminated string of at most 255 characters containing a regular expression. For
example, ifeventexpr is “\e\e.* 7, the caller is subscribing to all system-generated
events; ifeventexpr is “\e\e.SysServer.* ", the caller is subscribing to all
system-generated events related to serveeseltexpr is “[A-Z].* 7, the caller is
subscribing to all user events starting with A-Zeventexpr is “.*(ERR|err).*

the caller is subscribing to all user events containing either the substring “ERR” or the
substring “err” (for example, “account_error” and “ERROR_STATE” events would
both qualify).

If present/filter is a string containing a boolean filter rule associated with

eventexpr that must be evaluated successfully before the event broker posts the
event. Upon receiving an event to be posted, the event broker applies the filter rule, if
one exists, to the posted event's data. If the data passes the filter rule, the event broker
invokes the notification method associated veithntexpr ; otherwise, the broker

does not invoke the associated notification method. The caller can subscribe to the
same event multiple times with different filter rules.

Filter rules are specific to the typed buffers to which they are applied. For FML and
view buffers, the filter rule is a string that can be passed to each's boolean expression
complier (seéboolco (3) andFvboolco (3), respectively) and evaluated against the
posted buffer (seboolev (3) andrvboolev (3), respectively). For STRING buffers,

the filter rule is a regular expression. All other buffer types require customized filter
evaluators (sebuffer (3) andtypesw (5) for details on adding customized filter
evaluators)fiter is a NULL-terminated string of at most 255 characters.

BEA TUXEDO Reference Manual 195

tpsubscribe(3¢)

196

If the subscriber is a BEA TUXEDO system client processcainds NULL, then the
event broker sends an unsolicited message to the subscriber when the event to whi
it subscribed is posted. That is, when an event name is posted that evaluates
successfully againgventexpr , the event broker tests the posted data against the filter
rule associated withventexpr . If the data passes the filter rule or if there is no filter
rule for the event, then the subscriber receives an unsolicited notification along with
any data posted with the event. In order to receive unsolicited notifications, the clien
must register (vigpsetunsol (3)) an unsolicited message handling routine. If a BEA
TUXEDO system server process cafilsubscribe ~ with a NULL ¢t/ parameter,
thentpsubscribe fails settingperrno to TPEPROTO.

Clients receiving event notification via unsolicited messages should remove their
subscriptions from the event broker's list of active subscriptions before exiting (see
tpunsubscribe (3) for details). Usingpunsubscrive ‘s wild-card handle, -1, clients
can conveniently remove all of their “non-persistent” subscriptions which include
those associated with the unsolicited notification method (see the description of
TPEVPERSIST below for subscriptions and their associated notification methods tha
persist after a process exits). If a client exits without removing its non-persistent
subscriptions, then the event broker will remove them when it detects that the client i
no longer accessible.

If the subscriber (regardless of process type) wants event notifications to go to servic
routines or to stable-storage queues, therctheparameter must point to a valid
TPEVCTL structure. This structure contains the following elements:

long flags;

char namel[32];
char name2[32];
TPQCTL qctl;

The following is a list of valid bits for thet/->flags element controlling options for
event subscriptions.

TPEVSERVICE
Setting this flag bit indicates that the subscriber wants event notifications to
be sent to the BEA TUXEDO system service routine namettimamel
That is, when an event name is posted that evaluates successfully against
eventexpr , the event broker tests the posted data against the filter rule
associated witleventexpr . If the data passes the filter rule or if there is no
filter rule for the event, then a service request is set-tmamel along
with any data posted with the event. The service nanyétnamel can be
any valid BEA TUXEDO system service name and it may or may not be
active at the time the subscription is made. Service routines invoked by the

BEA TUXEDO Reference Manual

tpsubscribe(3¢)

event broker should return with no reply data. That is, they should call
tpreturn (3) with a NULL data argument. Any data passegteturn (3)

will be dropped. TPEVSERVICE and TPEVQUEUE are mutually exclusive
flags.

If TPEVTRAN is also set irtl->flags , then if the process calling

tppost (3) is in transaction mode, the event broker calls the subscribed
service routine such that it will be part of the poster's transaction. Both the
event brokerTMUSREV(5), and the subscribed service routine must belong
to server groups that support transactions (seeonfig (5) for details). If
TPEVTRAN is not set irtl->flags , then the event broker calls the
subscribed service routine such that it will not be part of the poster's
transaction.

TPEVQUEUE
Setting this flag bit indicates that the subscriber wants event natifications to
be enqueued to the queue space namettiinamel and the queue named
in ctl->name2 . That is, when an event name is posted that evaluates
successfully againgtventexpr , the event broker tests the posted data
against the filter rule associated wétventexpr . If the data passes the filter
rule or if there is no filter rule for the event, then the event broker enqueues a
message to the queue space named-imame1 and the queue named in
ctl->name2 along with any data posted with the event. The queue space and
gqueue name can be any valid BEA TUXEDO system queue space and queue
name, either of which may or may not exist at the time the subscription is
made.

ctl->qctl can contain options further directing the event broker's
enqueuing of the posted event. If no options are specified, then
ctl->qctl.flags should be set to TPNOFLAGS. Otherwise, options can
be set as described in the “Control Parameter” subsection of the

tpenqueue (3) manual page (specifically, see the section describing the valid
list of flags controlling input information fapenqueue (3)).

TPEVSERVICE and TPEVQUEUE are mutually exclusive flags.

If TPEVTRAN is also set iretl->flags , then if the process calling

tppost (3) is in transaction mode, the event broker enqueues the posted event
and its data such that it will be part of the poster's transaction. The event
broker, TMUSREV(5), must belong to a server group that supports
transactions (sedbbconfig (5) for details). If TPEVTRAN is not set in

ctl->flags , then the event broker enqueues the posted event and its data
such that it will not be part of the poster's transaction.

BEA TUXEDO Reference Manual 197

tpsubscribe(3¢)

198

TPEVTRAN

Setting this flag bit indicates that the subscriber wants the event notification
for this subscription to be included in the poster's transaction, if one exists. If
this flag bit is not set, then any events posted for this subscription will not be
done on behalf of any transaction in which the poster is participating. This
flag can be used with either TPEVSERVICE or TPEVQUEUE.

TPEVPERSIST

By default, the BEA TUXEDO system Event Broker deletes subscriptions
when the resource to which it is posting is not available (for example, the
event broker cannot access a service routine and/or a queue space/queue na
associated with an event subscription). Setting this flag bit indicates that the
subscriber wants this subscription to persist across such errors (usually
because the resource will become available again in the future). When this
flag bit is not used, the event broker will remove this subscription if it
encounters an error accessing either the service name or queue space/que!
name designated in this subscription.

If this flag bit is used with TPEVTRAN and the resource is not available at
the time of event notification, then the event broker will return to the poster
such that its transaction must be aborted. That is, even though the subscriptio
remains intact, the resource's unavailability will cause the poster's transactiol
to fail.

If the event broker's list of active subscriptions already contains a subscription that
matches the one being requestedpsybscribe , then the function fails setting

tperro

to TPEMATCH. For a subscription to match an existing one, both

eventexpr andfiter =~ must match those of a subscription already in the event
broker's active list of subscriptions. In addition, depending on the notification method,
other criteria are used to determine matches.

If the subscriber is a BEA TUXEDO system client processcands NULL (such that

the caller receives unsolicited notifications when events are posted), then its
system-defined client identifier (known as a CLIENTID) is also used to detect
matches. That ispsubscribe fails if eventexpr | filter ~, and the caller's
CLIENTID match those of a subscription already known to the event broker.

If the caller has settl->flags to TPEVSERVICE, therpsubscribe fails if
eventexpr , filter , and the service name setcih>name1 match those of a
subscription already known to the event broker.

BEA TUXEDO Reference Manual

tpsubscribe(3¢)

Return Values

For subscriptions to stable-storage queues, the queue space, queue name, and
correlation identifier are used, in additionewentexpr andfiter , when

determining matches. The correlation identifier can be used to differentiate among
several subscriptions for the same event expression and filter rule, destined for the
same queue. Thus, if the caller hascgletflags to TPEVQUEUE, and
TPQCOORID is not set ietl->qctl.flags , thentpsubscribe falils if eventexpr

fiter , the queue space name settirrnamel , and the queue name set in
ctl->name2 match those of a subscription (which also does not have a correlation
identifier specified) already known to the event broker. Further, if TPQCOORID is set
in ctl->qgctl.flags , thentpsubscribe fails if eventexpr | filter | ctl->namel ,
ctl->name2 , andctl->qctl.corrid match those of a subscription (which has the
same correlation identifier specified) already known to the event broker.

Following is a list of validflags for tpsubscribe

TPNOBLOCK
The subscription is not made if a blocking condition exists. If such a condition
occurs, the call fails angerrno is set toTPEBLOCK WhenTPNOBLOCKS
not specified and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking
timeout).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is re-issued. WheTrPSIGRSTRTIs not specified and a signal interrupts a
system call, thetpsubscribe fails andtperrno is set toTPGOTSIG

Upon successful completiotpsubscribe returns a handle that can be used to
remove this subscription from the event broker's list of active subscriptions. Otherwise
the function returns -1 and segsrrmo to indicate the error condition. Either the
subscriber or any other process is allowed to use the returned handle to delete this
subscription.

BEA TUXEDO Reference Manual 199

tpsubscribe(3¢)

200

Errors

See Also

Under the following conditionspsubscribe fails and setgermo to one of the
following values. (Unless otherwise noted, failure does not affect the caller's
transaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for exampdeentexpr is NULL).

[TPENOEN]
Cannot access the BEA TUXEDO system Event Broker.

[TPELIMIT]
The subscription failed because the event broker's maximum number of
subscriptions has been reached.

[TPEMATCH
The subscription failed because it matched one already listed with the even
broker.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is to be aborted; otherwise, a blocking
timeout occurred and neithEPNOBLOCKior TPNOTIMEwere specified. If a
transaction timeout occurred, any attempts to do new work will fail with
TPETIME until the transaction has been aborted.

[TPEBLOCK
A blocking condition exists antPNOBLOCKvas specified.

[TPGOTSI]
A signal was received andPSIGRSTRTwas not specified.

[TPEPROTD
tpsubscribe was called in an improper context.

[TPESYSTEWM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

buffer (3), EVENTS5), EVENT_MIE5), Fboolco (3), Fboolev (3), Fvboolco (3),
Fvboolev (3), recomp (3), TMSYSEV{{5), TMUSREV(B), tpenqueue (3), tppost (3),
tpsetunsol (3), tpunsubscribe (3), tuxtypes (5), typesw (5), ubbconfig (5)

BEA TUXEDO Reference Manual

tpsuspend(3)

tpsuspend(3)

Name

Synopsis

Description

Return Value

tpsuspend -suspend a global transaction

#include <atmi.h>
int tpsuspend(TPTRANID *tranid, long flags)

tpsuspend () is used to suspend the transaction active in the caller's process. A
transaction begun wittpbegin (3) may be suspended wigtsuspend (). Either the
suspending process or another process magpusame (3) to resume work on a
suspended transaction. Whgsuspend () returns, the caller is no longer in

transaction mode. However, while a transaction is suspended, all resources associated
with that transaction (such as database locks) remain active. Like an active transaction,
a suspended transaction is susceptible to the transaction timeout value that was
assigned when the transaction first began.

For the transaction to be resumed in another process, the cafissspénd () must

have been the initiator of the transaction by explicitly calipbggin (). tpsuspend ()

may also be called by a process other than the originator of the transaction (for
example, a server that receives a request in transaction mode). In the latter case, only
the caller ofipsuspend () may calltpresume () to resume that transaction. This case

is allowed so that a process can temporarily suspend a transaction to begin and do some
work in another transaction before completing the original transaction (for example, to
run a transaction to log a failure before rolling back the original transaction).

tpsuspend () returns in the space pointed tottanid the transaction identifier being
suspended. The caller is responsible for allocating the space to mdnich points.
Itis an error fortranid to be NULL.

To ensure success, the caller must have completed all outstanding transactional
communication with servers before issuipguspend (). That is, the caller must have
received all replies for requests sent witicall (3) that were associated with the
caller's transaction. Also, the caller must have closed all connections with
conversational services associated with the caller's transactiotpige:, (3) must

have returned the TPEV_SVCSUCC event). If either rule is not followed, then
tpsuspend () fails, the caller's current transaction is not suspended and all
transactional communication descriptors remain valid. Communication descriptors not
associated with the caller's transaction remain valid regardless of the outcome of
tpsuspend ().

Currently,flags are reserved for future use and must be set to 0.

tpsuspend () returns \-1 on error and seperrno to indicate the error condition.

BEA TUXEDO Reference Manual 201

tpsuspend(3)

202

Errors Under the following conditionspsuspend () fails and setgperrno to:

[TPEINVAL]
tranid is a NULL pointer offlags is not 0. The caller's state with respect
to the transaction is not changed.

[TPEABORT
The caller's active transaction has been aborted. All communication
descriptors associated with the transaction are no longer valid.

[TPEPROTD
tpsuspend() was called in an improper context (for example, the caller is not
in transaction mode). The caller's state with respect to the transaction is not
changed.

[TPESYSTEWM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

See Also tpacall (3),tpbegin (3),tprecv (3), tpresume (3)

BEA TUXEDO Reference Manual

tpsvrdone(3c)

tpsvrdone(3¢)

Synopsis

Description

Usage

See Also

tpsvrdone (3c)-BEA TUXEDO system server termination routine

#include <atmi.h>
void tpsvrdone(void)

The BEA TUXEDO system server abstraction cgitsrdone after it has finished
processing service requests but before it exits. When this routine is invoked, the server
is still part of the system but its own services have been unadvertised. Thus, BEA
TUXEDO system communication can be performed and transactions can be defined in
this routine. However, ifposvrdone returns with open connections, asynchronous
replies pending or while still in transaction mode, the BEA TUXEDO system wiill

close its connections, ignore any pending replies and abort the transaction before the
server exits.

If a server is shut down by the invocationre$hutdown -y , services are suspended
and the ability to perform communication or to begin transactiotpsirdone is
limited.

If an application does not provide this routine in a server, then the default version
provided by the BEA TUXEDO system is called instead. The defauttione calls
tpclose anduserlog to announce that the server is about to exit.

If eithertpreturn (3c) ortpforward (3c) is called inpsvrdone , it simply returns
having no effect.

servopts (5), tpclose (3c), tpsvrinit (3c)

BEA TUXEDO Reference Manual 203

tpsvrinit(3)

tpsvrinit(3)

Name

Synopsis

Description

Return Values

204

Usage

See Also

tpsvrinit (3)-the BEA TUXEDO system server initialization routine

#include <atmi.h>
int tpsvrinit(int argc, char **argv)

The BEA TUXEDO system server abstraction caiésrinit () during its

initialization. This routine is called after the thread of control has become a server bu
before it handles any service requests; thus, BEA TUXEDO system communication
may be performed and transactions may be defined in this routine. However, if
tpsvrinit () returns with open connections, asynchronous replies pending or while
still in transaction mode, the BEA TUXEDO system will close the connections, ignore
replies pending, abort the transaction, and the server will exit gracefully.

If an application does not provide this routine in a server, then the default version
provided by the BEA TUXEDO system is called instead. The defawtinit ()
callstpopen () anduserlog () to announce that the server has successfully started.

Application-specific options can be passed into a server and procegsadinit ()
(seeservopts (5)). The options are passed throagic andargv. Sincegetopt (3C)
is used in a BEA TUXEDO system server abstractptarg , optind andopterr
may be used to control option parsing and error detectitusvrinit ().

If an error occurs impsvrinit (), the application can cause the server to exit
gracefully (and not take any service requests) by returning -1. The application shouls
not callexit (2) itself.

A negative return value will cause the server to exit gracefully.

If eithertpreturn () ortpforward () are used outside of a service routine (e.g., in
clients, or intpsvrinit () ortpsvrdone ()), then these routines simply return having
no effect.

getopt (3C),servopts (5), tpopen (3), tpsvrdone (3)

BEA TUXEDO Reference Manual

tpterm(3)

tpterm(3)
Name

Synopsis

Description

Return Values

Errors

See Also

tpterm -routine for leaving an application

#include <atmi.h>

int tpterm(void)

tpterm () removes a client from a BEA TUXEDO system application. If the client is

in transaction mode, then the transaction is rolled back. \ighem () returns
successfully, the caller can no longer communicate with any other program nor can it

participate in any transactions. Any outstanding conversations are immediately
disconnected.

If tpterm () is called more than once (that is, after the caller has already left the
application), no action is taken and success is returned.

tpterm () returns \-1 on error and seperrmo to indicate the error condition.
Under the following conditionspterm () fails and setgpermo to:

[TPEPROTD
tpterm () was called in an improper context (for example, the caller is a
server).

[TPESYSTEW
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

tpinit (3)

BEA TUXEDO Reference Manual 205

tptypes(3)

tptypes(3)
Name

Synopsis

Description

Return Values

Errors

See Also

tptypes -routine to determine information about a typed buffer

#include <atmi.h>
long tptypes(char *ptr, char *type, char *subtype)

tptypes () takes as its first argument a pointer to a data buffer and returns the type an
subtype of that buffer in its second and third arguments, respectivelynust point

to a buffer gotten fronpalloc (3). If type andsubtype are non-NULL, then the
function populates the character arrays to which they point with the names of the
buffer's type and subtype, respectively. If the names are of their maximum length (8
for type , 16 forsubtype), the character array is not null-terminated. If no subtype
exists, then the array pointed to faytype will contain a NULL string.

Note that only the first eight bytes gbe and the first 16 bytes alibtype are
populated.

Upon successptypes () returns the size of the buffer; otherwise it returns \-1 upon
failure and setgperrno to indicate the error condition.

Under the following conditionsptypes () fails and setgperrno to:

[TPEINVAL]
Invalid arguments were given (for exampde, does not point to a buffer
gotten from \% tpalloc(3)).

[TPEPROTD
tptypes () was called in an improper context.

[TPESYSTEWM
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

tpalloc (3),tpfree (3),tprealloc (3)

206 BEA TUXEDO Reference Manual

tpunadvertise(3)

tpunadvertise(3)
Name tpunadvertise -routine for unadvertising a service name
Synopsis #include <atmi.h>
int tpunadvertise(char *svcname)

Description tpunadvertise () allows a server to unadvertise a service that it offers. By default, a
server's services are advertised when it is booted and they are unadvertised when it is
shutdown.

All servers belonging to a multiple server, single queue (MSSQ) set must offer the
same set of services. These routines enforce this rule by affecting the advertisements
of all servers sharing an MSSQ set.
tpunadvertise () removesvcname as an advertised service for the server (or the set
of servers sharing the caller's MSSQ sat}name cannot be NULL or the NULL
string (*). Also, svename should be 15 characters or less. (See *SERVICES section
of ubbconfig (5)). Longer names will be accepted and truncated to 15 characters. Care
should be taken such that truncated names do not match other service names.
Return Values tpunadvertise () returns\-1 on error and s@tsrrmo to indicate the error condition.
Errors Under the following conditionspunadvertise () fails and setgperrno to:
[TPEINVAL]
svcname is NULL or the NULL string ().
[TPENOENT
svcname is not currently advertised by the server.
[TPEPROTD
tpunadvertise () was called in an improper context (for example, by a
client).
[TPESYSTEW
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.
[TPEOS
An operating system error has occurred.
See Also tpadvertise (3)

BEA TUXEDO Reference Manual 207

tpunsubscribe(3)

tpunsubscribe(3)
Name tpunsubscribe -unsubscribe to an event
Synopsis #include <atmi.h>
int tpunsubscribe(long subscription, long flags)
Description The caller usesgunsubscribe to remove an event subscription or a set of event

208

subscriptions from the TUXEDO System Event Broker's list of active subscriptions.
subscription is an event subscription handle returneddsybscribpe (3). Setting
subscription to the wild-card value, -1, diredtsunsubscribe ~ to unsubscribe to

all non-persistent subscriptions previously made by the calling process. Non-persistel
subscriptions are those made without the TPEVPERSIST bit setting in the

ctl->flags parameter ofpsubscribe (3). Persistent subscriptions can be deleted
only by using the handle returned tpgubscribe (3).

Note that the -1 handle removes only those subscriptions made by the calling proce:
and not any made by previous instantiations of the caller (for example, a server that
dies and restarts cannot use the wild-card to unsubscribe to any subscriptions made
the original server).

Following is a list of validflags .

TPNOBLOCK
The subscription is not removed if a blocking condition exists. If such a
condition occurs, the call fails amgkrro is set toTPEBLOCKWhen
TPNOBLOCHs not specified and a blocking condition exists, the caller blocks
until the condition subsides or a timeout occurs (either transaction or blocking
timeout).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system
call is re-issued. WhenPSIGRSTRTIs not specified and a signal interrupts a
system call, therpunsubscribe fails andtperrmo is set toTPGOTSIG

BEA TUXEDO Reference Manual

tpunsubscribe(3)

Return Values

Errors

See Also

Upon completion ofpunsubscribe , tpurcode () contains the number of
subscriptions deleted (zero or greater) from the event broker's list of active
subscriptionstpurcode may contain a number greater than 1 only when the wild-card
handle, -1, is used. Alsqaurcode may contain a number greater than 0 even when
tpunsubscribe completes unsuccessfully (that is, when the wild-card handle is used,
the event broker may have successfully removed some subscriptions before it
encountered an error deleting otheti®)nsubscribe returns -1 on error and sets
tperrno to indicate the error condition.

Under the following conditionspunsubscrice fails and setgperrno to one of the
following values. (Unless otherwise noted, failure does not affect the caller's
transaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for exampdebscription is an invalid
subscription handle).

[TPENOENT
Cannot access the BEA TUXEDO system event broker.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, then a transaction
timeout occurred and the transaction is to be aborted; otherwise, a blocking
timeout occurred and neithEPNOBLOCKiOr TPNOTIMEwere specified. If a
transaction timeout occurred, any attempts to do new work will fail with
TPETIME until the transaction has been aborted.

[TPEBLOCK
A blocking condition exists antPNOBLOCHKvas specified.

[TPGOTSI]
A signal was received amPSIGRSTRTwas not specified.

[TPEPROTD
tpunsubscribe was called in an improper context.

[TPESYSTEW
A BEA TUXEDO system error has occurred. The exact nature of the error is
written to a log file.

[TPEOS
An operating system error has occurred.

EVENTS5), EVENT_MIK5), TMSYSEV{5), TMUSREV(B), tppost (3), tpsubscribe (3)

BEA TUXEDO Reference Manual 209

TRY(3)

TRY(3)

210

Name

Synopsis

Description

TRY-exception-returning interface
#include <texc.h>

TRY

try_block

[CATCH(exception_name) handler_block 1] ...
[CATCH_ALL handler_block]

ENDTRY

TRY
try_block
FINALLY
finally_block
ENDTRY

RAISE(exception_name)
RERAISE

[* declare exception */
EXCEPTION exception_name ;

[* initialize address (application) exception */
EXCEPTION_INIT(EXCEPTION exception_name)

[* intialize status exception (map status to exception */
exc_set_status(EXCEPTION * exception_name ,long status)

/* map status exception to status */
exc_get status(EXCEPTION * exception_name ,long* status)

[* compare exceptions */
exc_matches(EXCEPTION * el, EXCEPTION * e2)

[* print error to stderr */
void exc_report(EXCEPTION * exception)

The TRY/CATCH interface provides a mechanism to handle exceptions without the
use of status variables (e.gino or status variables passed back from an RPC
operation). These macros are defined in texc.h and this header is automatically
included in any header files generated by tidl(1).

TheTRYtry block is a block of C or C++ declarations and statements in which an
exception may be raised (code that is not associated with raising an exception shou
be placed before or after thg block). EachTRYENDTRYpair constitutes a “scope”,

BEA TUXEDO Reference Manual

TRY(3)

with respect to exceptions (not unlike C scoping), or a region of code over which
exceptions are caught. These scopes can be properly nested. When an exception is
raised, an error is reported to the application by searching the active scopes for actions
written to handle (“absorb”) an exceptiobATCHor CATCH_ALLclauses) or complete

the scopesNALLY clauses). If a scope does not handle an exception, the scope is torn
down with the exception raised at the next higher level (unwinding the stack of
exception scopes). Execution resumes at the point after which the exception is handled,;
there is no provision for resuming execution at the point of error. If the exception is not
handled by any scope, the program is terminated (a message is written to the log via
userlog(3) and abort(3) is called).

Zero or more occurrences OATCH(exception_name) handler_block ~ may be
provided. Eacthandler_block is a block of C or C++ declarations and statements in
which the associated excepti@xdeption_name) is processed (normally, actions are
specified for recovery from the failure). If an exception is raised by a statement in
try_block , then the firsCATCHclause that matches the exception is executed.

Within aCATCHor CATCH_ALLhandler_block , the current exception can be
referenced by the EXCEPTION pointefIS_CATCH(e.g., for logic based on or
printing the exception value).

If the exception is not handled by one of @rercHclauses, then theATCH_ALLclause

is executed. By default, no further action is taken for an exception that is handled by a
CATCHor CATCH_ALLclause. If naCATCH_ALLclause exists, then the exception is

raised at thery block at the next higher level, assuming that #reblock is

nested within anothary block . If an ANSI C compiler is used, register and

automatic variables that are used in the handler blocks should be declared with the
volatle attribute (as is true of any blocks that asmp/longjmp). Also note that

output parameters and return values from the functions that can generate an exception
are indeterminate.

Within aCATCHor CATCH_ALLhandler_block , the current exception can be

propagated to the next higher level (the exception is “reraised”) usirREIRRISE
statement. ThRERAISE statement must appear lexically within the scope of a
handler_block (that is, not within a function called by thendler_block). Any
exception that is caught but not fully handled should be reraised. In many cases, a
CATCH_ALLhandler should reraise the exception because the handler is not written to
handle every exception. The application should also be written such that an exception
is raised to the proper scope such that the handler blocks take the appropriate actions
and modify the appropriate state (e.qg., if an exception occurs while opening a file, the
handler function for that level should not try to close the unopened file).

BEA TUXEDO Reference Manual 211

TRY(3)

212

An exception can be raised from anywhere by usin@qR8E(exception_name)
statement. This statement causes the exception to start propagating at the current
try_block and will be reraised until it is handled.

TheFINALLY clause can be used to specify an epilogue block of code that is execute
after thetry_block , whether or not an exception is raised. If an exception is raised in
thetry block , itis reraised after thimally block is executed. This clause can be
used to avoid replicating epilogue code twice, onceGAEBCH_ALLclause, and again
after theENDTRY It is normally used to execute cleanup activities, restoring invariants
(e.g., shared data, locks) as the scopes are unwound, whether or not exceptions are
raised (that is, on both normal and abnormal exits from the block). Note (in the
SYNOPSIS) that &INALLY clause cannot be used wititATCHor CATCH_ALLclause

for the samery block ; use nestedy block s.

TheENDTRYstatement must be used to completeTieblock, since it contains code
that must be executed to make sure that exceptions are handled and the context is
cleaned up. Ary_block , handler_block , or finally_block must not contain a
return , non-local jump, or any other means of leaving the block such theNtbieRY

is not reached (e.goto, break, continue, longjmp 3).

This interface is provided to handle exceptions from RPC operations. However, this i
a generic interface that can be used for any application. An exception is declared to t
of type EXCEPTION. (This is a complex data type; don't try to use it like a long
integer.) There are two types of exceptions. They are declared in the same manner t
initialized differently.

One type of exception is used to propagate status values associated with operating
system signals and exceptions raised by the RPC run-time primitives. For each statt
value, an exception has been pre-defined (for example, excepatianno_memory

is defined for statugc_s_no_memory); these are declared in the trpcsts.h header file.
While not necessary (since the status exceptions are pre-defined), a status exceptio
can be declared by the application and initialized witheitseset_status () macro
which takes a pointer to the EXCEPTION to be initialized, and the status value. The
status value associated witlstatus exception can be retrieved using the

exc_get status () macro. It takes a pointer to the EXCEPTION and a pointer to the
variable in which the status value is to be returned; the value of the macro is O if it is :
status exception, and -1 otherwise.

The second type of exception is used to define application exceptions. It is initializec
by calling the EXCEPTION_INIT() macro. The address of the exception is stored as
the value within theddress exception. Note that this value is valid only within a

single address space and will change if the exception is an automatic variable. For th
reason, amddress exception should be declared as a static or external variable, not

BEA TUXEDO Reference Manual

TRY(3)

When To Use
Exception and
Status Returns

an automatic or register variable. Téxe_get_status () macro will evaluate to -1 for
anaddress exception. Using thexc_set_status () macro on this exception will
make it astatus exception.

Theexc_matches macro can be used to compare two exceptions. To compare equal,
the exceptions must both be the same type and have the same value (e.g., the same
status value fostatus exceptions, or the same addressesdidress exceptions).

This comparison is used for tikdTCHclause, described above.

When status exceptions are raised, a common part of handling the exception might be
to print out the status value, or better yet, a string indicating what status value occurred.
If the string is to be printed to the standard error output, then the function

exc_report () can be called with a pointer to theatus exception to print the string

in one operation.

CATCH_ALL

{
exc_report(THIS_CATCH);

}
ENDTRY

If something else is to be done with the string (e.g., printing the error to the userlog),
exc_get_status () can be used OPHIS_CATCHto get the status value (remember that
THIS_CATCHis already a pointer to &XCEPTION not anEXCEPTION, and
dce_error_ing_text () can be used to get the string value associated with the status
value.

CATCH_ALL
{

unsigned long status_to_convert;
unsigned char error_text[200];
int status;

exc_get_status(THIS_CATCH,status_to_convert);
dce_error_ing_text(status_to_convert, error_text, status);
userlog(“%s”, (char *)error_text);

}
ENDTRY

The status of RPC operations can be determined portably by defining status variables
for each operation ([comm_status] and [fault_status] parameters are defined via the
Attribute Configuration File). The status-returning interface is the only interface
provided in the X/OPEN RPC specification. The fault_status attribute indicates that
errors occurring on the server due to incorrectly specified parameter values, resource
constraints, or coding errors be reported by an additional status argument or return
value. Similarly, the comm_status attribute indicates that RPC communications

BEA TUXEDO Reference Manual 213

TRY(3)

214

Built-in
Exceptions

failures be reported by an additional status argument or return value. Using status
values works well for fine-grained error handling (on a per-call basis) with recovery
specified for each possible error on each call, and where it is necessary to retry fron
the point of failure. The disadvantage is that it is not transparent whether or not the ca
is local or remote. The remote call has additional status parameters, or a status retu
value instead of being a void return. Thus, the application must have procedure
declarations adjusted between local and distributed code.

For application portability from an OSF/DCE environment, the TRY/CATCH
exception-returning interface is also provided. This interface may not be provided in
all environments. However, it has the advantage that procedure declarations need n
be adjusted between local and distributed code, maintaining existing interfaces. The
checking for errors can be simplified such that each procedure call does not have
specific failure checking or recovery code. If an error is not handled at some level, the
the program exits with a system error message such that the error is detected and c
be corrected (omissions become more obvious). Exceptions work better for
coarse-grained exception handling.

The following exceptions are “built-in” to the use of this exception interface. The first
TRY clause sets up a signal handler to catch the signals list below if they are not
currently ignored or caught; the other exceptions are defined only for DCE program
portability.

Built-In Exceptions

Exception Description
exc_e_SIGBUS An unhandled SIGBUS signal occurred.
exc_e_SIGEMT An unhandled SIGEMT signal occurred.
exc_e_SIGFPE An unhandled SIGFPE signal occurred.
exc_e_SIGILL An unhandled SIGILL signal occurred.
exc_e_SIGIOT An unhandled SIGIOT signal occurred.
exc_e_SIGPIPE An unhandled SIGPIPE signal occurred.
exc_e_SIGSEGV An unhandled SIGSEGYV signal occurred.
exc_e_SIGSYS An unhandled SIGSYS signal occurred.
exc_e_SIGTRAP An unhandled SIGTRAP signal occurred.
exc_e_SIGXCPU An unhandled SIGXCPU signal occurred.

BEA TUXEDO Reference Manual

TRY(3)

Built-In Exceptions

Exception

Description

exc_e_SIGXFSZ

An unhandled SIGXFSZ signal occurred.

pthread_e_badparam

pthread_e_defer_q_full

pthread_e_existence

pthread_e_in_use

pthread_e_nostackmem

pthread_e_nostack

pthread_e_signal_q_full

pthread_e_stackovf

pthread_e_unimp

pthread_e_use_error

exc_e_decovf

exc_e_exquota

exc_e_fltdiv

exc_e_fltovf

exc_e_fltund

exc_e_illaddr

exc_e_insfmem

exc_e_intdiv

exc_e_intovf

exc_e_nopriv

exc_e_privinst

exc_e_resaddr

exc_e_resoper

exc_e_subrng

exc_e_uninitexc

BEA TUXEDO Reference Manual

215

TRY(3)

Caveats

Examples

#include <texc.h>

These same exception codes are also defined with the “_e” at the end of the name (e.
exc_e_SIGBUS is also defined as exc_SIGBUS_e). Equivalent status codes are
defined with similar names butthe“_e "ischangedto“ s " (e.g.,exc_e SIGBUS s
equivalent to the exc_s_SIGBUS status code).

In OSF/DCE, the header file is named exc_handling.h; the BEA TUXEDO system
header file is texc.h. It is not possible for the same source file to use both DCE and
BEA TUXEDO system exception handling. Further, within a program, the handling of
signal exceptions can only be done by either DCE or the BEA TUXEDO system, not
both. See the TXRPC Guide for a discussion of integrating BEA TUXEDO
system/TxRPC stubs and OSF/DCE stubs in a single program.

When linking a program using this interfag@UXDIR/lib/libtrpc.a must be
included.

Here is an example C source file that uses exceptions.

EXCEPTION badopen_e; * declare exception for bad open() */

doit(char *filename)

EXCEPTION_INIT (badopen_e); /* initialize exception */
TRY get_and_update_data(flename); /* do the operation */
CATCH(badopen_e) [* exception - open() failed */

fprintf(stderr, “Cannot open %s\en”, filename);

CATCH_ALL

/* handle other errors */

/* handle rpc service not available, ... */
exc_report(THIS_CATCH)

ENDTRY

}
/*

* Open output file

* Get the remote data item

* Write out to file

*

get_and_update_data(char *filename)

FILE *fp;

if ((fp == fopen(filename)) == NULL) /* open output file */
RAISE(badopen_e); /* raise exception */

TRY

*in this block, file is opened successfully -
* use associated FINALLY to close file

*/
long data;

216 BEA TUXEDO Reference Manual

TRY(3)

/*
* Execute RPC call - exceptions are raised to the calling
* function, doit()
*
data = remote_get_data();
fprintf(fp, “%ld\en”, data);
FINALLY
/* Whether or not exceptions are raised, close the file */
fclose(fp);
ENDTRY

}
See Also tidl (1), abort (2),userlog (3), TUXEDO TxRPC Guide

BEA TUXEDO Reference Manual 217

tuxgetenv(3)

tuxgetenv(3)

Name

Synopsis

Description

Return Values

218

Portability

See Also

tuxgetenv -return value for environment name

#include <atmi.h>
char *tuxgetenv(char *name)

tuxgetenv () searches the environment list for a string of the fosme=value and,
if the string is present, returns a pointer towhlee in the current environment.
Otherwise, it returns a null pointer.

This function provides a portable interface to environment variables across the
different platforms on which the BEA TUXEDO system is supported, including those
platforms that don't normally have environment variables.

Note thatuxgetenv is case-sensitive.
tuxgetenv () returns a pointer to the string if present and a null pointer otherwise.

On MS Windows, this function overcomes the inability to share environment variables
between an application and a Dynamic Link Library. The TUXEDO /WS DLL
maintains an environment copy for each application that is attached to it. This
associated environment and context information is destroyed yeen (3c) is

called from a Windows application. The value of an environment variable could be
changed after the application program cgllsrm (3c).

It is recommended that upper case variable names be used for the DOS, Windows,
0S/2, and NetWare environmentsix(eadenv (3c) converts all environment
variable names to upper case.)

tuxputenv (3), tuxreadenv (3)

BEA TUXEDO Reference Manual

tuxputenv(3)

tuxputenv(3)

Name

Synopsis

Description

Return Values

Portability

See Also

tuxputenv (3)-change or add value to environment

#include <atmi.h>
int tuxputenv(char *string)

string points to a string of the form “name=valueiputenv makes the value of
the environment variable name equal to value by altering an existing variable or
creating a new one. In either case, the string pointed sotby becomes part of the
environment.

This function provides a portable interface to environment variables across the
different platforms on which the BEA TUXEDO system is supported, including those
platforms that don't normally have environment variables.

Note thattuxputenv is case-sensitive.

tuxputenv () returns a non-zero integer if it was unable to obtain enough space via
malloc for an expanded environment, otherwise zero.

On MS Windows, this function overcomes the inability to share environment variables
between an application and a Dynamic Link Library. The BEA TUXEDO system /WS
DLL maintains an environment copy for each application that is attached to it. This
associated environment and context information is destroyed ysieen (3c) is

called from a Windows application. The value of an environment variable could be
changed after the application program cglisrm (3c).

We recommend using upper case variable names for the DOS, Windows, and OS/2,
environments.t(xreadenv (3c) converts all environment variable names to upper
case.)

tuxgetenv (3), tuxreadenv (3)

BEA TUXEDO Reference Manual 219

tuxreadenv(3)

tuxreadenv(3)

Name tuxreadenv -add variables to the environment from a file

Synopsis #include <atmi.h>
int tuxreadenv(char *file, char *label)

Description tuxreadenv reads a file containing environment variables and adds them to the
environment, independent of platform. These variables are available using
tuxgetenv (3) and can be reset usingputenv (3).

The format of the environment file is as follows.

4 Any leading space or tab characters on each line are ignored and are not
considered in the following points.

4 Lines containing variables to be put into the environment are of the form
variable =value

or

set variable =value

wherevariable must begin with an alphabetic or underscore character and contain
only alphanumeric or underscore characters,va@ may contain any character
except newline.

4 Within thevalue , strings of the form $4nv} are expanded using variables
already in the environment (forward referencing is not supported and if a value
is not set, the variable is replaced with the empty string). Backslash (\) may be
used to escape the dollar sign and itself. All other shell quoting and escape
mechanisms are ignored and the expanded is placed into the environment.

4 Lines beginning with slash (/), pound sign (#), semicolon (;), or exclamation
point (!) are treated as comments and ignored. Lines beginning with other
characters besides these comment characters, a left square bracket, or an
alphabetic or underscore character are reserved for future use; their use is
undefined.

¢ The file is partitioned into sections by lines beginning with left square bracket
(D, which acts as a label. The label will be silently truncated if longer than 31
characters. The format of a label is

[label]

220 BEA TUXEDO Reference Manual

tuxreadenv(3)

Example

Return Values

Portability

See Also

wherelabel follows the same rules fomriable above (lines with invalid
label values are ignored).

4 \Variable lines between the top of the file and the first label are put into the
environment for all labels (this is the global section). Other variables are put into
the environment only if the label matches the label specified for the application.
A label of [] will indicate the global section.

If file is NULL, then a default file name is used. The fixed file names are as follows:

DOS, Windows, OS2, NT: C:\TUXEDO\TUXEDO.ENV

MAC: TUXEDO.ENYV in the system preferences directory

NETWARE: SYS:SYSTEM\TUXEDO.ENV

POSIX: /usr/tuxedo/TUXEDO.ENV or /var/opt/tuxedo/TUXEDO.ENV

If label is NULL, then only variables in the global section are put into the
environment. For other valuesiabel , the global section variables plus any variables
in a section matching thiebel are put into the environment.

An error message is printed to theerlog () if there is a memory failure, if a non-null
file name does not exist, or if a non-null label does not exist.

Here is an example environment file.

TUXDIR=/usr/tuxedo
[application1]

;this is a comment

/* this is a comment */

#this is a comment

/lthis is a comment
FIELDTBLS=appl_flds
FLDTBLDIR=/usr/appl/udataobj
[application2]
FIELDTBLS=app2_flds
FLDTBLDIR=/usr/app2/udataobj

tuxreadenv () returns non-zero if it was unable to obtain enough spacealiix for
an expanded environment or was unable to open and read a non-NULL filename,
otherwise zero.

In the DOS, Windows, OS/2, and NetWare environmemtssadenv () converts all
environment variable names to upper case.

tuxgetenv (3), tuxputenv (3)

BEA TUXEDO Reference Manual 221

tx_begin(3)

tx_begin(3)

Name

Synopsis

Description

Optional Set-up

Return Value

222

Errors

tx_begin -begin a global transaction

#include <tx.h>
int tx_begin(void)

tx_begin () is used to place the calling thread of control in transaction mode. The
calling thread must first ensure that its linked resource managers have been opened (
tx_open (3)) before it can start transactionsbegin () fails (returning
[TX_PROTOCOL_ERRORY]) if the caller is already in transaction mode open ()

has not been called.

Once in transaction mode, the calling thread must:calbmmit (3) or

tx_rollback (3) to complete its current transaction. There are certain cases related t
transaction chaining whete begin () does not need to be called explicitly to start a
transaction. Se&_commit () andtx_rollback () for details.

tx_set_transaction_timeout 3)
Upon successful completioty, begin () returnsTX_OK a non-negative return value.

Under the following conditionsx_begin () fails and returns one of these negative
values:

[TX_OUTSIDH
The transaction manager is unable to start a global transaction because the
calling thread of control is currently participating in work outside any global
transaction with one or more resource managers. All such work must be
completed before a global transaction can be started. The caller's state with
respect to the local transaction is unchanged.

[TX_PROTOCOL_ERRDR
The function was called in an improper context (for example, the caller is
already in transaction mode). The caller's state with respect to transaction
mode is unchanged.

BEA TUXEDO Reference Manual

tx_begin(3)

[TX_ERROR
Either the transaction manager or one or more of the resource managers
encountered a transient error trying to start a new transaction. When this error
is returned, the caller is not in transaction mode. The exact nature of the error
is written to a log file.

[TX_FAIL]
Either the transaction manager or one or more of the resource managers
encountered a fatal error. The nature of the error is such that the transaction
manager and/or one or more of the resource managers can no longer perform
work on behalf of the application. When this error is returned, the caller is not
in transaction mode. The exact nature of the error is written to a log file.

See Also tx_commit (3),tx_open (3),tx_rollback (3),tx_set_transaction_timeout 3)

Wamnings XA-compliant resource managers must be successfully opened to be included in the
global transaction. (See open (3) for details.) Both the X/Open TX interface and the
X-Windows system defines the type XID. It is not possible to use both X-Windows
calls and TX calls in the same file.

BEA TUXEDO Reference Manual 223

tx_close(3)

tx_close(3)

Name

Synopsis

Description

Return Value

224

Errors

tx_close -close a set of resource managers

#include <tx.h>
int tx_close(void)

tx_close () closes a set of resource managers in a portable manner. It invokes a
transaction manager to read resource-manager-specific information in a
transaction-manager-specific manner and pass this information to the resource
managers linked to the caller.

tx_close () closes all resource managers to which the caller is linked. This function is
used in place of resource-manager-specific “close” calls and allows an application
program to be free of calls which may hinder portability. Since resource managers
differ in their termination semantics, the specific information needed to “close” a
particular resource manager must be published by each resource manager.

tx_close () should be called when an application thread of control no longer wishes
to participate in global transactions.close () fails (returning
[TX_PROTOCOL_ERRORY]) if the caller is in transaction mode. That is, no resource
managers are closed even though some may not be patrticipating in the current
transaction.

Whentx_close () returns success (TX_OK), all resource managers linked to the
calling thread are closed.

Upon successful completiotx, close () returnsTX_OK a non-negative return value.

Under the following conditionsx_close () fails and returns one of these negative
values:

[TX_PROTOCOL_ERRDR
The function was called in an improper context (for example, the caller is in
transaction mode). No resource managers are closed.

[TX_ERROR
Either the transaction manager or one or more of the resource managers
encountered a transient error. The exact nature of the error is written to a loc
file. All resource managers that could be closed are closed.

[TX_FAIL]
Either the transaction manager or one or more of the resource managers
encountered a fatal error. The nature of the error is such that the transactiot
manager and/or one or more of the resource managers can no longer perfor
work on behalf of the application. The exact nature of the error is written to a

BEA TUXEDO Reference Manual

tx_close(3)

log file.
See Also tx_open (3)

Wamnings Both the X/Open TX interface and the X-Windows system defines the type XID. Itis
not possible to use both X-Windows calls and TX calls in the same file.

BEA TUXEDO Reference Manual 225

tx_commit(3)

tx_commit(3)

Name

Synopsis

Description

OPTIONAL
SET-UP

Return Value

226

Errors

tx_commit -commit a global transaction

#include <tx.h>
int tx_commit(void)

tx_commit () is used to commit the work of the transaction active in the caller's thread
of control.

If the transaction_control characteristic (see

tx_set_transaction_control (3)) isTX_UNCHAINEDthen whenx_commit ()

returns, the caller is no longer in transaction mode. However, if the
transaction_control characteristic iIX_CHAINED then whenx_commit ()

returns, the caller remains in transaction mode on behalf of a new transaction (see tl
RETURN VALUE and ERRORS sections below).

4 tx_set_commit_return 3)
4 tx_set_transaction_control 3)
4 tx_set_transaction_timeout 3)

Upon successful completiot, commit () returnsTX_OK a non-negative return value.

Under the following conditionsx_commit () fails and returns one of these negative
values:

[TX_NO_BEGIN
The current transaction committed successfully; however, a new transactior
could not be started and the caller is no longer in transaction mode. This
return value may occur only when thansaction_control characteristic
is TX_CHAINED

[TX_ROLLBACK
The current transaction could not commit and has been rolled back. In
addition, if thetransaction_control characteristic iX_CHAINED a new
transaction is started.

[TX_ROLLBACK_NO_BEGIN
The transaction could not commit and has been rolled back. In addition, a nev
transaction could not be started and the caller is no longer in transaction
mode. This return value can occur only whentthgsaction_control
characteristic igX_CHAINED

BEA TUXEDO Reference Manual

tx_commit(3)

See Also

Warnings

[TX_MIXED]

The work done on behalf of the transaction was partially committed and
partially rolled back. In addition, if theansaction_control
characteristic igX_CHAINED a new transaction is started.

[TX_MIXED_NO_BEGIN

The work done on behalf of the transaction was partially committed and
partially rolled back. In addition, a new transaction could not be started and
the caller is no longer in transaction mode. This return value can occur only
when thetransaction_control characteristic igX_CHAINED

[TX_HAZARD

Due to a failure, some of the work done on behalf of the transaction may have
been committed and some of it may have been rolled back. In addition, if the
transaction_control characteristic igX_CHAINEDQ a new transaction is
started.

[TX_HAZARD_NO_BEGIN

Due to a failure, some of the work done on behalf of the transaction may have
been committed and some of it may have been rolled back. In addition, a new
transaction could not be started and the caller is no longer in transaction
mode. This return value can occur only whentthgsaction _control

characteristic igX_CHAINED

[TX_PROTOCOL_ERRPR

The function was called in an improper context (for example, the caller is not
in transaction mode). The caller's state with respect to transaction mode is not
changed.

[TX_FAIL]

Either the transaction manager or one or more of the resource managers
encountered a fatal error. The nature of the error is such that the transaction
manager and/or one or more of the resource managers can no longer perform
work on behalf of the application. The exact nature of the error is written to a
log file. The caller's state with respect to the transaction is unknown.

tx_begin (3), tx_set_commit_return (3), tx_set_transaction_control (3),
tx_set_transaction_timeout 3)

Both the X/Open TX interface and the X-Windows system defines the type XID. Itis
not possible to use both X-Windows calls and TX calls in the same file.

BEA TUXEDO Reference Manual 227

tx_info(3)

tx_info(3)
Name

Synopsis

Description

Return Value

tx_info -return global transaction information

#include <tx.h>
int tx_info(TXINFO *info)

tx_info () returns global transaction information in the structure pointed tofdy.

In addition, this function returns a value indicating whether the caller is currently in
transaction mode or not. Hfo is non-null, thenx_info () populates a TXINFO
structure pointed to binfo with global transaction information. The TXINFO
structure contains the following elements:

XID xid;

COMMIT_RETURN when_return;
TRANSACTION_CONTROL transaction_control;
TRANSACTION_TIMEOUT transaction_timeout;
TRANSACTION_STATE transaction_state;

If tx_info () is called in transaction mode, thed will be populated with a current
transaction branch identifier am@nsaction_state will contain the state of the
current transaction. If the caller is not in transaction mgdewill be populated with

the null XID (see <tx.h> for details). In addition, regardless of whether the caller is in

transaction modeyhen _return , transaction_control ,and
transaction_timeout contain the current settings of tb@nmit_return and
transaction_control characteristics, and the transaction timeout value in seconds.

The transaction timeout value returned reflects the setting that will be used when the
next transaction is started. Thus, it may not reflect the timeout value for the caller's
current global transaction since calls madeteet_transaction_timeout 3)

after the current transaction was begun may have changed its value.

If info is null, no TXINFO structure is returned.

If the caller is in transaction mode, then 1 is returned. If the caller is not in transactior
mode, then 0 is returned.

228 BEA TUXEDO Reference Manual

tx_info(3)

Errors

See Also

Warnings

Under the following conditionsx_info () fails and returns one of these negative
values:

[TX_PROTOCOL_ERRPR
The function was called in an improper context (for example, the caller has
not yet calledx_open (3)).

[TX_FAIL]
The transaction manager encountered a fatal error. The nature of the error is
such that the transaction manager can no longer perform work on behalf of
the application. The exact nature of the error is written to a log file.

tx_open (3), tx_set_commit_return (3), tx_set_transaction_control 3),
tx_set_transaction_timeout 3)

Within the same global transaction, subsequent catis tio () are guaranteed to
provide an XID with the samgtridc component, but not necessarily the same/
component. Both the X/Open TX interface and the X-Windows system defines the
type XID. Itis not possible to use both X-Windows calls and TX calls in the same file.

BEA TUXEDO Reference Manual 229

tx_open(3)

tx_open(3)

Name

Synopsis

Description

Return Value

230

Errors

tx_open -open a set of resource managers

#include <tx.h>
int tx_open(void)

tx_open () opens a set of resource managers in a portable manner. It invokes a
transaction manager to read resource-manager-specific information in a
transaction-manager-specific manner and pass this information to the resource
managers linked to the caller.

tx_open () attempts to open all resource managers that have been linked with the
application. This function is used in place of resource-manager-specific “open” calls
and allows an application program to be free of calls which may hinder portability.
Since resource managers differ in their initialization semantics, the specific
information needed to “open” a particular resource manager must be published by eac
resource manager.

If tx_open () returnsTX_ERRORthen no resource managers are opets. dhen ()
returnsTX_OK some or all of the resource managers have been opened. Resource
managers that are not open will return resource-manager-specific errors when access
by the applicationtx_open () must successfully return before a thread of control
participates in global transactions.

Oncetx_open () returns success, subsequent calis tapen () (before an intervening
call totx_close (3)) are allowed. However, such subsequent calls will return success,
and the TM will not attempt to re-open any RMs.

Upon successful completiotx, open () returnsTX_OK a non-negative return value.

Under the following conditionsx_open () fails and returns one of these negative
values:

[TX_ERROR
Either the transaction manager or one or more of the resource managers
encountered a transient error. No resource managers are open. The exact
nature of the error is written to a log file.

[TX_FAIL]
Either the transaction manager or one or more of the resource managers
encountered a fatal errarX_FAIL is returned ifpinit (3) is not called
before the call tax_open in a secure application (SECURITY APP_PW).
The nature of the error is such that the transaction manager and/or one or

BEA TUXEDO Reference Manual

tx_open(3)

more of the resource managers can no longer perform work on behalf of the
application. The exact nature of the error is written to a log file.

See Also tx_close (3)

Wamnings Both the X/Open TX interface and the X-Windows system defines the type XID. Itis
not possible to use both X-Windows calls and TX calls in the same file.

BEA TUXEDO Reference Manual 231

tx_rollback(3)

tx_rollback(3)

Name

Synopsis

Description

OPTIONAL
SET-UP

Return Value

232

Errors

tx_rollback -roll back a global transaction

#include <tx.h>
int tx_rollback(void)

tx_rollback () is used to roll back the work of the transaction active in the caller's
thread of control.

If the transaction_control characteristic (see

tx_set_transaction_control (3)) isTX_UNCHAINEDthen whenx_rollback ()
returns, the caller is no longer in transaction mode. However, if the
transaction_control characteristic iIIX_CHAINED then whenx_rollback ()

returns, the caller remains in transaction mode on behalf of a new transaction (see tl
RETURN VALUE and ERRORS sections below).

4 tx_set_transaction_control 3)
4 tx_set_transaction_timeout 3)

Upon successful completiotx, rollback () returnsTX_OK a non-negative return
value.

Under the following conditionsx_rollback () fails and returns one of these negative
values:

[TX_NO_BEGIN
The current transaction rolled back; however, a new transaction could not be
started and the caller is no longer in transaction mode. This return value may
occur only when theansaction_control characteristic iX_CHAINED

[TX_MIXED]
The work done on behalf of the transaction was partially committed and
partially rolled back. In addition, if theansaction_control
characteristic igX_CHAINEDQ a new transaction is started.

[TX_MIXED_NO_BEGIN
The work done on behalf of the transaction was partially committed and
partially rolled back. In addition, a new transaction could not be started and
the caller is no longer in transaction mode. This return value can occur only
when thetransaction_control characteristic i¥X_CHAINED

BEA TUXEDO Reference Manual

tx_rollback(3)

See Also

Warnings

[TX_HAZARD
Due to a failure, some of the work done on behalf of the transaction may have
been committed and some of it may have been rolled back. In addition, if the
transaction_control characteristic igX_CHAINEDQ a new transaction is
started.

[TX_HAZARD_NO_BEGIN
Due to a failure, some of the work done on behalf of the transaction may have
been committed and some of it may have been rolled back. In addition, a new
transaction could not be started and the caller is no longer in transaction
mode. This return value can occur only whentthesaction _control
characteristic igX_CHAINED

[TX_COMMITTED
The work done on behalf of the transaction was heuristically committed. In
addition, if thetransaction_control characteristic i3X_CHAINED a new
transaction is started.

[TX_COMMITTED_NO_BEGIN
The work done on behalf of the transaction was heuristically committed. In
addition, a new transaction could not be started and the caller is no longer in
transaction mode. This return value can occur only when the
transaction_control characteristic iX_CHAINED

[TX_PROTOCOL_ERRPR
The function was called in an improper context (for example, the caller is not
in transaction mode).

[TX_FAIL]
Either the transaction manager or one or more of the resource managers
encountered a fatal error. The nature of the error is such that the transaction
manager and/or one or more of the resource managers can no longer perform
work on behalf of the application. The exact nature of the error is written to a
log file. The caller's state with respect to the transaction is unknown.

tx_begin (3), tx_set_transaction_control (3),
tx_set_transaction_timeout 3)

Both the X/Open TX interface and the X-Windows system defines the type XID. Itis
not possible to use both X-Windows calls and TX calls in the same file.

BEA TUXEDO Reference Manual 233

tx_set_commit_return(3)

tx_set_commit_return(3)

Name

Synopsis

Description

Return Value

234

tx_set_commit_return -setcommit_return characteristic

#include <tx.h>
int tx_set_commit_return(COMMIT_RETURN when_return)

tx_set_commit_return () sets theeommit_return characteristic to the value
specified inwhen_return . This characteristic affects the waycommit (3) behaves

with respect to returning control to its caller.set_commit_return () may be

called regardless of whether its caller is in transaction mode. This setting remains in
effect until changed by a subsequent catkteet_commit_return 0.

The initial setting for this characteristicT®_COMMIT_COMPLETED
Following are the valid settings famen_return

TX_COMMIT_DECISION_LOGGED
This flag indicates that_commit (3) should return after the commit decision
has been logged by the first phase of the two-phase commit protocol but
before the second phase has completed. This setting allows for faster respon:
to the caller ofx_commit (3). However, there is a risk that a transaction will
have a heuristic outcome, in which case the caller will not find out about this
situation via return codes frotm_commit (3). Under normal conditions,
participants that promise to commit during the first phase will do so during
the second phase. In certain unusual circumstances however (for example,
long-lasting network or node failures) phase 2 completion may not be
possible and heuristic results may occur.

TX_COMMIT_COMPLETED
This flag indicates thak_commit (3) should return after the two-phase
commit protocol has finished completely. This setting allows the caller of
tx_commit (3) to see return codes that indicate that a transaction had or may
have had heuristic results.

Upon successful completiotx, set_commit_return () returnsTX_OK a
non-negative return value.

BEA TUXEDO Reference Manual

tx_set_commit_return(3)

Errors

See Also

Warnings

Under the following conditions, tx_set_commit_return() does not change the setting of
the commit_return ~ characteristic and returns one of these negative values:

[TX_EINVAL]
when_return is not one offX_COMMIT_DECISION_LOGGEOr
TX_COMMIT_COMPLETED

[TX_PROTOCOL_ERRPR
The function was called in an improper context (for example, the caller has
not yet calledx_open (3)).

[TX_FAIL]
The transaction manager encountered a fatal error. The nature of the error is
such that the transaction manager can no longer perform work on behalf of
the application. The exact nature of the error is written to a log file.

tx_commit (3),tx_open (3),tx_info (3)

Both the X/Open TX interface and the X-Windows system defines the type XID. Itis
not possible to use both X-Windows calls and TX calls in the same file.

BEA TUXEDO Reference Manual 235

tx_set transaction_control(3)

tx_set_transaction_control(3)

Name

Synopsis

Description

Return Value

Errors

tx_set_transaction_control -Settransaction_control characteristic

#include <tx.h>
int tx_set_transaction_control(TRANSACTION_CONTROL control)

tx_set_transaction_control () sets theransaction_control characteristic to

the value specified ibontrol . This characteristic determines whettxetommit (3)
andtx_rollback (3) start a new transaction before returning to their caller.
tx_set_transaction_control () may be called regardless of whether the
application program is in transaction mode. This setting remains in effect until change
by a subsequent call to set_transaction_control 0.

The initial setting for this characteristicT¥_UNCHAINED
Following are the valid settings foontrol

TX_UNCHAINED
This flag indicates thak_commit (3) andtx_rollback (3) should not start
a new transaction before returning to their caller. The caller must issue
tx_begin (3) to start a new transaction.

TX_CHAINED
This flag indicates thak_commit (3) andtx_rollback (3) should start a
new transaction before returning to their caller.

Upon successful completiotx, set_transaction_control () returnsTX_OK a
non-negative return value.

Under the following conditionsx_set_transaction_control () does not change
the setting of theransaction_control characteristic and returns one of these
negative values:

[TX_EINVAL]
control is not one off X_UNCHAINEDor TX_CHAINED

[TX_PROTOCOL_ERRPR
The function was called in an improper context (for example, the caller has
not yet calledx_open (3)).

[TX_FAIL]
The transaction manager encountered a fatal error. The nature of the error i
such that the transaction manager can no longer perform work on behalf of
the application. The exact nature of the error is written to a log file.

236 BEA TUXEDO Reference Manual

tx_set_transaction_control(3)

See Also tx_begin (3), tx_commit (3),tx_open (3),tx_rollback (3),tx_info (3)

Wamnings Both the X/Open TX interface and the X-Windows system defines the type XID. Itis
not possible to use both X-Windows calls and TX calls in the same file.

BEA TUXEDO Reference Manual 237

tx_set transaction_timeout(3)

tx_set_transaction_timeout(3)

Name

Synopsis

Description

Return Value

238

Errors

See Also

tx_set_transaction_timeout -settransaction_timeout characteristic

#include <tx.h>
int tx_set_transaction_timeout(TRANSACTION_TIMEOUT timeout)

tx_set_transaction_timeout () sets theransaction_timeout characteristic to

the value specified itimeout . This value specifies the time period in which the
transaction must complete before becoming susceptible to transaction timeout; that i
the interval between the AP callibg begin (3) andtx_commit (3) or

tx_rollback (3). tx_set_transaction_timeout () may be called regardless of
whether its caller is in transaction mode or notx I§et_transaction_timeout 0

is called in transaction mode, the néweout value does not take effect until the next
transaction.

The initial transaction_timeout value is 0 (no timeout).

timeout specifies the number of seconds allowed before the transaction becomes
susceptible to transaction timeout. It may be set to any value up to the maximum valu
for along as defined by the system.tifneout value of zero disables the timeout
feature.

Upon successful completiotx, set_transaction_timeout () returnsTX_OK a
non-negative return value.

Under the following conditionsx_set_transaction_timeout () does not change
the setting of theransaction_timeout characteristic and returns one of these

negative values:

[TX_EINVAL]
The timeout value specified is invalid.

[TX_PROTOCOL_ERRDR
The function was called in an improper context. For example, the caller has
not yet calledx_open (3).

[TX_FAIL]
The transaction manager encountered an error. The nature of the error is suc
that the transaction manager can no longer perform work on behalf of the
application. The exact nature of the error is written to a log file.

tx_begin (3), tx_commit (3),tx_open (3),tx_rollback (3),tx_info (3)

BEA TUXEDO Reference Manual

tx_set_transaction_timeout(3)

Wamnings Both the X/Open TX interface and the X-Windows system defines the type XID. Itis
not possible to use both X-Windows calls and TX calls in the same file.

BEA TUXEDO Reference Manual 239

useriog(3)

userlog(3)

240

Name

Synopsis

Description

userlog -write a message to the BEA TUXEDO system central event log

#include “userlog.h”
extern char *proc_name;

int userlog (format [,arg] . . .)
char *format;

userlog () accepts arintf (3S) style format specification, with a fixed output file-the
BEA TUXEDO system central event log.

The central event log is an ordinary UNIX file whose pathname is composed as
follows: If the shell variabl&)LOGPFXs set, its value is used as the prefix for the
filename. IfULOGPFXs not setULOGs used. The prefix is determined the first time
userlog () is called. Each timaserlog () is called the date is determined, and the
month, day, and year are concatenated to the prefixnagyyto set the name for the
file. The first time a process writes to the userlog, it first writes an additional message
indicating the associated BEA TUXEDO system version.

The message is then appended to the file. With this scheme, processes that call
userlog () on successive days will write into different files.

Messages are appended to the log file with a tag made up of thétimesg), system
name, process name, and process-id of the calling process. The tag is terminated w
a colon (). The name of the process is taken from the pathname of the external
variableproc_name . If proc_name has value NULL, the printed name is setiooc .

BEA TUXEDO system-generated error messages in the log file are prefixed by a
unique identification string of the form:

<catalog>:number>:

This string gives the name of the internationalized catalog containing the message
string, plus the message number. By convention, BEA TUXEDO system-generated
error messages are used only once, so the string uniquely identifies a location in the
source code.

If the last character of thiermat specification is not a newline characteferlog ()
appends one.

If the first character of the shell varialeOGDEBU® 1 ory, the message sent to
userlog () is also written to the standard error of the calling process, using the
fprintf (3S) function.

BEA TUXEDO Reference Manual

userlog(3)

Portability

Examples

Errors

Diagnostics

userlog () is used by the BEA TUXEDO system to record a variety of events.

Theuserlog mechanism is entirely independent of any database transaction logging
mechanism.

Theuserlog () interface is supported on UNIX and MS-DOS operating systems. The
system name produced as part of the log message is not available on MS-DOS systems;
therefore, the valueCis used as the system name for MS-DOS systems.

If the variableULOGPFXs set tQapplication/logs/log and if the first call to
userlog () occurred on 9/7/90, the log file created is named
/application/logs/log.090790 . If the call:

userlog(“UNKNOWN USER '%s' (uid=%d)", usrname, uid);

is made at 4:22:14pm on the UNIX System file nanmedy thesec program, whose
process-id is 23431, and the varialdename contains the string “sxx”, and the
variableuid contains the integer 123, the following line appears in the log file:

162214.m1!sec.23431: UNKNOWN USER 'sxx' (uid=123)

If the message is sent to the central event log while the process is in transaction mode,
the user log entry has additional components in the tag. These components consist of
the literalgtrid followed by thregong hexadecimal integers. The integers uniquely
identify the global transaction and make up what is referred to as the global transaction
identifier. This identifier is used mainly for administrative purposes, but it does make
an appearance in the tag that prefixes the messages in the central event log. If the
foregoing message is written to the central event log in transaction mode, the resulting
log entry will look like this:

162214.logsys!security.23431: gtrid x2x24e1b803x239: UNKNOWNUSER
'sxx' (uid=123)

If the shell variabl&JLOGDEBUGBas a value of, the log message is also written to the
standard error of the program nansedurity
userlog hangs if the message sent to it is larger B1a3#SI1Z as defined irstdio.h

userlog () returns the number of characters output, or a negative value if an output
error was encountered. Output errors include the inability to open, or write to the
current log file. Inability to write to the standard error, whe®GDEBUG set, is not
considered an error.

BEA TUXEDO Reference Manual 241

useriog(3)

Notices It is recommended that applications' useseilog messages be limited to messages
that can be used to help debug application errors; flooding the log with incidental
information can make it hard to spot actual errors.

See Also printf (3S) in a UNIX reference manual

242 BEA TUXEDO Reference Manual

Usignal(3)

Usignal(3)
Name Usignal -signal handling in a BEA TUXEDO system environment
Synopsis #include “Usignal.h”

UDEFERSIGS()
UENSURESIGS()
UGDEFERLEVEL()
URESUMESIGS)()
USDEFERLEVEL (level)

int (*Usignal(sig,func)()
int sig;

int (*func)();

void Usiginit()

Description Many of the facilities provided by the BEA TUXEDO system software require
concurrent access to data structures in shared memory. Processes accessing the shared
data structures run in user mode, and are thus interruptable by signals sent to them. In
order to ensure the consistency of the shared data structures, it is important that the
operations which access them not be interrupted by the receipt of certain UNIX
signals. The functions described in this section provide protection against the most
common signals, and are used internally by much of the BEA TUXEDO system code.
Additionally, they are available to applications to prevent the untimely arrival of a
signal.

The idea behind the BEA TUXEDO system signal handling package is that signals
should be deferrable while in critical code sections. To this end, signals are not
immediately processed when received. Instead, a BEA TUXEDO system routine first
catches the sent signal. If it is safe to process the signal, the specified action for the
signal is taken. If it is not safe to process the signal when it arrives, the arrival is noted,
but the processing is deferred until the user indicates that the critical section of code
has been terminated.

Catching User code that uses cailisopen () or tpinit () should catch signals through the use
Signals of theusignal () function.Usignal () behaves like the UNIXignal (2) system call,
except thatsignal () first arranges for the signal to be caught by an internal routine
before dispatching the user routine.

Deferringand The calls described in this section need only be used if application code wishes to defer
Restoring signals. In general, these routines are called automatically by BEA TUXEDO system
Signals routines to protect themselves from untimely signal arrival.

BEA TUXEDO Reference Manual 243

Usignal(3)

244

Notices

Before deferring or restoring signals, the mechanism must be initialized. This is done
automatically for BEA TUXEDO system clients when they gadit () and for BEA
TUXEDO system servers. It is also done the first time that the application calls
Usignal (). It can be done explicitly by callingsiginit ().

The UDEFERSIG$) macro should be used when entering a section of critical code.
After UDEFERSIGY) is called, signals are held in a pending state.URESUMESIGY
macro should be invoked when the critical section is exited. Note that signal deferral
stack. The stack is implemented via a counter which is initially set to zero. When
signals are deferred by a callubDEFERSIGS), the counter is incremented. When
signals are resumed, by a callRESUMESIGE, the counter is decremented. If a
signal arrives while the counter is non-zero, the processing of the signal is deferred. |
the counter is zero when the signal arrives, the signal is processed immediately. If
signal resumption causes the counter to be become zero (i.e. prior to the resumption
had value 1), any signals that arrived during the deferral period are processed. In
general, each call toDEFERSIG$) should have a counterpart calllBESUMESIGS.

UDEFERSIGSncrements the deferral counter, but returns the value of the counter prior
to its incrementation. The mactENSURESIGE may be used to explicitly set the
deferral counter to zero (and thus force the processing of deferred signals), in case tl
user wishes to protect against unmatchiDgFERSIG$) andURESUMESIGQ.

The functionUGDEFERLEVH) returns the current setting of the deferral counter. The
macroUSDEFERLEVE(level) allows the setting of a specific deferral level.
UGDEFERLEVH]) andUSDEFERLEVE() are useful to set the counter appropriately in
setjmp/longjmp situations where a set of deferrals/resumes are bypassed. The ide:
is to save the value of the counter wiketimp is called, via a call to

UGDEFERLEVH), and to restore it via a call t4sDEFERLEVE() when thdongjmp is
performed.

Usignal provides signal deferral for the following sign@BSHUP,SIGINT , SIGQUIT,
SIGALRM SIGTERM SIGUSR1, andSIGUSR2 Handling requests for all other signal
numbers are passed directlystgnal () by Usignal . Signals may be deferred for a
considerable time. For this reason, during signal deferral, individual signal arrivals are
counted. When it is safe to process a signal that may have arrived many times, the
signal's processing routine is iteratively called to process each arrival of the signal.
Before each call the default action for the signal is instantiated. The idea is to handls
the deferred occurrences of the signal as if they happened in quick succession in sa
code.

BEA TUXEDO Reference Manual

Usignal(3)

Files

See Also

In general, users should not mix callsitmal (2) andUsignal () for the same signal.

The recommended procedure is to go througibnal , so that it is always aware of

the state of the signal. Sometimes it may be necessary, such as when an application
wants to use alarms within BEA TUXEDO system services. To douhigipit ()

should be called to initialize the signal deferring mechanism. Sigeal () can be

called to override the mechanism for the desired signal. To restore the deferring
mechanism for the signal, it is necessary tolgsiinal () for the signal with

SIG_IGN, and then again with the desired signal-handling function.

The shell variabl&IMMEDSIGScan be used to override the deferral of signals. If the
value of this variable begins with the letyeas in:

UIMMEDSIGS=y

signals are not intercepted (and thus not deferred) bystheal code. In such a case,
a call tousignal is passed immediately tignal (2).

Usignal is not available under DOS operating systems.
Usignal.h

signal (2) in a UNIX System reference manual

BEA TUXEDO Reference Manual 245

Uunix_err(3)

Uunix_err(3)

246

Name

Synopsis

Description

Examples

Uunix_err -print UNIX system call error
#include Uunix.h

void Uunix_err(s)
char *s;

When a BEA TUXEDO system function calls a UNIX system call that detects an error,
an error is returned. The external integenixerr is set to a value (as defined in
Uunix.h) that identifies the system call that returned the error. In addition, the systern
call setermo to a value (as defined érno.h) that tells why the system call failed.

Theuunix_err () function is provided to produce a message on the standard error
output, describing the last system call error encountered during a call to a BEA
TUXEDO system function. It takes one argument, a string. The function prints the
argument string, then a colon and a blank, followed by the nhame of the system call the
failed, the reason for failure, and a newline. To be of most use, the argument string
should include the name of the program that incurred the error. The system call errc
number is taken from the external variableixerr , the reason is taken frognmo .

Both variables are set when errors occur. They are not cleared when non-erroneous
calls are made.

To simplify variant formatting of messages, the array of message strings
extern char *Uunixmsg[l;

is provided;Uunixerr can be used as an index into this table to get the name of the
system call that failed (without the newline).

#include Uunix.h
extern int Uunixerr, errno;

if((fd=open(“myfile”, 3, 0660)) == -1)
{

Uunixerr = UOPEN;
Uunix_err(“myprog”);
exit(1);

BEA TUXEDO Reference Manual

xdr(3I)

xdr(31)
Name

Description

Index to
Routines

xdr -library routines for external data representation

XDRroutines allow C programmers to describe arbitrary data structures in a
machine-independent fashion. Data for communications calls are transmitted using
these routines.

The following table list&DRroutines and the manual reference pages on which they
are described:

XDR Routines

XDR Routine Manual Reference Page
xdr_array xdr_complex(3l)
xdr_bool xdr_simple(3l)
xdr_bytes xdr_complex(3I)
xdr_char xdr_simple(3l)

xdr_destroy

xdr_create(3l)

xdr_double xdr_simple(3l)
xdr_enum xdr_simple(3I)
xdr_float xdr_simple(3l)
xdr_free xdr_simple(3l)
xdr_getpos xdr_admin(3l)
xdr_inline xdr_admin(3I)
xdr_int xdr_simple(3I)
xdr_long xdr_simple(3l)
xdr_opaque xdr_complex(3I)
xdr_pointer xdr_complex(3l)

xdr_reference

xdr_complex(3I)

xdr_setpos xdr_admin(3l)
xdr_short xdr_simple(3I)
xdr_string xdr_complex(3I)

BEA TUXEDO Reference Manual

xdr(3I)

248

See Also

XDR Routines

XDR Routine Manual Reference Page
xdr_u_char xdr_simple(3l)
xdr_u_long xdr_simple(3l)
xdr_u_short xdr_simple(3lI)
xdr_union xdr_complex(3l)
xdr_vector xdr_complex(3l)
xdr_void xdr_simple(3l)

xdr_wrapstring xdr_complex(3l)

xdrmem_create xdr_create(3l)

xdrstdio_create xdr_create(3I)

xdr_admin (3l), xdr_complex (3I), xdr_create

BEA TUXEDO Reference Manual

(31), xdr_simple (3I)

xdr_admin(3l)

xdr_admin(3I)

Name

Description

Routines

See Also

xdr_admin , xdr_getpos , xdr_inline , xdr_setpos -library routines for external
data representation

XDRlibrary routines allow C programmers to describe arbitrary data structures in a
machine-independent fashion. Protocols such as communications calls use these
routines to describe the format of the data.

These routines deal specifically with the management ofirestream.
#include <rpc/xdr.h>

u_int xdr_getpos(const XDR *xdrs)

A macro that invokes the get-position routine associated witkiRstream,

xdrs . The routine returns an unsigned integer, which indicates the position of
the XDRbyte stream. A desirable featurexafRstreams is that simple
arithmetic works with this number, although %@Rstream instances need

not guarantee this. Therefore, applications written for portability should not
depend on this feature.

long * xdr_inline(XDR *xdrs, const int len)

A macro that invokes the in-line routine associated withxthRstream,

xdrs . The routine returns a pointer to a contiguous piece of the stream's
buffer; len is the byte length of the desired buffer. Note: pointer is cast to
long * . Warning:xdr_inline ~ may returrNULL (0) if it cannot allocate a
contiguous piece of a buffer. Therefore the behavior may vary among stream
instances; it exists for the sake of efficiency, and applications written for
portability should not depend on this feature.

bool_t xdr_setpos(XDR *xdrs, const u_int pos)

A macro that invokes the set position routine associated witkOjRetream
xdrs . The parametegos is a position value obtained fromr_getpos . This
routine returnd if the XDRstream was repositioned, andtherwise.
Warning: itis difficult to reposition some typesxiiRstreams, so this routine
may fail with one type of stream and succeed with another. Therefore,
applications written for portability should not depend on this feature.

xdr_complex (3l), xdr_create (3l), xdr_simple (3I).

BEA TUXEDO Reference Manual 249

xdr_complex(3l)

xdr_complex(3l)

250

Name

Description

Routines

xdr_complex :xdr_array ,xdr_bytes ,xdr_opaque ,xdr_pointer
xdr_reference , xdr_string , xdr_union , xdr_vector , xdr_wrapstring -library
routines for external data representation

XDRlibrary routines allow C programmers to describe complex data structures in a
machine-independent fashion. Protocols such as communications calls use these
routines to describe the format of the data. These routines axe®library routines

for complex data structures. They require the creatiotbefstream [see
xdr_create(31)].

#include <rpc/xdr.h>

bool_t xdr_array(XDR *xdrs, caddr_t *arrp, u_int *sizep, const

u_int maxsize, const u_int elsize, const xdrproc_t elproc)
xdr_array translates between variable-length arrays and their corresponding
external representations. The parametgr is the address of the pointer to
the array, whilesizep is the address of the element count of the array; this
element count cannot exceeexsize . The parametedisize is thesizeof
each of the array's elements, agtoc is anXDRroutine that translates
between the array elements' C form and their external representation. This
routine returng if it succeedsp otherwise.

bool_t xdr_bytes(XDR *xdrs, char **sp, u_int *sizep, const

u_int maxsize)
xdr_bytes translates between counted byte strings and their external
representations. The parametpris the address of the string pointer. The
length of the string is located at addreigsp ; strings cannot be longer than
maxsize . This routine returns if it succeedso otherwise.

bool_t xdr_opaque(XDR *xdrs, caddr_t cp, const u_int cnt)
xdr_opaque translates between fixed size opaque data and its external
representation. The parametgris the address of the opaque object,and
is its size in bytes. This routine returh it succeedsp otherwise.

bool_t xdr_pointer(XDR *xdrs, char **objpp, u_int objsize,

const xdrproc_t xdrobj)
Like xdr_reference except that it serializesULL pointers, whereas
xdr_reference does not. Thusdr_pointer ~ can represent recursive data
structures, such as binary trees or linked lists.

BEA TUXEDO Reference Manual

xdr_complex(3l)

bool_t xdr_reference(XDR *xdrs, caddr_t *pp, u_int size,

const xdrproc_t proc)
xdr_reference provides pointer chasing within structures. The parameter
pp is the address of the pointaize is thesizeof the structure thapp
points to; angbroc is anXDRprocedure that translates the structure between
its C form and its external representation. This routine retuifiissucceeds,
0 otherwise. Warning: this routine does not underskid. pointers. Use
xdr_pointer instead.

bool_t xdr_string(XDR *xdrs, char **sp, const u_int maxsize)
xdr_string translates between C strings and their corresponding external
representations. Strings cannot be longer thawsize . Note:sp is the
address of the string's pointer. This routine retariist succeeds)
otherwise.

bool_t xdr_union(XDR *xdrs, enum_t *dscmp, char *unp,

conststructxdr_discrim*choices, constbool_t(*defaultarm)(const

XDR *, const char *, const int))
xdr_union translates between a discriminatedr®n and its
corresponding external representation. It first translates the discriminant of
the union located atscmp. This discriminant is always amum_t . Next the
union located atinp is translated. The parametgices is a pointer to an
array ofxdr_discrim structures. Each structure contains an ordered pair of
[value, proc 1. If the union's discriminant is equal to the associatae |
then theproc is called to translate the union. The end ofsdrediscrim
structure array is denoted by a routine of valueL If the discriminant is not
found in thechoices array, then theefaultarm procedure is called (if it is
notNULL). Returnsl if it succeeds) otherwise.

bool_t xdr_vector(XDR *xdrs, char *arrp, const u_int size,

const u_int elsize, const xdrproc_t elproc)
xdr_vector translates between fixed-length arrays and their corresponding
external representations. The parametgr is the address of the pointer to
the array, whilesize is is the element count of the array. The parameter
elsize is thesizeof each of the array's elements, afgloc is anXDR
routine that translates between the array elements' C form and their external
representation. This routine return it succeeds) otherwise.

bool_t xdr_wrapstring(XDR *xdrs, char **sp)
A routine that calls xdr_stringrs , sp, maxuint); wheremaxuint is the
maximum value of an unsigned integer. Many routines, sugtr asray |,
xdr_pointer andxdr_vector take a function pointer of typelirproc_t
which takes two argumentsdr_string , one of the most frequently used
routines, requires three arguments, wkée wrapstring only requires
two. For these routinesgr_wrapstring is desirable. This routine returns
if it succeedsp otherwise.

BEA TUXEDO Reference Manual 251

xdr_complex(3l)

See Also xdr_admin (3l), xdr_create (3l), xdr_simple (3I).

252 BEA TUXEDO Reference Manual

xdr_create(31)

xdr_create(3l)

Name

Description

Routines

See Also

xdr_create : xdr_destroy , xdrmem_create , xdrstdio_create -library routines
for external data representation stream creation

XDRlibrary routines allow C programmers to describe arbitrary data structures in a
machine-independent fashion. Protocols such as communications calls use these
routines to describe the format of the data.

These routines deal with the creatiorxdiRstreamsXDRstreams have to be created
before any data can be translated ixibiRformat.

#include <rpc/xdr.h>

void xdr_destroy(XDR *xdrs)
A macro that invokes the destroy routine associated witiirestream,
xdrs . Destruction usually involves freeing private data structures associated
with the stream. Usingdrs after invokingxdr_destroy is undefined.

void xdrmem_create(XDR *xdrs, const caddr_t addr, const u_int size,

const enum xdr_op op)
This routine initializes th&DRstream object pointed to layrs . The stream's
data is written to, or read from, a chunk of memory at locatih whose
length is no more thasize bytes long. Thep determines the direction of
the XDRstream (eithekDR_ENCODREDR_DECODEr XDR_FREE

void xdrstdio_create(XDR *xdrs, FILE *file, const enum xdr_op op)
This routine initializes th&DRstream object pointed to bxrs . TheXDR
stream data is written to, or read from, the standard I/O stfisam The
parametepp determines the direction of tk®Rstream (eithexDR_ENCODE
XDR_DECODBr XDR_FREE. Warning: the destroy routine associated with
suchxDRstreams callflush ~ on thefile stream, but nevéclose [see
fclose (39)].

fclose (3S),read (2), rpc (31), write (2), xdr_admin (3l), xdr_complex (3l),
xdr_simple (3l).

BEA TUXEDO Reference Manual 253

xdr_simple(3I)

xdr_simple(3I)

254

Name

Description

Routines

xdr_simple :xdr_bool ,xdr_char ,xdr_double ,xdr_enum ,xdr_float ,
xdr_free ,xdr_int ,xdr_long ,xdr_short ,xdr_u char ,xdr_u_long |,
xdr_u_short , xdr_void -library routines for external data representation

XDRlibrary routines allow C programmers to describe simple data structures in a
machine-independent fashion. Protocols such as communications calls use these
routines to describe the format of the data.

These routines require the creatiorxoRstreams [see xdr_create(3I)].
#include <rpc/xdr.h>

bool_t xdr_bool(XDR *xdrs, bool_t *bp)
xdr_bool translates between booleans (C integers) and their external
representations. When encoding data, this filter produces values ofieither
0. This routine returns if it succeeds) otherwise.

bool_t xdr_char(XDR *xdrs, char *cp)
xdr_char translates between C characters and their external representation:s
This routine returns if it succeeds) otherwise. Note: encoded characters are
not packed, and occupy 4 bytes each. For arrays of characters, it is worthwhil
to considewxdr_bytes , xdr_opaque Ofxdr_string [seexdr_bytes
xdr_opaque andxdr_string in xdr_complex (3I)].

bool_t xdr_double(XDR *xdrs, double *dp)
xdr_double translates between d@uble precision numbers and their
external representations. This routine returifsit succeeds) otherwise.

bool_t xdr_enum(XDR *xdrs, enum_t *ep)
xdr_enum translates between &@ums (actually integers) and their external
representations. This routine retutni it succeedso otherwise.

bool_t xdr_float(XDR *xdrs, float *fp)
xdr_float translates betweenf@Gat s and their external representations.
This routine returns if it succeedso otherwise.

void xdr_free(xdrproc_t proc, char *objp)
Generic freeing routine. The first argument is XipRroutine for the object
being freed. The second argument is a pointer to the object itself. Note: the
pointer passed to this routine is not freed, but what it points to is freed
(recursively).

BEA TUXEDO Reference Manual

xdr_simple(31)

See Also

bool_t xdr_int(XDR *xdrs, int *ip)
xdr_int translates between C integers and their external representations.
This routine returng if it succeeds) otherwise.

bool_t xdr_long(XDR *xdrs, long *Ip)
xdr_long translates betweenl@hg integers and their external
representations. This routine retudns it succeeds otherwise.

bool_t xdr_short(XDR *xdrs, short *sp)
xdr_short translates betweensbort integers and their external
representations. This routine retudns it succeeds) otherwise.

bool_t xdr_u_char(XDR *xdrs, char *ucp)
xdr_u_char translates betweamsigned C characters and their external
representations. This routine retudns it succeeds otherwise.

bool_t xdr_u_long(XDR *xdrs, unsigned long *ulp)
xdr_u_long translates between @signed long integers and their
external representations. This routine returifsit succeeds) otherwise.

bool_t xdr_u_short(XDR *xdrs, unsigned short *usp)
xdr_u_short translates between @signed short integers and their
external representations. This routine returifsit succeeds) otherwise.

bool_t xdr_void(void)
This routine always returris It may be passed to RPC routines that require
a function parameter, where nothing is to be done.

rpc (31), xdr_admin (31), xdr_complex (3l), xdr_create (3I).

BEA TUXEDO Reference Manual 255

xdr_simple(3l)

256 BEA TUXEDO Reference Manual

	Copyright
	Section 3C - C Functions
	intro(3c)
	AEMsetblockinghook(3)
	AEOaddtypesw(3)
	AEPisblocked(3)
	AEPsetblockinghook(3)
	AEWaddtypesw(3)
	AEWisblocked(3)
	AEWsetblockinghook(3)
	AEWsetunsol(3)
	buffer(3c)
	catgets(3)
	catopen(3)
	change_atts(3)
	decimal(3)
	do_form(3)
	formprint(3)
	frmmisc(3)
	gp_mktime(3)
	maskprt(3)
	mods(3)
	nl_langinfo(3)
	recomp(3)
	rpc_sm_allocate(3)
	rpc_sm_client_free(3)
	rpc_sm_disable_allocate(3)
	rpc_sm_enable_allocate(3)
	rpc_sm_free(3)
	rpc_sm_set_client_alloc_free(3)
	rpc_sm_swap_client_alloc_free(3)
	setlocale(3)
	strerror(3)
	strftime(3)
	tpabort(3)
	tpacall(3)
	tpadmcall(3)
	tpadvertise(3)
	tpalloc(3)
	tpbegin(3)
	tpbroadcast(3)
	tpcall(3)
	tpcancel(3)
	tpchkauth(3c)
	tpchkunsol(3)
	tpclose(3)
	tpcommit(3)
	tpconnect(3)
	tpconvert(3c)
	tpcryptpw(3)
	tpdequeue(3)
	tpdiscon(3)
	tpenqueue(3)
	tperrordetail(3c)
	tpforward(3)
	tpfree(3)
	tpgetadmkey(3)
	tpgetlev(3)
	tpgetrply(3)
	tpgprio(3)
	tpinit(3)
	tpnotify(3)
	tpopen(3)
	tppost(3)
	tprealloc(3)
	tprecv(3)
	tpresume(3)
	tpreturn(3c)
	tpscmt(3)
	tpsend(3)
	tpservice(3)
	tpsetunsol(3)
	tpsprio(3)
	tpstrerror(3)
	tpstrerrordetail(3)
	tpsubscribe(3c)
	tpsuspend(3)
	tpsvrdone(3c)
	tpsvrinit(3)
	tpterm(3)
	tptypes(3)
	tpunadvertise(3)
	tpunsubscribe(3)
	TRY(3)
	tuxgetenv(3)
	tuxputenv(3)
	tuxreadenv(3)
	tx_begin(3)
	tx_close(3)
	tx_commit(3)
	tx_info(3)
	tx_open(3)
	tx_rollback(3)
	tx_set_commit_return(3)
	tx_set_transaction_control(3)
	tx_set_transaction_timeout(3)
	userlog(3)
	Usignal(3)
	Uunix_err(3)
	xdr(3I)
	xdr_admin(3I)
	xdr_complex(3I)
	xdr_create(3I)
	xdr_simple(3I)

